
Comparative Preferences in SPARQL

Peter F. Patel-Schneider1(B), Axel Polleres2,3, and David Martin1

1 NAIL Laboratory, Nuance Communications, Sunnyvale, CA, USA
pfpschneider@gmail.com

2 Vienna University of Economics and Business/Complexity Science Hub Vienna,
Wien, Austria

3 Stanford University, Stanford, CA, USA

Abstract. Sometimes one does not want all the solutions to a query
but instead only those that are most desirable according to user-specified
preferences. If a user-specified preference relation is acyclic then its spec-
ification and meaning are straightforward. In many settings, however, it
is valuable to support preference relations that are not acyclic and that
might not even be transitive, in which case though their handling involves
some open questions. We discuss a definition of desired solutions for arbi-
trary preference relations and show its desirable properties. We modify a
previous extension to SPARQL for simple preferences to correctly handle
any preference relation and provide translations of this extension back
into SPARQL that can compute the desired solutions for all preference
relations that are acyclic or transitive. We also propose an additional
extension that returns solutions at multiple levels of desirability, which
adds additional expressiveness over prior work. However, for the latter
we conjecture that an effective translation to a single (non-recursive)
SPARQL query is not possible.

1 Introduction

Preferences and the notion of the Semantic Web are tightly interwoven: the sem-
inal vision article often cited as coining the term “Semantic Web” already men-
tions preferences in several places [1], for instance: “Pete [...] set his own agent
to [...] search with [...] preferences about location and time.”. The same article
also already mentions standardization in terms of languages defining such prefer-
ences, such as the Composite Capability/Preference Profile (CC/PP) [2], which
allows a user agent (typically a client application) to declare its preferences, e.g.,
in terms of device capabilities.

Interestingly this early interest in expressing preferences and retrieving
Semantic Web data compliant with these preferences has not found its way

A poster of part of this paper is being presented at ISWC 2018. An extended technical
report version of this paper, including proofs and the main algorithm, is available at
http://polleres.net/publications/patel-schneider-etal-2018TR.pdf
Axel Polleres’ work was supported under the Distinguished Visiting Austrian Chair
Professors program hosted by The Europe Center of Stanford University.
c© Springer Nature Switzerland AG 2018
C. Faron Zucker et al. (Eds.): EKAW 2018, LNAI 11313, pp. 289–305, 2018.
https://doi.org/10.1007/978-3-030-03667-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03667-6_19&domain=pdf
http://polleres.net/publications/patel-schneider-etal-2018TR.pdf
https://doi.org/10.1007/978-3-030-03667-6_19

290 P. F. Patel-Schneider et al.

into later Semantic Web Standards, such as SPARQL. There is no built-in way
to express and evaluate queries with preferences in SPARQL, but there have
been several proposals [3–5] for adding preferences to SPARQL and defining a
meaning for such preferential queries.

We argue that preferences in their full generality are not correctly handled in
the proposals so far, and show how this can be addressed with a modified seman-
tics. Additionally, we show that certain kinds of preferences can be expressed in
a single SPARQL 1.1 query, although the most recent proposal that translates
preferences into standard SPARQL queries fails to work on relatively simple
examples due to problems in the SPARQL 1.1 query standard [6].

Example 1 (Running Example). As a running example, let us assume data in a
navigation scenario, where a user would be looking for gas stations with prefer-
ences among features such as brand, distance to the user’s location, and different
shops that sell various antifreeze products, given as an RDF Graph G1:

:p123 a :GasStation; :brand :Mobil; :dist 1.1;
:shop :TigerMart; :antifreeze :Prestone .

:p456 a :GasStation; :brand :Chevron; :dist 0.5;
:shop :KwikieMart; :antifreeze :StarBrite .

:p789 a :GasStation; :brand :Shell; :dist 0.8;
:shop :711; :antifreeze :Zerex .

:p012 a :GasStation; :brand :Citgo; :dist 6 .

User preferences could be of different forms, such as:

P1 “I prefer gas stations within 1 mile distance” (simple boolean)
P2 “I prefer the closest gas station” (quantitative)
P3 “I prefer Mobil over Chevron” (comparative)
P4 “I prefer solutions within 1 mile (P1) and among those I prefer
Mobil over Chevron gas (P3), and Kwikie Mart over 7-11, and other-
wise just the closest (P2)” (combinations)

So atomic preferences can be simple boolean, i.e. stating preferences for solu-
tions fulfilling a certain boolean condition, quantitative, i.e., where each solu-
tion is given a score from a totally ordered set, or comparative, i.e., preferences
expressed as a binary relation between solutions. Such atomic preferences can be
combined in various ways.

A preference query takes the results of a non-preferential subquery (in this
case, a subquery that returns gas stations), and selects most preferred ones.
(The precise definition of “most preferred” is part of what we are examining in
this paper.) The preferences we wish to handle call for a generalization of the
skyline operator [7] in databases so we will talk about obtaining the skyline
of a preference relation, i.e., the most preferred results based on a preference.1
Subsidiary preference results can be defined, such as the nth skyline, i.e., the
1 In databases, skyline involves a multiway combination of totally ordered comparisons

between the values in tuples; qualitative preferences here instead allow an arbitrary
comparison relation.

Comparative Preferences in SPARQL 291

skyline after the first n − 1 skylines have been removed, or returning solutions
along with their skyline number (which gives a rank for each solution).

We focus on comparative preferences, partly because (i) comparative pref-
erences are more general than simple boolean or quantitative preferences, (ii)
comparative preferences can capture combined preferences as part of their pref-
erence relation representation, (iii) user preferences are often comparative [8,9].

As for (i), we note that quantitative preferences generalize simple boolean
preferences, and comparative preferences generalize quantitative preferences, by
preferring solutions with a better score to solutions with a worse score.

2 Foundations and Motivation

We adapt our formal definition of comparative preferences from that of Chomicki
[10] as also used by other work in the area such as Troumpoukis et al. [5].

Definition 1. Given a set of potential solutions P , a preference relation � is
any relation over P ×P . A solution s1 is dominated by a solution s2 if s2 � s1.

Although a preference relation is defined over a universe of potential solutions,
it is applied to finite sets of candidate solutions. Typically, potential solutions
are all solutions that are representable under the schema of some information
source. Candidate solutions are then solutions returned from the ordinary (non-
preferential) part of a query.

Example 2. Referring back to Example 1, the four gas stations shown could be
the candidate solutions returned by the ordinary SPARQL query, Q1:

Q1: SELECT * {?X a :GasStation; :brand ?B; :dist ?D. FILTER(?D<=10)}

The potential solutions would be a much larger set (i.e., all gas stations that
could be represented in an information source). The preference relation for P3
would include all pairs (m, c) where m is a Mobil station and c a Chevron station.
After applying this preference relation, for reasons discussed below, one would
be left with the Mobil, Shell, and Citgo stations.

In this paper, we ground candidate solutions in results of SPARQL 1.1 queries
[6] (that is, multisets of variable bindings). We also allow for solutions from
SPARQL extended with external services.2 The examples in this paper will not
use such service extensions; for simplicity we will just use preferences over solu-
tions of SPARQL queries over a RDF graph, such as G1 in Example 1.

We do not require any other properties of preference relations. In particular,
a preference relation here need not be irreflexive, asymmetric, acyclic, or transi-
tive.3 It may seem that these should be required aspects of a preference relation
but we want to study what happens with arbitrary preference relations, such as
those likely to be obtained directly from users.
2 SPARQL 1.1 provides a basic mechanism for such external services (e.g., to look up

or compute current prices or exchange rates), using the SERVICE keyword [11].
3 To review the basic properties of binary preference relations see Chomicki [10].

292 P. F. Patel-Schneider et al.

Example 3. We allow a combination of comparative preferences on different
aspects of gas stations. For example P6a: a preference for Mobil brand gas
stations over Chevron; P6b: a preference for gas stations with KwickieMart
stores over those with 7-11’s; and P6c: a preference for gas stations selling Zerex
antifreeze over those selling Prestone. (What is important here is that the pref-
erences on the aspects are only partial orders, not total orders.)

Example 4. We also allow the obviously cyclic preference relation consisting only
of P3a: a preference for Mobil brand gas stations over Chevron brand; P3b: a
preference for Chevron over Citgo; and P3c: a preference for Citgo over Mobil.

The implementation of our preference relations in SPARQL will be arbitrary
SPARQL expressions. If solutions contain objects from some sort of knowledge
repository the relation can depend on anything accessible in the repository.
(Troumpoukis et al. [5] call preferences that do not use external information
intrinsic preferences.) In SPARQL this means that an expression defining a pref-
erence relation can access properties of a solution object from the underlying
graph (such as the brand of fuel sold at a gas station, its current distance, or
whether it has a roof over its pumps), and other information in the graph (such
as whether it is currently raining, etc.), without having this information in the
solution itself.

Our preference relations are not examinable in general, and the set of poten-
tial solutions will generally be very large, or even infinite.

Example 5. For instance, the preference P5: “I prefer between two solutions the
one closer in distance”, could apply to infinitely many potential solutions (not
knowing the underlying graph G). Note also that there could be other gasoline
brands in G that are not named explicitly in the preferences at hand.

It can thus be practically infeasible to compute the transitive closure of a
preference relation, or indeed determine whether a preference relation is irreflex-
ive, asymmetric, acyclic, or transitive.

?D = 0.5

?D = 0.8

?D = 1.1

?D = 6

P5 P3a-d

?B = Mobil?B = CitGo

?B = Chevron

?B = Shell
P6a-c

?B = Mobil

?B = Chevron?S = Kwickie

?S = 711

?A = Prestone?A = Zerex

Fig. 1. Preference relations P5, P3a-d, and P6a-c for the solutions of query Q1 over
graph G1.

Comparative Preferences in SPARQL 293

Example 6. For instance, P5 is transitive on all sets of candidate solutions. How-
ever, if we view P3a-c as a single preference relation, transitivity does not hold.
As well, additional preferences such as P3d “I prefer Shell over Mobil” could
make the preference relation lose completeness4 (every element comparable with
every other). See Fig. 1 for a graphical illustration. Similarly, P6a-c produces a
preference cycle on our example gas stations.

The basic operation in comparative preferences is the winnow operator [10].
The intuitive notion is that given an candidate set of solutions and a prefer-
ence relation, the winnow operator returns those solutions that have no solution
dominating them. Based on its similarity to skylines in databases, we call the
result of the winnow operator the skyline of a preference relation. Formally this
is (again adapted from Chomicki [10]):

Definition 2. If S is a finite set of (candidate) solutions and � a preference
relation over some (potentially infinite) superset of S then the skyline of S with
respect to � is

ω�(S) = {s ∈ S|¬∃s′ ∈ S.s′ � s}
We loosely refer to the definition of skyline as the “semantics” of preference

relations. Note here that � has access to extrinsic information about objects in
solutions in S. In the SPARQL setting this means that � has access to the graph
being queried.

We can also define the second skyline as the skyline after the initial skyline
has been removed from the solution set, and so on, thus defining “levels” of
skyline solutions:

Definition 3. If S is a finite set of (candidate) solutions and � a preference
relation over some superset of S then the nth skyline of S with � is defined as

ωn
�(S) = {s ∈ S \

n−1⋃

i=1

ωi
�(S) | ¬∃s′ ∈ S \

n−1⋃

i=1

ωi
�(S) . s′ � s}

The rank of a solution, s, in S with respect to � is the number of the skyline
that it is in, i.e., rankS�(s) = n for s ∈ ωn

�(S). If a solution is not in any skyline,
then its rank is undefined.

Returning multiple skylines is valuable if all elements of the top skyline might
be deemed unsuitable by later processing, or if a minimum number of solutions
is required, which could exceed the size of the top skyline.

Example 7. Looking at Fig. 1 let us assume for the moment a slight re-
formulation of P5 to be “I prefer between two solutions the one closer or equal
in distance”. This obviously is not very intuitive as it makes the preference rela-
tion reflexive, and thereby makes each solution dominate itself – resulting in an
empty skyline. However, as we will see current proposals for encoding preferences
in SPARQL allow such preferences.
4 Chomicky calls this connectivity [10, Definition 2.1].

294 P. F. Patel-Schneider et al.

Example 8. Cyclic preferences can appear in practice by collecting single user
preferences, expressed on separate occasions, and with the definitions above can
lead to unexpected results. We take here the example of P3a-d from Fig. 1. Intu-
itively, among all four candidate solutions the solution with brand Shell is most
preferred, but then under Definition 3 the second skyline is empty, since each
remaining solution is dominated by another candidate solution. Our intuition is
that in such a case all of these three solutions should be equally preferred, and
in the second skyline. Note that P6a-c also produce a cycle in the 4 candidate
solutions, even though their expression does not look obviously cyclic.

Assuming, on the other hand, that Citgo was not within the candidate solu-
tions, say by changing Q1 to Q2 as follows:

Q2: SELECT * {?X a :GasStation; :brand ?B; :dist ?D. FILTER(?D<=5)}

That would reduce the number of candidate solutions to just Shell, Mobil,
and Chevron, which would be in the first, second and third skyline, respectively
(this time in accord with our intuitions). So, we see that removing (and likewise
adding) candidate solutions can change the rank and ordering of solutions.

To complicate things further, if we consider P3a-d or P6a-c in combination
with P1 the handling of the combined preference relation becomes even less clear,
depending on the semantics of combinations and their respective consideration
of candidate solutions.

Given examples such as these, we aim to shed more light on the semantics for
preferences in queries, and provide definitions that handle these situations more
intuitively and satisfy basic desiderata, such as that each level of skyline should
contain at least one solution, even in cases where preferences are not necessarily
coherent.

Our primary contributions in the present work are

– an analysis of what goes wrong with a widely used definition of the skyline
operator when a preference relation fails to be acyclic and/or transitive,

– a definition that works for arbitrary preference relations,
– a slightly simpler definition that can be used with transitive preference rela-

tions, with performance benefits,
– translations to SPARQL 1.1 (based on translations proposed in prior work

[5,12]) to implement these new definitions, and
– a further extension that allows a query to request multiple levels of skylines.

In the next section, we will review some earlier approaches to the formulation
of preferences in SPARQL, in the light of whether they can express compara-
tive semantics at all and how they would handle the cases above. We will then
approach the analysis of preference relations and variations of the definition of
the skyline operator more formally in Sects. 4 and 5, by discussing what we call
simple (i.e., acyclic and/or transitive) preferences and non-simple preferences
separately. Along the way we will refine the notion of skyline operators and pro-
vide two more variations thereof. Finally, in Sects. 6 and 7 we will discuss which

Comparative Preferences in SPARQL 295

of these proposed variations can be implemented in SPARQL 1.1, and which
require extensions in terms of bespoke evaluation algorithms. In this topic, we
will identify problems in existing approaches to translating preference handling
to SPARQL, and propose repairs, where possible.

3 Previous Work

The notion of preference has a central role in many disciplines, including eco-
nomics, psychology and other social sciences, some areas of philosophy, decision
theory and game theory (themselves interdisciplinary topics), and computer sci-
ence. The formalization of comparative preferences as binary preference relations
runs throughout much of this work, although the definitional details vary. Much
work on preference relations assumes, mandates, or arranges for them to be
acyclic and/or transitive (or constrained in other ways), for a variety of reasons.
Nonetheless, there is a large literature showing that cyclic and/or intransitive
preference relations do arise naturally in the real world of human judgments
[8,9].

Turning to preferences used with query languages, Rosati et al. [13] show
how a set of preferences modeled as a CP-net can be represented in RDF, and
how generated SPARQL queries can use the RDF representation to rank the
results of an ordinary (non-preferential) SPARQL query. Whereas the prefer-
ences semantics discussed here are determined primarily by the definition of
skyline, in their approach the semantics are determined by the CP-net formal-
ism. Whereas we are concerned with preferences expressed directly in a SPARQL
query, along with non-preferential query clauses, their preferences are acquired
and represented independently of the non-preferential SPARQL queries to which
they apply5.

Chomicki [10] analyzes intrinsic comparative preferences in a relational
database setting. He considers preferences as multidimensional combinations of
atomic preferences where each atomic preference is a built-in SQL function (such
as numeric ordering). A preference function could be to consider distance and
fuel brand separately, which ends up with the closest gas station for each brand,
or to first consider distance and then some ordering of brands, which ends up
with the closest gas station but if there is a tie for closest then chooses by brand.
He analyzes the properties of his winnow operator with an eye to how it can be
optimized in SQL queries.

Siberski et al. [3] transform a subset of these preferences into an early version
of SPARQL, producing a SPARQL query extension for conjunctive (combine
preferences over two different values) cascaded (consider preference over one
value before preference over another) intrinsic preferences. They implement these
preferences as an extension to ARQ6, with a syntax inspired by an early version
of the Preference SQL language [14].
5 In a later version of [13], available on semanticscholar.org, the approach is extended

to handle CP-theories.
6 https://jena.apache.org/documentation/query/.

http://semanticscholar.org
https://jena.apache.org/documentation/query/

296 P. F. Patel-Schneider et al.

Gueroussova et al. [4,12] transform a version of Chomicki’s preferences (which
they call conditional preferences) to SPARQL, extending the work of Siberski
et al. by adding more combination operators. They define an extension to
SPARQL, which they call PrefSPARQL (after the later version of Preference
SQL [15] which incorporates these features) and provide a mapping from Pref-
SPARQL to both SPARQL 1.0 queries [16] and SPARQL 1.1 queries.

Unfortunately their mapping to SPARQL 1.1 uses the SPARQL EXISTS
operator. SPARQL EXISTS has many known problems [17], and their solution
falls prey to one them, namely that the SPARQL BOUND operator does not
work correctly inside EXISTS. Their mapping to SPARQL 1.0 is not affected by
this problem, as shown by the next example.

Both the approaches by Siberski et al. and Gueroussova et al. focus on com-
bined preferences over boolean preferences, that is, while they allow the combi-
nation of different preferences, these preferences do not give the full flexibility of
comparing arbitrary solutions pairwise, but only by declaring boolean “preferred
conditions” C, that divide the solution space into preferred and non-preferred
solutions according to the preference, according to the schema in Eq. (1).

SELECT V WHERE { P PREFERRING C } (1)

Example 9. In both the approaches above preferences like P1 can be written by
extending queries like Q1. In PrefSPARQL this is:

Q3: SELECT * { ?X a :GasStation; :brand ?B; :dist ?D .
PREFERRING (?D <= 1) }

Combined preferences can be expressed (so long as they do not involve compar-
isons between different attributes of solutions), such as this variant of P4:

P4’ “I prefer solutions within 1 mile and among those I prefer Mobil, and
otherwise just the closest.”

which in PrefSPARQL could be written as the following query:
Q4: SELECT * { ?X a :GasStation; :brand ?B; :dist ?D .

PREFERRING ((?D <= 1) AND ?B="Mobil") PRIOR TO LOWEST ?D) }

While referring for details to [12], we illustrate PrefSPARQL’s translation
back to “vanilla” SPARQL by the example of Q3 which in SPARQL 1.1 yields
Q1.1

3 :

Q1.1
3 : 1 SELECT * { {?X a :GasStation; :brand ?B; :dist ?D .}

2 FILTER NOT EXISTS { ?X’ a :GasStation; :brand ?B’; :dist ?D’ .
3 FILTER ((?D’ <= 1) > (?D <= 1)) } }

That is, the translation relies in principle on creating a copy of the query
pattern within a SPARQL 1.1 NOT EXISTS clause (line 2) and then encoding
dominance of the solutions to this copy in an inner FILTER expression (line 3).

As shown in [12], this principle can be easily extended to combined pref-
erence relations (through encoding AND and PRIOR TO, and adding condi-
tional IF-THEN-ELSE preferences from Preference SQL to more complex inner

Comparative Preferences in SPARQL 297

FILTER expressions). Specific quantitative comparative preference relations are
also expressible with the keyword HIGHEST or LOWEST, but not general com-
parative preferences.

Example 10. The quantitative preference P2 would be expressible in PrefS-
PARQL as query

Q4: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D.
PREFERRING LOWEST ?D }

However, there exists as mentioned above a problem with this translation due
to the semantics of NOT EXISTS, as illustrated with the following example:

Example 11. Let us assume P7 saying “I prefer gas stations with a shop”, which
in PrefSPARQL could be expressed as

Q5: SELECT * { ?X a :GasStation. OPTIONAL { ?X :shop ?S. }
PREFERRING (BOUND(?S)) }

in which case the translation from [12] no longer works, as shown in Q1.1
5 :

Q1.1
5 : 1 SELECT * { { ?X a :GasStation. OPTIONAL { ?X :shop ?S. } }

2 FILTER NOT EXISTS { ?X’ a :GasStation. OPTIONAL { ?X’ :shop ?S’. }
3 FILTER(BOUND(?S’) > BOUND(?S)) } }

This fails because the substitution semantics of EXISTS here produces alge-
bra expressions like BOUND (:TigerMart) that are undefined in SPARQL
1.1; we refer to details in [17]. We note though, that Gueroussova et al.’s [12]
SPARQL 1.0-based way of encoding non-existence through a combination of
OPTIONAL and !BOUND(), as illustrated in the following query Q1.0

5 , works as
intended:

Q1.0
5 : 1 SELECT * { { ?X a :GasStation. OPTIONAL { ?X :shop ?S. } }

2 OPTIONAL { ?X’ a :GasStation. OPTIONAL { ?X’ :shop ?S’. }
3 FILTER (BOUND(?S’) > BOUND(?S)) }
4 FILTER (!BOUND(?X’) } }

Troumpoukis et al. [5] expand on this work to allow arbitrary SPARQL
expressions as the � operator; that is, they define an extension to SPARQL 1.1
that can express full comparative preferences called SPREFQL, and also pro-
vide a mapping from SPREFQL into SPARQL 1.1 queries. They implemented
SPREFQL and compared its performance to the performance of their mapping.

As opposed to PrefSPARQL, in SPREFQL one can express comparative pref-
erences by explicitly referring to variables in the “copy” of the query pattern over
which preferences are defined using a clause PREFER-TO-IF which creates two
explicit copies V1, V2 of the variables V in the SELECT clause that can be refer-
enced in a comparative condition C:

SELECT V WHERE { P } PREFER V1 TO V2 IF C (2)

Example 12. The quantitative preference P2 would be expressible in SPREFQL
as a comparative preference in query Q6:

Q6: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D. }
PREFER ?X1 ?B1 ?D1 TO ?X2 ?B2 ?D2 IF (?D1 < ?D2)

298 P. F. Patel-Schneider et al.

More general comparative preferences such as P3 can also be expressed in
SPREFQL, as in query Q7:

Q7: SELECT ?X ?B ?D { ?X a :GasStation; :brand ?B; :dist ?D . }
PREFER ?X1 ?B1 ?D1 TO ?X2 ?B2 ?D2

IF (?B1 = :mobil && ?B2 = :chevron)

Combined preferences are also supported, through AND and PRIOR TO
clauses. Unfortunately, however, with the syntactic expansion over PrefSPARQL,
it is quite possible for the preference relation to be non-transitive or to have loops.

Example 13. For instance, imagine Q6 modified by replacing < with ≤ (which
we will refer to as Q′

6 below), so that each solution dominates itself. Another
example involves expressing P6a-c as:

Q8: SELECT ?X ?B ?S ?T {?X a :GasStation; :brand ?B; :shop ?S; :antifreeze ?A.}
PREFER ?X1 ?B1 ?S1 ?A1 TO ?X2 ?B2 ?S2 ?A2
IF ((?B1 = :Mobil && ?B2 = :Chevron) ||

(?S1 = :KwikieMart && ?S2 = :711) ||
(?A1 = :Zerex && ?A2 = :Prestone))

This is problematic, as Troumpoukis et al. only use the simple definition
of winnowing above. If there is a preference loop in the candidate solutions,
as for Q8 on the example data, then none of the solutions in the loop will
ever be returned, because each of them is dominated by another solution. The
preference combination operators do not help: AND will just produce the same
cyclic preference and PRIOR TO does not have a suitable meaning. This problem
also occurs for reflexive loops, as for Q′

6 where each solution dominates itself.
We provide a simple but general solution for these problems below. As we will
see, the absence of transitivity does not cause a problem by itself, but does
complicate the problem of loops.

Also, note that Troumpoukis et al. provide a mapping to SPARQL 1.1 where
the schema of Eq. (2) is replaced by (again, we refer for details to [5]):

SELECT V WHERE {P FILTER NOT EXISTS { P(V/V1) FILTER C(V2/V) }}
(3)

This is a straightforward extension of the PrefSPARQL translation, which how-
ever depends again on SPARQL EXISTS and also falls prey to the problem with
BOUND, as in Example 11.

4 Simple Comparative Preferences

We first establish that acyclic preference relations are non-problematic: they are
guaranteed to determine a nonempty skyline over any finite, non-empty set of
solutions and ranks behave well. In addition, as we discuss in detail in Sect. 6, a
skyline query over an acyclic preference relation is specifiable in SPARQL 1.1.
As every transitive and irreflexive relation is acyclic, handling acyclic preference
relations also handles this common requirement imposed on preference relations.

Comparative Preferences in SPARQL 299

Theorem 1. If the preference relation � is acyclic over a finite, non-empty set
of candidate solutions S, i.e., there is no candidate solution s for which there
is a sequence of candidate solutions starting and ending with s such that each
dominates the next, then ω�(S) is non-empty.

Because each skyline is non-empty for a finite, non-empty set of solutions if
the preference relation is acyclic, each solution has a uniquely defined rank.

Corollary 1. If the preference relation � is acyclic over a finite, non-empty set
of candidate solutions S then rankS�(s) is defined for each s ∈ S.

Dominance between solutions is reflected in their relative ranks.

Theorem 2. If the preference relation � is acyclic over a finite, non-empty set
of candidate solutions S then s1 � s2 implies rankS�(s1) < rankS�(s2).

As Troumpoukis et al. [5] use ω� as their winnow operator, their solution
performs correctly on acyclic preference relations. However, if the preference rela-
tion has loops, then none of the solutions in the loop will be in any skyline (and
thus none of them will have a rank), even if there is no other solution dominat-
ing any solution in the loop. Even a simple reflexive loop, such as accidentially
writing ≤ instead of < as in Example 13, query Q′

6 above, causes problems for
Definition 2. A preference written like this seems unintuitive, but it is not for-
bidden in SPREFQL. As arbitrarily complex SPARQL expressions can occur in
the IF clause it might not be obvious or even possible beforehand to determine
whether a preference is irreflexive.

5 Non-Simple Comparative Preferences

To address such cases, we begin by addressing the empty-skyline problem men-
tioned above, which can be done by modifying the definition of skyline.

What makes intuitive sense in the presence of preference loops in the candi-
date solutions is to consider all the solutions in the loop as if they were equally
preferred, i.e., they don’t count as dominating each other or themselves. This
regains the desirable property that a finite, non-empty set of candidate solutions
has a non-empty skyline.

Formally, we modify the definition of skyline (Definition 2) as follows:

Definition 4. If S is a finite set of solutions and � a preference relation over
some superset of S then the skyline of S with � is

ωl
�(s) = {s ∈ S|¬∃s′ ∈ S.(s′ �∗ s ∧ ¬(s �∗ s′))}

where �∗ is the transitive closure of � over candidate solutions, i.e., there is a
sequence of candidate solutions, each dominating the next.

In English, this says that a solution is in the skyline if there is no solution
that transitively dominates it and that it does not transitively dominate.

This definition regains the desirable properties from above, slightly modified.

300 P. F. Patel-Schneider et al.

Theorem 3. ωl
�(S) is non-empty for S any finite, non-empty set of candidate

solutions.

Corollary 2. rankS�(s) is defined for each s ∈ S for S any finite, non-empty
set of candidate solutions.

Loops cause the rank of solutions in the loop to be the same, so dominance
only produces a rank at least as large.

Theorem 4. For any preference relation � over a finite, non-empty set of can-
didate solutions S, s1 � s2 implies rankS�(s1) ≤ rankS�(s2).

Note that, in Definition 4, transitive closure is needed for both the ancestor
and the descendant of s. Consider a solution s that dominates only a single
element s1 of a minimal domination cycle7 s1, . . . , sn, s1, with n > 2. Now s
should knock each si out of a skyline but no sj should. To get to only s requires
looking at the transitive dominators of si, not just its direct dominators.

Example 14. Getting back to the preference relation from the right-hand-side
of Fig. 1, the solution sShell dominates sMobil directly, but sChevron and sCitgo

are dominated only indirectly. Thus, if in Definition 4 s′ �∗ s were replaced by
s′ � s, then sChevron and sCitgo – counter to our intuition – would end up in
the first skyline. On the other hand, if we replaced ¬(s �∗ s′) with ¬(s � s′),
it is easy to see that the second skyline would be empty, again going counter to
our intuition.

As a special case (specifically considered here because of its relationship to
SPARQL), if the preference relation is known to be transitive then there is no
need to compute its transitive closure; that is, the following simpler definition
suffices to deal such known transitive (including reflexive) preferences, even if
they are cyclic. Here, in English, a solution is in the skyline if there is no solution
that directly dominates it and that it does not directly dominate.

Definition 5. If S is a finite set of (candidate) solutions and � a transitive
preference relation over some superset of S then the skyline of S with � is

ωt
�(S) = {s ∈ S|¬∃s′ ∈ S.(s′ � s ∧ ¬(s � s′))}

This definition maintains the desirable properties from Theorems 2, 3, and
4, for transitive preference relations. They all come from the simple observation
that the transitive closure of a transitive relation is itself, so Definitions 4 and 5
coincide for transitive preference relations. Note that transitivity is not actually
required in general for Definition 5 to suffice, but only transitivity into loops,
i.e., a direct dominator of any solution in a loop is a direct dominator of every
solution in the loop. We call the preference relation � clique-cyclic in this case.

Theorem 5. Let S be any finite set of (candidate) solutions. Let � be clique-
cyclic, i.e., for any solutions s1 and s2, if s1 �∗ s2 and s2 �∗ s1 then for any
solution s if s � s1 then s � s2. Then ωt

�(S) = ωl
�(S).

7 A domination cycle is minimal if the only domination relationships between elements
of the cycle are those from one element of the cycle to the next.

Comparative Preferences in SPARQL 301

6 Comparative Preferences in SPARQL

As discussed in Sect. 3 above, languages like PrefSPARQL and SPREFQL have
suggested translations to native SPARQL, thus showing a – not necessarily very
efficient – implementation path in terms of off-the-shelf engines, and proving that
the respective languages do not add expressivity on top of SPARQL. However,
since both these translations only implement the simple winnow operator from
Definition 2, we now turn to the question whether ωt

�(S) and ωl
�(S) can likewise

be expressed in SPARQL 1.1.
As we want to allow for general comparative preferences, we adopt the

SPREFQL syntax [5] as opposed to the syntax of earlier work such as
PrefSPARQL [4].

We recall the mapping from SPREFQL to SPARQL 1.1 by the schema given
in Eq. (3). While Troumpoukis et al. already suggest that evaluating this trans-
lation is potentially more expensive than directly implementing PREFER, for
now we are only concerned with the expressibility of the different variations of
skyline operators we introduced in SPARQL.

We recall there are two problems in the original translation: first, the use of
NOT EXISTS in the translation into SPARQL, and second, that the reliance
on the skyline operator of Definition 2 only works for the simple case of acyclic
preference relations.

The first problem can be overcome using the translation that uses OPTIONAL
and !BOUND() instead of NOT EXISTS from Gueroussova et al. [12], cf. Example
11. This idea can be generalized to SPREFQL with the following mapping for
Eq. (2).

Mapping 1 (Simple Mapping to SPARQL)

SELECT V WHERE { P
OPTIONAL { P(V/V1) FILTER (C(V2/V)) BIND (1 TO ?exists) }
FILTER (!BOUND(?exists)) }

Theorem 6. Mapping 1 correctly implements ω�.

Proof. (Sketch) The OPTIONAL part only binds a value to ?exists when a
dominator exists so the final filter only lets through solutions that are not domi-
nated.

Handling the second problem however requires changing the semantics of
PREFER. When we view the intuitive meaning of Eq. (2) decoupled from the
mapping to SPARQL it conceptually reduces to first constructing the solution
set S for

SELECT V WHERE { P }

and then eliminating non-dominated solutions of this query according to the
chosen winnow operator. So we need to repair the semantics to use our winnow
operator ωl, which as we showed above produces desirable results for any pref-
erence relation, instead of the original ω. Of course this is quite a significant

302 P. F. Patel-Schneider et al.

change. On the plus side, it doesn’t have problems with loops. On the nega-
tive side, it may require computing (a part of) the transitive closure of �. We
will discuss next whether and how this computation can also be realized within
SPARQL itself, or by means of bespoke algorithms.

7 Implementing SPARQL Preferences

This repaired version of comparative preferences semantics can be efficiently
implemented. Instead of just checking whether a solution has a direct dominator
we have to check its transitive dominators and see whether they are in a loop.
This sounds expensive, going around the loops repeatedly, but can actually be
done relatively efficiently.

The basic idea8 behind the algorithm is to check � between each pair of can-
didate solutions. The algorithm keeps track of a representative for each solution
which represents all the solutions that are in loops involving the solution. When
a new loop is found, the solutions in the loop are given the same representative.
This operation has to be done efficiently over the entire exploration. Fortunately,
the union-find algorithm [18] does precisely this in time O(nlog∗(n)), where n is
the number of candidate solutions. After the representatives are found, all that
is needed is to check whether a solution has a direct dominator with a different
representative.

The algorithm checks � between each pair of solutions so its running time
is dominated by the n2 computations of �; the union-find algorithm only adds
O(nlog∗(n)). The most significant change in actual running time between the
computation of ω� and ωl

� will be due to not being able to quit checking for
dominators of a solution when the first one is found.

If the preference relation is known to belong to either of the special cases
discussed in the context of Definition 5, i.e., if either the preference relation
is acyclic, transitive or clique-cyclic, then it is possible to translate preferences
back into SPARQL itself. For an acyclic preference relation the translation is
the one in Mapping 1. For transitive preference relations (or, likewise, if � is
clique-cyclic) a slightly more complex translation is needed.

Mapping 2 (Mapping to SPARQL for transitive Preferences)

SELECT V WHERE { P
OPTIONAL { P(V/V1) FILTER (C(V2/V) && ! C(V1/V,V2/V1))

BIND (1 TO ?exists) }
FILTER (!BOUND(?exists)) }

Theorem 7. Mapping 2 correctly implements the winnow operator ωt
�.

The general case is much tougher to translate back to a single SPARQL query
as it has to compute (part of) the transitive closure of � over the solutions. If,
however, we allow for multiple queries we can first construct a graph that reifies

8 The full algorithm is in the extended technical report version of the paper.

Comparative Preferences in SPARQL 303

the solutions and asserts � between them and then determine the skyline with
a subsequent query against the union of that constructed graph and the original
graph.

8 Multiple Skylines

There are situations where more solutions than the top skyline are desired, and
it is inconvenient to submit multiple different queries to get those additional
solutions, manually eliminating prior solutions. Thus, a SPARQL extension that
returns multiple levels of skylines, possibly including an indicator of each solu-
tion’s rank, seems natural.

Siberski et al. [3] propose that a use of SPARQL’s existing keyword pattern
“LIMIT k”, in combination with their proposed keyword PREFERRING, can inform
the query evaluator to retrieve enough levels of skyline to produce solutions
numbering at least k. However, this approach has 3 weaknesses: it gives the LIMIT
modifier a counterintuitive special meaning when it is used in that combination;
it precludes the use of LIMIT with its usual meaning; and it does not support
the specification of an explicit number of complete skylines to be returned.

To address these issues, we propose the addition of the keyword SKYLINE, to
be used in conjunction with LIMIT, in either of the following patterns:

– LIMIT SKYLINE n [TO m] [AS vrank] . . . return complete skyline(s)
with rank n (or with ranks n to m, with 1 ≤ n ≤ m).

– LIMIT SKYLINE ALL AS vrank . . . return all skylines.

The AS vrank is optional if explicit limits are given. If present it adds a new
binding to the solution bindings of the query assigning to variable vrank the
rank of the solution. Ranks are counted starting at 1, and the absence of a
LIMIT SKYLINE clause is equivalent to LIMIT SKYLINE 1.

Our implementation of ωl can be simply extended to compute which skyline
a solution is in. Each solution is initially given a tentative skyline of 1. When
a non-looping dominator of a solution is found the solution’s representative is
assigned to the tentative skyline that is the maximum of its previous tentative
skyline and one plus the tentative skyline of the dominator’s representative.
As non-looping dominators are only found when their dominators have been
completely processed their tentative skyline is their final one. This way each
solution representative is assigned to their skyline number so the algorithm can
produce the first (top) skyline, solutions in skyline(s) ranked between n and m
along with their skyline number, or all solutions with their skyline number.

9 Conclusions

We have considered the semantics of queries that rely on user preferences, exten-
sions of SPARQL that would allow for handling such queries, and their possible
implementation by translation into SPARQL. We identified several categories of

304 P. F. Patel-Schneider et al.

preference relations with different characteristics that are significant in terms of
specifying preference query semantics and specifying translations to SPARQL.

We summarize our conclusions, in order of increasing generality of the allowed
preference relations: The semantics of acyclic preference relations are as (implic-
itly) indicated by Troumpoukis et al. [5]. However, we identified a problem with
their translation to SPARQL, and showed how it can be repaired. Transitive,
irreflexive preference relations, which occur in many applied settings, as a spe-
cial case of acyclic preference relations, are subject to the same observations. For
transitive preference relations in general, a modified semantics is needed, as well
as a slightly more complex translation into SPARQL. This semantics allows for
more efficient processing than the most general semantics mentioned below. We
defined a category of clique-cyclic preference relations (a superset of transitive
preference relations, cf. Theorem 5), which can be handled with the same seman-
tics as transitive preference relations. Finally, for arbitrary preference relations,
we gave a semantics that is slightly more complex than for transitive preference
relations, and showed that preference queries can be implemented by translation
to multiple (sequentially executed) SPARQL queries.

In addition, we showed that our proposed semantics and implementation for
each of these categories satisfies basic desiderata for the results of queries with
preferences, and we discussed an algorithm that would be more efficient than
the implementation by multiple, nested SPARQL queries. Finally, we proposed
an additional SPARQL extension that provides a

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37
(2001)

2. Klyne, G., et al.: Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0. W3C Recommendation, January 2004

3. Siberski, W., Pan, J.Z., Thaden, U.: Querying the semantic web with preferences.
In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold,
M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 612–624. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11926078_44

4. Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quan-
titative preferences. In: 2nd International Workshop on Ordering and Reasoning
(OrdRing 2013), at ISWC 2013. CEUR Workshop Proceedings, vol. 1059 (2013)

5. Troumpoukis, A., Konstantopoulos, S., Charalambidis, A.: An extension of
SPARQL for expressing qualitative preferences. In: d’Amato, C., et al. (eds.) ISWC
2017. LNCS, vol. 10587, pp. 711–727. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68288-4_42

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Recommendation,
March 2013. http://www.w3.org/TR/sparql11-query/

7. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
17th International Conference on Data Engineering, pp. 421–430 (2001)

8. Tversky, A.: Intransitivity of preferences. Psychol. Rev. 76(1), 31–48 (1969)

https://doi.org/10.1007/11926078_44
https://doi.org/10.1007/978-3-319-68288-4_42
https://doi.org/10.1007/978-3-319-68288-4_42
http://www.w3.org/TR/sparql11-query/

Comparative Preferences in SPARQL 305

9. Nurmi, H.: Making sense of intransitivity, incompleteness and discontinuity of pref-
erences. In: Zaraté, P., Kersten, G.E., Hernández, J.E. (eds.) GDN 2014. LNBIP,
vol. 180, pp. 184–192. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07179-4_21

10. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst.
28(4), 427–466 (2003)

11. Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in
SPARQL 1.1: Syntax, semantics and evaluation. J. Web Semant. 18(1), 1–17 (2013)

12. Gueroussova, M., Polleres, A., McIlraith, S.A.: SPARQL with qualitative and quan-
titative preferences (extended report). University of Toronto CSRG Report 619
(2013)

13. Rosati, J., Di Noia, T., Lukasiewicz, T., De Leone, R., Maurino, A.: Preference
queries with ceteris paribus semantics for linked data. In: Debruyne, C., et al. (eds.)
On the Move to Meaningful Internet Systems: OTM 2015 Conferences. OTM 2015.
Lecture Notes in Computer Science, vol. 9415. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26148-5_28

14. Kießling, W., Köstler, G.: Preference SQL - design, implementation, experiences.
In: 28th International Conference on Very Large Data Bases, pp. 990–1001 (2002)

15. Kießling, W., Endres, M., Wenzel, F.: The preference SQL system - an overview.
IEEE Data Eng. Bull. 34(2), 11–18 (2011)

16. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Rec-
ommendation (2008). https://www.w3.org/TR/rdf-sparql-query/

17. Patel-Schneider, P.F., Martin, D.: EXISTStential aspects of SPARQL. In: The 15th
International Semantic Web Conference (ISWC 2016), October 2016

18. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. J. ACM
22(2), 215–225 (1975)

https://doi.org/10.1007/978-3-319-07179-4_21
https://doi.org/10.1007/978-3-319-07179-4_21
https://doi.org/10.1007/978-3-319-26148-5_28
https://doi.org/10.1007/978-3-319-26148-5_28
https://www.w3.org/TR/rdf-sparql-query/

	Comparative Preferences in SPARQL
	1 Introduction
	2 Foundations and Motivation
	3 Previous Work
	4 Simple Comparative Preferences
	5 Non-Simple Comparative Preferences
	6 Comparative Preferences in SPARQL
	7 Implementing SPARQL Preferences
	8 Multiple Skylines
	9 Conclusions
	References

