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Abstract. A huge number of people suffers from different types of sleep dis-
orders, such as insomnia, narcolepsy, and apnea. A correct classification of their
sleep stage is a prerequisite and essential step to effectively diagnose and treat
their sleep disorders. Sleep stages are often scored by experts through manually
inspecting the patients’ polysomnography which are usually needed to be col-
lected in hospitals. It is very laborious for experts and discommodious for
patients to go through the process. Accordingly, current studies focused on
automatically identifying the sleep stages and nearly all of them need to use
hand-crafted features to achieve a decent performance. However, the extraction
and selection of these features are time-consuming and require domain knowl-
edge. In this study, we adopt and present a deep learning approach for automatic
sleep stage classification using physiological signal. Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) of popular deep
learning models are employed to automatically learn features from raw physi-
ological signals and identify the sleep stages. Our experiments shown that the
proposed deep learning-based method has better performance than previous
work. Hence, it can be a promising tool for patients and doctors to monitor the
sleep condition and diagnose the sleep disorder timely.
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1 Introduction

Sleep, an indispensable physiological activity in our daily life, plays a critical role in
keeping people’s physical and mental health. An orderly sleep can help people remain
vigorous in their daily works. However, a huge number of people suffer from different
types of sleep disorders, such as insomnia, narcolepsy, and apnea, etc., which can
seriously harm human health. The International Classification of Sleep Disorders
(ICSD) has identified over 80 different sleep disorders with associated treatments [3].
A correct classification of the patients’ sleep stage is a prerequisite and essential step to
effectively diagnose and treat sleep disorders [6, 26, 39]. Because sleep-stage abnor-
mality is correlated with the symptoms of sleep disorders, for instances, obstructive
sleep apnea (OSA) decreases the temporal stability of non-rapid eye movement
(NREM) and rapid eye movement (REM) sleep bouts [5]. Most obstructive sleep
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apnea-hypopnea syndrome (OSAHS) are associated with decreased stage N3 sleep [4].
The study by [27] also claimed that the larger ratios of REM/N3 and N1/Wake are
related to obstructive sleep apnea (OSA). Thus, sleep stage classification has attracted
increased interest for research.

Sleep scoring, proposed by Rechtschaffen and Kales (R&K), is a gold standard
used to classify sleep stage and diagnose sleep disorders. The method divided sleep into
five stages: REM, and NREM stages 1, 2, 3, and 4 [18]. However, in practice, the rules
are often difficult or impossible to follow and deviations are common. It also has some
limitations, for instances, low temporal resolution, ignorance of spatial information,
insufficient number of stages, low correspondence between electrophysiological
activity and stages, and ignorance of other physiological parameters such as autono-
mous nervous system activity and body motility [17]. The American Academy of Sleep
Medicine (AASM) updated and expanded R&K scheme to AASM scoring manuals
[33]. According to AASM, the sleep consists of four distinctive stages: stage R sleep,
stage N1, N2, and N3, where R corresponds to REM stage, N1 is analogs to stage 1, N2
is similar to stage 2, and N3 can be considered as stages 3 and 4. N1 is a transition stage
between wakefulness and sleep, which usually take 1 to 5 min [31]. N2 follows N1 and
usually acts as a “baseline” of sleep. N3 can be considered as “deep sleep” which is the
most restorative stage of sleep. Stage REM is characterized by the rapid eye movement
under eyelids and the occurrence of dream [10].

The standard approach for segmenting the stages is to have the domain experts
manually inspect every epochs of the patient’s polysomnography (PSG) data based on
the R&K rules or AASM. In this study, we use the R&K standard, because the dataset
[13] we used for exploration is labeled based on R&K. The PSG data often include
electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG),
electrocardiogram (ECG), respiratory effort signals, blood oxygen saturation, and other
measurements [29]. Typically, each epoch is obtained by dividing the entire time series
data into epochs of 30 s subsequence. The EEG data from [13] are shown in Fig. 1. We
can see that the EEG data in different stages have different patterns. For instances, there
is a vertex sharp wave in stage 1 and there are some sawtooth waves in stage R. The
expert can score the sleep stages through inspecting these small and big “contexts”. The
architecture of our model is also inspired by it. However, inspecting epoch by epoch is
time-consuming and sometimes involves personal subjective judgment. Hence, an
automatic sleep stage classification would be a promising and valuable approach. There
are four challenges for automatic sleep stage classification:

Challenge 1: Feature Extraction and Selection. Many studies have been done for
automatic sleep stages classification, nearly all of them (e.g., [15, 16, 21, 24, 34, 36])
classified the stages using hand-crafted features. These appropriate features are picked
carefully and computed manually based on the expert’s domain knowledge. However,
these processes are highly labor-intensive and time-consuming [37]. We even need to
consider the interaction between features. What’s worse, these hand-crafted features
might be sub-optimal [22].

Challenge 2: Temporal Information. The classification of sleep stages follows a
sequential order [2, 9]. That is, the classification depends on not only the information of
current data, but also on the information from the past and the future [33]. However,
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most of the studies (e.g., [16, 21, 24]) only consider the current epoch and did not take
advantage of the temporal information from others.

Challenge 3: Patient Impact and Resistance. Though many previous studies (e.g.,
[7, 10, 11]) achieved good performance in sleep stage classification using multiple
physiological data. In the real world, wearing too many sensors during sleep is
obtrusive and uncomfortable, which may affect the sleep quality.

Challenge 4: Unlabeled Sleep Data. Currently, the amount of labeled sleep data is
limited and thereby it is an obstacle for developing the method for classifying the sleep
stages. In fact, there is a huge number of sleep data which is unlabeled. Much of
meaningful information are contained in these unlabeled data.

In this study, we focus on tackling the first three challenges. We adopt a newer
approach, deep learning, to automatically learn the useful feature representation and
integrated it with classification step. The convolutional neural networks (CNN), a
popular neural network model, is used to automatically learn the appropriate features
with backpropagation. In order to consider the temporal information from the past and
the future, the Bidirectional Recurrent Neural Networks (RNN) is adopted to build the
classifier. In addition, single EEG is chosen as the biomarker for sleep stage classifi-
cation, because it is more comfortable compared with PSG recording which needs
multiple sensors. We compare its results with other’s method [30] for benchmark.

2 Related Works

Many researchers have attempted to classify the sleep stages using extracted features of
the physiological data automatically. Radha et al. [28] compared the performance of six
different EEG signals using various signal processing feature sets including spectral-
domain, time-domain and nonlinear features as data source, and used Random Forest
(RF) and Support Vector Machine (SVM) to classify the sleep stages. Their results
showed that the RF with spectral linear features of frontal EEG signal achieve the

Fig. 1. The samples of 30 s EEG epochs in different sleep stages (sample rate is 250 Hz).
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optimal real-time online classification. Huang et al. [21] used Relevance Vector
Machine (RVM) with the features extracted by short-time Fourier transform (STFT) to
contrast with manual scoring knowledge. Hsu et al. [20] employed Elman recurrent
neural classifier with six energy features from single channel EEG to classify five sleep
stages. Tsinalis et al. [36] used stacked sparse autoencoders with time-frequency
analysis-based features for automatic sleep stage scoring. He also addressed the
problem of misclassification errors due to class imbalance using class-balanced random
sampling. Silveira et al. [34] employed variance, kurtosis and skewness of the discrete
wavelet transform (DWT) of single channel EEG as features and classify the sleep
stages by RF.

Ebrahimi et al. [10] employed Pz-Oz channel EEG signal, extracted features based
on Wavelet Transform, and built a three-layer feed-forward Artificial Neural Network
(ANN) to classify the sleep stages. Similarly, Fraiwan et al. [12] presented a feed-
forward ANN based on the techniques of time-frequency analysis, which includes
Wigner–Ville distribution (WVD), Hilbert–Hough spectrum (HHS) and continuous
wavelet transform (CWT) for automatic sleep stage classification in neonates. Lajnef
et al. [24] extracted a wide range of time and frequency-domain features of EEG, EOG
and EMG. And a standard sequential forward selection (SFS) was used to select an
optimal feature subset in order to facilitate their method of Dendrogram-SVM (DSVM)
to classify the sleep stages. Likewise, Chapotot and Becq [7] extracted a variety of
features from EEG and EMG, such as Shannon entropy and relative power of a sub-
band signal, and selected the effective ones using SFS algorithm. A three-layer feed-
forward ANN was then adopted to classify the stages using the selected feature set. Sen
et al. [33] conducted a comparative study on EEG-based sleep stage classification in
terms of feature selection and classification algorithms. Their results showed that the
RF with 12 features, which are selected from 41 features by Fisher score, achieved the
best classification rate. Besides using EEG, some studies also employed ECG to
identify the sleep stages. Yilmaz et al. [38] demonstrated that sleep stages classification
using features of RR-interval of single-lead ECG is feasible. Fonseca et al. [11] selected
80 features from a set of 142 features from ECG and respiratory (RIP) according to
SFS-based feature selection, and used a linear discriminant classifier to identify the
sleep stages.

These studies all relied on a domain knowledge to design or extract appropriate
features. It is quite challengeable as we described in the previous section. Moreover,
due to the intricacy of various physiological data, the size of the feature space can
become huge so that a feature selection step is always indispensable. Recently, a few
studies started to explore the automatic feature learning for sleep stage classification
using deep learning. The strength of deep learning methods is end-to-end learning, i.e.,
feature extraction, feature selection and classification are integrated into a single
algorithm using only the raw data as input [36]. Tsinalis et al. [36] used CNNs to learn
task-specific filters for sleep stage classification without any prior domain knowledge.
Supratak et al. [35] proposed a DeepSleepNet for automatic sleep stage scoring based
on raw single-channel EEG. DeepSleepNet consists of two cascaded parts: represen-
tation learning and sequence residual learning. Representation learning including two
CNNs can extract time-invariant features from raw EEG. Sequence residual learning
contains two layers of Bidirectional-Long Short-term Memory (Bidirectional-LSTM)
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and a shortcut connection, and aims at learning transition rules among sleep stages.
These deep-learning related studies are still in exploration stage.

3 Methodology

The objectives of our study are two-fold: (1) to save the efforts of computing the hand-
crafted features and (2) to find a suitable method that use less number of signals to
increase usability. The proposed method following a deep learning approach which
integrates the data preprocessing, the feature extraction, feature selection, and classi-
fication into a single end-to-end algorithm. It takes the raw data as input rather than
hand-crafted features, and consists of two main modules as shown in Fig. 2. The
architecture of proposed deep learning model. the time-invariant feature learning and
temporal feature learning.

3.1 The Time-Invariant Feature Learning

The time-invariant feature learning module is made up of multiple Convolutional
Neural Network (CNN) blocks. There are two channels in the module of time-invariant
feature learning. Each channel of the time-invariant feature learning is mainly com-
posed of three similar CNN blocks. One channel with smaller size of feature maps is
designed for capturing the “small contexts” of the signal which are considered as local
features. Another channel with larger size of feature maps is used to capture the “big
contexts” of the signal which we refer them as global features.

The CNN block consists of four cascading layers: convolution layer, batch nor-
malization layer, activation layer and pooling layer. After the CNN blocks, one flatten
layer and one dropout layer are used. The motivation for constructing such architecture

Fig. 2. The architecture of proposed deep learning model.
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is that the examination of physiological data for sleep stage classification is usually
determined in terms of two aspects: the narrow and sharp waves, and the larger trends
of the slow change. The smaller feature maps can be used to recognize the narrow and
sharp waves which can be considered as local features, such as the occurrence of vertex
sharp waves in stage N1. And the larger receptive fields are used to learn the larger
context of waves which also can be considered as global features, such as the occur-
rence of slow waves in stage N3 and N4.

In order to explain how these two channels work, it is important to know the
receptive field (RF) and the effective receptive field (ERF). RF represents the area of
previous layer which is directly connected to a current layer’s neuron [25]. ERF
denotes the area of the original input data which is indirectly connected to a current
layer’s neuron. Both RF and ERF can be affected by the convolutional layer and the
pooling layer. Then we can easily see that the channel of local features was obtained by
computing the 8 points of input EEG data of in the first layer, which is a very small
region. And the channel of local features was obtained by computing the 512 points of
input EEG data of the first layer, which is a relatively big region. For the subsequent
layers, RF is not clear to understand anymore because it always depends on its previous
layer. So, we need to compute the ERF of them. For instance, the ERF of the last layer
of the channel of local feature is 157, and the ERF of the last layer of the channel of
local feature is 8352. That is, in the last layer, each neuron of local feature is computed
from 157 data points of the original input EEG, and each neuron of global feature is
computed from 8352 data points of the original input EEG. In addition, since the length
of each 30 s EEG data is 7500, each neuron of global feature is actually computed from
entire input data. Hence, the channel with small receptive field can learn the local
features and the channel with big receptive field can learn the global features.

3.2 The Temporal Feature Learning

The LSTM [19] is one kind of Recurrent Neural Network (RNN) which employs a
memory cell to store information temporally so that it is better to utilize the information
in a long period of time. However, it is hard to handle very long sequential data due to
the gradient issue and memory issue. So, we adopt a convolutional layer with medium
size of feature maps to extract a shorter representation of the input data and a batch
normalization layer to maintain the stability as shown in Fig. 2.

Figure 3 shows a single cell of LSTM. It contains an input gate i, an output gate o,
a forget gate f and a memory cell. The input gate controls which new input feeds into
the cell, the forget gate decides which information stored in the cell, and the output gate
determines which information is used to compute the output. These gates are connected
with each other, and some of the connection are recurrent. Bidirectional LSTM [32] is
an extended version of LSTM. It contains two LSTMs, a forward one and a backward
one. And hence, it has capability to exploit information from the past and the future.
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4 Experiment and Results

4.1 Dataset Used

We use the data sets from the MIT-BIH polysomnographic database [13] to examine
the relative performance of our proposed model. The database contains over 80 h’
worth of four-, six-, and seven-channel polysomnographic recordings during sleep,
with sampling rate 250 Hz. Sleep stages were annotated at 30-s intervals based on the
R&K rules. It has seven stages: Stages 1, 2, 3, 4, REM, W and MT, where the first five
stages are introduced in Sect. 1, W denotes the wake stage, and MT represents the
movement time. MT is not presented because it no longer affects the scoring of sleep
stages according to AASM. There are 18 subjects in total. Among them, 17 subjects are
male, aged from 32 to 56, with weights ranging from 89 to 152 kg. The last one is also
male but his age and weight were unknown. The details of the dataset are summarized
in Table 1. The numbers in the table denotes the amount of the 30-s EEG epochs. We
can easily see that the class distributions of sleep stages are imbalanced. So, we need to
balance the dataset in order to learn unbiased features. And the strategy to handle
imbalance data will be described in the next section.

4.2 Experiment Setup

In order to leverage the temporal information and improve the efficiency of the training
process of the model, the dataset is split up as shown in Fig. 4. Though we have 18
subjects in the dataset, we only utilized 5 of them, i.e., slp01a, slp01b, slp32, slp37 and
slp41 in the first experiment. There are two reasons to do so: (1) these data are collected
by the same position of sensor, i.e. C4-A1; (2) our benchmark study [30] only picked
these subjects and thereby it is easy for us to compare the performance. In Fig. 4, EEG
records are divided into epochs of 30 s according to the R&K manual and the anno-
tation of the dataset. Every 32 epochs of EEG record are put in one big chunk following
the sequential order of the original data. So the total data can be divided into 2717
epochs and these epochs can be divided into 87 chunks. And then 10-fold cross
validation is applied. The reason of using the cross-validation is that, if we split data
into training, validation, testing sets, the training set may be too small to learn effective
and generalized features.

Fig. 3. Long short-term memory cell.
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All models were implemented using Keras [8] with the TensorFlow [1] backend.
They are trained with Adam optimization [23] with learning rate 0.00001, b1 ¼ 0:9,
b2 ¼ 0:999, and 2¼ 10�7, where b1 and b2 are used for decaying and 2 is used to
prevent any division by zero. The reason of using Adam optimizer is that it is robust to
the choice of hyper-parameters to some extent [14] and it usually works very well
empirically. In addition, in order to prevent the model from overfitting into the noise,
the L2 regularization is applied in the first convolutional layer of every channel

Table 1. Sleep stages in the MIT-BIH polysomnographic database

Subject EEG Sleep stages Total
W 1 2 3 4 R

slp01a C4-A1 7 1 105 47 66 13 239
slp01b C4-A1 180 0 128 0 27 25 360
slp02a O2-A1 43 18 206 5 2 77 351
slp02b O2-A1 107 14 119 0 0 29 269
slp03 C3-O1 151 105 312 78 0 74 720
slp04 C3-O1 162 60 442 33 0 23 720
slp14 C3-O1 321 188 126 30 12 36 713
slp16 C3-O1 316 108 181 22 2 65 694
slp32 C4-A1 394 27 159 43 17 0 640
slp37 C4-A1 75 21 591 0 0 11 698
slp41 C4-A1 229 230 218 13 0 90 780
slp45 C3-O1 119 54 399 51 52 81 756
slp48 C3-O1 213 241 272 2 0 31 759
slp59 C3-O1 140 105 98 50 30 35 458
slp60 C3-O1 286 344 49 0 0 31 710
slp61 C3-O1 124 88 326 103 0 79 720
slp66 C3-O1 175 143 116 5 0 0 439
slp67x C3-O1 72 41 40 1 0 0 154
Total 3114 1789 3889 486 212 700 10180

Fig. 4. The illustration of the assembly of the training and testing sets.
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according to the study by [35]. The categorical cross entropy is adopted as the loss
function for the task of classifying the sleep stages.

Since the classes of the dataset are imbalance, a class weight (a.k.a., misclassifi-
cation cost) scheme was used to fix this issue. Through using the class weight, the
minority classes become more important. Specifically, its errors would cost more than
those of the other classes. In addition, we have also tried random oversampling of the
minority class and random down-sampling of the majority class to balance the dataset
separately. However, the oversampling would cause overfitting problem on the data of
minority class. And the down-sampling might lose information so that the model
cannot correctly learn the features of the majority class.

4.3 Results and Discussion

The computational results of 10-fold cross-validation are summarized in Table 2,
which compares our results and the results from [30], which utilized hand-crafted
features, in terms of recall (a.k.a., True Positive Rate (TPR)), precision (a.k.a., Positive
Predictive Value (PPV)) and F1 score. As shown in Table 2, we can see that if EEG
signals are used to predict the sleep stages our proposed method, which uses deep
learning method (CNN & LSTM), performed better than [30], which used Hidden
Markov Model with hand-crafted features. Though they have carefully designed to
extract and select the features, it might be suboptimal due to the difficulty of feature
extraction. We used deep learning model to automatically learn the most effective
features and use them to classify the stages. So, we considered the deep learning
learned a better set of features than [30] in this scenario.

Overall, in terms of average results, the proposed method with pretrain performed
the best, followed by the proposed method. Specifically, all evaluation metrics of
Stages 2, 3, and R are better than the benchmark model. The performance of the
classification of Stage W is comparable. The classification of Stages 1 and 4 are less
accurate than the benchmark model. We consider the model makes sensible mistakes
here.

As shown in Fig. 5, most of the misclassification of Stage 4 are estimated as Stage
3. Stage 3 is defined by 20%–50% of the epoch consists of high voltage (>75 µV), low

Table 2. Comparison of performance (%) between the proposed method with [30].

[30] Proposed method Method with
pretrain

TPR PPV F1 TPR PPV F1 TPR PPV F1

Sleep stages W 80.99 92.13 86.20 81.24 81.16 81.42 86.44 83.24 84.81
1 54.55 38.24 44.96 51.63 37.71 43.59 51.30 38.11 43.73
2 32.79 65.79 43.76 65.45 87.72 74.96 69.27 84.38 76.09
3 44.23 21.70 29.11 52.43 28.88 37.24 51.45 37.60 43.44
4 80.95 55.74 66.02 74.82 49.08 55.49 65.06 55.67 60.00
R 70.31 34.09 45.92 74.82 46.02 56.98 70.50 60.49 65.12

Avg. 60.14 51.28 52.27 64.90 58.28 54.22 65.67 59.91 62.20
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frequency (<2 Hz) activity, and Stage 4 is low frequency (<2 Hz) activity where more
than 50% of the epoch consists of high voltage (>75 lV) according to R&F. That is,
they are indistinguishable to each other. Hence, AASM proposed to merge them in to
one stage.

However, since the data are limited, the effective features is difficult to be learned.
Pretraining on similar data is one approach to overcome this issue. Hence, we pretrain
the model on the remaining 13 records of MIT-BIH polysomnographic database [13]
before we apply 10-fold cross-validation. The results of the proposed model with
pretraining are also shown in Table 2. We can see that the recalls of Wake and Stage 2
are getting better while the others are getting worse. These can be considered as a
reasonable change in its performance and there are two sensible reasons: (1) the amount
of the pretraining dataset is still relatively small which cannot offer a thorough
knowledge of sleep stages, and (2) there is a bias of the data of Stages 1, 3, and 4
between the training/testing dataset and pretraining dataset. In terms of the overall
performance, the pretraining helps improve the method.

5 Conclusion and Future Work

In this paper, we propose a deep learning model for automatic sleep stage classification
based on raw single-channel EEG without any hand-crafted features. Besides better
performance, it also can save a lot of time and efforts of designing, computing and
selecting the features manually. We employed CNN to learn the time-invariant features
and used Bidirectional-LSTM to learn the temporal information from the past and the
future. On the other side, the proposed method only needs one single EEG sensor data
rather than using complete PSG recording which requires bunches of sensors.
Accordingly, it can also improve the patient experience to some extent.

For future work, we plan to modify and deploy our method on some easily-
collected data so that the sleep stages identification will not be so obtrusive any more.

Fig. 5. The confusion matrix - the proposed method (left) and the method with pretrain (right).
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Patient can monitor their sleep condition more easily and comfortably. Furthermore,
tackling the unlabeled sleep data is also promising. Because current labeled data are
limited and deep learning model usually prefer a huge amount of data to achieve a
decent performance. We also plan to compare our results with results obtained from
other deep learning models such as [35, 36] as they are not using the same data sets and
takes time to compute using our data set.
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