
Chapter 6
Uncertainty Characterization and Fusion
of Information from Unreliable Sources

Lance Kaplan and Murat Şensoy

Abstract Intelligent systems collect information from various sources to support
their decision-making. However, misleading information may lead to wrong deci-
sions with significant losses. Therefore, it is crucial to develop mechanisms that
will make such systems immune to misleading information. This chapter presents
a framework to exploit reports from possibly unreliable sources to generate fused
information, i.e., an estimate of the ground truth, and characterize the uncertainty of
that estimate as a facet of the quality of the information. First, the basic mechanisms
to estimate the reliability of the sources and appropriately fuse the information
are reviewed when using personal observations of the decision-maker and known
types of source behaviors. Then, we propose new mechanisms for the decision-
maker to establish fused information and its quality when it does not have personal
observations and knowledge about source behaviors.

Keywords Subjective logic · Unreliable sources · Fusion of information ·
Quality of information · Uncertainty · Beliefs

6.1 Introduction

Decision-making requires the weighing of risk and benefits in light of uncertain
information. While doing so, it is important to estimate the state of the world at
sufficient certainty. For a specific decision-making task, this may boil down to
estimating the values or a distribution of values for a number of state variables.
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Computer Science, Özyeğin University, Istanbul, Turkey
e-mail: murat.sensoy@ozyegin.edu.tr

© Springer Nature Switzerland AG 2019
É. Bossé, G. L. Rogova (eds.), Information Quality in Information Fusion
and Decision Making, Information Fusion and Data Science,
https://doi.org/10.1007/978-3-030-03643-0_6

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03643-0_6&domain=pdf
mailto:lkaplan@ieee.org
mailto:lance.m.kaplan.civ@mail.mil
mailto:murat.sensoy@ozyegin.edu.tr
https://doi.org/10.1007/978-3-030-03643-0_6


110 L. Kaplan and M. Şensoy

Let us consider an intelligent agent that needs to solicit help from a person in
a specific organization. Instead of asking a random person in the organization, the
agent should pick a person with a high probability of accepting and fulfilling the
help request. Hence, for a given person, e.g., Joe, in the organization, the agent can
compute a probability distribution over possible outcomes of the request. That is, in
response to the help request, Joe may help, do nothing, or undermine. These three
outcomes are possible values of the state variable about Joe’s behavior in response
to the help request.

In this work, we adopt subjective logic [10], where opinions describe state
variables. A state variable can take values from a domain. For instance, a state
variable about Joe’s response when help is requested can take three values: help, do
nothing, or undermine. Each of these values may lead to a binary proposition, such
as “Joe helps when requested,” which can be either true or false. Instantiations of
these propositions are observed and used to create opinions about Joe’s helpfulness.

The decision-maker may have past history of the number of times Joe helped,
did nothing, and undermined the organization’s effort to form an opinion about Joe.
From this history, the decision-maker can understand and account for the probability
of Joe’s behavior for the upcoming mission. The more instances of Joe’s past
behavior, the more certain the decision-maker is about these probabilities. In many
cases, the uncertainty about Joe is too high to make a decision, and if time permits,
the decision-maker should seek out more information about Joe.

In understanding Joe’s tendencies, the decision-maker may have limited expe-
rience with Joe and will need to seek reports from other sources about Joe. These
sources may or may not provide truthful reports about their experiences with Joe. As
a result, the fusion of these reports can lead to wrong probabilities describing Joe’s
tendencies when help is requested. Furthermore, the decision-maker can become
overconfident about these probabilities and make a poor decision.

To overcome these difficulties, the decision-maker needs to develop a trust
behavior profile for its reporting sources to estimate how trustful and useful their
reports are. Then, the decision-maker needs to properly fuse the reports in light of
these profiles. It is desirable for the fused opinion about Joe to consistently represent
an estimate of the ground truth probabilities of Joe’s tendencies and the uncertainty
about these probabilities. In this work, the fused opinion is represented as an
effective number of observations for which each value of a state variable, e.g., Joe’s
action to help or not, is instantiated. The effective total number of observations rep-
resents the accuracy as a facet of the quality of the information, and it should relate
to how close “on average” the estimated probabilities are to the ground truth values.

The development of the trust behavior profiles for the sources is updated as the
decision-maker incorporates source reports about instantiations of different state
variables. When the decision-maker has its own (limited) observations to form an
initial opinion about the values of the state variable, it can leverage the consistency
of its own opinion with a particular source’s report to update the source’s trust
profile. In essence, the decision-maker is also its own ego-source. This chapter will
review our recent research in trust estimation and fusion when the ego-source is
available [15, 26, 27].
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In many cases, the decision-maker will not be able to make observations about
the values of state variables. This chapter will look at extensions of our previous
work for this circumstance. Specifically, the conditions when trust estimation and
fusion lead to and do not lead to information with a consistent quality of information
characterization will be exposed.

This chapter is organized as follows. Section 6.2 reviews related work, and
Sect. 6.3 provides the mathematical foundation to represent subjective opinions to
represent distributions for the values of state variables. The trust estimation and
fusion problem and corresponding models are presented in Sect. 6.4. Section 6.5
reviews recent solutions and demonstrates their effectiveness when an ego-source
is available, and Sect. 6.6 extends the solutions for cases when the ego-source is
unavailable. This section also demonstrates the effectiveness of the newly extended
solutions. Finally, a discussion of results with concluding remarks is provided in
Sect. 6.7.

6.2 Related Work

Fusing uncertain information from unreliable sources has drawn significant atten-
tion from the literature. It still stands as an important research problem with wide
range of applications in many different domains [10]. There are a number of math-
ematical frameworks for modeling uncertainty and fusing uncertain information.
One prominent example of such frameworks is the evidential theory proposed by
Dempster and Shafer [29], where belief masses are assigned to possible outcomes
of a proposition, i.e., subsets of a frame of discernment. There have been other
approaches inspired from the work of Dempster and Shafer. Jøsang proposed
subjective logic (SL), which is a probabilistic logic that explicitly takes uncertainty
and belief ownership into account. It is used to model and reason with situations
that involve uncertainty and incomplete knowledge. A subjective opinion represents
assignment of belief masses to possible values of a state variable, and various
logical/analytical operators are used to define a calculus over subjective opinions [7–
10, 12, 13]. Each subjective opinion can be represented as a Dirichlet distribution
over the values of a state variable, and operators defined over these opinions are
performed over the underlying Dirichlet distributions. The statistical underpinning
of SL makes it flexible and versatile for many domains and applications. For
instance, Liu et al. used SL to compute reputation models of mobile ad hoc
networks [18]. Oren et al. proposed to use SL to enhance argumentation frameworks
with evidential reasoning [21]. Han et al. used SL for forensic reasoning over the
surveillance metadata [5]. Sensoy et al. used it for determination of conflicts in
and fusion of information from unreliable sources [25]. In this chapter, we also use
Dirichlet distributions to represent and combine subjective opinions from unreliable
sources.

Fusion of information from unreliable has been studied in the literature with
different scenarios and assumptions. As a result of the rise of Internet, e-commerce
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has been embraced by users. However, users do not only buy and sell on the Internet
but also share their opinions, ratings, and experiences, e.g., through review sites.
Therefore, initial work on the fusion of uncertain opinions focuses on propositions
about the service quality of online vendors or service providers. A proposition is
simply a state variable which can take only two values: true or false. However,
these opinions are collected from unreliable sources, which may aim to mislead
the decision-makers, e.g., online buyers. In these works, subjective opinions are
usually represented as pairs of positive and negative number of interactions (or
experiences) with the service providers (or vendor). Jøsang and Ismail proposed
beta reputation systems (BRS) [11], where opinions about a proposition x such as
“Bob provides good services” is modeled using beta distributions. Let px represent
the probability that the proposition is true. A beta distribution is used to model
the likelihood of each px value. Initially, before having any experience with Bob,
the beta distribution is represented by parameters 〈1, 1〉, which corresponds to the
uniform distribution. This means that px can be anything between 0 and 1 with
equal probability. However, after having r good and s bad experiences with Bob,
the beta distribution parameters are updated as 〈r +1, s +1〉 using Bayesian update.
In BRS, opinions about Bob are collected from a number of information sources,
and these opinions are fused using Bayesian update, i.e., evidence aggregation.
However, some malicious sources may disseminate misleading opinions.

Whitby et al. extended BRS to filter out misleading opinions provided by the
malicious sources. This approach filters out those opinions that do not comply with
the significant majority by using an iterated filtering approach [37]. Hence, this
approach assumes that the majority of sources honestly share their opinions, i.e.,
liars are in the minority. The extended BRS does not assume that the decision-maker
can use its observations to estimate the reliability of information sources. Because
BRS is a simple trust-based fusion approach, it has been used in many domains,
such as wireless sensor networks [6]. Bui et al. have proposed to use it to estimate
trust in sensor readings in body area sensor networks [1]. Ganeriwal et al. proposed
a reputation framework for high integrity sensor networks based on the BRS [4].

To avoid the need to rely on a majority of sources to be honest, some existing
work assumes an ego-agent, i.e., a decision-maker may observe evidence about
the ground truth using its own sensors. Hence, an ego-agent can evaluate the
information sources by comparing its own observations against those reported by
these sources. TRAVOS [31] is one such information fusion framework, which
is similar to BRS in terms of representation and fusion of subjective opinions.
However, TRAVOS keeps a history of opinions from information sources about
propositions, such as the aforementioned proposition about Bob’s services. To
measure the trustworthiness of a source, the decision-maker compares the source
and ego opinions over multiple propositions to determine a beta distribution to
describe the trust in each source.

Bayesian modeling has also been used to address fusion of subjective informa-
tion from malicious sources. Regan et al. proposed BLADE [23] for reputation
modeling of sources and fusion of their ratings in e-marketplaces. This model
learns parameters of a Bayesian network to fuse subjective and possibly deceptive
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information from unreliable sources with varying behavior. Most of the existing
Bayesian approaches require at least some of the information sources to consistently
share honest opinions. These approaches build models for the trustworthiness
of information sources and exploit them while fusing their opinions. However,
there are approaches, where fused opinions do not directly rely on the opinions
from sources. For example, Teacy et al. proposed HABIT, which uses hierarchical
Bayesian modeling for fusion of opinions from unreliable sources [32]. It does not
directly estimate trustworthiness of information sources. Instead, it uses opinions
from sources to measure similarity of the current proposition to past propositions.
Then, using the computed similarities as weights, the fused opinion for the current
proposition is computed as the weighted average of the decision-maker’s opinions
about the past propositions. This approach is robust to malicious behaviors, but it
requires decision-maker to have accurate opinions for the past propositions similar
to the current proposition.

Fact finders address the scenarios where the decision-maker cannot directly
observe evidence about the ground truth and the sources only provide absolute
claims. They try to identify truth among many conflicting claims without any prior
knowledge or observation about the trustworthiness of the information sources.
Unlike the previously mentioned approaches, fact-finding approaches assume that
the truth is crisp and certain. That is, for a given state variable, only one of k

mutually exclusive values can be true. Instantiation of the state variable with each
of these values is called a claim. TruthFinder [39] defines trustworthiness of sources
as a function of the confidences of the their claims and, conversely, defines the
claim confidence as a function of the trustworthiness of the sources espousing them.
Then, it iterates by calculating the confidence from the trustworthiness and vice
versa. Pasternack and Roth [22] generalizes fact-finding by incorporating source-
claim weights in the iterative equations to represent a degree of uncertainty in the
observations of claims or in the belief of the sources in the claims.

Recently, Wang et al. formalized fact-finding as a maximum likelihood problem
where the expectation-maximization (EM) algorithm [19] is used to estimate the
reliabilities of the claims and the users at the same time iteratively [35]. This
approach enables the formulation of Cramer-Rao bounds to establish the quality
of the estimated reliabilities in terms of the structure of the source-claim network
[34]. Furthermore, this approach has been applied for social sensing by estimating
the reliability of information from the crowd for sensing situations and events.
Specifically, the data from micro-blogging sites such as Twitter1 has been used to
detect social and environmental events earlier than traditional means [36]. The EM
approach is further extended in [33] to incorporate the confidence of the users by
incorporating weights into the iterative equations similar to [22].

In this work, we aim to exploit behaviors of unreliable sources while fusing
their uncertain and possibly misleading opinions. In the literature, different types
of information source behaviors are defined and studied [3, 17, 24, 40]. Yu and

1http://www.twitter.com

http://www.twitter.com
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Singh defined four major types of source behaviors over binomial subjective opin-
ions: honest, complementary, exaggerated positive, and exaggerated negative [40].
Sources with honest behavior share their genuine opinion; on the other hand, the
sources adopting non-honest behaviors transform their opinions before sharing.
Sources with complementary behavior share the opposite of their genuine opinions,
i.e., flipping its true opinion. A source with exaggerated positive behavior shares an
opinion that is more optimistic than its genuine opinion. Similarly, a source with
exaggerated negative behavior shares an opinion that is more pessimistic than its
genuine opinion. The deception models of Yu and Singh received significant amount
of attention from the literature. These models are also used in different domains
and disciplines. Fung and Boutaba used these deception models for collaborative
intrusion detection in networks [3]. In this setting, peers send feedback about the
risk levels of a security alert to others.

The honest, complementary, and exaggeration behaviors require information
source to know the truth about the state variable in question. However, an informa-
tion source may still deceive the information requester without knowing the actual
truth. In the Encyclopedia of Deception [17], fabrication is defined as another type of
deception. In the case of fabrication, someone submits statements as truth, without
knowing for certain whether or not it actually is true. Therefore, if a source makes up
and shares an opinion without actually having any evidence about the proposition in
question, then it would be fabricating. This kind of behavior is similar to randomly
generating and sharing an opinion when requested.

6.3 Mathematical Preliminaries

A state variable is a random variable that takes on one value from a mutually
exclusive set K at each instantiation. There is a ground truth probability for each
possible value to materialize. Given the observations that nk instantiations of the
variable are of value k for all k ∈ K are the result of sampling a multinomial
distribution, the posterior knowledge about the distribution of the generating
probability is the Dirichlet distribution:

fβ(p|n) = 1

B(n + 1)

∏

k∈K

(
pk

)nk

, (6.1)

where

B(n + 1) =
∏

k∈K �(nk + 1)

�
(∑

k∈K(nk + 1)
) (6.2)

is the beta function and �(·) is the gamma function [16]. Throughout this chapter,
the boldfaced variables are |K| dimensional vectors where their elements are non-
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bold with a superscript representing the corresponding value in K. Note that in (6.1),
the probabilities are constrained to sum to one, i.e.,

∑
k∈K pk = 1.

Subjective logic [10] connects the evidence n to belief mass assignments as
used in belief theories for reasoning under uncertainty such as Dempster-Shafer
theory [29] and more recently the transferable belief model [30]. Specifically, the
connection between the evidence n and the beliefs (b, u) is given by the following
invertible mapping:

bk = nk

W + ∑
k∈K nk

∀k ∈ K and u = W

W + ∑
k∈K nk

, (6.3)

where the bks are the beliefs for each value of the state variable and u is the
remaining uncertainty. The beliefs and uncertainty are constrained to be nonnegative
and sum to one. In (6.3), W is the prior weight, In this chapter, we set W = |K|
and consider the uniformative uniform prior. The connection between beliefs and
the Dirichlet distribution helps to define many of the operators in subjective logic,
which distinguishes it from the prior belief theories by connecting it to second-order
Bayesian reasoning.

It is well know that the expected value for the probabilities of the Dirichlet
distribution is given by

mk = nk + 1∑
k′∈K(nk′ + 1)

, (6.4)

and the variance is

σ 2k = mk(1 − mk)

1 + ∑
k′∈K(nk′ + 1)

(6.5)

for k ∈ K. In the context that an opinion about a state variable is given by n,
the mean given by (6.4) represents the information about, i.e., estimation of, the
ground truth probabilities. Likewise, the variance given by (6.5) represents the
derived quality of information. The smaller the variance, the higher the quality
of the information. Note that the quality of information is proportional to the sum
of evidences, i.e.,

∑
k∈K nk . The derived quality of information is meaningful if it

corresponds to the actual variance through (6.5). This will be discussed by examples
throughout this chapter.

Subjective logic provided the inspiration for the fusion and trust characterization
operators described in this chapter. The operators described here approximate
Bayesian reasoning using the following framework. The input opinions about
the state variables and source behaviors translate to Dirichlet distributions to
describe the uncertainty about the corresponding appearance probabilities of the
various values of these variables. Bayesian reasoning determines the exact output
distribution for the appearance probabilities for fusion or discounting, and then
this exact distribution is approximated by a Dirichlet distribution such that the
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mean values match exactly and the variances match in the least squares sense. In
other words, moment matching determines the Dirichlet approximation, and the
corresponding Dirichlet parameters lead to the fused or discounted opinion.

6.4 The Source Estimation and Fusion Problem

In general, a decision-maker collects, over the course of his/her duties, reports from
different sources about many different state variables. The decision-maker employs
A unique sources and evaluates I variables. The decision-maker may or may not
be able to form an initial opinion about each variable. We denote the opinion about
the i-th state variable from the a-th source using a subscript as ni,a . When the a-th
source does not have any observations about the i-th variable, it should report the
vacuous opinion nk

i,a = 0 for all k ∈ K. The decision-maker may or may not be
able to form an initial opinion about a state variable and acts as an ego-source. We
index the ego-source as a = 0 and other sources as positive integers a > 0. For
ease of illustration in the chapter, all of the I state variables are binary, i.e., their
instantiations are propositions where K = {+,−} and + and − represent a positive
and negative variable value, respectively. An example of such a proposition is that a
particular vendor provides a satisfactory (+) or an unsatisfactory (−) transaction.

The sources do not necessarily correctly report their opinions based upon their
individual observations. Many times, some sources intentionally lie and report
opinions in direct conflict with other sources. The ultimate problem for the decision-
maker is to form a fused opinion that portrays information about ground truth
probabilities of the values of state variables consistent with the opinion’s apparent
quality of information. This fused opinion should represent higher quality of
information than can be obtained from any smaller subset of sources.

To enable an effective solution to the fusion problem, we incorporate the beta
model from [20]. Specifically, the behavior of a source is a state variable itself where
the variable values are particular behaviors describing how the source transforms its
truthful opinion into its reported opinion. While a large number of source behaviors
may exist, we restrict the discussion in this chapter to the three well-studied
behaviors from the literature [3, 17, 24, 40]: (1) good, (2) flipping, and (3) random.
In the good behavior case, the a-th source accurately reports the number of positive
and negative instantiations of state variables it observed. When the source exhibits
flipping behavior, it exchanges the number of positive and negative instantiations.
Finally in the random case, a source randomly selects the number of positive and
negative instantiations to report independent of the actual numbers it observed. This
chapter will examine the robustness of such a beta model by considering that the
ground truth source behaviors are one of these three, but the fusion algorithms either
account only for two behaviors (good and random) or all three. Clearly, performance
drops when there is a model mismatch, and in real applications, one may want to
incorporate a richer set of behavior models. In recent work, we developed methods
to learn new behavior models using an ego-source [27]. These richer behavior
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models are beyond the scope of this chapter. Nevertheless, the results in this chapter
do provide insights about the impact of model mismatches.

The a-th source’s behavior profile is the ground truth probabilities to exhibit each
one of the three behaviors adopted while sharing its opinions. The decision-maker
builds up an opinion about the behavior profile by determining the effective number
of instances tka that the a-th source exhibited behavior k ∈ {g, f, r}. After each time
the decision-maker collects opinions from the different sources, it cannot directly
determine which behavior each source actually followed. The next two sections
describe methods to build up opinions about the source behaviors and then use
these opinions to fuse the source reports. Due to the lack of direct observations,
the behavior opinions tka are not necessarily integers, which also means the fused
opinions about the variables also need not take integer values.

To demonstrate the effectiveness of the methods presented in the next two
sections, 100 sources reporting 1000 variables are simulated using the three behavior
models. A given percentage of the source agents will be predominately good,
flippers, and random, respectively. Predominately good sources report their true
opinions about a particular variable with a probability of 0.7, and their flipping and
random probabilities are 0.15. Similarly, the predominately flipping and random
source exhibits their dominating behaviors with probability 0.7 and the other two
behaviors with probabilities of 0.15. Predominately good sources can lie, albeit with
a much smaller probability. In contract a predominately flipping source can provide
a truthful opinion. For the i-th state variable, the number of direct observations
Ni,a that the a-th source achieves for the variable’s values is a random number
drawn uniformly between 0 and 100. The underlying ground truth probability for
the positive value p+

i of each of the state variables is sampled over the uniform
distribution between 0 and 1. The a-th source’s true opinion about the i-th variable
is the result of Ni,a draws from a Bernoulli process with probability p+

i . Each source
then determines its behavior for the variable as a random multinomial draw using
its behavior probabilities. If this draw selects the good behavior, the source reports
it true opinion. If the draw selects the flipping behavior, the source swaps its n+

i,a

and n−
i,a values. Otherwise the random behavior means that the sources chooses the

integer n+
i,a uniformly between 0 and Ni,a and sets n−

i,a = Ni,a − n+
i,a .

If the decision-maker does not account for the various behaviors of the sources
and assumes all the reported opinions for the i-th variable are correct, the fusion
process is rather straightforward. The fusion operations make two weaker assump-
tions: (1) each reported opinion is statistically independent of the others (i.e., the
observed evidence of the sources do not overlap), and (2) the prior distribution in
light of no observed evidence is uniform (which is an uninformative prior). With
these assumptions, it can be shown that the distribution of the fused opinion is a
beta distribution given by

fβ(p|ni,f ) ∝
∏

a=1

fβ(p|ni,a) (6.6)



118 L. Kaplan and M. Şensoy

Fig. 6.1 RMSE of consensus fusion for various mixtures of predominately good, flipping, and
random sources represented as a heat map

where nk
i,f = ∑A

a=1 nk
i,a for k ∈ {+,−}. In other words, the fused opinion

in evidence space is the output of the operator Consensus(ni,1, . . . , ni,A) that
simply sums the evidence supplied by each source. Consensus fusion is one of
the more commonly used operators in subjective logic [10].

When the consensus operator is applied over all simulated reports from 100
agents covering 1000 variables, the resulting root mean square error (RMSE)
between the expected fused probability (see (6.4)) and the ground truth opinion
for various mixtures of sources types is given in Fig. 6.1 as a heat map. When most
of the sources are predominately good, the RMSE is fairly low at 0.13. As the those
sources are replaced by predominately random sources, the RMSE grows to about
0.3, which is consistent to a complete random guess from a uniform distribution.
When most of the sources are predominately flipping, the RMSE grows to above
0.4 as the flipped reports are moving the estimated probabilities far from the ground
truth. The predicted RMSE can be calculated as the root mean of the expected
variance of the fused opinions given by (6.5). For all cases, the predicted RMSE is
similar with a mean value of 0.0070, which is much smaller than the actual RMSE
(even with 100% good sources). This is because consensus fusion assumes all
source reports are good, which is not even true 30% of the time for good sources.
Clearly, the behavior of the sources must be accounted for in the fusion process.
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6.5 Fusion Using Behavior Estimates via Ego-Sources

When the decision-maker can directly observe instantiations of different state vari-
ables, it can act as its own ego-source. Assuming the decision-maker is competent
and acting in its own best interest, the ego-source’s opinion will always be good.
Then, the decision-maker compares its opinions against those of the a-th source
over a set of I variables to determine the source behavior profile. The procedure
to determine the opinions about source behaviors was first derived in [15] for good
and random behaviors (the two-mode model), and it can trivially be generalized
for a finite set of known behaviors. Following the derivation in [15], the posterior
distribution for the probabilities that the a-th source follows particular behaviors
given the set of opinions from the ego-source about propositions and a-th source is

f (p|ta) ∝
∏

i

(
∑

k∈K
Prob(ni,0|ni,a, k)pk

)
, (6.7)

where the likelihood of the a-th source exhibiting the k-th behavior when reporting
its opinion about the i-th variable is

Prob(ni,0|ni,a, k) =
∫

p
n+

i,0(1 − p)
n−

i,0fβ(p|hk(ni,a))dp,

= B(hk(ni,a) + ni,0 + 1)

B(hk(ni,a) + 1)
,

(6.8)

where hg(n) = n, hf (n) = [n−, n+], and hr(n) = [0, 0] represent the accurate
information that can be obtained from the source when it is known to employ good,
flipping, or random behavior, respectively, for the given report. For the random
behavior, the opinion is completely independent of the source’s actual observation,
and therefore the sources report is vacuous.

The source behavior characterization method approximates (6.7) by finding the
Dirichlet distribution that matches the means of (6.7) and matches the variances
as closely as possible (in the least squares sense). Closed form expressions
for the means and variances of (6.7) are available because the distribution is
a mixture of Dirichlets. However, the number of modes grows exponentially
with respect to the number of variables I . In [15], a method is presented that
updates a source behavior opinion by sequentially performing moment match-
ing over one state variable at a time. It is shown in [15] that this sequential
updating method is almost as accurate as the much more computationally com-
plex method that incorporates all propositions at once. We refer to the operator
ta = SourceBehavior(n1,0, n1,a, . . . , nI,0, nI,a) as the sequential method that
approximates the Dirichlet distribution for the source behavior probabilities using
the parameters ta as effective evidences of the source behaviors. In this chapter,
while the simulated sources are randomly picking one of three behaviors for each
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propositional report, the source characterization method is either employing the
two-mode model, i.e., K = {g, r} or the three-mode model, i.e., K = {g, f, r}.
This allows understanding of the performance loss when the assumed model does
not fully characterize the data.

In essence, the SourceBehavior operator calibrates the a-th source relative
to the ego-source. Kaplan et al. [15] explain how the behavior opinions are
updated based upon the consistency between the opinions of the ego-source and
those of the a-th source. When both opinions represent similar probabilities and
are supported by large evidence (i.e., small uncertainty), then the likelihood for
the good behavior in (6.8) becomes very large relative to the other likelihoods.
This actually means that the evidence for the good behavior is incremented by a
number near 1 and the evidence for the other behaviors is slightly decremented.
Similarly, if the probabilities are consistent with flipping, the evidence for flipping
behavior is incremented by a number near 1. Otherwise when the probabilities
are inconsistent to either good or flipping behaviors, the evidence for random
behavior is incremented by a number near to 1. The increment of the behavior
evidence update decreases as the uncertainty associated to either source opinion
increases. When the ego-source’s opinion becomes vacuous, i.e., n+

i,0 = n−
i,0 = 0,

the likelihoods for each of the behaviors become equal, and the update does not
change any of the source behavior opinions. In other words, when the uncertainty
of the reported propositions are low, the behavior update is comparable to directly
observing which behavior the a-th source used in reporting the given proposition.
As the uncertainty of either reported opinion grows, the increments to the source
behavior evidence go to zero. The strength of the update depends on how much
direct evidence the ego-source is able to observe.

Given the characterization of the behavior of the sources, the subjective logic
method discounts each source’s behavior followed by consensus fusion [14].
The discount operation in subjective logic, which originates from Dempster-Shafer
theory [29], only considers the belief that the source provides a good report.
Specifically, the function Discount(t, n) = tg+1∑

k∈K(tk+1)
n discounts the opinion

based upon the expected probability of a good report. The reports of all sources
for the i-th variable are discounted by Discount using their respective behavior
profiles ta , and the outputs are passed through the consensus operator. In effect,
the discount operator acts as a “soft” censor for sources.

Figure 6.2a shows the RMSE result s of subjective logic discounting and fusion.
The error is clearly reduced as compared to consensus fusion. Specifically, the
RMSE performance relies mostly on the percentage of predominately good sources.
When the percentage of predominately good sources is 10%, the RMSE is about 0.2
(much lower than consensus alone), and this value decreases to 0.13 when all the
sources are predominately good (comparable to consensus alone). Like consensus,
the uncertainty associated to the fused opinion still greatly underpredicts the actual
RMSE, where the predicted RMSE averages around 0.053 for the various mixtures
of sources. The predicted RMSE is higher than that of simple consensus fusion
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Fig. 6.2 RMSE of discounted fusion for various mixtures of predominately good, flipping, and
random sources represented as a heat map: (a) subjective logic discounting followed by consensus
fusion, (b) two-mode behavior discounting followed by consensus fusion, and (c) three-mode
behavior discounting followed by consensus fusion

due to the discounting. It is greatest when the percentage of predominately flipping
sources is 100% (0.13) and is smallest when the percentage of predominately good
sources is 100% (0.026).

While the discount operator is intuitively appealing, it is ad hoc. By the two-
mode beta model, the distribution for the probability of the i-th variable due to the
a-th source’s report is

f (p|ta, ni,a) ∝ t
g
a + 1

t
g
a + t ra + 2

fβ(p|[n+
i,a, n

−
i,a]) + t ra + 1

t
g
a + t ra + 2

fβ(p|[0, 0]). (6.9)

The Discount2(ta, ni,a) determines the discounted report as the evidence param-
eters of the beta distribution whose means and variances match the distribution
in (6.9). This form of discounting was used in the TRAVOS trust and reputation
model [31], and Eqs. (11)–(15) in [31] implement the Discount2 operator.
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Figure 6.2b shows the RMSE results when employing the Discount2 operator
followed by consensus. The results look very similar to SL discounting results.
If one squints and look at the actual numbers, one will actually see a slight
improvement using the two-mode discounting. Again, the predicted RMSEs are
much lower than the actual errors. The predicted values are actually slightly larger
than SL discounting, but not by much.

It is now natural to wonder about how the three-mode beta model can fair. In this
case, the distribution for the probability of the i-th variable due to the a-th source’s
report is

f (p|ta, ni,a) ∝ (t
g
a + 1)fβ(p|[n+

i,a, n
−
i,a]) + (t

f
a + 1)fβ(p|[n−

i,a, n
+
i,a]) + (tra + 1)

t
g
a + t

f
a + t ra + 3

.

(6.10)
Again, the method of moments can be employed to extract a discounted opinion
by approximating (6.10) by a beta distribution. We refer the process as the
Discount3(ta, ni,a) operator. The actual operator is a special case of the joint
discounting and consensus fusion operator described in [27] which will be discussed
soon.

Figure 6.2c provides the RMSE results when employing Discount3 before
consensus. The results improve significantly over the two previous discounting
operators as the number of predominately flipping sources increases. This is because
the discounting operator actually to some extent “unflips” the reports from the
flipping sources. Now, the performance of the fusion is primarily a function of the
percentage of predominately random sources. With no random sources, the error is
about 0.15 and grows to 0.29 when all sources are predominately random. Like the
previous discounting operators, the predicted RMSE is much lower than the actual
error. The predicted error is as low as 0.028 for no random source and is as high as
0.075 when all sources are predominately random.

The large gap between the predicted and actual fusion results for all the
discounting methods indicated that more can be done. The discounted reports as
given by the beta mixtures in (6.9) and (6.10) are poorly fitted by a single beta
distribution. It is actually better to perform the fusion with the beta mixtures before
finding an approximate beta distribution fit. Under the fairly general assumption that
the prior on the distribution of values of propositions is uniform, the distribution
after fusing the reports from all sources is

f (p|T, Ni ) ∝
A∏

a=1

f (p|ta, ni,a), (6.11)

where f (p|ta, ni,a) is given by (6.9) or (6.10) for the two-mode or three-mode
behavior model, respectively. The operator ni,f = JointConDis(t1, ni,1, . . . , tA,

ni,A) determines the fused opinion by selecting the opinion associated to the beta
distribution that is determined through moment matching to (6.11). The distribution
in (6.11) is a mixture of beta distributions, which leads to analytical expressions for
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Fig. 6.3 RMSE of joint discounting and fusion for various mixtures of predominately good,
flipping, and random sources represented as a heat map: (a) two-mode and (b) three-mode

the moments. However, the number of mixture components grows exponentially. A
practical implementation of the JointConDis operator is presented in [27] that
clusters similar components into a single component as more sources are integrated.

Figure 6.3a shows the RMSE results for two-mode JointConDis. The
improvement over the previous discounting methods is obvious when the percentage
of predominately good sources is 10% or greater. Otherwise, the reports from
the predominately flipping agents can cohere in the fusion process and drown
out the good reports. Therefore the error can become worse than the previous
discounting methods when the percentage of predominately flipping sources is
large. Now the predicted RMSE matches the actual RMSE as long as the percentage
of predominately good agents dominates the flipping sources. Table 6.1 provides
the actual and predicted RMSE numbers for various percentages of source types.
The discrepancy between the actual and predicted values as more flipping sources
are included is due to the fact that the two-mode model does not account for the
flipping behavior.

Figure 6.3b shows the RMSE results for three-mode JointConDis. The error
is now very small except for cases when the percentage of predominately random
agents is 95% or more. Because the flipping behavior is modeled in the fusion
approach, the reports of flippers can be “unflipped” so that predominately flipping
sources are providing comparable information as predominately good agents, and
the fusion method is able to exploit that information. Because the fusion method
is modeling all the behaviors inherent in the synthesized sources, the predicted and
actual errors are comparable except when all the sources are predominately random
as provided in Table 6.2. It seems that the joint consensus fusion process that models
all the source behaviors is able to achieve the lowest possible error and the fused
opinion is able to represent the quality of information after fusion. The error is the
lowest when none of the sources are predominately random. In such cases, the actual
and predicted RMSE is 0.0075, which is slightly higher than the predicted RMSE
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Table 6.1 RMSE and (predicted RMSE) of joint fusion and discounting using the two-mode
model with an ego-source for various mixtures of predominately good, flipping, and random
sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3791 0.4789 0.5458 0.5680 0.5787 0.5802

(0.1342) (0.1212) (0.0899) (0.0663) (0.0344) (0.0269)

20
0.0424 0.0590 0.0860 0.1126 0.1757 —

(0.0274) (0.0261) (0.0391) (0.0412) (0.0535) —

40
0.0139 0.0189 0.0188 0.0169 — —

(0.0130) (0.0135) (0.0140) (0.0143) — —

60
0.0112 0.0118 0.0119 — — —

(0.0105) (0.0105) (0.0106) — — —

80
0.0100 0.0102 — — — —

(0.0091) (0.0091) — — — —

100
0.0091 — — — — —

(0.0082) — — — — —

Table 6.2 RMSE and (predicted RMSE) of joint fusion and discounting using the three-mode
model with an ego-source for various mixtures of predominately good, flipping, and random
sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3124 0.0284 0.0113 0.0095 0.0083 0.0076

(0.2004) (0.0246) (0.0112) (0.0094) (0.0083) (0.0075)

20
0.0281 0.0117 0.0092 0.0085 0.0075 —

(0.0252) (0.0113) (0.0094) (0.0083) (0.0075) —

40
0.0110 0.0093 0.0081 0.0075 — —

(0.0119) (0.0094) (0.0083) (0.0075) — —

60
0.0096 0.0085 0.0077 — — —

(0.0094) (0.0083) (0.0075) — — —

80
0.0081 0.0075 — — — —

(0.0083) (0.0075) — — — —

100
0.0075 — — — — —

(0.0075) — — — — —

of standard consensus fusion as discussed in the previous section. This is because
consensus fusion alone assumes all reports are honest, whereas the predominately
honest and flipping sources still provide random reports 15% of the time, which is
accounted for in joint consensus and discount fusion in (6.11).
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6.6 Fusion Using Behavior Estimates Without Ego-Sources

The three-mode JointConDis is probably at the estimation limit when dealing
with sources that probabilistically decide to manipulate their reported opinions. The
problem is that it requires an ego-source to “calibrate” the source behavior profiles.
This section investigates what is possible when an ego-source is unavailable. This
occurs when the decision-maker does not have direct access to observe the values
over different instantiations of the various variables. This section is inspired by the
fact-finding work described in [36, 39].

It is interesting to look at the performance of the two-mode JointConDis
when the source behavior opinion is vacuous, i.e., t

g
a = t ra = 0. Figure 6.4a shows

the RMSE over the various mixtures of source types. Despite the lack of knowledge
about the source behavior, the fusion still works well when the percentage of

Fig. 6.4 RMSE without an ego-source for various mixtures of predominately good, flipping, and
random sources represented as a heat map: (a) two-mode joint discounting and fusion using
vacuous source behavior profiles, (b) two-mode fact-finding, and (c) three-mode fact-finding
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Table 6.3 RMSE and (predicted RMSE) of joint fusion and discounting using the two-mode
model without any ego-source for various mixtures of good, flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.4049 0.5453 0.5733 0.5759 0.5766 0.5772

(0.0764) (0.0406) (0.0168) (0.0111) (0.0098) (0.0090)

20
0.1702 0.4009 0.5462 0.5736 0.5763 —

(0.0479) (0.0757) (0.0480) (0.0172) (0.0100) —

40
0.0442 0.1377 0.3927 0.5474 — —

(0.0137) (0.0461) (0.0693) (0.0424) — —

60
0.0128 0.0265 0.1628 — — —

(0.0113) (0.0119) (0.0482) — — —

80
0.0104 0.0132 — — — —

(0.0098) (0.0100) — — — —

100
0.0090 — — — — —

(0.0090) — — — — —

predominately good sources is much larger than the percentage of predominately
flipping sources. In fact, the RMSE is mostly a function of the difference of these
two percentages. Table 6.3 provides the actual and predicted RMSE obtained by
the fused opinions. When all the sources are predominately good, the match is
very close. In this case, the good reported opinions are able to cohere in the
JointConDis operation against the noncoherent random opinions. The match
between the actual and predicted errors slowly deteriorates as the difference between
the percentages of predominately good and flipping sources decreases. Once there
are more flipping sources, the JointConDis is cohering to the flipped opinions,
and the actual RMSE becomes large because the estimate is a flipped version
of the ground truth. Overall, the performance of two-mode JointConDis with
the vacuous behavior is not as good as using the ego-source-generated behavior
profile, but it does significantly outperform the earlier discounting methods when
the predominately good sources outnumber the flipping ones. This indicates that
fusion without an ego-source to calibrate the sources is possible, but more can be
done as we will now see.

The three-mode JointConDis operator using a vacuous source belief profile
is ineffective because the distribution given by (6.11) is bimodal due to the modeling
of the flipping behavior and the two modes are equiprobable in the absence of prior
knowledge of the relative number of sources that are exhibiting good and flipping
behaviors for the given variable. Fitting a single beta distribution to this bimodal
distribution leads to a poor characterization of the fused opinion, and it is not clear
which mode is representative of the ground truth and which mode is representative
of the flipped ground truth.

The performance of the two-mode JointConDis operator using a vacuous
source belief profile appears to provide a surprisingly good representation of the
ground truth when the majority of sources are predominately good. The fact-finding
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methods used for non-probabilistic propositions that have certain values either
true or false [36, 39] provide inspiration to do more. The fact-finding methods
alternate between estimating the trustworthiness of the sources given an estimate
of the truth of their claims and estimating the truth of the claims given an estimate
of the trustworthiness of the sources. In other words, the fused opinion that is
the output of the two-mode JointConDis operator using the vacuous source
behavior profile can serve as an initial surrogate for an ego-source opinion. Then, the
SourceBehavior operator using a two-mode model provides an updated source
behavior profile opinion for each source. Next, updated fused opinions are obtained
using the two-mode JointConDis operator with the updated source behavior
profile opinions, and then the SourceBehavior operator updates the source
behavior profile opinions using the updated fused opinions. The process repeats
until the source behavior profile opinions converge. The details of the two-mode
fact-finding method is shown in Operator 1 as FactFind2.

Operator 1 [n1,f , . . . , nI,f , t1, . . . , tA] = FactFind2(n1,1, . . . , ni,a, . . . , nI,A)

t
g
a = t ra = 0 for a = 1, . . . , A

t
g′
a = t r

′
a = 1 for a = 1, . . . , A

while
∑A

a=1 ‖t
′
a − ta‖2 > ε do

t
′
a = ta for a = 1, . . . , A

/* Use 2-mode source behavior model */
ni,f = JointConDis(ni,1, t1, . . . , ni,A, tA) for i = 1, . . . , I

ta = SourceBehavior(n1,f , n1,a, . . . , nI,f , nI,a) for a = 1, . . . , A

end while

Figure 6.4b shows the RMSE of the two-mode fact-finding method. As long as
the predominately good sources outnumber the predominately flipping agents, the
RMSE is very low. Otherwise, the error is large because the flipped version of the
ground truth prevails. Table 6.4 compares the actual and predicted RMSE values
for various mixtures of source types. As long as the number of predominately good
sources significantly outnumbers the other source types, the predicted and actual
errors are comparable. The discrepancy between the actual and predicted errors
when the predominately good sources are slightly in the majority indicates that more
still can be done.

The two-mode fact-finding method does not correct for flipping behavior. A
three-mode fact-finding method can do better, but without an initial estimate
of the source behaviors, three-mode JointConDis suffers from the two-mode
problem discussed earlier. Operator 2 describes the three-mode fact-finding operator
FactFind3 that alternates between joint discounting and fusion and source
behavior characterization using the fused opinions as ego-source surrogates. It is
initialized by FactFind2 to determine initial evidence for the good behavior
associated to each source. To this end, the second step in Operator 2 is actually
transferring the belief in the random behavior into uncertainty. In setting up a three-
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Table 6.4 RMSE and (predicted RMSE) of two-mode fact-finding for various mixtures of good,
flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3947 0.5721 0.5757 0.5764 0.5763 0.5764

(0.1071) (0.0256) (0.0124) (0.0104) (0.0090) (0.0081)

20
0.0434 0.5689 0.5746 0.5763 0.5762 —

(0.0271) (0.0312) (0.0159) (0.0104) (0.0091) —

40
0.0139 0.0200 0.5759 0.5764 — —

(0.0130) (0.0127) (0.0145) (0.0105) — —

60
0.0112 0.0120 0.0122 — — —

(0.0104) (0.0104) (0.0105) — — —

80
0.0100 0.0104 — — — —

(0.0090) (0.0091) — — — —

100
0.0092 — — — — —

(0.0081) — — — — —

mode belief, the beliefs in flipping and random behavior are set to zero, and the good
behavior belief and uncertainty are transferred from the two-mode behavior opinion.
This can be verified by the evidence to belief mapping given by (6.3). The rationale
for moving the random behavior belief to uncertainty is because the two-mode fact-
finding cannot distinguish between random and flipping behavior and only the belief
in the good behavior is valid. Then, the fact-finding methods alternate between
performing three-mode JointConDis to estimate fused opinions as surrogates for
the ego-source opinions and three-mode SourceBehavior to update the source
behavior profile opinions until convergence.

Operator 2 [n1,f , . . . , nI,f , t1, . . . , tA] = FactFind3(n1,1, . . . , ni,a, . . . , nI,A)

[̃, . . . , ,̃ t1, . . . , tA] = FactFind2(n1,1, . . . , ni,a, . . . , nI,A)

t
g
a = 3t

g
a

2+t ra
for a = 1, . . . , A

t
f
a = t ra = 0 for a = 1, . . . , A

t
g′
a = t

f ′
a = t r

′
a = 1 for a = 1, . . . , A

while
∑A

a=1 ‖t
′
a − ta‖2 > ε do

t
′
a = ta for a = 1, . . . , A

/* Use 3-mode source behavior model */
ni,f = JointConDis(ni,1, t1, . . . , ni,A, tA) for i = 1, . . . , I

ta = SourceBehavior(n1,f , n1,a, . . . , nI,f , nI,a) for a = 1, . . . , A

end while

Figure 6.4c shows the RMSE of the three-mode fact-finding method. The bound-
ary where the numbers of predominately good and flipping agents are comparable is
sharper than that of the results from the two-mode fact-finding method. The actual
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Table 6.5 RMSE and (predicted RMSE) of three-mode fact-finding for various mixtures of good,
flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3820 0.5743 0.5761 0.5764 0.5764 0.5765

(0.1239) (0.0238) (0.0112) (0.0094) (0.0083) (0.0075)

20
0.0243 0.5761 0.5763 0.5765 0.5765 —

(0.0262) (0.0115) (0.0094) (0.0083) (0.0075) —

40
0.0108 0.0093 0.5764 0.5765 — —

(0.0114) (0.0094) (0.0083) (0.0075) — —

60
0.0096 0.0085 0.0077 — — —

(0.0094) (0.0083) (0.0075) — — —

80
0.0081 0.0076 — — — —

(0.0083) (0.0075) — — — —

100
0.0075 — — — — —

(0.0075) — — — — —

and predicted RMSE numbers are provided in Table 6.5. When the predominately
good sources outnumber the flippers, the three-mode fact-finding lowers the error
as compared to two-mode fact-finding because it does explicitly correct for flipping
behaviors. Furthermore, the agreement between the actual and predicted errors is
maintained as long as the predominately good sources outnumber the flippers. It
seems that the three-mode fact-finding is pushing the limits of what is possible
for jointly performing source and fused opinion in the absence of an ego-source.
Without the ego-agent, one must make the implicit assumption that lying sources
are in the minority. This is true for state variables in general and is also true for
traditional fact-finding methods that operate over crisp propositions [36, 39]. When
the assumption is violated, the fact-finding method will fail. This seems to be a
fundamental barrier when an ego-source is unavailable.

6.7 Discussion and Conclusions

This chapter demonstrates how to perform fusion of subjective opinions from
possibly unreliable sources to estimate values of probabilistic state variables.
Specifically, a subjective opinion about a state variable summarizes the evidence
about the possible probabilities that the state variable takes one of K values. It
encodes both the expected probabilities as the information and the amount of
evidence that has been collected as the quality of the information. As shown in this
chapter, the quality of information represents the spread (or difference) between the
actual ground truth probabilities and the expectation information derived from the
observations.
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When the decision-maker (or its very trusted advisor) has direct observations
about many of the state variables or propositions, the decision-maker can use the
consistency of his/her observations and the corresponding reported opinions of a
particular source to establish a source behavior profile opinion for that particular
source. The decision-maker can achieve very effective fusion by accounting for its
source behavior opinions of each source in conjunction with the reported opinions
from each source. It is demonstrated that it is much more effective to perform the
fusion in one shot rather than discounting each source’s opinion by its corresponding
behavior profile opinion. This is because a discounted opinion is unable to jointly
capture the uncertainty of the reported opinion in light of the source’s various
behaviors.

Simulations of three (good, flipping, and random) source behaviors help to
demonstrate the effectiveness of the various fusion methods. When the fusion
method models all three behaviors, the fusion leads to a very tight estimate of ground
truth that is well characterized by the ground truth. When the fusion method only
models good and random behavior, the estimate of the ground truth is not as tight
because the method is only able to censor (and not correct for) the flipping behavior,
which is usually inconsistent with good behavior. The quality of information is still
able to characterize the difference between the estimates and ground truth as long
as the unmodeled flipping behavior does not become overly prevalent.

It is possible to perform fusion of a set of subjective opinions when the decision-
maker does not have any direct observations to calibrate the behavior profiles of
sources. In these cases, fused opinions act as a surrogate for the direct opinions so
that inspired by fact-finding methods, one can iterate between fusion and source
behavior estimation where the estimates progressively improve as long as the good
behaviors occur more frequently than the bad behaviors. The fact-finding principle
provides good estimates whose errors are well characterized by the quality of
information as long a good behaviors occur more than flipping behaviors.

In general, sources can exhibit more than the three behaviors considered in this
chapter. Nevertheless, the two-mode behavior model is a robust behavior model
because the random behavior can capture source behaviors intended to move a
fused estimate farther from the ground truth. The problem with the two-mode
behavior model is that it does not allow fusion method to incorporate “bad” reports
by implicitly transforming them into “good” reports. In essence, the two-mode
behavior model only enables the fusion to censor (but not correct for) bad behaviors.
The three-mode behavior model can correct for flipping behaviors, but it will not be
able to correct for other unmodeled behaviors. The insight of the results in this
chapter mean that in light of additional source behaviors, the three-mode fusion
methods will still achieve good fusion with a meaningful quality of information
characterization as long as the decision-maker has direct observations to calibrate
the sources. It is just that the fusion performance could be improved by explicitly
modeling the behaviors, and methods such as in [27] could be employed to learn
new behaviors. Without the direct observation, the fact-finding methods will still
be effective as long as the good behavior is the majority behavior exhibited in the
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collections of reports. Furthermore, the three-mode fact-finding should still beat out
two-mode fact-finding because it can use flipped reports as information.

The beta model to characterize source behavior is nice because it captures the
idea that sources do not always lie or tell the truth. However, a clever and malicious
source would try to be truthful as much as possible to build a good reputation and
decide to lie at the moment that makes the decision-maker’s organization the most
vulnerable. This chapter does not present “the” technique to handle such a case, but
this chapter does provide insights in the challenges to successfully deceive or protect
from such deception. For instance, the malicious source can only be effective if
he/she coordinates his/her lie with other sources and those sources are not drowned
out by a larger group of good sources. Likewise, the decision-maker can use other
stereotypical or profile information about the source, e.g., see [2, 28], along with
risk/benefit analysis to build the sources reputation based upon its past forgone
opportunities to cause harm in light of its likely affiliations. In other words, each
proposition need not be considered equal in forming the source behavior profile.
Furthermore, the fusion methods in this chapter assume independent sources, and as
a result, they are vulnerable to coordinating sources. Understanding how the source
profile information forms an influence network among sources can lead to better
methods. For instance, social EM is a fact-finding method for binary propositions
that is resilient to the “echo chamber” effect in social networks [38].

Specific applications will drive the exact source reputation and fusion system
that is required. The methods presented in this chapter are generic. While they are
not necessarily best for a particular scenario, such as a set of cooperating sources
waiting for the exact right time to lie, the methods presented here can serve as the
building blocks for customized systems. Overall, there are opportunities to design
fusion systems to be resilient to conflicting and malicious sources. However, there
are limitations to how resilient the system can be built. The chapter has identified
some of these limitation and opportunities.
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