
Chapter 18
Reliability-Aware and Robust
Multi-sensor Fusion Toward Ego-Lane
Estimation Using Artificial Neural
Networks

Tran Tuan Nguyen, Jan-Ole Perschewski, Fabian Engel, Jonas Kruesemann,
Jonas Sitzmann, Jens Spehr, Sebastian Zug, and Rudolf Kruse

Abstract In the field of road estimation, incorporating multiple sensors is essential
to achieve a robust performance. However, the reliability of each sensor changes due
to environmental conditions. Thus, we propose a reliability-aware fusion concept,
which takes into account the sensor reliabilities. By that, the reliabilities are
estimated explicitly or implicitly by classification algorithms, which are trained
with extracted information from the sensors and their past performance compared to
ground truth data. During the fusion, these estimated reliabilities are then exploited
to avoid the impact of unreliable sensors. In order to prove our concept, we apply our
fusion approach to a redundant sensor setup for intelligent vehicles containing three-
camera systems, several lidars, and radar sensors. Since artificial neural networks
(ANN) have produced great results for many applications, we explore two ways
of incorporating them into our fusion concept. On the one hand, we use ANN as
classifiers to explicitly estimate the sensors’ reliabilities. On the other hand, we
utilize ANN to directly predict the ego-lane from sensor information, where the
reliabilities are implicitly learned. By the evaluation with real-world recording data,
the direct ANN approach leads to satisfactory road estimation.
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18.1 Introduction

Advanced driver assistance systems (ADAS) and automated driving heavily rely on
environment perception and especially on road estimation. By that, current research
explores various algorithms toward road detection by using multiple sensors, such as
camera, radar, lidar, etc. Thereby, one of the biggest challenges is the huge variety of
environmental conditions that influence sensor performances. This leads to sensor
failures in several scenarios. For instance, a camera-based detection system can
provide sufficient results under many weather conditions. However, this system
can fail in case of heavy rain, snow, etc. In contrast, radar sensors can detect the
surrounding objects despite these conditions since their technology is not affected
by rain or snow as cameras. For that reason, it is necessary to combine the data of
distinct sensors so that the system can constantly produce sufficient results.

In our previous works, we introduce a multi-source fusion framework for robust
ego-lane detection [1–3]. Thereby, we take into account that the sensor reliabilities
depend on environmental conditions and can change over time. The reliabilities are
estimated by applying different classification algorithms, which are offline trained
by using the extracted information from sensors’ detections. Consequently, the
fusion process based on Dempster-Shafer theory incorporates these reliabilities to
combine the information of the sources.

In this work, we exploit the possibility of estimating the ego-lane directly
by using neural networks. By that, the reliabilities are internally learned by the
networks and encoded as weights of the neurons. This differs from the approaches
of Nguyen et al. in [3, 4], where the reliability of each source is estimated by training
a separate classifier. Furthermore, we integrate new environment information to
take advantage of the redundant sensor system, such as detections from a surround
view camera system, free space information, etc. To achieve higher accuracy of the
classification, we utilize the mutual information of the features to select the features
with the greatest influence on the classification. Finally, we evaluate our presented
approaches by using a new database of real-world data recordings.

This work is organized as follows: Sect. 18.2 explains three categories of
perception approaches toward automated driving and gives an overview of various
works. In Sect. 18.3, we introduce our concept of incorporating reliabilities into ego-
lane estimation by using different classifiers. Following, Sect. 18.4 applies neural
network to explicitly learn the sensors’ reliabilities. Afterward, Sect. 18.5 explains
our approach of using neural networks to directly estimate the ego-lane. Lastly,
Sect. 18.6 presents the experimental results obtained for the feature selection, the
reliability estimation, and the final ego-lane estimation.



18 Reliability-Aware and Robust Multi-sensor Fusion Toward Ego-Lane. . . 425

18.2 Related Work

The approaches in the field of automated driving can be divided into three
categories [5], illustrated in Fig. 18.1. The first category consists of behavior reflex
approaches, which use purely data-driven techniques, also called as AI techniques,
to map sensor data to driving decisions directly. The second category with direct
perception approaches apply AI algorithms to estimate a selected set of features
representing the relevant information of the current environment. Afterward, a sim-
ple controller uses these features to realize driving functions. Representing the third
category, mediated perception approaches build an environment model by process-
ing the sensor data using both model-based methods and AI techniques, respectively.
Based on the generated environment model, AI methods are utilized to derive the
driving actions of the vehicle. Following, all categories will be discussed in detail.

18.2.1 Behavior Reflex Approaches

In the early stages of automated driving, Pomerleau et al. propose a behavior reflex
approach using an artificial neural network (ANN) to estimate the steering angle
for an intelligent vehicle [6]. Thereby, the network consisting of only three layers is
trained by using a low-resolution 30 × 32 pixel camera image. Thus, the input layer
of the ANN contains 960 neurons. Following, the input layer is fully connected to
the hidden layer consisting of five neurons, which in turn is connected to the output
layer of 30 neurons. Each neuron in the last layer represents a steering angle that is
used to calculate the steering of the vehicle. To provide a stable behavior, the final
steering angle is determined by calculating the center of masses of the activations
around the highest activated neuron.

Fig. 18.1 Perception models: (a) Behavior reflex, (b) Direct perception, and (c) Mediated
perception approaches
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A more sophisticated approach using ANNs is presented by Bojarski et al. [7].
Their system uses convolutional neural network (CNN) as recent advances of
ANNs. For that, they use the images of three cameras to determine the steering
wheel angle. In order to train the multilayer CNN, backpropagation is performed
with the mean squared error of the estimated angle to the angle chosen by a human
driver. Additionally, they rotate and shift the images to avoid an overfitting to the
training data. In their evaluation, they reach an autonomy level of 98%, which is
defined as follows:

autonomy Level =
(

1 − #interventions · 6 seconds

elapsedTime

)
· 100 (18.1)

A similar approach using CNN to determine the steering angle is presented by
Chen et al. [8]. The resulting network is able to perform steering with a mean
error of 2.42◦. However, the authors explain that evaluating the camera images
frame by frame is not appropriate since the repetition of the small error in every
frame can result in leaving the lane. Thus, they conclude that it is necessary to
incorporate temporal information into the network to improve the results in a
continuing scenario.

Codevilla et al. [9] propose a more practice-oriented approach by incorporating
commands into the learning process. Therefore, they use a camera system which
determines the steering angle and acceleration using a CNN. Furthermore, they
compare two architectures for their networks. On the one hand, the command
input architecture combines the image processing results, the measurements of
the environment, and the command by feeding the outputs into fully connected
layers, which determine the action. On the other hand, the branched architecture
combines the image processing results and environment measurements and forwards
the outputs into fully connected layers depending on the command. Impressively,
the branched version drove an off-the-shelf 0.20 scale truck nearly perfectly on
walkways in a residential area.

The problems of using behavior reflex approaches are that it is hardly possible
to install a fail-safe. This can result in accidents in unknown environments and
endanger other traffic participants.

18.2.2 Direct Perception Approaches

In [5], Chen et al. introduce a direct perception approach for autonomous driving by
choosing a set of 13 features to represent the current environment. These features
contain information about the angle between the vehicle and the road, distances
to lane markings, and preceding vehicles on other lanes. Using these features, the
authors construct a controller, which minimizes the distance to the lane center line
and keeps a safe distance to other traffic participants. In order to determine the
features, they use two different approaches: a handcrafted GIST system [10] and
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CNN. A as result, CNN outperforms the GIST system regarding every parameter.
Using the superior CNN, they develop a system that can perform well in both
virtual and real environments. Although this approach seems to achieve good results,
two problems can occur. First, the controller depends strongly on correct inputs,
which cannot be ensured in the current state. Secondly, if this approach needs to be
scaled to fully autonomous driving, the selected features will become as complex
as in mediated perception approaches. Therefore, the simple controllers will not be
sufficient and should be replaced by mediated perception approaches.

Similar to [5], Al-Qizwini et al. provide a different direct perception approach
called GlAD [11]. Therefore, they compare the top three CNN architectures,
namely, GoogLeNet [12], VGGNet [13], and Clarifai [14]. These CNNs are used
to learn five affordance parameters, which are used by the controller to drive the
intelligent vehicle. During the training of the CNNs on images provided by TORCS,
GoogLeNet outperforms VGGNet and Clarifai. Hence, they use GoogLeNet as the
best network to evaluate the automated driving capability in a simulated environ-
ment by measuring the mean and deviation to the lane center. Their algorithm
performs well and achieves a mean deviation on the evaluation tracks of at most
0.2 m. Although this approach seems to be promising, it suffers from the lack
of complexity in comparison to real-world scenarios because of using simulation
results. By way of example, they cannot simulate all mistakes that other traffic
participants could make to react accordingly.

18.2.3 Mediated Perception Approaches

Mediated perception approaches are characterized by modeling a complex environ-
ment representation when combining information from several sensors. Thereby,
the biggest challenge is how to handle inconsistency and conflict between the
information coming from different sources. Thus, several works investigate the
sensor reliability by using different methods, e.g., classifiers [3, 15, 16] and failure
models [17]. At the decision layer, these reliabilities can be exploited to fuse only
reliable sources.

Frigui et al. present a context-dependent multisensor fusion framework [18]. By
that, they use a clustering algorithm to cluster the extracted features. Each cluster
represents a certain context and contains data that shows similar characteristics of
the environment. Afterward, a reliability of each source is manually defined for each
context. This approach can be problematic when the number of features rises, and
the clustering algorithms will suffer from the curse of dimensionality. In this case,
the number of clusters would rise exponentially.

In [15], Hartmann et al. fuse multiple sensors to create a road model, which
is then verified with a digital map. Therefore, they train an ANN using a large
database containing sensor data and the associated map geometry. The goal is to
assess whether the estimated road model is incorrect and does not match with the
digital map. This can be the case when the predicted road course changes due to
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construction works or errors of the detection algorithms. As a result, the trained
ANN outputs a reliability value representing the probability for an error between
the estimated road and the digital map. This approach can detect contradictions, but
it cannot decide which source is faulty [19]. Hence, this method could be improved
by identifying the incorrect source [20].

Realpe et al. introduce a fault-tolerant object estimation framework [21]. First,
objects are separately estimated by using data from each single sensor. For each
sensor, the discrepancy of its estimated objects to the reference in the offline
evaluation phase is used as weight for the final fusion. This concept is promising,
but the reliability estimation could be further increased by using additional context
information, such as the road type, where the vehicle is driving on.

Romero et al. present an environment-aware fusion approach for lane estima-
tion [22]. By that, they compare the estimated lane from each sensor with the ground
truth. Based on the comparison result, they assign a reliability value to each sensor
for the current GPS position. When the vehicle is located at a certain position, the
stored reliabilities are used to perform a weighted fusion. However, this approach is
not generalizable to new areas since it uses GPS position to predict reliabilities and
requires the vehicle to have been there before. Instead of utilizing GPS coordinates,
additional features extracted from sensor detections could be used to make the
estimations location-independent [19].

The discussed works in this chapter contain interesting approaches, but they still
have potential for improvement or are quite work-intensive. Hence, the following
chapter will explain our fusion concept.

18.3 Overall Concept

Our fusion concept is an extension of our previous work in [3, 23]. As illustrated in
Fig. 18.2, it consists of multiple levels such as in the JDL model [24]. At Level 0,
the raw sensor data is preprocessed on the basis of physical signal level. At Level 1,
multiple detection modules iteratively utilize the preprocessed data to estimate
and predict the states of different object types. This includes tasks such as object
detection, tracking, association, etc. The low-level fusion, e.g., object association of
different sensors [25, 26], is taking place here. In our work, the used sensors are
delivered with their internal processing modules and provide different results such
as lane markings, dynamic objects, etc.

Starting from Level 2, we present two different fusion concepts, where reliable
sources should be preferred over unreliable sources. In the first approach represented
in Sect. 18.4, we utilize artificial neural networks (ANNs) to estimate the reliability
of different ego-lane models by using the scenario features, which are extracted from
the sensor and contextual information. Afterward, the fusion based on Dempster-
Shafer theory utilizes these estimated reliabilities to identify and neglect the
unreliable sources. In the second approach, we utilize ANNs to directly estimate the
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Fig. 18.2 Overview of our two different fusion concepts. While (a) estimates the reliabilities of
the separately estimated ego-lane models and incorporates them into the fusion, (b) estimates the
ego-line directly using sensor detections

ego-lane (Sect. 18.5). By that, the network should internally learn the reliabilities of
the sources for an optimal estimation. Both concepts are detailed in their respective
sections. Since the scenario features are used by both approaches, we will explain
them in the following.

18.3.1 Sensor Setup

As shown in Fig. 18.3, we use a setup of three-camera systems in order to detect
lane markings. Thereby, each camera system separately provides estimations for the
next right lane marking (RM) and the next left lane marking (LM). In this work, a
prefix of “second” or “third” denotes the affiliation to that particular camera system.
If no prefix is given, the estimation belongs to the first camera system. Furthermore,
the prototype vehicle also is also equipped with several radar and lidar sensors for a
360◦ object detection, which is not be further explained here.

By way of example, Fig. 18.4 shows four scenarios with the detected lane
markings and objects. The highway in Fig. 18.4a demonstrates an ideal scenario,
where all lane markings can be perceived clearly. Thereby, the two front-facing
camera systems can detect markings up to 100 m, while the third camera system
has a shorter detection range of about 20 m. In this scenario, the vehicle can use
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Fig. 18.3 The prototype vehicle with three-camera systems: Two are front-facing and differ
slightly in field of view; the third consists of four fish-eye cameras for a surround view. The
positions of other sensors such as lidars, radars, and ultrasonic sensors are not shown here

Fig. 18.4 First row: images from the first camera. Second row: visualization of detection results
of all three cameras and object estimations on Google Maps
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any marking from the first two cameras or a combination of them to estimate the
current ego-lane. As opposed to this, Fig. 18.4b depicts an urban scenario, where the
detection ranges of all cameras are smaller than in the highway scenario. Moreover,
markings are not existing on the right side so that only Camera 1 and Camera 2
can identify the curbstone as lane boundary. In contrast, the left lane marking is
perceived clearly by all cameras. Therefore, the vehicle should orientate to the left
lane marking. Especially in the on-ramp scenario in Fig. 18.4c, the third camera
system outperforms the rest by detecting markings on both sides up to 20 m away.
Here, the first two camera systems cannot recognize the right marking due to their
narrow field of views (Fig. 18.4). In order to handle this scenario, the vehicle should
utilize the detected markings of Camera 3. Last, Fig. 18.4d depicts another urban
scenario with no markings on both sides. Unfortunately, none of the cameras can
detect the curbstone stably. Only the leading vehicle can be detected so that its
trajectory should be used to generate an ego-lane hypothesis.

18.3.2 Scenario Features

This section explains in detail the composition of the scenario features, which
we extract from sensor and context information. In this work, all lane markings
as well as the trajectory of the leading vehicle (ACC object) are modeled by an
approximation of the clothoid model [27]:

y(x) ≈ φ0 · x + C0

2
x2 + C1

6
x3 (18.2)

= a1 · x + a2x
2 + a3x

3 (18.3)

A subset of the used scenario features is generated from these clothoid parame-
ters, which can be seen in Table 18.1. Additionally, this table contains a likelihood
ξ , representing a measure of uncertainty about the existence of an object. Moreover,
Table 18.1 also contains the estimated lane width Lanew, the feature free, that
expresses the amount of free space along the clothoid evaluated with an occupancy
grid built by using lidar data. Furthermore, we introduce several consensus features

Table 18.1 Sensor-related
and consensus features of all
markings and the trajectory of
the leading vehicle:
h ∈ {LM,RM, SLM, SRM,

T LM, T RM,ACC}

Feature Description Feature Description

h x0 Start on the x-axis h y0 Lateral offset

h l Clothoid length h φ Clothoid angle

h c0 Curvature h c1 Curvature change

h ξ Existence likelihood Lanew Lane width

CSh l Deviation to l CSh φ Deviation to φ

CSh c0 Deviation to c0 CSh c1 Deviation to c1
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Table 18.2 Motion
parameters of object
o ∈ {Ego,ACC}

Feature Description Feature Description

o x x-position o vx Longitudinal velocity

o y y-position o vy Lateral velocity

o vφ Yaw rate o vLM Velocity to LM

o turn Tri-state o vRM Velocity to RM

measuring the deviations to respective average values. Last, the type of all lane
markings is also utilized, e.g., solid, dashed, and curbstone.

For moving objects like the ego-vehicle and the leading vehicle, we extract
various motion parameters, as seen in Table 18.2.

Furthermore, we utilize external contextual features extracted from a navigation
map. These include roadType (e.g., highway, rural, urban, connection), linkType
(e.g., ramp, roundabout), laneClass (e.g., normal, split, merge, intersection), and
cityLimitStatus (e.g., inside, outside). Additional features are the mean width
μEgoLaneWidth and the standard deviation σEgoLaneWidth of the ego-lane.

Instead of using these features directly to train ANNs as in [3], we normalize
these features and encode them to reach a higher classification performance, which
is described in the following section.

18.3.3 Preprocessing Features

If a sensor provides data directly to ANN, the input can suffer from artificial seman-
tic through different ranges and meanings of the data. For example, comparing
the roadType that are denoted by natural numbers, the distances between two
categories are varying even though the semantics are not different. Thereby, the
difference between a highway and an urban scenario is equal to the difference
between a highway and a rural scenario. Therefore, the distance between these
categories should not differ. For that reason, we apply one-hot encoding to the
categorical input data. By that, a one-hot encoding transforms a categorical feature
with n categories into a vector of n entries, where each entry is set to one if the index
corresponds to the respective category and to zero otherwise as

one − hot : {0, 1, . . . , n − 1} → {0, 1}n , one − hot(k)i =
{

1 i = k

0 else
(18.4)

Another challenge is the huge variety of ranges in the data set. For instance,
the length l of the lane markings can reach up to 100 m, while the angle φ varies
between −π

2 and π
2 . Hence, l has a bigger influence on the results until the network

learns to reduce its influence by adapting the weights. Therefore, the convergence
of the network is slower than the case where alldata is in similar ranges. For that
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reason, we apply the following min-max-scaling to each feature, so that all values
are in the interval [−1, 1] with:

scale(x) = 2 · (x − minx)

maxx − minx

− 1 (18.5)

18.4 Reliability Estimation

This section presents the application of ANNs as reliability estimators to the
reliability-aware road fusion framework of Nguyen et al. [3, 23]. For this purpose,
this section starts by explaining the fusion framework and the model-based ego-lane
generation in greater detail. Following, we select for each ego-lane model the most
important features, which are obtained by applying the feature selection method
mutual information (MI). Afterward, we present the structure and training process
of ANNs based on chosen features and introduce different fusion strategies.

18.4.1 Concept

Sections 18.2 and 18.3 clarify the relevance of fusing multiple sources for road
estimation. By that, a proper incorporation of reliabilities can leverage the fusion’s
performance [19]. Thus, we present a multisensor fusion framework, which con-
tinuously estimates the sensor reliabilities and uses them to perform the fusion.
Adapted from [23], Fig. 18.5 shows different layers of the framework, whereby the
contributions of this work are highlighted in green.

At Layer 0, different sensor inputs are processed. This preprocessed data is then
passed to Layer 1, where different types of information are estimated, e.g., lane
markings, free space information,vehicles, etc.

At Level 2, several hypotheses for the current ego-lane are generated using a
model-based approach from Toepfer et al. [1]. Additionally, here we also generate
the scenario features, which are extracted from sensor detections and contextual
information. By way of example, the parameters describing the lane markings are
selected, such as the length, the curvature, etc. Moreover, we extend the feature set
from [28] with the consensus features, which describe the similarity among the lane
markings and the driven trajectory of the leading vehicle.

In the offline phase of the Level 3, the estimated ego-lane hypotheses are
compared with the ground truth, which is represented by the driven trajectory of
human drivers. If the deviation from the ground truth exceeds a predefined threshold,
the hypothesis will be considered as unreliable and vice versa. Together with the
corresponding features, they are stored in a database to train different classifiers. By
that, one classifier is trained to predict the reliability of each ego-lane model. During
the online phase, each estimated ego-lane is assigned with a predicted reliability
from the corresponding classifier.
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Fig. 18.5 Reliability estimation and reliability-aware fusion as an additional supervision system
within the road estimation task [23] (Blue: Data for road detection; Red: Reliability information)

As the last layer, Level 4 fuses different models depending on the predicted
reliabilities. Following, the final ego-lane estimation is then used to perform driving
functions.

In this work, we apply mutual information (MI) to detect nonlinear relations
between the scenario features and the reliability values [29]. Additionally, ANNs
are employed as reliability estimators since they perform well in many other tasks
and could increase the reliability estimation result [5, 30, 31].
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Fig. 18.6 Three estimated ego-lane hypotheses for each camera system [2]

18.4.2 Hypotheses

This section introduces different types of ego-lanes, which are created from lane
markings and leading vehicles. Thereby, the detection of lane markings is performed
independently for each camera system. In general, the results of each system are
used to generate three model-based ego-lane hypotheses (Fig. 18.6). By that, the
left hypothesis (LH) and the right hypothesis (RH) use only the left and right
lane markings, respectively. The center hypothesis (CH) utilizes the detected lane
markings on both sides. By applying this process to the three-camera systems, we
can receive up to nine ego-lane estimations. Additionally, the vehicle hypothesis
(VH) represents the trajectory of the leading vehicle as shown in Fig. 18.4d. This
leads to the following set H of hypotheses, where the prefixes “F,” “S,” and “T”
indicate the first, second, and third camera system, respectively:

H = {FLH,FRH,FCH, SLH, SRH, SCH, T LH, T RH, T CH,V H }

18.4.3 Feature Selection

Since information from multiple sources is incorporated, the generated feature
vector consists of hundreds of elements. Training classifiers with all these features
would be computationally expensive, and the results can worsen due to the curse
of dimensionality [32]. Moreover, not all features directly affect the reliabilities.
Therefore, we perform a feature selection so that only the most relevant features are
used to train the classifiers.

For this work, we apply the method mutual information (MI), which is a
measure of the dependency between two variables [29]. It is used to determine the
information about a variable through another variable. For this purpose, MI is not
using the covariance like the linear correlation coefficient but the distance between
two probability distributions. Hence, MI can describe nonlinear relationships
between two variables. Assuming an independent, identical distribution of a set
of N bivariate measurements {ti = (xi, yi) | i = 1, . . . , N} of the features
X = {x1, . . . , xN } and Y = {y1, . . . , yN }, the mutual information of X and Y is
defined as follows:
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I (X, Y ) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (18.6)

where p(x, y) is the joint probability density and p(x) and p(y) are the marginal
probability densities of X and Y , respectively.

Since the densities are not always known, an approach of approximating MI is
applied. Therefore, the values of X and Y are sorted into containers of finite sizes,
which is described in the following:

Icont(X, Y ) =
∑
ij

p(i, j) log
p(i, j)

p(i)p(j)
(18.7)

where p(i, j) = ∫
i

∫
j
p(x, y) dxdy, p(i) = ∫

i
p(x) dx, and p(j) = ∫

j
p(y) dy.

By that,
∫
i

denotes the integral over container i and
∫
j

denotes the integral over
container j .

The number of entries of each container is counted and

p(i) ≈ nx(i)/N (18.8)

p(i) ≈ ny(i)/N (18.9)

p(i, j) ≈ n(i, j)/N (18.10)

are approximated, where nx(i) and ny(i) represent the number of entries of the
respective container i of X and Y , and n(i, j) denotes the number of overlapping
entries. When the number of containers is increased toward to infinity and the size
of the containers is aiming toward zero, Icont converges to I .

18.4.4 Training Process

During the offline training phase, the database is divided into training and testing
datasets (Fig. 18.7). Afterward, the data is resampled to balance the number of
negative and positive samples. As a result, the resampled datesets contain the same
amount of samples for both classes to avoid bias during the training [33]. Following,
a feature vector Xh with four different categories for each sample of h is generated
as

Xh = [sh, τ, γint, γext] (18.11)

where sh describes the sensor information, τ represents the consensus features, and
γint and γext denote the internal information (e.g., odometry data) and environment
information (e.g., the road type), respectively [23]. After creating Xh, an error metric
is applied to the ego-lane hypothesis h to determine the label Lh. By that, Lh will



18 Reliability-Aware and Robust Multi-sensor Fusion Toward Ego-Lane. . . 437

Fig. 18.7 Overview of the application of the classifier [23]

be considered as reliable if the deviation of h from the reference is smaller than a
predefined threshold. We will explain the used metric in Sect. 18.6.1.

To evaluate the trained networks, the testing dataset is used. Thereby, the
created feature vectors are passed directly to the networks and their predictions
are compared with the actual test target. The evaluation process and the results are
explained in greater detail in Sect. 18.6.

18.4.5 Artificial Neural Networks for Reliability Estimation

In order to estimate the reliability of each hypothesis h ∈ H , we train an ANN
ANNh for each h separately. Thereby, the output of ANNh represents the estimated
reliability Rh. The structure of each individual ANN is shown in Fig. 18.8.

After applying MI to the feature vector Xh, the 25 most relevant features X′
h are

used as the input for the training. Thereby, these features are then preprocessed by
the normalization and one-hot encoding described in Sect. 18.3.3. As a consequence,
the processed feature vector can have i elements with i ≥ 25 due to the one-
hot encoding. Since the networks are fully connected, each neuron’s input function
receives the output from all neurons of the preceding layer.

The next five layers consist only of rectified linear units (ReLU), i.e., they employ
f (x) = max(x, 0) as their activation function. These layers only differ by the
number of neurons. Starting with 25 neurons in the first layer, the number is reduced
by five for every succeeding layer. The last layer has only one neuron and a sigmoid
activation function to produce an output between zero and one, which represents the
final reliability value of the corresponding ego-lane model.
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Fig. 18.8 Structure of ANNs toward reliability estimation

During the training, the label vector Lh is compared with the estimation produced
by the network to update the weights of the neurons. Since the basic backpropaga-
tion algorithm often suffers from contrary training examples and requires a high
number of iterations until convergences [32], we apply Stochastic Gradient Descent
(SGD), an advanced backpropagation algorithm, to update the weights [34]. Instead
of minimizing the total error as the basic backpropagation, SGD minimizes the
empirical risk over the training data D = {(xi, yi) | i = 1, . . . , n} as

E(f ) = 1

n

n∑
i=1

l(f (xi), yi) (18.12)

where l denotes the loss function describing the loss of the prediction f (xi)

regarding the target yi . In this work, we use the squared Euclidean loss function,
which is defined as

EL2(f ) = 1

2n

n∑
i=1

||f (xi) − yi ||22 (18.13)

For convenience, the loss is divided by two for an easier derivative of the squared
Euclidean loss. For an optimal gradient in the learning phase, the gradient has to be
calculated in every iteration, which produces a heavy computational effort. Hence,
SDG estimates the gradient by using a batch B ⊂ D, which is significantly smaller
than D with |B| 	 |D|.

EL2(f ) = 1

2|B|
|B|∑
i=1

||f (xi) − yi ||22 (18.14)
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By that, Eq. 18.14 describes the risk that is optimized in each iteration. During the
weight adaption, the learning rate needs to be decreased to achieve convergence.
Although better results can be achieved, the gradient descent can still get stuck in
a local minimum of the empirical risk [35]. Therefore, a momentum term is used
in the weight adaption, which helps the network to converge faster and leave local
minima [36]:

Δwt+1 = μΔwt − α∇EL2(f ) (18.15)

where wt and wt+1 are the weights, μ is the momentum, Δwt is the weight change
in step t , and α is the base learning rate. This technique can increase the performance
of ANNs as described in [37].

To train the networks, we set the base learning rate α = 0.1. Every 100,000
iterations, the learning rate α is multiplied with a factor γ = 0.8 to support
the converging of the networks. In total, each network is trained with 1,000,000
iterations using a batch size of |B| = 4. The momentum of the weight change is
chosen as μ = 0.1.

18.4.6 Incorporating Reliabilities into Fusion

During the online prediction phase, a feature vector is generated for each ego-lane
hypothesis. The trained ANNs take these vectors as input and predict the reliability
values, which are used to combine the ego-lanes. Thereby, the quality of the fusion
is restricted by the quality of the source [16]. However, different fusion strategies
create results with varying quality. Therefore, this section presents several basic
strategies and a more complex strategy based on Dempster-Shafer theory [3, 20].

18.4.6.1 Basic Strategies

Following, we introduce several basic fusion strategies:

Baseline (BE) The standard road estimation approach from [1] serves as a
baseline strategy.

Average fusion (AVG) By this strategy, every estimation model is equally
involved in the fusion. This is one of the easiest approaches, but AVG will
not produce the best results because inferior models can impair the fused result.

Weight-based fusion (WBF) As an extension of AVG, the reliability Rh of every
model h can be utilized as weight for the fusion. Using Rh allows to disregard
unreliable models and focus on the combination of the remaining reliable models.

Winner-take-all (WTA) WTA selects solely the ego-lane model with the greatest
Rh, and all other hypotheses are discarded.
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Minimum (MIN) The ego-lane model with the smallest Rh, i.e., the most
unreliable one, is chosen for the fusion. This strategy is needed to prove that
the unreliable sources can be identified by the classifiers and assigned with lower
reliabilities.

Random (RAN) As an additional baseline, RAN chooses a hypothesis arbitrarily.

18.4.6.2 Dempster-Shafer Theory (DST)

The theory of belief functions was developed by Dempster and Shafer in [38]. Its
application is the combination of several unreliable sources to a total result which
often occurs in reality. As introduced by Nguyen et al. [3], the reliability of each
ego-lane hypothesis h can be modeled as a frame of discernment Θh = {ρh, ρ̄h},
which consists of two statements Reliable ρh and Unreliable ρ̄h. The following
steps are taken under the assumption that the reliabilities of the ego-lane models are
independent [19]. Since DST also models a belief function for the situation, where
both states of Θh can occur, adding ρh and ρ̄h does not have to result in one as
compared to the classical probability theory. This is difficult to represent using the
Bayesian probabilistic model. As a consequence, the power set �h for a hypothesis
h is defined as:

�h = 2Θh = {∅, {ρh} , {ρ̄h} , {ρh, ρ̄h}} (18.16)

where {ρh, ρ̄h} describes the occurrence of both possibilities. The mass function for
the reliability of the model h at time t is defined as follows:

∑
θ∈�

mt(θ) = 1 with mt(∅) = 0, mt ({ρh}) = Rt
h · PRh

mt({ρ̄h}) = (1 − Rt
h) · PRh mt({ρh, ρ̄h}) = 1 − PRh

(18.17)

where PRh represents the precision of the neural network ANNh, which estimates
the reliability Rh of h. By that, PRh is determined by evaluating the classifier
ANNh offline using test data. Assuming two different times t and t ′ are both
independent, the fusion of mt and mt+1 is defined as:

mF (z) = mt ⊗ mt+1(z) =
∑

x,y⊆�,x∩y=z mt (x) · mt+1(y)

1 − ∑
x,y⊆�,x∩y=∅ mt(x) · mt+1(y)

(18.18)

Every hypothesis’ reliability consists of two parts. The belief bF and the
plausibility plF . The first describes the belief in the correctness of the hypothesis
and the second the plausibility of the hypothesis:

bF ({ρh}) =
∑

X⊆{ρh},X �=∅
mF (X) = mF ({ρh}) (18.19)
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plF ({ρh}) =
∑
ρh∈X

mF (X) = mF ({ρh}) + mF ({ρh, ρ̄h}) (18.20)

To compare the estimated Rh of each hypothesis, the average of belief and
plausibility is used, like in [23, 39]:

pF ({ρh}) = bF ({ρh}) + plF ({ρh})
2

(18.21)

Using pF ({ρh}) as the weight for the respective hypothesis and a predefined
threshold εR , only the most reliable hypotheses are allowed to take part in the fusion.

Instead of an explicit reliability estimation, the next section will describe another
fusion approach, which estimates the ego-lane directly by using sensors detections.

18.5 Ego-Lane Estimation Using Artificial Neural Networks

18.5.1 Concept

An alternative approach for ego-lane estimation can be performed with artificial
neural networks, whose architecture is shown in Fig. 18.9. Hereby, Level 0, Level 1,
and Level 2 are analogous to the reliability estimation process in Sect. 18.4. By
using the generated scenario features from Level 2, we apply ANNs as regressors
to estimate the clothoid parameters of the ego-lane at Level 3 and Level 4. Thereby,
we create the training data by taking the human-driven path as a reference, which
Sect. 18.5.2 will explain in detail. Moreover, we will present the network structure
in Sect. 18.5.3 and the training procedure in Sect. 18.5.4.

18.5.2 Ground Truth Acquisition

An important task is creating the reference data, which is used as targets to train
ANNs. For that reason, we use real-world data recordings provided by the test
vehicle to determine the necessary coefficients. During a local simulation of the
recordings, the positions and the orientations of the vehicle are saved in a database
by reconstructing the human-driven path (Fig. 18.10). For time t , the reference is
created by an approximation of a clothoid using the points p0, . . . , pn. By that, p0
represents the current vehicle position at time t and p1, . . . , pn the vehicle positions
at time t + 1, . . . , t + n. Therefore, the consecutive points p1, . . . , pn are rotated
and translated in the coordinate system of p0. As a result, the reference ego-lane is
represented by an approximation of a clothoid [27]:
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Fig. 18.9 Direct ego-lane estimation using artificial neural networks (Blue: sensor information;
Red: reliability information)

Fig. 18.10 The ground truth at p0 is acquired by using linear polynomial regression of p0, . . . , pk .
The points pk+1, . . . , pn are available, but they are left out due to exceeding the maximal distance
or angle

y(x) ≈ φ0 · x + C0

2
x2 + C1

6
x3 (18.22)

= a1 · x + a2x
2 + a3x

3 (18.23)

We determine a1, a2 and a3 by applying linear polynomial regression. Therefore,
we construct the following linear system using the consecutive points.



18 Reliability-Aware and Robust Multi-sensor Fusion Toward Ego-Lane. . . 443

y =
⎡
⎢⎣

yp1
...

ypn

⎤
⎥⎦ =

⎡
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xp1 x2
p1

x3
p1

...
...

...

xpn x2
pn

x3
pn

⎤
⎥⎦

⎡
⎣a1

a2

a3

⎤
⎦ = X · a (18.24)

Next, this system is solved by using Moore-Penrose inverse regression [40] since
X is most of the time not invertible. For that reason, the parameters can be calculated
by using

a = (XT X)−1XT y (18.25)

Consequently, the coefficients are φ0 = a1, C0 = 2a2, and C1 = 6a3. Basically,
this process could be applied to all consecutive points p1, · · · , pn in the recording,
but this is neither representative for an estimation nor applicable due to the
computational effort. Hence, we reduce the number of points by choosing a subset
of only k consecutive points as

{
pk |

k∑
i=1

distance(pi−1, pi) < 50 ∧ |direction(pk)| < 15◦
}

(18.26)

First, only the first k points that are less than 50 m away from the start point p0
are selected. Secondly, the orientation of these points has to be smaller than 15◦ to
achieve a sufficient approximation by the polynomial.

Since the manually-driven path is used to calculate the targets to train ANNs, we
have to remove samples/situations where the driver leaves the current ego-lane. For
example, such samples can be obtained by intersections, lane change, overtaking
maneuvers, etc. Additionally, the samples that do not contain any information about
the road course are also removed since ANNs cannot produce any useful estimation
in such scenarios.

18.5.3 Structure

An important decision is the choice of a structure for ANNs. We also decide to use
one network for each parameter to preserve expressiveness. Each ANN has seven
layers consisting of a decreasing amount of neurons as displayed in Fig. 18.11. The
first layer contains 80, the second 60, the third 40, the fourth 20, the fifth 10, the sixth
5, and the last 1 neuron. All layers except the last layer consist of rectified linear
units (ReLU). The last layer has the identity function as activation function to enable
an output of arbitrary real numbers. We choose this structure since the layers using
ReLU can deal with not linearly separable data. Additionally, the layers decrease in
the number of neurons to generalize the scenario features in small steps.
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Fig. 18.11 Structure of the ANN to estimate each single parameter of the clothoid model. The text
describes the activation function in the layer, where ReLU denotes a layer of rectified linear units
and I is the identity function

18.5.4 Training

Analogously to the reliability estimation, we use the stochastic gradient descent
from Sect. 18.3 with an Euclidean loss for 100,000 iterations. Using this technique, a
learning rate of α = 0.0001 that decreases to 0.9 times itself every 10,000 iterations
is chosen. Additionally, we chose a momentum weight of μ = 0.0000001 that is
multiplied by 0.01 after the same amount of iterations. Moreover, we use a batch
size of |B| = 25.

During this process, we scale the learning targets by multiplying them by 10000.
Hereby, the real appearing value range becomes bigger, so that the impact of the
gradient is bigger and leads to faster convergence. Furthermore, the training data
set is resampled regarding the roadType, so that the trained networks can perform
well in each category.

18.6 Experimental Results

In this section, we use real-world data recordings to evaluate our introduced fusion
concepts. Figure 18.12 shows the routes, where the prototype vehicle drove in
Wolfsburg and its surroundings. Thereby, we planned our routes in order to archive
a balanced distribution of highway, ramp, rural and urban scenarios.

First, we will present the evaluation concept. Following, the impact of the feature
selection with mutual information is analyzed. Afterward, the reliability estimation
and the final performance of both fusion concepts are presented.
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Fig. 18.12 Driven roads for recording training and testing data

Fig. 18.13 Metric to measure reliability of the estimated ego-lanes [28]

18.6.1 Concept

In the following, we use the angle metric presented by Nguyen et al. [28] to assess
the reliability of the estimated ego-lanes. Instead of using highly-precise DGPS
and digital map as the authors in [1, 15, 26], this metric incorporates the human-
driven path as reference, which can be reconstructed with standard and cheap
motion sensors. As shown in Fig. 18.13, this metric measures the angle deviation
Δα between the estimated lane and the manually driven path for a run length rl

starting from the position of the ego-vehicle at time t . The motivation for this
metric is because human drivers cannot drive perfectly on the lane centerline during
recording data. This leads always to small lateral offsets between the estimation and
the reference, even when the estimation could be detected perfectly [2]. By using
the angle deviation Δα, only the parallelism between the hypotheses and the driven
path is taken into account.

As Fig. 18.13 shows, the angle αh of the hypothesis h is calculated using the
position Ph,2 = (xh,2, yh,2) at the run length rl and its start position Ph,1 =
(xh,1, yh,1). The ground truth is reconstructed by using the human-driven path,
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where GT1 = (0, 0) represents the ego-vehicle’s position at time t and GT2 =
(xGT,2, yGT,2) denotes the position at time t ′ with t ′ � t . In other words, GT2
represents the position of the vehicle after driving rl meters. As a result, the angle
difference can be calculated as

Δα =
∣∣∣∣arctan

(
yh,2 − yh,1

xh,2 − xh,1

)
− arctan

(
yGT,2

xGT,2

)∣∣∣∣ (18.27)

By that, we consider an ego-lane estimation as reliable if its angle deviation is
smaller than 2◦ for rl = 30 m. For the sake of completeness, we also use the lateral
offset Δd = |yGT,2 − yh,2| as another criterium when evaluating the hypotheses to
be comparable with related works.

18.6.2 Result of Feature Selection

This section discusses the results of feature selection with mutual information
(MI) by showing the 10 highest ranked features for each hypothesis in Figs. 18.14

a b c

d e f

g h i

Fig. 18.14 The 10 highest ranked features for ego-lane models, which are generated by using lane
markings. (a) LH. (b) RH. (c) CH. (d) SLH. (e) SRH. (f) SCH. (g) TLH. (h) TRH. (i) TCH
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Fig. 18.15 The 10 highest
ranked features for VH

and 18.15. Thereby, LM denotes the left ego-lane marking and RM the right ego-lane
marking respectively. The prefix Second and Third represents the camera system,
where the lane marking is coming from. Moreover, VEH denotes features of the
ACC object.

As shown in Fig. 18.14, the length l, the curvature c0, the curvature change c1,
and the yaw angle φ of the lane markings are very important for the ego-lane models,
which are created by involving lane markings. Besides, one notices the distinct
difference between the hypotheses, which only use the right or the left lane marking.
For LH, SLH, and TLH, the most important features come from the corresponding
left ego-lane markings and some of the consensus features. For RH, SRH, and TRH,
only features concerning the right lane markings and features belonging to these
hypotheses are ranked as important. The only exception can be found for LH.

Figure 18.14a–f shows that the features of the lane markings from the first camera
and the second camera are sometimes mixed for the hypotheses LH, RH, CH,
SLH, SRH, and SCH. The reason is because of the similar characteristics and the
installation positions of both cameras. In contrast, only the lane markings received
from the third camera and their belonging features are important for TLH, TRH, and
TCH due to the different field of view.

Figure 18.15 shows that almost all features acquired from the leading vehicle
are very relevant for VH. It is also interesting and correct that none of the marking
information can be found here.

In summary, the main impact on the reliabilities of the hypotheses comes from
the according detection source. Hence, a reliability estimator can be trained by using
only the data of the corresponding detections. Furthermore, the observation that
the first and second camera features are correlated indicates a strong redundancy
between the cameras. For the evaluation of the classifiers, the neural networks from
Sect. 18.4.5 are trained using the 25 highest ranked features.

18.6.3 Result of Reliability Estimation

To measure the classifier’s performance, we use the F0.8-Score which is defined as

Fβ = (1 + β2) · PR · RC

(β2 · PR) + RC
(18.28)
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where PR = T P/(T P + FP) is the precision and RC = T P/(T P + FN) is
the recall. Moreover, T P denotes the number of true positive samples, FP the
number of false positive samples and FN the number of false negative samples.
The motivation of using a F0.8-Score is that we want to increase the impact of the
precision on the result and penalize false positives more than false negatives, since
automated driving is a safety-critical application. The higher the F0.8-Score, the
better a classifier.

Figure 18.16 shows the classification results of ANN when predicting the
reliability for the ten hypotheses. Since we perform a down-sampling on the
evaluation data, there are the same numbers of reliable and unreliable samples. This
is indicated by the maximum availability, i.e., the amount of positive samples over
all samples, which is equal to 0.5 in most cases. Only for FLH, FRH, SRH and SCH
from highway scenarios no down-sampling is needed, since all samples are positive.
However, ANN estimates some hypotheses, such as FRH, FCH, SLH and TCH, to
be reliable for all samples. This leads to a low F0.8-Score of around 0.7.

For highway scenarios, the hypotheses FLH, FRH, SRH, and SCH have the best
performance of around 100% (Fig. 18.16b). Following this, the performance for

a b

c

e

d

Fig. 18.16 Classification performance of ANN when predicting our ten hypotheses in different
scenarios. (a) Overall. (b) Highway. (c) Rural. (d) Urban. (e) Connections
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VH is about 80%. Moreover, ANN also performs well for VH in other scenarios.
For rural scenarios in Fig. 18.16c, the classification performances for the ego-lane
models based on the right lane markings are around 85%, which is better than the
results of models based on the left lane markings. The center hypotheses FCH and
SCH, which incorporate both lane markings, cannot improve their estimation result
using the right markings and have the same bad classification performance as the
left models FLH and SLH. Only TCH can make more use of both markings and is
therefore ranked better than FCH and SCH. In urban scenarios, the performances
of all classifiers decrease due to the variety of situations, where markings are
sometimes not existing (Fig. 18.16d). In connection scenarios, all classifiers perform
worse since the front-facing cameras cannot detect markings well here due to the
narrow fields of view. It can be seen that VH has the highest performance in
connection scenarios.

By using ANN as reliability estimators, the next section will evaluate the results
of different fusion strategies from Sect. 18.4.6 and compare them with the direct
ego-lane estimation approach from Sect. 18.5.

18.6.4 Result of Ego-Lane Estimation

The final estimation results are compared using two metrics: the commonly used
lateral offset and the angle deviation from [28]. Both metrics are applied to the
hypotheses at different run lengths to investigate the estimation quality both in close
distance and in far distance to the vehicle.

As a general observation from Fig. 18.17, over 75% of the samples of each fusion
strategy reach an angle difference of Δα < 2◦ and a lateral offset of Δd < 1 m. In
the following, ANN denotes the fusion concept, where ANNs are used to directly
estimate the parameters of the ego-lane. By comparing ANN with different fusion
approaches, ANN turns out to perform well regarding short distances (Fig. 18.17a,
b). However, both metrics agree that the error of ANN increases significantly as
the distance grows. Thus, all fusion approaches outperform ANN after a run length
of 28 m (Fig. 18.17g, h). The reasons for these results are the two design decisions
when using ANNs for the direct ego-lane estimation process in Sect. 18.5. First, the
usage of the polynomial for the ground truth acquisition induces an error, which is
especially great in strong curves because the assumption of an angle below 15◦ does
not hold. Second, the representation as a polynomial has the disadvantage of highly
amplifying small mistakes in the estimation. For instance, if the ideal parameters
are denoted by φ0, C0 and C1 and the estimated parameters are denoted by φ̃0, C̃0
and C̃1, each estimated parameter can be written as

φ̃0 = φ0 + εφ0 (18.29)

C̃0 = C0 + εC0 (18.30)
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c d

a b

e f

g h

Fig. 18.17 Performance of different fusion strategies and ANN measured by the angle deviation
Δα and the lateral offset Δd to the ground truth at various distances. We excluded all samples with
no reliable hypothesis. (a) Angle deviation at 16 m. (b) Lateral offset at 16 m. (c) Angle deviation
at 22 m. (d) Lateral offset at 22 m. (e) Angle deviation at 28 m. (f) Lateral offset at 28 m. (g) Angle
deviation at 31 m. (h) Angle deviation at 31 m

C̃1 = C1 + εC1 (18.31)

where εp denotes the error in the estimation of parameter p. Next, the impact of the
estimation error can be determined as the absolute error

eabs=
∥∥∥∥φ0 · x+C0

2
x2+C1

6
x3 −

((
φ0 + εφ0

) · x + C0 + εC0

2
x2 + C1 + εC1

6
x3

)∥∥∥∥
(18.32)

=
∥∥∥εφ0 · x + εC0

2
x2 + εC1

6
x3

∥∥∥ (18.33)
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If the error at a distance of 31 m is considered and εφ0 = 0 and εC0 = 0,

the absolute error eabs is
∥∥∥(

4965 + 1
6

)
εC1

∥∥∥. Hence, an error in C1 greater than

0.00021(≈ 0.012◦) leads to a lateral offset of more than one meter. Analogously,
the error in C0 has a significant impact. For that reason, small errors in estimations
can lead to poor performance of ANN with increasing run lengths.

To evaluate the final performance of the fusion strategies and ANN, we use the
availability (AV), which is given by the proportion of samples with a correct ego-lane
estimation over all samples [23]. By that, a strategy is considered as available only
when the following conditions are fulfilled. First, the strategy provides an estimate
for the given sample. Secondly, the angle deviation Δα of the provided estimate
must not exceed 2◦.

For highways and rural roads, Fig. 18.18b, c show that the performances of all
strategies are near 100% because of good road conditions in these scenarios. As
expected, the performances of all strategies are lower in urban areas (Fig. 18.18d)
due to the variety of situations. In on- and off-ramp scenarios, all strategies have
their lowest availability (Fig. 18.18e). Compared to BE from [1], our fusion can
enable an increase of up to 5 percentage points regarding the availability.

Furthermore, ANN has the lowest availability for all scenarios with the exception
of connections. The overall low availability is expected looking at the performance
regarding Δα. Unfortunately, ANN performs even worse considering that AV is
mostly smaller than MIN, which selects the hypothesis with the lowest reliability.
In contrast, ANN achieves the best performance in connection scenarios. This is
due to the weaker dependence on lane markings, which are hard to detect in curves.
Hence, ANN can comprehend the lack of lane marking detection. Moreover, the
results could be improved by using a different representation that suffers less from

a b

d e

c

Fig. 18.18 Comparison of the achieved availability of different ego-lane estimation models in
different scenarios. (a) Overall. (b) Highways. (c) Rural. (d) Urban. (e) Connection
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errors in the prediction and the ground truth acquisition. As a consequence, the
results could be used to improve the performance especially in curve scenarios.

18.7 Conclusion

In this work, we present two fusion concepts for ego-lane estimation by using
multiple sensors and neural networks. The first approach estimates for each source
a reliability value, which indicates whether the source is correct for the current
situation or not. Based on the predicted reliabilities, the fusion will prefer reliable
sources over unreliable sources, such as by giving greater weights to reliable
hypotheses or by excluding unreliable sources from the fusion. Instead of explicitly
estimating reliabilities, the second approach uses neural networks to directly
estimate the ego-lane. Thereby, the reliabilities are internally learned and encoded as
weights of the neurons. Compared to a standard road estimation approach from [1],
our approach can increase the availability by up to 5 percentage points.

In future work, we want to improve both fusion concepts by changing the net
structure and utilize different structures for different hypotheses and parameters
respectively. Additionally, a further improvement of the feature selection needs
to be done by comparing the performance of the same classifier using different
features. The direct ego-lane estimation performs slightly worse than the results
of other fusion strategies regarding the angle deviation and availability. However,
the performance in connection scenarios is better than all other fusion approaches.
For that reason, a possible use for ANNs would be to incorporate the estimation into
the fusion framework and improve the performance in connection scenarios. When
training ANNs, we found that the representation of the targets as an approximation
of a clothoid is not appropriate due to the large amplification of errors in the
estimation. Hence, a scalar field could be used instead, where the values above and
below a threshold represent the lane. Furthermore, we plan to improve both neural
network approaches by incorporating temporal information and using recurrent
neural networks. This can lead to more sufficient estimations in all scenarios.
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