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Preface

The subject of information quality has been considered by researchers and
practitioners in many diverse fields such as organizational processes, management,
product development, marketing, personal computing, health care, and publishing
among others. At the same time, the problem of information quality in the fusion-
based human-machine systems for decision-making has just recently begun to
attract attention.

Information fusion is dealing with gathering, processing, and combining a large
amount of diverse information from physical sensors (infrared imagers, radars,
chemical, etc.), human intelligence reports, and information obtained from open
sources (traditional such as newspapers, radio, TV, as well as social media such
as Twitter, Facebook, and Instagram). That data and information obtained from
observations and reports as well as information produced by both human and
automatic processes are of variable quality and may be unreliable, of low fidelity,
insufficient resolution, contradictory, and/or redundant. Furthermore, there is often
no guarantee that evidence obtained from the sources is based on direct, independent
observations. Sources may provide unverified reports obtained from other sources
(e.g., replicating information in social networks), resulting in correlations and bias.
Some sources may have malicious intent and propagate false information through
social networks or even coordinate to provide the same false information in order to
reinforce their opinion in the system.

The success of the information fusion processing depends on how well knowl-
edge produced by the processing chain represents reality, which in turn depends
on how adequate data are, how good and adequate are the models used, and how
accurate, appropriate, or applicable prior and contextual knowledge is. The objective
of this book is to provide an understanding of the specific problem of information
quality in the fusion-based processing and address the challenges of representing
and incorporating information quality into the whole processing chain from data to
information to actionable knowledge to decisions and actions to support decision-
makers in complex dynamic situations.

The book will emphasize a contemporary view on the role of information quality
in fusion and decision-making and provide a formal foundation and implementation
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vi Preface

strategies required for dealing with insufficient information quality in building
fusion-based systems for decision-making. It offers contributions of experts dis-
cussing the fundamental issues, challenges, and the state of the art of computational
approaches to incorporating information quality in information fusion processes to
various decision support applications for real-life scenarios such as remote sensing,
medicine, automated driving, environmental protection, crime analysis, intelligence,
and defense and security. The book comprises two parts. Part one contains chapters
devoted to models, concepts, and dimensions of information quality in information
fusion. Part two includes chapters that describe the incorporation and evaluation of
information quality in the fusion-based systems designed for various applications.

Hamilton, ON, Canada Éloi Bossé
Buffalo, NY, USA Galina L. Rogova



Addendum

This Addendum concerns a recent open access survey paper that the Editors of this
book highly recommend to read as a supplement to Part I:

Dubois, D., Liu, W., Ma, J., & Prade, H. (2016). The basic princi-
ples of uncertain information fusion. An organised review of merging
rules in different representation frameworks. Information Fusion, 32, 12–39.
https://doi.org/10.1016/j.inffus.2016.02.006

The authors of the paper present a state-of-the art survey of information fusion
rules and their properties across various theories of uncertainty. Reading of the paper
will enrich the reader’s background to fully benefit from applications in Part II.

The Editors
Éloi Bossé

Galina L. Rogova
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Chapter 1
Information Quality in Fusion-Driven
Human-Machine Environments

Galina L. Rogova

Abstract Effective decision making in complex dynamic situations calls for
designing a fusion-based human-machine information system requiring gathering
and fusing a large amount of heterogeneous multimedia and multispectral informa-
tion of variable quality coming from geographically distributed sources. Successful
collection and processing of such information strongly depend on the success of
being aware of, and compensating for, insufficient information quality at each step
of information exchange. Designing methods of representing and incorporating
information quality into fusion processing is a relatively new and rather difficult
problem. The chapter discusses major challenges and suggests some approaches to
address this problem.

Keywords Information fusion · Quality ontology · Meta-data · Subjective
quality · Quality control · Higher level quality

1.1 Introduction

Decision making in complex dynamic environments involves gathering and fusing
a large amount of heterogeneous multimedia and multispectral information of
variable quality and data rates coming from geographically distributed sources
to gain knowledge of the entire domain. Data and information to be processed
and made sense of are not limited to data obtained from traditional sources such
as physical sensors (infrared imagers, radars, chemical, etc.), human intelligence
reports, operational information, and traditional open sources (such as newspapers,
radio, TV). Nowadays, when each person can be a sensor, a huge amount of
information can be also obtained from opportunistic human sensors and social
media such as Twitter, Facebook, and Instagram. Such complex environments call

G. L. Rogova (�)
The State University of New York at Buffalo, Buffalo, NY, USA
e-mail: rogova@buffalo.edu

© Springer Nature Switzerland AG 2019
É. Bossé, G. L. Rogova (eds.), Information Quality in Information Fusion
and Decision Making, Information Fusion and Data Science,
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4 G. L. Rogova

for an integrated fusion-based human-machine system, in which some processes
are best executed automatically while for others judgment and guidance of human
experts and end users are critical.

The problem of building such integrated systems is complicated by the fact that
data and information obtained from observations and reports as well as information
produced by both human and automatic processes are of variable quality. They
may be uncertain, unreliable, of low fidelity, insufficient resolution, contradictory,
and/or redundant or even fake. The success of decision making in complex fusion-
driven human-machine environments depends on the success of being aware of,
and compensating for, insufficient information quality at each step of information
exchange. Thus quality considerations play an important role at each time when raw
data (sensor readings, open source, database search results, and intelligence reports)
enter the system as well as when information is transferred between automatic
processes, between humans, and between automatic processes and humans.

There are multiple reasons for information deficiency in such environment.
Physical sensors can be unreliable, broken, or improperly used, fusion models can
be imperfect, opportunistic human sensors and human decision makers can have
variable expertise, their mental model imperfect and their decisions usually affected
by cognitive biases. Another source of information deficiency may be imperfection
of domain knowledge and statistical information about the environment, which is
unavoidable in many domains such as natural disasters or terrorist attack since even
the same type of man-made or natural disasters are rarely exactly the same. There
is an inevitable delay in data transmission in the dynamic distributed environment,
and therefore information entering the system can be obsolete. Information obtained
from social networks and opportunistic human sensors has additional deficiency
since people may not have precise knowledge of the subject they are talking about
or have malicious intent and provide misinformation. Furthermore, there is often no
guarantee that evidence acquired from the sources is based on direct, independent
observations. Sources may provide unverified reports obtained from other sources
(e.g., replicating information in social networks), resulting in correlations and
bias. In a more malicious setting, some sources may coordinate to provide similar
information in order to reinforce their opinion in the system. In addition, the lack of
proper consideration of context or context of insufficient quality may result in using
inadequate or erroneous domain knowledge or inappropriate models and parameters
for quality assessment.

Information fusion is a complex concept and its definition varies from one
application field to another. At the same time, the authors of the majority of
the information fusion papers consider obtaining better quality of information by
information combination as one of the main goals of designing fusion systems.
For example, Wald in [1] defined it as “ . . . a formal framework, in which are
expressed the means and tools for the alliance of data originating from different
sources. It aims at gaining information of greater quality.” Benoit and Huget in
[2] state that “the aim of an Information Fusion System is to compute results of
higher quality (with respect to some criteria to be defined)”while in [3] data fusion
is defined as “a combination of multiple sources to obtain improved information;
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in this context, improved information means less expensive, higher quality, or more
relevant information.”

Although the subject of information and data quality has been receiving sig-
nificant attention in the recent years in many areas including communication,
business processes, personal computing, health care, and databases (see, e.g.,
[4–6]), the problem of information quality in the fusion-based human-machine
systems for decision making has just recently begun to attract attention. The main
body of the literature on information fusion concerns with building an adequate
uncertainty model without paying much attention to the problem of representing
and incorporating other quality characteristics into fusion processes.

There are many research questions related to the information quality problem in
designing fusion-based systems including:

• What is the information quality ontology?
• How to assess information quality of incoming heterogeneous data as well as the

results of processes and information produced by users (where do the numbers
come from?).

• How to evaluate usability of information?
• How to combine quality characteristics into a single quality measure?
• How to evaluate the quality of the quality assessment of information and

processing results?
• How to compensate for various information deficiencies?
• How do quality and its characteristics depend on context and its quality?
• How does subjectivity, i.e. user biases, affect information quality?

The remainder of this paper is an effort to establish a conceptual framework, in
which these questions may be addressed.

1.2 Information Fusion and Information Quality

There are various fusion models considered in the literature, which are reviewed in
multiple publications (see, e.g., [7–12]). One of the earliest and still most influential
one is the JDL1 [7], which in its initial form contained operations aggregating
entities at four increasing abstraction levels: source preprocessing (Level 0), object
refinement (Level 1), situation refinement and impact or threat refinement (Levels
2–3). It also included process refinement (Level 4), a meta-process monitoring the
underlying information fusion processes by implementing quality control. Further
a Level 5 [8] addressing the issues associated with the human components of the
fusion process was introduced. The JDL model is a functional rather than process
model since no specific order of processing is prescribed. In general, the data to be

1JDL: Joint Directors of Laboratories, a US DoD government committee overseeing US defense
technology R&D; the Data Fusion Group of the JDL created the original JDL Data Fusion Model.



6 G. L. Rogova

input at a given level includes tokens and parameters derived from a common bus
connected to all other fusion levels, databases, and human-computer interfaces. The
model has since been revised in [9, 10] and further evolved to add at least one higher
level, that of mission management [11], and the model development continues to this
date [12].

Various other fusion processing model-structures were proposed. In 1997,
Dasarathy [13] introduced some ideas associated with the notion that there were
three general levels of abstraction in fusion processing: the data level, the feature
level, and the decision level. Accordingly, he published a model that characterizes
the processing at and across such levels. This model, while providing a useful
perspective, is not as comprehensive in scope as the JDL model.

Over 1999–2000, Bedworth and O’Brien published their “Omnibus Model”
[14] which combines aspects of the Observe-Orient-Decide-Act or “OODA” deci-
sion/control loop [15] with the “Waterfall” software development process [16].
The “Omnibus Model” makes aspects of feedback more explicit and is claimed
to enhance a data fusion process description by combining a system-goal point
of view with a task-oriented point of view. In an effort to connect information
fusion with behavioral psychology, Endsley [17] developed a descriptive model
of human situation awareness which proved highly effective in guiding design
of interfaces supporting time-critical decision making. In this model, the agent
perceives elements of the current situation, processes and comprehends them to
form an assessment, then projects the future status based on that assessment and
possible current actions. An action is decided and taken upon that basis, and the
results of that action create a new state of the environment to be perceived, closing
the loop. Rather than prescribed normative behaviors, Endsley’s model describes
human capabilities and cognitive constraints on performance that should guide the
design of decision support system to maximize the agent’s performance and to
minimize the risk of human error.

Information in these models is not processed sequentially, but there is a feedback
across and within levels. Successful processing of this information requires being
aware of and compensating for insufficient information quality at each step of
information exchange. At the same time, the existing models very rarely implicitly
address inter- and intra-processing information quality. The only information fusion
model implicitly incorporating information quality in inter-level processioning is
the so-called Revision of the JDL model II [10], which considers two quality
characteristics: reliability and inconsistency.

It is important to notice that good quality of input information does not, of course,
guarantee sufficient quality of the system output and therefore the insufficient
quality of the information may build-up from one sub process to the other. Figure
1.1 shows major points of information exchange and quality considerations in
the fusion-based machine-human system, JDL model Level 4 (sensor and process
refinement), which performs quality control.

The result of quality assessment and control depends on context and its quality.
Context is represented by a set of contextual variables and their characteristics,
while quality of context is defined as the quality of the assessment of these
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Context

Level 5
,

time

Sensors
Intelligence reports
Social networks
Opportunistic sensing
Open source information
Distributed databases

Data and information
sources

Qs
t Source

models

Qsm
t

Q fp
t

Level 1 Object Assessment
Level 2 Situation Assessment
Level 3 Impact Assessment

Level 4 Sensor and Process
Refinement

ip
tQ

Quality control

Level 0 Sub-object data assessment

Environment

Qca
t Qcc

t

Q ,d
t Qa

t

Fig. 1.1 Information flow in a fusion-based human-machine system. (Adapted from [18])

variables [19, 20]. Similar to the information utilized in the fusion processes, the
information defining contextual variables can be obtained from available databases,
observations, reports, traditional and social media, or as the result of various
levels of information fusion. Of course, the quality of such information could be
insufficient for a particular use: it might be uncertain, unreliable, irrelevant or
conflicting.

Knowledge of the quality of this information and its effect on the quality of
context characterization can improve contextual knowledge. At the same time,
knowledge about a current context can improve the quality of observation and fusion
results. Thus there are two interrelated problems concerning both information and
context quality: imperfect information used in context estimation and discovery neg-
atively impacts context quality while imperfect context characterization adversely
affects the characterization of the quality of information used in fusion as well
as the fusion results. That interrelationship represents one of the challenges of
modeling and evaluating context quality and of using context in defining the quality
of information used in fusion and the quality of fusion process results. A discussion
of interrelations between quality and context is presented in [20].

In Fig. 1.1,Qs
t - the quality of information sources,Qsm

t -quality of source model

output, Qfp
t quality of information fusion processes at each level, Qip

t -quality of
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presenting information to the user, Qca
t ,Q

cc
t - quality of context estimation and

context characteristics, respectively, and Qd
t ,Q

a
t - quality of decisions and actions,

respectively.

1.3 Information Quality: Definitions and Metrics

There are several definitions of information quality available in the literature:

• “Quality is the totality of characteristics of an entity that bear on its ability to
satisfy stated and implied needs” [21].

• “Quality is the degree, to which information has content, form, and time
characteristics, which give it value to specific end users” [22].

• “Quality is the degree, to which information is meeting user needs according to
external, subjective user perceptions” [23].

• “Quality is fitness for use” [24].

These definitions point to two different sides of information quality: “fitness for
use” and “meta-data”. Information quality has to be useful to the users for perform-
ing their function and achieving their goals2. Assessment of the usefulness of this
information (“fitness for use”) is based on the “objective” measurable characteristics
of information representing inherent properties of information (Fig. 1.2).

Meta-Data:
Quality
attributes and
their
combinations

- Models and Processes
- Measurements
- Source dynamics
- Learning

“Fitness for use”
Subjective quality

- Model and process
requirements

- Information needs
- Domain Knowledge
- Contextual variables

- Goals, objectives, functions
- Personal traits (risk aversion,
risk seeking)

- Subjective judgments

Context

Fig. 1.2 Meta-data and “Fitness for use.” (From [20])

2In the machine-human system, context “users” can be either humans or automated agents and
models.
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Decision makers have to evaluate these characteristics and decide whether this
information is meeting user needs according to external, subjective user perceptions.
Thus information quality as “fitness for use” represents subjective or contextual
quality and measures the level of satisfaction of users and process designers in
relation to their specific goals, objective, and functions in a specific context. The
inherent information characteristics are considered independently from information
users and context. They give a value to subjective quality and are defined in this
chapter as objective quality or meta-data. This consideration of two different sides
of quality is similar to one considered for sensor data in [25] where subjective
information quality is referred to as information quality and the objective one
as volume of information. Objective quality is represented and measured by its
attributes since “without clearly defined attributes and their relationships, we are
not just unable to assess Information Quality (IQ); we may be unaware of the
problem.” [26]. Meta-data can be obtained as model and process results from
domain knowledge, learning, level of agreement between sources, source dynamic
or direct measurements. It is important to notice that meta-data attributes and the
method of their evaluation can differ for hard data produced by physical sensors and
numerical models, and soft data coming from human sources. Some of the quality
characteristics can be both objective and subjective while others represent subjective
or contextual data and cannot be measured independently of users and context.

There have been multiple information quality classifications identifying quality
attributes and assigning them into broad categories and relations. In [23], quality
attributes are obtained by processing the result of a two-stage data consumer
survey (so-called empirical approach well established in the marketing disciplines)
to capture data consumers’ perspectives on data quality. Four classes of quality
dimensions (intrinsic, contextual, representational, and accessibility) were identified
as most important for data consumers in industry and government. The model in
[26] is “closely parallel” to one in [23] and considers four attributes of quality
as “fitness for use”: integrity, accessibility, interpretability, and relevance. In [27],
six categories were enumerated: accessibility, accuracy, specificity, timeliness, rele-
vance, and the amount of information for measuring information quality in decision
making. In [28], representation of information quality is limited by information
imperfection, a subcategory of information quality, which was classified into two
general categories: uncertainty and imprecision. At the same time, there is no clear
understanding of what dimensions define information quality from the perspective
of information fusion process designers and how different dimensions defining
information quality are interrelated. The information quality ontology introduced
in this chapter represents an attempt to fill this gap.

The type of information exchange in the fusion-based human-system envi-
ronment, as shown in Fig. 1.1, notes the three main interrelated categories of
information quality considered in this paper [18, 29] (Fig. 1.3):

• Quality of information source
• Quality of information content
• Quality of information presentation
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Fig. 1.3 Main quality characteristics and their relationships. (From [29])

As it can be seen in Fig. 1.1, each node of the fusion process (machine
or human) can represent an information source and information recipient at the
same time, and quality of information/decision/action of such node as a source of
information transmitted to the next node depends on the quality of the information
and the quality of the process represented by this node. Quality of information
presentation is related to human nodes. The importance of considering information
presentation as a component of overall quality stems from the fact that the quality
of decisions and actions depends not only on incoming information, model outputs,
and human mental models but also on the way information is presented to a user.
The main quality characteristics are interrelated. Thus for example, the quality of
a fusion process depends on the quality of the information source producing input
information for this process. The next subsection will describe some components of
the main information quality types shown in Fig. 1.3.

1.3.1 Quality of Information Content

There are five major attributes of the quality of information content: accessibility,
availability, relevance, timeliness, and integrity or lack of imperfection, which
represents a complex notion characterized by many other attributes (Fig. 1.4).
Accessibility and availability refer to the ability of users to access this information
effectively. Accessibility is related to the cost of obtaining this information, which
can be measured by time required for accessing this information. While the cost
of obtaining information represents an intrinsic quality of information, its “fitness
for use” depends on specific user constraints and a specific context. Users have to
compare the cost of obtaining this information with the benefits of its utilization.
For example, accessibility of a particular piece of information can be considered
good if the time required for obtaining this information is much smaller than
the time available for making decisions based on this information. Availability is
an important characteristic, which has a binary value since information can be
either available or not. If availability is 0, all other attributes are irrelevant. Both
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Fig. 1.4 Ontology of quality of information content. (Adopted from [28])

availability and accessibility are time dependent since if information is unavailable
now to an agent, it doesn’t mean it will always be unavailable to this or all other
agents.

Timeliness is a subjective attribute of information and as an attribute of the
content of information is different from timeliness of information presentation. It
can be measured by utility of the information under consideration at the time it
becomes available or by threshold satisfaction. Threshold satisfaction compares a
time-dependent threshold defined for comparing the quality of information under
consideration with the quality of either incoming information or information
obtained by multiple intra- and inter-level fusion processes. The threshold and
quality characteristics compared with the threshold depend on the context, uses’
goals, objectives and functions.

One of the central subjective quality attributes is relevance, which determines
which information has to be incorporated into fusion process at a particular time.
While utilizing relevant information can potentially improve the result of any fusion
node provided that information is reliable, utilization of irrelevant information can
hamper the outcome of the fusion processes. Relevance is defined by many authors
as relation to the matter at hand and therefore depends on context as well as
goals and functions of decision makers and therefore relevance is not a property
but “is understood as a relation; relevance is a tuple—a notion consisting of a
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number of parts that have a relation based on some property or criteria”. The
dynamics of context, goals, and functions of the decision makers in the dynamic
environment make relevance a temporal attribute. Thus irrelevant information can
become relevant later or relevant information can become obsolete at a certain time
[30].

Quantification of the level of relevance traditionally is based on the following
definition [31]: “On the basis of prior evidence e, a hypothesis h is considered, and
the change in the likelihood of h due to additional evidence i is examined. If the
likelihood of h is changed by the addition of i to e, i is said to be relevant to h on the
evidence e; otherwise it is irrelevant. In particular, if the likelihood of h is increased
due to the addition of i to e, i is said to be positively relevant to h; if the likelihood is
decreased, i is said to be negatively relevant.” Usually relevance analysis processes
qualifying relevance are based on two methods [32]: the Probability Covariance
and the Mutual Information. Relevance also depends on the quality of information
sources (sensor reliability, truthfulness, expertise, reputation, etc.).

Integrity or lack of imperfection of the content of information is the most studied
category of information quality (see, e.g., [26, 28, 33–36]). In the context of a
human-system integrated environment, imperfection will be defined as something
that causes inadequacy or failure of decision making and/or actions. Motivated by
[28], we consider here two major characteristics of imperfection: uncertainty and
imprecision. Uncertainty “is partial knowledge of the true value of the data.” It arises
from either a lack of information or as the result of deficiencies of both formal and
cognitive models [28, 36]. It can be either objective and represented by probabilities
reflecting relative frequencies in repeatable experiments or subjective and repre-
sented by credibility (believability) describing information which is not completely
trustworthy. Uncertainty is the most studied in information fusion component of
imperfection [23, 34–38]. A good review of various types of uncertainty is given in
[36]. Another uncertainty characteristic, reliability (see, e.g., [33]), can be defined in
two different ways. Reliability can characterize the level of agreement with ground
truth and the quality of credibility estimation represented by beliefs or plausibility
assigned to it [33]. It is usually represented by reliability coefficients, which measure
adequacy of each belief model to the reality. Incorporation of reliability coefficients
is important due to the fact that the majority of fusion operators presume that
information sources are equally reliable, which is not always the case. Therefore
it is necessary to account for variable information reliability to avoid decreasing in
performance of fusion results.

Imprecision can be possessed by so called “information with or without error”
[28]. Information without error can be approximate (lacking accuracy) or conflicting
and inconsistent. Accuracy represents the degree to which data corresponds to
characteristics of objects or situations. Consistency of a piece of information is
usually measured when it is compared with some background knowledge, e.g.,
databases or knowledge obtained or inferred earlier considered in the context under
consideration. Consistency of transient and background information is especially
important for situation assessment in the dynamic environment since it can lead
to discovery of new and unexpected situations or context discovery. Conflict
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assumes several pieces of parallel or temporal information contradicting each other
and it may occur if either these pieces of information have different reliability
or they report on different objects or situations. Information with error can be
incomplete, deficient (lacking important pieces, which may prevent its usage), vague
(ambiguous), or fuzzy (not well defined).

Such characteristics of imprecision as inaccuracy, fuzziness, and vagueness
are inherent to soft data that usually are expressed in natural language, which is
ambiguous by its nature [39]. Besides, errors in information conveyed by humans
can be influenced by cognitive biases and or even be intentional. The ontology of
quality of information content adopted in this chapter and presented in Fig. 1.4 is
inspired by the one introduced in [28].

There are multiple theories developed to deal with information uncertainty and
imprecision. Uncertainty, for example, can be represented and reasoned about in
the framework of the probability, Bayesian, belief, and interval probability theories
while imprecision can be expressed in the framework of possibility and fuzzy set
theories. Selection of one of these theories depends on many factors like, for exam-
ple, existence of prior probability, type of information (soft, hard or both), whether
the hypotheses about the state of environment under consideration are exhaustive,
etc. Selection of these theories strictly depends on a context. For example, in
highly uncertain open world environment required dealing with both hard and soft
data characterized within the different uncertainty representation, the appropriate
framework is the Transferable Belief Model (TBM) introduced in [40]. The TBM is
a two-level model, in which quantified beliefs in hypotheses about an object or state
of the environment are represented and combined at the credal level while decisions
are made based on probabilities obtained from the combined belief by the pignistic
transformation at the pignistic level. Dempster-Shafer beliefs [41] and probability
and possibility [42] distributions can be expressed as belief structures within the
framework of the TBM allowing representing both soft and hard information [43].
Beliefs are sub-additive, which permits for numerically expressing uncertainty and
ignorance. Within the TBM, the unnormalized Dempster’s rule can combine basic
belief masses based on multiple pieces of evidence and allows for incorporation of
belief reliability. Moreover, the TBM works under the open world assumption, i.e., it
does not assume that the set of hypotheses under consideration is exhaustive. It also
permits to represent conflict. These properties of the TBM have been successfully
exploited in information fusion in general and in the crisis context specifically (see,
e.g., [44–47]).

1.3.2 Quality of Information Sources

From the information quality point of view, we consider two types of information
sources: subjective and objective. Quality of objective information sources such as
sensors, models, automated processes is free from biases inherent to human judg-
ment and depends only on how well sensors are calibrated and how adequate models
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Fig. 1.5 Ontology of source quality. (Objective sources)

are. Objective sources usually deliver information in numerical form (“hard infor-
mation”). Ontology of the quality of information sources is presented in Fig. 1.5.

The quality of objective sources is represented by credibility, reliability, sys-
tematic bias (objective truthfulness), relevance and importance. Reliability and
credibility of objective information sources measure the correctness of the choice
of a source model or fusion process and the parameters affecting their performance.
They can represent meta-data of the source when considered independently of the
user of the information and subjective quality when this information is considered in
context and related to the functions and objective of a user. An objective source can
be irrelevant if it reports information about attributes of an object or events different
from the one under consideration, or it does not work properly, or is not designed to
deal with the object or event under consideration.

Subjective sources such as human observers, members of social networks,
intelligence agents, newspaper reporters, experts and decision makers, supply
observations, subjective beliefs, hypotheses, and opinions about what they see or
learn. These sources use subjective judgment that can be affected by imperfect
mental models leading to all kind of biases of the observer. Subjective sources
can have malicious intent and intentionally provide wrong information or can
supply unverified facts obtained from a malicious agent. Information coming
from subjective sources is usually represented in nonnumeric unstructured form
(“soft information”). Ontology of the quality of subjective information sources is
presented in Fig. 1.5.
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Fig. 1.6 Ontology of the quality of subjective sources

As it can be seen from Figs. 1.5 and 1.6, characteristics of the quality of
information sources include importance, credibility, reliability, and relevance.
Similar to other main quality characteristics, quality of presentation and contents,
the source quality characteristics are not independent from each other. For example,
importance of information sources depends on relevance and reliability. Selection
of important sources requires prioritization (ranking) of them to select the most
relevant and reliable to reduce conflict, computation complexity, or decision maker
overload. Similar to relevance of information contents and representation, relevance
of information sources is a relation and represents subjective characteristic only.

Reliability of subjective sources is measured by additional characteristics as
compared to reliability of objective sources. These additional characteristics include
truthfulness, level of training and expertise, reputation and credentials. Ideally,
reliability of a source has to be evaluated by combining all these reliability
characteristics. It is important to notice that credible information may not be reliable
and reliable information may not be credible. The notion of reliability of subjective
sources is related to the notion of trust used, for example, in the literature on
network centric operations and information sharing (see, e.g., [48]). While there is
no consensus in the literature about the notion of trust, following [49] we define
trust here as “the psychological state in which (1) the trustor believes that the
trustee behaves as expected in a specific context, based on evidence of the trustee’s
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competence and goodwill; (2) the trustor is willing to be vulnerable to that belief”.
Trustee here can be either an objective or subjective source. Competence and
goodwill could be defined by the reliability characteristics shown in Fig. 1.6.

1.3.3 Quality of Information Presentation

The quality of information presentation affects perception of decision makers
and end users and influences their actions, decisions, judgments, and opinions.
Information has to be reliable and must be presented on time and in a way which
makes it understandable, complete, and easy to interpret. Thus attributes of the
quality of presentation are related to when, which, and how information is presented.
The Ontology of quality of information presentation is shown in Fig. 1.7.

Presented information has to be useful for decision makers in performing their
functions in a specific context. An overall quality of presentation as well as its
characteristics represents subjective quality depending not only on the specific
problem and context but also on personal traits of the decision makers, their
cognitive ability, biases, and expertise. While some of these characteristics can
serve as both meta-data and “fitness for use”, for example, completeness and
timeliness, the other can be ones of subjective quality only. As well as main quality
characteristics, characteristics of the quality of presentation are not always inde-
pendent from each other. Thus, for example, interpretability and understandability
depend on each other since in order to interpret presented information one has to
understand it and vice versa. Interpretability defines to what extent the users can
understand information presented while understandability characterizes the level
to which the user is able to follow the logic of automatic processes producing
this information. It is important to mention that the quality of such information
attributes as interpretability and understandability depends on the level of training
and expertise of the user and can be high for one use and poor for the others.

Quality of information presentation

Reliability

Believability

Understandability

Interpretability Relevance

Importance

TimelinessCompleteness

Fig. 1.7 Ontology of quality of information representation
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Believability is one of the most important and complex characteristics of
information presentation since if decision makers do not believe the information
presented, they will not consider it while making decisions. In [23] believability
is defined as “the extent to which data are accepted or regarded as true, real, and
credible.” In this chapter, believability is considered as a function of provenance,
its origin (sources) and subsequent processing history and it depends on relevance
and reliability of the whole chain of historical information. At the same time, it is
considered as “intrinsic,” not context dependent. Here we claim that believability
is a subjective context-dependent attribute since information cannot be considered
believable if it contradicts expectations provided by context under consideration.

Relevance is another subjective context-dependent characteristic of information
presentation. The dynamics of context, goals, and functions of the decision makers
in the dynamic environment makes relevance a temporal attribute: irrelevant
information can become relevant later or relevant information can become obsolete
at a certain time. While relevance is one of the characteristics of all main information
quality dimensions (contents, sources, and presentation), relevance as characteristic
of information presentation is more than the result of natural language processing
or matching algorithms. Humans can find other relevant information that is not
detected by an automatic system for a variety of reasons [50]. They provide a level
of relevance by using their expertise, prior experience, ideas, and clues and therefore
human-based relevance is extremely subjective.

There is a definite connection between cognitive effect of information, informa-
tion processing time, and relevance [51]:

• The greater the cognitive effects, the greater the relevance is.
• The smaller the processing effort required for deriving these effects, the greater

the relevance is.

In a human-machine system, consideration of relevance as a characteristic of the
quality of information presentation is very important for increasing the information
cognitive effect.

Timeliness is affected by two factors: whether the information is presented by the
time it must be used and whether the presented dynamic information corresponds
to the real world information obtained at the time of the presentation. Timeliness is
inevitably affected by the communication delays.

Completeness is the ability of an information system to represent every mean-
ingful state of the real world by representing all necessary information related to
this state [52] and is defined by both the quantity and the number of information
attributes presented. While presentation of complete information allows for more
informed and effective decisions, it is not always beneficial to provide complete
information since too much information can overwhelm the user and lead to fatigues
and decision errors. Thus it is necessary to establish a trade-off between the level of
completeness and the decision quality.

An important problem related to information presentation is whether it is
beneficial to present the value of information quality along with information itself
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[52, 53]. For example, it was found that the benefits of incorporating meta-data
depend on the experience of the decision maker [54].

1.3.4 Higher Level Quality

Higher level quality measures how well the quality of information is assessed3. The
needs for considering the higher level quality stem from the fact that the processes
of assessing the value of the attributes of information quality have their limitations.
For example, assessment of probability may need more observations or more time
than may be available, and therefore the result is not completely reliable. In some
cases, point-value probabilities cannot be estimated and are presented as intervals
representing the accuracy of probability estimation. Another example is assessment
of sensor reliability that produces a probability distribution over the reliability
values. The ontology of information quality shown in Figs. 1.3, 1.4, 1.5, 1.6, and
1.7 may also serve as the basis for building an ontology for higher level quality.

Since comprehensive assessment of quality of information requires taking into
consideration higher level quality, it needs establishing relations between attributes
of quality at different levels. It is important to mention that while the quality of
a source is always a higher level quality for quality of information content, some
attributes of information content or an information source can serve as higher
level quality for other attributes of information source or information content,
respectively. For example, reliability of a model (a quality attribute characterizing an
information source) of producing plausibility of a hypothesis is a higher level quality
for plausibility assessment, which is an attribute characterizing information content.
We can also consider a certain level of belief that a source of information is reliable
as a higher level quality for the assessment of reliability of this source. Another
example of higher level quality is ambiguity represented as an interval attached to a
self-assessed credibility of a statement produced by a subjective source.

1.4 Assessing the Values of Quality Attributes: Where Do
the Numbers Come From?

In order to compensate for insufficient information quality in a fusion-based human-
machine system, it is necessary to be able to assess the values of quality attributes
and combine these values into an overall quality measure.

3Usually this measure is referred to uncertainty only and is called “higher order uncertainty,”
which is treated without relation to the other quality attributes. Here we define this measure for
any quality characteristic and consider it with relation to other attributes.
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The methods of assessing information quality represented by single attributes can
be assessed by utilizing:

• A priori domain knowledge
• Measurements
• Outputs of models and processes
• Past experience
• A level of agreement between sources
• Source dynamics, i.e., the degree of consistency with prior reports for human

observers or prior readings for sensors
• Expert opinions
• Credentials defined by interaction with other sources
• The difference between observed or computed values and expected ones in the

context under consideration
• Utility of decisions

Selection of a particular method for defining the value of information quality
depends on the attribute under consideration, and information available. Thus a
priori domain knowledge about the context of the problem under consideration
can provide quality values for many attributes, such as source reputation, expertise,
level of training, information availability and accessibility, or sensor reliability and
credibility. The methods utilizing contextual information have proven themselves
very successful provided that known quality of contextual variables is good.

In [46], context-dependent credibility, reliability, and timeliness have been
introduced for sequential decision making for threat assessment. The context there
was represented by the time-dependent distance between an observed target and
a sensor, and a time-dependent threshold on credibility. A case study involving
an evidential learning system for sequential decision making designed for a
quantitative evaluation of the described method showed the benefits of context
considerations. Context as a source of reliability estimation has been reported in
many publications (see, e.g., [33, 55–59]).The authors of [55] present two methods
of defining source reliability based on contextual information. Both methods utilize
subjective contextual information modeled by the theory of fuzzy events and used
in connection with probability theory. In [56], expert knowledge is used to represent
reliability by a possibility distribution defined on the sensor domain. The computed
reliability coefficients are then used in a production system to determine the sources
of satisfactory reliability to be used in combination. A method of defining relative
reliability of model outputs expressed as beliefs and based on relative distance
between bodies of evidence is proposed in [57]. The authors of [58] propose
to base evaluation of intelligence information on the correlation between two
pieces of information. In many cases, a priori domain knowledge does not directly
contain values of quality attributes but includes certain information such as training
examples, which can be exploited for learning these values [59].

Models and processed outputs can serve as a source of assessing integrity
attributes of data obtained with these models such as relevance, level of conflict,
fuzziness, ambiguity, credibility. In general, information can be considered relevant
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for situation assessment if a change of its value affects the set of hypotheses
about objects or situations under consideration, the levels of belief assigned to
these hypotheses (e.g., reduces ignorance, strife or reduces/increases conflict), or
values of utilities of a set of possible courses of action. Subjective judgment of
human experts is used when there is no a priori domain knowledge of, e. g.
probability of non-repeatable events, or when it is important to know the quality
of information from the subjective point of view of an expert, e.g., the level of
understandability of information. As it was mentioned above, consistency measures
the correspondence of observed or inferred information with expected information
obtained from context, databases, and domain knowledge.

While the value of any information quality attribute may be defined in various
ways, the users and process designers are mostly interested in how good the quality
is. Thus the subjective quality scores usually measure the level of satisfaction with
the information under consideration in relation to the decision makers’ goals and
objectives or the purpose of the models or processes. Such level of satisfaction
with objective quality attributes is based on the value of these attributes and can
be expressed either in a linguistic form (e.g., good, fair, bad) or numerically by a
number from the interval [0 1]. Some attributes, e.g., availability, have binary values
(0 or 1) only. The level of satisfaction then can be represented and treated within a
certain uncertainty theory (e.g., fuzzy, belief, or possibility).

One of the methods of subjective quality evaluation is a so-called threshold
satisfaction that compares a particular quality attribute or a combination of attributes
with a certain context-specific and, in many cases, subjective threshold [45, 46]. The
difference between a threshold and the value of the quality attribute can represent
the level of satisfaction with the level of quality of this attribute. This distance
can be transformed into an uncertainty measure within an uncertainty theory under
consideration, e.g., belief or possibility, and can measure a belief or possibility that
the information quality represented by this attribute or the attribute combination is
satisfactory.

In some cases, the quality score of a particular attribute may be defined by
comparing a different attribute with a context-specific threshold. Thus, for example,
if the reliability of source is lower than a certain threshold, information produced
by this source may be considered irrelevant. In this case, the degree of information
relevance can be defined by the function of the distance between the threshold and
the source reliability. In the human-system environment, relevance can be defined
by a human-in-the loop and be represented either by a number between 0 and 1 or in
linguistic form (relevant, maybe relevant, irrelevant). It is important to mention that
subjective quality scores should be considered along with the quality of presentation
and the quality (e.g., level of expertise and objectivity), of the users and experts.

One of the most difficult for evaluation and at the same time very important
quality attribute is trust, which is defined here as measure of reliability and intent
of a subjective information source. The problem is that most often the information
is coming from open sources such as social networks, or opportunistic sensors such
as the bystanders, whose identity, intentions, and source of information may not
be known. Trust can be partially based on the valuation of the information that
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the source provides. For example, if any portion of that information is believed
to be unlikely or inaccurate, the value of trust of the information sources can be
reduced [60]. The believability of information is usually evaluated by an information
recipient and in many cases subjective. Ideally, trust in a source has to be evaluated
by combining all reliability characteristics.

It can be seen from the definition of different types of reliability that we can
have either direct or indirect reliability. While direct reliability of hard data can
be obtained from context, domain knowledge, and statistical information based
on the previous experience/experiments, defining reliability of soft data is a more
difficult problem. For example, sources of soft information cannot be trusted if they
do not have incentives to tell the truth or enough knowledge about the context in
which observations are made. Another problem is that the soft information is rarely
characterized by direct reliability since in many cases it comes from a network of
agents with variable reliability.

There are several issues to consider in modeling indirect trust such as (see, e.g.,
[61–65]):

• How sources such as social media can be manipulated
• How one should revise one’s notions of trust based on the past actions of

individuals
• Which of several competing sources of conflicting information one should trust
• How to take into account reliability of each individual
• What are the methods of propagating reliability through the “reliability network

To address the majority of these issues, it is necessary to consider information
provenance (pedigree). Provenance as defined in [66] is information about entities,
activities, and people involved in producing a piece of data or a thing to be used
to form assessments about their quality, reliability, or trustworthiness. Provenance
defines the origins of information and how and by whom this information is
interpreted before entering the system. Provenance is used to construct a reliability
or a trust network in which nodes represent information sources and links the level
of reliability or trust between a pair of sources.

Figure 1.8 shows an information flow in a processing designed for obtaining
reliability and thrust of information coming from a member of a social network by a
human decision maker. Provenance is represented by a reliability network in which
nodes denote variable subjective sources of information, and directed links define
reliability of information transferred between them. The result of reasoning about
reliability of the node under consideration is presented to a decision maker who
evaluates its trustworthiness. The final result of the trust estimation is a combination
of the assessed reliability of the network under consideration, decision maker’s
opinion, and reliability of the decision maker himself such as his level of training
and objectivity.

Implementation of the processing shown in Fig. 1.8 requires methods for
defining relevance of information transmitted between nodes, relevance propagation
involving a combination of trust in an individual node, a method of constructing
the network, dealing with cycles in this network as well as methods for verifying
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Fig. 1.8 Information flow in the process of obtaining social network reliability and trust evaluation

node independence. It also requires a criterion defining whether the reliability of
information presented to an analyst is trustworthy enough to build an argument and
assign reliability to it. A review of various models of reliability and trust evaluation
is presented in [67]. If reliability is represented by probabilities or beliefs, reliability
networks can be considered as belief networks and belief propagation is similar to
causal reasoning in probabilistic networks [64, 68].

1.5 Overall Quality Measure

Depending on the context and user requirements, the overall quality measure may
relate to a single attribute, a combination of several or all the attributes. Evaluation of
the overall quality measure requires a method of combing different quality attributes
into a composite measure. The subset of attributes considered depends on user goals,
objectives, and functions as well as the purpose of model or process of interest. For
example, a combination of credibility, reliability, and timeliness and a method of
incorporating their combination into sequential decision making threat assessment
have been introduced in [46]. In [47], reliability and credibility were combined;
relevance and truthfulness as an overall quality measure were considered in [69].
Other combinations, such as completeness and understandability, completeness and
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timeliness, can be also considered. In many cases, the overall quality represents
a trade-off between different attributes, for example, between completeness and
understandability, or credibility and timeliness. While designing an overall quality
measure, one has to take into account the hierarchy of quality attributes, their
possible different importance under different contexts and for different users, and
the quality of the values assigned to them (higher level quality). The problem of
combing several quality attributes into an overall quality measure is similar to
the problem of multi-criteria decision making, which requires comparing several
alternatives based on the values of the criteria under consideration. Different quality
attributes can be considered and different criteria while alternatives are different
values of an overall quality measure.

One of the possible ways of representing such unified quality is to consider a
t-norm or weighted average of the quality scores defined for each component while
the weights are nonnegative and their sum is normalized to unity. The weights
representing a trade-off between the attributes under consideration are context
specific and can be assigned by the users based on their needs and preferences.
A more general representation of an overall quality measure can be obtained by
training a neural network, which can serve as a tool for transforming vector of
individual quality scores into a subjective unified quality score. The training of this
neural network requires a training set of vectors of individual quality scores and
an expert who provides the value of outputs. The drawback of this method is the
possible cognitive biases of the expert that, however, can be overcome by involving
several experts and combining their opinions. Another way of representing a
unified quality of information is to consider utility of decisions or actions or total
information based on this information. For example, a combination of credibility
and timeliness can be measured by the increase of utility of decisions or actions.

If the quality attribute values are represented within the framework of an
uncertainty theory, their combination can be obtained by the combination rule
defined in this theory. For example, it is possible to use conjunctive combination of
reliability and relevance expressed within the framework of the possibility theory. It
is also possible to represent the unified quality measure as a belief network in which
quality of single attributes is expressed within a belief theory [26]. This method
of attribute combination is especially appropriate when values of single attributes
are heterogeneous, i.e., expressed in different forms, e.g., point-value numbers,
intervals, and linguistic values.

1.6 Quality Control

To ensure successful decision making and actions in the fusion-based machine-
human system environment, it is important to deliver the right information at the
right time. This requires not only awareness of the quality values but also applying
quality control measures. Quality control should be implemented at each step of
information exchange. Thus it is necessary to account for such quality attributes as
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reliability, credibility, relevance, timeliness when raw data and information enter the
fusion processes and delivered to the human users; quality of models and fusion
results (credibility, reliability, timeliness, etc.) when information is transferred
between and within fusion levels; quality of judgment such as trust, confidence
when information is transferred between humans, reliability, credibility, timeliness,
etc. when information is transferred between human and automatic module of the
system.

Quality control can include (see, e.g., [18]):

• Eliminating information of insufficient quality from consideration
• Incorporating information quality into models and processing by:

– Employing formal methods, e.g., methods of belief change to deal with
inconsistency

– Modifying the fusion processes to account for data and information quality

• Modifying the data and information by compensating for its quality before
processing or presenting to the users

• Delaying transmission of information to the next processing level or to decision
makers until it has matured as a result of additional observations and/or compu-
tations improving its associated information quality

• Combination of the strategies mentioned above

Selection of a particular quality control method depends on the type of qual-
ity attributes under consideration. For example, irrelevant information is usually
eliminated from consideration while credibility is often explicitly incorporated into
models and processes.

Elimination of information of insufficient quality requires a criterion to be used
for deciding when the quality of information is not sufficient. In the majority of
cases, such criterion is related to “fitness for use” and depends on context, user’s
objective goals, task, and cognitive model. It involves consideration of a user-
specific threshold, or information gain, or decision utility. For example, one can
consider a time varying threshold on credibility of hypotheses about the state of the
environment or accessibility of information measured by the difference between the
cost of getting this information and its utility.

Elimination of information can be applied to a subset of multiple sources in
order to avoid or mitigate conflict and possible decrease of confidence of the
fusion result or to deal with computational complexity to decrease error caused
by approximation. This quality control method can be also used to deal with the
pedigree problem to avoid double counting decreasing credibility of the fusion
results. The problem with pedigree of sources producing hard data (e.g., physical
sensors in distributed fusion) received significant attention in the past and is usually
approached by employing dynamic network analysis. This problem is becoming
more complicated when more and more information is coming from human sensors,
e.g., bystanders, Twitter, Facebook, etc. because of often unknown dependence
between sources, rumors, the lack of prior information about quality of sources,
and possible outdated information. One of the methods of selection of the least
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dependent sources is suggested in [70]. This method exploits the notion of “close”
and “non-close” source in a social graph to suppress rumors and chain messaging.

As it was described in the previous sections, methods of modifying information
for making it totally or at least equally reliable before fusion processing often
employ reliability coefficients, which measure the adequacy of the source of
incoming information (either soft or hard), model and fusion processes outputs to
the reality. Ignoring reliability of information can lead to counterintuitive results
[71]. Information modification to account for its reliability before fusion is usually
performed by discounting and using the discounted values in the fusion model
(see, e.g., [33, 40–42, 58, 60, 72]). Reliability coefficients are also employed for
modifying fusion processes.

Methods of compensating for reliability are reviewed in, e.g., [33]. Modification
of possibility fusion by incorporating reliability in the case when (1) a subset of
sources is reliable but we do not know which one and (2) only an order of the
reliabilities of the sources is known but no precise values are known is described in
[73].

Delaying the transfer of information demands a balance between timeliness and
other characteristics of information quality, e.g., credibility, reliability, accessibility,
relevance, etc. This method of quality control is based on the assumption that the
quality may be improved over time when more information becomes available. At
the same time, in many situations, waiting may result in unacceptable decision
latency and unwanted, even catastrophic, consequences. Therefore, the cost of
waiting for additional information has to be justified by obtaining the results of
better quality and ultimately better decisions and actions. Thus, the timeliness of
the decision is defined by a context-dependent balance between the waiting time and
improved information quality. There may be several criteria to consider for dealing
with the trade-off between decision latency and improved decision outcome. One
of these criteria is the Maximum Expected Utility Principle [74]. According to this
criterion, a new observation is justified if the difference between maximum expected
utility with the new observation and without the new observation is greater than the
cost of obtaining this new observation. The core difficulty of utilizing the Maximum
Expected Utility Principle is a problem of finding the utility for each decision
and utilizing this principle in the highly dynamic uncertain crisis environment. A
more appropriate criterion in such environment is threshold satisfaction mentioned
in the previous section, which compares a predefined situation, user goals, and
domain knowledge based threshold with the quality of information obtained from
the sensors (physical or human) or fusion processes. It is important to note that
when the users of this information are human the quality threshold also depends on
their personal traits, for example, of their level of risk tolerance. The selection of
quality attributes to be combined with timeliness and a method of measuring the
value of quality depend on a situation. Sensor management (e.g., physical sensors
or members of a crisis management team) should be employed when it is either
impossible or very costly to get information of acceptable quality with current set
of sensor or sensor configuration.
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1.7 Conclusions

This chapter has discussed major challenges and some possible approaches address-
ing the problem of data and information quality in the fusion-based human-machine
information environment. In particular, this chapter presents an ontology of quality
of information and identifies several potential methods of assessing the values of
quality attributes, combining these values into an overall quality measure as well
as possible approaches to quality control. Designing the methods of representing
and incorporating information quality into fusion systems is a relatively new and a
rather difficult problem and more research is needed to confront all its challenges.
One of the main challenges is the growing number of opportunistic human sensors,
a huge amount of unstructured information coming from social networks, context
exploitation, interrelationship between quality of information and quality of context
and their effect on fusion system performance, as well as growing importance of
human-centric fusion and a related problem of modeling quality of information
resulting from this.
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Chapter 2
Quality of Information Sources in
Information Fusion

Frédéric Pichon, Didier Dubois, and Thierry Denœux

Abstract Pieces of information can only be evaluated if knowledge about the
quality of the sources of information is available. Typically, this knowledge pertains
to the source relevance. In this chapter, other facets of source quality are considered,
leading to a general approach to information correction and fusion for belief func-
tions. In particular, the case where sources may partially lack truthfulness is deeply
investigated. As a result, Shafer’s discounting operation and the unnormalised
Dempster’s rule, which deal only with source relevance, are considerably extended.
Most notably, the unnormalised Dempster’s rule is generalised to all Boolean
connectives. The proposed approach also subsumes other important correction and
fusion schemes, such as contextual discounting and Smets’ α-junctions. We also
study the case where pieces of knowledge about the quality of the sources are
independent. Finally, some means to obtain knowledge about source quality are
reviewed.
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2.1 Introduction

A central problem in various kinds of information systems is to determine the correct
answer to a given question, for instance, find the value of deterministic parameter x
defined on a set X of possible values, from information provided by one or many
sources.

Pieces of information about x provided by several sources cannot be evaluated
unless some meta-knowledge on the sources, i.e. knowledge about their quality, is
available. Classically, such meta-knowledge relies on assumptions about the source
relevance, where a relevant source is a source providing useful information about x.
For instance, if the source is a sensor, then its response is typically relevant when it
is in order and irrelevant when it is out of order.

In particular, if a source s is assumed to be relevant with probability p and s

provides the testimony x ∈ A, then the information item x ∈ A is considered
not useful with probability 1 − p. This is known as the discounting of a piece of
information [25, p. 251], [26] in the context of the theory of belief function [1,
25, 30], and the resulting state of knowledge is represented by a simple support
function [25]: the weight p is allocated to the fact of knowing only that x ∈ A and
the weight 1−p is allocated to knowing that x ∈ X (it is the probability of knowing
nothing from the source). If two sources, with respective independent probabilities
of relevance p1 and p2, both supply the information item x ∈ A, then one attaches
reliability p1 + p2 − p1p2 to the statement x ∈ A, since one should deduce that
x ∈ A whenever at least one of the sources is relevant; this is the result obtained by
Dempster’s rule of combination [1, 25]. This is actually the old problem of merging
unreliable testimonies (see the entry “Probabilité” in [5]).

Beyond source relevance, it is proposed in this chapter to consider the case
where knowledge on other facets of the quality of the sources is available. We
start our study by adding the possibility to make assumptions about the truthfulness
of the sources (Sect. 2.2). Then, we present a general framework able to deal
with assumptions about various forms of source quality (Sect. 2.3). This study is
conducted within the theory of belief functions and leads to a general approach to
the fusion of belief functions. Related works, and especially practical means to apply
our framework as well as relationships with some previous works, are reviewed in
Sect. 2.4, before concluding in Sect. 2.5.

2.2 Relevance and Truthfulness

The reliability of a source is usually assimilated to its relevance. In this section,
we assume that reliability also involves another dimension: truthfulness. A truthful
source is a source that actually supplies the information it possesses. A source may
be non-truthful in different ways. The crudest form of lack of truthfulness for a
source is to declare the contrary of what it knows. It may also tell less or something
different, even if consistent with its knowledge. For instance, a systematic bias of a
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sensor may be regarded as a form of lack of truthfulness. In this section, however,
we shall only assume the crudest form of non-truthfulness.

2.2.1 The Case of a Single Source

Consider the case where a single source s provides information about x and that this
information is of the form x ∈ A, where A is a proper non-empty1 subset of X . If
s is assumed to be irrelevant, whatever may be its truthfulness, the information it
provides is totally useless and can be replaced by the trivial information x ∈ X . In
contrast, if s is assumed to be relevant and to tell the opposite of what it knows, then
the actual information about x can be retrieved: one should replace x ∈ A by x ∈ A,
whereA denotes the complement ofA. Obviously, if s is assumed to be relevant and
truthful, then one infers that x ∈ A.

Formally, let H = {(R, T ), (R,¬T ), (¬R, T ), (¬R,¬T )} denote the space of
possible states of the source with respect to its relevance and truthfulness, where
R (resp. T ) means that s is relevant (resp. truthful). Then, following Dempster’s
approach [1], the above reasoning can be encoded by the multivalued mapping ΓA :
H→ X such that

ΓA(R, T ) = A; (2.1)

ΓA(R,¬T ) = A; (2.2)

ΓA(¬R, T ) = Γ (¬R,¬T ) = X . (2.3)

ΓA(h) interprets the testimony x ∈ A in each state h ∈ H of s.
In general, the knowledge about the source relevance and truthfulness is uncer-

tain. Specifically, each state h ∈ H may be assigned a subjective probability prob(h)
such that

∑
h prob(h) = 1. In such case, the information item x ∈ A yields the state

of knowledge on X represented by a belief function in the sense of Shafer [25], with
mass function mX on X defined by

mX (A) = prob(R, T ); (2.4)

mX (A) = prob(R,¬T ); (2.5)

mX (X ) = prob(¬R) = prob(¬R, T )+ prob(¬R,¬T ). (2.6)

A mass function mX is formally a probability distribution on the power set of X
(thus

∑
A⊆X mX (A) = 1). The quantity mX (A) represents the weight allocated to

the fact of knowing only that x ∈ A; it does not evaluate the likelihood of event A
like does the probability prob(A).

1We consider as a source any entity that supplies a non-trivial and non-self-contradictory input.
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The testimony provided by the source may itself be uncertain. In particular, it
may take the form of a mass function mX

s on X . Assume that s is in a given state
h, then each mH

s (A) should be transferred to ΓA(h), yielding the mass function
denoted mX (B|h) and defined by

mX (B|h) =
∑

A:ΓA(h)=B
mX

s (A), ∀B ⊆ X . (2.7)

More generally, assume each state h has a probability prob(h), then (2.7) implies
that the state of knowledge on X is given by the following mass function:

mX (B) =
∑

h

mX (B|h)prob(h) =
∑

h

prob(h)
∑

A:ΓA(h)=B
mX

s (A). (2.8)

Assuming that p = prob(R) and q = prob(T ), and that the relevance of a source
is independent of its truthfulness, leads then to transforming the mass function mX

s

into a mass function denoted by mX and defined by:

mX (A) = pq mX
s (A)+p(1−q) mX

s (A)+ (1−p) mX
X (A), ∀A ⊆ X , (2.9)

where mX
s is the negation of mX

s [6], defined by mX
s (A) = mX

s (A),∀A ⊆ X , and
mX
X the vacuous mass function defined by mX

X (X ) = 1.
The discounting operation proposed by Shafer [25] to integrate the reliability of

information sources is a special case of transformation (2.9), recovered for q = 1: it
corresponds to a partially relevant source that is truthful. The negating operation [23]
is also a special case recovered for p = 1, which corresponds to a partially truthful
source that is relevant. In particular, the negation of a mass function is obtained for
p = 1 and q = 0: it corresponds to a relevant source that is lying.2

Other forms of uncertain meta-knowledge about the source may be considered.
In particular, it may be known only that the source state belongs to a subsetH of H.
This happens, for instance, if the source is assumed to be either relevant or truthful
but not both, i.e. H = {(R,¬T ), (¬R, T )}. In such case, one should deduce that
x ∈ ΓA(H), where ΓA(H) denotes the image of H under ΓA defined as

ΓA(H) =
⋃

h∈H
{ΓA(h)}.

Such nonelementary assumptions are actually not so interesting, since ΓA(H) = X
if |H | > 1, where |H | denotes the cardinality ofH . Nonetheless, they are important
in the case where multiple sources provide information items, which is the topic of
the next section.

2The term “lying” is used as a synonym of “telling the negation of what is believed to be the truth”,
irrespective of the existence of any intention of a source to deceive.
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2.2.2 The Case of Multiple Sources

Interpreting pieces of information provided by two sources requires making assump-
tions about their joint state with respect to their relevance and truthfulness. Let Hi
denote the set of possible states of source si , i = 1, 2. The set of elementary joint
state assumptions on sources is then H1:2 = H1 ×H2 (we have |H1:2| = 16).

Let us first consider the simple case where each source si provides a crisp piece
of information x ∈ Ai , i = 1, 2, and where the two sources are assumed to be in
some joint state h = (h1, h2) ∈ H1:2, with hi ∈ Hi the state of si , i = 1, 2. The
result of the merging of the information items A = (A1, A2) ⊆ X × X provided
by the sources depends on the assumption h made about their behaviour and can be
represented by a multivalued mapping ΓA : H1:2 → X .

As one must conclude x ∈ ΓAi (hi) when si tells x ∈ Ai and is in state hi ∈ Hi ,
i = 1, 2, it is clear that one must deduce that x ∈ ΓA1(h

1) ∩ ΓA2(h
2) when the

sources are assumed to be in the joint state h = (h1, h2) ∈ H1:2, i.e. we have

ΓA(h) = ΓA1(h
1) ∩ ΓA2(h

2).

Concretely, this means that

• if both sources are relevant and

– they are both truthful, then one must conclude that x ∈ A1 ∩ A2;
– s1 is truthful and s2 is not, then one must conclude that x ∈ A1 ∩ A2;
– s2 is truthful and s1 is not, then one must conclude that x ∈ A1 ∩ A2;
– they are both non-truthful, then one must conclude that x ∈ A1 ∩ A2;

• if source si is relevant and the other source is irrelevant, then one must conclude
that x ∈ Ai (resp. x ∈ Ai) if si is truthful (resp. non-truthful);

• if both sources are irrelevant, then one must conclude that x ∈ X , irrespective of
the elementary assumption made on their truthfulness.

Nonelementary assumptions H ⊆ H1:2 can also be considered. Under such an
assumption, one must conclude that x ∈ ΓA(H) = ⋃h∈H {ΓA(h)}. Among the 216

assumptions H ⊆ H1:2, only a few are interesting (since, for instance, as soon as H
contains an elementary assumption such that both sources are nonrelevant, we have
ΓA(H) = X ). In particular, by considering assumptions pertaining to the number
of truthful and/or relevant sources, as well as to logical dependence between source
states, it is possible to retrieve other Boolean binary connectives besides the four
binary connectives A1 ∩ A2, A1 ∩ A2, A1 ∩ A2 and A1 ∩ A2 retrieved above.

Some interesting cases are as follows:

• Both sources are relevant, and at least one of them is truthful. This induces x ∈
A1∪A2. Note that this connective is also obtained by other assumptions, such as
both sources are truthful, and exactly one of them is relevant.

• Both sources are relevant, exactly one of which is truthful, which yields x ∈
A�B (exclusive or).
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• Both sources are relevant, and s1 is truthful if and only if s2 is so too. This
results in x ∈ (A∩B)∪ (A∩B), which corresponds to the Boolean equivalence
connective.

As a matter of fact, each logical connective can be retrieved from assumptions
on the global quality of information sources, in terms of relevance and truthfulness.
Accordingly, we will denote by ⊗H the set-theoretic connective associated to the
assumption H .

Suppose now that assumption H ⊆ H1:2 is made about the source quality and
that si supplies an uncertain testimony in the form of a mass function mX

i , i =
1, 2. Assume further that the sources are independent, where independence means
the following: if we interpret mX

i (Ai) as the probability that si provides statement
x ∈ Ai , then the probability that s1 provides information item x ∈ A1 and that s2
provides conjointly information item x ∈ A2 is mX

1 (A1) · mX
2 (A2). In such case,

the state of knowledge on X is represented by the following mass function:

mX(B) =
∑

A:ΓA(H)=B
mX

1 (A1) ·mX
2 (A2) (2.10)

=
∑

A:A1⊗HA2=B
mX

1 (A1) ·mX
2 (A2), (2.11)

which follows from the fact that if s1 tells x ∈ A1 and s2 tells x ∈ A2, then it is
known under assumption H that x ∈ A1 ⊗H A2.

Combination rule (2.11) encompasses the conjunctive rule [28] (the unnor-
malised version of Dempster’s rule) and the disjunctive rule [6]. The former is
retrieved by assuming that both sources are relevant and truthful and the latter by
assuming that, e.g. both sources are relevant and at least one of them is truthful.
Note also that if A1 ⊗H A2 = ∅ for two sets A1 and A2 such that mX

1 (A1) > 0
and mX

2 (A2) > 0, then this inconsistency pertains to a disagreement between
the testimonies provided by the sources and the assumption H . In such case, a
solution consists in rejecting H and preferring an assumption compatible with the
information provided by the sources. This will be discussed further in Sect. 2.4.1.

Assume now that the sources supply crisp testimonies of the form x ∈ A1
and x ∈ A2 but that the meta-knowledge regarding source quality is uncertain.
Due to the interest of nonelementary assumptions, it seems useful to represent this
uncertainty by a mass function, rather than a probability distribution, on H1:2. The
merging of A1 and A2 under mH1:2 results in a mass function on X defined by

mX (B) =
∑

H :A1⊗HA2=B
mH1:2(H). (2.12)

Remark that mH1:2 induces a probability distribution over the Boolean binary
connectives attached to assumptions H :
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pH1:2(⊗) =
∑

H :⊗H=⊗
mH1:2(H). (2.13)

In addition, let us stress that mH1:2 may carry a form of independence, which
we call meta-independence between sources, different from the independence
between sources defined above. Indeed, information supplied by the sources may
be independent from each other, but pieces of meta-knowledge about the source
state may not be independent. Formally, meta-independence between sources may
be modelled by assuming that mH1:2(H) = mH1(H1)m

H2(H2) if H = H1 × H2
and mH1:2(H) = 0 otherwise, which corresponds to evidential independence [25]
between frames H1 and H2 with respect to mH1:2 .

A more general case, extending the combination operations (2.11) and (2.12), is
obtained when both the testimonies supplied by independent sources and the meta-
knowledge about their quality are uncertain and represented by mass functions. This
case induces the following mass function on X :

mX (B) =
∑

H

mH1:2(H)
∑

A:A1⊗HA2=B
mX

1 (A1)m
X
2 (A2) (2.14)

=
∑

⊗
pH1:2(⊗)

∑

A:A1⊗A2=B
mX

1 (A1)m
X
2 (A2). (2.15)

This approach can be formally extended to the case of dependent sources, using
the setting of [3]. It can also be readily extended to the case of n > 2 sources
that are partially truthful and relevant (see [22]). In theory, this latter extension may
pose a computational issue (the belief function expressing meta-knowledge on the
sources has a 24n complexity in the general case). However, in practice, it can remain
manageable as illustrated in [22], where special cases of the general combination
rule (2.14) are considered. Besides the conjunctive and disjunctive rules, there are
indeed other important combination schemes subsumed by (2.14). In particular, it
is the case for the method, used in various approaches (see, e.g. [2, 14, 24, 31]),
that consists in discounting sources and then combining them by the conjunctive
rule, as shown in [20] and further discussed in [22]. The weighted average of belief
functions and the combination rule corresponding to the assumption that r-out-of-n
sources are relevant, with 1 ≤ r ≤ n, are also included in (2.14), as shown in [20]
and [22], respectively.

2.3 A General Model of Meta-knowledge

In the preceding section, meta-knowledge concerned the relevance and the crudest
form of lack of truthfulness of sources of information. However, in some applica-
tions, the lack of truthfulness may take a more refined form. Moreover, knowledge
about the source quality may even be different from knowing their relevance and



38 F. Pichon et al.

truthfulness. An approach to account for general source behaviour assumptions is
thus necessary. Such an approach is proposed in this section.

2.3.1 The Case of a Single Source

Suppose a source s provides information about a parameter y defined on a set Y
of possible values and that this piece of information is of the form y ∈ A, for
some A ⊆ Y . Assume further that s may be in one of N elementary states instead
of four as is the case in Sect. 2.2.1, i.e. we generalise the state space from H =
{(R, T ), (R,¬T ), (¬R, T ), (¬R,¬T )} to H = {h1, . . . , hN }. Moreover, we are
interested by the value taken by a related parameter x defined on a domain X , and
we have at our disposal some meta-knowledge that relate information item y ∈ A
supplied by s to an information of the form x ∈ B, for some B ⊆ X, for each
possible state h ∈ H of s. Namely, for each A ⊆ Y , there is a multivalued mapping
ΓA : H→ X prescribing, for each elementary assumption h ∈ H, how to interpret
on X information item y ∈ A provided by s. We also add the natural requirement
that there exists h ∈ H such that ΓA1(h) �= ΓA2(h) for any two distinct subsets A1
and A2 of Y . Incomplete assumptions H ⊆ H may also be considered, in which
case information item y ∈ A is interpreted as x ∈ ΓA(H) = ∪h∈HΓA(h).

The setting of Sect. 2.2.1 is obtained as a particular case of this approach, by
choosingN = 4, y = x and, e.g. h1 = (R, T ), h2 = (R,¬T ), h3 = (¬R, T ), h4 =
(¬R,¬T ), in which case we have, for all A ⊆ X :

ΓA(h1) = A,
ΓA(h2) = A,
ΓA(h3) = ΓA(h4) = X. (2.16)

Example 1 provides another illustration of this approach.

Example 1 (Case Y �= X, inspired from Janez and Appriou [12]) We are interested
in finding the type x of a given road, with x taking its value in the set X =
{track, lane, highway}. A source s provides information on this type, but it has
a limited perception of the possible types of road and in particular is not aware
of the existence of the type “lane”, so that it provides information on the space
Y = {track, highway}. In addition, we know that this source discriminates between
roads either using their width or their texture. If the source uses the road width,
then when it says “track”, we may only safely infer that the type is “track or lane”
since tracks and lanes have similar width, and when it says “highway”, we may
infer “highway”. On the other hand, if the source uses the road texture, then when it
says “track”, we may infer “track”, and when it says “highway”, we may only infer
“highway or lane” since highways and lanes have similar textures.
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This problem may be formalised using multivalued mappings Γtrack, Γhighway,
and ΓY from H = {width, texture} to X defined as

Γtrack(width) = {track, lane} ,
Γtrack(texture) = {track} ,
Γhighway(width) = {highway} ,
Γhighway(texture) = {lane, highway} ,

ΓY (width) = X,
ΓY (texture) = X.

�
The proposed approach also makes it possible to model refined forms of lack of

truthfulness, as explained hereafter.
By taking a closer look at the non-truthful state ¬T considered in Sect. 2.2.1, we

can remark that it corresponds to assuming that source s tells the contrary of what
it knows, whatever it is telling concerning each of the possible values xi ∈ X that
admits parameter x, since one must invert what s tells for each of these values. For
instance, let X = {x1, x2, x3, x4} and suppose that s asserts x ∈ A = {x1, x3}, i.e.
it tells that x1 and x3 are possible values for x and that x2 and x4 are not possible
values for x. Then, if s is assumed to be in state ¬T , one must deduce that x ∈ A =
{x2, x4}, i.e. x1 and x3 are not possible values for x and x2 and x4 are possible values
for x.

Accordingly, we may introduce the notion of the truthfulness of a source for a
value xi ∈ X : a truthful (resp. non-truthful) source for a value xi ∈ X is a source
that tells what it knows (resp. the contrary of what it knows) for this value. Hence,
state ¬T corresponds to the assumption that a source is non-truthful for all values
xi ∈ X . It is therefore a quite strong model of the lack of truthfulness of a source.

It seems interesting to consider more subtle forms of lack of truthfulness and in
particular the assumption that a source s could be non-truthful only for some values
xi ∈ X (and truthful for all other values xi ∈ X ), i.e. a kind of contextual lack
of truthfulness. Let B ⊆ X be the set of values for which s is truthful, and B the
set of values for which it is not truthful. We will denote this state by �B (the state
¬T corresponds then to the state �∅, and T corresponds to �X ). As shown in [23,
Proposition 1], if s asserts x ∈ A for some A ⊆ X , and is assumed to be in state �B ,
for some B ⊆ X , then one must deduce that x ∈ (A ∩ B) ∪ (A ∩ B). We refer the
reader to [23] for examples where such states �B may be relevant.

Considering the space of possible states �B , i.e. H = {�B |B ⊆ X }, and a
testimony x ∈ A supplied by a source, the above transformation can then be encoded
by the multivalued mapping ΓA : H→ X defined as:

ΓA(�B) = (A ∩ B) ∪ (A ∩ B), ∀B ⊆ X .
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A further refined model of lack of truthfulness can be obtained by being even
more specific about the assumptions underlying the state ¬T , using the notions of
positive and negative clauses [11, Chapter 8] told by the source. For instance, when s

declares that x1 is a possible value for x, this is a positive clause told by the source,
and when s declares that x2 is not a possible value for x, it is a negative clause.
Accordingly, we may characterise the truthfulness of a source for each xi ∈ X ,
with respect to the polarity of the clauses it tells. Specifically, a source is said to be
positively truthful (resp. non-truthful) for a value xi ∈ X , when it declares that xi is
a possible value for x and knows that it is (resp. it is not). Hence, when a source is
assumed to be positively truthful (resp. non-truthful) for xi ∈ X and declares that xi
is a possible value for x, then one must deduce that it is (resp. it is not). Similarly, a
source is said to be negatively truthful (resp. non-truthful) for a value xi ∈ X , when
it declares that xi is a not possible value for x and knows that it is not (resp. it is).
Hence, when a source is assumed to be negatively truthful (resp. non-truthful) for
xi ∈ X and declares that xi is not a possible value for x, then one must deduce that
it is not (resp. it is). Accordingly, state ¬T corresponds to assuming that a source
is positively and negatively non-truthful for all values xi ∈ X . In that case, we
make two strong assumptions: the context (set of values) concerned by the lack of
truthfulness is the entire frame, and both polarities are concerned by the lack of
truthfulness.

This suggests again to consider states corresponding to weaker assumptions on
the lack of truthfulness. Two states are particularly interesting, as shown in [23]. The
first one, denoted pB , corresponds to the assumption that a source is (positively and
negatively) truthful for all xi ∈ B and positively non-truthful and negatively truthful
for all xi ∈ B. Under such an assumption pB , a testimony x ∈ A is transformed
into knowing that x ∈ A ∩ B [23, Proposition 2]. The second one, denoted nB ,
corresponds to the assumption that a source is positively truthful and negatively
non-truthful for all xi ∈ B and (positively and negatively) truthful for all xi ∈ B. A
testimony x ∈ A is transformed into x ∈ A ∪ B under this latter assumption [23,
Proposition 3].

These states also fit our approach since, e.g. the transformations associated to
states nB can be represented by a multivalued mapping ΓA from H = {nB |B ⊆ X }
to X such that ΓA(nB) = A ∪ B, for all B ⊆ X . Let us remark that states �B, pB
and nB , with associated transformations (A∩B)∪ (A∩B) (logical equality), A∩B
(conjunction) and A ∪ B (disjunction), given testimony x ∈ A, are particular cases
of a more general model of truthfulness assumptions yielding all possible binary
Boolean connectives between testimony A and context B, as detailed in [23].

The proposed approach can be further generalised to the case where both the
information provided by the source and the meta-knowledge on the source are
uncertain and represented by mass functions mY

s and mH, respectively. Since each
mass mY

s (A) should be transferred to ΓA(H) under some hypothesis H ⊆ H, the
state of knowledge given mY

s and mH is represented by a mass function defined by
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mX (B) =
∑

H

mH(H)
∑

A:ΓA(H)=B
mY

s (A), ∀B ⊆ X, (2.17)

which generalises (2.8). Transformation (2.17) is referred to as behaviour-based
correction (BBC) as it modifies, or corrects [17], the information supplied by the
source given our knowledge on its behaviour.

As detailed in [20], the BBC procedure generalises a deconditioning method
known as the method by association of highest compatible hypotheses [13], which
itself generalises a familiar operation of Dempster-Shafer theory, called conditional
embedding (or ballooning extension) [26].

As shown recently in [23], the BBC procedure applied with states nB and
pB , respectively, can also be used to provide an interpretation to the contextual
discounting and contextual reinforcement operations, which are two correction
mechanisms introduced formally in [18]. In addition, when applied with state �B , it
can be used to obtain a contextual version of the negating operation [23].

2.3.2 The Case of Multiple Sources

Consider now that two sources s1 and s2 provide information about y and that each
source may be in one of N elementary states (those N states are the same for both
sources), with Hi the set of possible states of source si , i = 1, 2. Let H1:2 =
H1 ×H2 denote the set of elementary joint state assumptions on the sources.

Assume that each source si provides a crisp piece of information x ∈ Ai ,
i = 1, 2. For the same reason as in Sect. 2.2.2, if the sources are assumed to be
in state h = (h1, h2) ∈ H1:2, then we must conclude that x ∈ ΓA1(h

1) ∩ ΓA2(h
2),

where ΓAi , i = 1, 2, are the mappings defined in Sect. 2.3.1. We can then define a
multivalued mapping ΓA : H1:2 → X , which assigns to each elementary hypothesis
h ∈ H1:2 the result of the fusion of the information items A = (A1, A2) ⊆ X × X ,
as follows:

ΓA(h) = ΓA1(h
1) ∩ ΓA2(h

2).

As in Sect. 2.2.2, incomplete assumptions H ⊆ H1:2 can be considered. In
such case, one must conclude that x ∈ ΓA(H) = ⋃h∈H {ΓA(h)}. More generally,
suppose that the information supplied by the sources s1 and s2 and the meta-
knowledge about their behaviour are uncertain and represented by mass functions
mY

1 , mY
2 and mH1:2 , respectively. If furthermore the sources are assumed to be

independent, then the fusion ofmY
1 andmY

2 givenmH1:2 results in the mass function
on X defined by

mX (B) =
∑

H

mH1:2(H)
∑

A:ΓA(H)=B
mY

1 (A1)m
Y
2 (A2), (2.18)
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which generalises (2.14). The combination (2.18) will be referred to as the
behaviour-based fusion (BBF) rule.

Remark that this rule can be straightforwardly extended to the case of n > 2
sources [22]. In addition, it can be extended to the case where sources si , i =
1, . . . , n provide information on different spaces Yi and have a different number
Ni of elementary states, which may be faced in some problems.

In [27], Smets introduced a family of combination rules representing the set of
associative, commutative and linear operators for belief functions with the vacuous
mass function as neutral element. This family, called the α-conjunctions, depends
on a parameter α ∈ [0, 1]. Operators in this family range between two rules based on
Boolean operators as α decreases: the conjunctive rule (for α = 1) and the so-called
equivalence rule [19] (for α = 0) based on the logical equivalence operator. Smets
did not provide any clear interpretation for these rules for the cases α ∈ (0, 1).
As shown in [19], they are a particular case of the BBF rule: they correspond to
assuming that either both sources tell the truth or they commit the same contextual
lie �B , with some particular weight depending on α and B.

2.3.3 The Case of Meta-independent Sources

Interestingly, the BBC procedure and the BBF rule can be recovered by defining
particular valuation networks [15], representing the available pieces of information,
and by propagating uncertainty in these networks, as stated by Lemmas 1 and 2 with
associated valuation networks shown in Fig. 2.1a, b, respectively.

Lemma 1 (BBC) Let mH and mY
s be the mass functions and ΓA, A ⊆ Y , the

mappings in (2.17). Let Z = 2Y , and let zA denote the element of Z corresponding
to the subset A of Y , ∀A ⊆ Y . For each A ⊆ Y , let ΓzA be the multivalued mapping

Fig. 2.1 Valuation networks corresponding to the BBC procedure (a) and the BBF rule (b)
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from H to X such that ΓzA(h) = ΓA(h) for all h ∈ H. Let mZ
s be the mass function

defined by mZ
s ({zA}) = mY

s (A), for all A ⊆ Y . Let mH×Z×X
Γ be the mass function

defined by mH×Z×X
Γ

[⋃
h∈H,zA∈Z

({h} × zA × ΓzA(h)
)] = 1.

We have, for all B ⊆ X ,

(
mZ

s
∩©mH×Z×X

Γ
∩©mH

)↓X
(B) = mX (B),

wheremX is the mass function defined by (2.17) and where ∩© and ↓ denote, respec-
tively, the unnormalised Dempster’s rule on product spaces and the marginalisation
operation whose definitions are provided on [15, p.8] and [15, p.9], respectively.

Proof From Theorem 1 of [15], using deletion sequence Z,H, we obtain

(
mZ

s
∩©mH×Z×X

Γ
∩©mH

)↓X =
((
mZ

s
∩©mH×Z×X

Γ

)↓H×X
∩©mH

)↓X
. (2.19)

Let mH×Z×X
sΓ := mZ

s
∩©mH×Z×X

Γ . Equation (2.19) may then be rewritten

(
mZ

s
∩©mH×Z×X

Γ
∩©mH

)↓X =
(
m
H×Z×X↓H×X
sΓ ∩©mH

)↓X
.

We have

mH×Z×X
sΓ (C) =

{
mZ
s ({zA}) if C = (⋃h∈H,zA∈Z {h} × zA × ΓzA(h)) ∩ (H× zA × X ),

0 otherwise.

For all zA ∈ Z we have

⎡

⎣(
⋃

h∈H,zA∈Z
{h} × zA × ΓzA(h)) ∩ (H× zA × X )

⎤

⎦ ↓ H×X =
⋃

h∈H
{h}×ΓzA(h).

Hence, mH×Z×X↓H×X
sΓ (B) for any B ⊆ H× X can be obtained by summing over

all zA ∈ Z such that
⋃
h∈H {h} × ΓzA(h) = B:

m
H×Z×X↓H×X
sΓ (B) =

∑

zA∈Z :⋃h∈H{h}×ΓzA(h)=B
mZ

s ({zA})

=
∑

A⊆Y :⋃h∈H{h}×ΓA(h)=B
mY

s (A).
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Since ∃h ∈ H such that ΓA1(h) �= ΓA2(h) for any two distinct subsets A1 and A2
of Y , we obtain

m
H×Z×X↓H×X
sΓ

[
⋃

h∈H
({h} × ΓA(h))

]

= mY
s (A), ∀A ⊆ Y .

The lemma follows then from Lemma 1 of [20]. ��
Lemma 2 (BBF) Let mH1:2 and mY

i , i = 1, 2, be the mass functions in (2.18).
For i = 1, 2, let Zi = 2Y , and let ziA denote the element of Zi corresponding
to the subset A of Y , ∀A ⊆ Y . For each A ⊆ Y and i = 1, 2, let ΓziA
be the multivalued mapping from Hi to X such that ΓziA

(h) = ΓA(h) for all

h ∈ Hi . Let mZi
i be the mass function defined by mZi

i ({ziA}) = mY
i (A), for

all A ⊆ Y . For i = 1, 2, let mHi×Zi×X
Γ i be the mass function defined by

m
Hi×Zi×X
Γ i

[⋃
h∈Hi ,z

i
A∈Zi

(
{h} × ziA × ΓziA(h)

)]
= 1.

We have, for all B ⊆ X ,

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓X

(B) = mX (B),

where mX is the mass function defined by (2.18).

Proof From Theorem 1 of [15], using deletion sequence Z1,Z2, we obtain

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓H1×H2×X

=
(
m
Z1
1 ∩©mH1×Z1×X

Γ 1

)↓H1×X
∩©
(
m
Z2
2 ∩©mH2×Z2×X

Γ 2

)↓H2×X
∩©mH1:2 .

(2.20)

For i = 1, 2, let mHi×X
iΓ :=

(
m
Zi
i
∩©mHi×Zi×X

Γ i

)↓Hi×X
. Equation (2.20) may then

be rewritten

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓H1×H2×X

= mH1×X
1Γ ∩©mH2×X

2Γ ∩©mH1:2 . (2.21)

The transitivity of marginalisation [15] yields

((
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓H1×H2×X)↓X

=
(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓X

,
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from which we obtain, using (2.21),

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2
)↓X

=
(
m
H1×X
1Γ ∩©mH2×X

2Γ ∩©mH1:2
)↓X

.

From the proof of Lemma 1, we have for i = 1, 2,

m
Hi×X
iΓ

⎡

⎣
⋃

h∈Hi

({h} × ΓA(h))
⎤

⎦ = mY
i (A), ∀A ⊆ Y .

The lemma follows then from Lemma 2 of [20]. ��
Lemmas 1 and 2 are instrumental to show Theorem 1, which concerns meta-

independent sources.

Theorem 1 With meta-independent sources, it is equivalent to combine the uncer-
tain information mY

1 and mY
2 by the BBF rule or to combine by the conjunctive rule

each of these pieces of information corrected using the BBC procedure.

Proof Let mH1 and mH2 represent meta-knowledge on the two sources s1 and s2,
respectively. Meta-independence of s1 and s2 is equivalent to mH1:2 = mH1 ∩©mH2 .
Under this assumption, we have, with the same notations as above:

m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1:2

= mZ1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1 ∩©mH2 .

From Theorem 1 of [15], using deletion sequence Z1,Z2,H2,H1, we obtain

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1 ∩©mH2
)↓X

=
((
m
Z1
1 ∩©mH1×Z1×X

Γ 1

)↓H1×X
∩©mH1

)↓X

∩©
((
m
Z2
2 ∩©mH2×Z2×X

Γ 2

)↓H2×X
∩©mH2

)↓X
,

which, using (2.19), can be rewritten

(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mZ2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH1 ∩©mH2
)↓X

=
(
m
Z1
1 ∩©mH1×Z1×X

Γ 1 ∩©mH1
)↓X

∩©
(
m
Z2
2 ∩©mH2×Z2×X

Γ 2 ∩©mH2
)↓X

.

The theorem follows then from Lemmas 1 and 2. ��
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2.4 Related Works

The framework described in the previous sections for the correction and fusion of
pieces of information is theoretical. It does not include any practical means to apply
it and in particular means to obtain the meta-knowledge that it requires. This latter
issue is discussed in Sect. 2.4.1. In addition, other approaches have been proposed
to exploit meta-knowledge about sources. They are related to ours in Sect. 2.4.2.

2.4.1 Obtaining Meta-knowledge

Both the BBC procedure (2.17) and the BBF rule (2.18) require meta-knowledge on
the sources, in the form of a mass function mH on some space H of assumptions
about the sources, where the transformations of a source testimony associated
to these assumptions are encoded by multivalued mappings from H to X . A
central issue is thus to obtain such meta-knowledge. Two main situations can be
distinguished with respect to this problem.

First, one may have some prior information about the sources. This information
may take the form of data. In particular, one may have access to a confusion
matrix counting the correct (crisp and precise) outputs of a source and its errors.
As detailed in [8, 16], it is possible to estimate the relevance or the truthfulness
of a source from such data. If one has access to the uncertain outputs of sources
for some known objects, then one may search for the meta-knowledge that induces
the least errors [7], and specifically, as shown recently in [23], the meta-knowledge
associated with the contextual discounting, contextual reinforcement and contextual
negating operations can be learnt efficiently. Prior information about the sources
may also take the form of expert knowledge. For instance, schemes using such
knowledge and relying on multicriteria aggregations have been proposed to evaluate
the reliability of information sources [4, 21].

In the absence of prior information about the sources, a piece of meta-knowledge
that induces a good tradeoff between specificity and consistency of the inferred
knowledge about x can be selected [22]. To make this principle operational, it is
proposed in [22] to consider an ordered collection mH = (mH

1 , . . . , m
H
M) such that

the piece of meta-knowledge mH
1 corresponds to the conjunctive rule and, for any

1 ≤ j < M , mH
j induces a more specific knowledge about x than mH

j+1 whatever

the source testimonies may be. Then, using the fact that mH
j necessarily induces a

less consistent knowledge on x thanmH
j+1, one should test iteratively eachmH

j with
j = 1, . . . ,M , and select the first one for which a sufficient degree of consistency
is obtained. As illustrated in [22], collection mH can be based on important fusion
schemes, such as discount and combine, the r-out-of-n relevant sources assumption
or the α-conjunctions. Besides, this general approach subsumes some classical
fusion strategies and in particular sequential discounting approaches [22].
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2.4.2 Other Modelling Approaches

We have already seen that the approach presented in Sect. 2.2.1 extends the
discounting operation, which corresponds to the case where the source is known
to be truthful, but has only a probability of being relevant. Smets [29] proposed
a counterpart to this operation, in which the source is relevant but is not truthful,
which is also clearly extended by our approach.

The approach described in Sect. 2.3.1, i.e. the BBC procedure, subsumes the
ballooning extension and contextual correction mechanisms, as already mentioned.
It is also more general than the partially relevant information sources model
proposed by Haenni and Hartmann [10], as explained in [20].

An extension of the discounting operation was proposed in [17], in which
uncertain meta-knowledge on a source s is quantified by a mass function mH on
a space H = {h1, . . . , hN } of possible states of the source, as is the case for the
BBC procedure. The interpretation of states h ∈ H is given in this extension by
transforms mX

h of mX
s : if the source supplies the uncertain testimony mX

s and is in
state h, then our knowledge on x is represented by mX

h . As detailed in [20], this
extension and BBC coincide in the special case where the mass function mH on
H is Bayesian and mX

h is defined from mX
s using multivalued mappings ΓA as:

mX
h (B) =

∑
A:ΓA(h)=B m

Y
s (A), for all B ⊆ X . Nonetheless, the two models are

not equivalent in general, and one should use one model or the other depending on
the nature of available knowledge.

Finally, we may remark that alternatives to Dempster’s rule, where intersection
is replaced with other set operations, have already been considered in [6]. However,
the approach of Sect. 2.2.2 is the first to provide an explicit interpretation for the
resulting rules. In addition, the idea in Sect. 2.3.3 of using valuation networks to
recover the BBC procedure and the BBF rule is inspired from similar approaches [9,
26] used to recover the discounting operation and the disjunctive rule.

2.5 Conclusions

In this chapter, a general approach to the correction and fusion of belief functions
has been proposed. It integrates meta-knowledge about the sources of information,
that is, knowledge about their quality. An important particular case where meta-
knowledge concerns the relevance and the truthfulness of the sources has been
deeply studied. It significantly extends Shafer’s discounting operation and the
unnormalised Dempster’s rule, which deal only with source relevance. Various
forms of lack of truthfulness have also been considered. Specifically, different
definitions of the contextual non-truthfulness of a source have been introduced.
With these definitions, contextual discounting and Smets’ α-junctions can be seen
as special cases of the proposed correction and fusion procedures, respectively. In
addition, we have proved that these procedures can be recovered by propagating
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uncertainty in some particular valuation networks. This result allowed us to show
that, when the behaviours of the sources are independent, it is equivalent to
combine the sources’ information using our fusion procedure or to combine the
pieces of information modified using our correction procedure by the unnormalised
Dempster’s rule. Finally, practical means to apply this general approach have
been reviewed, making it a potentially useful tool for various problems, such as
combining classifiers or handling intelligence reports.
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Chapter 3
Using Quality Measures in the Intelligent
Fusion of Probabilistic Information

Ronald R. Yager and Frederick E. Petry

Abstract Our objective here is to obtain quality-fused values from multiple sources
of probabilistic distributions, where quality is related to the lack of uncertainty
in the fused value and the use of credible sources. We first introduce a vector
representation for a probability distribution. With the aid of the Gini formulation
of entropy, we show how the norm of the vector provides a measure of the certainty,
i.e., information, associated with a probability distribution. We look at two special
cases of fusion for source inputs, those that are maximally uncertain and certain.
We provide a measure of credibility associated with subsets of sources. We look at
the issue of finding the highest-quality fused value from the weighted aggregation
of source-provided probability distributions.

Keywords Quality measures · Information fusion · Entropy · Credibility ·
Choquet integral

3.1 Introduction

The concept of quality informs many applications and disciplines. It is difficult
to give a definition of quality that can cover the aspects of quality for so many
areas. Terms such as worth, merit, value, etc. have often been synonymously used.
There have been many general viewpoints on the meaning and concept of quality
both abstractly and concretely. Abstractly this is an issue in philosophy such as the
metaphysics of quality [1]. Concretely it has been extensively considered under the
topic of quality control [2] as the issue ultimately of product quality.
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Here we are interested in the quality of information [3, 4] that will be the product
of the fusion process we present in this chapter. The use of fusion to combine data
provided by multiple sources about the value of a variable is common in many
applications [5]. One rationale for fusing probabilistic distributions provided by
multiple sources is to improve the quality of the information to decision-makers
[6]. Our interest here is looking at the problem of obtaining high-quality fused
values. One aspect of this quality is a reduction in the uncertainty of the information.
Unfortunately, combining probability distributions information does not always
result in a probability distribution with less uncertainty, this particularly is the case
when the data that are being fused are conflicting. In order to formally quantify
the uncertainty associated with a probability distribution, we will use the concept
of entropy. A second contributing factor to the association of quality with a fused
value is that we have used quality sources of information; the more of these sources
used, the more credible the results of the fusion process. In order to capture these
criteria of a quality fusion, we introduce a measure of credibility associated with
use of various subsets of the sources. Here we provide a quantification of the notion
of a quality fusion based on the objective of providing fused values having little
uncertainty based on a credible subset of the sources.

3.2 Vector Representation of Probability Distributions

Assume Pi is a probability distribution on the space X = {x1, x2, · · · , xn}, where pij

is the probability of the occurrence of xj. Here, each pij ∈ [0, 1] and
∑n
j=1 pij = 1.

For our purposes in the following, we shall find it useful, at times, to represent
a probability distribution as an n-dimensional vector Pi = [pi1, pi2, · · · , pin]. Here
the vector has the special properties that all its components lie in the unit interval
and their sum is one. If Pi, for i = 1 to n, are a collection of probability
distribution vectors then their weighed sum, P = ∑q

i=1wiPi , is another vector
whose components are pj =∑q

i=1wipij . Furthermore, if the weights are standard
weights, wi ∈ [0, 1] and

∑q

i=1wi = 1, then P is also a probability distribution
vector.

Another operation on vectors is the dot or inner product, (see Bustince and
Burillo [7]). If Pi and Pk are two probability vectors on the space X, then their
dot product is Pi ·Pk = ∑n

j=1 pijpkj . We emphasize that the dot product is a
scalar value. Furthermore, in the case where Pi and Pk are probability distributions
then 0 ≤ Pi · Pk ≤ 1. A special case of dot product is where Pi and Pk are the same,
then Pi ·Pk = ∑n

j=1

(
pij
)2. For notational simplicity, at times when it causes no

confusion, we shall simply use PiPk for the dot product.
An important concept that is associated with this self dot product is the idea of

the norm of the vector. In particular then norm
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‖Pi‖ =
√
PiPi =

⎛

⎝
n∑

j=1

(
pij
)2

⎞

⎠

1/2

(3.1)

The norm is referred to as the Euclidean length of a vector. Because of the special
properties of the probability distribution vector, pij ∈ [0, 1] and

∑
ipij = 1, it can be

easily shown that the maximal value of ‖Pi‖ occurs when one pij = 1 and all other
pij = 0. In this case, ‖Pi‖ = 1. Furthermore, in this case of a probability distribution
vector the minimum value of ‖Pi‖ occurs when all pij = 1/n and this has the value

‖Pi‖ =
(
n∑

i=1

(
1
/

n

)2
)1/2

=
(

1
/

n

)1/2 = 1/
√
n (3.2)

We note for the self dot product, PiPi = ‖Pi‖2 we have a maximal value of one

and minimal value of 1
/

n
when all pij = 1

/

n
. In the following, we shall benefit

from the use of an illustration of the probability vector in the two-dimensional case
as shown in Fig. 3.1.

If Pi and Pk are two probability vectors it is known [8] that the Cosine of the
angle between them denoted θ ik is expressed as

cos θik = PiPk

‖Pi‖ ‖Pk‖
We note cosθ ik is the dot product of Pi and Pk divided by their respective norms.

It is well known that if cos θ ik ∈ [0, 1], as is the case when Pi and Pk are probability

distribution vectors, that cos θik ∈
[
0, π

/

2

]
. We further see that if Pi = Pk then

cos θik = PiPk

‖Pi‖ ‖Pk‖ =
Pi

2

‖Pi‖2
= Pi

2

Pi
2
= 1 (3.3)

Fig. 3.1 Angle between
probabilistic vectors

1

1

Pk

Pi

θik
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Fig. 3.2 Different
relationships between
probabilistic distributions

Pi, Pk

Pk

Pi

OrthogonalCoincident

Thus if Pi and Pk are the same coincident, then cosθ ik = 1. Furthermore, it is
known in this case that θ ik = 0. At the other extreme is the case where Pi and Pk

are orthogonal, Pi ·Pk = ∑n
j=1 pijpkj = 0 here cos θik = PiPk‖Pi‖‖Pk‖ = 0. We get

in this case that θ ik = π /2. We note that in the case where Pi and Pk are orthogonal
then pij = 0 when pik �= 0 and pik = 0 when pij �= 0.We illustrate these extremes of
coincident and orthogonal distributions for the two dimensional case in Fig. 3.2.

We note in the n-dimensional case, a prototype example of orthogonality occurs
when Pi has Pij1 = 1 and Pk has Pkj2 = 1. Here they each completely support
different outcomes. In [9] we suggested that cosθ ik can be used as measure of the
degree of compatibility, Comp, between the two probability distributions, thus

Comp (Pi, Pk) = PiPk

‖Pi‖ ‖Pk‖ (3.4)

Here Comp(Pi, Pk) ∈ [0, 1], and the closer to 1, the more compatible the
probability distributions. Furthermore, 1− Comp(Pi, Pk), denoted Conf(Pi, Pk), can
be seen as the degree of conflict between the two probability distributions. We note
that if Pi and Pk are orthogonal then Comp(Pi, Pk) = 0 that Conf(Pi, Pk) = 1. On
the other hand if Pi and Pk are1- coincident, the same, then Comp(Pi, Pk) = 1 and
Conf(Pi, Pk) = 0.

An interesting special case occurs when one of the distributions, Pi, has Pij = 1/n
for all j. Here we previously noted ‖Pi‖ = (1/n)1/2. Consider now Comp(Pi, Pk)
where Pi is this uniform probability distribution. Here Comp (Pi, Pk) = PiPk‖Pi‖‖Pk‖ .
However in this case

Pi ·Pk =
n∑

j=1

pijpkj = 1

n

n∑

j=1

pkj = 1

n
(3.5)

and thus

Comp (Pi, Pk) = 1/n

‖Pk‖ (1/n)1/2
= (1/n)

1/2

‖Pk‖ = 1√
n

1

‖Pk‖ (3.6)
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Two special cases of Pk are worth commenting on. If Pk is a certain distribution,
it has pkj = 1 for one element, then ‖Pk‖ = 1 and Comp (Pi, Pk) = 1√

n
. If Pk is also

a uniform probability distribution, all pkj = 1/n; here then ‖Pk‖ = 1√
n

, and we get
Comp(Pi, Pk) = 1.

3.3 Entropy, Certainty, and Information

In order to provide concrete measures of quality, we will consider in this section
introducing entropy measures. This will allow assessments of the quality of
our approaches to the fusion of probabilistic information. An important concept
associated with a probability distribution on the space X = {x1, x2, · · · , xn} is the
idea of entropy [10, 11]. The most common measure of entropy is the Shannon
entropy. Here if P is a probability distribution on the space with pj, the probability
associated with xj, then the Shannon entropy is H(P ) = −∑n

j=1pj lnpj . It is well
known that the maximal entropy occurs when all pj = 1/n in which case H(P)= ln n.
The minimal entropy occurs for the case when one pj = 1 and all other pj = 0, in
this case H(P) = 0. What is clear is that the entropy is measuring the uncertainty
associated with the probability distribution, the more uncertainty the more entropy.
The complimentary idea of entropy is certainty (or information). The smaller the
entropy, the more information conveyed by a probability distribution. What should
be clear is that for decision-making purposes we prefer distributions with smaller
entropy as we have less uncertainty, more information.

While the Shannon entropy is the most well-known formulation of entropy,
other formulations have been suggested [12–15], particularly in an attempt to
overcome the complexity involved in working with the ln. One successful alternative
formulation is the Gini Entropy [16], which is much simpler to work with. The Gini
entropy of the probability distribution P on X is

G(P ) = 1−
∑n

j=1
pj

2 (3.7)

The Gini entropy is coincidental with the Shannon entropy in the sense the G(P)
assumes its maximal value when all pj = 1/n and assumes its minimum value when
one pj = 1. While the Shannon entropy is based on the term pj ln pj, the Gini entropy
is based on the term pj

2.
In the following, we shall find it convenient to use the Gini entropy. Again we

see that the bigger the value of G(P), the more the uncertainty in the knowledge
provided by the probability distribution. On the other hand the smaller G(P) the
more certainty in the knowledge provided by the probability distribution, it is
common to refer to this as being more information. Thus to increase certainty or
information we decrease the entropy.
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What is very notable about the Gini formulation for entropy is that it very clearly
indicates what is needed to decrease entropy, increase the certainty or information.
In particular, by increasing

∑n
j=1pj

2 we decrease the entropy or uncertainty,
we increase information. Furthermore, in using the vector representation of the

probability distribution P the norm of P, ‖P ‖ =
(∑n

j=1pj
2
)1/2

. Thus we see that

increasing the norm of the distribution serves to decrease the entropy, increase its
information content. We note that ‖P‖ takes its maximal value of 1 with pj = 1 for
some xj, and all other pj = 0. In addition, the min value of ‖P‖ under the constraint
that all pj ∈ [0, 1] and

∑n
j=1 pj = 1 occurs when all pj = 1/n.

Since our interest will be on obtaining probability distributions with more
information, we shall focus on how the term

∑n
j=1pj

2 or its norm is affected by

various operations. We shall refer to term ‖P‖2 as the NegEnt and semantically see
it as a measure of information or certainty. Here again we note that 1/n ≤ ‖P‖2 ≤ 1
and 1/

√
n ≤ ‖P ‖ ≤ 1.

Assume P and Q are two probability vectors on the space X and that the relation
between these is

q1 = p1 − α

q2 = p2 + α

qj = pj , for j = 3 to n, for α ≥ 0.

We see here

∑n

j=1
qj

2 = (p1 − α)2 + (p2 + α)2 +
∑n

j=3
pj

2 (3.8)

We note that since (p1 − α)2 = p1
2 − 2αp1+α2 and (p2 − α)2 = p2

2 − 2αp2+α2

we get

∑n
j=1qj

2 −∑n
j=1pj

2 = 2α (p2 − p1)+ 2α2

= 2α ((p2 − p1)+ α) (3.9)

We observe that if p2 > p1 then Q2 > P2 and we have decreased the entropy,
increased the certainty. Thus moving some amount of probability from an element
with less probability to one of greater probability increases the norm, the certainty.
We also observe that even if p1 = p2, then Q2 > P2. Thus if two elements have the
same probability, moving some probability from one element to the other increases
the norm and increases the certainty. If p2 < p1, the situation is more complex.
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If α < |p1 − p2|, then we decrease certainty, but if α > |p1 − p2|, we increase the
certainty; in this case we have moved enough probability to overcome the initial
difference and essentially reversed the relationship.

We consider another related situation. Assume P= [p1, p2, · · · , pn] is a probabil-
ity distribution such that two elements, p1 and p2, share an amount of probability�.
We ask what is the allocation of the probability � between p1 and p2 that results in
the largest norm, the most certainty, and the smallest entropy. We see

P 2 =
∑n

j=1
pj

2 = p1
2 + p2

2 +
∑n

j=3
pj

2 (3.10)

Assume we assign a to one of p1 or p2 and � − a to the other. In this case the

P 2 = a2 + (�− a)2 +∑n
j=3pj

2

= a2 +�2 − 2a�+ a2 +∑n
j=3pj

2

= 2a2 +�2 − 2a�+∑n
j=3pj

2
(3.11)

Taking the derivative of P with respect to a, we get ∂P
2

∂a
= 4a − 2�. Setting

this to zero gives us a = �/2. To find the maximum of P2, we must evaluate P2 at
a = �/2 and the two end points a = 0 and a = �.

a P2

0 �2 +∑n
j=3pj

2

�
2

�2

2 +
∑n
j=3pj

2

� �2 + 0+∑n
j=3pj

2

Thus we see that the maximal value of P2 occurs when we give all the � to one
of the components.

A concept closely related to entropy is the idea of Cross entropy [17, 18].
If P and Q are two probability distributions on the space X = {x1, x2, · · · , xn}
then the standard definition of Cross entropy is H (P,Q) = −∑n

j=1pj ln qj .
We see that this definition is in the spirit of the Shannon measure of entropy.
Here we can define a related measure in the spirit of the Gini index. In particular
G (P,Q) = 1 −∑n

j=1pjqj . The larger the G(P, Q), the more different the proba-
bility distributions; it is a kind of measure of difference between the distributions.
We note here that using the vector representation we can express

∑n
j=1pjqj as the

dot product PQ. Furthermore, we see that PQ is a kind of measure of relatedness
of the two distributions, PQ is the negation of Gini measure of cross entropy.
We note that as opposed to the Shannon-type measure, the Gini type measure is
symmetric, G(P, Q) = G(Q, P).
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3.4 Information in Maximally Certain and Uncertain
Distribution

In this section, we develop measures of conflict in the fusion of probability
distributions. The concept of conflict is an important aspect of assessment of
the quality of the fusion process. Consider now two probability distributions
on X, P = [p1, p2, · · · , pn] and Q = [q1, q2, · · · , qn]. Their linear aggrega-
tion R = w1P+w2Q is a probability distribution when w1+w2 = 1. Here, for
each component rj of R we have rj = (w1pj+w2qj). To calculate the information
associated with R we calculate

‖R‖2 =∑n
j=1

(
w1pj + w2qj

)2

=∑n
j=1

(
w1

2pj
2 + w2

2qj
2 + 2w1w2pjqj

) (3.12)

‖R‖2 = w1
2
∑n

j=1
pj

2 + w2
2
∑n

j=1
qj

2 + 2w1w2

∑n

j=1
pjqj (3.13)

‖R‖2 = w1
2‖P ‖2 + w2

2‖Q‖2 + 2w1w2PQ (3.14)

where PQ denotes the dot product of P and Q.
In passing we note that since w2 = 1 − w1, we have w1

2+w2
2+2(w1w2) = 1,

and hence ‖R‖2 is a weighted average of components ‖P‖2, ‖Q‖2, and PQ.We also
observe that since

cos (P,Q) = PQ

‖P ‖ ‖Q‖ (3.15)

we have

‖R‖2 = w1
2‖P ‖2 + w2

2‖Q‖2 + 2w1w2 ‖P ‖ ‖Q‖ cos (P,Q) (3.16)

where cos(P, Q) is the compatibility of P and Q. Thus the more compatible, the less
conflict, the bigger the NegEnt, more information, contained in R. In the special
case where w2 = w1 = 1/2, we have

‖R‖2 = 1
4‖P ‖2 + 1

4‖Q‖2 + 1
2PQ

= 1
4‖P ‖2 + 1

4‖Q‖2 + 1
2 ‖P ‖ ‖Q‖ cos (P,Q)

(3.17)

Let us focus on this case where w1 = w2 = 1/2. If P and Q are two certain
probability distributions, then ‖P‖ and ‖Q‖ = 1, and there are two cases of interest.
The first case is when they are completely compatible, pj = qj = 1 for some j. Here
cos(P, Q) = 1 and ‖R‖2 = 1

4 (1) + 1
4 (1) + 1

2 (1) = 1. On the other hand, if they
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are completely conflicting, pj = 1 and qk = 1, then cos(P, Q) = 0 and ‖R‖2 =
1
4 + 1

4 + 0 = 1
2 . Assume P and Q are both maximally uncertain distributions, they

have pj = pj = 1/n for all j. Here ‖P‖ and ‖P‖ = ‖Q‖ = (1/n)1/2 and since we have
shown in this case that cos(P, Q) = 1 then

‖R‖2 = 1

4

(
1

n

)

+ 1

4

(
1

n

)

+ 1

2

(
1

n

)1/2(1

n

)1/2

1 = 1

n

If P is a completely certain distribution, ‖P‖ = 1, and Q is a completely uncertain

distribution, ‖Q‖ = (1/n)1/2, then PQ = 1/n and ‖R‖2 = 1
4 (1)+ 1

4

(
1
n

)
+ 1

2

(
1
n

)
=

n+3
4n . Let us now consider the case where we have t probability distributions

P1,· · · ,Pt, where Pi = [pi1, · · · , pin]. Assume now R = 1
t

∑t
i=1 Pi . Here then each

component of R, rj = 1
t

∑t
i=1 pij . In this case

‖R‖2 =∑n
j=1rj

2 =
n∑

j=1

(
1
t2

) (
p1j + p2j + · · · + ptj

)2

=
t∑

i=1

(
1
t2

)
(‖Pi‖)2 +

t∑

i=1

t∑

k = 1
k �= i

1
t2
Pi ·Pk

=
t∑

i=1

(
1
t2

)
(‖Pi‖)2 + 2

t2

t−1∑

i=1

t∑

k=i+1
Pi ·Pk

(3.18)

To understand how we obtained this last formula from
∑n
j=1

(
1
t2

)

(
p1j + p2j + · · · + ptj

)2 we illustrate the situation for t+4. Consider the term
(p1j+p2j+p3j+p4j)2. The value of the squared sum can be best viewed in using the
following matrix:

p1j p2j p3j p4j

p1j

⎡

⎢
⎢
⎢
⎣

p1j p1j

p2j p1j

p3j p1j

p4j p1j

p1jp2j

p2jp2j

p3jp2j

p4jp2j

p1j p3j

p2j p3j

p3j p3j

p4j p3j

p1jp4j

p2jp4j

p3jp4j

p4jp4j

⎤

⎥
⎥
⎥
⎦

p2j

p3j

p4j

The value of the squared sum is equal to the sum of all the 4× 4= 16 terms in the
matrix. We can consider the matrix as consisting of three parts, the main diagonal
and the upper and lower triangles. The sum of the term on the main diagonal
is p1jp1j+p2jp2j+p3jp3j+p4jp4j. If we calculate the sum of these over all j = 1 to
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n we get

n∑

j=1

p1j
2 +

n∑

j=1

p2j
2 +

n∑

j=1

p3j
2 +

n∑

j=1

p4j
2 =

4∑

i=1

‖Pi‖2 (3.19)

Consider now the upper and lower triangle. First note that they consist of exactly
the same elements. So to find the sum of elements in the upper and lower triangle,
we need just calculate the sum of one of them and multiply by two. Consider the
upper triangle

p1jp2j + p1jp3j + p1jp4j

p2jp3j + p2jp4j

p3jp4j

With a little thought we see that we can express this sum as
∑3
i=1

(∑4
k=i+1pijpkj

)
.

If we now sum these over j = 1 to n we get
∑n
j=1

(∑3
i=1

(∑4
k=i+1pijpkj

))
=

∑3
i=1

(∑4
k=i+1

(∑n
j=1pijpkj

))
. However, we observe that

∑n
j=1pijpkj to the

dot product Pi · Pk. Thus the sum of the elements in the upper triangle is
∑3
i=1

(∑4
k=i+1Pi ·Pk

)
. Doubling this we get the sum of upper and lower triangles,

2
∑3
i=1

(∑4
k=i+1Pi ·Pk

)
. Thus we get

‖R‖2 =
(

1

t2

) t∑

i=1

(‖Pi‖)2 + 2

t2

t−1∑

i=1

t∑

k=i+1

Pi ·Pk (3.20)

and now consider the calculation of ‖R‖2 for some special cases. First we consider
the case where all t probability distributions are certain distributions but may be
conflicting in that they may be focused on different xj. In this case ‖Pi‖2 = 1
for all i. We now partition the probability distributions into groups of agreement.
For simplicity we let gj be the number of probability distributions that are focused
on xj, these distributions are compatible. We note that

∑n
j=1gj = t . We observe

that if a pair of certain distributions are in agreement then Pi · Pk = 1; otherwise
Pi · Pk = 0. We see that 2

t2

∑t−1
i=1

∑t
k=i+1 Pi ·Pk can be seen as being equal to the

2
t2

times number of pairs of distribution that are compatible. If gj are focused on xj,

then there are
gj !

2!(gj−2)! =
gj (gj−1)

2 = gj
2−gj
2 pairs of elements in agreement. Thus

in this case of all certain probability distributions, we have
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‖R‖2 =
(

1

t2

)

t + 2

t2

n∑

j=1

gj
(
gj − 1

)

2
= 1

t
+ 1

t2

n∑

j=1

gj
(
gj − 1

)
(3.21)

If all the elements agree on the same value, x1, then g1 = t and all other gj = 0, and
we get

‖R‖2 = 1

t
+
(

1

t2

)

t (t − 1) = 1

t
+ t

2 − t
t2
= 1

t
+ 1− 1

t
= 1

Assume half the distributions agree on one value and the other half agree on a second
value. Here we have g1 = t/2 and g2 = t/2 (we assume t even for simplicity) then
we get

‖R‖2=1

t
+
(

1

t2

)

(2)

(
t

2

)(
t

2
−1

)

= 1

t
+ 1

t

(
t

2
− 1

)

= 1

t

(

1+ t
2
− 1

)

= 0.5

If one third of the distributions agree on different values, g1 = g2 = g3 = t/3 then

‖R‖2 = 1

t
+
(

1

t2

)

(3)

(
t

3

)(
t

3
− 1

)

= 1

t
+ 1

t

(
t

3
− 1

)

= 1

t

(

1+ t
3
− 1

)

= 1

3

The value of ‖R‖2 for complex allocations of the gj can be calculated using our
formula ‖R‖2 = 1

t
+ 1
t2

∑n
j=1 gj

(
gj − 1

)
.

Let us return to our formula ‖R‖2 =∑t
i=1

(
1
t2

)
(‖Pi‖)2+ 2

t2

∑t−1
i=1

∑t
k=i+1 Pi ·Pk

and consider the situation where we have two classes of probability distributions.
One being as in the preceding a certainty distribution, one of its components is one.
The other is a pure uncertainty distribution; here all elements are 1/n. First we note
for Pi that has certainty; then (‖Pi‖)2 = 1. On the other hand, for any Pi that is pure
uncertainty, we have shown that (‖Pi‖)2 = 1/n. Consider now the dot products. As
in the preceding, if both Pi and Pk are certainties, then Pi · Pk = 1 if they agree on
the certainty element and Pi · Pk = 0 if they disagree. Consider the situation when
one of PiPk is pure uncertainty, for example, Pi. If the other distribution Pk is a
certainty, we have PiPk = ∑n

j=1pijpkj = 1 1
n
= 1

n.
. If the other distribution is all

pure uncertainty, we get PiPk =∑n
j=1pijpkj = n

n2 = 1
n.

. Thus we see independent
of the second probability distribution if one of Pi or Pk is pure uncertainty, then
PiPj = 1/n.

Let us now consider the calculation of ‖R‖2 in mixed case. Assume t1 of the
distributions are pure certainty and t2 are pure uncertainty. Furthermore, assume
for j = 1 to n that gj of the pure certainty distributions agree on the same value, xj,
here

∑n
j=1gj = t1. In this case we get

‖R‖2 = 1

t2

(

t1 + t − t1
n

)

+
(

2

t2

)(
1

n

)

S1+
(

2

t2

)

S2 (3.22)
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where S1 = # of pairs containing at least a pure uncertainty distribution and
S2 = (# of pairs of two pure certainty distributions in agreement). We have already
calculated the last term in the preceding, that is

2

t2
S2 = 1

t2

n∑

j=1

gj
(
gj − 1

) = 1

t2

n∑

j=1

gj
2 − gj (3.23)

We must now calculate the number containing a pure uncertainty, S1. First we
note given t distributions there are (t)(t − 1)/2 possible pairs. Given that there are
t1 distributions with pure certainty, then there are (t)(t − 1)/2 pairs of elements
consisting of two pure certain distributions. From this we can conclude that S1, # of
pairs containing at least one pure uncertainty distribution, is

S1 = (t) (t − 1)

2
− (t1) (t1 − 1)

2
= (t − t1) (t + t1 − 1)

2
(3.24)

‖R‖2 = 1
t2

[

t1 + t−t1
n
+ 1
n
((t − t1) (t + t1 − 1))+

n∑

j=1
gj
(
gj − 1

)
]

= 1
t2

[

t1 +
n∑

j=1
gj
(
gj − 1

)+ 1
n
((t − t1) (t + t1))

]

= 1
t2

[

t1 +
n∑

j=1
gj
(
gj − 1

)+ 1
n

(
t2 − t12

)
]

(3.25)

We note in the special case where all the pure certain distributions agree, g1 = t1
and all other g1 = 0 we get

‖R‖2 = 1
t2

[
t1 + t1 (t − 1)+ 1

n

(
t2 − t12

)]

= 1
t2

[
t1

2 + 1
n

(
t2 − t12

)] (3.26)

3.5 Fusion of Probability Distributions

We now turn to our major interest, the fusion of multi-source probabilistic infor-
mation. Here we will use the quality issues related to credibility measures to guide
the multi-source fusion process. Assume V is a variable that takes its value in the
space X = {x1, · · · , xn}. In the following, we let Pi be a probability distribution on
X indicating the information provided by source i regarding the value of V. Here
we let each Pi = [pi1, · · · , pin]. If we have t probability distributions, Pi for i = 1
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to t, then the distribution basic uniform fusion of these is a probability distribution
R = 1

t

∑t
i=1Pi . Each component of R is rj = 1

t

∑t
i=1pij . We have previously

shown the associated NegEnt is

‖R‖2 = 1

t2

[∑t

i=1
‖Pi‖2 + 2

∑t−1

i=1

∑t

k=i+1
PiPk

]

(3.27)

The larger ‖R‖2 the more information provided by the fusion.
We note

∑t−1
i=1
∑t
k=i+1PiPk consists of (t)(t−1)

2 terms. Thus we see total number

of terms being combined is t + 2(t)(t−1)
2 = t2. Thus this is a simple weighted

average. Since each term is contained in [0, 1] and since this is a simple weighted
average, then ‖R‖2 ∈ [0, 1]. For this aggregation we can calculate the average
conflict between the components. We first recall the degree of conflict between Pi

and Pkis

Conf (Pi, Pk) = 1− cos θik = 1− PiPk

‖Pi‖ ‖Pk‖ (3.28)

Given that there are t distributions being combined, then there are (t)(t−1)
2 distinct

pairs of distributions. Thus the average conflict in this fusion is

AveConf (Pi, Pk) = 2
(t)(t−1)

t−1∑

i=1

t∑

k=i+1

(
1− PiPk‖Pi‖‖Pk‖

)

= 1− 2
(t)(t−1)

t−1∑

i=1

t∑

k=i+1

(
PiPk‖Pi‖‖Pk‖

) (3.29)

We note here since each Conf(Pi, Pk) ∈ [0, 1],then AveConf(P) ∈ [0, 1].
Let Pi for i = 1 to t, be a collection of probability distributions provided

by multiple sources. Assume our purpose in combining these is to obtain a
fused estimate for the value of V that gives us the most information about V.
That is, we want our fused value to have a high NegEnt value, ‖R‖2. We can
make some observations about ‖R‖2. Pairs of probability distributions that are
nonconflicting, PiPk large, tend to increase the NegEnt, the information, supplied
by the aggregation. On the other hand, those pairs with small compatibility, PiPk

small, can tend to decrease the NegEnt. This reduction results from the fact that
while pairs with small PiPk may add a little to the sum of the PiPk, they affect the
value 1

t2
. We note that t2 = t+t(t − 1), the number of probability distributions plus

the number of pairs. Thus while a conflicting pair does not much affect the sum∑t−1
i=1

∑t
k=i+1 PiPk, it can reduce the ‖R‖2 because it is counted in the t2.

It appears that one approach to obtaining fused values that have high NegEnt is
to only fuse the probability distributions that have a high compatibility. However,
by just looking at any fusion consisting of a subset of the probability distributions
we are clearly losing credibility, persuasiveness, in the fusion. In order to take this
into account, we shall introduce a set measure that indicates the credibility of a
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fusion based on a simple weighted average of a subset of probability distributions.
If Z = {P1, · · · , Pt}, the set of available probability distributions, then we define the
set measure Cred : 2Z → [0, 1] such that for any subset B of Z, Cred(B) indicates
the credibility of a fusion based on only the distributions in B. We see that natural
properties to require of such a set measure are the following:

1. Cred(∅) = 0,
2. Cred(Z) = 1 and
3. If A ⊆ B then Cred(A) ≤ Cred(B) A ⊆ B.

Actually, more precisely, the credibility measure should be over the space of
sources. However, since there is a one to one correspondence between a source and
its provided probability distribution for simplicity of notation we shall continue to
refer to this credibility as being over the set of probability distributions.

Let us look at some notable examples of credibility functions. One fundamental
example is the case where Cred(Z) = 1 and Cred(B) = 0 for B �= Z. Here
the only fusion that has any credibility is the one using all of the supplied
probability distributions. Another type of credibility function can be based on the
requirement that “at least λ %” of the probability distributions are included in
the fusion. Here Cred(B) = 1 if Card(B)

t
≥ λ and Cred(B) = 0 otherwise.

Closely related is a credibility function that requires that “most” of the probability
distributions are included in the fusion. Here we can represent “most” as a fuzzy
subset M on the unit interval [19]. In this case, for any subset B of Z, we can
obtain Cred(B) = M(Cred(B)/Z) the membership grade of Cred(B)/Z in the fuzzy
subset M.

The preceding examples of credibility functions have not taken into account any
distinction between the sources providing the probability distributions. Another type
of credibility function can be obtained if we associate with each Pi a value αi ∈ [0, 1]
so that

∑t
i=1αi = 1. Here αi can be seen as some indication of the importance of

Pi. Using these importances we can obtain Cred(B) =∑Pi∈B αi .
Another class of credibility functions can be obtained as follows. Let Fi for i= 1

to q be a collection of subsets of Z. We note that formally this collection need not
satisfy any special requirements, that is, they don’t have to be disjointed or cover
the whole space Z. Further, we associate with each Fi a value αi ∈ [0, 1] so that∑q

i=1αi = 1. We now can use this collection of subsets of Z to construct various
kinds of credibility functions. Let Poss(Fi/B) = 1 if Fi ∩ B �= ∅ and Poss(Fi/B) = 0
if Fi ∩ B = ∅. Using this we can obtain Cred(B) = ∑q

i=1αiPoss (Fi/B). Here
we have associated with the collection of sources q categories and if a fusion
contains an element from category Fi it get αi points.Related to this is another
credibility function using Cert(Fi/B), which is defined so that Cert(Fi/B) = 1 if
Fi ⊆ B and Cert(Fi/B) = 0 if Fi � B. Using this we can obtain Cred(B) =∑q

i=1αiCert (Fi/B). Here again we have q categories and a fusion using B
distributions; however, we get αi credibility points if the fusion contains all the
elements in a category Fi.

Many different types of functions can be constructed to reflect various complex
relations regarding the credibility of subsets of probability distribution. We note
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that we can use the Takagi-Sugeno [20] approach to fuzzy rule-based modeling
to build credibility functions. As an example of this fusion approach, we consider
a scenario of probability distributions of spatial locations in a search and rescue
mission. Information from differing sources is common, but it is very important to
make good decisions as to how to fuse such information for most likely locations
due to both the need for timely rescue and associated search costs.

Specifically we assume there are three distributions, P1, P2 and P3 that have
source information relative to 4 potential spatial locations (x1, x2, x3, x4) for the
search. For example, the first two distributions might have been obtained from
UAVs or a search plane. The third which differs somewhat was obtained from local
officials who, from their previous rescue experiences, provide what they believe are
the probabilities for the four search locations.

Now we examine these distributions determining their conflicts and the informa-
tion (NegEnt) provided in the fusions. The distributions are:

P1 : (.5, .2, .2, .1) ;P2 : (.4, .3, .2, .1) ;P3 : (.1, .2, .1, .6)

Then

‖P1‖ =
(√
.34
)
= .583; ‖P1‖2 = .34

‖P2‖ =
(√
.3
)
= .547; ‖P2‖2 = .3

‖P3‖ =
(√
.42
)
= .648; ‖P3‖2 = .42

P1·P2 = .31;P1·P3 = .17;P2·P3 = .18

So now we can calculate the conflict Conf
(
Pi, Pj

) = 1− Pi ·Pj
‖Pi‖∗‖Pj.‖

Conf (P1, P2) = 1− .31

.583 ∗ .547
= 1− .31

.318
= 1− .975 = .025

Conf (P1, P3) = 1− .17

.583 ∗ .648
= 1− .17

.378
= 1− .450 = .550

Conf (P2, P3) = 1− .18

.547 ∗ .648
= 1− .18

.354
= 1− .508 = .452

These conflicts are compatible with our intuitions by examining the differences in
the location probabilities particularly with respect to P3.Next we can examine the
possible pairwise fusions of the distributions denoted by a distribution R(i, j):
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R (1, 2) = (.45, .25, .2, .1) ; ‖R (1, 2)‖2 = .316

R (1, 3) = (.3, .2, .15, .35) ; ‖R (1, 3)‖2 = .275

R (2, 3) = (.25, .25, .15, .35) ; ‖R (2, 3)‖2 = .27

So the distribution R(1, 2) fusing the distributions with the least conflict provides
the most information. The range for NegEnt values of fusions depends on the
characteristics of the particular distributions. If we would fuse two identical
distributions, the fusion information content would be the same as the original
distribution. So a better comparison for fused distributions is the ratio of the NegEnt
to the average of the NegEnt of the original distributions. If we do this, we have

‖R (1, 2)‖2 = .316

.32
= .988

‖R (1, 3)‖2 = .275

.38
= .724

‖R (2, 3)‖2 = .27

.36
= .75

This scaling reflects better the comparisons between the fused distributions. Also it
reflects more appropriately the value for R(2, 3) which has less conflict than R(1, 3).
Finally we can fuse all three distributions, R(1, 2, 3)

R (1, 2, 3) = (.333, .233, .166, .266) ; ‖R (1, 2, 3)‖2 = .264

and the ratio is

‖R (1, 2, 3)‖2 = .264

.353
= .748

So the ratio indicates that fusion of all three is roughly the same as R(2, 3) but
improved over R(1, 3).

The distributions and their information content provide an initial basis for
decisions on selections of search areas, but in the next section, 6, we discuss how
to use credibility along with NegEnt for a final fusion. So in that section, we will
revisit the above example using credibility.
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3.6 On Weighted Average Fusion

Let us now look further at the multi-source fusion problem. Assume V is a
variable taking its value in the space X = {x1, · · · , xn} and we have a collection
Z = {P1, · · · , Pt} of probability distribution type information about the value of V.
In addition, we assume a credibility function Cred is providing information about
the credibility of fused values using different subsets of Z.

Given a subset B of probability distributions from Z, we can calculate the
associated fused value, PB. In particular, if |B| is the number of distributions in B,
then PB = 1

|B|
∑
Pi∈B Pi . Our Cred measure now provides the credibility associated

with the fusion based on the subset B, Cred(B). Here Cred(B) ∈ [0, 1]. In addition,
we can calculate the NegEnt value of the information associated with the fused value
PB

‖PB‖2 = 1

|B|2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑

Pi∈B
‖Pi‖2 + 2

t−1∑

i = 1
Pi ∈ B

t∑

k = i + 1
Pk ∈ B

PiPk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.30)

Here also‖PB‖2 ∈ [0, 1].
Our objective now is to obtain a fused value PB that has both high values for

Cred(B) and ‖PB‖2. Since the number of possible subsets of Z is not prohibitive, we
can do an exhaustive search to find the best fusion. We first calculate for each subset
B of Z its fused value PB and its associated credibility Cred(B) and NegEnt(B),
‖PB‖2. We must now compare the PB based on their Cred(B) and ‖PB‖2. Here we
are here faced with a multi-criteria decision problem.

We now introduce the idea of dominance. We say that a fusion based on subset
B1 dominates B2 if Cred(B1)≥ Cred(B2) and NegEnt(B1)≥NegEnt(B2) and at least
one of these is a strictly greater then. We now remove all subsets that are dominated
by some other subset. Our preferred fusion will be one of the nondominated fusions.
We point out here the collection of nondominant fusion subsets have at least have
one member with credibility equal one. This is true because the credibility of the
fusion based on the whole set Z has credibility one and any subset B that dominates
Z must have credibility one.

At this point we have a collection of non-dominated fusions where each fusion
is determined from a subset of space Z; we denote these as B1,· · · ,Br. For each
subset Bj, we have its associated fusion PBj and its NegEnt value,

∥
∥PBj

∥
∥2
, and its

credibility, Cred(Bj). Our objective is to use the information about the NegEnt value
and credibility to select among these possible fusions, the PBj .

If there is only one non-dominated fusion, then this is our selected fusion. If there
is more than one non-dominated fusion our procedure for adjudicating between
these must involve the introduction of some subjective preference type information
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from the responsible decision-maker. Here rather than dictate a best way, we shall
suggest some ways a decision-maker can choose among the non-dominated fusions.
We note other possibilities exist.

Here we consider how to choose the final distribution based both on the
information measure and credibility in our search and rescue example. We will use
two of the possible credibility functions from the previous section, C1 based on the
number of distributions in a subset and C2 based on the idea of “most” distributions
included in a subset.

The collection of relevant probability distributions is ={P1, P2, P3}. So there are
seven subsets of Z to consider: B1 = {P1}, B2 = {P2}, B3 = {P3}, B4 = {P1, P2},
B5 = {P1, P3}, B6 = {P2, P3}, and B7 = {P1, P2, P3}. For the first credibility
function, C1, we use a threshold of at least two distributions included in a subset
so we have

C1 (B1) = C1 (B2) = C1 (B3) = 0

C1 (B4) = C1 (B5) = C1 (B6) = C1 (B7) = 1

Then for the second we use the idea of “most” as the fuzzy value M

M =
⎧
⎨

⎩

0
.7
1.0

|B| = 1
|B| = 2
|B| = 3

and so using M for the second credibility we have

C2 (B1) = C2 (B2) = C2 (B3) = 0

C2 (B4) = C2 (B5) = C2 (B6) = 0.7

C2 (B7) = 1

Now to make our selection of which distribution to use we need to use the concept
of dominance related to the credibility and information. We can express this again
as the predicate Dom(Bi, Bj):

Dom
(
Bi, Bj

) =
[(

Cred (Bi) ≥ Cred
(
Bj
)) ∧

(
‖Bi‖2 ≥ ∥∥Bj

∥
∥2
)
∧ Cond (>)

]

(3.31)

where Cond(>) is true only if at least one of the “≥” is “>.” If Dom(Bi, Bj) is true,
then Bi dominates Bj and so Bj can be removed from consideration. In order to
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Table 3.1 A Summary of
possible dominance
combinations

Subset NegEnt C1 C2

B1 .34 0 0
B2 .3 0 0
B3 .42 0 0
B4 .316 1 0.7
B5 .275 1 0.7
B6 .27 1 0.7
B7 .264 1 1.0

help in working through the possible dominance combinations for our example, we
provide the summarizing Table 3.1.

We can assess Dom for each of the two credibility functions above to obtain
the collection, ND, of non-dominated subsets. For the first credibility function we
see that B3 dominates B1 and B2 as all three have C1 = 0 and B3 has a strictly
greater NegEnt. Then B1, B2 �∈ ND. Likewise B4 dominates B5, B6 and B7 so B5,
B6, B7 �∈ ND. Finally we have to consider the dominance relationship of B3 and B4.
Since (C1(B3) = 0) < (C1(B4) = 1), B3 cannot dominate B4. Also ‖B4‖2< | ‖B3‖2,
so B4 cannot dominate B3, and we have two non-dominated subsets ND = {B3, B4}.

For this case of more than one non-dominating fusion we must utilize some sub-
jective considerations to select the most appropriate one. A possible consideration
is that the distribution P3 obtained from the local officials might be thought of as
more reliable than the fusion, B4, of the less effective sensor obtained probabilities
P1 and P2.

Finally we examine dominance relations for the second credibility function C2.
As for C1, B3 dominates B1 and B2 and B4 dominates B5 and B6, but not B7 since

[C2(B4) = .7] < [C2(B7) = 1]. So again the dominated subsets are eliminated:
B1, B2, B4, B5,B6 �∈ ND. Now B3 cannot dominate B4 or B7 due to credibility since
[C2(B3)= 0] < [C2(B4)= .7] and [C2(B7)= 1.0]. Also B4 cannot dominate B3 since
‖B4‖2 < ‖B3‖2 and B7 cannot dominate either B3 or B4 since its NegEnt is less than
either one. So for the credibility C2, ND = {B3, B4, B7} and again we must discuss
how to select one of these. The considerations discussed for C1 can apply again to
B3 and B4, but now B7 has to be considered also. A criteria here might dictate that
since B7 has the highest credibility due to being the fusion of all three probabilities
it should be chosen.

One observation we would like to make is that there appears to be some asymme-
try between the two criteria, credibility and information content. In particular with
regard to information content it would appear that we would like to obtain as much
of this as possible, while with regard to credibility it may be that we want to have
at least a certain level of credibility. Thus if we don’t have some minimal degree of
credibility any amount of information may not compensate. There appears a kind of
priority here [21–23].

One approach here is for the responsible decision-maker to provide some
minimal level of credibility, λ, and select the fusion with the maximal NegEnt value
having at least this level of credibility. In anticipation of generalizing this idea we
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Fig. 3.3 Degree of
satisfaction for credibility
values

1

0 1

S(y)

y
λ1 λ2

could look at this approach a little more formally. Let S : [0, 1]→ [0, 1] be a function
such that for any degree of credibility y, S(y) indicates the decision-maker degree
of satisfaction with this level y of credibility. Here S should be monotonic and have
S(1) = 1 and S(0) = 0. Using this function we can associate with the fusion based
on a subset B of Z a value, Qual(B) = S(Cred(B))‖PB‖2. Here then we select as our
fusion value the PB so that its, Qual(B) is maximal.

If we consider the function S so that S(y) = 0 for y < λ and S(y) = 1 for y ≥ λ,
we get the previous method for selecting the preferred fused value. In this case

Qual(B) = ‖PB‖2forCred(B) ≥ λ

Qual(B) = 0 forCred(B) < λ

Once having introduced this type of S function, we can consider other formulas
for S. One formula is shown in Fig. 3.3. Here if λ1 = λ2 = λ, then we get the
previous case. If λ1 = 0 and λ2 = 1, then we get Qual(B) = ‖PB‖2Cred(B), the
product of credibility and information content.

It is also possible to use Zadeh’s idea of computing with words [24] to determine
the form of S. Here we can linguistically specify some requirements for our
requested degree of satisfaction by the credibility. We can represent this as a fuzzy
set of the unit interval and then represent S as this fuzzy set.

Another approach for obtaining the quality of a fusion is to use the idea of
prioritized aggregation introduced by Yager [23]. Here the score associated with
a fusion is a weighted sum of its credibility and NegEnt; however, here the
weight associated with the criteria having the lower priority depends on the degree
of satisfaction of higher-order criteria. As a result of this relationship, lack of
satisfaction to the higher priority criteria can’t be compensated for by very high
satisfaction to the lower priority criteria. More formally, the score of the fusion
based on the subset B is determined as Score(B)= w1Cred(B)+w2‖PB‖2. However,
here w2/w1 = Cred(B)/1. Normalizing the weights so that w1+w2 = 1 we get
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Score(B) = 1
1+Cred(B)Cred(B)+ Cred(B)

1+Cred(B)‖PB‖2

= Cred(B)
1+Cred(B)

(
1+ ‖PB‖2)

(3.32)

Here we see that if

Cred(B) Score(B)
0 0
1
/

2 1/3
(
1+ ‖PB‖2)

1 1/2
(
1+ ‖PB‖2)

More generally if Cred(B) = n/d then Score(B) = n
d+n

(
1+ ‖PB‖2). Thus

if Cred(B) = 1
4 then Score(B) = 1

5

(
1+ ‖PB‖2) and if Cred(B) = 3

4 then
Score(B) = 3

7

(
1+ ‖PB‖2). If the credibility is 90% then n

d
= 9

10 and Score(B) =
9
19

(
1+ ‖PB‖2).

3.7 Unequally Weighted Fusions

In the preceding, we assumed that starting with the set Z = {P1, · · · , Pt} we selected
a subset B of Z and found our fusion by taking an equally weighted aggregation
of the probability distributions in B. Here we suggest a more general approach
based on a nonuniform weighted average of the elements in Z. So here we let
W = [w1, · · · , wt] be a set of weights where wi ∈ [0, 1] and

∑t
i=1wi = 1, and

we obtain a fusion PW = ∑t
i=1wiPi . Here PW is a probability distribution whose

jth component PW(j) =∑t
i=1wipij .

We note here that the type of exhaustive search through all possible fusions to find
the best fusion is not feasible here as there are too many possibilities. The preceding
fusions obtained by using a simple average of the probability distributions in the
subset B is a special case of using W obtained by assigning the weights as wi = 1/|B|
for Pi ∈ B and wi = 0 for Pi �∈ B.

In this new situation we see that

‖PW‖2 =∑n
j=1

(∑t
i=1wiPij

)2

=∑t
i=1wi

2‖Pi‖2 + 2
∑t−1
i=1
∑t
k=i+1wiwkPiPk

(3.33)

It can be shown that
∑t
i=1wi

2 + 2
∑t−1
i=1
∑t
k=i+1wiwk = 1 and thus ‖PW‖2 is

a weighted average of the complements of the Gini entropies and the Gini cross
entropies. Thus ‖PW‖2 provides an indication of the information in a fusion based
on using the weighted function W = [w1, · · · , wt]. Here ‖PW‖2 ∈ [0, 1], and the
bigger the value, the more information and less uncertainty.



72 R. R. Yager and F. E. Petry

A second aspect in determining the quality of the fusion obtained by using
the weighted value W = [w1, · · · , wt] is the credibility of this fusion. In order to
determine the credibility associated with the weight vector W, Cred(W), our point of
departure will be the given credibility measure Cred : 2Z → [0, 1], which associates
with each subset B ⊆ Z a value Cred(B) ∈ [0, 1]. Using some ideas provided
by Wang and Klir [25] about extending set measures, we can obtain from this a
credibility function, ~Cred(W), which associates with each vector W a value in the
unit interval indicating a credibility of a fusion using a weighting of Pi based on
the weights in W. In order to accomplish this we take the Choquet integral of a
function f on Z with respect to the measure Cred on Z [26–28]. Here f is defined
as f (Pi) = wi/max

j
wj . Thus f (Pi) is the weight assigned to Pi divided by the max

weight in W. Parenthetically, f can be viewed as the membership function of a fuzzy
subset of Z.

We obtain the Choquet integral of f with respect to the measure Cred as follows
[25]. Let ind be an index function so that ind(j) is the index of element in Z with the
jth largest value for f, it is essentially the element in Z with the jth largest value for
wi. Here then f

(
Pind(j)

) = wind(j)/max
i

[wi] is the jth largest value for f (Pi). We

now let Hj = {Pind(k)|k = 1 to j}, it is the subset of Z with the j largest values of f.
We note it is also the subset of Z with the j largest weights. Using this we obtain via
the Choquet integral

~Cred(W) =
t∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

))
f
(
Pind(j)

)

=
t∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

)) wind(j)

max
i

[wi]

= 1

max
i

[wi]

t∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

))
wind(j)

(3.34)

Consider now our original situation in which we used a subset B of Z with
uniformly weighted components to get our fused value. Here the Credibility of
this is Cred(B). Let us show that we get this same value in the more general
framework of using of vector W. In this case, we have as previously noted that
W is such that wi = 1/|B| for Pi ∈ B and wi = 0 for Pi �∈ B. In this case, we get

max [W ] = max
i

[wi] = 1/ |B|. Here we see that
q

Cred(W)) is equal to
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~Cred(W) = 1

max [W ]

⎡

⎣
|B|∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

))
wind(j)

+
t∑

j=|B|+1

(
Cred

(
Hj
)− Cred

(
Hj−1

))
wind(j)

⎤

⎦

(3.35)

Since wind(j) = 1/|B| for j = 1 to |B| and wind(j) = 0 for j = |B| + 1 to t we get

~Cred(W) = 1

max [W ]

⎡

⎣
|B|∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

)) 1

|B|

⎤

⎦ (3.36)

with max[W]= 1/|B|we see that ~Cred(W) =
[∑|B|

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

))]
.

Further, we see that ~Cred(W) = ∑|B|
j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

)) =
Cred

(
H|B|

) − Cred (∅) = Cred
(
H|B|

)
. Since H|B| is the set of elements in Z

with that |B| largest weights, H|B| = B we get as desired that ~Cred(W) = Cred(B)
in this case. We can express ~Cred(W) = ChoqCred (fW ) where fW is the function
fW (Pi) = wi/ max [W]. We shall now look at little more carefully at this ~Cred(W)
function.

First let us make the following notation comment. If B is any nonempty subset of
Z, then we shall denote WB as its the weighting vector with all wj = 1/|B| for Pj ∈ B
and wj = 0 for Pj �∈ B. We note here that f (Pj) = 1 for all Pj ∈ B and f (Pj) = 0 for
Pj �∈ B.

Theorem: Assume WB is any weighting vector that has weights of zero for any
element not in B; then ~Cred (WB) ≥~Cred

(
WB

)
.

Proof: Let fB and fB be the associated function for each of these weighted vectors.
Here we have fB(Pj) = 1 for Pj ∈ B and fB(Pj) = 0 for Pj �∈ B also fB(Pj) ≤ 1 for
Pj ∈ B and fB(Pj) = 0 for Pj �∈ B. From this we see that fB(Pj) ≥ fB(Pj) for all Pj.
From the monotonicity of the Choquet integral [22] we get

~Cred (WB) = ChoqCred (fB) ≥ ChoqCred
(
f B
)
=
︸ ︸
Cred

(
WB

)
(3.37)

More generally we see the following

Theorem: Let D ⊆ B be two subsets of Z. Let WD be a weighting vector that has
zero weights for any element not in D. Then ~Cred (WB) ≥~Cred

(
WD

)
.
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Proof: Here again we have fB(Pj) = 1 for Pj ∈ B and fB(Pj) = 0 for Pj �∈ B while
fD(Pj) ≤ 1 for Pj ∈ D and fD

(
Pj
) = 0 for Pj /∈ D,Pj ∈ D where D ∩ B =

∅. From this we get fB(Pj) ≥ fD(Pj) for all Pj. The result again follows from the
monotonicity of the Choquet integral.

A corollary of the preceding is that if D⊆ B, then ~Cred (WB) ≥~Cred (WD). This
is of course the same as the monotonicity of the measure Cred, Cred(B) ≥ Cred(D)
if D ⊆ B. If W is a weighting vector such the components in B are nonzero, while
those that are not in B are zero, we say that W is based on B. So we have shown
for any weight based on B the most credibility occurs if we uniformly assign the
weights to the elements in B.

More generally from the monotonicity of the Choquet integral we see if
W = [w1, · · · , wt] and Ŵ = [ŵ1, · · · , ŵt ] are two sets of weighting vectors so that
wj

max[W ] ≥ ŵj

max
[
Ŵ
] for all j then ~Cred(W) ≥ ~Cred

(
Ŵ
)
. We note that while there

exists some type of relationship between the choice of weighting vector W and
~Cred(W), the relationship between ‖PW‖2 and the choice of the weights is more
complex since ‖PW‖2 =∑t

i=1wi
2‖Pi‖2 + 2

∑t−1
i=1
∑t
k=i+1wiwkPiPk .

An interesting characterizing feature we can associate with each Pi is Ri =∑t

k = 1
k �= i

PiPk . We see Ri is the average cross-information. Clearly the bigger this

value, the more desirable the probability distribution Pi is for including in the
weighted fusion. Similarly, the larger the ‖Pi‖2, the more desirable the Pi is for
including in the weighted fusion. Here then given a set of probability distributions,
Z = {P1, · · · , Pt} and a credibility measure Cred on Z, the question we are faced
with is the problem of how to select the appropriate weights for the fusion given our
interest in obtaining a fused value that is both informative and credible. While we
have provided formulations for calculating the information, ‖PW‖2, and credibility,
~Cred(W), given a weighting vector W, the process of obtaining the optimal weighted
vector W is a difficult multi-criteria optimization problem. Given the apparent
difficulty of solving this optimization problem, we shall look for some satisfying
solution to this problem.

Here again we shall assume some minimal required level of credibility α and
look for solutions with a large value of ‖PW‖2 that have at least this minimal level
of credibility. Let us look at the formulation for ‖PW‖2

‖PW‖2 =
∑t

i=1
wi

2Pi
2 + 2

∑t−1

i=1

∑t

k=i+1
wiwkPiPk (3.38)

We note that terms PiPk and Pi
2 can be calculated off line and are independent

of choice of W. Let us denote these as follows: PiPk = mik and Pi
2 = mii.Thus here

then
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‖PW‖2 =
∑t

i=1
wi

2mii + 2
∑t−1

i=1

∑t

k=i+1
wiwkmik (3.39)

|and we have the constraints that
∑t
i=1wi = 1 and wi ∈ [0, 1].Here our objective is

to try to get ‖PW‖2 as large as possible. In addition,

~Cred(W) =
t∑

j=1

(
Cred

(
Hj
)− Cred

(
Hj−1

)) wind(j)

max
i

[wi]
(3.40)

which we require to have a value of at least α.
A useful characterizing feature we can associate with the basic Cred measure on

the space Z = {P1, · · · , Pt} is its Shapely index [29–31]. For any Pj ∈ Z we define
its Shapely index Sj as

Sj =
t−1∑

k=0

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

γk
∑

K ⊂ Fj
|K| = k

(
Cred

(
K ∪ {Pj

})− Cred(K)
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(3.41)

In the above, K is a subset of cardinality |K|, Fj = Z − {Pj} and γk = (n−k−1)!k!
n! .

It can be shown [31] that Sj ∈ [0, 1] and
∑t
j=1Sj = 1. This index can be seen as

the average increase in “credibility” obtained by adding the element Pj to a set that
doesn’t contain it. We note that it can be shown that if Cred is a simple additive
measure with Cred({Pj}) = αj, then Sj = αj, and if Cred is a cardinality based
measure, then Sj = 1/t for all j [31]. Using these Shapely index values, we can
obtain an approximation to the credibility of a subset associated with a weighting
vector W = [w1, · · · , wt] in particular ~Cred(W) =∑t

j=1 Sj
wj

max
i

[wi ]
.

We recall that for the case where W is related to a crisp subset B of X, wj = 1/|B|
for all Pj ∈ B, and wj = 0 for all Pj �∈ B. Here then max

i
[wi] = 1/ |B| and we have

wj
max
i

[wi ]
= 1 for Pj ∈ B and

wj
max
i

[wi ]
= 0 for Pj �∈ B. From this we get ~Cred(B) =

∑
xj∈B Sj = Cred(B). This is Cred(B) for the special case of uniform weights.

Using this definition for ~Cred(W), we now formulate our problem of finding the
most informative weighted fusion of the elements of Z given that we want a minimal
credibility of α. In particular, the problem becomes:

Find w1,· · · ,wt to maximize:

‖PW‖2 =
∑t

i=1
wi

2mii + 2
∑t−1

i=1

∑t

k=i+1
wiwkmik (3.42)
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such that:

1

max
i

[wi]

t∑

i=1

wiSi ≥ α;

wi ∈ [0, 1] ;

∑t

i=1
wi = 1

This is a nonlinear mathematical programming problem.

3.8 Conclusion

Our objective here was to obtain quality-fused values about the value of a variable
from information provided by multiple sources in the form of probabilistic distribu-
tions. Here quality was measured by a lack of uncertainty in the fused value, more
informative fused values, and the use of credible sources. We introduced a vector
representation for a probability distribution, and using the Gini formulation for
entropy, we showed how the norm of the vector provides a measure of the certainty,
information, associated with a probability distribution. We looked at special cases
of fusion for source inputs that were maximally uncertain and certain. We provided
a measure of credibility associated with subsets of sources. We looked at the issue
of finding the highest quality fused value from the weighted aggregations of source
provided probability distributions.
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Chapter 4
Conflict Management in Information
Fusion with Belief Functions

Arnaud Martin

Abstract In information fusion, the conflict is an important concept. Indeed,
combining several imperfect experts or sources allows conflict. In the theory of
belief functions, this notion has been discussed a lot. The mass appearing on
the empty set during the conjunctive combination rule is generally considered as
conflict, but that is not really a conflict. Some measures of conflict have been
proposed, and some approaches have been proposed in order to manage this conflict
or to decide with conflicting mass functions. We recall in this chapter some of them,
and we propose a discussion to consider the conflict in information fusion with the
theory of belief functions.

Keywords Belief functions · Conflict measure · Combination rule · Reliability ·
Ignorance · Decision

4.1 Introduction

The theory of belief functions was first introduced by [5] in order to represent some
imprecise probabilities with upper and lower probabilities. Then [30] proposed a
mathematical theory of evidence with is now widely used for information fusion.
Combining imperfect sources of information leads inevitably to conflict. One can
consider that the conflict comes from the non-reliability of the sources or the sources
do not give information on the same observation. In this last case, one must not
combine them.

Let Ω = {ω1, . . . , ωn} be a frame of discernment of exclusive and exhaustive
hypothesis. A mass function m, also called basic belief assignment (bba), is the
mapping from elements of the power set 2Ω (composed by all the disjunctions of
Ω) onto [0, 1] such that:
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∑

X∈2Ω

m(X) = 1. (4.1)

A focal element X is an element of 2Ω such that m(X) �= 0. If the focal elements
are nested, the mass functions is consonant. A simple mass function, noted Aw is
given by:

{
m(A) = w
m(Ω) = 1− w (4.2)

This mass function allows to show that we can model an imprecise information
(if A is a union of singletons ωi) and an uncertain information (if w > 0). All
nondogmatic mass functions (with m(Ω) > 0)) can be decomposed by a set of
simple mass functions [30].

Constraining m(∅) = 0 corresponds to a closed-world assumption [30], while
allowing m(∅) ≥ 0 corresponds to an open world assumption [32]. Smets
interpreted this mass on the empty set such as a non-expected hypothesis and
normalizes it in the pignistic probability defined for all X ∈ 2Ω , with X �= ∅ by:

BetP(X) =
∑

Y∈2Ω,Y �=∅

|X ∩ Y |
|Y |

m(Y)

1−m(∅) . (4.3)

The pignistic probability can be used in the decision process such as a compromise
between the credibility and the plausibility. The credibility is given for all X ∈ 2Ω

by:

bel(X) =
∑

Y⊆X,Y �=∅
m(Y), (4.4)

The plausibility is given for all X ∈ 2Ω by:

pl(X) =
∑

Y∈2Ω,Y∩X �=∅
m(Y) = bel(Ω)− bel(Xc) = 1−m(∅)− bel(Xc), (4.5)

where Xc is the complementary of X. Hence, if we note the decision function fd
that can be the pignistic probability, the credibility, or the plausibility, we choose
the element A ∈ 2Ω for a given observation if:

A = argmax
X∈Ω

(fd(X)) . (4.6)

The decision is made on the mass function obtained by the combination of all the
mass function from the sources.
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The first combination rule has been proposed by Dempster [5] and is defined for
two mass functions m1 and m2, for all X ∈ 2Ω , with X �= ∅ by:

mDS(X) = 1

1− κ
∑

A∩B=X
m1(A)m2(B), (4.7)

where κ =
∑

A∩B=∅
m1(A)m2(B) is the inconsistence of the combination and

generally called conflict. We call it here the global conflict such as the sum of all
partial conflicts.

To stay in an open world, Smets [32] proposes the non-normalized conjunctive
rule given for two mass functions m1 and m2 and for all X ∈ 2Ω by:

mConj(X) =
∑

A∩B=X
m1(A)m2(B) := (m1 ∩©m2)(X). (4.8)

These both rules allow to reduce the imprecision of the focal elements and to
increase the belief on concordant elements after the fusion. The main assumptions
to apply these rules are the cognitive independence and the reliability of the sources.

Based on the results of these rules, the problem enlightened by the famous
Zadeh’s example [37] is the repartition of the global conflict. Indeed, consider
Ω = {ω1, ω2, ω3} and two experts opinions given bym1(ω1) = 0.9,m1(ω3) = 0.1,
and m2(ω2) = 0.9, m1(ω3) = 0.1, the mass function resulting in the combination
using Dempster’s rule is m(ω3) = 1 and using conjunctive rule is m(∅) = 0.99,
m(ω3) = 0.01. Therefore, several combination rules have been proposed to manage
this global conflict [23, 33].

As observed in [17, 25], the weight of conflict given by κ = mConj(∅) is not a
conflict measure between the mass functions. Indeed, the conjunctive-based rules
are not idempotent (as the majority of the rules defined to manage the global
conflict): the combination of identical mass functions leads generally to a positive
value of κ . Hence, new kind of conflict measures are defined in [25].

In Sect. 4.2, we recall some measures of conflict in the theory of belief functions.
Then, in Sect. 4.3 we present the ways to manage the conflict either before the
combination or in the combination rule. Section 4.4 presents some decision methods
in order to consider the conflict during this last step of information process.

4.2 Modeling Conflict

First of all, we should not mix up conflict measure and contradiction measure.
The measures defined by [13, 34] are not conflict measures, but some discord and
specificity measures (to take the terms of [16]) we call contradiction measures. We
define the contradiction and conflict measures by the following definitions:
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Definition A contradiction in the theory of belief functions quantifies how a mass
function contradicts itself.

Definition (C1) The conflict in the theory of belief functions can be defined by the
contradiction between two or more mass functions.

Therefore, is the mass of the empty set or the functions of this mass (such as
− ln(1 − mConj(∅)) proposed by [30]) a conflict measure? It seems obvious that
the property of the non-idempotence is a problem to use this as a conflict measure.
However, if we define a conflict measure such as Conf(m1,m2) = mConj(∅), we
note that Conf(m1,mΩ) = 0 where mΩ(Ω) = 1 is the ignorance. Indeed, the
ignorance is the neutral element for the conjunctive combination rule. This property
seems to be followed from a conflict measure.

Other conflict measures have been defined. In [14], a conflict measure is given
by:

Conf(m1,m2) = 1− plT1 .pl2
‖pl1‖‖pl2‖

(4.9)

where pl is the plausibility function and plT1 .pl2 the vector product in 2n space
of both plausibility functions. However, generally Conf(m1,mΩ) �= 0 that seems
counter-intuitive.

4.2.1 Auto-conflict

Introduced by [28], the auto-conflict of order s for one source is given by:

as =
(
s
∩©
j=1
m

)

(∅). (4.10)

where ∩© is the conjunctive operator of Eq. (4.8). The following property holds as ≤
as+1, meaning that due to the non-indempotence of ∩©, the more masses m are
combined with itself, the nearer to 1 κ is, and so in a general case, the more the
number of sources is high, the nearer to 1 κ is. The behavior of the auto-conflict was
studied in [25], and it was shown that we should take into account the auto-conflict
in the global conflict in order to really define a conflict. In [36], the auto-conflict
was defined and called the plausibility of the belief structure with itself. The auto-
conflict is a kind of measure of the contradiction, but depends on the order s of the
combination. A measure of contradiction independent on the order has been defined
in [31].
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4.2.2 Conflict Measure Based on a Distance

With the definition of the conflict (C1), we consider sources to be in conflict if their
opinions are far from each other in the space of corresponding bbas. That suggests a
notion of distance. That is the reason why in [25], we give a definition of the measure
of conflict between sources assertions through a distance between their respective
bbas. The conflict measure between 2 experts is defined by:

Conf(1, 2) = d(m1,m2). (4.11)

We defined the conflict measure between one source j and the otherM − 1 sources
by:

Conf(j,E ) = 1

M − 1

M∑

i=1,i �=j
Conf(i, j), (4.12)

where E = {1, . . . ,M} is the set of sources in conflict with j . Another definition is
given by:

Conf(j,M) = d(mj ,mM), (4.13)

where mM is the bba of the artificial source representing the combined opinions of
all the sources in E except j .

A comparison of distances in the theory of belief functions is presented in [14].
We consider the distance defined in [15] as the most appropriate. This distance is
defined for two basic belief assignments m1 and m2 on 2Ω by:

dJ (m1,m2) =
√

1

2
(m1 −m2)T D(m1 −m2), (4.14)

whereD is an 2|Ω|×2|Ω| matrix based on Jaccard dissimilarity whose elements are:

D(A,B) =

⎧
⎪⎪⎨

⎪⎪⎩

1, ifA = B = ∅,

|A ∩ B|
|A ∪ B| , ∀A,B ∈ 2Ω.

(4.15)

An interesting property of this measure is given by Conf(m,m) = 0. That means
that there is no conflict between a source and itself (that is not a contradiction).
However, we generally do not have Conf(m,mΩ) = 0, where mΩ(Ω) = 1 is the
ignorance.
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4.2.3 Conflict Measure Based on Inclusion Degree and
Distance

We have seen that we cannot use the mass on the empty set as a conflict measure
because of the non-idempotence of the conjunctive rule. We also have seen that the
conflict measure based on the distance is not null in general for the ignorance mass.
The conjunctive rule does not transfer mass on the empty set if the mass functions
are included. We give here some definitions of the inclusion.

Definition 1 (Strict inclusion) We say that the mass functionm1 is included inm2
if all the focal elements of m1 are included in each focal elements of m2.

Definition 2 (Light inclusion) We say that the mass functionm1 is included inm2
if all the focal elements of m1 are included in at least one focal element of m2.

Definition We note this inclusion by m1 ⊆ m2. The mass functions are included if
m1 is included in m2 or m2 is included in m1.

In [21], we propose a conflict measure base on five following axioms. Let note
Conf(m1,m2) a conflict measure between the mass functions m1 and m2. We
present hereafter essential properties that must verify a conflict measure.

1. Nonnegativity:

Conf(m1,m2) ≥ 0 (4.16)

A negative conflict does not make sense. This axiom is, therefore, necessary.
2. Identity:

Conf(m1,m1) = 0 (4.17)

Two equal mass functions are not in conflict. This property is not reached by the
global conflict, but seems natural.

3. Symmetry:

Conf(m1,m2) = Conf(m2,m1) (4.18)

The conflict measure must be symmetric. We do not see any case where the non-
symmetry can make sense.

4. Normalization:

0 ≤ Conf(m1,m2) ≤ 1 (4.19)

This axiom may not be necessary to define a conflict measure, but the normaliza-
tion is very useful in many applications requiring a conflict measure.



4 Conflict Management in Information Fusion with Belief Functions 85

5. Inclusion:

Conf(m1,m2) = 0, if and only if m1 ⊆ m2 or m2 ⊆ m1 (4.20)

This axiom means that if the focal elements of two mass functions are not
conflicting (the intersection is never empty), the mass functions are not in conflict
and the mass functions cannot be in conflict if they are included. This axiom is
not satisfied by a distance-based conflict measure.

These proposed axioms are very similar to ones defined in [7]. If a conflict
measure satisfied these axioms that is not necessary a distance. Indeed, we only
impose the identity and not the definiteness (Conf(m1,m2) = 0 ⇔ m1 = m2).
The axiom of inclusion is less restrictive and makes more sense for a conflict
measure. Moreover, we do not impose the triangle inequality (Conf(m1,m2) ≤
Conf(m1,m3) + Conf(m3,m2)). It can be interesting to have Conf(m1,m2) ≥
Conf(m1,m3) + Conf(m3,m2) meaning that an expert given the mass function
m3 can reduce the conflict. Therefore, a distance (with the property of the triangle
inequality) cannot be used directly to define a conflict measure.

We see that the axiom of inclusion seems very important to define a conflict
measure. This is the reason why we define in [21] a degree of inclusion to measure
how two mass functions are included. Let the inclusion index: Inc(X1, Y2) = 1
if X1 ⊆ Y2 and 0 otherwise, where X1 and Y2 are two focal elements of m1 and
m2, respectively. According to Definitions 1 and 2, we introduce two degrees of
inclusion of m1 in m2. A strict degree of inclusion of m1 in m2 is given by:

dincS(m1,m2) = 1

|F 1||F 2|
∑

X1∈F1

∑

Y2∈F2

Inc(X1, Y2) (4.21)

where F 1 and F 2 are the set of focal elements of m1 and m2, respectively, and
|F 1|, |F 2| are the number of focal elements of m1 and m2.

This definition is very strict, so we introduce a light degree of inclusion of m1 in
m2 given by:

dincL(m1,m2) = 1

|F 1|
∑

X1∈F1

max
Y2∈F2

Inc(X1, Y2). (4.22)

Let δinc(m1,m2) a degree of inclusion of m1 and m2 define by:

δinc(m1,m2) = max(dinc(m1,m2), dinc(m2,m1)) (4.23)

This degree gives the maximum of the proportion of focal elements from one mass
function included in another one. Therefore, δinc(m1,m2) = 1 if and only if m1 and
m2 are included, and the axiom of inclusion is reached for 1− δinc(m1,m2).

Hence, we define in [21], a conflict measure between two mass functionsm1 and
m2 by:
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Conf(m1,m2) = (1− δinc(m1,m2))dJ (m1,m2) (4.24)

where dJ is the distance defined by Eq. (4.14). All the previous axioms are satisfied.
Indeed the axiom of inclusion is 1 − δinc(m1,m2) and the distance dJ satisfied the
other axioms. Moreover 0 ≤ δinc(m1,m2) ≤ 1, by the product of 1 − δinc and dJ ,
all the axioms are satisfied.

For more than two mass functions, the conflict measure between one source j
and the otherM − 1 sources can be defined from Eqs. (4.12) or (4.13).

4.3 Managing Conflict

The role of conflict is essential in information fusion. Different ways can be used
to manage and reduce the conflict. The conflict can come from the low reliability
of the sources. Therefore, we can use this conflict to estimate the reliability of the
sources if we cannot learn it on databases as proposed in [25]. Hence, we reduce
the conflict before the combination, but we can also directly manage the conflict in
the rule of combination as generally made in the theory of belief functions such as
explained in [23, 33].

According to the application, we do not search always to reduce the conflict. For
example, we can use the conflict measure such as an indicator of the inconsistence
of the fusion, for example, in databases [2]. Conflict information can also be an
interesting information in some applications such as presented in [29].

4.3.1 Managing the Conflict Before the Combination

The conflict appearing while confronting several experts’ opinions can be used as
an indicator of the relative reliability of the experts. We have seen that there exist
many rules in order to take into account the conflict during the combination step.
These rules do not make the difference between the conflict (global or local conflict)
and the auto-conflict due to the non-idempotence of the majority of the rules. We
propose here the use of a conflict measure in order to define a reliability measure,
which we consider before the combination, in a discounting procedure.

When we can quantify the reliability of each source, we can weaken the basic
belief assignment before the combination by the discounting procedure:

{
mαj (X) = αjmj (X), ∀X ∈ 2Ω � {Ω}
mαj (Ω) = 1− αj (1−mj(Ω)). (4.25)

αj ∈ [0, 1] is the discounting factor of the source j that is, in this case, the reliability
of the source j , eventually as a function of X ∈ 2Ω .
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Other discounting procedures are possible such as the contextual discounting
[26] or a discounting procedure based on the credibility or the plausibility functions
[38].

According to the applications, we can learn the discounting factors αj , for
example, from the confusion matrix [18]. In many applications, we cannot learn the
reliability of each source. A general approach to the evaluation of the discounting
factor without learning is given in [10]. For a given bba, the discounting factor is
obtained by the minimization on α of a distance given by:

Distαj =
∑

A∈Ω

(
BetPj (A)− δA,j

)2
, (4.26)

where BetPj is the pignistic probability (Eq. (4.3)) of the bba given by the source j
and δA,j = 1 if the source j supports A and 0 otherwise.

This approach is interesting with the goal of making decision based on pignistic
probabilities. However, if the source j does not support a singleton of Ω , the
minimization on αj does not work well.

In order to combine the bbas of all sources together, we propose here to estimate
the reliability of each source j from the conflict measure Conf between the source
j and the others by:

αj = f (Conf(j,M)), (4.27)

where f is a decreasing function. We can choose:

αj =
(
1− Conf(j,M)λ

)1/λ
, (4.28)

where λ > 0. We illustrate this function for λ = 2 and λ = 1/2 on Fig. 4.1. This
function allows to give more reliability to the sources with few conflict with the
other.

Other definitions are possible. The credibility degree defined in [4] is also based
on the distance given in Eq. (4.14) and could also be interpreted as the reliability
of the source. However the credibility degree in [4] is integrated directly in the
combination with a weighted average. Our reliability measure allows the use of all
the existing combination rules.

4.3.2 Managing the Conflict in the Combination

According to the application, if we cannot reduce the conflict before the combina-
tion, we can do it by incorporating it into a combination rule. The choice of the
combination rule is not easy, but it can be done by utilizing the conflict and the
assumption on its origin. Indeed Dempster’s rule can be applied if the sources are
independent and reliable. Dempster’s rule is given for S sources for all X ∈ 2Ω ,
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Fig. 4.1 Reliability of one source based on conflict of the source with the other sources

X �= ∅ by:

mDS(X) = 1

1−mConj(∅)
∑

Y1∩...∩Ys=X

S∏

j=1

mj(Yj ) = mConj(X)

1− κ , (4.29)

where κ = mConj(∅), Yj ∈ 2Ω is the answer of the source Sj and mj(Yj ) the
associated mass function. This normalization by 1 − mConj(∅) hides the conflict,
and so this rule is interesting only if we consider the closed world and if the sources
are not highly conflicting.

If the assumption of independent and reliable sources is not reached, the
application of Dempster’s rule can produce some global conflict.

4.3.2.1 Conflict Coming from a False Assumption of Closed World

In the closed world, the elements of the frame of discernment are assumed
exhaustive. If m(∅) > 0, this mass can be interpreted such as another element,
and so the assumption on the exhaustiveness of the frame of discernment is false.
Hence, Smets [33] proposed the use of the conjunctive rule given for S sources for
all X ∈ 2Ω by:
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mConj(X) =
∑

Y1∩...∩Ys=X

S∏

j=1

mj(Yj ). (4.30)

Here, the sources must be cognitively independent and reliable, while the open
world is considered. Hence, the mass on the empty set can be interpreted as another
element unknown by the sources. In fact, in the proposed model by Smets, the
conflict is transferred during the decision step by the pignistic probability [32],
hiding the conflict to the end. This rule cannot be used in applications with a high
value of κ .

The global conflict comes from the sum of the partial conflict. Hence, if the
global conflict can be interpreted as an unknown element, all the partial conflict
can be interpreted as many unknown elements. In that case we can keep the partial
conflict in order to decide on these elements (see Sect. 4.4 for this consideration).
Therefore the assumption of the exclusivity is considered here as false.

Under this assumption, the mass functions are no more defined on the power set
2Ω but on the so-called hyper power set1 DΩ . Therefore the space Ω is closed by
the union and intersection operators. This extension of the power set leads to a lot
of reflections around this new expressiveness taking the name of DSmT (Dempster-
Shafer modified Theory).

One can also consider a partial exclusiveness of the frame of discernment. Hence,
we introduce the notation DΩr in [19] in order to integrate some constraints on the
exclusiveness of some elements ofΩ and to reduce the hyper power set size. Under
these assumptions, we define the PCR6 rule in [22], given by:

mPCR6(X) = mConj(X)

+
S∑

j=1

mj(X)
2

∑

S−1∩
j ′=1

Yσj (j
′)∩X=∅

(Yσj (1),...,Yσj (S−1))∈(DΩr )s−1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s−1∏

j ′=1

mσj (j ′)(Yσj (j ′))

mj (X)+
s−1∑

j ′=1

mσj (j ′)(Yσj (j ′))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.31)

where σ is given by:

{
σj (j

′) = j ′ if j ′ < j,
σj (j

′) = j ′ + 1 if j ′ ≥ j, (4.32)

This rule transfers the partial conflicts on the elements that generate it, proportion-
ally to their masses. This rule has been used in many applications allowing for good
results.

1This notation is introduced by [8] and D come from the Dedeking lattice.
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4.3.2.2 Conflict Coming from the Assumption of Source’s Independence

If we consider some dependent sources, the conjunctive rule cannot be used. If we
want to combine mass functions coming from dependent sources, the combination
rule has to be idempotent. Indeed, if we combine two identical dependent mass
functions (coming from different dependent sources), we have to obtain the same
mass function without any global conflict.

The simplest way to obtain a non-idempotent rule is the average of the mass
functions such given in [27] by:

mMean(X) = 1

s

S∑

j=1

mj(Yj ). (4.33)

We showed the interest in a such rule in [28], but in that case the sources have to be
assumed totally reliable. If the sources give high conflicting information, this rule
can provide some errors in the decision process.

The cautious rule [6] could be used to combine mass functions for which
independence assumption is not verified. Cautious combination of S nondogmatic
mass functionsmj , j = 1, 2, · · · , S is defined by the bba with the following weight
function:

w(A) = S∧
j=1
wj(A), A ∈ 2Ω \Ω. (4.34)

We thus have

mCautious(X) = ∩©
A�Ω

A

S∧
j=1

wj (A)

, (4.35)

where Awj (A) is the simple support function focused on A with weight function
wj(A) issued from the canonical decomposition of mj . Note also that ∧ is the min
operator.

When the dependence/independence of the sources is estimated, another rule was
proposed in [3].

4.3.2.3 Conflict Coming from Source’s Ignorance

Another possible interpretation of the reason for the conflict is the ignorance of the
sources. Indeed, if a source is highly ignorant, it should give a categorical mass
function on Ω .

Therefore, [35] interprets the global conflict coming from the ignorance of the
sources and transfers the mass on the total ignorance (i.e., on Ω) in order to keep
the closed-world assumption. In the case of high conflict, the result of the fusion is
the ignorance. This rule is given by:
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mY(X) = mConj(X),∀X ∈ 2Ω, X �= ∅, X �= Ω
mY(Ω) = mConj(Ω)+mConj(∅)
mY(∅) = 0.

(4.36)

A source can also be ignorant not on all but only on some focal elements. Hence,
[9] proposed a clever conflict repartition by transferring the partial conflicts on the
partial ignorances. This rule is given for all X ∈ 2Ω , X �= ∅ by:

mDP(X) =
∑

Y1∩...∩Ys=X

S∏

j=1

mj(Yj )+
∑

Y1 ∪ . . . ∪ Ys = X
Y1 ∩ . . . ∩ Ys = ∅

S∏

j=1

mj(Yj ), (4.37)

where Yj ∈ 2Ω is a focal element of the source Sj , and mj(Yj ) the associated mass
function. This rule has a high memory complexity, such as the PCR6 rule, because
it is necessary to manage the partial conflict.

4.3.2.4 Conflict Coming from Source Reliability Assumption

If we have no knowledge of the reliability of the sources, but we know that at least
on source is reliable, the disjunctive combination can be used. It is given for all
X ∈ 2Ω by:

mDis(X) =
∑

Y1∪...∪Ys=X

S∏

j=1

mj(Yj ). (4.38)

The main problem of this rule is the loss of specificity after combination.
One can also see the global conflict κ = mConj(∅) such as an estimation of the

conflict coming from the unreliability of the sources. Therefore, the global conflict
can play the role of a weight between a conjunctive and disjunctive comportment of
the rule such introduced by [12]. This rule is given for X ∈ 2Ω , X �= ∅ by:

mFlo(X) = β1(κ)mDis(X)+ β2(κ)mConj(X), (4.39)

where β1 and β2 can be defined by:

β1(κ) = κ

1− κ + κ2 ,

β2(κ) = 1− κ
1− κ + κ2

.
(4.40)

In a more general way, we propose in [23] to regulate the conjunctive/disjunctive
comportment taking into consideration the partial combinations. The mixed rule is
given for m1 and m2 for all X ∈ 2Ω by:
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mMix(X) =
∑

Y1∪Y2=X
δ1m1(Y1)m2(Y2)

+
∑

Y1∩Y2=X
δ2m1(Y1)m2(Y2).

(4.41)

If δ1 = β1(κ) and δ2 = β2(κ), we obtain the rule of [12]. Likewise, if δ1 = 1−δ2 =
0, we obtain the conjunctive rule and if δ1 = 1 − δ2 = 1 the disjunctive rule. With
δ1(Y1, Y2) = 1−δ2(Y1, Y2) = 1l{∅}(Y1∩Y2), we get back to the rule of [9] by taking
into account partial conflicts.

The choice of δ1 = 1− δ2 can also be made from a dissimilarity such as:

δ2(Y1, Y2) = |Y1 ∩ Y2|
min(|Y1|, |Y2|) , (4.42)

where |Y1| is the cardinality of Y1. Jaccard dissimilarity can also be considered by:

δ2(Y1, Y2) = |Y1 ∩ Y2|
|Y1 ∪ Y2| . (4.43)

Therefore, if we have a partial conflict between Y1 and Y2, |Y1∩Y2| = 0, and the rule
transfers the mass on Y1 ∪ Y2. In that case Y1 ⊂ Y2 (or the contrary), Y1 ∩ Y2 = Y1,
and Y1 ∪ Y2 = Y2; hence with δ2 given by (4.42), the rule transfers the mass on
Y1 and with δ2 given by (4.43) on Y1 and Y2 according to the ratio |Y1|/|Y2| of
cardinalities. In the case Y1 ∩ Y2 �= Y1, Y2 and ∅, the rule transfers the mass on
Y1∩Y2 and Y1∪Y2 according to Eqs. (4.42) and (4.43). With such weights, the Mix
rule considers partial conflict according to the imprecision of the elements at the
origin of the conflict.

4.3.2.5 Conflict Coming from a Number of Sources

When we have to combine a many sources, the assumption of the reliability of all the
sources is difficult to consider especially if the sources are human. The disjunctive
rule (4.38) assumes that at least one source is reliable but a precise decision will be
difficult to take. Moreover, the complexity of main rules managing the conflict in a
clever way is too high such as the rules given by (4.41) and (4.31). That is the reason
why we introduce in [39] a new rule according to the following assumptions:

• The majority of sources are reliable;
• The larger extent one source is consistent with others, the more reliable the source

is;
• The sources are cognitively independent.

For each mass function mj , we consider the set of mass functions {Awjk , Ak ⊂
Ω} coming from the canonical decomposition. If group the simple mass functions
A
wj
k in c clusters (the number of distinct Ak) and denote by sk the number of simple

mass functions in the cluster k, the proposed rule is given by:
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mLNS = ∩©
k=1,··· ,c

(Ak)

1−αk+αk
sk∏

j=1

wj

(4.44)

where

αk = sk
c∑

i=1

si

. (4.45)

4.3.2.6 How to Choose the Combination Rule?

To answer the delicate question on which combination rule to choose, many authors
propose a new rule. Of course, we could propose a no free lunch theorem showing
that there is no a best combination rule.

To answer this question, we propose in [20] a global approach to transfer
the belief. Indeed, the discounting process, the reduction of the number of focal
elements, the combination rules, and the decision process can be seen such as a
transfer of belief, and we can define these transfers in joint operator. However, it
seems so difficult to propose a global approach which will be too general to be
applied. In [20], we define a rule integrating only the reliability given for X ∈ 2Ω

by:

m(X)=
∑

Y∈(2Ω)S

S∏

j=1

mj(Yj )w(X,m(Y),T (Y),α(Y)), (4.46)

where Y = (Y1, . . . , YS) is the response vector of the S sources, mj(Yj ) the
associated masses (m(Y) = (m1(Y1), . . . , mj (Ys)), w is a weight function, α is
the matrix of terms αij of the reliability of the source Sj for the element i of
2Ω , and T (Y) is the set of elements of 2Ω , on which we transfer the elementary
masses mj(Yj ) for a given vector Y. This rule has been illustrated in a special case
integrating the local reliability, but it seems even too complex to be easily applied.

Hence, the best way to choose the combination rule is to identify the assumptions
that we can or we have to make and choose the adapted rule according to these
assumptions.

However, we know that a given rule can provide good results in a context where
the assumptions satisfy this rule. Hence, another way to evaluate and compare some
rules of combination is to study the results (after decision) of the combined masses,
e.g., on generated mass functions. In [28], from generated mass functions, we study
the difference of the combination rules in terms of decisions. We showed that we
have to take into account the decision process. We will present some of them in the
next section in the context of conflicting mass functions.
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4.4 Decision with Conflicting bbas

The classic functions used for decision-making such as the pignistic probability,
the credibility, and the plausibility are increasing by sets inclusion. We cannot use
these functions directly to decide on other elements than the singletons. When the
assumption of exclusiveness of the frame of discernment is not made, such as in
Eq. (4.31), we can decide on DΩr . That can be interesting from the data mining
point of view such as we show in [24].

The approach proposed by [1] has been extended to the consideration of DΩr
in [19] allowing to decide on any element of DΩr by taking into account the mass
function and the cardinality. Hence, we choose the element A ∈ DΩr for a given
observation if:

A = argmax
X∈DΩr

(md(X)fd(X)) , (4.47)

where fd is the considered decision function such as the credibility, plausibility, or
pignistic probability calculated from the mass function coming from the result of
the combination rule and md is the mass function defined by:

md(X) = KdλX
(

1

CM(X)ρ

)

, (4.48)

CM(X) is the cardinality of X of DΩr , defined by the number of disjoint parts in
the Venn diagram, ρ is a parameter with its values in [0, 1] allowing to decide from
the intersection of all the singletons (with ρ = 1) until the total ignorance Ω (with
ρ = 0). The parameter λX enables us to integrate the loss of knowledge on one of
the elements X of DΩr . The constant Kd is a normalization factor that guaranties
the condition of Eq. (4.1). Without any constraint on DΩ , all the focal elements
contain the intersection of the singletons. One cannot choose the plausibility such
as decision function fd .

The choice of the parameter ρ is not easy to make. It depends on the size of Ω .
According to the application, it can be more interesting to define a subset on which
we want to take the decision. Hence, we can envisage the decision on any subset of
DΩr , noted D , and Eq. (4.47) becomes simply:

A = argmax
X∈D

(md(X)fd(X)) . (4.49)

Particularly this subset can be defined according to the expected cardinality of the
element on which we want to decide.

With the same spirit, in [11], another decision process is proposed by:

A = argmax
X∈D

(dJ (m,mX)) , (4.50)
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where mX is the categorical mass function m(X) = 1 and m is the mass function
coming from the combination rule. The subset D is the set of elements on which we
want to decide.

This last decision process allows also a decision on imprecise elements of the
power set 2Ω and to control the precision of expected decision element without any
parameter to fit.

4.5 Conclusion

In this chapter, we propose some solutions to the problem of the conflict in
information fusion in the context of the theory of belief functions. In Sect. 4.2 we
present some conflict measures. Today, there is no consensus in the community on
the choice of a conflict measure. Measuring the conflict is not an easy task because
a mass function contains some information such as auto-conflict we can interpret
differently. The proposed axioms are a minimum that a conflict measure has to
reach. In Sect. 4.3, we discuss how to manage the conflict. Based on the assumption
that conflict comes from the unreliability of the sources, with a conflict estimation
for each source, the best to do is to discount the mass function according to the
reliability estimation (and so the conflict measure).

Another way to manage the conflict is the choice of the combination rule. Starting
from the famous Zadeh’s example, many combination rules have been proposed to
manage the conflict. In this chapter, we present some combination rules (without
exhaustiveness) according to the assumptions that the rules suppose. Hence, we
distinguish the assumptions of open/closed world, dependent/independent sources,
ignorant/not ignorant sources, reliable/unreliable sources, and few/many sources.

To end this chapter, when the assumption of exclusiveness of the frame of
discernment is not made, and so when we postpone the matter of conflict to the
decision, we present some adapted decision processes. These decision methods are
also adapted to decide on some imprecise elements of the power set.

Of course, all the exposed methods here must be selected according to the
application, to the possible assumptions, and to the final expected result.
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Chapter 5
Basic Properties for Total Uncertainty
Measures in the Theory of Evidence

Joaquín Abellán, Carlos J. Mantas, and Éloi Bossé

Abstract The theory of evidence is a generalization of the probability theory
which has been used in many applications. That generalization permits to represent
more different types of uncertainty. To quantify the total information uncertainty
in theory of evidence, several measures have been proposed in the last decades.
From the axiomatic point of view, any uncertainty measure must verify a set of
important properties to guarantee a correct behavior. Thus, a total measure in theory
of evidence must preserve the total amount of information or not to decrease when
uncertainty is increased. In this chapter we review and revise the properties of a total
measure of uncertainty considered in the literature.

Keywords Theory of evidence · Dempster-Shafer theory · Uncertainty-based
information · Measures of uncertainty · Conflict · Non-specificity

5.1 Introduction

Uncertainty and information are two concepts intricately related to each other
as two sides of the same coin. Uncertainty of information is a major dimension
of information quality that is paramount to decision quality. Representation of
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uncertainty is a crucial issue in many areas of science and engineering that is
necessary for the transformation of information along the processing chain: data
to information to knowledge to decisions and actions.

Shannon’s entropy [25] has been the tool to quantify uncertainty in the classical
theory of probability. That function verifies a set of desirable properties of probabil-
ity distributions. It is well known that the probabilistic representation of information
cannot deal with all different types of uncertainty; thus, an imprecise probability
theory can be used (see [27]). Some of these theories are the Dempster-Shafer
theory [8, 23], interval-valued probabilities [7], order-2 capacities [6], upper-lower
probabilities [11, 26], or general closed and convex sets of probability distributions
[12, 22, 27] also called credal sets.

One of the most used imprecise probability models is the Dempster-Shafer theory
[8, 23], known as theory of evidence, which has been designed as an extension of
the classical probability theory. In the theory of evidence, the available information
is quantified by so-called basic belief assignment (bba) on a power set frame of
discernment. This theory has been widely used in many areas.

Shannon’s entropy has been used as the starting point for quantifying the
uncertainty. It can be justified by different ways, but the most common one is the use
of an axiomatic approach that consists of assuming a set of required basic properties
that a measure of uncertainty should verify.

The analysis of the types of uncertainty that a bpa represents is an important
aspect of the theory of evidence. With this theory, more types of uncertainty can be
represented using a bpa than by a probability distribution in the probability theory
[20]. In the theory of evidence, Yager [28] makes the distinction between two types
of uncertainty called discord (or randomness or conflict) and non-specificity. The
first one has been related to entropy and the second one to imprecision.

Klir and Wierman [20] presented a total uncertainty (TU) measure in the theory
of evidence that has been justified by an axiomatic approach similar to the one in
probability theory. They also attach to that TU, a set of five desired properties that
TU must verify. Abellán and Masegosa [3] extended that set to add the important
property of monotonicity as well as other behavioral properties related to TU.

The reminder of this chapter is structured as follows. In Sect. 5.2, we will
introduce some necessary basic concepts and notations and some of the most
important measures of uncertainty presented in the theory of evidence. Section 5.3
is devoted to the description of a set of the axiomatic properties necessary for total
uncertainty measures in the theory of evidence and other important requirements for
this type of measures. Section 5.4 presents conclusions.

5.2 Information Representation in Theory of Evidence

Let X be a finite set, considered as a set of possible situations, |X| = n,℘ (X)

the power set of X and x any element of X. The Dempster-Shafer theory (DST) of
evidence (Dempster [8], Shafer [23]) is based on the concept of basic probability
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assignment. A basic probability assignment (bpa), also called mass assignment, is a
mapping m : ℘(X)→ [0, 1] , such that m(∅) = 0 and

∑

A⊆X
m(A) = 1. A set A

such that m(A) > 0 is called a focal element of m.
Let X, Y be finite sets, their product space X × Y , and m a bpa on X × Y . The

marginal bpa onX,m↓X (and similarly on Y ,m↓Y ), is defined in the following way:

m↓X(A) =
∑

R|A=R↓X
m(R), ∀A ⊆ X (5.1)

where R↓X is the set projection of R on X.
There are two functions associated with each basic probability assign-

ment, a belief function, Bel, and a plausibility function, P l: Bel(A) =∑

B⊆A
m(B), P l(A) = ∑

A∩B �=∅
m(B). They can be seen as the lower and upper

probability of A, respectively.
We may note that belief and plausibility are interrelated for all A ∈ ℘(X):

P l(A) = 1 − Bel(Ac), where Ac denotes the complement of A. Furthermore,
Bel(A) ≤ P l(A).

For each bpa on a finite set X, there exists a set of associated probability
distributions p on X, of the following way:

Km = {p| Bel(A) ≤ p(A), ∀A ∈ ℘(X)} (5.2)

We note that Bel(A) ≤ p(A) ≤ P l(A). Km is a closed and convex set of
probability distributions, also called a credal set in the literature.

5.2.1 Measures of Uncertainty in DST

The classical measure of entropy (Shannon [25]) in probability theory is defined by
the following continuous function:

S(p) = −
∑

x∈X
p(x) log2(p(x)), (5.3)

where p(x) is the probability of value x. and log2 is normally used to quantify the
value in bits, though log and log2 are used in the literature interchangeably. The
value S(p) quantifies the only type of uncertainty presented of probability theory,
and it verifies a large set of desirable properties (Shannon [25], Klir and Wierman
[20]).

As it was mentioned above, Yager [28] makes the distinction between two types
of uncertainty in the Dempster-Shafer theory. One is associated with cases where
the information is focused on sets with empty intersections and the other one is
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associated with cases where the information is focused on sets with cardinality
greater than one. They are called conflict (or randomness or discord) and non-
specificity, respectively.

The following function (5.4), introduced by Dubois and Prade [10], has its origin
in classical Hartley measure (Hartley [15]) considered in classical set theory and
in the extended Hartley measure, in possibility theory (Higashi and Klir [16]). It
represents a measure of non-specificity associated with a bpa It is expressed as
follows:

I (m) =
∑

A⊆X
m(A) log(|A|). (5.4)

I (m) achieves its minimum, zero, when m is a probability distribution. The
maximum, log(|X|), is obtained with m(X) = 1 and m(A) = 0, ∀A ⊂ X. It is
showed in the literature that I verifies all the required properties for such a type of
measure.

Many measures were introduced to quantify the conflict by utilizing a bpa (Klir
and Wierman [20]). One of the most representative conflict functions was introduced
by Yager [28]:

E(m) = −
∑

A⊆X
m(A) logP l(A). (5.5)

At the same time, this function does not verify all the required properties.
Harmanec and Klir [13, 14] proposed S∗(m), a measure equal to the maximum

of the entropy (upper entropy) of the probability distributions verifying Bel(A) ≤∑

x∈A
p(x) ≤ P l(A), ∀A ⊆ X. This set of probability distributions is the credal set

associated with a bpa, m, that we have noted as Km in Eq. (5.2).
Harmanec and Klir [14] considered a function S∗ as a total uncertainty measure

in the Dempster-Shafer theory, i.e., as a measure that quantifies both conflict and
non-specificity, but they do not separate both parts. Abellán, Klir, and Moral [5]
have proposed upper entropy as an aggregate measure for more general theories
than DST, separating coherently conflict and non-specificity. These parts can be
also obtained in the Dempster-Shafer theory in a similar way.

S∗(m) = S∗(m)+ (S∗ − S∗)(m), (5.6)

where S∗(m) represents maximum entropy and S∗(m) represents minimum entropy
on the credal set Km with a bpa m, while S∗(m) coherently quantifying the
conflict part and (S∗ − S∗)(m) its non-specificity part. That measure (5.6) has been
successfully used in applications (see Abellán and Moral [4])

Maeda and Ichihashi [21] proposed a total uncertainty measure on DST adding
up Hartley generalized measure and upper entropy:
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MI(m) = S∗(m)+ I (m) (5.7)

Jousselme et al. [17] presented a measure to quantify ambiguity (discord or
conflict and non-specificity) in the Dempster-Shafer theory, i.e., a TU measure. This
TU measure is based on the pignistic probability. Let m be a bpa on a finite set X,
then the pignistic probability BetPm, of all the subsets A in X, is defined by:

BetPm(A) =
∑

B⊆X
m(B)

|A ∩ B|
|B| . (5.8)

For a singleton set A = {x}, we have BetPm({x}) =∑x∈B [m(B)/|B|]. Hence, an
ambiguity measure (AM) for a bpa m on a finite set X is defined as:

AM(m) =
∑

x∈X
BetPm(x) log(BetPm(x)), (5.9)

i.e., the entropy of the BetPm probability.
Recently, Shahpari and Seyedin [24] have presented a modification of AM, called

MAM, to avoid the AM drawbacks identified in Klir and Lewis [19]. The function
MAM uses a modified pignistic transformation:

MAM(m) = −
∑

x∈X
MBetPm(x)− log(MBetPm(x)), (5.10)

Nevertheless, MAM presents also some mathematical shortcomings discussed in
details in [2]) and briefly summarized below.

Shahpari and Seyedin showed that MAM coincides with AM on one-dimensional
space, but in the case of two-dimensional space, they used a different definition for
the pignistic distribution without providing the essential justification. Specifically,
let X, Y be finite sets and m a b.p.a. on X×Y . On X×Y , MAM corresponds to the
AM function, while using the probability distribution MBetmXY = BetmXY (MAM
is the entropy of that probability distribution). In the case of two-dimensional space,
Shahpari and Seyedin use the following function on each marginal b.p.a.:

MBetmX(xi) =∑
B∈℘(X),B�xi

∑
A∈℘(X×Y ),B=A↓X

mXY (A)�(xi∈A)|A| ,∀xi ∈ X (5.11)

where �(xi ∈ A) is the number of appearances of xi in the set A and |A| is the
cardinality of A. Similarly they define the valuesMBetmY (yi),∀yi ∈ Y .

To simplify, this expression can be reduced to the following one:

MBetmX(xi) =∑
A∈℘(X×Y ),A↓X�xi

mXY (A)�(xi∈A)|A| ,∀xi ∈ X (5.12)
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Very recently, Deng [9] have presented a new uncertainty measure named Deng
entropy that can be considered as a new composed measure, quantifying conflict and
non-specificity.

This function, called Ed is defined as follow, for a bpa m on a finite set X:

Ed(m) = −
∑

A⊆X
m(A) log2

m(A)

2|A| − 1
, (5.13)

where it can be separated in two functions measuring the both types of uncertainty
in DST:

Ed(m) = −
∑

A⊆X
m(A) log2m(A)+

∑

A⊆X
m(A) log2(2

|A| − 1), (5.14)

where the first term quantifies the part of conflict and the second one the part of
non-specificity of a bpa.

The Ed measure has been introduced to give more importance to the increase
in uncertainty when the number of alternatives increases, i.e., on the non-specificity
part. It is not agreed with the standard bounds of values for such type of measures. It
can be observed that the upper bound for the part of conflict can be notably smaller
than the one for the non-specificity part.

5.3 Basic Properties of Total Uncertainty Measures in TE
with Discussion

We can find in Klir and Wierman [20] and in Klir [18] five requirements for
a total uncertainty measure (T U ) defined in the theory of evidence, i.e., for
a measure capturing both conflict and non-specificity: probabilistic consistency,
set consistency, range, additivity, and subadditivity. Recently, the property of
monotonicity was added by Abellán and Masegosa [3].

As it has been mentioned in the previous section, the requirements of properties
for a TU in evidence theory are based on the properties (listed as P1 to P5 below)
verified for Shannon’s entropy in probability theory and in classic set theory. Due
to this fact, Klir and Wierman [20] extend the verification of those properties to
the Dempster-Shafer theory. Properties P1 and P2 below assure us that when we
are working in a more general framework such as DST and use the definitions of
probability and classical set theories, then we end up with the classical uncertainty
measures: Shannon entropy and the Hartley measure.

(P1) Probabilistic consistency When all the focal elements of a bpa m are
singletons, then the total uncertainty measure must be equal to the Shannon
entropy: T U(m) =∑x∈X m(x) logm(x).

(P2) Set consistency When there exist a set A such that m(A) = 1, then T U must
collapse to the Hartley measure: T U(m) = log |A|.
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(P3) Range The range of T U(m) is [0, log |X|].
(P4) Subadditivity Letm be a bpa on the spaceX×Y andmX andmY its marginal

bpas on X and Y , respectively; then T U must satisfy the following inequality:
T U(m) ≤ T U(mX)+ T U(mY ).

(P5) Additivity Let m be a bpa on the space X× Y and mX and mY their marginal
bpas on X and Y , respectively. Let also assume that their marginals are not
interactive (m(A× B) = mX(A)mY (B), with A ⊆ X, B ⊆ Y and m(C) = 0
if C �= A × B), then T U must satisfy the equality: T U(m) = T U(mX) +
T U(mY ).

The additivity and subadditivity properties guaranty that the total information is
preserved. In the first property, it states that we do not add information in situations
where a decomposition of the problem can be done, i.e., that decomposition
should not imply an increase in information. The second one states that the total
information obtained from two independent sources is preserved; when we join
two independent problems, the total information is preserved. These two properties
they are compatible with what happens in PT, where Shannon’s entropy performs
perfectly.

In the Dempster-Shafer theory, the information of a bpa can be contained by
the information of another bpa. This situation allows us to consider the following
property of Abellán and Masegosa [3]:

(P6) Monotonicity when uncertainty increases or decreases, the measure of uncer-
tainty must follow accordingly. Formally, let 2 bpas be on a finite set X, m1
and m2, verifying that Km1 ⊆ Km2 , then: T U(m1) ≤ T U(m2).

The following example illustrates the need of this property.

Example 1 Let us first consider three pieces of evidence (e1, e2, and e3) about the
type of disease (d1, d2, or d3) of a patient. To quantify the information available via
a basic probability assignment, an expert uses the following bpa on the universal
X = {d1, d2, d3}:

e1 −→ m1({d1, d2}) = 1/3,

e2 −→ m1({d1, d3}) = 1/2,

e3 −→ m1({d2, d3}) = 1/6.

Assume now that the expert find that the reasons not to consider d3 in e1 are false
and that it is necessary to change his b.p.a to the following one:

e1 −→ m2({d1, d2, d3}) = 1/3,

e2 −→ m2({d1, d3}) = 1/2,

e3 −→ m2({d2, d3}) = 1/6.
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In the example, we go from a first situation with a quantity of information, based
on three pieces of evidence, to another more confused situation. It is logical that the
second situation involves a greater level of uncertainty (less information). We have
Bel2(A) ≤ Bel1(A) and P l1(A) ≤ P l2(A),∀A ⊆ X. Also, Km1 ⊆ Km2 , if Km1

and Km2 are the credal sets associated with m1 and m2 respectively.
It can be checked (see [1–3, 19]) that theMI , S∗, AM ,MAM , and Ed functions

verify the following sets of properties in DST:

MI : P1, P2, P4, P5, and P6.
S∗: P1, P2, P3, P4, P5, and P6.
AM: P1, P2, P3, and P5.

MAM: P1, P2, P3, and P5.
Ed : P1.

Hence, we see that as far only S∗ satisfies all the proposed requirements.

5.3.1 Additional Requirements for Properties of Total
Uncertainty Measures in the Theory of Evidence

In the paper of Abellán and Masegosa [3], other considerations about the behavior of
a total uncertainty measure (TU) in evidence theory were considered. The examples
of those additional requirements are:

(A1) A TU should not have a too complex calculation.
(A2) A TU must incorporate the two types of uncertainty coexisting in the evidence

theory: conflict and non-specificity.
(A3) A TU must be sensitive to changes of evidence, directly in its corresponding

parts of conflict and non-specificity.
(A4) The extension of a TU in the Dempster-Shafer theory to more general theories

such as credal sets must be possible.

The evaluation of the significance of these requirements as well as the six (P1 to
P6) others discussed in the previous sections in operational settings is left for future
research.

5.4 Conclusions

This chapter has discussed one of the most important information quality character-
istics: the uncertainty; its representation, and properties considered in the framework
of the Dempster-Shafer theory of evidence. Specifically we have considered an
axiomatic set of properties of a total uncertainty (TU) measure that ensure a
mathematically consistent behavior when framed within the theory of evidence.
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Five of them were introduced two decades ago; the last one, monotonicity, is much
more recent. The properties intend to ensure that, in the theory of evidence, (i)
the information is measured; (ii) the information is preserved when the union of
independent systems is considered or that it does not increase when a disintegration
of the original system occurs; and (iii) the uncertainty is measured. A measure of
uncertainty that cannot meet the set of critical requirements (e.g., monotonicity,
additivity, etc.) has a major drawback for its exploitation in operational contexts
such as in analytics, information fusion, and decision support.
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Chapter 6
Uncertainty Characterization and Fusion
of Information from Unreliable Sources

Lance Kaplan and Murat Şensoy

Abstract Intelligent systems collect information from various sources to support
their decision-making. However, misleading information may lead to wrong deci-
sions with significant losses. Therefore, it is crucial to develop mechanisms that
will make such systems immune to misleading information. This chapter presents
a framework to exploit reports from possibly unreliable sources to generate fused
information, i.e., an estimate of the ground truth, and characterize the uncertainty of
that estimate as a facet of the quality of the information. First, the basic mechanisms
to estimate the reliability of the sources and appropriately fuse the information
are reviewed when using personal observations of the decision-maker and known
types of source behaviors. Then, we propose new mechanisms for the decision-
maker to establish fused information and its quality when it does not have personal
observations and knowledge about source behaviors.

Keywords Subjective logic · Unreliable sources · Fusion of information ·
Quality of information · Uncertainty · Beliefs

6.1 Introduction

Decision-making requires the weighing of risk and benefits in light of uncertain
information. While doing so, it is important to estimate the state of the world at
sufficient certainty. For a specific decision-making task, this may boil down to
estimating the values or a distribution of values for a number of state variables.
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Let us consider an intelligent agent that needs to solicit help from a person in
a specific organization. Instead of asking a random person in the organization, the
agent should pick a person with a high probability of accepting and fulfilling the
help request. Hence, for a given person, e.g., Joe, in the organization, the agent can
compute a probability distribution over possible outcomes of the request. That is, in
response to the help request, Joe may help, do nothing, or undermine. These three
outcomes are possible values of the state variable about Joe’s behavior in response
to the help request.

In this work, we adopt subjective logic [10], where opinions describe state
variables. A state variable can take values from a domain. For instance, a state
variable about Joe’s response when help is requested can take three values: help, do
nothing, or undermine. Each of these values may lead to a binary proposition, such
as “Joe helps when requested,” which can be either true or false. Instantiations of
these propositions are observed and used to create opinions about Joe’s helpfulness.

The decision-maker may have past history of the number of times Joe helped,
did nothing, and undermined the organization’s effort to form an opinion about Joe.
From this history, the decision-maker can understand and account for the probability
of Joe’s behavior for the upcoming mission. The more instances of Joe’s past
behavior, the more certain the decision-maker is about these probabilities. In many
cases, the uncertainty about Joe is too high to make a decision, and if time permits,
the decision-maker should seek out more information about Joe.

In understanding Joe’s tendencies, the decision-maker may have limited expe-
rience with Joe and will need to seek reports from other sources about Joe. These
sources may or may not provide truthful reports about their experiences with Joe. As
a result, the fusion of these reports can lead to wrong probabilities describing Joe’s
tendencies when help is requested. Furthermore, the decision-maker can become
overconfident about these probabilities and make a poor decision.

To overcome these difficulties, the decision-maker needs to develop a trust
behavior profile for its reporting sources to estimate how trustful and useful their
reports are. Then, the decision-maker needs to properly fuse the reports in light of
these profiles. It is desirable for the fused opinion about Joe to consistently represent
an estimate of the ground truth probabilities of Joe’s tendencies and the uncertainty
about these probabilities. In this work, the fused opinion is represented as an
effective number of observations for which each value of a state variable, e.g., Joe’s
action to help or not, is instantiated. The effective total number of observations rep-
resents the accuracy as a facet of the quality of the information, and it should relate
to how close “on average” the estimated probabilities are to the ground truth values.

The development of the trust behavior profiles for the sources is updated as the
decision-maker incorporates source reports about instantiations of different state
variables. When the decision-maker has its own (limited) observations to form an
initial opinion about the values of the state variable, it can leverage the consistency
of its own opinion with a particular source’s report to update the source’s trust
profile. In essence, the decision-maker is also its own ego-source. This chapter will
review our recent research in trust estimation and fusion when the ego-source is
available [15, 26, 27].
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In many cases, the decision-maker will not be able to make observations about
the values of state variables. This chapter will look at extensions of our previous
work for this circumstance. Specifically, the conditions when trust estimation and
fusion lead to and do not lead to information with a consistent quality of information
characterization will be exposed.

This chapter is organized as follows. Section 6.2 reviews related work, and
Sect. 6.3 provides the mathematical foundation to represent subjective opinions to
represent distributions for the values of state variables. The trust estimation and
fusion problem and corresponding models are presented in Sect. 6.4. Section 6.5
reviews recent solutions and demonstrates their effectiveness when an ego-source
is available, and Sect. 6.6 extends the solutions for cases when the ego-source is
unavailable. This section also demonstrates the effectiveness of the newly extended
solutions. Finally, a discussion of results with concluding remarks is provided in
Sect. 6.7.

6.2 Related Work

Fusing uncertain information from unreliable sources has drawn significant atten-
tion from the literature. It still stands as an important research problem with wide
range of applications in many different domains [10]. There are a number of math-
ematical frameworks for modeling uncertainty and fusing uncertain information.
One prominent example of such frameworks is the evidential theory proposed by
Dempster and Shafer [29], where belief masses are assigned to possible outcomes
of a proposition, i.e., subsets of a frame of discernment. There have been other
approaches inspired from the work of Dempster and Shafer. Jøsang proposed
subjective logic (SL), which is a probabilistic logic that explicitly takes uncertainty
and belief ownership into account. It is used to model and reason with situations
that involve uncertainty and incomplete knowledge. A subjective opinion represents
assignment of belief masses to possible values of a state variable, and various
logical/analytical operators are used to define a calculus over subjective opinions [7–
10, 12, 13]. Each subjective opinion can be represented as a Dirichlet distribution
over the values of a state variable, and operators defined over these opinions are
performed over the underlying Dirichlet distributions. The statistical underpinning
of SL makes it flexible and versatile for many domains and applications. For
instance, Liu et al. used SL to compute reputation models of mobile ad hoc
networks [18]. Oren et al. proposed to use SL to enhance argumentation frameworks
with evidential reasoning [21]. Han et al. used SL for forensic reasoning over the
surveillance metadata [5]. Sensoy et al. used it for determination of conflicts in
and fusion of information from unreliable sources [25]. In this chapter, we also use
Dirichlet distributions to represent and combine subjective opinions from unreliable
sources.

Fusion of information from unreliable has been studied in the literature with
different scenarios and assumptions. As a result of the rise of Internet, e-commerce
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has been embraced by users. However, users do not only buy and sell on the Internet
but also share their opinions, ratings, and experiences, e.g., through review sites.
Therefore, initial work on the fusion of uncertain opinions focuses on propositions
about the service quality of online vendors or service providers. A proposition is
simply a state variable which can take only two values: true or false. However,
these opinions are collected from unreliable sources, which may aim to mislead
the decision-makers, e.g., online buyers. In these works, subjective opinions are
usually represented as pairs of positive and negative number of interactions (or
experiences) with the service providers (or vendor). Jøsang and Ismail proposed
beta reputation systems (BRS) [11], where opinions about a proposition x such as
“Bob provides good services” is modeled using beta distributions. Let px represent
the probability that the proposition is true. A beta distribution is used to model
the likelihood of each px value. Initially, before having any experience with Bob,
the beta distribution is represented by parameters 〈1, 1〉, which corresponds to the
uniform distribution. This means that px can be anything between 0 and 1 with
equal probability. However, after having r good and s bad experiences with Bob,
the beta distribution parameters are updated as 〈r+1, s+1〉 using Bayesian update.
In BRS, opinions about Bob are collected from a number of information sources,
and these opinions are fused using Bayesian update, i.e., evidence aggregation.
However, some malicious sources may disseminate misleading opinions.

Whitby et al. extended BRS to filter out misleading opinions provided by the
malicious sources. This approach filters out those opinions that do not comply with
the significant majority by using an iterated filtering approach [37]. Hence, this
approach assumes that the majority of sources honestly share their opinions, i.e.,
liars are in the minority. The extended BRS does not assume that the decision-maker
can use its observations to estimate the reliability of information sources. Because
BRS is a simple trust-based fusion approach, it has been used in many domains,
such as wireless sensor networks [6]. Bui et al. have proposed to use it to estimate
trust in sensor readings in body area sensor networks [1]. Ganeriwal et al. proposed
a reputation framework for high integrity sensor networks based on the BRS [4].

To avoid the need to rely on a majority of sources to be honest, some existing
work assumes an ego-agent, i.e., a decision-maker may observe evidence about
the ground truth using its own sensors. Hence, an ego-agent can evaluate the
information sources by comparing its own observations against those reported by
these sources. TRAVOS [31] is one such information fusion framework, which
is similar to BRS in terms of representation and fusion of subjective opinions.
However, TRAVOS keeps a history of opinions from information sources about
propositions, such as the aforementioned proposition about Bob’s services. To
measure the trustworthiness of a source, the decision-maker compares the source
and ego opinions over multiple propositions to determine a beta distribution to
describe the trust in each source.

Bayesian modeling has also been used to address fusion of subjective informa-
tion from malicious sources. Regan et al. proposed BLADE [23] for reputation
modeling of sources and fusion of their ratings in e-marketplaces. This model
learns parameters of a Bayesian network to fuse subjective and possibly deceptive
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information from unreliable sources with varying behavior. Most of the existing
Bayesian approaches require at least some of the information sources to consistently
share honest opinions. These approaches build models for the trustworthiness
of information sources and exploit them while fusing their opinions. However,
there are approaches, where fused opinions do not directly rely on the opinions
from sources. For example, Teacy et al. proposed HABIT, which uses hierarchical
Bayesian modeling for fusion of opinions from unreliable sources [32]. It does not
directly estimate trustworthiness of information sources. Instead, it uses opinions
from sources to measure similarity of the current proposition to past propositions.
Then, using the computed similarities as weights, the fused opinion for the current
proposition is computed as the weighted average of the decision-maker’s opinions
about the past propositions. This approach is robust to malicious behaviors, but it
requires decision-maker to have accurate opinions for the past propositions similar
to the current proposition.

Fact finders address the scenarios where the decision-maker cannot directly
observe evidence about the ground truth and the sources only provide absolute
claims. They try to identify truth among many conflicting claims without any prior
knowledge or observation about the trustworthiness of the information sources.
Unlike the previously mentioned approaches, fact-finding approaches assume that
the truth is crisp and certain. That is, for a given state variable, only one of k
mutually exclusive values can be true. Instantiation of the state variable with each
of these values is called a claim. TruthFinder [39] defines trustworthiness of sources
as a function of the confidences of the their claims and, conversely, defines the
claim confidence as a function of the trustworthiness of the sources espousing them.
Then, it iterates by calculating the confidence from the trustworthiness and vice
versa. Pasternack and Roth [22] generalizes fact-finding by incorporating source-
claim weights in the iterative equations to represent a degree of uncertainty in the
observations of claims or in the belief of the sources in the claims.

Recently, Wang et al. formalized fact-finding as a maximum likelihood problem
where the expectation-maximization (EM) algorithm [19] is used to estimate the
reliabilities of the claims and the users at the same time iteratively [35]. This
approach enables the formulation of Cramer-Rao bounds to establish the quality
of the estimated reliabilities in terms of the structure of the source-claim network
[34]. Furthermore, this approach has been applied for social sensing by estimating
the reliability of information from the crowd for sensing situations and events.
Specifically, the data from micro-blogging sites such as Twitter1 has been used to
detect social and environmental events earlier than traditional means [36]. The EM
approach is further extended in [33] to incorporate the confidence of the users by
incorporating weights into the iterative equations similar to [22].

In this work, we aim to exploit behaviors of unreliable sources while fusing
their uncertain and possibly misleading opinions. In the literature, different types
of information source behaviors are defined and studied [3, 17, 24, 40]. Yu and

1http://www.twitter.com

http://www.twitter.com
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Singh defined four major types of source behaviors over binomial subjective opin-
ions: honest, complementary, exaggerated positive, and exaggerated negative [40].
Sources with honest behavior share their genuine opinion; on the other hand, the
sources adopting non-honest behaviors transform their opinions before sharing.
Sources with complementary behavior share the opposite of their genuine opinions,
i.e., flipping its true opinion. A source with exaggerated positive behavior shares an
opinion that is more optimistic than its genuine opinion. Similarly, a source with
exaggerated negative behavior shares an opinion that is more pessimistic than its
genuine opinion. The deception models of Yu and Singh received significant amount
of attention from the literature. These models are also used in different domains
and disciplines. Fung and Boutaba used these deception models for collaborative
intrusion detection in networks [3]. In this setting, peers send feedback about the
risk levels of a security alert to others.

The honest, complementary, and exaggeration behaviors require information
source to know the truth about the state variable in question. However, an informa-
tion source may still deceive the information requester without knowing the actual
truth. In the Encyclopedia of Deception [17], fabrication is defined as another type of
deception. In the case of fabrication, someone submits statements as truth, without
knowing for certain whether or not it actually is true. Therefore, if a source makes up
and shares an opinion without actually having any evidence about the proposition in
question, then it would be fabricating. This kind of behavior is similar to randomly
generating and sharing an opinion when requested.

6.3 Mathematical Preliminaries

A state variable is a random variable that takes on one value from a mutually
exclusive set K at each instantiation. There is a ground truth probability for each
possible value to materialize. Given the observations that nk instantiations of the
variable are of value k for all k ∈ K are the result of sampling a multinomial
distribution, the posterior knowledge about the distribution of the generating
probability is the Dirichlet distribution:

fβ(p|n) = 1

B(n+ 1)

∏

k∈K

(
pk
)nk
, (6.1)

where

B(n+ 1) =
∏
k∈K �(nk + 1)

�
(∑

k∈K(nk + 1)
) (6.2)

is the beta function and �(·) is the gamma function [16]. Throughout this chapter,
the boldfaced variables are |K| dimensional vectors where their elements are non-
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bold with a superscript representing the corresponding value in K. Note that in (6.1),
the probabilities are constrained to sum to one, i.e.,

∑
k∈K pk = 1.

Subjective logic [10] connects the evidence n to belief mass assignments as
used in belief theories for reasoning under uncertainty such as Dempster-Shafer
theory [29] and more recently the transferable belief model [30]. Specifically, the
connection between the evidence n and the beliefs (b, u) is given by the following
invertible mapping:

bk = nk

W +∑k∈K nk
∀k ∈ K and u = W

W +∑k∈K nk
, (6.3)

where the bks are the beliefs for each value of the state variable and u is the
remaining uncertainty. The beliefs and uncertainty are constrained to be nonnegative
and sum to one. In (6.3), W is the prior weight, In this chapter, we set W = |K|
and consider the uniformative uniform prior. The connection between beliefs and
the Dirichlet distribution helps to define many of the operators in subjective logic,
which distinguishes it from the prior belief theories by connecting it to second-order
Bayesian reasoning.

It is well know that the expected value for the probabilities of the Dirichlet
distribution is given by

mk = nk + 1
∑
k′∈K(nk

′ + 1)
, (6.4)

and the variance is

σ 2k = mk(1−mk)
1+∑k′∈K(nk

′ + 1)
(6.5)

for k ∈ K. In the context that an opinion about a state variable is given by n,
the mean given by (6.4) represents the information about, i.e., estimation of, the
ground truth probabilities. Likewise, the variance given by (6.5) represents the
derived quality of information. The smaller the variance, the higher the quality
of the information. Note that the quality of information is proportional to the sum
of evidences, i.e.,

∑
k∈K nk . The derived quality of information is meaningful if it

corresponds to the actual variance through (6.5). This will be discussed by examples
throughout this chapter.

Subjective logic provided the inspiration for the fusion and trust characterization
operators described in this chapter. The operators described here approximate
Bayesian reasoning using the following framework. The input opinions about
the state variables and source behaviors translate to Dirichlet distributions to
describe the uncertainty about the corresponding appearance probabilities of the
various values of these variables. Bayesian reasoning determines the exact output
distribution for the appearance probabilities for fusion or discounting, and then
this exact distribution is approximated by a Dirichlet distribution such that the
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mean values match exactly and the variances match in the least squares sense. In
other words, moment matching determines the Dirichlet approximation, and the
corresponding Dirichlet parameters lead to the fused or discounted opinion.

6.4 The Source Estimation and Fusion Problem

In general, a decision-maker collects, over the course of his/her duties, reports from
different sources about many different state variables. The decision-maker employs
A unique sources and evaluates I variables. The decision-maker may or may not
be able to form an initial opinion about each variable. We denote the opinion about
the i-th state variable from the a-th source using a subscript as ni,a . When the a-th
source does not have any observations about the i-th variable, it should report the
vacuous opinion nki,a = 0 for all k ∈ K. The decision-maker may or may not be
able to form an initial opinion about a state variable and acts as an ego-source. We
index the ego-source as a = 0 and other sources as positive integers a > 0. For
ease of illustration in the chapter, all of the I state variables are binary, i.e., their
instantiations are propositions where K = {+,−} and + and − represent a positive
and negative variable value, respectively. An example of such a proposition is that a
particular vendor provides a satisfactory (+) or an unsatisfactory (−) transaction.

The sources do not necessarily correctly report their opinions based upon their
individual observations. Many times, some sources intentionally lie and report
opinions in direct conflict with other sources. The ultimate problem for the decision-
maker is to form a fused opinion that portrays information about ground truth
probabilities of the values of state variables consistent with the opinion’s apparent
quality of information. This fused opinion should represent higher quality of
information than can be obtained from any smaller subset of sources.

To enable an effective solution to the fusion problem, we incorporate the beta
model from [20]. Specifically, the behavior of a source is a state variable itself where
the variable values are particular behaviors describing how the source transforms its
truthful opinion into its reported opinion. While a large number of source behaviors
may exist, we restrict the discussion in this chapter to the three well-studied
behaviors from the literature [3, 17, 24, 40]: (1) good, (2) flipping, and (3) random.
In the good behavior case, the a-th source accurately reports the number of positive
and negative instantiations of state variables it observed. When the source exhibits
flipping behavior, it exchanges the number of positive and negative instantiations.
Finally in the random case, a source randomly selects the number of positive and
negative instantiations to report independent of the actual numbers it observed. This
chapter will examine the robustness of such a beta model by considering that the
ground truth source behaviors are one of these three, but the fusion algorithms either
account only for two behaviors (good and random) or all three. Clearly, performance
drops when there is a model mismatch, and in real applications, one may want to
incorporate a richer set of behavior models. In recent work, we developed methods
to learn new behavior models using an ego-source [27]. These richer behavior
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models are beyond the scope of this chapter. Nevertheless, the results in this chapter
do provide insights about the impact of model mismatches.

The a-th source’s behavior profile is the ground truth probabilities to exhibit each
one of the three behaviors adopted while sharing its opinions. The decision-maker
builds up an opinion about the behavior profile by determining the effective number
of instances tka that the a-th source exhibited behavior k ∈ {g, f, r}. After each time
the decision-maker collects opinions from the different sources, it cannot directly
determine which behavior each source actually followed. The next two sections
describe methods to build up opinions about the source behaviors and then use
these opinions to fuse the source reports. Due to the lack of direct observations,
the behavior opinions tka are not necessarily integers, which also means the fused
opinions about the variables also need not take integer values.

To demonstrate the effectiveness of the methods presented in the next two
sections, 100 sources reporting 1000 variables are simulated using the three behavior
models. A given percentage of the source agents will be predominately good,
flippers, and random, respectively. Predominately good sources report their true
opinions about a particular variable with a probability of 0.7, and their flipping and
random probabilities are 0.15. Similarly, the predominately flipping and random
source exhibits their dominating behaviors with probability 0.7 and the other two
behaviors with probabilities of 0.15. Predominately good sources can lie, albeit with
a much smaller probability. In contract a predominately flipping source can provide
a truthful opinion. For the i-th state variable, the number of direct observations
Ni,a that the a-th source achieves for the variable’s values is a random number
drawn uniformly between 0 and 100. The underlying ground truth probability for
the positive value p+i of each of the state variables is sampled over the uniform
distribution between 0 and 1. The a-th source’s true opinion about the i-th variable
is the result ofNi,a draws from a Bernoulli process with probability p+i . Each source
then determines its behavior for the variable as a random multinomial draw using
its behavior probabilities. If this draw selects the good behavior, the source reports
it true opinion. If the draw selects the flipping behavior, the source swaps its n+i,a
and n−i,a values. Otherwise the random behavior means that the sources chooses the

integer n+i,a uniformly between 0 and Ni,a and sets n−i,a = Ni,a − n+i,a .
If the decision-maker does not account for the various behaviors of the sources

and assumes all the reported opinions for the i-th variable are correct, the fusion
process is rather straightforward. The fusion operations make two weaker assump-
tions: (1) each reported opinion is statistically independent of the others (i.e., the
observed evidence of the sources do not overlap), and (2) the prior distribution in
light of no observed evidence is uniform (which is an uninformative prior). With
these assumptions, it can be shown that the distribution of the fused opinion is a
beta distribution given by

fβ(p|ni,f ) ∝
∏

a=1

fβ(p|ni,a) (6.6)
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Fig. 6.1 RMSE of consensus fusion for various mixtures of predominately good, flipping, and
random sources represented as a heat map

where nki,f =
∑A
a=1 n

k
i,a for k ∈ {+,−}. In other words, the fused opinion

in evidence space is the output of the operator Consensus(ni,1, . . . ,ni,A) that
simply sums the evidence supplied by each source. Consensus fusion is one of
the more commonly used operators in subjective logic [10].

When the consensus operator is applied over all simulated reports from 100
agents covering 1000 variables, the resulting root mean square error (RMSE)
between the expected fused probability (see (6.4)) and the ground truth opinion
for various mixtures of sources types is given in Fig. 6.1 as a heat map. When most
of the sources are predominately good, the RMSE is fairly low at 0.13. As the those
sources are replaced by predominately random sources, the RMSE grows to about
0.3, which is consistent to a complete random guess from a uniform distribution.
When most of the sources are predominately flipping, the RMSE grows to above
0.4 as the flipped reports are moving the estimated probabilities far from the ground
truth. The predicted RMSE can be calculated as the root mean of the expected
variance of the fused opinions given by (6.5). For all cases, the predicted RMSE is
similar with a mean value of 0.0070, which is much smaller than the actual RMSE
(even with 100% good sources). This is because consensus fusion assumes all
source reports are good, which is not even true 30% of the time for good sources.
Clearly, the behavior of the sources must be accounted for in the fusion process.
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6.5 Fusion Using Behavior Estimates via Ego-Sources

When the decision-maker can directly observe instantiations of different state vari-
ables, it can act as its own ego-source. Assuming the decision-maker is competent
and acting in its own best interest, the ego-source’s opinion will always be good.
Then, the decision-maker compares its opinions against those of the a-th source
over a set of I variables to determine the source behavior profile. The procedure
to determine the opinions about source behaviors was first derived in [15] for good
and random behaviors (the two-mode model), and it can trivially be generalized
for a finite set of known behaviors. Following the derivation in [15], the posterior
distribution for the probabilities that the a-th source follows particular behaviors
given the set of opinions from the ego-source about propositions and a-th source is

f (p|ta) ∝
∏

i

(
∑

k∈K
Prob(ni,0|ni,a, k)p

k

)

, (6.7)

where the likelihood of the a-th source exhibiting the k-th behavior when reporting
its opinion about the i-th variable is

Prob(ni,0|ni,a, k) =
∫

p
n+i,0(1− p)n−i,0fβ(p|hk(ni,a))dp,

= B(h
k(ni,a)+ ni,0 + 1)

B(hk(ni,a)+ 1)
,

(6.8)

where hg(n) = n, hf (n) = [n−, n+], and hr(n) = [0, 0] represent the accurate
information that can be obtained from the source when it is known to employ good,
flipping, or random behavior, respectively, for the given report. For the random
behavior, the opinion is completely independent of the source’s actual observation,
and therefore the sources report is vacuous.

The source behavior characterization method approximates (6.7) by finding the
Dirichlet distribution that matches the means of (6.7) and matches the variances
as closely as possible (in the least squares sense). Closed form expressions
for the means and variances of (6.7) are available because the distribution is
a mixture of Dirichlets. However, the number of modes grows exponentially
with respect to the number of variables I . In [15], a method is presented that
updates a source behavior opinion by sequentially performing moment match-
ing over one state variable at a time. It is shown in [15] that this sequential
updating method is almost as accurate as the much more computationally com-
plex method that incorporates all propositions at once. We refer to the operator
ta = SourceBehavior(n1,0,n1,a, . . . ,nI,0,nI,a) as the sequential method that
approximates the Dirichlet distribution for the source behavior probabilities using
the parameters ta as effective evidences of the source behaviors. In this chapter,
while the simulated sources are randomly picking one of three behaviors for each
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propositional report, the source characterization method is either employing the
two-mode model, i.e., K = {g, r} or the three-mode model, i.e., K = {g, f, r}.
This allows understanding of the performance loss when the assumed model does
not fully characterize the data.

In essence, the SourceBehavior operator calibrates the a-th source relative
to the ego-source. Kaplan et al. [15] explain how the behavior opinions are
updated based upon the consistency between the opinions of the ego-source and
those of the a-th source. When both opinions represent similar probabilities and
are supported by large evidence (i.e., small uncertainty), then the likelihood for
the good behavior in (6.8) becomes very large relative to the other likelihoods.
This actually means that the evidence for the good behavior is incremented by a
number near 1 and the evidence for the other behaviors is slightly decremented.
Similarly, if the probabilities are consistent with flipping, the evidence for flipping
behavior is incremented by a number near 1. Otherwise when the probabilities
are inconsistent to either good or flipping behaviors, the evidence for random
behavior is incremented by a number near to 1. The increment of the behavior
evidence update decreases as the uncertainty associated to either source opinion
increases. When the ego-source’s opinion becomes vacuous, i.e., n+i,0 = n−i,0 = 0,
the likelihoods for each of the behaviors become equal, and the update does not
change any of the source behavior opinions. In other words, when the uncertainty
of the reported propositions are low, the behavior update is comparable to directly
observing which behavior the a-th source used in reporting the given proposition.
As the uncertainty of either reported opinion grows, the increments to the source
behavior evidence go to zero. The strength of the update depends on how much
direct evidence the ego-source is able to observe.

Given the characterization of the behavior of the sources, the subjective logic
method discounts each source’s behavior followed by consensus fusion [14].
The discount operation in subjective logic, which originates from Dempster-Shafer
theory [29], only considers the belief that the source provides a good report.
Specifically, the function Discount(t,n) = tg+1∑

k∈K(tk+1)
n discounts the opinion

based upon the expected probability of a good report. The reports of all sources
for the i-th variable are discounted by Discount using their respective behavior
profiles ta , and the outputs are passed through the consensus operator. In effect,
the discount operator acts as a “soft” censor for sources.

Figure 6.2a shows the RMSE result s of subjective logic discounting and fusion.
The error is clearly reduced as compared to consensus fusion. Specifically, the
RMSE performance relies mostly on the percentage of predominately good sources.
When the percentage of predominately good sources is 10%, the RMSE is about 0.2
(much lower than consensus alone), and this value decreases to 0.13 when all the
sources are predominately good (comparable to consensus alone). Like consensus,
the uncertainty associated to the fused opinion still greatly underpredicts the actual
RMSE, where the predicted RMSE averages around 0.053 for the various mixtures
of sources. The predicted RMSE is higher than that of simple consensus fusion
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Fig. 6.2 RMSE of discounted fusion for various mixtures of predominately good, flipping, and
random sources represented as a heat map: (a) subjective logic discounting followed by consensus
fusion, (b) two-mode behavior discounting followed by consensus fusion, and (c) three-mode
behavior discounting followed by consensus fusion

due to the discounting. It is greatest when the percentage of predominately flipping
sources is 100% (0.13) and is smallest when the percentage of predominately good
sources is 100% (0.026).

While the discount operator is intuitively appealing, it is ad hoc. By the two-
mode beta model, the distribution for the probability of the i-th variable due to the
a-th source’s report is

f (p|ta,ni,a) ∝ t
g
a + 1

t
g
a + t ra + 2

fβ(p|[n+i,a, n−i,a])+
t ra + 1

t
g
a + t ra + 2

fβ(p|[0, 0]). (6.9)

The Discount2(ta,ni,a) determines the discounted report as the evidence param-
eters of the beta distribution whose means and variances match the distribution
in (6.9). This form of discounting was used in the TRAVOS trust and reputation
model [31], and Eqs. (11)–(15) in [31] implement the Discount2 operator.
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Figure 6.2b shows the RMSE results when employing the Discount2 operator
followed by consensus. The results look very similar to SL discounting results.
If one squints and look at the actual numbers, one will actually see a slight
improvement using the two-mode discounting. Again, the predicted RMSEs are
much lower than the actual errors. The predicted values are actually slightly larger
than SL discounting, but not by much.

It is now natural to wonder about how the three-mode beta model can fair. In this
case, the distribution for the probability of the i-th variable due to the a-th source’s
report is

f (p|ta,ni,a) ∝
(t
g
a + 1)fβ(p|[n+i,a, n−i,a])+ (tfa + 1)fβ(p|[n−i,a, n+i,a])+ (tra + 1)

t
g
a + tfa + t ra + 3

.

(6.10)
Again, the method of moments can be employed to extract a discounted opinion
by approximating (6.10) by a beta distribution. We refer the process as the
Discount3(ta,ni,a) operator. The actual operator is a special case of the joint
discounting and consensus fusion operator described in [27] which will be discussed
soon.

Figure 6.2c provides the RMSE results when employing Discount3 before
consensus. The results improve significantly over the two previous discounting
operators as the number of predominately flipping sources increases. This is because
the discounting operator actually to some extent “unflips” the reports from the
flipping sources. Now, the performance of the fusion is primarily a function of the
percentage of predominately random sources. With no random sources, the error is
about 0.15 and grows to 0.29 when all sources are predominately random. Like the
previous discounting operators, the predicted RMSE is much lower than the actual
error. The predicted error is as low as 0.028 for no random source and is as high as
0.075 when all sources are predominately random.

The large gap between the predicted and actual fusion results for all the
discounting methods indicated that more can be done. The discounted reports as
given by the beta mixtures in (6.9) and (6.10) are poorly fitted by a single beta
distribution. It is actually better to perform the fusion with the beta mixtures before
finding an approximate beta distribution fit. Under the fairly general assumption that
the prior on the distribution of values of propositions is uniform, the distribution
after fusing the reports from all sources is

f (p|T,Ni ) ∝
A∏

a=1

f (p|ta,ni,a), (6.11)

where f (p|ta,ni,a) is given by (6.9) or (6.10) for the two-mode or three-mode
behavior model, respectively. The operator ni,f = JointConDis(t1,ni,1, . . . , tA,
ni,A) determines the fused opinion by selecting the opinion associated to the beta
distribution that is determined through moment matching to (6.11). The distribution
in (6.11) is a mixture of beta distributions, which leads to analytical expressions for
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Fig. 6.3 RMSE of joint discounting and fusion for various mixtures of predominately good,
flipping, and random sources represented as a heat map: (a) two-mode and (b) three-mode

the moments. However, the number of mixture components grows exponentially. A
practical implementation of the JointConDis operator is presented in [27] that
clusters similar components into a single component as more sources are integrated.

Figure 6.3a shows the RMSE results for two-mode JointConDis. The
improvement over the previous discounting methods is obvious when the percentage
of predominately good sources is 10% or greater. Otherwise, the reports from
the predominately flipping agents can cohere in the fusion process and drown
out the good reports. Therefore the error can become worse than the previous
discounting methods when the percentage of predominately flipping sources is
large. Now the predicted RMSE matches the actual RMSE as long as the percentage
of predominately good agents dominates the flipping sources. Table 6.1 provides
the actual and predicted RMSE numbers for various percentages of source types.
The discrepancy between the actual and predicted values as more flipping sources
are included is due to the fact that the two-mode model does not account for the
flipping behavior.

Figure 6.3b shows the RMSE results for three-mode JointConDis. The error
is now very small except for cases when the percentage of predominately random
agents is 95% or more. Because the flipping behavior is modeled in the fusion
approach, the reports of flippers can be “unflipped” so that predominately flipping
sources are providing comparable information as predominately good agents, and
the fusion method is able to exploit that information. Because the fusion method
is modeling all the behaviors inherent in the synthesized sources, the predicted and
actual errors are comparable except when all the sources are predominately random
as provided in Table 6.2. It seems that the joint consensus fusion process that models
all the source behaviors is able to achieve the lowest possible error and the fused
opinion is able to represent the quality of information after fusion. The error is the
lowest when none of the sources are predominately random. In such cases, the actual
and predicted RMSE is 0.0075, which is slightly higher than the predicted RMSE
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Table 6.1 RMSE and (predicted RMSE) of joint fusion and discounting using the two-mode
model with an ego-source for various mixtures of predominately good, flipping, and random
sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3791 0.4789 0.5458 0.5680 0.5787 0.5802

(0.1342) (0.1212) (0.0899) (0.0663) (0.0344) (0.0269)

20
0.0424 0.0590 0.0860 0.1126 0.1757 —

(0.0274) (0.0261) (0.0391) (0.0412) (0.0535) —

40
0.0139 0.0189 0.0188 0.0169 — —

(0.0130) (0.0135) (0.0140) (0.0143) — —

60
0.0112 0.0118 0.0119 — — —

(0.0105) (0.0105) (0.0106) — — —

80
0.0100 0.0102 — — — —

(0.0091) (0.0091) — — — —

100
0.0091 — — — — —

(0.0082) — — — — —

Table 6.2 RMSE and (predicted RMSE) of joint fusion and discounting using the three-mode
model with an ego-source for various mixtures of predominately good, flipping, and random
sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3124 0.0284 0.0113 0.0095 0.0083 0.0076

(0.2004) (0.0246) (0.0112) (0.0094) (0.0083) (0.0075)

20
0.0281 0.0117 0.0092 0.0085 0.0075 —

(0.0252) (0.0113) (0.0094) (0.0083) (0.0075) —

40
0.0110 0.0093 0.0081 0.0075 — —

(0.0119) (0.0094) (0.0083) (0.0075) — —

60
0.0096 0.0085 0.0077 — — —

(0.0094) (0.0083) (0.0075) — — —

80
0.0081 0.0075 — — — —

(0.0083) (0.0075) — — — —

100
0.0075 — — — — —

(0.0075) — — — — —

of standard consensus fusion as discussed in the previous section. This is because
consensus fusion alone assumes all reports are honest, whereas the predominately
honest and flipping sources still provide random reports 15% of the time, which is
accounted for in joint consensus and discount fusion in (6.11).
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6.6 Fusion Using Behavior Estimates Without Ego-Sources

The three-mode JointConDis is probably at the estimation limit when dealing
with sources that probabilistically decide to manipulate their reported opinions. The
problem is that it requires an ego-source to “calibrate” the source behavior profiles.
This section investigates what is possible when an ego-source is unavailable. This
occurs when the decision-maker does not have direct access to observe the values
over different instantiations of the various variables. This section is inspired by the
fact-finding work described in [36, 39].

It is interesting to look at the performance of the two-mode JointConDis
when the source behavior opinion is vacuous, i.e., tga = t ra = 0. Figure 6.4a shows
the RMSE over the various mixtures of source types. Despite the lack of knowledge
about the source behavior, the fusion still works well when the percentage of

Fig. 6.4 RMSE without an ego-source for various mixtures of predominately good, flipping, and
random sources represented as a heat map: (a) two-mode joint discounting and fusion using
vacuous source behavior profiles, (b) two-mode fact-finding, and (c) three-mode fact-finding
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Table 6.3 RMSE and (predicted RMSE) of joint fusion and discounting using the two-mode
model without any ego-source for various mixtures of good, flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.4049 0.5453 0.5733 0.5759 0.5766 0.5772

(0.0764) (0.0406) (0.0168) (0.0111) (0.0098) (0.0090)

20
0.1702 0.4009 0.5462 0.5736 0.5763 —

(0.0479) (0.0757) (0.0480) (0.0172) (0.0100) —

40
0.0442 0.1377 0.3927 0.5474 — —

(0.0137) (0.0461) (0.0693) (0.0424) — —

60
0.0128 0.0265 0.1628 — — —

(0.0113) (0.0119) (0.0482) — — —

80
0.0104 0.0132 — — — —

(0.0098) (0.0100) — — — —

100
0.0090 — — — — —

(0.0090) — — — — —

predominately good sources is much larger than the percentage of predominately
flipping sources. In fact, the RMSE is mostly a function of the difference of these
two percentages. Table 6.3 provides the actual and predicted RMSE obtained by
the fused opinions. When all the sources are predominately good, the match is
very close. In this case, the good reported opinions are able to cohere in the
JointConDis operation against the noncoherent random opinions. The match
between the actual and predicted errors slowly deteriorates as the difference between
the percentages of predominately good and flipping sources decreases. Once there
are more flipping sources, the JointConDis is cohering to the flipped opinions,
and the actual RMSE becomes large because the estimate is a flipped version
of the ground truth. Overall, the performance of two-mode JointConDis with
the vacuous behavior is not as good as using the ego-source-generated behavior
profile, but it does significantly outperform the earlier discounting methods when
the predominately good sources outnumber the flipping ones. This indicates that
fusion without an ego-source to calibrate the sources is possible, but more can be
done as we will now see.

The three-mode JointConDis operator using a vacuous source belief profile
is ineffective because the distribution given by (6.11) is bimodal due to the modeling
of the flipping behavior and the two modes are equiprobable in the absence of prior
knowledge of the relative number of sources that are exhibiting good and flipping
behaviors for the given variable. Fitting a single beta distribution to this bimodal
distribution leads to a poor characterization of the fused opinion, and it is not clear
which mode is representative of the ground truth and which mode is representative
of the flipped ground truth.

The performance of the two-mode JointConDis operator using a vacuous
source belief profile appears to provide a surprisingly good representation of the
ground truth when the majority of sources are predominately good. The fact-finding
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methods used for non-probabilistic propositions that have certain values either
true or false [36, 39] provide inspiration to do more. The fact-finding methods
alternate between estimating the trustworthiness of the sources given an estimate
of the truth of their claims and estimating the truth of the claims given an estimate
of the trustworthiness of the sources. In other words, the fused opinion that is
the output of the two-mode JointConDis operator using the vacuous source
behavior profile can serve as an initial surrogate for an ego-source opinion. Then, the
SourceBehavior operator using a two-mode model provides an updated source
behavior profile opinion for each source. Next, updated fused opinions are obtained
using the two-mode JointConDis operator with the updated source behavior
profile opinions, and then the SourceBehavior operator updates the source
behavior profile opinions using the updated fused opinions. The process repeats
until the source behavior profile opinions converge. The details of the two-mode
fact-finding method is shown in Operator 1 as FactFind2.

Operator 1 [n1,f , . . . ,nI,f , t1, . . . , tA] = FactFind2(n1,1, . . . ,ni,a, . . . ,nI,A)
t
g
a = t ra = 0 for a = 1, . . . , A

t
g′
a = t r ′a = 1 for a = 1, . . . , A

while
∑A
a=1 ‖t

′
a − ta‖2 > ε do

t
′
a = ta for a = 1, . . . , A

/* Use 2-mode source behavior model */
ni,f = JointConDis(ni,1, t1, . . . ,ni,A, tA) for i = 1, . . . , I
ta = SourceBehavior(n1,f ,n1,a, . . . ,nI,f ,nI,a) for a = 1, . . . , A

end while

Figure 6.4b shows the RMSE of the two-mode fact-finding method. As long as
the predominately good sources outnumber the predominately flipping agents, the
RMSE is very low. Otherwise, the error is large because the flipped version of the
ground truth prevails. Table 6.4 compares the actual and predicted RMSE values
for various mixtures of source types. As long as the number of predominately good
sources significantly outnumbers the other source types, the predicted and actual
errors are comparable. The discrepancy between the actual and predicted errors
when the predominately good sources are slightly in the majority indicates that more
still can be done.

The two-mode fact-finding method does not correct for flipping behavior. A
three-mode fact-finding method can do better, but without an initial estimate
of the source behaviors, three-mode JointConDis suffers from the two-mode
problem discussed earlier. Operator 2 describes the three-mode fact-finding operator
FactFind3 that alternates between joint discounting and fusion and source
behavior characterization using the fused opinions as ego-source surrogates. It is
initialized by FactFind2 to determine initial evidence for the good behavior
associated to each source. To this end, the second step in Operator 2 is actually
transferring the belief in the random behavior into uncertainty. In setting up a three-
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Table 6.4 RMSE and (predicted RMSE) of two-mode fact-finding for various mixtures of good,
flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3947 0.5721 0.5757 0.5764 0.5763 0.5764

(0.1071) (0.0256) (0.0124) (0.0104) (0.0090) (0.0081)

20
0.0434 0.5689 0.5746 0.5763 0.5762 —

(0.0271) (0.0312) (0.0159) (0.0104) (0.0091) —

40
0.0139 0.0200 0.5759 0.5764 — —

(0.0130) (0.0127) (0.0145) (0.0105) — —

60
0.0112 0.0120 0.0122 — — —

(0.0104) (0.0104) (0.0105) — — —

80
0.0100 0.0104 — — — —

(0.0090) (0.0091) — — — —

100
0.0092 — — — — —

(0.0081) — — — — —

mode belief, the beliefs in flipping and random behavior are set to zero, and the good
behavior belief and uncertainty are transferred from the two-mode behavior opinion.
This can be verified by the evidence to belief mapping given by (6.3). The rationale
for moving the random behavior belief to uncertainty is because the two-mode fact-
finding cannot distinguish between random and flipping behavior and only the belief
in the good behavior is valid. Then, the fact-finding methods alternate between
performing three-mode JointConDis to estimate fused opinions as surrogates for
the ego-source opinions and three-mode SourceBehavior to update the source
behavior profile opinions until convergence.

Operator 2 [n1,f , . . . ,nI,f , t1, . . . , tA] = FactFind3(n1,1, . . . ,ni,a, . . . ,nI,A)
[̃, . . . , ,̃ t1, . . . , tA] = FactFind2(n1,1, . . . ,ni,a, . . . ,nI,A)

t
g
a = 3tga

2+t ra for a = 1, . . . , A

t
f
a = t ra = 0 for a = 1, . . . , A

t
g′
a = tf

′
a = t r ′a = 1 for a = 1, . . . , A

while
∑A
a=1 ‖t′a − ta‖2 > ε do

t
′
a = ta for a = 1, . . . , A

/* Use 3-mode source behavior model */
ni,f = JointConDis(ni,1, t1, . . . ,ni,A, tA) for i = 1, . . . , I
ta = SourceBehavior(n1,f ,n1,a, . . . ,nI,f ,nI,a) for a = 1, . . . , A

end while

Figure 6.4c shows the RMSE of the three-mode fact-finding method. The bound-
ary where the numbers of predominately good and flipping agents are comparable is
sharper than that of the results from the two-mode fact-finding method. The actual
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Table 6.5 RMSE and (predicted RMSE) of three-mode fact-finding for various mixtures of good,
flipping, and random sources

% of good % of flipping sources

sources 0 20 40 60 80 100

0
0.3820 0.5743 0.5761 0.5764 0.5764 0.5765

(0.1239) (0.0238) (0.0112) (0.0094) (0.0083) (0.0075)

20
0.0243 0.5761 0.5763 0.5765 0.5765 —

(0.0262) (0.0115) (0.0094) (0.0083) (0.0075) —

40
0.0108 0.0093 0.5764 0.5765 — —

(0.0114) (0.0094) (0.0083) (0.0075) — —

60
0.0096 0.0085 0.0077 — — —

(0.0094) (0.0083) (0.0075) — — —

80
0.0081 0.0076 — — — —

(0.0083) (0.0075) — — — —

100
0.0075 — — — — —

(0.0075) — — — — —

and predicted RMSE numbers are provided in Table 6.5. When the predominately
good sources outnumber the flippers, the three-mode fact-finding lowers the error
as compared to two-mode fact-finding because it does explicitly correct for flipping
behaviors. Furthermore, the agreement between the actual and predicted errors is
maintained as long as the predominately good sources outnumber the flippers. It
seems that the three-mode fact-finding is pushing the limits of what is possible
for jointly performing source and fused opinion in the absence of an ego-source.
Without the ego-agent, one must make the implicit assumption that lying sources
are in the minority. This is true for state variables in general and is also true for
traditional fact-finding methods that operate over crisp propositions [36, 39]. When
the assumption is violated, the fact-finding method will fail. This seems to be a
fundamental barrier when an ego-source is unavailable.

6.7 Discussion and Conclusions

This chapter demonstrates how to perform fusion of subjective opinions from
possibly unreliable sources to estimate values of probabilistic state variables.
Specifically, a subjective opinion about a state variable summarizes the evidence
about the possible probabilities that the state variable takes one of K values. It
encodes both the expected probabilities as the information and the amount of
evidence that has been collected as the quality of the information. As shown in this
chapter, the quality of information represents the spread (or difference) between the
actual ground truth probabilities and the expectation information derived from the
observations.
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When the decision-maker (or its very trusted advisor) has direct observations
about many of the state variables or propositions, the decision-maker can use the
consistency of his/her observations and the corresponding reported opinions of a
particular source to establish a source behavior profile opinion for that particular
source. The decision-maker can achieve very effective fusion by accounting for its
source behavior opinions of each source in conjunction with the reported opinions
from each source. It is demonstrated that it is much more effective to perform the
fusion in one shot rather than discounting each source’s opinion by its corresponding
behavior profile opinion. This is because a discounted opinion is unable to jointly
capture the uncertainty of the reported opinion in light of the source’s various
behaviors.

Simulations of three (good, flipping, and random) source behaviors help to
demonstrate the effectiveness of the various fusion methods. When the fusion
method models all three behaviors, the fusion leads to a very tight estimate of ground
truth that is well characterized by the ground truth. When the fusion method only
models good and random behavior, the estimate of the ground truth is not as tight
because the method is only able to censor (and not correct for) the flipping behavior,
which is usually inconsistent with good behavior. The quality of information is still
able to characterize the difference between the estimates and ground truth as long
as the unmodeled flipping behavior does not become overly prevalent.

It is possible to perform fusion of a set of subjective opinions when the decision-
maker does not have any direct observations to calibrate the behavior profiles of
sources. In these cases, fused opinions act as a surrogate for the direct opinions so
that inspired by fact-finding methods, one can iterate between fusion and source
behavior estimation where the estimates progressively improve as long as the good
behaviors occur more frequently than the bad behaviors. The fact-finding principle
provides good estimates whose errors are well characterized by the quality of
information as long a good behaviors occur more than flipping behaviors.

In general, sources can exhibit more than the three behaviors considered in this
chapter. Nevertheless, the two-mode behavior model is a robust behavior model
because the random behavior can capture source behaviors intended to move a
fused estimate farther from the ground truth. The problem with the two-mode
behavior model is that it does not allow fusion method to incorporate “bad” reports
by implicitly transforming them into “good” reports. In essence, the two-mode
behavior model only enables the fusion to censor (but not correct for) bad behaviors.
The three-mode behavior model can correct for flipping behaviors, but it will not be
able to correct for other unmodeled behaviors. The insight of the results in this
chapter mean that in light of additional source behaviors, the three-mode fusion
methods will still achieve good fusion with a meaningful quality of information
characterization as long as the decision-maker has direct observations to calibrate
the sources. It is just that the fusion performance could be improved by explicitly
modeling the behaviors, and methods such as in [27] could be employed to learn
new behaviors. Without the direct observation, the fact-finding methods will still
be effective as long as the good behavior is the majority behavior exhibited in the
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collections of reports. Furthermore, the three-mode fact-finding should still beat out
two-mode fact-finding because it can use flipped reports as information.

The beta model to characterize source behavior is nice because it captures the
idea that sources do not always lie or tell the truth. However, a clever and malicious
source would try to be truthful as much as possible to build a good reputation and
decide to lie at the moment that makes the decision-maker’s organization the most
vulnerable. This chapter does not present “the” technique to handle such a case, but
this chapter does provide insights in the challenges to successfully deceive or protect
from such deception. For instance, the malicious source can only be effective if
he/she coordinates his/her lie with other sources and those sources are not drowned
out by a larger group of good sources. Likewise, the decision-maker can use other
stereotypical or profile information about the source, e.g., see [2, 28], along with
risk/benefit analysis to build the sources reputation based upon its past forgone
opportunities to cause harm in light of its likely affiliations. In other words, each
proposition need not be considered equal in forming the source behavior profile.
Furthermore, the fusion methods in this chapter assume independent sources, and as
a result, they are vulnerable to coordinating sources. Understanding how the source
profile information forms an influence network among sources can lead to better
methods. For instance, social EM is a fact-finding method for binary propositions
that is resilient to the “echo chamber” effect in social networks [38].

Specific applications will drive the exact source reputation and fusion system
that is required. The methods presented in this chapter are generic. While they are
not necessarily best for a particular scenario, such as a set of cooperating sources
waiting for the exact right time to lie, the methods presented here can serve as the
building blocks for customized systems. Overall, there are opportunities to design
fusion systems to be resilient to conflicting and malicious sources. However, there
are limitations to how resilient the system can be built. The chapter has identified
some of these limitation and opportunities.
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Laboratory for its support under grant W911NF-14-1-0199 and The Scientific and Technological
Research Council of Turkey (TUBITAK) for its support under grant 113E238.

References

1. V. Bui, R. Verhoeven, J. Lukkien, R. Kocielnik, A trust evaluation framework for sensor
readings in body area sensor networks, in Proceedings of the 8th International Conference on
Body Area Networks, BodyNets ’13 (ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), Brussels, 2013), pp. 495–501



132 L. Kaplan and M. Şensoy
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Chapter 7
Assessing the Usefulness of Information
in the Context of Coalition Operations

Claire Saurel, Olivier Poitou, and Laurence Cholvy

Abstract This chapter presents the results of a study aiming at restricting the flow
of information exchanged between various agents in a coalition. More precisely,
when an agent expresses a need of information, we suggest sending only the
information that is the most useful for this particular agent to act. This requires
the characterization of “the most useful information.” The model described in this
chapter defines a degree of usefulness of a piece of information as an aggregation of
several usefulness degrees, each of them representing a particular point of view of
what useful information might be. Specifically, the degree of usefulness of a piece
of information is a multifaceted notion which takes into account the fact that it
represents potential interest for the user with respect to his request, has the required
security clearance level, can be accessed in time and understood by the user, and
can be trusted by the user at a given level.

Keywords Useful information · Usefulness degree · Coalition

7.1 Introduction

In this, chapter, the problem of defining the usefulness of information is considered
in the context of military coalition operations. Coalition operations require aggre-
gation of information obtained from multiple systems since none of these systems
alone provides enough information to achieve coalition goals. These systems are
delivered and managed by different countries, which agree on combining their
capabilities in order to create a global system which is more efficient than their own.
Obviously, the individual systems have to coordinate in order to achieve the global
tasks assigned to the coalition, and, for doing so, they have to exchange information.
At the same time, utilizing all the information poses the risk that the volume of
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information flow increases drastically, leading to a loss of global efficiency. The
problem of alleviating this risk is addressed in this chapter. The proposed solution is
based on the following considerations: each agent (also called a user) who expresses
a need of information (a request) has to be provided with only the information that
is “the most useful to act.” This solution requires an understanding of the concept
of information usefulness and the definition of a degree of usefulness of a piece of
information.

The model proposed here is inspired by the Vector Model used in the field of
information retrieval [1–3]. In the initial version of this model, any document in
the information base is associated with a vector of attributes that are the most
significant in a given corpus. These attributes are the terms that appear in the
document, and the user request is associated with a vector of terms that describe his
interests. The Vector Model approach uses the comparison between the semantic
proximity of a request and a document represented by the proximity of their
respective vectors. The assessment of the relevance of a document to a request is
then done by using such distances as a cosine measure between their respective
vectors, thus capturing a syntactic proximity of their contents. Some other distance
functions can be defined, in order to specify different kinds of relevance concept.
One advantage of such distance-based approaches is that they provide a numerical
value of the similarity between documents. This level of similarity is interpreted as
a degree of relevance of documents. An additional strength of the Vector Model is
its implementation simplicity. These are the main reasons why the Vector Model
approach has been used extensively. Multiple refinements of the basic model have
been proposed by, for example, introducing the weighting factors, which take into
account the size of the document or the request, and the frequency of the terms in
the overall collection of documents considered. The most well-known weighting
scheme is the TF-IDF (Term Frequency-Inverse Document Frequency factor) [3, 4]
that introduces a concept of term importance. This scheme analyses a combination
of the term frequency in the document with the term of its scarcity in the collection
of documents in order to favor most discriminant terms.

The concept of usefulness of information is more than the relevance of informa-
tion. Of course, to be considered as useful, a piece of information must be relevant
to the request. For instance, if a user wants to know the condition of a main road,
the condition of small roads in the area is not relevant, since it does not satisfy the
user’s information need. But in addition to being relevant, the information must also
be current, for example, telling the user the main road condition a month ago is not
useful since it may have changed. In the same way, a measurement provided by a
totally unreliable sensor is useless. Moreover, a given relevant, current, and reliable
piece of information is useful to the user only if it can be read and understood
timely. For instance, a 20-page document describing the condition of a main road is
not useful to the user if the road condition has to be known immediately. Moreover,
a document written in a language unknown to the user is not useful either. Thus,
usefulness needs to be characterized by several attributes.
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Fig. 7.1 Assessment of a global degree of usefulness for a piece of information

So, let us assume that a user has expressed a need for information by a request,
and let us consider a piece of information as being a document, an image, a
measurement provided by a sensor, etc. In order to estimate the usefulness of a
piece of information to the user, we propose (Fig. 7.1) to:

• Model a user by a set of attributes that characterize the information need
• Model a piece of information by a set of attributes that characterize it
• Use attributes to compute a usefulness degree focused on a given point of view
• Aggregate the different usefulness degrees obtained from the different points of

view to a global degree of usefulness

The rest of the chapter is organized as follows. Section 7.2 presents the various
attributes used to model a user and the needs of information. Section 7.3 defines
several usefulness degrees. Section 7.4 shows how to get a global usefulness degree
by integrating various specific usefulness degrees. Section 7.5 presents an example
illustrating the proposed approach. Finally, the chapter concludes in Sect. 7.6.

7.2 Modeling Information and Users

We consider that a piece of information is useful for the user if it is relevant to
his/her request, temporally valid, sufficiently reliable, understandable by the user
and if it can be read by the user in time. Consequently, we model information and
users as vectors of attributes which deal with notions like topicality, time, reliability,
languages.
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7.2.1 Preliminaries

Let us introduce the following domains of values:

• Eval = {A, ..., E} × {1,...,6} is the set of all the possible information evaluation
degrees as defined by STANAG 2511 (see Appendix A for a reminder of
STANAG 2511). Moreover, we define an order on Eval as follows:

(X1, Y1) > (X2, Y2) iff X1 > X2or (X1 = X2 and Y1 > Y2)

• C is a finite set of access restriction (also called confidentiality) degrees
associated with a total order <. For instance, C= {restricted, confidential, secret,
top secret} with restricted < confidential < secret < top secret.

• L is a set of values representing the different languages that are spoken in a
coalition. For instance, L = {English, French, German}.

• F is a set of values representing the different formats representing the pieces of
information which are exchanged in the coalition. For instance F = {Word, pdf,
L16}.

• E is a finite set of values associated with a total preorder denoted ≤. For instance
E = {small, medium, strong} with small ≤ medium ≤ strong. Any value in
E intends to represent the amount of effort needed to decode a given piece of
information or the amount of effort a given user may spend to read a given piece
of information.

• T is a finite set of topics related to pieces of information exchanged in the
coalition.

• D is a set of integers that model dates.

7.2.2 Modeling Information

The different attributes that model a piece of information I, as well as their value
domains, are given in Table 7.1.

Table 7.1 The information
vector

Attribute names Attribute values

Eval(I) An element of Eval.
C(I) An element of C
L(I) A subset of L
F(I) A subset of F
E(I) An element of E
T(I) A subset of T
TV(I) [d1, d2] where d1 and d2 belong to D
Emit(I) An element of D
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These attributes are further defined in the following way:

• Eval(I) = <r, c> is the evaluation degree of I according to STANAG 2511. The
value r quantifies the reliability of the source that emitted I and the value c
quantifies the credibility of I.

• C(I) is the confidentiality level of I.
• L(I) is the set of languages used to express I.
• F(I) is the set of different formats that support I.
• E(I) is a value in E that quantifies the amount of effort needed to read and analyze

information I. It could be defined in a very simplistic way as the size of the
support or in a smarter way with a linguistic analyzer.

• T(I) is the set of topics that I is about.
• TV(I), the temporal validity of I is the interval [TV(I)start, TV(I)end] during

which, I is valid.
• Emit(I) is the date at which I is emitted.

7.2.3 Modeling Users

A user is a person who, at a given moment, formulates a query that expresses a need
for information. The user is modeled by a set of attributes belonging to different
domains. Some of these attributes depend on the query (for instance, the set of
topics that the query is about, the deadline of the information needed), but some
others only depend on the person (for instance, the languages that it can understand,
its security clearance level etc.). All these attributes are used to characterize a useful
piece of information.

Different attributes which model user U and their value domains are given in
Table 7.2. One can notice that the first four attributes do not depend on the user’s
request.

These attributes are further defined in the following way:

• Eval(U) defines the smallest evaluation degree of information that U is willing to
accept. As a consequence, any piece of information whose evaluation degree is
less that Eval(U) will be considered as useless for U.

Table 7.2 A vector
attributed of user U

Attribute names Attribute values

Eval(U) An element of Eval
C(U) An element of C
L(U) A subset of L
F(U) A subset of F
E(U) An element of E
T(U) A subset of T
TV(U) [d1, d2] where d1 and d2 belong to D
Deadline(U) An element of D



140 C. Saurel et al.

• C(U) is the security clearance level of U. Any information whose confidentiality
level is greater than C(U) will be considered as nonuseful for U.

• L(U) is the set of all the languages that U understands. As a consequence, any
piece of information expressed in a language that does not belong to L(U) will
be considered as non-useful for U.

• F(U) is the set of the representation formats U accepts. As a consequence, any
piece of information coded in a format that does not belong to F(U) will be
considered as nonuseful for U.

• E(U) is the amount of effort U can make to process answers. For instance, if
E(U) is low, then a big document requiring a huge effort will be considered as
nonuseful for U.

• T(U) is the set of the topics related to the request. As an example, if the request is
related to zone Z geography (for instance, what is the length of that river? What is
the height of that hill?), any information that does not concern the geography of
zone Z (for instance, information about the population of Z) will be considered
as useless for U.

• TV(U) is an interval [TV(U)start, TV(U)end] of dates during which information
that U expects as answers is valid. For instance, if the request what is the
condition of that road? is associated with the interval [d1,d2], this means that
U wants to know the road condition between dates d1 and d2.

• Deadline(U) is the latest moment at which U wants to receive the requested
information. Any information that cannot reach U before Deadline(U) will be
considered as useless.

7.3 Degrees of Usefulness

Let U be a user and I a piece of information, each of them being modeled by their 8
attributes. These attributes define several degrees of usefulness as listed below.

• The degree of usefulness of I for U with respect to attribute Eval is defined by:

Usefulness1 (I,U) = 1 iff Eval (I) ≥ Eval (U)

Usefulness1 (I,U) = 0 otherwise

i.e., relative to attribute Eval, I is useful for U iff its evaluation degree is greater
than the smallest evaluation degree required by U.

• The degree of usefulness of I for U with respect to attribute C is defined by:

Usefulness2 (I,U) = 1 iff C (I) ≤ C (U)

Usefulness2 (I,U) = 0 otherwise

i.e., with respect to attribute C, the information I is useful for U iff its
confidentiality level degree C(I) is less than the confidentiality level degree of U:
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C(U). Any information whose confidentiality level degree is greater than C(U)
will not be sent to U because U is not authorized to read it (U does not have the
required security clearance level).

• The degree of usefulness of I for U with respect to attribute L is defined by:

Usefulness3 (I,U) = 1 iff L (I) ⊆ L (U)

Usefulness3 (I,U) = 0 otherwise

i.e., with respect to attribute L, the information I is useful for U iff U understands
all the languages used to describe I.

• The degree of usefulness of I for U with respect to attribute F is defined by:

Usefulness4 (I,U) = 1 iff F (I) ⊆ F (U)

Usefulness4 (I,U) = 0 otherwise

i.e., with respect to attribute F, the information I is useful for U iff U can process
all the formats in which I is represented.

• The degree of usefulness of I for U with respect to attribute E is defined by:

Usefulness5 (I,U) = 1⇐⇒ E (I) ≤ E (U)

Usefulness5 (I,U) = 0 otherwise

i.e., with respect to attribute E, the information I is useful for U iff the effort
which is needed to process I is less than the effort U can provide.

• Two degrees of usefulness can be defined with respect to attribute T.

– The degree of appropriateness is defined by:

Usefulness61 (I,U) =
|T (I) ∩ T (U)|
|T (U) ∪ T (I)|

– The degree of topical coverage is defined by:

Usefulness62 (I,U) =
|T (I) ∩ T (U)|

T (U)

• The degree of usefulness of I for U with respect to the attribute of temporal
validity is informally defined by the amount of overlap between the two intervals;
formally its definition is:

Usefulness8 (I,U) = 1 iff CurrentTime+ CommunicationDuration (I,U)

≤ Deadline (U) 0 otherwise,
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• With respect to attribute Deadline, the degree of usefulness of I for U is defined
by:

Usefulness8 (I,U) = 1 iff CurrentTime+ CommunicationDuration (I,U)

≤ Deadline (U) 0 otherwise,

where Current Time is the moment at which the evaluation is done and Commu-
nication Duration(I,U) is a value that represents a (worst case) transmission time
of the information I to the user U if known (assumed to be null in case of having
no knowledge on that point).

The usefulness degrees are defined in such a way that they have the same
interpretation as their values are high or low, i.e., for a given piece of information,
the higher the degree, the more useful the information is to the user. These degrees
are defined either as ratios that take their value in a normalized interval [0,1] or as
pseudo-Boolean values (0 or 1).

7.4 A Global Degree of Usefulness

This section presents the way we compute a global degree of usefulness. First, we
assume that the user has expressed a preference order for the eight previous degrees
of usefulness. This preference order reflects the relative importance given by the user
to the particular criterion under consideration. Then, a global degree of usefulness is
computed by aggregating the eight degrees while taking into account their relative
importance.

7.4.1 Choice of an Aggregation Function

The choice of an aggregation function depends on several assumptions about the
criteria to aggregate [5], among which:

• Separability of criteria: Criteria are separable if there is no interaction between
them. The lack of independence may produce a bias since they can be counting
them twice.

• The existence of absorbent attributes: For a given piece of information, a Boolean
usefulness dimension is absorbent if, whenever its value is null, the global
aggregated usefulness value is null too, whatever a user preference order being
defined between criteria.

• Compensability of the function: The compensability is the ability to obtain a
high global evaluation in spite of the low evaluation degrees of criterion to
be aggregated (intuitively several good marks compensate a bad one). The
compensability property is not always desirable, and one can prefer to have
limited criteria compensability where compensation is hard or impossible.
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Min or max aggregation methods only consider the numerical order between
values of the criteria or dimensions to be aggregated. Therefore, they cannot capture
any user preference order defined for the criteria. Most usual and simple additive
aggregation methods, such as average, are totally compensatory. Compensation
control may be performed by limiting the compensation function domain and
adjusting the compensation inside this domain.

It is possible to introduce minimum score requirements to restrict the com-
pensation function domain. This is useful to avoid the incorporation of absorbent
attributes into the aggregation process.

Weighted min and max aggregation methods [6] address the area of com-
pensation adjustment. They are not directly compensatory though still offering a
linear compensation while only the gradient is changed. In addition, they introduce
a vector of static numerical weights which could be considered as somewhat
arbitrary. Some more complex weighted techniques try to make the compensation
control more subtle, but in this family of functions, static numeric weights that are
associated with each criterion (or criteria combination) are difficult to choose and
control. Limits to these weighted approaches are certainly reached with Choquet
integrals [7] and its 2nweights for n criteria that potentially offer to choose
one compensation linear gradient between each criterion. Weighted aggregation
methods require techniques for computing weight values. These techniques are
mostly heuristic and require the availability of experimental data to calibrate and
validate their parameters. In industrial and even more in defense applications, such
data are often confidential and not available. Moreover, most of the simple additive
aggregation methods (such as the weighted average) ought to be avoided if criteria
separability has not been verified.

In order to address the problems with the weighted aggregation methods in a
new way, Yager has proposed prioritized aggregation functions [8]. One of Yager’s
main ideas is that, rather than attributing somewhat arbitrary numeric weights, the
user should only provide a preference relation (i.e., a preorder) for the criteria. The
numerical values of criteria weights are then no longer static and depend on each
alternative (here, each piece of information). During evaluation of each alternative,
the weight that is to be associated with each criterion will be computed based on the
rank of the criteria class in the preference relation and the scores obtained in user
preferred criteria classes. Specifically, a 1 value is given to the weight w1 associated
with the most preferred criteria class, and all criteria scores v are such that 0≤ v≤ 1.
Then the next weight value is computed by the formula wi+1 = wi × mi, where mi

is the lowest score of the alternative for all criteria in the criteria class indexed
by i. Thus, an alternative gaining a low score for an important criteria, will result in
small weights for less important criteria, hence reducing the impact of less preferred
criteria scores on the overall evaluation score of the alternative.

Yager’s approach may be particularly efficient from the compensability control
point of view [9] —the compensation function is no more linear and becomes
exponential—and may even offer absorbing elements opportunity. Indeed, if the
score corresponding to a given criterion considered as absorbent is null, then all
less preferred criteria will inherit a null weight which means that they will not
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be taken into account at all (this is what is previously referred to as absorbency
property). This is particularly powerful since applying this to the most preferred
criteria requires considering them as necessary conditions, which must be fulfilled
for the alternative to be considered (absorbency property).

The ability of Yager’s algorithm described in [8] to overcome unwanted com-
pensation effects is not the only advantage it provides. Other advantages are that
it doesn’t require either a lot of experimental input data or somewhat arbitrary
numerical weights since it relies mostly on user’s preferences between criteria.
These advantages are particularly important for applications where a sufficient
experimental data set is unavailable due, for instance, to confidentiality constraints
that frequently appear in an industrial or military context and therefore to the needs
of our application.

The following subsection describes the aggregation operator chosen for calculat-
ing the global usefulness degree, which is widely inspired by the operator introduced
in [8].

7.4.2 Definition of a Global Usefulness Degree

Let us assume that the user expresses his preference by grouping the different
degrees of usefulness in three priority classes. Class C1 comprises the degrees of
usefulness corresponding to the attributes that are the most important to the user.
The fulfillment of those degrees is considered as mandatory in our application: they
correspond to absorbent attributes. Class C2 comprises the degrees of usefulness
corresponding to the attributes whose importance is medium to the user. Class C3
comprises the degrees of usefulness corresponding to the attributes that are the least
important to the user. The global degree of usefulness of I for U is then defined as
follows:

Usefulness (I,U) =
∑

i=1..3

pi × UsefulnessCi (I,U) with :

• p1 = 1
• UsefulnessC1(I,U)=∏j∈C1 Usefulnessj (I,U) .
• p2=min

C1
UsefulnessC1 (I, U)

• UsefulnessC2(I,U)=∑j ∈ C2Usefulnessj(I, U)
• p3=p2 ×min

C2
UsefullnessC2 (I, U))

• UsefulnessC3(I,U)=∑j ∈ C3Usefulnessj(I, U)

In this definition, the degrees of class C1 are absorbing (i.e., as soon as at least
one of these degrees equals to 0 then the global degree is bounded to be 0). This
reflects their critical importance to the user.



7 Assessing the Usefulness of Information in the Context of Coalition Operations 145

7.5 Illustration

A Combat Search And Rescue (CSAR) scenario vignette, inspired by [10] has been
chosen to illustrate the proposed approach. The CSAR vignette encompasses differ-
ent agents with associated characteristics, roles, and missions. Among them are a
helicopter bringing troops to a site, aircrafts ensuring air superiority or providing
communication availability and observations, as well as deploying personnel to
the ground with the AMI (i.e., FRIENDS) extraction mission itself. This scenario
vignette offers different information request profiles ranging from a background
long-term observation/intelligence task to a specific short-term mission. Of course,
a well-equipped person can manage a large amount of information and would be
far less demanding about information quality than a single person on the operation
theater who does require a high degree of information usefulness.

A concrete application of our proposed approach is to add smart filtering as a part
of a communication layer between agents of a coalition. To do so, a large number of
parameters are to be selected, and users and information profiles have to be created
and edited. This section first describes the tool that will help to prepare and to tune
the filter. Then it shows how this filter could operate in a practical example.

7.5.1 The Usefulness Evaluation Tuning Tool

The main prototype that has been developed is a tool that can be used to configure
the smart filter to come. It allows editing user profiles and requests as well as
information profile, by giving a value to their different attributes and saving them as
a whole to easily recall them on demand. Finally, it displays the detailed result of
the evaluation of the selected information usefulness for the selected user. The main
interface of this prototype (Fig. 7.2) is made of three columns: the first one describes
the candidate destination user and its information need, the second column supports
the description of the evaluated information, and the third column shows the result
of the usefulness assessment.

Figure 7.3 zooms in the first column for a closer look on some of the main
attributes of the candidate destination user profile.

The user profile attributes that can be found in this figure are the following:

• Cotation trigger is expressed with the classical double scale (B3—in the
illustration). It indicates the minimum information evaluation degree expected
by the user (see “Modeling Information” and “Modeling Users” sections).

• Known languages are the textual or vocal information language that can be han-
dled by this user (see “Modeling Information” and “Modeling Users” sections).

• Usable supports are the communication means that are available to the user;
it encompasses or has an impact on information media type, communication
protocol, and equipment that can be used. It supports and extends the concept
of representation format (see “Modeling Information” and “Modeling Users”
sections).
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Fig. 7.2 Overview of the information usefulness assessment tool

Fig. 7.3 User profile tune-up window
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Fig. 7.4 User information request description

• Semantic skill reflects the ability to extract specific information from an infor-
mation set (time to read a long document for example as opposed to real-time
reaction requirement). It reflects the concept of effort (see “Modeling Informa-
tion” and “Modeling Users” sections).

Some user profiles are preset in advance and can be made available when needed.
They have been given a name corresponding to their scenario counterpart and can be
selected with the first field appearing in the figure. When doing so, all corresponding
attributes are given a value accordingly. However, any modification remains possible
to those settings in order to explore slightly different user profiles.

Then two windows are offered to describe the information request and the
usefulness priorities to the user.

The first window (Fig. 7.4) gathers attributes describing the information request
of the user with:

• An emission date is the date and time of the information request.
• A degree of interest for each subject/keywords of a preestablished list that reflects

the attribute T(U) in section “Modeling Users.”
• The deadline of the information request (will be used to decide if there is still

an interest to send an information to this user or if it is too late) that reflects the
attribute Deadline(U) in section “Modeling Users”.

• The temporal interval on which information is desired (temporal validity (TV) in
section “Modeling Users”).

The second window (Fig. 7.5) enables the user to tune up the aggregation
algorithm by describing the user’s preference on the attributes. Each criterion is
put into one of the priority classes: “mandatory,” “important,” and “desirable.” For
example, every user would certainly put readability as “mandatory” meaning that
it is useless to send him information that cannot be read(by lack of equipment or
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Fig. 7.5 Usefulness priorities tune up for the user

unknown language). The “mandatory” class is the one that is absorbent which means
that no information is sent that does not meet all the criteria in this priority class.

Some usefulness dimensions may not be selected in any priority class as they
are not considered relevant by the user. These dimensions are not considered as
usefulness criteria and their corresponding usefulness degree will not be integrated
into the global score (usefulness) computation.

The second column describes the information attributes (see Fig. 7.6).
Usefulness attributes are similar to those in the first column, describing:

• Contextual attributes (metadata) on the information evaluation: emission date,
language, estimated associated semantic effort, and information technical support

• The contents of the information via the topic matching list and validity period

The third column displays the results of the evaluation using two windows. The
upper window (Fig. 7.7) is showing the global, aggregated result in a numerical and
graphical way.

In the upper part of Fig. 7.7, the numerical result is both given as a raw value
as well as a ratio of the obtained score to the best possible score, i.e., the score that
would obtain an information exactly matching the selected usefulness criteria with
their associated priority (see Fig. 7.5). In the lower part of the figure, a graphical
view relies on a radar diagram to give a more precise view of how the information
fulfils or not the different usefulness criteria of the user.

The lower window (Fig. 7.8) provides finer details on the scores obtained by the
information on each usefulness degrees.



Fig. 7.6 Information (support) description

Fig. 7.7 Global usefulness assessment presentation
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Fig. 7.8 Degree by degree usefulness assessment window

7.5.2 Illustration of the In-The-Loop Usage

The prototype described above should be seen as a tool that helps to tune the smart
filtering mechanisms that could be embedded into a communication system in an
operational setup. The design of this setup is beyond the scope of this chapter.
However, this section offers some preliminary considerations.

A centralized architecture that receives all information and smartly redistributes
it is neither realistic (terrain constraints from a military operation theater) nor
the most theoretically efficient option (all emissions are done to a centralized
equipment, while some of them should be avoided). In a distributed approach, the
decision to send or not to send a message can be made by finding out whether the
message is assigned a score above a given threshold and, in particular, whether all
the intended receiver’s mandatory criteria are met. On the receiver side, the degree
of usefulness then helps to give emphasis to the most useful information.

Even in a situation that brings a high level of stress and does not let the user
carefully take into account all information received, emphasizing the most important
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Fig. 7.9 Messages are filtered and emphasized depending on their usefulness for the user

ones improves the probability that the user will pay attention to this information. For
instance, if the information is read from a screen, emphasizing its importance can be
as simple as transposing the usefulness score in a different size or boldness or color
as in Fig. 7.9. In this illustration, the upper list of messages is the one that would be
displayed without any usefulness smart filtering, while the one below is an example
of a usefulness smart filtering result: some messages have been discarded, and some
put in large bold, while some have a very small font size.

Lastly, it is important to notice that this is clearly an over simplified way of
exploiting the results of a usefulness evaluation of information. This evaluation
should be integrated into a wider process of delivering the good information to
the relevant person at the right time. More specifically, usefulness score should be
an input to experts in human-machine interfaces from scientific domains such as
ergonomics, cognition, etc. that deal with attention issues in a situation of high stress
level (e.g., tunneling effect). They will be able to devise an algorithm that, from the
usefulness score, select the medium (or media) and format(s) that should be used
to communicate the information to the user (textual display like here, dedicated
red alert flashing light, sounds, vibrations, etc.). This further step is outside of the
scope of our work; it remains to be done in order to get experimental feedbacks
and then improve our model for a given application, via, for example, operational
mission simulations. Then it could lead to complementary investigations, such as
the problem of planning useful information provision (inside a coalition during a
mission), or the problem of the impacts of useful information availability on the
mission performances.
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7.6 Conclusion

This chapter presented a model for an assessment of a degree of usefulness of a piece
of information. The model can be seen as an extension of the Vector Model approach
used in retrieval of relevant information given a user’s request. It is based on an
aggregation of certain semantic measures of proximity between the attributes of the
retrieved information and user request while each measure is capturing a usefulness
dimension. Our approach describes some drawbacks that could be addressed in
future work. For instance, the evaluation attribute values in the presented method
have been manually and subjectively defined. Efforts might be dedicated to defining
a process where these values can be formally computed. Another improvement
might be to consider a taxonomy of topics that would enable some reasoning about
them. A reasoning scheme can be added by taking into account equivalence and
subsumption relations between topics rather than a direct syntactic comparison.
Nevertheless, the work presented in this chapter contributes to the definition and
understanding of a very important aspect of quality of information: its usefulness to
users.
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A.1 Appendix A: STANAG 2511 Model for Information
Evaluation

One model of Information Evaluation, widely used in military context, is STANAG
2511 [11–13]. According to this standard, the aim of information evaluation is to
indicate the degree of confidence that may be placed on any item of information
which has been obtained for intelligence. This is achieved by adopting an alphanu-
meric system of rating which combines a measurement of the reliability of the
source of information with a measurement of the credibility of that information
when examined in the light of existing knowledge. These two measures are defined
as follows:

Reliability of the source is designated by a letter between A and F as defined
below.

• A source is evaluated A if it is completely reliable. It refers to a tried and trusted
source which can be depended upon with confidence.

• A source is evaluated B if it is usually reliable. It refers to a source which has
been successfully used in the past, but for which there is still some element of
doubt in particular cases.

• A source is evaluated C if it is fairly reliable. It refers to a source which has
occasionally been used in the past and upon which some degree of confidence
can be based.
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• A source is evaluated D if it is not usually reliable. It refers to a source which has
been used in the past but has proved more often than not unreliable.

• A source is evaluated E if it is unreliable. It refers to a source which has been
used in the past and has proved unworthy of any confidence.

• A source is evaluated F if its reliability cannot be judged. It refers to a source
which has not been used in the past.

Credibility of information is designated by a number between 1 and 6 signifying
varying degrees of confidence as indicated below.

• If it can be stated with certainty that the reported information originates from
another source than the already existing information on the same subject, then it
is classified as “confirmed by other sources” and rated 1.

• If the independence of the source of any item of information cannot be guaran-
teed, but, if, from the quantity and quality of previous reports, its likelihood is
nevertheless regarded as sufficiently established, then the information should be
classified as “probably true” and given a rating of 2.

• If despite there being insufficient confirmation to establish any higher degree
of likelihood, a freshly reported item of information does not conflict with the
previously reported behavior pattern of the target, the item may be classified as
“possibly true” and given a rating of 3.

• An item of information which tends to conflict with the previously reported
or established behavior pattern of an intelligence target should be classified as
“doubtful” and given a rating of 4.

• An item of information which positively contradicts previously reported infor-
mation or conflicts with the established behavior pattern of an intelligence target
in a marked degree should be classified as “improbable” and given a rating of 5.

• An item of information is given a rating of 6 if its truth cannot be judged.
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Chapter 8
Fact, Conjecture, Hearsay and Lies:
Issues of Uncertainty in Natural
Language Communications

Kellyn Rein

Abstract Humans are very important sources of information for intelligence
purposes. They are multi-modal: they see, hear, smell, and feel. However, the
information which they relay is not simply that which they personally experience.
They may pass on hearsay, they form opinions, they analyze and interpret what they
hear or see or feel. Sometimes they pass on ambiguous, vague, misleading or even
false information, whether intentional or not. However, whether imprecise or vague,
when humans communicate information, they often embed clues in the form of
lexical elements in that which they pass on that allows the receiver to interpret where
the informational content originated, how strongly the speaker herself believes in
the veracity of that information. In this chapter, we look at the ways in which
human communications are uncertain, both within the content and about the content.
We illustrate a methodology which helps us to make an initial evaluation of the
evidential quality of information based upon lexical clues.

Keywords Opinions · Quality of information · Lies · Uncertain information ·
Natural language

8.1 Introduction

Information plays a central role in surviving and coping with today’s world.
Effective decision-making depends on the quality, completeness and trustworthi-
ness of the information which decision-makers have at their disposal. Actionable
intelligence for situational understanding is garnered both from human sources, in
the form of text or speech, and from devices such as radar, acoustic arrays, ground
sensors, video, etc., which report data on physical phenomenon in either digital
or analog form. Both human and non-human sources may pass on data which is
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not fully accurate or trustworthy; however, there are some significant differences
in the causes of the inaccuracies; understanding and analyzing these differences
appropriately can improve the quality of the intelligence received.

A sensing device such as a video camera, a radar dish or a ground sensor is a
neutral observer of events taking place within its scope. A video camera records light
waves (and, if so equipped, also audio), a radar dish gathers data about movements
with the range of its sweep, and a ground sensor documents vibrations detected near
its location. Data from devices is always historical, that is, the physical events –
motion, temperature, light, etc. – recorded by the sensor have actually taken place
(fusion algorithms based upon data received from the sensor may project future
states, but these are independent of the sensor itself). Sensor data is also neutral
and impartial; the sensor has no vested interest in the meaning of its recordings.
Furthermore, the type of data delivered by a device is always the same; the device
records only certain types of physical phenomena. A thermometer does not measure
motion, a motion detector does not measure temperature, an acoustic sensor does
not record light waves.

In contrast, humans are multi-purpose sensors. We see, hear, feel, taste and
smell, and we communicate what we have sensed using natural language. Our
capabilities in each of these observational modes vary from person to person based
upon a number of factors including physical condition (e.g., excellent or poor
eyesight?), background knowledge in the phenomenon observed (e.g., trained expert
or layperson?) as well as expectations or assumptions about the phenomenon which
is being observed (is this normal or out of the ordinary?). In other words, a human
often, intentionally or unintentionally, pre-process, interpret, speculate on, or self-
filter their observations thereby modifying the observation before passing it on.
Furthermore, humans relay information about events which they have not personally
experienced or observed, for example, in the form of hearsay or in discussion of
future events which have not yet taken place. In addition, humans pass on opinion,
speculation, assumption, and inferences. But one of the most significant differences
between a device and a human is that, whereas the device may provide bad data
due to malfunction or environmental factors, humans can – and do – lie, distort, or
otherwise misrepresent information (“fake news”). Human beings, as sources, are
therefore problematic on several levels, which we will discuss in further depth in a
later section in this chapter.

Regardless of the type of source from which the information comes, it is vitally
important for decision-makers to have a realistic idea of how good that information
is. Ideally, we would only use information which is complete and which has been
definitively confirmed as factual. However, the reality is that this is seldom the
case, and that we often need to make decisions based on incomplete and uncertain
information. While using uncertain, incomplete, misleading or incorrect information
as the basis for action can be a recipe for disaster, there are many times when
incomplete and uncertain information is all that is available to decision-makers.
Realistically assessed, even partial and uncertain information can be used to great
effect. For example, in 2012, when President Barack Obama gave the order for an
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assassination attempt on Osama Bin Laden at his hideout in Pakistan, the President
himself rated the odds of actually finding Bin Laden there as “50–50” [1].

Device-derived data may be uncertain or unreliable for a variety of reasons.
For example, sensors may be affected by environmental conditions such as heat,
humidity, or light conditions thereby producing unreliable data. Devices may
also malfunction and fail. However, devices may be tested and calibrated under
various conditions, giving decision-makers important information about the overall
reliability of a given source under different physical situations. Also, the algorithms
which operate upon device-derived data have been a research focus for several
decades now and are quite mature and well understood. While there is still much
work to be done, on many levels, this work focuses on refinement, improvement,
and tweaking of existing technologies. (There are many fine works which provide
excellent coverage of the advances in this field.)

Human-derived data, in contrast, remains problematic, in part because of the
factors mentioned previously but also because the information humans convey is
delivered in natural language. Natural languages are flexible enough to deal with
almost every aspect of the human experience and thus are powerful communication
tools. At the same time, the flexible power of natural language information often
makes it inherently uncertain, in part because natural language utterances are often
ambiguous, vague, open to (mis)interpretation, or even incorrect. However, because
uncertain information can play a vital role in intelligence analysis, in particular in
the prediction of events which may happen in the future, we need to accept this
uncertainty and find strategies to deal with it appropriately.

Thus, it is important to identify and understand how natural language information
content itself is less than certain. Sometimes the uncertainty has to do with the
content itself in the form of ambiguity (“I saw her duck”), vagueness (“down the
road”) or imprecision (“some”, “tall”, “many”), which may be context-dependent.
Often uncertainty is conveyed by the speaker in the form of lexical forms that
express the writer’s stance toward the truth of the proposition in the sentence
(“unlikely”, “possibly”), indicate the origin of non-observed information (“people
say”, “I assume”), and other constructs such as modal verbs or future tense (“might”,
“will be”). For intelligence purposes, it is important to differentiate between
uncertainty within the proposition and uncertainty about the proposition.

Our focus in this chapter is to look briefly at human beings as sources of
information, in particular, their motivations behind reporting. We then examine in
more depth how and in which ways natural language is uncertain, as mentioned
previously, and look at how these affect the quality of the reporting. Finally, making
sense of the huge volume of natural language information which is generated
on a daily basis requires some automatic preprocessing (e.g., text analytics) to
locate potentially useful information. We will present a methodology identifying,
evaluating, and weighting the evidentiality of textual information, with particular
emphasis on lexical markers which the source used to convey the origin of the
information being passed on, as well as their assessment of the quality of that
information.
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8.2 The Human as Sensor

It appears, from all this, that our eyes are uncertain. Two persons look at the same clock and
there is a difference of two or three minutes in their reading of the time. One has a tendency
to put back the hands, the other to advance them. Let us not too confidently try to play the
part of the third person who wishes to set the first two aright; it may well happen that we are
mistaken in turn. Besides, in our daily life, we have less need of certainty than of a certain
approximation to certainty. – Remy de Gourmont, Philosophic Nights in Paris [2] p. 127

Human information sources cover the spectrum from trained intelligence person-
nel, police and emergency services to informants and prisoners of war to victims,
refugees and local residents as well as open sources such as newspapers, government
documents, blogs, and social media. Dragos and Rein [3] have described a number
of influences on these information sources, including, but not limited to the
following list:

Subjectivity As in the quote above, any event which is observed by two or more
people will almost assuredly always result in different reporting of that event,
partly because each observer will perceive and interpret according to internalized
information. For example, an observer’s understanding of the event observed will
vary based upon factors such as their specific skill set, background knowledge,
or emotional involvement in the event. An intelligence observer is trained to note
specific details which may escape the notice of an untrained civilian; the untrained
civilian, however, may have a different interpretation of events based upon their
cultural or social background. As a result, there may be several different, perhaps
conflicting, interpretations rather than one unique “truth.” The well-documented
unreliability of eyewitness testimony is partially due to subjectivity.

Intention As mentioned in the introduction, in contrast to devices, people often
intentionally alter information they pass on through conscious efforts to fabricate,
conceal, or distort evidence for a specific purpose. These modifications may be the
omission of important details which would provide a different context (“cherry-
picking”) in an attempt to distort the truth, or they may outright lies, that is, false
stories created specifically to deceive. Sometimes, false statements are embedded
among true statements in order to hide their falsity or to create ambiguity and
uncertainty. It should also be noted here that the intention of an informant who
provides distorted information is not necessarily always malice or deception: he
may, for example, provide intentionally false or misleading information because he
believes that is what the hearer wishes to hear, in order to win favor or gain attention,
or in order to protect himself from personal negative consequences. Regardless of
whether the intent is malicious or self-serving, the intentional distortion affects the
quality of the information.

Opinion In addition to filtering and interpreting their observations, humans also
express opinions, make assumptions, and speculate about events. If those opinions
or assumptions are based upon experience and solid background, they may be
valid analyses. However, sometimes, the source offering an opinion lacks sufficient
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background information or contextual knowledge, with the result that this opinion
should be treated with skepticism. Both untrained individuals and trained intelli-
gence officers will often offer/provide interpretation or speculation; in particular,
intermingling factual information and personal impressions or speculation often
makes it difficult to separate fact from speculation. Complicating the issue is that
the level of competence of an individual observer in one area of expertise is no
indicator or guarantee of that individual’s competence in other areas. For example,
a military observer who has been trained to accurately identify military equipment,
vehicles, and insignia of an enemy may not have the background to recognize or
understand the significance of cultural and social aspects of civilian behavior which
may be critical in conflict situations. In other words, the same human who may be
seen as reliable in certain types of observations is less competent in others; thus, the
expertise of the source in the domain of the information should be factored in when
judging information received.

Hearsay Another unique characteristic of human communication which contributes
significantly to the uncertainty of information is hearsay. Rather than reporting on
direct observations or personal opinions, the source passes along information or
opinions which they (claim to have) received from a secondary source. Hearsay is
problematic on a number of levels. One issue is that the originating source may
have neglected to give the full context for that information; this loss of context
may later result in erroneous interpretation or understanding of the information
received. A variation on this is when the secondary sources adds their own context
during the retelling; adding an interpretation can distort the original message. A
second problem is that the individual may pass on hearsay that has gone through
a succession of individuals: “my brother told me that his wife’s sister’s husband
talked to a guy who attended the meeting and said . . . ” Each link increases potential
distortion, misunderstanding, (mis)interpretation, and distance from the original
context, with the danger that the reported information bears little resemblance to
the original.

Open sources such as online news, blogs, and social media can be very useful
in certain operations such as crisis management. However, these sources can also
be very problematic for a variety of reasons. Online news sources often reference
and link to articles on other sites, often with accompanying commentary. Should,
however, the original source print a retraction or correction, the sites which have
commented on the original seldom update their own text to reflect the changes,
leaving the incorrect information in place. The incredibly rapid propagation (“going
viral”) of incorrect or incomplete information by retweeting or re-posting from other
sites can result in confusion or worse. Lastly, much information which has been
debunked continues to be available indefinitely on the Internet, with a result that
erroneous information continues to be “rediscovered” and perpetuated.

Hidden networks One important part of the information verification process in
intelligence is to have confirmation from multiple independent sources: if the
sources report the same thing, we are generally confident that the data we have
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received reflects reality. However, because humans are not always neutral, impartial
observers, and because they may (knowingly or unknowingly) pass on hearsay or
disinformation, we can only apply this rule of thumb if we know that the sources
are, in fact, independent. Individual sources may be interconnected on the basis of
easily identifiable similarities (live in the same location, went to the same university,
or similar attributes), social relationships (friendships, membership in groups) or
other types of interactions (e.g., social media), not all of which may be known to
or easily discoverable by intelligence. Regardless of their nature, the existence of
undetected connections may affect the independence of the information provided
by different sources. As a result, information received from assumed (but not
actually) independent sources may assume a higher credibility ranking under false
assumptions, degrading information credibility, as what appears to be independent
reporting may actually be hearsay or coordinated deception.

In conclusion, while necessary to intelligence communities on both the military
and the civilian sides, the human as a sensor is not unproblematic. Understanding the
psychological, social and emotional components of human-derived information, as
well as knowing the limits of expertise domains of the sources, assists in producing
a realistic assessment of source reliability, which has an effect on the assessment of
the quality of information.

However, our focus in this paper is on the quality of information from human
sources; a determination on the reliability of a source is only one factor for
determining that. In the following section, we will examine the second factor:
uncertainty in natural language (text) communications.

8.3 Overview of Uncertainty in Text

As already briefly touched upon, the information (“signal”) delivered by a human
source is in the form of spoken or written text. Some statements are precise, accurate
historical accounts of actual, directly observed events. However, a great deal of
human communication is neither precise nor accurate nor historical and therefore
may be uncertain in one or more aspects.

Consider the following sentence:

1. I think someone said there were some animals in the road.

There are several ways in which this sentence is uncertain. The statement begins
with I think, which expresses belief or opinion, not knowledge; the speaker is
letting the listener know that there is some doubt about the veracity of the rest of
the statement. Someone said indicates that the assertion is hearsay, and therefore
second-hand information, which may or may not have been correctly understood by
the speaker and therefore not an accurate reflection of what the original source had,
in fact, said.
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Within the assertion itself, there are also elements of uncertainty (there were
some animals in the road). For example, we do not know how many some is, nor do
we know what type of animals there were, nor even which road is being referred to
(although this may have been determinable from the text surrounding this statement,
i.e., from context knowledge).

Although all of these reflect uncertainty, the elements mentioned above differ as
to the uncertainty that they project within the statement. In fact, there are two basic
categories of detectable uncertainty which appear at the sentence level in written
text or speech:

• Uncertainty within the content, including:

– Imprecision
– Vagueness
– Ambiguity and polysemy

• Uncertainty about the content, including:

– Modal verbs
– Modal adverbs (including “words of estimative probability”)
– Hearsay markers
– “Mindsay” markers ➔ belief, inference, assumption, etc.
– Passive voice

While “hearsay” is a familiar term, “mindsay” may be new to many readers. This
term appears in [4] and is used to describe information which is not a result of direct
observation nor of passing on secondhand information but which is the product of
someone’s mind, e.g., inference or belief.

The first category – uncertainty within the content – is important to applications
such as information fusion, in which assertions containing imprecise or vague
descriptions may be analyzed to determine whether these assertions refer to the
same or to different objects. For example, suppose we are searching for an individual
described by police as 5 feet 9 inches (175 cm) tall with light brown hair – when
we receive a report about a tall, blond man, how likely is it that the report is about
the suspect? At what height is a person “tall”? When is hair light enough to be
considered blond rather than light brown? The potential ranges of values for vague
or imprecise terms are often dependent upon a specific domain. We will discuss
these in more depth in the following section.

Uncertainty about the content is a type of noncontent meta-information delivered
by the speaker to the listener which provides important clues about both the original
source of the information, for example, if the speaker is describing and transmitting
second- or thirdhand information, and if the assertion is the result of opinion, belief,
or a logical process.

In [5] we classified the uncertainty within the content as “inexactness” and the
uncertainty about the content as “evidentiality” as shown in Fig. 8.1. The latter
type of uncertainty provides clues about how strongly or weakly the content of the
sentence may be considered as “evidence” of the state or event described.
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Fig. 8.1 Sentence-level uncertainty in natural language communications

In the following subsections, we will examine both types of uncertainty in
more depth. We begin with uncertainty within the content, which is important for
determining whether or not two or more reports refer to the same object or event.
After that we will discuss the ways in which the speaker lets us know how strongly
she believes what she says, communicates to us where the informational content
came from (other human sources, logic or belief processes), which gives us an
insight into how reliable the information content may be.

8.3.1 Uncertainty Within the Content

When humans communicate, we do more than convey basic facts. We express
thoughts, hopes, and wishes, we speculate about the future, we pass on information
that others have communicated to us, and we tell lies and half-truths to elicit
cooperation, to be accepted as part of a group, to win approval from others, or to
evade censure. Even when we are in fact passing on concrete information, we don’t
necessarily deliver it in clear, concise, and precise wording. We may use words
that have multiple meanings or formulate our sentences so that they are ambiguous.
There are a variety of ways in which the informational content (“signal”) can be
uncertain which we will examine in this subsection.

8.3.1.1 Imprecision and Vagueness

Human communication is often formulated in ways that obscure, however uninten-
tionally, details that may be useful in the information fusion process.
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Let’s return to the informational assertion of the example used above:

1. There were some animals in the road.

Some is an imprecise number. The reader might possibly make some judgments
on the range of numbers represented by some: it definitely means more than one,
but the upper bound is unclear. Suppose the speaker would have used a couple as a
descriptor; in general, this refers to a small number, which, while still greater than
one, is most likely a very small number, say, two or three. Use of a bunch indicates
more than a couple, whereas many would have been preferred if there were a large
quantity. Several is usually understood to be more than a couple – perhaps five or
six – but generally would not be considered to be many. However, some simply
implies multiple without any further hint as to how many, so we can only guess.

Additionally, it is not clear what sort of animals these are: chickens? dogs? cows?
camels? Quite possibly it was a mixture of different types (a sheepdog and a dozen
sheep, for example). One type of animal would most likely not be intended here: a
human. In that case, some people would have been used in place of some animals.
However, the statement does not necessarily exclude the presence of a human: for
example, when a herd of sheep are in the road, the shepherd is often somewhere in
the vicinity as well, but the animals, not the shepherd, would likely be considered
as some sort of anomaly worth mentioning. Similarly, a high level of precise detail
may also be inaccurate: even if we were told that there were six brown Jersey cows
in the road, it may well be that the observer neglected to let us know that there were
two border collie dogs as well, or overlooked that one brown cow was, in fact, a
Hereford and not a Jersey.

Correlating information about a shepherd and his dogs moving his cattle to new
pasturage with some animals in the road requires understanding of a variety of
things, including that dogs and cattle are animals, that some means multiple.

Complicating things further, many vague or imprecise formulations may be
context or domain dependent. For example, large is an adjective related to size of an
object, but its exact (quantifiable) meaning is extremely domain dependent. There
are many orders of magnitude difference in the numerical values indicated by large
between a large city, a large ship, a large dog, and a large molecule.

Furthermore, even within the same domain, there may be variations due to other
factors such as context information. For example, the phrase a lot of people will
generate a different numerical range depending on expectation or physical factors
such as facility size. If a smallish meeting room is filled to standing room only,
it will be reported that the 50 persons attending the event were a lot of people.
However, those same 50 persons would not be classified as a lot of people if they
are the only occupants of a 400-seat auditorium Likewise, 50 people in a 30,000-seat
sport stadium would generate a comment more like nobody was there. Therefore,
the decision about the numerical range represented relies on what we know about
the location. Gross et al. [6] have discussed such problems and their resolution at
some length.
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8.3.1.2 Ambiguity and Polysemy

Statements may be ambiguous, that is, they may be open to more than one
interpretation or have more than one possible meaning:

2. Students hate annoying professors.
3. Sally gave Mary her book.

In (2), it is unclear whether the students strongly dislike professors who irritate
them or whether students try to avoid making their professors angry, perhaps in the
hope of receiving a better grade in the course. In (3) we do not know whether Sally
gave Mary her own (Sally’s) book or whether Sally was returning Mary’s book to
her – or even if there may yet be another female involved. For example, it is possible
that in a preceding sentence, the writer informs us that Jane is a well-known author
and a friend of Sally’s, and thus (3) tell us that Sally presented Mary with a copy of
Jane’s latest hit novel.

Another example of ambiguity is shown in (4):

4. I saw her duck.

There are two possible interpretations of (4); the first is that the female person
referred to has lowered her head to avoid, say, a low-hanging branch and the second
is that she keeps a waterfowl as a pet. This ambiguity stems from what is called
polysemy, the fact that the same word (label) can refer to two or more separate
concepts. Other examples of polysemy are words such as bank which could be a
financial institution, the side of a river, or a motion executed by a flying aircraft,
to name just a few of the many meanings. Determining the intended meaning can
generally be achieved by analysis of the surrounding text.

Regardless of the lack of detail in all of the examples above, there is nothing in
any of these sentences to make us believe that the sentences are not true. However,
very often sentences contain clues which the writer uses to signal to us there may
be reason to doubt the veracity of the content contained in the sentence. These we
will discuss in the following section.

8.3.1.3 Which Language?

Last, but not least, one of the most obvious problems is quite straightforward,
indeed almost trivial: there are a multitude of spoken and written natural languages.
According to the Linguistic Society of America, there are nearly 7000 distinct
natural languages, of which some 230 are spoken in Europe [7].

A language such as English has a variety of regional variants with noticeable
differences: the Irish playwright George Bernard Shaw is credited with commenting
that England and America are two countries separated by a language in common.
This is not simply a matter of pronunciation or even spelling – it is also a matter of
vocabulary. The biscuit of a Brit is an American’s cookie and an American’s biscuit
more akin to an unsweetened British scone. Here we have an instance of the same
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word being associated with two different concepts based upon the variant of English
being used – an example of the polysemy discussed in Sect. 8.3.1.2. There are also
some lexical differences: if you ask an American about a lorry you will get a blank
look – for her, the object referred to is a truck, and the word lorry does not exist
in the American variant. Here we have two separate words for the same object –
in essence, synonyms, but only in a cross-variant sense. Therefore, it is essential to
know which version of English is being used.

In addition to regional language variants, there may be examples of polysemy
which are domain-specific, that is, they may be very unique to certain subgroups
of native speakers of that language, but not to all speakers. For example, POV
within the US military is used as an abbreviation for privately owned vehicle (i.e., a
soldier’s own car), but within the fiction community, writers often use POV to mean
point of view. Therefore, the meaning attached to the acronym will vary according
to the context in which it appears. For outsiders, these need to first be deciphered or
disambiguated.

Another issue, particularly with an internationally widely used language such as
English, has to do with irregularities produced by nonnative speakers which can
also cause misunderstanding and communication problems. This is often caused
by what is known as “false friends” or words which appear to be identical in
both languages but have quite different meanings. For example, native German
speakers often misuse the English word actual (meaning real or existing) when they
mean current (as in current news) because the German word aktuell has the latter
meaning. Another variation is that non-native speakers borrow terms verbatim from
another language but assign them a meaning not existing in the original language: an
American uses oldtimer to refer to an old person, whereas a German using oldtimer
means a classic auto.

Sometimes the issue is that languages do not map concepts one-to-one. In
American English there are three words pumpkin, squash and gourd for a related
family of fruits which map to only two words Kürbis and Zierkürbis in German.
While Zierkürbis maps one-to-one onto gourd, Kürbis is used for both pumpkin and
squash, leading to confusion for native speakers of English.

Yet another phenomenon is the invention of words which do not exist in the
native version of the language. Ask a native speaker of any English variant what a
pullunder is, and they will be puzzled, whereas a German speaker will describe to
you a sleeveless sweater known as a sweater vest in the USA and Canada and as a
slipover in England.

And finally, there is the issue of “code switching” [8] in which multilingual
speakers use different languages within a single communication. It is not uncommon
that a natural language acquires words or phrases from other languages, which then
become standardized vocabulary for the acquiring language. Examples of this in
English are gestalt and angst (from the German Gestalt and Angst), which are now
fully integrated into the lexicon of the acquiring language and can no longer be
considered “foreign.”

In contrast, “code-switching” means that the speaker shifts from one language to
another within a sentence (i.e., a word or phrase) or between sentences in a single
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communication. For example, it is not unusual within expatriate communities for
speakers to insert words or phrases of a language from the host country into their
mother tongue communications, particularly with other expatriates who likewise
understand the foreign words. This can be problematic for automatic text analysis,
which relies on vocabulary and grammatical structures of a single language and
can cause confusion or uncertainty as to the meaning of the sentence, through
uncertainty of individual words or phrases.

Clearly, there are a number of significant challenges to understanding the
meaning of the information received from human sources. But regardless of whether
we agree on how many several is or have an idea of what kind of animals were in the
road, our ability to make use of that information as actionable intelligence depends
upon how much we trust that information.

8.3.2 Uncertainty About the Content

In the preceding section, we used the following sentence as an example of
ambiguity:

3. Sally gave Mary her book.

While our previous confusion about the ownership of the book continues, we
can assume this event (the handing over of a book) actually took place. However,
suppose the sentence read as follows:

5. It is possible that Sally gave Mary her book.

Now we are no longer certain as to whether indeed the event of Sally giving
Mary a book occurred. There are multiple ways to view this. Perhaps there was no
exchange of a book. Perhaps Mary did receive a book, but it was Georgina who gave
it to her. Perhaps the players stayed the same, but it was Mary who gave Sally the
book and not the other way around. The presence of “it is possible” changes the
credibility of the event significantly. Natural languages are filled with a variety of
different mechanisms which inject some uncertainty into the soft data they convey;
analysis of these mechanisms will support fusion of soft data in that we may better
assess the quality of the data which we are using.

8.3.3 “Words of Estimative Probability”

In his 1964 article, Sherman Kent of the United States Central Intelligence Agency
relates the following anecdote about a conversation concerning an intelligence
report on the possibility of a Soviet invasion of Yugoslavia:
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A few days after the estimate [“NIE 29-51, “Probability of an Invasion of Yugoslavia in
1951”] appeared, I was in informal conversation with the Policy Planning Staff’s chairman.
We spoke of Yugoslavia and the estimate. Suddenly he said, “By the way, what did you
people mean by the expression ‘serious possibility’? What kind of odds did you have
in mind?” I told him that my personal estimate was on the dark side, namely, that the
odds were around 65 to 35 in favor of an attack. He was somewhat jolted by this; he
and his colleagues had read “serious possibility” to mean odds very considerably lower.
Understandably troubled by this want of communication, I began asking my own colleagues
on the Board of National Estimates what odds they had had in mind when they agreed to
that wording. It was another jolt to find that each Board member had had somewhat different
odds in mind and the low man was thinking of about 20 to 80, the high of 80 to 20. The rest
ranged in between. [9]

What makes this anecdote of particular interest is that the various individuals
with whom Kent spoke were all intelligence analysts, that is, people who were
working in the same domain (intelligence), who most likely had similar educational
backgrounds and similar training for their jobs. In spite of our expectations that
working in the same domain with a similar training background might result in
some consistent understanding of words and phrases used within that working
environment, this anecdote shows us that the understanding of such terms can be
quite diverse.

Intrigued by Kent’s observations, another CIA analyst Richards Heuer [10]
ran an informal study, asking a number of his CIA colleagues to assign a single
probability to about 25 common uncertainty expressions used by the analysts. While
the probabilities assigned by the analysts to some of the terms were clustered very
closely (betterthaneven,abouteven, highlyunlikely), there were several which varied
quite dramatically: highlylikely ranged more than 40% points, as did improbable,
probablynot and chancesareslight, while the range for probable was from 25% to
just over 90%.

A couple of decades later, Rieber [11] requested analysts in training at the CIA’s
Kent School (named after Sherman Kent) to assign ranges of percentages rather
than single values to a smaller number of hedges. Similar to Heuer’s informal study,
the ranges of percentages vary from quite narrow to relatively large, but the ranges
are not necessarily identical to those in the first chart, even for identical hedges.
One can almost assume that giving the task of assigning probabilities for hedges to
any random group of English-speakers will result in somewhat different numerical
ranges.

In the half century since Kent’s initial work, the US intelligence community has
continued to struggle to standardize the terminology which they used to assess
situations, in order to reach a common understanding of the meaning of those
terms. The current iteration at the time of this writing, the intelligence community
has settled on a standard spectrum of words of estimative probability: remote,
veryunlikely, unlikely, evenchance, probably/likely, verylikely, and almostcertainly.

The discussion above involves examples of uncertainty which are straightforward
and immediately obvious to the reader. However, there are other, less obvious forms
of uncertainty which are less obvious, often overlooked or ignored; we will examine
these in the following sections.
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8.3.3.1 Hedges and Evidential Markers

In general, when asked to consider markers of uncertainty in natural language
utterances, the first group of words that comes to mind are the expressions (mostly
modal adverbs) such as we have seen in the preceding subsection: possibly,
probably, likely, etc. The next categories are often modal verbs, might, could,
may, etc., followed by nouns such as likelihood, possibility, probability, and so on.
Lexical verbs such as suggest, assume, seem, guess, etc. likewise convey uncertainty,
as do adjectives such as possible, probable, doubtful, etc. The elements above
are manifestations of uncertainty and are generally included in a group of lexical
markers called hedges.

The term “hedge” is attributed to Lakoff [12] to mean any lexical or grammatical
form which indicates “fuzziness” in natural language. Inspired by the mathematical
theories of Zadeh, Lakoff defines a broad range of lexical and grammatical
elements in natural languages which indicate any weakening of the formulation of
propositions, which express vagueness or imprecision:

For me, some of the most interesting questions are raised by the study of words whose
meaning implicitly involves fuzziness – words whose job is to make things fuzzier or less
fuzzy. I will refer to such words as ‘hedges’. [12]

Since Lakoff’s first article, the definition of hedging which he proposed has
shifted to focus more narrowly on expressions of uncertainty or commitment on the
part of the speaker. Some researchers consider modals verbs (could, should, might,
etc.) to be hedges, while others classify them differently (cf. Rein [12] for a more
thorough discussion of this topic).

But as we have seen at the beginning of this section, hedges are not the only
elements which signal uncertainty in text information. There are markers that
indicate where the information contained in the sentence comes from when it is not
a direct observation. These are called “evidential markers” which can be divided
into two broad categories, hearsay and what Bednarek [4] refers to as mindsay.

Hearsay, that is, information which the writer has acquired from another source
(not himself) is uncertain by nature in that we can never be certain that the writer has
correctly and fully understood or recorded what the original source said (or indeed
if there is only a single hearsay source rather than a chain) or that the unrelated
context would cause us to view the information differently. As a result, we cannot
be certain that the information that has been passed on is reliable.

Mindsay is information which comes not from a secondary or tertiary (external)
source but from the primary source and which is based upon belief, speculation, and
assumption rather than direct observation, that is, it is a product of some process in
the primary source’s mind.

Take, for example, the following sentences:

6. John is a terrorist.
7. The CIA have concluded that John is a terrorist.
8. I believe that John is a terrorist.
9. Mary thinks that John is a terrorist.
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In each of these sentences, the relationship pattern (“content”) of the sentence
might produce the relation John IS-A terrorist. In (6) there are no lexical clues to
indicate where the information came from, nor how credible the speaker considers
the information to be. Thus, the basis of our decision as to whether John is, in fact,
a terrorist must come from somewhere else, for example, previous knowledge of
John’s activities or from our belief in the speaker’s truthfulness.

However, there are lexical clues contained in three of these four sentences which
give us reasons to doubt on some level whether John is a terrorist. In (7) and (9),
there are clear indicators of third-party information, i.e., hearsay, which may or may
not have been repeated accurately by the writer.

Sentences (8) and (9) indicate belief, i.e., mindsay, rather than knowledge on the
part of the sources. In (8), it is clear this is a first-person reporting of the speaker’s
belief. Sentence (9) is particularly interesting because it is, in fact, ambiguous. In
one interpretation, one could say that it contains both hearsay and mindsay: the
writer informs us about something another person (Mary) has told him (hearsay)
about her thoughts (mindsay) regarding John. A second interpretation could be
that the writer expresses his own belief (mindsay) about what Mary thinks (also
mindsay). Regardless of the interpretation, the strength of the assertion of John
being a terrorist is weakened.

A single sentence may contain multiple clues as the veracity of the main
proposition of the statement. For example, consider the variations on sentence (7):

10. The CIA have concluded that John is probably a terrorist.
11. The CIA have concluded that John is most probably a terrorist.

In (10) the addition of the adverb probably to (7) weakens the assertion of
John being a terrorist, whereas in (11) adding most before probably strengthens the
assertion as opposed to (10), but it still remains weaker than in (7) which contains no
hedge. If requested, an English speaker would be able to identify and rank assertions
from strongest to weakest according to the lexical clues the writer has left in the
sentence.

Other factors that may be considered in the assessment of the strength or
weakness of an uncertain proposition include variation such as whether in hearsay
the original source is named (the CIA) as opposed to an unnamed source (rumor has
it) or general knowledge (it is widely accepted). The relative strength of mindsay
may also be determined via the verb used, e.g., inferred is stronger than guessed.

Most, if not all, decision-making models using natural language information will
use some sort of mathematical weighting system based upon the perceived certainty
or doubt about the veracity of the data which populates the model. Frajzyngier [13]
comments, “the different manners of acquiring knowledge correspond to different
degrees of certainty about the truth of the proposition.” Models designed for device-
based information such as sensors, cameras, radar, etc. may use factors based upon
testing, calibration, and the influence of environmental factors such as light, heat,
or humidity to adjust reliability of readings or to fine-tune results. The human-
generated information, in contrast, which comes in as text or speech is often assessed
by a human, who uses her understanding of various factors including the background
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knowledge domain of the information, heuristic or scientific models, or even just
a “gut feeling” to evaluate the information and assign it some sort of credibility
weight. In lieu of other information, lexical markers may also play a role in the
assessment; the analyst may well assign a lower “truth value” to information tagged
by the informant through hedges to be doubtful than to information considered as
highlylikely.

Whereas many hedges such as the words of estimative probability discussed in
the preceding subsection tend to be relatively easy for humans to assign a numerical
weight (for an overview cf. Rein, [12]), there is less research to be found on
numerical weights for hearsay and mindsay markers. One could easily argue that
weighting of the information from different types of sources in such a hierarchy
is implicit. For example, direct perception (e.g., I saw) is often considered more
reliable than hearsay (he told me); several authors including Goujon [14], Marin-
Arrese [15], and Liddy et al.[16] have looked at such relative values..

8.3.3.2 Passive Voice, Depersonalization, Time, Etc.

Hedges and evidential markers are quite obvious indicators of uncertainty, even to
nonlinguists. However, there are some more subtle ways in which uncertainty may
appear.

In his discussion on hedges, Hyland [17] includes several other phenomena
such as passive voice, conditionals (if-clauses), question forms, impersonal phrasing
and time reference. Particularly in scientific writing, passive voice and impersonal
phrasing are widely, almost universally, used, conveying an undertone of “but
I might be wrong or have overlooked something.” With regard to impersonal
phrasing, Hyland writes:

. . . the writer inevitably uses a wide range of depersonalized forms which shift respon-
sibility for the validity of what is asserted from the writer to those whose views are
being reported. Verb forms such as argue, claim, contend, estimate, maintain and suggest
occurring with third person subjects are typical examples of forms functioning in the way,
as are adverbials like allegedly, reportedly, supposedly and presumably.

Passive voice and impersonal phrasing, however, can also be used to express
politeness, rather than uncertainty, which can only be determined by knowing
some information about the context of the statement. Likewise, passive voice and
impersonal phrasing can also sometimes be used in instances of differences in social
ranking or power, in order not to offend. In such cases, these forms are not intended
to create doubt about the veracity of the proposition, but to soften the impact of a
message on the intended audience.

While time might not immediately spring to mind when considering expressions
of uncertainty, it nevertheless plays a significant role and should therefore be
discussed.

Any sentence which is formulated in the future tense is inherently uncertain,
simply because the event or state which is described has not happened yet:
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12. Mary will be at the meeting next week.

That is, of course, unless Mary decides not to go for some reason, her plane flight
is cancelled due to snowfall, or she gets sick and lands in the hospital, or worse.

That being said, some future things are more certain than others:

13. The next presidential election in the USA will take place in November 2020.

Clearly, unless something unbelievably catastrophic happens, there is virtually
no chance that the elections in the USA will not take place in the month and year
named because of legal requirements in the voting laws, so this may be treated as a
fact, rather than a possibility.

In other cases, it is a bit less clear. Take the case of routine, recurring behavior:

14. Sam always attends the meetings of local political action group every Tuesday
at 7 pm

One can expect to find Sam at this meeting every Tuesday – unless, of course,
Tuesday is a holiday and the meeting is cancelled or unless Sam, like Mary in (12),
has came up with something to prevent his attendance. In other words, recurring
behavior may be a good indicator of future behavior, but not a guarantee.

For intelligence purposes, information based upon future actions often plays a
very significant role, particularly in preventative measures, but should nearly always
be considered uncertain, until the expected date of that action has passed; at that
point the event has either occurred or not occurred, and an update should be made
to the knowledge base which is being used.

Now that we have examined a number of ways in which formulations may
represent uncertainty about the veracity of the informational content in natural
language, in the following section we will examine how we might exploit these
to algorithmically generate initial credibility weights.

8.4 Using Lexical Clues for Credibility Weighting

When one admits that nothing is certain one must, I think, also admit that some things are
much more nearly certain than others. – Bertrand Russell [18]

As previously discussed, when humans communicate with one another they
transmit content information, but this content is often surrounded by additional,
noncontent information from the speaker intended to convey the speaker’s stance to
that information.

Text analytics to extract actionable information from text utilize algorithms
to locate and identify certain patterns which may identify objects or individuals,
events, relationships, and other useful information. The weakness of these algo-
rithms is that they seldom, if ever, take into account that some of those patterns may
be couched in language that indicates those identified events or relationships may be
questionable or false. In other words, for all intents and purposes, the information
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extracted using text analytics is treated as “fact,” even though there may be clear
evidence that they are not.

Thus, in order to be truly actionable information, a parallel process to text
analytics should be carried out, in which evidence of uncertainty expressed in lexical
forms, when found, is analyzed and utilized to assign an initial credibility rating.

We have discussed at some length those lexical elements the use of which
indicates uncertainty about the propositional content delivered by a human source.
However, not all lexical elements convey the same level of uncertainty: for example,
speakers of English consider probably and unlikely to be more or less at opposite
ends of a probability range (Sect. 8.3.3).

There have been many other studies done by linguists in papers such as Teigen
and Brun [19], Brun and Teigen [20], Renooij and Witteman [21], Witteman et
al. [22], and Ayyub et al. [23] in which single words or multi-word expressions
have been evaluated and given numerical weights (probabilities, odds, etc.) by test
subjects. There are variations among the studies in the values assigned to any of
the expressions, from which one can draw the following conclusion: there are no
universally accepted values. For a deeper discussion, cf. [5].

However, when taken as a group, what can be seen is that these elements may be
relatively ordered along a scale from stronger to weaker (or higher to lower, or more
true to less true, to name just a few possibilities).

For example, in general, English speakers would agree to the following ordering:

Unlikely < probable

even if they do not agree on the precise numerical values which they assign to these
two words of estimative probability.

Very often these expressions are modified by other words, which can strengthen
or soften their original meanings:

Highly unlikely < unlikely < probable < very probable

Negation, of course, has a dramatic effect on the ranking from weaker to stronger;
we will discuss this in more depth later in Sect. 8.5.

But, as discussed previously, it is not simply the use of words of estimative
probability which are indicative of uncertainty about the validity of information but
also lexical markers for hearsay and mindsay.

For example, in general, English speakers would agree to the following ordering:

I saw > I inf er > my neighbor told me

As mentioned earlier, a number of researchers (Goujon [14], Marin-Arrese
[15], etc.) have examined the relative strength or weakness of a proposition based
upon such markers. DeHaan [23] proposed a cross-linguistic comparison of source
evidentiality which reflects the previous ordering:
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Sensory > inf erential > quotative

While there has been research by linguists on this topic, there has been little
attempt to assign any sort of (numerical) uncertainty weighting to these evidential
markers. One can, however, argue that there is an implicit weighting based upon
this hierarchy. There appears to be consistency in the rankings between different
groups of people surveyed on these topics as documented by research, from which
we can conclude that there seems to be some sort of universal scalar for the various
elements which we may exploit for our purposes.

It should be clear from the discussion above that the assignment of numerical
values (probabilities, odds) to the lexical and grammatical elements which are of
interest to us is not easy. However, it can be very useful to assign uncertainty
weights to propositions based upon these clues, especially when fusing uncertain
information to use as the basis for informed decision-making.

There remains one more complication, namely, the fact that humans do not
always use these elements in isolation. Rather, it is not uncommon that several
different markers appear in a single sentence:

15. I believe John told me that it is very possible that Mary will arrive on Sunday.

How certain can we be that Mary will indeed arrive on Sunday, based upon this
sentence? While different readers may, if requested, assign different probabilities to
her arrival, in general one can say that each lexical marker (mindsay, hearsay, words
of estimative probability) in this sentence collectively increases our uncertainty.

Natural languages are very flexible, allowing for an infinite combination of
words. Thus, listing all possible combinations of these lexical markers and assigning
each combination a value would be an arduous (and probably pointless) task, to say
the least.

However, in [5] we have shown that it is possible to exploit certain types of lexical
items to evaluate this chaining. For example, intensifiers may be used to weaken
(downtoners) or to strengthen (boosters) the evidential weight of elements such as
adverbs or adjectives. That is, use of the downtoner somewhat weakens likely in
somewhat likely, and similarly the booster very will turn likely into the stronger very
likely. If asked to arrange the resulting terms in order from weakest to strongest,
speakers of English will generally arrive at the following relation:

Somewhat likely < likely < very likely

Not unexpectedly, there is the reverse effect when we use somewhat and very
with the modal adverb unlikely:

V ery unlikely < unlikely < somewhat likely
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Fig. 8.2 Ranking of unlikely and likely modified by booster very and downtoner somewhat for a
proposition p

Fig. 8.3 Some modifications to Fig. 8.2 including labels and expressions for complete uncertainty

Figure 8.2 shows a relative placing of a proposition p modified by the above-
mentioned hedges along a scale from p is untrue to p is true for any given
proposition p.

But in both cases, we can say that the addition of very increased our certainty
about a proposition p being either true or false: if something is very likely we are
pretty certain it is true (or will happen); if something is very unlikely, we are quite
certain that it is not true (or will not happen). When we are truly uncertain – the coin
is still in the air – we cannot say we are more or less certain to believe p to be true or
untrue and are therefore stuck in the middle between p being true and p being false
(Fig. 8.3).

While many people view uncertainty on a scale ranging from uncertain to
certain (i.e., equivalent to a “0–100 scale,” with 0 representing “uncertain” and 100
“certain”), it turns out that the scale is bipolar: the point of maximum uncertainty
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Fig. 8.4 Bipolar scale based on showing point of maximum uncertainty in the center

Fig. 8.5 A numerical scale for certainty p is untrue (−1.0) to certainty p is true (1.0), with the
point of maximum uncertainty assigned the value 0

lies in the middle of the scale, while maximum certainty lies at both ends of the
scale, as illustrated in Fig. 8.4.

Using this bipolarity as a basis, we can define a numerical scale in which the
midpoint (the point of maximum uncertainty) is zero, while the end of the scale
representing absolute certainty that p is true is assigned the value 1.0 and the end of
the scale representing absolute certainty that p is untrue is assigned the value 1.0, as
shown in Fig. 8.5.

We can then exploit this scale to help us to automatically determine relative
evidentiality weights for chained and modified evidential markers. For this, we
define the effect of a modifier on the original weight as follows:
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Fig. 8.6 Negation of words of estimative probability

wmodifiedhedge = woriginal + poriginal × effectmodifier ×
(
1− ∣∣woriginal

∣
∣
)

where poriginal is the polarity of the original hedge.
For example, suppose we assign the weight wlikely = 0.6 to likely and the weight

wunlikely = −0.6 to unlikely. If we have determined for our model that the adverb
very amplifies (strengthens) that which it modifies by 0.3, then we can use the
formula to obtain:

wvery_likely = 0.6×+(1)× (0.3)× (1− |0− 6|) = 0.72

wvery_unlikely = 0.6×+ (−1)× (0.3)× (1− | − 0− 6|) = −0.72

which places, as expected, very likely to the right of likely on the scale and very
unlikely to the left of unlikely, as they appear in Fig. 8.5.

Negation can be effected by simply modifying the polarity, as shown in Fig. 8.6.
Note that negating a negatively poled expression results in something less certain
than its positively poled antonym, i.e., whereas not likely and unlikely are usually
considered to be more or less equivalent, not unlikely is generally considered to be
weaker than likely.

Similar to words of estimative probability as discussed above, lexical clues
indicating hearsay or mindsay may be assigned values and modified as described
above. A sample is shown in Fig. 8.7.
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Fig. 8.7 Example of relative weightings of various verbs expressing uncertainty about proposi-
tional information

Thus, by evaluating the various multiple lexical expressions surrounding the
content, we can come up with a rough estimation of the credibility of the information
based upon clues the reporter has left us in the communication.

Once we have the ranking, we can map the results to existing scales such as a
fuzzy scale using words of estimative probability or to a numerical scale such as
percentages. Two simple examples appear in Fig. 8.8.

It must again be reiterated here that the values assigned to expressions, as well
as the values to modifiers, are defined by the user; as mentioned earlier, there are no
universal values, but there is a certain consistency in relative understanding of the
values (meanings) of various expressions.

For a more detailed, in-depth discussion of the underlying research as well as a
more detailed discussion of the algorithms, please refer to [5].

8.5 Summary

In this chapter we have discussed the need for evaluation of uncertainty in
natural language information to give decision-makers a clear picture of the quality
of that information. We discussed the various forms of uncertainty in natural
language, categorized in two ways: uncertainty within the information which
includes imprecision, vagueness, ambiguity, polysemy, and so on and uncertainty
about the information, the constructs which appear in text that tell us whether
the information is reliable or not, and in which way. We then briefly present the
outlines of a concept which allows us to automatically generate evidential weights
for information derived through text analytics by examining lexical clues concerning



178 K. Rein

Toss-up,
50/50 chance,

about even

maximum
uncertainty

likely

very
likely

very
likely

Almost
certainly

very
unlikely

Even
chance

very unlikely

p is untrue p is true

Remote

not
unlikely

Unlikely
Probably/

Likely

unlikely

Toss-up,
50/50 chance,

about even

maximum
uncertainty

likely

very
likely

very unlikely

p is untrue

0% 25% 50% 75% 100%

p is true

not
unlikelyunlikely

Fig. 8.8 Examples of mappings of relative rankings onto a scale of words of estimative probability
(left) and percentages (right)

original source or stance toward the veracity of the information which speakers
embed in their communications.
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Chapter 9
Fake or Fact? Theoretical and Practical
Aspects of Fake News
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Abstract The phenomenon of fake news is nothing new. It has been around as
long as people have had a vested interest in manipulating opinions and images,
dating back to historical times, for which written accounts exist and probably much
beyond. Referring to it as post-truth seems futile, as there’s probably never been an
era of truth when it comes to news. More recently, however, the technical means
and the widespread use of social media have propelled the phenomenon onto a
new level altogether. Individuals, organizations, and state-actors actively engage in
propaganda and the use of fake news to create insecurity, confusion, and doubt and
promote their own agenda – frequently of a financial or political nature. We discuss
the history of fake news and some reasons as to why people are bound to fall for
it. We address signs of fake news and ways to detect it or, to at least become more
aware of it and discuss the subject of truthfulness of messages and the perceived
information quality of platforms. Some examples from the recent past demonstrate
how fake news has played a role in a variety of scenarios. We conclude with remarks
on how to tackle the phenomenon – to eradicate it will not be possible in the near
term. But employing a few sound strategies might mitigate some of the harmful
effects.
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9.1 A Brief History of Fake News

To be clear, fake news is nothing new. Intentionally circulating rumors and false
information have been around for as long as humans have realized its influential
power. What makes fake news seem new today, is the medium, speed and precision
with which it can be distributed on a much larger scale by micro-targeting particular
users. The term fake news has gained significant prominence during and after the
2016 US general election. This was partially due to BuzzFeed News’s story on
teenagers in the Balkans who had intentionally spread false information in support
of Donald Trump [13]. Their investigation revealed that at least 140 US politics
websites were created and run by young Macedonians who had used Facebook
adverts to spread fabricated news articles in favor of Trump. Their ultimate goal
was not to help him win the election but to make money by generating lots of traffic
to their websites [55]. According to several teenagers interviewed by BuzzFeed,
Facebook was deemed as the best platform for spreading fake stories [55]1. As false
information and rumors have been around for centuries, the medium with which
they can be disseminated today, namely, via social media, has made fake news look
like a novel phenomenon, but, in fact, fake news is anything but new.

It is challenging to precisely pinpoint the origins of fake news. Following the
definition of Allcott and Gentzkow [5] as “news articles that are intentionally2 and
verifiably false, and could mislead readers,” it could be argued that fake news has its
origin somewhere after the invention of the printing press in 1439, which allowed
news to be printed and thus shared on a much larger scale as in contrast to the
preprinting press era, in which news spread from person to person. Soll [58] supports
this argument by claiming that “Fake news took off at the same time that news
began to circulate widely.” As there were plenty of news sources available, including
official publications by political and religious authorities, a concept of journalistic
ethics3 or objectivity was lacking, he argues [58]. This, in turn, enabled fake news
to be distributed for various purposes, such as political or economic gains. One of
the earliest examples of using fake news for profit was the often-cited example of
the New York Sun in 1835, which ran stories about a British astronomer who had
discovered, among other things, “blue-skinned goats” and “giant bat-like people” by
using a newly invented telescope to view the moon. This story led to a massive surge
in sales, and for a short time, The New York Sun became the world’s bestselling daily
paper thanks to intentionally spreading fake news [60].

In a similar vein, Leetaru argues that fake news is as old as the news itself, but
goes further and states that it became an inherent part of wartime propaganda,

1Combining in a single incident two of the most prominent motivations for fake news: politics and
money.
2One may also distinguish between intentional disinformation or unintentional misinformation, see
below.
3See Lara Setrakian’s TED talk on the need of a Hippocratic Oath for journalists. https://www.ted.
com/talks/lara_setrakian_3_ways_to_fix_a_broken_news_industry

https://www.ted.com/talks/lara_setrakian_3_ways_to_fix_a_broken_news_industry
https://www.ted.com/talks/lara_setrakian_3_ways_to_fix_a_broken_news_industry
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especially during World War I and II [38, 39]. Leetaru bases his claims on an
experiment with Google Books NGrams Viewer – an online search engine that
plots the frequencies of words and phrases using a yearly count of n-grams found
in printed books between 1800 and 2000. Using this search engine, Leetaru was
specifically interested in how often the term fake news had appeared in books in the
last two centuries [32]. He found the term was initially used at the start of World War
I and reached its peak just before World War II. He explains the peak by noting that
it is likely reflecting the rise of research into propaganda and its potential impact on
societies [38, 39]. All in all, he argues, the phrase fake news originated somewhere
around the beginnings of WWI and WWII but came to rapid prominence after the
2016 US general elections.

Others, such as Burkhardt, point to the preprinting press era as a new and
potential origin of fake news4. However, Burkhardt carefully caveats there are no
means to verify these claims. She continues by explaining that information was
inscribed on materials, such as stone, clay and papyrus and was usually limited to
the group leaders, who ultimately controlled this information. This control, in turn,
gave them power over others as group members heavily relied on knowledge or
information obtained from the leader [39]. So, intentionally spreading fake news to
smear other group leaders, for example, could have been possible and would have
probably worked, because “without the means to verify the claims, it’s hard to know
whether the information was true or fake news” as Burkhardt argues [12].

Numerous examples of fake news can be found throughout the post-printing
press era. American writer Edgar Allen Poe (1809–1849), for example, could be
considered a fake news author as he is credited with writing at least six stories that
all turned out to be hoaxes, most famously, the story of a balloonist who had crossed
the Atlantic in 3 days [9]. The emergence of fake news is not limited to a specific
century or period of time. In fact, numerous examples are documented, ranging from
the mid-fifteenth century up to the present day.

As the means to communicate have developed, so has the way in which fake
news has been circulated too. In the mass media era [12], for example, when
radio broadcasting became widely available, fake news had also been around. One
famous example is The War of the Worlds broadcast in 1938, which was a narrated
adaptation of H. G. Wells’ novel The War of the Worlds. Even though the presenter
emphasized at the beginning of the show that the following broadcast was a narrated
novel, a mass panic followed as many people confused the novel with real news [68].

In sum, it can be stated that fake news has always been around for as long as
humans have existed and realized its power of influencing others for economic,
social, and political gains. It is still unclear when it emerged for the very first
time, but many historians, journalists, and scholars point to the invention of the
printing press, which gave rise to news media outlets and eventually to fake news.
Numerous examples can be found throughout history, leading up to the 2016 US

4An early famous example is the battle of Kadesh, fought in 1274 BC and its presentation as a
victory by Egyptian pharaoh Ramses II.
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general elections and due to the pervasive nature of fake news, it is highly likely
that rumors and false information will remain with us for the foreseeable future.

9.2 Why People Fall for Fake News

One reason why people fall for fake news is the fact that they perform poorly at
fact-checking. Research from cognitive psychology has demonstrated that people
are naturally bad fact-checkers and comparing known to unknown issues poses a
significant challenge [29]. The so-called Moses Illusion, also known as the semantic
illusion, serves as an illustrative example. This phenomenon was first identified in
1981 in a study that examined how meanings of individual words are combined to
form a more global description of meaning [29]. The Moses Illusion occurs when
people answer “two” in response to the question “How many animals of each kind
did Moses take on the ark?” even though they know, it was Noah and not Moses
who took animals onto the ark. The study found 81% of the participants (N = 27)
did not notice the error in the question although they knew the correct answer [27].
Psychologists call this phenomenon knowledge neglect [40, 41].

So, why are humans so bad at noticing errors? There are several explanations for
this, most of which stem from psychology. According to [29], two peculiar habits
of psychology make humans miss these errors. First, their general bias to initially
process and label new information as true, also referred to as confirmation bias
[31]. Second, as long as new information is perceived as close to the truth, it will
automatically be accepted. The underlying idea refers to the good-enough model,
which presumes that to maintain conversations, “humans accept information that is
good enough and just move on” [31]. In other words, small errors in sentences will
be accepted in order to keep the conversation flowing.

Another reason why people believe fake news stories is a particular cognitive
shortcut that occurs when users have to decide whether or not to share a story on
their social media feed [14]. In general, the human brain uses cognitive shortcuts or
simple heuristics5 to avoid information overload when making a decision. These
shortcuts or heuristics are intuitive, short, and simple rules that subconsciously
issue instructions as to what to do. In this respect, a research study examined the
hypothesis that negative news stories are more likely to be retweeted on Twitter as
in contrast to positive, nonnews tweets. The findings suggest that indeed, negative
sentiment enhances virality in the news segment (but not in the nonnews segment)
[34]. To put it simply, people tend to retweet negative news headlines without even
challenging their credibility [14].

A further factor contributing to why people fall for fake news are so-called echo
chambers [14]. An echo chamber in the context of media is a filter bubble around
a user, in which a person is exposed to content that amplifies or reinforces existing

5For a good overview of heuristics, see Gigerenzer et al. [30].



9 Fake or Fact? Theoretical and Practical Aspects of Fake News 185

beliefs. As users are free to choose whom they want to follow, or be friends with, or
which web-sites and sources to read, it is up to the individual to decide what content
they wish to see on their social media feed. The danger here is that users who only
view content that reinforces existing political or social views are more likely to
believe fake news, because people generally tend to favor information coming from
within their social circles [20]. These social circles, however, can act as an echo
chamber [53]. Therefore, users will most likely not challenge the authenticity of
the news article or the source as they already trust their social circle (following a
source-based trust model in that sense) [20].

In a longitudinal research study, researchers subjected the Facebook activity
of 376 million English-speaking users to critical scrutiny by examining how
Facebook users interacted with English-speaking news sources [54]. Their findings
demonstrate that the higher the activity of a user, the more the user tends to focus on
a small number of news outlets, which in turn, leads to distinct online community
structures and strong user polarization. In other words, social media creates an echo
chamber that provides the ideal environment for fake news to spread. In a similar
vein, the authors conclude that the polarization of users online is probably the main
problem behind misinformation [54].

Another reason why people fall for fake news, especially when it comes to
images, is a humans’ inability to detect photo forgeries. Considering that 3.2 billion
images are shared each day on average [11] and highly sophisticated photo-editing
tools are widely available, photo forgeries constitute a significant challenge. Images
can sometimes form a critical part of a fake news story, making research in this
area paramount. However, according to Nightingale et al. [45], there is a lack
of research which specifically examines humans’ performance in detecting photo
manipulations. For this reason, Nightingale and colleagues conducted one of the first
experimental studies of its kind, in which participants were presented both original
and manipulated photos of real-world scenes to classify these accordingly and point
out the manipulations. The results indicated that humans have an “extremely limited
ability to detect and locate manipulations of real-world scenes” [45].

Communication and the sharing of information is known to be a key factor for the
use of social media. Whereas the sharing of correct information may foster a better-
informed society, the sharing of inaccurate and misleading information may have
negative consequences [37]. Information quality – regarding the accuracy, truthful-
ness, or veracity of information on a particular medium or perceived information
quality, an individual’s perception of these factors – play a fundamental role in
the sharing behavior of users and thus have a strong impact on the dissemination
of fake news. High perceived information quality may encourage the sharing of
messages whereas low information quality may lead to reduced willingness to share
and increased consciousness about one’s online reputation.

In sum, human psychology, communication patterns, echo chambers on social
media, the inability to detect photo or video manipulations, and the perceived
information quality of platforms are all critical factors that enable fake news to
flourish. The good news is, however, there are techniques to spot fake news! But this
will ultimately be up to the individual to decide whether or not he/she acknowledges
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the existence of false information and rumors on social media. Most importantly,
individuals will need to be ready to learn basic techniques to assess and verify
the credibility of the news article they read. Efforts to increase digital literacy and
use of social media in education and training, on all levels from governments to
companies, platform providers, news-outlets, and individuals, should complement
such efforts and ultimately lead to a more conscious manner of news consumption
and distribution behavior.

9.3 Fake News: Practical Aspects

If you would ask someone what “fake news” was 10 years ago, they would probably
indicate towards humorous satire websites such as The Onion6 or The Daily Mash7.
Today, the definition of fake news is more nuanced, more diffuse, and a lot less
humor-oriented and includes a wide spectrum of types of publishers and content
distribution models.

The simplest categorization of fake news would be split into “mis-” and “dis”-
information. Misinformation, which is not intentional and disinformation, which
is intentional. Both are used to manipulate and influence opinions and can have
a serious impact on topics and segments of society. Oftentimes, accurate and
inaccurate facts and information are intertwined and twisted to provide slanted
viewpoints and half-truths mixing fact and fiction [28]. The wide adoption of the
Internet and of social media platforms, in particular, have made it very easy to create,
distribute, and consume content in a rapid and massively parallel manner.

Misinformation, whether generated by unreliable sources of information or low-
quality journalism, can have a significant impact on media consumers. Two relevant
examples detailed further in this chapter, such as wrongly accusing BMW of rigging
car emissions in the manner of Volkswagen, or ABC News causing the Dow Jones
to fall by publishing a report wrongly accusing candidate Trump of colluding with
Russia, demonstrate just how important it is to maintain a high-quality information
verification process within any editorial newsroom.

Disinformation can take many forms and covers a wide spectrum of fake
news: from the seemingly innocent satire websites to clickbait, source hacking,
sponsored content, conspiracy theories, and even state-sponsored propaganda. What
disinformation aims for is a significant impact in the information space, which can
be obtained almost exclusively in the online battlegrounds where audiences are easy
to reach and even act as content distributors themselves, while interacting with the
content.

6www.theonion.com
7www.thedailymash.co.uk

http://www.theonion.com
http://www.thedailymash.co.uk
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9.4 Tackling Fake News

Analyzing the most recent prominent fake news scandals, from the Indonesian
presidential elections smearing campaigns in 2015, the 2016 US Presidential
elections, and the ongoing conspiracy theories that once in a while get published
by mainstream media, recurring patterns into the techniques used to create fake
news with most impact can be identified. These patterns have since been structured
into identified signals presented in digital literacy programs and manuals (such
as the ones put together by the News Literacy Project) and also implemented
into algorithms used in academic or commercial software applications designed to
spot online fake news, such as Hoaxy8 developed by the Indiana University Open
Networks Institute or TrustServista9 developed by Zetta Cloud.

The fake news scandal that erupted after the 2016 US presidential elections has
put a spotlight not only on social media platforms, such as Facebook or Google,
accused of not taking action against the spread of disinformation but also on
researchers and journalists, who were expected to bring expert-solutions to the
problem. The main directions of addressing online fake news, mainly since late
2016, can be categorized as follows:

1. Professional Fact-Checking, when information is verified by media profession-
als. This approach provides an accurate and standardized method of information
verification, which eliminates any bias and can lead to identical results even with
different impartial verifiers. Notable examples of such professional fact-checking
groups are Snopes.com, First Draft News or FactCheck.org. The disadvantage of
this approach is that it is very time-consuming, it does not scale (considering
the limitless size of the Internet), and most of the time it is a sluggish “post-
mortem” analysis performed after the viral fake news content was distributed
and has reached its goals.

2. Crowdsourced Fact-Checking, when verification is performed by non-
professionals on virtual online platforms, using commonly agreed principles
and standards of work. The idea of this approach is to be independent, to
leverage “crowd wisdom” and to create a scalable model. In reality, it proved
less successful than the professional fact-checking approach, with only a few
such initiatives becoming known to the public (Reddit, WikiTribune), and results
being challenged for being potentially partisan or being derailed by strong online
trolling groups such as user boards 4Chan.org or 8Chan10.

3. Automated Algorithmic Verification, when content verification is performed in
an unassisted, automated manner by a software program. This approach is being
used, in combination with human review, by Facebook and Google, and also
AI startups such as Zetta Cloud, Factmata or Unpartial. The idea behind this

8https://hoaxy.iuni.iu.edu
9www.trustservista.com
108ch.net

http://snopes.com
https://www.factcheck.org/
http://4chan.org
https://hoaxy.iuni.iu.edu
http://www.trustservista.com
http://8ch.net
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approach is to successfully filter out most of the untrustworthy online content
that matches certain statistical patterns, with potential to work in real-time, at
scale, and a “good enough” fake news detection quality, similar to those of email
spam filters.

The fake news types with most of the impact in the online space – clickbait,
conspiracy, and propaganda – have common “red flags” that can be used to identify
them as untrusted content, even if the content is in video, image, or text format.
These “red flags” make up identifiable signals that a human content consumer
with moderate digital literacy or critical reading skills could use; also, signals that
could be implemented as software algorithms for the automatic detection on online
disinformation, in real-time.

9.5 Algorithmic Fake News Detection

One of the areas of interest with regard to curbing the fake news phenomenon is the
research of automatic fake news detection using Artificial Intelligence algorithms.
Since the 2016 US presidential elections fake news scandal, more effort has been
put into researching and developing tools that can detect fake news stories in the
online space.

One such tool was launched in early 2017 by Zetta Cloud11, a Romanian AI
startup that received a grant from Google to develop a software prototype that
can automatically detect fake news. The tool called TrustServista12 was used for
publishing a “News Verification Report” [63] detailing an approach to standardizing
“red flags” for automatically detecting fake news with no human intervention.
The report analyzed 17,000 online news articles (collected from news agencies,
newspapers, blogs, magazines, and organization websites) in order to find patterns
into how the quality, source referencing, and authorship of online news impact the
trustworthiness of the produced content, outlining the current Text Analytics and
Semantic Reasoning capabilities for the algorithmic detection of such content.

The final metric according to which the content was analyzed is called a
“trustworthiness score” and indicates if a story is trustworthy or not, rather than
classifying it as true or false or performing any checking of the facts found in the
article. The trustworthiness score takes into account the following information:

Writeprint – Source and Author identification:

• Is it published by a known established publisher?
• Can the publisher’s credentials (ownership, editorial team) be verified?

11www.zettacloud.com
12www.trustservista.com

http://www.zettacloud.com
http://www.trustservista.com
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• Does the article have a named, verifiable author with public social media
profile?

• Does the publication have a history of political bias or allegiance?
• Is the web “footprint” verifiable (domain, hosting company, hosting location,

advertising code, security certificate).

Writeprint – Content writing style:

• Is the article written in a balanced, non-sentimental way?
• Is the quality of the text consistent with the topic of the article?
• Does it contain actual and useful information?
• Does it mention the information sources it uses (including video/photo)?
• Were the images used before on the web in a different context?
• Does it contain strong emotions towards the subject or use of clickbait

techniques?
• Does it use fraudulent images, out-of-context videos, claims that cannot be

checked?
• Does it use anonymous or unnamed sources?

The information origin and context:

• Can the information be traced back to the original (Patient Zero) information?
• How trusted is the origin of information and other content sources referenced?
• What are other publishers and articles writing about the same topic?

In fact, these verifications which are performed automatically by software
algorithms relying on text analytics, graph analytics, and statistical analysis provide
a good baseline for the standardization and automation of fake news detection and
analysis. Also, the impact of fake news stories can also be measured using standard
metrics:

1. Facebook or Twitter engagements, such as likes, shares, comments, retweets.
The higher these metrics are, the more people were reached by the content (have
read at least the title) and have interacted with it, distributing it further in their
networks by linking it, retweeting it, or commenting on it.

2. Content engagement analytics, typically available only to the content owners,
showing the number of visits on their website or views on social media.

3. References and citations, either direct hyperlinks to the article’s URL from
other websites or just mentions (“according to...”).

The advancements in Artificial Intelligence algorithms and processing power
allows software programs to automatically extract key information from content
with no human supervision: language detection, automatic summarization, named
entity extractions, sentiment analysis, hyperlinks or references, clickbait detection,
content classification, emotion extraction, semantic similarity comparison. All these
metrics can be used to understand content in a similar way as a human does, with
the goal of assessing its trustworthiness.
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9.6 Fake News: “Red Flags”

When creating fake news, both the content and distribution channels are important.
The content needs to be appropriate for the end goal: fringe websites will use
clickbait techniques and rely on social media, state actors will create high-quality
content and try to send the message into the mainstream, conspiracy theorists will
use message boards and fora with “source hacking” techniques.

The most typical techniques or “red flags” for creating and distributing disinfor-
mation are:

• Using clickbait writing style, especially for the article title, with the main
purpose of attracting attention and encouraging visitors to click on the hyperlink
or distribute the content. Certain punctuation marks, heavy use of capitalized
letters, words and expressions that trigger strong emotions, and the lack of actual
information in the title (names, locations), the different elements of information
presented in the body of the article in comparison with the title, are the markings
of a “clickbait” content. The generation of content by every day users of social
media platforms (UGC – user generated content), exhibiting large variation in
information quality [3], poses additional and increasing challenges.

• Republishing old stories in order to enforce the Anonymous or unverified
sources. As the Internet has democratized content production, information
published by sources that have no contact details, no ownership information or
anonymous authors, should be regarded as untrustworthy. Even if the publishers
are anonymous, trust can be built up in time, if the information published is
constantly verifiable and trustworthy.

• Lack of factual information in the articles. Opinion pieces, conspiracy the-
ories, or low-quality journalism tend to exhibit a lack of information context –
people, organizations, geographical, and time references – elements that typically
constitute the factual information backbone of any news story.

• Relying on unnamed sources, such as unnamed officials, anonymous tipsters,
or political insiders, is a technique used by established media organizations in
order to either get ahead of the competition with breaking stories or to create
propaganda stories. Although this information sourcing is accepted by most
media organizations, it can be considered untrustworthy. These types of stories
tend not to get verified afterward.

• Lack of sources or using unreliable sources. Since information is often created
by news agencies or local newspapers, witnessing events first hand, the vast
majority of other publication types typically rely on sources for their stories.
The lack of sources referenced in the articles or referencing unreliable source
constitutes a “red flag” leading to possible untrustworthiness. The generation
viewpoints of certain online “echo chamber”-like groups are a known and
potentially successful fake news technique, since the huge amount of news
content produced every day ensures that the public cannot remember old stories
and be assumed to react to the same story in the same way when confronted with
republished news.
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• Source hacking, a complex fake news creation technique specific to forums
and message boards where anonymous users disguised as an insider, firsthand
witness, or whistleblower information would publish fake information in the
hope that journalists on the look for stories will pick up the information and
publish it in the mainstream media. News organizations with established source
verification and quality standards tend to keep away from such anonymous online
information.

• Use of manipulated images or wrongly attributed videos, either as part of
written news articles or standalone, which can be difficult to debunk, making
it another successful fake news technique. The “red flags” for such content can
only be obtained with specialized software and rarely verified using journalistic
or critical reading techniques.

• Different viewpoints also make up an important verification process for any
information. If other publishers are writing about the same topic, if there are
different viewpoints on a specific matter, this is a sign that the story is not fake.
Even if the stance on the topic differs from publisher to publisher, even if there
is no consensus, witnessing multiple actors engaging with a story is a valuable
verification starting point, this can be assumed to be the actual case.

The content red flags and engagement models can differ depending on the type of
fake news. To summarize the 3 most popular types of written fake news content:

• Clickbait, which is usually created by non-established news websites and relies
mostly on the writing style to obtain maximum audience reach, typically on
social media platforms. This type of disinformation used either for political or
commercial gains does not reference sources or does it only partially or in a
deceptive way. The content does not contain sufficient factual information, rarely
has a named and identifiable author, and the main focus is actually on the title
written in such a way that it should motivate the reader to click on it (hence
click-bait) or redistribute it without reading the full article. The content can also
be overly negative or positive. Rarely cited or referenced outside the content
producer’s own network, the aim of this content type is to “viralize” (becoming
viral), to obtain a large number of views, likes, shares or retweets on social media
platforms.

• Conspiracy, websites that publish mostly false information on different topics
such as history, politics, religion, or health. Conspiracy websites tend to have
a varied degree of popularity and present information that cannot be proved
scientifically. The writing style can vary from clickbait-type content to high-
quality content, resembling scientific papers. The Wikipedia page on conspiracy
theories [69] lists 12 categories of conspiracy theories. Recently, message boards
such as 4chan or 8chan have been successful at collaboratively creating and
distributing conspiracy theories in the online space, one of the most famous users
involved in these activities being QAnon [15].

• Propaganda, sponsored by various political organizations or even state-actors.
Propaganda stories may span a large number of articles and are typically
information-rich, displaying a high-quality writing style, and referencing a
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known author in order to resemble high-quality journalism and not be labeled as
clickbait of fake news. However, even if propaganda articles make use of multiple
sources, they tend to mix trusted and verifiable information with untrusted,
usually unnamed sources or other websites that are partisan.

The following examples detail the various types of fake news, from misin-
formation to disinformation, highlighting the various techniques of creating and
distributing content, and the impact they had on the economy, society, and politics.

9.7 Examples

9.7.1 The Volkswagen Emissions Scandal Spills over to BMW

Even before the “fake news phenomena” made international headlines due to
the 2016 US presidential elections, scandal, disinformation, misinformation, and
unverified claims were plaguing the news ecosystem with considerable impact. One
prominent example is how during the Volkswagen emissions scandal in the autumn
of 2015, a German magazine managed to significantly impact the stock value of
auto giant BMW after publishing an unverified claim that went viral.

On the September 18, 2015, the US Environmental Protection Agency (EPA)
issued a Notice of Violation for Volkswagen AG, Audi AG, and Volkswagen Group
of America, Inc., accusing the company group of installing “defeat” devices in
certain car models that cheated on harmful emissions measurements. In fact, the
EPA was accusing the VW Group of “rigging” their car emissions measuring
devices by showing values that were lower than the real ones in order to conform to
the strict US environmental regulations. The Notice of Violation was published on
the EPA website [26] and was quickly picked up by the media the following day.

On September 19th, there were already several thousand online articles on this
topic, according to Google Search, making it one of the biggest news stories of that
week. One day later, VW CEO Martin Winterkorn confirmed the data published by
the US EPA to be true. By September 21st, the VW stocks had plummeted by 20%
[16] and a Wikipedia page on the “Volkswagen emissions scandal” [70] had been
created.

While the media was busy trying to understand the magnitude of Volkswagen’s
emissions rigging operation and also trying to assess the impact of this scandal
on the auto industry worldwide, the German magazine AUTO BILD published
an article claiming the rival BMW might have the same problem, stating that
the BMW X3 model produced more than 11 times the European limit when
tested by the International Council on Clean Transportation (ICCT). Published
on September 24th under the title “AUTO BILD exclusive: BMW diesel exhaust
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emissions exceed limits significantly” (original title: AUTO BILD exklusiv: Auch
BMW-Diesel überschreitetAbgas-Grenzwertedeutlich)13.

The article by AUTO BILD was picked up instantly and without proper
verification by many publications and online blogs around the world, resulting
in an immediate drop of BMW stock by nearly 10% [17]. BMW management
denied any wrongdoing the same day and AUTO BILD modified the original article
publishing a correctional statement: “No indications of manipulation from BMW”
(“KeinIndizfür Manipulation bei BMW”) (Auto [10]).

The mistake by AUTO BILD and its consequences can be regarded as a
“textbook” example of disinformation – a type of fake news produced without
intent. The effects of this disinformation by AUTO BILD were the same as for any
other fake news, even if BMW was quick to deny the claim and the German auto
magazine published a clarification only shortly afterwards. The information was
quickly picked up by other media outlets and websites with no proper verification,
mainly because AUTO BILD was regarded as a trustworthy news source, it spread
rapidly in the online space, had significant impact (BMW stock crashing) and only
a very small segment of those who picked up the information also published the
correction afterwards.

9.7.2 Mainstream Media Is no Stranger to Fake News

If misinformation is produced when the editorial process does not enforce certain
rules that have to do with content quality and source verification, disinformation is
fake news created on purpose, whether by hyper-partisan blogs that use clickbait-
techniques to spread hate speech, or false information about political adversaries, or
by mainstream media actors using complex propaganda techniques in an effort to
shape a wider audience’s views on certain national or global topics.

One of the most frequent disinformation techniques employed by the media,
especially when dealing with political topics, is using anonymous sources of
information, referred to as “sources close to the matter,” “experts that wish to remain
unnamed,” “undisclosed official sources,” “confidants,” or “people familiar with the
case.”

A relevant example of such disinformation carried out by the mainstream
media is the alleged US arrest warrant for Wikileaks founder Julian Assange. On
April 20, 2017, several US news publications reported the US Government was
preparing charges for the arrest of Wikileaks founder Julian Assange. However,
this information did not come from (nor was confirmed by) a named US official or
institution. Leveraging statements from CIA Director Mike Pompeo and Attorney
General Jeff Sessions on the Wikileaks investigation (dating back from 2010), the

13Article no longer available online, but archived copy available on presseportal.de:
www.presseportal.de/pm/53065/3130280

http://www.presseportal.de/pm/53065/3130280
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claim that the US was preparing to charge Assange and Wikileaks was attributed
to “US officials familiar with the matter” and “people familiar with the case.” The
claim was never confirmed and remains so until today.

The information that the “US prepares charges to seek arrest of Wikileaks’ Julian
Assange” was first published by CNN [18] and then by The Washington Post [67]
on April 20, 2017, just 13 min apart. The information was subsequently picked up
by several other prominent news organizations, such as Newsweek, Deutsche Welle,
USA Today, The Verge, The Blaze, Russia Today, and the BBC.

In fact, the information source cited by both CNN and the Washington Post was
“US officials familiar with the matter” (CNN) and “according to people familiar
with the case” (Washington Post). More than a year later, the US Government had
not put forward any formal charges against Julian Assange, proving that either the
sources were misinformed or were using disinformation. It is also possible that the
publishers were either deceived by their unnamed sources or were just too quick to
publish information that was impossible to verify.

It is commonly known that the use of unnamed sources for news stories can be
accepted under certain conditions and circumstances. Frequently journalists have
a choice between relying on unnamed sources and not publishing a story at all.
Relying on unnamed sources that have produced reliable information in the past
can be virtually risk-free. However, dealing with information that is not precise and
lacks specifics can be an indication that the source is unreliable or even outright
wrong. In such cases, journalistic quality standards should take precedence over
being first and “breaking a story” before the competition, risking to produce fake
news and lose the audience’s trust.

Another example of mainstream media-created “fake news” is that of ABC
News claiming that presidential candidate Donald Trump instructed retired Lt. Gen.
Michael Flynn to “contact the Russians,” an action that would be considered illegal
in the USA. The story created insecurity in the financial markets and caused the
Dow Jones to drop by 350 points.

On December 1, 2017, ABC News posted a message on Twitter regarding a
journalistic investigation by senior journalist and anchor Brian Ross, gathering
25,000 retweets in the first hour:

“JUST IN: @BrianRoss on @ABC News Special Report: Michael Flynn promise
full cooperation to the Mueller team and is prepared to testify that as a candidate,
Donald Trump directed him to make contact with the Russians.”

This information, as part of the ongoing Russian collusion scandal, was aimed
to confirm that candidate Donald Trump had colluded with Russia during the US
Presidential Elections in 2016. After Michael Flynn was arrested and pleaded guilty
to lying to the FBI on Friday, Ross reported that Flynn planned to tell authorities
that President Trump had personally directed him to establish contact with Russia
while he was running for president. This explosive claim, which suggested a new
dimension to Robert Mueller’s investigation into Russian election interference, was
picked up by many other journalists, and even caused a significant, temporary dip
in the stock market, according to NYmag.com [46].

http://nymag.com
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Brian Ross was suspended by ABC over the false Trump report the next day and
apologized for the “serious error we made yesterday.” Journalist Brian Ross claimed
that the mistake came from an unnamed source (referred to as “the confidant”) that
“had actually told him that Trump had made the comments in question when he was
the president-elect, not a candidate,” but after the original information had made it
into his article.

The original ABC Twitter message containing the mistake was distributed 25,000
times before it was deleted and the referenced article [2] topped 100,000 Facebook
interactions, as measured with www.sharedcount.com on December 11, 2017.
More than 8500 news websites around the world picked up and republished the
information, according to Google News search. Not all of the websites that picked
up the story also published the ABC correction or the fact that author Brian Ross
was suspended for his mistake. The quantifiable impact of this misinformation or
disinformation was a significant drop of the Dow Jones by 350 points, an impact
similar to the one created by AUTO BILD’s mistake regarding BMW’s emissions
values.

9.7.3 Conflict Zones, the Playground for Propaganda

A very rigid approach on information verification could have a binary classification
viewpoint: true or false. However, when dealing with information originating
from conflict zones, as for example the war in Syria, the notion of “unverifiable
information” comes into play, due to the multiple actors trying to control the
information and the fact that on-the-ground journalistic information verification is
nearly impossible. The Syrian conflict has been marked by constant propaganda and
disinformation campaigns since its beginning in 2011 with all involved belligerents,
whether Bashar al Assad and his allies, the Western Coalition, or the Islamic State.

One example from October 2015 is the news that a bombing by Russian
warplanes of a hospital in the city of Sarmin, in the Idlib Governorate, Syria,
resulted in the death of eight civilians. The article was published on the SOHR –
Syrian Observatory for Human Rights – website www.syriahr.com (edited by Rami
Abdurrahman, a Syrian national living in the UK) on October 2015 [57], but is
not available anymore. On October 21, 2015, the information from the SOHR
expanded into a full story for the AFP and subsequently was picked up by most
major news agencies including DW, Radio Free Europe, Mail Online [21], NDTV
[44], and Sky News, citing the SOHR website administrator, Rami Abdurrahman.
On October 22, 2015, the information was then confirmed by the Syrian-Medical
Society (Syrian American Medical Society or SAMS) by posting a picture of the
alleged bombed hospital on Twitter. This was followed by a statement on their
website [50] claiming the medical facility was a SAMS polyclinic in Sarmin, Idlib
and that it was targeted by Russian airstrikes using air-to-surface missiles. The
statement furthermore provided exact figures on the number of casualties, the SAMS

http://www.sharedcount.com
http://www.syriahr.com
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staff members killed in the attack and four pictures of the aftermath that are now
missing from their website.

The state-funded news agency Russia Today published a statement by the
spokesperson of the Russian Foreign Ministry on the matter the next day [48]. Maria
Zakharova denied any Russian bombing of hospitals in Syria, claiming the report
showed tremendous bias towards Russia’s military efforts in Syria:

There are so-called mass media reports which allege that Russian aircraft bombed
a field hospital in the Idlib Governorate in northwestern Syria and reportedly
killed 13 people. I cannot say that these reports are written by journalists but their
ingenuity delights.

RT.com then followed with an update on the story on October 29 [49], publishing
a statement from Dominik Stillhart, director of operations at the International
Committee of the Red Cross, (which has people on the ground in Syria), saying
that he was unaware of any such incidents: “We’ve seen these reports as well, but
in the absence of any firsthand information coming from our teams on the ground, I
can neither confirm, nor deny these allegations.”

The conclusion of Dominik Stillhart summarizes very well the way stories from
conflict zones should be approached. As the source of this story is a statement from
a Syrian activist (Rami Abdurrahman), followed by more information from a US-
funded medical association (SAMS) featuring images that could not be verified,
with no real follow-up on the story in order to find more evidence or witnesses and
on-the-ground footage from a reliable independent source, it is actually impossible
to say whether this story is true or false.

The same goes for another, more recent story regarding the Syrian conflict:
the bombing of Syrian army positions by the US Army on May 24, 2018. The
information was published by several media outlets, only to be disputed shortly
afterwards. The source of information was traced back to the Reuters World Twitter
account (twitter.com/ReutersWorld), citing the Syrian Arab News Agency (SANA):

U.S.-led coalition hits Syrian army positions: Hezbollah media unit https://
reut.rs/2IKBane.

The tweet linked to the story that was updated quickly after the post on
Twitter: “Syrian state media says U.S. hit army posts, U.S. denies” [47] tracing
the information source to Syrian state media agency SANA that was citing “a
military media unit run by Lebanon’s Hezbollah.” The information was denied by
US military official Captain Bill Urban, a spokesman for the US Central Command
as well as by Russian military sources cited by RT.com.

The original post of Reuters was published on the SANA website [51] at 2018-
05-23 23:40:42 and was deleted shortly thereafter. But not before being referenced
by a number of Arab-language publications, including the Syrian Observatory for
Human Rights and international news agencies. The SANA article, authored by
“mohamad” only contained a short sentence (retrieved through search engine cache
and translated from Arabic):

“Military source: Some of our military positions between Albuqmal and the
intimacy of the dawn of the day to the aggression launched by the US coalition

http://rt.com
http://twitter.com/ReutersWorld
https://t.co/0J8YxWvj9i
http://rt.com
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aircraft in conjunction with the rallies of the terrorists of the organization advocated
and limited damage to material”

One hour later, the same author (mohamad) published a more detailed piece on
the same story [52] (translated from Arabic): “Within the framework of its support
for the “daaish terrorists. The US coalition attacks on some of our military Prevlaka
(rural) Deir Al-Zour.”The article used the same anonymous source as the previous
article and mentioned that “The aggression after less than 24 hours to foil the Syrian
Arab army forces and the generic attacked terrorists from “Daaish” on a number of
points in the apparent fields Prevlaka (rural) Deir Al-Zour and the elimination of
more than 10 of them some of them foreign nationalities and dozens of injured and
the destruction of one of their vehicles.” It also specified that there were no injuries
on the Syrian side.

The information was quickly picked up by Arab-language publications:

• Al Majd [7]. Citing SANA, claiming the loss of 25 civilian lives. The article has
been deleted since.

• Asharq Al Awsat [1]. Using the information from SANA.
• Alsumaria [8]. Citing SANA, but mentioning the US did not confirm the attack.

In addition, it mentioned that Syrian military sources claimed the attack targeted
two sites near the T2 Atomic Energy facility, which is located near the border
with Iraq, about 100 km west of the Euphrates River.

• Al Bawaba [4]. Identical to the AlSumaria article.
• Sky News Arabia [56].The first Arab-language publication to mention that the

source was actually Hezbollah.
• Aljazeera [6]. Mentioning that the Pentagon did not confirm the attack and

attributing the information to the Syrian Government (SANA).

English-language publications that picked up the story and then published the
Pentagon’s denial were: The Associated Press, North Jefferson News, The Seattle
Times, The Washington Post, New York Post, Russia Today, The Times of Israel.

This story can be considered a successful source-hacking attempt orchestrated
by Hezbollah. Publishing unverifiable information on the Syrian state news agency
website SANA was carried out in order to be used by other Arab-language news
websites and hopefully also by English mainstream news agencies, such as Reuters.
Again, the unnamed Hezbollah source, the impossibility to verify the claim, and the
risk of being just a daily piece of wartime propaganda did not prevent this story from
reaching mainstream media in the English-speaking world although it was denied
afterward by US and Russian military sources. It also provides an example of cross-
language and multilingual efforts, making any verification and debunking process
even more difficult.

Another example of how propaganda works in the Syrian conflict zone was
debunked by the Atlantic Council’s Digital Forensics Lab14 in September 2017:
“How Kremlin-backed and fringe media spread a false story claiming the U.S.-

14https://medium.com/dfrlab

https://medium.com/dfrlab
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led Coalition evacuated ISIS from the front lines.” The investigation focused on an
article by Russian News Agency (Sputnik) trying to trace the information back to
its original source [42].

Confirming the pattern, Sputnik’s information source is an anonymous “military
and diplomatic” source, while another website – the Syrian-based Deirezzor24.net
[25] – cites “A D24 correspondent.” Although the information did not reach
mainstream media, it was picked up by conspiracy media outlets such as the-
freethoughtproject.com, Al-Masdar News, The Fringe News, or The Duran.

One of the obvious patterns of disinformation in the Syrian conflict is that from
the main belligerents – the Syrian government, the Russian military, and the US-
led coalition – there is rarely any consensus on information among the three actors.
When information is published by the Syrian Government, for example, it is quickly
denied by the USA. When it is published by the USA and mainstream media, it is
labeled as propaganda by the Russian officials and so on. In the end, the control
of information on the Syrian conflict is just another facet of the way modern war –
an information war – is conducted, with the public having great difficulty assessing
the trustworthiness of information regarding this civil war which has been raging on
since 2011.

9.7.4 Clickbait-Type Fake News for Political Gains

The term “fake news” came into global attention shortly after the US presidential
elections in 2016 when the victory of Donald Trump was marred with accusations
of his supporters using disinformation and clickbait techniques in the online space
and more specifically on Facebook to target his opponent, Hillary Clinton, and the
Democratic Party. Some statements even went so far as to claim that fake news
might have gotten Donald Trump elected, as stated in an article by The Guardian
[33] as “the most obvious way in which Facebook enabled a Trump victory has been
its inability (or refusal) to address the problem of hoax or fake news.”

According to TechCrunch [61], the issue of spreading misinformation on the
social media platform was real and was admitted by Adam Mosseri, VP of product
management at Facebook, who conceded that “the company does need to do more
to tackle this problem.” Later, Facebook founder Mark Zuckerberg denied that this
phenomenon had an influence on getting Trump elected: “To think it influenced the
election in any way is a pretty crazy idea” (statement made during the Techonomy
conference in Half Moon Bay, Calif, cited by USA Today [66]). The culprits for
this “fake news surge”, as it was called by the AI-startup Zetta Cloud [62], were
anonymous supporters from all over the globe engaging in a sustained campaign to
publish and distribute fake news on social media, with the aim of lowering the US
public’s trust in the Democratic Party and candidate Hillary Clinton.

The claim that this fake news campaign was solely responsible for Trump’s
victory was later corrected by a study pointing out that wide reach does not equal
strong impact [24]. But the numerous sites that are still spreading fake news with

http://thefreethoughtproject.com
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strong “clickbait” recipes represent the bulk of “fake news” sites known to the
general public. Some examples of this type of hyper-partisan fake news show
obvious patterns of how this type of disinformation can have such a wide reach
in online communities.

The post “Damning Hillary Clinton Footage Leaks – The Truth is Out” [64]
published on May 14, 2017, by TheTruthMonitor.com15 indicates another right-
wing fake news story that is set out to “viralize” quickly and be instrumented as
political propaganda. The title writing style aimed at generating strong emotions
and a desire to click the headline (thus the term clickbait) containing misleading
information is something that is commonly used when creating fake news.

The article, having as author “Adam Lott” (with no contact details or social
media profile), trashes Hillary Clinton and her supporters in the context of Donald
Trump firing FBI Director Comey while explaining the previous firing of state
attorney Preet Bharara by using the precedent of Bill Clinton firing all of Bush’s
state attorneys back in 1993. Even though the actual content of the article and the
sources it references (a tweet from CNN supporting state attorney Preet Bhahara
and a tweet from political commentator Dinesh D’Souza [65] do not present any
“damning information” or any “footage leaks “regarding Hillary Clinton, this didn’t
stop the article from going viral, gaining more than 10,000 Facebook engagements.

Another example is the targeting of other Democrats, such as America’s soon-
to-be first female Muslim legislator, Ilhan Omar. In August 2016, the website
“World Net Daily” [71] published a story accusing Ilhan Omar of being married
to two men at the same time, including one who may be her brother. The story,
published during Minnesota’s August 9, 2016, Democratic primary, won by 33-
year-old Somali refugee Omar, originated from the blog of lawyer Scott Johnson16

and resulted in what the newspaper Minnesota Post [43] called a “five-day brush
fire” causing serious issues for the candidate and resulting in a clarification: Ilhan
Omar was married to only one man, who had changed name from Ahmed Hirsi to
Ahmed Aden, hence the confusion.

Although this story was clarified in 2016, it reappeared 1 year later, on July
20, 2017. Several right-wing blogs supporting Donald Trump, such as dailyinfo.co,
usanewspolitics.com, conservativefighters.com [19], TeaParty.org, and angrypatri-
otmovement.com, published a post with the exact same title: “JUST IN: Muslim
Congresswoman Caught In SICK Crime. Should She Go To Prison?”

The posts, which together gathered close to 40,000 Facebook interactions, claim
that Ilhan Omar married her own brother in a scheme to fool US immigration
officials and supported refugee fraud in her state. The content of these posts picks
up the year-old information from World Net Daily without the debunking and the
clarifications, and “spices it up” with the information that Omar might go to jail. It
employs the successful technique of taking old information that was debunked in
the meantime and using it for the same purpose, knowing that people rarely read or

15Site not online anymore.
16www.powerlineblog.com

http://thetruthmonitor.com
http://usanewspolitics.com
http://conservativefighters.com
http://teaparty.org
http://angrypatriotmovement.com
http://www.powerlineblog.com
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remember the corrections of fake stories. To accelerate the distribution speed, the
clickbait title makes sure to be highly aggressive, suggesting that the scandal just
happened and not mentioning the congresswoman’s name.

Equally, on the other side of the US political spectrum, there is no reluctance
to use clickbait titles to ensure a wide audience reach by mixing half-truths in
order to obtain political gains. The liberal LA-based blog yournewswire.com has
already gathered more than 106,000 Facebook interactions for an article published
in May 23, 2018: “20 Priests Connected To Vatican Pedophile Ring Killed In Plane
Crash” [72].

After a tragic plane crash in Cuba on May 19th, claiming the lives of 20 priests
[23], Daily Mail authors link this information with a child sex abuse scandal from
Chile involving the Catholic Church [22], stating that the priests perished in Cuba
were pedophiles. Besides a “clickbait”-style title, the article uses a technique of
merging disconnected information and ineptly “connects the dots” in order to create
a fake news story that gathered significant traction on Facebook. YourNewsWire,
a known fake news website, is published by Sean Adl-Tabatabai and Sinclair
Treadway and has made the headlines in mainstream media for being an “alt-left
agitator website”[35].

9.7.5 When Whole Countries Fall Victim to Fake News

Moving away from the English-language online space, fake news phenomena can
become a nationwide critical problem in areas where digital literacy is low among
the population. One relevant example is the Republic of Indonesia, with a diverse
population of 261 million and a fake news problem that affects every part of its
society.

From the smear campaign against Indonesian president Joko “Jokowi” Widodo
in 2015 to Jakarta’s Christian and ethnically Chinese governor Basuki Tjahaja
Purnama, popularly known as Ahok (who was targeted by hardline Muslims, who
successfully pressured the authorities to put him on trial for blasphemy in 2016),
fake news is used in an organized and almost weaponized manner by political groups
in Indonesia, resulting in mass protests, political crisis, and religious and ethnic hate.

In February 2018, the Indonesian government established a National Cyber and
Encryption Agency (BSSN) with the goal of fighting the fake news phenomenon
that has engulfed the country’s political scene. A plan to establish the BSSN was
put forth 4 years when president Joko Widodo took office, but the agency only
started work in January 2018 after Major General Djoko Setiadi was installed as
its leader [59]. In fact, current president Joko Widodo was the target of a smear
campaign during the presidential elections of 2014 when a social media campaign
was circulating rumors that the popular Jakarta governor was an ethnic Chinese
and Christian – a sensitive issue in a Muslim-majority country with a low digital
literacy level. Called “black campaigns” in Indonesia, these were aimed at hurting
Widodo’s electoral score in favor of more radical Muslim candidates. Pictures were

http://yournewswire.com


9 Fake or Fact? Theoretical and Practical Aspects of Fake News 201

circulated of a fake marriage certificate claiming that Widodo is of Chinese descent
and originally a Christian. The messages were spread over Blackberry message
groups, WhatsApp, Facebook, and Twitter.

Featuring among the top five biggest users of Facebook and Twitter globally,
Indonesia has faced regular and very effective fake news campaigns: from memes,
like the one targeting social-media activist UlinYusron, to edited videos, like the one
that got Jakarta’s governor put on trial for blasphemy, to online-organized bounty
hunts against more than 100 individuals who saw their personal information released
online.

The Indonesian authorities are expecting a similar surge of fake news for the
2019 elections. Recently, according to the Jakarta Globe (Jakarta [36]), the group
orchestrating most of these fake news campaigns, called the Muslim Cyber Army,
was exposed and its members arrested. The group was accused of running an online
army of Twitter bots, messaging groups, and fake accounts with the purpose of
spreading fake news and smear campaigns against certain political actors while also
fueling a state of paranoia and tension against the Christian and Chinese minorities.

9.8 Conclusion and Outlook

Fake news is an age-old phenomenon, from the disinformation campaigns in ancient
empires, to the recent social-media campaigns aimed to influence election results.
Along this timeline, there seems to be a balance between the skills and tools
required for people to protect themselves from disinformation and the methods and
distribution channels employed by the creators of fake news. When the distribution
channel for fake news was the word-of-mouth, people would rely on their common
sense and on the messenger to assess the trustworthiness of the information.
Nowadays, digital literacy and the possibility to verify information in real-time
across multiple sources (and some common sense) are the basic tools.

Even if the media agree on content creation models that enforce transparency
and result in high-quality trusted content, even if online distribution channels
automatically filter out or flag untrusted content using up-to-date algorithmic
approaches, the Internet remains a place where anyone can create and distribute
content easily. The importance of the human factor in the dissemination of fake
news and the responsibility in the sharing of information cannot be stressed enough.
Ultimately, the burden to judge the content rests with the audience, the content-
consumers.

Digital literacy education programs are a must in the age of the Internet. A
dedicated focus, both financial and academic, into the creation of software and tools
to help content creators, distributors, and consumers to easily identify and filter-out
untrustworthy content, is the technology backbone that will result in an applicable
and scalable method to detoxify online information. Ethical issues such as possible
censure and freedom of speech need to be taken into account from the start.
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When it comes to being aware of what information to trust, the burden on the
audience can be immense. Information quality and perceived information quality
play a fundamental role, in particular on social media platforms, where the sharing
of information is one of the key elements. The inclination to share rapidly and in an
unreflected manner is only occasionally balanced by the fear of loss of reputation.

Continuous education about the techniques and patterns typically employed
by producers of fake news, becoming immune to clickbait titles and resisting
the tendency to immediately interact with and share content that has not been
verified or that originates from untrustworthy sources, making a habit of cross-
checking information from other sources, and using news database services and
image verification tools – these and related measures and activities cause a heavy
load and require knowledge and skills in order to stay “fake news free.” In sectors
and societies where social media platforms and the Internet are still a new thing, this
task can become nearly impossible.

Looking further into the AI future, conversational bots that can be easily mistaken
for human users, deep fakes created with advanced image and video-processing
technologies, the emergence of content that is created automatically – “robot
journalism” – these new advancements will add even more complexity to the online
information creation and dissemination landscape.

The solution needs to be one that will work in the long-term and is most likely to
be a hybrid one: establishing digital literacy education as a must, from an early age,
across as many educational systems as possible, combined with a continuous effort
to create and deploy AI-based software that automate most of the tasks required to
identify fake news and support consumers in their struggle.

The two approaches have little chances to be successful by themselves indi-
vidually. Digital literacy educational programs are now mostly operated by non-
governmental organizations; it will still take some years before they are adopted,
adapted, and improved by governments and made part of the regular educational
curricula. And even when they are, they will still need to keep up with the ever-new
ways of creating and distributing “fake news.” On the other side, AI algorithms,
even in their most advanced form, will probably never be as good as humans,
when it comes to analyzing complex culture- and language-specific disinformation
campaigns. But AI’s goal is not to replace human assessment, but rather provide
a scalable method of addressing the most obvious forms of disinformation and to
be able to quickly extract insights for humans to review, shortening investigation
times. Time and scale are of essence and can be addressed by AI technologies. The
two approaches, taken together, have the best chances of curbing the fake news
surge in the online space, given that enough focus is given from society’s leading
actors: governments, academia, and technology entrepreneurs. These efforts need to
be accompanied and supported by further research into the detection of fake news,
its dissemination, the role of information quality, and perceived information quality
in such processes and how such insights could readily be incorporated into social
media platforms to support users in their struggle. At the same time, commercial
entities need to embrace such advances and provide tools and plug-ins allowing to
put these results into practice.
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Chapter 10
Information Quality and Social Networks

Pontus Svenson

Abstract Decision-making requires accurate situation awareness by the decision-
maker, be it a human or a computer. The goal of high-level fusion is to help achieve
this by building situation representations. These situation representations are often
in the form of graphs or networks, e.g. they consist of nodes, edges and attributes
attached to the nodes or edges. In addition to these situation representation networks,
there can also be computational networks in fusion systems. These networks
represent the computations that are being performed by the fusion system. Yet
another relation between networks and fusion is that today much information comes
from sources that are inherently organised as a network. The first example of this
that comes to mind is the use of information from social media in fusion processes.
Social media are also networks, where the links are formed by follow/reading/friend
relations. There can also be implicit links between information sources that come
from other It is vital for the fusion process and the ensuing decision-making to
ensure that we have accurate estimates of the quality of various kinds of information.
The quality of an information element has several components, for instance, the
degree to which we trust the source and the accuracy of the information. Note
that the source could be a high-level processing system itself: a fusion node that
processed information from, e.g. sensors, and outputs a result. In this case, the
quality determination must take account also of the way that the fusion node
processed the data. In this chapter, we describe how social network analysis can
help with these problems. First, a brief introduction to social network analysis is
given. We then discuss the problem of quality assessment and how social network
analysis measures could be used to provide quantitative estimates of the reliability
of a source, based on its earlier behaviour as well as that of other sources.
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10.1 Introduction

Decision-making requires accurate situation awareness by the decision-maker, be it
a human or a computer. The goal of high-level fusion [1] is to help achieve this by
building situation representations. These situation representations are often in the
form of graphs or networks, e.g. they consist of nodes, edges and attributes attached
to the nodes or edges.

In addition to these situation representation networks, there can also be computa-
tional networks in fusion systems. These networks represent the computations that
are being performed by the fusion system. Yet another relation between networks
and fusion is that today much information comes from sources that are inherently
organised as a network. The first example of this that comes to mind is the use of
information from social media in fusion processes. Social media are also networks,
where the links are formed by follow/reading/friend relations. There can also be
implicit links between information sources that come from other.

It is vital for the fusion process and the ensuing decision-making to ensure
that we have accurate estimates of the quality of various kinds of information.
The quality of an information element has several components, for instance, the
degree to which we trust the source and the accuracy of the information. Note
that the source could be a high-level processing system itself: a fusion node that
processed information from, e.g. sensors, and outputs a result. In this case, the
quality determination must take account also of the way that the fusion node
processed the data. In this chapter, we describe how social network analysis can
help with these problems. First, a brief introduction to social network analysis is
given. We then discuss the problem of quality assessment and how social network
analysis measures could be used to provide quantitative estimates of the reliability
of a source.

10.2 Network Models

10.2.1 Simple Networks

In order to properly describe a general network or graph, two things are needed.
First, we need a list of the nodes of the graph. The nodes can be named and have
various properties associated to them, but for describing the graph, it is enough that
they can be enumerated from 0 to N − 1. Second, we must know which nodes are
connected to which. This is most easily thought of as a list of edges (i, j) that are
connected. Each edge can have various properties associated to it (e.g. a weightwij ).
Most often, the graph is described using the neighbour matrix or contact matrixAij ,
whose entries are are non-zero if and only if nodes i and j are linked. It is sometimes
convenient to consider the graph as a function φ(i) that gives a list of the neighbours
of node i.
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Fig. 10.1 A square lattice

Edges can be either directed (meaning, e.g. that an edge (i, j) can only transmit
information from i to j ) or undirected. A graph is connected if there is a chain
of edges connecting any pair of nodes in it. A natural generalisation of graphs is
to replace the edges by triples i, j, k or even n-tuples. Such structures are called
hypergraphs. An important application of hypergraphs is to model sets of individuals
that only interact in a group, never individually, for example, a group of rioters that
meet at a certain place.

The simplest kinds of networks are regular, like the one shown in Fig. 10.1.
All regular lattices have some features in common. By looking at the graphs in

Fig. 10.1, it is, for instance, apparent that these graphs are clustered, in the sense
that if we remove one node, its neighbours will still have a short path between them.
Another interesting characteristic of regular lattices is that the average distance
between nodes is quite large. For a lattice with N sites in D dimensions,1 it grows
as N1/D .

A natural extension of the regular lattice is to consider other graphs where all
nodes are equivalent (i.e. have the same neighbourhood). The simplest example of
such a graph is the complete graph with N nodes, KN . This consists of N nodes

where each node is connected to each of the other (so the graph has

(
N

2

)

edges).

1The simplest example to think of is ZD
l , where nodes are placed at integer coordinates and edges

link nodes whose coordinates differ by ±1 in exactly one dimension. Choose l = N1/D to get N
nodes.
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10.2.2 Classical Random Graphs

Traditionally, two different models of random graph processes have been used [2].
In the first model, G (N, p), each possible edge (i, j) is considered and included
in the graph with a probability p. The other model, G (N,M), instead selects

without replacement M of the

(
N

2

)

possible edges. Note that these models are

not completely equivalent. For the latter model, the graph is guaranteed to have
exactly M edges, while the number of edges is a stochastic variable for the former.
In the thermodynamic limit of N,M →∞, choosing

M = p
(
N

2

)

gives graphs that should share all relevant properties. An important quantity
characterising different random graphs is their connectivity or average degree γ ,
which measures the average number of neighbours that the nodes have. For random
graphs with N nodes and M edges, this is given by γ = 2M

N
= p(N − 1) for the

two ensembles.
Graph theory is a fascinating mathematical subject with many deep results; see,

for instance, [2, 3]. One of the most interesting results is that there is a phase
transition as the connectivity γ of a random graph grows. For small γ , the random
graph consists of many isolated trees2 of nodes. At γ = 1 this suddenly changes,
and a giant component emerges. The size of the giant component scales linearly with
the number of nodes, N . This percolating transition is somewhat surprising—note
that the graph cannot be connected until it has a connectivity of at least 2(N−1)/N .
Another important result is that the average path length between two nodes scales
as logN for large N .

The random graph model, however, is not sufficient to describe many naturally
occurring networks.

10.2.3 Small World Graphs

There are many different kinds of networks in nature. Perhaps the first that comes to
mind is the social network of a society. Here each node represents a person, while
there is an edge between two persons if they know each other. What does this graph
look like? It is very unlikely that it would be a regular lattice—our acquaintances are
not ordered in such a simple way. The social network however shares an important
feature with regular lattices: they are clustered. Clustering means that there is a

2A tree is a connected graph without loops.
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high probability that two neighbours of a given node also are direct neighbours
themselves. An alternative way to think about it is to consider the average path
length between two neighbours of a node i. Since both nodes are neighbours of i,
this is obviously smaller than 2. If node i is now removed from the graph, we have to
find a new shortest path between the nodes. If this new path length is still small, the
graph is clustered. All regular lattices are obviously clustered, and social networks
are clustered too: if person A knows persons B and C, there is a high probability
that B and C will also know each other.

Real social networks are clustered in several ways: everybody’s acquaintances
can be divided into several distinct clusters, i.e. the people one knows from work all
know each other, while the overlap between this group and one’s neighbours often
is zero. This can be modelled by allowing the network to have edges of different
kinds or by superimposing several different networks on top of each other.

Mathematically, we can measure the degree of clustering in a graph by the
clustering coefficient, C, defined as the average over all nodes of the local clustering
coefficient Ci . For a given node i, consider its immediate neighbourhood, i.e. the
set of nodes to which it is linked. The local clustering coefficient is now given by
the fraction of all possible edges between nodes in the neighbourhood that actually
appear in the graph. Figure 10.2 shows an example that should make the definition
clear.

Another important feature of social networks is the so-called small world effect:
when two strangers meet, it sometimes happens that the two people turn out to have
mutual acquaintances.

Fig. 10.2 Examples of
clustering coefficients. We
wish to calculate the
clustering coefficient of the
grey node on the left, which
has three neighbours
(indicated by grey lines). The
dark lines show the edges in
the neighbourhood of the
grey node that actually appear
in the graph, while the dotted
lines show all three possible
such edges
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The idea behind small world networks was first introduced by Milgram [4] in
1967. Milgram’s experiment consisted of studying the path of letters addressed to a
stockbroker in Pittsburgh. The letters were given to people in rural Nebraska with
the rule that the current holder of the letter must hand it over to somebody with
whom they were on a first-name basis. The average number of links in the chain
of people between Nebraska and Pittsburgh was six, hence the term “six degrees
of separation”. The number is of course not exact (a severe shortcoming of the
experiment was that only one third of the letters were actually delivered!), but the
phenomenon that people are linked via a small number of nodes has been verified
by later, more careful experiments (e.g. [5]).

The small world effect has later been popularised by occurring in media, such as
the movie “Six Degrees of Separation”. There are also various amusing games using
the same concept, such as the web site http://www.cs.virginia.edu/oracle/ where a
user can find the distance between an arbitrary actor and Kevin Bacon. Actors here
represent the nodes of the graph, and two actors are linked if they have participated
in the same movie. It should be noted that the actors represented in the database are
American and European ones. The network of actors in Indian movies, for instance,
probably has few connections to this.

Another example is the Erdös numbers. Named after the famous mathematician
Paul Erdös [6], these are defined recursively: Erdös has Erdös number 0; a person
has Erdös number n + 1 if they have co-authored a paper with somebody who has
Erdös number n (there are at least 507 persons with Erdös number 1; see the web
site http://www.oakland.edu/~grossman/erdoshp.html).

Regular lattices do get shorter and shorter distances between nodes as the
dimensionality increases (the diameter scales as N1/d for a d-dimensional lattice
with N nodes, so it decreases if we increase d and keep N constant), but this is still
too large to explain the small world effect. Instead, new graph models are needed.

A small world graph is intermediate between a regular lattice and a random
graph—it has both clustering (like a regular lattice) and short maximum distances
(like the random graph). It is constructed by considering in turn all the bonds (i, j)
of a start graph (most often a regular lattice) and with some probability p replacing
them with (i, k), where k is a new, randomly chosen, node. So by changing the
rewiring probability p, we can interpolate between the regular lattice and a random
graph. An example of a small world obtained by rewiring the square lattice is shown
in Fig. 10.3. Note that the small world for p = 1 differs slightly from a random
graph, since all nodes are guaranteed to have a local connectivity of at least γ /2
where γ is the connectivity of the regular lattice. The distribution of connectivities
is more broad for the small world with p = 1 than for the corresponding random
graph.

The advance of the Internet and other communications networks has highlighted
the need to be able to not only describe but also design networks that communicate
efficiently. Efficiently there are two distinct meanings—the obvious one that a
message from A to B should be transmitted along the shortest possible path and also
an equally important one that the network should be fail-safe. If a node suddenly

http://www.cs.virginia.edu/oracle/
http://www.oakland.edu/~{}grossman/erdoshp.html
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Fig. 10.3 This figure shows the construction of a small world starting from a 2D square lattice
(left). In the right figure, two edges have been rewired and are shown as dashed lines

disappears, it should be possible to quickly find alternate paths between the rest of
the nodes that don’t involve the dead node. A very clear definition of small world
behaviour in terms of efficiency has been given by Latora and Marchiori [7]. They
measure the local efficiency as the time needed to communicate in the network,
assuming unit velocity of signal propagation. The efficiency between two nodes is
thus

εij = 1

dij
(10.1)

where dij is the shortest distance between nodes i and j and dij = ∞ if there is no
path between the nodes. The global efficiency is the average of this over all pairs
of nodes in the graph. A high global efficiency corresponds to a small diameter of
the graph. The local efficiency for a node i is calculated as an average of εik over
all neighbours k of i, and the total local efficiency of the graph is then the average
of this over all nodes. The local efficiency is a measure of the fault tolerance of the
network.

In addition to efficiency and clustering, there are a large number of measures
that can be used to characterise a graph’s properties. Many of these measures come
from sociology and have been used to determine, e.g. the influence and power of
individuals in different social networks. Others come from computer science or have
been suggested by physicists.

A small world graph still has the same Poissonian distribution of node connec-
tivities as random graphs. A different class of networks are the so-called scale-free
graphs, which instead have a power law distribution.
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10.3 Scale-Free and Growing Graphs

A network is called scale free if there is no characteristic length scale in it. In
contrast to lattices, whose characteristic length scale is the lattice spacing, a scale-
free graph divides its edges unequally among its nodes: the degree distribution
follows a power law. This means that there are a few nodes (called hubs) that have
very many edges, whereas most of the nodes have very few (Fig. 10.4). An important
characteristic of scale-free networks is that while they are robust against accidental
failures, they are very vulnerable to deliberate attacks against hubs.

A deterministic model for generating scale-free graphs has been introduced by
Barabási and Ravasz [8]; this model generates the graph by iteratively replacing
nodes with small graphs, in a manner similar to the construction of self-similar
fractals.

There are many models of growing networks. In these models, one starts with
a single node at time t = 0. In each new time step, a new node is added to the
graph, and a new edge is created that connects this node to one of the older ones
with a probability that depends on the connectivity of that node. If this probability
is simply proportional to the node’s connectivity (k), the model is reduced to the
scale-free graph model of Barabasi and Albert [9]; see also [10]. It has been shown
that the case where the probability is proportional to the connectivity is the only case
which also leads to a power law for the distribution of connectivities in the entire
graph [11]. If the probability is proportional to kγ for any γ �= 1, we get stretched
exponential (if γ < 1) distributions or graphs where the majority of the edges share
a common central node (for γ > 1).

The best example of a growing network is the Internet—each node that is added
could be interpreted either as a new computer that is connected to it or a new web

a b

Fig. 10.4 This figure shows the difference between a random network and a scale-free network.
Note the presence of hubs (nodes with many neighbours) in the right network. (a) Random network.
(b) Scale-free network
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site that is created. The edges created between this node and the older ones are then
the hyperlinks that the addition of a new site entails. It turns out, however, that a
more complicated model is needed to model the Internet; see below.

The so-called acquaintance networks, such as the Erdös graph, have been studied,
among others, by Newman [12]. Such network has the characteristic that a small
number of nodes have many edges. These nodes cannot be ignored when studying
communication on such networks.

The crucial point of Newman’s new model is that the probability distribution
of the number of neighbours, which the neighbours of a specified node has, is not
independent of that node. In social networks, a node with very few neighbours is
likely to be linked to other nodes that also have few neighbours, while a node with
many neighbours has similar nodes among its neighbours. Clustering is important
for this calculation. If we know both the degree distribution3 and the clustering
coefficient of a network, it is possible to calculate the number of neighbours at
distance two from a given node. This is important to know when conducting research
on social networks.

For example, we might be interested in how a network of terrorists grows in a
country.

A very interesting approach to the problem of analysing growing networks has
been introduced by Kleinberg and co-authors [13]. Perhaps the most prominent
example of a growing network today is the Internet. The paper examines data
representing routers on the Internet for a 2-year period and finds that the link density
of the network increases with time, i.e. that the number of edges e(t) is related to
the number of nodes n(t) by a power law:

e(t) ∝ n(t)a, (10.2)

with a = 1.18.
Having such a relation between e(t) and n(t) means that the connectivity γ = e

n

is time-dependent, in sharp contrast to most models of graphs and networks. The
authors find a similar relation (but with different as) also for three different kinds
of citation networks. In addition to the super linear scaling of edges with nodes,
they also find that the average distance (also, somewhat non-standard, referred to as
the effective diameter) between nodes decreases as a function of time. Recall that
the average distance for a random graph grows as the logarithm of the number of
nodes. While the two observations at first glance seem to be related, the authors
note that it is possible to construct graphs that satisfy one of them but not the other.
For large graphs, it is not practical to compute the diameter exactly. Instead, various
approximate algorithms can be used. Since the shrinking diameter property is very
surprising, the authors check that their result is robust by using several different
such approximations to calculate the diameter. They also check for errors due to

3I.e. the probability that a node has a certain number of neighbours



216 P. Svenson

the presence of a giant component; the shrinking diameter is present also if the
calculation is restricted to just the giant component.

The paper presents several simple models that exhibit the densification property
and also gives one model, the forest fire model, that possesses both it and also
displays shrinking effective diameters.

The forest fire starts from a graph with just one node and then adds one additional
node at each time step. At time t , let Gt be the current graph and v the added node.
A node w ∈ Gt is now selected randomly, and an edge v → w is formed. Most
graph models would now continue by selecting another w and possibly adding an
edge to it. In contrast, the forest fire model selects a random number of the nodes
in Gt that were linked to w and adds edges from v to these nodes. This process
is then repeated recursively for each of those nodes. (The process terminates if it
reaches a node that has already been encountered. It is also possible to distinguish
between out- and in-links when selecting the neighbours of w; see the paper [13]
for details.) Intuitively, the graph is generated in a similar way as friendships are
formed: a newcomer finds one friend and with a certain probability becomes friends
also with the friend’s friends and so on. The name forest fire comes from a certain
similarity to lattice cellular automata models used for studying forest fires. A natural
extension of the model is to select several starting points w at each time step.

10.4 Using Social Network Analysis to Quantify Quality

Social network analysis [14–16] was introduced by sociologists as a means of
analysing communications and relations in groups. It is a quite mature area of
research, which has produced a large set of different measures to be used when
analysing a network. Here we can only discuss some of the various measures that
can be used to quantify the reliability of a network node. A more extensive list can
be found in [17].

The simplest measures that can be applied to a network simply measure the
number of connections that each node has. Another approach is to determine the
minimum distance to other nodes in the network, i.e. determining how central the
node is in the network. For some networks (such as the scale-free networks), this
can give a reasonably good measure of the reliability of a node. However, for many
networks, it gives quite misleading results.

A class of more advanced measures instead look at the flow in the network.
In some networks, all links are associated with a maximum capacity that can be
transported along it. This is the case, for example, for communications networks—
the bandwidth imposes limits on the amount of data that can be sent along a link.
For other networks, the flow algorithms assume that the capacity of each link is
equal to 1.
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The simplest flow-oriented measure simply determines the shortest paths
between all nodes in the network. A node’s reliability is then given by the number
of such shortest paths that pass it. This measure is called the betweenness centrality
measure.

Betweenness centrality, however, can also give misleading results. By focusing
on only the shortest path, betweenness misses many cases where there are several
short paths between nodes. An improved measure is the max flow centrality
measure, which determines all the possibly paths between all the nodes in the
network. Each node is then ranked according to the total amount of flow that passes
through it.

Yet another way of characterising a social network is to look at the community
structure in it. A community is loosely defined as a part of the network whose nodes
have more connections within themselves than to nodes that are outside it. It is
related to the concept of a clique, a maximally connected subgraph, but differs since
it does not require full connectivity. (It must be mentioned that the exact definition
of a community is of course application-dependent.) Several fast algorithms for
determining the community structure of a network has been published [18–22]. Such
algorithms could be used when analysing, for example, networks of data sources
in order to determine which of them are independent from each other—and hence
which should and should not be trusted.

Reliability and trustworthiness of a source can also be determined by computing
the social position of it in the network; see [23] and [24] for a discussion.

10.5 Discussion

Determining the reliability of a source can be helped by determining the network
structure of which the source is a part. This network can come either from the
computation network in which it is included (see [25] for an example of how
such networks can be modelled) or, if the source is, for instance, a social media
component, from the communication network. We have given an introduction to
some different network models and briefly described some social network analysis
measure that could be used to determine the reliability of a source.
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Chapter 11
Quality, Context, and Information Fusion

Galina L. Rogova and Lauro Snidaro

Abstract Context has received significant attention in recent years within the
information fusion community as it can bring several advantages to fusion processes
by allowing for refining estimates, explaining observations, constraining computa-
tions, and thereby improving the quality of inferences. At the same time, context
utilization involves concerns about the quality of the contextual information and
its relationship with the quality of information obtained from observations and
estimations that may be of low fidelity, contradictory, or redundant. Knowledge of
the quality of this information and its effect on the quality of context characterization
can improve contextual knowledge. At the same time, knowledge about a current
context can improve the quality of observations and fusion results. This chapter
discusses the issues associated with context exploitation in information fusion,
understanding and evaluating information quality in context and formal context
representation, as well as the interrelationships among context, context quality, and
quality of information. The chapter also presents examples of utilization of context
and information quality in fusion applications.
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11.1 Introduction

The beginning of the 1990s marks the start of a significant interest in context
by researchers in computer science, especially in view of widespread adoption
of context-aware smart mobile devices. An area that has lately shown a rapidly
escalating interest in context is information fusion (IF) (see, e.g., [1–4]). IF is a
formal framework to exploit heterogeneous data and information originated from
different sources as well as a priori models to obtain information of better quality
and provide a better understanding of the phenomenon under consideration. Context
can bring several advantages in achieving these IF goals, such as refining estimates,
explaining observations, and constraining processing. In addition, context allows
for improving the associability between problem-space knowledge and models and
observational data, increasing fusion performance. The a priori models can better fit
data exploiting the semantics provided by context [3].

Therefore, as discussed in [5], an integrated approach to context exploitation
should extend problem modeling with representations of domain knowledge, which
describe situations and possible entities’ interactions and relations in the observed
scenario. The role of context can be very relevant to the following considerations:

• Context can be used both to transform source data into information and knowl-
edge [6, 7] and to acquire knowledge [8, 9].

• Context may provide information about the conditions of data and information1

acquisition, and it may constrain and influence the reasoning about objects and
situations of interest.

• Context is an important source of semantics, providing means to bind data and
models, therefore increasing the capability of inferences performed at higher
levels.

• Context can be used to adjust the parameters of the algorithms (e.g., tracking,
event detection, etc.), thus making this information vital to foster the adaptivity
of the system.

• Different types of context from coarse to refined, can be injected at different
stages of the fusion process.

• Context is the only source that can resolve ambiguities in natural language
(phonetic, lexical, syntactic, semantic, pragmatic).

In addition, the development of context-based fusion systems is an opportunity
to improve the quality of the fused output and provide domain-adapted solutions. At
the same time, information defining a context can be obtained from available non-
compatible databases, observations, the result of sensor fusion, intelligence reports,
mining of available information sources (e.g., traditional and social media), or as

1While we recognize the difference between data and information, we will generally use these
terms interchangeably throughout this chapter.
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a result of various levels of information fusion processes. Of course, the quality
of any such information, as well as the inference processes for obtaining it, may
be insufficient for a particular use: it might be uncertain, unreliable, irrelevant, or
conflicting.

Knowledge of the quality of observations and other sources of information used
for inferencing and its effect on the overall quality of context characterization can
improve contextual knowledge. There are two interrelated problems concerning
both information and context quality: imperfect information used in context esti-
mation and discovery negatively impacts context quality while imperfect context
characterization adversely affects the characterization of quality of information
used in the fusion processes, as well as the fusion results. This interrelationship
represents one of the challenges of modeling and evaluating context quality and of
using context in defining the quality of information used in fusion and the quality of
fusion process results. Solving this and other problems related to effective context
exploitation in fusion requires consideration of:

• Models of information quality and context
• Interrelationships among quality of context and quality of information
• Context dynamics and the role of information quality in context discovery
• Method of controlling the quality of context

The reminder of this chapter is devoted to discussions of these issues.

11.2 Context in Information Fusion

Only in recent years, it has been recognized in the fusion community that context
represents an important source of information for the fusion process [3] and its
full potential is thus far from being tapped. In order to use context effectively, we
must understand both what context is and how it can be used [5]. Context has many
facets that sometimes lead to defining it based on certain narrow characteristics
of the specific problem being addressed. For example, in [9], context is defined
as objects, location, and identities of nearby people and objects. In other works
[10], it is considered as a computable description of the terrain elements, the
external resources, and the possible inferences that are essential to support the fusion
process; while in [11], context is represented by the operational knowledge.

A definition that does allow for better understanding of context – and therefore
one that is more appropriate for formalizing and utilizing context in building IF
processes – was introduced in [12] and further considered in [4, 13]. It assumes two
paradigms: “context-of” (CO) and “context-for” (CF):

• CO: We can have certain expectations based on situations; e.g., “in the context
of volcano eruptions, we would expect volcanic ash plume causing air traffic
disruption”;
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• CF: Alternatively, we can assess items of interest – whether individual entities
or situations – in context: “the weather provides a context for understanding the
volcanic eruption plume direction and height”.

Therefore, context characterizes a relevant situation, i.e. a situation that can
be used to provide information either (a) to condition expectations (CO) or (b)
to improve the understanding of a given inference or management problem (CF).
A relevant situation can be characterized by “context variables” that are used
for evaluation of “problem variables,” a set of variables of concern in the given
problem. This definition immediately points out to the relationship between context
and information quality (IQ) since it requires the understanding and methods of
evaluation of relevance, one of the important IQ characteristics (see, e.g., [14–
16]). A context variable can be called relevant if the values of problem variables,
decision, or action under consideration change with the value of the context variable.
If the problem variables are objects, object attributes, or relations, relevance can be
defined in terms of mutual information of the problem and the candidate context
characteristic. If the problem variables are situational items, we can call a contextual
characteristic relevant if a change of its value affects the uncertainty distribution
of hypotheses about these situational items and, therefore, decisions and actions.
Relevance of a context variable can be also defined by decision makers based on
their information needs.

Consideration of CO and CF provides for complex hierarchical relationships
among characteristics of problem variables and context variables. It also offers
a clear understanding of relationships between context and situations. Reasoning
about entities and relationships while considering them as problem variables
within a certain context corresponds to reasoning about situations. Such reasoning
produces an answer to the question, “what is going on in the part of the environment
corresponding to the reference item(s) within a specific context.” Therefore, we
can define context as a meta-situation (situation of a higher level of granularity),
comprising a set of relationships involving context variables: C = (PVi, CVi, Ri)
where PVi and CVi are problem and context variables respectively and Ri are
relationships between various problem variables, various context variables, and
problem and context variables. Modeling context for decision making is generally
reduced to the following problem [12]: “Given an entity of interest (a physical
object, a situational item, and an event) what context or a sequence of contexts
can be formed, such that a task about this entity can be accomplished.” Since the
values of problem and context variables can be of variable quality, it is necessary
to incorporate their quality into context modeling. Context variables can serve as
problem variables when they represent reference items for a different context. It is
clear that the quality of estimation of context variables directly affects the quality of
estimation of problem variables and vice versa. Figure 11.1 shows some important
relationships between context and fusion processes.

The context engine here interacts with and supports fusion at all levels by [17]:

• Representing an initial overall context under considerations
• Establishing relevance, thereby constraining ontology of the domain, observa-

tions, rules, and statistics
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• Providing the fusion processes with constraints on relationships among objects,
situations, hypotheses, arguments, beliefs, and preferences

• Supporting situation and threat discovery
• Constraining the feasible meanings of messages, thereby facilitating effective

communications among actors
• Improving the quality of transient incoming information and thereby fusion

results

11.3 Quality of Information and Context

11.3.1 Objective and Subjective Information Quality

Quality of information represents “information about information.” The need for
considering quality of incoming data and information as well as the results of
the fusion processes at all fusion levels stems from the fact that the information
models and fusion techniques have their limitations. These limitations come from
imperfect domain knowledge, the difficulty of finding adequate information models
and their parameters, the lack or insufficient amount of additional information
that may be required for quality assessment, the subjectivity of quality evaluation
performed by experts and end users, as well as insufficient quality of context and
even consideration of a wrong context.

There are multiple definitions of IQ such as “Quality is the totality of charac-
teristics of an entity that bear on its ability to satisfy stated and implied needs”
[18], “fitness for use” [19], etc. It can be seen from these definitions that quality is
measured in terms of potential and actual benefits to the users that can be humans
or automatic processes. The assessment of the “fitness for use” is based on the
characteristics of information corresponding to inherent properties of information
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(meta-data) and their values. The inherent information characteristics constitute
objective quality. Meta-data is represented and measured by its attributes and their
combination since without clearly defined attributes and their relationships, we are
not just unable to assess IQ; we may be unaware of the problem [19].

IQ characterizing “fitness of use” will be defined here as subjective quality.
Subjective quality is the level of satisfaction of users and process designers in
relation to their specific goals, objective, and functions in a specific context. Meta-
data considered independently from information users and context gives value to
subjective quality. The introduction of two different types of quality is similar to one
introduced for sensor data in [20] where subjective IQ is referred to as information
quality and objective one as volume of information. At the same time, the term sub-
jective quality is more appropriate for dealing with mix initiative fusion systems that
assume collaboration and information exchange between automatic processes and
humans. Meta-data provide data consumers with a basis for deciding whether and to
which degree the data under consideration fits their needs and can be utilized. Values
of meta-data can result from models and information processing, learning, source
dynamics, measurements. Subjective quality is provided by context and goals,
objectives, and function as well as personal traits of decision makers (Fig. 11.2).

Fig. 11.2 Meta-data and subjective quality
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11.3.2 Quality Characteristics

There are multiple quality characteristics considered in the literature (see, e.g.,
[14, 20, 21–25]). An ontology of IQ characteristics is presented in [14, 24, 25]
where three major interrelated categories of quality are considered and further
decomposed:

• Quality of information source
• Quality of information content
• Quality of information presentation

There are two types of information sources: objective and subjective. While
objective sources are represented by physical sensors and models, subjective sources
are sources that produce human-generated information. Thus subjective sources
include newspapers, TV, the Internet, members of social networks, and opportunistic
sources. The quality of objective sources includes such characteristics as reliability,
relevance, and credibility. The quality of subjective sources comprises objectivity,
intent, level of expertise reputation, reliability and confidence. Nowadays in view of
widespread adoption of smart mobile devices when every person may be a sensor,
designing methods of evaluation of the quality of subjective, human-originated
information is becoming especially important. Context considerations for their
evaluation are one of the main sources of the estimation of their values.

Quality of information presentation is related to the problem of when, how, and
which information to represent. It includes understandability, completeness, inter-
pretability, timeliness, relevance, believability, and trust. The majority of context-
dependent quality characteristics are subjective, and their values are defined by
the objectives, functions, mental models and beliefs, cognitive biases, and variable
expertise of the human-in-the loop. Context can significantly improve the quality
of information presentation, such as understandability and interpretability, since
it provides decision makers with expectations of the meaning of the information
presented.

Quality of information content is decomposed in timeliness, relevance, integrity,
and importance. Integrity includes uncertainty such as credibility, probability,
reliability; and imprecision such as accuracy, consistency, conflict, completeness,
fuzziness, and vagueness.

The overall IQ may relate to a single quality attribute or a combination of several
or all the attributes. The decision of which attributes to consider or combine depends
on context and the problem at hand. For example, in an object recognition problem,
an overall objective quality of the recognition result can be a combination of beliefs
in a hypothesis and the reliability of the source. The value of subjective quality
of this result corresponds to the user satisfaction with the objective quality values
and can be evaluated, for example, by comparison of the comparing subjective
quality with a context-specific threshold. Combining multiple quality attributes can
be performed by employing various methods. For example, attributes selected for
combination can be considered as an input into a neural network with a binary output
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“1” for good and “0” for bad quality or with a vector of linguistic values such as very
good, good, bad, very bad. This neural network is trained by one or multiple experts
who consider specific objective and functions in a context under consideration. The
overall quality measure can be also a weighted sum of the quality attributes under
consideration, in which weights represent the importance of attributes, a subjective
quality measure. The same value of the most characteristics mentioned above can
represent both meta-data when it is considered by itself and subjective quality
when considered in relation to uses objective in a specific context. For example,
timeliness can be either a number between the actual and expected arrival time
of the information or measure of the usefulness of this information for the user’s
decision. Another example is uncertainty of a hypothesis, which represents meta-
data when its value is obtained as the result of modeling, but it becomes subjective
quality when an agent considered this value sufficient for making a decision based
on it.

At the same time, certain quality characteristics cannot be considered outside
context and always represent subjective quality. Main attributes that represent sub-
jective quality only include accessibility, trust, importance, understandability, and
relevance. Some of these attributes are particularly significant for IF applications
and will be discussed in the following.

11.3.2.1 Accessibility

Accessibility, which can be measured by the cost of obtaining information, is a
binary characteristic depending on context. It also depends on another subjective
quality characteristic – importance. Depending on how important to the objectives
and functions of the decision makers in the context under consideration, they are
willing or not to accept the cost of obtaining a piece of information, which gives the
value of the accessibility 0 or 1.

11.3.2.2 Trust

Another important subjective/contextual quality attribute is trust. There are multiple
definitions of trust, and there is no consensus among theorists on how to define trust.
At the same time, most approaches rely on some version of the concept proposed in
[26], in which trust is defined as “a psychological state comprising the intention to
accept vulnerability based upon positive expectations of the intentions or behavior
of another.” As it is stated in [27], “trust must be viewed as a layered notion in
its basic meaning of subjective trust,” and trust is “a belief, attitude, or expectation
concerning the likelihood that the actions or outcomes of another individual, group
or organization will be acceptable or will serve the actor’s interests” [28]. Having
this in mind, we define trust as a subjective level of belief of an agent (either
human or computational) that information he is using can be admitted in the
system. Utilization of the notion of trust and its management “aims at supporting



11 Quality, Context, and Information Fusion 227

decision making in the presence of unknown, uncontrollable and possibly harmful
entities” [29]. Trust in information can be defined by a user as a combination of
belief in the context in which the information is produced, reliability, believability,
and reputation of the source (physical, human sensors, or processing results), and
information presentation, which then alone or in combination of other meta-data
characteristics, will serve for establishing the level of trust [30].

11.3.2.3 Reliability

The notion of trust is directly connected to the notion of reliability since unreliable
information cannot be trusted. Similar to trust, reliability is a subjective quality.
Reliability of hard data is defined by applicability of a sensor producing the data
in a specific context obtained from domain knowledge; statistical information
corresponding to sensor performance and applicability of the sensor model in
the context under consideration. Defining reliability of soft information is more
complicated. For example, sources of soft information can be unreliable if they
do not have incentives to tell the truth or enough knowledge about the context, in
which observations are made. Another problem is that soft information is rarely
characterized by direct reliability since in many cases it comes from a network
of agents with variable and often unknown reliability, for example, from social
networks. In order to assume that sources of soft information are reliable, it is
important to take into account their characteristics (education, experience, prior and
tacit knowledge, history of judgments) and understanding of context.

11.3.2.4 Relevance

One of the central subjective quality attributes is relevance, which can characterize
quality of information content, information source, and information presentation,
and strongly depends on a specific context as well as goals, functions, and
expectations of decision makers. As it was mentioned above, in context-aware IF,
relevance also plays an important role in selecting context variables for estimating
problem variables. According to the definition of the Meriam-Webster dictionary,
information is relevant if it has “significant and demonstrable bearing on the matter
at hand.” Therefore, relevance is not a property but “is understood as a relation;
relevance is a tuple – a notion consisting of a number of parts that have a relation
based on some property or criterion” [31]. Formally, a tuple representing relevance
is ({Pi}, R, {Qj}, S,C), where {Pi} and {Qj} are sets of both tangible and intangible
objects, R is a criterion defining relevance of these sets (e.g., utility), and S is
a measure of the relevance strength. If S = 0, {Pi} and {Qj} are not related, if
S = 1 they are completely related. In the uncertain environment, relevance is not
binary and S ∈ [0, 1]. Following Walton [32] we can consider contextual variables
relevant if they “having any tendency to make the existence of any fact that is of
consequence to the determination of the action more probable or less probable than
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it would be without” these variables. Another criterion for considering a particular
context variable is the increase in information or achieving a higher action utility
as the result of using that variable for estimation and/or inferencing. Action utility
includes consideration of benefits of a particular action and its cost that may involve
costs of data collection, communication, and processing, as well as the cost of lost
opportunity.

There are several context-dependent questions to be answered before a piece of
information can enter a system:

• Is it relevant to the task or purpose of the processes? To which extent?
• Is the level of relevance enough to justify the use of this information?
• How reliable or trustworthy is the source of the information?
• Is the information timely enough?

There is a need to distinguish informational irrelevance from causal one [33].
Informational irrelevance means that “X is independent of Y given context C.”
Causal irrelevance means that “X is casually irrelevant to Y in context C.”

The problem of selecting relevant context variables is complicated by the fact
that relevance is often time-dependent: information can be relevant at a certain
time but becomes irrelevant later and vice versa. For example, relevance of the
information content depends on its timeliness, e.g., information arriving too late is
irrelevant. Hence, relevance has to be evaluated along with other characteristics of
IQ. Since there may be multiple analysts/automatic process sub functions, relevance
of information needs to be evaluated at each step of agent interaction and according
to their function requirements and context. For example, since threat is characterized
as an integrated whole of threat, opportunity, and capability, relevance of incoming
information has to be evaluated separately for each threat component.

11.3.3 Quality of Context

The quality of information considered for reasoning about problem variables or
evaluation of the effectiveness and efficiency of the results of such reasoning
strongly depends not only on context itself but also on the quality of context.
Quality of context is defined in [34] as “any information describing the quality
of information that is used as context information.” Another definition is given in
[35], where quality of context is defined as “any inherent information that describes
context information and can be used to determine the worth of information for a
specific application.” Therefore, alike the definitions specifying IQ, these definitions
specify different types of context quality with the former referring to objective
measures of quality, while the latter characterizes both objective and subjective
quality, which uses values of objective quality to measure the “fitness of use,” i.e.,
the degree to which context satisfies the needs of a particular application.

Similar to [36], here we define the quality of a context as the degree to which
it satisfies the needs of an application, expressed as a function of quality of
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the context variables defining the context. Similar to the subjective quality of
information that has to satisfy users’ needs in a particular context, the degree to
which context satisfies the needs of a particular application can be represented either
by a single quality characteristic or by a combination of characteristics. Selection
of a characteristic used for evaluating the quality of context variables, or their
combination, depends on the application.

The information defining a context is obtained from available databases, obser-
vations, represents the result of sensor fusion, received reports, mining of available
information sources (e.g., traditional and social media), or from various levels of
IF. Of course, the quality of any such information, as well as the inference process
for obtaining it, could be insufficient for a particular use: it might be uncertain,
unreliable, irrelevant, or conflicting. Knowledge of the quality of this information
and its effect on the quality of context characterization can improve contextual
knowledge and allows for discovery of a new context. At the same time, knowledge
about a current context can improve the quality of observation and fusion results.

Figure 11.3 shows the interrelationships among the quality of incoming “soft”
information, which is usually coming from human sensors and is expressed in
natural language, and “hard” numerical data obtained from traditional “physical”
sensors and fusion processes; quality of context and important quality characteristics
influencing them. As shown in Fig. 11.3, fusion processes designed to estimate
problem variables can use direct estimations and selected contextual information
weighted for accuracy, reliability, consistency, and relevance. Indices are shown
for contexts, both CO and CF, to stress that relevant contexts are often dynamic.
Fusion outputs can be estimates at any fusion level (i.e. of objects, situations,
impacts, etc.). Context consideration can improve the results of fusion products by
taking into account the quality of input information (e.g., reliability of observations
and reports) as well as the quality of interim results of the processes involved in
fusion. For instance, a CO can serve for selecting relevant observations and provide
expectations for sensor and process management. A CF can, for example, be used
to improve fusion results by incorporating context-based reliability into sources’
predictive uncertainty models such as probability or belief.

Selection of variables characterizing CF can be based on constraining domain-
specific ontology of context variables and their relationships with problem variables
to exploit the relevance of context variables to problem variables and their consis-
tency. CF has to be relevant to both CO and problem variables. It is considered
relevant if [13]:

• Reduces uncertainty and increases the accuracy of fusion results
• Improves the utility of information (e.g., of refining the value of a problem

variable) and ultimately of decisions and actions based on fusion results utilizing
this information

• Decreases information conflict

Selecting of context variables assumes that we can determine the ambient CO
for given problem variables or inference problem. In some cases, this context is
defined (declared or estimated). However, in other cases, context can be unknown
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or different from what was expected since the expectation can be based on mistaken
assumptions. Thus the set of beliefs characterizing current context have to be
changed. This often happens in highly dynamic environments, in which observa-
tions, situational items, and relationships constantly change, and therefore, relevant
context needs to be discovered. Discovery of underlying new context can be initiated
based on another important characteristic of context quality: consistency. New
context can be manifested by new observations or fusion results that are inconsistent
with the currently assumed context characteristics, for example, contained in the
knowledge base. The major problems here are:
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• how and when to decide whether inconsistency exits;
• what is the source of this inconsistency; and
• whether the currently assumed context is no longer relevant.

Context consistency is evaluated based on the comparison of the characteristics
and behavior of problem variables based on the observed or estimated data and
information with the ones that are defined by contextual knowledge, which includes
both CO and CF. Inconsistency can be the result of such factors as poorly charac-
terized observations and reports, characteristics and behavior of problem variables
based on these observations and evaluated within the current context, domain
knowledge about current context, insufficient quality of context characteristics; e.g.,
consideration of irrelevant or unreliable context variables, or the fact that the earlier
defined context has changed.

One unavoidable problem related to the quality of observations is the problem of
time delay affecting the timeliness of decisions. The time delay is a combination of
time required for communication and information processing. To mitigate this prob-
lem, it might be necessary to consider projected time characteristics and behavior
of situational items and characteristics of CF. At the same time, incorporation of the
time delay into estimation of reference and context variables represents one of the
challenges of context exploitation.

Discovery of the source of this inconsistency can be performed by abductive
reasoning (so-called reasoning for best explanations). This abductive process of
reasoning from effect to cause requires [37, 38]:

• Constructing or postulating possible hypotheses explaining inconsistency
• Computing plausibility of these hypotheses
• Selecting the most plausible hypothesis from among these

The result of abductive reasoning can improve inferencing in different ways.
It can lead to the discovery of new, sometime hidden context, which in turn can
improve the estimation of problem variables. It can also lead to the discovery of the
fact that the inconsistency was the result of poor quality of observations, reports,
their processing, or insufficient quality of certain context characteristics, which were
estimated or held in the knowledge base. This discovery can require reevaluation of
this information.

11.3.4 Context Representation and Information Quality

The method of evaluating context quality depends on the context representation
selected. There are several context models considered in the literature [39]. There
are the following ones that appear to be appropriate for IF such as the key-value
[40], ontology-based [11, 41, 42], and logic-based [43–46].

The simplest models are the key-value models [40], in which context is repre-
sented by values of context variables (e.g., location) under consideration obtained
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by measurements or as the results of the matching processes and/or provided by
humans. The quality of context modeled by key-value models depends on the quality
of context attributes considered. To incorporate context quality into this model,
each variable can be represented as a tuple comprising the value of the context
variable under consideration and the values of quality characteristics pertinent to
this variable. For example, if we consider location coordinates as a context variable,
the tuple might also include the accuracy of the coordinate estimation and the level
of relevance of location coordinates to the problem variables under consideration.
The overall context quality will be represented by the combination of all the
quality value estimated for each characteristic. The key-value models are easy to
manage and may suffice for CF representation in low-level fusion [47] but lack
capabilities for complex structuring necessary for representing CO, which involves
representation of not only context attributes but also objects, their characteristics,
and interrelationships. More general models of context are similar to the ones used
for situation assessment and include ontology-based and logic-based models.

Ontology is an established framework for knowledge representation and for rea-
soning about situations. Since contexts are considered as meta-situations, ontology-
based models offer an appropriate way of their modeling. These models provide
a high degree of rigor in specifying core concepts, sub-concepts, facts, and their
inter-relationships to enable realistic representation of contextual knowledge. An
ontology of a specific context requires a relevance-based constraining domain
ontology of the context under consideration. This can be done by considering
context variables, relationships between them, and inference rules characterizing
this particular context while incorporating quality of these variables and their
relationships. In a dynamic environment, contextual information and its quality
can rapidly change, and for that reason, a context ontology requires constant
instantiation. Methods of measuring the overall quality of context represented
by ontology are similar to methods of ontology evaluation considered in the
literature (see, e.g., [48, 49]). Evaluation measures of ontology quality proposed
in the literature and appropriated for context quality evaluation allow for assessing
syntactic and semantic aspects [48]. Among the most important measures of the
quality of context are completeness, accuracy, reliability, expandability, consistence,
and scalability.

Logic-based models define contexts in terms of facts, expressions, and rules.
McCarthy [43] introduces a formalization of logic-based models built on a relation
ist(c,p) that reads as “proposition p holds in the context c.” The ist concept can be
interpreted as validity: ist(c,p) is true if and only if the proposition p is true in context
c. McCarthy’s context formalization includes two main forms of expression:

• c’: ist(c,p) means that p is true in context c, and this itself is stated in a context
of a higher level of granularity (“outer context”) c’;

• value(c,e) defines the value of term e in the context c, which means that context
c defines some values for e.
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The quality of context representation here is defined by the quality of the
expressions mentioned above. Thus we need to incorporate quality into the model
expressions. For example, to use ist(c,p) for making assertions about uncertain
situational items, bel(a,ist(c,p))), can be used to represent an agent a’s belief that
proposition p is true in the context c. which can be obtained as the result of
reasoning under uncertainty. Since the knowledge about context is also uncertain,
the reasoning process has to take into account quality of context and problem
variables.

Another context representation framework of this type is situation theory [45,
46]. Situation theory represents units of information as infons, which are denoted
as σ = (R,a1, . . . ,an,i), where R is an n-place relation and a1, . . . ,an are state
variables that range over entities of types appropriate for a given relation R. In
“classical” situation theory, i is a binary variable, which is equal to 1 if a relationship
R(a1, . . . ,an,) holds, 0 otherwise. Context representation by situation theory requires
incorporation of the quality of contextual variables and inferred relations between
them. This can be achieved by replacing binary relations with a value between 0 and
1 defining belief that the relationship holds [48] and the value of context variables
by tuples that comprise the variable values and meta-data characterizing them.

11.4 Context Quality Control

As we can see from the previous sections, context is important for improving the
quality of problem variables. At the same time, since context is obtained from
observational information and reasoning, it can be imperfect. Thus it is necessary to
implement quality control of contextual variables.

Similar to the methods of quality control of problem variables discussed in [14,
25], methods of quality control of context variables include:

• Eliminating from consideration any context variables of insufficient quality;
• Explicitly incorporating estimation of the quality of context variables into models

and fusion processes; and
• Delaying a decision concerning poor quality of information while hoping that

quality will improve with additional observations and/or computations.

Thus, elimination of context variable of insufficient quality can be based, for
example, on CO-specific time-dependent relevance or reliability of CF charac-
teristics. This type of quality control is important for improving the quality of
information presentation since irrelevant or unreliable context characteristics can
decrease context understandability and lead to increased fatigue and distrust in
presented information.

Explicitly incorporation of quality of context variables into reasoning about
problem variables or CF estimation invokes considerations of the second level
of uncertainty such as reliability coefficients. Utilization of reliability coefficients
allows for resolving conflict, which is especially important for fusion of credibility
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since by definition, combination of credibility represented either by probability or
beliefs requires that probability (beliefs) will be equally reliable.

Delaying decisions on insufficient quality of observations defining context vari-
ables can be utilized when more observations can be available or when computation
time increases. These quality control methods are exploited to support time-critical
decisions and swift actions in the uncertain environment, in which it is not realistic
to obtain optimal solutions. They allow monitoring the progress in problem solving
and offering a tradeoff between time and other quality attributes defining decision
quality.

Following [50], we can define desirable properties of these quality control
methods:

• Measurable quality: The quality of an approximate result can be determined
precisely.

• Recognizable quality: The quality of an approximate result can easily be
determined at run time (i.e, within a constant time).

• Monotonicity: The quality of the result is a nondecreasing function of time and
input quality. Since the quality of input is generally not a nondecreasing function
of time, it is possible to guarantee monotonicity by simply taking into account
the best rather than the last generated result.

• Consistency: The quality of the accumulated over time result is correlated with
computation time and input quality.

• Interruptibility: The process can be stopped at any time and provide some answer.

In general, selection and implementation of a specific control measure or their
combination depend on the application and quality attributes under consideration.

11.5 Context and Information Quality in Fusion Applications

11.5.1 City Traffic Tracking

To show the importance of IQ in context utilization, let us, for example, consider
Fig. 11.4 depicting a traffic monitoring system with optical sensors. The sensors
can be easily tricked into generating false targets by reflective surfaces.

As discussed in [51], knowledge of the map of the city constitutes context
allowing the system to prune or discount the measurements that seem to be
originating from inside a building. However, the lack of knowledge about the
reflective surface and thus the incompleteness of the contextual information do not
allow to explain the behavior of the system.

In the target tracking domain, knowledge of CI can be exploited, for example,
to constrain measurements or choose an optimal motion evolution model (e.g.,
constant liner velocity, curvilinear, accelerated motion, etc.). It can be done by
generally yielding higher estimation accuracy with increased confidence (reduced
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Fig. 11.4 Tracking of city traffic by video sensors. False detections are generated by a reflective
surface and false tracks could be generated

error covariance). However, relying on imprecise or incorrect CI can negatively tune
the system to react to conditions that do not reflect the reality of the environment.
Thus insufficient context quality introduces biases and leads to the generation of
erroneous estimates that can adversely affect the overall performance.

As per Fig. 11.3, the whole quality assessment process works in a continuous
loop that leverages the availability of multiple data/information for reaching fused
estimates of the problem variables while assessing the quality of the input and
contextual information. For example, the false track in Fig. 11.4 could be the result
of low-quality data and/or contextual information as well as processing errors:

• Noisy sensor data?
• Error-prone processing (e.g., calibration errors/wrong filtering model)?
• Imprecise/outdated context map?

Fusing multiple observations from multiple sensors (e.g., observing the scene
from different angles) could rule out the possibility that the false track was generated
by noisy sensory data. Again, multiple readings and trajectory analysis could rule
out the possibility of a bias in sensor calibration (e.g., a trajectory generated by
actual vehicles appears to be correctly generated within the road width). The
observation that the false tracks are mostly generated during certain hours of the
day and/or while certain weather conditions might be learned and accommodated as
additional contextual information that will be used by the system to explain and rule
out false tracks. Fusing multiple observations can give good results only if they are
reliable. Considerations of context can be used for learning this reliability.

Figure 11.5 shows the flow of some of the processing and quality assessment
steps necessary for vehicle tracking. In particular, the urban scenario depicted in
Fig. 11.4 acts as CO and provides the setting that will provide the expectations for
the behavior of the traffic. The hypotheses generated by the behavior understanding
module can, for example, be checked against those expected for the current scenario
(e.g., normal patterns of activity). This would rule out unlikely ones, given the
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Fig. 11.5 Processing and quality assessment steps for the tracking scenario shown in Fig. 11.4

current CO. Specific elements of the scenario, such as the weather conditions and
the map of the city, can be used as CF variables that refine expectation of the
normal behavior and assist in quality assessment of sensor performance and tracking
results. Sensor quality could be a function of the current weather conditions (e.g.,
infrared cameras should be preferred for low light conditions) as well as the actual
positioning (e.g., the closest sensors to the target should be preferred).

The city map is a CF that is directly exploited both in transforming sensor
detections into map plane points (homographic transform [51]) and into assessing
their reliability (e.g., weighting the measurements depending on the likelihood of
belonging to a certain element of the map, e.g., the road for vehicles, curbs, and
zebra crossings for pedestrians).

Context quality should also undergo continuous assessment. For example,
accumulating target trajectories over time can produce an activity model that differs
from the expected one and thus leading to the discovery of a new context (e.g., an
accident, etc.).
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11.5.2 Maritime Surveillance

The following example describes the interplay between context, fusion, and IQ in a
maritime surveillance scenario designed to identify suspicious activities. Unlike the
example considered in the previous section, the focus here is on situation assessment
and reasoning processes for constructing a dynamic surveillance picture for piracy
threat detection and recognition [52, 53].

Maritime surveillance systems receive a huge amount of highly heterogeneous
input often uncertain, unreliable, and irrelevant: from device-generated data such
as radar contacts and AIS information to human-generated information such as
coast guard reports. Given the relatively slow speeds and large distances typical of
vessels, maritime surveillance systems generally have the time to acquire and reason
on many different pieces of information received as streaming input or mined in a
knowledge base.

The process of building a dynamic surveillance picture must include all fusion
levels. Lower-level fusion combines data and information to provide unified and
reliable tracking and recognition of all interesting entities by estimating the main
problem variables (ship tracks, IDs) along with their relationships in order to
assess the current situation. Higher-level fusion transforms information about vessel
identity and tracks into knowledge about potentially suspicious behavior to aid
the operator in recognizing this behavior as threat or false alarm. The process of
reasoning for detection and recognition of threat and the role of context and IQ are
shown in Fig. 11.6. The focus there is on two very important quality characteristics
for situation and threat assessment: relevance and consistency.

As shown in Fig. 11.6, maritime suspicious activity is considered in the context
of the geophysical and geopolitical world situation (e.g., the situation in Somalia,
relations between different countries in the Malacca Strait, and recent reports on
increased piracy attacks there), which provide expectations about the possible threat
from pirates. The context under consideration comprises maritime traffic rules
(general and for special vessels), weather conditions, and maps and is used for better
situation understanding by utilizing characteristics of normal situations as opposite
to ones specific to pirate behavior.

Before information is allowed into the fusion system, a relevance check is
performed in a sifting process [5] in order to channel only relevant pieces of data
and information to the fusion process. Context is the key in this selection process
along with the given system requirements/mission [3]. Given the current context
and mission requirements, input data and information are weighted accordingly.
For example, sea-lanes regulations (CF) might be particularly enforced in areas
plagued by piracy (CO) so that trajectories of non-abiding vessels might be promptly
detected.

After the fusion processes are performed, it is of paramount importance to esti-
mate the consistency of the data/information provided by the available input sources
and fusion processes, and contextual information. As already mentioned in previous
sections, it could, in fact, be the case that inconsistency is between the hypothesized
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Fig. 11.6 The process of reasoning for detection and recognition of threat and the role of context
and IQ

situation and the observed objects, relations, situational items, and their behaviour.
Sensor/source observations could be of low accuracy or even purposely wrong as in
the case of AIS spoofing, fusion processes can result in information of insufficient
quality. It could also be the case that contextual information is inaccurate due to
poor observability or unreliable information about pirates’ intentions. The problem
here, as it was mention in previous sections, is how and whether to change the state
of the knowledge (e.g., threat/no threat) due to the arrival of new information if the
latter contradicts prior knowledge in the context under consideration. The process
or resolving the inconsistency involves reasoning for best explanations (abduction)
to determine the sources of the contradiction such as possible insufficient quality of
contextual knowledge, observations, fusion processes or current hypotheses about
the situation. A continuous process of assessing and updating both the quality of the
fused result, input data/information and contextual information takes place in order
to find the best hypothesis explaining the data and/or rule out the discrepancies in
the observations.
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11.6 Conclusions

This chapter has examined the problems of context exploitation in information
fusion and the interrelationships among context quality, the quality of observations,
and the results of fusion processes. It discusses the role of context and information
quality in information fusion and provides a definition of context quality and
incorporation of quality into context representation, as well as methods of quality
control along with desirable properties of these methods. The chapter also presents
examples of consideration of context and information quality in the problems of city
traffic monitoring and maritime surveillance for piracy threat detection.

“Fitness for use” of the incoming information as well as the performance and
effectiveness of fusion processes depend on correct context selection and successful
estimation of the quality of contextual variables and their relevance to the purpose
of fusion. The information defining a context can be obtained from available
databases, observations, the result of sensor fusion, received reports, mining of
available information sources (e.g., traditional and social media), or various levels
of information fusion. Of course, the quality of any such information, as well as the
inference process for obtaining it, could be insufficient for a particular use: it might
be uncertain, unreliable, irrelevant, or conflicting. Knowledge of the quality of this
information and its effect on the quality of context characterization can improve
contextual knowledge.

There are two interrelated problems concerning both information and context
quality: imperfect information used in context estimation and discovery negatively
impacts context quality, while imperfect context characterization adversely affects
the characterization of quality of information used in fusion as well as the fusion
results. This interrelationship represents one of the challenges of modeling and
evaluating context quality and of using context in defining the quality of information
used in fusion and the quality of fusion process results. A solution for this relatively
new and important problem of interrelationships among information quality and
quality of context is necessary for improved fusion performance. This and the
problem of context discovery in uncertain dynamic environments pose a significant
challenge for information fusion.
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Chapter 12
Analyzing Uncertain Tabular Data

Oliver Kennedy and Boris Glavic

Abstract It is common practice to spend considerable time refining source data
to address issues of data quality before beginning any data analysis. For example,
an analyst might impute missing values or detect and fuse duplicate records
representing the same real-world entity. However, there are many situations where
there are multiple possible candidate resolutions for a data quality issue, but there
is not sufficient evidence for determining which of the resolutions is the most
appropriate. In this case, the only way forward is to make assumptions to restrict the
space of solutions and/or to heuristically choose a resolution based on characteristics
that are deemed predictive of “good” resolutions. Although it is important for the
analyst to understand the impact of these assumptions and heuristic choices on her
results, evaluating this impact can be highly nontrivial and time-consuming. For
several decades now, the fields of probabilistic, incomplete, and fuzzy databases
have developed strategies for analyzing the impact of uncertainty on the outcome of
analyses. This general family of uncertainty-aware databases aims to model ambi-
guity in the results of analyses expressed in standard languages like SQL, SparQL,
R, or Spark. An uncertainty-aware database uses descriptions of potential errors and
ambiguities in source data to derive a corresponding description of potential errors
or ambiguities in the result of an analysis accessing this source data. Depending on
the technique, these descriptions of uncertainty may be either quantitative (bounds,
probabilities) or qualitative (certain outcomes, unknown values, explanations of
uncertainty). In this chapter, we explore the types of problems that techniques
from uncertainty-aware databases address, survey solutions to these problems, and
highlight their application to fixing data quality issues.
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12.1 Introduction

Data quality is increasingly relevant to all facets of data management, from small-
scale personal sensing applications to large corporate or scientific data analytics.
In these and many other settings, sources of uncertainty include inaccuracies and
failures of sensors, human data entry errors, systematic errors during fusion of
data from heterogeneous sources, and many others. A prevalent problem when
identifying data quality issues is that typically available information is insufficient
to determine with certainty whether a fluke detected in the data is a quality issue
or simply an unusual fact. For example, a high blood pressure value may be due
to a medical problem or may as well be a measurement error – without further
information it is impossible to distinguish between these two cases. Even if a quality
issue can be detected with certainty, this does not imply that we can find a unique or
even any correct resolution for this issue. For instance, consider an employment
dataset with records storing for each employee a unique identifier like a social
security number (SSN), their name, and the department they work in. A single
person might occur multiple times in this dataset if the person works for more than
one department. If we assume that unique identifiers are truly unique, one type of
data quality issue that is easy to detect (for this dataset) is when multiple records
corresponding to the same identifier have different names.1 While this condition
is easy to check, it is not straightforward to repair a dataset with records that
share identifiers but have conflicting names. For example, assume that our dataset
contains two conflicting records (777-777-7777, Peter Smith, Sales)
and (777-777-7777, Bob Smith, Marketing). These records indicate
that a person with SSN 777-777-7777 is working in both sales and marketing and is
either named Peter Smith or Bob Smith. The correct way to fix this conflict depends
on what caused the error and requires us to have additional information that is not
readily available. If we assume that two people with the same SSN must have the
same name, then there are four ways we could fix the error: (1) We could assume
that one of the records was created mistakenly and delete it; (2) We could assume
that our analysis will be minimally affected by this error and leave the records as-
is; (3) We could assume that the name attribute of one (or both) of the records is
incorrect and update them accordingly; and/or (4) We could assume that the SSN

1In database terminology, we would say that a functional dependency id → name holds for the
dataset, i.e., the “id” value of a record determines its name value. Or put differently, there are no two
records that have the same SSN, but a different name. The intricacies of functional dependencies
are beyond the scope of this paper. The interested reader is referred to database textbooks (e.g., [1]).
Furthermore, see, e.g., [12] for how constraints like functional dependencies are used to repair data
errors.
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attribute of one (or both) of the records is incorrect, and update them accordingly.
In the absence of further information, there is no way for us to determine what the
correct fix for the problem is.

A typical approach for resolving this kind of ambiguity is to correlate the
information in our dataset with externally available sources of high-quality data,
often called master data, to determine what fix to apply. For instance, we may have
access to a reliable list of what name corresponds to which SSN. Such information
is useful, because it allows us to make SSNs consistent with names. However, it
is not sufficient for figuring out whether the issue arose from incorrect name(s) or
from incorrect SSN(s) and, thus, whether the correct solution is to repair SSN or
name value(s). This example demonstrates that even trivial data quality issues can
have hard- or impossible-to-determine resolutions.

In a typical analytics workflow, problems like this are addressed at the start: a task
we call data curation. Common approaches to data curation include: (1) If redundant
data sources can be found, the curator can manually repair errors; (2) If records are
irreparable, the curator may remove them from the dataset outright; (3) If removing
records with errors would create bias or leave too few records, the curator can apply
heuristic techniques (e.g., imputation) to repair errors. (4) If the errors are deemed
to not affect the analysis, the curator may simply choose to not address them. For
example, we might train a classifier to find records in our master data most similar
to Peter and Bob Smith, and then use it to fix the name and/or SSN fields of our
erroneous data set.

A common assumption is that once curation is complete, the data is “correct,”
at least to the point where specific analyses run over it will produce valid results.
However, such assumptions can produce misleading analytical results. The most
straightforward of these are the consequences of incorrect choices during curation,
for example, selecting a classifier that is inappropriate for the available data.
However, there is a more subtle possibility: The data being curated might be
insufficient or of insufficient quality – regardless of curation technique – to support
some or all of the analyst’s goals.

Existing data management systems, Relational Databases, Graph Databases,
Spark, NoSQL Systems, R, and others, are built on the assumption that data is
exact. These systems cannot distinguish low-confidence information derived of
incomplete data or heuristic guesswork from high-confidence information grounded
in verifiable data fused from multiple redundant data sources. In extreme cases, such
misinterpretations ruin lives. For example, credit report errors can severely limit a
person’s access to financial services and job opportunities.

Example 1 Consider an example bank’s loan database shown in Fig. 12.1. Table
customers stores the SSN, name, income, and assets for each customer. Further-
more, we record for each customer the number of mortgages this customer has and
whether they own property or not. Table applications stores loan applications
(a customer’s SSN and the amount of loan they requested). The bank uses the
following formula to determine the maximum amount Max$ they are willing to
loan to a customer.
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customers

SSN name income assets numMortgages ownsProperty
777-777-7777 Alice Alison $60,000 $200,000 0 NULL
333-333-3333 Bob Bobsen $102,000 $15,000 0 no
111-111-1111 Peter Petersen NULL $90,000 1 yes
555-555-5555 Arno Arnoldson $95,000 $30,000 0 yes

applications

SSN loanAmount
777-777-7777 $90,000
111-111-1111 $10,000

Fig. 12.1 Example for resolving a data quality issue and how this affects the trustworthiness of
analysis results. The input data contains missing values and needs to be imputed

Max$ = 0.3 · income + 0.2 · assets − 10, 000 · numMortgages + 40, 000·
ownsP roperty

The bank might use a SQL query such as the one shown below to determine
which loan applications it should grant and which applications will be rejected.

SELECT SSN, name, CASE WHEN maxAllow >= requestedAmount
THEN ’yes’ ELSE ’no’

END AS grantLoan
FROM (SELECT 0.3 * income + 0.1 * assets - 10000 * numMortgages

+ CASE WHEN ownsProperty THEN 20000 ELSE 0 END AS
maxAllow, loanAmount AS requestedAmount

FROM customer c, applications a WHERE c.SSN = a.SSN) sub

For readers unfamiliar with SQL, this query (1) retrieves the customer information
for each loan request, then (2) computes Max$ based on the customer information,
and (3) returns the SSN and the name of the customer requesting the loan as well as
a column grantLoan whose value is yes if the amount requested is lower than
Max$ or no otherwise.

Unfortunately, the customers table contains missing values (in SQL the special
value NULL is used to denote that the value of an attribute is missing). For example,
we do not know whether Alice owns property or not, or what Peter’s income is.
These missing values prevent us from determining whether Alice’s loan should be
approved or not. As mentioned above, one way to resolve this issue is to train a
classifier, such as a decision tree. The classifier is trained on records that have all
their attribute values. Given the values of the other attributes (SSN, name, income,
assets, and #mortgages) for a record, the trained classifier predicts the missing
value of the ownsProperty attribute.

Assume that the classifier predicts that the value of ownsProperty for Alice’s
record is yes with 40% probability and no with 60% probability. The NULL value is
replaced with no, the value with the highest probability. If the dataset curated in this
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Classifier Result for Alice

ownProperty probability

yes 0.4

no 0.6

Query Result

SSN name grantLoan

777-777-7777 Alice Alison no

111-111-1111 Peter Peterson yes

way is used to determine Alice’s eligibility to receive the loan, then the bank would
deny her loan application – even if she does in fact own property and should be
eligible. In this case, the bank does not have enough information to decide whether
to give Alice a loan, but by treating imputed missing values as fact, this lack of
information is obscured.

As we will explain in more detail in the remainder of this chapter, uncertainty-
aware approaches to data management can expose this lack of information. In the
example, this would allow the bank’s computer to produce a third response, “I
don’t know,” exposing the uncertainty in the analytical result. Depending on what
technique for uncertain data management is applied, it might also be feasible to
determine exactly what information is necessary to produce a definitive answer to
the bank’s question.

Uncertain data management techniques can help to expose implicit biases
introduced during data curation, as well as the impact that these biases have on
the quality and trustworthiness of analytical results. In this chapter, we provide an
introduction to uncertain data management techniques developed by the database
community and their use in data curation and analysis. While there are excellent
surveys on probabilistic data management, e.g., [39] and [8], these surveys aim
to describe the technical challenges involved. In contrast, we give a more goal-
oriented introduction to the topic targeted at helping practitioners identify suitable
techniques for their needs and to clarify the connection to practical applications of
these techniques for data quality.

Making uncertainty a first-class primitive in data management has been the goal
of the so-called uncertain and probabilistic query processing [39] or PQP. There
have been significant efforts in this space, aiming to produce efficient algorithms
for some of the most computationally challenging tasks involved in managing
uncertain data [7]. While great progress has been made, some tasks in PQP are too
computationally intensive to be widely applied. Thus, having practical applications
in mind, we also survey lightweight approaches which produce less detailed and/or
approximate descriptions of uncertainty, at the benefit of reduced computational
complexity. Though they are approximations, these simpler representations of
uncertainty are also often easier to interpret than more complex models.

The remainder of this chapter is organized as follows. We introduce core concepts
of uncertain data management in Sect. 12.2. We then cover data models that encode
uncertainty in one form or another in Sect. 12.3. Section 12.4 covers methods for
computing the results of queries and evaluating general programs over uncertain
data. Afterward, we discuss methods for presenting uncertainty to end users in
Sect. 12.5. Finally, we conclude in Sect. 12.6.
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12.2 Core Concepts: Incomplete and Probabilistic Databases

We begin with the broadest assumptions about the workflows applied by an analyst,
before narrowing our scope to particular models of computation (mostly declarative
query languages) when discussing specific solutions. Specifically, we assume that
the analyst has specified her analysis as a program Q expressed in some suitable
form such as an imperative programming language (e.g., Python or C) or a database
query language (e.g., SQL or Spark). When applied to some datasetD, this program
produces a result Q(D). For instance, for our running example, the program Q is
the SQL query shown in Fig. 12.1,D is the cleaned version of the loan dataset (after
imputing the missing ownsProperty value of Alice’s record), and Q(D) is the
query result shown in Fig. 12.1.

12.2.1 Possible World Semantics

A well-established model for uncertainty in such an analysis is the so-called possible
world semantics. Under the possible worlds semantics, we forsake the existence
of single deterministic dataset and instead consider a set of possible datasets, the
possible worlds. Each possible world is a dataset that could exist under certain
assumptions. Formally, an uncertain dataset is a (potentially infinite) set of datasets
D. We refer to D as an incomplete database and its members as possible worlds.

Example 2 Continuing with our running example, recall that we used a classifier to
impute the missing ownsProperty attribute of Alice’s record. In the previous
example, we did pick the most likely value predicted by the classifier (no) and
saw how this incorrect choice caused Alice’s loan to be rejected. The heuristic
underlying this choice is the classifier; We assume that it will always pick the correct
replacement value – in general a quite strong assumption. Instead we can model the
output of the missing value imputation as a set of possible worlds D = {D1,D2}.
In this example, there are two worlds that are shown in Fig. 12.2: either Alice does
not own property (possible world D1 shown on top) or Alice does own property
(possible world D2 shown on the bottom). In this possible world model, it is
evident that we are uncertain about whether Alice owns property or not, as the only
difference between the two possible worlds is the ownsProperty attribute value for
Alice’s record.

When an analysis program Q is evaluated over an incomplete database D, the
result is not one but a set of possible results – the set of all results that could be
obtained by evaluatingQ in some possible world:

Q(D) := { Q(D) | D ∈ D }
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Possible World D1 (p = 0.6)
customers

SSN name income assets #mortgages ownsProperty
777-777-7777 Alice Alison $60,000 $200,000 0 no
333-333-3333 Bob Bobsen $102,000 $15,000 0 no
111-111-1111 Peter Petersen NULL $90,000 1 yes
555-555-5555 Arno Arnoldson $95,000 $30,000 0 yes

Possible World D2 (p = 0.4)
customers

SSN name income assets #mortgages ownsProperty
777-777-7777 Alice Alison $60,000 $200,000 0 yes
333-333-3333 Bob Bobsen $102,000 $15,000 0 no
111-111-1111 Peter Petersen NULL $90,000 1 yes
555-555-5555 Arno Arnoldson $95,000 $30,000 0 yes

Fig. 12.2 Possible worlds representation of the cleaned loan dataset created based on the possible
imputed values for the missing ownsProperty value predicted by the classifier

That is, the result of evaluating an analysis program Q over an incomplete
database is itself an incomplete database.

Example 3 Evaluating our loan query over the incomplete database from Fig. 12.2,
we get two possible results shown below. We are sure that Peter should be granted a
loan, but there are two possible outcomes for Alice’s loan application. If Alice owns
property (possible worldD2), then we would consider her to be eligible for this loan
(possible result Q(D2)). Otherwise, (possible world D1) we should reject her loan
applicationQ(D1).

Q(D1)

SSN name grantLoan

777-777-7777 Alice Alison no

111-111-1111 Peter Peterson yes

Q(D2)

SSN name grantLoan

777-777-7777 Alice Alison yes

111-111-1111 Peter Peterson yes

12.2.2 Certain and Possible Records

It is often useful to reason about a dataset D as a collection of records r ∈ D or
a table. When using this model, we also treat analytical results as sets of records
r ∈ Q(D). We then may want to reason about what facts (records) we know for
certain to be true, what facts are potentially true, and which facts are known to be
untrue. For instance, in our running example, we know with certainty that Peter’s
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loan should be granted, since regardless of which possible world represents the true
state of the world, the loan application will be granted. For incomplete databases, we
say that a record is certain if the record appears in every possible world. Note that,
because the result of analysis over an incomplete database is again an incomplete
database, we can apply the same concept to analysis results. A record is certainly in
the result of an analysis if it is present in the result irrespective of which possible
world correctly describes the true state of the world. Formally, a record r is certain
in an incomplete database D if ∀D ∈ D : r ∈ D. We use certain(D) to denote the
set of all certain records in D. Analogously, the certain answers to a questionQ(D),
which we write as certain(Q(D)) are the set of all certain records in the incomplete
resultQ(D).

r is certainly in D := ∀D ∈ D : r ∈ Q(D)

certain(Q(D)) = { r | ∀D ∈ D : r ∈ Q(D) }

Conversely, we say that a record is possible if the record appears in at least
one possible world (resp., possible result). The possible answers of a question
(possible(Q(D))) are defined symmetrically.

r is possibly in D := ∃D ∈ D : r ∈ Q(D)

possible(Q(D)) = { r | ∃D ∈ D : r ∈ Q(D) }

Example 4 For instance, (111-111-1111,Peter Peterson,yes) is a cer-
tain answer in our running example since it is in the result for every possible world,
but (777-777-7777,Alice Alison,yes) is not since this record is not
in Q(D1). Conversely, (777-777-7777,Alice Alison,yes) is possible
while (777-777-7777,Alice Peterson,yes) is not.

12.2.3 Multisets

Many database systems use bags (multisets) of records to represent data. That is,
bag databases allow for multiple records that have all attribute values in common.
For example, if we allow multiple loan applications by the same person, then it
may be possible that two applications from the same person are requesting the same
amount, i.e., are duplicates.

Example 5 Consider the bag table applications shown below. Here both
Alice (SSN 777-777-7777) and Peter (SSN 111-111-1111) have submitted two
applications. Alice’s applications are both for a loan of $90,000, i.e., there is a
duplicate of the record (777-777-7777, $90,000) in the applications table.
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SSN loanAmount

777-777-7777 $90,000

777-777-7777 $90,000

111-111-1111 $10,000

111-111-1111 $3,000

We writeD[r] (resp.,Q(D)[r], R[r]) to denote the number of occurrences or the
multiplicity of record r in database D (resp. result Q(D) or record set R). We can
now define the multiplicities of an uncertain record as a set of multiplicities for each
possible world.

D[r] = { D[r] | D ∈ D }

Libkin et al. [19] generalize the notion of certain and possible results to reason about
bounds on these multisets (or bags).

certain(D[r]) = min (D[r]) possible(D[r]) = max (D[r])

Observe that when a multiset D encodes a set (i.e., when D[r] ∈ {0, 1}), multiset
possible and certain answers behave as their set-based counterparts.

12.2.4 Incorporating Probability

An incomplete database may be supplemented with a probability measure P : D→
[0, 1] over the set of possible worlds requiring that

∑
D∈D P(D) = 1. The pair

〈 D, P 〉 of incomplete database and probability measure is called a probabilistic
database [16]. When a questionQ is asked of an probabilistic database 〈 D, P 〉, we
can derive a marginal distribution over the set of possible results { Ri }:

p[Q(D) = Ri] :=
∑

D∈D s.t. Q(D)=Ri
P (D)

When the result is a set (resp., bag) of records, we derive the marginal probability of
any possible record in the result similarly (whereM ∈ N is a record multiplicity).

p[r ∈ Q(D)] :=
∑

D∈D s.t. r∈Q(D)
P (D)

p
[
Q(D)[r] = M] :=

∑

D∈D s.t. Q(D)[r]=M
P(D)
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We will sometimes use p(r) as a notational shortcut for p[r ∈ Q(D)] when Q
and D are understood from the context.

Example 6 Recall that the classifier we have trained predicts that Alice owns
property with 40% probability and that she does not own property with 60%
probability. Thus, possible world D1 has probability p(D1) = 0.6 and possible
world D2 has probability p(D2) = 0.4. Then based on this probability distribution
of the input possible worlds, the probabilities of the two possible query results are
determined. The probability of the result where Ann’s loan application is rejected
is 0.6, while the one where Ann’s loan is granted is 0.4. Given this result, we can
compute the marginal probability of an analysis result record, i.e., the likelihood
that this particular record exists in the result as the sum of the probabilities of
possible worlds containing this record. Let r1 be the record corresponding to the
loan granted to Peter. Since this record appears in both possible worlds, we get
p(r1) = p(D1)+ p(D2) = 0.4+ 0.6 = 1. That is, the record has probability 1.

Observe that there is a strong connection between the concepts of certain/possible
records and the marginal probability of a record. Given a record r , we have:

p[r ∈ Q(D)] = 1⇔ r ∈ certain(Q(D))
p[r ∈ Q(D)] > 0⇔ r ∈ possible(Q(D))

Records which are certain (occur in every possible world) must have marginal
probability 1 (the probabilities of all possible worlds have to sum up to 1), while
records that are possible must have a nonzero probability (they occur in at least one
possible world).

12.3 Uncertainty Encodings

Possible worlds provide us with a convenient, intuitive model for uncertain data
processing that is independent on the choice of language for expressing analysis
tasks. However, the full set of possible worlds (and the corresponding probability
distributions) may be extremely large (or even infinite). This may not be obvious
from our running example, but observe that in our example there was only one
missing value to impute and we only had two possible replacements for this missing
value. Consider a moderately sized version of our running example dataset with
100k records and assume that there 100 missing ownsProperty values. Then
there are 2100 possible worlds – one for each choice of values for these 100 missing
values. To make analysis of uncertain data feasible or even to store such a large
number of possible worlds, a more compact representation is needed. A variety
of uncertain data encodings have been developed that compactly represent sets
of possible worlds. We now focus our discussion exclusively on representations
of collections (sets or bags) of records. Broadly, we categorize encodings of
uncertain collection datasets into two classes: (1) Lossless encodings, which exploit
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independence properties to factorize the set of possible worlds, and (2) Sampled
encodings, which represent a finite subset of the possible worlds at the cost of
information loss.

12.3.1 Lossless, Factorized Encodings for Incomplete Data

Independence can be exploited to create compact, factorized representations of
uncertain data. For example, consider a record r1 that is present in exactly
half of the possible worlds of D, where the remaining possible worlds (modulo
r1) are identical. Writing D′ to denote the possible worlds without r1 (D′ =
{ D | D ∈ D, r1 �∈ D }), we can call record r1 independent iff

D = D′ ∪ { {r1} ∪D′
∣
∣ D′ ∈ D′

}

Intuitively, the above condition checks that the choice of including r1 or not has
no effect on the inclusion of any the other possible records. A natural consequence
of r1’s independence is that the possible worlds encoding of D need to store two full
copies of D′. Lossless encodings exploit such redundancy caused by independence
to create more compact representations where this redundancy is factorized out.
We will outline three lossless encodings: Tuple-Independent Databases, Disjoint-
Independent Databases, and C-Tables, each a more expressive generalization of the
previous one. For instance, in our running example, the record encoding that Peter’s
loan is granted appears in both possible worlds while Alice’s record, even though
it also appears in both possible worlds, occurs with different ownsProperty
values. Based on this observation a more compact representation of D1 and D2
from our running example is as a single database containing both Peter’s and Alice’s
record, but to record separately that there are two options (yes and no) for the
ownsProperty attribute value for Alice’s record.

12.3.1.1 Tuple-Independent Databases

We first consider an encoding that is only applicable if the following simple, but
strong condition holds: all records are independent of one another. An incomplete
database that satisfies this constraint is called a tuple-independent incomplete
database [4, 40]. Note that tuple is the formal term used to denote records in
a database. A tuple-independent incomplete database can be represented as a
collection of records DT I ∈ dom(r) × B, where each record is annotated with a
boolean attribute that indicates whether (or not) it is certain. Note that here dom(r)
denotes the domain of records, i.e., the set of all possible records. That is:

certain(DT I ) = { r | 〈 r, T RUE 〉 ∈ DT I }

possible(DT I ) = { r | 〈 r, FALSE 〉 ∈ DT I }
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The incomplete database D represented by DT I is defined as the set of all databases
that are subsets of the set of all possible records and supersets of the set of certain
records.

D = { D | D ⊆ possible(DT I ) ∧D ⊇ certain(DT I ) }

The second requirement (D ⊇ certain(DT I )) is based on the fact that certain
records appear in every possible world. Thus, any possible world represented by
DT I is a superset of the set of certain records as well.

Note that this type of factorization cannot be used to compress the incomplete
database from our running example, because the two versions of Alice’s record are
not independent of each other (a possible world including the tuple recording that
Alice owns property cannot also contain the tuple recording that Alice does not own
property).

Example 7 To illustrate tuple-independent databases consider a modified version
of our running example where Alice’s record only exists if she owns property. This
modified version of our running example can be represented as a tuple-independent
incomplete database (Peter’s record is certain while the tuple storing that Alice does
own property is only possible) as shown below:

SSN name grantLoan isCertain

777-777-7777 Alice Alison yes _

111-111-1111 Peter Peterson yes TRUE

When using probabilities, we make a similar assumption that the probabilities
of individual tuples are independent. Accordingly, for any probabilistic database
〈 D, P 〉 fulfilling this condition, we can define a tuple-independent encoding
DT IP ∈ dom(r) × [0, 1] by annotating each tuple with its probability instead of
a boolean value:

DT IP = { 〈 r, P (r ∈ D) 〉 | r ∈ possible(DT I ) }

In the probabilistic representation, certain answers are those records with a proba-
bility of 1, and possible answers are any records with a nonzero probability.

certain(DT IP ) = { r | 〈 r, 1.0 〉 ∈ DT IP }

possible(DT IP ) = { r | 〈 r, p 〉 ∈ DT IP ∧ (p > 0) }

Observe that a tuple-independent incomplete or probabilistic database with n tuples
represents up to 2n possible worlds: for each tuple we can either choose the tuple
to be included in the possible world or not and all these choices are independent of
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each other. There are n boolean decisions resulting in 2n possible options. That is,
a tuple-independent incomplete or probabilistic database can be exponentially more
concise than its possible world representation.

12.3.1.2 Disjoint-Independent Databases

The tuple-independent model assumes that records are entirely independent but
says nothing about the contents of those records. It is assumed that each record
is identical in all possible worlds where it appears. The disjoint-independent model
of incomplete databases (sometimes called x-tuples) generalizes tuple-independent
databases by allowing a record to take multiple forms in different possible worlds.
Under this model, an x-tuple r is simply a set of records { r1, . . . , rN } called its
instantiations. We say that r is disjoint-independent in database D iff we can define
a subset of the possible worlds D′ = { D | (D ∈ D) ∧ (r ∩D = ∅) } that do not
contain elements of r, such that D can be defined as the cartesian product of r and
D′. That is, r is disjoint independent if:

D = { D ∪ {r} ∣∣ D ∈ D′ ∧ r ∈ r
}

or D = { D ∪ {r} ∣∣ D ∈ D′ ∧ r ∈ r
} ∪D′

Note the two definitions: In the former case, some instantiation of r appears in
all possible worlds, while in the latter some set of possible worlds D′ do not
contain any instantiation of r. Accordingly, in the former case r is certain, while
in the latter it is merely possible. Note that if an x-tuple r is certain in a disjoint-
independent database, this x-tuple may have different values in different possible
worlds. Applying our previous definition of certainty which requires that a record r
appears in all possible worlds to disjoint-independent databases, a record r is certain
if there exists an x-tuple r = {r}.

Observe that disjoint-independent databases generalize tuple-independent
databases in the following sense, a tuple-independent database can be modeled as a
disjoint-independent database where each x-tuple has a single instantiation r = {r}
for certain records and r = {r,⊥} for records that are not certain. However, the
opposite direction does not hold, and there are disjoint-independent databases that
cannot be represented as tuple-independent incomplete databases, e.g., a database
with two possible worlds D1 = {r1} and D2 = {r2} where r1 �= r2 can be encoded
using a single x-tuple r = {r1, r2}. However, this incomplete database cannot be
encoded as a tuple-independent database.

As before, we define an encoding DDI ∈ 22dom(r)∪{⊥} for any database known
to contain exclusively disjoint-independent records. Specifically, the encoding is
a collection of x-tuples (sets of records). The presence of a special distinguished
value ⊥ in an x-tuple indicates that the x-tuple is not certain. Hence, the incomplete
database D corresponding to DDI is defined as follows (using

∏
to denote a

cartesian product of sets).
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D =
∏

r∈DDI

{
r̂ | r ∈ r

}
where r̂ =

{
{} if r = ⊥
{r} otherwise

Example 8 Our original running example database can be encoded as a disjoint-
independent database as shown below consisting of two x-tuples r1 and r2 where
r1 (Peter’s record) is certain and has one instantiation r11 while r2 has two
instantiations (Alice owns property or not) r21 and r22 :

record instantiation SSN name grantLoan

r1 r11 111-111-1111 Peter Peterson yes

r2
r21 777-777-7777 Alice Alison yes

r22 777-777-7777 Alice Alison no

The disjoint-independent encoding of incomplete databases can be extended to
also support probabilistic databases. A disjoint-independent probabilistic database
DDIP : 22dom(r) → (2dom(r) → [0, 1]) is a function that map every possible x-
tuple r (a subset of dom(r)) to a probability mass function over r (a function
associating a probability from [0, 1] with individual instantiations of x-tuple r ).
Note that this does not mean that we require that every possible x-tuple r exists.
For nonexisting x-tuples, we would set the probability of all of its instantiations
ri to 0. While the domain dom(r) of the function DDIP that encodes a disjoint-
independent probabilistic database may be infinite, DDIP is finitely representable
as long as each possible world is finite, which is a typically assumed to be the case.
A finite representation is achieved by only recording the output of function DDIP

for input records with a total probability mass larger than 0. We use pr to denote
the probability distribution associated by DDIP to an x-tuple r, i.e., pr = DDIP (r).
Observe that, we have eliminated the need for a distinguished element ⊥ to denote
the x-tuple’s absence by allowing its probability mass function to sum to less than
1. That is, we define:

P [r ∈ D] =
∑

r∈r

pr(r) and P [r = r] = pr(r)

These probability mass functions give us natural definitions for both certain and
possible records:

certain(DDIP ) =
{

r

∣
∣
∣
∣
∣

∑

r∈r

pr(r) = 1

}

possible(DDIP ) =
{

r

∣
∣
∣
∣
∣

∑

r∈r

pr(r) > 0

}
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Again, for a record r to be certain in the sense we defined for possible world
semantics, the singleton r = {r} has to be mapped to the probability distribution
pr(r) = 1 by DDIP .2 While the representation of an incomplete database as a
tuple-independent database is unique, this does not hold for disjoint-independent
database since the same instantiation may occur in different tuples.

12.3.1.3 C-Tables

Like the tuple-independent model, the disjoint-independent model cannot capture
arbitrary correlations between records. Originally proposed by Imielinski and
Lipski, the C-Tables model [21] allows incomplete databases to be factorized,
without requiring that their records be independent or otherwise uncorrelated. We
use V to denote an alphabet of variable symbols v ∈ V. A C-Tables DC is a
collection of records 〈 r, fr (v1, . . . , vN) 〉 ∈ DC , where every record r is annotated
with a boolean expression fr over variables v1 . . . vN ∈ V. This expression is
sometimes termed a local condition. The set of possible worlds defined by a C-table
is based on assignments α : V → B of boolean values to each variable. We use A
to denote the set of all such assignments. Specifically, for each assignment α ∈ A,
there exists a possible world Dα defined by this assignment as the set of records
in DC that are annotated with an expression that evaluates to true after replacing
variables with their values assigned by α.

Dα = { r | 〈 r, fr (v1, . . . , vN) 〉 ∈ DC ∧ f (α(v1), . . . α(vN)) }

Given some boolean expression F(v1, . . . , vK), termed the global condition,3 the
full set of possible worlds is defined by the set of assignments that cause F to
evaluate to true:

D = { Dα | α ∈ A ∧ F(α(v1), . . . , α(vK)) }

C-tables are more expressive than the tuple-independent and disjoint-independent
databases. In fact, any finite set of possible worlds can be encoded as a C-table.4

2The reader may wonder whether it is possible to encode a certain record r as multiple x-tuples
that all have r as an instantiation and where for each such x-tuple r, we have pr(r) < 1. However,
recall that x-tuples are assumed to be independent of each other. Thus, there would exist a possible
world with a nonzero probability that does not contain r constructed by choosing an instantiation
r ′ �= r or no instantiation for every x-tuple r with r ∈ r.
3Note that global conditions are not strictly necessary for expressive power, but they may allow for
a more compact/convenient representation of a probabilistic database.
4Consider an incomplete database D with 2n possible worlds D1 . . .D2n . (the construction has to
be modified slightly if the number of possible worlds is not a power of 2). Then we use n variables:
v1, . . . , vn. An assignment to these variables is interpreted as a number i in binary identifying
one possible world Di . For example, if there are 4 = 22 possible worlds, then we would use
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Probabilistic C-Tables This representation admits a straightforward extension to
the probabilistic case, originally proposed by Green et al. [16]. This approach
defines a probability distribution P : A→ [0, 1] over the space of assignments.5 A
probabilistic C-Table (or PC-Table) is defined as a pair of database and probability
distribution DPC = 〈 DC, P 〉. Hence, the probability of a database and record can
be defined as typical for possible worlds semantics:

P [Dα ∈ 〈 DC, P 〉] = P(ν) P [r ∈ 〈 DC, P 〉] =
∑

α∈A:r∈Dα
P (α)

The distribution P can be encoded using any standard approach for compactly
encoding multivariate distributions, such as a graphical model [34].

Example 9 Continuing the running example, we can model the analysis result as
a C-Table. There is one uncertain decision that affects the set of possible worlds:
Whether or not Alice owns property. We define a single boolean variable v1 to
denote the outcome of this decision. Records in the C-Table encoding the result
are annotated with boolean expressions φ over V = { v1 }:

Query Result (Simple C-Table)

SSN name grantLoan φ

777-777-7777 Alice Alison no v1

777-777-7777 Alice Alison yes ¬v1

111-111-1111 Peter Peterson yes T

The two possible assignments { v1 %→ T } and { v1 %→ F } define the two
possible worlds. A separately provided (joint) distribution over the variable(s) in V

assigns a probability to each possible world.

p(α) =
{

0.6 if α = { v1 %→ T }
0.4 if α = { v1 %→ F }

Each possible world contains only records with boolean expressions that are true
under the corresponding assignment. Hence the first two rows (with conditions v1
and ¬v1, respectively) are mutually exclusive.

two variables v1 and v2, and the assignment v1 %→ T and v2 %→ F represents the possible world
1 · 21 + 0 · 20 = 2. The database constructed contains all records that are possible in D. For an
assignment α, let n(α) denote the number encoded by α. Then the local condition for record r is∨

α:r∈Dn(α)

∧

j :α(vj )=T
vj .

5Note that [16] used per variable distributions which is less general.
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Non-Boolean Variables and Assignments For C-Tables to efficiently model a
disjoint-independent database, it is necessary to create local conditions that alternate
between mutually exclusive options. Such conditions can be modeled with boolean
formulas, as in Example 9.6 However, it is often both convenient and more efficient
to express alternatives with a single integer- or real-valued variable. In this form,
records are still annotated with boolean expressions, albeit over comparisons (=,<,
≤, etc. . . ) over variables.

Example 10 Continuing the example, we could express the same result using
integer-valued variables. The result C-Table and corresponding distribution are as
follows:

Query Result (Integer-Valuation C-Table)

SSN name grantLoan φ

777-777-7777 Alice Alison no (v1 = 1)
p(α) =

{
0.6 if α = { v1 %→ 1 }
0.4 if α = { v1 %→ 2 }777-777-7777 Alice Alison yes (v1 = 2)

111-111-1111 Peter Peterson yes T

Taking the process even further, we can replace attributes with placeholders (often
called “labeled” nulls or Skolem terms) indicating that their value is to be given by
the valuation. The result is an even more compact representation, as records that
were previously conditionally in the result can now be treated as certain.

Example 11 Having two assignments with nonzero probability, { v1 %→ ′no′ } and
{ v1 %→ ′yes′ }, we can replace the result C-table as follows:

Query Result (General C-Table)

SSN name grantLoan φ

777-777-7777 Alice Alison v1 T
111-111-1111 Peter Peterson yes T

Observe that the grantLoan attribute of Alice’s record has been replaced by
a placeholder. This value gets filled in by the assignment that defines each possible
world.

This generalized form of assignments and the use of variable-valued attributes
were originally proposed by Imielinski and Lipski as part of the original C-Tables
formalism [21]. It has been used successfully by several systems, most notably
ORCHESTRA [18, 22] and Pip [26]. In fact, as we will discuss in Sect. 17, Pip [26]

6Note that more than two options can be modeled by multiple boolean variables. For example,
four alternatives can be modeled with annotations v1 ∧ v2, ¬v1 ∧ v2, v1 ∧ ¬v2, and ¬v1 ∧ ¬v2,
respectively.
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further generalizes this model by allowing symbolic expressions (formulas) over
variables as attribute values.

12.3.1.4 U-Relations and World-Set Decompositions

Antova et al. proposed a more backward-compatible implementation of C-Tables
called U-Relations [20]. A U-Relation is a database table that encodes a C-
Table under the following restrictions: (1) No variable-valued attributes. (2) Local
conditions must be pure conjunctions. (3) Atoms of local conditions must be
equality comparisons between a variable and a value. To support arbitrary Boolean
expressions, multiple copies of a record are allowed in the U-Relation, each
annotated by a different local condition. When the full expression is needed, copies
of each record are grouped and their local conditions are combined by disjunction
(into disjunctive normal form).

To encode a U-Relation in a classical relational database, we first determine the
maximal number of conjunctive clauses in any record. We then add twice as many
integer-valued annotation fields to the record. Half are used to identify variables,
while the other half identify the values.

Example 12 To encode the C-Table from Example 10, we would first see that there
is at most one conjunctive atom in any local condition in the record. We add two
new annotation attributes to the record: var1 identifying the variable and val1
identifying the corresponding value in the equality.

Query Result (U-Relation)

SSN name grantLoan var1 val1

777-777-7777 Alice Alison no 1 1

777-777-7777 Alice Alison yes 1 2

111-111-1111 Peter Peterson yes 0 0

The special variable v0 is always equal to 0, so unused fields can be filled in by
the tautological expression v0 = 0, as in the third row of the U-Relation.

World-Set Decompositions Without variable-valued attributes, U-Relations intro-
duce significant redundancy as attributes that do not vary between possible worlds
are still repeated. To mitigate this redundancy, Antova et al. propose [3] using a
columnar data layout [38] in a strategy that they call world-set decompositions.
Specifically, each record is assigned a unique identifier (e.g., a key attribute or
database ROWID), while columns are stored independently.

Example 13 Using world-set decompositions with SSN as a row identifier, the
query result from the prior example would be decomposed into two separate tables:

Observe that there is no uncertainty in the decomposed Name table, and there are
no longer two copies of Alice’s name being stored.
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Query Result.Name

SSN name

777-777-7777 Alice Alison

111-111-1111 Peter Peterson

Query Result.grantLoan

SSN grantLoan var1 val1

777-777-7777 no 1 1

777-777-7777 yes 1 2

111-111-1111 yes 0 0

12.3.2 Lossy, Sampling-Based Encodings for Incomplete Data

Certain types of analysis – what are called unsafe queries [7] – cannot be performed
both efficiently and correctly on lossless encodings of probabilistic data. In such
cases, results can be approximated by using Monte-Carlo methods. The most
straightforward way to accomplish this is to select some finite set of samples D̂ ⊂ D
from the set of possible worlds, uniformly for incomplete databases or according to
P(D = D) for probabilistic databases. Analytical questions are evaluated in parallel
on all possible worlds from the sample set:

Q̂(D) =
{
Q(D)

∣
∣
∣ D ∈ D̂

}

Because of the sampling process, sampling-based encodings do not distinguish
between incomplete and probabilistic databases. However, we observe that many
statistical measures that might be computed over the set of results (e.g., the expec-
tation) have no meaning for incomplete databases. We introduce two approaches
to encoding sets of samples: (1) World-Annotated databases, which admit a more
computationally efficient implementation using classical relational databases, and
(2) Tuple Bundles, which encode uncertain data more compactly.

Note that both certain and possible are ill defined on samples. By definition the
certain records are a subset of records across all samples, and the possible records
are a superset.

certain(D̂) ⊆
⋂

D∈D̂
D possible(D̂) ⊆

⋃

D∈D̂
D

However, these are only bounds on the sets of certain and possible records.

12.3.2.1 World-Annotated Sample Sets

To store a set of N samples, our first, naive approach creates a single database
DWA ∈ dom(r) × [1, N ], annotating each record with the index of the sample it
appears in. Accordingly, the sample set is defined by demultiplexing the records.

D̂ = { { r | 〈 r, i 〉 ∈ DWA } | i ∈ [1, N] }
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12.3.2.2 Tuple Bundles

The size of DWA is generally linear in the number of samples (i.e., O(N)).
Unsurprisingly, the computational cost of analysis typically scales linearly as well.
As with lossless encodings, eliminating redundancy can create more compact and
efficient representations. One approach to eliminating redundancy is a type of record
called a tuple bundle, originally proposed by Jampani et al. [23]. We assume that a
record r = 〈 a1, . . . , aK 〉 is defined by k attribute values ai . Accordingly, a tuple
bundle r = 〈 a1, . . . , aK, φ 〉 is defined by a set of attributes aj and a sample-vector
φ. Each attribute may either be a single value or a vector of size N .

aj =
{
aj
〈
a1,j , . . . , aN,j

〉

In the first case, the value aj is constant across all samples, while the latter case
defines explicit values for the attribute ai,j in each sample. The sample vector
φ ∈ B

N is a vector of B boolean values (bits) φ[i]. Bit j being set to true (resp.,
false) indicates that the record is present in (resp., absent from) sample j . The
corresponding sample set is defined by filtering on φ and plugging in attribute
values.

D̂ = { { 〈 ai,1, . . . ai,K
〉 | (〈 a1, . . . , aK, φ 〉 ∈ DT B) ∧ φ[i]

} | i ∈ [1, N ] }

where ai,j =
{
aj if aj = aj
ai,j otherwise

12.4 Computing with Uncertain Tabular Data

Assume that we are given an encoding D (resp., DP ) that corresponds to an
incomplete (resp., probabilistic) database D (resp., 〈 D, P 〉). We want to compute
the answer to a question Q(D). However, answering this question directly on D
using possible worlds semantics is impractical, as the number of worlds is usually
large. In this section we discuss techniques for computing answers more efficiently
by directly manipulating the encodings D.

12.4.1 Relational Algebra

Queries over tabular data are expressed through a range of different languages:
SQL, SparQL, R, Spark, and others. To streamline our discussion, we focus on
a tabular data processing language called relational algebra. Relational algebra
is comparatively straightforward to reason about and also captures the core data
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Operator Notation SQL
Table R [ ] * R;

Projection πA,B,...(R) A, B,... R;
Selection σψ(R) * R ψ;
Product R × S * R, S;

Union R ∪ S * R [ ] * S;

Aggregate γA,...,M←αM ,...(R) A, ...,αM M, ...
R A, ...;

Fig. 12.3 Relational algebra

manipulation functionality of each of these other languages. Before we discuss
evaluation techniques for uncertain data, we first present a short overview of normal
relational algebra.7 We then introduce strategies for evaluating relational algebra
expressions over encoded uncertain databases. We follow the focus on probabilistic
databases exhibited by most of the work on uncertain databases but also note when
probabilistic techniques apply to incomplete databases as well. We also focus on
lossless encodings, as query evaluation over lossy encodings is a straightforward
extension of classical query evaluation [23].

Relational algebra concerns itself with sets (resp., bags) of records called tables
(R, S, T , . . . ). An individual record r ∈ R is a set of attribute/value pairs
r = 〈 A : vA, B : vB, . . . 〉, and we assume that all records in a table have identical
sets of attributes. We refer to this set of attributes as the table’s schema sch(R).
Relational algebra, as we use it, defines six operators, summarized in Fig. 12.3:
Input Tables, Projection, Selection, Product, Union, and Aggregation. Apart from
the table operator, each operator takes the output of one or more other operators
as input and produces an output that may be saved as a table or passed to another
operator. Hence, operators can be linked together to express complex computations.

Projection transforms each record of its input, producing records with attributes
given by a set of target columns (A,B, . . .). When working with sets, projection
also ensures that the output is free of duplicates.

Selection filters its input down to records that satisfy the condition ψ .
Product pairs every record in one of its inputs with every record in the other. The

combination of Selection and Product operators (σψ(R × S)) is often called a
Join (R &'ψ S]).

Union merges records from two input tables. If working with sets, Union also
ensures that there are no duplicates in the outputs.

(Group-By) Aggregation creates groups of records according to a list of attributes
(A,B, . . .). Records in each group are summarized by one or more aggregate
functions (αi ∈ { SUM, COUNT, AVG, MIN, . . .}), and one record per group is
returned. If no grouping attributes are given, aggregation treats its entire input as
a single group.

7For a more thorough introduction, we refer the interested reader to a textbook by Garcia-Molina
et al. [14].
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Original Operator Probabilistic Implementation
πA,B,...(R) A, B, ..., 1 - PROD(1-φ) R A, B, ...;

σψ(R) * R ψ;

R × S *, R.φ * S.φ φ R, S;

R ∪ S
*, 1 - PROD(1-φ) (

* R * S
) *;

Fig. 12.4 Extensional evaluation implemented in SQL

12.4.2 Extensional Evaluation

We first consider the tuple-independent model [4, 39, 40]. Recall that a tuple-
independent probabilistic database is encoded by annotating each record with an
extra field φ ∈ [0, 1] denoting the independent probability of this record being in any
given possible world. Naively, we might try modifying relational algebra operators
to preserve these annotations, a strategy called “Extensional” evaluation [39, 40] of
relational algebra. That is, for each operator, we define an evaluation strategy that
ensures that each output row is annotated with the independent probability of the
result. Figure 12.4 illustrates this strategy for queries evaluated over sets. We next
discuss these operators – we omit Aggregation for the moment.

Projection For projection, we eliminate duplicate rows using a group-by query.
Each resulting record exists if any records that share projection attributes
exist. Assuming that each row in the input is independent, the corresponding
probability is a disjunction of independent events (1−(1−p(t1))·(1−p(t2))·. . .)

Selection Selection has no impact on probabilities of records. Records that are
filtered out are excluded from the result regardless of their probability. Records
that are not filtered out appear in the result with their original probabilities.

Product For a row to appear in the output of a product, it must have resulted
from one row in each of the product’s inputs. Assuming that the inputs are
independent, the probability of each output row can be computed as a conjunction
of two independent events (p(t1) · p(t2)).

Union Union itself does not affect the probability of its inputs. However, during
duplicate removal, union may need to merge record probabilities. It does this in
the same way as during duplicate removal for projection.

Modifying a relational algebra expression to maintain the probability annotation
attribute φ through extensional evaluation adds minimal computational overhead.
However, extensional evaluation has several serious limitations that all stem from
its use of the tuple-independent model to represent state in between operators.
First, the tuple-independent model cannot efficiently represent the outputs of the
aggregate operator: The size of the output grows exponentially with the size of the
input. Second, even if the input to a relational algebra expression is independent, the
expression may introduce correlations between rows of output.
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Example 14 Continuing our running example, consider the loan approval table
and another table of homes available for purchase scraped from websites and
government records. Scraping is an imprecise process, and the record at 45 Bassett
may not actually represent a home available for purchase.

possible(forSale)

address price φ

123 Acacia 200k 1.0

45 Bassett 150k 0.9

possible(Q(D) × forSale)

SSN name grantLoan address price φ

777-777-7777 Alice Alison yes 123 Acacia 200k 0.4

777-777-7777 Alice Alison yes 45 Bassett 150k 0.36

777-777-7777 Alice Alison no 123 Acacia 200k 0.6

777-777-7777 Alice Alison no 45 Bassett 150k 0.54

111-111-1111 Peter Peterson yes 123 Acacia 200k 1.0

111-111-1111 Peter Peterson yes 45 Bassett 150k 0.9

Consider the product of this new table with the result table from our running
example (obtained via Extensional evaluation). There are two types of correlations
in the result records. The presence of the second, fourth, and sixth possible records
depends on whether or not the record for 45 Bassett is present in forSale.
Meanwhile the first two records must always appear together and are mutually
exclusive with the third and fourth result records. The records are not independent,
and the measure φ annotating each record can no longer be used to compute the
probability of worlds containing the record. Note, however, that for this example
the probabilities annotating each record do correspond to the marginal probability
of that record being in the result.

Relational algebra introduces correlations, and program outputs are not guar-
anteed to be tuple-independent. Thus, it is possible that the resulting probability
annotations will be meaningless. Fortunately that is not always the case. Dalvi
and Suciu identified a particular class of relational algebra expressions termed
“safe” [7, 39], as well as a procedure for (1) rewriting expressions into equivalent
safe forms or (2) determining that there is no equivalent safe expression. When a
safe expression is evaluated using the extensional rules, every output record will
be annotated with the record’s confidence (marginal probability of being in the
result). Extensional evaluation also has value for unsafe expressions. As shown by
Gatterbauer and Suciu [15], extensional evaluation can be used to establish bounds
on the actual confidence values.
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12.4.3 Intensional Evaluation

For computing with unsafe relational algebra expressions, we need an evalua-
tion strategy that takes into account potential inter-row correlations. Our next
approach, called “Intensional” evaluation, uses C-Tables as an underlying data
representation. Recall that records in C-Tables are annotated with a boolean formula
(fr(v1, . . . , vN)), parameterized by variable symbols (vi). Possible worlds are
defined by assignments of values to variables; Records are included in a result in
worlds that assign values that satisfy the boolean expression.

Intensional query evaluation [21, 39] is closely related [17] to the provenance
(i.e., lineage or pedigree) of query answers. Under intentional evaluation, each
operator annotates output records with the conditions that need to hold on the
assignment for the record to be in the result. Hence, correlations are explicitly
captured in the query results as variables that appear repeatedly in a formula or
across the annotations of multiple records.

For Intensional evaluation (a possible implementation is shown in Fig. 12.5),
operators follow a virtually identical pattern to extensional evaluation, except that
the resulting annotation φ is a boolean formula. In the probabilistic database
literature, this type of formula is often called Lineage. Once the result is computed,
the problem of computing marginal probabilities becomes one of simple inference.
For each tuple, we are given boolean formula and a distribution over binary variables
appearing in the formula. We need to compute the marginal probability of this
boolean formula being true.8

The problem of inference has been well studied in the general context [28]. The
specific problem of computing marginals under constraints belongs to the general
problem of counting solutions to boolean formulas. Exact solutions are exponential
in the size of the input (complexity class #P [33]), and numerous approximation
schemes have been developed. However, probabilistic databases admit several
specializations of general techniques. We next discuss several of these.

Original Operator Probabilistic Implementation
πA,B,...(R) A, B, ..., BOOLEAN_OR(φ) R A, B, ...;

σψ(R) * R ψ;

R × S *, BOOLEAN_AND(R.φ, S.φ) φ R, S;

R ∪ S
*, BOOLEAN_OR(φ) (

* R * S
) *;

Fig. 12.5 Intensional evaluation implemented in SQL

8Observe that a binary version of this problem can be applied in the case of incomplete databases.
A tuple is certain if its local condition is implied by the global condition.
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KLM Estimators It is well known that any relational algebra expression which
exclusively uses the operators we have introduced here can be rewritten into a
normal form which consists of a union of conjunctive queries (or UCQ for short).
A conjunctive query (CQ) is a query without union which consists of a projection
over the result of a selection which in turn is applied to the result of zero or more
cross-products. After such a rewriting, it is trivial to see that Boolean formulas
annotating results are guaranteed to be in disjunctive normal form, because the final
union will connect the formulas produced by individual CQs through OR, while
the formulas produced by a CQ are conjunctions (hence the name). As observed by
Olteanu et al. [32], this makes a form of Gibbs sampling proposed by Karp, Luby,
and Madras [24] ideal for probabilistic databases. The KLM scheme begins with a
disjunction C1 ∨ C2 ∨ . . . ∨ CN of conjunctive clauses Ci . It initially assumes that
each conjunctive clause is disjoint:

p(C1 ∨ C2 ∨ . . . ∨ CN) = p(C1)+ p(C2)+ . . .+ p(CN)

This assumption is an overestimate, as variable assignments that satisfy two (or
more) of the conjunctive clauses are counted twice (or more). The scheme then
attempts to derive a corrective factor by repeatedly sampling clauses at random
and computing the expected number of clauses that a satisfying assignment for
the clause would also satisfy. An approach by Dagum et al. [6] improves on this
approach by bounding the number of samples required to estimate record confidence
within desired ε − δ bounds.

Anytime Approximation Another distinction to be found in this setting is that data
analytics are often interactive processes. The process of approximating confidence
values can also be made interactive, allowing the analyst to decide on-the-fly when
a result is “accurate enough” before terminating the process. One such approach,
proposed by Olteanu et al. [13], alternates between using an approximate estimator
like KLM and repeated refinement of the Boolean formula toward one consisting
exclusively of disjoint clauses through Shannon expansion. Given enough time, this
approach eventually converges to an exact value for a record’s confidence.

Top-K Estimation One particular specialization of probabilistic databases that
is of interest is finding the most likely records in the output of a relational
algebra expression [30, 35]. For example, given uncertain inputs describing existing
findings of protein-protein interactions, we might wish to predict other likely
interactions [10]. In general, this problem can be framed as the task of finding
the K most probable records (the Top-K records) from the result. In this case,
our computational job is easier, as exact probabilities are not required. We only
need a sufficient approximation of each probability to decide whether the record
belongs in the Top-K or not. One family of approaches proposes using early
cutoffs in approximations [35, 37]. A related approach by Gatterbauer and Suciu
uses intensional evaluation to establish bounds on the probability of a record [15],
allowing for early cutoffs as well. A final approach by Li et al. [30] attacks a further
specialization aiming at the “best” results. Here, the notion of “best” is formalized



268 O. Kennedy and B. Glavic

by one of several different strategies for combining a user-provided ranking function
over result records with the probability of records being in the result.

Attribute-Level Uncertainty Thus far, most of our discussions have centered
around record-level uncertainty: the presence of a specific record with a specific
set of attribute/value pairs in the result set. However in many situations, it is not the
record that is uncertain but rather one of the values of an attribute of that record. For
example, when computing an aggregate over an incomplete or probabilistic table,
aggregate values are likely to be uncertain, while the groups to which they belong
need not be. Although most work on probabilistic databases focuses on record-
level uncertainty, several efforts have attempted to encode uncertainty appearing in
attributes. The original Imielinski and Lipski formalization of C-Tables [21] allows
variable symbols to appear in place of values in tabular data – variable assignments
with non-boolean values as well are used to assign values to these variables. Notably,
this means that selection can modify the formula annotating selected records. Singh
et al. [36] allows attributes to take values defined by normal distributions. Antova
et al. [3] propose a strategy that fragments records in tables, replacing the table with
a set of tables, one per field. Finally, Kennedy et al. [25] builds on the C-Tables
formulation to construct formulas for the values of uncertain attribute fields, which
can be evaluated after variables are replaced by an assignment.

12.4.4 Virtual C-Tables

A recently proposed evaluation strategy based on C-Tables instead virtualizes
uncertainty. This approach uses a generalization of C-Tables called Virtual C-Tables
(or VC-Tables for short). We first introduce this generalization and then explain the
evaluation strategy that utilizes it.

Recall that in a C-Table, the attribute values of a tuple are constants or variables
from a set V and the local condition of a tuple is a boolean formula over comparisons
between variables and constants. While C-Tables are quite powerful, there still exist
operators whose result are complicated or impossible to express as C-tables.

Example 15 Assume we want to require customers to pay an application fee for
every loan application they make that is 1% of the requested loan amount and that
we want to automatically accept loan applications if this fee is higher than $10,000.
Using the applications table (attributes SSN and loanAmount), we can determine
the set of loans that will be automatically approved as follows:

SELECT SSN, loanAmount, loanAmount * 0.01 AS fee
FROM applications
WHERE loanAmount * 0.01 > 10000.0;

Consider the C-Table applications shown below where we do not know what the
loan amount for the customer with SSN 111-777-2222 which is encoded by setting
the value of attribute loanAmount for this record to a variable, say v1.
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SSN loanAmount φ

777-777-7777 200,000 T
111-777-2222 v1 T

The loan for the customer with SSN 111-777-2222 will be automatically
approved if v1 ∗ 0.01 (the fee) is larger than $10,000. In this case the fee attribute of
the result record has to be set of v1∗0.01. This correlation between the loanAmount
and fee attribute is hard to express in a standard C-Table since there is no support
for arithmetic operations. In fact, it can only be represented if the domain of the
loanAmount is finite. In this case, we would have to represent each possible
loanAmount and fee pair that fulfills the condition as a separate tuple. Some of
these tuples are shown below.

SSN loanAmount fee φ

111-777-2222 1,000,001 10,000.01 v1 = 1, 000, 001

111-777-2222 1,000,002 10,000.02 v1 = 1, 000, 002

111-777-2222 1,000,003 10,000.03 v1 = 1, 000, 003

. . . . . . . . . . . .

VC-Tables overcome this limitation of C-Tables by allowing attribute values and
inputs to comparisons in local and global conditions to be symbolic expressions
using arithmetic operators, conditionals (if-then-else), constants, and variables.
Possible worlds are still defined over variable assignments. The only difference is
that the attribute values of a tuple in a possible world are determined by evaluating
the symbolic expressions of the tuple under the assignment α corresponding to the
possible world. For details of the formal definition of these expressions, see [26, 41].

Example 16 Continuing with the previous example, we can compactly represent
the query result as a VC-Table as follows:

SSN loanAmount fee φ

111-777-2222 v1 v1 ∗ 0.01 v1 ∗ 0.01 > 10000

For example, for the assignment v1 = 1,500,000, we get the possible world:

SSN loanAmount fee

111-777-2222 1,500,000 15,000

We can extend VC-Tables to support probabilistic databases by defining a
probability distribution over possible variable assignments.
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Having introduced VC-Tables, we now explain how the Mimir PQP middle-
ware [31, 41] uses such encodings to virtualizes PQP. Mimir rewrites probabilistic
queries into deterministic queries over a deterministic encoding of uncertain data
such that the rewritten queries faithfully preserve the semantics of the probabilistic
queries. To accomplish this, Mimir uses an extended form of relational algebra
called variable-generating relational algebra or VG-RA [25].

Using VG-RA, uncertainty is introduced into deterministic data through queries.
A VG-RA expression defines VC-Tables by allowing expressions to generate
variable symbols through special functions called variable generating or VG-Terms.
A VG-Term denoted VG(·) can appear in any boolean or arithmetic expression
in any Project, Select, or Aggregate operator in a VG-RA query. The input of a
VG-Term controls the name of the variable generated by VG-RA for a given input
record. For instance, a VG-Term VG(name) would return a unique variable for
each name attribute value from the input of the operator where the VG-Term is
used. The result of a VG-RA expression is an incomplete database – a VC-Table.
Essentially, once a variable is introduced by a VG-Term, expressions involving this
VG-Term are evaluated symbolically. VG-RA allows the generated variables to be
associated with a (potentially joint) distribution over possible assignments (we do
not show the language constructs for this here).

Example 17 Recall the customers table from Fig. 12.1. Although this table is
missing several values, there is no uncertainty about this fact. Mimir allows users to
create a cleaned “view” over the data; For the customers table, Mimir would use
the following query:

SELECT SSN, name, assets, numMortgages,
CASE WHEN income IS NULL THEN VG(’income’, RID)

ELSE income END AS income,
CASE WHEN ownsProperty IS NULL THEN VG(’ownsProperty’, RID)

ELSE ownsProperty END AS ownsProperty
FROM customers;

For each of the two attributes with missing values, Mimir replaces NULL by using
the SQL fragment

CASE WHEN x IS NULL THEN VG(’x’, RID) ELSE x

If the value is present, the fragment leaves it unchanged. If it is NULL, the fragment
replaces it with a variable created by the VG Term VG(’x’, RID), where RID

uniquely identifies each row of the table. By being keyed on the attribute name,
as well as a unique row identifier, one fresh variable is instantiated for every column
and row. Independently, Mimir trains a model on the same data, uses interpolation,
or any other imputation technique. The resulting models are then linked to the new
variables. For instance, omitting the probability distributions over assignments, the
result of the query shown above over the database from Fig. 12.1 (assuming an
additional attribute RID as supported by many database systems) would be:

In most probabilistic databases, queries are assumed to be deterministic, and the
data is nondeterministic (i.e., Q(D)). Conversely, in Mimir the reverse is true, as
all uncertainty is introduced through VG-Terms (i.e., as part of Q(D)). In addition
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RID SSN name income assets numM ownsP φ

1 777-777-7777 Alice Alison $60,000 $200,000 0 v‘ownsP roperty′,1 T
2 333-333-3333 Bob Bobsen $102,000 $15,000 0 no T
3 111-111-1111 Peter Petersen v‘income′,3 $90,000 1 yes T
4 555-555-5555 Arno Arnoldson $95,000 $30,000 0 yes T

to the other benefits in terms of compact representation of the result of arithmetic
expression brought by VC-Tables, this allows an evaluation strategy to be chosen
at query time. This is important in practice since different evaluation strategies and
approximations may exhibit vastly different performances, and performance may be
affected significantly by the structure of the query that is evaluated. Thus, allowing
the strategy to be chosen per query is critical to trade performance against accuracy
of the result using the techniques introduced in this section and Sect. 12.5.

12.5 Presenting Uncertain Tabular Data

We next survey techniques for presenting uncertain tabular data to users [29],
develop a taxonomy of presentation strategies, and relate these strategies to
algorithms for computation over uncertain data. That is, we discuss techniques that
allow us to communicate to a user the set (resp., distribution) of possible worlds
represented by an incomplete database D (resp., probabilistic database 〈 D, P 〉) or
an encoding D thereof (resp., DP ).

12.5.1 Tuple Identity

We have introduced two forms of uncertainty: record-level uncertainty (is a record
part of a result or not) and attribute-level uncertainty (what is the value of a specific
attribute). There is a tension between these two forms of uncertainty: At what point
are the attributes of two records from different possible worlds sufficiently similar
to be considered the same record? If they are considered the same record, then
(with respect to the two possible worlds) we have one certain record with uncertain
attributes. Conversely, if the records are different, then we have two uncertain
records, with no uncertainty about their attributes.

To resolve this tension, different uncertainty management systems define – often
indirectly – a record identity function id(r). id(r) assigns to every record an
identifier that is unique within a possible world of the database D. The primary
role of identifiers is to gather instances of the same records from different possible
worlds while allowing the precise definition of record “sameness” to vary based on
the needs of the representation. Record identifiers allow us to define, for a particular
possible world D ∈ D, the set of identifiers appearing in the possible world. We
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refer to the set of possible worlds that contain a tuple with the same identifier as a
tuple r as the support of r and denote it as sup(r,D).

ids(D) = { id(r) | r ∈ D } sup(r,D) = { D | D ∈ D ∧ id(r) ∈ ids(D) }

The support of r , in turn, gives us definitions for possible and certain records.

r is certainly in D := [ sup(r,D) = D
]

r is possibly in D := [ |sup(r,D)| ≥ 1
]

Likewise, we can define the set of possible values of a record r’s attribute A as the
set of values of A in all records with the same identity.

possible(r[A] ∈ D) := { r ′[A] ∣∣ id(r) = id(r ′) ∧ r ′ ∈ D ∧D ∈ D
}

This in turn allows us to say that a record r’s attribute A is certain if and only if
it has exactly one possible value, or that it is bounded if its possible values satisfy
some constraint.

r[A] is certain in D := [ ∣∣possible(r[A] ∈ D)
∣
∣ = 1

]

r[A] is bounded by [�, h] in D := ∀a ∈ possible(r[A] ∈ D) : � ≤ a ≤ h

If the set of possible worlds has an associated probability measure p(D), we can
define the confidence of a record as the marginal probability over all possible worlds
with a record with the same identifier.

conf(r ∈ D) :=
∑

D∈sup(r)

p(D)

We call any subset of records S ⊆ ⋃D∈D D a summary if no pair of records in
S share an id. We call a summary complete if every identifier in D is represented.
That is, S is a complete summary of D if and only if:

S ⊆
⋃

D∈D
D ∧ ∀r1 �= r2 ∈ S : id(r1) �= id(r2) ∧ ids(S) =

⋃

D∈D
ids(D)

12.5.2 Compact Encodings of Possible Worlds

With this terminology in place, we are now ready to describe the space of the
representational schemes used by existing uncertain and probabilistic database
systems. A specific representation is the result of three categories of representational
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Alg. Family Example Systems Equivalence Filtering Statistics
Monte Carlo MCDB [23], Jigsaw [27] Implicit Samples Agg, Conf.

Chase Data Exchange [11] Set Certain None

Local Condition
MayBMS [3, 20],
Orchestra [18, 22]

Set Possible Enum, Conf.

Pruning
Top-K [37],

Dissociation [15]
Set Top-K Post. None

PC-Tables PIP [26], Orion [36] Implicit Possible Agg, Enum, Conf
VC-Tables Mimir [41, 31] Implicit Best Guess Taint, Top-K Prior

Model Velox [5], MauveDB [9] Implicit Possible Conf

Fig. 12.6 PQP systems in terms of the representational semantics used to communicate uncertain
tables

features: (1) Equivalence or how the scheme decides which tuples to place in a
specific tuple group, (2) Filtering or what subset of the complete summary relation
the scheme incorporates, (3) Statistics or how the scheme summarizes properties of
each tuple group. When appropriate, we also distinguish between tuple-level and
attribute-level statistics. Figure 12.6 illustrates how existing PQP schemes relate to
these features.

12.5.2.1 Record Equivalence: Assigning Identifiers

Record identifiers eliminate redundancy in the summary by allowing us to represent
certain forms of conflicts through attribute-level uncertainty. To date, existing
probabilistic and incomplete database systems have adopted one of two approaches
to identifiers that we call Set and Implicit identity. The vast majority of literature
on probabilistic databases (e.g., [4, 7, 13, 15, 16, 32, 37, 39]) ignores attribute level
uncertainty. In this approach, which we term Set-identity, the entire record is used
as an identifier. Under Set-identity, two records have the same identity if and only if
the values of their attributes are identical.

Conversely, systems [23, 26, 36, 40, 41] that support attribute-level uncertainty
typically give each tuple an implicit identifier. In this approach, which we term
Implicit identity, each record in input tables is assigned a unique identifier (anal-
ogous to the ROWIDs of popular database systems). This identifier is propagated
through relational algebra expressions in a manner that mimics database prove-
nance [17] (i.e., lineage or pedigree) as illustrated in Fig. 12.7. Projection and
selection preserve the identity of a record. Product deterministically derives a new
identifier for each output record from the identifiers of the records used to derive it.
Union deterministically derives new identifiers for each output record based on the
input record’s identifiers and which side of the union it came from.9 Aggregates

9This prevents repeated identifiers if a record appears on both sides.
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Operator Notation SQL
Table R *, ROWID R;

Projection πA,B,...(R) A, B, ..., ROWID R;
Selection σψ(R) * R ψ;

Product R × S *, MERGE_IDS(R.ROWID, S.ROWID)
ROWID R, S;

Union R ∪ S

*, MERGE_IDS(R.ROWID,‘1‘)
ROWID R [ ]
*, MERGE_IDS(S.ROWID, ‘2‘)
ROWID S;

Aggregate γA,...,M←αM ,...(R)
A, ...,αM M,...,
MERGE_IDS(A, B, ...) ROWID
R A, B, ...;

Fig. 12.7 Deriving implicit row identifiers

produce entirely new records. We identify the resulting records by deriving an
identifier from the grouping attributes or using a default attribute if there are no
grouping attributes.

Example 18 Consider the customers table in the two possible worlds D1 and
D2 of Fig. 12.2. Set-identity schemes (e.g., U-Relations [2] or semiring annota-
tions [16]) assign identity based on record values. The records for Bob, Peter, and
Arno are each assigned one identifier across both worlds, while each of the two
possible records for Alice is assigned its own identifier. Accordingly, records for
Bob, Peter, and Arno are certain, while the other records are only possible.

Conversely, implicit-identity schemes (e.g., MCDB [23], Pip [26], or Mimir [31,
41]) might use a key attribute like SSN as an identifier for the row. In such schemes,
all four records are certain and only Alice’s ownsProperty attribute is uncertain.

12.5.2.2 Filtering Uncertain Records

It is often helpful to further summarize possible relations by filtering out low-
importance record identities. The most general approach to filtering is based on
a record’s support. Most incomplete database systems intended for Data Exchange,
Cleaning, or Fusion (e.g., [11]) return only certain tuples of a query result. Con-
versely, many probabilistic database systems present the complete set of possible
results [2].

Certain and possible results represent two extremes of a spectrum. The former
may omit potentially valuable information, while the latter might produce many
records, overwhelming the user. The search for an intermediate “sweet spot” has
led to the emergence of a variety of semantics that is a superset of certain answers
and a subset of possible answers. (1) sample filtering [23, 27] includes a union of
all records from a (lossy) sampled set of possible worlds. (2) threshold filtering
includes all records with a support or confidence that larger than a threshold size
or probability. (3) top-k prior filtering [31, 41] includes all records that appear in
the results for the k most likely possible worlds. We call the special case of the top
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1 prior best guess filtering, as these are the results from the most likely possible
world. Finally, (4) top-k posterior results include only the top-k records, as ranked
by the confidence or support of the result itself [10, 30].

Note the distinction between the two top-k filtering strategies: top-k prior filters
before marginalizing while top-k posterior filters afterward. The top-k posterior
filtering strategy is particularly appropriate for settings where the user is searching
for the most likely result. For example a user examining a medical diagnostic
query result is probably interested in the most likely diagnosis. We note that
although this is appropriate for such specialized use cases like diagnostic or
recommender systems, such representations can lead to a confusing proliferation
of semantics [30].

12.5.2.3 Statistics for Uncertain Attributes

The final point to consider when designing a summary representation is how to
represent the records themselves. For this, we need to convey both record- and
attribute-level uncertainty.

Record-level statistics Uncertain result records do not appear in all possible
worlds. When communicating this information to the user, we effectively wish to
communicate some features of the record’s support. Although some schemes are
capable of enumerating the set of all worlds that a record appears in, this capability
is typically expensive. Rather, most PQP schemes compute or approximate a
record’s confidence [7, 13, 15]. A simpler approach uses taint annotations [29, 31,
41] to differentiate between certain and possible records.

Attribute-level statistics Unless set-identity is being used, records may have
uncertain attributes as well. Most probabilistic and incomplete database schemes
assume that we are only interested in summarizing individual attributes and not more
general properties. The most common strategy is to construct aggregate summaries
of the attribute’s values across the record. Histograms [23], expectations [23, 26],
confidence bounds [27], or hard bounds have been used as aggregate summaries.
Another approach is to summarize an attribute of a record by one or a set of possible
values [10, 41]. Any record filtering strategies can be leveraged to decide which
possible values to include, e.g., top 1 prior [41] or top-k posterior [10, 37].

12.6 Conclusions

In this paper, we explain how uncertainty arises in detection and resolving of
data quality issues, and how this uncertainty may cause data quality issues in
analysis results which often remain undetected. Such untrustworthy analysis results
can in turn have severe adverse real world effects such as unfounded scientific
discoveries, financial damages, or even affect people’s physical well-being (e.g.,
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medical decisions based on data with low quality). The main purpose of this work is
to give an overview of uncertain data management techniques and raise awareness
of how these techniques can be applied to explain how heuristic resolutions to data
quality problems affect the quality and trustworthiness of analysis results.
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Chapter 13
Evaluation of Information in the Context
of Decision-Making

Mark Burgin

Abstract In a broad sense, solving a problem can be treated as deciding or
making a decision what the solution to this problem is. In particular, decision-
making with respect to a question means finding an answer to the question. Thus,
solution of any problem can be treated as decision-making. However, traditionally
decision-making is understood as making a choice from a set of alternatives,
which are usually alternatives of actions. Here we consider decision-making in
the traditional form exploring the role and features of information in this process.
In section “The Process of Decision-Making”, we consider existing models and
elaborate a more detailed model of decision-making. In section “Properties of
Information and Their Evaluation”, we demonstrate that each stage and each step of
decision-making involve work with information—information search, acquisition,
processing, evaluation, and application. Evaluation of information is especially
important for decision-making because utilization of false or incorrect information
can result in wrong and even disastrous decisions. We show how to evaluate quality
of information in the context of decision-making, what properties are important for
information quality, and what measures can be useful for information evaluation.
The obtained results are aimed at improving quality of information in decision-
making by people and development of better computer decision support systems
and expert systems.
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13.1 Introduction: Information as an Indispensable Resource
in Decision-Making

Decision-making is information processing. Consequently, information plays a
crucial role in decision-making. Information comes as input to a decision-making
system, such as a person, robot, or a software system, is processed by this system,
and is given as an output of this process. Even when the best choice is known to the
decision-maker in advance or when the outcomes of the decision are not sufficiently
important, information is basic for the process of decision-making. It is even truer
for decision-making in uncertain complex situations when it is necessary to make
difficult and important decisions with high risks and incomplete information.

Thus, it is essential to have high-quality information for making good decisions,
and because we never have perfect, e.g., complete, information, it is necessary to
evaluate information that we have, obtain, and produce.

To analyze the role and evaluate characteristics of information in decision-
making, it is necessary to have a sufficiently adequate and detailed model of
decision-making. We discuss existing models and elaborate a more detailed model
of decision-making in the next section.

The primary goal of information evaluation is improving information quality.
Another goal is evaluation of the made decision because features of information
used in decision-making influence the quality of the made decision [48, 50].

The chapter is organized in the following way. In Sect. 13.2, going after
Introduction, we consider existing models and elaborate a more detailed model
of decision-making. In Sect. 13.3, information evaluation in decision-making is
explored. We base this exploration on the general theory of information, the most
detailed presentation of which is given in the book (Burgin, 2010) [1]. The last
section contains conclusions.

13.2 The Process of Decision-Making

There are three basic types of decision-making models:

1. Operational models describe the process of decision-making.
2. Descriptive models bring about properties and relations of decision-making.
3. Impact models show what factors influence decision-making.

There are three basic classes of factors that influence decision-making:

1. External factors reflect what influences decision-making from the decision-
maker’s environment.

2. Internal factors reveal what traits of the decision-maker influence decision-
making.

3. Relational factors expose relations between external factors and internal factors.
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Here we are mostly interested in operational models because to evaluate informa-
tion in a decision-making process, we need a detailed description of such a process.
Using a well-structured decision-making process helps in making more purposeful,
thoughtful, and careful decisions by obtaining and organizing pertinent information,
examining alternative choices, and finding best possible route to take. This tactic
increases the chances for making an optimal possible decision.

Researchers in the area of decision-making elaborated different structural repre-
sentations of decision-making processes. One of the first models of decision-making
was introduced by Herbert Simon [2]. It has three stages:

1. Intelligence deals with problem identification and information gathering for the
problem.

2. Design involves generation of possible alternative solutions to the problem under
consideration.

3. Choice is selection of the “best” solution from the possible alternative solutions
using some relevant criterion.

Later, this model was developed and utilized for building computer decision
support systems [3].

In his model, Raiffa employed the following stages for decision-making [4]:

1. List the viable options available to you for gathering information, for experimen-
tation, and for action.

2. List the events that may possibly occur.
3. Arrange in chronological order the information you may acquire and choices you

may make as time goes on.
4. Decide how well you like the consequences that result from the various courses

of action open to you.
5. Judge what the chances are that any particular uncertain event will occur.

Another operational model of decision-making is proposed by Thakur [5]:

1. Identification and structuring of problem/opportunity
2. Putting the problem/opportunity in context
3. Generation of alternatives
4. Choice of the best alternative

Ryan and Shinnick [6] describe the structure of decision-making in the following
way:

Step 1: Identify the decision.

When there is a need in making a decision, it is very important to clearly
characterize the nature of the required decision.

Step 2: Gather relevant information.

Collect some pertinent information before you make your decision: what infor-
mation is needed, the best sources of information, and how to get it. This step
involves both internal and external “work.” Some information is internal: you’ll
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seek it through a process of self-assessment. Other information is external: you’ll
find it online, in books, from other people, and from other sources.

Step 3: Identify the alternatives.

As you collect information, you will probably identify several possible paths of
action, or alternatives. You can also use your imagination and additional information
to construct new alternatives. In this step, you will list all possible and desirable
alternatives.

Step 4: Weigh the evidence.

Draw on your information and emotions to imagine what it would be like if you
carried out each of the alternatives to the end. Evaluate whether the need identified
in Step 1 would be met or resolved through the use of each alternative. As you
go through this difficult internal process, you’ll begin to favor certain alternatives:
those that seem to have a higher potential for reaching your goal. Finally, place the
alternatives in a priority order, based upon your own value system.

Step 5: Choose among alternatives.

Once you have weighed all the evidence, you are ready to select the alternative
that seems to be best one for you. You may even choose a combination of
alternatives. Your choice in Step 5 may very likely be the same or similar to the
alternative you placed at the top of your list at the end of Step 4.

Step 6: Take action.

You’re now ready to take some positive action by beginning to implement the
alternative you chose in Step 5.

Step 7: Review the made decision and its consequences.

In this final step, consider the results of your decision and evaluate whether or
not it has resolved the need you identified in Step 1. If the decision has not met
the identified need, you may want to repeat certain steps of the process to make a
new decision. For example, you might want to gather more detailed or somewhat
different information or explore additional alternatives.

In the procedural system GOFER, the name of which is an acronym for five
decision-making steps, the following structure is identified [7, 8]:

1. Goals clarification, which involves a survey of values and objectives
2. Options generation, which demands to consider a wide range of alternative

actions
3. Facts-finding, which means a search for information
4. Consideration of effects, which requires weighing the positive and negative

consequences of the options
5. Review and implementation, which includes elaboration of a plan, how to

implement the options, and implementing them
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In the DECIDE model of decision-making, there are six steps [9]:

1. Define the problem.
2. Establish and enumerate all the criteria (constraints).
3. Consider and collect all the alternatives.
4. Identify the best alternative.
5. Develop and implement a plan of action.
6. Evaluate and monitor the solution and examine feedback when necessary.

Note that not all of these steps allow realization. For instance, in many problems,
it is impossible to collect all alternatives—some of possible alternatives can stay
unknown to the decision-maker. Besides, it is not always possible to identify the
best alternative because there are situations in which obtaining the best alternative
demands performing infinitely many operations.

Brown divides the decision-making process into seven steps [10]:

1. Outline your goal and outcome.
2. Gather data.
3. Develop alternatives (i.e., brainstorming).
4. List pros and cons of each alternative.
5. Make the decision.
6. Immediately take action to implement it.
7. Learn from and reflect on the decision.

In Bezerra, et al. [11], a decision-making process is represented in the form of
six consecutive stages:

1. Perception activity
2. Mental representation
3. Data processing
4. Problem solving
5. Choice of solution
6. Decision making to act

Here we put forward the following stratification of decision-making processes,
which constitutes the SDM model of decision-making:

1. Evaluation of the situation
2. Identification of the problem
3. Structuration of the problem
4. Determination of the context of a problem (what are initial conditions, what are

accessible means and other resources, what are constraints, and so on)
5. Evaluation of the problem
6. Generation/identification of possible actions aimed at solving the problem
7. Evaluation of possible actions, which in some cases coincide with possible

solutions
8. Identification of tentative outcomes of possible actions, which, in a general

case, include possible solutions
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9. Evaluation of tentative outcomes of possible actions
10. Selection of an optimal possible action (solution) with the goal to determine

which course of actions is the best way to achieve the objective of decision-
making

11. Development of a plan (algorithm) for realization of the chosen action
12. Taking action to solve the problem
13. Evaluation of the action
14. Evaluation of the results of action
15. Evaluation of the new situation
16. Learning from and reflecting on the made decision

It is possible to limit a decision-making process only by steps from 1 through 10.
However, if it is necessary to have a complete picture of the process giving insight
for future activities, we need all sixteen steps.

Many people can utilize considered steps of decision-making without realizing
it, but gaining a clearer understanding of best practices can improve the efficiency
of made decisions.

An important feature of the SDM model of decision-making is that it takes into
account that, in general, actions can be composite consisting of other actions [12].

Note that some considered above stages (steps) in decision-making are often-
overlooked. For instance, learning from and reflecting on the made decision, which
includes evaluation of the made decision for effectiveness, is an important stage in
the decision-making process. This would allow making a better decision next time.

It is important to understand that one decision-making process can include other
decision-making processes. Here is one of such situations. Often when decision-
making is a thorough detailed process, action is complex and it is necessary to
have a plan or even an algorithm of such an action. This involves another decision-
making determining or elaborating a plan (algorithm) for the chosen action. In turn,
elaboration of a plan (algorithm) requires identifying what resources are required
for the action, how it must be organized, and what are the constraints delimiting its
execution. For instance, very often temporal constraints are essential [13].

Group decision-making brings additional stages related to group organization,
orientation, and correlation. For instance, Pijanowski [14] describes eight stages of
group decision-making:

Establishing community by creating and nurturing the relationships, norms, values,
and procedures that will influence how problems are understood and communi-
cated.

Perception involves recognition that a problem exists.
Interpretation demands identification of competing explanations for the problem

and evaluation of the drivers behind those interpretations.
Judgment as sifting through various possible actions or responses and determining

which of them is more justifiable.
Motivation requires examination of the competing commitments, which may dis-

tract from an optimal course of action, and then prioritization and commitment
to the values that were accepted when community (group) was created on the
first stage.
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Action means following through with action that supports the more justified
decision.

Reflection in action.
Reflection on action.

Researchers found that establishing common values and norms in a group
improves the quality of decisions, while the majority of opinions, which are called
consensus values and norms, do not [15].

According to Aubrey Fisher (cf., Griffin, [16]), there are four stages or phases
necessary for group decision-making:

Orientation goes when members of the group meet for the first time and start to get
to know each other.

Conflict emerges once group members are becoming accustomed with each other,
which sometimes involves disputes, little fights, and arguments.

Emergence when the group begins to clear up vague opinions by talking about them.
Reinforcement happens when members of the group finally make a decision and

provide justification for it.

This shows that group decision-making is a more complex process in comparison
with an individual decision-making. Thus, it is even more important to base group
decision-making on an adequate and efficient model of decision-making.

13.3 Properties of Information and Their Evaluation

Information plays an important role on all stages of any decision-making process.
To examine this role and describe evaluation of information in this process, we use
the SDM model of decision-making described in the previous section. The reason
for this choice is that assuming each step of decision-making involves work with
information, the SDM model encompasses other known models of decision-making
providing for better analysis and evaluation of information utilized on each stage of
decision-making processes.

The first stage in decision-making is evaluation of the current situation. Naturally,
evaluation of the situation demands gathering a sufficient amount of relevant
information so that it would be possible to better understand what is going
on and make thoughtful, informed decisions that have a positive impact. This
requires making a value judgment, finding what information is necessary and what
information might be useful for improved discernment of the current situation.
Necessary information has to be evaluated by appraising its accessibility, cost of
acquisition, and importance for understanding the situation. Let us consider these
properties.

Accessibility of information reflects possibility or probability of obtaining this
information. Taking the classical probability in consideration, we know that when
the probability of obtaining is equal to 1, then it is possible to get this information.
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For instance, if we have some portion of information, then the probability of
obtaining it is naturally equal to 1. When the probability of obtaining is between
0 and 1, then there are chances that it might be impossible to get this information.
Probability equal to 0 means complete impossibility of obtaining information.

However, probabilistic decision-making needs considering signed probability,
which takes values between −1 and 1. Negative probability indicates that obtaining
some information can be dangerous and have a negative impact.

Signed probabilities, such as symmetric probability or combined probability,
have become very popular in physics (cf., e.g., Dirac. 1974 [17]; Feynman, 1987
[18]; Ferrie and Emerson, 2008 [19]; Kronz, 2009 [20]). Negative probabilities also
came to economics and finance (Duffie and Singleton [21]; Forsyth, et al. [22]; Haug
[23], Burgin and Meissner [24, 25]). In addition, negative probabilities were used in
social and behavioral sciences (cf., e.g., de Barros et al. [26, 27]). Axiomatics for
symmetric probability and combined probability, which include negative values, is
developed in Burgin [28, 47], while mathematically based interpretations are given
in Burgin [46], Abramsky and Brandenburger [31], and Noldus [32].

Note that probabilities used in decision-making are, as a rule, subjective. This
means that they are not sufficiently exact. That is why it is often reasonable to use
possibility measures instead of probability measures in evaluation of properties of
information because possibility measures are more general.

A possibility measure in X is a partial function Pos: P(X)→ [0, 1] that is defined
on a subset A from P(X) and satisfies the following axioms [33, 34]:

(Po1) ∅, X∈A, Pos(∅) = 0, and Pos(X) = 1.
(Po2) For any A and B from A, the inclusion A ⊆ B implies Pos(A) ≤ Pos(B).
(Po3) For any system {Ai; i∈I} of sets from A,
Pos(∪i∈IAi) = supi∈IPos(Ai)).

Note that similar to probability, it might be useful to consider possibility mea-
sures, which also take negative values in the form of a function Pos: P(X)→ [−1,
1].

Cost of information acquisition can be measured by a probability distribution or
even by a fuzzy set on the set of possible costs.

To estimate importance of information for understanding the situation, it is
possible to use necessity measures.

A quantitative necessity measure in X is a function N: P(X)→ [0,1] that satisfies
the following axioms [35].

(Ne1) N(∅) = 0, and N(X) = 1.
(Ne2) For any A and B from P(X), N(A∩B) = min {N(A), N(B)}.

At the same time, importance is better assessed by a signed measure, which
is not bounded from above or from below taking both positive and negative
values. Information that makes understanding of the situation harder has negative
importance. In a similar way, information that misleads or confuses the decision-
maker also has negative importance.
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The next thing to do after demarcation and evaluation of the necessary infor-
mation is to decide where it is possible to get this information or, at least, some
part of it, and the possible procedures to employ for this purpose. Considering
information sources, it might be also useful to evaluate them estimating their
relevance, reliability, accessibility, and information abundance. For this purpose,
it is possible to use methods and measures developed and employed for software
evaluation in Burgin and Debnath [36] because software is a symbolic representation
of information.

The third step in the first stage is information acquisition and processing obtained
information into knowledge about the situation.

To do this properly, we need to evaluate obtained information, estimating such
properties as relevance, reliability, adequacy, completeness, usefulness, correctness,
exactness, and importance of the obtained information.

In this context, relevance means the degree to which the obtained information is
connected to the evaluated situation.

Reliability is to estimate if utilization of the obtained (considered) information will
give positive results.

Adequacy means how well the obtained information represents the evaluated
situation. Usually, it is possible to decompose adequacy into completeness,
correctness, and exactness.

Completeness estimates whether the obtained information allows finding all main
features of the evaluated situation.

Correctness appraises whether the obtained information does not distort the evalu-
ated situation.

Exactness means the precision with which the obtained information represents the
real situation.

Note that obtained information can be relevant, reliable, adequate, complete,
correct, exact, and important but useless because, for example, the decision-maker
does not understand or does not know how to use this information. For instance,
the history of mathematics tells us that when information about negative numbers
came to Europe from the East where negative numbers were utilized for centuries,
many European mathematicians, such as Chuquet and Maseres, did not understand
this information and dismissed their sensibility rejecting negative numbers until the
seventeenth century and referring to them as “absurd” or “meaningless.” Even in the
eighteenth century, it was a common practice to ignore any negative results derived
from equations, on the assumption that they were meaningless [37]. As a result,
information about negative numbers was useless to those who did not understand
them although this information was relevant, reliable, adequate, complete, correct,
exact, and important. Similarly, information about irrational numbers and later
imaginary numbers was firstly rejected by many mathematicians with the same
consequences [38].

The second stage of decision-making is identification of the problem. Accord-
ing to the methodology of science, a problem is absence of something, e.g.,
of knowledge or information, and explicit representation of this absence [39].
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Thus, the second stage also demands collection of additional information and
can be decomposed into three steps: (1) finding what information is necessary
for problem identification and to what extent; (2) delineation of possible sources
of the necessary information and procedures for information acquisition; and (3)
information acquisition and processing obtained information into knowledge about
the problem.

Evaluation of information in these steps is similar to evaluation of information on
the first stage, which is described above. We use the same properties of information
and information sources as well as the same procedures of evaluation.

All other stages of decision-making—structuration of the problem, determination
of the context, and so on—demand search, acquisition, processing, and application
of information. Consequently, evaluation of information involves evaluation of these
operations and means used in their performance. This brings us to the following
schema of information processes in decision-making.

Schema (13.1): Search→ acquisition→ processing→ application/utilization

Each of the processes in Schema (13.1) has three basic components:

– Input information
– Participating means, which include used means
– Output information

These three components form the following structure:

Schema (13.2): Input information→ means used→ output information

Taking into account that input information comes from some source while output
information goes to some information destination—which can include or coincide
with the receptor/receiver—it is reasonable to extend Schemas (13.2) and (13.3).

Schema (13.3): Information source → input information → participating means
→ output information→information destination

Because participating means including the channel, noise source, message, and
signals, we see that Schema (13.3) is a generalization of Shannon’s model of
communication (Shannon, 1948 [40]) presented in Fig. 13.1.

In addition, all three components of information processes in decision-making
have one of the following three modalities, i.e., they can be:

– Tentative or intended component, e.g., tentative or intended information
– Actual or used component, e.g., actual or used information
– Necessary or required component, e.g., necessary or required information

Thus, to have a high-quality process, it is necessary to evaluate all information
involved and take actions to improve information quality. As the quality of
information depends on features of the means (tools) used for information search,
acquisition, processing, and application/utilization, it is also useful to evaluate these
means (tools) aiming at their improvement (if possible).
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Fig. 13.1 Shannon’s model of communication

In addition, evaluation of actions (stage 7 in the SDM model) includes estimation
(measurement) of the corresponding properties of actions such as feasibility,
acceptability, and desirability. It is also important to understand the risks involved
with the possible actions to fully grasp the existing situation and potential risks.
Only knowing these and some other parameters of actions, it is possible to select an
optimal action (route of operation) with high chances of success.

In a general case, evaluation of information includes estimation of such proper-
ties (features) as relevance, reliability, adequacy, completeness, correctness, exact-
ness, importance of information, and some others [1].

To efficiently organize evaluation, it is necessary to discern properties of three
types [29, 41]:

– Quantitative properties take values in sets of numbers, e.g., classical probability
takes values in the interval [0, 1], while information entropy takes values in the
set of all positive real numbers (Shannon [40]).

– Qualitative properties take values in sets with an order relation, e.g., qualitative
probability takes values in partially ordered sets (Burgin, [30]), while many
properties represented by linguistic variables, such as age or size, take values
in the set of triangular fuzzy numbers (Zadeh [42]).

– Nominal properties take values in sets without order relations and their values
are treated simply as labels or names.

Note that the considered features of information can be represented by quan-
titative, qualitative, or nominal properties. For instance, it is possible to represent
correctness of information by a quantitative measure, by the linguistic variable
that takes values in the ordered set {completely incorrect, partially incorrect,
partially correct, essentially correct, strongly correct, completely correct} and by
the linguistic variable that takes values in the set of two labels {incorrect, correct}.

Quantitative properties are preferable for evaluation of actual components of
processes including actual information, while qualitative properties more realisti-
cally estimate potential, tentative, intended, or projected components of processes
including potential, tentative, intended, or projected information [1].
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Nominal properties are useful, for example, for identification of the possible
causes of the problem under consideration, constraints posed by the existing
situation, or issues that require decision-making (cf., e.g., Ryan and Shinnick [6];
Citroen [43]).

However, as Knight and Burn write, despite the sizable body of literature on
information quality, relatively few researchers have tackled the difficult task of
quantifying conceptual definitions of information quality and suggesting methods
for its estimation (Knight and Burn [44]). Nevertheless, information quality has
many numerical measures and comprises various measured attributes as it is
practically undeniable that no one “magic number” can give out a measurement for
all features of information that might be considered significant [1]. Some of these
attributes are related to directly measurable numerical quantities, while numerical
quantities related to others are only calculated from direct measurements. To attain
a wide-ranging information quality representation by numerical attributes and to
elaborate efficient numerical measures for these numerical, it is convenient to use
the general theory of evaluation and measurement [45]. According to this theory,
the process of measurement/evaluation has three main stages:

• Preparation
• Realization
• Analysis

The first step in evaluation/measurement preparation is determination of a
specific criterion for evaluation/measurement. Such a criterion determines the
mission of evaluation/measurement. Criteria of information quality include such
properties as relevance, reliability, exactness, adequacy, completeness, correctness,
convenience, user friendliness, and so on. However, such properties are not directly
measurable and it is possible only to estimate them. To achieve this goal, it is
necessary to utilize matching indicators or indices. With respect to information
quality such indicators are called general information quality measures or metrics
[1]. However, a chosen indicator can be too complicated for direct estimation. This
causes a stipulation to set up more specific attributes of the evaluated object. To
get these attributes, quantifiable tractable questions are formulated. The obtained
attributes work as indices for the considered criterion. It means that the second
stage of evaluation is selection of indices that reflect chosen criteria. In some cases,
an index can overlap with the corresponding criterion or a criterion can be one of
its indices. However, often it is impossible to obtain exact values for the chosen
indices. For instance, it is impossible to perform infinitely many operations or to do
measurement with absolute precision. What is feasible to do is only to obtain some
estimates of indices. As a result, the third stage of evaluation includes elaboration or
location of estimates or indicators for selected indices. In the case of information,
these indicators have the form of constructive (procedural) information quality
measures.
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As a result, to achieve correct and sufficiently precise evaluation, preparation
must include the following operations:

1. Selection of evaluation criteria
2. Assigning characteristics (indices) to each of the selected criteria
3. Representing indices by indicators (estimates)

This exhibits that the complete process of evaluation preparation has the
following structure:

Schema (13.4): Criterion→ index→ indicator

Efficient creation of information quality measures consists of the following three
stages:

1. Setting goals specific to needs in terms of purpose, perspective, and environment.
2. Refinement of goals into quantifiable tractable questions.
3. Construction of an information quality measure and data to be collected (as well

as the means for their collection) to answer the questions.

Information quality measures can be useful in practice only when there are
procedures and algorithms of measurements based on these measures. This implies
necessity in additional stages for the measure development.

4. Designing procedures/algorithms for data collection in the measurement.
5. Designing procedures/algorithms for computing measurement values.
6. Designing procedures/algorithms for analysis of measurement results.

An efficient theoretical base for elaboration of information measures is provided
by the system of axiological principles from the general theory of information [1].

13.4 Conclusion

We have developed a comprising model of decision-making, which is called the
SDM model, and based on this model elaborated a general approach to information
evaluation in decision-making. To apply this approach, it is necessary to select
criteria for information evaluation in each stage of decision-making described by
the SDM model, construct/select indices and indicators developing corresponding
measures, and then to elaborate algorithms and procedures of measurement based
on these measures. It is possible to use this approach for improving quality of
information in decision-making by people and for building better computer decision
support systems and expert systems [49].

Acknowledgement The author would like to express gratitude to Éloi Bossé for his useful
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Chapter 14
Evaluating and Improving Data Fusion
Accuracy

John R. Talburt, Daniel Pullen, and Melody Penning

Abstract Information fusion is the process of combining different sources of
information for use in a particular application. The production of almost every
information product incorporates some level of data fusion. Poor implementation of
data and information fusion will have an impact on many other key data processes,
most particularly data quality management, data governance, and data analytics.
In this chapter we focus on a particular type of data fusion process called entity-
based data fusion (EBDF) and on the application of EBDF in high-risk applications
where accuracy of the fusion must be very high. One of the foremost examples is
in healthcare. Fusing information belonging to different patients or failing to bring
together all of the information for the same patient can both have dire, even life-
threatening, implications.

Keywords Entity-based data fusion · Probabilistic matching · Precision ·
Recall · F-Measure · Data quality management · Quality control · Quality
assurance

14.1 Introduction

Data fusion, sometimes called data integration, is simply the process of com-
bining different sources of information for use in a particular application [3].
The production of almost every information product incorporates some level of
data fusion. Despite this fact, data fusion is often taken for granted, and its
implementation is delegated to low-level programmers or database administrators.
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Poor implementation of data fusion will have an impact on many other key data
processes, most particularly data quality management, data governance, and data
analytics.

In this chapter we focus on a particular type of data fusion process called entity-
based data fusion (EBDF) and on the application of EBDF in high-risk applications
where the accuracy of the fusion must be very high. One of the foremost examples is
in healthcare. Fusing information belonging to different patients or failing to bring
together all of the information for the same patient can both have dire, even life-
threatening, implications. Other examples of high-risk EBDF applications include
law enforcement and fraud detection.

Because of the potential for adverse events occurring due to errors in these
applications, the supporting data fusion processes need to employ specialized
matching techniques and ancillary processes not commonly used in lower-risk
applications. Some of the most important are:

• Probabilistic value-level matching
• Validation of blocking alignment
• Production of review indicators
• Clerical review and investigation of indicators
• Robust metadata for process traceability and auditability
• Systematic and periodic measurement of EBDF performance
• A comprehensive data quality management program

Each of these topics will be explored in more detail in this chapter.

14.2 An Overview of Entity-Based Data Fusion

Entity-based data fusion (EBDF) is the process of integrating information about the
same real-world entity coming from different sources. From an EBDF perspective,
entities are real-world objects with distinct identities. For example, customers of
a business, patients of a hospital, students of a school system, products of a
manufacturer, or locations of service. The primary issue with EBDF is, in the
modern world, we model and describe these entities in an information system.
Because the information stored is stored in a computer, it is subject to many
processes which can easily transform and copy the information related to these
entities. As a result, there are often many disparate records in the information system
describing characteristics of the same entity.

EBDF has a broad range of applications in areas such as law enforcement [16],
education [17, 18], and healthcare [1, 12, 32]. For example, a hospital patient will
have separate records for each hospital visit. In addition, each visit or encounter
will generate many additional records such as a record for each laboratory test,
each treatment, each drug administered, and so on. Aside from the records of
medical treatment, there will also be billing records associated with each visit and
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Fig. 14.1 The two steps of the entity-based data fusion process

treatment. Because these records are produced by different systems, they typically
have different record layouts and different formatting standards.

EBDF is a two-step process [22] as illustrated in Fig. 14.1. The first step is entity
resolution (ER). ER is the process to determine whether two records are referencing
the same entity or different entities [24]. Figure 14.1 illustrates five entity records
resolving to two entities, Entity A and Entity B by the ER process. In this example,
Records 2, 3, and 5 carry information for Entity A, and Records 1 and 4 have
information for Entity B. Groups of records referencing the same entity are called
“clusters.” All of the records in the same cluster are given the same identifier value
called a “link.” For this reason, ER is sometime referred to as “record linking.”

After the records have been clustered according to entity, the second step is
the data rationalization step. The purpose of the data rationalization process is to
extract and reconcile possibly conflicting or incomplete information in the records
in preparation for creating the final information product [8, 9, 31, 33]. For example,
in a healthcare application, the incoming records could be patient records describing
various diagnoses, treatments, medications, or laboratory tests, and the final product
is the patient’s medical chart.

14.2.1 The Probabilistic Nature of Entity Resolution

As shown in Fig. 14.1, the first step in data fusion is the entity resolution
(ER) process. ER is sometimes called record linking, data matching, or record
de-duplication. ER is the process of determining when two information system
references to a real-world entity are referring to the same entity or to different
entities [24]. ER represents the “sorting out” process when there are multiple
sources of information that are referring to the same set of entities. For example,
the same patient may be admitted to a hospital at different times or through
different departments such as inpatient and outpatient admissions. ER is the process
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of comparing the admission information for each encounter and deciding which
admission records are for the same patient and which ones are for different patients.

14.2.2 The Difference Between ER and Matching

Entity resolution is often confused with data matching in both understanding and
terminology. By definition the goal of ER is to determine when two references to
real-world entities are referencing the same entity or different entities. When two
references are for the same entity, they are classified as “equivalent references.”
The confusion between matching and equivalence arises because of the similarity
assumption that is the primary driver for ER.

The similarity assumption of entity resolution states: The more similar the values
of identity attributes between two entity references, the more likely the references
are equivalent, and the less similar the values, the less likely they are equivalent
[23].

Methods for assessing similarity comprise an entire discipline called data match-
ing [2, 7]. The important point is while matching has a high positive correlation
with equivalence, it only represents a likelihood or probability of equivalence or
non-equivalence, not a certainty. Not all equivalent references match. For example,
patient records for “Mary Doe, 123 Oak” and “Mary Smith, 345 Elm” could be
for the same patient, married and moved to a new address. Failing to recognize the
equivalence of dissimilar entity references (failure to link) is called a false negative
error. Negative because it was a decision not to link, and false because it was a bad
decision.

Conversely, not all matching references are equivalent. For example, the patient
records “Jim Jones, 67 Pine” and “James Jones, 67 Pine” could be for different
patients, a father and his son with similar names and living at the same address.
Linking two non-equivalent entity references into the same cluster is called a false
positive error. Positive because it was a decision to link, but false because it was a
bad decision.

The goal of ER is to link only equivalent references (true positive decision) and to
not link non-equivalent references (true negative decision). The accuracy of the ER
process is the degree to which this goal has been achieved by reducing or eliminating
the false positive and negative errors in the process.

14.3 Identifying and Addressing Sources of Errors in the
EBDF Process

Almost all of the errors in the EBDF process are introduced at one of four points in
the process; these are:
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Fig. 14.2 Points in the EBDF process where most errors occur

1. Errors in source information
2. Errors in blocking
3. Errors in entity resolution
4. Errors in data rationalization

These are illustrated in Fig. 14.2 showing the steps in the information product
(IP) build process.

14.3.1 Errors in Source Information

No matter how well the data fusion process is performed, it cannot overcome
errors of fact in the source information. Certainly some data quality defects such
as inconsistent formatting can be addressed and corrected with appropriate tools,
but there is no simple solution for detecting and correcting erroneous information.
Increasingly EBDF processes involve semi-structured and unstructured sources such
as social media that present a new set of challenges [14].

Accuracy is the most difficult dimension of data quality to address. It requires
verification by the original source of the information or by comparing the informa-
tion to a reference source known to be accurate. The former is often impractical
because of the time and expense involved, and the latter often does not exist for
the domain of interest. Instead, most EBDF processes rely on validation instead of
verification.

Validation is using rules to test for outlier conditions in the source information.
Validation is when rules are used to test for outlier values or unexpected conditions
in the source information.

Validation and accuracy have an asymmetric relationship. While it is true that
source information failing validation rules usually indicates the information is
inaccurate, the converse is not true. Source information passing validation is not
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necessarily accurate. Even if a date-of-birth value is within a valid range and in
the correct format, it does not mean it is accurate, i.e., the actual date of birth
for the person. To know it is accuracy would require verification by the person
or by comparison to an authoritative source such as health records or driver’s
license information. Even the authoritative source method for accuracy is in itself
problematic. It requires an ER process to link the record in the information source
to the corresponding record in the authoritative source, and this ER process is itself
subject to error.

14.3.2 Errors in Blocking

ER is defined as a pairwise classification process. An ER system is asked to judge
if two references to the same entity are equivalent or not. If the ER process decides
the references are likely to be equivalent, it links them together; otherwise it does
not link them. In theory, this decision would be made for every pair of references in
the source information. However, making every possible comparison is impractical
even in the new age of Big Data and massively parallel computing platforms.

The reason it is impractical is a matter of mathematics. The number of possible
pairwise comparisons for a set of N objects is

Pair count = C (N, 2) = N · (N − 1)

2

But even for a small amount of data, say 1000 records, the total number of
possible pairs is 499,500, almost half a million. In many applications today, a source
size of 200 million (2 × 108) is not to be considered large. But for a source file of
this size, the total number of possible pairwise comparisons is approximately 1016

or a quadrillion. Even using a highly parallel, high-speed processing system, an ER
process for these many comparisons could take several weeks to execute.

Therefore, as a practical matter, ER is always performed on subsets of the source
data. The subsets are called “blocks” and the process for creating them is called
“blocking” [2]. The ER process only compares entity references within the same
block as a way to reduce the number of comparisons to a manageable amount. The
smaller the blocks the faster the ER process will execute.

However, ER blocking presents a conundrum. If two equivalent references are
placed in different blocks, then the two references will not be compared by the
ER process and consequently will not be linked and clustered together. Not linking
equivalent references is a false negative error lowering the accuracy of the ER
process. Therefore, the goal of blocking is to always place equivalent pairs of entity
references in the same block. So here is the conundrum, if we already knew which
pairs of references were equivalent, we would not need an ER process in the first
place.
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The solution is to treat blocking as a “rough match” or “pre-match” to place the
references most likely to match in the same block. After the pre-match blocking, the
blocks are sent to the ER process for the final refinement of the matching decisions.
A blocking strategy will depend heavily on the matching strategy employed by the
ER engine.

Suppose one of the matching rules used by a patient ER system requires both
references to have the last name. Then the blocking process needs to assure all
source references with the same last name are placed in the same block. However, as
a practical matter there will be other rules for matching that do not require last names
to the same because a patient may change his or her last name between encounters.

Most systems implement blocking through the generation of match keys. A
match key is a string value made by concatenating together pieces of identity
attribute values. The match keys need to be in alignment with the match rules.
Alignment is fairly straightforward when using “if-then” style rules. It is a matter of
translating the match rule requirement into a match key requirement. For example,
if a match rule requires an exact match on a student last name and a SOUNDEX
match on the first name (first names that sound alike), then a match key formed
by concatenating the letters of the last name with the SOUNDEX code of the first
name would support this rule. All references with the same last name spelling and
the same first name SOUNDEX code would be brought to together into the same
block for comparison by the ER engine.

If there are other match rules that have a different requirement such as the same
first name and the same date of birth, then another match key generator would have
to be created to support this rule. This is because some records for the same person
could have different last names (married name versus maiden name) and be matched
by this rule. However, the first match key would not place such a pair of records into
the same block because it requires the last names to be the same. So a different match
key is needed to support the second rule, e.g., the concatenation of the first name
with the digits of the date of birth. Because most ER systems can match records
in many different ways, they must generate several different match keys for each
reference.

The match rule in the ER engine is said to be “in alignment” with match key
blocking if the following statement is always true: Whenever two references match
by a rule, then the two references will share the same value for at least one match
key.

Errors caused by misalignment between blocking and the match rule are often
difficult to detect. Misalignment almost always creates false negative errors which
are difficult to detect. One method for validating alignment is to take a sample of
references representative of the different ways of matching. Then perform ER on
the sample with the blocking in place, and then execute the same ER process again
without the blocking in place. Both results should be the same. If they are not,
it shows some references were not linked because the references were placed in
different blocks and are never compared even though the references matched.

A complex match rule usually requires several match key generators. This is
especially true when using the scoring (probabilistic) rule strategy for matching as
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discussed in the next section. As the number of match keys increases, the block sizes
will increase, and at some point, defeat the entire purpose of blocking which is to
reduce the number of pairwise comparisons that must be made.

Strategies for blocking can be as complex as the matching strategies they support.
At this point it suffices to say that blocking is an often overlooked source off error
in the EBDF process. For a more complete discussion of blocking strategies, see
Christen [2], and for Big Data see Talburt and Zhou [23].

14.3.3 Errors in ER

Because of the similarity assumption, all automated ER systems will always have
some level of false positive and false negative errors. Over the years a number of
ER matching strategies have been introduced to try and reduce these errors as much
as possible.

Most ER systems currently use one of two types of matching strategies. The
first matching strategy, often referred to as “deterministic” matching, uses “if-then”
logic with Boolean operators “and/or” to make their decisions [4]. The second
strategy, often referred to as “probabilistic,” uses the model developed by Fellegi
and Sunter [5] a scoring method. Of course, the truth is that all ER techniques are
both deterministic and probabilistic, but this terminology is already embedded in the
literature. Presently, a third strategy using machine learning is being explored [11].

The earliest ER systems employed Boolean rules because they are easy to
construct, explain, and maintain. The major weakness of the Boolean rule strategy
is that it operates at the attribute level of the references. In other words, if a Boolean
rule is comparing first name values, then a match of “JOHN” as the first name value
in one reference to the first name value “JOHN” is a second reference is no different
than a match of “BARTHOLOMEW” as a first name value one reference to the first
name value of “BARTHOLOMEW” in another record. They are both just first name
matches, and both similarities carry the same weight.

If the match on first names is coupled with a match on last name, then it forms an
“AND” clause of the form of a Boolean proposition “If the first names match and
the last names match, then link the references together as equivalent references.”
Boolean rules are still used extensively in ER systems, especially in support of low-
risk EBDF applications such as marketing where accuracy is not paramount.

14.3.4 Using Frequency-Based, Probabilistic Matching

The scoring rule strategy was developed to try and improve the accuracy of the ER
processes using Boolean rules by drilling down the attribute-value level. The degree
of match between two attribute values such as first names would depend on the
actual value of the name, i.e., the name itself.
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In general, the scoring rule operates as follows. First all of the values of the
identity attributes are compared. For each comparison, if the values of the identity
attribute agree (match), then an agreement weight is added to a match score. If
the values disagree, then a disagreement weight smaller than the agreement weight
(possibly a negative value) is added to the match score. After all identity attribute
values have been compared, the total match score is compared to a predetermined
threshold value. If the total score of the pair is greater than or equal to a preset
threshold value, then the references are judged equivalent and linked together;
otherwise the references are not linked.

The magnitude of the agreement weight assigned to an attribute value is based
on the probability that different entities would share the same value. The more
frequently a value is shared by different entities, the smaller its agreement (match)
weight should be. Conversely, the less frequently different entities share a value, the
higher the agreement weight assigned to the value. In effect, the weights reflect the
discrimination power of the attribute value.

Using the same example as before, it would be true for most populations of
students in the United States; the first name value of “JOHN” should be assigned
a lower agreement weight than the first name value of “BARTHOLOMEW.” The
reason is in a typical population of students it is much more likely many students
will share the first name “JOHN” while fewer students will share the first name
“BARTHOLOMEW.” In a scoring-based approach, the higher the frequency of an
attribute value in the target population, the less a match on this value is an indicator
of equivalence and the smaller its agreement weight should be.

More precisely, the agreement weight is the logarithmic value of a ratio of two
conditional probabilities calculated by the formulas [7]

Agreement weight = log2
(

Probability of agreement given equivalent references

Probability of agreement given non-equivalent references

)

And the disagreement weight is calculated by the formula

Disagreement weight = log2
(

1− (Probability of agreement given equivalent Refs)

1− (Probability of agreement given non-equivalent Refs)

)

The weights can be calculated and assigned either at the attribute level or at
the value level, e.g., the weight of agreement on first names in general or the
weight of agreement on “JOHN.” However, when assigned at the value level, the
scoring rule can significantly increase the accuracy of the ER process because it
takes into account the relative discrimination power of different identity attribute
values. Consequently, frequency-based probabilistic matching is generally the best
choice for high-risk data fusion application such the master patient index (MPI) in
healthcare.
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For practical reasons, only the most frequent attribute values are assigned an
individual agreement and disagreement weight. Typically, a frequency threshold is
established for each attribute based on an analysis of data from the target population.
Only the values of the attribute occurring with a frequency above this threshold are
assigned individual agreement and disagreement weights. Values of the attribute
with frequencies below the threshold are given a default, low-frequency agreement
and disagreement weight.

Even though the frequency-based scoring rule can attain higher levels of ER
accuracy for most applications, this matching strategy does have some drawbacks
as well. One weakness is the scoring rules sensitivity to missing values. During the
scoring process, if one or both of the values for an identity attribute is missing,
then assigning an agreement or disagreement weight does not make sense. For this
reason, many systems use a default weight for missing value conditions, usually
zero.

Another problem with the scoring rule is blocking. Because the scoring rule
works on value-based weights, it can be very difficult to align the scoring rule
with match key blocking. When using Boolean rules, the matching requirements
are always associated with specific attributes. However, with the scoring rule the
requirement is for the total score to be above the match threshold. This can usually
be achieved through many different combinations of attribute values and weights.
Identifying these combinations and translating them into match key generators can
be a challenge.

One final issue with the scoring rule is the issue of versioning and maintenance.
With increased accuracy also comes increased sensitivity. The weights and match
threshold are calculated on the data as they existed at first implementation. Yet the
scoring rule can be sensitive to even modest shifts in the frequency of attribute
values. As new sources are added or when existing sources undergo change, the
accuracy of the ER may begin to fall if the weights are not recalibrated to produce
optimal results.

In addition, it is very difficult to address a particular linking issue by making
weight adjustments in the scoring rule. The weights are highly coupled, and making
adjustments the weights to solve one particular type of error has the potential to
create many other new errors. Even if a change is made to only one weight, the
scoring rule should go through the complete regression testing regimen and treated
as an ER version change.

14.4 Clerical Review and Assertion as a Supplement
to Automation

Because of the probabilistic nature of matching, all automated ER systems will
introduce some level of the false positive and false negative linking error into the
EBDF process. For critical or high-risk applications, the level of accuracy achieved
by the automated ER process alone is often not sufficient. When this happens, the
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automated process must be supplemented with an additional manual ER process
called “clerical review” or “remediation” [23].

Clerical review has its roots in the Theory of Record Linking described by Fellegi
and Sunter [5]. The proof of their theorem relies on the ability to have reviewers
(persons) make the correct linking decisions for a certain group of entity reference
pairs. Because it is a manual process, clerical review is only used in high-risk EBDF
processes where the extra time and expense are justified.

Just as with blocking, clerical review presents a second conundrum. Because not
every pair of references can be manually reviewed, the goal of clerical review is to
inspect only those pairs of references where the automated process may have made
an error. But of course, if the automated process knew it was making an error, it
could be programmed not to make the error. Again the solution lies in probability.
Even though the automated system may not know it is making an error, it can
detect the match conditions which have higher probabilities of an incorrect linking
decision. These conditions are called “clerical review indicators.”

Another advantage of the scoring rule is it has a built-in review indicator, the
match threshold. Pairs of references scoring very close to the match threshold, either
above or below, have a higher likelihood of being a false positive or false negative,
respectively. It is a simple matter to set a tolerance level above and below the
match threshold as a review indicator. Pairs of reference scoring within the tolerance
window around the threshold can be written to an exception file for later clerical
review.

It is important to note that effective clerical review is done by people who
understand the entity domain, not by matching experts. Presumably the matching
experts have already transferred all of their knowledge into the rules of the matching
process. The role of the clerical reviewer is not to determine how well the references
match, but to determine if the references are equivalent or not. This often requires
the reviewer to use other information external to the EBDF process itself. For
example, if the entities are patients, it may require accesses other hospital systems,
public information system, or even making calls to the patients in question to make
a correct linking decision.

Another important aspect of clerical review is the reviewer decisions are not
directly implemented by the reviewer. The decisions are first recorded as transac-
tions, and the transactions are then processed by a special configuration of the ER
system. This delay also provides for another level of quality assurance. It allows
time for a reviewer’s decision to undergo a second review before being processed
by the system.

The entire clerical review process should be defined by a set of data governance
policies and procedures. The policies and procedures will define the clerical review
process, the roles and responsibilities of the reviewers, and the conditions under
which reviews may be escalated to even higher levels of review if necessary.

Clerical requires an auxiliary support system to allow a reviewer to see and
understand the current linking configuration in the system called out for review by
the review indication. These clerical review systems require a robust graphical user
interface (GUI) providing a full view of not only the review indication but also the
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complete context of the other records in the cluster. The system should allow the
reviewer to drill down into the complete context of the references.

Once a final decision has been made by the reviewer and approved, then the next
step is to “assert” the decision transaction into the ER system. An assertion is simply
the implementation of the reviewer’s decision in the ER system.

Clerical review systems should support two types of assertions, correction
assertions and confirmation assertions. When the reviewer determines the indicated
references are incorrectly linked, the review must design a correction assertion to
remedy the error. For example, if two indicated references were linked incorrectly
(false positive), then the reviewer would create a “split assertion” to unlink the
references and place them into the correct clusters. On the other hand, if the reviewer
determines the indicated references are equivalent, but were not linked by the
automated system, then the review would create a “consolidation” assertion to force
the system to link the references.

Review indicators only report conditions likely to be in error. The reviewer may
decide an indication is not an error, i.e., the automated ER process made the correct
decision. If the reviewer decides the automated system was correct, the review
should still make a confirmation assertion. A confirmation assertion does not change
the linking configuration of the system. Instead, it embeds special metadata into the
system to prevent the same clerical review indication from being reported again.
Confirmation assertion helps reduce the overall time and effort to conduct clerical
review on a regular basis. Once a pair of references indicated for clerical review has
been reviewed and determined to be correct, then the system should not select the
same pair for clerical review again.

14.4.1 Robust Metadata

Clerical review assertions point to the need for the ER system use robust metadata to
support in the EBDF process. For example, a split assertion to repair a false positive
link made by the automated system should also create metadata to prevent the same
false positive error from occurring in the future. Otherwise, the same automated
matching rule with continue to make the same mistake of linking the references.
This can start a loop where the automated rules make a false positive link, the pair is
indicated for review, the reviewer splits the references, the automated system links
them again, and cycle repeats over and over again.

In addition to metadata needed to persist an assertion, there should be metadata to
annotate the assertion for future reference and audit. The annotation would identify
the reviewer making the assertion, the type of the assertion, the date of the assertion,
and possibly notes or other information.

The work of the reviewer will also be helped by metadata inserted by the
automated ER process itself, for example, having an identifier for each reference
that is unique across the entire system, a way to identify the source of the reference,
the date and process run that created a cluster, the date and rule that added each
reference to the cluster, and so on.
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14.4.2 Error in Data Rationalization

By definition, data fusion is bringing together multiple sources of information. The
purpose of the ER process is to assure that the information being brought together
is for the same entity. However, even though the information is for the same entity,
it does not mean the information will be consistent. The two main issues faced in
data rationalization are conflict resolution and value harmonization.

Conflict resolution occurs when two or more sources report different values for
the same attribute. Depending on the attribute, the conflict can be a good thing or a
bad thing. Conflict resolution is an issue faced daily by large data brokers [8, 9]. As
a simple example, consider conflicting dates of birth reported for the same person.
Assuming the ER process is correct and the records are actually for the same person,
then we know there should only be one correct value for the date of birth. Resolving
this conflict requires selecting one value as the correct value. However, for some
types of products and application, all of the values are reported.

Of course each EBDF application will have its own unique set of issues, but in
general, selection from conflicting values is made by a simple “voting” method, by
source reliability, or by a combination of both. For example, if there are ten sources
and seven report the same date of birth and the other three report different values,
then by the voting scheme, the most reported value would be selected.

On the other hand, it often occurs that some sources are deemed to be more
reliable and authoritative. In this case, the selected date of birth would be from the
most reliable source even if it is the minority value. It may also occur that in some
instances, the most reliable source does not have a value. In that case, the secondary
rule may be the voting rule. Conversely, if the voting rule is primary, but there is
not a predominate value, then the secondary rule may be to select from the more
reporting reliable source.

This example also demonstrates why source validation alone is insufficient. As
long as all of the reported dates of birth pass the source validation rule, the record
will be passed forward into the ER process. The date-of-birth validation is usually
just a simple check of whether the date is within some reasonable range of dates.
It is not until the records reach the rationalization step that the error is discovered.
Again, it is important to understand that passing source validation does not mean
the source values are accurate.

There are more sophisticated approaches to making a selection from conflicting
values. For example, the use of genetic algorithms showed improvement over more
naïve voting methods [31]. Selection from among conflicting values is where some
of the newer machine learning capabilities can be applied. Experimenting with
the effectiveness of newer data mining and machine learning techniques to value
selection is an area where data fusion research could be advanced.

Conflicting values for an attribute are not always bad. For some attributes they are
expected. For example, location information such as address. Between encounters,
a patient may have moved and report a different address. In cases where different
values are acceptable, the question is not necessarily selecting the correct value, but
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selecting a preferred value. For address, the preferred value might be either current
address or it might be the billing address. The selection rule logic will be based on
the specific requirements of the product.

Another issue for rationalization is value harmonization. Harmonization is when
values for the same attribute have the same meaning, but are reported in different
ways. Using the healthcare example again, it might be diagnoses given in different
coding schemes where one is given according to ICD-10 coding and the other
according to SNOMED.

A similar situation occurs when values are coded in “brackets.” Records from
one clinic may report “pre-high blood pressures” as 120 to 140, but another may
define the same category as “130 to 150.” It is unclear whether the actual value
should be assumed between 120 and 150 or if it should be assumed between 130
and 140.

Even though data rationalization is the final step in the EBDF process, depending
upon the application, it may not be final step in the production of the information
product. Rationalization may simply be a precursor step to further processing.

14.5 Measuring ER Accuracy

Periodic and system measurements are necessary to effectively monitor and improve
the accuracy of the ER step in the EBDF process. There are two principal measures
of ER accuracy, precision and recall [2]. Precision measures the probability that
linking decisions will be correct. The formula for precision is

Precision = Number of true positive links

Total number of links made

In other words, when the ER system decides to link two references, what per-
centage of the time are the references actually equivalent. Cautious or conservative
match criteria tends to yield higher precision, i.e., only linking when there is strong
similarity or other supporting evidence of equivalence. However, high precision
often comes at the cost of low recall.

The complementary measure to precision is recall. In high-risk applications,
failing to link equivalent references (false negative errors) can be as detrimental as
false positive errors. Recall measures the percentage of equivalent references linked
by the ER process to the total number of equivalent pairs (i.e., total possible links).
The formula for recall is

Recall = Number of true positive links

Total number of equivalent pairs of references

When both measures are 100% (1.00), then the goal of ER has been reached.
If two references are linked, then they are equivalent, and if two references are
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equivalent, then they are linked. Often these two measures are combined into a
single value called the F-measure. The F-measure is the harmonic mean of the
precision and recall given by

F -measure = 2 · Precision · Recall

(Precision+ Recall)

The difficulty with these performance formulas is they all depend on knowing
which references are equivalent and which ones are not. Counting true positive pairs
assumes you know which pairs are equivalent, and if one knew all of the equivalent
pairs as called for the recall calculation, then there would be no need to have an ER
process.

In general, these calculations can only be made for some sample of the
references. Recently, there have been some strides made to develop methods for
obtaining reliable estimates of these measurements with a manageable level of
effort. The first method was developed by Pullen [20] and relies on stratified
sampling to estimate precision and recall. The second was developed by Penning
[19] based on inferred methods developed in the field information retrieval.

14.5.1 Pullen’s Stratified Sampling Method

14.5.1.1 Methodology Overview

Unlike many types of machine learning and classification problems, ER has a unique
advantage among the many differences and other disadvantages. The similarity
assumption of entity resolution provides an approximation for the truth of ER
outcomes. This distinct difference provides a mechanism for which the ER results
can be scored and later stratified. The similarity assumption was originally leveraged
by the Fellegi-Sunter Model of Record Linkage [5]. In this model, high scoring (i.e.,
more similar) records are automatically matched by the system, while low scoring
(i.e., less similar) records are not automatically matched by the system.

Measuring the quality of ER results requires some type of manual review of
matched pairs of records to achieve a high degree of accuracy in the quality
estimates. Unfortunately, manually assessing a large amount of record pairs is time
consuming and expensive. This method uses techniques from the Fellegi-Sunter
model of record linkage, stratified sampling, and manual review to provide an
accurate estimation of the precision, recall, and f -measure of a set of ER results
with an amount of effort that aligns with the organization’s available resources.

The degree of accuracy in the estimated measures increases with the resources
and time expended by the organization. Additionally, the techniques outlined in this
approach provide insight into thresholds for optimal clerical review processes with
a desire to minimize the expense of resources when initially measuring the quality
of ER results and during on-going quality improvement and monitoring initiatives
for the ER process.
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The Fellegi-Sunter scoring rule is defined by a set of attributes with a corre-
sponding agreement and disagreement weight. During the pairwise comparison,
the agreement weight is applied when two attribute values agree. In contrast, the
disagreement weight is applied when two attribute values disagree. To calculate
attribute weights for the scoring rule, a proxy for equivalence is needed. In the
Fellegi-Sunter theory, equivalence represents the truth in the real world. Unfortu-
nately, knowing or identifying equivalence is not practical in the real world. If it
was known, measuring the precision, recall, and F-measure of ER results would be
trivial. For this technique, the linking from the existing ER result is used as a proxy
to equivalence for calculating attributes scores and applying the scoring rule for
the assessment process. The use of existing linkage for generating attribute weights
has been tested and proven in previous work [26]. Furthermore, attribute values are
considered to be in agreement if the two values match after changing the values to
an upper case and trimming any leading or trailing whitespace characters.

14.5.1.2 Calculating Attribute Weights

For this approach, the algorithm used to calculate the agreement weights and dis-
agreement weights is the Fellegi-Sunter probabilistic model for estimated weights
under the assumption of conditional independence of the identity attributes [7].
Let {a1, a2, . . . an} represent the identity attributes of the references. For each
attributewe must calculate two conditional probabilities.

mi = Probability (values of ai agree|references are equialen)

ui = Probability (values of ai agree|references are not equialen)

The agreement weight and disagreement weight for each attribute is calculated
from these values as follows:

AgreeWeighti = log2

(
mi

ui

)

DisagreeWeighti = log2

(
1−mi
1− ui

)

14.5.1.3 Applying Weights for Positive Outcomes

The pairwise comparisons are performed within all existing clusters in the ER
results for analysis of positive outcomes (TP and FP). Due to the dependency on
the ER links as a proxy for equivalence, the attribute agreement and disagreement
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Table 14.1 Example EIS

Reference ID First name Middle name Last name Date of birth System ID Num

1 Joey M. Johnson 3/25/1995 111111111
2 Joseph Johnson 3/25/1995 111111111
3 Joey Sterling Johnson 9/13/1997 111111111

Table 14.2 Example attribute agreement and disagreement weights

Weight type First name Middle name Last name Date of birth System ID Num

Agreement 5 3 5 10 20
Disagreement −4 0 −4 −8 −20

Table 14.3 Applied weights for the example pairs

Pair First name Middle name Last name Date of birth System ID Num Total score

(1,2) −4 0 5 10 20 31
(1,3) 5 0 5 −8 20 22
(2,3) 5 0 5 −8 20 22

weights vary for different ER results of the same dataset. Though, the same set of
weights can be reused for different ER results. As an example, consider the refer-
ences shown in Table 14.1, and their corresponding agreement and disagreement
weights shown in Table 14.2.

In Table 14.1, there are three records. This means there are three pairs in total
that need to be processed for this cluster. Using the Reference ID field to identify
each record, the pairs are (1,2), (1,3), and (2,3).

When the attribute values for two references are the same, the agreement weight
is applied. If the values are different, the disagreement weight is applied. For the
pair (1,2), the First Name values are different. So, the disagreement weight for the
first name, −4, is applied. This is performed for each attribute for the pair.

Table 14.3 shows all of the weights for each attribute in each pair. After
calculating all of the attribute weights, the results are summed to provide total score
for the pair. The results are shown in Table 14.3.

To understand the usefulness of this score as a stratification method, it is
important to understand that the score of two pairs is calculated in a manner that
depends on the number of similar or dissimilar attribute values shared between
the two references being compared. If they are defined as similar by a specified
similarity function, an agreement weight is applied. If they are dissimilar by a
specified similarity function, a disagreement weight is applied. This means that a
higher score corresponds with the number of attributes that match. A higher score
signifies a stronger match. A lower score signifies a weaker match.

Consider Fig. 14.3 for a visual representation of this. This corresponds with the
similarity assumption of entity resolution.
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Fig. 14.3 Visualizing binned pairwise scores

Fig. 14.4 Correlation of score and probability of error

Each of the bins represents a spectrum of values for a score of matching pairs. In
the example, each spectrum has a span of 50. The left-most bin represents the pairs
that have the least similarity. The right-most bin represents the pairs that have the
greatest similarity.

If using equal distance for the bin intervals, the bins represented above will very
likely be of unequal population and show a drop off in size as the score reaches
the extreme upper or lower ends of the spectrum. By using this information, it is
expected that a correlation of the score and the probability of an error should appear
as in Fig. 14.4.

14.5.1.4 Applying Weights for Negative Outcomes

The previous example applies to the processing undertaking for positive outcomes
(i.e., true positive or false positives). Negative outcomes (i.e., false negatives or true
negatives) present a challenge that requires a modified approach. The evaluation is
comprised of references across more than one cluster produced by the ER process.
In practice, many of these evaluations involve two clusters but may include more.
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To find the cross-cluster relationships, a spit key is utilized. In this process,
the split key acts as a Boolean match rule with a very high recall but relatively
low precision. This contrasts with the typical approach of high precision but low
recall Boolean rules used by ER systems for pairwise matching. By biasing toward
high recall, this allows the split key to identify even the most difficult matches. To
reduce the number of potential missed matches that must be manually reviewed,
two additional steps are applied: (1) Relationships identified by the split key must
disagree with the result produced by the ER process and (2) references that meet the
criteria of the split key and the first requirement are grouped together into a value
cluster from which the scoring method is applied.

The first step is used to remove potential TP decisions that have no impact on
identifying the FN errors and reduce the review set to just potential TN or FN
outcomes. The entropy calculated in the second step follows the process described
in the false positive indicator entropy approach. The only difference is that this is
performed on a value cluster produced by the split key instead of a cluster produced
by the ER process.

To understand the application of this process, consider the following scenario
with three clusters as shown in Table 14.4.

To identify the missed matches, System ID Number will be used as a simple split
key. Using the split key and only including those references that match by the key
and disagree with the ER results produces the cluster shown in Table 14.5. Though
this example uses a single term key, it is possible to use a multi-term key that even
includes fuzziness using a derived hash code comparator such as Soundex, NYSIIS,
or regular expression-based transformations.

Table 14.4 Set of three example EIS

Reference ID First name Middle name Last name Date of birth System ID Num Link ID

1 Joey M. Johnson 3/25/1995 111111111 A
2 Joseph Johnson 9/13/1997 111111111 A
3 Joey Sterling Johnson 9/13/1997 222222222 A
4 Joseph Michael Johnson 3/25/1995 111111111 B
5 Joseph Michael Johnson 3/25/1995 111111111 B
6 Joey Johnson 3/25/1995 111111111 C
7 Joey M. Johnson 3/25/1995 333333333 C
8 Joseph Michael Johnson 3/25/1995 111111111 C

Table 14.5 Value cluster produced by split key

Reference ID First name Middle name Last name Date of birth System ID Num ER Link ID

1 Joey M. Johnson 3/25/1995 111111111 A
2 Joseph Johnson 9/13/1997 111111111 A
4 Joseph Michael Johnson 3/25/1995 111111111 B
5 Joseph Michael Johnson 3/25/1995 111111111 B
6 Joey Johnson 3/25/1995 111111111 C
8 Joseph Michael Johnson 3/25/1995 111111111 C
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After this value cluster is produced, the scoring method is applied as described
previously for positive outcomes.

14.5.1.5 Estimating Precision, Recall, and F-Measure

This method uses the output of the manual review to calculate estimates of the total
error rate of the ER result. To calculate these estimates, each of the bins are weighted
by their portion of the total sample space. The weight is calculated as

Bin weight = Bin size

Total size

This calculation is performed for all the bins. The manual review process outputs
a set of counts of true or false outcomes. These are divided by the sample size for
each bin to come up with an estimate of the probability of an error or non-error
within that bin. In the case of positive (match) outcomes, the errors are FPs and the
non-errors are TPs. For negative (non-match) outcomes, the errors are FNs and the
non-errors are TNs. This is calculated as

P (error) = Nbr of errors

Sample size

P (non-error) = Nbr of non-errors

Sample size

Finally, the weights are applied to each bin and summed to calculate an estimate
for the total ER result across all bins. This is performed for positive outcomes and
negative outcomes. This is calculated as

P (error) =
n∑

i=1

(
Weightn · Pn (error)

)

P (non-error) =
n∑

i=1

(
Weightn · Pn (non-error)

)

This process can provide estimates for the FP, TP, FN, and TN outcomes. The FP,
TP, and FN pair-count estimates can be used for calculating the traditional cluster-
based precision, recall, and F-measure. In most cases, TN estimates provide no
insight into the quality of the data due to the class imbalance of negative and positive
outcomes and limitations imposed by using split indicators for aggregating records
into value clusters. The split indicators are limited in their recall in a manner similar
to the ER results. It is assumed that all pairs of records not generated by the split
indicator process have a near-zero probability of being an FN.



14 Evaluating and Improving Data Fusion Accuracy 315

Fig. 14.5 Quality measures

14.5.2 Penning’s Method for Inferred Precision

Entity resolution (ER) results are evaluated by classifying and counting record pairs.
Specifically, error rates are calculated by counting the number correct and incorrect
linking decisions. But if the true links are not known, how can we count them? If we
knew the correct links, then ER would be unnecessary. Current methods to address
the problem require truth sets, benchmark sets, or pseudo-truth sets. A truth set is
made up of known true matches but is only a subset of the population (or ER would
be unnecessary) and may not contain all error types [18] Benchmark sets are the
results of previous reliable ER systems but these sets may have undetected errors.
Finally, pseudo-truth sets are scored matches where high scores represent high
match confidence or true matches and low scores represent low match confidence
or true non-matches [28]. These sets have the same issues as benchmark sets. In
fact, none of these solutions is ideal [23]. The problem is how to find the error rate
without counting. One approach to solve this problem is to borrow techniques from
the information retrieval (IR) community.

Information retrieval (IR) is the study of methods of pinpointing information
resources that will fit specific information needs. They have faced this same
challenge and solved it by using “inferred” measures that are good estimators when
datasets are large and the truth is unknown [29]. The problem is in adapting these IR
measures to an ER context. In order to borrow these techniques, ER will need to be
recast as information retrieval. To begin with an overview of quality measures from
both disciplines will be helpful. Figure 14.5 shows the relationship between IR and
ER measures.

14.5.2.1 ER Measures

Accuracy

The Rand index is used as an accuracy measure and provides a good general
comparison of the portion of correctly assigned results to those that were incorrectly
assigned [21]:
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Accuracy = TP+ TN

TP+ FP+ TN+ FN

where true positives are TP, false positives are FP, true negatives are TN, and false
negatives are FN.

F-Measure

F-measure is an approximation of crossover point of precision and recall or the “ . . .
is the weighted harmonic mean of precision and recall” [15]. Precision tells us how
many retrieved are actually relevant TP/(TP + FP), and recall tells us how many
relevant were returned TP/(TP + FN).

F -measure = 2
(
Precision∗Recall

)

Precision+ Recall

Talburt-Wang Index

The Talburt-Wang Index provides a method of ER system comparison that is more
efficient since is does not require the TP, FP, TN, and FN counts. Instead it only
counts the number of partitions (link groups) and the overlaps between the groups:

TWi (A,B) =
√|A| ∗ |B|
|V |

where A and B are the counts of linked groups created by the two ER systems and V
is the number of overlaps (non-empty intersections) between the groups. The index
ranges in value from 0 to 1. The value is 1 if, and only if, the two ER processes link
the input references into exactly the same groups [23].

14.5.2.2 IR Measures

Average Precision and Mean Average Precision

Average precision (AP) is the approximation of the area under the precision and
recall curve for the top k documents. It can be computed by taking the average of the
precision values at relevant documents. Mean average precision (MAP) is a single
measurement for an IR system not an individual query. It is the mean of average
precision values and is used to provide a single number in order to compare systems.
This measure has been developed over decades and has been shown to be a stable
discriminator between systems which is used by the IR community extensively [15].
The computation of AP is shown in Fig. 14.6.
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Query 1 = (1 + 1)/2 = 1
Query 2 = (1 + .667)/2 = .8335

MAP = (1 + .8335)/2 = 0.91675

Note that the AP score was higher
for query 1 than query 2 – this is due
to the ranking of relevant documents

Fig. 14.6 Average precision [19]

Inferred Average Precision and Mean Average Precision

Challenges caused by very large datasets moved the IR community toward devel-
opment of an inferred measure [25, 29, 30]. In 2005 the inferred version of average
precision was developed. Not long after the Text Retrieval Conference (TREC), a
well-respected test bed for evaluation of IR systems, run by the US National Institute
of Standards and Technology, began using this new measure. AP can be explained
as the expected outcome of a random experiment where relevant documents are
sampled to provide values for rank levels. For each sampled value, this computation
will be recalculated to determine the expected precision values at each of the
sampled ranks. The precision values can then be averaged, just as in the descriptive
version of AP, to produce an inferred MAP value.

Figure 14.7 shows how this computation is applied. In this example relevant
documents are those in positions 1, 3, and 5. The document in position 2 is non-
relevant and the document in position 4 is of unknown relevance. Precision and
recall are calculated at each ranked position and AP is calculated twice, once
assuming the unknown document is relevant and once assuming it is non-relevant
resulting in AP values of 0.804 and 0.756. These values demonstrate how the
inferred AP value of 0.756 is used as an estimator for AP. Because this example
is so small, sampling is done at every relevant k, for a large set sampling is done as
needed (Fig. 14.8).

The formula for the estimated precision at rank k is given by

E
[
precision at rank k

] = 1

k
· 1+ (k − 1)

k

( |d100|
k − 1

· |rel| + ε
|rel| + |nonrel| + 2ε

)
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Fig. 14.7 Computation of inferred precision [29]

AP (1) = (1+.667+.75+.8)/4 = .804 =

=

k

depth 100 pool

Recall .25 .25 .5 .75 1

Precision 1 .5 .667 .75 8

Recall .33 .33 .667 .667 1

Precision 1 .5 .667 .5 .6

Query 3

=
Unknown = 0

Unknown = 1

Relevant
Documents

=AP (0) = (1+.667+.6)/3 = .756

Fig. 14.8 Mean average precision [19]

The estimated precision for ranks 5, 3, and 1 are calculated as

E
[
precision at rank 5

] =
(

1

5
· 1
)

+
(
(5− 1)

5

)

·
(

4

(5− 1)
·
(

2

4

))

= 0.6

E
[
precision at rank 3

] =
(

1

3
· 1
)

+
(
(3− 1)

3

)

·
(

2

(3− 1)
·
(

1

2

))

= 0.667

E
[
precision at rank 1

] =
(

1

1
· 1
)

+
(
(3− 1)

3

)

·
(

2

(3− 1)
·
(

1

2

))

= 1
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And finally the inferred average precision is given by

inf AP = (1+ 0.667+ 0.6)

3
= 0.756

With this background in mind, we can look at how an IR inferred technique can
be used for ER error rate estimation.

14.5.2.3 Inferred Average Precision Applied to ER

Evaluating ER quality using inferred AP will require an understanding of ranking
as it relates to entity resolution, incomplete truth sets, and low error rates. To recast
ER as IR, we will view each linked cluster in the entity resolution results as the
equivalent of an IR query results. These sets are comparable in that they both refer
to a presumably related set of information—documents in the IR case and single
entities in the ER case. Viewing ER in this way ranking will be accomplished by
pairwise comparisons of the members of a cluster.

The cluster pairs can be scored based on match quality which will depend on
the dataset being processed. There are many possible approaches to scoring match
quality and care must be taken to avoid overlap between this scoring system and the
ER matching system algorithms. Each pair will receive a score reflecting their match
strength and the scores can then be ranked accordingly. Low error rates will be
addressed by stratified sampling [20]. Sampling from groups where higher potential
for error will performed proportionally to account for low error rates in specific
cluster populations.

An example population would be clusters which are split. A split cluster is
a single cluster according to one ER system that has been broken into multiple
clusters by another. Membership in a split verses a congruent cluster suggests
a higher potential for errors. Finally, incomplete pseudo-truth sets, those with
unknowns as shown in Fig. 14.7, can be addressed by remembering that the IR
query results correspond to the ER cluster. Pairs in a cluster with the highest match
score correspond to the judged relevant documents. Remaining pairs below the non-
relevant cutoff correspond to the judged non-relevant group. The pairs between these
scores correspond to the unjudged group.

• Query (pool)⇒ ER cluster, information on one entity or topic
• Judged relevant⇒ pairs with the highest match score
• Judged non-relevant⇒ pairs falling below a non-relevant cutoff
• Not judged⇒ pairs falling above the cutoff but not having membership in the

cluster with the highest match score
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14.5.2.4 Implementation

The implementation of inferred average precision for ER is straightforward con-
ceptually and more challenging algorithmically. First, sampling 0.5% of the pairs
with random or stratified sampling methods is recommended [28]. Next, rank the
cluster pairs based on their similarity score, and choose the scores that will be
the break-off points for pseudo-true and pseudo-false as well as unknown [5, 28].
Ranking in this way is not unusual. It can be accomplished using a variety of
similarity evaluation methods independently or as part of layered ranking (ranking
with multiple methods). All pairs sharing the highest score are “pseudo-true”
equivalencies, and those with the lowest score are “pseudo-false” equivalencies
[28]. Finally, use these values compute the average precision and the mean average
precision. Implementing this algorithm is challenging since data must be maintained
on multiple levels simultaneously. Inference is however, a necessity in ER today and
provides us with good error estimates.

14.6 An EBDF Data Quality Management Process

Many topics have been discussed, and all are important in understanding the EBDF
process. However, the question is how to apply this knowledge in a systematic and
comprehensive way to reduce the errors and, consequently, to reduce the risks of an
EBDF process. To accomplish this, we propose a structure for an EBDF data quality
management process to bring all of these discussion points to bear on the problem.

Product thinking is the key to successful quality management. Product quality
management processes, including those for information products, are now well-
developed and well-understood. Managing information as product has been a
cornerstone of the data quality discipline for the past 20 years based on the
research carried out by the MIT Information Quality Program [13, 27]. By taking
a product perspective, it has been possible to leverage all of the principles and
practices developed for total quality management (TQM) that has revolutionized
manufacturing.

The implementation of a data quality management (DQM) process has four
components [10]:

1. Data quality planning
2. Data quality control (QC)
3. Data quality assurance (QA)
4. Data quality improvement
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14.6.1 Data Quality Planning

The starting point is data quality planning. Data quality planning entails developing
and managing data quality requirements, policies, and standards. If you have a high-
risk EBDF process, then you must start by identifying nature of the defects in the
final product that create the risks and then determine what are the acceptable levels
for the rates of these defects. These product requirements become the input for the
next component of QC.

14.6.2 Data Quality Control

QC measures the degree to which final products meet data requirements. Basically
QC is product inspection. Product inspection should be an ongoing regimen in
every organization. When an EBDF process produces too many products for
100% inspection, then QC should be done through sampling using the established
techniques of statistical process control [6].

QC is essential for DQM. It helps to prevent releasing defective products to the
product users, and it provides a monitor or control to signal when something has
gone wrong with the production system. In statistical process control terminology,
QC can signal an “out of control” process. While QC is extremely important, it only
detects errors, it does not prevent them. The prevention of errors is the role of the
QA process.

14.6.3 Data Quality Assurance

QA supports QC by assuring that the component parts of the product meet certain
requirements before the final product is assembled, thus helping to prevent making
a defective product. While some people tend to use the terms QA and QC
interchangeable, they have specific meanings in DQM and quality management
in general. QC is inspection of the final product, whereas QA is assuring the
component parts of the product fall within expected tolerances. In some sense, QA
can be thought of as QC for the product parts, i.e., to what degree are the parts
meeting their requirements.

Figure 14.2 provides a QA map for the EBDF process. It shows the four points
in the EBDF production process where adherence to tolerances could have the most
impact in preventing defects in the final product. The four points are the source
information, the blocking process, the ER process, and the rationalization process.
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14.6.3.1 QA for Source Information

For source information, QA is typically a collection of data validation rules. These
rules test the quality of the values in individual fields for completeness, conformity
to required format, timeliness, and other dimensions of data quality relevant to the
final product. Other rules may test relationships between related data items, and in
relational models, rules to test if the relationships are present and correct.

Validation rules can also be longitudinal. To help detect unexpected changes in
source file, each source file is profiled when it is received. Profiling collects the
statistics on the file content, such as the frequency of each distinct value for an
attribute, the number of missing values for an attribute, and the largest and smallest
values of an attribute. When comparing the profile of an incoming file with profiles
of previously received files from the same source, large variations in the profile
statistics could indicate the layout or content of the file has changed or the wrong
file has been sent in error.

14.6.3.2 QA for the Blocking Process

QA for blocking requires is typically done by running the blocking and ER process
against benchmark test data to see if the expected results are achieved. QA for
blocking tends to be more episodic than ongoing. Events such as modifications to
the blocking process or modifications to the matching rules should be triggers for
QA for blocking.

As noted earlier, if the blocking process is in complete alignment with the
matching rules, then running the ER process on a sample of records with and without
blocking should yield the same clustering of the input. The test set used for blocking
QA should contain at least one pair of records to exercise each match condition.

14.6.3.3 QA for the ER Process

QA for the ER process is the most extensive. It has three major components, bench-
mark or regression testing, clerical review, and periodic accuracy measurement.
Just as with blocking, whenever there are changes to the upstream systems such
as adding a new data source or a change in blocking rules, the ER process should
undergo a complete regression testing regimen with benchmark data to assure all
expected results are achieved. For high-risk EBDF processes, there should be two
additional QA checks for the ER step.

The second QA process is clerical review. For a high-risk EBDF process it is
essential for the ER process to produce clerical review indicators. Clerical review
indications can be produced during the ER process or produced by a post-ER
process examining the cluster produced after the ER process. As noted earlier,
scoring-based ER engines can easily product clerical review indications by simply
noting when a pair of references produce a score very close the match threshold.
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Run-time review indicators are possible for Boolean rule systems as well. The
indicators are produced by incorporating a secondary set of “soft” Boolean rules.
These review rules are soft in the sense they impose less stringent match conditions,
i.e., a near match or partial match. When a pair of references fails to trigger a normal
linking rule, but triggers one of the review rules, the pair is output for clerical review.
The main issue with soft Boolean rules is they only indicate for false negative pairs
and not for false positive. False positive indications for Boolean rules are usually
generated by a post-ER process.

There are a number of techniques for generating post-ER review indicators.
These are programs that run after the ER process and examine the clusters of linked
records created by the ER process. Most post-ER indicators are based measuring the
entropy of a cluster or a merged pair of clusters. The entropy of a cluster represented
the degree of organization or consistency of the cluster values. If the entropy of a
cluster is low, it means that the values of the references in the cluster are organized
in the sense most of the values for the same attribute agree with each other. However,
if the entropy is high, it signals more disorganization within the cluster, i.e., many
different values for the same attribute across the references in the cluster. Clusters
with very high entropy could be an indication the ER system has linked together
non-equivalent references, i.e., an indication of a false positive error. On the other
hand, if two clusters are merged together and the merged cluster has a very low
entropy, then it could indicate all of the references should be linked together in
the same cluster, i.e., an indication of a false negative error. The entropy-based
scoring model is very similar to the Pullen process for estimating precision and
recall discussed in the section Measuring ER Accuracy.

The third QA process for ER is the periodic and systematic estimation of the
ER system’s precision and recall. These estimates are essential for monitoring
and controlling ER accuracy. For large data applications, the Pullen method and
the Penning method described in section Measuring ER Accuracy can be used to
produce these measures.

14.6.3.4 QA for Data Rationalization

The QA for data rationalization depends heavily on the application context. Because
data rationalization is the final step of the EBDF process, it is at or near point at
which the final information product is generated. For this reason, the QC process of
inspecting the final products can also serve as one of the QA processes for this step.
Just as with the preceding points of QA, data rationalization needs its own suite of
regression and validation tests to be applied when there are changes to any of the
three upstream processes, i.e., sourcing, blocking, and ER.
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14.6.4 Data Quality Improvement

While QC and QA detect and monitor data quality problems, the overall goal of a
DQM process is to continually improve the quality of the final product. The data
quality improvement process has three main parts. The first is error reporting and
collection, the second is root cause analysis, and the third is the implementation of
process improvements.

Perhaps one the most critical parts of the data quality improvement process is
collecting and documenting the errors. All errors across the entire EBDF process
should be collected into one central location. Systemic errors can often escape
detection when errors are collected and addressed in separate systems.

Error reporting should be organized and comprehensive. There should also be
a well-understood classification scheme for the type and location of the error
along with supporting metadata. Error metadata could include information about
the person reporting the error, when it was reported, the severity/priority of the
problem, and any error messages that were produced. If immediate corrective action
was taken for the error, then the data governance policy and procedure under which
the correction was made should be reported as well. In organization under a data
governance program, error correction should only be done by responsible data
stewards following approved data governance policies and procedures.

After reporting, the second part of improvement is the periodic and systematic
review and analysis of the error reported. The primary goals of an error log review
are to uncover the root cause(s) of each error and to classify errors with the same
causes into groups.

The third part of improvement is to prioritize each error group by considering
the impact of its errors on the EBDF process versus the time and cost necessary to
correct and prevent the errors in the future. The prioritization process requires input
from both IT and the business to understand the benefits and costs for each group.

Once the prioritization is complete, the final step is to create a project plan for
correcting and preventing the errors with the highest priority. Each improvement
project should be validated at this conclusion to determine the degree to which the
projected benefits from error reduction were attained versus the actual time and cost
of the project.

14.7 Conclusion

In this chapter we have discussed the EBDF process and the primary sources of
EBDF errors. We have also discussed and suggested some of the best practices for
monitoring and reducing these errors in high-risk applications. Finally, we have laid
out the fundamental components of the data quality management plan for continual
data and process improvement.
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However, more progress is needed. Most of the processes discussed rely too
much on human intervention. Continued research and case studies are needed to
bring to bear new methods and technologies to address these problems through
increased automation.

Two areas of particular interest for research are methods and technologies
to efficiently perform ER and data fusion in large-scale, distributed processing
environments. Another centers on how to take full advantage of machine learning
and other AI techniques at the frontiers of ER and data fusion research to improve
current QC and QA assurance processes and to develop new processes.
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Chapter 15
Decision-Aid Methods Based on Belief
Function Theory with Application to
Torrent Protection

Simon Carladous, Jean-Marc Tacnet, Jean Dezert,
and Mireille Batton-Hubert

Abstract In mountainous areas, decision-makers must find the best solution to pro-
tect elements-at-torrential risk. The decision process involves several criteria and is
based on imperfect information. Classical Multi-Criteria Decision-Aiding methods
(MCDAs) are restricted to precise criteria evaluation for decision-making under a
risky environment and suffer of rank reversal problems. To bridge these gaps, several
MCDAs have been recently developed within belief function theory framework. The
aims of this chapter are to introduce how these methods can be applied in practice
and to introduce their general principles. To show their applicability to the real-life
problem, we apply them to the Decision-Making Problem (DMP) comprising the
comparison of several protective alternatives against torrential floods and selection
of the most efficient one. We finally discuss the method improvements to promote
their practical implementation.
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15.1 Introduction

Mountainous torrential floods are different from plains’ floods because of high
flow velocity and high concentration of materials in flowing. Materials come from
headwaters, are transported in a channel by debris flows or bedload transport, and
finally spread on the alluvial fan. As shown in Fig. 15.1, they put people, buildings,
and networks at risk.

Protective systems aim is to reduce damage on elements-at-risk. Therefore, they
have specific functions. For instance, the check dam series maintain materials in
headwaters whereas sediment traps stop materials before they reach elements-at-
risk [1]. In practice, risk managers decide on actions based on several criteria, for
example, cost vs. damage reduction. An example of a practical Decision-Making
Problem (DMP) is given in Fig. 15.2. The goal is to compare several potential
protective actions Ai within a torrential watershed (i) to assign each alternative to a
class (or label) as classically done by experts, or (ii) to rank all alternatives according
to a preference order, or (iii) to choose the best alternative [2].

Classical Multi-Criteria Decision-Aiding methods (MCDAs) such as Analytic
Hierarchy Process (AHP) [3], Technique for Order Preference by Similarity to
the Ideal Solution (TOPSIS) [4], and Cost-Benefit Analysis (CBA) [5] help to
make decision on such Multi-Criteria Decision-Making (MCDM) problems. While
evaluations of criteria in practice are done with different units and scales, imperfect,
provided by more or less reliable sources, and made under an epistemically uncer-
tain environment [6], classical MCDAs only consider perfect criteria evaluation,
suffer from rank reversal problems, and are limited to decisions under a risky
environment.

Fig. 15.1 Torrential phenomena and examples of elements-at-risk
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To bridge these gaps, several MCDAs were developed within belief function
theory framework. As for any MCDA, the first step is to specify the DMP, potential
alternatives, decision criteria [2], their scoring scale, and their importance weights.
To assign each alternative to a qualitative label (i.e., good, bad, very bad, etc.),
Evidential Reasoning for Multi-Criteria Decision Analysis (ER-MCDA) approach
extends the AHP by taking into account imperfect evaluation of each criterion
provided by several sources. Belief function theory is coupled [7] with fuzzy sets [8]
and possibility theories [9]. Belief Function-based Technique for Order Preference
by Similarity to the Ideal Solution (BF-TOPSIS) methods are more robust to rank
reversal phenomena to rank all alternatives than classical MCDAs [10]. Cautious
Ordered Weighted Averaging with Evidential Reasoning (COWA-ER) [11] and
Fuzzy COWA-ER (FCOWA-ER) [12] improve initial OWA [13] to help to make
decision under an epistemically uncertain environment.

This chapter shows how these new methods can be combined and applied in
practice. Therefore, Sect. 15.2 not only recalls basics of MCDM problems and
decision-making under uncertainty but also basics of fuzzy set, possibility, and
belief function theories. Section 15.3 introduces general principles of ER-MCDA,
BF-TOPSIS, and FCOWA-ER methods. They are then applied in Sect. 15.4 to
the same DMP introduced in Fig. 15.2. In Sect. 15.5, we finally discuss needed
improvements to encourage their practical implementation.

Fig. 15.2 A real-life DMP within a torrential watershed
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15.2 Basics of Decision-Making and Imperfect Information

This section provides a formal description of the DMPs, models of representing
imperfect information, and decision methods given it.

15.2.1 Formalization of Decision-Making Problems

Any DMP is about comparing M alternatives Ai ∈ A and selecting the best
one. A decision-maker (DM) faces a MCDM problem if decision depends on
several criteria gj , j = 1, . . . , N . A set S represents the states of the nature.
Since the beginning of the twentieth century, it has been proposed to distinguish
decision-making under risk from decision-making under uncertainty, given the DM
knowledge on S [14]. This subsection introduces related formalisms to represent
the whole MCDM problem under uncertainty.

15.2.1.1 Multi-criteria Decision-Making Problem

A DM assigns an importance weight ωj to each criterion gj , j = 1, . . . , N .
Respecting the condition

∑N
j=1 ωj = 1, the vector w = [ω1, . . . , ωj , . . . , ωN ]

represents the DM preference over these criteria. For each gj , a specific scoring
scale Xj is defined. The DM scores each alternative Ai based on each gj . This
score is denoted xij ∈ Xj . The DM eventually provides the M × N score matrix
S = [xij ] defined by Eq. (15.1) [15].

S �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1, ω1 . . . gj , ωj . . . gN , ωN

A1 x11 . . . x1j . . . x1N
...

...
...

...

Ai xi1 . . . xij . . . xiN
...

...
...

...

AM xM1 . . . xMj . . . xMN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15.1)

15.2.1.2 Decision-Maker Preferences

The DM has preferences not only over criteria but also to compare alternatives
according to each criterion. First, AHP helps to establish the N -vector w which
represents the DM preferences over criteria by comparing criteria pairwisely [3].
Second, DM has a preference ordering between all alternatives Ai ∈ A , given a
scoring scale Xj for each gj . For instance, considering three alternatives A1, A2,
and A3 and their scores x1j , x2j , x3j ∈ Xj , the DM preference can be represented
by:
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• a total pre-order which assumes preference transitivity: ifA1 ) A2 andA2 ) A3,
then A1 ) A3 [16].

• a partial pre-order which relaxes transitivity assumption [2].

15.2.1.3 From Decision-Making Under Risk to Decision-Making Under
Uncertainty

In practice, torrential hazard is generally represented by a finite set of states of the
nature S = {S1, . . . , Sk, . . . , SK }, as recalled in Fig. 15.1. Each Sk is commonly
referred to as scenario [17]. Given Sk , Cik is the global payoff expected for each
alternative Ai . DM provides the M × K payoff matrix C = [Cik] defined by
Eq. (15.2) [11].

Given C, decision-making depends on the DM knowledge on S [11]:

• Decision-making under certainty: since only one Sk is known and certain to
occur, it consists in choosing the best Ai� with i� � arg maxi{Cik}.

• Decision-making under risk (or aleatory uncertainty): the true state of the nature
is unknown, but one knows all the probabilities pk = P(Sk). In the context of
natural hazards, the expected payoff E[Ci] =∑k pk ·Cik is generally computed
for each Ai . The best Ai� is with i� � arg maxi{E[Ci]}.

• Decision-making under ignorance: one assumes no knowledge about the true
state of the nature but that it belongs to S . Yager’s Ordered Weighted Averaging
(OWA) approach [13] can be used to make a decision in this context.

• Decision-making under uncertainty: a belief structure characterizes the knowl-
edge on S. In practice, this is the closest representation of torrential hazard
knowledge. Its elicitation by subjective probabilities pk = P(Sk) is usually
used. Thus, decision-making is similar to decision-making under risk [18]. A
more interesting approach is the OWA proposed by Yager [13] and improved in
[11, 12].

C �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

S1 . . . Sk . . . SK

A1 C11 . . . C1k . . . C1K
...

...
...

...

Ai Ci1 . . . Cik . . . CiK
...

...
...

...

AM CM1 . . . CMk . . . CMK

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15.2)

Formalisms of MCDM problems and decision-making under uncertainty are
complementary in representing the DMP. A multi-criteria aggregation based on S
can give each vector Ck � [C1k, . . . , Cik, . . . , CMk] of C. For each Ai and gj ,
computing the expected payoff E[Ci]j from C can provide xij = E[Ci]j in S [6].
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15.2.1.4 Several Types of Imperfect Information

Whatever the DMP, decisions depend on the quality of information used to assess
scores xij (i = 1, . . . ,M; j = 1, . . . , N), payoffs Cik , and states of the nature Sk
(k = 1, . . . , K). There are various types of information imperfection [19]:

• inconsistency, which is related to conflict between sources such as several
experts;

• imprecision referring, for example, to interval of numerical values;
• incompleteness, which represents the lack of information while data exist;
• aleatory uncertainty referring to aleatory events;
• epistemic uncertainty, which is linked to the lack of knowledge.

In practice, probabilities are usually used to represent imperfect information. A
first criticism is their limit1 to represent uncertainty, while other formalisms are
available: sets for imprecision, fuzzy sets for vagueness [8], possibility distributions,
and imprecise probabilities for both uncertainty and imprecision [9, 27]. A second
criticism is the use of subjective probabilities [18] both to decide under ignorance
[20] and to represent the DM attitude with few information [21]. Belief function
theory allows taking into account all types of imperfect information but also to make
decisions under ignorance and epistemic uncertainty [22].

15.2.1.5 What Is the Decision-Making Problem About?

A DMP is about comparing theM alternatives Ai gathered in the set A . In practice,
three different objectives can be given [2]. For instance, the aim is to compare
M = 4 potential protective actions Ai within a torrential watershed based on their
efficiency:

1. to assign each Ai to a predefined qualitative class (or label) of efficiency such as
“high,” “medium,” “low,” and “none” [23];

2. to rank all Ai , i = 1, . . . ,M , totally or partially: for instance, A3 ) A4 ) A1 )
A2 is a total order, while A3 ∼ A4 ) A1 ∼ A2 is a partial order;

3. to choose the best alternative Ai� ∈ A , for instance, A3.

1Indeed, the ignorance of a parameter value x belonging to [a, b] is usually modeled by a uniform
probability distribution function (pdf) over [a, b], which yields from the probability calculus to a
nonuniform pdf of 1/x on [1/b; 1/a]. This result is not acceptable from the ignorance modeling
standpoint because if one has no specific information on x, we cannot get more information on
1/x but that 1/x belongs to [1/b; 1/a]. Therefore the uniform pdf often used to model ignorance
in probability theory is problematic.
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15.2.2 Imperfect Information: From Representation
to Decision-Making

This subsection details the three main steps to take into account imperfect informa-
tion: (1) representation, (2) combination and propagation, and (3) decision [24].

15.2.2.1 Representation of Imperfect Information Provided by a Source

• Fuzzy set theory was developed to represent linguistic assessment of fuzziness
[8]. Given individual elements x of the universe of discourse X, the membership
function μθ(x) ∈ [0, 1] associates each x ∈ X to the fuzzy set θ with the
grade of membership μθ(x). As shown in Fig. 15.3a, a simple way to represent a
membership function is to use a trapezoidal membership function defined by the
quadruplet {a, b, c, d} in Eq. (15.3) [25]: [a, d] is the fuzzy set support denoted
by suppθ , while [b, c] is its core coreθ . Given X, θ̄ is the complement fuzzy
set of θ defined by Eq. (15.4) (Fig. 15.3a), and a mapping model [19] is a set �
of n fuzzy sets θe, for e = 1, . . . , n (Fig. 15.3b). Given two fuzzy sets θ1 and
θ2, the membership function μθ1∪θ2 defined by Eq. (15.5) represents their union
(Fig. 15.3c), while their intersection μθ1∩θ2 is defined by Eq. (15.6) [8].

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ifx /∈ suppθ
x−a
b−a ifx ∈ [a, b]
1 ifx ∈ coreθ
x−d
c−d ifx ∈ [c, d]

(15.3)

μθ̄ (x) � 1− μθ(x), x ∈ X (15.4)

μθ1∪θ2(x) � max
x∈X(μθ1(x), μθ2(x)) (15.5)

μθ1∩θ2(x) � min
x∈X(μθ1(x), μθ2(x)) (15.6)

Fig. 15.3 (a) Fuzzy set � and its complement �̄; (b) mapping model (n = 3); (c) union
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Fig. 15.4 (a) Fuzzy set �; (b) possibility distribution π = μF ; (c) possibility measure of �
given π

• Zadeh, Dubois, and Prade then developed the possibility theory in the fuzzy logic
framework [9, 27]. Considering the fuzzy set F of possible values of x ∈ X, the
possibility distribution π is given by μF (x) � π(x) ∈ [0, 1] [26]. Given Y a
subset of X and Ȳ its complement, the possibility and necessity measures are
�(Y) � supx∈Y π(x) [9] and N(Y ) � 1 − �(Ȳ ), ∀Y, Ȳ ⊆ X [27], as shown
in Fig. 15.4b. �(Y) and N(Y ) are considered as the upper and lower bounds of
the probability P(Y ). Given X, the membership function μθ , and a possibility
distribution μF (Fig. 15.4c), the possibility measure of θ denoted by �(θ) is
defined by Eq. (15.7) [9].

�(θ) � sup
x∈X

μθ∩F (x) (15.7)

• In the meantime, Shafer introduced the belief function theory, also called
Dempster-Shafer Theory (DST) [22]. The Frame of Discernment (FoD) is a finite
set� = {θ1, . . . , θe, . . . , θn}, with n > 1, which gathers the potential answers of
the DMP under concern. In DST, all FoD elements are assumed exhaustive and
mutually exclusive. The power set of � denoted by 2� is the set of all subsets of
�, the empty set ∅ included. The complement of a subset A ∈ 2� is denoted Ā.
Its cardinality is |A|. A source (or body) of evidence is characterized by a basic
belief assignment (BBA) m�(·), which is a mapping m�(·) : 2� → [0, 1] that
satisfies m�(∅) = 0, and ∀A �= ∅ ∈ 2� the condition

∑
A⊆� m�(A) = 1. The

vacuous BBA models the full ignorance of the source of evidence. Ifm�(A) > 0,
A is a focal element of m�(·). m�A denotes the categorical BBA which focuses
on A �= ∅. More precisely, m�A(A) = 1 and m�A(Y ) = 0 for any Y �= A. Focal
elements of a Bayesian BBA are only singletons on 2�. Given the FoD � for
final decision, it is possible to represent imperfect evaluation of the score xij ,
for each alternative Ai according to each criterion gj , through the BBA m�ij (·)
providing the M × N BBA matrix M� = [m�ij (·)]. Thus, it must be compared

with the M × N score matrix S = [xij ], defined by Eq. (15.1). Given m�(·),
belief and plausibility functions are, respectively, defined by:
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Bel�(A) �
∑

Y⊆A|Y∈2�

m�(Y ) (15.8)

Pl�(A) �
∑

Y∩A�=∅|Y∈2�

m�(Y ) (15.9)

Considering that the universe of discourse X is the FoD �, the plausibility
measure Pl�=X(A) is a possibility measure �(A), ∀A ⊆ � = X [26]. Bel�(A)
and Pl�(A) are interpreted as lower and upper bounds of the unknown probability
P�(A). The interval BI�(A) � [Bel�(A),Pl�(A)] is its belief interval. Its length
Pl�(A)− Bel�(A) characterizes the uncertainty, also called ambiguity, on A [28].

Given m�(·), several transformations help to approximate probability
function P�(·) : Smets’ pignistic transformation provides BetP�(·) [29], DSmP
transformation gives DSmP�ε (·) where ε ≥ 0 is a tuning parameter [30] (Vol. 3),
and others.

Shafer’s exhaustivity assumption means that the FoD is considered as a “closed
world” (c.w.). In some practical problems, this assumption is too strict and it is
more convenient to consider the original FoD as an “open world” (o.w.).

1. In Smets’ Transferable Belief Model (TBM) [31], �o.w. � {θ1, . . . , θq} and ∅ =
�̄o.w.. One has

∑
A∈2� m(A) = 1, and one allows m(∅) � 0.

2. In Yager’s approach [32], the open world is closed by an hedge element θc, so
that �c.w. � �o.w. ∪ {θc}. The cardinality |θc| is not known.

Shafer’s mutual exclusivity assumption can be also too strict. Dezert-
Smarandache Theory (DSmT) framework modifies DST to relax this assumption
and proposes new techniques to combine the sources of evidence and to make a
decision [30].

15.2.2.2 Combining Information Provided by Several Sources of Evidence

First of all, the source reliability and its importance must be clearly distinguished.
Reliability is the source objective ability to give the correct solution of the
DMP [33]. For each source sq , q = 1, . . . ,Q, it is represented by a reliability
discounting factor αq ∈ [0, 1] [34]. Given the initial BBA m�q (·) provided by sq ,
Shafer’s discounting method defined by Eq. (15.10) is generally used to provide the
discounted mass m�αq (A) [22].

m�αq (A) �
{
αq ·m�q (A) ifA ∈ 2� �= �
αq ·m�q (A)+ (1− αq) ifA = � (15.10)
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Importance is the subjective weight granted to the source by DM [33]. In a
MCDM problem, each criterion can be considered as a source represented by a
BBA m�j (·). Each weight ωj is the importance discounting factor used to provide

the discounted BBA2 m�ωj (·).

m�ωj (A) �
{
ωj ·m�j (A) ifA ∈ 2� �= ∅
ωj ·m�j (A)+ (1− ωj ) ifA = ∅ (15.11)

Once BBAs have been discounted, the combination of distinct sources of
evidence is denoted by ⊕ to provide the combined BBA m�⊕(A),A ⊂ �. The
largely used initial Dempster’s rule (DS) [22] has been subject to strong debates
in fusion community, showing it does not behave well in high conflicting case [35]
but also in low conflicting cases [36].

As a consequence, since the 1990s, many alternatives have been proposed
to combine belief functions more or less efficiently. The Proportional Conflict
Redistribution (PCR) rules have been developed in DSmT [30] (Vol. 3) to palliate
disadvantages of the classical Dempster’s fusion rule [37]. PCR rule no 6 (PCR6)
defined by Eq. (15.12) for combining two sources of evidence (K = 2) m�1 (·) and
m�2 (·) is also consistent for more than two bodies of evidence (K > 2) [38].

m�PCR6(A) �
∑

X1,X2∈2�
X1∩X2=A

m�1 (X1) ·m�2 (X2)

+
∑

Y∈2�\{A}
A∩Y=∅

[
m�1 (A)

2 ·m�2 (Y )
m�1 (A)+m�2 (Y )

+ m
�
2 (A)

2 ·m�1 (Y )
m�2 (A)+m�1 (Y )

]

(15.12)

Combination by PCR6 fusion rule of the N importance discounted BBAs m�j (·)
defined by Eq. (15.11) provides a BBA denoted m�PCR6∅(·) with m�PCR6∅(∅) > 0.
Then, we commit zero to the mass of the empty set, and we normalize this BBA to
get a proper normalized BBA m�PCR6(·) with m�PCR6(∅) = 0; see [33] for details.

15.2.2.3 Decision-Making Given a Combined Belief Mass

Given a BBA m�(·), choosing a singleton θ̂ ∈ � or a subset Â ⊆ � is the
decision issue. In general, it consists in choosing θ̂ = θe�, e = 1, . . . , n with
e� � arg maxeC(θe), where C(θe) is a decision-making criterion chosen according

2For a technical reason, one allows to commit some mass on the empty set in this discounting. This
is not a problem because the final fusion result will be normalized.
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to the DM attitude: belief for a pessimistic attitude, plausibility for an optimistic
one, one of the probabilistic transformations for an attitude of compromise.

In general, the DM attitude is not well known in DST. Moreover, in some
practical cases, taking into account non-singletons A ⊆ � is needed to decide. For
these cases, the minimum of any strict distance metric d(m�,m�A) between m�(·)
and the categorical BBA m�A(·) can be used in Eq. (15.13) [39]. If only singletons
of 2� are accepted, decision is defined by Eq. (15.14).

Â = arg min
A∈2�

dBI(m
�,m�A) (15.13)

θ̂ = arg min
θe∈�

dBI(m
�,m�θe ) (15.14)

Among the few true distance metrics3 between two BBAs m�1 (·) and m�2 (·), the
belief interval-based Euclidean dBI (m�1 ,m

�
2 ) ∈ [0, 1] is based on Wasserstein’s

distance [40] and provides reasonable results [41].
The quality indicator q(Â) defined by Eq. (15.15) evaluates how good the

decision Â is with respect to other focal elements: the higher q(Â) is, the more
confident DM should be in its decision Â. If only singletons of 2� are accepted,
q(θ̂) is defined by Eq. (15.16).

q(Â) � 1− dBI(m
�,m�A)∑

A∈2�\{∅} dBI(m�,m
�
A)

(15.15)

q(θ̂) � 1− dBI(m
�,m�θe )∑n

e=1 dBI(m�,m
�
θe
)

(15.16)

15.3 Belief Function-Based Decision-Aiding Methods

Classical Decision-Aiding Methods (DAMs) have some limitations: (i) classical
MCDAs do not consider imperfect evaluations of criteria, (ii) ranking can be
affected by rank reversal problems [42, 43], and (iii) probability framework is
limited by an epistemic uncertainty affecting the knowledge on the states of the
nature S [20, 21]. This section introduces new belief function-based DAMs which
help to overcome these three limitations using (i) Evidential Reasoning for Multi-
Criteria Decision Analysis (ER-MCDA) [44], (ii) Belief Function-based Technique
for Order Preference by Similarity to Ideal Solution (BF-TOPSIS) methods [39],
and (iii) Fuzzy Cautious Ordered Weighted Averaging with Evidential Reasoning
(FCOWA-ER) [12], respectively.

3For any BBAs x, y, z defined on 2�, a true distance metric d(x, y) satisfies the properties of non-
negativity (d(x, y) ≥ 0), non-degeneracy (d(x, y) = 0⇔ x = y), symmetry (d(x, y) = d(y, x)),
and triangle inequality (d(x, y)+ d(y, z) ≥ d(x, z)).
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15.3.1 ER-MCDA: Multi-criteria Assignment Given Imperfect
Scores

As detailed in Fig. 15.5, ER-MCDA methodology [44] is an extension of the
Analytic Hierarchy Process (AHP) [3]. Given the FoD for decision � (step 1), it
associates fuzzy logic framework and belief function theory to represent imperfect
evaluation of the score of each alternative Ai , i = 1, . . . ,M based on each criterion
gj , j = 1, . . . , N , potentially provided by several sources sq , q = 1, . . . ,Q,
through a BBAm�q,ij (·) (step 2). A second improvement is the combination of BBAs
taking into account reliability αq of each source and importance ωj of each criterion
gj (step 3). It finally helps to assign each Ai to the element θ̂ (Ai) (step 4).

15.3.1.1 ER-MCDA-Step 1: DMP Formalization

The scoring scale Xj is specified for each criterion gj , j = 1, . . . , N . The FoD
for decision � is also defined: for instance, we consider four qualitative labels (or
classes) θe of efficiency with � = {θ1 = high, θ2 = medium, θ3 = low, θ4 =
none}.

15.3.1.2 ER-MCDA-Step 2: BBA m�
q,ij

(·) Construction

For each gj , j = 1, . . . , N , the mapping model is first provided (Fig. 15.3): n fuzzy
sets μj,θe represent a partial pre-order of the DM preference for Xj [44]. Then,
for each alternative Ai , i = 1, . . . ,M , each source (e.g., an expert) sq provides its
imprecise and uncertain evaluation of xij ∈ Xj through a possibility distribution
πq,ij (Fig. 15.4).

Given these elements, the mapping process consists in transforming each πq,ij
into a BBA m�q,ij (·) using the gj mapping model. The initial mapping process
[19] was based on a geometric transformation and was restricted to provide only
Bayesian BBAs. A new mapping model was recently developed to provide general
BBAs [45, 46], for each Ai and each gj :

1. since fuzzy sets are given for an open world, Yager’s hedged element θc [32]
is used to provide membership functions in an hedged world (c.w.), and all
membership functions μj,X, X �= ∅ ∈ � are built applying Eq. (15.5);

2. all membership functions μj,X̄, X �= ∅ ∈ � are built applying Eq. (15.4);
3. given the possibility distribution πq,ij , Eq. (15.7) gives the possibility measures
�q,ij (X̄) corresponding to the plausibility measure Pl�q,ij (X̄);

4. the belief function Bel�q,ij (·) is directly obtained such as the BBA m�q,ij (·).
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15.3.1.3 ER-MCDA-Step 3: Combination of Two BBAs

For eachAi and each gj , fusion 1 combines BBAs provided byQ sources sq , taking
into account reliability factor αq and using PCR6 fusion rule. For each Ai , fusion
2 combines BBAs provided for N criteria gj , taking into account importance factor
ωj and using PCR6∅ fusion rule. Final BBA m�i (·) is obtained.

15.3.1.4 ER-MCDA-Step 4: Making Decision for Each Ai

Given � and m�i (·), DM must assign each Ai to labels by choosing θ̂ (Ai).
Therefore, DM can decide according to a pessimistic attitude (max of belief), an
optimistic one (max of plausibility), or an attitude of compromise (max of subjective
probability).

For the latter, whatever the probability transformation, the cardinality |θc| must
be known. Therefore, a strong hypothesis is to consider |θc| = 1 which can be
theoretically discussed. Using Eq. (15.14) to decide through the minimal of belief
interval distance does not involve any hypothesis on it.

15.3.2 BF-TOPSIS: A More Robust Multi-criteria Ranking

Given the score matrix S defined by Eq. (15.1), the classical MCDAs such as
the AHP [3], Technique for Order Preference by Similarity to the Ideal Solution
(TOPSIS) [4], or Estimator Ranking Vector (ERV) [47] are limited by rank reversal
problems [42, 43]. As detailed in Fig. 15.6, the four new BF-TOPSIS methods [10]
are inspired by the ERV to avoid a normalization step and by TOPSIS to compare
eachAi with an ideal best and an ideal worst solutions. They are based on a common
preliminary step and have an increasing computation complexity and robustness to
rank reversal problems [6, 10].

15.3.2.1 Preliminary Step: DMP Formalization and BBA mA
ij

(·)
Construction

A DMP is about ranking all alternatives Ai and choosing the best one Ai� ∈ A :
the FoD � for decision is the set of alternatives A . Given the score matrix S (see
Fig. 15.6), this common step consists of constructing theM×N BBA matrix MA =
[mA
ij (·)].
For each Ai and gj , the positive support Supj (Ai) �

∑
k∈{1,...,M}|xkj≤xij |xij −

xkj | and the negative one Infj (Ai) � −∑k∈{1,...,M}|xkj≥xij |xij − xkj |, respectively,
measure how much Ai is better and worse than other alternatives according to gj .

Given Ajmax � maxiSupj (Ai) and Ajmin � miniInfj (Ai), each mA
ij (·) is defined by:
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mA
ij (Ai) �

⎧
⎨

⎩

Supj (Ai)

A
j
max

ifAjmax �= 0

0 ifAjmax = 0
(15.17)

mA
ij (Āi) �

⎧
⎨

⎩

Infj (Ai)

A
j
min

ifAjmin �= 0

0 ifAjmin = 0
(15.18)

mA
ij (Ai ∪ Āi) � mA

ij (�) � 1− (BelAij (Āi)+ BelAij (Ai)) (15.19)

The four BF-TOPSIS methods differ from each other in the way they process the
matrix MA. All of them compute the relative closeness of each alternative Ai with
an ideal best solution Abest denoted by C(Ai,Abest). The preference ordering of all
alternatives is built given the following criterion: the higher it is, the better Ai is. An
extension of BF-TOPSIS methods for dealing with imprecise scores is proposed in
[48].

15.3.2.2 BF-TOPSIS1

(1) For eachAi and gj , the ideal best and worst BBAs are defined bymbest
ij (Ai) � 1

and mworst
ij (Āi) � 1 which are used to compute the distances dBI (mA

ij , m
A,best
ij )

and dBI (mA
ij , m

A,worst
ij ).

(2) The respective averaged distances dbest(Ai) and dworst(Ai) are computed by
weighting previous distances by importance weights ωj of criteria gj .

(3) For each Ai , the relative closeness is computed by:

C
(
Ai,A

best
)
� dworst(Ai)

dworst(Ai)+ dbest(Ai)
(15.20)

15.3.2.3 BF-TOPSIS2

(1) This step is the same as for BF-TOPSIS1. (2) For each Ai and gj , the
relative closeness Cj (Ai, Abest) is computed. (3) The averaged relative closeness
C(Ai,A

best) is computed by weighting Cj (Ai, Abest) by importance weights ωj of
criteria gj .

15.3.2.4 BF-TOPSIS3

(1) For each Ai , the N BBAsmA
ij (·) are combined through PCR6 fusion rule to give

mA
i (·) taking into account the importance factor ωj of each criterion gj [33]. (2) For
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each Ai , the ideal best and worst BBAs allow to give dbest(Ai) = dBI (mA
i , m

A,best
i )

and dworst(Ai) = dBI (mA
i , m

A,worst
i ). (3) This step is the same as for BF-TOPSIS1.

15.3.2.5 BF-TOPSIS4

This method differs from BF-TOPSIS3 only by the choice of the ZPCR6 fusion rule
[49] instead of PCR6 rule of combination.

15.3.3 FCOWA-ER: Choice Under Epistemic Uncertainty

Given the payoff matrix C defined by Eq. (15.2), the DMP requires choosing the best
alternative Ai� ∈ A. COWA-ER has been proposed [11] for such decision-making
given uncertain knowledge on S . It mixes cautiously the principle of Yager’s
Ordered Weighted Averaging (OWA) approach based on belief function theory [13]
with fusion rules, notably the PCR6 one [30]. As detailed in Fig. 15.7, FCOWA-
ER [12] is a modified version of COWA-ER using fuzzy sets which improves
performances of COWA-ER and reduces its computational burden.

15.3.3.1 From the OWA Approach. . .

Under ignorance, Yager uses the OWA operator as a weighted average of ordered
values of a variable defined by Eq. (15.21). For each Ai , i = 1, . . . ,M , it consists
in choosing a normalized set of weighting factors Wi = [wi1, . . . , wik, . . . , wiK ],
where wik ∈ [0, 1], ∑k wik = 1, and Wi depends on the DM attitude: Wi =
[0, 0, . . . , 0, 1] represents the pessimistic attitude, while Wi = [1, 0, . . . , 0, 0] is
used for the optimistic one. The OWA value Vi is computed for the collection of
payoffs Ci1, Ci2, . . . , CiK , with bik as the kth largest element in it. The best Ai� is
chosen with i� � arg maxi{Vi}.

Under epistemic uncertainty, considering the states of the nature S as the FoD,
Yager represents the DM belief structure by a BBA mS(·) : 2S → [0, 1], which is
characterized by the s focal elements Xr ∈ 2S. For each alternative Ai , restricting
the states of the nature to Sk ∈ Xr , one has Mir � {Cik|Sk ∈ Xr}, r = 1, . . . , s.
For each Ai , each Xr , and some DM attitude chosen a priori, the OWA value Vir =
OWA(Mir) is computed. The derivation of a generalized expected valueCi of payoff
is defined by Eq. (15.22). The best Ai� is thus chosen with i� � arg maxi{Ci}.

Vi � OWA(Ci1, Ci2, . . . , CiK) =
∑

k

wik · bik (15.21)

Ci =
s∑

r=1

mS(Xr)Vir (15.22)
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15.3.3.2 . . . to the COWA-ER and FCOWA-ER Approaches

For each alternative Ai , COWA-ER method exploits only the results of the two
extreme attitudes (pessimistic and optimistic OWA) jointly [11]. Decision-making
under uncertainty is thus based on the M imprecise valuations (or intervals) of
expected payoffs gathered in theM-vector E[C] given by Eq. (15.23).

FCOWA-ER method [12] has been then developed to go beyond two COWA-ER
limitations. (1) The BBAs obtained by using α-cuts are consonant support (nested
in order) without any correlation between information sources. (2) The compu-
tational time for making the combination does not depend on the number M of
alternatives.

15.3.3.3 FCOWA-ER-Step 1: Construction of BBAs

Each column in E[C] is, respectively, normalized to obtain the column-wise
normalized expected payoff EFuzzy[C] given by Eq. (15.24).

E[C] �

⎡

⎢
⎢
⎢
⎣

[Cmin
1 , Cmax

1 ]
[Cmin

2 , Cmax
2 ]

...

[Cmin
M ,Cmax

M ]

⎤

⎥
⎥
⎥
⎦

(15.23)

EFuzzy[C] �

⎡

⎢
⎢
⎢
⎣

Nmin
1 , Nmax

1
Nmin

2 , Nmax
2

...

Nmin
M ,Nmax

M

⎤

⎥
⎥
⎥
⎦

(15.24)

The vectors μ1 = [Nmin
1 , . . . , Nmin

M ] and μ2 = [Nmax
1 , . . . , Nmax

M ] can be seen
as two fuzzy membership functions (FMFs) μ : Ai ∈ A → [0, 1]. Given the FoD
A = {A1, A2, . . . , AM }, they are, respectively, converted into two BBAs mA

Pess(·)
and mA

Opti(·) using the α-cut approach [50], consideringM as the number of α-cuts.

15.3.3.4 FCOWA-ER-Steps 2 and 3: Combination
of the Two BBAs and Decision

The two BBAs mA
Pess(·) and mA

Opti(·) are combined with the PCR6 fusion rule.
The decision is about choosing Ai� according to the DM attitude or the minimal
distance.
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15.4 Application to Efficiency of Torrential
Protective Actions

The example previously introduced in Fig. 15.2 is used to show how new belief
function-based MCDAs can help DMs to decide on real DMPs. The DMP is
first formalized. ER-MCDA, BF-TOPSIS, and FCOWA-ER are then successively
applied without detailing computation steps: we only provide inputs and main
results.

15.4.1 Formalization of the Decision-Making Problem

The problem is about comparing under uncertainty several torrential protective
actions based on their efficiency by involving several criteria.

15.4.1.1 Multi-criteria Decision-Making Problem

Alternatives and decision criteria, with their scoring scales and importance weights,
must be specified to provide the structure of the score matrix S defined by Eq. (15.1).

The set A gathersM = 5 protective alternatives Ai (Fig. 15.2):

• A1: doing nothing;
• A2: building check dam series in headwaters;
• A3: building a sediment trap on the alluvial fan apex;
• A4 = A2 ∪ A3: building both check dam series and a sediment trap;
• A5: building individual protections for each element at-risk.

On the one hand, these actions aim at reducing potential damage on elements-at-
risk. Several types of damage can occur such as housing destruction or environmen-
tal damage due to destruction of dangerous sites, etc. Their assessment in monetary
value can strongly be debated as, for example, for human casualties [6]. On the other
hand, each alternative involves high investment and maintenance cost.

A DM thus considers N = 5 criteria gj with specific scoring scale Xj [6] to
compare alternatives according to their efficiency. He wants to minimize g1 and
g2 (decreasing preference) and to maximize g3, g4, and g5 (increasing preference),
with:
• g1: investment cost in e (xi1 ∈ X1 = R

+);
• g2: annual maintenance cost in e (xi2 ∈ X2 = R

+);
• g3: annual risk reduction of damaged houses surface in m2 (xi3 ∈ X3 = R

+);
• g4: annual risk reduction in human casualties (xi4 ∈ X4 = R

+);
• g5: annual risk reduction in number of dangerous sites (xi5 ∈ X5 = R

+).
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In practice, for each Ai and gj , annual risk reduction �Rj(Ai) is computed as
reduction of potential damage expected value: �Rj(Ai) = Rj (0)− Rj (Ai), where
Rj (0) is the baseline risk (without Ai) and Rj(Ai) is the residual risk with Ai [6].

Given this set of criteria, DM uses the AHP process [3] to define the 5-vector of
their importance weights: w = [0.08, 0.04, 0.10, 0.46, 0.32].

15.4.1.2 Decision-Making Under Uncertainty

Damage assessment depends on torrential hazards: without flood, there is no
damage; during a big but rare flood, damage are higher; damage are much higher
with a big debris flows. In practice, several scenarios of torrential hazards are thus
taken into account to assess annual risk reduction criteria. They must be specified to
provide the structure of the payoff matrix C defined by Eq. (15.2).

A DM considers a set of states of the nature S with K = 7 scenarios as
follows:

• liquid floods without bedload transport : S1 withQl < Ql14; S2 withQl � Ql1;
• floods with bedload transport : S3 with Vs < Vs15; S4 with Vs � Vs1;
• debris flow : S5 with Vl < Vl16; S6 with Vl1 � Vl < Vl2; S7 with Vl � Vl2

15.4.2 ER-MCDA to Assign an Efficiency Label to Each
Alternative

In practice, a first DMP is about assigning each alternative to a qualitative efficiency
label. Therefore, ER-MCDA methodology can be used.

15.4.2.1 ER-MCDA Inputs

FoD for decision gathers n = 4 exhaustive and mutually exclusive efficiency labels,
with � = {θ1 = no, θ2 = low, θ3 = medium, θ4 = high}. The mapping model of
each criterion is provided in Fig. 15.8.

Two sources (experts) sq , q = 1, 2, are assumed totally reliable (α1=α2= 1).
For each Ai and gj , each one provides the possibility distributions πq,ij in
Table 15.1.

4Ql = liquid flow.
5Vs = solid volume.
6Vl = debris flow volume.
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Fig. 15.8 ER-MCDA-input: N = 5 mapping models

Table 15.1 ER-MCDA-input: imprecise evaluations πq,ij (q = 1, 2; i = 1, . . . , 5; j = 1, . . . , 5)

Ai sq g1
a g2

a g3
b g4

b g5
b

A1 s1 0,0,0,0 0,0,0,0 0,0 0,0 0,0

A1 s2 0,0,0,0 0,0,0,0 0,0 0,0 0,0

A2 s1 (2, 3, 3, 5).105 (3, 5, 7, 8).103 1.1, 4.3 (2.1, 8.9).10−3 (3.4, 6.4).10−2

A2 s2 (1, 2, 2, 3).105 (2, 3, 4, 5).103 2, 5.2 (1.2, 10.3).10−3 (4.3, 8.7).10−2

A3 s1 (2, 4, 4, 6).105 (1, 1.5, 2, 3).103 1.2, 4.8 (2.3, 11.8).10−3 (5.1, 8.5).10−2

A3 s2 (4, 5, 6, 8).105 (0.5, 1, 1, 2).103 0.1, 5.5 (3.1, 13.1).10−3 (3.7, 8.5).10−2

A4 s1 (4, 7, 7, 11).105 (4, 7.5, 9, 11).103 3.3, 8.45 (3.5, 16.8).10−3 (6.2, 9.4).10−2

A4 s2 (5, 7, 8, 11).105 (2.5, 4, 5, 7).103 3.1, 8.9 (3.4, 16.1).10−3 (4.3, 9.2).10−2

A5 s1 (9, 10, 12, 14).105 0, 0, 0, 0 4.2, 9.2 (3.7, 8.4).10−3 (3.1, 8.4).10−2

A5 s2 (8, 9, 10, 11).105 0, 0, 0, 0 4.65, 8.25 (2.1, 9.3).10−3 (1.5, 9.2).10−2

aCriteria assessed by {a,b,c,d} as shown in Fig. 15.3
bCriteria assessed by {a,d} (a = b and c = d)

15.4.2.2 ER-MCDA Results

For each criterion gj , the new mapping process is used in ER-MCDA-Step 2 to map
each πq,ij of Table 15.1 into the gj mapping model of Fig. 15.8. It provides BBAs
m�1,ij (·) for s1 and m�2,ij (·) for s2. Applying ER-MCDA-Step 3 on those BBAs,

M = 5 BBAs m�i (·) are finally obtained in Table 15.2.
To avoid assumption |θc| = 1, ER-MCDA-Step 4 is based on computing

distances dBI (m�i ,m
�
X), from each column of Table 15.2. For each Ai , the chosen

focal element X̂(Ai) ∈ 2�, the corresponding value of minimal distance dmin
BI , and

the decision quality q(X̂(Ai)) are given in Table 15.3.
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Table 15.2 ER-MCDA-Step 3 results: BBAs m�i (·) obtained for each alternative Ai

Focal elements X m�1 (·) m�2 (·) m�3 (·) m�4 (·) m�5 (·)
θc 0.00049 0.00075 0.00067 0.00079 0.04062

θ1 ∪ θc 0.96997 0 0 0 0.03157

θ2 ∪ θc 0 0.26680 0.02393 0.02293 0

θ1 ∪ θ2 ∪ θc 0 0 0 0.00830 0

θ3 ∪ θc 0 0.36178 0.97036 0.71702 0.86412

θ2 ∪ θ3 ∪ θc 0 0.36113 0.00416 0.02852 0

θ4 ∪ θc 0.02954 0 0.00018 0.17687 0.03597

θ3 ∪ θ4 ∪ θc 0 0.00954 0.00070 0.04557 0.02772

Table 15.3 ER-MCDA-Step
4 results: decision based on
dBI (m

�
i ,m

�
X)

Alternative Ai dmin
BI X̂(Ai) q(X̂(Ai))

A1 0.0172 θ1 ∪ θc 0.9990

A2 0.1855 θ2 ∪ θ3 ∪ θc 0.9878

A3 0.0154 θ3 ∪ θc 0.9991

A4 0.1319 θ3 ∪ θc 0.9919

A5 0.0567 θ3 ∪ θc 0.9968

Solution A1 of doing nothing is mainly no efficient. Alternative A2 is lowly or
mediumly efficient, while the three other ones are mediumly efficient. It corresponds
to a partial preference order: A3 ∼ A4 ∼ A5 - A2 ) A1.

As shown in Table 15.3, quality indicators of decisions are similar for A3 and A5
and better than for A4. For A2, global mass is more distributed with m�2 (θ3 ∪ θc) =
0.36, m�2 (θ2 ∪ θ3 ∪ θc) = 0.36, and m�2 (θ2 ∪ θc) = 0.27: decision quality is less
good.

15.4.3 BF-TOPSIS to Rank Alternatives

Another DMP is about ranking all potential solutions given previous criteria. BF-
TOPSIS methods are compared to help to solve it.

15.4.3.1 BF-TOPSIS Inputs

A precise score of each Ai based on each gj must be provided to obtain the score
matrix S, consistent with possibility distributions πq,ij given in Table 15.1. To take
into account decreasing preference, initial scores of g1 and g2 are multiplied by −1
providing the score matrix Spref defined by Eq. (15.25).
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Table 15.4 BF-TOPSIS results: relative closeness C(Ai,Abest)

Alternative Ai BF-TOPSIS1 BF-TOPSIS2 BF-TOPSIS3 BF-TOPSIS4

A1 0.12 0.12 0.03 0.03

A2 0.49 0.49 0.68 0.68

A3 0.66 0.66 0.85 0.85

A4 0.69 0.69 0.88 0.88

A5 0.92 0.92 0.97 0.97

Spref �

⎛

⎜
⎜
⎜
⎜
⎝

g1 g2 g3 g4 g5

A1 0 0 0 0 0
A2 −300000 −6000 5 0.007 0.02
A3 −300000 −1500 5 0.008 0.04
A4 −600000 −7500 7 0.008 0.05
A5 −1000000 0 7 0.008 0.1

⎞

⎟
⎟
⎟
⎟
⎠

(15.25)

15.4.3.2 BF-TOPSIS Results

Given Spref, applying the four BF-TOPSIS methods provides relative closeness
C(Ai,A

best) of each alternative Ai with the ideal best solution Abest in Table 15.4.
In this case, whatever the BF-TOPSIS method used, preference ranking of all

alternatives according to descending order of C(Ai,Abest) is A5 ) A4 ) A3 )
A2 ) A1. In [6], for this application case, authors not only give computation details
but also a comparison with classical MCDA methods such as CBA and AHP. They
show that CBA is very sensitive to criteria choice for monetary valuation such as the
human life (g4) and that BF-TOPSIS is more robust to rank reversal problems than
AHP.

15.4.4 FCOWA-ER to Choose the Best Alternative Under
Uncertainty

The final practical DMP is about choosing the best solution to implement, consider-
ing the knowledge on the states of the nature.

15.4.4.1 FCOWA-ER Inputs

For each Ai , i = 1, . . . , 5 and each scenario Sk , k = 1, . . . , 7, Cik is the efficiency
level in the 5 × 7 matrix C defined by Eq. (15.26). It can be extracted after
implementing ER-MCDA to solve a previous MCDM problem, given a specific
Sk . A quantitative transformation of labels θe, e = 1, . . . , n into [1; 10] (the higher



15 Decision-Aid Methods Based on Belief Function Theory with Application. . . 353

Table 15.5 FCOWA-ER result: credibility, BetP, DSmPε=10−6 , and plausibility of Ai efficiency

Ai BelA(Ai) BetPA(Ai) DSmPA(Ai)ε=10−6 PlA(Ai)

A1 0.000000 0.027908 0.000004 0.139530

A2 0.000000 0.060282 0.000008 0.269030

A3 0.000000 0.132010 0.000013 0.470130

A4 0.000000 0.180390 0.000015 0.566890

A5 0.404960 0.599420 0.999960 1.000000

is score, the higher is payoff) is proposed. Results of ER-MCDA in Tables 15.2
and 15.3 help give payoffs for S4.

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

9 3 2 2 1 1 1
10 8 4 3 2 1 1
10 7 6 6 4 4 1
10 6 8 7 3 2 1
10 8 6 6 6 5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(15.26)

Expert represents uncertainty on the states of the nature S through a BBAmS(·).
s = 4 focal elements Xr ∈ 2S are considered:
mS(X1) = mS(S1 ∪ S3 ∪ S5) = 0.4, mS(X2) = mS(S2 ∪ S4 ∪ S5 ∪ S6) = 0.25,
mS(X3) = mS(S7) = 0.1, mS(X4) = mS(S ) = 0.25.
X1, X2, and X3 are partial ignorances, and X4 is the full ignorance.

15.4.4.2 FCOWA-ER Results

Given payoff matrix C and BBA mS(·), applying FCOWA-ER steps, provides the
two BBAs mA

Pess(·) and mA
Opti(·) for the FoD A (step 1) which are combined to give

the final BBA mA
PCR6(·) through PCR6 fusion rule (step 2). Table 15.5 shows values

of BelA(·), BetPA(·), DSmPA
ε=10−6(·) and PlA(·) based on mA

PCR6(·) (step 3).
Whatever the decision rule, the best action Ai� is alwaysA5. The total preference

ranking is deducted: A5 ) A4 ) A3 ) A2 ) A1.

15.5 Conclusions and Perspectives

In practice, torrential risk managers must decide on the best action to reduce damage
on elements-at-risk. Therefore, the comparison of efficiency of potential alternatives
is generally used. Each one can be assessed through qualitative labels that require a
partial ranking of alternatives, but it generally cannot help to choose the best action
that requires a total preference ranking.
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The decisions are based on several criteria, such as costs and different types
of damage reduction, imperfectly assessed under an epistemically uncertain envi-
ronment corresponding to torrential hazards. Confronted with such difficulties,
decisions are generally based on expert knowledge which directly takes into account
imperfect information.

This chapter shows how recent developments of MCDAs based on belief function
theory actually can help decision-makers in their decision process. A practical
example is proposed and new methods, showing their possible combination for a
global decision-making was applied.

Whatever the method is used, the first step of any DMP is to define alternatives to
compare, criteria to take into account, their importance weights which represent the
DM preference between them, and the set of states of the nature. Given the scores
of each alternative based on each criterion, the final step is about aggregating this
multi-criteria and multi-scenario evaluation to help decision.

The three methods applied in this chapter (ER-MCDA, BF-TOPSIS, FCOWA-
ER) are combined at a combination step, while the PCR6 fusion rule is preferred.
Nevertheless, analyzing the effect of this choice on the results of each method should
be done.

To solve MCDM problems, ER-MCDA helps to take into account imperfect
evaluation of criteria potentially provided by several sources. FoD of decision is
first specified through qualitative or quantitative labels. Each expert is considered
as source who gives a possibility distribution (imprecise scoring) and a mapping
model based on fuzzy sets. ER-MCDA makes it possible to choose a label for each
alternative providing the quality of this decision.

The four BF-TOPSIS methods help a total preference ranking of all alternatives
with a better robustness to rank reversal problems than classical MCDAs. It is based
on a precise score matrix representing the MCDM problem. Using intermediary
results of ER-MCDA as an intermediary decision step helps to take into account
imprecise scoring in BF-TOPSIS.

FCOWA-ER is different from the two previous methods because it proposes a
method to solve DMP under uncertainty. It improves the OWA method used when
the knowledge of the states of the nature is uncertain. It was first developed to decide
given a precise scoring of each payoff. As for BF-TOPSIS, it is possible to apply ER-
MCDA for each scenario and to propose a quantitative transformation if qualitative
labels are used. It thus helps to take into account initial imperfect scoring.

From an operational point of view, this chapter shows how theoretical methods
can help a better formalization of the decision-making process. Indeed, expert
and DM elicitation is always needed to express, given the DMP under concern,
the criteria to take into account, their importance, and the preferences for their
evaluation. Moreover, methods have been applied to DMPs related to protection
efficiency, but they are generic and can be applied for any other DMP.
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Chapter 16
An Epistemological Model for a Data
Analysis Process in Support
of Verification and Validation

Alicia Ruvinsky, LaKenya Walker, Warith Abdullah, Maria Seale,
William G. Bond, Leslie Leonard, Janet Wedgwood, Michael Krein,
and Timothy Siedlecki

Abstract The verification and validation (V&V) of the data analysis process is
critical for establishing the objective correctness of an analytic workflow. Yet,
problems, mechanisms, and shortfalls for verifying and validating data analysis
processes have not been investigated, understood, or well defined by the data
analysis community. The processes of verification and validation evaluate the
correctness of a logical mechanism, either computational or cognitive. Verification
establishes whether the object of the evaluation performs as it was designed to
perform. (“Does it do the thing right?”) Validation establishes whether the object
of the evaluation performs accurately with respect to the real world. (“Does it do
the right thing?”) Computational mechanisms producing numerical or statistical
results are used by human analysts to gain an understanding about the real world
from which the data came. The results of the computational mechanisms motivate
cognitive associations that further drive the data analysis process. The combination
of computational and cognitive analytical methods into a workflow defines the data
analysis process. People do not typically consider the V&V of the data analysis
process. The V&V of the cognitive assumptions, reasons, and/or mechanisms that
connect analytical elements must also be considered and evaluated for correctness.
Data Analysis Process Verification and Validation (DAP-V&V) defines a framework
and processes that may be applied to identify, structure, and associate logical
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elements. DAP-V&V is a way of establishing correctness of individual steps along
an analytical workflow and ensuring integrity of conceptual associations that are
composed into an aggregate analysis.

Keywords Verification · Validation · Data analysis · Data model · Analysis
model · Epistemology

16.1 Introduction

Warnings and anecdotes about risks and pitfalls that are common to the process of
data analysis are prevalent in state-of-the-science reports by the data science online
community. According to Overton [14], “The challenge is finding the analytical
approach that will get you safely to a prediction.” Data analysts from a variety
of disciplines describe common hazards and warnings of analytical pitfalls. For
example, Vasileva [20] lists several issues that may lead to erroneous analysis,
including letting bias influence analysis and incorrectly stating the hypothesis. Due
to the compositional nature of the data analysis process (DAP) and the inconsistent,
impressionable, and rash tendency of human nature, data scientists are at high risk
of either solving the wrong problem (faulty validation) or solving the right problem
incorrectly (faulty verification).

The real world is teeming with examples of data scientists wasting creative effort
by throwing good ideas into solutions that work brilliantly for problems that they
weren’t actually tasked to solve. Consider an example from academia in which a
team of talented professors and graduate students sit down at a conference table to
discuss a simulation project. The simulation will provide situational awareness for
first-responders and managers of a large facility in making decisions about facility
evacuation during an emergency.

The project has produced several undeniably great ideas that bore fruit, and
demonstrations show simulated people evacuating the simulated venue. Interesting
research opportunities are apparent, and goals are being met. Perhaps most satis-
fying is seeing the simulated lives saved on screen. Discussions turn to proposed
mechanisms and metrics for validation and verification of the simulation. Now that
the project is showing potential, the research team wants to check with potential
users and other experts to ascertain the correctness of the solution to their problem.
There is even excitement within the team to see how the experts respond to this
research.

Yet, the project leader suddenly informs everyone that the product the team
worked hard to create must be scrapped. Despite everything working as planned,
it just doesn’t solve the users’ problem. Unfortunately, all of this creative work
occurred before anyone thought to ask the first-responders what questions the
simulation should answer or what actions those answers might elicit. For example,
no one thought to consult a psychologist for a list of behaviors real people might
exhibit under the range of conditions imposed by an evacuation event. No one asked
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the facility managers which doors could be left opened or closed, or what sorts
of emergencies have occurred at other, similar venues. In short, no one asked the
stakeholders or experts which questions to ask; what reasonable assumptions could
be made; or what constitutes correct answers. When the team sat down to frame
their solution, neither the problem nor the purpose was properly understood. The
ideas that solved the team’s problems were innovative but misguided because they
were based on unverified and/or invalid assumptions, problem specifications, and
purpose.

There are many kinds of fatal yet avoidable flaws described by the data analysis
community such as:

• Inconsistent data representation: Situations in which the definition of variables
leveraged by an algorithm are not consistent with the purpose of the data analysis.
This disconnection between the purpose of the analysis and the input to the
algorithm often occurs at the transition from abstract concepts defined in the
analytic purpose to more specific as real-world metrics or mechanisms relevant
to the operationalized analysis. The challenge here is encapsulated by Kaplan’s
paradox of conceptualization which states, “The proper concepts are needed to
formulate a good theory, but we need good theory to arrive at proper concepts”
[10]. Essentially, the less we know about a phenomenon, the less likely we
are to define it (and hence measure it) correctly. Adcock and Collier describe
a systematization process to facilitate the identification and specification of
concepts and indicators being investigated by an analytic process [2]. Examples
of decompositions of definitions from abstract purpose to specific real-world
measures can be found in Fearon and Laitin [6].

• Data analysis with no relevant context: Applying an algorithm to data is not data
analysis. Data analysis requires reasoning for choosing an appropriate algorithm
to apply to a relevant data set in order to produce information that addresses a
particular question or purpose [11].

• Phantom populations or sample bias: To draw appropriate conclusions about a
population, data analysis must be conducted on a representative sample of that
population. Sometimes data analysts do not realize that their data contains biases
that misrepresent their target population. An example presented in Harford [7]
describes a mobile app called Boston Bump that claimed to identify potholes
on streets in Boston based on accelerometer data from smartphones. What
they did not consider is that the data would be generated by a biased sample
of the inhabitants and commuters that owned and operated smartphones. This
population was not representative of the breadth of commuters on Boston’s city
streets.

• Misdirected or unfalsifiable models: Misdirected models result when researchers
create models based on biased or mistaken theories. These cases may result in
self-fulfilling analysis of the data generated by the biased model, thereby per-
petuating the misdirection and characterizing unfalsifiable science. For example,
Google Flu Trends’ (GFT) claim to fame was its ability to quickly, accurately, and
cheaply predict flu spread based on theory-free analysis of correlation between
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search terms made by people and whether they had flu symptoms.1 GFT became
more notorious 4 years after the publication of its success in nature. That year,
GFT was significantly wrong in its forecasting. The pit GFT fell into was that,
as a theory-free analysis, it could not effectively falsify any of its underlying
associations. If the correlations being leveraged is, “searching for ‘flu symptoms’
means you have flu symptoms,” the algorithm simply used the correlation to
make predictions without evaluating the falsifiability of the correlation’s claim.
This resulted in a misdirected model that was responsive, fast, and inexpensive
but also wrong [7, 12].

Data analysis processes involve evaluating objects and observations by collecting
and analyzing data from the real world. In turn, analysts use these mechanisms to
understand reality better. We must systematically and consistently question and
evaluate the constructs we use to define and design the data analysis processes
by which we interpret and understand the world. Otherwise, the answers our
mechanisms produce and our subsequent understanding of the world are at risk of
being meaningless or wrong; the work and inspiration that went into their creation
wasted.

The following chapter tackles validation and verification (V&V) of data analysis
processes (DAPs). DAPs are often less explicit or well defined than software
engineering, modeling, simulations, or other processes routinely subjected to V&V,
because the analysis process is not a deliverable product as is software, models,
and simulations. Despite the complication in delineating the steps to a DAP, their
validation and verification is no less important. This chapter demonstrates how to
delineate, decompose, and document the steps and components of a DAP, yielding
a more concrete path to reliable, repeatable, and defendable solutions.

This chapter presents a model for DAPs to support V&V and considers what
such a model entails, as well as the pitfalls of not having V&V for DAPs.
Section 16.2 provides definition and background to support our discussion of the
data analysis process and mechanisms of V&V. Section 16.2 also identifies and
describes shortfalls that DAPs are susceptible to without an explicit V&V process
integrated into the analytic workflow. Section 16.3 presents a model for capturing
and documenting foundational information about a DAP, as well as the logical
constructions built upon this foundation. This is followed by the presentation of a
V&V process for DAP that leverages the foundational and constructed definitions to
establish specific dimensions of verification and validation of the DAP. Section 16.4
then presents two use cases to demonstrate how V&V for DAP has been leveraged
to identify and mitigate V&V issues in data analysis processes. The chapter is
concluded with a brief summary and vision of the future.

1It is important to note that Google Flu Trends is no longer active having been terminated in 2015
[17].
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16.2 What Is Data Analysis and DAP?

In most cases where some kind of data is used for gainful insight, lack of data
is not the issue. In fact, there is often so much data to ingest that it becomes
difficult to procure any perception from the data. Consequently, there exists a
need for a method to interpret the data efficiently; hence, there is data analysis.
A community-built definition for data analysis is “a process of inspecting, cleaning,
transforming, and modeling data with the goal of discovering useful information,
suggesting conclusions, and supporting decision-making” [22]. The process of data
analysis consists of mechanisms that make assumptions, identify or create logical
associations, and generalize or otherwise trade complexity or uncertainty for clarity
and the potential for generalizability.

When approaching any data analysis problem, the analytic options can seem
overwhelming. At a high level, the options are categorized into four distinct areas.
A robust analytic environment includes descriptive (what happened?), diagnostic
(why did it happen?), predictive (what will happen?), and prescriptive (how can we
make it happen?) analytics. In order to have a holistic view of data, all options co-
exist and complement each other. Descriptive analytics are used to summarize and
describe data. Creditors use descriptive analytics to assess credit risk by analyzing
a person’s past financial behavior. This provides a good indication of their current
and future financial performance, but it is not a predictive analysis in that there is
no predicted debt or some other forecasted value. Diagnostic analytics help discover
or determine why something happened through the use of tools and techniques that
incorporate search, filter, and compare functionality, as well as integrating other
data sets to integrate other contexts into an analysis. For example, education may be
relevant to better understanding a consumer’s spending habits. Predictive analytics
moves beyond what happened and why to discover insight about future events.
Common uses include fraud detection, marketing optimization, risk reduction,
resource management, etc. Prescriptive analytics provide methods for determining
what decisions should be made or steps taken to produce an intended outcome. It
pushes the analytic process from hindsight and insight to foresight analysis [3].

The sequence of interrelated steps utilized in data analysis can be defined as the
data analysis process (DAP). The DAP is often embedded in an analyst’s mental
model of what the data represents in the world and the mechanisms that create
or impact the data. Traditionally, the DAP begins with a defined and documented
problem. The problem definition and corresponding documentation focuses the
entire analysis process on obtaining results. In some cases, enough information is
not available at the start of the analysis process. Therefore, defining the problem
and planning each step will aid in developing guidelines to follow throughout the
entire project. Once a plan is developed, data is prepared by obtaining, cleaning,
normalizing, and transforming data into an optimized data set.
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16.2.1 What Is Verification and Validation?

Verification and validation (V&V) are well-known and well-used terms within
many scientific fields. As with any well-used term, definitions abound with varying
specificity.2 A popular and useful formulation for identifying and distinguishing
verification and validation is the quintessential verification question of “Did we
build the thing right?” and the quintessential validation question of “Did we build
the right thing?”3 By asking whether we “built the thing right,” we measure the
fidelity of the model, asking whether it conforms to the specifications that purport to
describe its operation. By asking whether we “built the right thing,” we measure the
reliability of the model, asking whether it will reliably and accurately accomplish
the work in the world that is promised.

V&V are vital techniques for controlling risk. By vetting a DAP along these
dimensions, costly errors resulting from the deployment of flawed steps along the
process can be avoided. Traditionally, a formal approach to V&V is based on three
fundamental assumptions [13]:

1. The work done in the world by the vast majority of DAPs will require the
manipulation of things affected by the physical laws of nature, rather than the
manipulation of human beings affected by the less rigorous laws of psychology
or other social sciences.

2. The science used by the designers of these DAPs is itself valid and unproblem-
atic.

3. The DAPs to be subjected to V&V are computational in nature and operational-
ized as computer software.

From the perspective of decision-makers, V&V certainly adds value to mission
accomplishment. The problem is that V&V is an expensive, difficult, and perpetual
process. Our task is to formulate a protocol that adapts the traditional approach
to V&V to the distinctive challenges presented by DAPs; i.e. DAPs are primarily
designed and intended for understanding and/or manipulation by human beings and
human groups. As guided by DOD’s injunction in VV&A Recommended Practices
Guide [21]: The Key Concepts (2011), the specific techniques and procedures used
to accomplish V&V “must be tailored to match the nature of the problem.”4

For this work, our working definition for each term based on VV&A Recom-
mended Practices Guide [21]: The Key Concepts (2011) are as follows:

2Attempts to nail down V&V in the “soft” sciences over the decades has resulted in various
assertions of types of validity that does little to clarify the space and contributed greatly to
confounding the terminology regarding the study of validation in these spaces [2, 5, 13].
3“Key Concepts of VV and A” Sept. 15, 2006; official DOD pp. 7–8; http://vva.msco.mil/Key/key-
prd.pdf.
4Ibid. p. 6.

http://vva.msco.mil/Key/key-prd.pdf
http://vva.msco.mil/Key/key-prd.pdf
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• Verification: The process of determining that a model implementation and its
associated data accurately represent the developer’s conceptual description and
specifications.

• Validation: The process of determining the degree to which a model and its
associated data provide an accurate representation of the real world from the
perspective of the intended uses of the model.

By delineating these terms, we not only nail down the V&V aim for this work
with respect to DAP, but we are also able to use these definitions to expose why
V&V of DAP is so critical and challenging. The analysis presented here is aimed at
capturing the mental model such that it may be documented, verified, and validated.

16.2.2 Shortfalls of DAP Without V&V

The DAP leverages aspects of the scientific method. Since the scientific method
does not support validation and verification, neither does the current DAP. For
example, it does not require assumptions or boundaries of the hypothesis to be
captured. Though good science does implicitly capture assumptions and boundaries,
it does not explicitly depend on them; therefore, the process does not break in their
absence or even create opportunities for exposure of lack of assumption or boundary
specification. Consequently, the current DAP does not guarantee results that are
verified and valid. Due to its lack of V&V, the current DAP succumbs to (1) a lack
of accountability of inconsistent assumptions, (2) a lack of falsifiability, and (3)
increased misrepresentation of the data.

16.2.2.1 Inconsistent Assumptions

Inconsistent assumptions in the DAP refer to speculations about the data or
analytics on the data that are not steady throughout the life cycle of the process.
Such fallibility emerges when assumptions go undocumented and unchecked. For
example, if at one stage of the DAP, the assumption is made that the associated data
is measured in some units, and then, at some other stage in the DAP, this assumption
is unaccounted for and the data is assumed to be measured in another unit and
analyzed as such. A prime example of this type of V&V oversight is NASA’s Mars
Climate Orbiter in which distinct software elements of the orbiter assumed the use
of different metric systems causing an accumulation of error in the spacecraft’s
trajectory. The ultimate and costly result was the loss of the orbiter [19]. Conflicting
assumptions can propagate through the DAP, resulting in unforeseen inaccuracies.
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16.2.2.2 Falsifiability Management

“A falsifiable claim is one for which there is some observation (or set of observa-
tions) we could make that would show us that the claim is false” [18]. Falsifiability
was historically associated with the medical field. For example,

Benjamin Rush, a famous American surgeon and patriot, would justify treatment
of bloodletting with the logic that: If a patient died, “The disease was too far
gone for the treatment to work” if the patient recovered, then, “the treatment
worked!” (Cedar’s Digest). This is not a sufficient method for determining when
an experiment fails. If there is no way to determine failure, there is no way to
minimize or eliminate failure. Without V&V, the current DAP does not have an
expedient for identifying what qualifies as a failed experiment. Hence, the current
DAP does not support a means to verify and validate evidence of failure, thus it
does not support falsifiability management. Lack of falsifiability poses an issue in
the DAP when an occurrence in the data or analytics is not desirable, but because
there is no falsifiability, there is no account for this failure.

16.2.2.3 Misrepresentation of Data

Misrepresentation of data is concerned with using data that is not sufficient for the
problem domain. This happens a lot with re-use of data. Data collected for one
purpose is used for another purpose. This poses a problem in the current DAP
without V&V because encodings of data can be dated or obsolete. Without V&V,
such inaccuracies will not be identified.

16.3 Modeling, Verifying, and Validating the DAP

Traditionally, V&V is an empirical or operational level process which assesses how
well a model performs when compared to (1) the model developer’s specification
(i.e., verification), and (2) the real world (i.e., validation). A DAP is a workflow
of logical and associated analyses; it is not solely the specific analytical steps that
compose the process. The specific steps may be traditionally V&V’ed as they are
evidential in nature, but the association of one step to the next is logical in nature and
hence an aspect of the brain’s knowledge generation. We need another apparatus for
modeling the DAP to support V&V of this knowledge.

The proposed model for verification and validation (V&V) of the data analysis
process (DAP) is initially based on the Kantian construction of Transcendental
Deduction [8] in which the philosopher Immanuel Kant claims that we can only
know reality as our active minds structure, organize, and form our conditioned
experiences of reality [4] and delves into an epistemological analysis of how people
create knowledge in the world. The epistemology of knowledge is what we aim
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to capture in this model of the DAP to enable the verification and validation
of that knowledge and ultimately generate confidence and trust in the particular
documented DAP.

16.3.1 An Epistemological Hierarchy Model for Decomposing
the DAP

“Thoughts without content are empty; intuitions (perceptions) without concepts are
blind.” – Immanuel Kant

The DAP is a workflow of logical and associated analyses applied to data to generate
an understanding of the latent or indirect connections that exist within the data.
Similar to human perceptions of the world, the DAP proposes to produce knowledge
about the world by collecting observations of the world and reasoning on these
observations. These processes cannot take place in a vacuum but must be firmly
situated on an ontological foundation that provides meaning to the analytical result.
One method of achieving this ontological foundation is through development of an
epistemological decomposition of the data and the analytics of the DAP.

Kant begins an epistemological decomposing of data and analysis by declaring
that without concepts our perceptions of the world are without meaning. Our
measures of perceptions (i.e., data) require valid association to concepts in or about
the world that the measures are describing. Similarly, analytical thought requires
valid association to worldly observation. Without validity from concept to data and
data to reason, what is produced from the DAP cannot be claimed as knowledge. In
this way begins our epistemological decomposition from concepts to data and from
data to analytical thought. (See Fig. 16.1.)

It is useful to note that the model presented here builds significantly on an
epistemological model developed by Ruvinsky, Wedgwood, and Welsh [16] for
V&V of scientific inquiry into social science models.5 In the Ruvinsky, Wedgwood,
and Welsh model, the aim is to decompose a social science model into the pieces
of knowledge that it leverages in its representation of the world in order to evaluate
whether the composition of those pieces, as defined by the model, is correct and
consistent with the human experience of the real world. According to Ruvinsky,
Wedgwood, & Welsh:

The Epistemological Hierarchy (EH) is a framework for parsing distinct yet related
levels of analysis from extremely abstract (i.e., theory) to extremely concrete (i.e., data).
The motivation for such a hierarchical decomposition of a model was based on the

5Though the purpose for defining an epistemological hierarchy (EH) model of knowledge elements
was for evaluating the verification and validation of Human, Social, Cultural, Behavioral (HSCB)
models, the mechanism is applicable to any kind of inquiry-based modeling. The prerequisite for
an EH decomposition of a model is a Kantian composition of knowledge elements defined as
observable concepts and reasoned understanding over those concepts [8].
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Fig. 16.1 Data Analysis Process consists of identifying relevant concepts, defining their measure-
ment, and reasoning over the measurement data with analytic mechanisms

need to interrogate the correctness (verification) and appropriateness (validation) of the
informational aspects of a model beyond solely the data it produces. MESA (Model
Evaluation, Selection and Application) is able to assess the V&V of a model at each
stage of model development, from the initial theoretical conceptualization that inspires the
creation of a model to the specific operationalizations that define the real-world measures
of relationships to be tested. In order to analyze a model in this way, one must decompose a
model in terms of the knowledge it leverages and produces at each stage of development. In
other words, one must break a model down into its epistemological elements ranging from
the social ontology to the raw data.

In defining an epistemological decomposition of the DAP, we will leverage
Ruvinsky, Wedgwood, & Welsh’s Epistemological Hierarchy (EH) decomposition
of a model for “better capturing and understanding information that a model uses to
represent the world.” The EH model-based decomposition of a DAP must include
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a representation and understanding of the data itself, followed by a decomposition
of the analysis that will leverage the data. The Epistemological Hierarchy Model
for DAP (EHM-DAP) will be made up of two EH models: a data model and an
analysis model. In Sect. 16.3.1.2, we will present a decomposition of data that
supports measurement validity between the data and its associated concepts. This
will be followed in Sect. 16.3.1.3 by the re-appropriation of Ruvinsky, Wedgwood,
and Welsh’s epistemological model of scientific inquiry [16] from scientific inquiry
to the less stringent analytic process of data analysis. The extension to Ruvinsky
et al. [16] presented here is a description of how the data model and analysis model
work together in the DAP thereby enabling V&V of the DAP (Sect. 16.3.1.4).

It is important to note that this is not a model for doing a DAP; it is a model for
V&V of the DAP. Though it is consistent with how data analysis can be done, it is
not designed to optimize the design or development of the DAP. The recommended
use is to apply this model alongside the actual data analysis design/development
process such that as data is explored, the data model may be instantiated, verified,
and validated; as appropriate analysis is identified, the analytic model may be
instantiated, verified, and validated; and as both of these models evolve, the changes
may be captured, verified, and validated. Examples of instantiating or evolving the
data and analytic models are provided in Sect. 16.4.

16.3.1.1 The DAP Model: Data + Analysis

Data analysis aims to figure out what story the data is able to tell. Though there are
disparate applications of data analysis throughout scientific, business, economic,
political, and various other domains, there is general consensus as to what data
analysis is. A representative working community definition is as follows.

The process of evaluating data using analytical and logical reasoning to examine
each component of the data provided. This form of analysis is just one of the many
steps that must be completed when conducting a research experiment. Data from
various sources is gathered, reviewed, and then analyzed to form some sort of
finding or conclusion.6

The DAP is essentially an iterative scientific inquiry. An individual analysis
within a DAP is a single scientific inquiry whose result informs the purpose of the
DAP and evolves the analysis forward into a refined analysis, a refined data set, or
both. To capture this process, the DAP model merges the epistemological models
for data and analysis into a single model and incorporates a workflow that captures
the process of data analysis.

The DAP model will capture data, analysis, and the flow that integrates data and
analysis together to generate new analytical knowledge.

6http://www.businessdictionary.com/definition/data-analysis.html
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In Sect. 16.3.1.3, we present how the data model captures the conceptual
construction of the data set being investigated. In Sect. 16.3.1.3, we present how the
analysis model captures the analytical construction from theory to social model to
hypothesis to application. The epistemological model of data analysis will integrate
the models of data and analysis. This model and the analytic process that leverages
this model will be further described in Sect. 16.3.1.4 once the individual data and
analytic models are described.

16.3.1.2 DAP Composite Model: Data Model

As Kant stated, “ . . . intuitions (perceptions) without concepts are blind.” Kant’s
claim is that perceiving, measuring, and collecting data about the world must be
associated with concepts to create knowledge about the world. Data is worthless
if we have no awareness of what the data is and what it describes. The purpose
of an epistemological data model is to associate data with concepts and abstract
or refine those concepts as guided by the data analysis purpose. The data model is
capturing knowledge about the world and building associations between knowledge
elements resulting in conceptual representations of the world. For example, a data
set collected for the weight of apples is associated with the concept of “apple”;
apples are associated with the concept of food supply; food supply is associated with
cargo. This concept of cargo may then be used by an analytical model for calculating
a distribution plan. Since apples are a specific version of the cargo concept, the
distribution plan may be instantiated with the apples cargo. The association of apple
to food supply to cargo is an example of a data model capturing a representation of
the world as guided by the analytical purpose, specifically distributing apples. (The
relationship between the data model and the analytical model is presented in Sect.
16.3.1.1.)

The data model does not require a purpose for analysis. We may simply be
interested or curious about a data set and want to learn more about it without
having an analytic purpose in mind. It is, though, helpful to be aware of the
analytic purpose that motivated the generation of the data set to provide better, more
appropriate curation, pre-processing, and understanding of the data and even, more
importantly, reuse of an existing data set. Since there is always some amount of
uncertainty attached to data, awareness of the data’s context enables reliability. For
example, when counting homeless people in a city, how does the data collector
define “homelessness”? Is someone considered homeless if they are unemployed
yet living with charitable family? [15] According to Yau, “[Context] can completely
change your perspective on a data set, and it can help you decide what the numbers
represent and how to interpret them” [23].

The Epistemological Data Model Hierarchy is one of the two composite pieces
of the DAP model and is represented in Fig. 16.2.

The initial decomposition of the data is driven by a need to know what the
data is and is based on any available information or resource that may be used
to better understand what the data was designed to represent in the world [2]. For
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Fig. 16.2 Epistemological Data Model Hierarchy (EDMH) decomposition, definition, and exam-
ple

example, if social media data is gathered for an investigation into indicators of social
unrest, then the “social media data” systematized concept will be positioned as an
instantiation of the “social state manifestation” specific concept (see Fig. 16.2).
If the social media data was gathered for investigation of crowd sourced weather
reports, then the “Social Media Data” systematized concept will be positioned
as an instantiation of “Weather Events” specific concept. It might be possible to
conceive of the data in another manner, but the conceptualization of data beyond the
parameters for which it was collected will be motivated and driven by an analytic
purpose within the DAP model described in Sect. 16.3.1.3.

The dark blue boxes in Fig. 16.2 represent an associated thread of concepts from
an abstract concept to model data. The light blue boxes are other related concepts for
which there may also be instantiations. For example, this thread instantiates “social
state” as a domain concept to “society”, but societies also have domain concepts of
economic and political states, among many others.

The data being analyzed may have been generated to support the purpose of
the analyst’s current DAP (see Sect. 16.3.1.3 for more information regarding DAP
purpose), or the data may have been generated for a different purpose altogether and
is being reused for the analyst’s current DAP. In some cases, if the desired data is
not available (e.g., contains personal information, is classified, etc.), the data may
serve as a proxy for the desired data. In this situation, the EDMH process can be
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helpful in illuminating nuances related to the differences between the desired data
and the proxy data and what impact that might have on any analyses performed
with the proxy data. In any such case, awareness of the purpose that drove the
data’s generation is relevant to better understanding the data’s meaning, structure,
and significance [15, 23].

Once the data sets have been explored, the data analyst may begin to leverage
the data model via the analytic model described in Sect. 16.3.1.2. Guided by the
data analysis purpose, the analytic model may result in refinements, extensions, or
augmentations of the data model. This intertwined process of data conceptualization
and theory formulation will be further described in Sect. 16.3.1.3.

In Sect. 16.3.2, we will show how the modeling of data supports DAP validation.
The opportunity for validation will present itself in the model of the DAP as the
analyst begins to leverage the observed concepts captured by the data model to
produce new knowledge by way of reasoned understanding. The V&V process
conducted on the instantiated DAP model will evaluate the appropriateness of the
application of the analysis to the data. Before DAP modeling may be verified and
validated, though, the reasoning will need to be identified and documented in the
analysis model presented next.

16.3.1.3 DAP Composite Model: Analysis Model

As Kant stated, “Thoughts without content are empty . . . ” The reasoned under-
standing as arising from our brains requires content as an input. This content
amounts to knowledge. Kant defines knowledge from observed data and reasoned
understanding. As such, the analysis model is tasked with capturing the reasoned
understanding applied throughout the DAP to observed knowledge (i.e., data) as
well as reasoned knowledge (i.e., supported conclusions).

Every DAP must have a goal or goals in mind in order to focus the direction of
analysis. These goals are captured as purpose. The DAP analysis model purpose is
the analytic reasoning that motivates and drives the DAP. (See Fig. 16.3.) If the
aim of an analytic process is simply to explore the data, then that in itself is a
purpose that guides the kind of analytic choices that the analyst makes. The purpose
is critical because it guides the analyst regarding how to instantiate a conceptual

Fig. 16.3 DAP purpose definition and example



16 An Epistemological Model for a Data Analysis Process in Support. . . 373

Fig. 16.4 Epistemological Analysis Model Hierarchy (EAMH) decomposition, definition, and
example

construction around the data as represented by the data model (described in Sect.
16.3.1.2). Consider, for example, the apple concept defined in Sect. 16.3.1.2. In that
example, apples were defined as an instance of a food supply in order to conceive
of it as possible cargo. Apples may also be considered in other ways such as fruit,
a source of nutrients, etc. How the concept of apples is instantiated within the data
model of the DAP model will depend on the purpose of the analysis.

To capture the epistemological elements that researchers utilized in a model
development, Ruvinsky, Wedgwood and Welsh designed an epistemological hierar-
chy of levels of abstraction of social science research design shown in Fig. 16.4. The
Epistemological Analysis Model Hierarchy is the second of two composite pieces
of the DAP model.

16.3.1.4 Modeling DAP Workflow Leveraging EH Models of Data
and Analysis

The DAP model integrates and extends the individual data and analysis models pre-
sented in earlier sections. In particular, the DAP model extends the analysis model
by adding conceptual levels to the analytic model hierarchy that are instantiated as
abstract concepts in the data model hierarchy. The analytic model is also extended to
include a data level that specifies the actual data sets to be leveraged by the analysis.
Along these lines, the data model is extended to include not just model data defined
as raw input data but also calculated model data which are data sets that result from
analytics executed on raw data sets. A visual representation of the integrated and
extended data and analytic models into the DAP model is shown in Fig. 16.5.

The DAP model ensures representation of the full spectrum of the DAP. The
instantiation of the DAP model for a specific DAP will not likely be performed from
top to bottom (or vice versa) in one analytical thread. There are sublevels of the DAP
that correspond to different data analysis tasks. These sublevels may be instantiated
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Fig. 16.5 Epistemological DAP model: an integration and extension of the epistemological
analysis model and the epistemological data model

individually, yet inform each other to ensure consistency of analysis. For example,
when executing data cleaning, the analyst will focus on the implementation layer
and data layer of the analytic hierarchy model and the calculated model data and
model data of the data hierarchy model. This analysis will generate the identification
and cleaning of data consistent with the requirements of the implementation layer.
At another time in the analysis, the same analyst is interested in investigating
hypothesized relationships between variables in the data set in which the analyst
will focus on the higher levels of the DAP model and capturing the conceptual logic
of the relationships being investigated.

The DAP model is designed to be flexible and robust so that an analyst
can leverage sub-elements or components of the model as needed. Though DAP
modeling is not restricted to a specific process, we will provide an example that
goes through multiple steps of a typical DAP. We will begin with a data set to be
investigated and modeled. As shown in the example in Fig. 16.6, given a data set of
Twitter Data, the data set is cleaned and oriented into a conceptual framework that
will inform and guide what and how this data is used for analysis. The dark blue
boxes in Fig. 16.6 represent the instantiation of the specific Twitter data set from raw
model data to abstract concepts. The light blue boxes represent similar data/concept
elements within the same data ecosystem as the instantiation of the Twitter data
model. For example, social media data is similar in context to news reports. Both
of these data elements may be used to represent social discourse, though in this
instance, we are dealing with Twitter data which is an instance of social media data
which serves as a means of investigating and measuring social discourse.
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Fig. 16.6 Example of an instantiated epistemological data model

From the data set, an analytic purpose will be identified, and an analysis approach
modeled. As detailed in Fig. 16.7, the data elements in blue with red border are data
products of the analytic model. For example, the “Sentiment” domain concept was
brought into the DAP model as a result of the “Social state consists of a sentiment
characteristic.” Also, the “Cleaned: sent. Vector” is a calculated model data set
consisting of the sentiment vectors that result from analyzing the Twitter data set. It
is important to note that the V&V of the implementation of the sentiment analysis
code is not what is being conducted here. The V&V of sentiment analysis code
is being leveraged by this DAP instance, meaning that the analysis was conducted
elsewhere previously and is being leveraged by this DAP instance. Here, we are
assuming that the implementation used is verified and valid. Here, we are asking if
applying sentiment analysis to the Twitter data for the purpose of capturing social
anguish can be verified and validated.

The process will then assume the execution of the analysis on the data and
will generate new data that will either support or not support the hypothesis. The
result is then made available and integrated into the DAP model and will drive
the next step in the analytic process described in Fig. 16.8. Here, we see that the
data products generated in Fig. 16.6 drove the generation of new analysis products.
For example, the new anguish data set generated from social media data needs to
be corroborated to show support for the original application claim that “Sentiment
analysis can expose social anguish messaging in social media data.” These new
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Fig. 16.7 Example of instantiated analytic purpose and epistemological analysis model

analytic components to the DAP model instance then drive new data components,
and the process continues until all claims and purpose are ultimately, satisfactorily
addressed. With respect to the example presented here, the integration of the analytic
result and the next analysis it drives will be the final step shown in this example,
though the process itself would continue until all claims are resolved and the analytic
purpose is met satisfactorily.

The interplay between analysis and data is an important aspect of data analysis
that this model strives to capture. According to Abraham Kaplan, “Proper concepts
are needed to formulate a good theory, but we need a good theory to arrive at the
proper concepts . . . The paradox is resolved by a process of approximation: the
better our concepts, the better the theory we can formulate with them, and in turn,
the better the concepts available for the next, improved theory” [9]. The DAP model
presented here attempts to capture this iterative process to facilitate the improvement
of concepts and theory.

Though the analyst may clean the data and model relationships in the data non-
contiguously, the analyst must ensure consistency in logic between the modeling
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Fig. 16.8 Interaction between analytic development and data development of the DAP

and data cleaning such that the clean data captures appropriate representations of
the measured relationship. The DAP model supports the verification and validation
of the DAP such that any issues with consistency of logic are exposed for detection.
The process of using the DAP model to support V&V is described in detail in Sect.
16.3.2.

Once the analysis is executed on the data and a result is attained, this result will
generate new data that will either support or not support the hypothesis. Support is
good but not the end. Analysis continues as the analyst must build more support
for a claim by showing that other representations of the relevant concepts also
demonstrate the same support. Lack of support is also not the end. The analytic
construct may be further explored by other approaches such as affiliating the
hypothesis with different specific concepts or exploring different relationships with
the same data set.
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16.3.1.5 User Guide to Instantiating a DAP Model

The DAP model described above is intended to be flexible and robust to support any
approach to data analytics. To show how the model may be used to capture the DAP
for verification and validation of that process, we present the questionnaire devel-
oped by Ruvinsky, Wedgwood and Welsh to facilitate the capture of the information
specified by each data and analytic component of the model. Their questionnaire
entitled the Epistemological Decomposition (or “e-decomp”) is presented in Table
16.1 [16].

16.3.2 Evaluating the V&V of the DAP Decomposition

V&V assesses how correctly a DAP is capturing and producing knowledge about
a phenomenon of interest. To assess the V&V of the DAP models, one needs to
define a strategy that overcomes the shortfalls described in Sect. 16.2.2. At the
heart of the strategy presented here is a move to go beyond viewing verification and
validation as solely empirical testing. Our approach is to provide mechanisms and
techniques for evaluating knowledge by considering other aspects of knowledge that
contribute to the verification and validation of knowledge. Our approach begins with
the decomposition of a DAP in terms of its data model and its analysis model with
respect to its epistemological elements ranging from ontology to purpose to raw data
as described in Sect. 16.3.1. Beyond organizing and documenting the informational
elements of a DAP, the epistemological hierarchy of the DAP provides a structure
upon which verification and validation techniques may be based. To be clear, the
epistemological hierarchy is not intended as a means of verifying or validating
models but rather as a structure for organizing our definition and knowledge of a
DAP so that verification and validation may be performed upon the structure. The
epistemological content generated by the decomposition is used by the V&V tools
and techniques presented here.

V&V of a DAP may be considered from two distinct perspectives: focal and
contextual. Focal V&V considers the verification and validation of a model with
respect to its ability to explain the target phenomena for which the model was
intentionally built. Contextual V&V assesses the flexibility of a model with respect
to contextual vulnerabilities or dependency. The perspective we address here is that
of focal V&V, evaluating the DAP model based on the domain space for which the
model was intended to perform.

We also define operational V&V techniques as those traditional V&V techniques
assessing the empirical output from an algorithm or model (DoD 2006), such as
cross-validation testing, analysis of variance assessment, etc. Operational V&V
techniques complement the focal V&V techniques described here because opera-
tional V&V evaluates analytic performance, while focal V&V will explore beyond
the empirical output analyzed by operational techniques and into a theoretical
and epistemological scrutiny of the DAP model. In particular, operational V&V
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Table 16.1 Questionnaire supporting the epistemological decomposition of the data and analysis
models presented in Ruvinsky et al. [16]

EH tiers Sublevels Question

Model purpose What is the question that the analysis is trying to answer?
Conceptual
levels

Social
ontology

What is the world made up of relevant to the analysis?

Paradigm What is the paradigm (i.e., grand scheme or worldview) that
underlies the analysis?
From which particular abstract concepts is this paradigm made?
What is the broad domain addressed by the paradigm?

Theoretical
levels

Theory What are the theories/arguments that the model is designed to
investigate?
For each theory, what are the domain concepts associated with the
relationship being explored?
To which abstract concept is each domain concept associated?
How are these domain concepts arranged into theoretical
relationships?
What assumptions (i.e., theoretical relationships not explicitly
investigated by this model) is the theory making about the world? In
other words, what theoretical claims is the theory leveraging? These
may be theories proposed by other researchers and presented in other
works cited by this model’s researcher in supporting documentation.
What is the phenomenon that this theory is trying to explain?

Social
model

What are the specific concepts associated with the relationships
being explored?
To which domain concept is each specific concept associated?
How are these specific concepts arranged into described theoretical
relationships?
What assumptions about the context (i.e., aspects of the social model
not explicitly investigated by this model) is the social model making
about the world?
What is the descriptive context in which the social model has
instantiated the theory?

Hypothesis What is the hypothesis (are the hypotheses) being investigated?
What are the specific concepts associated with the relationships
being explored?
Decompose the variables associated with each hypothesis into
independent, dependent, or conditional variables of the hypothesis.
What is the scope of inquiry represented by these hypotheses?

Operational
levels

Application What is the particular empirical context space into which the social
model is being applied? (e.g., the country to which the model is
being applied; the geographic region; the demographic; etc.)
What are the boundary conditions associated with this empirical
context space?
What is the methodological context into which the social model is
being applied? (e.g., What is the general methodology that is being
applied to the model? What unit of analysis?)
What are the boundary conditions associated with this
methodological context space?

(continued)
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Table 16.1 (continued)

EH tiers Sublevels Question

What are the principles behind this methodology?
What are the systematized data concepts associated with the specific
concepts being explored in the hypothesis?
To which specific concept is each systematized data concept
associated?
How are the relationships between systematized data concepts,
specified in the hypothesis, applied in this experimentation context?

Implementation What specific methodological protocols are being used for this
model?
What are the formal expressions of the systematized data concepts
that are input, output, and conditional variables?
What are the formal expressions of the relationships between those
input, output, and conditional variables?
What are the boundary conditions associated with this choice of
method?

Data What data sources does the model use for each variable?
For each variable, what is the coding required (if any) and what data
sources are required?
What is the unit of measure for the input, output, and conditional
variables?
What are the observed relationships between input, output, and
conditional variables?
What is the description of the data (i.e., data type, time frame,
definition, and data source) represented by the measured input data?

techniques are applied to evaluate data analysis algorithms that produce information.
The DAP leverages or assembles data analytic algorithms and their operational
V&V assessments to create an analytic process that transforms information into
knowledge about the question or purpose being investigated. The purpose of the
focal V&V approach presented here is to show how V&V of a DAP beyond
empirical evaluation (with respect to the domain for which the process was defined)
may be established.

16.3.2.1 The Epistemological Hierarchy as a V&V Checklist

The process of generating the epistemological decomposition of a DAP as it is being
developed may provide early evidence and insight into the state of V&V of a data
analysis process as it unfolds. Early evidence of DAP’s issues with V&V allows
for failing early so that problems are exposed during development of a DAP and
may hence be corrected easily versus exposing issues after development resulting in
wasted effort in developing a flawed analysis and cost in backtracking the analysis
in order to correct the issue. Using the epistemological decomposition as a kind
of checklist during the development of a DAP is useful for assessing whether the



16 An Epistemological Model for a Data Analysis Process in Support. . . 381

analysis has the appropriate construction to support V&V and enables immediate
and less costly awareness and correction of data analysis issues. The epistemological
decomposition as a checklist is also useful when evaluating an existing DAP because
it facilitates an assessment of whether it is feasible and cost-effective to continue
with the V&V of a pre-defined DAP.

Using the epistemological decomposition of the DAP as a means of evaluating
the preparedness of the process for a V&V assessment is called V&V Early
CHeckpoint via Epistemological Critique (E-CHEC). If V&V failure is detected
at any point along the epistemological decomposition of a DAP, the analysis is
preemptively halted from any further V&V analysis because any epistemological
structure based on an un-validated construct must be assumed to be itself un-
validated. This not only helps in managing the verification and validation of a DAP,
but it also facilitates improving the process by homing in on the pieces of the DAP
model’s epistemological structure that have failed verification or validation. In this
way, an analyst can focus their efforts on improving the process model, and V&V of
that model does not need to start from scratch each time, only needing to assess the
portion of the epistemological hierarchy beginning from the point of failure from the
previous V&V assessment (assuming the higher – more abstract – epistemological
elements were not altered).

16.3.2.2 V&V Methodology

The approach to V&V of a DAP via the epistemological decomposition of the
process is to assess modularly the V&V of each epistemological level of the process
model. (See Sects. 16.3.1.1 and 16.3.1.2 for a description of the Epistemological
Hierarchy models for data and analytics, respectively.) Consequently, the state
of V&V of a model will be an aggregation of the V&V assessment of each
epistemological level.

To address the verification of a specific level of the hierarchy, one must consider
the surrounding levels. In other words, assessing the verification of one level of the
hierarchy requires asking questions about that level with respect to its relationship
to the levels around it. Since verification is an assessment of the implementation
of a claim (i.e., “did I build the thing right?”), the analysis investigates the fidelity
of the implementation’s abstraction to the claim, or conversely, the fidelity of the
claim’s specification to the implementation. In other words, the line of questioning
of the current level becomes, “Did I make the right abstraction of the lower level
entity, or specification of the higher level entity based on (1) what has been defined
at the lower/higher level, and (2) the analytic purpose?” For example, if the domain
concept specified for the context model level of the DAP model is “Social State,”
and the analytic purpose is to expose social sentiment, then the specific concept of
“social discourse” is an adequate specification for the hypothesis level because it is
consistent with the analytic intent of the analyst. Considering another example, if
the hypothesis is “Social anguish is part of the sentiment characteristic of a social
state,” and the analytic purpose is to expose social sentiment, then the context
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model definition of “Social state consists of sentiment characteristics” is an adequate
abstraction for the hypothesis level because it is logical and consistent with the
modeler’s intent.

Validation is assessed by considering the modeled DAP hierarchy with respect
to external constructs. In other words, the line of questioning of the current level
becomes, “Did I make abstractions or specifications that are consistent with (1)
evidence-based constructs prominently leveraged by the community, and (2) the
analytic purpose?” For example, a domain of “social state” is valid for an analytic
purpose of understanding sentiment of a population because (1) social state is a
well-identified concept and (2) social state consists of a sentiment dimension which
is relevant to the analytic purpose.

16.3.2.3 V&V Dimensions

As Sect. 16.3.2.2 describes, the V&V analysis we present is performed on each level
of the epistemological hierarchy of the DAP model. To delve into the theoretical
and epistemological scrutiny of a DAP model, we begin by defining aspect of V&V
relevant to an epistemological analysis. In our approach, we considered verification
and validation individually and identified dimensions for each. The dimensions of
interest that we defined are listed in Table 16.2.

Table 16.2 Dimensions of verification and validation

V&V process Dimension Definition

Verification

Consistency of
concepts

An assessment of how well concepts are specified
and operationalized between levels of the hierarchy
with respect to consistency

Consistency of Re-
lationships

An assessment of how well relationships are speci-
fied and operationalized between levels of the hier-
archy with respect to consistency

Consistency of as-
sumptions

An assessment of how well assumptions are speci-
fied and operationalized between levels of the hier-
archy with respect to consistency

Validation

Utility An assessment of the usefulness of the epistemolog-
ical element with respect to model purpose

External con-
sistency

An assessment of the consistency of epistemological
elements of a model with respect to other epistemo-
logical elements external to the model

Prominence An assessment of breadth of use by the user and
modeling communities

Accuracy An assessment of the accuracy of epistemological
elements with respect to empirical findings derived
from the specific element in question
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16.3.2.4 V&V Questionnaire and Measures

For each dimension of V&V that we identified, we constructed questions to extract
a measure for the dimension in the form of a rubric-based assessment. These
questions are compiled into a V&V questionnaire designed as a tool for evaluating
the adequacy of the DAP model epistemology. The assessment of the V&V of a
DAP model has been decomposed into questions to be asked of each levels of
knowledge in the epistemological hierarchy. The V&V questions are shown in Table
16.3. These questions make up the V&V questionnaire.

To provide a common metric by which to measure each V&V dimension per
sublevel of the epistemological hierarchy, we constructed a rubric consisting of “A”,
“B”, “C”, or “D” scores for each question corresponding to values of 4, 3, 2, or 1,
respectively, such that a higher valued score indicates a better score in assessing
valid or verified epistemological element. Since the flavor of each score is very
similar among all of the questions, below we present a small subset of the focal
V&V questions along with their rubric scores. In particular, this sample will present
the hypothesis level questions and their rubrics. Each question is indexed as either
“VE” if it is a verification question or “VA” if it is a validation question.

(VE) 1. Concept Consistency: Are the specific concepts that compose the hypothe-
sis included among those determined to compose the context model?

(a) The concepts are clearly and completely consistent between sublevels.
The evaluator can follow the evolution of concepts across levels of the
epistemological hierarchy.

(b) The concepts are clearly but not completely consistent between sub-
levels. The evaluator can follow the evolution of concepts across levels
of the epistemological hierarchy.

(c) The concepts are not clearly consistent between sublevels OR there
are concepts missing. The evaluator cannot follow the evolution of the
concepts across relevant levels of the epistemological hierarchy.

(d) The concepts are not clearly consistent between sublevels AND there
are concepts missing. The evaluator cannot follow the evolution of the
concepts across relevant levels of the epistemological hierarchy.

(VE) 2. Relationship Consistency: Is the relationship between independent and
dependent variables as proposed by the hypothesis within the set of
described and contextualized relationships posited by the social model?

(a) The relationships are described clearly and with reasonable complete-
ness. The evaluator is able to follow the evolution of the relationships
across levels of the EH.

(b) The relationships are described clearly but not completely. The evalu-
ator notes important gaps in the evolution of the relationships.

(c) The relationships are not described clearly, are not described com-
pletely, OR are described incorrectly. The evaluator cannot follow the
evolution of the relationships across relevant levels of the EH.
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Table 16.3 Questions from Focal V&V Questionnaire (verification questions in blue; valida-
tion questions in green)

EH 
level

Sub-
level

Focal V&V 
dimension Question

C
on

ce
pt

ua
l l

ev
el

s

O
nt

ol
og

y
Utility Are the ontological claims about the existence of cate-

gories of events and phenomena relevant to the model
purpose?

External con-
sistency 

Can the ontology co-exist with other ontologies without 
contradicting them?

Prominence Are the ontological beliefs widely subscribed to?
Accuracy Has subscription to those ontological beliefs elsewhere 

ultimately yielded empirically valid findings?

Pa
ra

di
gm

Concept con-
sistency

Are the abstract concepts that compose the paradigm 
accounted for in the categories established by the social 
ontology?

Utility Is the domain addressed by the paradigm appropriate to 
the model purpose?

External con-
sistency

Can the paradigm co-exist with other paradigms with-
out contradicting them?

Prominence Is the paradigm widely subscribed to?
Accuracy Has subscription to the paradigm elsewhere ultimately 

yielded empirically valid findings?

Th
eo

re
tic

al
 le

ve
ls

Th
eo

ry

Concept con-
sistency

Do the domain concepts that compose the theory repre-
sent faithfully the abstract concepts determined to com-
pose the paradigm?

Relationship 
consistency

Is the set of relationships posited by the theory con-
sistent with the set of axioms at the core of the para-
digm?

Assumption 
consistency

Do the assumptions stipulated by the theory reflect the 
expectations and understandings established by the par-
adigm?

Utility Is the phenomenon explained by the theory relevant to 
the model purpose?

External con-
sistency

Can the theory co-exist with other theories without con-
tradicting them?

Prominence Is the theory widely used?
Accuracy Has usage of the theory elsewhere ultimately provided 

empirically valid findings?

M
od

el

Concept con-
sistency

Do the specific concepts that comprise the social model 
represent faithfully the domain concepts determined to 
comprise the theory?

Relationship 
consistency

Is the described and contextualized set of relationships 
posited by the social model consistent with the abstract 
set of relationships at the core of the theory?

Assumption 
consistency

Do the assumptions stipulated by the social model rep-
resent the assumptions of the theory?

(continued)
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Table 16.3 (continued)

Utility Is the descriptive context of the social model associated 
with the model purpose?

External con-
sistency

Can the social model co-exist with other social models 
without contradicting them?

Prominence Is the social model widely used?
Accuracy Has usage of the social model elsewhere ultimately 

provided empirically valid findings?

H
yp

ot
he

si
s

Concept con-
sistency

Are the specific concepts that compose the hypothesis 
included among those determined to compose the social 
model?

Relationship 
consistency

Is the relationship between independent and dependent 
variable proposed by the hypothesis within the set of 
described and contextualized relationships posited by 
the social model?

Assumption 
consistency

Is the scope of the hypothesis consistent with the as-
sumptions of the social model?

Utility Does understanding the dependent variable explained 
by the hypothesis further the model purpose?

External con-
sistency

Can the hypothesis co-exist with other hypotheses 
without contradicting them?

Prominence Has this hypothetical claim been widely made?
Accuracy Has this hypothetical claim elsewhere ultimately pro-

duced empirically valid findings?

O
pe

ra
tio

na
l l

ev
el

s

A
pp

lic
at

io
n

Concept con-
sistency

Are the systematized data concepts that compose the 
application faithful representations of the specific con-
cepts that compose the hypothesis?
Are the principles of the methodology appropriate for 
evaluating the specific concepts that compose the hy-
pothesis?

Relationship 
consistency

Are the relationships between specified systematized 
data concepts presented as input, conditional, and out-
put variables consistent with the relationships between 
independent and dependent variables proposed by the 
hypothesis?
Are the principles of the methodology appropriate for 
evaluating the relationship between independent and 
dependent variables proposed by the hypothesis?

Assumption 
consistency

Do the boundary conditions set by the empirical domain 
of the application meet the scope of inquiry stipulated 
by the hypothesis?
Do the boundary conditions set by the methodological 
domain of the application meet the scope of inquiry 
stipulated by the hypothesis?

Utility Is the particular empirical domain designated by the ap-
plication appropriate to the model purpose?

(continued)
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Table 16.3 (continued)

Is the particular methodological domain designated by 
the application appropriate to the model purpose?

External con-
sistency

Can the application co-exist with other applications 
without contradicting them?

Prominence Has this application been widely used?
Accuracy Has this application been used elsewhere and ultimately 

produced empirically valid findings?

Im
pl

em
en

ta
tio

n

Concept con-
sistency

Do the formal expressions that compose the implemen-
tation accurately transcribe the systematized data con-
cepts that compose the application?
Are the methodological protocols as expressed in the 
formal expressions of the implementation consistent 
with the methodology posited in the application?

Relationship 
consistency

Are the formal expressions of relationships between in-
put, conditional and output systematized data concepts 
consistent with the relationships between systematized 
data concepts described in the application?

Assumption 
consistency

Do the boundary conditions of the empirical domain set 
in the implementation respect the boundary conditions 
of the empirical domain set in the application?
Do the boundary conditions of the methodological do-
main set in the implementation respect the boundary 
conditions of the methodological domain set in the ap-
plication?

Utility Does this formal expression of the elements of the ap-
plication inform the model purpose?

External con-
sistency

Can the implementation co-exist with other implemen-
tations without contradicting them?

Prominence Has this implementation been widely used?
Accuracy Has this implementation, when used elsewhere, ulti-

mately produced empirically valid findings?

D
at

a

Concept con-
sistency

Is the unit of measurement for input data consistent 
with the formal expression of the input systematized da-
ta concept?
Is the unit of measurement for output data consistent 
with the formal expression of the output systematized 
data concept?

Relationship 
consistency

Are the calculated relationships between input and out-
put data consistent with the formal expressions of rela-
tionships stipulated in the implementation?

Assumption 
consistency

Does the description of the data produced by the 
measures of data match the boundary conditions of the 
empirical domain set in the implementation?
Does the description of the data produced by the 
measures of data match the boundary conditions of the 
methodological domain set in the implementation?

(continued)
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Table 16.3 (continued)

Utility Does the expression of raw observations inform the 
model purpose?

External con-
sistency

Can the data co-exist with other data within the same 
empirical and methodological domain without contra-
dicting them?

Prominence Have these data been widely used?
Accuracy Have these data been empirically validated?

(d) The relationships are not described clearly, are not described com-
pletely, AND are described incorrectly. The evaluator cannot follow
the evolution of the relationships across relevant levels of the EH.

(VE) 3. Assumption Consistency: Is the scope of the hypothesis consistent with the
assumptions of the social model?

(a) The scope is described clearly and with reasonable completeness. The
evaluator can follow the evolution of assumptions across levels of the
EH.

(b) The scope is clearly described, but not completely such that important
gaps have been noted. The evaluator can follow the evolution of
assumptions across relevant levels of the EH.

(c) The scope is not clearly described, is not completely described, OR is
described incorrectly. The evaluator cannot follow the evolution of the
assumptions across relevant levels of the EH.

(d) The scope is not clearly described, is not completely described, AND
is described incorrectly. The evaluator cannot follow the evolution of
the assumptions across relevant levels of the EH.

(VA) 4. Utility: Does understanding the dependent variable explained by the
hypothesis further the model purpose?

(a) The utility of the artifact with respect to the model purpose is obvious.
The artifact’s motivations and boundaries are clearly described and are
in line with the stated model purpose.

(b) The utility of the artifact with respect to the model purpose is evident.
There is little elaboration on the artifact’s motivations or boundaries
such that consistency with the model purpose is not clear.

(c) The utility of the artifact with respect to the model purpose is dis-
cernible with effort. The evaluator has to make significant assumptions
as to the artifact’s motivations and boundaries to establish consistency
with the model purpose.

(d) The utility of the artifact with respect to the model purpose is not
discernible. Even with effort on the evaluator’s part, the artifact does
not show consistency with the model purpose.
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(VA) 5. External Consistency: Can the hypothesis co-exist with other hypotheses
without contradicting them?

(a) The artifact can coexist with other artifacts at this level from other
model ecologies in the same school of thought. The consistencies are
clearly acknowledged and addressed.

(b) The artifact can coexist with other artifacts at this level from other
model ecologies in the same school of thought. The consistencies are
not clearly acknowledged or addressed.

(c) The artifact cannot coexist with other artifacts at this level from other
model ecologies in the same school of thought. The inconsistencies are
clearly acknowledged or addressed.

(d) The artifact cannot coexist with other artifacts at this level from other
model ecologies in the same school of thought. The inconsistencies are
not clearly acknowledged or addressed.

(VA) 6. Prominence: Has this hypothetical claim been widely made?

(a) The component is well-known. An evaluator who is familiar with the
research landscape would be familiar with this component.

(b) The component is somewhat known. An evaluator who is familiar
with the research landscape would have passing familiarity with this
component.

(c) The component is relatively unknown. An evaluator who is familiar
with the research landscape might have passing familiarity with this
component.

(d) The component is completely alien. An evaluator who is familiar
with the research landscape is very unlikely to be familiar with this
component.

(VA) 7. Accuracy: Has this hypothetical claim elsewhere ultimately produced
empirically valid findings?

(a) The evaluator is aware of one or more instances where this model
artifact at this level of the hierarchy has been used in other analyses.
In addition, as far as the evaluator knows, all of these analyses have
ultimately provided empirically valid findings.

(b) The evaluator is aware of one or more instances where this model
artifact at this level of the hierarchy has been used in other analyses. In
addition, as far as the evaluator knows, at least one of these analyses
has ultimately provided empirically valid findings.

(c) The evaluator is aware of one or more instances where this model
artifact at this level of the hierarchy has been used in other analyses. In
addition, as far as the evaluator knows, these analyses have shown to
be inconclusive or invalid.

(d) The evaluator is not aware of any other instances of the usage of this
model artifact.
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16.3.2.5 V&V Inter-coder Reliability

With the potential of various data analysts and analysis consumers providing
information about the V&V of a DAP, differences in evaluations among reviews
is inevitable. To address this, we consider the application of inter-coder reliability
(ICR) experimentation to show how coded reviews can be used to assess the V&V
of a DAP model. Our observations with ICR experiments of the V&V Questionnaire
as applied to the domain of computational social science showed that though there
were differences in responses among reviewers, there was generally consensus
emerging among the reviewers for each question. Our conclusion to the experiment
was that as the number of individuals that review a model increases, the convergence
of a verified and valid model will converge. With a small set of reviews there may
be a lot of noise, but a model that is valid and/or verified will converge to high value
scores. On the contrary, if a model contains issues with its validity or verifiability,
this too will converge in the form of predominately low scores for the focal V&V
assessment. Models for which convergence does not arise represent models based
on principles that are under contention in the research community.

Our vision of this evaluation process is that as V&V scores of data analysis
models begin to converge, high-likelihood issues in the model will be exposed
and refinements will occur. Iterations of this process will result in the convergence
of high-use models to high-value scores. In other words, the most relevant and/or
useful data analytic processes will become increasingly correct and appropriate.

16.4 Use Cases

This chapter presents a model for capturing the epistemological decomposition of
a data analysis process (DAP) for the purposes of supporting an inquiry of the
decomposed DAP for measures of validation and verification with respect to the
verification dimensions of consistency of concepts, relationships, and assumptions,
as well as the validation dimensions of utility, external consistency, prominence,
and accuracy. The following two use cases describe distinct, real-world examples of
data analysis processes leveraging aspects of an epistemological decomposition and
ultimately V&V of the data analysis process. The proposed V&V for DAP analysis
is intended to be flexible and robust in scale such that the DAP decomposition and
V&V analysis may expose vulnerabilities and dependencies at varying scope and
scale based on the analyst’s intent. These two examples effectively use the proposed
tools for V&V of DAP analysis at somewhat varying levels of specificity.
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16.4.1 Aircraft Prognostics Use Case

The Aircraft Prognostics Use Case is an example that demonstrates a DAP process
in a non-social science domain. What appears at first to be a fairly straightforward
process of using aircraft sensor data to predict aircraft faults is actually fraught with
opportunities to use the data in ways that are inappropriate for individual supervised
and unsupervised learning algorithms. Although the epistemological decomposition
presented in this example does not consider the upper layers of the ontology and
the paradigm, there are concepts that clearly need to be understood and agreed upon
by all participants involved in analyzing and using the data. As data scientists use
this data to develop prognostics and attempt to compare or combine prognostics, the
assumptions made throughout the DAP resulting in these prognostics must be ver-
ified and validated; otherwise, the comparisons/combinations of these prognostics
will not only likely be incorrect but also potentially dangerous (e.g., parts that, by
other measures, should be replaced, are left in service).

This use case begins decomposing the Aircraft Prognostics DAP at the theory
level of the analysis model, along with the associated domain concepts of the data
model. For this epistemological decomposition, the top levels of the hierarchy, the
paradigm and ontology, were not expanded. These were deemed to be irrelevant to
the current analysis and as such were not expanded.

16.4.1.1 Purpose

The purpose of the Aircraft Prognostics Use Case is to answer the question: Can
the health of a specific aircraft component, particularly the Line Replaceable
Unit (LRU), be classified through observation of aircraft sensor data and/or field-
collected repair and maintenance (R&M) data?7 The goal of such a classification
is to identify leading indicators that predict component failure. If component failure
can be predicted, it is possible to decrease the amount of time an aircraft is
unavailable due to unplanned maintenance. A clearly defined purpose enables a
clearer look at the big picture of the data.

This study started the model and data analysis process at the theory level, along
with the domain concepts. These elements are represented at the top of the hierarchy
in Fig. 16.9. For this analysis, the top levels of the hierarchy, the paradigm and
ontology were not expanded as they were deemed to be out of scope of the current
analysis.

7The R&M data consists of names of particular LRUs diagnosed as “faulty” and dates they were
removed from the aircraft.
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Fig. 16.9 An epistemological hierarchy of the aircraft prognostics use case beginning with domain
concepts and operationalizing down to calculated model data (see legend for color definition)

16.4.1.2 Theory

An aircraft exhibits a relative state of health that changes over time. In general, the
state of health of various components degrades at different rates over time as the
aircraft is operated. The state of health can be improved by replacing degraded or
faulty components. Leading indicators of failure may reduce unplanned downtime
of the aircraft, increasing aircraft availability and possibly reducing costs.

By design, some aircraft may have specific sensors for specific LRUs to indicate
when they have failed. In prognostics, the analytical interest lies in anomalous
behavior in the sensor reading for a specific LRU or readings from other sensors
prior to the specific LRU’s failure, as opposed to sensor readings after the compo-
nent has failed. The longer the lead time between the detection of the indicator and
the occurrence of the failure and the more precise the indicator, the more valuable
the indicator is. Once an indication of impending failure occurs, decision makers
can determine when to replace the component. Prognostic information such as these
indicators used in a decision support system may reduce unplanned down time of
the aircraft.

This analysis would be trivial if all LRUs were instrumented with sensors that
detected their degradation. However, this is not physically possible and was not the
case in the aircraft that gave rise to this Use Case.
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16.4.1.3 Social Model

The social model of the aircraft is the representation of the real-world system
behaviors based on theories. The social model can be expressed as follows:

An aircraft exhibits a health state that consists of characteristics of data from
its sensors over some period of time and the history of its Repair and Maintenance
Data. These data may be indicative of both the operation of the aircraft and the
response of the aircraft as it is operated.

The second statement of the social model is an important qualification. If the
data only provided information about how the aircraft was being operated (altitude,
speed, pitch, roll, etc.), then there could be no expectation that analysis of the data
would provide any health indication of the aircraft systems. On the other hand, if the
data are only providing response information (vibration, component temperature, air
flow), it is possible that health indicators could be found, but they will be noisy due
to different operational modes of the aircraft impacting the response information.
Consequently, with both response and operational sensors, we have the best of both
worlds.

These observations led to the refinement of the domain concept (see Fig. 16.9) to
include specific concepts related not only to the sensor data features that had already
been considered but also to features related to how the aircraft was being operated,
including flight phase and mission.8

16.4.1.4 Hypothesis

The importance of a correct hypothesis cannot be overstressed. When formulating
the hypothesis, it is often useful to revisit the purpose. The hypothesis needs to
directly address the purpose. The relationship and the direction of the relationship
being measured by the hypothesis are critical to achieving the purpose of the study.
The hypothesis for this use case can be expressed as follows:

As an LRU degrades, the degradation will be detectable through analysis of the
sensor data.9 Furthermore, we will be able to develop thresholds related to the
degradation to classify flights as “healthy” or “faulty.”

Although the health of the aircraft is likely on a continuum, the hypothesis brings
into focus the desire to identify healthy and faulty data in a binary sense. If unable
to successfully differentiate the data from healthyand faulty flights, in general, it

8The Mission is defined as specific characteristics of how the aircraft is being flown. In this case,
the Mission was induced from the data. Eventually, the Data Analytic Process to produce the
Mission will require its own pair of hierarchies in order to be properly characterized, verified and
validated.
9Indicators may also be found in the R&M data. For instance, sequences or co-occurrences of LRU
removals may be used to predict faults. Analysis for this DAP is not included in this use case.
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is clear that a prognostic cannot be developed. At this stage, it was recognized
that the relationship of the flights to the faults was important for machine learning
algorithms.

16.4.1.5 Application

At this point in the study, a team of four data scientists set out on four separate paths
to develop prognostic indicators. The thought was that even if the predictors that
were developed were somewhat weak, they could be combined using an ensemble
of methods resulting in a usable predictor that would provide prognostic benefits in
an operational setting. However, if these predictors were going to be compared or
combined, there had to be agreement as to what data should be used for the analysis.
Such an agreement turned out to be non-trivial and was addressed at the application
level of analysis.

The application level is used to instantiate the hypothesis. An LRU failure can be
detected by applying both supervised and unsupervised learning techniques to the
sensor data. For each of the four methods that were explored at this step, each data
scientist identified which supervised or unsupervised method of anomaly detection
he or she planned to use.

On the data model side, the Systematized Data Concepts that correspond to
the application analysis model are shown in orange in Fig. 16.9. At this point,
the descriptions of the data are still text descriptions, but they are very specific
concerning which data is to be used. This is an important step, as it will signify
which approaches can be reasonably compared. If the approaches are combined
using an ensemble method, differences in the selected data should be reflected in
differences in the ability of each model to predict under different circumstances.

To understand the development of the systematized data concepts, it is helpful
to think about aircraft behavior. Aircraft don’t just fly. They also undergo engine
tests on the ground, during which time the engine is turned on and off, but the
aircraft doesn’t fly. Flight phase arose from our social model. Flight phase was
more specifically defined to be taxiing, take off and flight, descent and landing,
and unknown.

Similarly, aircraft fly different missions as defined by a series of “Flight Phases”.
For example, they might fly touch and goes (short loops around the airport to
practice landing and taking off), or they might fly at tens of thousands of feet for
many hours.

For each fault, we identified the flight before the fault, the flight during which
the fault most likely occurred and the flight after the fault. For dates where there
were multiple flights, it was not clear exactly when the fault occurred. In these
cases, it was assumed that the fault occurred on the last flight of the day. From
an ontological standpoint, these nodes are connected to the nodes that are connected
to the “Relationship of Flight to Fault,” reflecting a specific combination of fault
and flight. The combination of fault and flight is used for training machine learning
algorithms.
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16.4.1.6 Implementation

The implementation model is the point at which the decision is made regarding the
specific algorithms to build and the data to use. At this point, the final tweaks on the
data cleaning are performed, and the algorithms are coded.

For example, to label the data for machine learning, we defined the flight before
the day on which the fault occurred to be Index = −1, the flight on the day of the
fault to be Index = 0, and the flight after the fault was fixed to be “healthy.” The
exact number of flights before and after that is considered healthy by the different
data scientists vary but can be clearly specified by each investigator through updates
to the data model. “Clean” data was broadly defined as data that was at least five
flights away from a specific fault for a specific aircraft. “Super Clean” data was
defined as data that was at least five flights away from all faults for a specific aircraft.
These refinements aren’t shown on the ontology in the interest of readability.

Figure 16.9 shows a portion of the ontology derived after multiple iterations
through the refinement process of “Domain Concept ➔ Specific Concept ➔

Systematized Data Concept ➔ Calculated Model Data”.

16.4.1.7 Verification

Verification of a model (i.e., “Was it built, or ‘operationalized’, correctly?”) is
achieved by looking down the hierarchy, while validation (Was the right thing
built, i.e., did it accomplish the purpose?) is achieved by looking up the hierarchy.
Verification is described here in the step between the four different flight phases
and the labeling of the implementation data. We had been given code that was
used to determine whether an aircraft was taxiing, taking off, landing, etc. Making
this determination turned out to be very important. When we first defined the flight
phases and extracted the data according to the flight phases from the files that were
taken from the aircraft, we were surprised to see multiple flights in one file (multiple
sequences of Flight Phases). If we had not identified flight phases as important to the
study, we would have been inadvertently performing machine learning algorithms
on mixtures of individual and multiple flights. We therefore concluded that our
operationalization of flight phases was verified.

On the other hand, since we were handed the code for the flight phase labeling,
we had not verified that the code worked correctly and subsequently discovered that
it had some deficiencies. In particular, we found that it was overzealous in separating
flights and misinterpreted short durations of weight on wheel bounces (part of
the algorithm) as meaning a new flight was starting. We ended up with hundreds
of unrealistically short flights, indicating that we weren’t properly separating
out flights. Once this was fixed, and we could verify that it was separating out
flights correctly, we looked up the hierarchy to make sure that our flight phase
enumeration was useful toward assisting in developing machine learning algorithms.
For example, did we need to figure out what state(s) “Unknown” really was? Over
time, we have gained confidence in this enumeration and to date have not identified
any reason to change it.
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16.4.2 Climate Data Analytics Use Case

The physical system of earth is complex. Despite advances in technology, physical
scientists (i.e., climate, ocean, hydrology, etc.,) continue to face uncertainties
resolving components of the earth system within large-scale numerical models.
Nevertheless, progress has been made, and forecast products have improved sig-
nificantly from micro-scale to planetary-scale predictions. A function of such
improvement lies within data acquisition and data integrity, upon which the models
build an abstraction to predict and forecast events. All models have this dependency
regardless of domain; however, the environment for which physical data is being
retrieved is rapidly changing and negatively impacting forecasting accuracy of
physical models.

Historical meteorology data sets, which generally range from 40 to 80 years
(statistically significant values over time), are utilized in models to build compo-
nents of the earth system. When the model is executed, 4–6 years (called “spin up
time”) is allowed to build the world, and predictions can then be made for the length
of time required by the experiment. Scientists make their first assumption that the
data sets are valid enough to satisfy a stochastic, non-deterministic representation
of the physical system. In other words, the scalar values and their temporal and
geospatial attributes are sufficient to define an initially stable abstraction of the
world from which to generate predictions. This assumption is challenged, given
that climate change is rapidly convoluting earth’s thermodynamic and chemo-
energetic environment. Within the past few years, models across the globe have
struggled to predict tropical cyclone (or hurricane) intensity and movement. In
October 2016, Hurricane Matthew rapidly intensified into a category 5 storm,
despite the high windshear environment (15–20 knots) and despite sea surface
temperatures above average during the previous several years without a category
5 storm. Neither NOAA’s Hurricane Weather Research Forecast (HWRF) model,
the European Centre for Medium-Range Weather Forecast (ECMWF) model, nor
the Geophysical Fluid Dynamic Laboratory (GFDL) model captured this behavior.
In 2017, a similar rapid intensification event occurred with Hurricane Harvey –
even with the storms western, and northwestern quadrants over Texas, it intensified
from category 3 to 4, defeating all models. Soon after, Hurricane Irma defied the
textbooks and shocked everyone by sustaining category 5 strength over 2 continuous
days in the Atlantic Ocean. Again, no models predicted this behavior. These storms
are just a few examples (Hurricane Patricia which occurred in 2015, and the western
Pacific surge in Super Typhoons since 2012 [i.e., Haiyan, Nepartek] for example) of
the on-going issues the scientific community is facing.

Models have a dependency on data, and large-scale models statistically require
large-scale data sets spanning multiple decades to ensure sufficient information to
build an abstraction of the physical world. Data from 3 to 7 years is incredibly
small by comparison and would produce erroneous results. However, significant
features within the climate system, such as increased atmospheric thermal profile,
dramatically increased atmospheric carbon dioxide concentrations (and associated
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thermal and chemical feedback), increased average water vapor concentration
over time (due to warming on average), and global increases in temperatures
never measured before by humankind compared to the previous 40–80 years have
impacted the earth system in ways models do not know how to represent. Yet, in
order to ensure our predictions are feasible, we must capture this behavior.

Applying an additional assumption that “tweaking” a parameter by which you
see today versus what you do not see in the past and running predictions from
that is simply bad science. This practice gives rise to even more questions. How
long should you “tweak” that parameter? On what regions of the planet? Will
those changes correlate with subsequent parameters (e.g., increased air temperature
forces oceans to absorb heat, causing oceans to thermally expand, changing oceanic
circulations, etc.). More bad science arises with the assumption that increased data
resolution (either temporally or geospatially) will dramatically remove levels of
uncertainty. This actually leads to more uncertainties between scales, let alone
physics (e.g., between quantum and relativity) and limiting the feasibility of
producing a reliable prediction at all.

A more systematic approach to resolve a solution would be to implement a model
to identify pitfalls in our assumptions of our data to fit our models, such as the
epistemological model (EM) (Fig. 16.5). Let’s be clear: verifying physical data is
redundant. Wind is wind, humidity is humidity; the instruments to collect physical
data are designed and calibrated to gather specific physical parameters. Validation
is the real issue. The EM is flexible, meaning regardless of the domain or stage of
the DAP, the researcher can apply certain categories of the EM to suit his or her
purpose.

As shown in the instantiation presented in Fig. 16.10, the aggregated physical
data is cleaned and organized into specific applications. Dark blue boxes represent
a larger-scale and longer-term modeling purpose, while light blue represents a

Epistemologi-
cal Analysis

Model Hierarchy

Example Data Analysis
Process

Epistemological
Data Model Hierarchy

PURPOSE
Application Systemized Data

Concept

Implementa-
tion

Calculated Model
Data

Data Model Data

Short-
term pre-
dictions

Long-term
predictions

Large-
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Medi-
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models

Multi-
Decadal Data

Sub-
decadal Data

Fig. 16.10 An instantiation of the EM for decomposing the climate data analytics problem space
based on temporal (e.g., long- vs. short-term predictions) and geospatial (large vs. medium scale)
dimensions
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medium-scale and shorter-term modeling purpose. Indeed, all physical data can
be utilized for any range of forecasting; however, the scale of the data set can
either benefit or harm the analyses for the specific model for which the data is to
be applied. In this way, the EM allows the researcher to outline the purpose of
his or her data, for both the analysis model and data model. And though the data
have been categorized to suit certain modelling purposes, all data can functionally
represent the physical world, just on different time scales. This provides insight:
although our multi-decadal data sets do not capture recent features from climate
change, that data is still needed. Also, the models by which multi-data sets are
implemented are not obsolete. Sub-decadal data sets are equally representative
for physical systems, providing higher resolution to medium-scale models under
feasible conditions compared to large-scale models. The EM helps us infer that in
order to capture sub-decadal features, we need to implement a method that allows
us to utilize as much data as possible to gauge uncertainties and determine data that
is or isn’t useful.

To address this issue, Abdullah, Reddy, Butler, and Walters [1] implement a
Bayesian Belief Network (or Bayesian Neural Network, BNN) as a surrogate model
to ensemble models. The principle goal is to allow the BNN to “check” whether the
model-generated data to predict a hurricane is taking into consideration features in
the ocean-atmosphere interface (OAI) to produce the storm. The BNN can feasibly
provide probabilistic calculations to inform the researcher, among the generated data
what data is useful and what is not. In other words, it’s a validation-optimization
model.

Through a structured analysis model, like the EM, it’s conceivable to deduce
where problems in data verification and validation arise. More importantly, the EM
can provide direction behind initial assumptions and garner different methodologies
to solve the researcher’s problem.

16.5 Conclusions

All knowledge generation processes must systematically and consistently question
and evaluate the constructs used of interpreting and understanding the world.
Otherwise, the knowledge produced based on these unverified and un-validated
underlying constructs is at risk of being meaningless or wrong. A Data Analysis
Process (DAP) does not explicitly support validation and verification. The process
of data analysis does not necessarily break in the absence criteria such as valid
constructs or consistent assumption. As a consequence, a DAP alone does not
guarantee results that are verified and valid and is susceptible to vulnerabilities such
as (1) a lack of accountability of inconsistent assumptions, (2) a lack of falsifiability,
and (3) increased misrepresentation of the data.

V&V for a data analysis process (DAP) assesses how correctly a DAP is
capturing and producing knowledge about a phenomenon of interest. In order
to assess the V&V of a DAP, one needs to define a strategy that supports the
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evaluation of a DAP with respect to measuring how well the DAP (1) does
what it is meant to do by its designer and (2) is consistent with reality. This
chapter presented a model for a data analysis process that supports verification and
validation. This model aims to capture an epistemology of data being leveraged
or created by a DAP and the analysis being composed by a DAP. At the heart
of the strategy presented here is a move to go beyond viewing verification and
validation as solely empirical testing. Our approach is to provide mechanisms and
techniques for evaluating the data constructs and analytic composition of a DAP
by considering their epistemological underpinnings. Exposing and documenting
these epistemologies enable the verification and validation of a DAP and ultimately
generate confidence and trust in a DAP and its products.

The approach to V&V of a DAP via its epistemological decomposition is to
assess each epistemological level of the decomposed DAP model as an individual
module. The V&V evaluation of a model will result from an aggregation of the
V&V assessment of each epistemological level. The dimensions of verification
and validation presented here in support of modular evaluation of a data analysis
process are consistency of concepts, relationships, and assumptions, as well as
utility, external consistency, prominence, and accuracy. The dimensions are useful
and relevant to understanding the provenance of an analytic process with respect to
its origins as well as its applications.

The evaluation of V&V for a DAP is based on user-defined scores to questions
about the epistemological decomposition of a data analysis process. As a particular
DAP becomes more prominent or useful in the community, more V&V evaluations
will be made of the DAP. These evaluations will either (1) provide awareness of
flaws and feedback on issues to support the improvement of the DAP or (2) reinforce
validity and verification of the DAP thereby encouraging further use and extension
of the DAP.
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Chapter 17
Data and Information Quality in Remote
Sensing

John Puentes, Laurent Lecornu, and Basel Solaiman

Abstract Remote sensing datasets are characterized by multiple types of imper-
fections that alter extracted information and taken decisions to a variable degree
depending on data acquisition conditions, processing, and final product require-
ments. Therefore, regardless of the sensors, type of data, extracted information,
and complementary algorithms, the quality assessment question is a pervading and
particularly complex one. This chapter summarizes relevant quality assessment
approaches that have been proposed for data acquisition, information extraction,
and data and information fusion, of the remote sensing acquisition-decision process.
The case of quality evaluation for geographic information systems, which make
use of remote sensing products, is also described. Aspects of a comprehensive
quality model for remote sensing and problems that remain to be addressed offer
a perspective of possible evolutions in the field.

Keywords Remote sensing · Acquisition-decision process · Geographic
information systems · Data-information fusion quality

17.1 Introduction

Earth monitoring for analyzing its past and current state as well as longitudinal
evolution is a complex endeavor. Such monitoring utilizes technologies to measure
remotely physical variables of a given area, without being in direct contact with the
observed elements. Known as remote sensing, these technologies rely basically on
the principle of sensing specific types of radiations emitted and/or reflected by the
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studied zones in order to detect, identify, classify, and map the objects and surfaces
of interest. Sensors range from radars, radiometers, sounders, and spectrometers in
satellites to optical spaceborne or airborne cameras, sonars on ships, Light Imaging,
Detection, and Ranging (LIDAR) on moving vehicles or aircraft, and more recently
sensors on demand on autonomous and remotely operated devices like aerial,
terrestrial, and underwater drones. A large and increasing variety of applications
is therefore accessible for numerous distance ranges, spatial-temporal resolutions,
and radiations. Some examples of remote sensing applications associated with their
respective sensor are1:

• Radar – measures of aerosols, rain, snow, soil moisture, altitude, sea surface
temperature, weather prediction, earth deformation, and images of land and sea
extent

• Radiometer – measures of sea ice extent and thickness, land and vegetation cover
mapping, sea level change, greenhouse gases, near-surface wind speed, water
resource monitoring, and wildfire detection

• Sounder – simultaneous 3D measures and profiles of air temperature, pressure,
and moisture, atmospheric composition, ozone mapping, and profiles of gases
affecting ozone chemistry

• Spectrometer – measures of solar irradiance, solar energy, solar wind condition,
atmospheric carbon dioxide from space, images of clouds, vegetation classifica-
tion, mineral mapping, and ocean color

• Optical sensing – measures of soil types, plants’ reflectance, global ocean prop-
erties, change detection, definition of surface and terrain models, identification
of geographical hazards, urbanization, forestry, and farming follow-up

• Sonar – measures of bathymetry; characterization of bottom type and composi-
tion; seafloor mapping and imaging; detection of underwater sounds, mines, and
shipwrecks, and localization of fish

• LIDAR – measures of carbon cycle, vertical profiles of clouds and aerosols,
structure of clouds, spatial and temporal structure of forests, characterization
of plankton properties, creation or urban elevation maps, and monitoring of fire
areas

Studies of these geophysical phenomena through time produce very large,
periodic or irregular heterogeneous data streams [1]. As a consequence of the
constant increase in sensors resolution and performance, an accelerated progression
of remote sensing data production has been taking place. Sensor data streams have
reached several GB per second [2], while physical models search to integrate part
of that data making use of enhanced spatial and temporal grids [3]. The fusion of
observations from multiple sensors applying improved dynamic models is leading
thus to the so-called big data assimilation [4]. Regardless of the sensors, kind of data,
information extracted from it, and processing algorithms, the quality assessment
question is a pervading one. In spite of the trend toward huge data volumes, data

1https://earthdata.nasa.gov/user-resources/remote-sensors.

https://earthdata.nasa.gov/user-resources/remote-sensors
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Fig. 17.1 Quality assessment in a remote sensing process from data acquisition to decision-
making. All the stages – data acquisition, data fusion, information extraction, information fusion,
information exploitation, and decision-making – require quality evaluation

gaps limit considerably the possibilities of information extraction [5, 6]. Moreover,
sensors may produce noisy, incomplete, approximate, and untrustworthy data,
which can also be redundant and/or contradictory, depending on sensor charac-
teristics, operational conditions, and uncontrollable external factors. Information
extracted from poor- or low-quality data will be as a result also of unacceptable
quality but, worst of all, might induce wrong costly interpretations and decisions.

Similar to any fusion system, in remote sensing systems, quality assessment can
be considered as a problem to be solved at each one of the different phases that
are part of any acquisition-decision process (Fig. 17.1). Globally, it is essential to
evaluate the quality of:

• Data acquired by one or multiple sensors and, if required, fused data
• Extracted and fused information
• Exploitation of extracted information
• Making decisions

Consequently, quality assessment in remote sensing systems is a complex
problem, mainly because of four reasons:

• Data quality evaluation must be adapted to each kind of sensors.
• Awareness of information quality is highly contrasted across use cases.
• Process and system architectures differ from one application to another.
• Whenever the context of a given process changes, it is necessary to reformulate

the quality analysis strategy.

Quality assessment in remote sensing is necessary to cope with the variable
features of heterogeneous increasing data volumes, acquired by multiple types of
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sensors, operating under different conditions and contexts for diverse applications.
Conceiving quality analysis and evaluation methods for remote sensing requires
therefore fundamental understanding of quality components and their interaction
through the acquisition-decision workflow. Namely, besides individual quality mea-
sures at different workflow stages, it is also required to understand the impact of data
quality on information and decision quality, as well as embedded fusion processes
and application of extracted information. This chapter examines those elements by
providing an overview of initiatives and required efforts in the domain. Examples of
elaborated quality approaches for remote sensing are examined in Sect. 17.2. The
particular case of quality assessment for geographic information systems, which
make use of remote sensing products and complete the acquisition-decision-making
process, is described in Sect. 17.3. Essential aspects of a perspective comprehensive
quality model for remote sensing are described in Sect. 17.4. Conclusions are
summarized in Sect. 17.5.

17.2 Quality Assessment Approaches

Perfect remote sensing acquisition conditions are very rare, making quite common
the generation of datasets of extracted information with multiple imperfections.
Additionally, when data acquisition modalities are fused to improve information
extraction, imperfections are likely to have a considerable impact on final results.
However, despite multiple initiatives, the absence of reliable generalized quality
evaluation approaches impedes to assess systematically remote sensing data and
information quality [7]. Since an automatic quality control is a complex task
with variable types of outcomes, part of quality evaluation has been carried out
manually by experts who provide arbitrary global qualitative estimations. On the
other hand, several initiatives have been searched to solve the quality evaluation
problem for particular use case characteristics, application requirements, or user
preferences. This section recapitulates some of the main ideas about quality
assessment approaches in remote sensing concerning data from sensors, extracted
information, and fusion.

17.2.1 Data Quality

In an ideal process, the validity of remotely collected data should be verified
consistently, i.e., by comparing measured and reference values. Given the covered
surfaces, required technical infrastructure, and associated costs, exhaustive earth
monitoring ground truth necessary to make preliminary validations of data quality
is rare [1, 8, 9]. Yet, one domain, in which reference values can be frequently
obtained, is sea surface temperature (SST) measurement [10]. For instance, direct
measurements can be obtained by means of hull contact sensors or buckets on ships,
as well as fixed or drifting buoys. Despite the sensors’ appropriate performance,
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these measures depend strongly on correct calibration, geographic deployment
zone, and functioning conditions that make it necessary to apply various quality
tests to verify infrared SST satellite values. In situ buoy data are checked for
self-consistency and cross-consistency with other data to calibrate SST satellite
observations [11–13]. Verifications include among others: sensors drift, geolocation,
time stamps, spikes, reference background, and cross-platform validation. Matchup
databases result from the combination of in situ and satellite SST observations,
permitting to validate satellite SST data [14] or to verify the pertinence of in situ
measurements [15]. Furthermore, cloud contamination and atmospheric path length
corrections were adjusted applying background field checks, i.e., compared with
respect to the known variances of local and regional errors, assuming that these are
normally distributed. Quality tests were also applied to detect aerosol contamination
(smoke, spray, or dust particles that attenuate signals). Regional aerosol transport
models [16] provided related knowledge depending on instrument wavelengths, to
identify different levels of aerosol contamination. The reduction of erroneous cloud
detection was examined as a way to improve satellite SST measurements accuracy
by means of a Bayesian approach [17]. Cloud detection estimations were compared
to compiled quality flags of buoy measurements [18], to improve the quality of
satellite SST data. Nevertheless, cold water makes it very complex to identify clouds
in SST images [19]. Finally, the accuracy of satellite SST values was examined
under cloud coverage and compared to compiled in situ buoy measurement [20].

SST values are then corrected or rejected according to a transfer model that
considers the vertical distribution of temperature and the aerosol height and
estimated dispersion. Errors of acquired data were compared to background error
limits to decide if SST observations were consistent depending on seasonality [10].
Internal error verifications of measurements were also carried out with respect to a
complete observations dataset [21]. It is important to note that, since data quality
within a forecasting system is analyzed in a sequential manner from acquisition to
prediction, unnoticed errors at the initial and intermediate levels are seldom detected
later at the decision level.

Beyond these particular examples of sensors’ data quality assessment, basic
raw data quality controls in oceanography are commonly of five types [22]:
prescreening, plausibility, internal consistency, external consistency, and mutual
consistency. These controls are part of larger quality control procedures that
estimate data coherence across a system. At a practical level, four levels of data
quality control have been implemented from the sensor to the prediction levels [10].
With the objective of minimizing wrong decisions, the four control levels search to:
remove obvious errors and anomalies; decide to accept, reject, or manually process
remaining data; carry out structured tests to detect unreliable data; and characterize
data integrity with respect to obtained analyses and forecasts. In other disciplines,
sensor accuracy was verified according to fixed control points on the scanned
surface using variable acquisition parameters [23]; given different frequency bands
and noisy acquisition conditions [24]; according to accuracy and precision [1]; or
depending on multiple resolutions – spatial, radiometric, spectral, and temporal –
along with focal length, point spread function, and modulation transfer function [8].
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17.2.2 Information Quality

Depending on the use case, quality assessment of extracted information can
prevail over data quality evaluation. Since remote sensing datasets are much likely
to contain various types of imperfections, extracted information is consistently
altered to a variable degree, depending on data acquisition constraints and final
product requirements. Considering the difficulties of endorsing detailed sensor data
quality verification, the quality of extracted information is frequently evaluated
instead. Although quantitative information quality analysis should be applied to
reproduce results, subjective evaluation is also a somewhat common practice, alone
or combined with other approaches. To compare raw and processed images, it can
take the form of numeric marks as 1 (excellent) to 5 (very poor) or descriptive
labels. Visual quality segmentation evaluated by an expert as poor, medium, or
good was compared to associated geometric information – area, perimeter, and
shape – to determine the impact of segmentation quality on the classification of
remote sensing images [25]. Two subjective quality estimation levels were defined
to configure product settings and to give a global quality evaluation [26]. Product
settings were configured depending on the quality labels: very low, marginal,
questionable, average, intermediate, acceptable, high, or perfect. And global quality
was estimated to be as follows: not produced, acceptable, or good. Visualization
for quality evaluation of processed images of terrain models was carried out to
qualitatively identify the type of dataset that permits to recognize indicators of
landslide activity, according to distances between points and density of points [27].

Another reported information of quality evaluation technique for remote sens-
ing is based on per-pixel analysis, which focuses on the separate evaluation of
information conveyed by each acquired value to be used with other estimations.
For instance, to assess the quality of object detection and classification, geometric
features like detected objects location, size, and spatial extent, represented in terms
of verified groups of pixels, were used to validate classification correctness and com-
pleteness [28]. Global quality estimation was obtained combining these and user
measurements to be compared to those of reference data with proper quality. A fre-
quent issue in remote sensing images is the variable quality due to cloud coverage,
snow, shadows, and any other unwanted surface representation that hides searched
information. To address this issue, some approaches represent data gaps for detect-
ing invalid pixels and possible interpolation solutions. Data gaps were studied deter-
mining the feasibility of interpolations by applying spatial and temporal variations
per region and season to characterize different quality settings [26]. Interpolation
viability depended on the number of invalid pixels, gap length, and corresponding
data quality setting. Qualitative labels – passed, suspect, and failed – were employed
besides quantitative estimations, to define the pixel quality of images having
different scan geometry and land area with variable cloud contamination [29]. This
approach permitted to determine the retrieval quality of land surface albedo. Per-
pixel quality estimations were also applied to analyze cloud denseness and shadows
on images, in order to decide when it was possible to use suboptimal images [30].
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Sometimes when two or more sensors at different times or view angles are used
to scan a region, image registration is necessary as a preprocessing step to align or
resample the images before segmentation, classification, or fusion can be applied.
One of the examined quality-related problems has been to determine if a given
quality indicator can permit to identify which is likely to be the most appropriate
registration transformation. To this end, using ground control points and statistical
and geometrical indicators, quality assessment of image registration suggested
the appropriate transformation for the registration of image to image spaceborne
images, image to map airborne images, and image to map spaceborne images [31].
Quality evaluation was defined as tests to detect possible deviations from the null
hypothesis but letting the user select a transformation depending on the results of
interpretation. Since registration may be incorrect because of radiometric anomalies,
data gaps, the presence of mosaics in a dataset, and cloud coverage, to reduce such
risk a quality monitoring of monthly image composites was defined [32].

Image segmentation is a significant product of remote sensing campaigns that
also needs to be examined by quality analysis. The main principle of quality
evaluation in this case is to use known pre-defined geometric objects as reference
to validate the relative pertinence of segmentation. However, multiple geometric
features are necessary, since a single one cannot account for most of quality aspects
[33]. In applications like mapping, geomorphological representations of landforms
comprising shape features (length, width, and elongation ratio), orientation, and
position accuracy were compared to evaluate the quality of segmented remotely
sensed images [34]. An equivalent approach but without utilizing the ground truth
was designed to examine the quality of reconstructed 3D roofs from dense airborne
laser scanner [35]. The main goal was to generate a graphic representation of quality
levels symbolized with colors over reconstructed structures for evaluation by users.
It included accuracy, completeness, and correctness, geometric quality elements to
quantify the orientation and boundaries of planes, the characteristics of isolated
contours, and the coherence of closed representations and distances.

In multiple applications, segmentation is followed by classification – pixel-
based (supervised and unsupervised) or object-based – to define land cover and
land use patterns, mainly used by resource management, landscape planning,
and longitudinal environmental follow-up. Besides the dependency on reference
information (in the supervised and object-based cases), classification also relies
strongly on the pertinence of segmentation, making necessary to implicitly evaluate
both. Nonetheless, it is important to note that a product quality does not only
depend on high classification accuracy [36]. An early approach defined the quality
of image classification in land cover maps as a relation between the accuracy, the
classification purpose, and the cost of wrong classification [37]. This work excluded
user subjectivity in the evaluation. Quantitative, area, perimeter, and shape, and
qualitative, visual qualification labels, criteria were defined to estimate the impact of
segmentation quality on classification quality by using the comparison of reference
surfaces as the reference [25]. Also, the quality of forest classification was related to
the quality of segmentation and was defined by the differences of overlap, positions,
and distances between segmented and reference objects [38]. Other approaches
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studied additional methods of information quality evaluation, for example, a method
measuring the effect of different signal-to-noise ratios and their corresponding
impact on visual perception [39, 40], the agreement of displacement directions,
magnitudes and gradients with user visual perception [41], and the pertinence of
context in anomaly detection [42].

17.2.3 Fusion and Quality

Multivariate data and information are present in a large extent in remote sensing
processes, mainly because some sensors alone cannot provide all the necessary
information and also to take advantage of the possibilities offered by combined sens-
ing schemes. Complementary scene representations are generated by making use of
two or more sensors, at the same or different times, or the same sensor repeatedly
to improve the results by enlarging combined parameters like spectral and spatial
resolution. Fusion is then required to obtain enhanced data and information for
segmentation, classification, and decision support. Several works have examined
fusion quality as an associated question rather than a central problem. For example,
it was studied to know if the quality of spectral and spatial fused images could be
evaluated by the blur on different bands [43] and to estimate the variability of fusion
results measuring quality by standard statistics indicators without separating signal
and noise [44]. The theoretical principles of quality based on accuracy [45] and how
common quality factors like variable noise, averaging, changeable signal-to-noise
ratio, and blurring can be modeled [46] were also analyzed.

Otherwise, fused image pertinence has been evaluated depending on the avail-
ability of reference images. When reference images were available, fused image
quality was measured by comparative metrics as the root mean square error, relative
global error, mean bias, percentage fit error, signal-to-noise ratio, peak signal-to-
noise ratio, correlation coefficient, mutual information, and structural similarity
index measure. In the absence of reference images, such metrics as standard
deviation, entropy, cross entropy, spatial frequency, and fusion index were used.
Several so-called protocols have been proposed to evaluate the quality of algorithms
that use one single-band (panchromatic) image of high spatial resolution to increase
the spatial resolution of a higher-spectral-resolution multispectral image. These
protocols evaluate the quality of fused images depending on the coherence and
similarity of synthesized images compared to the corresponding expected images
acquired by a sensor [47]; correlation between high-frequency information extracted
from the single-band and fused images [48]; combination of spatial and spectral
distortion indices assuming that spectral similarity relationships are invariant to
scale changes [49]; and separate measurement of spectral and spatial quality using
matched low-pass and high-pass complements of modulation transfer function
filters, respectively [50].

The evaluated appropriateness of studied models was constrained to particular
cases, without a wide general application scope. This trend was confirmed by
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the lack of adapted tools for automatic quality assessment to compare results
of airborne satellite multisensor image fusion [51] and evaluation of integrated
spatial and spectral quality in the context of high panchromatic and low-spatial-
resolution images [52]. Moreover, the heterogeneity of other proposed quality
approaches to evaluate fusion results – like the combination of qualitative quality
and basic statistical measures [53–55], purely visual qualitative criteria [56], or
quantitative metric based on the human vision system [57] – is an indication of
the multiple known problems to infer how quality should be assessed in different
fusion scenarios. The restricted scope of proposed quality metrics suggests that
quality evaluation of fused images is rather a complex open problem as recently
summarized in [58, 59].

17.3 Quality Assessment for Geographic Information
Systems

Remote sensing products as land cover (physical properties of land) and land use
(human activities on the mapped surface, among others) are commonly integrated
with the geographic information systems (GIS). Collected data and extracted
information about large areas can be further exploited dynamically within a GIS
system to store, process, and analyze spatial information through time, making use
of specialized tools (Fig. 17.2). Some well-known applications are visualization,
cartography, geographic space modeling, identification of natural and artificial
objects, follow-up of land and water use, management of natural resources, disaster
monitoring, evaluation of human activity impact on the environment, epidemiology,
infrastructure design, etc. More specifically, infection risk profiling and propagation
models of various parasitic infections were defined according to socioeconomic
status, access to water, and education level [60]. Patterns of ecological and environ-

Fig. 17.2 Remote sensing and the GIS framework
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mental factors related to parasitic infections were observed and detected too [61].
The integration of remote sensing products and GIS has been also applied to flood
management during its development [62], the estimation of groundwater potential
[63], and the evolution of land use depending on urban growth [64]. Currently,
applications considering monitoring of crops and forests in precision agriculture
[65] as well as spatial variability analysis in soil erosion [66] by conceptual models
have been studied.

Early awareness of GIS quality underlined the importance of spatial data fitness
to a given purpose, allowing the user to make informed decisions [67]. The
underlying quality evaluation road map highlighted the need to trace how original
raw data were modified to obtain information, explaining applied quantitative
measures, along with the validation of completeness, consistency, accuracy, and
time coherence. Multiple efforts have been deployed since then, placing spatial data
quality as a core sub-discipline of geographic information sciences [68]. As a result,
spatial data quality has become a focal point of specific international standards,
based on research contributions, according to the notion of fitness for use, although
there is a notable lack of shared terminology among different groups of interest that
conceive, develop, maintain, and use GIS.

Even if the quality of GIS inputs from remote sensing products may have been
previously evaluated, specific quality assessment for GIS intends to guarantee that
efficient use will be given to expensive data and information. A first standardization
attempt for data and quality information was introduced by the International Orga-
nization for Standardization (ISO) to address quality management and assurance
[69]. Since then, other agencies have defined additional abstract standards relating
to quality and metadata, e.g., CEN/TC 287, ISO/TC 211, and OGC, to define
experimental modules for different needs, design extensible and sharable concepts,
and conceive web services, respectively [70]. Some of these standards have been
revisited to take into account sensing technology and GIS tools evolution. ISO
extended the geographic metadata standards ISO 19101 [71] and ISO 19115 [72]. It
also defined a reference geographic imagery processing model, ISO 19101-2:2008
[73], to include sensor data as image information and imagery knowledge. A schema
required for describing imagery and gridded data was specified in ISO 19115-
2:2009 [74], to combine information about spatial representation, data quality,
and acquisition. Alternatively, ISO/TC 211 [75] searches to structure standards for
georeferenced data and information, including imagery, metadata, and data quality
models, for the development of specific applications.

An extensive attempt to standardize GIS data quality elements is ISO 19157:2013
[76]. It examines spatial quality of a product in comparison with its specification,
according to six elements, which describe how a dataset meets product or user
criteria. The elements are:

• Completeness: presence or absence of features, their attributes, and relationships
• Thematic accuracy: correctness of nonquantitative attributes and of features

classifications, accuracy of quantitative attributes, and their relationships
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• Logical consistency: degree of adherence to logical rules of data structure,
attribution, and relationships

• Temporal quality: accuracy of the temporal attributes and temporal relationships
of features

• Positional accuracy: accuracy of assigned position indicators.
• Usability: conformance to a set of user requirements, i.e., suitability of a dataset

quality for a particular application (less structured than the other elements)

Three complementary quality elements – confidence, “representativity,” and
homogeneity – provide quantitative and qualitative accounts on the quality evalua-
tion against stated criteria. Whenever detailed product specification is not available
or the given specification lacks quantitative measures and descriptors, qualitative
evaluation applies.

Besides the literature describing the standardization efforts, an exhaustive the-
oretical and operational description of concepts, problems, and existing solutions
for the production and utilization of properly qualified geographic data is presented
in [77]. There are also academic works that have investigated how to make use of
existing quality description and evaluation resources. An approach was proposed to
relate quality information to user operations, making the user aware of documented
quality issues [78]. This procedure required incorporating information about data
quality as part of GIS metadata, which is not a general practice [79]. Such metadata
should be comprehensive and properly presented to increase trust in information,
which requires the development of adapted tools to facilitate user understanding.
Fitness for use of spatial data was examined in the context of ecological assessment
and monitoring [80]. It was based on two concepts: a set of user-defined values
considered as specific quality indicators, i.e., expected quality, and a set of indicators
or critical factors that reveal if a given dataset is suitable for a specified applica-
tion context. With the advent of open and collaborative platforms, geographical
data – mainly map, image, and text – are also generated by untrained volunteer
individuals, who annotate data referring it to specific geographic locations. Lack of
volunteers’ knowledge, spatial coverage heterogeneity, and inexistence of standards
in this domain make necessary to study also the quality of volunteered geographic
information [81].

17.4 Toward a Comprehensive Quality Model

Quality measurement, analysis, and interpretation in remote sensing differ across
sensing devices, data and information fusion, standards, and applications. Conse-
quently, quality evaluation has been defined in numerous manners for different
systems and applications. Even if reported works share the same global objective
of assessing quality to improve decision-making, they appear paradoxically as
separate efforts without a common comprehensive model. In domains in which
quality assessment has been an early interest, concerted models emerged. Namely,
in information management systems [82], the main ideas of fitness for use and
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evaluation according to dimensions emerged [83], along with some specific mea-
sures [84]. Furthermore, works on web information systems investigated the interest
of quality in data mining [85] and databases [86]. However, very few works
have studied specific methodological aspects of quality assessment of remote
sensing components. Examples of these studies are the interestingness and data
quality dimensions for sensor streams [87]; incorporation of quality information
sources in decision workflows for information fusion [88]; and quality evaluation of
information fusion systems [89]. Accordingly, the need for comprehensive remote
sensing quality assessment models represents one important challenge in geospatial
research [7].

Existing quality assessment models from other disciplines cannot be directly
applied to remote sensing because of substantial differences in measurement vari-
ables, times, test points, acquisition-decision workflows, and overall objectives. As
a possible alternative, since remote sensing systems are constructed by assembling
sensors, smart components, control and communication devices, and data and
information processing algorithms, along with human interaction to carry out
intelligent monitoring, it can be considered as an instance of cyber-physical systems
[90–92]. Such concept could permit to use a reference quality evaluation framework
while refraining from very specific isolated qualitative or statistical descriptions of
quality. In addition, cyber-physical systems – designed also for acquisition-decision-
making workflows – share with remote sensing systems equivalent requirements
for quality assessment models [93]. Nevertheless, it is important to note that most
works on data and information quality for remote sensing systems do not refer
specifically to the cyber-physical system concept despite using it implicitly. In the
following subsections, we provide the main common definitions applied to data
and information quality assessment, adapted from the framework of cyber-physical
systems, as described in [94].

17.4.1 Data Quality

Data are defined as streams of bits with no comprehensible sense, including mul-
tidimensional acquired signals, system commands, operators’ inputs, and decision-
maker requests, among others. Data usually resulted from modeling and representa-
tion. Modeling results in <entity, attribute, value> triplets that allow for defining
the observation realm, as the measured values of attributes corresponding to an
entity. Representation involves displaying or recording these triplets. The data
abstraction level – necessary data detail from simple to elaborated spatial, physical,
and temporal details – will then be determined by the context of use. Data quality is
thus mainly understood as the characterization of five key imperfections:

• Erroneous: Data are erroneous when values are different from the true data.
• Incomplete: Data are not fully supplied as expected because of missing values.
• Imprecise: Data inaccuracy does not permit to identify true values but possible

approximations.
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• Uncertain: Data cannot be specified with absolute confidence.
• Unavailable: The system cannot obtain some sets of values because of its

limitations.

Given that erroneous data affect the integrity of a system, it should be discarded
when detected. This action avoids extracting information from wrong data. Data
altered by the last four imperfections could still supply partially valid information,
depending on available observations through time, as well as changes in associated
operational conditions. For instance, unavailable data can be estimated when
necessary operational conditions are known.

17.4.2 Information Quality

Data processing permits to extract information, i.e., data with a semantic sense
in a particular context combining the functional context of the given sub-system
and the system it is integrated to. Due to the fact that any information can be
a part of different tasks, quality evaluation should be task-independent. For this
reason, three categories of dimensions are necessary to estimate information quality,
namely, intrinsic, contextual, and extrinsic. The intrinsic category is the group of 13
quality dimensions defined for an isolated sub-system (Table 17.1). Eight quality
dimensions that describe a sub-system as part of a complete system are included in
the contextual category (Table 17.2). Evaluations of streams quality when multiple
sub-systems are interconnected are comprised in the ten dimensions of the extrinsic
category (Table 17.3).

Table 17.1 Intrinsic information quality dimensions

Name Description

Source precision The extent to which every information under constant source acquisition
conditions remains the same

Accuracy The extent to which extracted information is close to the true information
Objectivity The extent to which information is unbiased, unprejudiced, and impartial
Reputation The extent to which information is highly regarded in terms of its source or

content
Obsolescence The extent to which information is valid through time
Freshness The extent to which information is new
Acquisition cost The cost to acquire the information
Readability The extent to which data used to obtain information are noiseless and

intelligible
Resolution The extent to which data used to obtain information are sampled
Integrity The extent to which information is complete and accurate and the provider

sub-system is fully available
Consistency The extent to which information is accessible in the same format consistency
Uniqueness The extent to which information is not repeated
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Table 17.2 Contextual information quality dimensions

Name Description

Real precision The extent to which every information under constant sub-system use conditions
remains unchanged

Clarity The extent to which information is comprehensible along with other information
Trust The extent to which information is trustworthy
Value added The extent to which information is useful and provides advantages from its use
Timeliness The extent to which information is expected by the system at a certain time
Completeness The extent to which information is known in a complete context
Concision The extent to which information is compactly represented
Volume The extent to which the volume of information is appropriate for the task at hand
Believability The extent to which information is regarded as true and credible

Table 17.3 Extrinsic information quality dimensions

Name Description

Accessibility The extent to which information is available and easily and quickly
retrievable

Security The extent to which access to information is restricted appropriately to
maintain its confidentiality

Ease of use The extent to which information is easy to use and apply to different tasks
Manipulation The extent to which an information unit is easy to manipulate
Interpretability The extent to which information is in appropriate languages, symbols, and

units and the definitions are clear
Compatibility The extent to which information is comprehensible for different sub-systems
Format The extent to which information respects a specific format
Understandability The extent to which information is easily comprehended
Redundancy The extent to which other sub-systems provide the same information
Coherence The extent to which information is consistent with respect to other

information

These nonexhaustive tables of information quality dimensions are proposed as
a suitable basic structure to be completed by further developments, along with the
main objective of building a shared quality evaluation model. Both quantitative and
qualitative aspects of information quality assessment are included. Such aspects are
commonly required for use cases that cannot be only evaluated quantitatively or
qualitatively. The flexible nature of this basic structure permits to include required
dimensions of new use cases in a reliable manner for remote sensing. This approach
requires nevertheless categorizing groups of measures, depending on sensors,
extracted information, and decisional contexts [95]. In this way, adapted quality
aspects can be evaluated at different stages of the acquisition-decision process,
taking into account the singularity of processes and necessary measurements.

Information quality evaluation according to three categories of dimensions
intends to take the abstraction of sub-system as the basic reference functional
module to structure the measurements. Therefore, the essential assessment concerns
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intrinsic information quality dimensions of any system module. This implies that the
availability of features characterizing, for example, the location of the sub-system or
to which system it is transmitting a stream, is required to extend the evaluation at the
contextual and extrinsic levels, respectively. On the other hand, the aforementioned
theoretical model is rarely applied exhaustively, because all the necessary elements
are not always necessary or available. Additionally, real operational conditions may
change dynamically, requiring different partial quality evaluations, instead of static
evaluations.

17.5 Conclusions

Remote sensing is characterized by multiple types of systems with varied scale and
complexity. As these systems continue to be developed, a considerable issue is the
analysis of huge data volumes for decision support requiring taking into account
specific operational contexts. Since numerous factors can alter collected data and
extracted information, decision support can be lightly or severely impacted in an
unmanageable manner. Methodologies and models for quality estimation emerge
therefore as a possibility to determine whether collected data and extracted informa-
tion are relevant for supporting decisions. It appears however that quality evaluation
in remote sensing lacks a strong theoretical ground shared by stakeholders.

Several reasons explain this consideration. Acquired data have multiple imper-
fections associated with operational conditions and sensor characteristics, which
make necessary to construct separate quality indicators. For instance, image acqui-
sition is impacted by sensing technology, sensor calibration, spatial and temporal
resolution, sensor inherent distortion, and restricted coverage, among others. Also,
ground truth is very limited, leading to building data quality analysis on numerous
assembled suppositions. Despite the latter, impact of data acquisition quality on
registration, segmentation, classification, and fusion, quality assessment is not yet
understood as a critical component of the processing chain but rather as a by-product
that permits to show how result pertinence conform to the searched objective.
Moreover, the amount of quality metrics constantly broadens with the emergence
of new sensing technologies, applications, and type of studied problems. Knowing
that quality estimations may be inappropriate despite their quantitative nature,
complementary qualitative evaluations are commonly left to user interpretation.

On the other hand, quality assessment is considered to be critical when infor-
mation extracted from remote sensing is integrated to find relations and patterns in
the GIS domain. Multiple initiatives have intended to formalize how to assess the
quality in cartography and derivate products of information obtained from remote
sensing. There is consensus about the notion of map fitness for specific applications,
particularly on the quality of all information processing results, which conditions
strongly the practical value of products. A rich variety of quality indicators has been
conceptualized to evaluate and interpret quality assessments from product input
to final product use. Nevertheless, the availability of so many quality indicators
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generates at least three new problems: identify an adapted quality metric, correctly
integrate it into the concerned application, and provide a suitable visualization of
data and information quality indicators for the user. The existing state of GIS-
oriented quality systems development is confirmed by the omission of practical
reports in the literature about progress on quality assessment implementation.

Given that methodological dispersion of proposed approaches for data and
information quality assessment in remote sensing are based mainly on unstructured
ad hoc measurements, a preliminary comprehensive quality model was proposed.
Taking into account the fact that quality cannot be reduced to tailored measurements,
the model outlines some examples of significant quality evaluation aspects, to which
existing and future metrics could be associated at particular situations. Furthermore,
depending on the data, information, and application types, grouping principles
of quality elements could be defined as quality evaluation profiles. Having an
adapted comprehensive reference model could potentially orient the flawed growth
of quality approaches, providing eventually the basis for a common understanding
of operational quality assessment.

Most of raw data and information quality uncertainty will remain unless large
open verified ground truth datasets are available. Such datasets must be used not
just to compare experimental results but to assure that research is reproducible.
Evidently, the collection and management of datasets require a considerable collec-
tive effort of all concerned parties. Once it has been obtained, quality assessment
makes sense as a whole at the end of the acquisition-decision-making process.
Although separate data and information quality measurements may be interesting
for experts, a product user does not necessarily have the knowledge or the time to
go through those measures to make an evaluation. Therefore, an issue that needs to
be addressed is cumulative quality for a decision-maker. In spite of its importance,
it appears marginally in the literature given the focus on individual metrics.
Supposing that those cumulated metrics exist, two related questions arise: how to
define grouping principles to characterize operational quality profiles and how to
make automatic quality features selection to form groups according to the data,
information, and application types as well as user needs. These two questions imply
that automatic quality assessment should be associated with the decision-making
process and its possible subjectivity for avoiding additional complexity. Finally,
it is necessary to develop quality assessment approaches capable of following up
the evolution of earth conditions on large-scale monitored surfaces, with variable
temporal resolution in terms of days, weeks, months, years, or even decades. These
approaches are necessary to cope with the variable characteristics of voluminous
periodical or seasonal datasets, from which merely reduced subsets are currently
being exploited. Only a shared understanding of evaluation principles and interests
can prompt the development of reliable, flexible, dynamic, and human-friendly
quality indicators, within an accepted reference model.
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Chapter 18
Reliability-Aware and Robust
Multi-sensor Fusion Toward Ego-Lane
Estimation Using Artificial Neural
Networks

Tran Tuan Nguyen, Jan-Ole Perschewski, Fabian Engel, Jonas Kruesemann,
Jonas Sitzmann, Jens Spehr, Sebastian Zug, and Rudolf Kruse

Abstract In the field of road estimation, incorporating multiple sensors is essential
to achieve a robust performance. However, the reliability of each sensor changes due
to environmental conditions. Thus, we propose a reliability-aware fusion concept,
which takes into account the sensor reliabilities. By that, the reliabilities are
estimated explicitly or implicitly by classification algorithms, which are trained
with extracted information from the sensors and their past performance compared to
ground truth data. During the fusion, these estimated reliabilities are then exploited
to avoid the impact of unreliable sensors. In order to prove our concept, we apply our
fusion approach to a redundant sensor setup for intelligent vehicles containing three-
camera systems, several lidars, and radar sensors. Since artificial neural networks
(ANN) have produced great results for many applications, we explore two ways
of incorporating them into our fusion concept. On the one hand, we use ANN as
classifiers to explicitly estimate the sensors’ reliabilities. On the other hand, we
utilize ANN to directly predict the ego-lane from sensor information, where the
reliabilities are implicitly learned. By the evaluation with real-world recording data,
the direct ANN approach leads to satisfactory road estimation.
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18.1 Introduction

Advanced driver assistance systems (ADAS) and automated driving heavily rely on
environment perception and especially on road estimation. By that, current research
explores various algorithms toward road detection by using multiple sensors, such as
camera, radar, lidar, etc. Thereby, one of the biggest challenges is the huge variety of
environmental conditions that influence sensor performances. This leads to sensor
failures in several scenarios. For instance, a camera-based detection system can
provide sufficient results under many weather conditions. However, this system
can fail in case of heavy rain, snow, etc. In contrast, radar sensors can detect the
surrounding objects despite these conditions since their technology is not affected
by rain or snow as cameras. For that reason, it is necessary to combine the data of
distinct sensors so that the system can constantly produce sufficient results.

In our previous works, we introduce a multi-source fusion framework for robust
ego-lane detection [1–3]. Thereby, we take into account that the sensor reliabilities
depend on environmental conditions and can change over time. The reliabilities are
estimated by applying different classification algorithms, which are offline trained
by using the extracted information from sensors’ detections. Consequently, the
fusion process based on Dempster-Shafer theory incorporates these reliabilities to
combine the information of the sources.

In this work, we exploit the possibility of estimating the ego-lane directly
by using neural networks. By that, the reliabilities are internally learned by the
networks and encoded as weights of the neurons. This differs from the approaches
of Nguyen et al. in [3, 4], where the reliability of each source is estimated by training
a separate classifier. Furthermore, we integrate new environment information to
take advantage of the redundant sensor system, such as detections from a surround
view camera system, free space information, etc. To achieve higher accuracy of the
classification, we utilize the mutual information of the features to select the features
with the greatest influence on the classification. Finally, we evaluate our presented
approaches by using a new database of real-world data recordings.

This work is organized as follows: Sect. 18.2 explains three categories of
perception approaches toward automated driving and gives an overview of various
works. In Sect. 18.3, we introduce our concept of incorporating reliabilities into ego-
lane estimation by using different classifiers. Following, Sect. 18.4 applies neural
network to explicitly learn the sensors’ reliabilities. Afterward, Sect. 18.5 explains
our approach of using neural networks to directly estimate the ego-lane. Lastly,
Sect. 18.6 presents the experimental results obtained for the feature selection, the
reliability estimation, and the final ego-lane estimation.
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18.2 Related Work

The approaches in the field of automated driving can be divided into three
categories [5], illustrated in Fig. 18.1. The first category consists of behavior reflex
approaches, which use purely data-driven techniques, also called as AI techniques,
to map sensor data to driving decisions directly. The second category with direct
perception approaches apply AI algorithms to estimate a selected set of features
representing the relevant information of the current environment. Afterward, a sim-
ple controller uses these features to realize driving functions. Representing the third
category, mediated perception approaches build an environment model by process-
ing the sensor data using both model-based methods and AI techniques, respectively.
Based on the generated environment model, AI methods are utilized to derive the
driving actions of the vehicle. Following, all categories will be discussed in detail.

18.2.1 Behavior Reflex Approaches

In the early stages of automated driving, Pomerleau et al. propose a behavior reflex
approach using an artificial neural network (ANN) to estimate the steering angle
for an intelligent vehicle [6]. Thereby, the network consisting of only three layers is
trained by using a low-resolution 30× 32 pixel camera image. Thus, the input layer
of the ANN contains 960 neurons. Following, the input layer is fully connected to
the hidden layer consisting of five neurons, which in turn is connected to the output
layer of 30 neurons. Each neuron in the last layer represents a steering angle that is
used to calculate the steering of the vehicle. To provide a stable behavior, the final
steering angle is determined by calculating the center of masses of the activations
around the highest activated neuron.

Fig. 18.1 Perception models: (a) Behavior reflex, (b) Direct perception, and (c) Mediated
perception approaches
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A more sophisticated approach using ANNs is presented by Bojarski et al. [7].
Their system uses convolutional neural network (CNN) as recent advances of
ANNs. For that, they use the images of three cameras to determine the steering
wheel angle. In order to train the multilayer CNN, backpropagation is performed
with the mean squared error of the estimated angle to the angle chosen by a human
driver. Additionally, they rotate and shift the images to avoid an overfitting to the
training data. In their evaluation, they reach an autonomy level of 98%, which is
defined as follows:

autonomy Level =
(

1− #interventions · 6 seconds

elapsedTime

)

· 100 (18.1)

A similar approach using CNN to determine the steering angle is presented by
Chen et al. [8]. The resulting network is able to perform steering with a mean
error of 2.42◦. However, the authors explain that evaluating the camera images
frame by frame is not appropriate since the repetition of the small error in every
frame can result in leaving the lane. Thus, they conclude that it is necessary to
incorporate temporal information into the network to improve the results in a
continuing scenario.

Codevilla et al. [9] propose a more practice-oriented approach by incorporating
commands into the learning process. Therefore, they use a camera system which
determines the steering angle and acceleration using a CNN. Furthermore, they
compare two architectures for their networks. On the one hand, the command
input architecture combines the image processing results, the measurements of
the environment, and the command by feeding the outputs into fully connected
layers, which determine the action. On the other hand, the branched architecture
combines the image processing results and environment measurements and forwards
the outputs into fully connected layers depending on the command. Impressively,
the branched version drove an off-the-shelf 0.20 scale truck nearly perfectly on
walkways in a residential area.

The problems of using behavior reflex approaches are that it is hardly possible
to install a fail-safe. This can result in accidents in unknown environments and
endanger other traffic participants.

18.2.2 Direct Perception Approaches

In [5], Chen et al. introduce a direct perception approach for autonomous driving by
choosing a set of 13 features to represent the current environment. These features
contain information about the angle between the vehicle and the road, distances
to lane markings, and preceding vehicles on other lanes. Using these features, the
authors construct a controller, which minimizes the distance to the lane center line
and keeps a safe distance to other traffic participants. In order to determine the
features, they use two different approaches: a handcrafted GIST system [10] and
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CNN. A as result, CNN outperforms the GIST system regarding every parameter.
Using the superior CNN, they develop a system that can perform well in both
virtual and real environments. Although this approach seems to achieve good results,
two problems can occur. First, the controller depends strongly on correct inputs,
which cannot be ensured in the current state. Secondly, if this approach needs to be
scaled to fully autonomous driving, the selected features will become as complex
as in mediated perception approaches. Therefore, the simple controllers will not be
sufficient and should be replaced by mediated perception approaches.

Similar to [5], Al-Qizwini et al. provide a different direct perception approach
called GlAD [11]. Therefore, they compare the top three CNN architectures,
namely, GoogLeNet [12], VGGNet [13], and Clarifai [14]. These CNNs are used
to learn five affordance parameters, which are used by the controller to drive the
intelligent vehicle. During the training of the CNNs on images provided by TORCS,
GoogLeNet outperforms VGGNet and Clarifai. Hence, they use GoogLeNet as the
best network to evaluate the automated driving capability in a simulated environ-
ment by measuring the mean and deviation to the lane center. Their algorithm
performs well and achieves a mean deviation on the evaluation tracks of at most
0.2 m. Although this approach seems to be promising, it suffers from the lack
of complexity in comparison to real-world scenarios because of using simulation
results. By way of example, they cannot simulate all mistakes that other traffic
participants could make to react accordingly.

18.2.3 Mediated Perception Approaches

Mediated perception approaches are characterized by modeling a complex environ-
ment representation when combining information from several sensors. Thereby,
the biggest challenge is how to handle inconsistency and conflict between the
information coming from different sources. Thus, several works investigate the
sensor reliability by using different methods, e.g., classifiers [3, 15, 16] and failure
models [17]. At the decision layer, these reliabilities can be exploited to fuse only
reliable sources.

Frigui et al. present a context-dependent multisensor fusion framework [18]. By
that, they use a clustering algorithm to cluster the extracted features. Each cluster
represents a certain context and contains data that shows similar characteristics of
the environment. Afterward, a reliability of each source is manually defined for each
context. This approach can be problematic when the number of features rises, and
the clustering algorithms will suffer from the curse of dimensionality. In this case,
the number of clusters would rise exponentially.

In [15], Hartmann et al. fuse multiple sensors to create a road model, which
is then verified with a digital map. Therefore, they train an ANN using a large
database containing sensor data and the associated map geometry. The goal is to
assess whether the estimated road model is incorrect and does not match with the
digital map. This can be the case when the predicted road course changes due to
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construction works or errors of the detection algorithms. As a result, the trained
ANN outputs a reliability value representing the probability for an error between
the estimated road and the digital map. This approach can detect contradictions, but
it cannot decide which source is faulty [19]. Hence, this method could be improved
by identifying the incorrect source [20].

Realpe et al. introduce a fault-tolerant object estimation framework [21]. First,
objects are separately estimated by using data from each single sensor. For each
sensor, the discrepancy of its estimated objects to the reference in the offline
evaluation phase is used as weight for the final fusion. This concept is promising,
but the reliability estimation could be further increased by using additional context
information, such as the road type, where the vehicle is driving on.

Romero et al. present an environment-aware fusion approach for lane estima-
tion [22]. By that, they compare the estimated lane from each sensor with the ground
truth. Based on the comparison result, they assign a reliability value to each sensor
for the current GPS position. When the vehicle is located at a certain position, the
stored reliabilities are used to perform a weighted fusion. However, this approach is
not generalizable to new areas since it uses GPS position to predict reliabilities and
requires the vehicle to have been there before. Instead of utilizing GPS coordinates,
additional features extracted from sensor detections could be used to make the
estimations location-independent [19].

The discussed works in this chapter contain interesting approaches, but they still
have potential for improvement or are quite work-intensive. Hence, the following
chapter will explain our fusion concept.

18.3 Overall Concept

Our fusion concept is an extension of our previous work in [3, 23]. As illustrated in
Fig. 18.2, it consists of multiple levels such as in the JDL model [24]. At Level 0,
the raw sensor data is preprocessed on the basis of physical signal level. At Level 1,
multiple detection modules iteratively utilize the preprocessed data to estimate
and predict the states of different object types. This includes tasks such as object
detection, tracking, association, etc. The low-level fusion, e.g., object association of
different sensors [25, 26], is taking place here. In our work, the used sensors are
delivered with their internal processing modules and provide different results such
as lane markings, dynamic objects, etc.

Starting from Level 2, we present two different fusion concepts, where reliable
sources should be preferred over unreliable sources. In the first approach represented
in Sect. 18.4, we utilize artificial neural networks (ANNs) to estimate the reliability
of different ego-lane models by using the scenario features, which are extracted from
the sensor and contextual information. Afterward, the fusion based on Dempster-
Shafer theory utilizes these estimated reliabilities to identify and neglect the
unreliable sources. In the second approach, we utilize ANNs to directly estimate the
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Fig. 18.2 Overview of our two different fusion concepts. While (a) estimates the reliabilities of
the separately estimated ego-lane models and incorporates them into the fusion, (b) estimates the
ego-line directly using sensor detections

ego-lane (Sect. 18.5). By that, the network should internally learn the reliabilities of
the sources for an optimal estimation. Both concepts are detailed in their respective
sections. Since the scenario features are used by both approaches, we will explain
them in the following.

18.3.1 Sensor Setup

As shown in Fig. 18.3, we use a setup of three-camera systems in order to detect
lane markings. Thereby, each camera system separately provides estimations for the
next right lane marking (RM) and the next left lane marking (LM). In this work, a
prefix of “second” or “third” denotes the affiliation to that particular camera system.
If no prefix is given, the estimation belongs to the first camera system. Furthermore,
the prototype vehicle also is also equipped with several radar and lidar sensors for a
360◦ object detection, which is not be further explained here.

By way of example, Fig. 18.4 shows four scenarios with the detected lane
markings and objects. The highway in Fig. 18.4a demonstrates an ideal scenario,
where all lane markings can be perceived clearly. Thereby, the two front-facing
camera systems can detect markings up to 100 m, while the third camera system
has a shorter detection range of about 20 m. In this scenario, the vehicle can use
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Fig. 18.3 The prototype vehicle with three-camera systems: Two are front-facing and differ
slightly in field of view; the third consists of four fish-eye cameras for a surround view. The
positions of other sensors such as lidars, radars, and ultrasonic sensors are not shown here

Fig. 18.4 First row: images from the first camera. Second row: visualization of detection results
of all three cameras and object estimations on Google Maps
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any marking from the first two cameras or a combination of them to estimate the
current ego-lane. As opposed to this, Fig. 18.4b depicts an urban scenario, where the
detection ranges of all cameras are smaller than in the highway scenario. Moreover,
markings are not existing on the right side so that only Camera 1 and Camera 2
can identify the curbstone as lane boundary. In contrast, the left lane marking is
perceived clearly by all cameras. Therefore, the vehicle should orientate to the left
lane marking. Especially in the on-ramp scenario in Fig. 18.4c, the third camera
system outperforms the rest by detecting markings on both sides up to 20 m away.
Here, the first two camera systems cannot recognize the right marking due to their
narrow field of views (Fig. 18.4). In order to handle this scenario, the vehicle should
utilize the detected markings of Camera 3. Last, Fig. 18.4d depicts another urban
scenario with no markings on both sides. Unfortunately, none of the cameras can
detect the curbstone stably. Only the leading vehicle can be detected so that its
trajectory should be used to generate an ego-lane hypothesis.

18.3.2 Scenario Features

This section explains in detail the composition of the scenario features, which
we extract from sensor and context information. In this work, all lane markings
as well as the trajectory of the leading vehicle (ACC object) are modeled by an
approximation of the clothoid model [27]:

y(x) ≈ φ0 · x + C0

2
x2 + C1

6
x3 (18.2)

= a1 · x + a2x
2 + a3x

3 (18.3)

A subset of the used scenario features is generated from these clothoid parame-
ters, which can be seen in Table 18.1. Additionally, this table contains a likelihood
ξ , representing a measure of uncertainty about the existence of an object. Moreover,
Table 18.1 also contains the estimated lane width Lanew, the feature free, that
expresses the amount of free space along the clothoid evaluated with an occupancy
grid built by using lidar data. Furthermore, we introduce several consensus features

Table 18.1 Sensor-related
and consensus features of all
markings and the trajectory of
the leading vehicle:
h ∈ {LM,RM, SLM, SRM,
T LM, T RM,ACC}

Feature Description Feature Description

h x0 Start on the x-axis h y0 Lateral offset

h l Clothoid length h φ Clothoid angle

h c0 Curvature h c1 Curvature change

h ξ Existence likelihood Lanew Lane width

CSh l Deviation to l CSh φ Deviation to φ

CSh c0 Deviation to c0 CSh c1 Deviation to c1
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Table 18.2 Motion
parameters of object
o ∈ {Ego,ACC}

Feature Description Feature Description

o x x-position o vx Longitudinal velocity

o y y-position o vy Lateral velocity

o vφ Yaw rate o vLM Velocity to LM

o turn Tri-state o vRM Velocity to RM

measuring the deviations to respective average values. Last, the type of all lane
markings is also utilized, e.g., solid, dashed, and curbstone.

For moving objects like the ego-vehicle and the leading vehicle, we extract
various motion parameters, as seen in Table 18.2.

Furthermore, we utilize external contextual features extracted from a navigation
map. These include roadType (e.g., highway, rural, urban, connection), linkType
(e.g., ramp, roundabout), laneClass (e.g., normal, split, merge, intersection), and
cityLimitStatus (e.g., inside, outside). Additional features are the mean width
μEgoLaneWidth and the standard deviation σEgoLaneWidth of the ego-lane.

Instead of using these features directly to train ANNs as in [3], we normalize
these features and encode them to reach a higher classification performance, which
is described in the following section.

18.3.3 Preprocessing Features

If a sensor provides data directly to ANN, the input can suffer from artificial seman-
tic through different ranges and meanings of the data. For example, comparing
the roadType that are denoted by natural numbers, the distances between two
categories are varying even though the semantics are not different. Thereby, the
difference between a highway and an urban scenario is equal to the difference
between a highway and a rural scenario. Therefore, the distance between these
categories should not differ. For that reason, we apply one-hot encoding to the
categorical input data. By that, a one-hot encoding transforms a categorical feature
with n categories into a vector of n entries, where each entry is set to one if the index
corresponds to the respective category and to zero otherwise as

one− hot : {0, 1, . . . , n− 1} → {0, 1}n , one− hot(k)i =
{

1 i = k
0 else

(18.4)

Another challenge is the huge variety of ranges in the data set. For instance,
the length l of the lane markings can reach up to 100 m, while the angle φ varies
between −π2 and π

2 . Hence, l has a bigger influence on the results until the network
learns to reduce its influence by adapting the weights. Therefore, the convergence
of the network is slower than the case where alldata is in similar ranges. For that
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reason, we apply the following min-max-scaling to each feature, so that all values
are in the interval [−1, 1] with:

scale(x) = 2 · (x −minx)

maxx −minx
− 1 (18.5)

18.4 Reliability Estimation

This section presents the application of ANNs as reliability estimators to the
reliability-aware road fusion framework of Nguyen et al. [3, 23]. For this purpose,
this section starts by explaining the fusion framework and the model-based ego-lane
generation in greater detail. Following, we select for each ego-lane model the most
important features, which are obtained by applying the feature selection method
mutual information (MI). Afterward, we present the structure and training process
of ANNs based on chosen features and introduce different fusion strategies.

18.4.1 Concept

Sections 18.2 and 18.3 clarify the relevance of fusing multiple sources for road
estimation. By that, a proper incorporation of reliabilities can leverage the fusion’s
performance [19]. Thus, we present a multisensor fusion framework, which con-
tinuously estimates the sensor reliabilities and uses them to perform the fusion.
Adapted from [23], Fig. 18.5 shows different layers of the framework, whereby the
contributions of this work are highlighted in green.

At Layer 0, different sensor inputs are processed. This preprocessed data is then
passed to Layer 1, where different types of information are estimated, e.g., lane
markings, free space information,vehicles, etc.

At Level 2, several hypotheses for the current ego-lane are generated using a
model-based approach from Toepfer et al. [1]. Additionally, here we also generate
the scenario features, which are extracted from sensor detections and contextual
information. By way of example, the parameters describing the lane markings are
selected, such as the length, the curvature, etc. Moreover, we extend the feature set
from [28] with the consensus features, which describe the similarity among the lane
markings and the driven trajectory of the leading vehicle.

In the offline phase of the Level 3, the estimated ego-lane hypotheses are
compared with the ground truth, which is represented by the driven trajectory of
human drivers. If the deviation from the ground truth exceeds a predefined threshold,
the hypothesis will be considered as unreliable and vice versa. Together with the
corresponding features, they are stored in a database to train different classifiers. By
that, one classifier is trained to predict the reliability of each ego-lane model. During
the online phase, each estimated ego-lane is assigned with a predicted reliability
from the corresponding classifier.
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Fig. 18.5 Reliability estimation and reliability-aware fusion as an additional supervision system
within the road estimation task [23] (Blue: Data for road detection; Red: Reliability information)

As the last layer, Level 4 fuses different models depending on the predicted
reliabilities. Following, the final ego-lane estimation is then used to perform driving
functions.

In this work, we apply mutual information (MI) to detect nonlinear relations
between the scenario features and the reliability values [29]. Additionally, ANNs
are employed as reliability estimators since they perform well in many other tasks
and could increase the reliability estimation result [5, 30, 31].
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Fig. 18.6 Three estimated ego-lane hypotheses for each camera system [2]

18.4.2 Hypotheses

This section introduces different types of ego-lanes, which are created from lane
markings and leading vehicles. Thereby, the detection of lane markings is performed
independently for each camera system. In general, the results of each system are
used to generate three model-based ego-lane hypotheses (Fig. 18.6). By that, the
left hypothesis (LH) and the right hypothesis (RH) use only the left and right
lane markings, respectively. The center hypothesis (CH) utilizes the detected lane
markings on both sides. By applying this process to the three-camera systems, we
can receive up to nine ego-lane estimations. Additionally, the vehicle hypothesis
(VH) represents the trajectory of the leading vehicle as shown in Fig. 18.4d. This
leads to the following set H of hypotheses, where the prefixes “F,” “S,” and “T”
indicate the first, second, and third camera system, respectively:

H = {FLH,FRH,FCH, SLH, SRH, SCH, T LH, T RH, T CH,VH }

18.4.3 Feature Selection

Since information from multiple sources is incorporated, the generated feature
vector consists of hundreds of elements. Training classifiers with all these features
would be computationally expensive, and the results can worsen due to the curse
of dimensionality [32]. Moreover, not all features directly affect the reliabilities.
Therefore, we perform a feature selection so that only the most relevant features are
used to train the classifiers.

For this work, we apply the method mutual information (MI), which is a
measure of the dependency between two variables [29]. It is used to determine the
information about a variable through another variable. For this purpose, MI is not
using the covariance like the linear correlation coefficient but the distance between
two probability distributions. Hence, MI can describe nonlinear relationships
between two variables. Assuming an independent, identical distribution of a set
of N bivariate measurements {ti = (xi, yi) | i = 1, . . . , N} of the features
X = {x1, . . . , xN } and Y = {y1, . . . , yN }, the mutual information of X and Y is
defined as follows:
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I (X, Y ) =
∫ ∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy (18.6)

where p(x, y) is the joint probability density and p(x) and p(y) are the marginal
probability densities of X and Y , respectively.

Since the densities are not always known, an approach of approximating MI is
applied. Therefore, the values of X and Y are sorted into containers of finite sizes,
which is described in the following:

Icont(X, Y ) =
∑

ij

p(i, j) log
p(i, j)

p(i)p(j)
(18.7)

where p(i, j) = ∫
i

∫
j
p(x, y) dxdy, p(i) = ∫

i
p(x) dx, and p(j) = ∫

j
p(y) dy.

By that,
∫
i

denotes the integral over container i and
∫
j

denotes the integral over
container j .

The number of entries of each container is counted and

p(i) ≈ nx(i)/N (18.8)

p(i) ≈ ny(i)/N (18.9)

p(i, j) ≈ n(i, j)/N (18.10)

are approximated, where nx(i) and ny(i) represent the number of entries of the
respective container i of X and Y , and n(i, j) denotes the number of overlapping
entries. When the number of containers is increased toward to infinity and the size
of the containers is aiming toward zero, Icont converges to I .

18.4.4 Training Process

During the offline training phase, the database is divided into training and testing
datasets (Fig. 18.7). Afterward, the data is resampled to balance the number of
negative and positive samples. As a result, the resampled datesets contain the same
amount of samples for both classes to avoid bias during the training [33]. Following,
a feature vector Xh with four different categories for each sample of h is generated
as

Xh = [sh, τ, γint, γext] (18.11)

where sh describes the sensor information, τ represents the consensus features, and
γint and γext denote the internal information (e.g., odometry data) and environment
information (e.g., the road type), respectively [23]. After creating Xh, an error metric
is applied to the ego-lane hypothesis h to determine the label Lh. By that, Lh will
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Fig. 18.7 Overview of the application of the classifier [23]

be considered as reliable if the deviation of h from the reference is smaller than a
predefined threshold. We will explain the used metric in Sect. 18.6.1.

To evaluate the trained networks, the testing dataset is used. Thereby, the
created feature vectors are passed directly to the networks and their predictions
are compared with the actual test target. The evaluation process and the results are
explained in greater detail in Sect. 18.6.

18.4.5 Artificial Neural Networks for Reliability Estimation

In order to estimate the reliability of each hypothesis h ∈ H , we train an ANN
ANNh for each h separately. Thereby, the output of ANNh represents the estimated
reliability Rh. The structure of each individual ANN is shown in Fig. 18.8.

After applying MI to the feature vector Xh, the 25 most relevant features X′h are
used as the input for the training. Thereby, these features are then preprocessed by
the normalization and one-hot encoding described in Sect. 18.3.3. As a consequence,
the processed feature vector can have i elements with i ≥ 25 due to the one-
hot encoding. Since the networks are fully connected, each neuron’s input function
receives the output from all neurons of the preceding layer.

The next five layers consist only of rectified linear units (ReLU), i.e., they employ
f (x) = max(x, 0) as their activation function. These layers only differ by the
number of neurons. Starting with 25 neurons in the first layer, the number is reduced
by five for every succeeding layer. The last layer has only one neuron and a sigmoid
activation function to produce an output between zero and one, which represents the
final reliability value of the corresponding ego-lane model.
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Fig. 18.8 Structure of ANNs toward reliability estimation

During the training, the label vectorLh is compared with the estimation produced
by the network to update the weights of the neurons. Since the basic backpropaga-
tion algorithm often suffers from contrary training examples and requires a high
number of iterations until convergences [32], we apply Stochastic Gradient Descent
(SGD), an advanced backpropagation algorithm, to update the weights [34]. Instead
of minimizing the total error as the basic backpropagation, SGD minimizes the
empirical risk over the training data D = {(xi, yi) | i = 1, . . . , n} as

E(f ) = 1

n

n∑

i=1

l(f (xi), yi) (18.12)

where l denotes the loss function describing the loss of the prediction f (xi)
regarding the target yi . In this work, we use the squared Euclidean loss function,
which is defined as

EL2(f ) = 1

2n

n∑

i=1

||f (xi)− yi ||22 (18.13)

For convenience, the loss is divided by two for an easier derivative of the squared
Euclidean loss. For an optimal gradient in the learning phase, the gradient has to be
calculated in every iteration, which produces a heavy computational effort. Hence,
SDG estimates the gradient by using a batch B ⊂ D, which is significantly smaller
than D with |B| 0 |D|.

EL2(f ) = 1

2|B|
|B|∑

i=1

||f (xi)− yi ||22 (18.14)
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By that, Eq. 18.14 describes the risk that is optimized in each iteration. During the
weight adaption, the learning rate needs to be decreased to achieve convergence.
Although better results can be achieved, the gradient descent can still get stuck in
a local minimum of the empirical risk [35]. Therefore, a momentum term is used
in the weight adaption, which helps the network to converge faster and leave local
minima [36]:

Δwt+1 = μΔwt − α∇EL2(f ) (18.15)

where wt and wt+1 are the weights, μ is the momentum, Δwt is the weight change
in step t , and α is the base learning rate. This technique can increase the performance
of ANNs as described in [37].

To train the networks, we set the base learning rate α = 0.1. Every 100,000
iterations, the learning rate α is multiplied with a factor γ = 0.8 to support
the converging of the networks. In total, each network is trained with 1,000,000
iterations using a batch size of |B| = 4. The momentum of the weight change is
chosen as μ = 0.1.

18.4.6 Incorporating Reliabilities into Fusion

During the online prediction phase, a feature vector is generated for each ego-lane
hypothesis. The trained ANNs take these vectors as input and predict the reliability
values, which are used to combine the ego-lanes. Thereby, the quality of the fusion
is restricted by the quality of the source [16]. However, different fusion strategies
create results with varying quality. Therefore, this section presents several basic
strategies and a more complex strategy based on Dempster-Shafer theory [3, 20].

18.4.6.1 Basic Strategies

Following, we introduce several basic fusion strategies:

Baseline (BE) The standard road estimation approach from [1] serves as a
baseline strategy.

Average fusion (AVG) By this strategy, every estimation model is equally
involved in the fusion. This is one of the easiest approaches, but AVG will
not produce the best results because inferior models can impair the fused result.

Weight-based fusion (WBF) As an extension of AVG, the reliability Rh of every
model h can be utilized as weight for the fusion. Using Rh allows to disregard
unreliable models and focus on the combination of the remaining reliable models.

Winner-take-all (WTA) WTA selects solely the ego-lane model with the greatest
Rh, and all other hypotheses are discarded.
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Minimum (MIN) The ego-lane model with the smallest Rh, i.e., the most
unreliable one, is chosen for the fusion. This strategy is needed to prove that
the unreliable sources can be identified by the classifiers and assigned with lower
reliabilities.

Random (RAN) As an additional baseline, RAN chooses a hypothesis arbitrarily.

18.4.6.2 Dempster-Shafer Theory (DST)

The theory of belief functions was developed by Dempster and Shafer in [38]. Its
application is the combination of several unreliable sources to a total result which
often occurs in reality. As introduced by Nguyen et al. [3], the reliability of each
ego-lane hypothesis h can be modeled as a frame of discernment Θh = {ρh, ρ̄h},
which consists of two statements Reliable ρh and Unreliable ρ̄h. The following
steps are taken under the assumption that the reliabilities of the ego-lane models are
independent [19]. Since DST also models a belief function for the situation, where
both states of Θh can occur, adding ρh and ρ̄h does not have to result in one as
compared to the classical probability theory. This is difficult to represent using the
Bayesian probabilistic model. As a consequence, the power set  h for a hypothesis
h is defined as:

 h = 2Θh = {∅, {ρh} , {ρ̄h} , {ρh, ρ̄h}} (18.16)

where {ρh, ρ̄h} describes the occurrence of both possibilities. The mass function for
the reliability of the model h at time t is defined as follows:

∑

θ∈ 
mt(θ) = 1 with mt(∅) = 0, mt ({ρh}) = Rth · PRh

mt({ρ̄h}) = (1− Rth) · PRh mt({ρh, ρ̄h}) = 1− PRh
(18.17)

where PRh represents the precision of the neural network ANNh, which estimates
the reliability Rh of h. By that, PRh is determined by evaluating the classifier
ANNh offline using test data. Assuming two different times t and t ′ are both
independent, the fusion of mt and mt+1 is defined as:

mF (z) = mt ⊗mt+1(z) =
∑
x,y⊆ ,x∩y=z mt (x) ·mt+1(y)

1−∑x,y⊆ ,x∩y=∅mt(x) ·mt+1(y)
(18.18)

Every hypothesis’ reliability consists of two parts. The belief bF and the
plausibility plF . The first describes the belief in the correctness of the hypothesis
and the second the plausibility of the hypothesis:

bF ({ρh}) =
∑

X⊆{ρh},X �=∅
mF (X) = mF ({ρh}) (18.19)



18 Reliability-Aware and Robust Multi-sensor Fusion Toward Ego-Lane. . . 441

plF ({ρh}) =
∑

ρh∈X
mF (X) = mF ({ρh})+mF ({ρh, ρ̄h}) (18.20)

To compare the estimated Rh of each hypothesis, the average of belief and
plausibility is used, like in [23, 39]:

pF ({ρh}) = bF ({ρh})+ plF ({ρh})
2

(18.21)

Using pF ({ρh}) as the weight for the respective hypothesis and a predefined
threshold εR , only the most reliable hypotheses are allowed to take part in the fusion.

Instead of an explicit reliability estimation, the next section will describe another
fusion approach, which estimates the ego-lane directly by using sensors detections.

18.5 Ego-Lane Estimation Using Artificial Neural Networks

18.5.1 Concept

An alternative approach for ego-lane estimation can be performed with artificial
neural networks, whose architecture is shown in Fig. 18.9. Hereby, Level 0, Level 1,
and Level 2 are analogous to the reliability estimation process in Sect. 18.4. By
using the generated scenario features from Level 2, we apply ANNs as regressors
to estimate the clothoid parameters of the ego-lane at Level 3 and Level 4. Thereby,
we create the training data by taking the human-driven path as a reference, which
Sect. 18.5.2 will explain in detail. Moreover, we will present the network structure
in Sect. 18.5.3 and the training procedure in Sect. 18.5.4.

18.5.2 Ground Truth Acquisition

An important task is creating the reference data, which is used as targets to train
ANNs. For that reason, we use real-world data recordings provided by the test
vehicle to determine the necessary coefficients. During a local simulation of the
recordings, the positions and the orientations of the vehicle are saved in a database
by reconstructing the human-driven path (Fig. 18.10). For time t , the reference is
created by an approximation of a clothoid using the points p0, . . . , pn. By that, p0
represents the current vehicle position at time t and p1, . . . , pn the vehicle positions
at time t + 1, . . . , t + n. Therefore, the consecutive points p1, . . . , pn are rotated
and translated in the coordinate system of p0. As a result, the reference ego-lane is
represented by an approximation of a clothoid [27]:
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Fig. 18.9 Direct ego-lane estimation using artificial neural networks (Blue: sensor information;
Red: reliability information)

Fig. 18.10 The ground truth at p0 is acquired by using linear polynomial regression of p0, . . . , pk .
The points pk+1, . . . , pn are available, but they are left out due to exceeding the maximal distance
or angle

y(x) ≈ φ0 · x + C0

2
x2 + C1

6
x3 (18.22)

= a1 · x + a2x
2 + a3x

3 (18.23)

We determine a1, a2 and a3 by applying linear polynomial regression. Therefore,
we construct the following linear system using the consecutive points.
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Next, this system is solved by using Moore-Penrose inverse regression [40] since
X is most of the time not invertible. For that reason, the parameters can be calculated
by using

a = (XTX)−1XT y (18.25)

Consequently, the coefficients are φ0 = a1, C0 = 2a2, and C1 = 6a3. Basically,
this process could be applied to all consecutive points p1, · · · , pn in the recording,
but this is neither representative for an estimation nor applicable due to the
computational effort. Hence, we reduce the number of points by choosing a subset
of only k consecutive points as

{

pk |
k∑

i=1

distance(pi−1, pi) < 50 ∧ |direction(pk)| < 15◦
}

(18.26)

First, only the first k points that are less than 50 m away from the start point p0
are selected. Secondly, the orientation of these points has to be smaller than 15◦ to
achieve a sufficient approximation by the polynomial.

Since the manually-driven path is used to calculate the targets to train ANNs, we
have to remove samples/situations where the driver leaves the current ego-lane. For
example, such samples can be obtained by intersections, lane change, overtaking
maneuvers, etc. Additionally, the samples that do not contain any information about
the road course are also removed since ANNs cannot produce any useful estimation
in such scenarios.

18.5.3 Structure

An important decision is the choice of a structure for ANNs. We also decide to use
one network for each parameter to preserve expressiveness. Each ANN has seven
layers consisting of a decreasing amount of neurons as displayed in Fig. 18.11. The
first layer contains 80, the second 60, the third 40, the fourth 20, the fifth 10, the sixth
5, and the last 1 neuron. All layers except the last layer consist of rectified linear
units (ReLU). The last layer has the identity function as activation function to enable
an output of arbitrary real numbers. We choose this structure since the layers using
ReLU can deal with not linearly separable data. Additionally, the layers decrease in
the number of neurons to generalize the scenario features in small steps.
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Fig. 18.11 Structure of the ANN to estimate each single parameter of the clothoid model. The text
describes the activation function in the layer, where ReLU denotes a layer of rectified linear units
and I is the identity function

18.5.4 Training

Analogously to the reliability estimation, we use the stochastic gradient descent
from Sect. 18.3 with an Euclidean loss for 100,000 iterations. Using this technique, a
learning rate of α = 0.0001 that decreases to 0.9 times itself every 10,000 iterations
is chosen. Additionally, we chose a momentum weight of μ = 0.0000001 that is
multiplied by 0.01 after the same amount of iterations. Moreover, we use a batch
size of |B| = 25.

During this process, we scale the learning targets by multiplying them by 10000.
Hereby, the real appearing value range becomes bigger, so that the impact of the
gradient is bigger and leads to faster convergence. Furthermore, the training data
set is resampled regarding the roadType, so that the trained networks can perform
well in each category.

18.6 Experimental Results

In this section, we use real-world data recordings to evaluate our introduced fusion
concepts. Figure 18.12 shows the routes, where the prototype vehicle drove in
Wolfsburg and its surroundings. Thereby, we planned our routes in order to archive
a balanced distribution of highway, ramp, rural and urban scenarios.

First, we will present the evaluation concept. Following, the impact of the feature
selection with mutual information is analyzed. Afterward, the reliability estimation
and the final performance of both fusion concepts are presented.
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Fig. 18.12 Driven roads for recording training and testing data

Fig. 18.13 Metric to measure reliability of the estimated ego-lanes [28]

18.6.1 Concept

In the following, we use the angle metric presented by Nguyen et al. [28] to assess
the reliability of the estimated ego-lanes. Instead of using highly-precise DGPS
and digital map as the authors in [1, 15, 26], this metric incorporates the human-
driven path as reference, which can be reconstructed with standard and cheap
motion sensors. As shown in Fig. 18.13, this metric measures the angle deviation
Δα between the estimated lane and the manually driven path for a run length rl
starting from the position of the ego-vehicle at time t . The motivation for this
metric is because human drivers cannot drive perfectly on the lane centerline during
recording data. This leads always to small lateral offsets between the estimation and
the reference, even when the estimation could be detected perfectly [2]. By using
the angle deviation Δα, only the parallelism between the hypotheses and the driven
path is taken into account.

As Fig. 18.13 shows, the angle αh of the hypothesis h is calculated using the
position Ph,2 = (xh,2, yh,2) at the run length rl and its start position Ph,1 =
(xh,1, yh,1). The ground truth is reconstructed by using the human-driven path,
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where GT1 = (0, 0) represents the ego-vehicle’s position at time t and GT2 =
(xGT,2, yGT,2) denotes the position at time t ′ with t ′ 2 t . In other words, GT2
represents the position of the vehicle after driving rl meters. As a result, the angle
difference can be calculated as

Δα =
∣
∣
∣
∣arctan

(
yh,2 − yh,1
xh,2 − xh,1

)

− arctan

(
yGT,2

xGT,2

)∣
∣
∣
∣ (18.27)

By that, we consider an ego-lane estimation as reliable if its angle deviation is
smaller than 2◦ for rl = 30 m. For the sake of completeness, we also use the lateral
offset Δd = |yGT,2 − yh,2| as another criterium when evaluating the hypotheses to
be comparable with related works.

18.6.2 Result of Feature Selection

This section discusses the results of feature selection with mutual information
(MI) by showing the 10 highest ranked features for each hypothesis in Figs. 18.14

a b c

d e f

g h i

Fig. 18.14 The 10 highest ranked features for ego-lane models, which are generated by using lane
markings. (a) LH. (b) RH. (c) CH. (d) SLH. (e) SRH. (f) SCH. (g) TLH. (h) TRH. (i) TCH
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Fig. 18.15 The 10 highest
ranked features for VH

and 18.15. Thereby, LM denotes the left ego-lane marking and RM the right ego-lane
marking respectively. The prefix Second and Third represents the camera system,
where the lane marking is coming from. Moreover, VEH denotes features of the
ACC object.

As shown in Fig. 18.14, the length l, the curvature c0, the curvature change c1,
and the yaw angle φ of the lane markings are very important for the ego-lane models,
which are created by involving lane markings. Besides, one notices the distinct
difference between the hypotheses, which only use the right or the left lane marking.
For LH, SLH, and TLH, the most important features come from the corresponding
left ego-lane markings and some of the consensus features. For RH, SRH, and TRH,
only features concerning the right lane markings and features belonging to these
hypotheses are ranked as important. The only exception can be found for LH.

Figure 18.14a–f shows that the features of the lane markings from the first camera
and the second camera are sometimes mixed for the hypotheses LH, RH, CH,
SLH, SRH, and SCH. The reason is because of the similar characteristics and the
installation positions of both cameras. In contrast, only the lane markings received
from the third camera and their belonging features are important for TLH, TRH, and
TCH due to the different field of view.

Figure 18.15 shows that almost all features acquired from the leading vehicle
are very relevant for VH. It is also interesting and correct that none of the marking
information can be found here.

In summary, the main impact on the reliabilities of the hypotheses comes from
the according detection source. Hence, a reliability estimator can be trained by using
only the data of the corresponding detections. Furthermore, the observation that
the first and second camera features are correlated indicates a strong redundancy
between the cameras. For the evaluation of the classifiers, the neural networks from
Sect. 18.4.5 are trained using the 25 highest ranked features.

18.6.3 Result of Reliability Estimation

To measure the classifier’s performance, we use the F0.8-Score which is defined as

Fβ = (1+ β
2) · PR · RC

(β2 · PR)+ RC (18.28)
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where PR = T P/(T P + FP) is the precision and RC = T P/(T P + FN) is
the recall. Moreover, T P denotes the number of true positive samples, FP the
number of false positive samples and FN the number of false negative samples.
The motivation of using a F0.8-Score is that we want to increase the impact of the
precision on the result and penalize false positives more than false negatives, since
automated driving is a safety-critical application. The higher the F0.8-Score, the
better a classifier.

Figure 18.16 shows the classification results of ANN when predicting the
reliability for the ten hypotheses. Since we perform a down-sampling on the
evaluation data, there are the same numbers of reliable and unreliable samples. This
is indicated by the maximum availability, i.e., the amount of positive samples over
all samples, which is equal to 0.5 in most cases. Only for FLH, FRH, SRH and SCH
from highway scenarios no down-sampling is needed, since all samples are positive.
However, ANN estimates some hypotheses, such as FRH, FCH, SLH and TCH, to
be reliable for all samples. This leads to a low F0.8-Score of around 0.7.

For highway scenarios, the hypotheses FLH, FRH, SRH, and SCH have the best
performance of around 100% (Fig. 18.16b). Following this, the performance for

a b

c

e

d

Fig. 18.16 Classification performance of ANN when predicting our ten hypotheses in different
scenarios. (a) Overall. (b) Highway. (c) Rural. (d) Urban. (e) Connections
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VH is about 80%. Moreover, ANN also performs well for VH in other scenarios.
For rural scenarios in Fig. 18.16c, the classification performances for the ego-lane
models based on the right lane markings are around 85%, which is better than the
results of models based on the left lane markings. The center hypotheses FCH and
SCH, which incorporate both lane markings, cannot improve their estimation result
using the right markings and have the same bad classification performance as the
left models FLH and SLH. Only TCH can make more use of both markings and is
therefore ranked better than FCH and SCH. In urban scenarios, the performances
of all classifiers decrease due to the variety of situations, where markings are
sometimes not existing (Fig. 18.16d). In connection scenarios, all classifiers perform
worse since the front-facing cameras cannot detect markings well here due to the
narrow fields of view. It can be seen that VH has the highest performance in
connection scenarios.

By using ANN as reliability estimators, the next section will evaluate the results
of different fusion strategies from Sect. 18.4.6 and compare them with the direct
ego-lane estimation approach from Sect. 18.5.

18.6.4 Result of Ego-Lane Estimation

The final estimation results are compared using two metrics: the commonly used
lateral offset and the angle deviation from [28]. Both metrics are applied to the
hypotheses at different run lengths to investigate the estimation quality both in close
distance and in far distance to the vehicle.

As a general observation from Fig. 18.17, over 75% of the samples of each fusion
strategy reach an angle difference of Δα < 2◦ and a lateral offset of Δd < 1 m. In
the following, ANN denotes the fusion concept, where ANNs are used to directly
estimate the parameters of the ego-lane. By comparing ANN with different fusion
approaches, ANN turns out to perform well regarding short distances (Fig. 18.17a,
b). However, both metrics agree that the error of ANN increases significantly as
the distance grows. Thus, all fusion approaches outperform ANN after a run length
of 28 m (Fig. 18.17g, h). The reasons for these results are the two design decisions
when using ANNs for the direct ego-lane estimation process in Sect. 18.5. First, the
usage of the polynomial for the ground truth acquisition induces an error, which is
especially great in strong curves because the assumption of an angle below 15◦ does
not hold. Second, the representation as a polynomial has the disadvantage of highly
amplifying small mistakes in the estimation. For instance, if the ideal parameters
are denoted by φ0, C0 and C1 and the estimated parameters are denoted by φ̃0, C̃0
and C̃1, each estimated parameter can be written as

φ̃0 = φ0 + εφ0 (18.29)

C̃0 = C0 + εC0 (18.30)
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c d

a b

e f

g h

Fig. 18.17 Performance of different fusion strategies and ANN measured by the angle deviation
Δα and the lateral offsetΔd to the ground truth at various distances. We excluded all samples with
no reliable hypothesis. (a) Angle deviation at 16 m. (b) Lateral offset at 16 m. (c) Angle deviation
at 22 m. (d) Lateral offset at 22 m. (e) Angle deviation at 28 m. (f) Lateral offset at 28 m. (g) Angle
deviation at 31 m. (h) Angle deviation at 31 m

C̃1 = C1 + εC1 (18.31)

where εp denotes the error in the estimation of parameter p. Next, the impact of the
estimation error can be determined as the absolute error

eabs=
∥
∥
∥
∥φ0 · x+C0

2
x2+C1

6
x3 −

(
(
φ0 + εφ0

) · x + C0 + εC0

2
x2 + C1 + εC1

6
x3
)∥
∥
∥
∥

(18.32)

=
∥
∥
∥εφ0 · x +

εC0

2
x2 + εC1

6
x3
∥
∥
∥ (18.33)
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If the error at a distance of 31 m is considered and εφ0 = 0 and εC0 = 0,

the absolute error eabs is
∥
∥
∥
(

4965+ 1
6

)
εC1

∥
∥
∥. Hence, an error in C1 greater than

0.00021(≈ 0.012◦) leads to a lateral offset of more than one meter. Analogously,
the error in C0 has a significant impact. For that reason, small errors in estimations
can lead to poor performance of ANN with increasing run lengths.

To evaluate the final performance of the fusion strategies and ANN, we use the
availability (AV), which is given by the proportion of samples with a correct ego-lane
estimation over all samples [23]. By that, a strategy is considered as available only
when the following conditions are fulfilled. First, the strategy provides an estimate
for the given sample. Secondly, the angle deviation Δα of the provided estimate
must not exceed 2◦.

For highways and rural roads, Fig. 18.18b, c show that the performances of all
strategies are near 100% because of good road conditions in these scenarios. As
expected, the performances of all strategies are lower in urban areas (Fig. 18.18d)
due to the variety of situations. In on- and off-ramp scenarios, all strategies have
their lowest availability (Fig. 18.18e). Compared to BE from [1], our fusion can
enable an increase of up to 5 percentage points regarding the availability.

Furthermore, ANN has the lowest availability for all scenarios with the exception
of connections. The overall low availability is expected looking at the performance
regarding Δα. Unfortunately, ANN performs even worse considering that AV is
mostly smaller than MIN, which selects the hypothesis with the lowest reliability.
In contrast, ANN achieves the best performance in connection scenarios. This is
due to the weaker dependence on lane markings, which are hard to detect in curves.
Hence, ANN can comprehend the lack of lane marking detection. Moreover, the
results could be improved by using a different representation that suffers less from

a b

d e

c

Fig. 18.18 Comparison of the achieved availability of different ego-lane estimation models in
different scenarios. (a) Overall. (b) Highways. (c) Rural. (d) Urban. (e) Connection
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errors in the prediction and the ground truth acquisition. As a consequence, the
results could be used to improve the performance especially in curve scenarios.

18.7 Conclusion

In this work, we present two fusion concepts for ego-lane estimation by using
multiple sensors and neural networks. The first approach estimates for each source
a reliability value, which indicates whether the source is correct for the current
situation or not. Based on the predicted reliabilities, the fusion will prefer reliable
sources over unreliable sources, such as by giving greater weights to reliable
hypotheses or by excluding unreliable sources from the fusion. Instead of explicitly
estimating reliabilities, the second approach uses neural networks to directly
estimate the ego-lane. Thereby, the reliabilities are internally learned and encoded as
weights of the neurons. Compared to a standard road estimation approach from [1],
our approach can increase the availability by up to 5 percentage points.

In future work, we want to improve both fusion concepts by changing the net
structure and utilize different structures for different hypotheses and parameters
respectively. Additionally, a further improvement of the feature selection needs
to be done by comparing the performance of the same classifier using different
features. The direct ego-lane estimation performs slightly worse than the results
of other fusion strategies regarding the angle deviation and availability. However,
the performance in connection scenarios is better than all other fusion approaches.
For that reason, a possible use for ANNs would be to incorporate the estimation into
the fusion framework and improve the performance in connection scenarios. When
training ANNs, we found that the representation of the targets as an approximation
of a clothoid is not appropriate due to the large amplification of errors in the
estimation. Hence, a scalar field could be used instead, where the values above and
below a threshold represent the lane. Furthermore, we plan to improve both neural
network approaches by incorporating temporal information and using recurrent
neural networks. This can lead to more sufficient estimations in all scenarios.
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Chapter 19
Analytics and Quality in Medical
Encoding Systems

John Puentes, Laurent Lecornu, Clara Le Guillou, and Jean-Michel Cauvin

Abstract Medical practice support intends to provide important complementary
information for diagnosis by preprocessing voluminous data available on separate,
distributed, commonly noninteroperable applications of complex existing medical
information systems. Such technology is being investigated to support medical
encoding, which manually identifies groups of patients with equivalent diagnosis
to determine healthcare expenses, billing, and reimbursement. Medical encoding
is expensive, takes considerable time, and depends on multiple scattered and
heterogeneous data sources. This chapter summarizes some relevant approaches and
findings that illustrate how the considerations of information quality and analytics
technologies may enable to improve medical practice. Essential components of
a conceived medical encoding support system are described, followed by the
associated data analysis, information fusion, and information quality measurement.
Results show that it is possible to process, generate, and qualify pertinent medical
encoding information in this manner, meeting physicians’ requirements, making use
of data available in existing systems and clinical workflows.

Keywords Computerized decision aid · Medical encoding support · Information
analysis · Information fusion · Information quality

J. Puentes (�) · L. Lecornu
IMT Atlantique, Lab-STICC, Technopole Brest Iroise – CS 83818, Brest, France
e-mail: John.Puentes@imt-atlantique.fr; Laurent.Lecornu@imt-atlantique.fr

C. Le Guillou · J.-M. Cauvin
CHRU Brest, Medical Information Department, DIM - Hôpital de La Cavale Blanche, Boulevard
Tanguy Prigent, Brest, France
e-mail: clara.leguillou@chu-brest.fr; jean-michel.cauvin@chu-brest.fr

© Springer Nature Switzerland AG 2019
É. Bossé, G. L. Rogova (eds.), Information Quality in Information Fusion
and Decision Making, Information Fusion and Data Science,
https://doi.org/10.1007/978-3-030-03643-0_19

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03643-0_19&domain=pdf
mailto:John.Puentes@imt-atlantique.fr
mailto:Laurent.Lecornu@imt-atlantique.fr
mailto:clara.leguillou@chu-brest.fr
mailto:jean-michel.cauvin@chu-brest.fr
https://doi.org/10.1007/978-3-030-03643-0_19


456 J. Puentes et al.

19.1 Components of a Medical Practice Support System

Medical practice support systems have emerged out of the unsettled definition and
development of complex hospital information systems, rather inconsistent with
field reality. Historically, medical staffs have been constrained to use functionally
limited data and information processing applications implemented according to
a widespread proprietary development strategy. Consequently, medical practice
support tools search to enable diagnosis under the best viable conditions, making
accessible related medical multimedia data and information. These tools include
calculations based on extracted values, allowing the physician to interpret all those
elements before taking a decision or performing an action. Multiple detailed infor-
mation made available in this manner is expected to reduce manual data analysis
and handling, within an environment of isolated applications. Therefore, medical
practice support tools could enhance medical staff possibilities of action, by giving
access to preprocessed data and information, instead of manually searching to come
up with possible answers, when it becomes necessary to analyze huge data sets.

How can the integration of information and analytics technologies for medical
practice support, enable existing intricate information systems to become truly
adapted to users’ needs and field realities? Which is the interest and implication
of processing data, information, and quality, for medical practice support tools?
This chapter intends to provide some clues to answer these questions by means
of approaches conceived to cope with the complexity of medical information
exploitation. We describe contributions proposed to improve medical encoding
and to verify its quality with respect to a consensus of expert medical coders.
Presented works focus on support for the interpretation and use for decision-making
of voluminous medical encoding information. The developed approaches meet
specific physicians’ requirements in daily medical practice conditions, using open
architectures to enable further applications evolution. In the rest of this section,
the main elements of a medical practice support system are described, taking as
an example a medical encoding support system, before presenting in the next two
sections relevant processing, fusion, and quality evaluation approaches.

19.1.1 Medical Encoding Support

The primary objective of medical encoding is to identify groups of patients
with equivalent diagnosis, in order to determine the corresponding healthcare
expenses, billing, and reimbursement. Medical activities are thus being increasingly
evaluated at various levels of health organizations by means of encoded information.
Besides patient management, encoding relevance also affects epidemiologic, safety,
research, and health policies decisions [1]. Medical encoding assigns codes to define
care events that occurred during an inpatient stay. Codes represent [2] main and
secondary diagnoses, complications, and comorbidities, as well as primary and
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secondary procedures. Presently, medical encoding is carried out in two different
manual manners: by expert coders and by physicians. Expert coders produce lists
of codes that are considered to be exhaustive, without having additional patient
information, i.e., collected during an examination or follow-up. Physicians code
essential aspects of the care episodes having some knowledge of the specific
patient history. Physicians generate only a subset of the code list produced by
expert coders, because of their focus on current diseases, restricted awareness of
encoding guidelines, and reduced time to assign codes. In both cases, medical
encoding is expensive since human coders have to examine hundreds of candidate
codes in encoding references, along with scrutinizing the patient record, to define
the most appropriate code list. However, the pertinence of resulting code sets
depends strongly on the variable coders’ expertise, fluctuating between two types
of erroneous results [1]: under- or overencoding.

Furthermore, medical encoding is constrained by the intrinsic complexity of
having access to information required to accomplish it. Whereas data and infor-
mation sources are substantially scattered, software applications have a reduced or
inexistent interoperability. As a consequence, most of the information cannot be
used unless a concentrator collects and indexes it [3]. Figure 19.1 illustrates the
main information streams required for medical encoding, identified in a French
hospital information system (HIS). In this scheme, clinical activities are planned
and followed as movements in the permanent patient ID database, while results
and interpretations are stored in the hospital patient record, associated with the cor-
responding bills. Moreover, the PMSI (Programme de Médicalisation des Systèmes
d’Information in French) and decision modules play a key role, summarizing related
quantitative and standardized medical productivity information.

Fig. 19.1 Continuous and periodic hospital information streams necessary for medical encoding.
(Adapted from [3])
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Given the complexity of medical encoding, as well as its growing importance,
computer-assisted technology emerges as an alternative way to analyze available
patient data and information. A medical encoding support system intends to
automatically generate a list of most pertinent medical codes, from which human
coders can select in a more efficient manner the ones corresponding to a specific
inpatient stay. In the next subsections, we present a schematic description of such
a system based on published works, conceived, developed, and validated at the
university hospital CHRU Brest, France.

19.1.2 Architecture

To generate medical code lists, the encoding support system processes the out-
puts of six HIS sources: laboratory results, rules to link laboratory results and
diagnoses, previous discharge summaries, actuarial curves of codes chronicity,
current discharge summary, and knowledge about relations between procedural and
administrative parts. Depending on these information sources, three information
processing tools –analysis of laboratory results [3], previous codes analysis [4],
and probability analysis [5] – are used to generate semantic labels, estimation of
pertinent codes, or probabilities of codes (Fig. 19.2), respectively. These partial
results are aggregated to generate a unique list of ranked codes by considering their
complementary pertinence. The generated encoding support list is then examined by
the physician to select the most appropriate codes. Although additional HIS sources
such as detailed clinical reports were also available, tested information extraction
approaches were not adapted for encoding support.

Ground truth to verify the pertinence of encoding support quality was provided
by consensus of three expert coders who coded manually the same information
processed by the encoding system. Whereas the encoding system generated auto-
matically the corresponding lists of plausible codes in few seconds, several weeks
of analysis were necessary for the expert coders.

19.1.3 Inputs and Standards

Examined documents processed by the encoding system consist of laboratory
results, medical unit discharge summaries, administrative documents, and encoding
references. Standardized information about hospitalizations is collected in the med-
ical unit discharge summary (Fig. 19.3). Each medical unit that provided healthcare
during a patient stay, reports patient demographic data (age, sex), admission and
discharge dates, main and secondary diagnoses, a severity index, and associated
diagnosis codes, complemented by diagnostic and therapeutic procedure codes.

The CHRU Brest uses among others a general encoding reference based on the
International Statistical Classification of Diseases and Related Health Problems –
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Primary keys

Birth date

Sex

Medical unit

Admission date and
modalities

Discharge date and
modalities

Primary Diagnosis Secondary Diagnosis

Severity Simplified Index

List: Associated Diagnosis Codes, 1…N

List: Diagnostic and therapeutic procedure codes (1,…N)

Fig. 19.3 Elements of the medical unit discharge summary [3]

10th revision (ICD-10), compiled by the World Health Organization [7]. ICD-10
is used in numerous countries for registering morbidity and mortality causes and to
facilitate the organization of healthcare services. It contains nearly 17,000 entries for
symptoms, diseases, traumatisms, and other reasons to use health services, classified
in 22 chapters. Each diagnosis code is composed of a letter, followed by 2–4 digits.
Another encoding reference, the Common Classification of Medical Procedures
(CCMP) [8] is a French nomenclature that describes medical procedures, using
a code composed of four letters and three digits. Each letter denotes a part of
the technical procedure context. CCMP and ICD-10 form a hierarchical encoding
reference, consistent with medical knowledge, permitting to handle information at
different aggregate levels.

19.1.4 Outputs

Three intermediate outputs are obtained after processing the initial heterogeneous
input information (Fig. 19.2): semantic labels, scores of codes chronicity, and
probabilistic values. Using rules to link laboratory results and potential diagnoses,
the laboratory results analysis proposes codes of equivalent importance by using a
semantic label, for example, rare or often, previously defined by an expert. Since
some codes reappear when a chronic disease needs several hospital stays, analysis
of previous codes determines the set of relevant recurrent diagnosis codes as a
function of the time passed since their last occurrence. That enables to identify
for any given patient the most pertinent previously utilized codes, which can be
potentially applicable to the current stay. Finally, making use of a knowledge base
formed by probabilistic predictions of diagnosis codes depending on patient age,
sex, hospital stay length, diagnoses, and medical acts, the impact of these parameters
is determined for each individual case.
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These three intermediate outputs – semantic labels, scores of codes chronicity,
and probabilistic values – cannot be separately interpreted by the physician, making
necessary to generate a unique list of potential codes in order to select the most
appropriate codes. A ranked and contextualized list of suggested diagnoses codes is
generated by considering the events that took place during the patient hospital stay.
To this end, a fusion algorithm aggregates the three partial code lists produced by the
previously described methods by taking into account heterogeneity and complying
with the respective indicators of code relevance.

19.2 Analytics and Fusion

As described previously, three independent information processing approaches
handle documents stored in the HIS to produce medical codes by linking laboratory
results and potential diagnoses by means of semantic labels [3]; evaluating previ-
ously assigned codes to identify frequency patterns [4]; and analyzing probabilistic
relations between diagnoses codes and procedural parts of discharge summaries [5].
Partial heterogeneous information extracted by each method is subsequently inte-
grated to generate one list of codes per inpatient stay [9]. This section describes the
basic principles of the three information extraction approaches and the information
fusion.

19.2.1 Laboratory Results Analysis

Data corresponding to laboratory examinations and associated patient condition
are analyzed to define a subset of related diagnosis codes. The analysis relies on
the interaction of three modules [3]. First is a set of rules describing the patient
condition, the characteristics of relevant laboratory results, and proposing a set of
diagnosis codes for that specific data collection. Second is an alerts module designed
to notify a physician that the system has found a group of facts agreeing with a rule
applied to a specific patient case and enabling therefore to provide relevant coding.
An alert with a pertinence degree value is activated when a rule is satisfied. The third
is an interfaces management module designed to access the different data sources,
handling data heterogeneity and variability through time. Rules represent if-then
statements with one or several conditions and a conclusion that are achieved when
the conditions are satisfied. Conditions include a context to define the associated
data source.
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19.2.2 Previous Codes Analysis

The recurrence of diseases elements is analyzed to identify if previously existing
codes show unambiguous temporal occurrence patterns. It is assumed that a chronic
disease, likely to be described in some or all previous hospital stays, can be proposed
as a pertinent coding option for the current stay, depending on certain conditions [4].
Adapted actuarial survival models of codes are estimated on a reference database
of discharge summaries that represent millions of hospital stays during several
years. Actuarial survival models of codes are then used to estimate the recurrence
of diagnosis codes linked to chronic diseases. Calculated estimations constitute
a knowledge base of recurrence rates for each diagnosis code, depending on the
elapsed time since it was previously used. Additional knowledge represented by
codes assigned to the patient during the 2 years preceding the current hospital stay
is applied to construct the proposed list of related codes. Besides the ordered codes
and associated labels, results include precision and recall rates that define the code
importance.

Hence, coding of a new stay relies on diagnoses of all previous stays during
2 years. For that reason, all previous codes and associated delays (time between the
end of the last stay when the code appeared and the beginning of the current stay) are
included. Only codes having a minimal delay are selected to assign a reappearance
rate. If reappearance rates are higher than an experimentally determined threshold,
a ranked list of codes is proposed according to those results.

19.2.3 Probabilistic Analysis

Making use of a knowledge base extracted from a large database of anonymous
discharge summaries, codes are also predicted according to the probabilistic
relations between some fundamental healthcare variables. Collected probabilistic
predictions suggest diagnosis codes depending on patient age, sex, hospital stay
length, diagnoses, and medical acts. To reduce the number of combinations,
probabilities of diagnoses are grouped according to the impact of age, stay length,
diagnoses, and medical acts [5].

The probability of diagnosis calculated using the preceding elements considers
four information sources: the set of age, sex, and stay duration; the medical or func-
tional unit that provided healthcare; the medical procedures already encoded; and
already coded diagnoses. Conditional probabilities of each information source with
respect to the other three are calculated separately and combined linearly, applying
four weights that depend on the performance of each individual information source
(evaluated experimentally). The relevance of resulting proposed codes is indicated
by the corresponding final probability.
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19.2.4 Information Fusion

Lists of codes generated by the analysis of laboratory results, previous codes, and
probabilities are heterogeneous and represent three separate partial lists of suggested
codes and relevance values. A suitable information fusion method is, therefore,
necessary to obtain the code list generated by the medical encoding support
system [9]. A fusion by voting [10] counts whenever a code was suggested by the
previous information extraction methods. Since extracted information is likely to
be complementary, many codes obtain the same quantity of votes, implying that
information sources degree of credibility must be taken into account. Empirically,
when credibility is applied to improve codes ranking, it assigns the best prediction
scores to patterns of previously existing codes, followed by probabilities, and
laboratory results.

Another suitable fusion approach is to order proposed diagnosis codes according
to the different relevance values. Nevertheless, relevance values are also heteroge-
neous, and, therefore, a common base for the analysis is necessary. Code accuracy
is estimated to cope with this difficulty. It is defined as the ratio of the number
of times each code is chosen by the physician to the number of times the code
is proposed by the information extraction method. To reduce the uncertainty of
probability estimations, recall rates, and particularly semantic labels, the intrinsic
accuracy of each code is represented by a possibility value [11], enabling to
combine them. The accuracy of each information extraction method is examined
as a transformed possibilistic relevance (necessity/possibility pairs), to define an
experimental conversion table. Results are smoothed to achieve a monotonically
decreasing trend. This permits to cope with the problem of finding a monotonic
conversion function to transform relevance values, given that their range is divided
into accuracy intervals. Values are merged using a conventional fusion operator, e.g.,
the max operator.

To evaluate the performance of these two fusion methods, a sample of 1000
discharge summaries representing hospital stays of more than 24 h, having at least
two diagnosis codes and one medical procedure code, was used. Reference codes
were those produced by physicians for the same patients. Information retrieval
estimators – precision and recall – were applied to measure fusion results. Precision
is defined as the number of pertinent identified codes divided by the total number of
retrieved codes, and recall is defined as the number of pertinent identified codes
divided by the total number of known existing pertinent codes in the generated
list. Figure 19.4 shows the obtained precision and recall rates curves, depending on
the number of generated pertinent codes. Both information fusion methods propose
relatively the same codes in the first 15 ranks, confirming for the tested data set their
compared stability. However, the rank of a relevant diagnosis code may be increased,
if it is found by only one extraction method and has a low credibility factor.

While the highest precision is obtained by the probabilistic analysis, recall results
indicate that the two fusion approaches outperform the three partial information
extraction methods. Note that there are some particular differences related to
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Fig. 19.4 Evaluation of the precision (a) and recall (b) rates [9]

ranking disparities not revealed by these curves. To understand those differences,
a coding example is analyzed. Table 19.1 presents the coding of a hospital stay
made by a physician, and Table 19.2 presents the ordered lists of codes proposed by
each information fusion method. Both fusion methods propose the same 14 codes
and list one expected but not proposed (n.p.) code. Results of Table 19.2 show that,
as a consequence, the valid codes order is different: four codes, N18, Z49, Z94, and
D64, are placed at positions 1, 3, 5, and 6 by the possibilistic fusion and positions 1,
3, 10, and 5 by the vote fusion, respectively. These variations generate differences
not observed in Fig. 19.4, which have nevertheless an impact when the physician
uses the diagnosis coding support system because the order of proposed codes is
different.

Codes obtained from biological laboratory examinations have limited influence
on the final results, mainly because a condensed set of examinations not widely
representative of most known cases was used. It can also be observed that although
previous code analysis identifies a relatively smaller amount of proper codes, most
of these codes are relevant. In general, diagnosis coding results generated by both
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Table 19.1 Example of stay coding done by a physician [9]

Discharge summary ICD10 codes and label

D64 Other anemias
N18 Chronic kidney disease (CKD)
T86 Failure and rejection of transplanted organs and tissues
Z00 General examination and investigation of persons without complaint and reported

diagnosis
Z49 Encounter for care involving renal dialysis
Z94 Transplanted organ and tissue status

Table 19.2 Proposed coding (for the stay of Table 19.1) by the two fusion methods [9]

Possibilistic Vote
Proposed ICD10 codes and label Rank Value Rank Sources

D47 Other neoplasms of uncertain behavior of lymphoid,
hematopoietic, and related tissue

13 0.130 8 1

D64 Other anemias 6 0.632 5 1;2
D69 Purpura and other hemorrhagic conditions 8 0.437 6 1;3
E11 Type 2 diabetes mellitus 4 0.867 4 1;2
E79 Disorders of purine and pyrimidine metabolism 11 0.25 9 1
I10 Essential (primary) hypertension 12 0.25 12 2
I15 Secondary hypertension n.p. 15 2
I25 Chronic ischemic heart disease 14 0.12 13 2
K74 Fibrosis and cirrhosis of liver 9 0.388 7 1
N17 Acute renal failure 2 1.87 2 1;2;3
N18 Chronic kidney disease (CKD) 1 1.87 1 1;2;3
N99 Intraoperative and postprocedural complications and
disorders of genitourinary system, not elsewhere classified

7 0.5 n.p. 2;3

Y43 Primarily systemic agents adverse effect 15 0.1 14 2
Z49 Encounter for care involving renal dialysis 3 1.042 3 1;2
Z51 Encounter for other aftercare 10 0.25 11 2
Z94 Transplanted organ and tissue status 5 0.68 10 2

Sources: 1, Previous codes patterns; 2, Probabilistic relationships; 3, Biological results; n.p. not
proposed

information fusion methods are equivalent, albeit some particular differences that
make either one of the methods closer than the other to the expected code list.

19.3 Quality Evaluation

Since exploited information sources are heterogeneous, the encoding support output
is affected in various manners: inappropriate code ranking, missing codes, disper-
sion of correct codes among incorrect ones, and noise induced by long sequences
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of incorrect codes. Expert coders and physicians are able to rule out autonomously
most of the information heterogeneity consequences, applying learned heuristics
and/or having access to additional patient documents. Encoding support systems
cannot solve those problems in an equivalent manner, making necessary to measure
the information quality of each generated code list. This section describes the
approaches conceived to follow up the quality of the encoding support process and
to estimate the quality of automatically generated code lists.

19.3.1 Process Quality

Taking into account the complexity of a medical encoding support system and
the complementarity of its multiple interacting parts, it is necessary to go beyond
the simple unrelated estimation of separate data or information quality. To qualify
up to what point coding support was correctly accomplished, a methodology to
evaluate information quality was defined and validated [12]. It offers the possibility
to comply with the encoding support system evolution and to explain how changes
in coding support modules have an impact on the quality of coding results.

To characterize the pertinent quality dimensions, an adapted set of quality
criteria is determined for every basic component of the encoding support system.
Each component is then modeled by a quality transfer function (analog to a
transfer function in signal processing) that represents how the component processing
task affects information quality at a local level. The information quality of a
global process results from the aggregation of the calculated local quality transfer
functions. Since local quality transfer functions depend only on their respective
inputs and outputs, quality propagation through the system can be evaluated for
a static system configuration, as for any other configuration, regardless of data and
information heterogeneity.

The quality transfer function Qf provides the component’s output quality as a
relation of the input information (Iin) and its quality (Qin) as:

Qout = Qf (Iin,Qin) (19.1)

Since the notion of quality is multidimensional, the function Qf is also mul-
tidimensional. Input quality is evaluated using three criteria: accuracy (ratio of
the correct codes to the total number of codes), completeness (ratio of registered
codes to all the codes that could have been registered), and currency (percentage of
extracted codes that are up to date). The quality of components’ output is evaluated
by correctness (proportion of correct codes), completeness, and reliability (codes’
confidence degree). Figure 19.5 illustrates an example of the application of the
method to a particular data set on which the inputs of each processing module are
qualified in order to obtain the respective output quality.

The proposed method has the potential to identify faulty system components
from the quality point of view by permitting the verification of the local quality
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Fig. 19.5 Example of process quality evaluation. (Adapted from [12])

according to the application conditions. A considerable advantage is also that
changes or updates of processing system components do not imply a complete
additional analysis. Only the quality transfer function of the pertinent component
needs to be determined before calculating the whole system quality, abstracted
as the propagation of quality values from one component to another. Having an
estimation of the global process quality implies also the feasibility of comparing
system architectures.

19.3.2 Quality of Medical Coding Lists

A significant problem with medical encoding support systems is how to measure
the proposed code lists appropriateness in terms of fitness for use, i.e., quality,
according to the distribution of correct and incorrect codes along the list, the amount
of expected correct codes, and the variable list length. That information quality
measurement should assert the practical value of any code list in a manner suitable
to the adapted encoding practices of hospitals. Automatically generated lists of
codes represent nevertheless information with variable quality. Based on how expert
coders and physicians make use of computer-assisted medical encoding, a quality
measure was defined and validated to evaluate codes accuracy (A), dispersion (D),
and noise (N) in the whole generated list, independently of its content and length [6].

Expert coders and physicians first review the available inpatient stay documents.
Next, they study the corresponding code list generated by the encoding support
system by knowing from the documentation review how many diagnoses and
procedures should be coded. Since the proposed code list is formed by correct
and incorrect codes, a strategy is applied to make use of it. The whole list is
implicitly divided into three observation windows of variable lengths. Required
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correct codes should ideally be found in the first window, but if some or all expected
correct codes are not in that window, the second window is inspected. The third
window is partially or fully examined when correct codes are obviously still missing
after the second window inspection. These three observation windows are called
compactness (CW), dispersion (DW), and noise (NW) windows, respectively.

The number of correct codes found in the CW window defines the first compo-
nent of the encoding information quality measurement (IQ1). This accuracy value
(ACW) is calculated as the ratio of proper codes to the total amount of necessary
correct codes. In an equivalent manner, appropriate codes are identified in the DW to
define the ADW accuracy value with respect to the total amount of necessary correct
codes. Contrary to IQ1, the second component (IQ2) of the encoding information
quality measurement is altered by dispersion and noise according to usability. Also,
information quality IQ1varies in the interval [0,1] and information quality IQ2 is
within [−1,1], due to the combined influence of noise and dispersion. Usability
implies that the user should be able to simultaneously quantify the global quality and
identify each component IQ1 and IQ2. Both conditions are satisfied when drawing
associated quality values in a 2D representation space. As a result, the information
quality of a code list is fully represented by a single point within a normalized
triangular space (Fig. 19.6), partitioned by iso-quality lines (oblique downward lines
from left to right), on which the best global quality is at point (0, 1) and the worst
at point (−1, 0). Moreover, the model is suitable to examine and compare, by using
a unique scheme, the information quality of hundreds of code lists, showing their
practical value for encoding.

A significant finding of this quality model is the definition of iso-quality lines,
which represent all the points having the same global quality value, with different
quality components contributions. It depicts clearly the fact that a given quality
value can result from countless configurations of the quality factors. Besides, unlike
2D accuracy diagrams, the quality variation between two lists with the same correct
codes, but organized differently, can be detected in a simple manner along the iso-
quality lines.

19.4 Conclusion

The exponentially growing availability of numerous and varied technologies is both
demanding and stimulating for the future of medical practice support. This chapter
presented a medical encoding support system from the perspective of data analysis,
information fusion, and information quality, which is embedded in the process of
synthetizing lists of relevant codes to facilitate the work of human coders, making
use of data and information acquired and produced by a complex distributed medical
information system. Results suggest that the integration of information and analytics
technologies has a clear potential to make evolve existing systems, by creating
suitable functionalities adapted to users’ need and professional context realities.
Such progress does not require to modify existing systems but to be able to collect
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Fig. 19.6 Information quality points of code lists generated by the encoding support system and
corresponding density-level curves to define clusters of codes for the (a) traumatology, 198 lists,
and (b) obstetrics—141 lists clinic departments of the same hospital. (Adapted from [6])

relevant data and information, making accessible to the physician the necessary
information to support medical practice.

A current medical mindset transition from a resource-based to a results-based
culture entails a growing interest in medical practice decision support processes
of significant added benefit compatible with existing clinical workflows. That is
the case of the described system, which provides a considerable aid to simplify a
complex process by using the same elements as medical staffs. Otherwise, despite
the fact that physicians can be relatively tolerant to wrong information, quality
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evaluation is mandatory because of the heterogeneous and imperfect intrinsic nature
of medical data and information. Although quality evaluation of information fusion
systems is at its beginnings, the two proposed approaches to estimate the quality of
the whole process and generated code lists illustrate the difficulty of this question
and confirm the need to carry out such measurements, beyond the performance
evaluation of individual information processing algorithms.

We emphasize the advantages of information and analytics technology combi-
nation to blueprint medical practice support tools adapted to user needs, developed
by using flexible open technologies, and deployed according to physicians’ require-
ments. Addressing open development approaches, clinical workflow, and specific
field realities will enable the adapted conception of systems for highly specialized
medical tasks and services, expecting to resolve the chronic mismatch between
technology features and end-user acceptance.
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Chapter 20
Information Quality: The Nexus
of Actionable Intelligence

Marco Antonio Solano

Abstract Information quality (IQ) plays a critical role in the ability of a high-level
information fusion (HLIF) system of systems (SoS) to achieve actionable intelli-
gence (AI). Whereas the need for information quality management in traditional
information systems has been understood for some time, and its issues are fairly
well mitigated, the challenges pertaining to the relatively new field of high-level
information fusion remain significant. Principal and unique among these challenges
are the multitude of issues which arise from the inherent complexity in high-level
information fusion system of systems and which permeate throughout the various
interdependent phases of its life cycle. Actively managing information quality in
HLIF is essential in ensuring that they do not adversely impact decision-making and
the ability to determine the best course of action (COA). Accordingly, in an effort
to advance this critical facet of high-level information fusion, this chapter proposes
an end-to-end framework that enables (a) the development of an information quality
meta-model (IQMM), (b) the characterization of information quality elements, (c)
the assessment of impacts of information quality elements and their corresponding
mitigation, and (d) the integration of these aforementioned objectives within the
HILF processes and life cycle.

Keywords Information quality · Quality meta-model · Decision support ·
Actionable intelligence · Information fusion · Quality framework

20.1 Introduction

Information quality (IQ) originated more as a secondary consideration within
information systems (IS); that is, it was understood that there is an inherent
relevance, yet it rarely surfaced as a key concern until the results were not what
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was expected, or not within the norm. All too often, information quality was either
assumed or at best reacted upon, and, as such, not usually designed in.

Furthermore, there are tools available as “plug-ins” for traditional information
systems, such as an extract-transform-load (ETL) process in a database-centric
project, which provide capabilities that address several issues related to data
quality, e.g., missing values, duplicate values, inconsistent entries, and outliers.
More recently, master data management (MDM) solutions help the configuration
management of the enterprise’s critical data holdings. The access to generic tools
for information quality furthers the notion that there are sufficient after-the-fact
recourses available to deal with the ubiquitous information quality issues reactively.
Whereas these tools may be appropriate for certain aspects of information quality,
such as data marts and data warehouses, they represent a rather small sliver of
the comprehensive solution space and, as such and by themselves, may not be
relied upon to provide a holistic IQ approach for the significantly more complex
information quality inherent to HLIF system of systems (SoS). It is important to
notice that information quality measures must be executed throughout the entire
information exploitation chain to achieve viable actionable intelligence.

Figure 20.1 depicts this gap between traditional data quality (DQ) and informa-
tion quality (IQ), where IQ is a requisite for achieving actionable intelligence. Note
that IQ overlaps DQ instead of just picking up from where DQ left off. This overlap
denotes that IQ needs to be implemented for actionable intelligence from the outset,
and therefore, it may not be necessarily sufficient to execute mitigation in tandem,
but rather a distinct approach is needed.

The information fusion (IF) community, both academia and industry, have
conducted many strides in developing and evolving IF concepts, accommodating
the growing complexity, and creating pragmatic implementations. Even more impor-
tantly, despite often diverse priorities and expertise that underlie the domains of low-

Fig. 20.1 Bridging the gap between data quality (DQ) and information quality (IQ)
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and high-level fusion, the IF community has been able to propose, develop, and
maintain cohesive integrated frameworks to support end-to-end HLIF systems [21].

Given the current level of maturity achieved in the domain of information
fusion, it is now befitting, if not somewhat overdue, that a rigorous examination of
information quality be undertaken. The objective is to formally define frameworks
that incorporate and integrate the ability to mitigate information quality issues from
the outset and throughout the HLIF life cycle.

Accordingly, in an effort to advance this critical facet of high-level information
fusion, this chapter proposes an end-to-end framework that enables (a) the develop-
ment of an information quality meta-model, (b) the characterization of information
quality elements, (c) the assessment of impacts of information quality elements
and their corresponding mitigation, and (d) the integration of these aforementioned
objectives within the HILF processes and life cycle.

20.2 Information Quality and Information Fusion

As a result of the advances in the information fusion community, the view of the
original Joint Directors of Laboratories (JDL) Fusion model has evolved to include
and integrate additional considerations. A holistic JDL view currently includes
functionality for both low- and high-level fusion comprising Level 0 (raw data
processing, feature refinement), Level 1 (object refinement), Level 2 (situation
assessment), Level 3 (threat assessment), and Level 4 (process refinement) [22],
as well as advanced topics for user refinement (proposed Level 5) and mission
management (proposed Level 6) [3].

This succinct recapitulation of the fundamental JDL model is essential in
understanding the critical role that information quality plays within the high-level
information fusion (HLIF) domain.

20.2.1 Actionable Intelligence

By and large, actionable intelligence (AI) is the desired outcome of HLIF. Action-
able intelligence enables a decision-maker to formulate a course of action (COA),
i.e., it can be acted upon, usually with the intent of gaining an advantage, and
usually predicated on a scenario where all the desired information may not be
readily available, and the available information is imputed with various degrees of
uncertainty. The consequences of engaging in a course of action based on “wrong”
or “bad” information may vary significantly, from an inconvenient yet innocuous
temporary corporate embarrassment to the dire long-lasting repercussions of incit-
ing an international conflict.

This latter consequence is often referred to within the intelligence community
(IC) as an “intelligence failure”; it connotes a catastrophic series of events resulting
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from a decision which was based on flawed intelligence. “Intelligence errors are
factual inaccuracies in the analysis resulting from poor or missing data. Intelligence
failure is the systemic organizational surprise resulting from incorrect, missing,
discarded or inadequate hypothesis” [17].

Whereas arguably information quality may influence some of these aforemen-
tioned dynamics, e.g., the role a presentation style of the information results may
play in influencing the decision-maker [30], it is evident that information quality is
indeed a key contributing factor to the overall integrity of the resultant actionable
intelligence of a high-level information fusion system.

20.2.2 The Impetus for Information Quality in Information
Fusion

When juxtaposed, it becomes evident that HLIF is several orders of magnitude more
complex than traditional information systems, e.g., general business applications,
data marts, data warehouse, and to some degree, at the higher end of the information
systems spectrum, even the corporate-level decision support systems (DSS) and
business intelligence (BI) applications. Ostensibly, the latter exhibits primitive
parallels with information fusion systems. Accordingly, while existing information
quality management techniques and tools from information systems apply to some
facets of HLIF, by and large there are no corresponding mature solutions for most
of the intricate and numerous interdependent components that form an end-to-end
HILF system.

Moreover, a central property of HLIF is that the complexity of the end-to-end
system is greater than the sum of the complexity of all its interdependent yet
individual parts. This gives rise to questions such as how can the information quality
of the overall HLIF system be defined?”, let alone measured from the individual
heterogeneous constituent information quality elements.

From a cost-benefit perspective, the motivation for mitigating information quality
shortcomings in HILF systems becomes self-reinforcing when the gravity of the
potential impacts of failing to do so is taken into account. Unmitigated IQ issues
represent an inherent and unmanageable risk to achieving the objectives of an HLIF
SoS.

As information fusion is positioned for a breakthrough, given the advances in
auspicious technologies such as mobile and cloud computing, data analytics, sensor
management, and information security, it is opportune to undertake the systematic
resolution of the many vexing issues induced by information quality shortcomings.

Table 20.1 provides a set of information quality dimensions to help frame the
initial problem space and identify and characterize high-level system requirements.

It stands to reason that the initial dimensions assessment may exhibit a degree
of subjectivity of its own. Notwithstanding, its primary purpose is to enable the
comprehensive and holistic view of how information quality impacts the various



20 Information Quality: The Nexus of Actionable Intelligence 475

Table 20.1 Information quality dimensions for qualifying initial IQ concerns/requirements

Information Dimension/(Characteristic Abbreviation) Characteristic Name: Description
Information Quality Impact
(P) Primary: Information is the root cause of the quality issue at hand
(S) Secondary: Information itself is a secondary contributor, e.g., algorithm, process
Information Quality Scope
(T) Tactical: Pertaining a particular fusion level, e.g., L0, L1, L2, L3
(S) Strategic: Applicable throughout the fusion levels or life cycle
(B) Both: Impacting both tactical and strategic aspects of HILF
Information Quality Composition
(M) Monolithic: Information with homogeneous morphology
(H) Heterogeneous: Information comprising multiple phenomenologies
Information Quality Evaluation
(O) Objective: Information can be quantified through objective measures
(S) Subjective: Information may only be assessed through subjective characterization
(B) Both: Encompasses both objective and subjective measures and characterization

facets of HLIF. In turn, this categorization will allow for a systematic analysis and
development of an integrated approach to address IQ concerns.

Table 20.2 recapitulates representative HLIF information quality concerns col-
lated from existing research [4, 5, 7, 28–31] and also proposes additional candidates.
This list is by no means exhaustive, but the breadth of its scope does convey
the diverse expertise required to properly address them. Additionally, a systems
engineering methodology is adopted whereby the topics are presented as HILF
system requirements. These requirements have been qualified along four dimensions
to provide a richer context with which to analyze them and their impact on
the overall HLIF system and to help elicit additional information quality-related
concerns. These dimensions are as follows:

This representative list of requirements underscores the critical role that informa-
tion quality plays in the overall HILF system, for example, how it drives accurate,
precise, and reliable actionable intelligence.

20.2.3 The Need for an Integrated and Holistic Approach

Whereas a traditional information system may architecturally be described as a
system, with all its design, development, and implementation rigor and processes
appertaining, HLIF is more aptly described as a system-of-systems.

The implication being that the inherent complexity of a SoS is orders of
magnitude greater, and as such it is imperative to undertake a systematic and
integrated approach to managing IQ concerns throughout the HLIF life cycle.

Accordingly, it is suitable that the disciplines systems engineering (SE) and sys-
tems architecture (SA) be leveraged as a central approach with which to frame the
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problem space of IQ in HLIF SoS and formulate its corresponding solution space.
Both SE and SA disciplines provide the proven systematic approach and ability to
draw from and integrate the multidisciplinary expertise required to properly manage
the intricate aspects of information quality in high-level information fusion system-
of-systems.

In this vein, the following HLIF IQ tenets are proposed. These two architecture
principles (APs) combined provide simple yet powerful complementary perspec-
tives for managing information quality concerns:

• Information quality must be fit for purpose.
• Information quality is enabled by managing information as an asset.

Fit for purpose [10] incorporates IQ considerations with respect to achieving the
objective of an HLIF, i.e., actionable intelligence, by enabling a top-down analysis.
That is, fit for purpose is based on the decision-maker needs. Another key concept
associated with fit for purpose is to establish a threshold that represents what is good
enough for a particular mission; i.e., it ties with a customer’s measures of effective-
ness (MOE), which flow down to the system of systems measures of performance
(MOP), key performance parameters (KPPs), and technical performance measures
(TPMs) [26].

The information as an asset architecture principle [13] incorporates IQ consid-
erations as a key architectural building block with which to synthesize a robust
bottoms-up design for HLIF system of systems. Information as an asset is essential
given the core value of information as a resource and its role in decision-making.
Furthermore, this is a key principle upon which information management roles, e.g.,
information custodian and information owner, should be considered and used to
dovetail with information governance.

These high-level and low-level perspectives are integrated with the systematic
and iterative methods of (a) characterizing the IQ problem space, (b) assessing
the impact of IQ on achieving optimal actionable intelligence, (c) providing a
corresponding solution space comprising tools to mitigate the impacts, and (d)
integrating these steps within the HLIF life cycle.

In contrast with traditional information systems, where a reactive IQ approach
is often good enough, HLIF SoS, due to its highly iterative nature and cascade
effects of propagating IQ issues in tandem with processing and algorithm execution,
means that no amount of ex post facto IQ mitigation can properly address the IQ
deficiencies introduced in upstream processes.

As mentioned by Hall et al. [17], description of fusion sensors and downstream
processing alone cannot correct for upstream sensor data errors. More importantly,
Hall et al. quantify that the combination of marginal sensor performance will
not yield an improved result. The implication is that IQ will only be effective if
proactively addressed and accordingly cannot be bolted on to a system, but rather
should be designed in.

Figure 20.2 depicts the proposed information quality approach to optimize
actionable intelligence in high-level information fusion system of systems. It
leverages formal systems engineering and architecture concepts and is requirements
driven.
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Fig. 20.2 Strategic approach for an information quality framework in HLIF SoS

Decision-makers use actionable intelligence to determine a course of action
(COA). Multidisciplinary eclectic teams participate in systems engineering, archi-
tecture, and governance functions.

20.3 Concepts and Primitives: Outlining an IQ Meta-model

Information quality is a subdomain of high-level information fusion; as such, it
requires that a common ground be established whereby its domain scope, which
is composed of the corresponding problem space and solution space, may be fully
qualified.

The problem space is defined as the comprehensive set of elements, e.g., topics,
items, concerns, and requirements, that exist in a domain and which fully identify,
qualify, and quantify the problems to be solved and, accordingly, for which a
solution must be formulated.

The solution space is defined a set of enablers comprising the architecture,
processes, tools, and solutions, which provide the requisite remedies to address and
manage the problem space.

Consequently, as a prerequisite to embarking on a holistic systematic approach
to resolving IQ challenges in HLIF, the terms, definitions and concepts, as well as
the implication of these should be developed and defined first. An added advantage
of this undertaking is that it also elicits perspectives that help frame the context of
IQ within the various complex facets of an HLIF SoS that would otherwise not be
apparent [18].
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Ultimately, the intent of this effort is to aid in developing an HLIF IQ meta-model
(IQMM) that will help built a comprehensive framework to analyze, create rules,
set up constraints, and generate models applicable to the IQ problem and solution
spaces.

20.3.1 Key Terms and Definitions

A succinct exploration of literature from outset of the first information management
systems to present-day complex decision support systems will yield the genesis of
many information- and information quality-related concepts and terms.

Although many of these definitions may be useful and extend to the domain of
information fusion, it is advantageous that a specific vernacular be developed with
which to clearly articulate the problem and solution space particular to the HLIF
domain.

Figure 20.3 places the terms and concepts in context of the high-level information
fusion system-of-systems domain dynamics. A simplified input-process-output
(IPO) view is used to depict how information is exploited throughout the iterative
Level 0 to Level 6 information fusion cycles – highlighted by the light blue flow and
feedback connections. Externalities may interact with the HILF as well as with the
key stakeholder: the decision-marker highlighted by the gray dashed connectors.
Information quality permeates throughout the HILF life cycle, shown in the solid
dark-blue connectors; the dashed dark blue line indicates the critical role IQ plays
in the overall mission success.

The terms and definitions corresponding to the headings presented in the
following tables (Tables 20.3, 20.4, and 20.5) are mapped to the components

Fig. 20.3 Genesis of an IQ meta-model: placing terms in context of the HLIF domain
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Table 20.3 HLIF information quality subdomain-related terms and concepts (Part I)

A Input: Information Characterization

A.1 Sources
No. (Context Qualifier) Term < Alternative Term > [example]: Definition
1 (Sensor/Input) Phenomenology: A sensor’s (or more generically, an information

collection mechanism) inherent capability to collect and characterize information across
a specific phenomenology. Analogous to how humans perceive their surroundings, e.g.,
touch, sight, sound, taste, smell. Examples of sensors collection modalities include radar,
electro-optical, biometrics, multispectral, and infrared. Information collected via
specialized sensors is by and large the purview of low-level fusion. However, the
end-to-end fusion process that is part of HLIF SoS includes and extends these data
concerns

2 Collection discipline: These are specialized collections types with methods and means
honed to gather information along a highly focused area of concern; usually around
which there is an underlying community of interest (COI) subject matter experts (SMEs)
with specific domain skills and knowledge. Examples are open source intelligence
(OSINT), imagery intelligence (IMINT), signals intelligence (SIGINT), geospatial
intelligence (GEOINT), communications intelligence (COMINT), and moving objects
intelligence (MOVINT). A sensor and its underlying phenomenology are usually
designed with the objective of collecting information along one of these specialized
collection disciplines

3 (Application) Domain: Specialized project, business, or organizational focus area for an
information fusion SoS, e.g., defense, medical, transportation, marine biology, space
exploration

4 Transdimensional information category: A high-level coarse categorization of
information into (a) geospatial, (b) temporal, and (c) semantic (everything else not spatial
or temporal) vectors. A multidimensional, i.e., 4 (space + time) + n (semantic features),
framework which places any object whether real or abstract, simple or complex
(multipart compound) in a space-time reference with all its semantic attributes fully
characterized. The utility of this model is that it enables the abstraction of “objects” in a
real-world space-time model to analyze its spatial-temporal dynamics and semantic
changes within a spatial-temporal framework

A.2 Capture/Store/Representation
No. (Context Qualifier) Term < Alternative Term>: Definition
5 Information set: <Table> collection of objects. An information set comprises the

collection of information elements of like-attributes and properties that are cohesively
managed (e.g., stored, updated) or processed through an algorithm. An example is an
information set representing a company’s employees, containing the names (attributes)
with the corresponding properties (e.g., string) in a specific format (e.g., relational)

6 (Information) Object: <Row/Tupple> [e.g., person]: lowest level of granularity, i.e., an
information items, entry. An object comprises properties (i.e., attributes/features that
characterizes it). An object is analogous to a “row” of a table in an RDBMS

7 (Object) Feature: <Column/Attribute> [e.g., person:age] describes the attributes or
characteristics of the information. Used for qualifying an information object and its
properties (e.g., name, string, valid values, range) equivalent to a column in a database
table

8 (Feature) Property < Type > [e.g., person:age:number]: Information object features have
properties which define their characteristics, e.g., string, number, integer, float. This
concept is key in IQ as it pertains to IQ issues which arise from storing (including
precision), algorithm efficiency, and especially interoperability

(continued)
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Table 20.3 (continued)

A Input: Information Characterization

9 (Property) Format [e.g., person:age:number:Integer (0–140)]: An extension to property
which characterizes the representation, internal or external of the data, e.g., property:
numeric, format: integer32, float; property: string, format: alphanumeric (A/N) with all
lower caps, may use regular expressions, e.g., [a-z][0–9], meaning all lowercase characters
and digits zero through nine with no special characters allowed. Useful for data cleansing
operations to ensure that data complies with established formats and used for data
transformations, e.g., feature: birthday, property: date, format DD/MM/YY to
YYYY-MM-DD

10 (Information Set) Morphology: Related to the form, format, structure of data; e.g., the
same data may be represented as text, binary, relational, XML, RDF etc. The same element
(e.g., “birthday” represented as a string or as a specialized “date” property). This also
includes encoding such as used to represent text in ASCII or EBCDIC (an older encoding,
yet still in use, which may cause conversion information quality issues)

11 (Information Set) Type/Format: Akin to encoding, an information set type is associated
with its underlying storage, encoding, and access representation format. Information set
types include (a) audio (e.g., *.wav, *.mp3, *.aiff), (b) imagery (e.g., *.nitf, *.jpeg, *.tiff,
*.bmp), (c) video (e.g.,*. avi, *.flv, *.wmv, *.mp4, *.mov), (d) structured and (e)
unstructured information (e.g., *.ppt, *.doc, *.pdf), (f) relational, and (g) geospatial. For
example, audio may include .wav, mpeg. It is common to use these information types as is
(e.g., listen to a voice track or process them for specific words or to automatically generate
a transcript). Likewise, imagery may be exploited to generate objects via for example,
feature extraction algorithms such as buildings and cars and motion imagery, that is, video,
to generate tracks from moving objects. Additionally, central to information quality, is that
these types of data (i.e., their formats) are often further categorized by their compression
characteristics. This may have a significant impact on algorithm processing and the ability
to generate accurate and precise features as well as directly impact on information quality
of the output of an algorithm

12 (Information Set) Characteristic: Related to information set type, but a high-level
categorization for otherwise nondescript data set characteristics, for example, (a) Raw:
usually a proprietary output format of a level 0/1 collection from a sensor or device; e.g.,
DSLR cameras may capture images in a raw format, as a staging process, or prior to
converting the data to a standard format for further downstream processing or exploitation.
(b) Unstructured: Information that has no inherent or explicit morphology, e.g., text data.
Various information elements may be included in unstructured data, which is then required
to be mined or processed to extract objects and features. However, some algorithms allow
the native exploitation of unstructured data such as support vector machines for automatic
categorization of documents, e.g., PDF, MS Word. (c) Homogeneous: A collection of
commonly formatted information sets. By and large, information in data warehouses and
data marts or in traditional database management systems may represent various
“types”/“entities” of information, but are represented fairly homogenously, e.g., stored in
an RDBMS, which allows it to be managed in a common way. (d) Heterogeneous: A
collection of diverse information sets, both morphologically and endemically (e.g.,
categorized by different phenomenologies (radar, electro-optical) or representation types
(audio, video, text, binary, geospatial). A characteristic of heterogeneous information is
that they are usually the domain of low-level fusion, i.e., object refinement, feature
refinement, and require post-processing before they may be able to be comingled or fused
with other types of data. (e) Information dimensionality: In machine learning and
statistics, dimensionality reduction is the process of reducing the number of random
variables under consideration by obtaining a set of principal variables. It can be divided
into feature selection and feature extraction. An information set with numerous features/
attributes may be characterized as a high-dimensional information set; certain algorithms
may be adversely impacted by high dimensionality, and consequently IQ may suffer
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Table 20.4 HLIF information quality subdomain-related terms and concepts (Part II)

B. Process: information manipulation and actions

No. (Context Qualifier) Term < Alternative Term > [example]: Definition
13 Information at rest: Information that is in a quiescent state, either stored as a source of

reference or staged for subsequent processing. Information at rest may have specific
related IQ requirements

14 Information in motion: Information that is actively being processed as in by an
algorithm, or manipulated as in an ETL process, or transferred either internally between
and among processes or fusion phases, or externally with other departments, or
organizations, either being ingested or being disseminated. Information actively being
read as input from various sources or written as output to various sources

15 (Information) Mutation: Changes in data characteristics as it undergoes transformation
related to data preparation, data algorithms, data evolution, during either processing, data
in motion, or exploitation. A key facet of IQ that is often overlooked and requires special
IQ strategies to ensure that information is not degraded throughout the fusion life cycle

16 (Information) Processing: Any action undertaking where information is input and which
results in either (a) the same information being output in different formats,
morphologies, i.e., transformed, or (b) new information being generated, e.g., based on
an algorithm report, or (c) where information is being ingested or transferred, whereby
no change in either format or morphology is occurring, but rather data is “moved” from
one point to another

17 (Information) Exploitation: The ability to infer, compute, or generate “additional”
information or characterize information by examination or algorithmic processing, either
simple or complex. This is the de facto purview of an information fusion system, as
information is exploited throughout the different and iterative fusion levels via, e.g.,
enrichment, combination, fusion, recombination, and algorithmic processing

18 (Information) Pedigree < lineage>: Metadata about the information’s source, genesis, or
origin. It is considered a subset of metadata that is specifically maintained for the
purpose of documenting actions and impacts to the information as it moved (information
in motion, information mutation) throughout the processing chain, e.g., algorithms, data
profiling, transformation, migration, dissemination. This information is a key enabler to
improving IQ as it allows tracing to a point or process in time or life cycle, where the IQ
issue was likely introduced, thereby identifying the root cause and enabling IQ mitigation

depicted in the previous figure, namely input, process, output, externalities, and IQ
management and resolution, respectively.

This extensive list of terms and definitions serves as (i) a draft proposal to be
reviewed by the HLIF IQ community of interest in order to establish a common
vernacular and a reference IQMM and (ii) to provide the requisite context to
understand the concepts explored throughout this writing.

Table 20.6 captures the impact of externalities on an HLIF SoS; externalities
represent a key, yet often under-considered dimension of information quality.
Stakeholders often set measures of effectiveness based on strategic and tactical
externalities.

A course of action should be set based on the dynamics of externalities, and
in turn, the implication of the externalities should directly set information quality
parameters for risk, relevance, urgency, and cost-benefit trade-offs.
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Table 20.5 HLIF information quality subdomain-related terms and concepts (Part III)

C. Output: strategic results and activities

No. (Context Qualifier) Term < Alternative Term>: Definition
19 Actionable intelligence: Strategic and tactical information that is generated from various

information collections and processed in such a way that enables a decision-maker to
undertake an action that will lead to an advantageous outcome from the decision-maker’s
perspective

20 Course of action: A prescribed set of actions (steps) predicated on actionable
intelligence that enables achieving the objectives as set forth by the decision-maker

21 Decision-making framework: A model presuming a rational approach, vis-à-vis
intuitive approach, whereby the internal and external forces and dynamics, including the
cognitive processes of the stakeholders, especially those innate to the decision-maker or
the collective ones of the decision-making team, play a role in and influence the selection
of a particular course of action from among several alternative possibilities.
Decision-making frameworks in HLIF include models such as observe-orient-decide-act
(OODA)

Table 20.6 HLIF information quality subdomain-related terms and concepts (Part IV)

D. Externalities: external forces, dependencies, and interdependencies

No. (Context Qualifier) Term < Alternative Term>: Definition
22 Compliance: Regulatory, policies, which may affect various facets of information

management, e.g. dissemination, security, standards
23 Macroeconomics: Large-scale economic factors, usually at the national or global level,

e.g., interest rates, trade, productivity. Whereas these considerations do not have a direct
impact on the design or operation of an HLIF, macroeconomic factors may influence the
stakeholders, and, accordingly, may alter requirements for, e.g., MOEs and MOPs, and,
accordingly, may alter the thresholds or risk and cost-benefit analysis of actionable
intelligence and constrict a course of action

24 Natural and environmental: Considerations for resiliency, disaster recovery, fail-over.
A strategic architectural consideration may drive the selection of particular deployment
regions, as in, e.g., cloud data center selections

25 Interorganizational: Considerations for interface control documents (ICD), access
control, e.g., identity and access management architecture, interoperability, information
lineage, and provenance, including establishing authoritative sources and information
jurisdiction

26 Geopolitical: National and transnational factors, including dynamics which may result in
limited or denied access to information and dynamics which may result in conflict and
directly drive the urgency of actionable intelligence and create a higher risk and
consequence for a given course of action

Table 20.7 lies at the heart of describing the IQ-specific problem and corre-
sponding solution spaces. Outlining a granular meta-model will provide the greatest
flexibility in analyzing and developing mitigation measures that align with the HLIF
objectives.

The dichotomy of defining a general IQ framework and a domain-specific one
lies at the heart of striking a balance between reaching a level that provides the
broadest utility for many domains and the level that provides the deepest depth of
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Table 20.7 HLIF information quality subdomain-related terms and concepts (Part V)

E. Information Quality: Analysis, Management, and Remediation

No. (Context Qualifier) Term < Alternative Term>: Definition
27 Information quality: Inherent or otherwise externalities-driven characteristics

associated with information that is collected, stored, migrated, created, processed, and
disseminated or produced and consumed in any fashion throughout the HILF SoS life
cycle that will have a primary or secondary impact on actionable intelligence, the
decision-making framework, and the ability to generate a corresponding optimal course
of action

28 Information quality concern: An information quality-related requirement. A
quality-related issue in the problem space, which requires a corresponding mitigation or
resolution in the solution space. Quality concerns are considered to be at the strategic
level, and they may be grouped in dimensions to help categorization. An initial set of IQ
concerns is presented in Table 20.2

29 Information quality dimension:
Strategic concerns that help categorized IQ concerns as they relate to HILF
characteristics. Dimensions tie or groups IQ elements or IQ vectors to specific facets of a
HILF SoS, e.g., the aforementioned dimensions of impact, scope, composition, and
evaluation referenced in Table 20.1. A specific view, contextual perspective, topic, or
concern related to HILF SoS IQ from which information quality elements or vectors may
be elicited. Dimensions may be general or domain specific and may overlap. Identifying
information dimensions is a useful way of eliciting IQ-related requirements. IQ
dimensions may comprise IQ vectors, which in turn comprise IQ elements, but the
association between IQ dimensions and IQ vectors is not as coupled, i.e., hierarchical, as
between IQ vectors and IQ elements

30 Information quality vector: A related set of IQ elements; a logically cohesive grouping
of IQ elements. IQ vectors may have commonalities among the element properties, their
impact to the HLIF, and may be mitigated with similar approaches

31 Information quality element: A specific characteristic of an information quality
concern that may impact actionable intelligence or a course of action. The lowest level
(granular, atomic) characteristic of an information quality concern that is to be managed.
IQ elements are addressed by specific IQ resolutions. Hierarchically they are defined as
IQ dimension::IQ vector::IQ element

32 Information quality taxonomy: The hierarchical organization (tree-like structure) of IQ
elements, vectors, and dimensions. The scheme within which IQ elements may be
systematically classified (e.g., element properties) and categorized (e.g., IQ vectors)

33 Information quality ontology: A set of concepts, categories, and properties that qualify
the relationships among IQ elements, IQ vectors, and IQ dimensions. It helps ascribe key
dynamic interdependencies between and among constituent IQ elements that may not be
described using solely a hierarchy in order to determine strategic and tactical mitigation
approaches

34 Quality attributes: Quality attributes are the overall factors that affect runtime behavior,
system design, and user experience. They represent areas of concern that have the
potential for application-wide impact across layers and tiers. Some of these attributes are
related to the overall system design, while others are specific to runtime, design time, or
user-centric issues. The extent to which the application possesses a desired combination
of quality attributes such as usability, performance, reliability, performance, scalability,
availability, and security indicates the success of the design and the overall quality of the
software application. They are usually architecturally significant requirements that
demand the architects’ attention

(continued)
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Table 20.7 (continued)

E. Information Quality: Analysis, Management, and Remediation

35 Quality impact assessment: The qualification or quantification of an impact that a
particular IQ vector or element may have on the overall IQ objectives or targets/goals.
Mitigation and resolution of impacts directly correlate to mission success and fit for
purpose as set by requirements

36 Quality objectives: Strategic in nature, based on MOEs or equivalent
37 Quality targets < Goals>: Metrics, MOPs, TPMs, SLAs, or equivalents
38 Quality process: Any of a series of individual or interdependent IQ-related process,

running in parallel or in tandem, such as analyzing, monitoring, reporting, and
controlling quality of processes in the life cycle of an HLIF

39 Information quality governance: A body with the authority to establish policies and
enforcing them with regard to planning, monitoring, and managing information assets

40 Information contamination: Propagation of information quality degradation from one
element or vector to another due to intermingling, aggregation, processing, and feedback
loops

41 Quality mitigation: A process to control quality via correction techniques. Comprises
quality remediation and quality resolution. Intended to be used as a general term, i.e., not
pertaining to a particular level of granularity of an IQ concern or issue. Quality
mitigation may apply loosely to IQ dimensions, vectors, or elements

42 Quality remediation: A strategic IQ mitigation technique, as it may be applied
specifically to an IQ to vector. A remediation is descriptive in nature. The full context is
that IQ vectors have corresponding quality remediation approaches

43 Quality resolution: A tactical and very specific solution ascribed to an IQ element, i.e.,
for a specific scenario (including application). A specific quality resolution for one
scenario of the same information may not be applicable or transferable to another
scenario. Quality resolution is prescriptive in nature. The full context is that IQ elements
have corresponding quality resolutions

knowledge to be directly applicable to a specific domain, e.g., defense. Therefore,
this work strives to develop a multi-domain framework with defense domain-
specific examples. Additionally, the intent is to generate an HLIF IQ vernacular,
and only leverage the quality assurance/quality control (QA/QC) lexicon from
traditional quality management where directly pertinent and useful, and avoid
overloading these existing terms whenever and wherever possible.

20.3.2 Strategic Implications

Following is an expansion of a selected set of the aforementioned terms and
concepts and their corresponding implication for information quality in HLIF SoS.
These definitions enable a methodical analysis of the pertinent IQ considerations
and facilitate their categorization within the problem and solution space and further
the IQMM.
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20.3.2.1 Actionable Intelligence

The key goal of actionable intelligence (AI) is to ensure that the decision-maker
has access to the best actionable intelligence. This implies in part that AI should be
accurate and precise. It is clear that these objectives can be traced to information
quality concerns, such as the granularity or resolution of information sets and the
predictive accuracy of forensic and predictive algorithms used. However, there
are more subtleties involved, such as that information needs to be relevant and
especially timely.

Information relevancy may drive several facets of IQ in HLIF such as the need to
manage the collection of information (quantity and type) and to understand which
information is actually contributing to the accuracy and precision of forensic and
predictive algorithms.

Actionable intelligence is perishable, meaning it expires. Once AI is made
available, it is only valid for a period of time, after which its value, or ability to
act upon, degrades until it is no longer viable. This is especially true in scenarios
where decision-makers are evaluating a course of action (COA) against an opponent
or adversary. This is due to the fact that an adversary is actively engaging in
countermeasures which may include compromising the integrity of the information
or subverting the COA. This drives a significant number of IQ issues that need
to be taken into consideration and correspondingly mitigated. Externalities, in
general, influence the context of AI and the evaluation of COAs. It is recommended
that actionable intelligence, and the corresponding course of action, take into
consideration the dynamic nature brought about by an adversarial scenario [9, 37].

20.3.2.2 The Broader Context of Decision-Making

To complement the dynamics of AI and COA framed in the context of decision-
making, two additional concepts are included. First, to represent the agility of the
decision-making process, Boyd’s observe-orient-decide-act (OODA) is leveraged.
This decision model captures the agility requirements of the decision-making
process which can then be mapped and integrated with the HLIF JDL-based model.
It is considered advantageous to have the capability to execute the OODA loop more
expeditiously than one’s adversary.

This is often referenced as closing the OODA loop and can be a key to deter-
mining IQ-related measures of effectiveness (operational measures of success, i.e.,
achieving the mission operational objectives), measures of performance (measures
which characterize physical or functional attributes that need to be met to achieve
MOEs), key performance parameters (critical system capabilities that must be
met for a system to achieve its operational goals), and technical performance
measures (measures used to assess a design or component capability, enables the
architecture components to be evaluated for compliance with requirements, and
enables the ability to assess technical performance risk). Performance requirements
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are usually divided into objective and threshold, representing desired performance
and minimum required performance, respectively.

A second resource is a threat assessment quantification model based on capa-
bility, intent, and opportunity (COI) of an opponent [34]. The COI model helps
define the information collection requirements and corresponding IQ concerns for
its three information vectors, namely, capability (e.g., weapons, skills), intent (e.g.,
political climate), and opportunity (e.g., profiles for potential location, time, target,
and victims). These two models in conjunction with the AI and COA considerations
provide a rich source for identifying and even quantifying IQ needs.

Accordingly, in an HLIF SoS, information quality is directly or indirectly
correlated to the extent it influences and partakes in the decision-making process
and its results, and as such, several decision-making frameworks that apply to
information fusion should be leveraged, e.g., Blasch et al. cognitive OODA [5].

20.3.3 Genesis of an IQ Meta-model: An Initial Proposal

Figure 20.4 depicts a proposed information quality meta-model (IQMM). This
IQMM only covers a selected portion of the concepts and terms presented hitherto.
The objective is to use this model as an enabler to document and help analyze
the domain space. As the model is enriched throughout additional revisions and
contributions from the information fusion community, it can also serve as a platform
to exchange ideas and critiques that will help mature the IQ research. A meta-
model promotes the organized understanding of a domain space, by capturing its
primitives (fundamental concepts and terms, i.e., building blocks) and framing
them with rules, constrains, and relationships. The development of an information
quality meta-model enables the systematic analysis of the problem space and the
corresponding synthesis of the solution space and is the cornerstone to developing
a comprehensive ontology.

20.4 Identifying, Characterizing, and Organizing IQ

Identifying the key IQ elements in the domain of interest is arguably the first step to
methodically address information quality shortcomings in an HLIF SoS. The broad
nature of the applicability of information fusion to various domains, e.g., defense,
medical, and transportation, will invariably result in the overloading information
quality terms.

By overloading, it is meant that a quality element may be ambiguous due to its
meaning being contingent on its usage context. For example, the quality concern
of “integrity” may mean “consistency” or “completeness” in one context, yet in
the context of information security, it means that information should not be altered,
either by error or malice.
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Fig. 20.4 Initial HLIF SoS information quality meta-model

Consequently, it is unlikely that there exists a single and absolute ontology
that perfectly describes the problem and solution space for all domains. Nor
should a single IQ ontology be necessarily desirable, due to its inherent monolithic
implementation and respective lack of flexibility, which would make it a suboptimal
solution, especially for an HLIF SoS which may span various domains. The use of
Namespaces is recommended to characterize IQ elements within a specific domain.
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Table 20.8 Characterizing information quality elements

Characterization Property Description

Objective Judgment and personal bias do not significantly alter the characterization.
Measurable (O|M): Objectively and numerically measured or calculated,

e.g., speed, length, time, distance
Classifiable (O|C): Objectively categorized, e.g., color, blue, red

Subjective Judgment and personal bias may significantly alter the characterization
Quantifiable (S|Q): Has an inherent quantifiable aspect but cannot be directly

measured or calculated, e.g., small, large, medium; fast, slow.
However, values may be subjectively attributed to the
classifications and operations on them may still preserve the
initial logic, e.g., adding two or more small objects

Classifiable (S|C): Does not have an inherent quantifiable aspect and cannot
be consistently categorized. Must use subjective descriptors to
categorize, e.g., trustworthiness, competency, viability,
completeness, secure. Values may be subjectively attributed and
operations among these may lack traditional logic, making it
rather ambiguous to infer anything for the resultant operation,
e.g., what does it mean to aggregate something or someone with
medium trustworthiness to something or someone semi-capable?

20.4.1 Information Quality Elements: Characterization

Attributes characterize information quality elements (IQEs) comparable to how
information features::properties characterize information objects; e.g., age::number
and name::string characterize data object “person.” A key concern in IQ is the
ability to recombine (among disparate types), aggregate (among levels or layers
of granularity), and propagate (throughout information exploitation processes)
information quality measures.

Table 20.8 outlines proposed ways for systematically characterizing IQEs with
the objective of facilitating IQ impact analysis.

The utility of this approach is to provide a framework for developing common
denominators with which to perform meaningful numerical operation IQEs. By
meaningful it is meant that the numerical operation will yield a logical, repeatable,
and useful result which can be acted upon.

20.4.2 Eliciting IQEs: Using Dimensions – Selected Examples

To aid in the process of identifying IQ elements, the concepts presented in Sect. 20.3
Concepts and Primitives: Outlining an IQ Meta-Model are revisited and expounded
to identify dimensions. An IQ dimension affords a unique perspective or vantage
point of the HLIF SoS that helps in eliciting quality concerns and organizing them
into information quality vectors and decomposing these into information quality
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elements. This process entails both a top-down and bottoms-up approach and should
be iterated until the desired level of granularity and fidelity is achieved.

The objective is to leverage and be able to dovetail with frameworks for
information quality ontologies such as Rogova and Bossé’ Ontology of Quality of
Information Context [30], Chatschik et al. Quality of Information [2], Costa et al.
URREF ontology [7], and Blasch et al. measures of effectiveness [4].

Using dimensions related to IQ functional requirements, and leveraging the pre-
vious concept of namespacing, will facilitate the process of combining taxonomies
and ontologies [19, 24], thereby enriching the IQ body of work.

20.4.2.1 Quality Attributes: A System-of-Systems Perspective

Quality attributes (QAs) do not directly relate to information quality in the
traditional sense, i.e., directly related to the underlying information, but rather are
considered nonfunctional requirements of a system of systems.

Since QAs are usually not direct requirements levied upon an HLIF SoS, they
are often overlooked for information quality impact.

The “-itlities” as they are also known is an extensive list, but the main reason for
emphasizing them is that they are key to the information fusion SoS architecture.
It is incumbent on the architects and stakeholders to identify the tie between these
QAs and the corresponding IQ elements they drive. Table 20.9 provides an example
of correlating IQs to QAs.

The following is a more comprehensive albeit not exhaustive list of qual-
ity attributes: accountability, accuracy, adaptability, administrability, affordabil-
ity, agility, auditability, autonomy, compatibility, composability, configurability,
correctness, credibility, customizability, discoverability, durability, extensibility,
fault-tolerant, fidelity, flexibility, integrity, interoperability, maintainability, modifi-
ability, portability, recoverability, repeatability, scalability, survivability, standards-
compliance, simplicity, traceability, understandability, upgradability, vulnerability,
usability, sustainability, etc.

Many of these QAs may in turn drive or be driven by MOEs, MOPs, and
TPMs. The principal takeaway is that IQ permeates the entire HILF life cycle and

Table 20.9 QAs as drivers for identifying IQ elements

No. Quality Attribute Information Quality Element

1 Relevance Contribution factors to algorithms, e.g., MDL, domain space
2 Reliability Measures of objective and subjective data reliability
3 Accessibility Constraints for access control, e.g., privileges, RBAC, ABAC
4 Availability Information in motion, backups, redundancy
5 Reusability Common information formats, morphology
6 Interoperability Interorganizational information exchanges
7 Scalability Metadata for information dimensionality and volume impact
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Table 20.10 Dimension: quality attributes

Dimension IQ Vector IQ Element Attribute Characterization: Description

QAs Availability(2) Fail-over, resiliency, clustering concerns

Configuration O|C(1):active-active/active passive
Performance O|M: 99% (3.65 days downtime per year)
PIT Recovery O|M: point in time recovery; 1 hour

Accessibility Security-related concerns

Confidentiality| O|C: encryption, access control
Integrity O|C: hashing
Availability (2) O|C: denial of service

Interoperability Information exchanges concerns

Morphology O|C: structure
Format O|C: storage

accordingly should not be a mere afterthought. Table 20.10 lists sample IQ vectors
and elements for selected quality attributes.

Reference Table 20.18 Subjective Information Input Source Assessment: Relia-
bility for descriptions of (O|M) and (O|C) (superscript 1).

Note that availability (superscript 2) is being used as both an IQ vector and an IQ
element; however, namespacing may be used to provide the proper context for the
usage of the terms, i.e., QAs::Availability vs. QAs::Accessibility::Availability. In the
first instance, availability is presented in the context of an IQ vector, representing
an IQ concern related to performance, such as determined by meantime between
failures (MTBF) and meantime between repairs (MTBR). In the second case,
Availability is presented in the context of an IQ element such as it pertains to a
“security” IQ vector, e.g., a potential IQ threat of denial of service.

Therefore namespacing enables tuning the characterization of IQ concerns.
Which one to choose depends on the particular scenario of the problem and
solution space being considered, as well as the mitigation strategy; both “types”
of Availability will impact information quality, especially with respect to timeliness
of actionable intelligence, but they will likely require distinct resolutions.

20.4.2.2 The Static Nature of Information in HILF SoS

The static nature of information comprises the descriptive metadata for a particular
information set. This description should be focused solely on the innate nature of
the information itself, and not on its representation, such as morphology or format.
Aspects of the information or information sets at rest need to be understood and
qualified, e.g., is the information encrypted; will the information be used in its
natural state; and how often will the information be refreshed.

Static nature or information at rest may also include interim staging areas
between fusion processes or staging ingest and dissemination platforms. Table 20.11
provides sample vector and elements for the information at rest IQ dimension.
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Table 20.11 Dimension: information at rest metadata (innate IQ properties)

Dimension IQ Vector IQ Element Attribute Characterization: Description

Info-at-Rest Temporal Info sets/objects with temporal attributes, i.e., time

Resolution O|M: what is the resolution of temporal
attributes? This may be important for interval
analysis or sequence analysis such as Allen’s
Temporal Intervals [1]

Geospatial Info sets/objects with geospatial attributes, i.e. coordinates

Resolution| O|M: e.g. for area, is the resolution square
inch, meter, kilometer?

Semantic Info sets/objects with semantic attributes, e.g., color, names

Granularity O|C / S|C: at what level of granularity has the
information for the object been collected,
e.g., city, county, state, country?

Collection
discipline

O|C: e.g., HUMINT, OSINT

Collection date O|M: may be relevant in establishing timeline
information or setting policies to age data
sets, e.g., archive, purge

Digital Audio Raw data sets (i.e., still need to undergo object/feature extraction)
Bit depth O|M: determines the dynamic range,

difference between loudest and softest sound;
analogous to intensity

Sampling
frequency

O|M: determines the lowest and highest pitch
that can be stored

There is no end to the quantity of metadata that can be used to describe the
relatively static properties of objects or their corresponding information sets. There
is also no de jure method for identifying and attributing a hierarchy of quality
elements.

As before, the recommendation is that the identification of IQEs and their
allocation into IQVs be driven by requirements and bottoms-up and top-down
evaluation of how they impact actionable intelligence.

20.4.2.3 The Dynamic Nature of Information in HILF SoS

The dynamic nature of information is arguably one of the most overlooked concerns
in information quality. The complexity of information quality quickly multiplies
when considerations such as how specific information quality properties may
impact the predictive capability of algorithms; e.g., some algorithms can handle
multidimensionality very well, while others do not; some algorithms may handle
sparsity very well, e.g., blanks or empty fields, while others do not.

The dynamics of information flows should also be considered such as (a)
the cascading effects, e.g., what happens when information mutates as it passes
sequentially from one algorithm to the next or loops back to some previous step or
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phase in the fusion process, and (b) flows into a fusion process, which inputs may
be the aggregate of multiple previous processing results, each of them with different
degrees of quality. This quality divergence among multiple inputs raising concerns
such as (a) what is the resultant information quality, or should the information even
be mixed or amalgamated?; (b) what are the consequences of using heterogeneous
information or mixing information with various degrees of granularity; i.e., some
algorithms are more susceptible than others when it comes to rounding errors or
aggregating information with diverse resolution.

Other considerations of information in motion include volumetrics, i.e., the
amount of information to be processed, which represents a sizing and performance
concern, and other storage and database requirements, such as sizing of data and
caches and buffers, as well as backup and retention policies, as it goes through the
pipeline of tasking, collection, processing, exploitation, and dissemination (TCPED)
[35]. Orchestration also plays a critical role in achieving quality and reliability in
an end-to-end TCPED information fusion enterprise [35]. Accordingly, metadata
regarding these information-in-motion dynamics need to be included as IQEs.

Note that interoperability was also a vector identified in the quality attributes
dimension; this is not incongruent to itself, but it reflects that (a) there may be
concerns regarding interoperability, which may impact facets of various quality
dimensions, i.e., IQ vectors, and as before, how to best organize them depends on
how they impact actionable intelligence or the fusion process as well as to how to
mitigate them. It is beneficial to get as granular as possible in order to better quantify
and mitigate the issues.

Table 20.12 introduces information-in-motion IQ concerns. Superscript (1):
Reference additional definition of terms in Table 20.3 HLIF information quality
subdomain-related terms and concepts (Part I), Section A.2 Capture/Store/Repre-
sentation.

Table 20.12 Dimension: information in motion

Dimension IQ Vector IQ Element Attribute Characterization: Description

Info in Motion Pedigree Considerations for provenance and processing history

History O|C: Lineage information, transactions, etc
Source O|M: Original source, point of contact
Versions O|C: Version history where used

Interoperability Considerations for characterizing information sets

Type(1) O|C: Applicable types
Morphology(1) O|C: Applicable morphology
Characteristic(1) O|C: Applicable characteristics
Standards O|C: Applicable standards

Volumetrics Considerations for performance and management impacts

Size O|M: Megabytes, gigabytes
Throughput O|M: Bytes per second, pixels per hour
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Note that whereas information set characterization also applies to information at
rest, this metadata or IQ elements need to be captured for each step that undergoes
information mutation.

20.4.2.4 Real-Time and Streaming Information Considerations in HILF
SoS

At this point, it is opportune to address another facet of information in motion and
that is real-time information or streaming information acquisition and processing.
Examples include moving target indicators (MOVINT) or detection and track
generation and other streaming information, e.g., audio and video. Systems such as
supervisory control and data acquisition (SCADA) from industrial control systems
(ICS) may have diverse proprietary configurations, and managing trends in real time
is key to achieving information quality; subsequently real-time information acquisi-
tions and input from SCADA are also subject to information quality considerations
[38].

It is understood that certain formats or protocols may encompass compression
(superscript 1) specification as well. Notwithstanding, it is useful to consider
compression explicitly or at least compression options within different protocols or
format standards, as it is analogous to “resolution” and consequently may determine
how much the information may be exploited (note that the exception may be lossless
compression).

Regarding support data (superscript 2), it is often the case that ancillary
information is streamed or ingested in parallel. Sometimes ingest is made with
complementary information and associated exploitation support data (ESD) is made
available before or after the streaming event. There are two types of exploitation
support data: (a) telemetry or acquisition data may be streamed that indicates
the health and status, as well as control capabilities of the primary information
acquisition, and (b) ESD, which is associated with the ability to exploit data, usually
in downstream processes. The sensitivity to these quality elements are contingent on
the real-time ingest requirements, processing timelines, and, of course, the critical
lead time needed to derive actionable intelligence (Table 20.13).

20.4.2.5 Externalities Considerations in HILF SoS

Previously high-level information fusion “systems” have been more aptly defined as
system of systems (SoS); this consideration is critical when considering externali-
ties, as systems in the end-to-end workflow from fusion level 0/1 to level 6 comprise
an intricate, interconnected, and interdepended maze of not only separate systems
but fundamentally separate organizations. This means that interorganizational
challenges including the chain of custody, information ownership, deconfliction
policies (e.g., which organization is considered the “master” when synchronizing
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Table 20.13 Dimension: real-time and streaming data

Dimension IQ Vector IQ Element Attribute Characterization: Description

Real Time Ingest Considerations for real-time acquisition and processing

Data rates O|M: e.g., bits per second, frames per second
Compression (1) O|M: contingent on data type
Storage O|M/S: e.g., buffering, storage

Support Data Ancillary data needed for exploitation, e.g., telemetry, esd(2)

Delay O|M: delta in (s, min)
Utility O/S|C: attributes used for processing aid

Interoperability Considerations for real-time interoperability and integration

Protocols O|C: encryption, access control
Format O|C: hashing
Structure O|C: description

Table 20.14 Dimension: externalities

Dimension IQ vector IQ element Attribute characterization: description

Externalities Data transfer Enterprise data transfers

Network rate O|M: bits per second
Protocol O|C: e.g., TCP, UDP, JAS(1)

Replication O|C: deconfliction rules, master-master(2)

Buffer/throttle O|M: e.g., amount of buffer and throttle
Policies(3) Regulatory, statutory, and interorganizational policies

Standards O|C: format, transfer, APIs
Privacy/integrity O|C: hashing, PKI, certifications(4)

Retention rules O|M: archive type(5) and duration rules

repositories across several sources), as well as regulatory policies, have to be
managed at both the national and sometimes transnational level, e.g., European
Union.

Furthermore, the complexities can be compounded quickly when considering
that many organizations are moving to the Cloud, which means at the very least
this implies a third-party infrastructure as a system (IaaS), and likely platform as
a system (PaaS), and in many cases software as a system (SaaS) as well. This
paradigm shift has numerous implications for information quality in HLIF SoS,
as it adds yet another party, for which information security, performance (both pro-
cessing and network), information integrity, and availability need to be considered.
Here is where systems engineering and system requirements for information quality
come into play; performance requirements need to be decomposed and flowed
down, and the right service-level agreements need to be negotiated. On the pro
side of third party IaaS argument is of course that it offers a solid infrastructure
that usually includes fail-over and disaster recover (DR) capabilities and, as such,
greatly reduces the burden of designing and implementing these from scratch (Table
20.14).
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The Joint Architecture Study (JAS) (superscript 1) protocol [12, 20] uses the
lower-level SpaceWire data link layer to provide reliable packet delivery services to
on higher-level host application processes. It is an example protocol implementation
based on information quality for both performance and reliability, critical by itself
when having to ensure intrasystem performance but more so when transferring data
among external segments.

Often, certain nodes or segments in an HLIF SoS which span (by definition)
multiple organizations are designated and implemented as information sinks (spe-
cialized nodes that receive information from other nodes and combine them and
serve as a centralized master repository). This of course brings about serious
considerations for information quality with respect to synchronizing timestamps and
reconciling differences; this becomes the purview of information replication, where
rules must be set up in a master-master or master-slave information replication
environment. These rules include setting up an authoritative hierarchy, such as when
two records with different values are ingested they may be reconciled, e.g., by latest
or first timestamp or by location, i.e., the one considered authoritative.

Policies (superscript 3) affect many areas, especially security, retention, and
data exchanges. The key difference, vis-à-vis implementing the same functionality
without being driven by policies is for example, the additional effort required
when implementing security controls such as auditing and logging, and security
accreditation to ensure compliance.

Although closely related to security, requirements such as public key infras-
tructure (PKI) (superscript 4) may drive additional quality-related requirements
such as setting revocation lists and setting up certificate authorities. Clearly this
last example is within the purview of security engineering; however, in system of
systems, security requirements usually flow down to the components implementing
the functionality, and impacts to quality and performance are properly allocated.
Accordingly, this aspect is more of an indirect impact to information quality, but
nevertheless one that cannot be ignored.

Archiving rules (superscript 5) play a critical role in complying with policies for
retention. Additionally, the selection of archiving mechanism has a direct impact on
availability and performance.

20.4.2.6 Fusion Processing Metadata: Algorithm-Information pairing

There may also be both (a) initial concerns, to be addressed at the outset of a design,
and (b) operational concerns, to be managed as the system matures. For example,
after an HLIF SoS begins to use information sets, some may be marked or tagged
as more effective than others for use with certain algorithm or processes.

A salient characteristic of information fusion is not only the information quality
concerns regarding “input” information, but when it comes down to performance
and predictive accuracy, information also plays a role in both performance and
predictive capability of an algorithm; e.g., some algorithms do well with high
dimensionality (e.g., number of independent variables), while others do not; some
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Table 20.15 Dimension: processing metadata

Dimension IQ vector IQ element Attribute characterization: description

Algorithm Profiles
Performance Processing performance based on data type

Algorithm data O|C: matrix of processing(1)

Accuracy security related concerns

Algorithm data O|M: matrix of results, e.g., ROC Type I/II(2)

algorithms do well with sparsely populated information, e.g., “blanks” for a field
(i.e., missing values), while others do not.

Additionally, information fusion is seldom the application of a single process or
algorithms but rather an exhaustive interdependent and not always sequential chain
of processes and algorithms throughout the L0 to L3 fusion levels. Gaining insight
into information quality impacts within the steps of the end-to-end flow enables an
optimal result and significantly contributes to fusion level 4, i.e., process refinement.

Accordingly, a key concept for improving fusion quality is the process of
classifying algorithms themselves and cataloging the results for discovery, that is
to create an algorithm marketplace, where various users can inquire as to which
algorithms perform better with certain data and to pair information to processes
and algorithms, based on profile and characteristics which will yield optimal results
(Table 20.15).

A matrix is an efficient way of mapping algorithms to data types and qualifying
both processing performance and algorithm accuracy. Additional information such
as the volume of data processed is useful in order to normalize the entries, e.g.,
minutes per 100 entries or minutes per megabyte.

The accuracy matrix should include metadata on the control set used to create the
predictive model. The accuracy itself should include both Type I (false positives)
and Type II (false negatives) errors. Finally, algorithms and processes should be
categorized, e.g., forensic modeling, data cleansing, and predictive modeling, and
within these allow for even more granular breakdown, e.g., predictive modeling
(parametric, nonparametric, Naive Bayes, k-nearest neighbor, majority classifier,
support vector machines, neural networks), to further allow for fine tuning of fusion
level 4 (process refinement).

20.4.3 Organizing IQEs: IQ Vectors, Taxonomies,
and Ontologies

It stands to reason that the previous sections are only selective and nominal examples
of how to elicit IQEs by leveraging the organized dimensions of concern driven by
the HILF SoS requirements.
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A comprehensive example is beyond the scope of this writing and even impracti-
cal, as it surely would have to be vetted by an engineering or architecture board
overseeing the particular design of the system. This implies that whereas there
may be a large commonality of information quality concerns across systems, the
particulars of HLIF SoS may drive very unique IQ requirements.

Akin to the information quality meta-model presented in Sect. 20.3.3, it is
recommended to organize information quality dimensions, vectors, and elements
using primarily taxonomies and ontologies. To manage the complexity of informa-
tion quality commensurate with an enterprise system, it is recommended that an
ontology tool be used as part of a formal process. The advantage of organizing IQs
concerns is to facilitate the discovery of patterns and identify areas of overlap or
gaps. Additionally, this effort will set the stage for the next step which is to identify
impacts correlated with these IQ concerns.

20.5 Assessing and Mitigating the Impact of IQ

HLIF SoS is by definition multidimensional, multilayered, and multiprocess, with
both parallel and sequential paths. Information quality assessment and correspond-
ing mitigation follow the same complex pattern as a high-level information fusion
SoS itself. No single cohesive or holistic definition exists or, for that matter, should
exist, as doing so may preclude optimization, meaning that the complexity is such
that a general approach would likely be inefficient and ineffective.

Having laid the foundation of IQ meta-model and IQ characterization in the
previous section, it now stands to reason that the next step is to decompose and
classify IQ considerations based on the IQ elements, vectors, and dimensions. There
is no single metric that can capture this complexity, and there is no single approach
to aggregate IQ metrics. Although the consequences of poor information quality
issues throughout the system will manifest themselves at the output, i.e., actionable
intelligence; this does not imply that the root cause is a single enterprise issue.

The more pertinent approach is to frame information quality assessment in the
proper context, e.g., what is the process and what corresponding resolution should
be applied. Also, “good enough” is often more actionable than chasing an open-
ended information quality concern.

Another example of misapplying IQ at the enterprise level is that of information
sparseness; it may seem desirable to have as much information and all fields and
attributes properly populated. However, some algorithms actually perform fairly
well with sparse information, and others will not necessarily provide a proportional
return toward a downstream result. So framing the question “what is the information
quality profile required for a particular algorithm or process?” is a more relevant
tactical question that may serve the strategic HLIF SoS IQ concerns as well.

IQ assessment needs to be framed in the context of its IQ dimensions and the
point of diminishing returns needs to be ascertained. Excessive quality controls
without a commensurate return represent an opportunity cost, i.e., an extra step in
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the end-to-end process that is made at the expense of not accomplishing something
else that may yield better results. In the final analysis, the impact assessment and
mitigation trade-space need to be juxtaposed with time and cost considerations
and the expected improvements on IQ, all of which should be congruent with the
objectives of the mission as set by the decision-maker. The cost of IQ mitigation
should be commensurate with its returns.

20.5.1 Recapitulation of Traditional IQ Mitigation Techniques

There are significant advances in understanding quality and uncertainty for low-
level fusion; for many sensor types, the science is fairly mature with regard to the
mathematical rigor, e.g., random and systematic (bias error), the ability to compute
error ellipse, and other quantifiable analysis regarding issues that impact IQ in
sensors. Other facets related to quality can be measured with high confidence, e.g.,
the spatial and temporal resolution of information collections; and certainly these
should be included in categorizing the accuracy and precision of data that is used in
HLIF as well.

Additionally, several facets of traditional data warehousing and data marts quality
assessment for business intelligence (BI) should be leveraged such as data profiling,
which is usually done via extract-transform-load (ETL) tools. A significant amount
of information quality issues that impact BI also apply HLIF SoS, and as such, these
tools and techniques should be applied where applicable.

Table 20.16 lists a recapitulation of these better known issues, their impact
as related to HLIF SoS and their corresponding mitigation techniques, such as
data cleansing. While these issues and resolution are common in BI applications,
their impacts to HLIF are even more profound, due to the continual information
exploitation processes which then may cascade quality errors downstream and
which, furthermore, may prevent the ability to perform data enrichment, whereby
additional relevant information is identified and associated with other information
elements.

Granularity (superscript 1) is an often overlooked information quality concern.
Granular data is a key enabler to profiling data for distribution, e.g., numerical, date
ranges, and geospatial granular hierarchy, e.g., city, county, state, and country. This
is used in data marts, and business analytics, but essential for information fusion,
which enables analytics with fine-grain slices, which often yields improved results
over information sets where various granularities are comingled.

20.5.2 Measuring Quality: There Is No Enterprise Silver Bullet

The case for information quality has been supported by the fusion community, yet a
key question still lingers with regard to how to ascribe an HLIF SoS overall value to
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Table 20.16 Information profiling: basic assessment and mitigation for IQ issues

IQ Element Scenario/Impact Mitigation

Duplicates Multiple entries for the “same” entity,
produces inconsistent results and
generates poor models

Identification of duplicate entries,
creation of primary keys

Spelling Variants Variants for information
representations includes spelling
errors. Prevents consistent analysis
and generates poor models

Soundex rules (phonetic coding)
and mappings to consolidate
variants into one consistent value

Blanks/Nulls/Zero Missing values, sparse data, attributes
(columns) for entries (rows) may be
lacking values. Prevents accurate
model generation. Impacts algorithm
processing for classifiers

Generation of defaults based on
profiling rules or mapping to
specific values based on other
populated fields. Other rules include
using average or mode

Distributions Min, max, ranges. Invalid information
elements or outliers. This will skew
algorithms

Distributions are critical for numeric
fields. It helps identify outliers and
ensure that the collected information
represents the population statistics;
accordingly, the use of classical
statistics is paramount to ensure
statistical valid data sets
Additionally, especially if the
information fusion node is a large
data hub collector, it is critical to
validate the data against known
numeric ranges (coordinates, age,
speed) or known values (geographic
locations)

Reformatting The worst-case scenario is when the
same field has inconsistent formatting,
e.g., a field string may contain dates in
various formats, e.g., mm//dd/yy or
yyyy/dd//mm, or a combination with
timestamp, which requires in many
cases time zone adjustment

Use of mapping or transformation
scripts. A common technique is the
use of XML style sheet language
transformations (XSLTs), which
cannot only automate conversions,
but also provide transformations
between XML document types

Granularity(1) This is less evident than other quality
issues; it concerns collecting data and
bundling them into one superset. This
may cause suboptimal predictors. The
classic example is to combine bimodal
data or data at different resolutions,
e.g. by city, county, state, country, all
in one data set

Use of classical statistics can easily
reveal bimodal data, which appears
as distinct peaks in the probability
density function.
For categorical information,
especially temporal and geospatial,
it is best to generate data cubes

information quality. Throughout this writing, information quality has been framed
within the context of achieving actionable intelligence. However, IQ does not stand
in a vacuum, so the recommended question that should be addressed is: “What is
the appropriate IQ for the system given a particular AI objective?” Meaning IQ
that may be good enough for one scenario may not be necessarily appropriate for
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another. And perhaps this should be the approach, as it is from this perspective that
we can mitigate many vexing IQ shortcoming and answer the persistent question of
how to assign values to IQ.

HLIF IQ should be assessed in context of achieving an AI objective. Accordingly,
metrics should include the context with which to assess the specific impact as well
as the overall impact. IQ elements such as timeliness, and relevance, and resolution
may qualify information but not necessarily represent an information quality issue
unless specific impact may be attributed. Accordingly, a key IQ characterization is
that of relevance – with respect to achieving AI and COA objectives.

Yet relevance may not be assessed until after processing, such as doing predictive
fit, covariance, and minimum description length (MDL); that is, certain type of
quality impacts such as those related to algorithm processing may only be assessed
a posteriori. This information should then be used in feedback loop to improve the
overall fusion IQ as part of fusion level 4, i.e., process refinement.

Accordingly, de Villiers et al. implement the URREF ontology and introduce a
key concept of data criterion with weights based on IQ elements such as problem
relevance and credibility [8]. This may serve to identify key performance parameters
(KPPs) be monitored and managed throughout the various fusion levels.

Ultimately, there may be general terms to IQ based on how useful the actionable
intelligence is and how effective the course of action was with respect to a certain
objective. In this vein, “satisfaction” information should be collected; satisfaction
information serves as future feedback to qualify a particular scenario, at a particular
point in time and compare results given by various processes and information.
Additionally, the value in collecting satisfaction information is to qualify the overall
success of the mission and find key attributes that may be traced to contributing IQ
concerns.

20.5.3 Assessing an HLIF SoS Information Quality Maturity

It is critical to consistently assess IQ throughout the fusion processes. Uncertainty
introduced into the system by using subjective IQ measures results in propagating
errors throughout the information exploitation value chain. To the degree that IQ
processes are integrated within the HLIF life cycle itself, it may lead to amplification
of uncertainty through feedback loops; e.g., IQ issues present at the outset are then
reintroduced in subsequent estimations. A consistent set of quantifiable IQ measures
correlating information issues to their corresponding results will enable quality to
be systematically monitored and managed.

It is proposed that the overall IQ maturity be assessed similarly to systems
maturity; i.e., IQ implementations, just like systems, have a life cycle, and as such,
they mature from the conceptual phases to operational systems.

One way of considering the reliability of technology devices of system is
to leverage the technology readiness level (TRL). A variant, called the system
readiness level (SRL) [32], is more apt to qualify a maturity system of systems such
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Table 20.17 System readiness levels/quality readiness level

Level S: SRL description/Q: QRL description

SRL/QRL 1 S: System concept: system functionality qualitatively understood
Q: IQ requirements identified

SRL/QRL 2 S: System technologies: technology and implementation understood
Q: IQ dimensions, vectors, and elements identified

SRL/QRL 3 S: System proof of concept: experimental evidence
Q: IQ requirements decomposed and allocated to subsystems and components

SRL/QRL 4 S: Component verification: components built and tested in laboratory
Q: IQ assessment implemented at select fusion levels

SRL/QRL 5 S: Component validation: components tested in relevant environment
Q: IQ proof of concept validated against selected components

SRL/QRL 6 S: Prototype demonstration: prototype in relevant environment
Q: IQ demonstrated for selected subsystems against relevant scenario

SRL/QRL 7 S: Operational demonstration: integrated prototype operational
Q: Quality mitigation applied and integrated at various levels

SRL/QRL 8 S: Actual system demonstration: representative system demonstrated
Q: Quality mitigation applied at various levels by not integrated

SRL/QRL 9 S: Operational system: production system in operational environment
Q: Fully integrated quality process in lockstep with fusion level 4

as an HLIF, as it takes into consideration its components or systems as well and the
interfaces among them, and the corresponding required integration. This provides
a valuable framework to apply to a subjective system which may not lend itself to
be aptly quantifiable. Additionally, as previously mentioned, information quality is
a function of how the system is fit for purpose with respect to a particular objective,
and as such, IQ is contingent on the system readiness or maturity level. Table 20.17
proposes a quality readiness level (QRL) tiered approach that is congruent and
commensurate with its corresponding system readiness level.

20.5.4 Nonquantifiable IQ: A Model for Subjective Assessment

Adjudicating subjective parameters is an extremely delicate effort; until there are
enough scenarios where the inputs may be evaluated for fit for purpose with regards
to the AI objectives, allocating subjective parameters may not provide pragmatic
value; i.e., it may not be possible to validate the values. Furthermore, the more
cascading subjective evaluations are made, i.e., the more subjective IQ measures
feed into other processes, the more the meaning of a quality assessment may be
diluted.

This section walks through an example of how to attribute subjective criteria and
generate a more complex model that relies on qualitative constructs more so than
quantitative measurements.



20 Information Quality: The Nexus of Actionable Intelligence 503

Fig. 20.5 Information quality impact on time-critical AI evaluation

Figure 20.5 depicts a likely workflow of HLIF SoS, whereby the impact of infor-
mation quality on time-critical actionable intelligence is assessed. This workflow
depicts the complexity of aggregating subjective assessments and highlights how
the meaning is diluted when cascading multiple decision nodes. Note that IQ impact
and assessment is usually a range. This range may serve to categorize mitigation
strategies.

The utility of this assessment approach is that it ties several aspects of informa-
tion fusion with regard to actionable intelligence and course of action. The threat
probability and impact relate to fusion level 3 and, placed into the context of a time
horizon, represent a decision-maker’s context for how to respond, i.e., the OODA
loop.

Table 20.18 provides a tiered approach for subjectively assessing an information
source’s reliability. This assessment approach is applicable to information generated
from both human sources and information generated by technologies of diverse
maturities; the corresponding SRL assignments are shown. Weight and scale are
additional parameters that help fine-tune the model.

Weight represents a measure of proportion with respect to the other criteria, i.e.,
trustworthy to not trustworthy, whereas scale is used to tune that particular criteria
as appropriate for a given scenario.

The net effect would be the same as using a single factor denoting proportion,
but the advantage is that it provides flexibility in combining measures either by
multiplication or addition and assessing the end results with respect to the tuning
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Table 20.18 Subjective information input source assessment: reliability

Criteria Description Weight Scale

Trustworthy HUMINT: No doubt about the source’s authenticity,
trustworthiness, or competency. History of complete
reliability. SRL: 9

3 5

Dependable Minor doubts. History of mostly valid information. SRL: 7, 8 2 4
Neutral This may be assigned to a new source that has undergone

interim vetting only; should not be confused with
“undetermined.” SRL: 6

2 3

Not Dependable Significant doubts. Provided valid information in the past
SRL: 3, 4, 5

2 2

Not Trustworthy Lacks authenticity, trustworthiness, and competency. History
of invalid information. SRL: 1, 2

1 1

Undetermined Insufficient information to evaluate reliability. May or may not
be reliable

X TBD

Table 20.19 Subjective alternate corroborating source assessment: confidence

Criteria Description Weight Scale

Probable Greater than 95% confidence. Confirmed: logical, consistent
with other relevant information, confirmed by independent
sources

1 5

Likely Greater than 75% but less than 95%. Probably true: logical,
consistent with other relevant information, not confirmed

1 4

Neutral Greater than 25% but less than 75%. Possibly true:
reasonably logical, agrees with some relevant information,
not confirmed

1 3

Not Likely Greater than 5% but less than 25%. Doubtfully true: not
logical but possible, no other information on the subject, not
confirmed

1 2

Not Probable Less than 5%. Improbable: not logical, contradicted by
other relevant information

1 1

Undetermined X TBD

parameters and adjusting them if necessary. Note that the criteria are meant to be
ordered; it follows then that any combination of weight and scale must also preserve
the order, albeit the relationships between the set of ordered criteria need not be
linear.

Table 20.19 describes adjudication guidelines for confidence, which includes
the ability to corroborate with other sources or validate with other evaluation
frameworks. Probability definitions have been based on statistical significance, but
may be adjusted as well as weight and scale to tune the model based on feedback,
i.e., fusion level 4.

Figure 20.6 depicts the resulting matrix of reliability and confidence and provides
a recommendation for classifying the results in five tiers, ranging from Best to Bad,
with corresponding actionable directives. This example highlights that all facets of
categorizing subjective data are very broad in nature, but the takeaway is that if
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Fig. 20.6 IQ assessment based on reliability and confidence

Fig. 20.7 Impact assessment based on threat and probability

the criteria can be bounded, then pragmatic actions to mitigate information quality
may be implemented. Currently, there is no clear definition for undetermined, and
the recommendation is that information, for which neither confidence nor reliability
can be ascertained, be quarantined and thereby excluded from processing until its
pedigree can be duly assessed.

Figure 20.7 qualifies the impact of information quality based on risk. Risk
assessment is based on threat impact and probability, which is a common approach
in business management for mitigating various types of risks, such as cost, schedule,
and technical risk.

In the case of information fusion, the level of risk for a particular scenario for
which actionable intelligence is sought is what needs to be assessed and managed.
A higher risk scenario commands more diligence on IQ. Note that the classification
of the resulting matrix, i.e., impact assessment results, has been modified to focus on
high values. This strategy helps to more effectively assign resources for the critical
areas, i.e., catastrophic and severe impacts.

Figure 20.8 depicts the resulting assessment matrix from combining risk level
with a time horizon. This assessment can be used to properly qualify the timeliness
of information that plays a role in determining the corresponding AI and course of
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Fig. 20.8 Response assessment: IQ time-critical evaluation of risk assessment

Fig. 20.9 Time-critical evaluation matrix based on IQ assessment

action, within the right, i.e., impact context. That is, timeliness is more important to
scenarios with higher risk; this ties to models such as Boyd’s OODA loop.

Again, the high values are the focus of action, making it easier to identify critical
items. However, as is the case for all of these resulting matrix classifications, the
number of tiers and tier criteria, i.e., ranges, needs to be adjusted to fit the particular
scenario and objectives.

Finally, Fig. 20.9 combines the result from Fig. 20.6 with Fig. 20.8. The result
is a matrix that allows an action based on information quality for input data that
correlates to the impact assessment.

The classification is based on equal intervals and was designed to consider that
the impact of information quality increases as it becomes more time-critical, but
its overall impact is directly correlated to quality; e.g., bad data may be easier to
mitigate at the outset, the monitoring phase, or upstream fusion processes; but it
becomes completely inadequate when it must be acted on immediately. That is, a
critical scenario requires the best quality information.

The preceding models have the deficiency of only being able to scale linearly,
reflecting a pure information quality cascading effect between tiers of information
quality and higher phases of the HLIF process, and thus would not take into
consideration potential feedback loop mitigation.
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Fig. 20.10 Minimum description length as an IQ selector

For example, it may be desirable to quantify information quality in terms of what
HILF life cycle or phase it is encountered, e.g., level 0 to level 6. It may be useful
to conceptualize the impact of information quality with respect to time-critical
decision-making in the classic important/urgent (i/u), important/not urgent (i/ū), not
important/urgent (ı̄/u), and not important/not urgent (ı̄/ū) quadrants. This approach
enables both decision-making and assessment of the underlying information quality
for time constraint actions, i.e., information whose use will expire with respect to
taking a corresponding course of action.

Figure 20.10 captures this strategy, whereby the aforementioned I/U quadrants
are implemented as dual parameters for each entry, and each cell can be individually
tuned for each phase, i.e., monitoring, analyze, prepare, respond, critical, as well as
for the individual information quality weights.

Notice, for instance, that in the previous assessment, the monitor phase was
qualified as low impact irrespective of the information quality, i.e., Weight = “1”
and Scale= “1”. This negates the strong possibility of the negative cascading effects
that information quality may have in the subsequent phases of the data exploitation
value chain, meaning bad data, early one will have an accumulating negative effect
in downstream processes.

The interval arranges have been selected to yield an symmetric distribution
(5,6,3,6,5) IQ assessments (same assessment classifications as those used in the
previous figure) around the neutral categories, i.e., “average information quality”
and the “prepare” response phase.

Using this approach, it becomes evident that bad data has a negative cumulative
effect by the time it reaches the “prepare” stage. This is congruent with the fact that
downstream information quality mitigation cannot always compensate for upstream
information quality issues.



508 M. A. Solano

20.5.5 Managing IQ with Dimensionality Reduction

When it comes to analysis of information quality, it is useful to split the fusion
domain space in the traditional way, as described in the JDL model and expounded
by Hall, LLinas, and Waltz [16, 21, 40–42], i.e., fusion levels 0 to 6, and made up
of forensic (data mining) and predictive models.

Arguably, an underdeveloped topic in information quality is that of relevance
for a particular process or algorithm. One characteristic of relevance is that of how
much does a particular data element or data set contributes, if not to the overall
result of actionable intelligence, to the individual downstream (downstream from
data ingest) algorithms.

20.5.5.1 Minimum Description Length

Process refinement is a JDL model fusion level (level 4), whose main objective is
the progressive optimization of the fusion process. Optimization can be stated in
terms of improvements in efficiency, e.g., improving processing time, minimizing
false positives, and minimizing cost of collecting information, and effectiveness,
e.g., collecting only information that contributes to information exploitation and
improving accuracy. Process refinement is neither sequential nor between any
specific fusion levels; rather, it should be planned as part of the workflow and
executed throughout the end-to-end exploitation chain, by implementing feedback
loops among processes.

High dimensionality [11, 39] refers to an abstract solution space of a dependent
variable as a point in n-dimensional space, whose dimension is determined by the
number of independent feature variables. Having an extensive input space may be
only “more information” and not necessarily have an effect in the predictive quality
of a dependent target attribute – this extraneous information represent noise, which
adversely impacts the processing efficiency and effectiveness of algorithms and,
consequently, quality.

Furthermore, attributes that do not contribute to the information value exploita-
tion chain represent a cost burden to the collection and preparation process
and unnecessarily tie-up resources, e.g., personnel and equipment. This can be
exacerbated when it is important to maintain security classification, as the cost of
managing information across security classification domains can be significant.

Minimum description length (MDL) [14, 15, 25] can be used to reduce the num-
ber of entity attributes by ranking them according to their predictive contribution (a
positive value represents predictive contribution, a negative value represents noise).
Figure 20.10 Depicts results of running an MDL algorithm; importance is ranked
from highest to lowest, with positive values denoting contribution to the predictive
process and negative values representing noise. A similar effort can be done with
numerical multivariate regression, where the p-value is used as the probability of
obtaining a test statistic.
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The value of the MDL process is twofold: (a) it is used to reduce the processing
cost by requiring less independent variables, which minimizes collection cost
and processing time; and (b) it may yield insight into patterns of what type of
independent variables are more important to predicting the target value.

Applying MDL algorithms to achieve a reduction in attributes must be evaluated
against the resulting predictive profile. While generally reducing attributes to be
collected may significantly reduce the collection and processing cost, the predictive
capability of the newer model (with less attributed) may impact predictive accuracy
and false positives. Additionally all predictive models may change over time given
that the dynamics of the variables are in constant flux; an adversary’s course of
action may change to adapt to a decision-maker’s response; so maintaing historical
data on the input attributes and corresponding predictive metrics helps in tuning
information quality.

In this particular case, as shown by the receiver operating characteristic (ROC)
curves in Fig. 20.10, the right ROC shows that accuracy has been improved and
false alarms have been reduced with only a subset of information, highlighted by
the green rectangle; therefore the information quality element (IQE) for algorithm
optimization has even improved at a reduced cost; i.e., less information needs to be
collected.

20.5.6 The IQ Impact-Mitigation Interdependency

A previous section presented information quality assessment and mitigation as
interdependent, instead of two separate sections. The reason for this is that there
is no end-to-end holistic framework for how information quality impacts AI at the
system level. Intuitively it follows that the aggregate of IQ concerns progressively
degrades the IQ of the overall HLIF SoS objectives.

But that does not imply that IQ can be mitigated with a one-shot inoculation.
Rather, IQ must be addressed parsimoniously, at the first process or algorithm that
is impacted by the lack of information quality or the first IQ point of impact.

To facilitate efficiency, IQ meta-models and a catalog of mitigation techniques for
IQ vectors, and elements, should be part of the IQ integration process. IQ concerns
need to be mitigated at their first point of impact.

20.6 Integrating IQ Management in the HLIF SoS

Integrating information quality processes in a high-level information fusion system
of systems is as complex as the information fusion process itself. Due to feedback
loops, the information exploitation chain is not a waterfall process, and accordingly
information quality mitigation strategies cannot always be implemented a priori or
in a predictive sequence.
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Decomposing measures of performance (MOPs) into key performance param-
eters (KPPs) [27] must be flowed down and allocated to system components and
may prove challenging. Performance requirements at the component level are not
necessarily invariant due to the dynamic nature of interfusion-level processes; i.e.,
timelines and processing may be contingent on the volume and size of information
and other characteristics such as high dimensionality or sparse data. The key to
managing SLAs is to keep a processing profile updated and develop heuristics,
including predictive load processing to provision additional resources, e.g., CPUs,
memory, and storage. This may be accomplished in an elastic environment such as
a Cloud.

Managing SLAs requires a more granular approach to accommodate variability
driving by scenarios, which may include processing prioritization tied to matching
criteria on information ingest. For example, if the information attribute matches x
and attribute b matches y, then 90% of the processing chain needs to be completed
in z time units. Processing thresholds may be set up based on CPU utilization
watermarks that may trigger provisioning of additional compute resources.

Therefore identifying metrics for high-risk concerns requires a dynamic frame-
work that includes the ability to map IQ dimensions to IQ KPIs to granular
components and on demand ingest and processing to ensure high confidence in
supporting the decision-making cycles [23].

This strategic top-down and tactical bottoms-up integrated analysis and synthesis
requires the proper governance to ensure a cohesive enterprise IQ implementation.

20.6.1 Information Governance: The Requisite Oversight for
IQ

It follows that defining and integrating critical processes in lockstep with the HLIF
SoS from the outset, i.e. requirements phase, are essential in achieving IQ objec-
tives; and this should be the purview of information governance (IG) throughout the
entire systems engineering life cycle. There is no information governance without
executive-level buy-in and a corresponding dedicated responsible and empowered
individual. Information governance is the authoritative enabler that plans, monitors,
and enforces controls over all facets of information assets management. In addition
to ensuring the mission-driven IQ processes and coordinating with the chief
engineer and chief architect of the HLIF, the responsible individual (RI) must also
stay abreast of all appertaining external regulations and serve as a liaison between
the organization and all other stakeholders with which information exchanges are
performed.

The Enterprise Engineering Review Board (EERB), which is ultimately respon-
sible for all technical design, trades, implementation decisions, should comprise the
IG RI representing the various interests, both mission and technical of the HLIF
SoS; this IG RI is responsible for setting the foundation regarding all IQ matters,
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including the adoption of architecture principles such as information as an asset,
ensuring IQ requirements are properly flowed down.

Information governance ensures a cohesive approach, analyzing concerns top-
down and synthesizing solutions bottoms-up, aligned requirements, and ensures
nobody adopts an “it’s the other’s responsibility” attitude. IG RI proactively
manages technical and administrative concerns with the corresponding internal and
external boards and is a stakeholder in trades that need to balance the IQ drivers
with the enterprise needs and requirements. IG is also concerned with information
configuration management (ICM) as a key to version control and overall data
integrity.

An enterprise HLIF implemented with a system-of-systems approach requires a
dedicated team of individuals with the roles and responsibilities at a granular level
that interact with the overall technical information fusion subject-matter experts
(SMEs) and are ultimately accountable to the IG RI through the established chain
of command and governance policies.

This wider IQ team comprises roles and responsibilities such as information
owners, information stewards, information administrators, information managers,
information architects, information technicians, and information experts (analysts)
for specific domains. This embedded approach guarantees that IQ is proactively
managed from the outset and throughout the information fusion life cycle, and
becomes an integral part of fusion level 4: process refinement.

20.6.2 The HLIF SoS Life Cycle IQ Management

Quality assurance (process oriented), quality control (product oriented), and total
quality management (principles and management oriented) are all powerful con-
cepts that by and large should be adopted within the information fusion community.
However, just as information fusion has successfully leveraged many disciplines
and technologies and yet requires a dedicated framework to realize its objective of
actionable intelligence, proven IQ management techniques should also be leveraged
but must be tailored to align with HILF SoS IQ dimensions.

Table 20.20 describes the phases and examples for corresponding selected steps.
The comprehensive set of processes and steps should include considerations for
support activities, such as configuration management, regulations, and implement-
ing principles such as information as an asset.

20.7 Next Steps

Information quality is lagging information fusion; the focus of information fusion
systems is advancing low- and high-level fusion architectures. It is understandable
that many facets of IQ may not pragmatically develop until after its HLIF counter-
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Table 20.20 Guidance on establishing an integrated HLIF SoS IQ life cycle process

Process/Step Description

P1: Quality Planning Identifies stakeholders, establishes overall plan, organized from
strategic to tactical, i.e., per fusion level or process. Qualifies
goals aligned with mission MOEs and establishes high-level
metrics MOPs and SLAs that may be decomposed and assigned
to various fusion components

S: Mission Objectives Aligns with mission objectives, sets MOEs; check, measure,
adjust, and iterate per AI each cycle. Manage trends proactively

S: IQ Vectors, Elements Leverage requirements and IQ dimensions to identify and
characterize IQ vectors and elements

S: IQ Impact/Resolution/QA Qualify and quantify the impact and their corresponding
resolutions (at the IQ element level) and identify mitigation
strategies, how to deploy these to the various IF processes

P2: IQ Execution/QC Apply (deploy) and execute the IQ resolutions, set-up triggers for
executing other information quality control algorithms

P3: IQ Monitor Compile results and corresponding metrics, analyze, and include
in feedback loops. Root cause analysis and adjustment and
confirm validity against planning targets and iterate cycle

P4: Governance This is considered a phase that binds all others together with
guidance, decisions, and authority. Information quality
governance should be the key to achieving continuous
improvement in that it is the phases that enables it and provides
oversight of all steps within all other phases

parts are mature, especially given that IQ solutions may not always be developed
a priori. Notwithstanding, it is worthwhile to prepare and explore how upcoming
technologies and advances may impact information quality in HLIF SoS.

The following sections provide some proposals into considerations that may be
useful to explore in keeping up with upcoming technologies.

20.7.1 Information Quality Maturity Model for HLIF SoS

The concept of an IQ maturity model was introduced earlier in Sect. 20.5. There
are several frameworks that tie IQ maturity with CMMI. The information quality
management maturity model (IQM3) by Caballero et al. [6] views information as
a key corporate asset, which by the way is aligned with our architecture principle:
data as an asset. This model is used to develop a framework which integrates with a
corresponding management process.

Ryu et al. [33] focus on information value and information services and also
develop an information quality management maturity model based on CMMI.

The next step is to develop and integrated and detailed CMMI-based model
that expounds the basic concept in Fig. 20.11 and add the framework complexity
presented in this chapter.
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Fig. 20.11 The integrated IQ HLIF process (primitive view)

20.7.2 IQMM Ontology Development

Developing an IQ HLIF SoS meta-model ontology is perhaps the most critical
endeavor in progressing IQ and also one of its most challenging. This is by no
small measure; efforts include consulting and leveraging various expertise and
coordinating the requisite systems engineering and architecture resources to realize
commonality and developing the intricate relationships of a complex IQ meta-model
that comprises all fusion levels.

20.7.3 Information Quality Resource Catalog

As discussed in the previous section, leveraging a catalog to provide among other
things a marketplace resource and maintain pedigree and information regarding
optimized IQ mitigation strategies and resolution would prove invaluable.

It is recommended that the first step is to develop a mapping, starting with
categorizing algorithms and qualifying the corresponding data input profiles, i.e.,
what data is best suited for using a particular algorithm.
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20.7.4 The Cost of Information and Information Quality

While proof of concepts are key in providing momentum to a research topic, when it
comes to operational systems, they are invariably constraint by resources, i.e., cost,
schedule, available technologies. It is imperative to integrate the cost trade-off of
IQ in a comprehensive end-to-end framework. ROC curves for cost-benefit analysis
of using particular algorithms with respect to their predictive capabilities, i.e., false
alarms vs. accuracy.

However the need for a more comprehensive cost-benefit assessment is just about
a foregone conclusion, as a system that is not fiscally efficient will ultimately be
deprecated.

20.7.5 Dynamic HLIF: Timeliness and Closing the OODA
Loop

IQ considerations for real-time acquisition were discussed in previous sections as
well as a model on how to include the dimension of urgency to IQ. However, a more
comprehensive question is lacking, which is: “how to truly assess the dynamic state
of IQ, especially with respect to an adversary who may be implementing counter
measures; e.g., misinformation?” So the perspective that needs to be assessed from
both an AI and a course of action is how to evaluate, especially including timelines
the process within an OODA framework.

Or to propose, what IQ elements related to timeliness need to be addressed to
maintain an advantage over an adversary. And, as such, this needs to include a
more tight integration with actionable intelligence, decision-making frameworks,
and evaluation of effectiveness of any course of action steps taken.

20.7.6 Information Quality in the Cloud

As systems or more importantly system of systems are deployed to the Cloud, more
cases are worth examining. The complexity of mixed ownership at the different
Cloud tiers, e.g., IaaS, PaaS, and SaaS, coupled by a third party infrastructure with
its own technology deployment cycle may cause significant disruption to the main
organizations life cycle.

It is proposed that the IQ considerations for HLIF SoS deployed in Clouds be
given extra scrutiny and that robust frameworks be developed for such environ-
ments.
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20.8 Conclusion

Information quality is as complex as high-level information fusion itself, and given
its critical role in achieving actionable intelligence, this subdomain must continue
to mature not as a secondary fragmented consideration, but rather as a built-in and
in lockstep with the advances in HLIF SoS.

The objective of this writing is to instill awareness by covering a broad number
of topics to impress upon the community the wide and deep range of repercussions
that information quality has on the very objective of information fusion systems, i.e.,
generating actionable intelligence, enabling the decision-maker, and establishing a
course of action.

Information quality is a strategic consideration, and it must follow high-level
goals and be congruent and cost-effective with respect to its outcome. Notwith-
standing, information quality is neither about an enterprise silver bullet nor a unified
and holistic metric which describes the totality of the HLIF SoS IQ. Accordingly
IQ is driven by strategic measures, e.g., MOE, MOPs, and KPPs, but must be
implemented tactically.

Information quality must undertake the same system of systems engineering
approach as HLIF, and to achieve this integration, a cohesive enterprise yet flexible
framework must be developed to include an IQ meta-model, the definition of quality
concerns based on quality dimensions, quality vectors, and quality elements, quality
assessment and resolution, and the requisite IQ governance to manage an integrated
IQ process.

In conclusion, it can now be asserted that IQ is fundamental in achieving
actionable intelligence. It is engrained and permeates all faces and levels of high-
level information fusion, and as such it becomes imperative to proactively mitigate
and address IQ issues from the outset.
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Chapter 21
Ranking Algorithms: Application
for Patent Citation Network
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Jan Tobochnik, Anikó Fülöp, György Fenyvesi, and Péter Érdi

Abstract How do technologies evolve in time? One way of answering this is by
studying the US patent citation network. We begin this exploration by looking at
macroscopic temporal behavior of classes of patents. Next, we quantify the influence
of a patent by examining two major methods of ranking of nodes in networks: the
celebrated “PageRank” and one of its extensions, reinforcement learning. A short
history and a detailed explanation of the algorithms are given. We also discuss
the influence of the damping factor when using PageRank on the patent network
specifically in the context of rank reversal. These algorithms can be used to give
more insight into the dynamics of the patent citation network. Finally, we provide a
case study which combines the use of clustering algorithms with ranking algorithms
to show the emergence of the opioid crisis. There is a great deal of data contained
within the patent citation network. Our work enhances the usefulness of this data,
which represents one of the important information quality characteristics. We do
this by focusing on the structure and dynamics of the patent network, which allows
us to determine the importance of individual patents without using any information
about the patent except the citations to and from the patent.
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21.1 Introduction

Ranking of nodes in a network with a diverse number of connections (degree) is
an extensively studied field. In the theory of social networks, centrality measures
were constructed to rank nodes of networks based on their (not unique) topological
importance. Another family of measures is related to the spectral properties of the
adjacency matrix [18], which takes into account the importance of the influence of
a neighbor. Importance can be defined recursively. Brin and Page [4] introduced
a matching recursive centrality measure called PageRank. The relevance of this
algorithm to citation networks was discussed in [15]. By adopting a citation-based
recursive ranking method for patents, the evolution of new fields of technologies
can be traced.

Our driving question revolves around learning about the behavior of a network
from two different levels. We examined the behavior of classes of patents using
the IPC classification system and also the “attractiveness” of the individual patents.
That is, we explored more quantitative methods of determining how influential or
important particular patents are. One key characteristic of information quality is
quantifying the importance of specific pieces of data. Thus, this work allows one
to focus on those patents that are most important, thus enhancing the quality of
the information we obtain from the patent network. This is where ranking methods
come into play. In this chapter, we discuss some versions of the PageRank algorithm
and the reinforcement learning algorithm [11]. Their applicability to ranking patents
for the USPTO citation network is demonstrated.

21.2 Patent Citation Network Analysis

New information builds off of previous knowledge, and patents are no exception.
When a patent is filed, it will cite other related patents. The applicant for the
patent and the corresponding patent clerk are both responsible for selecting the
set of cited patents. The patent citation network can be modeled as a directed
acyclic graph where patents act as nodes and citations are edges between nodes.
Analysis of the resulting graph permits insights into the advances and the current
state of innovation and technology. We have previously studied the growth of
the patent citation network at both the “microscopic” level of individual patents
[8, 9, 12, 22, 23] and the “mesoscopic” [13] levels. Microscopic level studies
measured the “attractiveness” of a patent as a function of its age and the number of
citations already obtained. At the mesoscopic level, the analysis has been extended
to subclasses, and it was demonstrated that it is possible to detect and predict



21 Ranking Algorithms: Application for Patent Citation Network 521

an emerging new technological trend through the application of an appropriate
clustering algorithm. By adopting a citation-based recursive ranking method for
patents, the evolution of new fields of technology can be traced [5]. Specifically,
Bruck et al. [13] demonstrated that laser/inkjet printer technology emerged from the
combination and development of two previously existing technologies: sequential
printing and static image production. The dynamics of the citations coming from
the different “precursor” classes illuminates the mechanism of the emergence of new
fields and allows for the possibility to make predictions about future technological
development.

To unlock the mysteries of this network, we apply ranking algorithms as well
as examine the behavior of specific classes of patents. First, we include a brief
discussion of the IPC classification system. We then briefly mention previous work
done on the patent network as a whole. Finally, we consider the large-scale behavior
of particular classes in the patent network to show it is similar to a social network.

21.2.1 USPTO Database

In 2015, Google, through collaboration with the United States Patent and Trademark
Office (USPTO), made all patents published from 1976–2015 available for bulk
download. Each patent was characterized by the following information: the patent
number, publication date, an International Patent Classification (IPC) number, cited
patent numbers, and one or more other classifications. This data is now hosted
by Reed Tech (https://patents.reedtech.com/). This data allowed us to construct a
network of every US patent published between 1976 and 2015 and perform analysis.
Patents published prior to 1976 were not available in digital text format and thus
were not included, and we make no claims on the behavior of the network before
that time. Before examining this analysis, a quick word is needed about the IPC
system.

The World Intellectual Property Organization (WIPO) uses the IPC system to
organize patents [25]. The IPC, as the name suggests, contains patents from outside
the USA. Although we only examine US patents, we argue that the IPC is the obvi-
ous choice for our analysis. The USPTO has several other classification systems,
but these were not appropriate for use as there is no internal USPTO classification
system such that each patent from 1976 to 2015 had a valid classification. Using
the IPC system allowed us to utilize every patent in our database. The IPC and
the classes it contains are updated every year, allowing it to act as a template for
studying temporal mechanisms. For these reasons, IPC is the clear choice for our
studies.

The IPC is a hierarchical structure with eight distinct main branches, denoted by
the letters A through H. Each main class is then filled with a series of subclasses, as
the subject matter becomes increasingly specific. For example, a patent in the class
A61K 9/20 can be understood as:

https://patents.reedtech.com/
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Human Necessities (A)
Medical or Veterinary Science; Hygiene (61)
Preparations for medical, dental or toilet purposes (K)
Medicinal preparations characterized by special physical form (9)
Pills, lozenges or tablets (20)

Each patent is classified to the lowest “branch” or subclass available, i.e., there are
no patents whose entire classification is only A61K.

A final note is that the IPC updates its classification system every year and it is
possible for a patent to have its classification changed. These updates and changes
to the network are a route we use to explore the trends and behavior of the US patent
network.

21.2.1.1 Information Quality of the Data

How do the patent citation data we use satisfy the criteria of high quality of
information? They are certainly accurate and credible, and we don’t believe there
are significant missing data from the databases. We have some difficulties with
timeliness, since the approval of a submitted patent needs time. The methods
adapted here are based on citations between patents, and any content analysis by
using text-mining is neglected. The fact that we are able to learn so much just from
citation data shows how this data is both relevant and useful.

21.2.2 Results

21.2.2.1 Temporal Behavior of Patent Classes

Historically, there have been discussions of the mechanisms of the temporal
evolution of social groups [17]. These mechanisms have been classified as growth,
decay, birth, death, merge, and split. The first four mechanisms implement changes
within one community (cluster). Of the remaining two, the merge mechanism
consists of a combination of two communities, while the split mechanism consists of
one community breaking up into two smaller communities. The goal of this section
is to demonstrate the existence of such mechanisms in the patent universe.

21.2.2.2 Methods

For the patent network, we have chosen man-made classes as our communities.
Furthermore, we will be examining subclasses of varying levels in B (performing
operations; transporting), D (textiles; paper), and G (physics) to give examples of
these six mechanisms of evolving communities. The first four mechanisms – growth,
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decay, split, and birth – were originally presented in Beltz et al. [6]. We present these
as well as newly found instances of merge and death. To determine the behavior of
a particular class or subclass, the first step was to create a list of every patent which
resided in that class and the year that patent was published. Next, the number of
patents added each year was recorded and examined.

21.2.2.3 Growth Mechanism

Growth occurs when the number of members in a cluster increase over a specified
time period. Since patents are only removed from a class in rare cases, almost all
patent classes are technically growing by this definition. This would make for an
unexciting analysis, so we have decided to make a more meaningful definition of
growth in regards to patent classes. We have defined growth in the patent network
to be a class in which the change in the number of patents being added to a subclass
is positive – akin to a positive acceleration. We have identified this mechanism in
the relatively large subclass G06F 17/30. This subclass, sitting inside the larger
physics class (G), deals with “information retrieval; database structures therefor” in
digital computing. An example of a patent in this class would be one involving
data mining such as patent 2554323 which is titled “Estimating Computational
Resources for Running Data-Mining Services.” The earliest patent in this subclass
is from patent number 5414626 from 1995 called “Apparatus and method for
capturing, storing, retrieving, and displaying the identification and location of motor
vehicle emission control systems.” The growth of this class is shown in Fig. 21.1.

21.2.2.4 Decay Mechanism

Decay of a cluster typically occurs when the number of members of that cluster
decreases over time. Since patents are not usually removed from the patent network,
we will not see a decay in the typical sense. Thus, to discover decay, we again
examined the change in the number of patents added each year. A patent class that
grows at a slower rate in consecutive time intervals would fit our description of
decay. This definition of decay is simply the opposite of our definition of growth.
We have found an instance of decay in class D03D, which includes patents dealing
with “woven fabrics; methods of weaving; [or] looms,” part of the larger class of
TEXTILES (D). The decay of this class is illustrated in Fig. 21.2.

21.2.2.5 Split Mechanism

The split mechanism occurs when a single cluster splits into at least two smaller
ones. The split mechanism is similar to birth, see the section below. In the patent
universe, we have defined splitting to be when a new class is created with older
patents already inside it. A subset of patent classes fitting this characterization can
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Fig. 21.1 The increasing growth of the G06F 17/30 class is exemplified by the best-fit slope
of 131.1 annually published patents, on average. The r2 value of 0.66 supports the hypothesis of
rapid growth within G06F 17/30. We use a linear trend line and r2 value not to argue that the
behavior is linear, but that the general behavior of this class is growth. That is, the slope of the
graph (the acceleration) is clearly positive, not negative

Fig. 21.2 The decay of the D03D class is illustrated by its temporal activity above, and the
best-fit slope of −2.8 annually published patents, on average. The r2 value of 0.72 supports the
hypothesis of decay within D03D. Analogous to Fig. 21.1, no argument is being made for linear
behavior. Rather, we use the linear best fit line and r2 value to show the trend of decay or negative
acceleration
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be easily found by examining the year in which the patents within a given class were
approved and comparing these to the date of class creation. If any patent within a
class is older than the class itself, then this is an example of a split in the patent
universe.

To find this mechanism in the patent universe, we looked at the classes containing
microtechnology and nanotechnology. Before nanotechnology was known as its
own distinct field, it was a part of microtechnology. Eventually, the class was split
when a qualitative distinction between microtechnology and nanotechnology was
recognized. Patents dealing with microtechnology remained unchanged, while those
dealing with nanotechnology were reclassified into a distinct group. In the IPC,
patents relating to microtechnology fall under the class B81, and those relating
to nanotechnology fall under the class B82. To ensure that the split here is valid,
we must find a single patent older than the class itself. The critical publication is
Patent No. 6322713, published in 2001. This patent, entitled “Nanoscale conductive
connectors and method for making same” was published about 5 years before the
nanotechnology class was created. Thus, it is clear that a split into two, smaller
communities occurred in this corner of the patent universe.

21.2.2.6 Birth Mechanism

The birth mechanism is rather self-explanatory: it occurs when a distinct new cluster
comes into existence. Birth occurs frequently in the patent universe. Thousands of
patents are added each year, and there must be classes to adequately describe them;
if the established classes are not sufficient, new ones must be created. When looking
for a birth mechanism, it was critical to ensure that we were examining an example
of birth and not of a split. The important distinction between the two is that if a
class contained patents which were older than the class itself, it should be classified
as an instance of the split mechanism. If all patents in a class were published when
or after the class itself was established, then the class must have been created for
a patent that did not fit in any of the existing classes. This would be the canonical
case of the birth mechanism. We were able to identify a class that fit our criteria for
a birth mechanism, G01S 19, a class inside the physics branch. This class contains
patents that deal with “satellite radio beacon positioning systems that determine
position, velocity, or attitude using signals transmitted by such systems.” This class
was created in 2010 and contains patents published from 2010 onward. The earliest
patent we have data on, Patent No. 7701390, was published on April 20, 2010.
From this information, we can conclude that this class was an example of the birth
mechanism.

21.2.2.7 Merge and Death Mechanisms

A merge occurs when two distinct communities combine into one larger community.
There are two types of events in the patent universe that fall under the merge
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Fig. 21.3 An example of the more subtle type of merging in the patent community. This screenshot
of the definition of class B61C 1 shows the relationship between this class and three other classes,
two of which are under a completely different main class

umbrella. The first is very literal and is closely linked to our example of death.
It can be thought of as such: At time 0, there exist two classes, A and B. At some
time in the future, every patent that was inside class B is now in class A. A is now
significantly larger and is the merging of two classes. Also, class B no longer exists.
We consider this a death in the patent universe.

This event is uncommon in the patent universe and is only able to be discovered
by looking through changes in the classification names on the IPC website. Each
year, members of the WIPO make edits to the IPC, sometimes preforming this form
of “death merge.” One example of this was with the classes F25C (“producing,
working, or handling ice”) and A23G 9/00 (“frozen sweets, including ice cream,
and their production”). These classes have since merged into F25C, and A23G
9/00 has experienced death.

The second example of merge is more subtle. Figure 21.3 shows the breakdown
of the classes inside B61C dealing with locomotives and motor railcars. This
class contains subclasses that distinguish between electric and steam locomotives.
Inside the steam subclass, we note that this subclass relationship is intrinsically
linked to power transmissions (B61C 9), engines (F01), and boilers (F22B). We
consider this a merger since some of the patents inside these three subclasses have
properties that have merged with B61C 1. That is, every patent in B61C 1 must
have properties described in B61C 9, F01, or F22B. Note that the reverse is not
true. For example, patents in F01 do not have to have characteristics of B61C1. It
appears that this merger happened at late as 2006. Since the WIPO does not release
older versions of its classifications, we cannot put an exact date on this merger, just
an upper bound.

21.3 PageRank: A Brief Summary

PageRank is a recursive algorithm that takes into consideration the effect of the
neighbors for the iterative computation of the probability of reaching a node through
a random walk having “jump probability” d. This parameter is called the “damping
factor,” because it reflects how significant is the effect of the neighbors to the
node in question. PageRank’s significance comes from its simplicity; with being
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dependent purely on network structure and only requiring one parameter, it allows
for the possibility of many modifications. In Eq. (21.1) we have the PageRank value
prob(j) for a single node j . O(i) is the outdegree of patent i, B(j) is the list
of patents that site patent j , and d is the damping factor parameter, which has a
value between 0 and 1. Equivalently, the equation for the vector of all the PageRank

values, π , is given by Eq. (21.2). T is the transition matrix, and
−→
1 is a column vector

of all ones. Note that this PageRank value is similar to the probability of a random
walk to be at node j.

probnew(j) =
⎛

⎝d ×
∑

i∈B(j)

probold(i)

O(i)

⎞

⎠+ 1− d
n

(21.1)

πnew = d T πold + 1− d
n

−→
1 (21.2)

21.3.1 History of PageRank

The PageRank algorithm was first defined by Sergey Brin and Lawrence Page.
In the first publication, the sum of the PageRank for all the nodes equals the
number of nodes. However, in their second paper, they made a small change to
the normalization so that the summation equals unity. Google had the edge over
other search engines with this powerful and simple algorithm, and it was the main
factor in the immediate success of Google. Other ways to rank the web were simply
inefficient and returned too many “junk results” [4, 16].

Now there are countless studies, extensions, and modifications to the original
PageRank algorithm. PageRank’s simplicity of only using the information of the
network makes it extremely flexible and allows for it to be applied to any type of
problem that has a network. There are applications for PageRank in many different
fields, ranging from neuroscience to sports [14]. PageRank in practice is a little
bit different than just the simple Eq. (21.1). The most common one and normally
implied adjustment is to handle the problem of “dangling nodes,” which are nodes
with outdegrees equal to 0. This is thought to be a problem for many reasons
[26], but perhaps the most simple is that PageRank is based off of the study of
Markov Chains, and one of the requirements for convergence is a stochastic matrix.
However, if we were to use our algorithm (21.1), we see that if we have a dangling
node with no outgoing links, then the column corresponding to that page would only
sum to dN

N
= d rather than 1. One common adjustment is to force these columns

to sum to one, but this modification changes the network so that any dangling node
cites all n nodes in the network, changing our (21.1), (21.2) and (21.3).Dn is the set
of all dangling nodes in the original network. Note that a network with no dangling
nodes is unchanged.
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Fig. 21.4 In the center are the original graph and its transition matrix, and then to the left, the
Google Adjustment is applied connecting the dangling node to every other node, while on the right,
the Bini Adjustment is applied with each node being connected to and from the virtual node, V

probnew(j) = d
⎛

⎝
∑

i∈B(j)

probold(i)

O(i)
+
∑

i∈Dn

probold(i)

n

⎞

⎠+ 1− d
n

(21.3)

This is the most common adjustment for PageRank and is often called the Google
Adjustment. It is not the only adjustment that can handle the issue of dangling nodes.
Another proposal is called the Bini Adjustment which introduces a new, virtual,
node that cites every node and is cited by every node. These adjustments are shown
in Fig. 21.4 [10].

21.3.2 The Algorithm

There are two methods of solving for the PageRank of all nodes, the first being to
explicitly solve the system of equations, and the other is the more practical com-
putation power method. The first step for either method is applying the adjustment,
and for this example, we will focus on the Google Adjustment, Eq. (21.3).

We can now explicitly calculate the PageRank for each node in the network by
solving the system of equations generated from Eq. (21.3).

prob(0) = 1

2d2 + 3d + 4
d = 0.85−−−−−→≈ 0.125

prob(1) = 1

2d2 + 3d + 4
d = 0.85−−−−−→≈ 0.125
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prob(2) = 2d + 1

2d2 + 3d + 4
d = 0.85−−−−−→≈ 0.338

prob(3) = 1+ d + 2d2

2d2 + 3d + 4
d = 0.85−−−−−→≈ 0.412

Computational Method The more practical way to calculate PageRank for large
graphs uses the Google Matrix, G, which is a reorganized form of Eq. (21.2). Here
G is defined in terms of the transition matrix T and the random teleportation
component 1−d

n
. J is a matrix of the same size as T , with every element Jij = 1.

πnew = Gπold (21.4)

G = d T + (1− d)
n

J (21.5)

⎡

⎢
⎢
⎣

0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
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⎡
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⎢
⎣

0 0 1 0
0 0 1 0
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1 1 1 1

⎤

⎥
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⎦
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n

⎤

⎥
⎥
⎥
⎦

= G

This matrix G encapsulates the whole PageRank process into a single stochastic
matrix. Let our starting state be the vector s0. With this matrix, we can carry out one
step of the algorithm with one matrix multiplication, that is, T s0 = s1, or the state
after one step. We repeated this process, going from T sn = sn+1 to ‖sn+1−sn‖ = ε,
where ε is the convergence factor. As Sergey Brin and Larry Page demonstrated
in their paper, this convergence happens very quickly. For more information on
PageRank, look at the original paper by Page/Brin [10, 16].

21.4 A Closer Look at the Damping Factor

PageRank is a simple yet powerful algorithm, but the correct interpretation of its
only parameter, the damping factor, is still not fully understood. The choice of
damping factor can often be underemphasized, generally with the argument to use
d = 0.85, because that is what Google did. The issue can be more complicated
requiring more in-depth consideration for different types of networks. In some
carefully constructed networks, small perturbations in the damping factor such as
from 0.850 to 0.851 can drastically change the rankings, [3] while analysis of the
Stanford Web network can show a damping factor of 0.65 results in a more stable
ranking then 0.85 [21].
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21.4.1 Rank Reversal

The PageRank value of each and every node is a function of the damping factor.
However, how d effects a node’s PageRank is different for each node. Figure 21.5
illustrates that the change of the damping factor can lead to the reversal of their
ranks; this is called rank reversal. A more concrete understanding of the damping
factor and its role in PageRank could lead to a better understanding of the effects
of components such as bottlenecks and dangling nodes or how to build better
algorithms that are more resilient to manipulation. The more rank reversals a
network has, the more possible rankings can be generated from the PageRank
algorithm. A rather straightforward sounding way to handle rank reversals would be
simply not to use any damping factor, and that is what is done in the method called
TotalRank [2]. To rank network nodes in TotalRank, there is no need to explicitly
specify the value of d, because the PageRank values corresponding to all possible
values of d will be averaged through integration. TotalRank is arguably not a good
practical replacement for PageRank, as it takes a significant increase in computation
time that is not adequately justified by an objective improvement over PageRank.
However, it did remove the ambiguity of PageRank as there is only one possible
ranking for any given network.

Fig. 21.5 Plot of the PageRank for nodes 2 and 3 in our sample graph. At d = 0.5, the PageRank
Value of node 2 is the same as node 3
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21.4.2 Causes of Rank Reversal

Figure 21.6 illustrates that in a large network (e.g., the USPTO network), some
nodes are receiving high ranks at low values of d and high ranks at high values of d,
which is primarily influenced by the ratio of the direct and the indirect citations of a
given node. These rank reversals are caused by the increasing influence from distant
nodes as d increases; certain identifiable network structures may also contribute
such as leaf nodes and dangling nodes. Dangling nodes are nodes with no outward
links; leaf nodes are nodes with no inward links. In our example graph, Fig. 21.4,
we can see that we have two leaf nodes, nodes 0 and 1, and one dangling node, node
3. Leaf nodes play their biggest role at low values of d, since with no incoming
links, their PageRank values only decrease as d increases. Dangling nodes have their
biggest role at high values of d, because a random walker would tend to move to
these dangling nodes in the limit d goes to unity. Dangling nodes aren’t as large of an
issue since the Google and Bini Adjustment remove dangling nodes from networks
by adding more edges. There are also other larger structures such as bottlenecks and
rank sinks which may contain more than one node. A bottleneck is a connection
between two mostly disjoint components of a network; an example of this would be
node 2 in the example graph as it separates nodes 0 and 1 from node 3. Rank sinks
are a set of nodes that have very little outbound connections, therefore “trapping”
the random walker. Like dangling nodes, rank sinks also have the greatest effect on
a network in the limit as d goes to unity [21].

Fig. 21.6 Rank changes of the most important USPTO nodes as a function of d



532 H. Beltz et al.

21.5 Reinforcement Learning

Although PageRank is perhaps the most famous of ranking algorithms, it is not
applicable for all situations. While the spirit of the algorithm can be extended to
patent citation networks, it needs modifications for application in a directed acyclic
graph (DAG). Because of the unidirectional structure of the patent network, apply-
ing PageRank will cause significantly more “sinks” of rank, therefore overinflating
the importance of the older patents. A “sink” can be thought of as a patent that, due
to the nature of the PageRank algorithm and the structure of the network, sees a
large amount of PageRank score flowing into it at each iteration of the algorithm.
Because of this, we chose to employ an altered version of a reinforcement learning
(RL) ranking algorithm developed by Derhami et al. [11]. RL is a machine learning
concept that, in its agent-based form, aims to teach the agent in question how to
act in the relevant environment by assigning either a reward or punishment for all
potential actions [24].

21.5.1 The Algorithm

The following equation shows the calculation of RL Rank:

Rt+1(i) =
∑

j∈B(i)

(
prob(j)

O(j)

(
rji + γRt (j)

)
)

(21.6)

where γ “is a discount factor that determines the present value of the future rewards
that can be achieved over time,” O(j) is the outdegree of patent j , and rji is the
value of a reward granted by a patent j to the patent i that it cites [11]. The function
prob(j) comes from the equation for PageRank, given by Eq. (21.2). As a reminder
this expression is the probability of a random walker on the network being at a patent
j with damping factor d. Above, B(i) is the list of patents that cite patent i. Thus,
the entire RL ranking algorithm can be described in the following pseudocode:

δ→ 0
while (δ > ε)
For every page i ∈ V

probnew(i) =
⎛

⎝d ×
∑

j∈B(i)
prob(j)/O(j)+ (1− d)/n

⎞

⎠

End for
δ← ||probnew − prob||
prob← probnew
End while
δ← 0
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while (δ > ε)
For every page p ∈ V
rji = 1/O(j)

Rnew(i) =
∑

j∈B(i)

(
prob(j)

O(j)
× (rji + γR(j))

)

End for δ← ||Rnew − R||
R← Rnew
End while

The RL ranking algorithm (above) exhibits rapid convergence, allowing for its use
in the relatively large patent citation network [11]. It is important to note that the
original algorithm preserves the score initially assigned to nodes with zero indegree.
To meaningfully apply it to a citation network, this original algorithm had to be
altered since nodes with zero indegree, i.e., those that have not been cited to date,
should inherently possess a low score. We modify the algorithm provided in [11] by
allowing score flow to occur in all nodes. This implicitly grants a score of zero to
nodes with zero indegree once convergence has been reached (ε = Rt − Rt−1 <

10−9 between consecutive iterations for each individual patent).

21.5.2 Comparison with PageRank

With two different methods of ranking, the question of which to use in a given
situation arises.

Before answering that question, one might wonder if RL ranking is sufficiently
different from PageRank. It turns out that the similarity between the two relies solely
on the choice of γ and d. Figure 21.7 illustrates that the predictability of RL scores
from PageRank scores at a given moment in time is independent of γ , the discount
factor. A more important role is played by the damping factor, d, which nonlinearly
decreases the predictive power of PageRank scores as they tend toward unity. We
can also compare the scores under the same γ and damping factor, as shown in
Fig. 21.8, which plots the PageRank score and the RL score inside a single subclass.
We see some slight correlation between scores but nothing too significant. From this,
we can see that RL rank is related to PageRank slightly but still differs significantly.
In this figure, which plots the PageRank score and the RL score inside a single
subclass, we see some slight correlation between scores but nothing too significant.
From this, we can see that RL rank is related to PageRank slightly but still differs
significantly.
Now the question of when to use PageRank and when to use RL rank can
be addressed. One of the key differences between the two ranking methods is
whether or not connection from nodes should be treated equally. In PageRank,
the importance of a node citation is not considered. The PageRank from being
cited by an influential node is the same as that from one that is unheard of. RL
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Fig. 21.7 A perspective plot of the predictability of a patent’s RL rank score based on its
PageRank score. Only patents within A61K or connected to patents in A61K are included.
Predictability is operationalized by the coefficient of determination (R2) on the z-axis. The patent
citation network is based on its state at the end of 2015. The damping factor, d, and the discount
factor, γ , are the independent variables. This figure is built using the procedure in [19]

Fig. 21.8 A direct comparison between the PageRank score and the RL rank score of a particular
subclass. We can see some slight trends in correlation but nothing incredibly strong
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ranking addresses this and allows for the distribution of rank based on the number
of outgoing citations. For example, a node that cites 100 nodes will deliver a smaller
amount of rank to each child node than a parent node which cites only 5 children.
From this, it seems that the optimal ranking system to use depends on the context
of your network. Do your nodes differ vastly in importance, and do you want your
ranking to address that? If so, RL rank would provide a ranking score that addresses
this concern. If you want your rank to only be determined by the connectivity of
your graph, then PageRank is the clear choice.

21.5.3 Case Study

We end by examining a use of RL ranking with patents. For this, we examined a
subclass A61K9 and conducted a RL ranking of all of the patents inside it. We then
examined the behavior and connectivity of these “most influential patents.” That
is, we looked at the central patent and its first neighbors (patents that it cites or
patents that cite the central patent) at eight different time frames. At each time step,
we clustered all of these patents using a multilevel community detection algorithm
in the software igraph [1, 7]. A more in-depth description of this process can be
found in [6]. The most interesting case we examined was that of patent 3845770,
one that describes an osmotic device which enables a variety of drug compounds
to be released in a controlled and continuous way for a prolonged period of time.
We show the behavior of this patent in Fig. 21.9. This figure, broken up into eight
distinct time periods, shows the evolution of this patent. In the first time period, this
section of the network contains just two clusters: a bigger (red) and a smaller (blue)

Fig. 21.9 Colors encode clusters. Node size is proportional to the normalized ranking score. 1976–
80, 1981–1985, 1986–90, 1991–95, 1996–2000, 2001–05, 2006–10, 2011–15
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cluster. The patent of interest belongs to the bigger red cluster. Every node from
this group is related to a different kind of drug delivery system or drug dosage form
(such as pill, tablet, capsule, or liquid form). The blue cluster also contains patents
with similar ideas such as the drug delivery mechanism into the body. In the time
period 1990–1995, a new cluster appears with green color. Every patent from this
cluster is related to different kinds of dosage forms and delivery systems for opioids.
Since 1990, opioid drugs have become very popular in the treatment of chronic pain
and cancer [20]. We can see the emergence of the opioid epidemic by the creation of
the green cluster and its rapid growth in size. We also see other cluster dynamics at
play. The blue cluster seems to stagnate and then essentially disappear. In essence,
by using reinforcement learning ranking to identify influential patents, one can see
the emergence of historical trends in the patent universe.

21.6 Summary

The patent citation network can be viewed as a time-evolving complex system, and
the relationship between the topological structure and the dynamics of the network
has been analyzed. Patent data are organized into a hierarchy, where there are patent
classes, subclasses, etc.

Inventions often can be described as combinations of already existing technolo-
gies, and one of our goals was to identify possible mechanisms of technological
evolution reflected by changes in the patent universe. Growth, decay, split, birth,
and merge mechanisms were detected.

Next, algorithms for ranking of nodes were discussed and used specifically for
patent citation networks. Now it is well-known that the result of the ranking given by
the PageRank algorithm depends on the numerical value of the damping factor, and
rank reversal happens. The application of the PageRank algorithm to the USPTO
database shows that rank stability occurs for smaller values of the damping factor,
and massive rank reversal happens for higher values.

The reinforcement learning ranking algorithm proved to be useful for situations
when nodes show a high diversity in their importance.

Finally we showed real-world applications by combining reinforcement learning
ranking with cluster analysis. We were able to identify influential patents. Knowing
which patents are influential is one characteristic of information quality, and thus we
are able to obtain useful information from the structure and dynamics of the patent
citation network.
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Chapter 22
Conflict Measures and Importance
Weighting for Information Fusion
Applied to Industry 4.0

Uwe Mönks, Volker Lohweg, and Helene Dörksen

Abstract Information sources such as sensors, databases, and human experts serve
as sources in order to realise condition monitoring and predictive maintenance
in Industry 4.0 scenarios. Complex technical systems create a large amount of
data which cannot be analysed manually. Thus, information fusion mechanisms
gain increasing importance. Besides the management of large amounts of data,
further challenges towards the fusion algorithms arise from epistemic uncertainties
(incomplete knowledge) and—mostly overseen—conflicts in the input signals.
This contribution describes the multilayered information fusion system MACRO
(multilayer attribute-based conflict-reducing observation) employing the BalTLCS
(balanced two-layer conflict solving) fusion algorithm to reduce the impact of
conflicts on the fusion result by a quality measure which is denoted by importance.
Furthermore, we show that the numerical stability in heavy conflicts is a key factor
in real-world applications. Different examples end this contribution.

Keywords Information fusion · Industry 4.0 · Conflict measures · Importance
weighting · Machine learning · MACRO system

22.1 Introduction

Information fusion is an essential methodology in state-of-the-art industrial equip-
ment which makes use of the emerging field of cyber-physical systems (CPS). In
the context of the upcoming Fourth Industrial Revolution (Industry 4.0), multiple
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Fig. 22.1 (a) KBA Cortina newspaper offset printing press overview (b) KBA Cortina newspaper
offset printing press detail showing its several attached electric drives. (With kind permission of
KBA—Koenig & Bauer AG, Würzburg [21])

CPS are necessary for condition monitoring and predictive maintenance in machine
and process industries. CPS are physical processing systems equipped with sensory
devices which interconnect over communication networks for distributed cognitive
information processing applications. Whereas the data amount is usually large
because of quasi-unlimited sources (sensors, databases, experts, etc.), the computa-
tional resources are generally limited. One example is industrial printing processes,
like the newspaper printing process depicted in Fig. 22.1.

Today’s state-of-the-art printing systems are driven by hundreds of actuators in
the application, along with a number of sensors in the same order of magnitude.
On the one hand, these are electric drives moving cylinders, positioning units,
or magnetic valves controlling the print colour’s application onto the substrate,
for example. On the other hand, a vast variety of sensory units are applied for
acquisition of different types of data. These may be several different basic physical
measures such as pressure or temperature, but also specific process parameters like
the quality of inks, as well as many others.

Since the signal sources are distributed over the entire application, all the data
must usually be communicated over an appropriate network to all CPS. Conservative
approximations show that the bandwidth of standard Fast Ethernet is occupied by
already 20 network participants [7, 36]. Nevertheless, these figures point out that
centralised systems are not able to handle all occurring data due to restrictions of
current fieldbus systems needed to communicate the data. The situation additionally
deteriorates when instead of one single process a complete plant consisting of a
number of production machines is to be monitored. Inconsistencies and conflict
must occur naturally. Such systems don’t scale in the end.

As illustrated above, different sensors are increasingly applied in industrial
processes to measure and control complete processes, machines, and logistics. One
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way to handle the resulting large amount of data created by thousands of different
information sources is to employ information fusion systems. Information fusion
systems, e.g. condition monitoring and predictive maintenance, combine different
sources of information, like databases, sensors, or human experts to generate the
current state of a complex system. The result of such information fusion processes
is regarded as a health indicator of complex systems. Therefore, information fusion
approaches are applied to, e.g. automatically inform about a reduction in production
quality or detect possibly alarming situations in technical systems.

Besides the management of large amounts of data, further challenges towards the
fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the
input signals as well as conflicts between them. In many cases the information cap-
tured from the environment may be imprecise, incomplete (scarce), or inconsistent.
Furthermore, signal sources may not be reliable [1].

Considering the importance of sensors in information fusion systems in indus-
trial processes in general, defective sensors have several negative consequences.
The machine condition is not detected correctly; control processes will not run
adequately; it may lead to machine failure, e.g. when wear and tear of a machine
is not detected sufficiently in advance—just to name a few critical effects.

A prominent factor which can generate ineffectiveness or even contradictory
results is the “conflict between data sources”. That is given whenever the infor-
mation of at least one source disagrees with the remaining available information.
The possible causes of conflict can be numerous. Source deterioration or faults
occur especially in real-world problems. Manipulation of the sources (or their
information) is also conceivable, especially in security-critical settings. Conflict is
formally a form of conscious ignorance. It is, namely, the cause of inconsistency or
distorted information [1].

Such information inconsistencies lead to results, which do not represent the
actual situation if the conflict has not been recognised and addressed during
information processing.

Conflict has been identified as one of the most challenging topics in information
fusion (IFU) [20]. Measures of conflict are known in literature. One prominent
example is Shannon’s entropy measure [41] which is also applied as a conflict
measure [1]. Therefore, it is necessary to extend known fusion concepts insofar
that they are able to measure and to handle imprecision and reliability [33]. These
aspects must be considered during information processing to obtain reliable results,
which are in accordance with the real world. Only then, the obtained information
can be regarded to be of high quality. The analysis of the scientific state of the art
shows that current solutions fulfil the said requirements at most only partly.

Examples on such insufficiencies based on inconsistencies or conflicts might not
only have influences on machine behaviour but have also lethal consequences. On
May 9, 2015, Airbus suffered from a crash of one of its A400M military aircrafts
during a test flight shortly after take-off: four crew members died, and two were
severely injured [22]. Preliminary results of the case’s investigation led to the con-
clusion that the engines received conflicting commands from the aircraft’s control
unit. This resulted in the crash either due to a limitation of the engines’ thrust level
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or a complete engine shutdown [14]. Another critical case with luckily no victims
was Lufthansa flight LH 1829 on November 5, 2014 [45]. This list of incidents is
continued by the Air France crash on the way from Rio de Janeiro to Paris in May
2009 with 228 victims [44] or the crash of an AirAsia Airbus A320 close to the
Indonesian coastline in December 2014 (162 people died) [46]—the importance of
conflict handling (also of course in other areas) should be clear at this point.

To a certain extent, conflict handling is independent from the model applied
to represent information. Whereas probability theory [2, 16, 19], fuzzy set theory
[49], and possibility theory [8, 50] need to incorporate further processing steps for
conflict handling, Dempster-Shafer theory of evidence [6, 40] is inherently designed
to handle conflicts. Conflict in a fusion process represents inherent uncertainty.
Therefore, information of the applied sensors and consequently their information
itself contained in the result of the fusion process are not 100 % reliable. Thus, an
importance measure is directly connected to a conflict measure.

This chapter proposes to apply the multilayered information fusion system
multilayer attribute-based conflict-reducing observation (MACRO) [33, 34, 37]
employing the balanced two-layer conflict solving (BalTLCS) [26, 33, 37] fusion
algorithm to reduce the impact of conflicts on the fusion result. The performance of
the contribution is shown by its evaluation in the scope of a machine condition
monitoring application under laboratory conditions. Here, the MACRO system
yields promising results compared to other state-of-the-art fusion mechanisms.

22.2 Sensor Conflict and Importance in Information Fusion

In this section we describe the nature and psychological effects of conflict and
importance as well as the state-of-the-art of conflict measures and information
fusion in this context.

22.2.1 Conflict and Importance

Conflict occurs whenever information does not bear evidence for only one opin-
ion/proposition but also for another. This might either be due to actual failure in the
observed process or system or caused by one or more defective sensors. The latter
case is the most severe one since wrong decisions might be derived if sensors were
considered reliable, although they are not.

The basic idea of conflict and importance relies on the fact that non-conflicting
information is psychologically co-noted with reliability in the meaning of impor-
tance. Therefore, in a high-conflict case, the result should be treated as less
important for a condition or situation because high conflict indicates low reliability.
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22.2.2 State of the Art

A number of publications work on the improvement or substitution of conflict
measured and processed in the combination rule of Dempster-Shafer theory of
evidence (DST) [6, 40]. Martin et al. propose a conflict measure based on the
distance between belief functions. This measure additionally serves to determine
a posteriori the reliability of the recently processed data [29, 30]. Smarandache et
al. put this new approach into context and benchmarked it against other conflict
measures (which they call “contradiction measures”) [42]. A measure based on
vector distances between the data to be fused is introduced in [25]. Minor and
Johnson do not consider conflict as uncertainty originating from data source
reliability issues, but from uncertainty in the frame of discernment. The sources’
reliabilities must be questioned in this case as they are then applied to observe
an inappropriate situation (the augmented frame of discernment) [31]. Another
conflict measure is developed in [3–5]. It is based on the internal conflict between
belief functions, which increases when decreasing belief is assigned to the evaluated
propositions. To date, this concept is developed axiomatically [5].

A combination rule along with a conflict measure, based on the average of the
individual beliefs, is introduced in [9]. This paper concludes that the arithmetic
mean is typically the best combination rule but admits at the same time that
the choice of the correct combination rule is context-sensitive. The implicative
importance weighted ordered weighted averaging (IIWOWA) operator [23] is an
extended version of ordered weighted averaging (OWA) [48], which allows for
weighting each element with respect to its importance in the current problem. It
is the normalised version of the importance weighted ordered weighted averaging
(IWOWA) to achieve value equivalence instead of order equivalence to Yager’s
weighted arithmetic mean (WAM) operator [23].

22.3 Models and Measures

Conflict is understood as epistemic uncertainty: if more information is available, it
is possible to reduce or resolve the inherent conflict completely. It has a substantial
influence on the fusion result. The influence changes with respect to the total number
of sources. Its behaviour in such cases must be known in advance. Thus, analytical
and numerical evaluations are carried out. DST-based fusion models are capable to
handle epistemic uncertainties. Therefore, an approach using DST’s well-defined
and researched Dempster’s rule of combination (DRC) [40] as a basis, but tackling
its problems, is elaborated and defined in this contribution. This fusion algorithm
denoted by BalTLCS applies psychological concepts derived from human group
decision processes to stabilise the fusion result. The fusion algorithm is the core
fusion operator applied in the MACRO system [33], which is introduced in the
following section.
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22.3.1 Multilayer Attribute-Based Conflict-Reducing
Observation

The architecture of the MACRO fusion system [33, 37] is designed to resemble the
actual structure of the monitored system, which is partitioned into several subsys-
tems on the one hand. This kind of architecture is found in contemporary system
design of several application fields. On the other hand, MACRO’s architecture
facilitates the implementation of multimodal systems in the sense of [39].

The purpose of the MACRO fusion system is to determine and assess the state
of a complete system by monitoring its subsystems and properties. The following
terminology applies:

Definition 1 (MACRO terminology [33]) The terminology in the context of the
MACRO system is defined as follows:

Sensors: A set of sensors S = {Ss}, s ∈NN acquires the signals of the monitored
system (physical device) or its environment. Its physical effects determine the
sensors’ signals, which are output as raw data ds . The term “physical” hereby
encloses all effects, which the monitored physical device influences or is exposed
to, hence also biological and chemical effects.

Signal conditioning: A number of signal conditioning blocks SCj , j ∈NF extract
each one feature fj from the raw sensor data ds . It may also include signal
preprocessing procedures.

Attribute layer: The attribute layer consists of a number of attributes, each
containing an attribute fusion algorithm.

Attribute: An attribute a ∈ A represents a characteristic (physical quantity,
functionality, component, etc.) of the monitored system that is represented by
at least two features. The attributes depend both on the monitored system and the
application MACRO is utilised in and are defined by expert’s knowledge. Given
the hierarchy of the monitored system, four types of attributes are defined in the
following taxonomy:

Module attribute: An attribute a is a module attribute iff it represents a single
module or component that is part of the monitored system.

Physical attribute: An attribute a is a physical attribute iff it characterises a
single elementary (physical, biological, chemical) phenomenon of a specific
module.

Functional attribute: An attribute a is a functional attribute iff it characterises
functionality of the monitored entity with respect to a specific module.

Quality attribute: An attribute a is a quality attribute iff it assesses the output
(e.g. fabricated product) of the monitored system.

An attribute’s output indicates to which degree its inputs represent the system’s
normal condition and is denoted by attribute health.

System layer: All attribute healths are fused on system layer by the system fusion
algorithm. It determines and assesses the current system state denoted by system
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Fig. 22.2 Architecture of the multilayer attribute-based conflict-reducing observation system
MACRO [33, 34]

health. The system health is MACRO’s final output and indicates to which degree
the input attribute healths represent the system’s normal condition.

MACRO’s architecture is depicted in Fig. 22.2.
The MACRO architecture offers the following general key properties:

• The fusion architecture describes the information flow from the bottom to the
top and is as such independent from both the choice of signal conditioning
approaches as well as from any fusion technique.

• The system health is determined based on a number of attribute healths. An
anomaly will be first noticed by a decrease in the system health. The subsequent
evaluation of the attribute healths assists in narrowing down the location of the
anomaly.

• Due to the resemblance of the physical system in the structure of MACRO, a
transparent monitoring system is created. This property assists in interpreting
results during MACRO’s runtime by the system operator.

• The architecture supports the possibility to implement a distributed information
fusion system in real-world applications. Instead of transmitting the raw data
to the system layer, the aggregated and thus compressed attribute healths are
transmitted.

Its building blocks are instantiated based on [33] in the following. On the
lowest layer of the MACRO architecture, N signal sources (sensors) Ss capture
the physical effects, which a system is exposed to and influences, respectively. Each
sensor delivers a signal ds . These signals are heterogeneous in type and dimension.
Consequently, the various signal data are incomparable and must be transferred into
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the same space, before information fusion can take place. As information fusion on
symbol level is generally too rigid [15, 28], information fusion inside the MACRO
architecture is carried out on feature level.

In order to extract the features f from the signals, they are processed in
the blocks labelled SC. The processing steps are denoted by signal conditioning
in the MACRO architecture (cf. Fig. 22.2). Analogue signals are digitised by
sampling before features are extracted from them. The content of each of the F
signal conditioning blocks is always application-dependent and cannot be defined
generally. Whereas one feature is delivered per signal conditioning block, this
feature f may be input of an arbitrary number of attributes. The same applies to
the sensor’s data: the data ds originates from one sensor Ss and may be the input of
a number of signal conditioning blocks SC. Hence, more than one feature may be
derived from ds .

A fuzzy set theory [49] approach has been chosen for modelling the acquired data
in a common unitless space between 0 and 1. It is capable to model uncertainty in the
data, which is coming from, e.g. sensor noise, and allow variations in the system’s
behaviour due to environmental changes (e.g. in temperature, humidity), which do
not affect the fulfilment of the system’s task. The Modified-Fuzzy-Pattern-Classifier
(MFPC) [27] models the information by a unimodal potential function applied as
fuzzy membership function μs : R→ [0, 1]. This information model has proven its
performance scientifically as well as in real-world applications (e.g. [27, 35, 38]).
It employs an automatic learning procedure to determine the membership function
based on measurement data during operation of the system to be monitored in its
normal condition NC. Details on the learning procedure are presented in [33, 37].

On the attribute layer, the membership functions representing the observed
system’s normal condition Nμs are fused to determine the attribute health. Uncer-
tainties, to which all the sensor signals and the features are prone, are treated
by modelling the signals as fuzzy membership functions. Conflicts between them
remain unsolved and are handled by the BalTLCS fusion operation on attribute
layer. Groups of features f are constructed, of which each group represents the
same component or property of the monitored system. Such a group is denoted by
attribute a. The features originate from different signal sources S, so that sensor
defects affect an attribute only to some degree during fusion. This also decreases an
attribute’s uncertainty.

An attribute’s importance Ia ∈ [0, 1] represents the weight of an attribute in
the fusion on system layer: the higher an attribute’s importance, the more the
attribute influences the system fusion result. The importance of a MACRO attribute
is determined continuously based on the conflict between the attribute’s inputs
during fusion on attribute layer. Hence, this information is to be incorporated
on system layer during determination of the system health. Note that manual
determination of the importance is also possible, e.g. a priori (by an expert), and set
statically. A dynamic approach is nevertheless more beneficial as dynamic changes
of the monitored system (change of the system’s operation point, varying sensor
reliabilities, etc.) are considered.
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Whereas the OWA operator [48] is suitable for integrating optimism in the fusion
process by its andness [33], it is not prepared to consider attribute importances.
Importances are integrated to the OWA operator by the implicative importance
weighted ordered weighted averaging (IIWOWA) operator introduced in [23]. It
supports the integration of both parameters andness and importance and is proposed
to determine the system health.

The entire approach supports that faulty sensors, which are in contradiction with
the other fault-free sensors, do not significantly affect the overall fusion result. This
is achieved first by the BalTLCS fusion itself, which inherently detects and handles
conflicts between inputs. In addition, the amount of conflict determined by BalTLCS
is forwarded to the subsequent IIWOWA fusion operation on system layer. Here,
attributes containing a considerable amount of conflict are devalued because their
conflict is interpreted as uncertainty connected with the attribute. Consequently,
attributes containing no or only a small amount of conflict are regarded as important
and contribute more to the system health than the unimportant attributes, which are
full of conflict. Hence, the confidence and thus the quality of the overall result are
increased compared to fusion approaches not incorporating such mechanisms.

The BalTLCS fusion operator is the integral part allowing for quality-aware
information fusion based on importance measures and is introduced in the next
section.

22.3.2 Numerical Stability’s Influence on Information Fusion
Quality

The BalTLCS fusion operator is on the one hand based on Two-Layer Conflict
Solving (TLCS) to exploit its positive properties elaborated in [33]. BalTLCS offers
the following properties:

• adoption of effective human group decision-making principles,
• determination of conflicts between inputs,
• solution of the conflicts, such that their effect on the fusion result is decreased,
• creation of intuitive fusion results, also in high-conflict cases.

On the other hand, the deficiencies of TLCS identified in [33, 37] (with specific
focus on its counter-intuitive fusion results in high-conflict cases) are mitigated.
This consequently facilitates high-quality fusion results. In order to illustrate the
mentioned findings on TLCS, its numerical stability in the range of the conflict’s
limits is evaluated in the next section. These will show the potential for improve-
ments, which BalTLCS incorporates.
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22.3.2.1 Two-Layer Conflict Solving

The TLCS fusion approach was analysed in detail in [33]. It was shown that a
number of amendments need to be incorporated in its original definition from [24]
to avoid undefined numerical situations. Thus, TLCS is applied according to [33] in
this contribution:

Definition 2 (Adapted two-layer conflict solving fusion [33]) For n ≥ 2 sensors
Ss and o ≥ 2 propositionsAi , the TLCS fusion operation determines the fused basic
belief assignment (BBA) to proposition A by

m(A) =

n∑

s=1
ms(A)+ (Bc(n)+ acc(Kcm)) · CMDST(A)

n+ Bc(n)+ acc(Kcm)
, (22.1)

where Bc(n) = (n2
)

is the binomial coefficient, the accord acc(Kcm) = |log (Kcm)|,
the adapted conflicting factor

Kcm = 1

Bc(n)− kcm + ε ,ε ∈ R with 0 < ε 0 1, (22.2)

the conflicting coefficient

kcm =
n−1∑

s=1

n∑

t=s+1

o∑

i=1

ms(Ai) · (1−mt(Ai)) , (22.3)

and the Conflict-Modified-DST

CMDST(A) =

n−1∑

s=1

n∑

t=s+1
ms(A) ·mt(A)

n−1∑

s=1

n∑

t=s+1

o∑

i=1
ms(Ai) ·mt(Ai)

. (22.4)

The analysis in [33] that TLCS creates counter-intuitive fusion results due to
numerical instabilities. In order to illustrate the cause of the numerical instability in
case of maximum conflict, Conflict-Modified-DST (CMDST) is investigated in the
scope of a relaxed maximum conflict case.

Definition 3 (Relaxed maximum conflict [33]) Let n denote the number of
sensors Ss , o the number of propositionsAi with o = n, and λ the conflict relaxation
parameter with λ 0 1. The case of relaxed maximum conflict is defined such that
each sensor Ss assigns a BBA of ms(Ai) = 1− λ to an arbitrary proposition Ai and
to another proposition Aj �= Ai a BBA of ms(Aj ) = λ. All other propositions are
assigned zero BBAs.
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Table 22.1 Example BBAs
ms(Ai) for three sensors Ss
and three propositions Ai in
the case of relaxed maximum
conflict [33]

A1 A2 A3

S1 1− λ λ 0

S2 λ 0 1− λ
S3 0 1− λ λ

The other sensors assign BBAs in the same way such that
∑o
i=1ms(Ai) = 1

for all s and
∑n
s=1ms(Ai) = 1 for all i. Hence, for each proposition Ai sensor, Ss

assigns BBA ms(Ai) = 1 − λ, and another sensor St �= Ss assigns mt(Ai) = λ,
whereas all remaining BBAs are 0.

A valid example of relaxed maximum conflict for n = o = 3 is provided in
Table 22.1.

The CMDST fusion result for arbitrary n in the case of relaxed maximum conflict
is obtained as given in [33]:

CMDST(Ai) = 1

n
· 1− λ

1− λ+ ε
nλ

. (22.5)

Analytic evaluation of lim
λ→0

CMDST(Ai) yields

ε > 0 : ε = 0 :

lim
λ→0

1

n
· 1− λ

1− λ+ ε
nλ

= 0 lim
λ→0

1

n
· 1− λ

1− λ =
1

n
(22.6)

The variable 0 < ε 0 1 was introduced in Eq. (22.2) in order to numerically avoid
undefined states of Kcm in high-conflicting cases (kcm → Bc(n)) and is thus an
artificial addition. In CMDST however, it determines and falsifies the output, also
analytically (cf. Eq. (22.6)).

The error term �= ε
nλ

in Eq. (22.5) shows that ε and λ are proportionally
dependent on each other. The reason for the discovered numerical instabilities in
case of lim

λ→0
CMDST(Ai) for all ε > 0 follows from [33]

lim
λ→0

ε

nλ
= ∞,

regardless of the number of sensors n. As a consequence, TLCS yields counter-
intuitive fusion results in high-conflicting cases due to numerical instabilities.

In order to bound this effect and facilitate fusion quality, the error term � is
limited, as derived in the following. The value of its constituent ε is typically
predefined in implementations by the accuracy of the software or the processing
unit; n is the number of sensors applied in the fusion process. Hence, � depends on
λ, for which the lower bound λ is approximated by
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Proposition 4 (Lower bound of the conflict relaxation parameter [33]) In order
to limit the error term Δ, the lower bound of the conflict relaxation parameter λ is
determined by

λ ≥ ε

nΔ
. (22.7)

The following example provides approximations of λ for MATLAB implemen-
tations.

Example 1 (Lower bounds of the conflict relaxation parameter in MATLAB imple-
mentations [33]) MATLAB implements floating-point numbers according to the
IEEE standard 754 [17, 18, 43]. Its accuracy1 is ε = 2−52 ≈ 2.2204 · 10−16. Then
the following lower bounds for λ result in case of arbitrarily chosen �:

� ≤ 10−10 : � ≤ 10−5 :

λ � 1

n
· 2.2204 · 10−6, λ � 1

n
· 2.2204 · 10−11.

The trade-off between the error and allowable maximum conflict in order to
guarantee numerical stability is as follows: the less error � is allowed, the larger is
the smallest allowable value of λ. This consequently means that maximum conflict
in the input data must be more relaxed the smaller � is allowed to be.

From a practical point of view, this evaluation facilitates a check on the input
data when relaxed maximum conflict in the data is detected. If λ ≥ ε

n�
is not

satisfied, a critical situation for numerical stability is detected, in which the results
cannot be trusted. Such situation is avoidable by exception handling: the fusion
result is annotated as being unreliable and thus not further processed automatically.
At the same time, a notification is triggered for the on-duty supervisor who then can
investigate the scene manually.

The number of sensors n influences on the one hand the lower bound of λ and
on the other hand determines the condition of CMDST(Ai). The absolute condition
relates the difference in the output of CMDST(Ai) to the infinitesimal difference of
its input, hence

cond(CMDST(Ai)) =
∣
∣
∣
∣
δCMDST(Ai)

δλ

∣
∣
∣
∣ .

A problem is denoted well-conditioned if its condition is cond ≈ 1, i.e. an
infinitesimal change of the input results in an infinitesimal change of the output.
This is interpreted as numerical stability of the problem. It is numerically evaluated

1The presented information is derived from MATLAB 2016a (9.0.0.341360) 64-bit for Microsoft
Windows. The declarations are also valid for earlier versions of MATLAB according to [32].



22 Conflict Measures and Importance Weighting for Information Fusion. . . 551

10−10 10−9 5·10−9 10−8
10−1

101

103

λ

δC
M

D
ST

 (A
i)

δλ

n = 2
n = 3
n = 5
n = 10
n = 100

Fig. 22.3 Absolute condition of CMDST(Ai) in the relaxed maximum conflict case determined
numerically for ε = 2−52, δλ = 10−12, and n ∈ {2, 3, 5, 10, 100}. The dashed line represents
cond(CMDST(Ai)) ≈ 1, denoting the boundary below which a problem is denoted well-
conditioned [33]

for CMDST with respect to λ in the relaxed maximum conflict case with ε = 2−52,
δλ = 10−12, and n ∈ {2, 3, 5, 10, 100}. The results are visualised in Fig. 22.3.

The CMDST combination rule is well-conditioned for roughly λ > 10−8

regardless of n. In this context it must be noted that increasing n facilitates numerical
stability for smaller values of λ and hence precise processing of CMDST(Ai). At the
same time, it must be ensured that λ does not fall below the boundary determined
by Eq. (22.7) in order to satisfy the desired limit of the error term �. The next
section will show that BalTLCS is instead numerically stable and not demanding
such adjustments in its parameters.

22.3.2.2 Balanced Two-Layer Conflict Solving

The Two-Layer Conflict Solving (TLCS) approach introduced by Li and Lohweg
is a promising candidate for attribute layer fusion. However, its analysis shows that
adaptations are necessary especially when real-world applications are considered
[33, 37]. These findings are applied in the design of the BalTLCS fusion algorithm.
It determines intermediate fusion results with respect to non-conflicting and con-
flicting BBAs, which are subsequently combined in an additive way:

Definition 5 (Balanced two-layer conflict solving Fusion [33, 37]) For n ≥ 2
sensors Ss and o ≥ 2 propositions Ai , the BalTLCS fusion operation determines the
fused BBA to proposition A by

m(A) = mnc(A)+mc(A). (22.8)
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where the non-conflicting part is determined as

mnc(A) = 1

Bc(n)

n−1∑

s=1

n∑

t=s+1

ms(A) ·mt(A), (22.9)

and the conflicting part is determined as the arithmetic mean of all input BBAs
weighed by normalised conflicting coefficient c

mc(A) = c · 1

n

n∑

s=1

ms(A), (22.10)

with c modelling the degree of conflict between individual beliefs as

c = 1

Bc(n)

n−1∑

s=1

n∑

t=s+1

o∑

i=1

ms(Ai) · (1−mt(Ai)) = 1−
o∑

i=1

mnc(Ai). (22.11)

Whereas the non-conflicting part is determined by pairwise aggregation, the
conflicting part considers all sensors at the same time. Hence, BalTLCS follows
the same concept, which is applied in TLCS: decision-making in the whole group
employs the intermediate result, which has been found in “bilateral discussions” and
the original BBAs of all sensors.

The BBA assigned to the frame of discernment, which represents the amount of
ignorance, is determined by

m(�) = 1−
∑

Ai⊂�
m(Ai).

Considering the limits of conflict, the following properties of BalTLCS are
derived:

No conflict: c = 0⇒ mc(A) = 0⇒ m(A) = mnc(A).
Maximum conflict: c = 1⇒ mnc(A) = 0, mc(A) = 1

n
⇒ m(A) = 1

n
.

Hence, if no conflict occurs, the non-conflicting part mnc determines the overall
fusion result. If the conflict is maximal, then all information sources have to be
taken into account, which is achieved by mc determining the arithmetic mean of
all sensory hypotheses. A balance between conflicting and non-conflicting beliefs
is established by the additive connection utilising the conflicting coefficient c as a
control parameter.

This balancing is illustrated by the following numerical examples on the
conflict’s limits given in Table 22.2.

The evaluation yields the expected results. In the case of no conflict, all
aggregated belief is assigned to proposition A1, which is the only proposition that
the sensors assign beliefs to. The conflicting parts mc are all 0 due to the same
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Table 22.2 Example BBAs ms(Ai) for three sensors Ss and three propositions Ai in the case of
(a) no conflict, and (b) maximum conflict along with the results obtained by the BalTLCS fusion
approach [33, 37]

(a) No conflict

A1 A2 A3

S1 1 0 0

S2 1 0 0

S3 1 0 0

(b) Maximum conflict

A1 A2 A3

S1 1 0 0

S2 0 0 1

S3 0 1 0

No conflict Maximum conflict

c 0.000 1.000

mnc(A1) 1.000 0.000

mnc(A2) 0.000 0.000

mnc(A3) 0.000 0.000

mc(A1) 0.000 0.333

mc(A2) 0.000 0.333

mc(A3) 0.000 0.333

m(A1) 1.000 0.333

m(A2) 0.000 0.333

m(A3) 0.000 0.333

reason; thus, the fusion result is determined only by the non-conflicting parts. In
the case of maximum conflict, no BBAs are assigned to the non-conflicting parts
mnc. Instead, all belief is assigned to the conflicting partsmc, to which the beliefs of
all sensors in the respective propositions are equally assigned. Consequently, each
fusion result is determined only by its conflicting part.

The critical case with respect to numerical stability for TLCS and its constituent
component CMDST is the relaxed maximum conflict case (cf. Example 3). The
BalTLCS approach yields in this case

m(Ai) = 1

n
.

Considering its condition with respect to λ

cond(m(Ai))

∣
∣
∣
∣
δm(Ai)

δλ

∣
∣
∣
∣ = 0,

numerical instabilities will not affect the result: regardless of the change of λ, the
result will be the same. In contrast to TLCS, no artificial parameter needs to be
introduced in the constituent parts of BalTLCS to numerically avoid undefined
situations. The operations employed in BalTLCS on the BBAs to be fused are
bounded [33, 37]. Hence, no numerical instabilities are expected.

The numerical examples presented above validate the stability of BalTLCS also
in case of no and maximum conflict. In contrast to TLCS, BalTLCS yields the
expected fusion results. Conflict is also determined and considered in the fusion
process. The importance measure introduced in the following section is based on
this conflict measure.
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22.3.3 Conflict as a Measure of Importance

Conflict in a fusion process represents inherent uncertainty. Therefore, the informa-
tion of the applied sensors and consequently the information contained in the result
of the attribute’s fusion are not 100% reliable. Thus, the importance measure Ia of
the attribute a is defined as follows:

Definition 6 (Importance measure [33, 37]) Let I a be the information weight in a
fusion process, which estimates the impact of a conflict regarding the aggregation of
sensor information in attribute a. Let N

aμ be the fused result of a balanced two-layer
conflict solving (BalTLCS) process regarding proposition NC with the conflicting
coefficient ca ∈ [0, 1]. Then Ia : ca → [0, 1] is the corresponding information
weight of the fusion result N

aμ, which is dependent on the attribute’s conflicting
coefficient ca . The information weight is denoted by importance measure. It is
determined by

Ia = 1− ca. (22.12)

Proof In case of low conflict (ca → 0), the importance must be high and vice versa.
Hence, the importance moves in the opposite direction of the conflicting coefficient.
Therefore, the sum of conflicting coefficient and importance must be constant, hence
ca + Ia = sup(ca) = 1 due to ca ∈ [0, 1] and Ia ∈ [0, 1]. It follows

Ia = 1− ca.

��
The conflicting coefficient encodes information about the uncertainty involved

in the fusion process: the smaller ca , the lower is the uncertainty [33, 37].
This principle is exploited in the concept of importance. The importance is the
complement of the conflicting coefficient. This expresses that the fusion result is
more important the less conflict has been determined during fusion and vice versa. In
addition, sensor defects directly influence the conflict between sensor inputs. Hence,
the conflict (hence the attribute’s negated importance in the context of MACRO,
delivered at no additional cost) seems to be an appropriate indicator for a possible
sensor defect.

22.4 Applications

Industrial applications are in transition towards modular and flexible architectures
that are capable of self-configuration and self-optimisation. This is due to the
demand of mass customisation and the increasing complexity of modern industrial
systems. Sensors, actuators, but also other sources like databases serve as data
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sources for the realisation of condition monitoring in industrial applications or
for the acquisition of characteristic parameters, such as production speed or reject
rate. The data originates from sources which are spatially distributed over the shop
floor. Modern industrial plants are equipped with an increasing number of sensors
generating a large amount of data. The task of processing these amounts becomes
increasingly complex. Computation takes longer and necessary communication may
exceed available bandwidth. Furthermore, machine operators are unable to properly
process and draw correct conclusions from the generated information [36]. Complex
machineries make it increasingly difficult for a system designer to comprehend
the overall industrial plant. In such complex systems, the acquisition of sensor
signals must be designed very carefully and tailored optimally towards the specific
application. This challenge aggravates with the progressing introduction of modular
and flexible systems and devices.

The conversion to modular systems, like in intelligent technical systems or
cyber-physical systems for Industry 4.0, is related to challenges in all disciplines.
Consequently, diverse tasks like information processing, extensive networking, or
system monitoring using sensor and information fusion systems need to be recon-
sidered. In modern industrial plants, the idea of flexible systems and devices will be
realised, especially at runtime. Up until now, flexibility was often only predesigned,
which demands a designer to consider all possible situations beforehand. This
is about to change in modern applications. Distributed sensor and information
fusion for system monitoring, which must reflect the increasing flexibility of fusion
systems, are in the focus in such applications. With respect to the human system
designer and operator, an IFU system has to be transparent, understandable, and
traceable. These properties allow erroneous situations to be properly detected
and resolved adequately. Consequently, the following requirements for a design
methodology are derived [33]:

• The application’s requirements have to be fulfilled by a proper selection of
sensors with respect to the measured quantity, the measurement range, and
resolution.

• The system designer should only be assisted in the design process and must
remain as final decision instance. Solutions for the design should at most be
suggested such that the system designer can choose the most appropriate one.

• Each design of an IFU system depends on the specific application. Nevertheless,
partial solutions are reusable and should therefore be considered before identify-
ing a completely new IFU system design. Consequently, repositories for storage
of problem formulations and solutions have to be available that hold information
in a defined manner to identify similarities.

• Attributes of the MACRO system or their input signals include descriptive
information to automatically generate, update, and destroy the attributes. Hence,
available autoconfiguration mechanisms have to be extended by a fusion system
design methodology in order to be able to process self-descriptive data that
originates from intelligent sensors.
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Fig. 22.4 Architecture of the self-configuring fusion system [11]

One previously published approach relies on a network of self-descriptive
intelligent sensor nodes including self-description information for the automatic
design and update of sensor and information fusion systems [12, 13]. It automat-
ically designs an IFU system but gives the system designer the final authority
over the actual implementation. The methodology relies on a rule-based decision
system, which evaluates semantic descriptions delivered by the involved sensors.
The architecture of the IFU system is depicted in Fig. 22.4. It forms a sensor
network consisting of n intelligent sensors that are capable to communicate
among themselves and with the system manager. The system manager implements
functionalities for automated system design and self-configuration.

In this case the system manager is a central processing unit to detect available
sensors and process their self-descriptive information in order to propose an IFU
system for the specific application. It also monitors the IFU system for changes
and adjusts it accordingly. Fritze et al. summarise distributed systems in the form
of multi-agent systems and their advantages regarding self-organisation and self-
adaptation in [13]. Because of better scaling and the avoidance of a single point of
failure, such systems fit also into the concept of automated fusion system design.
Nonetheless, industrial applications require real-time communication channels for
process data exchange to be able to react to changes in process real time. Thus,
it must also be considered in IFU, especially in distributed IFU systems. There
is currently no real-time communication standard that is capable to fulfil the
requirements for decentralised data exchange. Therefore, a central processing unit is
indispensable when real-time communication is required. Consequently, the concept
presented in the following additionally incorporates a central processing unit in form
of the system manager.
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Trust in the processed information is crucial at this point. This applies to both
the self-descriptive information and the sensor signals, which are fused in the IFU
system. Importance measures, such as the one introduced in Sect. 22.3.3, help to
integrate and maintain trustworthiness. Generally speaking, the specific importance
of a piece of information is considered by weighting the information. Smaller
importance measures denote smaller importance but are also applied to express the
level of confidence assigned to the piece of information.

The importance measure defined in Sect. 22.3.3 evolves from the MACRO
information fusion system. There, it is applied to devalue attributes incorporating
high levels of conflict. This consequently leads to higher quality of the entire
fusion system result. Mönks et al. showed this, e.g. in a laboratory printing unit
supervision experiment [33, 37]. The utilised demonstrator contains models of two
cylinders applied in the printing unit, which are turned by electric drives. The
pressure between the wiping cylinder having a rubber surface and the steel-surfaced
plate cylinder is freely adjustable. Four analogue sensors (force, solid-borne sound,
electric current of each drive) continuously acquire data during operation to monitor
the process. The demonstrator setup is schematically shown in Fig. 22.5.

The signals of the sensors are processed by MACRO as well as TLCS and the
quasi-standard naïve Bayes and Support Vector Machine (SVM) fusion operators
[33]. In order to illustrate the effect of the importance measure incorporated in
MACRO, this contribution concentrates on naïve Bayes and MACRO fusion. The
findings are similar for the remaining fusion operators and are found in [33].

During the experiment, the solid-borne sound sensor is manipulated to enforce
a conflict between the sensor signals. The manipulation is induced by manual and
continuously increasing low-pass filtering of the signal between 03:45 (min:s) and
04:33 (min:s) of the experiment. The filter status is then kept until 06:36 (min:s),
when the low-pass filter is disabled. In addition a real defect of the demonstrator

Fig. 22.5 Structural design
of the printing unit simulator
along with the applied sensors
(printed in italic) [47]

current

current solid-borne
sound

force

Plate Cylinder
(steel)

Wiping Cylinder
(rubber)
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Fig. 22.6 System health evaluation over time during manipulated operation of the printing unit
demonstrator by one-class naïve Bayes applying Gaussian (nBGauss) and kernel density estimated
(nBkern) priors [33]
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Fig. 22.7 Evaluation of the system health Nμ over time obtain by MACRO fusion during
manipulated operation of the printing unit demonstrator [33]

occurs from 07:08 (min:s) on. The fusion results yielding the system health of the
printing unit demonstrator are depicted in Fig. 22.6 for naïve Bayes and in Fig. 22.7
for MACRO fusion.

The “sensor defect” from 03:45 (min:s) on leads the naïve Bayes fusion result
in the wrong direction: it classifies the demonstrator’s system health being in
the emergency area from that moment on, although no defect occurred at the
demonstrator itself. MACRO’s importance weighting on system layer results in
correct classification of the demonstrator status: the conflict between the solid-borne
sound sensor’s signal and the other sensors leads to a decreased importance measure
for the respective attributes. Their attribute healths are therefore incorporated to a
smaller extent in the system health determination, leading to a compensation of
the sensor defect. For further details on the experiment illustrating the beneficial
influence of the importance measure introduced in Sect. 22.3.3, the reader is referred
to [33, 37].

Besides direct incorporation of the importance measure in the fusion process,
it is also applicable to monitor sensors for defects. Ehlenbröker et al. exploit
MACRO’s multilayered structure to determine sensor reliabilities [10]. Their
approach necessarily needs groups of sensors, which are delivered at no additional
cost by MACRO’s attributes. Consistencies between sensor signals are determined
among the sensors of each attribute. The more consistent the signals, the higher the
reliability of the considered sensor. If the continuously monitored reliability falls
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below a given threshold, the sensor is considered to be defect. The defective sensor
can then be repaired or replaced to maintain information fusion quality. Detailed
information is found in [10]. As increasing conflict within an attribute will lead
to decreased consistency between sensor signals, the importance seems also to be
appropriate to serve as a measure for monitoring sensor reliability.

22.5 Conclusions

The handling of conflicts between information sources is crucial for the reliability of
the result of an information fusion application. This contribution focuses on conflict
and importance represented in the multilayer attribute-based conflict-reducing
observation (MACRO) information fusion system. The contribution describes the
attribute layer fusion algorithm balanced two-layer conflict solving (BalTLCS),
which is capable to determine conflicts between fusion inputs and decrease their
effect on the fusion result. Furthermore, the numerical stability in the context of
heavy conflicts and the related importance is described. This fact is crucial in
application implementations. Different examples, which show the applicability of
the described conflict/importance measure, are given.
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Chapter 23
Quantify: An Information Fusion Model
Based on Syntactic and Semantic
Analysis and Quality Assessments to
Enhance Situation Awareness

Leonardo Castro Botega, Allan Cesar Moreira de Oliveira, Valdir
Amancio Pereira Junior, Jordan Ferreira Saran, Lucas Zanco Ladeira,
Gustavo Marttos Cáceres Pereira, and Seiji Isotani

Abstract Situation awareness is a concept especially important in the area of
criminal data analysis and refers to the level of consciousness that an individual
or team has about a situation, in this case a criminal event. Being unaware of crime
situations can cause decision-makers to fail, affecting resource allocation for crime
mitigation and jeopardizing human safety and their patrimony. Data and information
fusion present opportunities to enrich the knowledge about crime situations by
integrating heterogeneous and synergistic data from different sources. However, the
problem is complicated by poor quality of information, especially when humans are
the main sources of data. Motivated by the challenges in analyzing complex crime
data and by the limitations of the state of the art on critical situation assessment
approaches, this chapter presents Quantify, a new information fusion model. Its
main contribution is the use of the information quality management throughout
syntactic and semantic fusion routines to parameterize and to guide the work of
humans and systems. To validate the new features of the model, a case study with
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real crime data was conducted. Crime reports were submitted to the modules of
the model and had situations depicted and represented by an Emergency Situation
Assessment System. Results highlighted the limitations of using only lexical and
syntactical variations to support data and information fusion and the demand and
benefits provided by quality and semantic means to assess crime situations.

Keywords Criminal data and information fusion · Criminal information quality
management · Crime situation awareness

23.1 Introduction

Situation awareness (SAW) is an important cognitive process of decision-makers
in several critical areas. It concerns the perception of the presence and nature of
the entities of interest in the environment, the understanding of their meaning and
the importance of their individual and collective actions, and the projection of their
status in the near future.

In the field of emergency management, SAW is a crucial factor for the success
of operations involving humans. A limited SAW can compromise operators’
understanding of what is happening and lead to a poor decision-making, which can
result in disastrous consequences for people, property, or the environment.

Human operators that are aware of an emergency can not only characterize
entities, events, and their relationships but also reveal trends and the existence of
threats and infer the increase or decrease of imminent risks.

Although SAW cannot guarantee better decision quality, its improvement can
help operators to maintain a superior knowledge of current events and situations.
Operators of emergency services can be routinely subjected to information overload,
especially because of the inherent need to perform multiple tasks. Supporting
situation awareness of the operators is a challenge fundamental to the effectiveness
of their activities.

Supporting SAW is even more challenging when data are provided by humans,
as is the case when a report of a crime is offered by a victim or a witness. Typically,
such data can be incomplete, outdated, inconsistent, and sometimes even irrelevant
to the associated event. In addition, that data can also be influenced by human factors
such as stress, fear, and cultural particularities. The presence of low-quality data
and information influences the computational methods that use this human report as
input to infer useful information to support operators in developing SAW.

To overcome this problem, information fusion (IF) processes have been designed
to guide the development of systems. They comprise acquisition, inference, evalua-
tion, and representation phases of high-level situational information. These systems
typically use multiple heterogeneous data sources and computational intelligence to
support environmental changes and help operators to develop SAW [11, 13, 14, 17,
18].
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However, determining how a semiautomated situation analysis activity can be
structured to better amplify operator’s SAW is still a challenging issue for the fusion
community, especially in the field of emergency management. In addition, there is
still difficulty in dealing with quality problems inherent to human produced data
[5, 6, 23, 25, 28].

Lack of knowledge about the quality of data and information propagated by
fusion processes (such as information assessment process, inference process, infor-
mation recovery process, or simply process) can also lead operators to uncertainties
and errors in SAW, thereby degrading decision-making. The visual representation
of situational information should consider data and information quality indexes to
better support human observations and interpretation of a situation.

In this context, data fusion systems dedicated to supporting SAW can be
augmented by information quality management processes, benefiting both the auto-
mated data assessment routines and the human understanding on crime situations.
These assessment processes can be oriented and parameterized by quality indexed
information. Quality indexes can also help operators by increasing their confidence
in situational information and stimulate a proactive interaction with the system.

Furthermore, automated systems are great at processing a large amount of data
but may fail on determining connections and meaning of data. Hence, quality assess-
ment can support automated or machine-human processes to better complement
each other, sharing objectives and contributing to the construction of situational
knowledge. Thus, SAW can be better and more quickly acquired, maintained, and
even reacquired [4, 6, 19]. Consequently, quality-aware information fusion systems
(IFS) must present capabilities and processes to reveal, process, represent, and
mitigate information limitations.

Literature presents data and information fusion models that explicitly describe
the role of the human operator in semiautomatic approaches, typically originating
from the JDL (Joint Directors of Laboratories), DFIG (Data Fusion Information
Group), and User-Centered Information Fusion models. In these models humans
are solely consumers of information or are active participants in managing and
transforming information [3, 6]. These models are limited on presenting solutions
for the problems associated with the human’s deeper involvement in the process of
transforming information to enrich SAW in IFS. More recent approaches present
opportunities for human interaction throughout each level of fusion [1, 15, 19].

However, there are not many records of human-system collaboration supported
by information quality in scenarios where time is a critical factor. In addition, known
approaches are limited to providing refinements in a reactive fashion to the final
product of the process [6].

The goal of this project is to present the Quality-aware Human-driven Informa-
tion Fusion Model (Quantify) that aims to contribute to the improvement of the SAW
of human operators. This model can be used by an emergency situational assessment
system, dealing with scenarios that are complex, changeable, and dynamic, in which
information is constantly evaluated and parametrized by several variables.

In addition, another objective of this chapter is to present details on how Quantify
employs a combination of syntactic and semantic methods for a hierarchical and
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multicriteria integration of information. This chapter also shows how this model
deals with fusion of semantic information using information quality criteria. These
advances aim to increase the inference capacity of complex information and to
contribute to the SAW of analysts.

The pillars of the Quantify model are the processes for continuous assessment of
data and information quality for the orientation of the IF process and the means for
the semantic analysis of qualified situational information.

Specifically, through the Quantify model, this chapter aims to demonstrate:

– How the information quality management (inference, representation, and mitiga-
tion) can be beneficial in global and local contexts, at either low or high fusion
levels, and contribute to SAW;

– How to ensure the propagation and usefulness of qualified information produced
by humans, up to the highest levels of abstraction, useful for situation assessment
(SA);

– How integrated syntactical and semantic analysis can contribute to empowering
the inference capabilities of the fusion process;

– How to deal the information as linked knowledge about crime situations that gets
enriched over time, produced by humans and machines, and its connections with
the other steps of the fusion process.

To demonstrate in practice the use of Quantify, this chapter will end with a study
case of real-time crime assessment.

23.2 The Incorporation of Data and Information Quality in
the Fusion Process

Mapping complex entities, such as humans and their interactions with the real world,
is a challenging process. The dynamic and complex nature of interactions between
people, objects, and places demands the use of comprehensives computational
techniques to reveal their states over time.

The process that fusion systems use to understand human interactions starts with
the search and determination of which entities are present in a real scenario. Next,
the states of the entities are determined, formed by their physical characteristics,
position, orientation, and other data relevant to the domain. Finally, fusion systems
establish the possible relationships among entities, relating each entity context
and state to one another. These relationships may help humans and systems to
understand situations.

Achieving SAW is a challenging process that SA systems seek to support. With
the advent of SAW models, especially the Endsley model [12, 13], new IF models,
architectures, and processes emerged aiming to support the development of SA
systems.
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In this context, the knowledge of the quality of information by the IFS emerges
as a complementary resource to the process of inference of situations. Also, IFS act
as technology to support the existing models and processes for the acquisition and
maintenance of SAW.

The benefits of knowing the quality of information in an IF process at each of
the possible levels of inference of the JDL model are the reliability of data sources
and the effectiveness of data preparation algorithms (Level 0 ), the completeness and
accuracy of the identification of objects (Level 1), the integrity of a relation between
objects (Level 2), the assertiveness of a projection (Level 3), and the graphical
representation of information (Level 5). Knowledge of information quality can not
only support decisions at each level but also influence and parameterize internal
inference routines.

In addition to contributing to the operationalization of the internal mechanisms
of data fusion levels, knowledge about the quality of data and information can also
contribute to the relationships between the levels of fusion, i.e., to help determine
and direct information by virtue of desired outputs and inputs for each level. Quality
indexes operate as a lever to determine the usefulness of information throughout the
process from one level to another. This routine further contributes to fill the gap
between low-level and high-level IF inferences [2, 4].

Among the challenges of incorporating data and information quality into a fusion
process, we can highlight the role of information quality and the management of
information dynamics for defining information quality. Regarding the first chal-
lenge, it is known that computerized processes of an IFS (e.g., mining, integration,
and correlation) infer new information on a distributed, asynchronous, and dynamic
fashion. To collaborate with each other, these processes must have a mechanism that
qualifies each new data or information produced with a quality indicator (quality
metadata). Thus, the parameterization of the process gains a new variable (different
from attributes or objects) that must be considered every time a new fusion process is
performed. This routine contributes to quality information reaching the upper levels
of the process.

In addition, by helping to parameterize automation, the second challenge is
to properly represent information quality and stimulate interactions of operators
on specialized user interfaces and visualizations dedicated to SAW. To visually
stimulate the perception of operators in the search for patterns and relationships,
it is necessary to use cues or suggestions that qualify the information. These signals
help to justify human behavior and explain why information is accepted or not
and, consequently, can help guide operators to improve the quality of information
through a continuous refinement process.
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23.3 Quality-Aware Human-Driven Information Fusion
Model

To overcome some of the information quality assessment challenges, this paper
proposes a fusion model called Quantify (Quality-aware Human-driven Information
Fusion Model) (Fig. 23.1) [9]. The major differentials of this model are the
combination of syntactic and semantic approaches to assess data and the use of
information quality management throughout the fusion process.

Quantify consists of six internal processes: data acquisition, data and information
quality assessment, object assessment, situation assessment, information represen-
tation, and user interfaces (UI).

This model has the goal to orient the development of IF systems, dedicated to
supporting the assessment of situations that occur in complex real-time scenarios,
especially when it is hard to acquire reliable information. These complex scenarios
comprise highly complex entities that interact and relate to each other to form
situations, which evolve in time and space [3, 6].

Among the main features of the model are mechanisms designed to:

– Manage data and information quality (infer, represent, and mitigate) in local and
global contexts of the IF process at low and high levels of abstraction;

– Support operators in improving their perception and understanding of the
situation and in orienting and refining information;

– Parameterize automated processes of the IF routine using qualified situational
information in syntactic and semantic fusion processes.

Fig. 23.1 Quantify model with syntactic and semantic information fusion processes in details
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This model also comprises:

– A complete process of SA over complex real-time scenarios, with internal
processes of acquisition, processing, representation, and refinement of situations
that have human-provided data produced by heterogeneous sources;

– A cyclic, iterative, and interactive operation, which allows operators to accom-
pany changes in the situation;

– A set of mechanisms to manage data and information quality to asses each
new information inferred, to enrich situational representation, to parameterize
processes, and to orient operator in the refinement task;

– A semantic fusion approach that uses semantic models (ontologies) with asso-
ciated data quality to improve the finding of synergistic information in human
provided data;

In the next sections, we will describe the Quantify model, as well as its internal
processes in detail.

23.3.1 Data Acquisition

In complex scenarios, there are multiple types of data available, such as audios, text
messages from social networks, records from historical databases, camera images,
and information from diverse subsystems. Each application has sources and input
data that may be used to perform the assessment of a situation.

Therefore, the internal process of human-provided data acquisition is responsible
for collecting information generated by humans and making it available for the
use of other internal mechanisms of Quantify. The result of this process is the
identification and classification of objects, attributes, and preliminary situations,
according to an application domain. To achieve this objective, this process is
structured in three stages, namely, (1) obtain sentences, (2) grammatical analysis
of sentences, and (3) search and identification of relevant objects. To perform the
stage obtain sentences, natural language processing (NLP) techniques are used
to transcribe the audio and to format it in a string structure. This step can be
accomplished with a tool like the one provided by Google [10, 26].

In the emergency management domain, data from social networks, like Twitter,
can also be used through its public API. Posts that report a situation are searched
based on the objects previously identified by NLP. Once data has been captured,
transcribed and stored in a structured way, it can then be sent for a sentence analysis,
which is performed to identify patterns and logical sequences of characters and
words [21, 27].

At the grammatical analysis of sentences step, the input text must be analyzed in
real time by a grammar checking tool, such as CoGrOO [16, 26]. Thus, it makes it
possible to add labels such as nouns, number, object, or any other classification. It
is also possible to connect the sentences obtained in the input text.
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Each object found is classified, along with its attributes, by using keywords.
These keywords have already been defined through the analysis of several sentences
and also as a product of systems’ requirements [20, 23].

The search and identification of relevant objects processes elements defined
as important in fulfilling the requirements. During the process of defining these
requirements, meaningful words are defined in an account (report), generating
lists of words classified in different categories, such as tagCor (tag for color) and
tagTypePhysical (tag for physical type) [16, 24].

In this way whenever a word from any of these categories is found, new analyses
are performed of the following words of the input text data, seeking additional
meanings such as status, situation, and even quality of objects, people, or situations.
While analyzing the result of the classification of a word, it is possible to infer what
type of information it represents, such as addresses, names, etc. To determine the
possibility of a next word, several block words are analyzed and compared to a
glossary.

At the end, the identified objects and the first situations are encapsulated in
an object model (e.g., JavaScript Object Notation – JSON) and submitted to the
next internal process to assess the information according to quality dimensions and
metrics.

23.3.2 Data and Information Quality Assessment

The data and information quality assessment internal process aims at qualifying
the situational information by quantifying quality dimensions for the guidance and
parameterization of the fusion process as a whole, so that other processes can use
the qualified information [8].

The quality assessment is applied to raw data and also to the situational
information after it has been formed and represented as linked relations (situations
formed by pieces of information).

The dimensions assumed to perform the assessment of human provided crime
data are:

– Timeliness (considering how fresh the data is);
– Completeness (the percentage of attributes and objects a situation has);
– Temporal completeness (how complete is time-referring data);
– Consistency (the alignment of new processed data with situational information);
– Relevance (the new data is useful to the current situational data);
– Syntactic precision (the data are within an acceptable threshold of syntactic

variation);
– (Un)certainty (trust of the system in the information)

This process also relies on the “Methodology for Data and Information Qual-
ity Assessment in the Context of Emergency Situational Awareness” (IQESA),
described in Botega et al. to assess and evaluate data and information quality [8].
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The IQESA methodology is performed in three steps: elicitation of information
quality requirements, in which quality requirements are determined for a specific
domain by interviews and a goal-driven task analysis (GDTA) [9, 14, 24]; definition
and use of functions and metrics to assess quality dimensions, in which metrics
are defined and applied to infer quality indexes; and finally the representation of
situational information, in which data and the associated quality are represented in
the form of semantic models (ontologies).

23.3.3 Object and Situation Assessment: Information Fusion
Using Information Quality

23.3.3.1 Syntactic Information Fusion

The process of syntactic information fusion can be abstracted in two main stages,
each with its internal mechanisms that play specific roles in improving the represen-
tativeness of information. The stages are search for synergistic information and the
multicriteria association.

After acquisition and quality assessment, a new object is produced. This resulting
object corresponds to what we know as L1 data fusion results, comprised by objects
and attributes found with quality indexes attributed to each object [22, 23].

The decoded object and its attributes feed the creation of a preliminary ontology
(Fig. 23.2), which represents an initial situation with its current classes and object
instances (semantic data associated with ontology classes). This situation has
people, objects, and places, each with their respective attributes, with indications
of common activities between them (relationship properties), defined at acquisition
time.

Fig. 23.2 Ontology of a crime emergency situation
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The internal process of “information representation” is responsible for that
task and directly connected to all other processes that use its output and provide
information to it. They provide/use information asynchronously, distributed and on
a dynamic fashion. The resulting data is also transported to/from the situational
knowledge frequently.

This instantiated ontology composes the input for the IF phase. Among the input
parameters are the objects identified in the previous phases; the type of data source,
which properties must be present; and even a quality threshold of information.

Once the fusion process is started, search for synergistic information is per-
formed between classes that are already present in the current ontology and that
can hold information of objects, attributes, properties, and quality indexes that have
some kind of correspondence.

After a search in information already represented in the ontology, a new search
is made for more information that has not yet been considered in the process, from
the same source or from other data sources, and which have already been submitted
to the “data acquisition”. This routine is designed to obtain new information about
the associated objects at any given time, validating and giving greater consistency
to the already defined information. The entry to this process is either an isolated
information (Level 1 JDL) or an relationship between objects (Level 2 JDL), and
the result of this step may be a new object or a new situation.

This process can be implemented by data mining techniques, for example, by the
Apriori algorithm [7, 9, 16], which infers the frequency of the presence of certain
information when analyzed in relation to the rest of the available input data (from
current or other sources). This inference is made by considering an information
support formula (covariance).

The results of this process are new objects, attributes, quality indexes, and
properties that may complement the current information held by the ontology.

The next stage, the multicriteria association, computes the synergistic informa-
tion using predefined criteria for quality indexes and semantic properties. The results
are insertions of new information into the ontology, satisfying the similarity found
in the context of the original information and satisfying the multicriteria process
[9, 24].

Two criteria are currently suggested, one is the input from the operator during
execution time and the other based on the information and knowledge obtained
through the analysis of requirements by developers, before the operation of the
system, and that automatically affects the algorithms of this process. As a result of
the automated part, all the initial information that is submitted to the fusion process
is analyzed for synergy (have their syntactic or semantic similarities checked). The
results are the discovery of new attributes, properties, and even new objects, in a
combined and hierarchical way, resulting in new situational information. This result
can be resubmitted to the previous synergistic data search process, increasing the
process’s ability to find new information and further consolidate the information
already found.

Hence, information is increasingly specialized, enriching the current situation
with more details and qualified data. The syntactic fusion is cyclical and is
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performed until the result of the multicriteria association does not reach the
requirements previously defined, i.e., until the quality levels are sufficient for the
decision-maker.

The resulting information is submitted to the information quality evaluation
process, now punctuating the new information found, while also focusing on the
indexes of the current situation. After this process, the information reevaluated will
be reinstantiated in the ontology.

In the automated fusion process performed after the acquisition and assessment
of information quality, the greatest possible number of associations is made between
the objects, their attributes, properties, and quality indexes. For such, it is considered
the existence of two or more data sets available from the same source or from
different sources.

This process, called the primary fusion, employs primarily criteria for automated
fusion. These criteria can include either a minimum level of quality or priority of
object properties, which is useful to define what should be processed and shown
to the operator first. These priorities are defined by the information requirements
gathered through questionnaires filled by several specialists of various functions
and career time.

In the case of the on-demand fusion by a human operator, the algorithm is
activated once again, but the integration options are selected entirely by the operator
through the user interface, rather than considering all possible combinations of
objects, attributes, and properties identified in step of acquisition. This process
of association, now manual, though based on objects and attributes, is strongly
supported by indexes of quality and hypotheses employing information related to
previously classified objects that were obtained in past cycles or different data
sources.

Since this process is performed by the operator utilizing a user interface, the
criterion for the data fusion process (e.g., quality indexes or an object characteristic
or even a physical property) can be chosen and changed by the same operator, as well
as the removal of predefined criteria by the requirement analysis. This capability
provides for the flexibility of the structure to receive and process different criteria
for a given situation, as well as allows operators to interact with the system based
on their experiences and knowledge.

23.3.3.2 Semantic Information Fusion

Based on the identified objects and attributes inferred by the implementation of the
model described in the previous section, a preliminary ontology is instantiated. For
example, in the crime domain, this ontology classes represent victims, criminals,
stolen things, information quality, and location, each with their respective attributes
and relations. The ontology also reveals the existence of semantic properties of the
information (meanings), as shown in the example of Fig. 23.2 [24].

This part of Quantify is also responsible for generating input to the information
fusion process by considering the semantic aspects, that is, the meaning of certain
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information according to a context. This technique greatly enhances the power of
SA, because instead of analyzing the structure of a word, it seeks to analyze its
semantic connections (whether there are common contexts that would have some
possibility of building a situation based on such linked information).

Let’s consider two situations transcribed in different ways. Even if the meaning
of their objects is the same, they may not have been considered synergistic in the
process of syntactic fusion, for example, considering the situation “man flew” and,
in another situation, “a guy ran.” They are completely different information from
the syntactic point of view, but in a semantic context that considers meaning, this
sentence has points of similarity.

The semantic fusion process is performed by an algorithm based on data mining
techniques, using the same Apriori technique employed on the syntactic analysis.
The result of this semantic search procedure is the same as the ones of syntactic
process but grouped into collections with a degree of similarity based on their
meaning. In this process, there is a possibility to find terms that do not have
associated meaning. Hence, they cannot be assigned to an existing ontology class.
In the next process, these collections will be integrated into a new situation in order
to contribute to improve quality scores and the real meaning of this information.

Each new information is submitted to the quality assessment layer where
quality scores are assigned to it. Further, using expected threshold values, it is
decided whether the routine continues or whether the new information should be
disregarded.

Finally, information generated in both semantic and syntactic processes are
compared based on the quality indexes. Better ranked information is then sent one
last time to the quality assessment layer, and if the updated values are not sufficient
for the criteria chosen by the expert, the complete process of SA can be redone. After
that, they are displayed to the experts to ensure that all processing possibilities have
been done.

This option of forwarding the information to the syntactic and semantic assess-
ment layers can be automated or triggered by the human operator, which can start
a fusion event via the user interface and demand that each situation to be processed
two or more times.

The result selected after several evaluation cycles is sent to the information
representation layer, which will be instantiated and considered as the most current
situation, as explained in the next section.

23.3.4 SAW-Driven User Interfaces

The user interface (UI) aims at specifying a sequential activity routine to fully
manage the situational information, generated, propagated, and maintained by the
Quantify model [9, 20].

To this purpose, it includes a user interface in the Quantify modeling dynamics,
not only to represent situational knowledge but also to promote the two-way
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relationship with the other stages of the process. In addition, it also seeks to specify
the process management routines as a whole to promote the necessary refinements
to the SAW process.

As previously discussed, situational knowledge was constructed by the “data
acquisition” phase, qualified by the “data and information quality assessment”
phase under the requirements pertinent to the domain of complex environments,
and enriched by “object and situation assessment” and is now visually represented
in this phase.

Additionally, the UI also receives from the previous process the metadata that
qualifies the situations, enables the use of information visualization techniques, and
graphically represents this accumulated and qualified knowledge.

The development of the SAW-oriented interface must follow the design prin-
ciples of Endsley [12], which are organize information according to objectives,
present level 2 of SAW directly, support global SAW and information filtering,
support local and global trust verification, represent historical events to follow
information evolution, and support uncertainty and quality management.

23.4 Case Study

23.4.1 Situational Awareness and the Problem of Crime
Analysis in Brazil

Critical SAW-oriented systems, such as risk management and risk assessment sys-
tems, require specialized intelligence to provide operators a dynamic understanding
of what is going on or what has happened in an environment. In Brazil, criminal
record databases, based on unstructured human provided data, have problems related
to the quality of information, mainly the reliability of registered addresses as places
of crime. These problems are due to the imprecision of the information obtained
from the victims, and the lack of prioritization of this data by collectors (civilians or
military police), which focuses more on the description of the event than on location
data.

In addition, most electronic system recording events allow the completion of the
record even without the address of the fact or only with a reference point (e.g., a
restaurant, a store, or a public place). This aspect is particularly important for the
decision-making process, since the criminal mapping as a data analysis tool for
defining public policies has become popular in Brazil. However, by ignoring the
poor quality of location information and the absence of data processing routines,
criminal information systems are often based on georeferenced maps and do not
reflect the actual information about the crime incidents.

In a complex decision-making environment, commanders need a clear, concise,
and accurate assessment of the situation and whether there is any risk to people’s
lives, patrimony, or environment [28]. To support the production of information
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useful for supporting and maintaining SAW for solution of problems dealing
with criminal behavior and their diverse environmental contexts, the techniques of
filtering, mining, and data integration, elements present in IF processes, are critical.

An appropriate SAW-oriented fusion synergistically integrates information into
the current situational picture, performs an analysis of the input information, and
commits to providing information according to the needs and expectations of the
expert.

Supported by semantic fusion and the quality of information, opportunities for
improving the parameters (or criteria) for data fusion have become imminent,
enhancing the possibilities for effective contributions to the process of SA [2, 5,
6, 17, 28].

23.4.2 Risk Analysis Through Syntactic and Semantic
Perspectives

The case study is based on the situation assessment supporting situation awareness
of a real crime situation, more specifically a crime of robbery, reported to the
police emergency response service. The reported information was submitted to
each step of Quantify and its algorithms. Results are analyzed based on the
acquisition, mining, fusion, and representation of relevant information useful for
decision-making. The IF consists of two processes of data assessment: syntactic and
semantic. Complementing them, there are other processes crucial for implementing
IF, such as object identification, information representation, and quality assessment.

SA starts with the identification of entities and objects present in the reports,
which is based on NLP techniques, using a rich vocabulary of the language, focused
on the emergency management domain, more specifically the analysis of real-
time crime data. After the identification of entities and objects, the information,
communicated through JSON objects, starts being instantiated in small ontologies
(Figs. 23.6, 23.7 and 23.8) that will later compose an entire situation. The informa-
tion representation module is used here to support the IF processes during execution,
by maintaining the most current version of situational information.

Each result is also submitted to the module of quality assessment, which at this
time only evaluates the completeness of the identified entities and objects. Data
will return to this module each time new inferences or any kind of information
transformation is made.

Hence, the execution flow follows the cycle: object identification, representation,
quality assessment, and back to the representation module. The following reports
were submitted to Quantify, and the results are presented and discussed below,
highlighting objects of interest.

Crime Report 1 The victim stopped the vehicle at a semaphore. Then, he was
surprised by two individuals in a black motorcycle. The motorcycle passenger hit
the glass of the car with a gun. Threatened the victim and subtracted his vehicle.
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The criminals escaped with the destination location ignored. Victim does not have
conditions to describe the authors in detail.

Crime Report 2 Two guys on a dark motorcycle stole a car at the semaphore at the
intersection between Mooca and Taquari Streets, pointed a revolver, and took the
woman’s car. One of them was in a red coat.

Crime Report 3 Two men robbed a gray car in the street from Mooca to the side
of Santander Bank. The men were on a black motorcycle, one of them was in a blue
jacket and jeans. They left in the direction of Hospital Villa-Lobos.

23.4.3 Syntactic Analysis

The syntactic fusion process starts by searching for synergistic information in
data sources and previously processed situations, looking for a similarity in their
syntax. For instance, the contents of the reports are analyzed by making Boolean
comparisons if one word is equal to another, considering some word variations such
as tension, gender, and radical.

After the synergistic search among the reports, those that present a sufficient level
of synergy are grouped in data sets. Analyzing the three reports used in this case,
we can note only some terms that satisfy this syntactic fusion condition, such as
“two,” “black,” “Mooca,” and “motorcycle.” However, these terms, even if they are
covariant, do not express any rich or explicit meaning enough to carry out a fusion
of information between the reports.

Finally, these terms go through the multicriteria association, which considers not
only synergy but also quality index assigned to data and inferred information. This
activity associates new collected information to the current situation, so that the final
product is a single situation, as complete and detailed as possible.

The result is sent again to the quality assessment layer to be updated. The inferred
situations that did not meet a predefined quality level are temporarily stored to be
compared with the results of the semantic fusion, which occurs in parallel. Higher-
quality information is permanently aggregated to the current situation.

The result of the syntactic fusion process for the three reports is shown in
Fig. 23.3. The main downfalls of the syntactic fusion are the lack of properties
among the identified terms (activities that imply a relation between objects, e.g.,
“wallet belongs to victim” or “criminal ran to subway”) and the capacity of
recognizing multiple similar objects of the same class with the same meaning (e.g.,
victim’s car and criminal’s car).

Using only this process could lead to major failures in the final result, directly
affecting quality indexes such as completeness and consistency. These failures in
turn may affect the process of building SAW.
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Fig. 23.3 Situation ontology instantiated with the result of the syntactic analysis of the reports

23.4.4 Semantic Analysis

At the beginning of the semantic process, information is not analyzed directly, i.e.,
by the way the terms are written, as is in the syntactic analysis. At first, each report is
structured in ontological instances, based on an ontology developed for this domain.
Each of the reports described above will be a different instance, depending on the
situation it represents.

This process of semantic instantiation starts from the identification of elements
that are stored in the information representation layer. Then, for each report,
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SPARQL queries are made in the domain ontology for each previously identified
element. These queries seek to identify which class or set of classes of the ontology
best represents the elements and the probable properties that characterize them, even
if they are not explicit in the report. The result of this process is an instance of a
situation, which does not necessarily represent a crime.

At this point, we have several instances belonging to the same events without
relationships between them. The next step is to perform SPARQL queries, now
considering a local context, i.e., inside each class, to identify common properties
of instances of elements, to make it possible to infer new objects, properties, and
attributes, in order to define a situation for each report. These instances are shown
in Figs. 23.4, 23.5, and 23.6.

Fig. 23.4 Situation ontology instantiated with the information from crime report 1

Fig. 23.5 Situation ontology instantiated with the information from crime report 2
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Fig. 23.6 Situation ontology instantiated with the information from crime report 3

In these figures, the rectangles represent the instances, and the circles represent
the attributes. The arrows and links represent the connections and their properties
between classes and attributes, defined according to a vocabulary that was also
developed for the domain and shown in the following figures.

The instances are assigned according to the classes they represent to facilitate
the understanding of the situation. Pink represents objects related to the victim; red
represents objects related to the criminal; green are site-related; purple is the victim;
blue are criminals; and white represents the instance of the situation.

The semantic processing starts with the analysis of the elements found in Crime
Report 1, being victim, vehicle, two individuals, black motorcycle, motorcycle
passenger, with a, gun, threatened, subtracted, and his vehicle.

Based on these terms, queries are made to the situational ontology, which will
return which class they fit into, or if they are just properties. In this case, a set of
classes is returned with victim, criminal, and object and some properties, such as
threatened and subtracted, which may represent a theft.

With SPARQL queries to a rich ontology, it is also possible to make associations
between distinct terms. For instance, Report 1 does not have the term “criminal,” and
yet a criminal class was identified, because in the ontology, one of the instantiated
terms that characterizes a criminal and is present in Report 1 is “individuals.”
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In another example, we perceived a “hold” property of a criminal for a firearm,
indicating that the criminals have a gun, even though there is no term “held” in the
report. This is because the term “with” is on the report, and through the ontology, it is
possible to establish a covariance between them. At the end of the semantic analysis,
the entities are correlated according to properties, dependencies, or relationships
found in the reports and predicted in the vocabulary. The result (Fig. 23.4) for Crime
Report 1 is also persisted in the information representation layer.

This routine of instantiating the ontology with inferred objects, attributes, and
properties regarding a single situation occurs for all reports submitted to the
semantic process. Figures 23.5 and 23.6 shows the results of this process for Reports
2 and 3. As it is possible to observe in Figs. 23.1, 23.2, and 23.3, the three reports
seem to refer to the same situation, and fragments of it were described by different
people present in the situation.

This relationship between the situations found in the reports is easily understood
by a human, who deduces the situations and interprets them into a situational
knowledge (what is known about a situation). However, in a more complex scenario,
humans become error-prone and cannot absorb all the characteristics of a situation.

At this point semantic fusion combines new reports with instances of RDFs
(previously processed information stored in the information representation layer).
The goal is to build a computational model very close to a human mental model,
through ontologies and vocabularies. This process uses the information in the
information representation layer, after the process of semantic identification.

Semantic fusion is very similar to the semantic identification, but at a higher level
of significance, once its inferences are made using instances from all reports. Also,
semantic fusion considers all the properties presented in each internal instance of
the elements.

At the end of the semantic fusion, we will have a new set of possible situations
varying in the organization and presence of the elements and properties. Each of
these possible situations is saved in the representation layer and has its quality
assessed.

Then the multicriteria assessment is performed, mainly evaluating the improve-
ments in the quality indexes. The situation that presents the best quality indexes and
that satisfies criteria elicited in the requirements, like the presence of some specific
element, will be elected as the final situation resulting from the fusion. Again, this
situation is persisted by the ontology in the representation layer and later presented
at the interface.

The semantic fusion of the analyzed reports allows to obtain an information with
greater added value by the junction of the terms found. In this case study with the
three reports, the fused information allows the identification of the clothes of both
criminals, the characteristics of the stolen object, the weapon used by the criminals
and vehicle of escape, as well as the place where the crime occurred. The examples
show that the crime reports alone do not present these situations explicitly.

The semantic fusion result is shown in Fig. 23.7, which uses the same colors
as before, with the difference that the yellow color represents the information that
was fused from the three reports. In addition to the presence of more instances and
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attributes in the fused situation, it is also possible to note new properties, which
were not explicit when considering each report separately.

Another point to be noted is that the quality of the information can be assessed
in the ontology to allow the verification of what information has a better quality and
thus to decide what should be used in the fusion or not. For this assessment we used
the Data Quality Vocabulary (DQV) ontology that is built on top of another quality
ontology Dataset Quality Vocabulary (DAQ). DQV allows the creation of instances
of categories, dimensions, and metrics to map quality measurements.

For each instance of the ontology, an instance of quality graph is created, making
the connection between all quality measures applied to that instantiated information.
Figure 23.7 shows the result of the semantic fusion with quality assessment, showing
the dimensions of consistency and currentness for the theft situation assessed.

To graphically represent the results of this study, a system called Emergency
Situation Assessment System (ESAS) (Fig. 23.8) was developed, guided by the
Quantify model. This system has the capabilities of dealing with human-generated
input and inferring what is/was going on by processing the natural language, which
is useful to real-time (emergency) or risk analysis (historical data).

Figure 23.8 also shows the UI of ESAS, which has in the top right corner
the “Event Table,” where human-generated input is reproduced, highlighting the
transformations over the raw data, e.g., the discovery of a new relevant entity such
as a criminal and its characteristics. In the bottom right corner of ESAS, there is
the “Map of Reports.” The display shows the data sources placed on their origin
location (where the reports came from). The raw data can be extracted from sources
by user interaction with the placed pins. This map can also be populated by data
from social network (e.g., Twitter posts).

In the left side, there is the “Situation Graph.” This display contains a hierarchical
structure that represents the current situation picture, i.e., what is going on, with the
central node being the situation itself, the next level the classes that composes the
situation, and the leaves the instances of each classes that specifies the event. The
color of the nodes represents what the information quality is, ranging from solid red
when the quality is low to solid green when the quality is high.

23.5 Conclusions

This chapter presented a new IF model named Quantify and highlighted how it
deals with situational information by syntactic and semantic processes. In general,
Quantify aims to improve SAW for human operators that assess situations to make
decision in complex scenarios, such as in risk and emergency management.

This work also demonstrated the way of incorporating new objects and a
situation assessment cycle by utilizing the semantic fusion routines into the IF
process. This approach can be inserted in situation evaluation routines, so that
decision-makers may reason about information quality dimensions and seek better
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Fig. 23.7 Situation ontology instantiated after the semantic fusion, with the information from all
reports associated with a quality index

quality. Moreover, this work also presented methods for fusing information by using
multiple hierarchical and representation criteria of knowledge.

The use of quality indexes may contribute in the future to the fusion of data
from physical sensors with human-generated data. The Quantify and its IF process,
with the associated methods, were validated by the results of the acquisition of
useful information for supporting SAW, according to the requirements set by domain
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Fig. 23.8 Emergency Situation Assessment System (ESAS)

experts. This work also showed that data and information quality can act as a method
for integrating heterogeneous data.

The information required to develop SAW was successfully built incrementally
using syntactic and semantic inputs. The use of multicriteria information fusion
enabled the assessment of situations by generating various possibilities for integra-
tion of synergistic information for the analysis of a specialist.

The continuous assessment of data and its quality proved that, at each evolution
in the situation, improved and updated information were available for fusion and
graphic representation, even if recently acquired and inferred. These assessment
routines also proved the capabilities of Quantify in processing human feedbacks and
supporting their interactions with the automation. Hence, with the establishment of
new connections on situational information, by semantics and quality assessments,
the authors state that the awareness of decision-makers on critical situations can be
improved and their uncertainty mitigated.
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Chapter 24
Adaptive Fusion

Vincent Nimier and Kaouthar Benameur

Abstract This chapter describes a methodology for adaptively incorporating relia-
bility of information, provided by multiple sensors, to improve the quality of the
data fusion result. The adaptivity is achieved by dynamically utilizing auxiliary
information, comprising the measure of performance of each sensor or contextual
information when it is available. A comparative study of the results obtained by
using either source of auxiliary information for adaptivity is presented in this paper.

Keywords Contextual information · Indogenous information · Exogenous
sensing conditions · Supervision information · Supervised data fusion · Adaptive
data fusion

24.1 Introduction

The latest developments in perception systems support the need for the joint use of
multiple sensors. Indeed, the expected benefits are promising: a greater ability to
analyze complex situations and an increased robustness to the environment. Appli-
cations of perception systems range from the industrial environment with assembly
tasks, mobile robotics, to military domain mainly in the field of C4ISR. Fusion of
heterogeneous information is still under investigation and can be considered as a
very active research field.

In the fields of detection and estimation, the proposed algorithms very often
relay on a probabilistic modeling. In many of these algorithms, the probability
distributions of multiple sources are assumed known, independent, constant, and
context independent. However, they are often dependent on the context characteris-
tics defining external conditions and vary according to them. This is particularly true
for multisensor systems. Indeed, if we consider, for example, a system composed of
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a radar and a camera operating in the visible domain, then the information on the
use time of the system, day or night, or on the expected altitude of the target, high
or low, can affect directly the performance of the system. The use of contextual
information in data fusion has received a renewed interest [1–3] and [4]. For
example, in [2], the authors list a wide variety of contextual information and present
their use at the different levels of JDL model. In [5], the problem of the utilization of
contextual information in Level 1 fusion is considered, and five different categories
of contextual information are defined: domain knowledge, environment to hardware
processing, known entity distribution, traffic behavior history, and road information
for traffic tracking.

In this chapter we describe a sensor fusion algorithm driven by supervision infor-
mation represented either by contextual variables when they are available or/and
by the current performance of each sensor. Although, it is true that environmental
conditions for a sensor can lead to bad performance, the opposite is not true, and
bad performance for a sensor does not imply bad environmental conditions. So the
two sources of supervision information are not independents, but in the following,
we do not consider correlation between both sources.

Consideration of the supervision information allows for improving the quality
of the fusion algorithm results. In this paper, we will formally define the context
as a supervision information, which is considered as the first-class category of
domain knowledge. We will then present the use of the contextual information in
the estimation process followed by the integration of the proposed concept in a
multisensor fusion methodology for air target tracking.

24.2 Introduction to Supervision Information

The supervision process described in this chapter is performed by employing auxil-
iary information. This information is defined as supervision information and is used
for quantifying reliability of the sensors. The supervision information introduced
in this chapter is measured either by endogenous information characterizing the
performance of the sensor themselves or by exogenous variables characterizing the
sensing conditions. Let us consider a fuzzy event 5] representing a fusion result of
n sensors. Let z be the supervision information for a set of sensors participating

in fusion, and μji

(
z
j
i

)
is a fuzzy membership function characterizing reliability of

sensor i given the characteristic j of the supervision information. The membership
function μji () of a fuzzy event takes value in the interval [0 1], where the value 1
means that the sensor is totally reliable, and therefore, its measurement must be a
part of the fusion process, while the value 0 means that the sensor is unreliable, and
its information must be discarded. An example of exogenous auxiliary information
can be the weather which has an influence on the quality of an image provided by
an outdoor camera or the SNR of the signal of a radar. An example of endogenous
auxiliary information can be the measure of the distance between the sensor
measurement and the expected measurement value based on a model.
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In the reminder of the chapter, the auxiliary exogenous information will be called
contextual information. The nature and origin of this information are very diverse.
It can be obtained by utilizing measurements provided by annexes sensors such
as those measuring rainfall, pressure, or outdoor temperature, etc. Similarly an
operator, through a man/machine interface, can also give valuable information on
operational conditions. It is important to notice that contextual information may
not be totally reliable or even relevant since, for example, a sensor measuring
rainfall cannot be completely reliable itself. Similarly, an operator can be tired or
overcharged. Context quality can be considered as a higher level quality. Additional
information provided by some sensor signal processing will be designated as
endogenous information. This information can be obtained, for example, by measur-
ing SNR, the correlation peak width, and other parameters or indicators that, in some
cases, can assess the measurement quality. In this paper an operating status of each
sensor is defined by both exogenous and endogenous information, and, the quality of
its measurements is considered in the framework of fuzzy logic. This information is
evaluated by an expert by assessing the performance and limitations of each sensor
by means of membership functions defined on supervision information variable
Therefore, in a real situation, and knowing values for each supervision information
variable, the membership functions establish valid measurements from a selected set
of sensors. Thus, it is possible to define the association of sensor measurements that
are best suited to a particular context and to take only into account in the estimation
process the measures resulting from this association.

24.3 Supervision Space

The supervision information is defined by supervision variables. Let S be a system
composed of n sensors, and let z define a supervision information variable on a
supervision space Z ⊆ Rn × p with i ∈ {1, . . . , n} and j ∈ {1, . . . , p} where p is the
maximal number of supervision variables that may be used by a sensor. For a sensor
si, his set of supervision variable is a vector zi =

{
z1
i , . . . , z

q
i

}
with q ≤ p. As

described in the previous section, zji can be the value of a contextual variable such
as a measurement of the fog density, of the rainfall, of the SNR, or a measurement
of an endogenous variable. The “validity” of a sensor defines the fact that the sensor
provides measurements in accordance to the model used in the estimation process.

Let a membership function μji

(
z
j
i

)
of zji define the validity domain of the sensor

si (Fig. 24.1). In the following, we denote si the sensor i and in bold si its inclusive
(to be defined later) validity domain.

From Fig. 24.1, we can see that a membership function μji () for zji ∈ [0, κ1]
is equal to 1. Therefore, sensor si is valid, i.e., the measurements it provides
correspond to the model being used in the estimation process. For zji ∈ [κ2, ∞],
the sensor is not valid, and the provided measurements do not correspond to the
used model. For zji ∈ [κ1, κ2], we use a linear interpolation. If the sensor has more
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Fig. 24.1 Membership
function of fuzzy set

Fig. 24.2 Validity of sensor
si in the space formed by two
supervision variables

than one supervision variable, then its validity can be defined by an intersection of
domains obtained for each supervision variable (Fig. 24.2).

In Fig. 24.2, the blue zone defines the validity domain of the sensor siin
the case of two supervision variables. It is the domain, where the membership
function μi

(
z1
i , z

2
i

) = 1. The dotted line represents the border where the mem-
bership function μi

(
z1
i , z

2
i

) = 1 changes from positive value to zero.
This domain is generally defined by a human operator in accordance with his

expertise. It can be also defined through learning or experimental tests. The objective
is to specify, once the supervision variable is found, the range of this variable
corresponding to optimal sensor performances.

Figure 24.3 shows the validity domains s1, s2, and s3 of three sensors with only
two supervision variables. For simplicity, and unlike in Fig. 24.2, we limit our
drawing to the domain where the membership function is equal to 1. We can note
that a new domain appears in the figure. This new domain, defined by s∅, is the
domain where no sensor is valid.

For a classical fusion algorithm, which does not consider supervision variable,
the implicit assumption is that all the sensors are valid. This implies that sensors are
actively measuring at the intersection of their validity domains, shown by a colored
area in Fig. 24.3.
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Fig. 24.3 Validity domains
of three sensors s∅

s1

s2

s3

s1∩s3

s1∩s2
s1∩s2∩s3

s2∩s3

24.3.1 Inclusive and Exclusive Domains

We now introduce the notion of inclusive and exclusive validity domains. We call
a sensor validity domain inclusive when we consider a validity domain of a single
sensor regardless of validity domains of other sensors participating in fusion (see
Fig. 24.2). The exclusive validity domain is the domain where only the considered
sensor is valid but other sensors not.

For a system S with n sensors, let us define 2S = {s∅, s1, s2, . . . , s{1, 2},
. . . , s{1, 2, . . . , n}} a power set, i.e., the set of exclusive validity domains of all possible
combination of sensors. The general formula between inclusive sj domain and
exclusive sj domain is given by:

sJ = ∩
j∈J

sj ∩
i∈J

si (24.1)

where J ⊆ {1, . . . , n} and si defines the complement of the sensor si validity
domain. We can note that s∅ = s1∩s2∩ . . .∩sn represents the absence of any valid
sensor. The examples of inclusive and exclusive validity domains for sensor 1, with
two supervision variables, are given in Figs. 24.4 and 24.5, respectively.

24.3.2 Probability of a Sensor or a Subset of Sensors Validity

In this section we explain how to calculate the probability of a sensor association that
will be used to represent the sensor adaptation to the situation under consideration.
We define the probability of a fuzzy event σ i = “sensor si is valid” by utilizing
the sensor validity domain defined by the membership function of a fuzzy set. We

define the set of events
´
" = {σ1, σ2 . . . σn} that are not exclusively independent.

From this set, we can define a set of events that are exclusive ". It follows, that
two cases corresponding to two types of probabilities will be defined. The first
one will be called inclusive probability of the group in reference to the inclusive
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Fig. 24.4 The inclusive
domain of sensor 1

Fig. 24.5 The exclusive
domain of sensor 1

domain of validity. The second one will be called exclusive probability of the group
in reference to the exclusive validity domain.

Knowing this membership function and the probability density of the measure-
ment vector, we can define the probability of a fuzzy event σ i = “the sensor is valid”
knowing that the supervision information variable z is measured at zm by:

P (σ |zm) =
∫

μi (z) p (z|zm) dz (24.2)

where zm is the value of the supervision variable. The definition of the probability
of a fuzzy event is given by Zadeh in [6]. When the uncertainty relating to the
measurement of a supervision variable is insignificant, we can replace probability
density p(z| zm) by a Dirac δ(z− zm) such that the validity probability of the sensor is
given by the value of the membership function at the measured supervision variable:

P (σi |zm) = μi (zm) (24.3)

When the supervision variables are independent, and taking the operator min as
a conjunctive operator, the previous equation can be written as follows:

P (σi |zm) =
∫

min
(
μ1
i (z1) , . . . , μ

p
i

(
zp
))
p (z|zm) dz1 . . . dzp (24.4)
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24.3.3 Inclusive Validity Probability of a Group of Sensors

In the case of a group of sensors, their inclusive validity probability is equal to the
probability of the associated fuzzy event.

For J ⊆ {1, . . . , n}, the membership function of the event
⋂
i∈J σi is given by:

μJ (z) = Mini∈J (μi(z)) (24.5a)

P

(
⋂

i∈J
σi |zm

)

=
∫

μJ (z)P (z|zm) dz (24.5b)

24.3.4 Exclusive Validity Probability of a Group of Sensors

As we have defined the inclusive si and exclusive si validity domains of sensor si,
we can now define the inclusive event σ i= “the sensor si is valid” without any
information on sensor j with j �= i and j ∈ {1, . . . , n} and on the exclusive event σ i =
“only the sensor si is valid and the other sensors are not valid.”

Once the inclusive validity probability is defined by (Eq. 24.5), we can determine
the exclusive validity probability. It is given by the formula [7]:

βJ = P
(
σ J
)
=

∑

{I⊆N ∪φ/J⊆I}
(−1)|I−J|P

(
⋂

i∈I

σ i

)

(24.6)

Where β∅ = P
(
σ∅
) = P

(⋂
i∈Nσi

)
with N = {1, . . . , n} and σi defines the

event that sensor i is not valid . I and J are subsets of the set N such that J ⊆ I
and I ⊆ N

⋃
φ. The notation |I-J| defines the cardinality of the subset I-J. For the

sake of simplicity, we replace P(σ J | zm) with P(σ J). There are as many probability
expressions as there are elements in N that means 2n. The probability βJ verifies the
following condition:

∑

J⊆N⋃∅

βJ = 1 (24.7)

24.4 Supervised Estimation

The probabilities defined above are used to evaluate the validity of all possible
groups of sensors. When several associations of sensors are valid at the same time
(many possible groups of sensors), the data fusion result is the weighted mean of the
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estimates based on measurements provided by the different groups of sensors with
weightings equal to the probabilities of associations.

We distinguish two estimation types: a static one, in which the estimates at the
present time do not depend on the previous ones, and a dynamic one, where the
present estimates depend on previous estimates.

For static estimation the algorithm outlined is presented in [8]. There are two
levels of processing. The high level is the context analysis. Based on membership
function defined by human experts, the parameters zj obtained, for example, from
an external sensor (humidity, temperature, etc.) or obtained from an internal sensor
parameter or from signal processing (SNR, pic correlation width, etc.) are analyzed
to define the context. If no contextual exogenous supervision information variables
are available, the supervision process can be achieved by considering the defined
distance between the actual measurement of a sensor and the predicted one provided
by the fusion process. The objective is to penalize the sensor with a measurement
such that the distance between the measurement and the prediction is too much
important. As a result of this analysis, the coefficients βJ are transmitted to the low
level processing to weight different possible associations of sensors.

The next subsection will address the dynamic problem, namely, the problem of
tracking a target with a system composed of n sensors.

24.5 Dynamic Estimation

24.5.1 Basic Idea

The basic idea for introducing supervision in a data fusion algorithm is to use the
law of total probability. Indeed the estimator at the time k is:

x̂k/k = E (xk/Yk) (24.8)

where Yk is the vector representing all the measurements provided by all sensors
until time k. If we consider all events σ J with J ⊆ {∅} ∪ N, we can obtain the
estimator like:

x̂k/k = E (xk/Yk) =
∫

xkp (xk/Yk) dxk (24.9)

If we consider:

p (xk/Yk) =
∑

J⊆{∅}∪N
p
(
xk/Yk, σ

J
)
P
(
σJ
)

(24.10)

The combination of Eq. (24.10) in Eq. (24.9) we obtain
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x̂k/k =
∫

xk
∑

J⊆{∅}∪N
p
(
xk/Yk, σ

J
)
P
(
σJ
)
dxk

=
∑

J⊆{∅}∪N
P
(
σJ
) ∫

xkp
(
xk/Yk, σ

J
)
dxk

=
∑

J⊆{∅}∪N
P
(
σJ
)
E
(
xk/Yk, σ

J
)

(24.11)

The event σ J means that only the measurements provided by the group of sensors
J are valid, so the expectation E(xk/Yk, σ J) can be replaced by E

(
xk/Y

J
k , σ

J
)
. The

estimation problem is to calculate

x̂k/k =
∑

J⊆{∅}∪N
P
(
σJ
)
E
(
xk/Y

J
k , σ

J
)

(24.12)

24.5.2 Problem Formulation

Let xk be the state vector at the time k. The dynamic model is supposed to be linear
and invariant with equation:

xk = Fxk−1 + υk, (24.13)

where F is the state transition matrix. The noise υk is a Gaussian stochastic process

with zero mean and covariance matrix E
(
υiυ

T
j

)
= Qδij , where δ is the Kronecker

symbol.
For the observation model, we consider n observation equations, where each

equation corresponds to one sensor. Even if it is rarely the case, by sake of simplicity,
we assume that the observation model is linear that lead us to use classical linear
Kalman filter. If the observation models are not linear, then EKF (extended Kalman
filter) or UKF (unscented Kalman filter) or other variants may be used.

The equation is as follows:

yik = Hixk + bik, (24.14)

where i ∈ N = {1, . . . , n} n is the number of sensors. The matrices H1 . . .Hn

are n observation matrices, one for each sensor. The observation noise, bik , is

Gaussian with zero mean and covariance matrix E
(
bikb

j
l

)
= Riδklδij . The set of

measurements provided by the sensor i up to the time k is denoted as Y ik =
{
yil

}l=k
l=1,

and the set of all measurements from all the sensors is denoted as Yk =
{
Y ik

}
i∈N .

Moreover for a subset J ⊆ N ∪∅, we define YJk =
{
Y ik

}
i∈J the set of measurements

up to k provided by the association of a group of sensors identified by J.
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24.5.3 Equations of the Filter

(a) Update equation for a group of associated sensors

For a group of associated sensors [9, 10] whose indices are elements of J, the
estimate is given by:

x̂Jk/k = E
(
xk|YJk

)
(24.15)

The optimal estimate at time k is provided by the relation:

x̂Jk/k = x̂Jk/k−1 +
∑

i∈J
KiJ (k)

(
yik −Hix̂Jk/k−1

)
(24.16)

whereKij is the Kalman gain associated with sensor i belonging to the set of sensors
J. Given that Kalman equations for a multisensory system are easier expressed in
the information form, in the following, we consider the information presentation.
The Kalman gain is defined by:

KiJ (k) = PJ (k/k)HTi R−1
i (24.17)

The covariance matrix PJ(k| k) is given by the formula:

P−1
J (k/k) = P−1

J (k/k − 1)+
∑

i∈J
HTi R

−1
i Hi (24.18)

(b) Update equation for an association of sensors with reliability defined by
supervision variables

Now, we derive the expression for a global estimate by considering all possible
associations of sensors J with J ⊆ N ∪ {∅} given by:

x̂k/k = E (xk|Yk) (24.19)

To take into account the supervision variables, we develop the following formula:

x̂k/k = x∅kβ∅ (k)+
∑

J⊆N
βJ (k) E

(
xk|YJ

K

)
(24.20)

The global estimate is composed of elementary estimates provided by the
association of sensors. When none of the sensors is valid, we consider the prediction
x̂k/k−1 for X∅k . In (24.20) the elementary estimates E

(
xk|YJk

)
can be substituted by
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their values given in (24.13) where each elementary prediction x̂Jk/k−1 of the set of
sensors J is replaced by the global prediction x̂k/k−1. The relation (24.20) can then
be written as follows:

x̂k/k = x̂k/k−1 +
∑

J⊆N

∑

i∈J
βJ (k)K

i
J (k)

(
yik −Hix̂k/k−1

)
(24.21)

This last relation can be simplified by considering the following notation:

Ki(k) =
∑

{J/i∈J }
βJ (k)K

i
J (k) (24.22)

Where {J/i ∈ J} defines the set of all groups of sensors containing sensor i.
Equation (24.21) can then be formulated as follows:

x̂k/k = x̂k/k−1 +
∑

i∈N
Ki(k)

(
yik −Hix̂k/k−1

)
(24.23)

The covariance matrix is given by the relation:

P (k/k) =
∑

J⊆N∪{∅}βJ (k)

[

PJ (k/k)+
(

x̂k/k − x̂J
k/k

) (
x̂k/k − x̂J

k/k

)T
]

(24.24)

This is similar to the covariance matrix expression of a Gaussian mixture. The
matrix PJ(k/k) is the covariance matrix of the elementary estimate x̂Jk/k obtained
following the association of sensors J.

Finally with the updated state and covariance, the prediction equations are
classically given by:

x̂k+1/k = F x̂k/k and P (k + 1/k) = FP (k/k) FT +Q (24.25)

24.6 Algorithm

Although the previous equations can be directly implemented with any program-
ming language, in data fusion, we often prefer the sequential form of the filter.
Firstly, this form is easier to implement, and secondly, it is well appropriate for
asynchronous sensors. In the next section, the sequential version of the algorithm
is presented in the following two forms: with and without taking into accounts the
supervision information.
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For simplicity, we consider a system composed of three sensors. The generaliza-
tion of the algorithm to a system composed of n sensors is straightforward.

24.6.1 Fusion Algorithm

We consider here the sequential form of the Kalman filter for a synchronous system.
The state equations for a system S composed of three sensors are the following:

S

⎧
⎪⎪⎨

⎪⎪⎩

xk = Fxk−1 + υkDynamics
y1
k = H1xk + b1

k Sensor 1
y2
k = H2xk + b2

k Sensor 2
y3
k = H3xk + b3

k Sensor 3

(24.26)

The recursive form [11] for the above system allows conducting the processing
in four consecutive steps. The first one, corresponding to s1, is the prediction
step. The second one is the estimation of an intermediate state x1

k . The third step,
corresponding to s2, allows the estimation of a second intermediate state x2

k . The
last step, corresponding to s3, allows the estimation of the global state xk.

Step 1
From the estimated state given by the k-1 iteration, the prediction is given by the
classical Eq. (24.23) above.

Step 2
The prediction is updated based on the formula:

x̂1
k/k = x̂k/k−1 +K1(k)

(
y1
k −H1x̂k/k−1

)
(24.27)

and

P1 (k/k) = (I −K1(k)H1) P (k/k − 1) (24.28)

with:

K1(k) = P (k/k − 1)HT1
(
H1P (k/k − 1)HT1 + R1

)−1
(24.29)

Step 3
Considering s2, the prediction is simply obtained by substituting the predicted state
x̂k/kby x̂1

k/k and P(k/k) by P1(k/k) and updating the state and the covariance matrix.
The Kalman gain is now:

K2(k) = P1 (k/k)H
T
2

(
H2P1 (k/k)H

T
2 + R2

)−1
(24.30)
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Step 4
This step is the same as the previous one but now we substitute x̂1

k/kby x̂2
k/k

and P1(k/k) by P2(k/k). The Kalman gain is now:

K3(k) = P2 (k/k)H
T
3

(
H3P2 (k/k)H

T
3 + R3

)−1
(24.31)

Remark
In each update step (2, 3, 4), the noise covariance matrix Ri of the associated sensor
i is taken into account in the Kalman gain. It is this covariance matrix that weights
contribution of the sensor measurement with respect to the prediction in the calculus
of the estimate. The larger the covariance of a sensor noise (the trace of the matrix
is big), the less the measurement of this sensor is taken into account in the fusion
process. It is a first approach to adapt the fusion algorithm to the deterioration in
the sensor performance. The approach is to calculate the covariance matrix of the
noise regularly for each sensor and to take into account the new covariance matrix
in computing the Kalman gain. However, this method is not sufficient because it is
possible to calculate a good covariance matrix with a sensor that is providing false
information.

24.6.2 Supervised Fusion Algorithm

The proposed algorithm is based on the previously presented algorithm with the
main difference that we must calculate 2n − 1 estimates for a system with n sensors
instead of n as it was the case in the previous algorithm. Each estimate corresponds
to an association of sensors. The number of the combinations should not be an
obstacle because in general a multisensor system is composed of a limited number
of sensors (two to three sensors).

We will describe here five processing steps. The first step is still devoted to
the prediction. The following three steps are for computing estimates for different
association of sensors. The fifth step is to supervise the different associations of
sensors by computing a weighted mean of the estimates.

Step 1
Like the preceding algorithm, this step is use to predict the estimate and the covari-
ance matrix. From the estimate computed at the preceding iteration x̂k−1/k−1and
P(k− 1/k− 1), this step computes the prediction of x̂k/k−1and P(k/k− 1) according
to Eq. (24.23).

Step 2
In this step the predicted state and covariance matrix are updated by the measure-
ments yik provided by the three sensors in order to obtain three estimated states x̂ik/k
and Pi(k/k) with i∈{1, 2, 3}. Each state and covariance matrix will be used in the
Step 3 for the second phase of the estimation.
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Step 3
In the considered case, there are three couples of sensor association: {1, 2}, {1,
3}, and {2, 3}. For the couple {1, 2}, for example, we note the estimate x̂12

k/k and its
covariance matrix P12(k/k). To compute this estimate and this covariance matrix, we
simply take the estimate of x̂1

k/k and P1(k/k) and update them with the measurement

y2
k and the noise covariance R2 provided by sensor 2. For the couple {1, 3}, we

take the estimate x̂1
k/k and the covariance matrix P1(k/k), and we update them by

considering the measurement and covariance matrix of sensor 3. For the couple {2,
3}, we use the same approach as the previous one: the state x̂2

k/kand the covariance
matrix P2(k/k) are updated by the measurement and noise covariance R3 provided
by sensor 3.

Step 4
At this level, the global fusion of the three sensors corresponding to the subset {1, 2,
3} is made. We can take one of the three states computed in the preceding step and
update it by the measurement from the sensor that is not already contributing to the
update of the selected state. For example, if we take the state x̂12

k/kand its covariance

matrix P12(k/k), we update them by the measurement y3
k and the covariance matrix

R3. In order to obtain x̂123
k/k and P123(k/k), the order of the indices does not matter. In

fact x̂123
k/k = x̂231

k/k = x̂312
k/k .

Step 5
This fifth step introduces the supervision information in the computation of the
estimate. At the time of the estimation, each supervision variable has a value which
allows computing the coefficients βJ(k) obtained from the membership function of
the fuzzy set. These coefficients are used to compute the global estimate x̂k/k and
the global covariance P(k/k) based on the Eqs. (24.21, and 24.22).

24.7 Simulations

24.7.1 Simulation Conditions

The purpose of the following simulations is to fuse the measurements of three
sensors and evaluate the feasibility of the introduced adaptive method utilizing
supervision variables. The first sensor providing angle measurements y1 is a search
radar with poor resolution, but this sensor is never jammed or deceived. The second
sensor with angle measurements y2 is a tracking radar which is jammed in the time
interval

[
75, 125

]
. The third sensor is an I.R camera providing angle measurements

y3. On, below, we can see some decoys in the time interval
[

20s 120s
]

(Fig. 24.6).
The measurement y1 has a Gaussian noise with standard deviation σ 1 = 6◦.

The measurements y2 and y3 have equal Gaussian noises with standard deviation
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Fig. 24.7 Time evolution of μ2(z2),X-axis is the time in second, and Y-axis is a logical value
without dimension

σ 2 = σ 3 = 2◦. Between times 75 s and 125 s, we add a noise with a standard
deviation σ 2 = 10◦ to the measurement y2. To simulate a jamming between times
20s and 120 s, we add randomly, in time, a peak with a Gaussian amplitude and a
standard deviation σ 2 = 20◦ to simulate a decoy.

On the tracking radar, a parameter z2 can indicate the instant when the radar
is jammed. For example, z2 can be the SNR ratio and when this ratio is under a
certain value zm then μ2(zm) = 0. The membership function of the fuzzy set on this
parameter takes the values given in Fig. 24.7 above.

For the detection of the decoy, the parameter z3 is used, and the fuzzy set function
on this parameter takes the values given in Fig. 24.8 below. The parameter z3 can be
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a parameter score given by image processing and μ3(z3)= 0 when the score is under
a certain limit zl. We do not describe the contextual variables or their membership
functions because they are very application dependent.

24.7.2 Results with Contextual Information

The results of the simulation are given in Fig. 24.9 and Fig. 24.10.
In Fig. 24.9, the upper plot shows the result of the tracking estimate xf without

taking into account the context, while the lower plot shows the results of the tracking
estimate xfcwhen the context is taken into account.

We can see that the estimate xfc is less noisy than xf . This difference can be seen
in another way in Fig. 24.10.

In this figure, we can see that before time t = 20 the errors of xf and xfc are the
same. It is normal because only the probability of the association of three sensors
is equal to 1 and other probabilities of association are reduced to 0, so the two
algorithms are equivalent. In the time interval

[
75 125

]
, the error of xfc is almost

always inferior to that of xf showing the benefit of taking account of the context.
After t = 125 the error in the two algorithms converges toward the same value, and
we can see that the errors are the same a small time after t = 140.

The RMSE of the result without supervision is 0.63◦. and with supervision it is
0.24◦. The supervision of the fusion process by contextual information divides by
almost three the RMSE.

24.7.2.1 Results without Contextual Information

In this subsection, the fusion process does not use external information given by
contextual information but only the distance between the measurement and its
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Fig. 24.10 Estimation error (X-axis is the time in second, error xf , error xfc)

prediction given by the fusion process. We note x̂Nk/k−1 the prediction of the state

after the fusion of all measurements until the time k-1. When a measurement yik
provided by the sensor i is sent to the fusion process, then the prediction of this
measurement is achieved, thanks to the following equation:

ŷik/k−1 = Hix̂Nk/k−1 (24.32)
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It is possible to calculate the distance between the prediction and the measure-
ment and define the variable zm:

zm =
∥
∥
∥ŷik/k−1 − yik

∥
∥
∥

Si
(24.33)

with Si = HiP (k/k)HTi + Ri
We define the membership function by

p (si/zm) = μ (zm) = e−
z2m
2 (24.34)

Using the same simulation described above, we obtain the following results
(Fig. 24.11).

The upper plot shows the result of the estimate xf without considering the
context, while the lower plot shows the result of the estimate xfc when the fusion
process is supervised by the measurements related distance.

As it can be seen from the Fig. 24.12 below, the supervised fusion algorithm
without contextual information gives a better result in term of RMSE than the
one using contextual information. This result is against expectation because in
the algorithm with contextual information, we use more information than in the
algorithm without contextual information. This better performance can be explained
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by the fact that in the algorithm without contextual information, the perturbed
measurements are not totally discarded but have a smaller weight in the fusion
process. At the same time, the supervision without contextual information gives
an advantage to the prediction model. It should not be robust to target maneuvers.
More studies will be conducted in the future to define the working area of each of
the algorithm.

24.8 Conclusion

We have introduced an adaptive fusion algorithm, which estimates and incorporates
reliability of sensor performance by utilizing supervision information. Supervision
information comprises contextual variables characterizing the external sensing
conditions when this information is available or endogenous sensor information.
The use of the reliability of sensor performance in a multisensory system is essential
because it dynamically allows selection and fusion of the measurements of the most
reliable sensors.

The algorithm introduced in the chapter, as well as the simulation example, is
based on simple linear observation models. The extension to the nonlinear case is
straightforward. The approach developed here for a tracking application can also be
adopted for numerous other applications.
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