
Nils Gruschka (Ed.)

 123

LN
CS

 1
12

52

23rd Nordic Conference, NordSec 2018
Oslo, Norway, November 28–30, 2018
Proceedings

Secure IT Systems

Lecture Notes in Computer Science 11252

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Nils Gruschka (Ed.)

Secure IT Systems
23rd Nordic Conference, NordSec 2018
Oslo, Norway, November 28–30, 2018
Proceedings

123

Editor
Nils Gruschka
University of Oslo
Oslo, Norway

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03637-9 ISBN 978-3-030-03638-6 (eBook)
https://doi.org/10.1007/978-3-030-03638-6

Library of Congress Control Number: 2018960426

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7360-8314
https://doi.org/10.1007/978-3-030-03638-6

Preface

This volume contains the papers presented at NordSec 2018, the 23rd Nordic Con-
ference on Secure IT Systems. The conference was held during November 28–30,
2018, in Oslo, Norway.

The NordSec conferences started in 1996 with the aim of bringing together
researchers and practitioners in computer security in the Nordic countries, thereby
establishing a forum for discussion and cooperation between universities, industry, and
computer societies. NordSec addresses a broad range of topics within IT security and
privacy and over the years it has developed into an international conference that takes
place in the Nordic countries. NordSec is currently a key meeting venue for Nordic
university teachers and students with research interests in information security and
privacy.

NordSec 2018 received 81 submissions of full research papers, with all valid sub-
missions receiving three double-blinded reviews by the Program Committee (PC).
After the reviewing phase, 29 papers were accepted for publication and are included in
these proceedings. Furthermore, we organized a poster session that encouraged dis-
cussion and brainstorming on current topics of information security and privacy.

We were honored to host three brilliant invited speakers presenting talks on current
topics in information security focusing on cybersecurity and privacy. More precisely,
Dr. Martin Eian from mnemonic gave a talk on “Cybersecurity Threats to the Aca-
demic Sector,” Dr. Lothar Fritsch from Karlstad University gave a talk on “From Risk
to Treatment: Privacy Impact Assessment and Privacy Controls,” and Prof. Christoph
Sorge from Saarland University gave a talk on “Smart Meter Privacy: An Interdisci-
plinary Perspective.”

We sincerely thank everyone involved in making this year’s instance a success,
including, but not limited to: the authors who submitted their papers, the presenters
who contributed to the NordSec program, and the PC members and additional
reviewers for their thorough and very helpful reviews.

November 2018 Nils Gruschka

Organization

Conference Chairs

General Chair

Audun Jøsang University of Oslo, Norway

Program Chair

Nils Gruschka University of Oslo, Norway

Publicity Chair

Kamer Vishi University of Oslo, Norway

Poster Chair

Mathias Ekstedt Royal Institute of Technology, Sweden

Program Committee

Magnus Almgren Chalmers University of Technology, Sweden
Hamed Arshad University of Oslo, Norway
Mikael Asplund Linköping University, Sweden
Musard Balliu KTH Royal Institute of Technology, Sweden
Patrick Bours Norwegian University of Science and Technology,

Norway
Colin Boyd Norwegian University of Science and Technology,

Norway
Siri Bromander mnemonic as, Norway
Billy Brumley Tampere University of Technology, Finland
Sonja Buchegger KTH Royal Institute of Technology, Sweden
Ahto Buldas Tallinn University of Technology, Estonia
György Dán KTH Royal Institute of Technology, Sweden
Martin Eian mnemonic, Norway
Laszlo Erdodi University of Oslo, Norway
Daniel Fava University of Oslo, Norway
Simone Fischer-Hübner Karlstad University, Sweden
Ulrik Franke Swedish Institute of Computer Science, Sweden
Lothar Fritsch Karlstad University, Sweden
Kristian Gjøsteen Norwegian University of Science and Technology,

Norway
Jonas Hallberg Swedish Defence Research Agency, Sweden
Rene Rydhof Hansen Aalborg University, Denmark

Tore Helleseth University of Bergen, Norway
Martin Gilje Jaatun SINTEF Digital, Norway
Justinas Janulevicius VGTU, Lithuania
Meiko Jensen Syddansk Universitet, Denmark
Thomas Johansson Lund University, Sweden
Pontus Johnson KTH Royal Institute of Technology, Sweden
Sokratis Katsikas Norwegian University of Science and Technology,

Norway
Stewart James Kowalski Norwegian University of Science and Technology,

Norway
Martti Lehto University of Jyväskylä, Finland
Ville Leppänen University of Turku, Finland
Luigi Lo Iacono Technical University of Cologne, Germany
Ijlal Loutfi University of Oslo, Norway
Henning Maagerud Norges forskningsråd, Norway
Olaf Maennel Tallinn University of Technology, Estonia
Tobias Mahler University of Oslo, Norway
Raimundas Matulevicius University of Tartu, Estonia
Vasileios Mavroeidis University of Oslo, Norway
Aikaterini Mitrokotsa Chalmers University of Technology, Sweden
Simin Nadjm-Tehrani Linköping University, Sweden
Nils Nordbotten FFI, Norway
Christian W. Probst Unitec Institute of Technology, New Zealand
Carla Ràfols Pompeu Fabra University, Spain
Shahid Raza RISE SICS Stockholm, Sweden
Juha Röning University of Oulu, Finland
Lillian Røstad Sopra Steria, Norway
Alejandro Russo Chalmers University of Technology, Sweden
Berry Schoenmakers Eindhoven University of Technology, The Netherlands
Carsten Schuermann IT University of Copenhagen, Denmark
Einar Snekkenes Norwegian University of Science and Technology,

Norway
Åvald Sommervoll University of Oslo, Norway
Shukun Tokas University of Oslo, Norway
Alexandre Vernotte KTH Royal Institute of Technology, Sweden
Øyvind Ytrehus University of Bergen, Norway
Fabio Zennaro University of Oslo, Norway
Bingsheng Zhang Lancaster University, UK

VIII Organization

Additional Reviewers

A. C. Aldaya
M. Algehed
N. J. Bouman
C. Brunetta
A. Bruni
A. Cretin
P. Davis
M. K. Farmad
C. P. García
R. Giustolisi
B. Liang

F. Mancini
O. Mir
M. Mollaeefar
N. Momen
S. Petrovic
A. Sharif
E. Shereen
J. Tom
L. Tosoni
A. Tossou
M. Vassena

Organization IX

Contents

Privacy

Privacy-Preserving Distributed Economic Dispatch Protocol
for Smart Grid . 3

Avikarsha Mandal, Frederik Armknecht, and Erik Zenner

Tracking Information Flow via Delayed Output: Addressing Privacy
in IoT and Emailing Apps . 19

Iulia Bastys, Frank Piessens, and Andrei Sabelfeld

MixMesh Zones – Changing Pseudonyms Using Device-to-Device
Communication in Mix Zones . 38

Mirja Nitschke, Philipp Holler, Lukas Hartmann, and Doğan Kesdoğan

AppLance: A Lightweight Approach to Detect Privacy Leak
for Packed Applications . 54

Hongliang Liang, Yudong Wang, Tianqi Yang, and Yue Yu

Cryptography

Unifying Kleptographic Attacks . 73
George Teşeleanu

Steady: A Simple End-to-End Secure Logging System. 88
Tobias Pulls and Rasmus Dahlberg

Revisiting Deniability in Quantum Key Exchange: via Covert
Communication and Entanglement Distillation . 104

Arash Atashpendar, G. Vamsi Policharla, Peter B. Rønne,
and Peter Y. A. Ryan

On Security Analysis of Generic Dynamic Authenticated Group
Key Exchange . 121

Zheng Yang, Mohsin Khan, Wanping Liu, and Jun He

A Blockchain-Assisted Hash-Based Signature Scheme 138
Ahto Buldas, Risto Laanoja, and Ahto Truu

The Fiat-Shamir Zoo: Relating the Security of Different
Signature Variants . 154

Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 171
Rasmus Dahlberg and Tobias Pulls

Network and Cloud Security

CLort: High Throughput and Low Energy Network Intrusion Detection
on IoT Devices with Embedded GPUs. 187

Charalampos Stylianopoulos, Linus Johansson, Oskar Olsson,
and Magnus Almgren

Detection of Covert Channels in TCP Retransmissions 203
Sebastian Zillien and Steffen Wendzel

What You Can Change and What You Can’t: Human Experience
in Computer Network Defenses . 219

Vivien M. Rooney and Simon N. Foley

Attack Simulation for a Realistic Evaluation and Comparison
of Network Security Techniques . 236

Alexander Bajic and Georg T. Becker

Sarracenia: Enhancing the Performance and Stealthiness of SSH
Honeypots Using Virtual Machine Introspection . 255

Stewart Sentanoe, Benjamin Taubmann, and Hans P. Reiser

Authorization Policies Specification and Consistency Management within
Multi-cloud Environments . 272

Ehtesham Zahoor, Asim Ikram, Sabina Akhtar, and Olivier Perrin

Cyber Security and Malware

Cyber Hygiene: The Big Picture . 291
Kaie Maennel, Sten Mäses, and Olaf Maennel

Estimating the Risk of Fraud Against E-Services. 306
Ahmed Seid Yesuf and Christian W. Probst

PESTEL Analysis of Hacktivism Campaign Motivations 323
Juha Nurmi and Mikko S. Niemelä

Data Modelling for Predicting Exploits . 336
Alexander Reinthal, Eleftherios Lef Filippakis, and Magnus Almgren

UpDroid: Updated Android Malware and Its Familial Classification 352
Kursat Aktas and Sevil Sen

XII Contents

Evaluation of Cybersecurity Management Controls and Metrics of Critical
Infrastructures: A Literature Review Considering the NIST Cybersecurity
Framework. 369

Barbara Krumay, Edward W. N. Bernroider, and Roman Walser

Next Generation Cryptographic Ransomware . 385
Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan

Security for Software and Software Development

Hardware-Assisted Program Execution Integrity: HAPEI 405
Ronan Lashermes, Hélène Le Bouder, and Gaël Thomas

Protecting Instruction Set Randomization from Code Reuse Attacks 421
Roberto Guanciale

A Uniform Information-Flow Security Benchmark Suite for Source
Code and Bytecode . 437

Tobias Hamann, Mihai Herda, Heiko Mantel, Martin Mohr,
David Schneider, and Markus Tasch

When Harry Met Tinder: Security Analysis of Dating Apps on Android 454
Kuyju Kim, Taeyun Kim, Seungjin Lee, Soolin Kim,
and Hyoungshick Kim

Threat Poker: Solving Security and Privacy Threats in Agile
Software Development. 468

Hanne Rygge and Audun Jøsang

Author Index . 485

Contents XIII

Privacy

Privacy-Preserving Distributed Economic
Dispatch Protocol for Smart Grid

Avikarsha Mandal1(B), Frederik Armknecht2, and Erik Zenner1

1 Offenburg University of Applied Sciences, Offenburg, Germany
{avikarsha.mandal,erik.zenner}@hs-offenburg.de

2 University of Mannheim, Mannheim, Germany
armknecht@uni-mannheim.de

Abstract. The economic dispatch (ED) problem is a large-scale opti-
mization problem in electricity power grids. Its goal is to find a power
output combination of all generator nodes that meet the demand of the
customers at minimum operating cost. In recent years, distributed pro-
tocols have been proposed to replace the traditional centralized ED cal-
culation for modern smart grid infrastructures with the most realistic
being the one proposed by Binetti et al. (2014). However, we show that
this protocol leaks private information of the generator nodes. We then
propose a privacy-preserving distributed protocol that solves the ED
problem. We analyze the security of our protocol and give experimental
results from a prototype implementation to show the feasibility of the
solution.

Keywords: Smart grid privacy · Critical infrastructure protection
Economic dispatch · Secure multiparty computation

1 Introduction

The electrical power grid has undergone some major infrastructural changes in
the last decade. The so-called Smart Grid builds a bi-directional information
communication network on top of the existing energy network aiming at a more
sustainable, efficient and reliable use of energy [10,20]. The economic dispatch
(ED) is one of the fundamental optimization problems in power grids and has
been a subject of research over several decades [11]. Its goal is to find the optimal
power output of all generator nodes in the grid that meets the power demand of
the customers at the lowest possible cost.

In traditional electrical power grids, the problem is routinely solved by a
number of utility providers who are responsible for delivering the power demand
of a certain zone. The overall ED problem is solved using a centralized approach
with a trusted third party. The participating utility providers send their gen-
erator data and cost function parameters to a central authority who then runs
some suitable optimization algorithm to compute the optimal power production

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-03638-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_1

4 A. Mandal et al.

for each participant. For this setup, many optimization algorithms and heuris-
tics have been proposed, e.g. quadratic programming, lambda-iteration method,
genetic algorithm, or Lagrangian relaxation [11].

However, a centralized ED scheme has several limitations like being a single
point of failure and others [20,21]. Thus, in recent years, many distributed ED
algorithms have been proposed for smart grid infrastructures [5,21]. Yang et al.
[21] have proposed a distributed approach to solve ED problems with a quadratic
cost function. A more realistic distributed ED solution is provided by Binetti
et al. [5] for a non-smooth and non-convex cost function.

However, it is likewise important that while designing new protocols in
the smart grid infrastructure, associated security and privacy risks should be
addressed and mitigated [14]. In fact, the existing distributed ED protocols fail
to protect private data such as cost function, power output etc., which can be
retrieved by analyzing information gathered over several iterations [15,16].

Prior Works: There are only few works on security and privacy issues for ED
protocols (or similar problems like optimal power flow (OPF) or energy manage-
ment) in current literature. In [15], Mandal gave an attack on the ED protocol
from Yang et al. [21] and proposed a privacy preserving distributed protocol for
a quadratic cost function. Zhao et al. proposed a distributed privacy preserving
energy management algorithm with a zero sum and noise reduction technique
[23]. Lie et al. proposed an OPF protocol with privacy leakage mitigation using
a stochastic noise method for a radial topology [13]. Yang et al. [22] provided
a centralized solution for optimal power flow while introducing Gaussian noise
from the parties and achieves differential privacy. However, the current privacy
solutions for ED are mostly simplified by using a quadratic cost function and
might not be applicable in a real world power grid setting.

Contributions: The main contributions of this paper are as follows:

• We show that the ED protocol by Binetti et al. [5] leaks confidential infor-
mation of the generator nodes.

• We transform the Binetti protocol into a privacy-preserving distributed pro-
tocol for ED calculation for smart grid systems.

• We analyze the security of our proposed protocol and give results of a proto-
type implementation of our protocol.

2 Preliminaries

In this section, we describe our system model and some ED basics. We also
explain the existing non-private distributed ED protocol by Binetti et al. [5]
that will form the basis of our solution.

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 5

2.1 System Model

We consider a power generation network consisting of a set V of m utility
providers (UPs). Each UP Pi is a generator node with its own generation facility.
The cost of power generation of a UP depends on its individual cost function.
The UPs together are responsible for producing power for the consumers of a
specific zone. The UPs generate power individually and feed it into the power
line to meet the demand. We assume that the communication network between
the UPs is time-synchronized and that each UP can send securely and anony-
mously, i.e., without revealing its ID, messages to any other UP. All power system
measurements are treated as fixed-point numbers throughout our paper.

2.2 Economic Dispatch Problem Formulation

We assume that a UP Pi ∈ V generates xi units of power and denote its cost
function for power generation by Ci. Hence, its cost for producing xi units of
power is Ci(xi). As there are m nodes in the network, the total cost of operation
Ctotal can be formulated as:

Ctotal =
m∑

i=1

Ci(xi) (1)

The goal of economic dispatch optimization is to find values xi such that Ctotal

is minimum while meeting some system constraints. The first system constraint
is the demand constraint i.e. the total produced power should meet the customer
demand D:

D =
m∑

i=1

xi (2)

The second constraint is the generator constraint, i.e. no Pi can produce power
beyond its generator production capacity. Formally, any Pi has to produce at
least xi units of power to be in operation and can produce up to xi units of
power:

xi ≤ xi ≤ xi (3)

Usually, the cost function of Pi is represented by a quadratic function of the
power output xi:

Ci(xi) = aix
2
i + bixi + ci (4)

where ai, bi and ci are the cost function parameters of party Pi.

Non-convex Cost Function: In real-world smart grid scenarios, more practical
considerations include valve point loading effects, multiple fuel options and pro-
hibited operating zones. For example, to consider a valve-point loading effect, a
sinusoidal term is added to the cost function with some non-differentiable points
which makes the cost function non-convex. More details about the non-convex
cost function for ED can be found in [5].

6 A. Mandal et al.

1. All parties in V agree on a precision parameter s
2. All parties initialize power output to meet the demand
3. While (True) do:
4. Each party Pi sets πi(t) and μi(t):
5. if (xi ≤ xi(t) + s ≤ xi):
6. πi(t) := Ci(xi(t) + s) − Ci(xi(t))
7. else: πi(t) := 0
8. if (xi ≤ xi(t) − s ≤ xi):
9. μi(t) := Ci(xi(t)) − Ci(xi(t) − s);
10. else: μi(t) := 0
11. Every Pi sends πi(t) (if �= 0) and μi(t) (if �= 0) to all other Pj)
12. Every party Pi ∈ V finds i and j such that:
13. πi(t) = min{π1(t), . . . , πm(t)}
14. μj(t) = max{μ1(t), . . . , μm(t)}
15. Every party Pi ∈ V computes δ = μj(t) − πi(t)
16. if(δ > 0):
17. xi(t + 1) = xi(t) + s
18. xj(t + 1) = xj(t) − s
19. else: Exit ;
20. Increment t: t := t + 1;
21. End

Algorithm 1. Binetti et al. Protocol

2.3 Distributed Solutions for ED

In traditional electricity grids, a central operator is responsible for meeting the
customer’s demand by coordinating the power production of a group of UPs.
It solves the ED problem centrally and attempts to minimize the global cost.
However, for smart power grids, also decentralized solutions are increasingly
discussed.

One such protocol was proposed by Yang et al. [21]. It solves the ED problem
for quadratic convex cost functions using an incremental cost approach. However,
this approach is not applicable when a more realistic non-convex cost function
is considered. For such applications, Binetti et al. [5] proposed an auction-based
distributed consensus protocol. It is a heuristic algorithm that can be shown
analytically to get close to an optimal solution. Note that this is the best one
can expect in practice as finding the global optimum in non-convex optimization
is an NP-hard problem. The core idea of the Binetti et al. protocol is based on a
double auction [17], where each UP can change their output power by negotiating
with other UPs and drive the overall cost towards a global minimum. A basic
description of Binetti et al.’s protocol is given in Algorithm 1.

In the initialization phase, all parties agree on a (non-optimal) output for
each UP such that the global demand is met. Subsequently, they start a round-
based protocol where with each round t, two UPs change their production by
a fixed amount s. In order to determine the parties in question, each UP sends

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 7

two bids πi(t) and μi(t) to all participants:

πi(t) = Ci(xi(t) + s) − Ci(xi(t)) (5)
μi(t) = Ci(xi(t)) − Ci(xi(t) − s) (6)

The πi(t) value denotes the estimated additional cost when increasing the power
output from xi(t) to xi(t) + s while μi(t) is the estimated cost decrease when
reducing the power production from xi(t) to xi(t) − s. No bids are placed if
the power increase or reduction violates the generator constraint equation (3).
The node with the lowest value for πi(t) wins the bid π and the node with the
highest value for μi(t) wins the bid μ. Hence, the winner i is the node who can
generate extra s units of power at the lowest additional cost. The winner j is
the node who can save the most by reducing the power production by s units. If
the difference δ = μj(t)−πi(t) > 0, swapping the production of s units of power
will lead to a cost reduction δ. Therefore, if δ > 0, the update rule for i and j is:

xi(t + 1) = xi(t) + s and xj(t + 1) = xj(t) − s (7)

The algorithm iterates until no exchange of s units of power between two nodes
will reduce the cost further. The demand constraint (Eq. (2)) is always main-
tained as D =

∑m
i=1 xi(t) at any time t.

We will show in Sect. 3.3 that using the protocol leaks private information of
the UPs.

2.4 Cryptographic Building Blocks

Our solution makes use of several established cryptographic building blocks that
we recap in the following.

SMC: Secure multiparty computation (SMC) allows parties to compute a func-
tion over their input while their input values are kept private. Many different
methods to perform SMC can be found in the existing literature [3,6–8]. In par-
ticular, Ben-Or et al. [3] proposed a protocol (BGW protocol in the following)
that allows to compute any function f with perfect security in the presence of τ
honest-but-curious adversaries as long as τ < m

2 .

Shamir’s Secret Sharing: The BGW protocol uses Shamir’s secret sharing
scheme [18]. In this algorithm, a secret can be divided into a number of unique
shares such that a single share does not leak any information about the secret. In
a (τ,m)-secret-sharing scheme, τ out of m shares are required to reconstruct the
secret. Shamir’s secret sharing scheme achieves information theoretic security.

Secure Sum Protocol: A secure sum protocol calculates the addition function
while keeping inputs of the parties private. A secure sum protocol can be con-
structed from some standard additive secret sharing scheme or by using some
SMC (e.g. BGW) with addition gates. Some information-theoretic secure sum
protocols can be found in [6, p. 8] [4].

8 A. Mandal et al.

3 Security Model

In this section, we give the attacker model, privacy goals and show how the ED
protocol by Binetti et al. leaks private information.

3.1 Attacker Model

We assume the grid infrastructure to be secure against outsider attackers, i.e.,
to be tamper-resistant and that no external malicious attacker can tamper with
or insert false data without being detected. In a competitive energy market, the
UPs could be malicious as well, e.g., may modify their input data to gain max-
imum profit or collude with other UPs to outplay their competitors. However,
such behavior is risky since a convicted cheater might face a permanent ban
from the energy market by the regulatory board. Consequently, we focus on the
honest-but-curious adversary model. A honest-but-curious adversary will strictly
follow the protocol specification but may analyze the messages exchanged dur-
ing execution or collude with others to obtain private information about other
participants. More precisely, in the considered scenario the aim is to derive infor-
mation about the cost function and the upper and lower bounds on the power
production. We assume a honest-but-curious internal attacker Pj that may be
part of a colluding set A ⊆ V of cardinality τ in the network.

3.2 Privacy Goals

The main attack motivation is that the attackers are interested in any specific
UP’s business information such as the cost function, e.g. in order to be able to
choose a pricing strategy that will drive competitors out of the market. In [15],
the author pointed out the privacy sensitivity of such information and demon-
strated an attack against an existing distributed ED protocol for quadratic cost
functions. If we consider non-convex cost functions, the non-convex parameters
of the function should be also protected.

Thus, the privacy goal of our ED protocol is to protect the output power xi(t),
the generator function parameters (e.g. ai, bi, ci for a quadratic cost function),
and the generator constraints xi and xi for every participant Pi.

3.3 Privacy Leakage of the Binetti et al. Protocol

In the following, we demonstrate the need for a new privacy-preserving ED
solution. As explained, the currently most practical ED solution is the protocol
by Binetti et al. [5]. We show that it leaks the cost function parameters when a
honest-but-curious adversary Pj analyzes the information received during several
iterations. The attacker Pj gets the value of πi(t) and μi(t) at t = 0:

πi(0) = Ci(xi(0) + s) − Ci(xi(0) = 2aixi(0)s + ais
2 + bis (8)

μi(0) = Ci(xi(0)) − Ci(xi(0) − s) = 2aixi(0)s − ais
2 + bis (9)

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 9

Now, subtracting the Eqs. (8) and (9) yields

2ais
2 = πi(0) − μi(0) =⇒ ai =

πi(0) − μi(0)
2s2

.

Hence, ai can be found as s is public and known to the attacker. Similarly,
the value of bi can be determined after few rounds of iteration. In the case
of a non-convex cost function, we can solve a system of non-linear equations
constructed during several rounds to find the cost function parameters (e.g. with
a numerical solver). Additionally, the initial power output is shared between the
parties during the initialization which violates our privacy goals.

Start

Each party locally checks if update
is possible or not for increase or

decrease of s units of power
 with its own constraints and sets

two output bids

Parties securely allocate power among
themselves (non-optimal) to meet the
demand (run protocol Meetdemand)

Secure computation to find the
winning indexes

Winning parties make swap
operation

Run protocol
Permutation of

indexes

Exit
Send secret shared inputs with
permuted index via anonymous

channel for SMC

Secure computation to check if swap between
winning parties results cost reduction

Broadcast winning indexes

Swap possible?

No

Yes

Fig. 1. PPB protocol workflow

4 Protocol Specification

The problem with the original Binetti protocol is that the xi(0) are shared
between the parties for initialization, and cost function parameters are leaked in
several iterations which violates our privacy goals. We thus introduce a privacy-
preserving Binetti (PPB) protocol which preserves privacy of the individual UPs
and correctly implements Binetti’s protocol.

10 A. Mandal et al.

In this section, we give a high level overview of our PPB protocol and the
intuition behind our construction. A straightforward solution would be to imple-
ment Binetti’s protocol with SMC. However, here we face two challenges:

1. The Binetti protocol assumes that the UPs start with a configuration of the
values xi such that the demand is met. Consequently, we introduce a sub-
protocol Meetdemand which at the beginning privately allocates the power
output among m parties such that

∑m
i=1 xi(0) = D. Note that this sub-

protocol only allocates the power to meet the initial demand initially; opti-
mization of the allocation is done in a second step.

2. In the Binetti protocol, each UP learns in each round the winning parties, i.e.,
the parties with the highest/lowest bids. To avoid this leakage, we introduce
a sub-protocol for anonymous bid submission so only the winning parties will
know if they are the winner. The sub-protocol Permutation securely permutes
the indexes of the UPs such that a party will only know its own index but
not those of the other parties.

The workflow of our protocol is presented in Fig. 1. A more detailed overview
follows. Here, we use the common notation for multi-party protocols. The
expression

Π : (P1 : X1; . . . ;Pm : Xm) → (P1 : Y1; . . . ;Pm : Ym) (10)

means that parties Pi commonly execute a protocol Π with with Xi and Yi being
their inputs and outputs, respectively.

At the beginning of PPB, the input Xi of each party Pi can be presented
as Xi = (Ci, xi, xi,D, s,m). Here, the cost of function Ci, generator lower limit
xi, and generator upper limit xi are private whereas demand D, the precision
parameter s and the number of participants m are known to every participant in
the network. If t is the iteration index, then the private output is Yi = xi(t) such
that the total cost

∑m
i=1 Ci(xi(t)) is minimum. The PPB protocol is formally

described in Algorithm 2. The general idea is as follows:

Step 1: Initialization. At the start, all parties Pi ∈ V run the sub-protocol
Meetdemand to get the initial value of power production xi(0). The protocol
Meetdemand does not reveal the output xi(0) to other parties like in the original
Binetti protocol. Each xi(0) meets the generator constraint of Pi and the total
power production

∑m
i=1 xi(0) meets the current demand D. We describe protocol

Meetdemand in detail in Subsect. 4.1.

Step 2: Optimization. Subsequently, the parties try to find the optimal solution
xi(t) starting from xi(0) similarly to Binetti’s protocol, but using SMC. If the
concrete SMC protocol works with integer input, the fixed-point inputs can be
converted by multiplying with a scaling factor. We also use Shamir secret sharing
of the bids for the SMC input. The shared bids πi(t) and μi(t) are denoted by
[πi(t)] and [μi(t)] respectively.

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 11

Input: Xi as input for every party Pi.
Output: Yi for every party Pi such that total cost is minimum.
Setup:
1. All parties Pi ∈ V agree on a prime field IF = Zp for the SMC;
Initialization :
2. All parties run protocol Meetdemand():
(P1 : (D, m, x1, x1); . . . ; Pm : (D, m, xm, xm)) → (P1 : x1; . . . ; Pm : xm) to get
private xi s.t.

∑m
i=1 xi = D ;

3. Every Pi initialize xi(0) := xi

Main :
4. While (True) do:
5. All parties run the protocol Permutation() to its permuted index:

(P1 : s1; . . . ; Pm : sm) → (P1 : ind(i); . . . ; Pm : ind(m))
6. Every parties Pi ∈ V set πi(t) and μi(t) same as Binetti protocol

(see Sect. 2.3, algorithm 1, line. 4. to 10.)
7. Each Pi creates Shamir’s secret shares [πi(t)], [μi(t)] of πi(t) and μi(t);
8. Each party Pi sends shares [πi(t)] and [μi(t)] with its index ind(i) to

other Pj ∈ V (i �= j) through an anonymous secure channel for SMC
9. All parties Pi ∈ V run SMC to find indπ(i) and indμ(i) s.t.:
10. indπ(i) := Index(min(π1(t), . . . , πm(t)));
11. indμ(i) := Index(max(μ1(t), . . . , μm(t)));
(Function Index() returns the associated index ind(i) if input is πi(t) or μi(t))
12. All parties Pi ∈ V run SMC to evaluate a binary Flag ∈ {0, 1}

where (Flag := (δ > 0)) and
δ = max(μ1(t), . . . , μm(t)) − min(π1(t), . . . , πm(t))

13. if (Flag = 1):
14. if (ind(i) = indπ(i))
15. xi(t + 1) := xi(t) + s;
16. if (ind(i) = indμ(i))
17. xi(t + 1) := xi(t) − s;
18. else: Exit ;
19. Increment t: t := t + 1;
20. End

Algorithm 2. PPB Protocol

Step 3: Permutation. As we explained above, a direct SMC realization of the
auction will leak the winning indexes. So, instead of sending πi(t) and μi(t) bids
directly for SMC, the parties send a permuted index along with the bids through
an anonymous channel. The main auction function from Binetti is implemented
with SMC (Algorithm 2, line 10–12) where it makes sure that the function input
is kept private. The Index() function returns the associated permuted index
ind(i) if the input is πi(t) or μi(t). Henceforth, all parties after SMC will only
find out the associated index of winning parties i.e. indπ(i) and indμ(i), however
parties can not trace where the index actually came from (as it came through
anonymous channel). Only the winning parties can determine whether they are
the winner and will update accordingly like in Binetti’s protocol. Protocol Per-
mutation is explained in details in the Subsect. 4.2.

12 A. Mandal et al.

It is obvious that PPD correctly implements the Binetti protocol if the pro-
tocols Meetdemand and Permutation are correct. In the following, we explain
both protocols in detail and argue their correctness before we investigate the
security in Sect. 5.

4.1 The Meetdemand Protocol

The sub-protocol Meetdemand is executed at the initial stage of our PPB
protocol. It allows the UPs parties to allocate their respective power produc-
tion xi such that the demand D is met, i.e.,

∑m
i=1 xi = D. We assume that∑m

i=1 xi ≤ D ≤ ∑m
i=1 xi, i.e. producing the current demand D is possible in

principle. We describe in the following two different variants of Meetdemand
that aim for different tradeoffs between efficiency and privacy. Variant 1 is more
efficient as it allows to select appropriate values xi immediately. The downside
however is that each party gains information about the initial value xi(0). In
contrast, variant 2 reveals no information about the values xi(0) but requires
several iterations until a satisfying configuration has been found.

Variant I: We denote by x :=
∑m

i=1 xi and x :=
∑m

i=1 xi the minimum and
maximum amount of power that can be produced by all parties together. We
assume that x and x are known to every party. One can use a secure sum protocol
to get a x and x without revealing the private values for xi and xi.

Furthermore, we define for each party Pi the distance between the upper
and lower bound of power production as di := xi − xi. We denote the distance
between lower and upper bound of total power production as d := x − x. Note
that d =

∑m
i=1 di.

By assumption, it holds that x ≤ D ≤ x, i.e., the demand can be met by all
parties. Thus, there exists an r such that D = x + r · d with 0 ≤ r ≤ 1. As D,
x and x are known, the value of r is also know to every party. The strategy is
that each party Pi contributes the same portion with respect to the power they
can produce by setting its power production to xi = xi + r · di. Thus, the total
initial production is

m∑

i=1

xi =
m∑

i=1

(xi + r · di) =
m∑

i=1

xi + r · (
m∑

i=1

di) = x + r · d = D,

i.e. the demand D is met exactly.

Variant II: Variant I of the Meetdemand protocol is highly efficient but leaks
the fraction r of xi − xi (which in turn is secret) of each party Pi. Variant II
(Algorithm 3) provides higher privacy but requires several iterations. First, each
party Pi starts with a randomly chosen xi within its range of its power produc-
tion. Then, the participants determine

∑m
i=1 xi without revealing the individual

xi to each other by using a secure sum protocol. This
∑m

i=1 xi is also random
as all xi are. Then, every party can compute the amount of additional power

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 13

Input: D, m, private xi and xi for every party Pi ∈ V
Output: Private xi for every party Pi ∈ V s.t.

∑m
i=1 xi = D and xi ≤ xi ≤ xi

Meetdemand.Main:
1. Every party Pi sets a random xi where xi ≤ xi ≤ xi and k = m
2. While (|Δ| > 0) do:
3. All parties Pi ∈ V run a secure sum protocol to get

∑m
i=1 xi

4. Every party Pi finds: Δ :=
∑m

i=1 xi − D
5. At every party Pi:
6. if (xi ≤ xi − Δ

k
≤ xi):

7. Set xi := xi − Δ
k

and Outputi := 1
8. if (xi − Δ

k
> xi):

9. Set xi := xi and Outputi := 0
10. if (xi − Δ

k
< xi):

11. Set xi := xi and Outputi := 0
12. All parties Pi ∈ V run a secure sum protocol to update:
13. k =

∑m
i=1 Outputi

14. End

Algorithm 3. Variant II of the Meetdemand Protocol

needed to be allocated, i.e. Δ =
∑m

i=1 xi − D. Note that this Δ can be positive
or negative. If Δ is positive (negative), the parties have to decrease (increase)
the production.

The idea is that ideally all parties should change their power production
by the same factor Δ/k where k denotes the number of parties than can still
increase (resp. decrease) their power production. That is each party Pi checks
if the new value xi := xi − Δ

k is within its production range and updates it
accordingly if possible. Otherwise, Pi chooses the minimum (xi for positive Δ)
or maximum (xi for negative Δ) limit and doesn’t participate anymore in the
following rounds. The number k of participating parties in the next round can
be also found with a secure sum.

We quickly explain the correctness. Let Δ be the difference between
∑

i xi

and D and k be the number of parties that can still adapt their power production.
We show that there is at least one party that can adapt its power production so
that the overall power production gets closer to the demand with each round.
Without loss of generality, let Δ ≥ 0. Moreover, let I0 be the indices of all parties
that already produce the minimum power and I1 the indexes of k parties that
still participate.

Assume that it holds for all Pi with i ∈ I1 that xi − Δ
k < xi, that is no party

can further update its power production. Then it follows by definition of Δ that

D =
m∑

i=1

xi−Δ =
∑

i∈I0

xi+
∑

i∈I1

xi−Δ =
∑

i∈I0

xi+
∑

i∈I1

(xi−Δ

k
) <

∑

i∈I0

xi+
∑

i∈I1

xi = x.

That is, the demand D would be outside of the range that can be produced,
violating our initial assumption. Consequently, there needs to be at least one

14 A. Mandal et al.

party Pi that can further update the power production as long as Δ �= 0. This
shows that eventually the demand will be met.

4.2 The Permutation Protocol

This sub-protocol allows to shuffle the indexes ind(i) of the parties to allow to
submit their bids anonymously during SMC. Formally, each of the m parties
{P1, . . . , Pm} gets one index ind(i) ∈ {1, . . . , m} such that

1. each Pi knows its index ind(i) but does not know ind(j) for j �= i.
2. ∃ a bijective function f : {ind(1), . . . , ind(m)} → {1, . . . , m}.

Permutation.Setup:
1. All parties agree on a cyclic group (G, .) with generator g of order q, q being
prime;
2. Set ind(i) := i for i = 1, . . . , m;
3. Each party Pi chooses a secret value si ∈ {2, . . . , q − 1} and computes

hi := gsi ;
4. Each party Pi publishes its hi to all parties;
Permutation.Main(g, [h1, . . . , hm]):
5. For i = 1 to m do:
6. Party Pi takes the current parameter ((g, [h1, . . . , hm]);
7. Pi chooses a random value r ∈ {2, . . . , q − 1} and a permutation

Π : {1, . . . , m} → {1, . . . , m} to shuffle the indexes;
8. Pi updates: (g, [h1, . . . , hm]) ← (gr, [hΠ[1]

r, . . . , hΠ[m]
r]);

9. Party Pi publishes (g, [h1, . . . , hm]) to all parties and all parties take it
as the current parameter;

10. End
11. For i = 1 to m do:
12. Party Pi takes the current parameter ((g, [h1, . . . , hm]);
13. Pi computes h∗ := gsi ;
14. Pi finds index j ∈ {1, . . . , m} such that hj = h∗;
15. Pi sets ind(i) = j;
16. End

Algorithm 4. Protocol Permutation

The details of the protocol are given in Algorithm 4. It uses the Decisional
Diffie-Hellman Problem (DDH) [9] to securely permute a sequence of indexes.
Recall that the DDH is to distinguish tuples (ga, gb, gab) and (ga, gb, gc) from
each other when a, b and c are chosen randomly and independently from Zq and
is considered to be hard.

First, all parties agree on a cyclic group (G, .) with generator g of order q for
a sufficiently large prime q. Every party Pi chooses a secret si ∈ {2, . . . , q − 1}
and computes hi := gsi . The initial sequence of indexes is then specified by

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 15

(g, [h1, . . . , hm]). Then, the parties round-wise permute the positions of the val-
ues hi (via some randomly chosen permutation Π : {1, . . . , m} → {1, . . . , m})
and update each hi to h∗

i := hr
i and g to gr for some random number

r ∈ {2, . . . , q − 1} as explained in lines 6–9 of Algorithm 4. After each party
applied the transformation, the final result (g∗, [h∗

1, . . . , h
∗
m]) is published and

made available to all parties.
Then, each party Pi can determine its new location, i.e., index ind(i), by

finding the index such that h∗
ind(i) = (g∗)si . Such a location exists as it holds that

logg(hi) = loggr (hr
i) for each i. Moreover, if q is large, it holds with overwhelming

probability that the values hi are pairwise different. Due to the fact that the
mapping h
→ hr is a permutation (as q is prime), it follows that the updated
values hr

i are pairwise different as well.
With respect to security, assume an adversary who aims to link two values

from two successive rounds. That is, given (g, [h1, . . . , hm]) and (g∗, [h∗
1, . . . , h

∗
m]),

the adversary aims to decide for any two values hi and h∗
j whether h∗

j is the
updated value of hi, i.e., if they are “linked”. Note that this is equivalent to
decide if (g∗, hi, h

∗
j) has the form (gr, hsi , hr·si) for unknown values r and si,

which means to solve an instance of the DDH. As this is assumed to be hard
(for large values of q), it follows that an attacker cannot track the values hi and
in particular cannot determine the new index of other parties.

4.3 SMC Protocols

In every iteration t in PPB, the parties can run some SMC protocols (e.g., BGW
[3] or SPDZ [8]) to evaluate the following functions:

1. Find the permuted index of the party who wins π auction.
2. Find the permuted index of the party who wins μ auction.
3. Find the value of Flag ∈ {0, 1} which tells whether δ > 0 or not.

5 Security

In the following, we discuss the information that is leaked by PPB. Recall that
its main components are the protocols Meetdemand, Permutation, and the SMC
protocols.

With respect to the latter, it is known that they reveal no information beyond
what can be learned from the individual inputs and outputs. Likewise, we showed
that Permutation leaks no information about the new index as long as the DDH
instance is hard.

The only potential critical component is Meetdemand (where we focus on the
more secure variant II). Here, any party learns the sequence by which it reaches
the solution, that is for each round the value k, i.e. the number of participating
parties in each iteration, and the

∑m
i=1 xi of values in each iteration. However,

as the values xi are randomly chosen at the beginning, we conjecture that this
leakage is not harmful.

16 A. Mandal et al.

6 Implementation Observation

We have implemented a proof of concept prototype of our privacy-preserving
protocol (single round). We used the BGW-based protocol suite from the Fresco
Framework [2], a Java framework for secure computation. We consider 3 dedi-
cated SMC nodes in our setting. Having a small number of computational nodes
is recommended as the computational effort for SMC increases dramatically with
increasing the number of nodes. As the security bound for BGW for τ honest-
but-curious colluding adversary is τ < m

2 , we choose τ = 1 for 3 SMC servers.
We have performed our tests on a single 64 bit server with an Intel Core i5-4590
processor (4 cores) with 3.30 GHz and 8 GB RAM. We run our protocol locally
for the 3 party setting with each instance run on a single core. Table 1 gives us
the performance metrics for different numbers of UPs for a single round SMC
execution as described in Subsection 4.3.

Table 1. Performance of single round SMC execution with BGW

No. of UPs (m) Average time (ms)

2 557

5 5484

10 11707

20 24186

50 34677

100 49986

We believe the results are reasonably good since in a realistic market the
number m is small. Moreover, the frequency of ED calculation in current set-
up ranges from hourly to once every few days. A report [19] by the Federal
Energy Regulatory Commission (FERC) of California states that currently, eco-
nomic dispatch is calculated hourly basis in a power grid. In the state of Baden
Württemberg, Germany, there are 12 main distributed system operators (DSO)
[1]. Now, if these 12 DSOs want to calculate ED privately on an hourly basis, our
PPB protocol can run around 250–300 rounds using the prototype implemen-
tation and achieve a reasonably optimal solution. Also, we believe that perfor-
mance results can be improved significantly by using distributed cloud servers
with multiple cores, parallel processing of the data, and careful design of the
algorithms.

7 Conclusion and Future Work

We made the first step towards privacy-preserving solutions for the distributed
electronic dispatch problem. We hope that this works initiates further research

Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid 17

into this area. In fact, there are several directions for improving of our protocol
and its usability in a real world application.

For instance, the leakage of the Meetdemand protocol requires further inves-
tigation. While we do not expect any harmful leakage due to the fact that the
starting values are randomly chosen, this does not exclude such possibility.

Another direction is to improve the implementation of the protocols, e.g., by
using hybrid SMC protocols [8], by using some optimized technique for secure
comparison functions [12], or by exploiting parallel processing of multiplications
for bit-wise comparison.

Our distributed privacy solution ED is designed for a non-competitive mar-
ket. The next step would be to design a privacy ED solution in a competitive
market and against malicious attackers.

Acknowledgments. The authors would like to thank Nuttapol Laoticharoen for the
prototype implementation.

References

1. Distribution network operators in baden württemberg. https://www.energieatlas-
bw.de/netze/verteilnetzbetreiber-strom. Accessed 30 July 2018

2. A framework for efficient secure computation. http://fresco.readthedocs.io/en/
latest/. Accessed: 17 Aug 2017

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10.
ACM (1988)

4. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret
(Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 19

5. Binetti, G., Davoudi, A., Naso, D., Turchiano, B., Lewis, F.L.: A distributed
auction-based algorithm for the nonconvex economic dispatch problem. IEEE
Trans. Ind. Inf. 10(2), 1124–1132 (2014)

6. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

7. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (2006)

10. Farhangi, H.: The path of the smart grid. IEEE Power Energy Mag. 8(1), 18–28
(2010)

11. Huneault, M., Galiana, F.D.: A survey of the optimal power flow literature. IEEE
Trans. Power Syst. 6(2), 762–770 (1991)

https://www.energieatlas-bw.de/netze/verteilnetzbetreiber-strom
https://www.energieatlas-bw.de/netze/verteilnetzbetreiber-strom
http://fresco.readthedocs.io/en/latest/
http://fresco.readthedocs.io/en/latest/
https://doi.org/10.1007/3-540-47721-7_19
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-642-32009-5_38

18 A. Mandal et al.

12. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 56

13. Liu, E., Cheng, P.: Mitigating cyber privacy leakage for distributed dc optimal
power flow in smart grid with radial topology. IEEE Access 6, 7911–7920 (2018)

14. Danezis, G., Jawurek, M., Kerschbaum, F.: Sok: Privacy Technologies for Smart
Grids - A Survey of Options. Microsoft Res., Cambridge, UK (2012)

15. Mandal, A.: Privacy preserving consensus-based economic dispatch in smart grid
systems. In: Doss, R., Piramuthu, S., Zhou, W. (eds.) FNSS 2016. CCIS, vol. 670,
pp. 98–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48021-3 7

16. Mandal, A., Zenner, E.: Poster: privacy in distributed economic dispatch in smart
grid. In: 2nd IEEE European Symposium on Security and Privacy (EuroS&P)
(2017)

17. McAfee, R.P.: A dominant strategy double auction. J. Econ. Theory 56(2), 434–
450 (1992)

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
19. FERC Staff. Economic dispatch: Concepts, practices and issues. https://www.

ferc.gov/CalendarFiles/20051110172953-FERC%20Staff%20Presentation.pdf.
Accessed 30 July 2018

20. Yan, Y., Qian, Y., Sharif, H., Tipper, D.: A survey on smart grid communication
infrastructures: motivations, requirements and challenges. IEEE Commun. Surv.
Tutor. 15(1), 5–20 (2013)

21. Yang, S., Tan, S., Xu, J.: Consensus based approach for economic dispatch problem
in a smart grid. IEEE Trans. Power Syst. 28(4), 4416–4426 (2013)

22. Yang, Z., Cheng, P., Chen, J.: Differential-privacy preserving optimal power flow
in smart grid. IET Gener., Transm. Distrib. 11(15), 3853–3861 (2017)

23. Zhao, C., He, J., Cheng, P., Chen, J.: Privacy-preserving consensus-based energy
management in smart grid. In: 2017 IEEE Power Energy Society General Meeting,
pp. 1–5, July 2017

https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-319-48021-3_7
https://www.ferc.gov/CalendarFiles/20051110172953-FERC%20Staff%20Presentation.pdf
https://www.ferc.gov/CalendarFiles/20051110172953-FERC%20Staff%20Presentation.pdf

Tracking Information Flow via
Delayed Output

Addressing Privacy in IoT and Emailing Apps

Iulia Bastys1(B), Frank Piessens2, and Andrei Sabelfeld1

1 Chalmers University of Technology, Gothenburg, Sweden
{bastys,andrei}@chalmers.se

2 Katholieke Universiteit Leuven, Heverlee, Belgium
frank.piessens@cs.kuleuven.be

Abstract. This paper focuses on tracking information flow in the pres-
ence of delayed output. We motivate the need to address delayed output
in the domains of IoT apps and email marketing. We discuss the threat
of privacy leaks via delayed output in code published by malicious app
makers on popular IoT app platforms. We discuss the threat of privacy
leaks via delayed output in non-malicious code on popular platforms
for email-driven marketing. We present security characterizations of pro-
jected noninterference and projected weak secrecy to capture information
flows in the presence of delayed output in malicious and non-malicious
code, respectively. We develop two security type systems: for informa-
tion flow control in potentially malicious code and for taint tracking in
non-malicious code, engaging read and write security types to soundly
enforce projected noninterference and projected weak secrecy.

1 Introduction

Many services generate structured output in a markup language, which is subse-
quently processed by a different service. A common example is HTML generated
by a web server and later processed by browsers and email readers. This setting
opens up for insecure information flows, where an attack is planted in the markup
by the server but not triggered until a client starts processing the markup and,
as a consequence, making web requests that might leak information. This way,
information is exfiltrated via delayed output (web request by the client), rather
than via direct output (markup generated by the server).

We motivate the need to address delayed output through HTML markup by
discussing two concrete scenarios: IoT apps (by IFTTT) and email campaigns
(by MailChimp).

IoT Apps. IoT apps help users manage their digital lives by connecting a
range of Internet-connected components from cyberphysical “things” (e.g., smart
homes and fitness armbands) to online services (e.g., Google and Dropbox) and
social networks (e.g., Facebook and Twitter). Popular platforms include IFTTT,

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 19–37, 2018.
https://doi.org/10.1007/978-3-030-03638-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_2

20 I. Bastys et al.

Zapier, and Microsoft Flow. In the following we will focus on IFTTT as prime
example of IoT app platform, while pointing out that Zapier and Microsoft Flow
share the same concerns.

Automatically get an email every time
you park your BMWwith a map to where
you’re parked.
applet title

Car is parked
trigger

filter & transform
if (you park your car) then

include location map URL into
email body

end

Send me an email
action

Fig. 1. IFTTT applet architecture. Illus-
tration for applet in [6]

IFTTT supports over 500 Internet-
connected components and services
[22] with millions of users running
billions of apps [21]. At the core
of IFTTT are applets, reactive apps
that include triggers, actions, and fil-
ter code. Figure 1 illustrates the archi-
tecture of an applet, exemplified by
applet “Automatically get an email
every time you park your BMW with
a map to where you’re parked” [6].
It consists of trigger “Car is parked”,
action“Send me an email”, and filter
code to personalize the email.

By their interconnecting nature,
IoT apps often receive input from sen-
sitive information sources, such as user
location, fitness data, content of pri-
vate files, or private feed from social
networks. At the same time, apps have capabilities for generating HTML
markup.

Privacy Leaks. Bastys et al. [1] discuss privacy leaks on IoT platforms, which
we use for our motivation. It turns out that a malicious app maker can encode
the private information as a parameter part of a URL linking to a controlled
server, as in https://attacker.com?userLocation and use it in markup generated by
the app, for example, as a link to an invisible image in an email or post on a
social network. Once the markup is rendered by a client, a web request leaking
the private information will be triggered. Section 2 reiterates the attack in more
detail, however, note for now that this attack requires the attacker’s server to
only record request parameters.

The attack above is an instance of exfiltration via delayed output, where
the crafted URL can be seen as a “loaded gun” maliciously charged inside an
IoT app, but shot outside the IoT platform. While the attack requires a client
to process the markup in order to succeed, other URL-based attacks have no
such requirements [1]. For example, IFTTT applets like “Add a map image of
current location to Dropbox” [35] use the capability of adding a file from a
provided URL. However, upload links can also be exploited for data exfiltration.
A malicious applet maker can craft a URL as to encode user location and pass it
to a controlled server, while ensuring that the latter provides expected response
to Dropbox’s server. This attack requires no user interaction in order to succeed
because the link upload is done by Dropbox.

Tracking Information Flow via Delayed Output 21

Email Campaigns. Platforms like MailChimp and SendinBlue help manage
email marketing campaigns. We will further focus on MailChimp as example of
email campaigner, while pointing out that our findings also apply to SendinBlue.
MailChimp [23] provides a mechanism of templates for email personalization,
while creating rich HTML content. URLs in links play an important role for
tracking user engagement.

The scenario of MailChimp templates is similar to that of IoT apps that send
email notifications. Thus, the problem of leaking private data via delayed output
in URLs also applies to MailChimp. However, while IFTTT applets can be writ-
ten by endusers and are potentially malicious, MailChimp templates are written
by service providers and are non-malicious. In the former case, the interest of
the service provider is to prevent malicious apps from violating user privacy,
while in the latter it is to prevent buggy templates from accidental leaks. Both
considerations are especially important in Europe, in light of EU’s General Data
Protection Regulation (GDPR) [13] that increases the significance of using safe-
guards to ensure that personal data is adequately protected. GDPR also includes
requirements of transparency and informed consent, also applicable to the sce-
narios in the paper.

Information Flow Tracking. These scenarios motivate the need to track
information flow in the presence of delayed output. We develop a formal frame-
work to reason about secure information flow with delayed output and design
enforcement mechanisms for the malicious and non-malicious code setting,
respectively.

For the security condition, we set out to model value-sensitive sinks, i.e. sinks
whose visibility is sensitive to the values of the data transmitted. Our frame-
work is sensitive to the Internet domain values in URLs, enabling us to model
the effects of delayed output and distinguishing between web requests to the
attacker’s servers or trusted servers. We develop security characterizations of pro-
jected noninterference and projected weak secrecy to capture information flows in
the presence of delayed output in malicious and non-malicious code, respectively.

For the enforcement, we engage read and write types to track the privacy
of information by the former and the possibility of attacker-visible output by
the latter. This enables us to allow loading content (such as logo images) via
third-party URLs, but only as long as they do not encode sensitive information.

We secure potentially malicious code by fully-fledged information flow con-
trol. In contrast, non-malicious code is unlikely [28] to contain artificial informa-
tion flows like implicit flows [10], via the control-flow structure in the program.
Hence, we settle for taint tracking [33] for the non-malicious setting, which only
tracks (explicit) data flows and ignores implicit flows.

Our longterm vision is to apply information flow control mechanisms to IoT
apps and emailing software to enhance the security of both types of services by
providing automatic means to vet the security of apps before they are published,
and of emails before they are sent.

22 I. Bastys et al.

Contributions. The paper’s contributions are: (i) We explain privacy leaks
in IoT apps and emailing templates and discuss their impact (Sect. 2); (ii) We
motivate the need for a general model to track information flow in the presence
of delayed output (Sect. 3); (iii) We design the characterizations of projected
noninterference and projected weak secrecy in a setting with delayed output
(Sect. 4); and (iv) We develop two type systems with read and write security
types and consider the cases of malicious and non-malicious code to enforce the
respective security conditions for a simple language (Sect. 5). The proofs of the
theorems are reported in the full version of the paper [2].

2 Privacy Leaks

This section shows how private data can be exfiltrated via delayed output, as
leveraged by URLs in the markup generated by malicious IFTTT applets and
non-malicious (but buggy) MailChimp templates.

2.1 IFTTT

IFTTT filters are JavaScript code snippets with APIs pertaining to the services
the applet uses. Filter code is security-critical for several reasons. While the
user’s view of an IFTTT applet is limited to the services the applet uses (BMW
Labs and Email in Fig. 1) and the triggers and actions it involves, the user cannot
inspect the filter code. Moreover, while the triggers and actions are not subject
to change after the applet has been published, modifications in the filter code
can be performed at any time by the applet maker, with no user notification.

Filter code cannot perform output by itself, but it can use the APIs to con-
figure the output actions. Moreover, filters are batch programs that generate no
intermediate output. Outputs corresponding to the applet’s actions take place
in a batch after the filter code has terminated.

Fig. 2. Leak by IFTTT applet

Privacy Leak. Consider an applet
that sends an email notification to
a user once the user enters or exits
a location, similarly to the applet in
Fig. 1. Bastys et al. [1] show how
an applet designed by a malicious
applet maker can exfiltrate user loca-
tion information to third parties, invis-
ibly to its users. When creating such
an applet, the filter code has access to
APIs for reading trigger data, includ-
ing Location.enterOrExitRegionLocation.

LocationMapUrl, which provides a URL
for the location on Google Maps
and Location.enterOrExitRegionLocation.

LocationMapImageUrl, which provides a

Tracking Information Flow via Delayed Output 23

URL for a map image of the location. Filter APIs also include Email.sendMeEmail

.setBody() for customizing emails.
This setting is sufficient to demonstrate an information flow attack via

delayed output. The data is exfiltrated from a secret source (user location URL)
to a public sink (URL of a 0×0 pixel image that leads to an attacker-viewable
website). Figure 2 displays the attack code. Upon viewing the email, the users’
email client makes a request to the image URL, leaking the secret information
as part of the URL.

We have successfully tested the attack by creating a private applet and having
it exfiltrate the location of a victim user. When the user opens a notification email
(we used Gmail for demonstration) we can observe the exfiltrated location as part
of a request to RequestBin (http://requestbin.fullcontact.com), a test server for
inspecting HTTP(s) requests. We have also created Zapier and Microsoft Flow
versions of the attack and verified that they succeed.

2.2 MailChimp

MailChimp templates enable personalizing emails. For example, tags *|FNAME|*, *|
PHONE|*, and *|EMAIL|* allow using the user’s first name, phone number, and email
address in an email message. While the templates are limited in expressiveness,
they provide capabilities for selecting and manipulating data, thus opening up
for non-trivial information flows.

1 <img src="http :// via.placeholder.
com /350 x150" alt="logo">

2 Hello *|FNAME |*!
3 <img style="width:0px;height :0px;

"src="http :// requestbin.
fullcontact.com/11 fz2sl1 ?*| PHONE
|*-*| EMAIL|*">

Fig. 3. Leak by MailChimp template

MailChimp Leak. Figure 3 dis-
plays a leaky template that exfil-
trates the user’s phone number and
email address to an attacker. We
have verified the leak via email gen-
erated by this template with Gmail
and other email readers that load
images by default. Upon opening the
email, the user sees the displayed logo image (legitimate use of an external image)
and the personal greeting (legitimate use of private information). However, invis-
ibly to the user, Gmail makes a web request to RequestBin that leaks the user’s
phone number and email. We have also created a SendinBlue version of the leak
and verified it succeeds.

2.3 Impact

As foreshadowed earlier, several aspects raise concerns about possible impact for
this class of attacks. We will mainly focus on the impact of malicious IFTTT
applets, as the MailChimp setting is that of non-malicious templates, and leaks
like above are less likely to occur in their campaigns.

Firstly, IFTTT allows applets from anyone, ranging from official vendors and
IFTTT itself to any users as long as they have an account, thriving on the model
of enduser programming. Secondly, the filter code is not visible to users, only

24 I. Bastys et al.

the services used for sources and sinks. Thirdly, the problematic combination
of sensitive triggers and vulnerable (URL-enabled) actions commonly occurs in
the existing applets. A simple search reveals thousands of such applets, some
with thousands of installs. For example, the applet by user mcb “Sync all your
new iOS Contacts to a Google Spreadsheet” [24] with sensitive access to iOS
contacts has 270,000 installs. Fourthly, the leak is unnoticeable to users (unless,
they have network monitoring capabilities). Fifthly, applet makers can modify
filter code in applets, with no user notification. This opens up for building up
user base with benign applets only to stealthily switch to a malicious mode at
the attacker’s command.

As pointed out earlier, location as a sensitive source and image link in an
email as a public sink represent merely an example in a large class of attacks,
as there is a wealth of private information (e.g., fitness data, content of private
files, or private feed from social networks) that can be exfiltrated over a number
of URL-enabled sinks.

Further, Bastys et al. [1] verified that these attacks work with other sinks than
email. For example, they have successfully exfiltrated information by applets via
Dropbox and Google Drive actions that allow uploading files from given links.
As mentioned earlier, the exfiltration is more immediate and reliable as there is
no need to depend on any clients to process HTML markup.

Other IoT Platforms and Email Campaigners. We verified the HTML
markup attack for private apps on test accounts on Zapier and Microsoft Flow,
and for email templates on SendinBlue.

Ethical Considerations and Coordinated Disclosure. No users were
attacked in our experiments, apart from our test accounts on IFTTT, Zapier,
Microsoft Flow, MailChimp, and SendinBlue, or on any other service we used
for verifying the attacks. All vulnerabilities are by now subject to coordinated
disclosure with the affected vendors.

3 Tracking Information Flow via Delayed Output

The above motivates the need to track information flow via delayed output. The
difference between an insecure vs. secure IFTTT applet is made by including vs.
omitting leak in the string concatenation on line 4 in Fig. 2. We would like to
allow image URLs to depend on secrets (as it is the case via benign), but only
as long as these URLs are not controlled by third parties. At the same time,
access control would be too restrictive. For example, it would be too restrictive
to block URLs to third-party domains outright, as it is sometimes desirable to
display images like logos. We allow loading logos via third-party URLs, but only
as long as they do not encode sensitive information.

Our scenarios call for a characterization beyond classical information flow
with fixed sources and sinks. A classical condition of noninterference [8,15]
prevents information from secret sources to affect information sent on public
sinks. Noninterference typically relies on labeling sinks as either secret or public.

Tracking Information Flow via Delayed Output 25

However, this is not a natural fit for our setting, where the value sent on a sink
determines its visibility to the attacker. In our case, if the sink is labeled as
secret, we will miss out to reject the insecure snippet in Fig. 2. Further, if the
sink is labeled as public, the secure version of the snippet, when leak on line 4 is
omitted, is also rejected! The reason is that secret information (location) affects
the URL of an image in an email, which would be treated as public by labeling in
classical noninterference. A popular way to relax noninterference is by allowing
information release, or declassification [31]. Yet, declassification provides little
help for this scenario as the goal is not to release secret data but to provide a
faithful model of what the attacker may observe.

This motivates projected security, allowing to express value-sensitive sinks,
i.e. sinks whose visibility is sensitive to the values of the data transmitted. As
such, these conditions are parametrized in the attacker view, as specified by a
projection of data values, hence the name. Projected security draws on a line of
work on partial information flow [4,9,14,16,25,30].

We set out to develop a framework for projected security that is compatible
with both potentially malicious and non-malicious code settings. While nonin-
terference [8,15] is the baseline condition we draw on for the malicious setting,
weak secrecy [38] provides us with a starting point for the non-malicious setting,
where leaks via implicit flows are ignored.

To soundly enforce projected security, we devise security enforcement mech-
anisms via security types. We engage read and write types for the enforcement:
read types to track the privacy of information, and write types to track the
possibility of attacker-visible output side effects.

It might be tempting to consider as an alternative a single type in a more
expressive label lattice like DLM [26]. However, our read and write types are
not duals. While the read types are information-flow types, the write types
are invariant-based [5] integrity types, in contrast to information-flow integrity
types [20]. We will guarantee that values labeled with sensitive write types pre-
serve the invariant of not being attacker-visible. In this sense, our type system
enforces a synergistic property, preventing sensitive read data and non-sensitive
write data to be combined. We will come back to type non-duality in Sect. 5.

4 Security Model

In this section we define the security conditions of projected noninterference and
projected weak secrecy for capturing information flow in the presence of delayed
output when assuming malicious and non-malicious code, respectively. Before
introducing them, we first describe the semantic model.

4.1 Semantic Model

Figure 4 displays a simple imperative language extended with a construct for
delayed output and APIs for sources and sinks. Sources source contain APIs for
reading private information, such as location, fitness data, or social network feed.

26 I. Bastys et al.

Sinks sink contain APIs for email composition, social network posts, or docu-
ments editing. Expressions e consist of variables x, strings s and concatenation
operations on strings, sources, function calls f , and delayed output constructs
dout . Commands c include assignments, conditionals, loops, sequential composi-
tion, and sinks. A special variable o stores the value to be sent on a sink.

Fig. 4. Language syntax and semantics

A configuration 〈c,m〉 consists of a command c and a memory m mapping
variables x and sink variable o to strings s. The semantics are defined by the
judgment 〈c,m〉 ⇓d m′, which reads as: the successful execution of command c in
memory m returns a final memory m′ and a command d representing the (order-
preserving) sequential composition of all the assignment and sink statements in c.
The quotation marks '' in rules if and while denote the empty string. Command
d will be used in the definition of projected weak secrecy further on. Whenever
d is not relevant for the context, we simply omit it from the evaluation relation
and write instead 〈c,m〉 ⇓ m′.

Figure 5a displays the leaky applet in Fig. 2 adapted to our language. The
delayed output dout is represented by the construct img for creating HTML
image markup with a given URL. The sources and sinks are instantiated with
IFTTT-specific APIs: LocationMapURL and EnteredOrExited for reading user-
location information as sources, and setBody for email composition as sink.
encodeURIComponent denotes a function for encoding strings into URLs.

Tracking Information Flow via Delayed Output 27

Note. Consistently with the behavior of filters on IFTTT, commands in our
language are batch programs, generating no intermediate outputs. Accordingly,
variable o is overwritten with every sink invocation. For simplicity, we model
the batch of multiple outputs corresponding to the applet’s multiple actions as
a single output that corresponds to a tuple of actions.

IFTTT filter code is run with a short timeout, implying that the bandwidth
of a possible timing leak is low. Hence, we do not model the timing behavior in
the semantics. Similarly, we ignore leaks that stem from the fact that an applet
has been triggered. In the case of a location notification applet, we focus on
protecting the location, and not the fact that a user entered or exited an unknown
location. The semantic model can be straightforwardly extended to support the
case when the triggering is sensitive by tracking message presence labels [29].

Fig. 5. IFTTT applet examples. Differences between applets are underlined.

4.2 Preliminaries

As we mentioned already in Sects. 1 and 2, (user private) information can be
exfiltrated via delayed output, e.g. through URL crafting or upload links, by
inspecting the parameters of requests to the attacker-controlled servers that
serve these URLs. Also, recall that full attacker control is not always necessary,
as it is the case with upload links or self-exfiltration [7].

Value-Sensitive Sinks. We assume a set V of URL values v, split into the
disjoint union V = B � W of black- and whitelisted values. Given this set, we
define the attacker’s view and security conditions in terms of blacklist B, and the
enforcement mechanisms in terms of whitelist W . We continue with defining the
attacker’s view. A key notion for this is the notion of attacker-visible projection.

Projection to B. Given a list v̄ of URL values, we define URL projection to B
(|B) to obtain the list of blacklisted URLs contained in the list: v̄|B = [v | v ∈ B].

String Equivalence. We further use this projection to define string equivalence
with respect to a blacklist B of URLs. We say two strings s1 and s2 are equivalent
and we write s1 ∼B s2 if they agree on the lists of blacklisted values they contain.
More formally, s1 ∼B s2 iff extractURLs(s1)|B = extractURLs(s2)|B , where
extractURLs(·) extracts all the URLs in a string and adds them to a list, order-
preserving. We assume the extraction is done similarly to the URL extraction
performed by a browser or email client. The function extends to undefined strings

28 I. Bastys et al.

as well (⊥), for which it returns ∅. Note that projecting to B returns a list and the
equivalence relation on strings requires the lists of blacklisted URLs extracted
from them to be equal, pairwise. We override the projection operator |B and for
a string s we will often write s|B to express extractURLs(s)|B .

Security Labels. We assume a mapping Γ from variables to pairs of security
labels �r : �w, with �r, �w ∈ L, where (L,
) is a lattice of security labels. �r

represents the label for tracking the read effects, while �w tracks whether a
variable has been affected with a blacklisted URL. For simplicity, we further
consider a two-point lattice L = ({L, H},
), with L
 H and H �
 L, and associate
the attacker with security label L.

It is possible to extend L to arbitrary security lattices, e.g. induced by Inter-
net domains. The write level of the attacker’s observations would be the meet
of all levels, while the read level of user’s sensitive data would be the join of all
levels. A separate whitelist would be assumed for any other level, as well as a set
of possible sources. This scenario requires multiple triggers and actions. IFTTT
currently allows applets with multiple actions although not multiple triggers.
We have not observed a need for an extended lattice in the scenarios of typical
applets, which justifies the focus on a two-point lattice.

For a variable x, we define Γ projections to read and write labels, Γr(x)
and Γw(x) respectively, for extracting the label for the read and write effects,
respectively. Thus Γ (x) = �r : �w ⇒ Γr(x) = �r ∧ Γw(x) = �w.

Memory Equivalence. For typing context Γ and set of blacklisted URLs B,
we define memory equivalence with respect to Γ and B and we write ∼Γ,B if
two memories are equal on all low read variables in Γ and they agree on the
blacklisted values they contain for all high read variables in Γ . More formally,
m1 ∼Γ,B m2 iff ∀x. Γr(x) = L ⇒ m1(x) = m2(x) ∧ ∀x. Γr(x) = H ⇒ m1(x) ∼B

m2(x). We write ∼Γ when B is obvious from the context.

4.3 Projected Noninterference

Intuitively, a command satisfies projected noninterference if and only if for any
two runs that start in memories that agree on the low part and produce two
respective final memories, these final memories are equivalent for the attacker on
the sink (denoted by o). The definition is parameterized on a set B of blacklisted
URLs. Because it is formulated in terms of end-to-end observations on sources
and sinks, the characterization is robust in changes to the actual underlying
language.

Definition 1 (Projected noninterference). Command c satisfies projected non-
interference for a blacklist B of URLs, written PNI (c,B), iff ∀m1, m2, Γ .
m1 ∼Γ,B m2 ∧ 〈c,m1〉 ⇓ m′

1 ∧ 〈c,m2〉 ⇓ m′
2 ⇒ m′

1(o) ∼B m′
2(o).

Unsurprisingly, the applet in Fig. 5a does not satisfy projected noninterfer-
ence. First, the attacker-controlled website attacker.com is blacklisted. Second,
when triggering the filter from two different locations loc1 and loc2, the value on

Tracking Information Flow via Delayed Output 29

the sink provided to the attacker will be different as well (attacker.com?loc1 vs.
attacker.com?loc2), breaking the equivalence relation between the values sent on
sinks. In contrast, the applet in Fig. 5b does satisfy projected noninterference,
although it contains a blacklisted value on the sink. In addition to sending a
map with the location, this applet is also sending the user a logo, but it does
not attempt to leak sensitive information to third (blacklisted) parties. The logo
URL logo.com/350x150 will be the blacklisted value on the sink irrespective of the
user location.

4.4 Projected Weak Secrecy

So far, we have focused on potentially malicious code, exemplified by the IFTTT
platform, where any user can publish IFTTT applets. However, in certain cases
the code is written by the service provider itself, one example being email cam-
paigners such as MailChimp. In these cases, the code is not malicious, but poten-
tially buggy. When considering benign-but-buggy code, it is less likely that leaks
are performed via elaborate control flows [28]. This motivates tracking only the
explicit flows via taint tracking [33].

Thus, we draw on weak secrecy [38] to formalize the security condition for
capturing information flows when assuming non-malicious code, as weak secrecy
provides a way to ignore control-flow constructs. Intuitively, a program satisfies
weak secrecy if extracting a sequence of assignments from any execution produces
a program that satisfies noninterference. We carry over the idea of weak secrecy
to projected weak secrecy, also parameterized on a blacklist of URLs.

Definition 2 (Projected weak secrecy). Command c satisfies projected weak
secrecy for a blacklist B of URLs, written PWS (c,B), iff ∀m. 〈c,m〉 ⇓d m′

⇒ PNI (d,B).

As the extracted branch-free programs are the same as the original programs,
their projected security coincides, so that the applet in Fig. 5a is considered
insecure and the one in Fig. 5b is considered secure.

5 Security Enforcement

As foreshadowed earlier, information exfiltration via delayed output may take
place either in a potentially malicious setting, or inside non-malicious but buggy
code. Recall the blacklist B for modeling the attacker’s view. For specifying
security policies, it is more suitable to reason in terms of whitelist W , the set
complement of B. To achieve projected security, we opt for flow-sensitive static
enforcement mechanisms for information flow, parameterized on W . We assume
W to be generated by IoT app and email template platforms, based on the
services used or on recommendations from the (app or email template) devel-
opers. We envision platforms where the apps and email templates, respectively,
can be statically analyzed after being created and before being published on
the app store, or before being sent in a campaign, respectively. Some sanity

30 I. Bastys et al.

checks are already performed by IFTTT before an applet can be saved and by
MailChimp before a campaign is sent. An additional check based on enforcement
that extends ours has potential to boost the security of both platforms.

Language. Throughout our examples, we use the img constructor as an instan-
tiation of delayed output. img(·) forms HTML image markups with a given URL.
Additionally, we assume that calling sink(·) performs safe output encoding such
that the only way to include image tags in the email body, for example, is through
the use of the img(·) constructor. For the safe encoding not to be bypassed in
practice, we assume a mechanism similar to CSRF tokens, where img(·) includes
a random nonce (from a set of nonces we parameterize over) into the HTML
tag, so that the output encoding mechanism sanitizes away all image markups
that do not have the desired nonce. As seen in Sect. 2, allowing construction
of structured output using string concatenation is dangerous. It is problematic
in general because it may cause injection vulnerabilities. For this reason and
because it enables natural information flow tracking, we make use of the explicit
API img(·) in our enforcement.

5.1 Information Flow Control

For malicious code, we perform a fully-fledged information flow static enforce-
ment via a security type system (Fig. 6), where we track both the control and
data dependencies.

Expression Typing. An expression e types to two security levels �r and �w,
with �r denoting reading access, and with �w denoting the writing effects of the
expression. A low (L) writing effect means that the expression may have been
affected by a blacklisted URL. Hence, the adversary may infer some observations
if a value of this type is sent on a sink. A high (H) writing effect means that the
adversary may not make any observations.

We assign constant strings a low read and high write effect. This is justified
by our assumption that sink(·) will perform safe output encoding, and hence
constant strings and their concatenations cannot lead to the inclusion of image
tags in the email body. We assume the information from sources to be sanitized,
i.e. it cannot contain any blacklisted URLs, and we type calls to source with a
high read and a high write effect. Creating an image from a whitelisted source is
assigned a high write effect. Creating an image from any other source is allowed
only if the parameter expression is typed with a low read type, in which case
the image is assigned a low write effect.

Command Typing. The type system uses a security context pc for tracking
the control flow dependencies of the program counter. The typing judgment pc �
Γ{c}Γ ′ means that command c is well-typed under typing environment Γ and
program counter pc and, assuming that Γ contains the security levels of variables
and sink o before the execution of c, then Γ ′ contains the security levels of the
variables and sink o after the execution of c. In the initial typing environment,
sources are labeled H : H, and o and all other variables are labeled L : H.

Tracking Information Flow via Delayed Output 31

Fig. 6. Type system for information flow control

The most interesting rules for command typing are the ones for assignment
and sink declaration. We describe them below.

Rule ifc-assign. We do not allow redefining low-writing variables in high con-
texts (pc
 Γw(x)), nor can a variable be assigned a low-writing value in a high
context (pc
 �w).

The snippet in Ex. 1 initially creates a variable with an image having a
blacklisted URL b1 �∈ W , and later, based on a high-reading guard (denoted by
H), it may update this variable with an image from another blacklisted URL b2 �∈
W . Depending on the value sent on the sink, the attacker can infer additional
information about the secret guard. The code is rightfully rejected by the type
system.

logo = img(b1); if (H) { logo = img(b2); } sink (source + logo); (1)

Recall the non-duality of read and write types we mentioned in Sect. 3 and
notice from the example above that the type system is flow-sensitive with respect

32 I. Bastys et al.

only to the read effects, but not to the write effects. Non-duality can also be seen
in the treatment of the pc, which has a pure read label.

The snippet in Ex. 2 first creates an image from a source, thus variable msg is
assigned type H : H. Then, it branches on a high-reading guard and depending on
the guard’s value, it may update the value inside msg. img(w) retrieves an image
from a whitelisted source w ∈ W , hence it is assigned low-reading and high-
writing security labels. After executing the conditional, variable msg is assigned
high-reading and writing labels, as the program context in which it executed was
high. Last, the code is secure and accepted by the type system, as the attacker
cannot infer any observations since all the URLs on the sink are whitelisted.

msg = img(source1); if (H) { msg = img(w); } sink (source2 + msg); (2)

Rule ifc-sink. Similarly to the assignment rule, sink declarations are allowed
in high contexts only if the current value of sink variable o is not low-writing
(pc
 Γw(o)). Moreover, sink variables cannot become low-writing in a high
context (pc
 �w).

While the code in Fig. 5b is secure, extending it with another line, a condi-
tional which, depending on a high-reading guard, may update the value on the
sink, the code becomes insecure.

sink (source1 + logo); if (H) { sink (source2); } (3)

The attacker’s observation of whether a certain logo has been sent or not
now depends on the value of the high-reading guard H. This snippet is rightfully
rejected by the type system.

If, prior to the update in the high context, the sink variable contained a
high-writing value instead, as in Ex. 4, the code would be secure, as the attacker
would not be able to make any observations. The snippet is rightfully accepted
by the type system.

sink (source1); if (H) { sink (source2); } (4)

For type checking the examples in Fig. 5, we instantiate function f with
encodeURIComponent for encoding strings into URLs, and use as sources APIs
for reading user-location information, LocationMapUrl and EnteredOrExited,
and as sink the API setBody for email composition. As expected, the filter in
Fig. 5b is accepted by the type system, while the one in Fig. 5a is rejected due
to the unsound string concatenation in line 3. Since the string contains a high-
reading source loc, it will be typed to a high read, but creating an image from
a blacklisted URL requires the underlined expression to be typed to a low read.

Soundness. We show that our type system gives no false negatives by proving
that it enforces projected noninterference.

Theorem 1 (Soundness). If pc � Γ{c[W]}Γ ′ then PNI (c,W).

Tracking Information Flow via Delayed Output 33

5.2 Discussion

It is worth discussing our design choice of assigning an expression two security
labels �r and �w for the read access and write effects, respectively, and why the
classical label tracking of only read access does not suffice.

Assume a type system derived from the one for information flow control mod-
ulo �w, i.e. a classical type system with the general rule for typing an expression
Γ � e : �, with � corresponding to our security label �r, and where command
typing ignores all preconditions that include �w.

While the snippet in Fig. 5a would still be rightfully rejected, as line 3 would
again be deemed unsound, and the snippet in Fig. 5b would still be rightfully
accepted, the insecure code in Ex. 1 would be instead accepted by the new type
system: after the execution of the conditional, logo is assigned type H. Similarly,
the leaky code in Ex. 3 would also be accepted, allowing the attacker to infer
additional information about the high guard: the value on the initial sink is
typed H, hence the update on the sink inside the conditional would be allowed
by the type system.

Adding the pc in expression typing and rejecting applets with sinks in high
contexts may seem like a valid solution to this problem. However, the requirement
would additionally reject the secure snippet in Ex. 4 and would still accept the
insecure snippet in Ex. 1. Requiring image markup of non-whitelisted URLs to
be formed only in low contexts (L, Γ � img(e) : L) would solve the issue with the
former example, but not with the latter.

5.3 Taint Tracking

Recall that exploits of the control flow are less probable in non-malicious
code [28]. Thus, we focus on tracking only the explicit flows as to obtain a
lightweight mechanism with low false positives.

Type System. We derive the type system for taint tracking from the earlier
one modulo pc and security label for write effects �w. Thus, an expression e has
type judgment Γ � e : �, where � is a read label (corresponding to label �r from
the earlier type system). The typing judgment � Γ{c}Γ ′ means that c is well-
typed in Γ and, assuming Γ maps variables and sink o to security labels before
the execution of c, Γ ′ will contain the security labels of the variables and sink o
after the execution of c.

Similarly to the information flow type system, the taint tracking mechanism
rightfully rejects the leaky applet in Fig. 5a and rightfully accepts the benign
one in Fig. 5b.

The secure snippet in Ex. 5 is rejected by the type system for information
flow control, being thus a false positive for that system. However, it is accepted
by the type system for taint tracking, illustrating its permissiveness.

sink (source1 + logo); if (H) { sink (source2 + logo); } (5)

34 I. Bastys et al.

Similarly, a secure snippet changing the value on the sink after a prior change
in a high context is rejected by the information flow type system, but rightfully
accepted by taint tracking, as in Ex. 6.

sink (source1 + logo1); if (H) { sink (source2); } sink (source3 + logo2);

(6)

Soundness. We achieve soundness by proving the type system for taint tracking
enforces the security policy of projected weak secrecy.

Theorem 2 (Soundness). If � Γ{c[W]}Γ ′ then PWS (c,W).

6 Related Work

Projected Security. The literature has seen generalizations of noninterference
to selective views on inputs/outputs, ranging from Cohen’s work on selective
dependency [9] to PER-based model of information flow [30] and to Giacobazzi
and Mastroeni’s abstract noninterference [14]. Bielova et al. [4] use partial views
for inputs in a reactive setting. Greiner and Grahl [16] express indistinguishabil-
ity by attacker for component-based systems via equivalence relations. Murray
et al. [25] define value-sensitive noninterference for compositional reasoning in
concurrent programs. Value-sensitive noninterference emphasizes value-sensitive
sources, as in the case of treating the security level of an input buffer or file
depending on its runtime security label, enabling declassification policies to be
value-dependent.

Projected noninterference leverages the above line of work on partial indis-
tinguishability to express value-sensitive sinks in a web setting. Further, drawing
on weak secrecy [32,38], projected weak secrecy carries the idea of observational
security over to reasoning about taint tracking.

Sen et al. [34] describe a system for privacy policy compliance checking in
Bing. The system’s GROK component can be leveraged to control how sensitive
data is used in URLs. GROK is focused on languages with support for MapRe-
duce, with no global state and limited control flows. Investigating connections
of our framework and GROK is an interesting avenue for future work.

IFTTT. Securing IFTTT applets encompasses several facets, of which we focus
on one, the information flows emitted by applets. Previous work of Surbatovich
et al. [37] covers another facet, the access to sources (triggers) and sinks. In their
study of 19,323 IFTTT recipes (predecessor of applets before November 2016),
they define a four-point security lattice (with the elements private, restricted
physical, restricted online, and public) and provide a categorization of poten-
tial secrecy and integrity violations with respect to this lattice. However, flows
from exfiltrating information via URLs are not considered. Fernandes et al. [12]
look into another facet of IFTTT security, the OAuth-based authorization model
used by IFTTT. In recent work, they argue that this model gives away overprivi-
leged tokens, and suggest instead fine-grained OAuth tokens that limit privileges

Tracking Information Flow via Delayed Output 35

and thus prevent unauthorized actions. While limiting privileges is important for
IFTTT’s access control model, it does not prevent information flow attacks. This
can be seen in our example scenario where access to location and email capabili-
ties is needed for legitimate functionality of the applet. While not directly focused
on IFTTT, FlowFence [11] describes another approach for tracking information
flow in IoT app frameworks.

Bastys et al. [1] report three classes of URL-based attacks, based on URL
markup, URL upload, and URL shortening in IoT apps, present an empiri-
cal study to classify sensitive sources and sinks in IFTTT, and propose both
access-control and dynamic information-flow countermeasures. The URL markup
attacks motivate the need to track information flow in the presence of delayed
output in malicious apps. While Bastys et al. [1] propose dynamic enforcement
based on the JSFlow [19] tool, this work focuses on static information flow anal-
ysis. Static analysis is particularly appealing when providing automatic means
to vet the security of third-party apps before they are published on app stores.

Email Privacy. Efail by Poddebniak et al. [27] is related to our attacks. They
show how to break S/MIME and OpenPGP email encryption by maliciously
crafting HTML markup in an email to trick email clients into decrypting and
exfiltrating the content of previously collected encrypted emails. While in our
setting the exfiltration of sensitive data by malicious/buggy code is only blocked
by clients that refuse to render markup (and not blocked at all in the case of
upload attacks), efail critically relies on specific vulnerabilities in email clients
to be able to trigger malicious decryption.

7 Conclusion

Motivated by privacy leaks in IoT apps and email marketing platforms, we have
developed a framework to express and enforce security in programs with delayed
output. We have defined the security characterizations of projected noninter-
ference and projected weak secrecy to express security in malicious and non-
malicious settings and developed type-based mechanisms to enforce these char-
acterizations for a simple core language. Our framework provides ground for
leveraging JavaScript-based information flow [3,17,18] and taint [36] trackers
for practical enforcement of security in IoT apps and email campaigners.

Acknowledgements. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation. It was also partly funded by the Swedish Foundation for Strate-
gic Research (SSF) and the Swedish Research Council (VR).

36 I. Bastys et al.

References

1. Bastys, I., Balliu, M., Sabelfeld, A.: If this then what? Controlling flows in IoT
apps. In: ACM CCS (2018)

2. Bastys, I., Piessens, F., Sabelfeld, A.: Tracking Information Flow via Delayed Out-
put: Addressing Privacy in IoT and Emailing Apps. Full version at http://www.
cse.chalmers.se/research/group/security/nordsec18

3. Bichhawat, A., Rajani, V., Garg, D., Hammer, C.: Information flow control in
WebKit’s JavaScript bytecode. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS,
vol. 8414, pp. 159–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54792-8 9

4. Bielova, N., Devriese, D., Massacci, F., Piessens, F.: Reactive non-interference for
the browser: extended version. Technical report, KULeuven, 2011. Report CW 602
(2011)

5. Birgisson, A., Russo, A., Sabelfeld, A.: Unifying facets of information integrity. In:
Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol. 6503, pp. 48–65. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17714-9 5

6. BMW Labs. Automatically get an email every time you park your BMW
with a map to where you’re parked (2018). https://ifttt.com/applets/346212p-
automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where
-you-re-parked

7. Chen, E.Y., Gorbaty, S., Singhal, A., Jackson, C.: Self-Exfiltration: the dangers of
browser-enforced information flow control. In: W2SP (2012)

8. Cohen, E.S.: Information transmission in computational systems. In: SOSP (1977)
9. Cohen, E.S.: Information transmission in sequential programs. In: F. Sec. Comp.

Academic Press (1978)
10. Denning, D.E., Denning, P.J.: Certification of programs for secure information

flow. Commun. ACM 20, 504–513 (1977)
11. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:

FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX Security (2016)

12. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Decentralized action integrity
for trigger-action IoT platforms. In: NDSS (2018)

13. General Data Protection Regulation, EU Regulation 2016/679 (2018)
14. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-

interference by abstract interpretation. In: POPL (2004)
15. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE S&P

(1982)
16. Greiner, S., Grahl, D.: Non-interference with what-declassification in component-

based systems. In: CSF (2016)
17. Groef, W.D., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web browser

with flexible and precise information flow control. In: ACM CCS (2012)
18. Hedin, D., Bello, L., Sabelfeld, A.: Information-flow security for JavaScript and its

APIs. J. Comp. Sec. 24, 181–234 (2016)
19. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: Jsflow: tracking information flow

in JavaScript and its APIs. In: SAC, pp. 1663–1671. ACM (2014)
20. Hedin, D., Sabelfeld, A.: A perspective on information-flow control. In: Software

Safety and Security. IOS Press (2012)
21. IFTTT. How people use IFTTT today (2016). https://ifttt.com/blog/2016/11/

connected-life-of-an-ifttt-user

http://www.cse.chalmers.se/research/group/security/nordsec18
http://www.cse.chalmers.se/research/group/security/nordsec18
https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-642-54792-8_9
https://doi.org/10.1007/978-3-642-17714-9_5
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/applets/346212p-automatically-get-an-email-every-time-you-park-your-bmw-with-a-map-to-where-you-re-parked
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user
https://ifttt.com/blog/2016/11/connected-life-of-an-ifttt-user

Tracking Information Flow via Delayed Output 37

22. IFTTT. 550 apps and devices now work with IFTTT (2017). https://ifttt.com/
blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic

23. MailChimp (2018). https://mailchimp.com
24. mcb. Sync all your new iOS Contacts to a Google Spreadsheet (2018). https://ifttt.

com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
25. Murray, T.C., Sison, R., Pierzchalski, E., Rizkallah, C.: Compositional verification

and refinement of concurrent value-dependent noninterference. In: CSF (2016)
26. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:

SOSP (1997)
27. Poddebniak, D., et al.: Efail: breaking S/MIME and OpenPGP email encryption

using Exfiltration channels. In: USENIX Security (2018)
28. Russo, A., Sabelfeld, A., Li, K.: Implicit flows in malicious and nonmalicious code.

In: Logics and Languages for Reliability and Security. IOS Press (2010)
29. Sabelfeld, A., Mantel, H.: Securing communication in a concurrent language. In:

SAS (2002)
30. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential

programs. High. Order Symb. Comput. 14, 59–91 (2001)
31. Sabelfeld, A., Sands, D.: Declassification: Dimensions and principles. JCS 17, 517–

548 (2009)
32. Schoepe, D., Balliu, M., Pierce, B.C., Sabelfeld, A.: Explicit secrecy: a policy for

taint tracking. In: EuroS&P (2016)
33. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about

dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE S&P (2010)

34. Sen, S., Guha, S., Datta, A., Rajamani, S.K., Tsai, J.Y., Wing, J.M.: Bootstrapping
privacy compliance in big data systems. In: IEEE S&P (2014)

35. silvamerica. Add a map image of current location to Dropbox (2018). https://ifttt.
com/applets/255978p-add-a-map-image-of-current-location-to-dropbox

36. Staicu, C.-A., Pradel, M., Livshits, B.: Understanding and automatically prevent-
ing injection attacks on Node.js. In: NDSS (2018)

37. Surbatovich, M., Aljuraidan, J., Bauer, L., Das, A., Jia, L.: Some recipes can do
more than spoil your appetite: analyzing the security and privacy risks of IFTTT
recipes. In: WWW (2017)

38. Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, pp. 303–311. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-48294-6 20

https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://ifttt.com/blog/2017/09/550-apps-and-devices-now-on-ifttt-infographic
https://mailchimp.com
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/102384p-sync-all-your-new-ios-contacts-to-a-google-spreadsheet
https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox
https://ifttt.com/applets/255978p-add-a-map-image-of-current-location-to-dropbox
https://doi.org/10.1007/3-540-48294-6_20
https://doi.org/10.1007/3-540-48294-6_20

MixMesh Zones – Changing Pseudonyms
Using Device-to-Device Communication

in Mix Zones

Mirja Nitschke(B) , Philipp Holler , Lukas Hartmann, and Doğan Kesdoğan

IT Security Management, University of Regensburg, Regensburg, Germany
{mirja.nitschke,philipp.holler,lukas.hartmann,kesdogan}@ur.de

Abstract. Mobile device tracking has become ever so pervasive in our
world of location-based services and prying eyes. While users can some-
what restrict the flow of information towards the services they con-
sciously use, this is not as easily possible for the mobile network they
are connected to. Here, they can be tracked with relative ease by who-
ever controls the access points they connect to, or even by anyone that
is able to monitor the air interface. Trends towards smaller cells and
dynamic access point ownership within the scope of 5G only exacerbate
this issue. In this paper, we present a new mix zone approach, called
MixMesh, based on device-to-device communication, intended to hinder
mobile network tracking through enabling secure and privacy-friendly
pseudonym changes, aligned with the requirements resulting from the
aforementioned trends. Our evaluation shows that our MixMesh app-
roach is able to deliver better anonymity at an unchanged level of ser-
vice quality compared to existing mix zone techniques, all the while being
configurable to a desired level of anonymity in order to adapt to different
scenarios.

Keywords: Anonymisation · Pseudonyms · Mix zone
Mesh network · Device-to-device · Privacy

1 Introduction

The possibility to link single user actions to an extended user profile is a privacy
threat in modern communication systems. Especially with mobile communica-
tion, when data is transferred via a shared medium, one has to be careful that
user actions cannot be easily linked by an adversary monitoring this air inter-
face. The possibility of linking different usages of the same pseudonym to a global
user profile can reveal for example movement patterns of this user. With this
information, even the identification of a specific user might be possible.

Temporary network pseudonyms (TNPs) have been introduced for this reason
in modern cellular networks. These pseudonyms shall be changed frequently

This research was partly funded by the German Federal Ministry of Education and
Research (BMBF) with grant number: 16KIS0367K.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 38–53, 2018.
https://doi.org/10.1007/978-3-030-03638-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_3&domain=pdf
http://orcid.org/0000-0002-2527-6340
http://orcid.org/0000-0002-5239-0958
https://doi.org/10.1007/978-3-030-03638-6_3

MixMesh Zones 39

making it harder for an adversary to link user actions. In reality, the same
temporary pseudonym often is used for multiple user actions. Users who wish
to reveal as little data as possible or stay private in certain situations, need the
possibility to additionally decide when a new TNP shall be used. However, it
is not foreseen that a user can trigger a pseudonym change in current cellular
networks, since the pseudonym management is under complete control of the
mobile network operator (MNO).

In multiple situations, it is moreover not sufficient to independently change
one’s own pseudonym. An adversary monitoring the air interface could easily
link old and new pseudonym by simply identifying the only pseudonym that
changed with all others staying equal. For this reason, the idea of mix zones has
been invented [2] where multiple users change pseudonyms simultaneously in an
unlinkable fashion. A drawback of the concept is the fact that often a period
of time, a so called silent period, is needed where the users are not connected
to the mobile network. After this period, the users can recommence network
communication, using the new, changed pseudonyms, making it difficult for an
adversary to link them.

Our two central contributions in this paper are as follows: A new mix zone
approach, that uses device-to-device (D2D) communication in order to find other
network participants, willing to change their pseudonym at the same time. And
the concept of D2D communication as a method of bridging the communication
gap created by mix zone silent periods, by employing other users outside a silent
period as communication relays.

The remainder of this paper is organized as follows. After a review of
related work in Sect. 2, we discuss the system model in Sect. 3. We present our
approaches for creating the MixMesh zones in Sect. 4. In Sect. 5 we evaluate the
proposed approach and discuss the results in Sect. 6. Section 7 concludes the
paper and names possible extensions of our approach.

2 Related Work

To the best of our knowledge, this is the first paper realizing mix zones with the
help of device-to-device communication in mobile cellular networks.

Several ideas for simultaneous pseudonym changes of mobile users have been
proposed in literature. One of the first was the concept of a mix zone introduced
by Beresford and Stajano [2]. They define a mix zone as an area between two or
more application zones, in which a user’s movement can not be tracked. During
the stay in the mix zone, the users identity is mixed with the identities of all other
users who are in the mix zone at the same time. The consequence is that the old
and the new pseudonyms can not be linked. Beresford and Stajano define the
mix zone locally. Huang et al. [4] alter the concept of mix zones inasmuch as they
define the mix zone temporally through a silent cascade. Independently of their
location, the users switch between a silent period and their “normal” phase.
During the silent period the users stop communicating with the network, so
that they can not be tracked anymore. In addition they change their pseudonym

40 M. Nitschke et al.

during the silent period. During the “normal” phase they communicate with the
network and can be tracked. Beside locally and temporally defined mix zones
there also exist user-centric mix zone concepts. An example for a user-centric mix
zone concept is Swing & Swap developed by Li et al. [5]. The concept of Swing
is that the user who wants to change his pseudonym sends an update message
to all users in his surrounding when he changes his velocity. With this update
message he notifies all his neighbors that he will change his pseudonym. After the
message is sent, the user goes into a silent period for a random period of time and
afterwards starts to communicate with his new pseudonym again. The users in
the surrounding area can decide if they want to change their pseudonym too. The
Swap concept expands the Swing concept by introducing a certain probability
of the user not changing his pseudonym and instead exchanging his pseudonym
with another user in his surrounding. With this mechanism the authors want to
expand the anonymity set size to all users in the surrounding.

The biggest disadvantage common to all presented mix zones is that the user
needs to enter a silent period, during which he cannot communicate using either
old or new pseudonym. To overcome this drawback several ideas were developed.
For example Freudiger et al. [3] developed a cryptographic mix zone (CMIX)
where the users can communicate encrypted with a road-site unit (RSU) during
the silent period. The disadvantage of this concept is that all users within a cer-
tain range of the mix zone can receive the symmetric key and a local attacker can
therefore eavesdrop the messages in the mix zone and hence link the pseudonyms.
Sampigethaya et al. [8] solve the problem by a concept called CARAVAN. It
works for vehicular ad hoc networks (VANETs). The vehicles form a group and
all messages of the cars are forwarded to the group leader. This approach leads to
additional overhead for the group leader because he has to forward all messages
of the group. In addition it is not certain that the whole group stays together
during the silent period.

The second problem with mix zones is that in most cases the participants do
not know how many other users are with them in the mix zone. To overcome
this problem Song et al. [9] are using beacons to count the other participants.
Most developed concepts of mix zones are used for VANETs. However we want
to create a mix zone concept that is usable in the mobile cellular network.

D2D communication has been integrated in modern cellular networks with
3GPP Release 12 (part of LTE-Advanced) as proximity services [1]. An overview
of the possibilities of these services can be found in the work of Lin et al. [6].
In LTE-Advanced, the proximity services are mainly intended for emergency
scenarios when part of the network infrastructure is potentially not available
anymore. The description in the 3GPP release include a.o. the option to use
other mobile phones as relay points and networked assistant device discovery in
proximity range.

With the upcoming mobile network standard 5G, D2D communication could
be further used for the communication of devices in scenarios where fast data-
sharing between devices is needed. This would take load off the air interface
allowing it to use more bandwidth for other use cases. Tehrani et al. describe

MixMesh Zones 41

possible use cases and scenarios in future 5G networks [10]. Methods to establish
this communication in 5G networks with regards to security and privacy has been
proposed by Zhang and Lin [11].

3 System Model

In our scenario, users possess mobile devices like smart phones which are con-
nected to a cellular network. For the ease of presentation, all users are connected
to the same mobile network operator (MNO).

Temporary network pseudonyms (TNPs) are used to identify the user on the
air interface. Examples for TNPs in recent cellular networks are the Temporary
Mobile Subscriber Identity (TMSI) in GSM-networks or the Globally Unique
Temporary Identifier (GUTI) introduced with LTE. These pseudonyms are used
for the communication with the MNO, for example for addressing voice-calls and
data-packages. The pseudonyms are normally changed after several interactions
with the network or when the user leaves a certain geographical area which is
served by a switching center1. The MNO knows at any time which temporary
pseudonym is used by which user. Message contents within the network are
encrypted with the standard encryption used within the cellular network. In
current mobile standards, this is a symmetric encryption model based on a pre-
shared key between MNO and network subscriber. We furthermore introduce
in our protocol asymmetric cryptography between users. Here, PK denotes the
public key and SK denotes the (private) secret key of a user. The asymmetric
cryptography will be used to establish an encrypted key-exchange of a symmetric
key K which encrypts the actual device-to-device-communication between users.

Users can also communicate directly with each other using device-to-device
communication. Possible technologies for this include the use of non-cellular
technologies like Bluetooth or Wi-Fi Direct, but also the usage of a so called
sidelink in the frequency band of the cellular network as introduced with LTE-
Advanced. We do not limit our approach to a specific device-to-device technology.
We only assume that device-to-device identifiers (D2DID), like for example
MAC addresses, are used for finding and identifying communication partners.
The D2DIDs may be changed after each execution of our approach and are
unlinkable to a TNP for outsiders.

Our threat model is based on a local, eavesdropping adversary, trying to build
communication and movement profiles of the network’s users. Barring any secure
pseudonym changes, the attacker is able to build dangerous long-term profiles
since the TNPs are transmitted via the air interface unencrypted. Alternatively
to air interface eavesdropping, the adversary may also control the mobile network
access points users connect to, a scenario that is realistic especially within the 5G
context, where access node ownership is less clearly defined compared to previous
mobile network standards. We view the MNO as trustworthy and he assists the
users in changing their pseudonyms on request. This is an assumption based in
the reality of modern mobile network systems, where the actual network operator
1 To be more precise: The serving area of a Mobility Management Entity (MME).

42 M. Nitschke et al.

(not necessarily the access point operator) always knows his users’ locations and
actions for network management, billing and law enforcement reasons.

4 Mix Zone Concepts

In the following we will present the three mix zone concepts we will look at –
the static, cell-based and MixMesh mix zone. While the MixMesh approach is
the central contribution of our work, we will present the other two approaches in
order to compare our new technique against them. Additionally, all three of these
concepts are able to benefit from our silent period relay concept, and we will
highlight the timing with which the relay search, establishment and maintenance
applies to the different mix zone types. At the end of this section we will also
further explain the relay mechanism in detail.

4.1 Static Mix Zone

The simplest form of a mix zone is the static mix zone, see Fig. 1. The static mix
zone exists all the time at the same place. The user can check up the location
and dimension of it through a trusted third party or a transmitting station in
the middle of it transmits a signal and when a user receives the signal, he knows
that he is in the mix zone. All users who move into the coverage area of the mix
zone change into the silent period and look for a relay partner. When someone
moves out of the coverage area of the mix zone, he cancels his relay and starts
to communicate with the network directly with his new pseudonym.

E
E

E

Mix-Zone Participant without Relay

Mix-Zone Participant with Relay
Relay Exit-NodeE Uninvolved User

Fig. 1. Static mix zone

MixMesh Zones 43

This concept is discussed extensive in the literature i.e. [2,7]. It has certain
disadvantages and enhancements in recent research, but we can use the basic
approach to illustrate and benchmark our new concepts.

4.2 Cell-Based Mix Zone with Time-Slots

The cell-based mix zone with time-slots is made up of three phases. In the first
phase, the participant search phase, the access point around which the mix zone
is created sends a signal out with the information about the time frame for the
next silent period. All users in the surrounding area of the access point who
receive this signal can then decide whether they will participate or not.

If they do not want to participate they can continue to communicate with
the access point normally. If they want to participate they start to look for a
relay node. When the communicated silent period starts, they use the relay node
for communication with the network. Due to all participants receiving the same
silent period information, they all go into silent period at the same time. If one
of the users leaves the range of the access node after receiving the information,
he still will participate in the upcoming silent period.

After the silent period ends at the access-point-defined point in time, all
participants start to communicate with the network using their new TNP. Sub-
sequently, the third phase, named the pause phase, starts. During this time the
access node is a normal access node. After a certain time the access node can
start a new mix zone cycle.

4.3 User-Centric MixMesh Zone

The third and central concept we want to present is a user-centric mix zone,
depicted in Fig. 2. This mix zone is initiated by a user who wants to proactively
change his pseudonym. The user who wants to initiate a mix zone, we will
call her Alice, sends a request message to a trusted third party, the mix zone
manager. The mix zone manager accepts or rejects the request. If he accepts
the request, he will send a message to Alice with the mix zone identity (MZID).
After Alice receives this accept message, she can start looking for mix zone
participants in her immediate surroundings using D2D communication. Alice
finds more participants for the mix zone by sending a broadcast request massage
with the MZID via device to device (D2D) communication to all the users in her
surroundings. If a user wants to participate, he sends a request message with the
MZID to the mix zone manager. The mix zone manager accepts or declines the
request based on certain parameters concerning the desired participant count for
the mix zone and sends the answer back to the requesting user. Generally, after
a user receives an acceptance message, either for initiation or participation in a
mix zone, he can start looking for a relay and for more participants. The mix
zone manager checks on a regular basis if enough participants are found for the
mix zone. If enough mix participants are found, the mix zone manager sends a
message to all participants with the note that no new participants are needed
and that the participants should stop searching for new participants. In addition

44 M. Nitschke et al.

the manager tells the participants the time frame for the silent period. When the
start time of the silent period comes, the participants stop communicating with
the network directly and instead use their relays for the network communication.
At the end of the silent period they all start to communicate with the network
directly with their new TNP again.

E

E

E

E

Mix-Zone Participant without Relay

Mix-Zone Participant with Relay

Relay Exit-NodeE
Uninvolved User

Seed-Device

Fig. 2. User-centric MixMesh zone

4.4 Search for Relay Nodes

One of the drawbacks of the practical implementation of mix zones is the need
for a period of time in which the user does not continue using the pseudonym
he intends to change – a silent period. However, this solution is unpractical
because it means that the user cannot communicate with the network during
this time period at all. In our solution, this disadvantage is mitigated by using
relay nodes. Users who need to go into the silent period can use device-to-
device-communication to forward their messages to other users and these other
users can forward the message to the network. Hereby it is also possible that
the messages are forwarded more than one time, i.e. there is more than one
hop between the user and the network. The only important thing is that the last
user, the exit-node, is not a participant of the mix zone. All of the other hops can
also participate in the mix zone. In this way, the users in the mix zone can stay
silent in the sense that they are not using the air interface of the cellular-network
anymore, but can still communicate with the world outside their mix zone.

The upper half of Fig. 3 depicts how the user Alice finds a new relay partner.
In the first step Alice broadcasts the message requestRelay via device-to-device
communication to other nearby users. In this message, Alice also attaches her
public key PKA. Nearby users able to relay Alice’s data can respond with the call

MixMesh Zones 45

Fig. 3. Find relay node.

participateRelay which is encrypted with Alice’s public key. Furthermore, this
message contains a symmetric key which will be used for encrypting the relayed
data. Alice randomly chooses one of these users; say Carol in our example.
All further device-to-device communication between Alice and Carol will be
encrypted with the symmetric key KA−C . To acknowledge the relay connection
with Carol, Alice sends the encrypted message participateRelayAck to Carol.
Carol itself answers with the encrypted message particiapteRelayAckAck. This
three-way handshake is necessary, since it could happen that Carol doesn’t have
enough resources anymore for relaying or that Carol has moved outside of Alice’s
device-to-device communication area.

Additionally, Alice has to inform the mobile network that from this point on
all communication shall be relayed over Carol. Therefore, Alice sends the request
relay to Carol. This request contains the encrypted message requestRelay for
the mobile network. Carol transfers this encrypted message together with Alice’s
device identifier D2DIDA to the MNO. The network can identify whose message
was relayed by means of the transferred identifier and can therefore decrypt the
message with the correct keys. The relay party does not need to have Alice’s
TNP since the identifier used for device-to-device communication is sufficient
for identifying Alice both on relay and network side. The acknowledgment of
Alice’s request works alike. The network is sending the command relayAck
together with D2DIDA and the encrypted message requestRelayAck to Carol
who is Alice’s associated relay. Carol relays the encrypted message to Alice
whose device-to-device address D2DIDA was in the call. This communication
is depicted in the lower half of Fig. 3.

46 M. Nitschke et al.

The transfer of actual messages between Alice and the network (like phone
calls, data packages, etc.) works similarly. Alice sends encrypted data together
with the message relay to her relay partner Carol who adds Alice’s D2DID and
transfers the data to the network over the air interface. The receipt is confirmed
by the network with an acknowledgment message which is relayed to Alice is
well. When the network wants to send messages to Alice, it is transferring the
request relay, Alice’s D2DID, and the encrypted message to the user which is
stored as associated relay node. This node sends the data to Alice who responds
to the transfer with a relayAck message. Finally the acknowledgment message
is transferred from the relay node to the MNO.

For relay relationships with more than a single hop in-between, nothing actu-
ally changes, the above scheme is applied with onion-like layers for each hop.

A common problem when using relays for communication is the possibil-
ity of replay attacks. The relay node could resend received messages without
the knowledge of the original sender. Therefore, the relayed messages must be
hardened against these attacks. A common approach is the usage of sequence
numbers, timestamps or nonces within the replayed messages. However, in our
scenario we assume that lower protocol layers already taking care of this problem
and include methods to prevent replay attacks.

Another problem we need to discuss is what happens if the relay connec-
tion between Alice and Carol is lost or if Carol does not forward the messages
intentionally. In both cases Alice will notice that she does not receive the Ack-
messages of the network anymore and therefore she can repeat the search for a
relay. For performance reasons she may even keep a number of possible relays
on standby to have a fast failover.

5 Evaluation

In order to compare our approach to existing mix zones and assess different
parameter combinations for it, we used a simulatory environment based on the
SimPy discrete event simulation framework2 to model a use case based on a
shopping mall and apply the different techniques to it. In the following sections,
we will describe the setup and parametrization of our simulation model and
show the results of the simulation runs, demonstrating the differences between
our three introduced mix zone concepts, as well as the influence of different
parameters on our MixMesh approach.

5.1 Model Setup

As a scenario for our evaluation, we chose a shopping mall comprised of different
stores that users can visit. This example can nicely illustrate the additional
challenges posed by 5G technologies, with the mall ownership operating a low-
range access point in each store and therefore being able to track the users’

2 http://simpy.readthedocs.io/en/latest/.

http://simpy.readthedocs.io/en/latest/

MixMesh Zones 47

locations with high precision. Figure 4 shows the layout of our imaginary mall
with three entries, one on the left, right and bottom. All around the inner walls,
the closed boxes represent different stores that customers can spend their time
in. The enclosed box in the middle is more of a to-go café than a store, with
more people coming through, but not staying as long as with the other stores.

The dashed circles represent the small-cell access points that provide con-
nectivity to the shoppers’ devices while simultaneously being able to track them
and their paths through the mall according to the TNPs they use for commu-
nication. They are positioned in the middle of the actual mall stores with each
store’s access point covering at least its whole area and the café in the middle’s
access point filling the gaps in the more open middle area.

The crosses in the image represent the waypoints used for our mobility model.
Users and their mobile devices spawn at one of the three doors at random in
a fixed interval until the desired device density for the current simulation is
reached. From then on, devices are only respawned when another device leaves
the simulation, as to keep up the specified density. After being spawned, devices
pick their next destination randomly from the set of all attractions, consisting
of the stores, mall exits and the café, and find a route to it over the available
waypoints. They go from waypoint to waypoint until they reach their goal and
then stay there for a random time drawn from a distribution specific to the type
of the target. During this stay, they are located at a random position inside
the attraction. When their stay ends, they pick a new attraction as their next
destination and the described process begins anew. This only ends when the
device picks a mall exit as its attraction and reaches it.

Fig. 4. Layout of the mall including access points and waypoints

48 M. Nitschke et al.

5.2 Parametrization and Key Statistics

There are a number of parameters that can be used to influence the simulation’s
behavior. They can be generally divided into stochastic/environmental parame-
ters like the number of devices in the mall (or rather the average device density
since the mall’s area is fixed) and protocol configuration parameters like the
time thresholds for the MixMesh mix zone initiation and participation. Table 1
shows the parameters relevant to the evaluation, along with the default values
that were used in case nothing else is specified. The cell-based mix zone is based
around the central access point at (0, 0), making its covered area equal to that
of the static mix zone with default settings.

Table 1. List of relevant evaluation parameters

Parameter description Default value

Number of devices 100

Maximal D2D communication range 50 m

Device movement speed N (2, 0.5)

Static mix zone center (0, 0)

Static mix zone radius 25 m

Cell-based mix zone participant search duration 60 s

Cell-based mix zone participation time threshold 600 s

MixMesh mix zone minimum participants 5

MixMesh mix zone minimum search duration 60 s

MixMesh mix zone participation time threshold 150 s

MixMesh mix zone initiation time threshold 600 s

Besides these parameters, there is a number of key statistics that are being
tracked during the simulation, in order to evaluate the different approaches’
performances. Statistics tracking starts as soon as the defined device density
is reached and continues over the whole simulation duration. As our central
usability statistic, we employ the percentage of time that a device is in a silent
period. As the silent period means that the device is not able to communicate
(and even with a relay it is usually accompanied by a decrease in service quality
due to e.g. higher latency) we define this time as generally negative and therefore
want said ratio as small as possible. The security and privacy impact of our mix
zones is measured in two different ways. On the one hand, we evaluate the time
duration that each TNP used within the network can be seen. As the pseudonym
change is intended to break up a user’s movement path into smaller, unlinkable
elements, the lifetime of such a pseudonym is a relevant indicator on the resulting
increase in privacy. As this statistic alone gives no information about the quality
of the TNP change itself, we additionally employ the number of devices that
are switching their pseudonyms together as our central privacy metric (after all,

MixMesh Zones 49

a device switching its pseudonym completely alone experiences no increase in
privacy at all since the two pseudonyms are easily linkable).

5.3 Mix Zone Comparison

In the following paragraphs, we will compare the performances of the different
mix zone types against each other and highlight their strengths and weaknesses
concerning the presented performance indicators, as well as the influence of a few
select parameters that further illustrate the usability of the different approaches
in our scenario.

Fig. 5. Evaluation results for the mix zone comparison with default settings

As a baseline, Fig. 5 shows the results for our three key indicators for the
default parameter values described above. Starting with the box plots for the
TNP lifetimes, we can immediately identify the overall duration of stay in
the mall by looking at the plot for the mix zone type “None”. Without any
pseudonym changes and the whole mall area being covered by tracking access
points, the lifetime of each TNP equals the overall lifetime of its associated device

50 M. Nitschke et al.

and therefore represents the upper bound or worst case on movement path link-
ability. We can see all three mix zone types breaking these linked paths by sig-
nificantly shortening the linkable TNP lifetimes, with the static and MixMesh
approaches achieving the best results, the cell-based mix zones trailing a bit
behind. Looking at the next graph, we can see the quality of service tradeoff
that is necessary for this achievement however. With the static mix zone devices
spend over a fifth of their time in a silent period, severely limiting connectivity.
Cell-based and MixMesh mix zones show more reasonable values between 1 and
4% here. At last, the silent period participant counts for the three mix zone
types show very natural curves for static and cell-based mix zones, likely corre-
sponding with the flow rate of devices through the respective mix zone areas.
The values for the static mix zone are significantly higher though, which can be
explained with the café actually lying within the mix zone itself and therefore
all of its customers particpating in the mix zone over the duration of their visit.
In contrast to that, the mix-mesh zone shows a very characteristic pattern with
most of the silent periods being composed of the number of members defined
in the minimum participants parameter. While bigger mix zones do exist when
there are more devices found during the minimum search period, they are much
rarer.

5.4 MixMesh Configuration Comparison

After looking at baseline values in the last section, we will now further inspect
the MixMesh zone and the effect of its different parameters on our key indica-
tors. Our first set of varying parameters are the two threshold values, defining
after how much time since the last TNP change, our devices should participate
in a MixMesh zone, respectively initiate a new one. Figure 6 shows this for 8 dif-
ferent combinations of these values. We can see, that the participation threshold
visibly correlates with the box plot’s lower whisker and hinge, and the initia-
tion threshold with the upper whisker and hinge. While the actual TNP lifetime
values are higher than the thresholds due to the overhead from the participant
search and static delay before the silent period, their relation is distinctive.

Fig. 6. TNP lifetimes for differing initiation and participation thresholds

MixMesh Zones 51

Fig. 7. Participant counts for differing participant search settings

As the final experiment, we will vary the number of minimally required mix
zone participants, as well as the minimum duration for which participants should
be searched for, even after possibly reaching the number of required participants.
When the required amount of participants is zero, the mix zone goes into silent
period directly after the search is finished, no matter the amount of participants.
Conversely, when the minimal search duration is zero, the mix zone searches for
participants until it has reached the required number and upon reaching it, starts
the silent period. It is not possible for both values to be zero, as then there would
be no indication for when to start the silent period. Figure 7 shows the results for
8 such setting combinations. The most obvious observation based on the graph
is that most mix zones actually have exactly the amount of participants that
were specified as minimum. For a minimum participant value of zero, this leads
to problems as most mix zones only consist of a single participant and therefore
offer no additional privacy protection. There are some mix zone instances that
fall short of the specified minimum participants, which can happen when a device
that actually participates in the mix zone leaves the mall during the silent period.
This is not necessarily a security issue however, since it doesn’t help an adversary
mapping a TNP after the silent period to one before it. For the minimal search
duration the main difference between the curves is that when set to zero, most
mix zones actually start with the minimum amount of participants specified. For
higher values, some mix zone instances manage to gather additional participants
during this additional search period, resulting in a larger spread throughout the
rest of the spectrum towards higher participant numbers. It is of note, that when
searching for 300 s instead of only 60 s, there are actually more instances with
the minimum participant count and less with higher counts. This indicates that
the most likely reason for non-participation of a user in a mix zone is actually
because he is already busy with another mix zone rather than the user not being
found at all.

6 Discussion

The results of our evaluation show that there is a central issue with location-
based mix zones (static as well as cell-based). In order to achieve a high number

52 M. Nitschke et al.

of participants and therefore an adequate size for the anonymity set and there-
fore privacy, the mix zone must be located in a place with a somewhat high
flow of users through this location. Especially for the static mix zone however,
they should only go through this zone and if possible not remain there for too
long since the resulting silent period otherwise negatively impacts their net-
work connectivity. While we also presented our relaying concept to mitigate this
restriction, it cannot be denied that even with relaying there is an additional
communication overhead that negatively impacts participating devices and still
the possibility exists that there may be no relay available.

An additional issue related to this is that for a lower user density, both
of the location-based mix zones may start a silent period with only a single
device in the mix zone with no control instance to prevent this. Unlike this, our
MixMesh zone allows for fine-grained control over several anonymity-defining
parameters of the mix zone. The lower bound for the anonymity set, as well as the
thresholds for the desired pseudonym lifetimes can be dialed in to achieve a user-
or system-specific tradeoff between anonymity and quality of service. It must be
noted however that depending on the user density, movement and communication
range, the MixMesh zone is likely to be also subject to limitations, as for example
when there are too few idle users in the immediate surroundings with respect to
the desired minimal anonymity set. However through the user-centric nature, it
adapts better to the situation at hand, and is able to utilize available resources
better than with using location-based mix zone approaches.

Our relaying concept relies on the fact that the users participating in the
mix zone are able to actually find a relay. Now there is a justified objection to
the assumption that users would simply relay data for others out of goodwill,
as there are definitely resources costs i.e. battery, data storage, and bandwidth,
associated with this. Tehrani et al. [10] discuss some pricing models where the
relays get a revenue for their service, billed through the mobile service provider.
Another idea is that each user has a relay budget that increases as he relays
messages himself and decreases as he uses someone else as a relay. Either way,
our relay model has the advantage that the MNO actually knows who is relaying
how much data for whom. With this information he can bill the data usage with
the original user, and even appropriately reward the relay user for his service.

7 Conclusion and Further Work

In this paper we presented a new mix zone approach that can be used and
adapted for the new trends and challenges that next generation mobile commu-
nication networks will bring with them. Additionally we showed a first attempt
on how to overcome the silent period in a mix zone by relaying messages through
other, willing participants of the network. Our MixMesh approach has shown to
be very promising in the context of mobile communication networks and the fun-
damentally different requirements this exhibits compared to the more common
VANET use case.

In future work we would like to extend our quantitative analysis to the search
and maintenance of the relay connections and analyze which mesh networking

MixMesh Zones 53

algorithms may be most suited to handle the high-mobility situation of our
mobile network participant use case. The current relay system is rather plainly
designed and looking at more possibilities for e.g. fast failovers in case of a
connection loss or efficient multi-hop routing algorithms for situation with lower
user density would be an important step to enhance the practicability of our
concept.

Additionally we would like to improve our MixMesh zone concept to not
necessitate a trusted third party for the mix zone initiation and participation,
but rather completely handle this task within the distributed device-to-device
mesh network. This however poses some challenges concerning the trust and trust
management in a potentially hostile and therefore untrustworthy environment.

References

1. 3GPP: Overview of 3GPP Release 12 V0.2.0 (2015–09). Technical report, 3GPP
(2015)

2. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Comput. 2(1), 46–55 (2003)

3. Freudiger, J., Raya, M., Félegyházi, M., Papadimitratos, P., Hubaux, J.P.: Mix-
zones for location privacy in vehicular networks. In: ACM Workshop on Wireless
Networking for Intelligent Transportation Systems (WiN-ITS) (2007)

4. Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location
privacy using silent period. In: IEEE Wireless Communications and Networking
Conference, vol. 2, pp. 1187–1192. IEEE (2005)

5. Li, M., Sampigethaya, K., Huang, L., Poovendran, R.: Swing & swap. In: Proceed-
ings of the 5th ACM Workshop on Privacy in Electronic Society - WPES 2006, p.
19. ACM Press, New York (2006)

6. Lin, X., Andrews, J., Ghosh, A., Ratasuk, R.: An overview of 3GPP device-to-
device proximity services. IEEE Commun. Mag. 52(4), 40–48 (2014)

7. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: 2011 IEEE 27th International Conference on Data Engineering,
pp. 494–505. IEEE (2011)

8. Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.:
CARAVAN: providing location privacy for VANET. Technical report, Department
of Electrical Engineering, University of Washington, Seattle (2005)

9. Song, J.H., Wong, V.W.S., Leung, V.C.M.: Wireless location privacy protection in
vehicular ad-hoc networks. Mob. Netw. Appl. 15(1), 160–171 (2010)

10. Tehrani, M.N., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in
5G cellular networks: challenges, solutions, and future directions. IEEE Commun.
Mag. 52, 86–92 (2014)

11. Zhang, A., Lin, X.: Security-aware and privacy-preserving D2D communications
in 5G. IEEE Netw. 31(4), 70–77 (2017)

AppLance: A Lightweight Approach
to Detect Privacy Leak for Packed

Applications

Hongliang Liang(B), Yudong Wang, Tianqi Yang, and Yue Yu

School of Computer Science, Beijing University of Posts and Telecommunications,
Beijing, China

{hliang,wyd2013,yangtianqi,revising}@bupt.edu.cn

Abstract. Privacy leak of mobile applications has been a major issue in
mobile security, and the prevalent usage of packing technology in mobile
applications further complicates the problem and renders many exist-
ing analysis tools incapacitated. In this paper, we propose AppLance, a
novel lightweight analysis system for Android packed applications with-
out prior unpacking, which can also consider implicit information flow
and privacy confusion. Without modifying Android system and the appli-
cations, AppLance runs on a mobile device as a dynamic analysis sys-
tem, subtly evading the impact of various packing methods. Moreover,
we build and release a benchmark, which contains 540 Android appli-
cations, to evaluate analysis tools aimed at packed applications. We
evaluate AppLance on the benchmark and real-world applications, and
the experimental results show that the system is effective and can be
deployed on real devices with little overhead.

Keywords: Privacy leak · Packed applications · Security analysis

1 Introduction

Due to the vast market of Android devices and the lack of strict management
mechanisms in various application markets, malicious applications are prevalent
in Android devices. In 2017, Kaspersky Lab [16] detected 5,730,916 Android
malicious applications in total. Wherein, stealing private information is a very
common malicious behavior, for instance, privacy leakage features prominently
in 55.8% and 59.7% Android malware families from Genome [45] and Mobile-
Sandbox [32], respectively.

Moreover, Android malware is also increasingly complex. Studies [7,41] show
that the increasing ratio of Android malware, which leverages the packing tech-
nology, is 14% by average from 2010 to 2015. The packed applications are difficult
to detect or analyze because those malicious code or behavior is hidden or obfus-
cated. Therefore, the situation urges us to think the question: how to detect the
privacy leakage behaviors in the packed applications effectively?

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 54–70, 2018.
https://doi.org/10.1007/978-3-030-03638-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_4

AppLance: A Lightweight Approach to Detect Privacy Leak 55

To solve the question, we face the following challenges. First, the packing
techniques change the original bytecode of applications into new meaningless
bytecode, and thus disable the static analysis tools [4,13,20] and those machine-
learning-based tools [11,42] which depend on static analysis methods. Moreover,
the packed applications are difficult to modify or repackage so the methods
of instrumenting applications [28,31,37,43] would be ineffective. Second, some
dynamic analysis tools currently don’t deal with the problem of code loading
dynamically. For instance, TaintDroid [9] and TaintART [33] are both the excel-
lent dynamic analysis tools for detecting privacy leak, but they cannot detect
packed applications which usually dynamically load the bytecode into runtime
without using dex2oat1. Third, to avoid the detection, packed applications or
malware usually leverage anti-simulator techniques [36]. For example, NDroid
[25] can provide useful information about native function, but it is based on
QEMU, which can be easily detected by those packed applications and advanced
malware.

In this paper, we propose AppLance, a lightweight system for analyzing pri-
vacy leak in Android packed applications. We call it lightweight because of two
factors. 1) AppLance uses a black-box test method that does not compromise the
integrity of the applications or modify the Android operating system, therefore,
it can be deployed easily and work on many different versions of Android. 2)
AppLance can detect the privacy leakage via implicit information flow in appli-
cations under test, without tracking the specific privacy propagation. Of course,
AppLance can also analyze non-packed applications.

In addition, since there is little work on analyzing Android packed applica-
tions, we construct and release to public domain a set of relatively comprehensive
and usable packed applications.

In summary, we make the following contributions:

* We propose a novel lightweight method to detect privacy leak of Android
applications, which can analyze dynamically the privacy leak of packed appli-
cations including leakage through implicit data flow, without unpacking or
modifying Android system and applications.

* We build a public available benchmark, which consists of 450 packed applica-
tions and 90 non-packed applications, to evaluate the tools that detect privacy
leak of Android packed applications and facilitate further research in Android
security field.

* We design and implement a prototype system, named AppLance, and evalu-
ation results show that AppLance can effectively identify the privacy leak of
Android packed applications with little overhead.

2 Motivation

To illustrate the challenge caused by packing, we take an Android application
packed by Ijiami [14] packer as an example, where private data (i.e. IMEI of the
device) is leaked through implicit information flow.
1 As an important component in ART, dex2oat converts dex files into oat files.

56 H. Liang et al.

Fig. 1. The reverse analysis results before and after packing.

The left and right sides of Fig. 1 represent the results of reverse analysis
for non-packed application and packed application by ApkIDE [3] respectively.
MainActivity is responsible for obtaining private data from getDeviceId() func-
tion and LeakActivity is used to leak the data by sendTextMessage() function.
When the application is launched, MainActivity will collect the IMEI number
and start LeakActivity. Communication between the two activities is achieved
by implicit Intent. This is also one of the ordinary situations in which sensitive
data is leaked through implicit information flow. Analysis tools for detecting pri-
vacy leak such as FlowDroid, TaintDroid and Malton cannot support analysis
of implicit control flows. According to the code comparison on the left and right
sides of Fig. 1, we can clearly find that the core code of the application is hidden
after the packing. Therefore, the static analysis tools become incompetent and
weak.

Our work attempts to solve the challenge: to detect the privacy leak for those
applications which leverage anti-detect techniques, such as implicit information
flow, packing and encryption, to cover their malicious behaviors.

AppLance: A Lightweight Approach to Detect Privacy Leak 57

3 AppLance: Design and Implementation

3.1 Overview

The fundamental idea of our method is to control variables. We use the method
to turn multi-variable problem into single-variable problem. Each time we change
only one variable and keep the others, so as to study the effect of the changed
variable on the result. Concerning the problem we discussed, sources and other
interference factors are variables, and sinks is the result that we care about.
There must be a connection between sources and sinks if changing the value of
sources will affect sinks, while other factors have no influence on them. In other
words, there is at least one information flow directly or indirectly between the
sources and sinks. Therefore, AppLance can perform well even if the transmission
process of private data is implicit or encrypted.

Fig. 2. The overview of AppLance.

AppLance uses a black-box approach and does not care about the propaga-
tion of private data. It only monitors the behavior of the private data acquisition
and private data leakage to determine whether the target application has the
possibility of privacy leak. Figure 2 illustrates the overview of AppLance. It runs
on Android real machine and monitors the associated source APIs (i.e., getting
private data) and sink APIs (i.e., sending private data) for the specified appli-
cation. AppLance consists mainly of three parts: reference module, comparison

58 H. Liang et al.

module and analysis module. The reference module leverages dynamic binary
instrumentation technique2 to collect information of the source APIs and sink
APIs when an application normally runs, and is a reference standard for com-
parison module. The comparison module is almost the same as the instrumented
environment of reference module only with the difference that we modify private
data obtained from source APIs. These two modules record the information of
the sink APIs and hand it over to the analysis module for further processing.
Then the analysis module concludes whether the application leaks private data.

3.2 Variation and Proof

Each application needs to be run multiple times in reference module for testing.
To be specific, we run the application under test more than twice without chang-
ing any value to get a standard reference result. The aim is to remove as many
factors as possible that may affect the result of sink. We delete the dynamically
changing information, leaving stable information to ensure that no other fac-
tors except sources will affect sinks. As demonstrated in Fig. 3, the variable imei
stores private data acquired through the source API getDeviceId(), assuming its
value is 8676860. It may be encrypted, confused, propagated between compo-
nents, and so on. Anyhow it needs to be sent by the sink API sendTextMessage()
eventually, whose value is assumed to be 9787970.

After getting the standard reference result, we modify the parameters or
return values of the source APIs in the result and let the application run again
in comparison module to get the comparison result. From the example in Fig. 3,
we change the return values of the source API getDeviceId() whose value is
mutated to 1111111, and record related information (i.e., the parameter of send-
TextMessage() becomes 2222222). Finally, we determine whether the application
leaks privacy by comparing the comparison result with standard reference result.

3.3 Implementation

Source and Sink. The APIs of the Android framework layer are constantly
updated, as a result, some new APIs are introduced and some old ones are
eliminated. For example, the class org.apache.http has been deprecated, while
the class CarrierMessagingService has been added in API level 22. These APIs
changes are not considered by many tools. In fact, both malware and applications
on the market use APIs in different levels, and the Android system version used
by users also varies. As [12] shows that 85.4 percent of Android platforms use
API16-24, we organize and classify the relevant source and sink APIs (API16-
24), including the deprecated and added ones.

Source APIs: The source API refers to the function that gets privacy data
which is mentioned in many relevant tools [4,9,33]. Since there is no clear defi-
nition of privacy data, we try to collect more data that may affect users. In our

2 Instrument refers to obtaining the control flow and data flow information of the
program by inserting the probe into the target program and executing the probe.

AppLance: A Lightweight Approach to Detect Privacy Leak 59

Fig. 3. The instance for privacy leak.

implementation, we define private data including user’s phone numbers, identi-
fiable information, geographical location information, SMS and communication
records, cache information, hardware and software information, etc. Some data,
such as contact numbers, cannot be detected by TaintDroid, but we take them
into account. Based on Android APIs manual, APIs for accessing these private
data are listed as our target, getCellLocation(), getAllBookmarks() for example.

Sink APIs: Correspondingly, the sink API refers to the function that sends
sensitive data. But the definition of sink API is a little different from the one
in other studies like FlowDroid. Since we only care about the functions sending
private data at the top level instead of propagating, we do not use the APIs that
send private data in the middle layer as the sink APIs, such as Bundle. Accord-
ing to our analysis of the behavior of malicious applications, we found that
the most common ways of leaking private data are through logs, SMS and net-
work. Notice that network communication in Android is mainly implemented by
Socket, HTTP and HTTPS protocols. HTTP protocol bases on two approaches:
HttpURLConnection API provided by Java and HttpClient by Apache. Since
Android4.4, the underlying implementation of the HttpURLConnection class is
based on the okhttp protocol, so we analyze how it works in order to define Sink.
In addition, Android has abandoned the HttpClient library after Android6.0.
The Https protocol has a similar evolution with Http.

Reference and Comparison Module. The function of reference and com-
parison module is achieved by dynamic binary instrumentation. Dynamic binary

60 H. Liang et al.

instrumentation means injecting external code into running binary file to do
something extra. We monitor all the APIs mentioned above for useful informa-
tion when the application is running in reference module. In comparison module
of our system, in addition to these work, we also mutate the parameters or return
values of the source APIs.

Frida [10], supporting ARM, X86 and other mainstream CPU instruction
sets, is a cross-platform binary instrumentation framework that can be applied
in different systems such as Windows, Linux, iOS and Android. Reference and
comparison modules are implemented through customizing Frida, as shown in
Fig. 4.

We make a series of decision rules to monitor sensitive behavior in applica-
tions, including the Java layer and Native layer. Figure 4 illustrates the schematic
of the modules. The client parses all the rules that are fed to it through the con-
troller and passes the parsing result to the server (1©). Communication between
client and server is accomplished via USB. The server hooks the code in the Java
layer and Native layer respectively according to the instructions passed by the
client (2©). Meanwhile, the server is also responsible for returning the relevant
trace information to the client (3©). The controller collects and saves all the
information for subsequent analysis.

Fig. 4. Implementation schematic of reference and comparison modules.

Rules: Decision rules are primarily responsible for dynamic instrumentation
logic. It decides where to insert the code and what code to insert. In our system,
the processing of each API is a decision rule. To make a legal rule, we need
to meet three requirements. Frist, we should locate the target API, namely the
package name and class name. Second, we need to determine the parameters of
the target API and its signatures, because in many cases they could be over-
loaded. For each overloaded function, we need to deal with it differently. Finally,
we define our instrumentation logic, such as what information we need to get or
modify.

Controller: The controller has the following functions. (1) Initialization. It
starts the instrumentation environment and checks if the current environment is

AppLance: A Lightweight Approach to Detect Privacy Leak 61

normal. (2) Interaction. It checks the instructions input by the user and returns
the corresponding prompt message. The user’s instructions need to meet certain
specifications. (3) Management. It manages all the rules and log information
simultaneously, i.e., passing the rules to the server and saving the information
locally.

Frida-Client and Server: The Frida-client loads the JavaScript scripted rules,
sends it to the Frida-server to deploy the probe and receives the return infor-
mation from the Frida-server. The Frida-server injects probes into the process
of the target application, respectively through the Java reflection mechanism in
Java layer and the inline hook mechanism in Native layer. The position of the
instrumentation will be determined by rules, generally involving system calls,
system file reading and writing, Java system classes, etc.

Difference Analysis. The analysis module is a script that intelligently pro-
cesses the results of the reference and the comparison module. The whole process
consists of two steps. The first step is to format the result from reference and
comparison module. We group the sink APIs name and parameters or return
values into a set of key-value pairs. In the second step, we query the correspond-
ing value in the result of the comparison module by indexing the name of the
APIs in the file from reference module and compare with them. The result of
this step is these states, whose index is the same and the parameters or return
values are different. If the output is empty, sensitive data is not leaked by the
application.

4 Benchmark

As far as we know, there is no test set to assess the system detecting privacy leak
for Android packed applications currently. DroidBench2.0 expands the micro-
benchmark proposed by the FlowDroid, collecting 120 small applications of leak-
ing private data in a variety of ways. Although the DroidBench2.0 is publicly
available and suitable for evaluating static and dynamic analysis system detect-
ing privacy leak, the cases cannot be directly packed, possibly because packers
reject them as malware, such as Qihoo360 [26], Ali [2]. Therefore, the standard
test suite of assessment for detecting privacy leak of Android packed applications
is not applicable to us.

In order to prove the effectiveness of AppLance and complete the experi-
mental evaluation, we build a test set to evaluate analysis system detecting the
privacy leak of Android packed applications. In the meantime, it provides some
test cases for those who will follow up on relevant studies. We build 50 similar
test cases following the design idea of DroidBench2.0, introduce 9 and 15 test
cases from the DroidRA [21] and ICC-TA [20] to our set respectively. We analyze
these test cases and find out that no test case is used to transfer private data
over the network. Thus we add nine more test cases that leak privacy through

62 H. Liang et al.

Table 1. The composition of the benchmark.

Class SubClass # of Apps

Explicit information flow EmulatorDetection 3

Confusion 5

CallBack 6

NetWork 6

GeneralJava 12

Others 20

Implicit information flow GeneralIIF 2

Reflection 11

InterComponentCommunication 15

Non-leak 10

Total 90

the network, i.e., by Sockets, HTTP and HTTPS. In addition, we add 10 appli-
cations without any information leak to our set. Ultimately, the number of our
original test cases reached 90.

The details are shown in Table 1. In our benchmark, 35% of applications leak
sensitive data through implicit information flow, including java reflection, inter-
component communication and selection structure. Another 65% of applications
leak sensitive information by explicit information flow like confusion, callbacks,
etc. We pack these test cases by the five mainstream packer: Ali [2], Baidu [6],
Ijiami [14], Qihoo360 [26] and Legu [18] respectively. Totally, there are 540 test
cases in the benchmark we developed.

5 Evaluation

We evaluate AppLance using our benchmark and real-world Android malware
samples to answer the following questions:

Q1: How effective is AppLance comparing to Android privacy-analysis tools in
terms of accuracy?

Q2: Can AppLance detect real-world malware of leaking privacy?
Q3: How much overhead does AppLance introduce?

5.1 Comparing with Existing Tools

To answer Q1, we compared the capability of AppLance for detecting Android
packed/non-packed applications with FlowDroid [4] and NVISO [24]. FlowDroid
is a static-taint analysis tool, while NVISO is an online malware analysis tool
that detects privacy leak through dynamic analysis. We ran the test cases in our

AppLance: A Lightweight Approach to Detect Privacy Leak 63

Fig. 5. The number of cases leaking privacy detected by AppLance, FlowDroid, and
NVSIO.

benchmark on these three tools respectively. We collect and sort out the analysis
results, as shown in Fig. 5.

For non-packed applications, the accuracy of AppLance, FlowDroid and
NVISO can reach 96.2%, 55% and 48.8%, respectively. AppLance, running on a
real machine, achieves this score because some of the test cases in our bench-
mark are inapplicable to it, such as the EmulatorDetection category. FlowDroid
cannot handle the challenges of implicit information flow, so it cannot detect
many relevant test cases in the benchmark. NVISO is transparent to us, and we
do not know what specific technology it uses to detect applications. We analyzed
the NVISO test results and speculated that there are two possible reasons. First,
NVISO cannot detect applications that leak sensitive information through logs.
Actually some of the test cases in our benchmark do this. Second, NVSIO also
cannot discover the behavior of leaking sensitive information through implicit
information flow. It’s not hard to understand that it has a lower score than
FlowDroid.

For packed applications, AppLance is not affected by the packing and get
the same score. However, FlowDroid and NSVIO do not perform well. For all
the packers except for the Ali packer, the number of packed applications with
privacy leak detected by FlowDroid is zero. The reason is that FlowDroid only
analyzes the bytecode file for decryption in package instead of original bytecode
file. We manually analyzed the applications packed by the Ali packer, and found
that the bytecode file in the package still contains the original instructions and is
not hidden. Therefore, FlowDroid successfully analyzes the packed applications
by Ali packer. NSVIO scores better than FlowDroid, which detects privacy leak
in partially packed applications. One reason for this may be that the technology
used by packers is not uniform, and NSVIO can only overcome the impact of some
technologies. Actually the number of packed applications with leaking privacy
detected by NVISO is very limited, far less than AppLance.

64 H. Liang et al.

Answer to Q1. Compared with FlowDroid and NSVIO, AppLance can catch
more applications with leaking privacy. Especially for the analyzing packed appli-
cations, the advantages of AppLance are more obvious.

5.2 Effectiveness for Real-World Malware

To evaluate AppLance on real applications, we ran AppLance on about 50 known
malware samples randomly selected from Malton [39]. We ran each application
multiple times as required by AppLance and used Monkey to trigger as many
events as possible. To get the false positives and false negatives of our app-
roach, we manually analyzed these 50 applications and found that 27 of them
leak private information. AppLance detected 24 of these 27 applications with
leaking privacy. His false positive rate and false negative rate are 0 and 11.11%
respectively. Because we can not achieve 100% code coverage, which makes some
malicious behaviors not triggered.

At the same time, we analyzed these 50 malicious samples using Flowdroid
and NVISO. Figure 6 shows all results. For these 50 malware samples, FlowDroid
and NVISO detected 16 and 18 malware with privacy leak respectively. What’s
exciting is that the privacy leaking malware found by FlowDroid and NVISO can
be all detected by AppLance. Specifically, there are 11 malicious samples that
can be found by all three tools, but there are other 2 malicious samples that
can be found by FlowDroid and AppLance, but NVISO cannot, and 7 malicious
samples that can be found by NVISO and AppLance except FlowDroid. There
are 3 applications that only FlowDroid regards them as malware with leaking
private data, but we prove that the FlowDroid test results are false positives by
applying reverse analysis. Finally there are 4 unique malicious samples that leak
privacy through implicit information flow can only be found by AppLance. That
is to say, AppLance can detect malicious applications of leaking privacy that are
not detected by these two tools.

Fig. 6. AppLance, FlowDroid and NVSIO test results for real-world malware samples.

AppLance: A Lightweight Approach to Detect Privacy Leak 65

Answer to Q2. AppLance outperforms FlowDroid and NSVIO in analyzing
real-world malicious applications, capturing additional malware samples leaking
sensitive information.

5.3 Performance Overhead

To answer Q3, we select eight typical applications from Tencent MyApp, includ-
ing the health, life, learning and tool, with over 20 million downloads. We
ran these applications on a Nexus 6P smartphone under two different environ-
ments of Android6.0 without AppLance and Android6.0 with AppLance3. We
use Emmagee [8] to monitor the memory and CPU overhead of applications in
the two different environments, and try to make the same sequence of events for
the same application. The result is shown in Fig. 7.

Fig. 7. The results of performance test.

Figure 7 contains two parts, the application’s memory overhead and CPU
overhead. We can conclude from the figure that the average memory overhead
introduced by AppLance is less than 8%. This is perfectly reasonable and accept-
able for dynamic analysis tools. Moreover, the CPU overhead introduced by
AppLance is also considerable, with an average increase of 1.5% additional CPU
usage percentage. Compared to other dynamic analysis tools, such as Malton
[39], which introduces around 25x slowdown and TaintMan [43] increases the
application size by 23%, our system neither introduces excessive overhead nor
increases the size of the application.

Answer to Q3. As a dynamic analysis tool, AppLance has an optimistic
performance and the introduced overhead is reasonable. The overhead introduced
by AppLance does not have a substantial impact on applications.

3 To avoid potential interference from other applications, a single application is run
each time in Android6.0 with AppLance.

66 H. Liang et al.

6 Discussion

Our approach is simple, easy to deploy, and quick to determine if the packed
applications leak private information. Experimental evaluation demonstrates the
effectiveness and efficiency of the method and prototype. However, AppLance
still has some limitations. In this section, we discuss the reasons for these limi-
tations and think about future work.

First, AppLance can only judge whether the applications leak private data
on the coarse granularity. In other words, it cannot specify which information
flow is leaking. The root cause is that our approach aims to be light-weighted
and easy-to-deployed, and thus it is based on black-box testing. We believe a
grey-box or white-box method can provide fine-grained information, though it
is complicated and intrusive.

Second, code coverage is a challenge for all dynamic analysis systems, and
AppLance also cannot avoid it. We utilize the Monkey to generate some column
events to trigger more functions. Although the events generated by Monkey are
not comprehensive enough, they are sufficient for simple cases in our test set.
In future work, we will exploit more advanced test input generator, such as
DroidBot [22], to improve the accuracy of AppLance.

Third, although we worked very hard to collect the relevant Source and
Sink APIs, it was impossible to be comprehensive. Moreover, as Android sys-
tem evolves, its APIs will be changed, newly added or removed. Fortunately,
we provide a well extensible interface for defining new rules to accommodate
changes.

Finally, AppLance is portable, and we will transplant it to iOS system in
future. An important reason is that iOS system also faces the similar problem.
Namely, there are also many applications leak sensitive data in iOS and the
packing brings obstacles to traditional dynamic analysis and static analysis for
iOS applications.

7 Related Work

For the time being, there are two main methods for analysis of Android packed
application: dynamic-assisted static analysis, pure dynamic analysis.

Specifically, the approach of dynamic-assisted static analysis consists of two
main steps: first, the packed application needs to be unpacked, and then the
unpacked files are analyzed using static analysis tools. Many articles [29,34]
summarize the traditional static analysis work, and readers who interest in it
can refer to them for useful information. We here aim to discuss the work of
unpacking.

Unpacking. Most of unpacking tools are implemented by modifying the
Android system. DexHunter [44] actively loads and initializes all classes of the
bytecode file for one time before the Android system loads them, and then col-
lects bytecode data primarily at the runtime. AppSpear [41] records the data of

AppLance: A Lightweight Approach to Detect Privacy Leak 67

Dalvik Data Structs in memory by modifying the Dalvik interpreter. DWroid-
Dump [17] and CrackDex [15] extract every optimized bytecode (i.e., odex file)
by inserting codes in Dalvik. The bytecode data collected by DexLego [23] is
from the instruction in the interpreter, which takes advantage of a Just-In-Time
compiler included in ART. Unfortunately, these tools depend on specific packing
techniques and thus cannot deal well with the advancement of packing technol-
ogy, e.g. virtual machine protection.

Some tools exploit a simulator instead of modifying Android system. Pack-
erGrind [38] leverages Valgrind and uses an iterative process to unpack Android
packed application, compared to above tools using one-pass processing strat-
egy. Based on DroidScope [40], DroidUnpack [7] can recover hidden code by
monitoring the application execution at the Native level and Java level. Unfor-
tunately, they cannot unpack the applications that are packed with the virtual
machine protection technique, and are easily evaded by the applications using
anti-emulation techniques.

Dynamic Analysis. There are a number of tools that can dynamically analyze
the privacy leak of an application. These tools are roughly divided into three
types: customizing Android system, customizing Android emulator and repack-
aging Android application.

Customizing Android System. TaintDroid [9], for the first time, using
dynamic taint analysis to monitor sensitive information on smartphones, pro-
vides real-time information-flow tracking by instrumenting the Dalvik virtual
machine. Since then many studies based on it [1,25,27,30] appeared. ARTist
[5] and TaintART [33] solves the limitation that TaintDroid is not suitable for
ART. CodeTracker [19] also leverages the taint tracking technique, which marks
authorization codes with taint tags and propagates the tags through the system.
However, these tools cannot cope with the dynamic loading problem, and thus
they cannot be used for detecting packed applications. Moreover, they cannot
detect the privacy leak via implicit information flow.

Customizing Android Emulator. Both building on the top of QEMU, Droid-
Scope [40] and CopperDroid [35] introspect Dalvik virtual machine to reconstruct
malware behaviors. Malton [39], based on the Valgrind, provides a comprehen-
sive view of malware behaviors by tracking multi-layer information flow. Actually
packed applications and malware may easily find out the existence of the sim-
ulator and thus exit or crash. In addition, these approaches introduce a large
performance overhead, compared with AppLance.

Repackaging Android Application. In order to avoid modifying system or
simulator, a few studies focus to applications themselves. TaintMan [43], Ura-
nine [28] and AppCaulk [31] all need to decompile the original application and
add the taint enforcement code to the original bytecode file to track data flow.
Nevertheless, the idea is not suitable for packed application since their original
bytecode cannot be easily found. Moreover, packed applications refuse to run if
their integrity are damaged.

68 H. Liang et al.

8 Conclusion

In this paper, we propose a novel and lightweight analysis system named
AppLance for detecting privacy leak of Android packed/non-packed applications.
AppLance determines whether the application has information flow that leaks
sensitive data, by adopting a black-box method without modifying Android sys-
tem, simulator or applications. We have developed a prototype of AppLance and
built a public benchmark for the assessing. The evaluation with our benchmark
and real-world malware samples evidenced the effectiveness of our system.

References

1. Alazab, M., Moonsamy, V., Batten, L.M., Lantz, P., Tian, R.: Analysis of mali-
cious and benign Android applications. In: 2012 32nd International Conference on
Distributed Computing Systems Workshops, pp. 608–616 (2012)

2. Ali. https://jaq.alibaba.com/
3. ApkIDE.https://github.com/YunLambert/TravelFrog Tool/tree/master/ApkIDE
4. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for Android apps. In: PLDI (2014)
5. Backes, M., Bugiel, S., Schranz, O., von Styp-Rekowsky, P., Weisgerber, S.: Artist:

the Android runtime instrumentation and security toolkit. In: 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 481–495 (2017)

6. Baidu. https://app.baidu.com/
7. Duan, Y., et al.: Things you may not know about Android (un) packers : a systematic

study based on whole-system emulation (2017)
8. Emmagee. https://github.com/NetEase/Emmagee
9. Enck, W., et al.: Taintdroid: an information-flow tracking system for realtime privacy

monitoring on smartphones. ACM Trans. Comput. Syst. 32, 5:1–5:29 (2010)
10. Frida. https://www.frida.re/
11. Gibler, C., Crussell, J., Erickson, J., Chen, H.: AndroidLeaks: automatically detect-

ing potential privacy leaks inAndroid applications on a large scale. In:TRUST (2012)
12. Google. https://developer.android.com/about/dashboards/
13. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-

mation flow analysis of Android applications in DroidSafe. In: NDSS (2015)
14. Ijiami. http://www.ijiami.cn/
15. Jiang, Z., Zhou, A., Liu, L., Jia, P.L., Liu, L., Zuo, Z.: CrackDex: universal and auto-

matic DEX extraction method. In: 2017 7th IEEE International Conference on Elec-
tronics Information and Emergency Communication (ICEIEC), pp. 53–60 (2017)

16. Kaspersky. https://usa.kaspersky.com/
17. Kim, D., Kwak, J., Ryou, J.: DWroidDump: executable code extraction from

Android applications for malware analysis. IJDSN 11, 379682:1–379682:9 (2015)
18. Legu. https://yaq.qq.com/
19. Li, J., Ye, Y., Zhou, Y., Ma, J.: CodeTracker: a lightweight approach to track and

protect authorization codes in SMS messages. IEEE Access 6, 10107–10120 (2018)
20. Li, L., et al.: IccTA: detecting inter-component privacy leaks in Android apps. In:

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, vol.
1, pp. 280–291 (2015)

21. Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: DroidRA: taming reflection to support
whole-program analysis of Android apps. In: ISSTA (2016)

https://jaq.alibaba.com/
https://github.com/YunLambert/TravelFrog_Tool/tree/master/ApkIDE
https://app.baidu.com/
https://github.com/NetEase/Emmagee
https://www.frida.re/
https://developer.android.com/about/dashboards/
http://www.ijiami.cn/
https://usa.kaspersky.com/
https://yaq.qq.com/

AppLance: A Lightweight Approach to Detect Privacy Leak 69

22. Li, Y., Yang, Z., Guo, Y., Chen, X.: DroidBot: a lightweight UI-guided test input gen-
erator for Android. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pp. 23–26 (2017)

23. Ning, Z., Zhang, F.: DexLego: reassembleable bytecode extraction for aiding static
analysis. In: 2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 690–701 (2018)

24. NVISO. https://apkscan.nviso.be/
25. Qian,C., Luo,X., Shao,Y., Chan,A.T.S.:On tracking information flows through JNI

in Android applications. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 180–191 (2014)

26. Qihoo360. http://jiagu.360.cn/
27. Rastogi, V., Chen, Y., Enck, W.: AppsPlayground: automatic security analysis of

smartphone applications. In: CODASPY (2013)
28. Rastogi, V., Qu, Z., McClurg, J., Cao, Y., Chen, Y.: Uranine: real-time privacy leak-

age monitoring without system modification for Android. In: SecureComm (2015)
29. Reaves, B., et al.: *droid: assessment and evaluation of Android application analysis

tools. ACM Comput. Surv. 49, 55:1–55:30 (2016)
30. Schreckling, D., Posegga, J., Köstler, J., Schaff, M.: Kynoid: real-time enforcement of

fine-grained, user-defined, and data-centric security policies for Android. In: WISTP
(2012)

31. Schütte, J., Titze, D., Fuentes, J.M.D.: AppCaulk: data leak prevention by injecting
targeted taint tracking into Android apps. In: 2014 IEEE 13th International Confer-
ence on Trust, Security and Privacy in Computing and Communications, pp. 370–379
(2014)

32. Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., Hoffmann, J.: Mobile-sandbox:
combining static and dynamic analysis with machine-learning techniques. Int. J. Inf.
Secur. 14, 141–153 (2014)

33. Sun, M., Wei, T., Lui, J.C.S.: TaintART: a practical multi-level information-flow
tracking system for Android runtime. In: ACM Conference on Computer and Com-
munications Security (2016)

34. Tam, K., Feizollah, A., Anuar, N.B., Salleh, R., Cavallaro, L.: The evolution of
Android malware and Android analysis techniques. ACM Comput. Surv. 49, 76:1–
76:41 (2017)

35. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic reconstruc-
tion of Android malware behaviors. In: NDSS (2015)

36. Vidas, T., Christin, N.: Evading Android runtime analysis via sandbox detection. In:
AsiaCCS (2014)

37. Xu, R., Säıdi, H., Anderson, R.J.: Aurasium: practical policy enforcement for
Android applications. In: Proceedings of the 21th USENIX Security Symposium,
Bellevue, WA, USA, 8–10 August 2012, pp. 539–552 (2012)

38. Xue, L., Luo, X., Yu, L., Wang, S., Wu, D.: Adaptive unpacking of Android apps. In:
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pp. 358–369 (2017)

39. Xue, L., Zhou, Y., Chen, T., Luo, X., Gu, G.: Malton: towards on-device non-invasive
mobile malware analysis for art. In: USENIX Security Symposium (2017)

40. Yan, L.K., Yin, H.: DroidScope: seamlessly reconstructing the OS and Dalvik seman-
tic views for dynamic Android malware analysis. In: USENIX Security Symposium
(2012)

41. Yang, W., et al.: AppSpear: bytecode decrypting and DEX reassembling for packed
Android malware. In: RAID (2015)

https://apkscan.nviso.be/
http://jiagu.360.cn/

70 H. Liang et al.

42. Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy Android malware detection using
ensemble learning. IET Inf. Secur. 9, 313–320 (2015)

43. You, W., Liang, B., Shi, W., Wang, P., Zhang, X.: TaintMan: an ART-compatible
dynamic taint analysis framework on unmodified and non-rooted Android devices.
IEEE Trans. Dependable Secur. Comput. (2017). https://doi.org/10.1109/TDSC.
2017.2740169

44. Zhang, Y., Luo, X., Yin, H.: DexHunter: toward extracting hidden code from packed
Android applications. In: Pernul,G.,Ryan,P.Y.A.,Weippl, E. (eds.) ESORICS2015.
LNCS, vol. 9327, pp. 293–311. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-24177-7 15

45. Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In:
2012 IEEE Symposium on Security and Privacy, pp. 95–109 (2012)

https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1109/TDSC.2017.2740169
https://doi.org/10.1007/978-3-319-24177-7_15
https://doi.org/10.1007/978-3-319-24177-7_15

Cryptography

Unifying Kleptographic Attacks

George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
tgeorge@dcti.ro

2 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro

Abstract. We present two simple backdoors that can be implemented
into Maurer’s unified zero-knowledge protocol [22]. Thus, we show that
a high level abstraction can replace individual backdoors embedded
into protocols for proving knowledge of a discrete logarithm (e.g. the
Schnorr and Girault protocols), protocols for proving knowledge of an
eth-root (e.g. the Fiat-Shamir and Guillou-Quisquater protocols), proto-
cols for proving knowledge of a discrete logarithm representation (e.g. the
Okamoto protocol) and protocols for proving knowledge of an eth-root
representation.

1 Introduction

Classical security models assume that the cryptographic algorithms found in
a device are correctly implemented and according to technical specifications.
Unfortunately, in the real world, users have little control over the design criteria
or the implementation of a security module. When using a hardware device, for
example a smartcard, the user implicitly assumes an honest manufacturer that
builds devices according to the provided specifications. The idea of a malicious
manufacturer that tampers with the device or embeds a backdoor in an imple-
mentation was first suggested by Young and Yung [32,33]. As proof of concept,
they developed secretly embedded trapdoor with universal protection (SETUP)
attacks.

Although considered far-fetched by some cryptographers, SETUP attacks
were found in real world implementations [9,10]. These attacks are based on the
usage of the Dual-EC generator, a cryptographically secure pseudorandom num-
ber generator (PRNG) standardized by NIST. Internal NSA documents leaked
by Edward Snowden [3,26] indicated a backdoor embedded into the Dual-EC
generator. Shortly afterward, the aforementioned examples were found. This
backdoor is a direct application of the work conducted by Young and Yung
[32–35].

A consequence of Snowden’s revelations is the revival of this research area
[2,4,7,12,16,21,27,28,31]. In [5], SETUP attacks applied to symmetric encryp-
tion schemes are re-branded as algorithmic substitution attacks (ASA). A link
between secret-key steganography and ASAs can be found in [7]. More generic
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 73–87, 2018.
https://doi.org/10.1007/978-3-030-03638-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_5&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-03638-6_5

74 G. Teşeleanu

attacks (subversion attacks) tailored for signature schemes are introduced in [2].
Subversion attacks include SETUP attacks and ASAs, but generic malware and
virus attacks are also included. Generic protections against backdoored PRNGs,
such as the Dual-EC generator, are studied in [27,28].

The initial model proposed by Young and Yung is the black-box model1. For
our intended purposes this model suffices, since the zero-knowledge protocols we
attack were designed for smartcards. Note that even if we relax this model and
assume that the code is open-source, according to [5], the sheer complexity of
open-source software and the small number of experts who review them still make
ASAs plausible. Note that these attacks need a malicious device manufacturer2 to
work. An important property is that infected smartcards should have inputs and
outputs indistinguishable from regular smartcards. However, if the smartcard is
reverse engineered, the deployed mechanism may be detectable.

There are two methods to embed backdoors into a system: either you generate
special public parameters (SPP) or you infect the random numbers (IRN) used
by the system. In the case of discrete logarithm based systems, SPP and IRN
were studied in [16,19,21,31–35]. We only found SPP [11,32,33,35,36] and not
IRN in the case of factorization based systems.

Zero-knowledge protocols were introduced as a mean to prove one’s identity.
These protocols are defined between a prover (usually called Peggy) that pos-
sesses some secret x3 and a verifier (usually called V ictor) that checks if Peggy
really possesses x. Two classical examples of such protocols are the Schnorr pro-
tocol [29] and the Guillou-Quisquater protocol [20]. Note that both protocols
were proposed for smartcards. By abstracting the two protocols, Maurer shows
[22] that they are actually instantiations of the same protocol.

Using the same level of abstraction as in [22], we show how an attacker
(called Mallory) can mount a SETUP attack and extract Peggy’s secret. When
instantiated, this attack provides new insight into SETUP attacks. In particular,
we provide the first IRN attack on a factoring based system and the first attack
on systems based on eth-root representations4. We also provide the reader with
new instantiations of Maurer’s unified protocol: the Girault protocol, a new
proof of knowledge for discrete logarithm representation in Z

∗
n and a proof of

knowledge of an eth-root representation.
The second SETUP attack we introduce is a generalization of Young and

Yung’s work. When instantiated with the Schnorr protocol, we obtain their
results. We also provide other examples not mentioned by Young and Yung.

Structure of the paper. We introduce notations and definitions used throughout
the paper in Sect. 2. In Sect. 3 we present our new general SETUP attacks and
1 A black-box is a device, process or system, whose inputs and outputs are known, but

its internal structure or working is not known or accessible to the user (e.g. tamper
proof devices).

2 That implements the mechanisms to recover the keys.
3 Associated with her identity.
4 For systems based on discrete logarithm representations a backdoor was described

in [31].

Unifying Kleptographic Attacks 75

prove them secure. Instantiations of our attacks can be found in Sect. 4. We
conclude in Sect. 5. Additional definitions are given in AppendixA.

2 Preliminaries

Notations. Throughout the paper, the notation |S| denotes the cardinal of a
set S. The action of selecting a random element x from a sample space X is
denoted by x

$←− X, while x ← y represents the assignment of value y to variable
x. The probability of the event E to happen is denoted by Pr[E]. The subset
{0, . . . , s} ∈ N is denoted by [0, s].

2.1 Groups

Let (G, �) and (H,⊗) be two groups. We assume that the group operations �
and ⊗ are efficiently computable. Compared to [22], we also assume that G is a
cyclic group. Note that this implies that G is commutative. Let g be a generator
of G. We denote by αg the element g � . . . � g obtained by repeatedly applying
the group operation α − 1 times.

Let f : G → H be a function (not necessarily one-to-one). We say that f is
a homomorphism if f(x � y) = f(x) ⊗ f(y). Throughout the paper we consider
f to be a one-way function, i.e. it is infeasible to compute x from f(x). To be
consistent with [22], we denote by [x] the value f(x). Note that given [x] and [y]
we can efficiently compute [x � y] = [x]⊗ [y], due to the homomorphism. By [g]α

we denote [αg] = [g] ⊗ . . . ⊗ [g] (α times).

Definition 1 (Hash Diffie-Hellman - hdh). Let D be a cyclic group of order
q, d a generator of D, E a group and h : D → E a hash function. Let A be a
PPT algorithm which returns 1 on input (dx, dy, z) if h(dxy) = z. We define the
advantage

ADV hdh
D,d,h(A) = |Pr[A(dx, dy, h(dxy)) = 1|x, y

$←− Z
∗
q]

− Pr[A(dx, dy, z) = 1|x, y
$←− Z

∗
q , z

$←− E]|.

If ADV hdh
D,d,h(A) is negligible for any PPT algorithm A, we say that the Hash

Diffie-Hellman problem is hard in D.

Remark 1. According to [6], the hdh assumption is equivalent with the compu-
tational Diffie-Hellman (cdh) assumption5 in the random oracle model. If the
decisional Diffie-Hellman (ddh) assumption (see Footnote 5) is hard in D and
h is entropy smoothing (see Footnote 5), then the hdh assumption is hard in
D [1,24,30]. In [17], the authors show that the hdh assumption holds, even if
the ddh assumption is relaxed to the following assumption: D contains a large
enough group in which ddh holds. A particularly interesting group is Z∗

p, where

5 We refer the reader to Appendix A for a definition of the concept.

76 G. Teşeleanu

p is a “large”6 prime. According to [17], it is conjectured that if D is generated by
an element d ∈ Z

∗
p of order q, where q is a “large”7 prime that divides p−1, then

the ddh assumption holds. The analysis conducted in [17] provides the reader
with solid arguments to support the hypothesis that hdh holds in the subgroup
D ⊂ Z

∗
p.

2.2 Zero-Knowledge Protocols

Let Q : {0, 1}∗ ×{0, 1}∗ → {true, false} be a predicate. Given a value z, Peggy
will try to convince Victor that she knows a value x such that Q(z, x) = true. We
further recall a definition from [14] that captures the notion that being successful
in a protocol (P, V) implies knowledge of a value x such that Q(z, x) = true.

Definition 2 (Proof of Knowledge Protocol). An interactive protocol
(P, V) is a proof of knowledge protocol for predicate Q if the following properties
hold

– Completeness: V accepts the proof when P has as input an x with Q(z, x) =
true;

– Soundness: there is an efficient program K (called knowledge extractor) such
that for any P̂ (possibly dishonest) with non-negligible probability of making
V accept the proof, K can interact with P̂ and output (with overwhelming
probability) an x such that Q(z, x) = true.

Definition 3 (2-extractable). Let Q be a predicate for a proof of knowledge. A
3-move protocol8 with challenge space C is 2-extractable if from any two triplets
(t, c, r) and (t, c′, r′), with distinct c, c′ ∈ C accepted by V ictor, one can efficiently
compute an x such that Q(z, x) = true.

According to [22], UZK (Fig. 1) is a zero-knowledge protocol if the conditions
from Theorem 1 are satisfied. If the challenge space C is small, then one needs
several 3-move rounds to make the soundness error negligible.

Theorem 1. If values � ∈ Z and u ∈ G are known such that

– gcd(c0 − c1, �) = 1 for all c0, c1 ∈ C with c0 �= c1,
– [u] = z�,

then the protocol described in Fig. 1 is 2-extractable. Moreover, a protocol con-
sisting of s rounds is a proof of knowledge if 1/|C|s is negligible, and it is a
zero-knowledge protocol if |C| is polynomially bounded.

6 At least 2048 bits, better 3072 bits.
7 At least 192 bits, better 256 bits.
8 Peggy sends t, V ictor sends c, Peggy sends r.

Unifying Kleptographic Attacks 77

Fig. 1. Maurer’s Unified Zero-Knowledge (UZK) protocol.

2.3 SETUP Attacks

Definition 4 (Secretly Embedded Trapdoor with Universal Protection
- SETUP). A Secretly Embedded Trapdoor with Universal Protection (SETUP)
is an algorithm that can be inserted in a system such that it leaks encrypted
private key information to an attacker through the system’s outputs. Encryption
of the private key is performed using an asymmetric encryption scheme. It is
assumed that the decryption function is accessible only to the attacker.

Definition 5 (SETUP indistinguishability - ind-setup). Let C0 be a
black-box system that uses a secret key sk. Let AE be the asymmetric encryption
scheme used by a SETUP mechanism as defined above, in Definition 4. We con-
sider C1 an altered version of C0 that contains a SETUP mechanism based on
AE. Let A be a PPT algorithm which returns 1 if it detects that C0 is altered.
We define the advantage

ADV ind-setup
C0,C1

(A) = |Pr[AC1(sk,·)(λ) = 1] − Pr[AC0(sk,·)(λ) = 1]|.

If ADV ind-setup
C0,C1

(A) is negligible for any PPT algorithm A, we say that C0

and C1 are polynomially indistinguishable.

Remark 2. Definition 5 is a formalization of the indistinguishability property
for a regular SETUP mechanism described in [33]. The authors of [2] propose a
more general concept (public undetectability) that allows Mallory to tailor his
attacks depending on each of his victim’s public key. The two formalizations,
SETUP indistinguishability and public undetectability, assume that the public

78 G. Teşeleanu

parameters (g,G,H) and the secret/public key pair (x, z) are honestly generated.
In some cases, Mallory can also maliciously generate these. This scenario is
captured in [27] (cliptographic game). A consequence of the three formalizations
is that C0 and C1 have the same security.

Remark 3. We consider that the attacks presented from now on are implemented
in a device D that is used by Peggy to prove the knowledge of x. We assume
that x is stored only in D’s volatile memory9. Note that Peggy believes that D
works in accordance with the UZK protocol.

Remark 4. UZK can be transformed into a signature scheme using the Fiat-
Shamir transform [15]. Thus, obtaining a unified signature scheme. Note that the
SETUP attacks described for UZK are preserved by the Fiat-Shamir transform,
therefore Mallory can recover Peggy’s signing key by using either of them.

3 Unified Setup Attacks

In this section we state the principal results of this paper. The main protocol is a
SETUP attack against UZK that allows Mallory to extract Peggy’s knowledge
of x, while the supplementary one only allows Mallory to compute x in some
specific instantiations of UZK. We only show how to infect two sessions of the
protocol and assume that the rest of the sessions remain unmodified.

Before stating the results, we first make some preliminary assumptions. Let
h : H → G be a hash function and let i = 0, 1 be an index. We assume that
Peggy runs the protocols at least two times (i.e. once for i = 0 and once for

i = 1). We denote by y ← [g]xM Mallory’s public key, while xM
$←− |G| is his

secret key. Note that y is stored on D’s volatile memory. All the data we save
will also be stored on D’s volatile memory.

3.1 The Main Setup Attack

In Fig. 2 we present the main protocol against UZK. We depict in red the mod-
ifications on UZK to obtain our SETUP attack. Note that after session 0 the
index is incremented.

We further show how Mallory can extract Peggy’s knowledge if she uses a
device that is infected with US-1.

Theorem 2. If Peggy uses US-1 and UZK satisfies the conditions from Theo-
rem 1, then Mallory can compute an x̃ such that [x̃] = z. More precisely,

x̃ = ua � (r−1
1 � r0 � h(txM

0))b,

where a and b are computed using Euclid’s extended gcd algorithm such that
�a + (c0 − c1)b = 1.
9 If Peggy knows her secret she is able to detect the SETUP mechanism using its

description and parameters (found by means of reverse engineering a black-box, for
example).

Unifying Kleptographic Attacks 79

Fig. 2. The main unified setup attack.

Proof. From the definitions of r0 and r1 we obtain the following relations

[r0] = [k0 � xc0] = t0 ⊗ zc0

and

[r1] = [k1 � xc1] = [k0 � h(yα) � xc1] = t0 ⊗ [h(yα)] ⊗ zc1 .

Let β = h(yα) = h(txM
0). We make use of

[r−1
1 � r0] = [r−1

1] ⊗ [r0] = z−c1 ⊗ [β]−1 ⊗ zc0 = zc0−c1 ⊗ [β]−1

and Theorem 1 to see that Mallory can compute an x̃ such that [x̃] = z

[x̃] = [ua � (r−1
1 � r0 � β)b]

= [u]a ⊗ ([r−1
1 � r0] ⊗ [β])b

= (z�)a ⊗ (zc0−c1 ⊗ [β]−1 ⊗ [β])b

= z�a+(c0−c1)b = z.

�	
We continue by stating the security margin for the ind-setup between UZK

and US-1.

80 G. Teşeleanu

Theorem 3. If hdh is hard in 〈[g]〉 then UZK and US-1 are ind-setup in the
standard model. Formally, let A be an efficient PPT ind-setup adversary. There
exists an efficient algorithm B such that

ADV ind-setup
UZK,US-1(A) ≤ 2ADV hdh

〈[g]〉,[g],h(B).

Proof. Let A be an ind-setup adversary trying to distinguish between UZK
and US-1. We show that A’s advantage is negligible. We construct the proof as
a sequence of games in which all the required changes are applied to US-1. Let
Wi be the event that A wins game i.

Game 0. The first game is identical to the ind-setup game10. Thus, we have

|2Pr[W0] − 1| = ADV ind-setup
UZK,US-1(A). (1)

Game 1. In this game, h(yα) from Game 0 becomes [g]z, where z
$←− |G|.

Since this is the only change between Game 0 and Game 1, A will not notice
the difference assuming the hdh assumption holds. Formally, this means that
there exists an algorithm B such that

|Pr[W0] − Pr[W1]| = ADV hdh
〈[g]〉,[g],h(B). (2)

Game 2. The last change we make is k0, k1
$←− G. Adversary A will not notice

the difference, since

– α is a random exponent and G is cyclic
– multiplying k0 with a random element yields a random element.

Formally, we have that

Pr[W1] = Pr[W2]. (3)

The changes made to US-1 in Game 1 and Game 2 transformed it into UZK.
Thus, we have

Pr[W2] = 1/2. (4)

Finally, the statement is proven by combining the equalities (1), (2), (3) and (4).
�	

3.2 A Supplementary SETUP Attack

In Fig. 3 we present a supplementary protocol against UZK. Again, we depict
in red the modifications made to UZK to obtain our SETUP attack. Note that
after session 0 the index is incremented.

Unlike US-1, with US-2 Mallory cannot extract Peggy’s knowledge except
for some particular instantiations of UZK. More precisely, if Mallory knows or
can compute the cardinal of G then he can extract Peggy’s knowledge.
10 As in Definition 5.

Unifying Kleptographic Attacks 81

Fig. 3. A supplementary unified setup attack.

Theorem 4. If Peggy uses US-2 and |G| is publicly known, then Mallory can
compute an x̃ such that [x̃] = z, with probability ϕ(|G|)/|G|. More precisely,

x̃ = (r1 � (h(txM
0))−1)c−1

1 .

Proof. Let β = h(yα) = h(txM
0). From the definition of r1 we can easily extract

x by computing

x = (r1 � k−1
1)c−1

1 = (r1 � β−1)c−1
1 .

�	
We further state the security margin for the ind-setup between UZK and

US-2. We omit the proof due to its similarity to Theorem 3.

Theorem 5. If hdh is hard in 〈[g]〉 then UZK and US-2 are ind-setup in the
standard model. Formally, let A be an efficient PPT ind-setup adversary. There
exists an efficient algorithm B such that

ADV ind-setup
UZK,US-2(A) ≤ 2ADV hdh

〈[g]〉,[g],h(B).

4 Special Cases of the Unified SETUP Attacks

In this section we describe a number of attacks based on US-1 and US-2 for
different instantiations UZK.

82 G. Teşeleanu

4.1 Proofs of Knowledge of a Discrete Logarithm

Let p = 2q + 1 be a prime number such that q is also prime. Select an element
h ∈ Hp of order q in some multiplicative group of order p. The discrete logarithm
of an element z ∈ Hp is an exponent x such that z = hx. We further describe a
protocol for proving the knowledge of a discrete logarithm.

The Schnorr protocol [29]11 is a special case of UZK where (G, �) = (Zq,+)
and H = 〈h〉. The one-way group homomorphism is defined by [x] = hx and the
challenge space C can be any arbitrary subset of [0, q − 1]. According to [22], the
conditions of Theorem 1 are satisfied for � = q and u = 0.

Standard instantiation of the Schnorr protocol define Hp either as Z
∗
p or as

an elliptic curve, so according to Remark 1, we can safely apply both SETUP
attacks. Thus, for the first attack we have the following parameters

g ← 1, k0 ← α, t0 ← hα, k1 ← k0 + h(yα), t1 ← hk1 .

According to Theorem 2, Peggy’s secret can be recovered by computing

x̃ = (c0 − c1)−1(r0 − r1 + h(txM
0)).

For the second attack the only change in the protocol is k1 ← h(yα). According
to Theorem 4, Mallory can recover Peggy’s secret by computing

x̃ = c−1
1 (r1 − h(txM

0)).

Remark 5. Recovering x when Peggy uses US-2 was first described in a series
of papers by Young and Yung [32–35]. Remark that in this setting computing x
is a little bit more efficient than in the case of US-1.

We further describe a variation of the Schnorr protocol introduced by Girault
[18](see Footnote 11). Thus, let p = 2fp′ +1 and q = 2fq′ +1 be prime numbers
such that f , p′ and q′ are distinct primes. Select an element h ∈ Z

∗
n of order f ,

where n = pq. Note that p and q are secret.
Using the UZK notations we have (G, �) = (Zf ,+) and H = 〈h〉. The one-

way group homomorphism is defined by [x] = hx and the challenge space C can
be any arbitrary subset of [0, f −1]. It is easy to see that � = f and u = 0 satisfy
the two conditions of Theorem 1.

Since hdh is hard in H
12 then both attacks can be mounted. Note that the

attacks can be easily derived from the attacks on the Schnorr protocol.

4.2 Proofs of Knowledge of an eth-root

Let p and q be two safe prime numbers such that (p − 1)/2 and (q − 1)/2 are
also prime. Compute n = pq and choose a prime e such that gcd(e, ϕ(n)) = 1.

11 This proof can be seen as a more efficient version of a proposal made by Chaum
et al. [8].

12 See Remark 1.

Unifying Kleptographic Attacks 83

An eth-root of an element z ∈ Z
∗
n is a base x such that z = xe. Note that the

eth-root is not unique. We further describe a protocol for proving the knowledge
of an eth-root.

The Guillou-Quisquater protocol [20] is a special case of UZK where (G, �) =
(H,⊗) = (Z∗

n, ·). The one-way group homomorphism is defined by [x] = xe and
the challenge space C can be any arbitrary subset of [0, e− 1]. According to [22],
the conditions of Theorem 1 are satisfied for � = e and u = z. Note that when
e = 2 we obtain the protocol introduced by Fiat and Shamir [15].

Remark 6. Before stating the parameters for the SETUP attacks we must first
address two issues. The first issue is that both SETUP attacks assume that a
generator g is known to Mallory. This is needed in order to set-up Mallory’s
public key. But n is generated internally by Peggy’s device and no generator
for Z

∗
n is publicly available in the general case. To remove this impediment we

always choose p, q ≡ 3 or 5 mod 8. According to [23] this ensures us that 2 is a
generator for both Z

∗
p and Z

∗
q . Hence, 2 is also a generator for Z∗

n. If p and q are
stored only in Peggy’s device, then she cannot distinguish this particular choice
of primes from other randomly chosen primes, since she only has access to n.

The last issue that we have to address is the selection of Mallory’s secret
key. Let’s assume that n is a λ-bit integer. Since φ(n) is unknown to Mallory,

instead of choosing xM
$←− |Z∗

n|, he will choose xM
$←− [0, 2λ]. It is easy to see

that the statistical distance between the two distributions is (φ(n) − 2λ)/φ(n).
Thus, it is negligible.

Since hdh is hard in H(see Footnote 12) and it is infeasible to compute |G|,
then only US-1 can be applied. Thus, we have the following parameters for US-1

g ← 2, k0 ← 2α, t0 ← 2αe, k1 ← k0h(yα), t1 ← hk1 .

According to Theorem 2, Peggy’s secret can be recovered by computing

x̃ = za · (r−1
1 r0 · h(txM

0))b.

4.3 Proofs of Knowledge of a Discrete Logarithm Representation

Let p = 2q + 1 be a prime number such that q is also prime. Select m elements
h1, . . . , hm ∈ Hp of order q in some multiplicative group of order p. A discrete
logarithm representation of an element z ∈ 〈h1, . . . , hm〉 is a list of exponents
(x1, . . . , xm) such that z = hx1

1 . . . hxm
m . Note that discrete logarithm representa-

tions are not unique. We further describe a protocol for proving the knowledge
of a discrete logarithm representation.

A protocol for proving the knowledge of a representation is presented in
[22](see Footnote 11). To instantiate UZK and obtain Maurer’s protocol we
set G = Z

m
q with � defined as addition applied component-wise and H =

〈h1, . . . , hm〉. The one-way group homomorphism is defined by [(x1, . . . , xm)] =
hx1
1 . . . hxm

m and the challenge space C can be any arbitrary subset of [0, q − 1].
According to [22], the conditions of Theorem 1 are satisfied for � = q and

84 G. Teşeleanu

u = (0, . . . , 0). Note that when m = 2 we obtain a protocol introduced by
Okamoto [25].

The SETUP attacks for this protocol can be easily derived from the attacks
on the Schnorr protocol and, thus, are omitted.

Chaum et al. [8] also provide a variant for their protocol when n is composite.
Thus, by adapting the Girauld protocol and tweaking the Maurer protocol, we
can obtain a more efficient version of the Chaum et al. protocol. Using the nota-
tions from the Girauld protocol, we set G = Z

m
f and H = 〈h1, . . . , hm〉, where

h1, . . . , hm ∈ Z
∗
n are elements of order f . The one-way group homomorphism

is defined by [(x1, . . . , xm)] = hx1
1 . . . hxm

m and the challenge space C can be any
arbitrary subset of Zf . It is easy to see that � = f and u = (0, . . . , 0). Note that
US-1 and US-2 can also be mounted in this setting.

4.4 Proofs of Knowledge of an eth-root Representation

Let p and q be two prime numbers such that (p−1)/2 and (q−1)/2 are also prime.
Compute n = pq and choose primes e1, . . . , em such that gcd(ei, ϕ(n)) = 1, for
1 ≤ i ≤ n. An eth-root representation of an element z ∈ Z

∗
n is a list of bases

(x1, . . . , xm) such that z = xe1
1 . . . xem

m . Note that eth-root representations are not
unique. We further describe a protocol for proving the knowledge of an eth-root
representation.

A protocol for proving the knowledge of an eth-root representation can be
obtained from UZK if we set G = (Z∗

n)m with � defined as multiplication applied
component-wise and (H,⊗) = (Z∗

n, ·). The one-way group homomorphism is
defined by [(x1, . . . , xm)] = xe1

1 . . . xem
m and the challenge space C can be any

arbitrary subset of [0, e − 1], where e is a prime such that gcd(e, φ(n)) = 1. It is
easy to see that � = e and u = (xe

1, . . . , x
e
m).

The US-1 SETUP attack for this protocol can be easily derived from the
attack on the Guillou-Quisquater protocol and, thus, is omitted.

5 Conclusions

By introducing a new level of abstraction we devise new attack methods for
zero-knowledge protocols and their corresponding signature schemes. It would
be interesting to find new protocols that fit our framework.

In [31] we can find an extensive list of signature schemes that are vulnerable to
SETUP attacks. Thus, an interesting direction of research is abstracting digital
signatures13 and devising a method for attacking all of them at once, instead of
tweaking the attacks for each individual signature.

Acknowledgements. The dissemination of this work is funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No

692178.

13 Not only the ones obtained using the Fiat-Shamir transform.

Unifying Kleptographic Attacks 85

A Additional Preliminaries

Definition 6 (Computational Diffie-Hellman - cdh). Let D be a cyclic
group of order q, d a generator of D and let A be a probabilistic polynomial-
time algorithm (PPT algorithm) that returns an element from D. We define the
advantage

ADV cdh
D,d (A) = Pr[A(dx, dy) = dxy|x, y

$←− Z
∗
q].

If ADV cdh
D,d (A) is negligible for any PPT algorithm A, we say that the Com-

putational Diffie-Hellman problem is hard in D.

Definition 7 (Decisional Diffie-Hellman - ddh). Let D be a cyclic group of
order q, g a generator of D. Let A be a PPT algorithm which returns 1 on input
(dx, dy, dz) if dxy = dz. We define the advantage

ADV ddh
D,d (A) = |Pr[A(dx, dy, dz) = 1|x, y

$←− Z
∗
q , z ← xy]

− Pr[A(dx, dy, dz) = 1|x, y, z
$←− Z

∗
q]|.

If ADV ddh
D,d (A) is negligible for any PPT algorithm A, we say that the Deci-

sional Diffie-Hellman problem is hard in D.

Definition 8 (Entropy Smoothing - es). Let D be a cyclic group of order q,
K the key space and H = {hi}i∈K a family of keyed hash functions, where each
hi maps D to E, where E is a group. Let A be a PPT algorithm which returns 1
on input (i, y) if y = hi(z), where z is chosen at random from D. Also, let We
define the advantage

ADV es
H(A) = |Pr[A(i, hi(z)) = 1|i $←− K, z

$←− D]

− Pr[A(i, h) = 1|i $←− K, h
$←− E]|.

If ADV es
H(A) is negligible for any PPT algorithm A, we say that H is Entropy

Smoothing.

Remark 7. In [13], the authors prove that the CBC-MAC, HMAC and Merkle-
Damg̊ard constructions satisfy the above definition, as long as the underlying
primitives satisfy some security properties.

References

1. Abdalla, M., Bellare, M., Rogaway, P.: DHAES: An Encryption Scheme Based on
the Diffie-Hellman Problem. IACR Cryptology ePrint Archive 1999/7 (1999)

2. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM-CCS 2015, pp. 364–375. ACM (2015)

3. Ball, J., Borger, J., Greenwald, G.: Revealed: How US and UK Spy Agencies Defeat
Internet Privacy and Security. The Guardian 6 (2013)

86 G. Teşeleanu

4. Bellare, M., Jaeger, J., Kane, D.: Mass-Surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: ACM-CCS 2015, pp. 1431–1440.
ACM (2015)

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

6. Bellare, M., Rogaway, P.: Minimizing the use of random oracles in authenti-
cated encryption schemes. In: Han, Y., Okamoto, T., Qing, S. (eds.) ICICS 1997.
LNCS, vol. 1334, pp. 1–16. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0028457

7. Berndt, S., Lískiewicz, M.: Algorithm substitution attacks from a steganographic
perspective. In: ACM-CCS 2017, pp. 1649–1660. ACM (2017)

8. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 13

9. Checkoway, S., et al.: A systematic analysis of the Juniper dual EC Incident. In:
ACM-CCS 2016, pp. 468–479. ACM (2016)

10. Checkoway, S., et al.: On the Practical Exploitability of Dual EC in TLS Imple-
mentations. In: USENIX Security Symposium, pp. 319–335. USENIX Association
(2014)

11. Crépeau, C., Slakmon, A.: Simple backdoors for RSA key generation. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 403–416. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 28

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

13. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28628-8 30

14. Feige, U., Fiat, A., Shamir, A.: Zero-Knowledge proofs of identity. J. Cryptol. 1(2),
77–94 (1988)

15. Fiat, A., Shamir, A.: How To prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-
7 12

16. Fried, J., Gaudry, P., Heninger, N., Thomé, E.: A Kilobit hidden SNFS discrete
logarithm computation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 202–231. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 8

17. Gennaro, R., Krawczyk, H., Rabin, T.: Secure hashed Diffie-Hellman over Non-
DDH groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 361–381. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24676-3 22

18. Girault, M.: An identity-based identification scheme based on discrete logarithms
modulo a composite number. In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 481–486. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
46877-3 44

https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/BFb0028457
https://doi.org/10.1007/BFb0028457
https://doi.org/10.1007/3-540-39118-5_13
https://doi.org/10.1007/3-540-36563-X_28
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-540-28628-8_30
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-319-56620-7_8
https://doi.org/10.1007/978-3-540-24676-3_22
https://doi.org/10.1007/978-3-540-24676-3_22
https://doi.org/10.1007/3-540-46877-3_44
https://doi.org/10.1007/3-540-46877-3_44

Unifying Kleptographic Attacks 87

19. Gordon, D.M.: Designing and detecting trapdoors for discrete log cryptosystems.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 66–75. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-48071-4 5

20. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A.,
Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 11

21. Maimuţ, D., Teşeleanu, G.: Secretly embedding trapdoors into contract signing
protocols. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp.
166–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5 12

22. Maurer, U.: Unifying zero-knowledge proofs of knowledge. In: Preneel, B. (ed.)
AFRICACRYPT 2009. LNCS, vol. 5580, pp. 272–286. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02384-2 17

23. McCurley, K.: A key distribution system equivalent to factoring. J. Cryptol. 1(2),
95–105 (1988)

24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231–262 (2004)

25. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

26. Perlroth, N., Larson, J., Shane, S.: NSA Able to Foil Basic Safeguards of Privacy
on Web. The New York Times, 5 (2013)

27. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power
of Kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53890-6 2

28. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic Semantic Security against a
Kleptographic Adversary. In: ACM-CCS 2017, pp. 907–922. ACM (2017)

29. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

30. Shoup, V.: Sequences of Games: A Tool for Taming Complexity in Security Proofs.
IACR Cryptology ePrint Archive 2004/332 (2004)

31. Teşeleanu, G.: Threshold Kleptographic Attacks on Discrete Logarithm Based Sig-
natures. IACR Cryptology ePrint Archive 2017/953 (2017)

32. Young, A., Yung, M.: The dark side of “Black-Box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

33. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

34. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052241

35. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. Wiley,
Indianapolis (2004)

36. Young, A., Yung, M.: Malicious cryptography: kleptographic aspects. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 2

https://doi.org/10.1007/3-540-48071-4_5
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-319-69284-5_12
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/978-3-540-30574-3_2

Steady

A Simple End-to-End Secure Logging System

Tobias Pulls(B) and Rasmus Dahlberg

Department of Mathematics and Computer Science,
Karlstad University, Karlstad, Sweden

{Tobias.pulls,Rasmus.dahlberg}@kau.se

Abstract. We present Steady: an end-to-end secure logging system
engineered to be simple in terms of design, implementation, and assump-
tions for real-world use. Steady gets its name from being based on a
steady (heart)beat of events from a forward-secure device sent over an
untrusted network through untrusted relays to a trusted collector. Prop-
erties include optional encryption and compression (with loss of confi-
dentiality but significant gain in goodput), detection of tampering, relays
that can function in unidirectional networks (e.g., as part of a data
diode), cost-effective use of cloud services for relays, and publicly verifi-
able proofs of event authenticity. The design is formalized and security
proven in the standard model. Our prototype implementation (≈2,200
loc) shows reliable goodput of over 1M events/s (≈160 MiB/s) for a real-
istic dataset with commodity hardware for a device on a GigE network
using 16 MiB of memory connected to a relay running at Amazon EC2.

Keywords: Secure logging · Protocols · Applied cryptography

1 Introduction

Logs play a vital role during the operational phase of systems by providing a
communication channel that gives insights into how systems are operating, such
as informing about errors, warnings, or potential security events. Such informa-
tion have far reaching implications in today’s increasingly digitalised world, for
example in criminal cases due to so-called Data Retention laws mandating log-
ging for law-enforcement purposes1 or for general auditing of systems [13]. Due
to the increasing number of systems in operation, logs are often transported over
a network—potentially stored temporarily by one or more relays—to be collected
for centralised analysis that correlate logs, e.g., by using a security information
and event management (SIEM) system. The centralised system serves as the pri-
mary means of monitoring operations. Absence of logs from a system expected
to be operating is a case for concern and typically closely monitored.

Because logs are important they have to be secured and the literature con-
tains a number of contributions on secure logging, addressing a wide-range of
1 For example Directive 2006/24/EC http://europa.eu/!BM68tq, accessed 2018-08-08.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 88–103, 2018.
https://doi.org/10.1007/978-3-030-03638-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_6&domain=pdf
http://orcid.org/0000-0001-6459-8409
http://orcid.org/0000-0003-0840-5072
http://europa.eu/!BM68tq
https://doi.org/10.1007/978-3-030-03638-6_6

Steady: A Simple End-to-End Secure Logging System 89

aspects ranging from schemes for efficient integrity protection to complete sys-
tems that typically considers log confidentiality in addition to integrity protec-
tion. Secure logging schemes that do not provide confidentiality typically have to
be combined at least with some form of transport security (e.g., TLS) to provide
comparable security properties to secure logging systems. Further, some secure
logging systems that encrypt logs still need other properties from transport secu-
rity protocols for real-world use, such as replay protection or communication
partner authenticity.

In this paper, we present a secure logging system based on several obser-
vations made earlier. First, our system is named Steady because it relies on a
steady (heart)beat of new log events from the generating system for some of its
security properties. As mentioned before, monitoring uptime of critical systems
is already common. Second, Steady supports untrusted relays for intermediate
storage during log transport. This opens up for using public cloud services as
relays. Further, for real-world deployment Steady does not rely on any other
transport security protocol like TLS for its security properties. Finally, Steady
supports efficient publicly verifiable proofs of event authenticity to support use-
cases where third-parties need to verify the authenticity of logged events.

Our contributions are:

– The design of a simple secure logging system named Steady that supports
untrusted relays and that bases part of its security on the time between
blocks of events (Sect. 2). The system can be used with a data diode in high
security settings and is well suited for outsourcing to cloud providers.

– A formal definition of Steady with proofs of security in the standard model for
event secrecy, event integrity, delayed event deletion-detection, and unforge-
able proofs of event authenticity (Sects. 3 and 4). The security reduces to
standard properties of the primitives for hashing, signing, and encrypting.

– A prototype implementation in C and Go instantiated using primitives from
libsodium for a 128-bit security level together with a performance evaluation
focused on event generation for different relay locations (Sect. 5). Our evalua-
tion shows reliable goodput of over 1M events/s (≈160 MiB/s) for a realistic
dataset with commodity hardware for a device on a GigE network using 16
MiB of memory connected to a relay running at Amazon EC2.

Besides the sections referenced above, related work is presented in Sects. 6
and 7 concludes this paper.

As a complement to this conference paper, there is also a full version of the
paper on the Cryptology ePrint Archive [12]. It contains the formal definition of
our verification algorithm (presented informally later) together with an extension
to Steady for private proofs of event authenticity. The extension is made for
settings where any risk to leak information about other low-entropy log entries
as part of proofs is unacceptable, similar to the approach of Buldas et al. [3].
The cost of the extension is a linear number of additional hash operations during
block creation and one more hash in the proofs.

90 T. Pulls and R. Dahlberg

2 Overview of Steady

Figure 1 shows our setting with three different types of systems:

Device a forward-secure system that generates events as part of a log.
Relay an untrusted system that stores events temporarily. A relay has finite

storage, so events must be dropped due to space constraints.
Collector a trusted system that collects and verifies events. We assume that a

collector has sufficient space and processing power available.

Fig. 1. The setting of Steady with device, relay, and collector systems.

Without loss of generality we consider a single relay but stress that Steady
supports multiple relays by cascading writes (as shown later).

2.1 Threat Model

Our ultimate goal is end-to-end security from device to collector while consider-
ing all relays and the network as active adversaries during logging. The collector
is assumed to be trusted. Further, we consider the device forward secure: it is
initially trusted from setup up until a point in time t when an adversary com-
promises the device. We only aim to secure events generated a delta δ time prior
to compromise: this is because we base some security properties of Steady on
heartbeats of new blocks from the device. For example, if t = 120 seconds since
setup and δ = 10 seconds, then events generated before t−δ = 110 seconds after
setup are fully protected. We stress that δ is user-configurable and a practical
trade-off (discussed later in Sect. 4) that enables us to make Steady simple.

2.2 Properties and Requirements

Informally, events should not be possible to tamper with and optionally also
confidential (encrypted). It should be possible to buffer events at the device
and optionally compress them, despite leaking information2. Compression and
encryption are optional because in some settings encryption may not be needed—
e.g., if traffic is wrapped in some other secure transport protocol—and compres-
sion typically gives a significant throughput improvement. Regardless of encryp-
tion or compression, it should be possible to produce an independent proof of
each event that be used to convince a third party of the authenticity of the event.
2 Compression breaks semantic security and depending on setting completely neglects

any encryption [8], as shown, e.g, in the CRIME and BREACH attacks.

Steady: A Simple End-to-End Secure Logging System 91

Beyond being untrusted, relays should be able to have fixed storage for sake
of operational concerns (e.g., to fit all relayed data in memory) and to be able to
optimally use Cloud Service Providers like Amazon EC2. After setup we want
no direct communication between device and collector: this ensures that a relay
can be part of a unidirectional network for high-security (air-gapped) settings.

2.3 Setup and Policy Creation

Figure 2 shows the setup of Steady. It starts with the collector generating a
public key (pub) that is sent to the device together with a timeout value and
the minimum storage space for its relay. The timeout specified the maximum
amount of time between events from the device, described further later. The
device commits to the parameters by creating a signed policy with a key-pair
that has been verified to belong to the device out of band. A policy is valid
for the lifetime of logging. The policy is propagated to the untrusted relay. The
relay verifies that the storage parameter in the policy is acceptable and that the
signature is valid. Finally, the collector polls the relay for the policy and verifies
it. Each entity has its respective state (defined later), where notably the private
and signing keys are only known to the respective entities that generated them.

Fig. 2. The setup of Steady resulting in a signed policy of parameters.

2.4 Device Logging and Creating Blocks

The device generates a block of events periodically, at least when the timeout
triggers. Blocks are given an incremental index by the device together with other
metadata such as a timestamp, a signature, and the root of a Merkle tree over all
events [11]. A more precise definition is given later. Events are kept in a queue as
shown in Fig. 3 before being included in a block. Several events in the same block
makes compression more efficient and amortises costs related to cryptographic
operations during block generation and network transport.

Note that if a device has to drop events, e.g., due to memory constraints,
then they should be dropped from the queue and not from potentially buffered
blocks not yet written to the relay. While it is possible for the device to recreate
blocks not yet written to the relay, it is relatively costly to do so. Any metadata
to report to the collector about dropped events can be sent as part of an event.

92 T. Pulls and R. Dahlberg

Fig. 3. The device’s event and block generation flow.

2.5 Writing to and Reading from a Relay

When a device writes one or more blocks to the relay, the relay first sorts the
blocks based on index, and then processes one block at the time as shown in
Fig. 4. The relay verifies the signature on the block and only accepts if the block
has been signed with the same key as the policy. Then it ensures that the block
is the next (in terms of index) block based on the previous block and if so makes
space for the block before accepting (storing) it. To keep at most the minimum
storage space in the policy, the relay stores a (FIFO) queue of blocks.

Fig. 4. The relay’s event write flow.

A read from the relay is done based on a supplied block index by traversing
the queue and sending each block with an equal or greater index. Because a relay
is defined as a FIFO queue with read and write operations, multiple relays can
be used where writes cascade and the collector reads from the last relay.

2.6 Collector Verification

The collector periodically polls for new blocks from the relay based on the latest
read block index in its state. Because each block is signed we know that events
within it cannot be tampered with, so verification focuses on ensuring we get the
expected blocks. Figure 5 shows the three possible correct cases when reading
from a relay (with read index y): (a) no new blocks, (b) a sequence of new blocks
directly following the last read block (x+1 = y), or (c) a disconnected sequence.

Based on the above three cases we sketch a verification algorithm verify that
verifies that we read the expected blocks from the relay:

Empty. Valid if the time since the last block is less then the timeout.

Steady: A Simple End-to-End Secure Logging System 93

Fig. 5. The three possible correct cases when reading blocks.

Connected sequence. Valid if the timestamp of the most recent returned
block is timely given the current time at the collector and the timeout.

Disconnected sequence. Same as the connected sequence case with the addi-
tional requirement that the size of all returned blocks is consistent with the
minimum storage space in the policy.

The formally defined algorithm is in the full version of the paper [12].

2.7 Proof Generation and Verification for Event Authenticity

As mentioned in Sect. 2.4, each block is signed by the device and contains the
root of a Merkle tree over all events in the block. A proof of event authenticity is
simply a Merkle audit path to an event in question and metadata from the block
to verify the signed root from the device. Verifying the proof involves verifying
the signature and comparing the computed Merkle root from the audit path to
the one signed by the device.

3 Formal Model of Steady

We formally model Steady, starting with core definitions and the logging scheme
in Sect. 3.1 followed by properties in Sect. 3.2.

3.1 Core Definitions and the Logging Scheme

We define a policy (Definition 1), block (Definition 2), and proof (Definition 3).

Definition 1 (Policy). Given a public key pub, a signing key-pair (sk, vk), a
timeout t, a minimum space s, the current time τ , and a policy identifier k, a
policy P is defined as:

{k, vk, pub, t, s, τ, σ}
where σ is a signature using sk over all other values.

Nothing prevents the relay from storing more blocks than the minimum
space s. The policy identifier k should be unique per device. The timeout t
is the maximum period of time (inclusive) between blocks being created by the
device. The current time τ is included as relevant metadata and a reference for
when the first block should be expected the latest (relative to t).

94 T. Pulls and R. Dahlberg

Definition 2 (Block). Given a policy identifier k, a signing key sk, a list of
events e with the Merkle tree root r, an optionally compressed and then encrypted
payload p ← e‖IV, a block index i, two boolean flags indicating encryption fe and
compression fc, the size of the previous block �p, an initialization vector IV, and
the current time τ , a block B is defined as:

{
i, �c, �p,Hk(p), φ ← Hk

(
i‖�c‖�p‖Hk(p)‖fe‖fc

)
, ι ← HIV(r), τ, σ, p

}

where σ ← Sig(sk, φ‖ι‖τ) and �c is the resulting size of the current block. We
refer to φ as the block header hash and ι the root hash.

Note that Hk is a keyed hash function—where the key puts the hashes of different
blocks belonging to different policies into different domains—and that the root
hash is keyed with IV instead of k (to make proofs smaller, no need to share
k). We need the previous block size �p in the verification algorithm, see the full
version of the paper [12]. Based on a chosen or guessed e, an adversary can
reconstruct the Merkle tree root r′ and check if it matches r ∈ B. Since this
would violate event secrecy (defined later), a block includes H(r‖IV) instead of
r itself. IV is part of the encrypted payload. Note that the signature does not
directly cover p, and that the block sans the payload is constant size. This enables
a block to be efficiently streamed, such that the verifier can verify the signature
using only the block header and then know how large the remainder of the block
should be (using �c). The hash of the payload (H(p)) in the header authenticates
it once read. Finally, the structure ensures compact proofs of event authenticity
that does not leak block metadata3.

Definition 3 (Proof of event authenticity). Given a block B and an event
e ∈ B, a proof Π is defined as:

{
IV, φ, τ, σ,

#»

h e
}

where σ ∈ B and
#»

h e is a Merkle audit path to e that enables the computation of
ι using IV, which in turn is signed by σ together with τ and φ.

Having defined a policy, block, and proof we can now define a Steady logging
scheme (Definition 4):

Definition 4 (Steady scheme). Given a security parameter λ, a time-
skew security parameter δ, an encryption key-pair (priv, pub), a signing key-
pair (sk, vk), and a policy P , we define a collector state Sc as {δ, priv, P, i, τ }, a
device state Sd as {pub, sk, P, i, τ, �p}, and a relay state Sr as {P,B}. Here i is
the (expected) next block index, τ the time of the most recent block, �p the size
of the previous block, and B a sequence of blocks; initially i is set to 0, �p to 0,
B to an empty sequence, and τ to the creation time of P . A Steady scheme S is
composed of seven algorithms {setup, block, read,write, verify, proofGen, proofVer}
that are polynomial in space and time:
3 The block metadata i, �c, and �p are hashed together with the hash of the payload

that is likely high entropy, unlike the metadata.

Steady: A Simple End-to-End Secure Logging System 95

– Sc, Sd, Sr ← setup(λ, δ, t, τ, s): given two security parameters λ and δ, a time-
out t ∈ N, the current time τ , and a space s ∈ N, setup runs (priv, pub)
←$KGen(1λ) and (sk, vk) ←$KGen(1λ). Next, a policy P is generated from
k ←$ 1λ, pub, (sk, vk), t, τ , and s. The output is the initial states Sc, Sd, Sr.

– B,S′
d ← block(Sd,e, τ, fe, fc): given a device state Sd, a list of events e,

the current time τ , an encryption flag fe, and a compression flag fc, block
generates the next block B based on Sd, τ , and the flags. The output is B and
a refreshed state S′

d such that i′ = i + 1, �′
p = �c, and τ ′ = τ .

– β ← read(Sr, i): given a relay state {P,B} ← Sr and a block index i, read
outputs a sequence of blocks β ← {Bj | Bj ∈ B ∧ j ≥ i}.

– S′
r ← write(Sr, β): given a relay state {P,B} ← Sr and a connected sequence

of blocks β, write outputs a refreshed state S′
r with B′ ⊆ B ∪ β. B′ should

contain at least as many of the most recent blocks as implied by the minimum
space parameter in P .

– α, S′
c ← verify(Sc,B, τ): given a collector state Sc, a sequence of blocks B, and

the current time τ , verify determines with respect to Sc and τ if every B ∈ B
is a valid block and that no block is missing. The output is an answer α ←
{false, true} together with a refreshed state S′

c that matches i + 1 and τ from
the most recent valid block.

– Π ← proofGen(B, e, Sc): given a block B, an event e ∈ B and collector state
Sc used to retrieve and verify B, proofGen outputs a membership proof Π.

– α ← proofVer(Π, e, vk): given a proof Π, an event e, and a verification key
vk, proofVer outputs an answer α ← {false, true} that is true iff Π shows that
vk authenticates e, otherwise false.

3.2 Properties

For the following correctness and security definitions, we define a helper algo-
rithm {false, true} ← check(Sr, τ) that outputs true iff the state Sr is without
deletions that violate the policy P ∈ Sr given the (correct) current time τ .

Definition 5 (Correctness). Let S be an instance of the Steady logging scheme
{setup, block, read,write, verify, proofGen, proofVer}. For all λ, δ, s, t ∈ N, policy
creation time τ , and Sc, Sd, Sr ← setup(λ, δ, t, τ, s) that are followed by poly-
nomially many invocations of block, write, and verify to obtain a sequence of
blocks B and the intermediate states Sc, Sd, Sr, then S is correct iff:

Pr

[∀e ∈ ∀B ← read(Sr, i ∈ Sc) : check(Sr, τ) ∧ ¬verify(Sc,B, τ)
∨¬proofVer(Π ← proofGen(B, e, Sc), e, vk ∈ Sc

)
]

≤ negl(λ)

In the following security definitions, we consider an adversary that controls
an instance of the Steady scheme adaptively. Whereas access to Sr is unlimited
with write, the states Sc and Sd can only be influenced through oracle access:

– B ← oblock(e, fe, fc): given a list of events e, encryption flag fe, and com-
pression flag fc, oblock runs block with the provided input, the most recent
device state Sd (kept by the oracle), and the correct current time. Returns
the generated block B.

96 T. Pulls and R. Dahlberg

– α ← overify(B): given a sequence of blocks B, overify runs verify with B, the
most recent collector state Sc, and the current time τ . Returns the answer α.

– e, IV ← odec(B): given a block B with an encrypted payload, odec decrypts
the payload in B and returns the list of events e and IV.

For event secrecy (Definition 6), an oracle B ← oblock∗b(e0,e1) is defined
that outputs the next block B from eb using oblock with fe = true, where b is a
secret challenge bit. In order to prevent size correlations, oblock∗b only accepts ei

of equally many events that match pair-wise in size and fc = false. The adversary
may not use odec to decrypt any block from oblock∗b (as in IND-CPA).

Definition 6 (Event secrecy). For all λ, δ ∈ N and PPT adversaries A, a
Steady scheme provides computational secrecy of an event’s content iff:

1
2

|Pr[ExpesA (λ, δ) = 1 | b = 0] + Pr[ExpesA (λ, δ) = 1 | b = 1] − 1| ≤ negl(λ)

ExpesA (λ, δ):

1 : t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s), b ←$ {0, 1}
3 : b′ ← Aoblock,oblock∗b,read,write,overify,odec(Sr, Sa)

4 : return b
?
= b′

For event integrity (Definition 7), we define an algorithm {false, true} ←
valid(P,B, e, e′) that uses verify as a subroutine. The output is true iff B is a
block for the policy P when e ∈ B and after replacing the event e ∈ B with e′.

Definition 7 (Event integrity). For all λ, δ ∈ N and PPT adversaries A, a
Steady scheme provides integrity of an event’s content iff:

Pr
[
ExpeiA(λ, δ) = 1

] ≤ negl(λ)

ExpeiA(λ, δ):

1 : fe, fc, t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s)

3 : B, e, e′ ← Aoblock,read,write,overify,odec(Sr, Sa)

4 : return e �= e′ ∧ valid(P ∈ Sc, B, e, e′)

For delayed event deletion detection (Definition 8), the adversary gets con-
trol over the setup parameters except for the current time τ . After polynomial
invocations to the listed oracles, the adversary outputs a state of the relay Sr, a
positive time duration Δ that represents the expired time after setup, and the
duration x since τ when the latest (in terms of index) block was modified or
deleted in Sr. The adversary wins if she can modify or delete with more than
negligible probability one or more blocks from Sr without detection by verify
after the duration t+ δ, where t is the timeout and δ a security parameter. Note

Steady: A Simple End-to-End Secure Logging System 97

that overify is not available to the adversary: we remove this capability to ensure
that the call to read using Sc reads all blocks in Sr for verify to verify4.

Definition 8 (Delayed event deletion detection). For all λ, δ ∈ N and
PPT adversaries A, a Steady scheme provides delayed event deletion detection
iff:

Pr
[
ExpdeddA (λ, δ) = 1

]
≤ negl(λ)

ExpdeddA (λ, δ):

1 : fe, fc, t, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s), where τ is the correct current time

3 : Sr, Δ, x ← Aoblock,read,write,odec(Sr, Sa)

4 : return ¬check(Sr, τ + Δ) ∧ verify
(
Sc, read(Sr, i ∈ Sc), τ + Δ

)
∧ x > t + δ

For unforgeable proofs of event authenticity (Definition 9), the adversary has
to output an event e and a valid proof Π for e, where e has not been part of any
of the blocks B generated by the adversary as part of calls to oracle oblock.

Definition 9 (Unforgeable proofs of event authenticity). For all λ, δ ∈ N

and PPT adversaries A, a Steady scheme provides unforgeable proofs of event
authenticity iff:

Pr
[
ExpufpA (λ, δ) = 1

]
≤ negl(λ)

ExpufpA (λ, δ):

1 : fe, fc, t, τ, s, Sa ← A(λ, δ)

2 : Sc, Sd, Sr ← setup(λ, δ, t, τ, s)

3 : B, e, Π ← Aoblock,read,write,overify,odec(Sr, Sa)

4 : return e /∈ B ∧ proofVer(Π, e, vk ∈ P ∈ Sc)

4 Security of Steady

4.1 Assumptions

Lemma 1. In a Merkle tree, the security of an audit path reduces to the collision
resistance of the underlying hash function H.

Proof (sketch). This follows from the work of Merkle [11] and Blum et al. [1].

4 If the adversary can modify or remove a block already read from the relay by the
collector this would cause check to fail but this is not relevant for security.

98 T. Pulls and R. Dahlberg

4.2 Properties and Proofs

The formally defined verify algorithm is in the full version of the paper [12].

Theorem 1 (Correctness). Steady is correct as in Definition 5.

Proof (sketch). For the first part of Definition 5, regarding verification, all pos-
sible (valid) blocks are per definition generated by calls to block, written to the
relay with write, and returned by read from a valid Sr given time τ . This implies
that blocks are timely, form a valid sequence, and the size is at least the size
in the policy, so verify accepts with probability 1 for all possible blocks. For
the second part of Definition 5, regarding proofs, this follows trivially from the
definitions of proofGen and proofVer.

Theorem 2 (Event secrecy). For an IND-CPA secure public-key encryption
scheme and a pre-image resistant hash function, Steady provides computational
secrecy of events as in Definition 6.

Proof (sketch). The events have been encrypted together with a uniformly ran-
dom IV using an IND-CPA secure public-key encryption scheme. This ensures
that the payload itself is not a distinguisher. Further, as part of the block B
from oblock∗, (i, �p, τ) are independent of the events in the block. The root hash
ι is done with a pre-image resistant hash function, where the root of the Merkle
tree is combined with a uniformly random IV before being hashed. The payload
hash, block header φ, and signature σ operate on the encrypted events. ��

Event secrecy, per definition, is only provided when encryption is enabled and
compression is disabled. Further, because of the use of public-key encryption,
Steady also provides forward secrecy upon compromise of a device and its state.

Corollary 1 (Forward event secrecy). For an IND-CPA secure public-key
encryption scheme and a pre-image resistant hash function, Steady provides com-
putational forward secrecy of events in blocks.

Theorem 3 (Event Integrity). Given an existentially unforgeable signature
scheme and a collision resistant hash function, Steady provides computational
integrity of events as defined in Definition 7.

Proof (sketch). An existentially unforgeable signature scheme prohibits forgery
of different messages. This means that every signed block B will include an
authentic Merkle tree root that cannot be replaced by the adversary, and each
event e ∈ B will thus be fixed by an audit path in the block’s Merkle tree. The
security of an audit path reduces to the collision resistance of the underlying
hash function (Lemma 1). ��
Theorem 4 (Unforgeable Proofs of Event Authenticity). Given an exis-
tentially unforgeable signature scheme and a collision resistant hash function,
Steady’s proofs of event authenticity are unforgeable as defined in Definition 9.

Steady: A Simple End-to-End Secure Logging System 99

Proof (sketch). Proof verification consists of verifying an audit path in a Merkle
tree and that the root of the Merkle tree is signed. The security of an audit path
reduces to the collision resistance of the underlying hash function (Lemma 1)
and the signature is existentially unforgeable. ��
Theorem 5 (Delayed event deletion detection). Given an existentially
unforgeable signature scheme and a collision resistant hash function, Steady pro-
vides delayed event deletion detection as defined in Definition 8.

Proof (sketch). Within blocks, events cannot be deleted because each event is
fixed by an audit path in a Merkle tree (Lemma 1) where the root is signed with
an existentially unforgeable signature. Therefore we need to show that blocks
cannot be deleted without detection.

With a correct collector state Sc generated through setup or oracle calls to
overify, read returns a sequence of blocks B. The authenticity and integrity of
blocks are protected by an existentially unforgeable signature. The verification
algorithm verify sorts B with valid signatures into a (not necessarily connected)
sequence (B0 . . . Bn) based on block index i, and removes any duplicates or old
blocks (index < requested index to read). There are then three possible cases:

Case 1. len
(
(B0 . . . Bn)

)
= 0: read returned no new blocks.

Case 2. len
(
(B0 . . . Bn)

)
> 0 ∧ Bi

0 = Si
c: read provided one or more new blocks

and the first block is the block directly after the previous read.
Case 3. len

(
(B0 . . . Bn)

)
> 0 ∧ Bi

0 �= Si
c: read provided one or more new blocks

and the first block is not the block directly after the previous read.

Note that for ExpdeddA (λ, δ) to return true then x > t+δ, meaning that at least
t + δ time must have expired since the latest block was deleted or modified by
the adversary. Further, the policy specifies that (i) a block should be produced
at least after t time since the latest block, and (ii) the relay should store at
least s space of the most recent blocks. If a block has been deleted from Sr such
that check returns false, then the policy has been violated at time τ + Δ (per
definition). Therefore either of the two, or both, parts of the policy have been
violated. Returning to the three possible cases in the paragraph above:

Case 1. The timely check will detect any deleted block because (i) t + δ time
has expired, (ii) the time in the collector’s state is based on an existentially
unforgeable signature in the last verified block, and (iii) the provided current
time τ + Δ is the same as for check.

Case 2. In addition to a timely check—but in this case based on the time in
the latest new block instead of state—verify also checks that all blocks form
a connected sequence from the block in state to the latest block. All blocks
are signed with an existentially unforgeable signature.

Case 3. In addition to a timely check of the latest new block, verify checks that
all new blocks form a connected sequence, and that the size of the new blocks
together with the size of the prior block (B�p

0) is greater than the space s in
the policy, detecting any deleted blocks.

��

100 T. Pulls and R. Dahlberg

Theorem 5 covers block deletion as defined in Definition 8 when reading
blocks from the relay that the adversary completely controls. Further, per defi-
nition write checks for a monotonically increasing block index, therefore replay
attacks are irrelevant after setup (Corollary 2).

Corollary 2 (Relay replay attacks). Given an existentially unforgeable sig-
nature scheme, writes and reads in Steady are secure from replay attacks.

4.3 Relay Flushing and Device Forward Security

Note that the delayed event deletion detection, as defined in Definition 8, is
limited in several ways. First, deletion detection is delayed by the timeout t and
time-skew δ parameters. Benign delays due to, e.g., network effects or clock drift
between device and collector, risks causing false positives with a time-based
deletion detection mechanism. We therefore introduce a security parameter δ
that specifies the acceptable delay for the collector, trading delayed deletion
detection for reduced false positives.

Further, because the relay only is required to keep finite storage, this opens
up another venue for an adversary to “flush” a relay (Corollary 3). We stress
that this is fundamental restriction in the setting.

Corollary 3 (Relay flushing). An adversary with the capability to trigger the
device to create new blocks can flush blocks from the relay that have yet to be read
by the collector. Accordingly, a relay’s minimum storage capacity and the collec-
tor’s reading frequency must be treated as security parameters.

In the setting of finite storage relays, forward event integrity and forward
(delayed) event deletion detection are less relevant: if the collector does not
read (fast enough) an adversary can flush the relay, and if a device blocks or
discards new events when storage is full (or not read) then this is either a severe
denial-of-service vector or just a precondition for an adversary to trigger before
launching an attack she does not want detected (the same outcome as being able
to compromise and delete events).

Corollary 4 (Collector reads and device forward security). If the collec-
tor continuously reads from the relay, then the timeout and time-skew parameters
give an upper bound for the time the adversary has in undetectably modifying or
deleting events that have yet been read by the collector.

5 Performance Evaluation

We first instanciated our scheme to reach a 128-bit security level with BLAKE2b-
256, AES256-GCM, X25519, and Ed25519 using an NaCl box-like scheme for
encryption5. The device is implemented6 in C (c11) in 987 loc (as reported by
5 NaCl box (https://nacl.cr.yp.to/box.html) uses Salsa20 and Poly1305, we use

AES256-GCM instead for the hardware speed-up on selected platforms.
6 https://github.com/pylls/steady-c, Apache 2.0 license.

https://nacl.cr.yp.to/box.html
https://github.com/pylls/steady-c

Steady: A Simple End-to-End Secure Logging System 101

cloc) using libsodium7 for crypto primitives and LZ48 for compression. The
relay and a minimal collector are implemented9 in Go in 1239 loc.

For our performance evaluation focused on event goodput we used 1 GiB of
syslog events (6,472,046 events, mean size 164.9±39.7 bytes) of the Dartmouth
campus CRAWDAD dataset [9]. The device was run on an i7-4790@3.6 GHz CPU
with 16 GiB DDR3@1600 MHz memory and a 1 Gib/s Internet connection. It
was limited to using one (logical) core for block creation. We hosted the relay
at two locations: on a laptop connected through a 1 Gib/s LAN (mean 0.4±0.2
ms latency) and at an Amazon EC2 instance type m5.large in Frankfurt with a
up to 10 Gib/s connection (mean 29.8±0.2 ms latency). The relay is never CPU
bound due to little computation needed to verify blocks (see Fig. 4).

Figure 6 shows the results of our performance evaluation. Compression
enables a device with only 16 MiB of memory to sustain over 1M events/s (over
160 MiB/s) regardless of relay location or use of encryption. Without compres-
sion the increased latency to the relay has a significant impact on goodput,
likely because the connection between the device and relay is saturated. Device
memory beyond 16 MiB has little or no impact on goodput.

Fig. 6. Events per second as a function of device memory for two relay locations.

6 Related Work

Reasoning about event membership in logs and consistency of logs can use (evolv-
ing) Merkle trees [11], as done by Crosby and Wallach [4]. Publicly verifiable
schemes (as defined by Holt [6])—that enables membership verification of an
event in a log with only public information—typically use signatures on events.
Schneier and Kelsey proposed a forward-secure logging system that protects
the integrity and confidentiality of events on a per-event basis using MACs
and encryption [13]. Grouping events is an important part of providing pro-
tection against truncation attacks (deletion detection), e.g., as done by Ma and
7 https://libsodium.org/, accessed 2018-08-05.
8 https://lz4.github.io/lz4/, accessed 2018-08-05.
9 https://github.com/pylls/steady, Apache 2.0 license.

https://libsodium.org/
https://lz4.github.io/lz4/
https://github.com/pylls/steady

102 T. Pulls and R. Dahlberg

Tsudik [10]. Forward-secure sequential aggregate signatures—introduced in the
context of secure logging by Ma and Tsudik [10] and built upon by a number
of works, e.g., [16,17]—aggregates signatures over sequential messages into one
compact signature instead of individual signatures per message to save storage
space and bandwidth. Hartung et al. proposed a provably-secure logging scheme
that is also fault-tolerant: the scheme can tolerate a number of manipulated log
entries (determined a priori) without invalidating the signature [5]. Steady uses
one signature per block over the root of a Merkle tree: more efficient in terms of
bandwidth and operations than one signature per message, but more fragile.

Notably, the secure logging system PillarBox by Bowers et al. [2] is both com-
plementary and related to Steady in several ways. Both PillarBox and Steady
buffers events before transmitting them. The verification algorithm used by Pil-
larBox uses a “gap-checker” to look for missing events, similar to Steady’s app-
roach to looking for blocks (Fig. 5). As complementary, PillarBox focuses on
device compromise, providing integrity of all events buffered prior to compromise
and optionally also provides “stealth”: hiding the existence of events generated
prior to compromise in the buffer. They report event generation in the order of
100,000 events/s (on older hardware). Unlike PillarBox, Steady supports relays,
has optional compression, and publicly verifiable proofs of even authenticity.

There are a number of logging systems that use trusted hardware—such as
TPM, Intel SGX, and GlobalPlatform TEE—as a basis for system security, also
on intermediate systems like our relays [7,14,15]. Steady is software-based.

7 Conclusions

We presented Steady, a simple secure logging system that supports intermediate
storage on untrusted relays. Steady is formalised and security proven in the
standard model based on vanilla cryptographic primitives and assumptions. The
goal of our work was to construct a practical logging system, that does not require
other security protocols (e.g., TLS for transport) and that would be reasonably
easy to implement and audit. Our performance evaluation which uses a ≈2,200
loc implementation shows significant goodput on resource-constrained devices
when the relay is hosted at a popular commercial cloud provider, especially if
compression is used. While compression may leak information despite the use of
encryption it can be arguably a worthwhile trade-off in many settings.

Acknowledgments. We would like to thank Christian Gotare, Anders Lidén, Mattias
Nordlund, and Roel Peeters for valuable feedback. This research as part of the HITS
research profile was funded by the Swedish Knowledge Foundation.

References

1. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. Algorithmica 12(2/3), 225–244 (1994)

2. Bowers, K.D., Hart, C., Juels, A., Triandopoulos, N.: PillarBox: Combating next-
generation malware with fast forward-secure logging. In: RAID (2014)

Steady: A Simple End-to-End Secure Logging System 103

3. Buldas, A., Truu, A., Laanoja, R., Gerhards, R.: Efficient record-level keyless sig-
natures for audit logs. In: Bernsmed, K., Fischer-Hübner, S. (eds.) NordSec 2014.
LNCS, vol. 8788, pp. 149–164. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11599-3 9

4. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: Monrose, F. (ed.) Proceedings of the 18th USENIX Security Symposium, Mon-
treal, Canada, August 10–14, 2009, pp. 317–334. USENIX Association (2009)

5. Hartung, G., Kaidel, B., Koch, A., Koch, J., Hartmann, D.: Practical and robust
secure logging from fault-tolerant sequential aggregate signatures. In: Okamoto,
T., Yu, Y., Au, M.H., Li, Y. (eds.) ProvSec 2017. LNCS, vol. 10592, pp. 87–106.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68637-0 6

6. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: The proceedings of AusGrid and AISW (2006)

7. Karande, V., Bauman, E., Lin, Z., Khan, L.: SGX-Log: Securing system logs with
SGX. In: AsiaCCS (2017)

8. Kelsey, J.: Compression and information leakage of plaintext. In: Daemen, J.,
Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 263–276. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45661-9 21

9. Kotz, D., Henderson, T., Abyzov, I., Yeo, J.: CRAWDAD dataset dart-
mouth/campus (v. 2009–09-09), September 2009. https://crawdad.org/
dartmouth/campus/20090909

10. Ma, D., Tsudik, G.: A new approach to secure logging. TOS 5(1), 2:1–2:21 (2009)
11. Merkle, R.C.: A digital signature based on a conventional encryption function.

In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

12. Pulls, T., Dahlberg, R.: Steady: A simple end-to-end secure logging system. IACR
Cryptology ePrint Archive p. 737 (2018). https://eprint.iacr.org/2018/737

13. Schneier, B., Kelsey, J.: Cryptographic Support for Secure Logs on Untrusted
Machines. In: USENIX Security Symposium, pp. 53–62. USENIX (1998)

14. Shepherd, C., Akram, R.N., Markantonakis, K.: EmLog: tamper-resistant system
logging for constrained devices with TEEs. In: Hancke, G.P., Damiani, E. (eds.)
WISTP 2017. LNCS, vol. 10741, pp. 75–92. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-93524-9 5

15. Sinha, A., Jia, L., England, P., Lorch, J.R.: Continuous tamper-proof logging using
TPM 2.0. In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08593-7 2

16. Yavuz, A.A., Ning, P.: BAF: an efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC (2009)

17. Yavuz, A.A., Ning, P., Reiter, M.K.: Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 148–163. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 12

https://doi.org/10.1007/978-3-319-11599-3_9
https://doi.org/10.1007/978-3-319-11599-3_9
https://doi.org/10.1007/978-3-319-68637-0_6
https://doi.org/10.1007/3-540-45661-9_21
https://crawdad.org/dartmouth/campus/20090909
https://crawdad.org/dartmouth/campus/20090909
https://doi.org/10.1007/3-540-48184-2_32
https://eprint.iacr.org/2018/737
https://doi.org/10.1007/978-3-319-93524-9_5
https://doi.org/10.1007/978-3-319-93524-9_5
https://doi.org/10.1007/978-3-319-08593-7_2
https://doi.org/10.1007/978-3-642-32946-3_12
https://doi.org/10.1007/978-3-642-32946-3_12

Revisiting Deniability in Quantum
Key Exchange

via Covert Communication and Entanglement Distillation

Arash Atashpendar1(B), G. Vamsi Policharla2, Peter B. Rønne1,
and Peter Y. A. Ryan1

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2 Department of Physics, Indian Institute of Technology Bombay, Mumbai, India

{arash.atashpendar,peter.roenne,peter.ryan}@uni.lu,
guruvamsi.policharla@iitb.ac.in

Abstract. We revisit the notion of deniability in quantum key exchange
(QKE), a topic that remains largely unexplored. In the only work on
this subject by Donald Beaver, it is argued that QKE is not necessarily
deniable due to an eavesdropping attack that limits key equivocation. We
provide more insight into the nature of this attack and how it extends to
other constructions such as QKE obtained from uncloneable encryption.
We then adopt the framework for quantum authenticated key exchange,
developed by Mosca et al., and extend it to introduce the notion of
coercer-deniable QKE, formalized in terms of the indistinguishability of
real and fake coercer views. Next, we apply results from a recent work by
Arrazola and Scarani on covert quantum communication to establish a
connection between covert QKE and deniability. We propose DC-QKE,
a simple deniable covert QKE protocol, and prove its deniability via
a reduction to the security of covert QKE. Finally, we consider how
entanglement distillation can be used to enable information-theoretically
deniable protocols for QKE and tasks beyond key exchange.

1 Introduction

Deniability represents a fundamental privacy-related notion in cryptography.
The ability to deny a message or an action is a desired property in many contexts
such as off-the-record communication, anonymous reporting, whistle-blowing
and coercion-resistant secure electronic voting. The concept of non-repudiation
is closely related to deniability in that the former is aimed at associating specific
actions with legitimate parties and thereby preventing them from denying that
they have performed a certain task, whereas the latter achieves the opposite
property by allowing legitimate parties to deny having performed a particular
action. For this reason, deniability is sometimes referred to as repudiability.

The definitions and requirements for deniable exchange can vary depending
on the cryptographic task in question, e.g., encryption, authentication or key
exchange. Roughly speaking, the common underlying idea for a deniable scheme

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 104–120, 2018.
https://doi.org/10.1007/978-3-030-03638-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_7

Revisiting Deniability in Quantum Key Exchange 105

can be understood as the impossibility for an adversary to produce cryptographic
proofs, using only algorithmic evidence, that would allow a third-party, often
referred to as a judge, to decide if a particular entity has either taken part in
a given exchange or exchanged a certain message, which can be a secret key, a
digital signature, or a plaintext message. In the context of key exchange, this
can be also formulated in terms of a corrupt party (receiver) proving to a judge
that a message can be traced back to the other party [16].

In the public-key setting, an immediate challenge for achieving deniability is
posed by the need for remote authentication as it typically gives rise to binding
evidence, e.g., digital signatures, see [16,17]. The formal analysis of deniability
in classical cryptography can be traced back to the original works of Canetti et
al. and Dwork et al. on deniable encryption [11] and deniable authentication [18],
respectively. These led to a series of papers on this topic covering a relatively
wide array of applications. Deniable key exchange was first formalized by Di
Raimondo et al. in [16] using a framework based on the simulation paradigm,
which is closely related to that of zero-knowledge proofs.

Despite being a well-known and fundamental concept in classical cryptog-
raphy, rather surprisingly, deniability has been largely ignored by the quantum
cryptography community. To put things into perspective, with the exception of
a single paper by Donald Beaver [3], and a footnote in [20] commenting on the
former, there are no other works that directly tackle deniable QKE.

In the adversarial setting described in [3], it is assumed that the honest par-
ties are approached by the adversary after the termination of a QKE session
and demanded to reveal their private randomness, i.e., the raw key bits encoded
in their quantum states. It is then claimed that QKE schemes, despite hav-
ing perfect and unconditional security, are not necessarily deniable due to an
eavesdropping attack. In the case of the BB84 protocol, this attack introduces
a binding between the parties’ inputs and the final key, thus constraining the
space of the final secret key such that key equivocation is no longer possible.

Note that since Beaver’s work [3] appeared a few years before a formal anal-
ysis of deniability for key exchange was published, its analysis is partly based
on the adversarial model formulated earlier in [11] for deniable encryption. For
this reason, the setting corresponds more closely to scenarios wherein the honest
parties try to deceive a coercer by presenting fake messages and randomness,
e.g., deceiving a coercer who tries to verify a voter’s claimed choice using an
intercepted ciphertext of a ballot in the context of secure e-voting.

1.1 Contributions and Structure

In Sect. 3 we revisit the notion of deniability in QKE and provide more insight
into the eavesdropping attack aimed at detecting attempts at denial described
in [3]. Having shed light on the nature of this attack, we show that while coercer-
deniability can be achieved by uncloneable encryption (UE) [19], QKE obtained
from UE remains vulnerable to the same attack. We briefly elaborate on the
differences between our model and simulation-based deniability [16]. To provide
a firm foundation, we adopt the framework and security model for quantum

106 A. Atashpendar et al.

authenticated key exchange (Q-AKE) developed by Mosca et al. [24] and extend
them to introduce the notion of coercer-deniable QKE, which we formalize in
terms of the indistinguishability of real and fake coercer views.

We establish a connection between the concept of covert communication and
deniability in Sect. 4, which to the best of our knowledge has not been formally
considered before. More precisely, we apply results from a recent work by Arra-
zola and Scarani on obtaining covert quantum communication and covert QKE
via noise injection [1] to propose DC-QKE, a simple construction for coercer-
deniable QKE. We prove the deniability of DC-QKE via a reduction to the
security of covert QKE. Compared to the candidate PQECC protocol suggested
in [3] that is claimed to be deniable, our construction does not require quantum
computation and falls within the more practical realm of prepare-and-measure
protocols.

Finally, in Sect. 5 we consider how quantum entanglement distillation can be
used not only to counter eavesdropping attacks, but also to achieve information-
theoretic deniability. We conclude by presenting some open questions in Sect. 6.
It is our hope that this work will rekindle interest, more broadly, in the notion of
deniable communication in the quantum setting, a topic that has received very
little attention from the quantum cryptography community.

1.2 Related Work

We focus on some of the most prominent works in the extensive body of work
on deniability in classical cryptography. The notion of deniable encryption was
considered by Canetti et al. [11] in a setting where an adversary demands that
parties reveal private coins used for generating a ciphertext. This motivated
the need for schemes equipped with a faking algorithm that can produce fake
randomness with distributions indistinguishable from that of the real encryption.

In a framework based on the simulation paradigm, Dwork et al. introduced
the notion of deniable authentication [18], followed by the work of Di Raimondo
et al. on the formalization of deniable key exchange [16]. Both works rely on the
formalism of zero-knowledge (ZK) proofs, with definitions formalized in terms
of a simulator that can produce a simulated view that is indistinguishable from
the real one. In a subsequent work, Di Raimondo and Gennaro gave a formal
definition of forward deniability [15], requiring that indistinguishability remain
intact even when a (corrupted) party reveals real coins after a session. Among
other things, they showed that statistical ZK protocols are forward deniable.

Pass [26] formally defines the notion of deniable zero-knowledge and presents
positive and negative results in the common reference string and random oracle
model. In [17], Dodis et al. establish a link between deniability and ideal authen-
tication and further model a situation in which deniability should hold even when
a corrupted party colludes with the adversary during the execution of a protocol.
They show an impossibility result in the PKI model if adaptive corruptions are
allowed. Cremers and Feltz introduced another variant for key exchange referred
to as peer and time deniability [13], while also capturing perfect forward secrecy.

Revisiting Deniability in Quantum Key Exchange 107

More recently, Unger and Goldberg studied deniable authenticated key exchange
(DAKE) in the context of secure messaging [31].

To the best of our knowledge, the only work related to deniability in QKE
is a single paper by Beaver [3], in which the author suggests a negative result
arguing that existing QKE schemes are not necessarily deniable.

2 Preliminaries in Quantum Information and QKE

We use the Dirac bra-ket notation and standard terminology from quantum
computing. Here we limit ourselves to a description of the most relevant concepts
in quantum information theory. More details can be found in standard textbooks
[25,32]. For brevity, let A and B denote the honest parties, and E the adversary.

Given an orthonormal basis formed by |0〉 and |1〉 in a two-dimensional com-
plex Hilbert space H2, let (+) ≡ {|0〉 , |1〉} denote the computational basis and
(×) ≡ {(1/√

2)(|0〉 + |1〉), (1/√
2)(|0〉 − |1〉)} the diagonal basis.

If the state vector of a composite system cannot be expressed as a tensor
product |ψ1〉 ⊗ |ψ2〉, the state of each subsystem cannot be described indepen-
dently and we say the two qubits are entangled. This property is best exemplified
by maximally entangled qubits (ebits), the so-called Bell states

∣
∣Φ±〉

AB
=

1√
2
(|00〉AB ± |11〉AB) ,

∣
∣Ψ±〉

AB
=

1√
2
(|01〉AB ± |10〉AB)

A noisy qubit that cannot be expressed as a linear superposition of pure
states is said to be in a mixed state, a classical probability distribution of pure
states: {pX(x), |ψx〉}x∈X . The density operator ρ, defined as a weighted sum of
projectors, captures both pure and mixed states: ρ ≡ ∑

x∈X pX(x) |ψx〉 〈ψx|.
Given a density matrix ρAB describing the joint state of a system held by

A and B, the partial trace allows us to compute the local state of A (density
operator ρA) if B’s system is not accessible to A. To obtain ρA from ρAB (the
reduced state of ρAB on A), we trace out the system B: ρA = TrB(ρAB). As a
distance measure, we use the expected fidelity F (|ψ〉 , ρ) between a pure state
|ψ〉 and a mixed state ρ given by F (|ψ〉 , ρ) = 〈ψ| ρ |ψ〉.

A crucial distinction between quantum and classical information is captured
by the well-known No-Cloning theorem [33], which states that an arbitrary
unknown quantum state cannot be copied or cloned perfectly.

2.1 Quantum Key Exchange and Uncloneable Encryption

QKE allows two parties to establish a common secret key with information-
theoretic security using an insecure quantum channel, and a public authen-
ticated classical channel. In Protocol 1 we describe the BB84 protocol, the
most well-known QKE variant due to Bennett and Brassard [5]. For consis-
tency with related works, we use the well-established formalism based on error-
correcting codes, developed by Shor and Preskill [28]. Let C1[n, k1] and C2[n, k2]
be two classical linear binary codes encoding k1 and k2 bits in n bits such that

108 A. Atashpendar et al.

{0} ⊂ C2 ⊂ C1 ⊂ Fn
2 where Fn

2 is the binary vector space on n bits. A mapping
of vectors v ∈ C1 to a set of basis states (codewords) for the Calderbank-Shor-
Steane (CSS) [10,29] code subspace is given by: v 	→ (1/√|C2|)

∑

w∈C2
|v + w〉.

Due to the irrelevance of phase errors and their decoupling from bit flips in CSS
codes, Alice can send |v〉 along with classical error-correction information u + v
where u, v ∈ Fn

2 and u ∈ C1, such that Bob can decode to a codeword in C1

from (v + ε) − (u + v) where ε is an error codeword, with the final key being the
coset leader of u + C2.

Protocol 1 BB84 for an n-bit key with protection against δn bit errors
1: Alice generates two random bit strings a, b ∈ {0, 1}(4+δ)n, encodes ai into |ψi〉 in

basis (+) if bi = 0 and in (×) otherwise, and ∀i ∈ [1, |a|] sends |ψi〉 to Bob.
2: Bob generates a random bit string b′ ∈ {0, 1}(4+δ)n and upon receiving the qubits,

measures |ψi〉 in (+) or (×) according to b′
i to obtain a′

i.
3: Alice announces b and Bob discards a′

i where bi �= b′
i, ending up with at least 2n

bits with high probability.
4: Alice picks a set p of 2n bits at random from a, and a set q containing n elements

of p chosen as check bits at random. Let v = p \ q.
5: Alice and Bob compare their check bits and abort if the error exceeds a predefined

threshold.
6: Alice announces u + v, where v is the string of the remaining non-check bits, and

u is a random codeword in C1.
7: Bob subtracts u + v from his code qubits, v + ε, and corrects the result, u + ε, to

a codeword in C1.
8: Alice and Bob use the coset of u + C2 as their final secret key of length n.

Uncloneable encryption (UE) enables transmission of ciphertexts that
cannot be perfectly copied and stored for later decoding, by encoding carefully
prepared codewords into quantum states, thereby leveraging the No-Cloning
theorem. We refer to Gottesman’s original work [19] for a detailed explanation of
the sketch in Protocol 2. Alice and Bob agree on a message length n, a Message
Authentication Code (MAC) of length s, an error-correcting code C1 having
message length K and codeword length N with distance 2δN for average error
rate δ, and another error-correcting code C2 (for privacy amplification) with
message length K ′ and codeword length N and distance 2(δ + η)N to correct
more errors than C1, satisfying C⊥

2 ⊂ C1, where C⊥
2 is the dual code containing

all vectors orthogonal to C2. The pre-shared key is broken down into four pieces,
all chosen uniformly at random: an authentication key k ∈ {0, 1}s, a one-time
pad e ∈ {0, 1}n+s, a syndrome c1 ∈ {0, 1}N−K , and a basis sequence b ∈ {0, 1}N .

QKE from UE. It is known [19] that any quantum authentication (QA) scheme
can be used as a secure UE scheme, which can in turn be used to obtain QKE,
with less interaction and more efficient error detection. We give a brief descrip-
tion of how QKE can be obtained from UE in Protocol 3.

Revisiting Deniability in Quantum Key Exchange 109

Protocol 2 Uncloneable Encryption for sending a message m ∈ {0, 1}n

1: Compute MAC(m)k = μ ∈ {0, 1}s. Let x = m||μ ∈ {0, 1}n+s.
2: Mask x with the one-time pad e to obtain y = x ⊕ e.
3: From the coset of C1 given by the syndrome c1, pick a random codeword z ∈ {0, 1}N

that has syndrome bits y w.r.t. C⊥
2 , where C⊥

2 ⊂ C1.
4: For i ∈ [1, N] encode ciphertext bit zi in the basis (+) if bi = 0 and in the basis

(×) if bi = 1. The resulting state |ψi〉 is sent to Bob.

To perform decryption:

1: For i ∈ [1, N], measure |ψ′
i〉 according to bi, to obtain z′

i ∈ {0, 1}N .
2: Perform error-correction on z′ using code C1 and evaluate the parity checks of

C2/C⊥
1 for privacy amplification to get an (n + s)-bit string y′.

3: Invert the OTP step to obtain x′ = y′ ⊕ e.
4: Parse x′ as the concatenation m′||μ′ and use k to verify if MAC(m′)k = μ′.

Protocol 3 Obtaining QKE from Uncloneable Encryption
1: Alice generates random strings k and x, and sends x to Bob via UE, keyed with k.
2: Bob announces that he has received the message, and then Alice announces k.
3: Bob decodes the classical message x, and upon MAC verification, if the message is

valid, he announces this to Alice and they will use x as their secret key.

3 Coercer-Deniable Quantum Key Exchange

Following the setting in [3], in which it is implicitly assumed that the adversary
has established a binding between the participants’ identities and a given QKE
session, we introduce the notion of coercer-deniability for QKE. This makes it
possible to consider an adversarial setting similar to that of deniable encryption
[11] and expect that the parties might be coerced into revealing their private
coins after the termination of a session, in which case they would have to produce
fake randomness such that the resulting transcript and the claimed values remain
consistent with the adversary’s observations.

Beaver’s analysis [3] is briefly addressed in a footnote in a paper by Ioannou
and Mosca [20] and the issue is brushed aside based on the argument that the
parties do not have to keep records of their raw key bits. It is argued that
for deniability to be satisfied, it is sufficient that the adversary cannot provide
binding evidence that attributes a particular key to the classical communication
as their measurements on the quantum channel do not constitute a publicly
verifiable proof. However, counter-arguments for this view were already raised
in the motivations for deniable encryption [11] in terms of secure erasure being
difficult and unreliable, and that erasing cannot be externally verified. Moreover,
it is also argued that if one were to make the physical security assumption that
random choices made for encryption are physically unavailable, the deniability
problem would disappear. We refer to [11] and references therein for more details.

Bindings, or lack thereof, lie at the core of deniability. Although we leave
a formal comparison of our model with the one formulated in the simulation

110 A. Atashpendar et al.

paradigm [16] as future work, a notable difference can be expressed in terms of
the inputs presented to the adversary. In the simulation paradigm, deniability
is modelled only according to the simulatability of the legal transcript that the
adversary or a corrupt party produces naturally via a session with a party as
evidence for the judge, whereas for coercer-deniability, the adversary additionally
demands that the honest parties reveal their private randomness.

Finally, note that viewing deniability in terms of “convincing” the adversary
is bound to be problematic and indeed a source of debate in the cryptographic
research community as the adversary may never be convinced given their knowl-
edge of the existence of faking algorithms. Hence, deniability is formulated in
terms of the indistinguishability of views (or their simulatability [16]) such that
a judge would have no reason to believe a given transcript provided by the
adversary establishes a binding as it could have been forged or simulated.

3.1 Defeating Deniability in QKE via Eavesdropping in a Nutshell

We briefly review the eavesdropping attack described in [3] and provide further
insight. Suppose Alice sends qubit |ψ〉m,b to Bob, which encodes a single-bit
message m prepared in a basis determined by b ∈ {+,×}. Let Φ(E,m) denote
the state obtained after sending |ψ〉m,b, relayed and possibly modified by an
adversary E. Moreover, let ρ(E,m) denote the view presented to the judge,
obtained by tracing over inaccessible systems. Now for a qubit measured correctly
by Eve, if a party tries to deny by pretending to have sent σ1 = ρ(E, 1) instead
of σ2 = ρ(E, 0), e.g., by using some local transformation Uneg to simply negate
a given qubit, then F (σ1, σ2) = 0, where F denotes the fidelity between σ1 and
σ2. Thus, the judge can successfully detect this attempt at denial.

This attack can be mounted successfully with non-negligible probability with-
out causing the session to abort: Assume that N qubits will be transmitted in a
BB84 session and that the tolerable error rate is η

N , where clearly η ∼ N . Eve
measures each qubit with probability η

N (choosing a basis at random) and passes
on the remaining ones to Bob undisturbed, i.e., she plants a number of decoy
states proportional to the tolerated error threshold. On average, η

2 measurements
will come from matching bases, which can be used by Eve to detect attempts at
denial, if Alice claims to have measured a different encoding. After discarding
half the qubits in the sifting phase, this ratio will remain unchanged. Now Alice
and/or Bob must flip at least one bit in order to deny without knowledge of
where the decoy states lie in the transmitted sequence, thus getting caught with
probability η

2N upon flipping a bit at random.

3.2 On the Coercer-Deniability of Uncloneable Encryption

The vulnerability described in Sect. 3.1 is made possible by an eavesdropping
attack that induces a binding in the key coming from a BB84 session. Unclone-
able encryption remains immune to this attack because the quantum encoding
is done for an already one-time padded classical input. More precisely, a binding

Revisiting Deniability in Quantum Key Exchange 111

established at the level of quantum states can still be perfectly denied because
the actual raw information bits m are not directly encoded into the sequence
of qubits, instead the concatenation of m and the corresponding authentication
tag μ = MACk(m), i.e., x = m||μ, is masked with a one-time pad e to obtain
y = x ⊕ e, which is then mapped onto a codeword z that is encoded into quan-
tum states. For this reason, in the context of coercer-deniability, regardless of a
binding established on z by the adversary, Alice can still deny to another input
message in that she can pick a different input x′ = m′||μ′ to compute a fake pad
e′ = y ⊕ x′, so that upon revealing e′ to Eve, she will simply decode y ⊕ e′ = x′,
as intended.

However, note that a prepare-and-measure QKE obtained from UE still
remains vulnerable to the same eavesdropping attack due to the fact that we
can no longer make use of the deniability of the one-time pad in UE such that
the bindings induced by Eve constrain the choice of the underlying codewords.

3.3 Security Model

We adopt the framework for quantum AKEs developed by Mosca et al. [24].
Due to space constraints, we mainly focus on our proposed extensions. Parties,
including the adversary, are modelled as a pair of classical and quantum Turing
machines (TM) that execute a series of interactive computations and exchange
messages with each other through classical and quantum channels, collectively
referred to as a protocol. An execution of a protocol is referred to as a session,
identified with a unique session identifier. An ongoing session is called an active
session, and upon completion, it either outputs an error term ⊥ in case of an
abort, or it outputs a tuple (sk, pid,v,u) in case of a successful termination.
The tuple consists of a session key sk, a party identifier pid and two vectors u
and v that model public values and secret terms, respectively.

We adopt an extended version of the adversarial model described in [24],
to account for coercer-deniability. Let E be an efficient, i.e. (quantum) polyno-
mial time, adversary with classical and quantum runtime bounds tc(k) and tq(k),
and quantum memory bound mq(k), where bounds can be unlimited. Following
standard assumptions, the adversary controls all communication between parties
and carries the messages exchanged between them. We consider an authenticated
classical channel and do not impose any special restrictions otherwise. Addition-
ally, the adversary is allowed to approach either the sender or the receiver after
the termination of a session and request access to a subset r ⊆ v of the private
randomness used by the parties for a given session, i.e. set of values to be faked.

Security notions can be formulated in terms of security experiments in
which the adversary interacts with the parties via a set of well-defined queries.
These queries typically involve sending messages to an active session or initi-
ating one, corrupting a party, learning their long-term secret key, revealing the
ephemeral keys of an incomplete session, obtaining the computed session key for
a given session, and a test-session(id) query capturing the winning condition
of the game that can be invoked only for a fresh session. Revealing secret values
to the adversary is modeled via partnering. The notion of freshness captures

112 A. Atashpendar et al.

the idea of excluding cases that would allow the adversary to trivially win the
security experiment. This is done by imposing minimal restrictions on the set of
queries the adversary can invoke for a given session such that there exist proto-
cols that can still satisfy the definition of session-key security. A session remains
fresh as long as at least one element in u and v remains secret, see [24] for more
details.

The transcript of a protocol consists of all publicly exchanged messages
between the parties during a run or session of the protocol. The definition of
“views” and “outputs” given in [3] coincides with that of transcripts in [16] in
the sense that it allows us to model a transcript that can be obtained from
observations made on the quantum channel. The view of a party P consists of
their state in HP along with any classical strings they produce or observe. More
generally, for a two-party protocol, captured by the global density matrix ρAB

for the systems of A and B, the individual system A corresponds to a partial
trace that yields a reduced density matrix, i.e., ρA = TrB(ρAB), with a similar
approach for any additional couplings.

3.4 Coercer-Deniable QKE via View Indistinguishability

We use the security model in Sect. 3.3 to introduce the notion of coercer-deniable
QKE, formalized via the indistinguishability of real and fake views. Note that
in this work we do not account for forward deniability and forward secrecy.

Coercer-Deniability Security Experiment. Let CoercerDenQKEΠ
E,C(κ) denote

this experiment and Q the same set of queries available to the adversary in a
security game for session-key security, as described in Sect. 3.3, and [24]. Clearly,
in addition to deniability, it is vital that the security of the session key remains
intact as well. For this reason, we simply extend the requirements of the secu-
rity game for a session-key secure KE by having the challenger C provide an
additional piece of information to the adversary E when the latter calls the
test-session() query. This means that the definition of a fresh session remains
the same as the one given in [24]. E invokes queries from Q\{test-session()}
until E issues test-session() to a fresh session of their choice. C decides on a
random bit b and if b = 0, C provides E with the real session key k and the real
vector of private randomness r, and if b = 1, with a random (fake) key k′ and
a random (fake) vector of private randomness r′. Finally, E guesses an output
b′ and wins the game if b = b′. The experiment returns 1 if E succeeds, and 0
otherwise. Let AdvΠ

E (κ) = |Pr[b = b′] − 1/2| denote the winning advantage of E.

Definition 1 (Coercer-Deniable QKE). For adversary E, let there be an
efficient distinguisher DE on security parameter κ. We say that Πr is a
coercer-deniable QKE protocol if, for any adversary E, transcript t, and for
any k, k′, and a vector of private random inputs r = (r1, . . . , r�), there
exists a denial/faking program FA,B that running on (k, k′, t, r) produces r′ =
(r′

1, . . . , r
′
�) such that the following conditions hold:

Revisiting Deniability in Quantum Key Exchange 113

– Π is a secure QKE protocol.
– The adversary E cannot do better than making a random guess for winning

the coercer-deniability security experiment, i.e., AdvΠ
E (κ) ≤ negl(κ)

Pr[CoercerDenQKEΠ
E,C(κ) = 1] ≤ 1

2
+ negl(κ)

Equivalently, we require that for all efficient distinguisher DE

|Pr[DE(ViewReal(k, t, r)) = 1] − Pr[DE(ViewFake(k′, t, r′)) = 1]| ≤ negl(κ),

where the transcript t = (c, ρE(k)) is a tuple consisting of a vector c, containing
classical message exchanges of a session, along with the local view of the adver-
sary w.r.t. the quantum channel obtained by tracing over inaccessible systems
(see Sect. 3.3).

A function f : N → R is negligible if for any constant k, there exists a Nk

such that ∀N ≥ Nk, we have f(N) < N−k. In other words, it approaches zero
faster than any polynomial in the asymptotic limit.

Remark 1. We introduced a vector of private random inputs r to avoid being
restricted to a specific set of “fake coins” in a coercer-deniable setting such as the
raw key bits in BB84 as used in Beaver’s analysis. This allows us to include other
private inputs as part of the transcript that need to be forged by the denying
parties without having to provide a new security model for each variant. Indeed,
in [24], Mosca et al. consider the security of QKE in case various secret values
are compromised before or after a session. This means that these values can, in
principle, be included in the set of random coins that might have to be revealed
to the adversary and it should therefore be possible to generate fake alternatives
using a faking algorithm.

4 Deniable QKE via Covert Quantum Communication

We establish a connection between covert communication and deniability by
providing a simple construction for coercer-deniable QKE using covert QKE.
We then show that deniability is reduced to the covertness property, meaning
that deniable QKE can be performed as long as covert QKE is not broken by
the adversary, formalized via the security reduction given in Theorem 2.

Covert communication becomes relevant when parties wish to keep the very
act of communicating secret or hidden from a malicious warden. This can be
motivated by various requirements such as the need for hiding one’s communi-
cation with a particular entity when this act alone can be incriminating. While
encryption can make it impossible for the adversary to access the contents of
a message, it would not prevent them from detecting exchanges over a chan-
nel under their observation. Bash et al. [2,27] established a square-root law
for covert communication in the presence of an unbounded quantum adversary
stating that O(

√
n) covert bits can be exchanged over n channel uses. Recently,

114 A. Atashpendar et al.

Arrazola and Scarani [1] extended covert communication to the quantum regime
for transmitting qubits covertly. Covert quantum communication consists of two
parties exchanging a sequence of qubits such that an adversary trying to detect
this cannot succeed by doing better than making a random guess, i.e., Pd ≤ 1

2 +ε
for sufficiently small ε > 0, where Pd denotes the probability of detection and ε
the detection bias.

4.1 Covert Quantum Key Exchange

Since covert communication requires pre-shared secret randomness, a natural
question to ask is whether QKE can be done covertly. This was also addressed in
[1] and it was shown that covert QKE with unconditional security for the covert-
ness property is impossible because the amount of key consumption is greater
than the amount produced. However, a hybrid approach involving pseudo-
random number generators (PRNG) was proposed to achieve covert QKE with
a positive key rate such that the resulting secret key remains information-
theoretically secure, while the covertness of QKE is shown to be at least as
strong as the security of the PRNG. The PRNG is used to expand a truly ran-
dom pre-shared key into an exponentially larger pseudo-random output, which
is then used to determine the time-bins for sending signals in covert QKE.

Covert QKE Security Experiment. Let CovertQKEΠcov

E,C (κ) denote the secu-
rity experiment. The main property of covert QKE, denoted by Πcov, can be
expressed as a game played by the adversary E against a challenger C who
decides on a random bit b and if b = 0, C runs Πcov, otherwise (if b = 1), C
does not run Πcov. Finally, E guesses a random bit b′ and wins the game if
b = b′. The experiment outputs 1 if E succeeds, and 0 otherwise. The winning
advantage of E is given by AdvΠcov

E (κ) = |Pr[b = b′] − 1/2| and we want that
AdvΠcov

E (κ) ≤ negl(κ).

Definition 2. Let G : {0, 1}s → {0, 1}g(s) be a (τ, ε)-PRNG secure against all
efficient distinguishers D running in time at most τ with success probability at
most ε, where ∀s : g(s) > s. A QKE protocol Πcov

G is considered to be covert if
the following holds for any efficient adversary E:

– Πcov
G is a secure QKE protocol.

– The probability that E guesses the bit b correctly (b′ = b), i.e., E manages to
distinguish between Alice and Bob running Πcov

G or not, is no more than 1
2

plus a negligible function in the security parameter κ, i.e.,

Pr[CovertQKEΠcov

E,C (κ) = 1] ≤ 1
2

+ negl(κ)

Theorem 1. (Sourced from [1]) The secret key obtained from the covert QKE
protocol Πcov

G is informational-theoretically secure and the covertness of Πcov
G is

as secure as the underlying PRNG.

Revisiting Deniability in Quantum Key Exchange 115

4.2 Deniable Covert Quantum Key Exchange (DC-QKE)

We are now in a position to describe DC-QKE, a simple construction shown in
Protocol 4, which preserves unconditional security for the final secret key, while
its deniability is as secure as the underlying PRNG used in Πcov

r ,G. In terms of the
Security Experiment 3.4, Πcov

r ,G is run to establish a real key k, while non-covert
QKE Πr ′ is used to produce a fake key k′ aimed at achieving deniability, where
r and r′ are the respective vectors of real and fake private inputs.

Operationally, consider a setting wherein the parties suspect in advance that
they might be coerced into revealing their private coins for a given run: their
joint strategy consists of running both components in Protocol 4 and claiming to
have employed Πr ′ to establish the fake key k′ using the fake private randomness
r′ (e.g. raw key bits in BB84) and provide these as input to the adversary upon
termination of a session. Thus, for Eve to be able to produce a proof showing
that the revealed values are fake, she would have to break the security of covert
QKE to detect the presence of Πcov

r ,G, as shown in Theorem 2. Moreover, note that
covert communication can be used for dynamically agreeing on a joint strategy
for denial, further highlighting its relevance for deniability.

Protocol 4 DC-QKE for an n-bit key
1: RandGen: Let r = (r1, . . . , r�) be the vector of private random inputs, where

ri←${0, 1}|ri|.
2: KeyGen: Run Πcov

r ,G to establish a random secret key k ∈ {0, 1}n.

Non-covert faking component FA,B :

1: FakeRandGen: Let r′ = (r′
1, . . . , r

′
�) be the vector of fake private random inputs,

where r′
i←${0, 1}|r′

i|.
2: FakeKeyGen: Run Πr ′ to establish a separate fake key k′ ∈ {0, 1}n.

Remark 2. The original analysis in [3] describes an attack based solely on reveal-
ing fake raw key bits that may be inconsistent with the adversary’s observations.
An advantage of DC-QKE in this regard is that Alice’s strategy for achieving
coercer-deniability consists of revealing all the secret values of the non-covert
QKE Πr ′ honestly. This allows her to cover the full range of private random-
ness that could be considered in different variants of deniability as discussed in
Remark 1. A potential drawback is the extra cost induced by FA,B , which could,
in principle, be mitigated using a less interactive solution such as QKE via UE.

Remark 3. If the classical channel is authenticated by an information-
theoretically secure algorithm, the minimal entropy overhead in terms of pre-
shared key (logarithmic in the input size) for Π can be generated by Πcov

r .

Example 1. In the case of encryption, A can send c = m⊕k over a covert channel
to B, while for denying to m′, she can send c′ = m′ ⊕ k′ over a non-covert
channel. Alternatively, she can transmit a single ciphertext over a non-covert

116 A. Atashpendar et al.

channel such that it can be opened to two different messages. To do so, given
c = m ⊕ k, Alice computes k′ = m′ ⊕ c = m′ ⊕ m ⊕ k, and she can then either
encode k′ as a codeword, as described in Sect. 2.1, and run Πr ′ via uncloneable
encryption, thus allowing her to reveal the entire transcript to Eve honestly, or
she can agree with Bob on a suitable privacy amplification (PA) function (with
PA being many-to-one) as part of their denying program in order to obtain k′.

Theorem 2. If Πcov
r ,G is a covert QKE protocol, then DC-QKE given in Protocol

4 is a coercer-deniable QKE protocol that satisfies Definition 1.

Proof. The main idea consists of showing that breaking the deniability property
of DC-QKE amounts to breaking the security of covert QKE, such that coercer-
deniability follows from the contrapositive of this implication, i.e., if there exists
no efficient algorithm for compromising the security of covert QKE, then there
exists no efficient algorithm for breaking the deniability of DC-QKE. We formal-
ize this via a reduction, sketched as follows. Let w′ = ViewFake(k′, tE , r′) and
w = ViewReal(k, tE , r) denote the two views. Flip a coin b for an attempt at
denial: if b = 0, then tE = (t′, ∅), else (b = 1), tE = (t′, tcov), where tcov and
t′ denote the transcripts of covert and non-covert exchanges from Πcov

r ,G and Πr ′ .
Now if DC-QKE is constructed from Πcov, then given an efficient adversary E that
can distinguish w from w′ with probability p1, we can use E to construct an effi-
cient distinguisher D to break the security of covert QKE with probability p2 such
that p1 ≤ p2. Indeed, given an instance of a DC-QKE security game, we construct
a distinguisher D that uses E on input w and w′, with the goal to win the game
described in the Security Experiment 3.4. The distinguisher D would simply run
E (with negligible overhead) and observe whether E succeeds at distinguishing w
from w′. Since the only element that is not sampled uniformly at random is in tcov

containing exchanges from the covert channel, which relies on a PRNG, the only
way E can distinguish w from w′ is if she can distinguish (t′, tcov) from (t′, ∅). If
E succeeds, then D guesses that a covert QKE session has taken place, thereby
winning the Security Experiment 4.1 for covert QKE. ��

5 Deniability via Entanglement Distillation

Here we consider the possibility of achieving information-theoretic deniability via
entanglement distillation (ED). In its most general form, ED allows two parties
to distill maximally entangled pure states (ebits) from an arbitrary sequence of
entangled states at some positive rate using local operations and classical com-
munication (LOCC), i.e. to move from |Φθ〉AB ≡ cos(θ) |00〉AB + sin(θ) |11〉AB

to |Φ+〉AB = 1√
2
(|00〉AB + |11〉AB), where 0 < θ < π/2.

In the noiseless model, n independent identically distributed (i.i.d.) copies of
the same partially entangled state ρ can be converted into ≈nH(ρ) Bell pairs in
the limit n → ∞, i.e., from ρ⊗n

AB to |Φ+〉⊗nH(ρ)
AB , where H(ρ) = −Tr(ρlnρ) denotes

the von Neumann entropy of entanglement. If the parties start out with pure
states, local operations alone will suffice for distillation [4,7], otherwise the same

Revisiting Deniability in Quantum Key Exchange 117

task can be achieved via forward classical communication (one-way LOCC), as
shown by the Devetak-Winter theorem [14], to distill ebits from many copies of
some bipartite entangled state. See also the early work of Bennett et al. [8] on
mixed state ED. Buscemi and Datta [9] relax the i.i.d. assumption and provide a
general formula for the optimal rate at which ebits can be distilled from a noisy
and arbitrary source of entanglement via one-way and two-way LOCC.

Intuitively, the eavesdropping attack described in [3] and further detailed in
Sect. 3.1, is enabled by the presence of noise in the channel as well as the fact
that Bob cannot distinguish states sent by Alice from those prepared by Eve. As
a result, attempting to deny to a different bit value encoded in a given quantum
state - without knowing if this is a decoy state prepared by Eve - allows the
adversary to detect such an attempt with non-negligible probability.

In terms of deniability, the intuition behind this idea is that while Alice and
Bob may not be able to know which states have been prepared by Eve, they can
instead remove her “check” decoy states from their set of shared entangled pairs
by decoupling her system from theirs. Once they are in possession of maximally
entangled states, they will have effectively factored out Eve’s state such that the
global system is given by the pure tensor product space |Ψ+〉AB ⊗ |φ〉E . Thus
the pure bipartite joint system between Alice and Bob cannot be correlated with
any system under Eve’s control, thereby foiling her cross-checking strategy. The
singlet states can then be used to perform QKE via quantum teleportation [6].

5.1 Deniable QKE via Entanglement Distillation and Teleportation

We now argue why performing randomness distillation at the quantum level,
thus requiring quantum computation, plays an important role w.r.t. deniability.
The subtleties alluded to in [3] arise from the fact that randomness distillation
is performed in the classical post-processing step. This allows Eve to leverage
her tampering in that she can verify the parties’ claims against her decoy states.
However, this attack can be countered by removing Eve’s knowledge before the
classical exchanges begin. Most security proofs of QKE [22,23,28] are based on
a reduction to an entanglement-based variant, such that the fidelity of Alice and
Bob’s final state with |Ψ+〉⊗m is shown to be exponentially close to 1. Moreover,
secret key distillation techniques involving ED and quantum teleportation [7,
14] can be used to faithfully transfer qubits from A to B by consuming ebits.
To illustrate the relevance of distillation for deniability in QKE, consider the
generalized template shown in Protocol 5, based on these well-known techniques.

By performing ED, Alice and Bob make sure that the resulting state cannot
be correlated with anything else due to the monogamy of entanglement (see e.g.
[21,30]), thus factoring out Eve’s system. The parties can open their records for
steps (2) and (3) honestly, and open to arbitrary classical inputs for steps (3), (4)
and (5): deniability follows from decoupling Eve’s system, meaning that she is
faced with a reduced density matrix on a pure bipartite maximally entangled
state, i.e., a maximally mixed state ρE = I/2, thus obtaining key equivocation.

118 A. Atashpendar et al.

Protocol 5 Template for deniable QKE via entanglement distillation and teleporta-

tion
1: A and B share n noisy entangled pairs (assume i.i.d. states for simplicity).
2: They perform entanglement distillation to convert them into a state ρ such that

F (
∣
∣Ψ+

〉⊗m
, ρ) is arbitrarily close to 1 where m < n.

3: Perform verification to make sure they share m maximally entangled states
∣
∣Ψ+

〉⊗m
, and abort otherwise.

4: A preparesm qubits (e.g. BB84 states) and performs quantum teleportation to send
them to B at the cost of consuming m ebits and exchanging 2m classical bits.

5: A and B proceed with standard classical distillation techniques to agree on a key
based on their measurements.

In terms of the hierarchy of entanglement-based constructions mentioned in
[3], this approach mainly constitutes a generalization of such schemes. It should
therefore be viewed more as a step towards a theoretical characterization of
entanglement-based schemes for achieving information-theoretic deniability. Due
to lack of space, we omit a discussion of how techniques from device-independent
cryptography can deal with maliciously prepared initial states.

Going beyond QKE, note that quantum teleportation allows the transfer of
an unknown quantum state, meaning that even the sender would be oblivious as
to what state is sent. Moreover, ebits can enable uniquely quantum tasks such
as traceless exchange in the context of quantum anonymous transmission [12],
to achieve incoercible protocols that allow parties to deny to any random input.

6 Open Questions and Directions for Future Research

Studying the deniability of public-key authenticated QKE both in our model and
in the simulation paradigm, and the existence of an equivalence relation between
our indistinguishability-based definition and a simulation-based one would be a
natural continuation of this work. Other lines of inquiry include forward deniabil-
ity, deniable QKE in conjunction with forward secrecy, deniability using covert
communication in stronger adversarial models, a further analysis of the relation
between the impossibility of unconditional quantum bit commitment and deni-
ability mentioned in [3], and deniable QKE via uncloneable encryption. Finally,
gaining a better understanding of entanglement distillation w.r.t. potential pit-
falls in various adversarial settings and proposing concrete deniable protocols for
QKE and other tasks beyond key exchange represent further research avenues.

Acknowledgments. We thank Mark M.Wilde and Ignatius William Primaatmaja for
their comments. This work was supported by a grant (Q-CoDe) from the Luxembourg
FNR.

Revisiting Deniability in Quantum Key Exchange 119

References

1. Arrazola, J.M., Scarani, V.: Covert quantum communication. Phys. Rev. Lett.
117(25), 250503 (2016)

2. Bash, B.A., Goeckel, D., Towsley, D., Guha, S.: Hiding information in noise: fun-
damental limits of covert wireless communication. IEEE Commun. Mag. 53(12),
26–31 (2015)

3. Beaver, D.: On deniability in quantum key exchange. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 23

4. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial
entanglement by local operations. Phys. Rev. A 53(4), 2046 (1996)

5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing, Bangalore, India, December 1984, pp. 175–179 (1984)

6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.:
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-
Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

7. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Woot-
ters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy
channels. Phys. Rev. Lett. 76(5), 722 (1996)

8. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state
entanglement and quantum error correction. Phys. Rev. A 54(5), 3824 (1996)

9. Buscemi, F., Datta, N.: Distilling entanglement from arbitrary resources. J. Math.
Phys. 51(10), 102–201 (2010)

10. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys.
Rev. A 54(2), 1098 (1996)

11. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

12. Christandl, M., Wehner, S.: Quantum anonymous transmissions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 217–235. Springer, Heidelberg (2005).
https://doi.org/10.1007/11593447 12

13. Cremers, C., Feltz, M.: One-round strongly secure key exchange with perfect for-
ward secrecy and deniability. Technical report, ETH Zurich (2011)

14. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum
states. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 461(2053), 207–235 (2005)

15. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J.
Cryptol. 22(4), 572–615 (2009)

16. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key
exchange. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security, pp. 400–409. ACM (2006)

17. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Theory of Cryptography Conference, pp. 146–162. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 10

18. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceedings of the
30th Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 409–418.
ACM, New York (1998)

19. Gottesman, D.: Uncloneable encryption. Quantum Inf. Comput. 3(6), 581–602
(2003)

https://doi.org/10.1007/3-540-46035-7_23
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/11593447_12
https://doi.org/10.1007/978-3-642-00457-5_10

120 A. Atashpendar et al.

20. Ioannou, L.M., Mosca, M.: A new spin on quantum cryptography: avoiding trap-
doors and embracing public keys. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS,
vol. 7071, pp. 255–274. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25405-5 17

21. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correla-
tions. Phys. Rev. A 69(2), 022309 (2004)

22. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over
arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

23. Mayers, D.: Unconditional security in quantum cryptography. J. ACM (JACM)
48(3), 351–406 (2001)

24. Mosca, M., Stebila, D., Ustaoğlu, B.: Quantum key distribution in the classical
authenticated key exchange framework. In: Gaborit, P. (ed.) PQCrypto 2013.
LNCS, vol. 7932, pp. 136–154. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38616-9 9

25. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information
(2002)

26. Pass, R.: On deniability in the common reference string and random Oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45146-4 19

27. Sheikholeslami, A., Bash, B.A., Towsley, D., Goeckel, D., Guha, S.: Covert commu-
nication over classical-quantum channels. In: 2016 IEEE International Symposium
on Information Theory (ISIT), pp. 2064–2068. IEEE (2016)

28. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distri-
bution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

29. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R.
Soc. Lond. A 452(1954), 2551–2577 (1996)

30. Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations
monogamous? Phys. Rev. Lett. 109(5), 050503 (2012)

31. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1211–1223. ACM (2015)

32. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, New
York (2013)

33. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

https://doi.org/10.1007/978-3-642-25405-5_17
https://doi.org/10.1007/978-3-642-25405-5_17
https://doi.org/10.1007/978-3-642-38616-9_9
https://doi.org/10.1007/978-3-642-38616-9_9
https://doi.org/10.1007/978-3-540-45146-4_19

On Security Analysis of Generic Dynamic
Authenticated Group Key Exchange

Zheng Yang1(B) , Mohsin Khan2 , Wanping Liu3 , and Jun He3

1 ITrust, Singapore University of Technology and Design, Singapore, Singapore
zheng yang@sutd.edu.sg

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
mohsin.khan@helsinki.fi

3 School of Computer Science and Engineering, Chongqing University of Technology,
Chongqing, China
lwphe@163.com

Abstract. Authenticated group key exchange (AGKE) represents an
essential class of group key exchange (GKE) protocols, which is secure
against active attackers. Dynamic AGKE allows for very efficient group
membership changes (join, leave, merge and partition, etc.) during pro-
tocol executions. In this paper, a security model is developed for generic
dynamic AGKE to cover more active attacks than previous similar mod-
els (such as leakage of ephemeral secret key, and key compromise imper-
sonation attacks). The proposed model is particularly suitable for generic
AGKE in which the GKE protocol is firstly executed in a black-box man-
ner, and then the authentication protocol is executed. We also study the
security analysis problems of this class of generic dynamic AGKE pro-
tocols with strong security. Based on the proposed model, we study a
modular approach to design secure dynamic AGKE via a generic trans-
formation called as a compiler. A new signature-based protocol compiler
is proposed for building secure generic dynamic AGKE. Specifically, the
compiler takes as input a passively forward secure GKE protocol and a
secure signature scheme, and output a secure AGKE protocol without
any modification on the GKE protocol.

Keywords: Authenticated key exchange · Group key exchange
Dynamic group · Security model · Generic protocol

1 Introduction

A group key exchange protocol (GKE) can enable many users (more than two
parties) to share a common session key over an open network. Informally speak-
ing, if a GKE protocol is secure against active attacks then it is known as an
authenticated group key exchange (AGKE) protocol.1 Session key established by
1 In the sequel, we may use the term (A)KE to denote either general (authenticated)

key exchange or just two-party (authenticated) key exchange. It is not hard to see
that AGKE is a special class of general AKE in the group setting.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 121–137, 2018.
https://doi.org/10.1007/978-3-030-03638-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_8&domain=pdf
http://orcid.org/0000-0001-8610-9936
http://orcid.org/0000-0002-8064-3166
http://orcid.org/0000-0003-3691-7833
http://orcid.org/0000-0002-2047-0902
https://doi.org/10.1007/978-3-030-03638-6_8

122 Z. Yang et al.

an (A)GKE protocol is a fundamental element to realize many security features
for group applications, such as confidentiality, authentication, and integrity. In
the sense of group membership, (A)GKE can be classified into two categories:
static (A)GKE and dynamic (A)GKE, respectively. In a static (A)GKE proto-
col, the group members should be determined in advance. In contrast, the group
membership is flexible in a dynamic (A)GKE protocol where the parties may
join and leave the communication group at any given time. The dynamic AGKE
is very useful in real-world applications, e.g., establishing a secure communica-
tion channel for the applications over mobile ad hoc networks. A remarkable
characteristic of dynamic group key exchange (GKE) is that a protocol instance
(session) might be stateful. When a group changes, e.g., a new party U3 joins
the current established group G1, a new session key must be generated for the
resulting group G2. In this case, the existing group members in G1 will exploit
some shared keying material to facilitate the session key generation of G2 (for
efficiency consideration). Such shared keying material could be (for instance) the
previously generated session key material of G1 (e.g., gxy where g is some cyclic
group generator, and (x, y) are ephemeral keys). The most prominent example
of dynamic GKE is tree-based GKE (e.g. [1–7]). In such dynamic GKE, the old
session key related keying material (e.g., gxy) may become the ephemeral key of
some subsequent protocol instance when group changes. Note that the leakage
of ephemeral key x or y (in the above example) may lead to the exposure of
the intermediate secret state gxy. However, the ephemeral key may be subject
to a lot of real-world leakage attacks (e.g., caused by malware and side channel
attacks [8–10]).

In past decades, most of the previous dynamic GKE protocols can only pro-
vide passive security which is not enough for withstanding real-world attackers.
This deficiency has pushed forward the research on how to transform passively
secure GKE protocols to achieve AGKE security. An interesting approach is
to develop a generic transformation (also known as a compiler) which securely
combine an authentication protocol (AP) with a passively secure GKE protocol.
The authentication protocol (e.g., signature-based one) is the core building part
to overcome the active attacks against the GKE protocol. Normally, a AGKE
Compiler is a generic security strengthening transformation, which works in a
modular way to build secure AGKE protocols, i.e., without affecting the imple-
mentation of P . The AGKE compiler following this approach will be referred to
as GKE+AP AGKE compiler (or AKE compiler for the two-party case). This
style of AGKE compiler is very useful to simplify not only the constructions of
AGKE protocols but also the security analysis of resulting protocols. Researchers
can first focus on designing concrete passively secure GKE protocols which are
much easier to build. Researchers can first focus on designing concrete passively
secure GKE protocols which are much easier to build. Then the AGKE protocols
can be easily obtained by taking the GKE protocols as input into the AGKE
compiler in a black-box manner.

On Security Analysis of Generic Dynamic AGKE 123

Another important research regarding AGKE is the security model formula-
tion which lays down the foundation of provable security analysis. Concerning the
static AGKE, the security definitions have been extensively investigated (e.g.,
[11–17]). Nevertheless, the case of dynamic group setting is less well understood.
Although the security model introduced by Bresson, Chevassut and Pointcheval
[18] (which will be referred to as BCP model) is proposed for proving dynamic
AGKE protocols, many state-of-the-art attacks against AGKE (such as the leak-
age of ephemeral key [13] and the key compromise impersonation attacks [14],
are not taken into account. Most recently, Yang et al. [19] introduced a strong
security model (which will be referred to as YLLZL model) which might be
suitable for analyzing dynamic AGKE protocols with strong security. However,
the YLLZL model is highly tailored for a concrete Diffie-Hellman based AGKE
protocols proposed in [19] that has a distinguished group structure like the STR
protocol [2]. Hence, the YLLZL model might be not appropriate for analyz-
ing generic AGKE compiler which has various group change operations and
group structures. As we need to define the group change operations in a more
fine-grained level, for each join or leave operation. To examine the target ses-
sion (which is run for establishing the session key for a group of users) under
attacked by an adversary A, the most important information that we need to
know is how the target session is established (i.e., the whole establishing pro-
cedure of the target group). Recall that when the group membership changes,
a session may take the secret states from the previously established session. To
guarantee the security of the target session, we need to ensure all ‘related ses-
sions’ (which are involved in the establishing procedure of the target session) to
be secure. But we note that an adversary could adaptively ask parties to keep
joining or leaving a group as her wish. This would complicate the establishing
procedure of the target group (and the target session) further, in particular for
the execution order of the related sessions. In this work, we are mainly moti-
vated to develop a security model for analyzing generic dynamic AGKE compiler
to deal with various compromise situations on both ephemeral secret state and
long-term key. To our best of knowledge, no AGKE compilers have been proven
in a dynamic AGKE security model with strong security.

Our Results. We resolve the above open problems by first introducing two
security notions for (i) passively forward secure dynamic GKE and (ii) actively
secure dynamic AGKE, respectively. The proposed security models are adaptive
and stateful, which are therefore particularly suitable for analyzing (A)GKE
with dynamic group changes. Our models are derived from the YLLZL model
[19]. But we give clearer formulations on atomic group change operations, in
particular for join and leave. To formulate the group change operations, we
customize the session initiation query Initiate to initialize the necessary execution
states of a session, e.g., the partner identities and initial secret state (for session
key generation), etc. We require that the session cannot execute the protocol
without appropriate initiation. As the YLLZL security model, our model also
covers the state-of-the-art theoretical active attacks, such as key compromise
impersonation attacks (KCI), known session key attacks (KSK) to target groups

124 Z. Yang et al.

members, chosen identity and public key attacks (CIDPK), leakage attacks on
ephemeral secret key (LESK), and perfect forward secrecy attacks (PFS). While
modelling these active attacks, we need also to ensure that the strong power
given to the adversary would not trivially break the AGKE security. A technical
difficulty here is to find out all possible ‘trivial attacks’ against a principal’s
secrets (e.g., ephemeral and long-term key, and session key, etc.). Comparing to
stateless AGKE, these secrets have more leaking holes in a stateful AGKE, i.e.,
the related sessions of the target session.

Secondly, we propose a signature-based generic compiler which can transform
any passively forward secure dynamic GKE protocol P into an AGKE protocol
P ′. This compiler is generalized from the two-party AKE compiler recently intro-
duced by Li et al. [20] (which will be referred to as LSYBS compiler). We adopt
a similar construction solution (as the LSYBS compiler) that the signature is
used as the authentication protocol to sign the protocol message transcript of a
GKE session. However, we stress that our new compiler is more general. Unlike
the LSYBS compiler, we neither restrict the input GKE protocol being with-
out long-term keys nor rely the security on specific ephemeral key generation
function. In a nutshell, our compiler can take a wider range of GKE proto-
cols than the previous compilers. The new compiler could also run without any
extra nonce (i.e. it mainly makes use of the protocol message transcript to form
the session identifier). Since we observe that each party in a group communica-
tion would contribute at least one fresh ephemeral public key that is generated
independently of all other sessions’, and distinct from all other messages with
overwhelming probability. Otherwise, the protocol P is not passively forward
secure. We observe that the messages exchanged in the final round are either
directly or indirectly generated based on these fresh ephemeral public keys. This
fact enables us to define a unique session identifier just based on the messages
in a round. Furthermore, we introduce a new bottom-up security analysis app-
roach based on our observation that the first ‘level’ of protocol execution must
be forwardly secure so that each participant should generate an ephemeral pub-
lic key. And the subsequent protocol executions and the final target session key
are somehow related to the session key of the first level. Namely, if the target
session key is insecure, so is the session key of the first level. This fact enables
us to prove our compiler independently of the group structure unlike [19] (which
leverage on a top-down approach based on a special group structure).

2 Preliminaries

In this section, we describe the notions and cryptographic primitives that will
appear in the rest of the paper. We let κ be the security parameter and 1κ be a
bitstring of κ ones. Let || be a concatenation for two strings, and [n] be a set of
positive integers ranging from 1 to n ∈ N.

On Security Analysis of Generic Dynamic AGKE 125

Digital Signature Schemes. A digital signature scheme SIG consists of
three PPT algorithms SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) associated with pub-
lic/private key spaces {PK,SK}, message space MSIG and signature space SSIG

in the security parameter κ:

– (sk, pk) $← SIG.Gen(1κ): this algorithm takes as input the security parameter
κ and outputs a random signing key sk ∈ SK and corresponding verification
key pk ∈ PK;

– σ
$← SIG.Sign(sk,m): the signing algorithm generates a random signature

σ ∈ SSIG for message m ∈ MSIG using signing key sk;
– {0, 1} ← SIG.Vfy(pk,m, σ): the verification algorithm on input verification

key pk, a message m and corresponding signature σ, outputs 1 if σ is a valid
signature for m under key pk, and 0 otherwise.

Definition 1. We say that SIG is (q, t, εSIG)-secure against strongly existential
forgeries under adaptive chosen-message attacks, if Pr[EXPTseuf-cma

Σ,A (κ) = 1] ≤
εSIG for all adversaries A running in time at most t in the following experiment:

EXPTseuf-cma
SIG,A (κ)

(sk, pk) $← SIG.Gen(1κ); (σ∗,m∗) ← ASIG(sk,·), which can make up to q
queries to the signing oracle SIG(sk, ·) with arbitrary messages m;
Return 1, if the following conditions are held: (i) SIG.Vfy(pk,m∗, σ∗) = 1,
and (ii) (σ∗,m∗) �= (σi,mi) for all i ∈ [q]; Output 0, otherwise;

where εSIG is a negligible function in κ, on input message m the oracle SIG(sk, ·)
returns signature σi ← SIG.Sign(sk,mi) (for i ∈ [q]) and the number of queries
q is bound by time t.

3 Security Model for Dynamic Authenticated Group Key
Exchange

In this section, we introduce a security model for analyzing our AGKE protocol.
Our model is basically extended from the previous model for AGKE [12,13,
18]. But the new model is suitable for dynamic AGKE. Namely, it particularly
considers the secret states shared and processed by oracles.

Users and Oracles. We consider a set of honest parties denoted by identities
{U1, . . . , U�} for � ∈ N, where each identity Ui (i ∈ [�]) is chosen uniquely
from some identity space denoted by IDS. Each user Ui may have a pair of
long-term secret/public key pair (skUi

, pkUi
). The protocol instances (sessions)

of each party Ui are formulated by a collection of oracles: {Π1
Ui

, . . . ,Πs
Ui

} for
i ∈ [�], s ∈ [d] and d ∈ N. Oracles of a party Ui can be run only sequentially,
that an oracle Π2

Ui
can be initiated if and only if Π1

Ui
is finished.

126 Z. Yang et al.

To keep track of the execution status, each oracle Πs
Ui

is assumed to have
a list of independent internal state variables (each of which may store a set of
objects) as follows:

– pids
Ui

– a variable storing the identities and public keys of session participants
(including Ui itself) which are sorted lexicographically in terms of identity.

– Φs
Ui

– a variable storing the decision such that Φs
Ui

∈ {accept, reject}.
– Ks

Ui
– a variable recording the session key.

– esks
Ui

– a variable storing the ephemeral secret key used to generate the
session key of Ks

Ui
.

– nss
Ui

– a variable storing the intermediate secret (generated by Πs
Ui

) which
will be used as the initial state by the subsequent oracle. Such initial state
will be used to initialize the ephemeral secret key of the subsequent oracle.

– usds
Ui

– a variable storing the used status of nss
Ui

such that usds
Ui

∈ {used, ∅},
where ∅ denotes that the nss

Ui
has not been used by any subsequent oracle.

– sids
Ui

– a variable denoting the session identifier of Πs
Ui

which is unique among
the session identifiers of Ui (i.e. all session identifiers of Ui should be distinct).
This definition strategy follows from [21].

– psids
Ui

– a variable storing the previous session identifier which may be used
for state initiation.

– OPs
Ui

– a variable such that OP ∈ {Join, Leave} denoting whether the oracle
handles join or leave group change execution.

– cpids
Ui

– a variable storing the identities and public keys of principals which
will join or leave the target group.

All those internal states of an oracle would be initiated with empty string
∅, which will be updated along with the protocol execution regarding the pro-
tocol specification. For simplicity, we assume that the variable Ks

Ui
and nss

Ui

are assigned if and only if the oracle Πs
Ui

enters accept. This means that the
current execution of a (dynamic) GKE protocol instance (oracle) is finished, and
the session key could be used to protect application data (e.g., by the symmetric
encryption scheme).

We stress that each state nss
Ui

can be used only once to initiate another
subsequent oracle. If there is an oracle Πz

Ui
which has the initial state nss

Ui

terminated with acceptance, then usds
Ui

is set to the status used. This also means
that usds

Ui
remains unchanged if Πz

Ui
rejects in the session. Note that nss

Ui
and

esks
Ui

are basically two different variables, though nss
Ui

may be computed by the
ephemeral key esks

Ui
. Without loss of generality, we try to avoid defining how

nss
Ui

(similar to the session key Ks
Ui

) is generated from esks
Ui

and many other
secrets and public information. In a nutshell, nss

Ui
is specifically defined (with

the above restriction) to deal with the ephemeral key initiation of an oracle, but
esks

Ui
is defined to model the leakage of ephemeral key.

Besides, we assume that each oracle may be initiated to handle at most one
group operation which is denoted by OP. We call an oracle is initiated if OP �= ∅.
Note that a member is not leaving the group then it is considered to join the
target group.

On Security Analysis of Generic Dynamic AGKE 127

We here define two operations (i.e., ‘+’ and ‘−’) between pid and cpid. We
write pid∗ := pid + cpid to denote the operation which combines the contents
of cpid (e.g., cpid = (U3, pkU3)) and pid (e.g., pid = (U1, pkU2 , U2, pkU2)) into
the resulting variable pid∗ (e.g., pid∗ = (U1, pkU2 , U2, pkU2 , U3, pkU3) which is
sorted in terms of identity). We write pid∗ := pid− cpid to denote the operation
which removes the common objects (pid ∩ cpid) shared between pid and cpid
from pid, e.g., for pid = (U1, pkU2 , U2, pkU2 , U3, pkU3) and cpid = (U3, pkU3),
pid∗ := pid − cpid = (U1, pkU2 , U2, pkU2).

Remark 1. We assume that each oracle would handle at most once some kind
of group change operation (i.e., join or leave). For example, one oracle could
handle at most one party’s join or leave in the STR protocol. This could be
useful to simplify the security model. It is well-known that more complicated
group change operations, such as merge or partition, can be divided into (atomic)
join or leave operation. Namely, all kinds of group change operations should be
somehow transformed to join or leave operations when analyzing a corresponding
protocol in our security model.

Partnership. We recall the traditional notion regarding matching sessions
which describes the situation that two oracles engaging in a communication.

Definition 2 (Matching sessions). We say that an oracle Πs
Ui

has a match-
ing session to an oracle Πt

Uj
, if Ui �= Uj, pids

Ui
= pidt

Uj
and sids

Ui
= sidt

Uj
. Then

the oracle Πt
Uj

is said to be the partner-oracle of Πs
Ui
.

An open question remaining here is how to define the unique session identifier
which should be known to all oracles in a session. We leave the concrete definition
of the session identifier to a specific protocol. We just show a concrete example
of sid (for our compiler) in Sect. 4. Nevertheless, one should carefully define the
session identifier while analyzing a specific dynamic AGKE protocol.

Adversarial Model. An adversary A in our model is another special PPT
Turing Machine who may realize some algorithm to break the considered proto-
col. We formulate the capabilities of the adversary via following queries. These
queries formulate the real world active attacks an adversary could launch over a
public network.

128 Z. Yang et al.

– Initiate(Ui, s, z, ˜OP, ˜cpid): This query returns failure if one of the following
conditions holds: (i) usdz

Ui
�= ∅, (ii) z > s, (iii) z > 0 but sidz

Ui
= ∅, (iv)

cpids
Ui

�= ∅.2 Otherwise the oracle Πs
Ui

is initiated via this query by firstly
assigning OPs

Ui
:= ˜OP and cpids

Ui
:= ˜cpid. If z = ∅ then this query sets

esks
Ui

:= nsz
Ui

(or generates esks
Ui

using nsz
Ui

according to the protocol spec-
ification), psids

Ui
:= sidz

Ui
and usdz

Ui
:= used. If z �= ∅ then this query sets

esks
Ui

= psids
Ui

:= ∅. The rest of the initiation procedure is done respectively
in terms of the concrete value of ˜OP as follows:

• ˜OP = Join. If pidz
Ui

∩ ˜cpid = ∅, this query sets pids
Ui

:= pidz
Ui

+ ˜cpid.
• ˜OP = Leave. If ˜cpid /∈ pidz

Ui
then this query returns ⊥. Because the leaving

parties in ˜cpid must belong to the previous group (that the parties are
leaving). If Ui /∈ ˜cpid then this query sets pids

Ui
:= pidz

Ui
− ˜cpid. If Ui ∈ ˜cpid

then pids
Ui

:= ˜cpid. This means that the parties in ˜cpid will leave together.
Furthermore, if pids

Ui
= (Ui, pkUi

) (meaning only Ui in the group), then
this query sets usds

Ui
:= used.

– Execute(U1, s1, . . . , Un, sn): This query is proceeded if pidsi

Ui
= pid

sj

Uj
and

OPsi

Ui
= OP

sj

Uj
for arbitrary (i, j) ∈ [n]. It allows the adversary to execute

the protocol among unused and initiated oracles {Πsi

Ui
}1≤i≤n. This query

responds with the transcript T of the passive protocol execution. The pids
Ui

of each instance is set to (U1, . . . , Un), where the identities are sorted lexico-
graphically.

– Send(Ui, s,m): If the oracle Πs
Ui

is not initiated then this query aborts. The
adversary can use this query to send any message m of his own choice to an
initiated oracle Πs

Ui
. The oracle will respond with the next protocol message

m∗ (if any) to be sent according to the protocol specification and its internal
states. After the Send query, the variables of Πs

Ui
will be updated according

to the protocol specification.
– RevealKey(Ui, s): Oracle Πs

Ui
responds with the contents of variable Ks

Ui
.

– RevealEphKey(Ui, s): Oracle Πs
Ui

responds with the contents of variables esks
Ui

and nss
Ui

.
– RegisterCorrupt(Uτ , pkUτ

): This query allows the adversary to register an iden-
tity Uτ and a long-term public key pkUτ

on behalf of a party Uτ if τ /∈ [�].
The parties established by this query are corrupted and dishonest.

2 We try to give more explanations of these conditions here. The index z ∈ [d] should
specify the oracle Πz

Ui
which contribute the initial state of Πs

Ui
. If z = 0 then the

ephemeral key esks
Ui

will be freshly generated. If usdz
Ui

= ∅, it means that the state
nszUi

has been used as the initiate state of some other oracle before. The condition
z > s means an incorrect execution order. Note that the sessions of a party are
sequentially executed. Hence, the ephemeral secrete key esks

Ui
can be only initialized

by some secret state from some previous oracle Πz
Ui

such that z < s. The condition
sidzUi

= ∅ implies that the oracle Πz
Ui

is unfinished and its state nszUi
is invalid. The

last condition cpidsUi
�= ∅ implies that the oracle Πs

Ui
has been initiated before. So

that it cannot be initiated again.

On Security Analysis of Generic Dynamic AGKE 129

– Corrupt(Ui): This query responds with the long-term secret key skUi
if i ∈ [�];

otherwise a failure symbol ⊥ is returned.
– Test(Ui, s): If the oracle Πs

Ui
enters the state Φs

Ui
= reject or Ks

Ui
= ∅, then

Πs
Ui

returns some failure symbol ⊥. Otherwise it flips a fair coin b ∈ {0, 1}.
If b = 0 then a random element K0 is sampled from some key space KAGKE

and returned. If b = 1, the real session key Ks
Ui

is returned. The oracle being
asked by this query is called as test oracle.

Remark 2. The Initiate query is used to initiate some execution states of an
oracle, which is not defined by the previous AGKE model like [18,22]. Note that
each oracle can be initiated at most once as we require that cpid �= ∅ while
asking either initiation query. The subsequent queries cannot be asked to an
uninitiated oracle. Via this query, the group change operations (such as join,
leave, merge and partition) can be simulated. Consider that a single party U3

joins the existing group G1 simulated by oracles (Π2
U1

, Π3
U2

), and the party U3

leaves the existing group G2 simulated by oracles (Π3
U1

, Π4
U2

, Π4
U3

). To simulate
these group changes, the following initiation queries may be asked:

U1 Joins G1 U3 Leaves G2

Initiate(U1, 3, 2, Join, (U3, pkU3)) Initiate(U1, 4, 3, Leave, (U3, pkU3))

Initiate(U2, 4, 3, Join, (U3, pkU3)) Initiate(U2, 5, 4, Leave, (U3, pkU3))

Initiate(U3, 4, 0, Join, (U1, pkU1 , U2, pkU2 , U3, pkU3)) Initiate(U3, 5, 4, Leave, (U3, pkU3))

Analogously, the merge operation can be simulated by asking initiation
queries with inputs ˜OP = Join, z �= 0, and ˜cpid which stores the identities
and public keys of the merged group; and the partition operation can be simu-
lated with parameter ˜OP = Leave, z �= 0, and ˜cpid which stores the identities
and public keys of the partitioned group.

The Execute query models the passive execution of a protocol instance, which
cannot be correctly simulated without appropriate oracle initiation step. The
Send query allows the adversary to completely control the communication net-
work. For example, the adversary can inject her own messages via this query, and
decide to drop, forward, replay or alter the messages returned by this query. In
particular, the Send query here is different from the counterpart in the stateless
security model. Since the simulation of the Send query in this model depends on
the internal states of some previous oracle. We can deal with the dynamic group
change operations following the protocol specification. In particular, when some
party leaves the group, some party’s (e.g., the delegate or sponsor) oracle in the
new group may refresh its ephemeral key (even though it has been initiated from
the previous oracle), to guarantee the forward secrecy.

Secure AGKE Protocols. We will define the security for GKE and AGKE
respectively. Let M ∈ {GKE,AGKE} be a variable to denote two distinct security
experiments.

130 Z. Yang et al.

To formulate the security for test oracle, we here first define the notion on
freshness of an oracle. In the freshness definition we have to exclude all trivial
‘attacks’ (e.g., leakage of ephemeral secret key, long-term key and session key)
that would lead to the breaking of the protocol. This work is much more compli-
cated in contrast to stateless security model. For instance, the ephemeral secret
key may be exposed from the oracle Πs

Ui
and its children, or oracles which have

the same initial states of Πs
Ui

. The session key of Πs
Ui

may be leaked by itself,
its partner oracles, or the oracles whose initial states are from Πs

Ui
. Hence, we

have to figure out all oracles which either directly or indirectly contribute secrets
to the session key computation of the test oracle. We will call such oracles as
related oracles, and their owners as related parties.

Let ROs
Ui

and RPs
Ui

denote two variables storing all related oracles and parties
of Πs

Ui
respectively. Note that an oracle may be related to itself. To track all

related oracles and parties of Πs
Ui

, we first initiate ROs
Ui

to include Πs
Ui

, and
RPs

Ui
to be empty. Next, the following steps are performed:

1. S1: For an oracle Πt
Uj

∈ ROs
Ui

, if it is the first time to be checked in this step,
add its partner oracles into ROs

Ui
, and add pidt

Uj
to RPs

Ui
.

2. S2: For an oracle Πt
Uj

∈ ROs
Ui

, if it is the first time to be checked in this
step, then we add all oracles Πz

Uu
such that psidt

Uj
= sidz

Uu
into ROs

Ui
, and

add pidz
Uu

to RPs
Ui

.
3. S3: Repeat S1 and S2 until all oracles in ROs

Ui
have been checked in these

two steps.
4. S4: For an oracle Πt

Uj
∈ ROs

Ui
, if it is the first time to be checked in this

step, then we add all oracles Πz
Uu

such that psidz
Uu

= sidt
Uj

into ROs
Ui

, and
add pidz

Uu
to RPs

Ui
.

In the first step S1, we collect all partner oracles of some unchecked oracle in
ROs

Ui
. The step S2 is used to identify the parental oracles which contribute the

initiate secret states of exiting oracles in ROs
Ui

. Whereas, the step S4 collects
the oracles whose initial states are from the considered oracle Πs

Ui
.

Freshness. We evaluate the freshness of an oracle via a function:
FreshFn(Ui, s,M) which generates a variable cfos

Ui
∈ {fresh, exposed} denoting

the freshness of that oracle. The function FreshFn is executed as follows:

cfos
Ui

← FreshFn(Ui, s,M): If Φs
Ui

�= accept then it returns failure ⊥. This
function initiates cfos

Ui
:= fresh, and figure out all related oracles ROs

Ui
and

parties RPs
Ui

via the above approach. The cfos
Ui

is set in terms of M and following
checks:

– When M = GKE, then cfos
Ui

:= exposed if the following condition is held:
• C1: A queried RevealKey(Uj , t) to some oracle Πt

Uj
∈ ROs

Ui
.

– When M = AGKE, then cfos
Ui

:= exposed if one of the following conditions
is held:

• C2: A queried RegisterCorrupt(Uj , pkUj
) to some party Uj ∈ RPs

Ui
.

On Security Analysis of Generic Dynamic AGKE 131

• C3: A queried either RevealKey(Uj , t) or RevealEphKey(Uj , t) to some ora-
cle Πt

Uj
∈ ROs

Ui
.

• C4: For some Uj ∈ RPs
Ui

(j �= i), if there is no oracle Πt
Uj

such that Πt
Uj

has a matching session to some oracle Πz
Uu

∈ ROs
Ui

, A queried Corrupt(Uj)
prior to the acceptance of the oracle Πs

Uj
.

After determining all related oracles and parties, the freshness is defined to
forbid the RevealKey and RevealEphKey and RegisterCorrupt queries to them.

We say that an oracle Πs
Ui

is M -fresh if and only if cfos
Ui

= fresh throughout
the security experiment. We call all oracles that are checked by the function
FreshFn(Ui, s,M) as the related oracle of Πs

Ui
. We say an oracle Πs

Ui
is M -fresh

if FreshFn(Ui, s,M) = fresh.

Security Experiment EXPTM
P,A(κ). On input security parameter 1κ, the secu-

rity experiment is proceeded as a game between a challenger C and an adversary
A based on a (A)GKE protocol P , where the following steps are performed. At
the beginning of the game, the challenger C first implements the collection of the
oracles {Πs

i : i ∈ [�], s ∈ [d]}, and generates � long-term key pairs (pkUi
, skUi

)
for all honest parties Ui for i ∈ [�] where the identity Ui ∈ IDS of each party
is chosen uniquely. C gives the adversary A all identities and public keys as
input. If M = GKE, then A is allowed to ask a polynomial number of queries to:
Initiate, Execute, Corrupt and RevealKey. If M = AGKE, then A is allowed to ask
a polynomial number of queries to: Initiate, Send, RevealEphKey, RegisterCorrupt,
Corrupt and RevealKey. At some point, A may issue a Test(U∗

i , s∗) query at most
once. After the Test query, A can keep asking other queries. Eventually, A may
terminate with returning a bit b′. Then the experiment returns a failure symbol
if either A has not issued a Test(Ui, s) query without failure or the test oracle
Πs

Ui
is not M -fresh. Finally, the experiment returns 1 if the bit b′ returned by

A equals to the b chosen within the Test query; Otherwise, 0 is returned.

Correctness. We say an (A)GKE protocol P is correct, if two oracles Πs
Ui

and
Πt

Uj
accept with matching sessions, then both oracles hold the same session key.

This correctness is important to and also part of the following security defini-
tion. In light of the correctness, if a set of oracles which are partnered, then any
two of them should have the same session key. This implies that all partnered
oracles should have the same session key.

Definition 3 (Session Key Security). We say that a correct (authenti-
cated) group key exchange protocol P is (M, t, ε)-secure, if for any A run-
ning experiment EXPTM

P,A(κ) within t time and without failure, it holds that
|Pr[EXPTM

P,A(κ) = 1] − 1/2| ≤ ε, where ε = ε(κ) in the security parameter κ.

It is not hard to see that if the GKE protocol P is (GKE, t, ε)-secure, then it
satisfies the passive forward security property. Concerning a (AGKE, t, ε)-secure
AGKE protocol P , it must provide the active forward security property as well,
since we allow the adversary to corrupt the session participants (see correspond-
ing freshness definition). Such protocol P may be called as a passively forward
secure GKE protocol in the sequel.

132 Z. Yang et al.

4 A Generic Compiler for Authenticated Group Key
Exchange

In this section, we introduce a generic compiler which makes use of a signature
scheme SIG = (SIG.Gen,SIG.Sign,SIG.Vfy) to transform any passively forward
secure GKE protocol P into a secure AGKE protocol P ′ satisfying the security
in our proposed security model. The resulting AGKE protocol is compatible with
the dynamic GKE. Our compiler will use the following notations.

Compiler Description. Given a passively forward secure GKE protocol P as
input, we build an AGKE protocol P ′ with the following steps:

1. During the initialization stage, an honest user U generates the verifica-
tion/signing keys (sksig

U , pksig
U) $← SIG.Gen(1κ). Besides the user U may gen-

erate long-term key pair (skgke
U , pkgke

U) (if any) for key exchange.
2. Let U = {U1, U2, . . . , Un} (in lexicographic order) be identities of a group

users wishing to establish a group session key. Each user Ui ∈ U initiates
an instance Πsi

Ui
and runs a GKE protocol instance together with all other

intended communication partners. The GKE protocol instance can be run
dynamically with one atomic group change operation (in Join or Leave), since
we need to authenticate each group change operation.3 After this, each Πsi

Ui

may output an ephemeral key esksi

Ui
, a session key Ksi

Ui
, transcripts smsi

Ui

and rmsi

Ui
, and a common group structure view VW.4 We specifically let

nssi

Ui
:= Ksi

Ui
.

3. Meanwhile, each party Ui ∈ U checks that, for all Uj ∈ U , if sm
sj

Uj
/∈ rmsi

Uj
(in

terms of the protocol specification of P) and Ui cannot compute sm
sj

Uj
based

3 If we do not authenticate each group change operation, we cannot show the security
against adversaries who may manipulate the target group establishing procedures.

4 The concrete definition and the detailed contents of VW are determined by specific
GKE protocol.

On Security Analysis of Generic Dynamic AGKE 133

on (esksi

Ui
, skgke

Ui
,U , smsi

Ui
, rmsi

Ui
,VW), then Ui asks Uj to send sm

sj

Uj
to it. If Ui

can compute the missing sm
sj

Uj
then it just generates it. Eventually, all parties

(in U) would share the same protocol transcript TGKE = sms1
U1

|| . . . ||smsn

Un
.5

All messages in TGKE are sorted lexicographically in terms of the identity of
the corresponding message owner. Each Πsi

Ui
sets sidsi

Ui
:= U||TGKE.

4. Each oracle Πsi

Ui
generates a signature σsi

Ui
:= SIG.Sign(sksig

Ui
, Ui||sidsi

Ui
), and

broadcasts Ui||σsi

Ui
to other users in U \ Ui.

5. When Ui receives Uj ||σsj

Uj
from an instance Π

sj

Uj
, it rejects if

SIG.Vfy(pksig
Uj

, Uj ||sidsi

Ui
, σ

sj

Uj
) = 0.

6. Finally, Πsi

Ui
accepts the session key Ks

Ui
if and only if all signatures from

users U \ Ui are verified correct without rejection as above.

The concrete GKE protocol instantiation could be found for example in [1,3–
7,23,24].

Theorem 1. Assume that the GKE protocol P with maximum group size m is
(GKE, t, εGKE)-secure, and the signature scheme is (t, εSIG)-secure against strongly
existential forgeries under adaptive chosen-message attacks, then the resulting
protocol P ′ output by our proposed compiler is a (AGKE, t′, εAGKE)-secure and
holds that t ≈ t′ and εAGKE ≤ � · εSIG + ((d�)m + d�) · εGKE.

Proof. The proof of this theorem proceeds in a sequence of games following [25].
Let Advδ denote the advantage of A wining in Game δ. We change the games
step-by-step till the advantage of the adversary is reduced to zero. In the follow-
ing, we mainly describe the main idea of the proof. The full proof will be given
in the full version of this paper.

Game 0. This is the original game with adversary A. Thus we have that εAGKE =
Adv0. In order to appropriately simulate the target protocol in our model, we
have to first divided those complicate group change operations (like merge and
partition) into the atomic operation Join or Leave respectively.

Game 1. In this game the challenger changes the game by raising an event
abortsig. Namely, it aborts if the AGKE-fresh oracle Πs

Ui
(which is either the test

oracle or any oracle of its related oracle) received a valid signature σUj
on mes-

sage Uj ||sids
Ui

(i.e., SIG.Vfy(pksig
Uj

, σUj
, Uj ||sids

Ui
) = 1) but it is not sent by any

oracle of Uj before it is corrupted. In other words, the challenger aborts if a
fresh oracle receives a valid signature which is not sent by any of its commu-
nication partner which it is uncorrupted. Recall that the fresh oracle Πs

Ui
’s all

communication partners must be uncorrupted before the acceptance of Πs
Ui

. It
is straightforward that if the event abortsig occurs with non-negligible probabil-
ity, then there must exist some successful forgery F breaking the SIG scheme.

5 To share TGKE, extra protocol rounds may be needed. But for a tree-based protocol
like the STR protocol [2] it is not necessary since every party can know or compute
all exchange ephemeral public keys.

134 Z. Yang et al.

So we claim that Adv0 ≤ Adv1 + Pr[abortsig]. Due to the security of the signa-
ture scheme, the event abortsig happens with the probability Pr[abortsig]

� ≤ εSIG.
Therefore we have Adv0 ≤ Adv1 + � · εSIG.

In this game, the test oracle and all its related oracles must have partner
oracles; otherwise, the game is aborted. This also implies that there exist only
passive adversaries among the test oracle and its all related oracles. Because
the test oracle and its all related oracles must be fresh, i.e. the owners of these
oracles must not be corrupted prior to the acceptance of the test oracle.

Game 2. In this game, we are going to show that the test oracle has a unique
partner oracle at each intended communication partner. Note that, to achieve
passive forward secrecy, each session participant of the test oracle should at
least contribute a fresh ephemeral public key (in certain related oracle) which
is generated independently of all other sessions’ secrets. We let EPK∗ denote
the set of fresh ephemeral public keys generated by either the test oracle or its
related oracles. It is not hard to see that if there is no collision to one of these
ephemeral public keys, then the messages (indirectly) generated by then in the
session identifier sids∗

Ui
are unique.

The challenger proceeds as the previous game, but it aborts if one ephemeral
public key epk∗ ∈ EPK∗ is sampled by two different oracles. We claim that if
the above abort event occurs with a non-negligible probability, then there must
exist an adversary B which can break the GKE security of P by running A.

By the assumption of the passive PFS security of GKE, we therefore have
that Adv1 ≤ Adv2 + d� · εGKE.

As a result, the messages directly or indirectly generated by the ephemeral
keys in ESK∗ ensure the uniqueness of sids∗

Ui
. Therefore only the test oracle and its

partner oracles would share the same session key. Then the adversary A cannot
exploit RevealKey query to win the game.

Game 3. Finally, we replace the key Ks∗
Ui

of the test oracle Πs∗
Ui

and its partner

oracles {Πt∗
Uj

} with the same random value ˜Ks∗
Ui

. Note that the GKE protocol
instance executed between the test oracle and its partner oracles only allows for
passive adversaries due to the change in the previous games. And the test oracle
would not share the session key with another oracle without matching sessions.

If there exists an adversary A which can distinguish this game from the
previous game, then we can use it to construct an algorithm E to break the
passive forward security of GKE protocol P . In the following, we will rely on the
fact that all related oracles of the test oracle would have partner oracles.

Note that, among the test oracle and its all related oracles, there exist a set
of oracles which are partnered oracles and all have fresh ephemeral keys, e.g., the
oracles for running the first level of a tree-based protocol. We call such oracles
as fresh related oracles which are particularly denoted by {Πt1

Ū1
, . . . , Πtl

Ūl
}, where

1 ≤ l ≤ n. In the simulation, E will abort if it fails to guess all the fresh related
oracles. Since the upper bound of group users is m, and there are � honest parties
each of which has d oracles, so that E does not abort with probability 1

(d�)m .

On Security Analysis of Generic Dynamic AGKE 135

Next, E asks an Execute(˜U1, 1, . . . , ˜Ul, 1) to get a set of ephemeral public
keys {esk1

˜U1
, . . . , esk1

˜Ul
} which will be also used as the ephemeral public keys of

{Πt1
Ū1

, . . . , Πtl

Ūl
} respectively. Then E also asks a TestGKE(˜U1, 1) query to obtain

the session key K∗
b,GKE. We stress that the session key of the test oracle πs∗

Ui

in the AGKE game will be generated involving K∗
b,GKE somehow (depending on

specific protocol). All other oracles will be simulated by E following the protocol
specification, in particular with the secrets chosen E if necessary. If K∗

b,GKE is
a real key then so is Ks∗

Ui
. Otherwise Ks∗

Ui
is a random key either. Moreover, if

K∗
b,GKE is the real key then the game is equivalent to the previous game, otherwise

it equals to this game.
Assume that A outputs 0 means that it thinks in this game and 1 otherwise.

Eventually, E returns the bit b′ obtained from A to CGKE. Thus we obtain that
Adv2 ≤ Adv3 + (d�)mεGKE.

In this game, the response to the Test query always consists of a uniformly
random key, which is independent of the bit b flipped in the Test query. Therefore
we have Adv3 = 0. Then the theorem is proved by summing all up probabilities
from Game 0 to Game 3.

5 Conclusions

In this paper, two security models for dynamic GKE and AGKE have been
proposed respectively, which cover a lot of state-of-the-art theoretical active
attacks. This enables us to construct a signature-based generic AGKE compiler
which can transform any passively forward secure dynamic GKE protocol P into
AGKE secure protocol P ′. Our compiler can be applied to a wider range of GKE
protocol (that can be transformed) than previous similar ones. We believe that
the generic compiler introduced here could serve as a modular tool to develop
efficient and strongly secure AGKE protocols against most advanced attacks in
the standard model. As a future work, one is encouraged to formulate more
advanced attacks and propose new constructions for dynamic AGKE.

Acknowledgments. The first author is supported by the National Natural Sci-ence
Foundation of China (Grant No. 61872051,61603065), the Research Project of the
Humanities and Social Sciences of the Ministry of Education of China (Grant No.
16YJC870018), and Funds of Chongqing Science and Technology Committee (Grant
nos. cstc2017jcyjAX0277 and cstc2016jcyjA1272).

References

1. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement. In:
Dupuy, M., Paradinas, P. (eds.) SEC 2001. IIFIP, vol. 65, pp. 229–244. Springer,
Boston, MA (2002). https://doi.org/10.1007/0-306-46998-7 16

2. Kim, Y., Perrig, A., Tsudik, G.: Communication efficient group key agreement.
IEEE Trans. Comput. 53(7), 905–921 (2004)

https://doi.org/10.1007/0-306-46998-7_16

136 Z. Yang et al.

3. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf.
Syst. Secur. 7(1), 60–96 (2004)

4. Dutta, R., Barua, R.: Dynamic group key agreement in tree-based setting. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 101–112.
Springer, Heidelberg (2005). https://doi.org/10.1007/11506157 9

5. Desmedt, Y., Lange, T., Burmester, M.: Scalable authenticated tree based group
key exchange for ad-hoc groups. In: Dietrich, S., Dhamija, R. (eds.) FC 2007.
LNCS, vol. 4886, pp. 104–118. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-77366-5 12

6. Liao, L., Manulis, M.: Tree-based group key agreement framework for mobile ad-
hoc networks. Futur. Gener. Comput. Syst. 23(6), 787–803 (2007)

7. Brecher, T., Bresson, E., Manulis, M.: Fully robust tree-diffie-hellman group key
exchange. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol.
5888, pp. 478–497. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10433-6 33

8. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

9. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

10. Liu, W., Liu, C., Yang, Z., Liu, X., Zhang, Y., Wei, Z.: Modeling the propagation
of mobile malware on complex networks. Commun. Nonlinear Sci. Numer. Simul.
37, 249–264 (2016)

11. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authen-
ticated group Diffie-Hellman key exchange. In: ACM CCS 01, Philadelphia, PA,
USA, pp. 255–264. ACM Press (2001)

12. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 7

13. Manulis, M., Suzuki, K., Ustaoglu, B.: Modeling leakage of ephemeral secrets in
tripartite/group key exchange. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol.
5984, pp. 16–33. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14423-3 2

14. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Modeling key compromise imper-
sonation attacks on group key exchange protocols. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 105–123. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00468-1 7

15. Fujioka, A., Manulis, M., Suzuki, K., Ustaoğlu, B.: Sufficient condition for
ephemeral key-leakage resilient tripartite key exchange. In: Susilo, W., Mu, Y.,
Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 15–28. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31448-3 2

16. Li, Y., Yang, Z.: Strongly secure one-round group authenticated key exchange in
the standard model. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS
2013. LNCS, vol. 8257, pp. 122–138. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02937-5 7

17. Yang, Z., Zhang, D.: Towards modelling perfect forward secrecy for one-round
group key exchange. Int. J. Netw. Secur. 18, 304–315 (2016)

https://doi.org/10.1007/11506157_9
https://doi.org/10.1007/978-3-540-77366-5_12
https://doi.org/10.1007/978-3-540-77366-5_12
https://doi.org/10.1007/978-3-642-10433-6_33
https://doi.org/10.1007/978-3-642-10433-6_33
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-45146-4_7
https://doi.org/10.1007/978-3-642-14423-3_2
https://doi.org/10.1007/978-3-642-14423-3_2
https://doi.org/10.1007/978-3-642-00468-1_7
https://doi.org/10.1007/978-3-642-00468-1_7
https://doi.org/10.1007/978-3-642-31448-3_2
https://doi.org/10.1007/978-3-319-02937-5_7
https://doi.org/10.1007/978-3-319-02937-5_7

On Security Analysis of Generic Dynamic AGKE 137

18. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group diffie-
hellman key exchange — the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 290–309. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45682-1 18

19. Yang, Z., Liu, C., Liu, W., Zhang, D., Luo, S.: A new strong security model for
stateful authenticated group key exchange. Int. J. Inf. Secur. 17, 423 (2017)

20. Li, Y., Schäge, S., Yang, Z., Bader, C., Schwenk, J.: New modular compilers for
authenticated key exchange. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 1–18. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07536-5 1

21. Bresson, E., Manulis, M., Schwenk, J.: On security models and compilers for group
key exchange protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC
2007. LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75651-4 20

22. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J.
Cryptol. 20(1), 85–113 (2007)

23. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053443

24. Steiner, M., Tsudik, G., Waidner, M.: Diffie-Hellman key distribution extended to
group communication. In: ACM CCS 96, New Delhi, India, 14–15 March 1996, pp.
31–37. ACM Press (1996)

25. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004). http://eprint.iacr.org/

https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/3-540-45682-1_18
https://doi.org/10.1007/978-3-319-07536-5_1
https://doi.org/10.1007/978-3-319-07536-5_1
https://doi.org/10.1007/978-3-540-75651-4_20
https://doi.org/10.1007/978-3-540-75651-4_20
https://doi.org/10.1007/BFb0053443
http://eprint.iacr.org/

A Blockchain-Assisted Hash-Based
Signature Scheme

Ahto Buldas1, Risto Laanoja1,2, and Ahto Truu1,2(B)

1 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn, Estonia
2 Guardtime AS, A. H. Tammsaare tee 60, 11316 Tallinn, Estonia

ahto.truu@guardtime.com

Abstract. We present a server-supported, hash-based digital signature
scheme. To achieve greater efficiency than current state of the art, we
relax the security model somewhat. We postulate a set of design require-
ments, discuss some approaches and their practicality, and finally reach a
forward-secure scheme with only modest trust assumptions, achieved by
employing the concepts of authenticated data structures and blockchains.
The concepts of blockchain authenticated data structures and the pre-
sented blockchain design could have independent value and are worth
further research.

1 Introduction

Buldas, Laanoja, and Truu [14] recently proposed a new type of signature scheme
(which we will refer to as the BLT scheme in the following) based on the idea of
combining one-time time-bound keys with a cryptographic time-stamping ser-
vice. The scheme is post-quantum secure against known attacks and the integrity
of the signatures does not depend on the secrecy of any keys. However, the keys
have to be pre-generated for every possible signing time slot and this creates
some implementation challenges. In particular, key generation on smart-cards
would be prohibitively slow in real-world parameters.

In order to avoid the inherent inefficiency of pre-assigning individual keys to
every time slot, we propose ways to spend such keys sequentially, one-by-one, as
needed. This approach is particularly useful for real-world use-cases by human
end-users where signing is performed in infrequent batches, e.g. paying monthly
bills, and vast majority of the time-bound keys would go unused.

Sequential key use needs more elaborate support from the server. In particu-
lar, it is necessary to keep track of spent keys by both the signer and the server,
and to avoid successful re-use of the spent keys. We will observe some ways to
manage these keys sequentially and finally reach a solution where the server does
not have to be trusted.

The proposed signature scheme can be considered practical. It provides for-
ward security, non-repudiation of the origin via efficient revocation; there are no

This research was supported by the European Regional Development Fund through
the Estonian smart specialization program NUTIKAS.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 138–153, 2018.
https://doi.org/10.1007/978-3-030-03638-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_9

A Blockchain-Assisted Hash-Based Signature Scheme 139

known attacks by quantum computers; it comes with “free” cryptographic time-
stamping. Key and signature sizes and computational efficiency are comparable
with state-of-the-art hash-based signature schemes. The scheme is stateful and
maximum number of signatures created using a set of keys is determined at the
key-generation time. Like other non-hierarchical hash-based signature schemes,
the key generation time becomes noticeable when more than ∼220 signatures
have to be created using a set of keys.

The rest of the paper is organized as follows. In Sect. 2 we survey the state of
the art in hash-based signature schemes, server-assisted signature schemes, and
authenticated data structures. In Sect. 3 we define the design goals and outline
the reasoning that led us to the new scheme. In Sect. 4 we specify the design of
the new scheme and in Sect. 5 provide some notes on implementation. We wrap
up with conclusions in Sect. 6.

2 Related Work

2.1 Hash-Based Signatures

The earliest signature scheme constructed from hash functions is due to Lam-
port [22,30]. His scheme, as well as the refinements proposed in [7,23,24,27,33],
are one-time: they require generation of a new key pair and distribution of a
new public key for each message to be signed.

Merkle [33] introduced the concept of hash tree which aggregates a large
number of inputs into a single root hash value so that any of the N inputs
can be linked to it with a proof consisting of log2 N hash values. This allowed
combining N instances of a one-time signature scheme into an N -time scheme.
This approach has been further studied in [17,19,21,39]. A common drawback
of these constructs is that the whole tree has to be built at once.

Merkle [34] proposed a method to grow the tree gradually as needed. How-
ever, to authenticate the lower nodes of the tree, a chain of one-time signatures
(rather than a sequence of sibling hash values) is needed, unless the scheme
is used in an interactive environment and the recipient keeps the public keys
already delivered as part of earlier signatures. This multi-level approach has
subsequently been refined in [6,8,9,28,29,32].

A complication with the N -time schemes is that they are stateful : as each
of the one-time keys may be used only once, the signer has to keep track of
them. If this information is lost (for example, when a previous state is restored
from a backup), key re-use may result in a catastrophic security loss. Perrig [35]
proposed a few-time scheme where a private key can be used to sign several
messages, and the security level decreases gradually with each additional use.

Bernstein et al. [3] combined the optimized few-time scheme of [38] with the
multi-level tree of [8] to create SPHINCS, a stateless scheme that uses keys based
on a pseudo-random schedule, making the risk of re-use negligible even without
tracking the state.

140 A. Buldas et al.

2.2 Server-Assisted Signatures

In server-assisted schemes the signer has to co-operate with a server to produce
a signature. The two main motivations for such schemes are: (a) performance:
costly computations can be offloaded from an underpowered signing device (such
as a smart-card) to a more capable computer; and (b) security: risks of key misuse
can be reduced by either keeping the keys in a server environment (which can
presumably be managed better than an end-user’s personal computer) or by
having the server perform additional checks as part of the signature generation
protocol.

An obvious solution is to just have the server handle all asymmetric-key
operations based on requests from the signers [37]. In this case the server has to
be completely trusted, but it’s not clear whether that is in fact less secure than
letting end-users manage their own keys [16].

To reduce the need to trust the server, Asokan et al. [2] proposed and others
in [4,25] improved methods where asymmetric-key operations are performed by
a server, but a user can prove the server’s misbehavior when presented with
a signature that the server created without the user’s request. However, such
signatures appear to be valid to a verifier until challenged by the user. Thus,
these protocols are usable in contexts where a dispute resolution process exists,
but unsuitable for applications with immediate and irrevocable effects, such as
authentication for access control purposes.

Several methods have been proposed for outsourcing the more expensive
computation steps of specific signature algorithms, notably RSA, but most early
schemes have subsequently been shown to be insecure. In recent years, probably
due to increasing computational power of handheld devices and wider availability
of hardware-accelerated implementations, attention has shifted to splitting keys
between end-user devices and back-end servers to improve the security of the
private keys [10,18].

2.3 Interactive Signature Protocols

Interactive signature protocols, either by interaction between parties or with an
external time-stamping service, were considered by Anderson et al. [1]. They
proposed the “Guy Fawkes Protocol”, where, once bootstrapped, a message is
preceded by publishing the hash of the message and each message is authenti-
cated by accompanying it with a secret whose hash was published together with
an earlier message. Although the verification is limited to a single party, the
protocol is shown to be a signature scheme according to several definitions. The
broadcast commitment step is critical for providing non-repudiation of origin.
Similar concept was first used in the TESLA protocol [36], designed to authen-
ticate parties who are constantly communicating with each other. Due to this,
it has the same inflexibility of not supporting multiple independent verifiers.

Buldas et al. [14] presented a generic hash-based signature scheme which
depends on interaction with a time-stamping service. In the following we call
this scheme the BLT scheme. The principal idea of the scheme is to have the

A Blockchain-Assisted Hash-Based Signature Scheme 141

signer commit to a sequence of secret keys so that each key is assigned a time
slot when it can be used to sign messages and will transition from signing key
to verification key at the end of the time slot. In order to prove timely usage of
the keys, a cryptographic time-stamping service is used. It is possible to provide
suitable time-stamping service [11] with no trust in the service provider [12,13],
using hash-linking and hash-then-publish schemes [26]. Signing then comprises
of time-stamping the message-key commitment in order to prove that the signing
operation was performed at the correct time.

2.4 Authenticated Data Structures

An authenticated data structure is a data structure whose operations can be
performed by an untrusted prover (server) and the integrity of the results can
be verified efficiently by a verifier. We do not follow the less general 3-party
model where trusted clients modify data on an untrusted server, and the query
responses are accompanied with proof of correct operation based on server’s data
structure [40].

Authenticated data structures in the sense used here were first proposed for
checking the correctness of computer memory [5]. Thorough analysis of appli-
cations in the context of tamper-evident logging was performed in [20]. The
concept found its practical use-case in PKI certificate management: first pro-
posed as “undeniable attesters” [15], where PKI users receive attestations of
their certificates’ inclusion in or removal from the database of valid certificates,
and then the “certificate transparency” framework [31], which facilitates public
auditing of certification authority operations.

3 Approach

3.1 Preliminaries

Hash Trees. Introduced by Merkle [33], a hash tree is a tree-shaped data struc-
ture built using a 2-to-1 hash function h : {0, 1}2k → {0, 1}k. The nodes of
the tree contain k-bit values. Each node is either a leaf with no children or an
internal node with two children. The value x of an internal node is computed
as x ← h(xl, xr), where xl and xr are the values of the left and right child,
respectively. There is one root node that is not a child of any node. We will use
r ← Th(x1, . . . , xN) to denote a hash tree whose N leaves contain the values
x1, . . . , xN and whose root node contains r.

Hash Chains. In order to prove that a value xi participated in the computation
of the root hash r, it is sufficient to present values of all the siblings of the nodes
on the unique path from xi to the root in the tree. For example, to claim that x3

belongs to the tree shown on the left in Fig. 1, one has to present the values x4

and x1,2. This enables the verifier to compute x3,4 ← h(x3, x4), r ← h(x1,2, x3,4),
essentially re-building a slice of the tree, as shown on the right in Fig. 1. We will
use x

c� r to denote that the hash chain c links x to r in such a manner.

142 A. Buldas et al.

r = h(x1,2, x3,4)

x1,2 = h(x1, x2)

x1 x2

x3,4 = h(x3, x4)

x3 x4

r

x1,2 x3,4

x3 x4

Fig. 1. The hash tree Th(x1, . . . , x4) and the corresponding hash chain x3 � r.

3.2 The BLT Signature Scheme

We start from the BLT scheme [14] with the following parties (Fig. 2):

– The signer who uses trusted functionality in secure device D to manage pri-
vate keys.

– Server S that aggregates key usage events from multiple signers in fixed-length
rounds and posts the summaries to append-only repository R.

– Verifier V who can verify signatures against the signer’s public key p and the
round summaries rt obtained from the repository.

D

y
=

h
(m

,z
t
)

a
t
=

y
�

r t

(m, t, zt, ct, at)

S
rt

R

r t

rt

V

Fig. 2. Components of the BLT signature scheme.

Note that S and R together implement a hash-and-publish time-stamping
service where neither the signer nor the verifier needs to trust S; only R has to
operate correctly for the scheme to be secure.

Key Generation. To prepare to sign messages at times 1, . . . , T , the signer:

1. Generates T unpredictable k-bit signing keys: (z1, . . . , zT) ← G (T, k).
2. Binds each key to its time slot: xt ← h(t, zt) for t ∈ {1, . . . , T}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xT).

The purpose of the resulting data structure (Fig. 3) is to be able to extract the
hash chains ct linking the private key bindings to the public key: h(t, zt)

ct� p
for t ∈ {1, . . . , T}.

A Blockchain-Assisted Hash-Based Signature Scheme 143

p

x1,2

x1

1 z1

x2

2 z2

x3,4

x3

3 z3

x4

4 z4

Fig. 3. Computation of public key for N = 4.

Signing. To sign message m at time t, the signer:

1. Uses the appropriate key to authenticate the message: y ← h(m, zt).
2. Time-stamps the authenticator by submitting it to S for aggregation and

getting back the hash chain at linking the authenticator to the published
summary: y at� rt.

3. Outputs the tuple (t, zt, ct, at).

Note that the signature is composed and emitted after the time-stamping step,
which makes it safe for the signer to release the key zt as part of the signature:
the aggregation round t has ended and any future uses of the key zt can no
longer be stamped with time t.

Verification. To verify the message m and the signature s = (t, z, a, c) with the
public key p and the aggregation round summary rt, the verifier:

1. Checks that z was committed as signing key for time t: h(t, z) c� p .
2. Checks that m was authenticated with the key z at time t: h(m, z) a� rt .

3.3 Desired Properties

The components of BLT can in fact be used to create a variety of signing schemes.
In the following we draft some of them and explain the necessary compromises
compared to the ideal properties:

– Early forgery prevention: it is better to block revoked or expired keys at
signing time (so that signature can’t be created) than to leave key status
detection to verification time; the least desired is a scheme where forgery is
detected only eventually during an audit.

– Minimal number and resource requirements of trusted components: these have
to be implemented using secure hardware or distributed consensus which are
both expensive.

– Minimal globally shared data: authenticated distribution is expensive.
– Well-defined security model: assumptions, root of trust, etc.
– Efficiency: many signers, few servers, single shared root of trust.
– Privacy: signing events should ideally be known only to verifiers.

Note that providing higher-level properties like key revocation and proof of sign-
ing time almost certainly requires some server support.

144 A. Buldas et al.

3.4 Design of the Proposed Scheme

One-Time Keys. The signing keys in BLT are really not one-time, but rather
time-bound: every key can be used for signing only at a specific point of time.
This incurs quite a large overhead as keys must be pre-generated even for time
periods when no signatures are created. The schemes discussed below use one-
time keys sequentially instead.

As the first idea, we can have the signer time-stamp each signature, just as
in the basic BLT scheme; in case of a dispute, the signature with the earlier
time-stamp wins and the later one is considered a forgery. This obviously makes
verification very difficult and in particular gives the signer a way to deny any
signature: before signing a document d with a key z, the signer can use the same
key to privately sign some dummy value x; when later demanded to honor the
signature on document d, the signer can show the signature on x and declare
the signature on d a forgery.

To prevent this, we assign every signer to a designated server which allows
each key to be used only once. A trivial solution would be to just trust the
server to behave correctly. This would still not achieve non-repudiation, as the
server could collect spent keys and create valid-looking signatures on behalf of
the signer.

Situation can be improved with trusted logging and auditing. If either the
signer or the server published all signing events, including the key index for each
one, then the server could not reuse keys and would not have to be treated
as a trusted component. This would be quite inefficient, though, because of
the amount of data that would have to be distributed and processed during
verification, and would also leak information about the signer’s behavior.

Validating the Server’s Behavior. In this section we discuss some ways to
avoid publishing all transactions while still not having to trust the server. As a
common feature, we use spent key counters both at the signer and the server
side. The server periodically creates hash trees on top of its set of counters and
publishes the root hashes to a public repository.

If we could assume no collaboration between the server and any verifier, the
server would not learn the keys and thus could not produce valid signatures. This
is quite unrealistic, though. We must assume that signatures can be published,
and the server may have access to spent keys. So, we must eliminate the attack
where the server decrements a spent key counter for a client from k to i < k,
signs a message using captured zi, and then increments the counter back to k.

On assumption that the server and (other) signers do not cooperate mali-
ciously, a “neighborhood watch” could be a solution: all signers observe changes
in received hash chains and in committed roots and request proofs from the
server that all changes were legitimate (i.e. that key counters of signers assigned
to neighboring leaves were never decreasing). This approach would only detect
forgeries but not block them, and also would not give very strong guarantees: it
is not realistic to exclude malicious cooperation between the server and some of
its clients.

A Blockchain-Assisted Hash-Based Signature Scheme 145

The concept of authenticated data structures could be used for checking
the server. If proofs of correct operation were included in signatures, verifiers
could reject signatures without valid proofs. This approach would have quite
large overhead, however, as the verifiers would have to be able to validate the
counters throughout their entire lifetime. Other parties who could perform such
validation are the repository, the signers, or independent auditors. Both signers
and auditors could only discover a forgery after the fact, not early enough to
avoid creation of forged signatures.

Pre-validation by the Repository. A promising idea is to validate the server’s
correct operation by the repository itself. We require the server to provide a proof
of correctness with each update to the repository. The repository accepts the
update only after validating the proof. Accepted root hashes are made immutable
using cryptographic techniques and widely distributed. Because signatures are
verified based on published root hashes in the repository, forgery by temporarily
decrementing key usage counters is prevented.

This solution has most of the desired properties from Sect. 3.3: it is efficient,
as the amount of public data (the blockchain) grows linearly in time, indepen-
dent of the number of signers or their activity; there is reasonably low number
of trusted components; the blockchain, including its input validation is forward
secure; server’s forgery attempts will be prevented at signing time; it is not neces-
sary to have a long-term log of private data. The repository can be implemented
as a byzantine fault tolerant distributed state machine, so we do not have to
trust a single party. We describe this scheme in more detail in the following.

4 New Signature Scheme

4.1 Components

Our proposed scheme (Fig. 4) consists of the following parties:

– The signer uses trusted device D to generate keys and then sign data. We
assume there is an authenticated way to distribute public keys. We also
assume the connection between D and S and the connection between D and
R use authenticated channels implemented at another layer of the system (for
example, using pre-distributed HMAC keys).

– Server S assists signers in generating signatures. S keeps a counter of spent
keys for each signer and sends updates to the repository.

– The repository performs two tasks. The layer Rv verifies the correctness of
each operation of S before accepting it and periodically commits the summary
of current state to a public append-only repository R.

– Verifier V is a relying party who verifies signatures.

The server maintains a hash tree with a dedicated leaf for each client (Fig. 5).
The value of the leaf is computed by hashing the pair (i, y) where i is the spent
key counter and y is the last message received from the client (as detailed in
Sect. 4.3).

146 A. Buldas et al.

D

y
=

h
(m

,z
i
)

a
t
=

(y
,i
)

�
r t

(m, i, zi, ci, t, at)

S
(P, r)

Rv
r

R

r t

rt

V

Fig. 4. Components of the new signature scheme.

Each public key must verifiably have just one leaf assigned to it. Otherwise,
the server could set up multiple parallel counters for a client, increment only one
of them in response to client requests, and use the others for forging signatures
with keys the signer has already used and released.

One way to achieve that would be to have the server return the shape (that
is, the directions to move to either the left or the right child on each step) of the
path from the root of the tree to the assigned leaf when the client registers for
service, and the client to include that shape when distributing its public key to
verifiers. Another option would be to use the bits of the public key itself as the
shape. Because most possible bit sequences are not actually used as keys, the
hash tree would be a sparse one in this case.

rt

·

·

· ·

h(i, y)

i y

·

·

· ·

·

· ·

Fig. 5. Server tree for round t, showing key counter and input of the second client only.

4.2 Initialization

Signer. To prepare to sign up to N messages, the signer:

1. Generates N unpredictable k-bit signing keys: (z1, . . . , zN) ← G (N, k).
2. Binds each key to its sequence number: xi ← h(i, zi) for i ∈ {1, . . . , N}.
3. Computes the public key p by aggregating the key bindings into a hash tree:

p ← Th(x1, . . . , xN).
4. Registers with the server S.

A Blockchain-Assisted Hash-Based Signature Scheme 147

The data structure giving the public key is similar to the one in the original
BLT scheme (Fig. 3), and also has the same purpose: to be able to extract the
hash chains ci linking the private key bindings to the public key: h(i, zi)

ci� p for
i ∈ {1, . . . , N}.

Server. Upon receiving registration request from a signer, the server dedicates
a leaf in its tree and sets i to 0 and y to an arbitrary value in that leaf.

4.3 Signing

Signer. Each signer keeps the index i of the next unused key zi in its state. To
sign message m, the signer:

1. Uses the current key to authenticate the message: y ← h(m, zi).
2. Sends the authenticator y to the server.
3. Waits for the server to return the hash chain at linking the pair (i, y) to the

new published summary rt: h(i, y) at� rt.
4. Checks that the shape of the received hash chain is correct and its output

value matches the authentic rt acquired directly from the repository.
5. If validation succeeds then outputs the tuple (i, zi, ci, t, at), where i is the key

index, zi is the i-th signing key, ci is the hash chain linking the binding of the
key zi and its index i to the signer’s public key p, and at is the hash chain
linking (i, y) to the published rt.

6. Increments its key counter: i ← i + 1.

Server. Upon receiving request y′ from a signer, the server:

1. Extracts the hash chain a linking the current state of the client record (i, y)
to the current root r of the server tree: h(i, y) a� r.

2. Updates the client’s record from (i, y) to (i′ ← i + 1, y′) and computes the
corresponding new root hash r′ of the server tree.

3. Submits the tuple (i, y, a, r, y′, r′) to the repository for validation and pub-
lishing.

4. Waits for the repository to end the round and publish rt.
5. Uses the state of its hash tree corresponding to the published rt to extract

and return to all clients with pending requests the hash chains at linking their
updated (i′, y′) records to the published rt: h(i′, y′) at� rt.

Repository. The validation layer Rv of the repository R keeps as state the
current value r� of the root hash of the server tree. Upon receiving the update
(i, y, a, r, y′, r′) from S, the validator verifies its correctness:

1. The claimed starting state of the server tree must match the current state of
Rv: r = r�.

2. The claimed starting state of the signer record must agree with the starting
state of the server tree: h(i, y) a� r.

3. The update of the client record must increment the counter: i′ ← i + 1.

148 A. Buldas et al.

4. The new state of the server tree must correspond to changing just this one
record: h(i′, y′) a� r′.

5. If all the above checks pass, Rv updates its own state accordingly: r� ← r′.

Rv operates in rounds. During a round, it receives updates from the server,
validates them, and updates its own state accordingly. At the end of the round,
it publishes the current value of its state as the new round commitment rt in
the append-only public repository R.

Note that the hash chain a is the same in the verification of the starting
state of the signer record against the starting state of the server tree and in the
verification of the new state of the signer record against the new state of the
server tree. This ensures no other leaves of the server tree can change with this
update.

4.4 Verification

To verify that the message m and the signature s = (i, z, c, t, a) match the public
key p, the verifier:

1. Checks that z was committed as the i-th signing key: h(i, z) c� p.
2. Retrieves the commitment rt for the round t from repository R.
3. Checks that the use of the key z to compute the message authenticator y ←

h(m, z) matches the key index i: h(i, y) a� rt.

Note that the signature is composed and sent to verifier only after the verification
of rt, which makes it safe for the signer to release the key zi as part of the
signature: the server has already incremented its counter i so that only zi+1

could be used to produce the next valid signature.

5 Discussion

5.1 Server-Supported Signing

The model of server-supported signing is a higher-level protocol and is not
directly comparable to traditional signature algorithms like RSA. To justify use-
fulness of the model, we will nonetheless highlight some distinctive properties:

– It is possible to create a server-side log of all signing operations, so that in the
case of either actual or suspected key leak there is a complete record, making
damage control and forensics manageable.

– Key revocation is implemented as blocking the access by the server, thus
no new signatures can be created after the revocation, making key life-cycle
controls much simpler. Note that the server can naturally record the revoca-
tion by setting the client’s counter to some sentinel “infinite” value, and also
return a proof of the update after it has been committed to the repository.

– The server can add custom attributes, and even trusted attributes which can’t
be forged by the server itself: cryptographic time-stamp, address, policy ID,
etc.

A Blockchain-Assisted Hash-Based Signature Scheme 149

– The server can perform data-dependent checks, such as transaction validation,
before allowing a signing. Note that normally the server receives only a hash
value of the data, and the signed data itself does not have to be revealed.

Finally, in scenarios where non-repudiation must be provided, all traditional
schemes and algorithms must be supplemented with some server-provided func-
tionalities like cryptographic time-stamping.

5.2 Implementation of the Repository

The proposed scheme dictates that the repository must have the following
properties:

– Updates are only accepted if their proof of correctness is valid.
– All commitments are final and immutable.
– Commitments are public, and their immutability is publicly verifiable.

To minimize trust requirements on the repository, we propose to re-use the pat-
terns used for creating blockchains. We do not consider proof-of-work, focusing
on byzantine fault tolerant state machine replication model.

Instead of full transactions, we record in the blockchain only aggregate hashes
representing batches of transactions. This provides two benefits: (1) the size of
the blockchain grows linearly in time, in contrast with the usual dependency on
the number and storage size of transactions; and (2) recording and publishing
only aggregate hashes provides privacy. Such a blockchain design is an interesting
research subject by itself.

A blockchain validates all transactions before executing them. An exam-
ple of such validation is double-spending prevention in crypto-currency specific
blockchains. We validate correctness proofs presented by signing servers. Such a
model—where authenticated data structures are validated by a blockchain—is
another potential research subject of independent interest.

The repository, when implemented as a byzantine fault tolerant blockchain,
does not have trusted components.

5.3 Practical Setup

Although presented above as a list of components, envisioned real-life deploy-
ment of the scheme is hierarchical, as shown on Fig. 6.
The topmost layer is a distributed cluster of blockchain consensus nodes, each
possibly operated by an independent “permissioned” party. The blockchain can
accept inputs from multiple signing servers, each of which may in turn serve many
clients. Because of this hierarchical nature the scheme scales well performance-
wise. In terms of the amount of data, as stated earlier, the size of blocks and
the number of blocks does not depend on the number of clients and number of
signatures issued.

The system assumes that the certification service assigns each signer a dedi-
cated signing server and a dedicated leaf position in this server’s hash tree.

150 A. Buldas et al.

R

rt

S1

. . .
Sn

D11

. . .

D1m

. . .

Dn1

. . .

Dnm

Fig. 6. A scalable deployment architecture for the new scheme.

5.4 Efficiency

The efficiency of our proposed signature scheme for both signers and verifiers is
at least on par with the state of the art.

The considerations for key generation and management on the client side
are similar to the original BLT scheme [14], except the number of private keys
required is much smaller (assuming 10 signing operations per day, just 3 650 keys
are needed for a year, compared to the 32 million keys in BLT) and the effort
required to generate and manage them, which was the main weakness of BLT,
is also correspondingly reduced.

Like in the original BLT scheme, the size of the signature in our scheme is also
dominated by the two hash chains. The key sequence membership proof contains
log2N hash values, which is about 12 for the 3 650-element yearly sequence. The
blockchain membership proof has log2K hash values, where K is the number of
clients the service has. Even when the whole world (8 billion people) signs up,
it’s still only about 33 hash values. Conservatively assuming the use of 512-bit
hash functions, the two hash chains add up to less than 3 kB in total.

Verification of the signature means re-computing the two hash chains and
thus amounts to about 45 hash function evaluations.

Admittedly, the above estimates exclude the costs of querying the
blockchain to acquire the committed rt that both the signer and the verifier
need. However, that is comparable to the need to access a time-stamping service
when signing and an OCSP (Online Certificate Status Protocol) responder when
verifying signatures in the traditional PKI setup.

6 Conclusions and Outlook

We have proposed a novel server-assisted signature scheme based on hash func-
tions as the sole underlying cryptographic primitive. The scheme is computation-
ally efficient for both signers and verifiers and produces small signatures with
tiny public keys.

Due to the server-assisted and blockchain-backed nature, the scheme provides
instant key revocation and perfect forward security without the need to trust
the server or any single component in the blockchain.

A Blockchain-Assisted Hash-Based Signature Scheme 151

Formalizing and proving the security properties of the scheme in composition
with different implementation architectures of the blockchain consensus is an
interesting future research topic.

The concept of a blockchain containing only aggregate hashes of batches of
transactions instead of full records and the notion of a blockchain based on pre-
validation of correctness proofs of transactions before admitting them to the
chain could both be of independent interest.

References

1. Anderson, R.J., Bergadano, F., Crispo, B., Lee, J.-H., Manifavas, C., Needham,
R.M.: A new family of authentication protocols. Oper. Syst. Rev. 32(4), 9–20
(1998)

2. Asokan, N., Tsudik, G., Waidner, M.: Server-supported signatures. J. Comput.
Secur. 5(1), 91–108 (1997)

3. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

4. Bicakci, K., Baykal, N.: Server assisted signatures revisited. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 143–156. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24660-2 12

5. Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correctness
of memories. Algorithmica 12(2–3), 225–244 (1994)

6. Buchmann, J., Coronado Garćıa, L.C., Dahmen, E., Döring, M., Klintsevich, E.:
CMSS – an improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.)
INDOCRYPT 2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006).
https://doi.org/10.1007/11941378 25

7. Buchmann, J.A., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. IJACT 3(1), 84–96 (2013)

8. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

9. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72738-5 3

10. Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-supported RSA signatures for
mobile devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017.
LNCS, vol. 10492, pp. 315–333. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66402-6 19

11. Buldas, A., Kroonmaa, A., Laanoja, R.: Keyless signatures’ infrastructure: how
to build global distributed hash-trees. In: Riis Nielson, H., Gollmann, D. (eds.)
NordSec 2013. LNCS, vol. 8208, pp. 313–320. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41488-6 21

12. Buldas, A., Laanoja, R.: Security proofs for hash tree time-stamping using hash
functions with small output size. In: Boyd, C., Simpson, L. (eds.) ACISP 2013.
LNCS, vol. 7959, pp. 235–250. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39059-3 16

https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-540-24660-2_12
https://doi.org/10.1007/978-3-540-24660-2_12
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-540-72738-5_3
https://doi.org/10.1007/978-3-319-66402-6_19
https://doi.org/10.1007/978-3-319-66402-6_19
https://doi.org/10.1007/978-3-642-41488-6_21
https://doi.org/10.1007/978-3-642-41488-6_21
https://doi.org/10.1007/978-3-642-39059-3_16
https://doi.org/10.1007/978-3-642-39059-3_16

152 A. Buldas et al.

13. Buldas, A., Laanoja, R., Laud, P., Truu, A.: Bounded pre-image awareness and the
security of hash-tree keyless signatures. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K.,
Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 130–145. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12475-9 10

14. Buldas, A., Laanoja, R., Truu, A.: A server-assisted hash-based signature scheme.
In: Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS,
vol. 10674, pp. 3–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 1

15. Buldas, A., Laud, P., Lipmaa, H.: Accountable certificate management using unde-
niable attestations. In: Proceedings of the 7th ACM Conference on Computer and
Communications Security, pp. 9–17. ACM (2000)

16. Buldas, A., Saarepera, M.: Electronic signature system with small number of pri-
vate keys. In: 2nd Annual PKI Research Workshop, Proceedings, pp. 96–108. NIST
(2003)

17. Buldas, A., Saarepera, M.: On provably secure time-stamping schemes. In: Lee,
P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 500–514. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30539-2 35

18. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 353–371. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 19

19. Coronado Garćıa, L.C.: Provably secure and practical signature schemes. Ph.D.
thesis, Darmstadt University of Technology, Germany (2005)

20. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: Proceedings of the 18th USENIX Security Symposium, pp. 317–334. USENIX
(2009)

21. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-88403-3 8

22. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

23. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 8

24. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

25. Goyal, V.: More efficient server assisted one time signatures. Cryptology ePrint
Archive, Report 2004/135 (2004). https://eprint.iacr.org/2004/135

26. Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol.
3(2), 99–111 (1991)

27. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

28. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

https://doi.org/10.1007/978-3-319-12475-9_10
https://doi.org/10.1007/978-3-319-70290-2_1
https://doi.org/10.1007/978-3-319-70290-2_1
https://doi.org/10.1007/978-3-540-30539-2_35
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/978-3-540-88403-3_8
https://doi.org/10.1007/11586821_8
https://eprint.iacr.org/2004/135
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14

A Blockchain-Assisted Hash-Based Signature Scheme 153

29. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

30. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, SRI International, Computer Science Laboratory (1979)

31. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, RFC
Editor, June 2013

32. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

33. Merkle, R.C.: Secrecy, authentication and public key systems. Ph.D. thesis, Stan-
ford University (1979)

34. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

35. Perrig, A.: The BiBa one-time signature and broadcast authentication protocol.
In: Proceedings of the ACM CCS 2001, pp. 28–37. ACM (2001)

36. Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA broadcast authentica-
tion protocol. CryptoBytes 5(2), 2–13 (2002)

37. Perrin, T., Bruns, L., Moreh, J., Olkin, T.: Delegated cryptography, online trusted
third parties, and PKI. In: Proceedings of the 1st Annual PKI Research Workshop,
pp. 97–116. NIST (2002)

38. Reyzin, L., Reyzin, N.: Better than BiBa: short one-time signatures with fast sign-
ing and verifying. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384,
pp. 144–153. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-
0 11

39. Rohatgi, P.: A compact and fast hybrid signature scheme for multicast packet
authentication. In: Proceedings of the ACM CCS 1999, pp. 93–100. ACM (1999)

40. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/3-540-45450-0_11
https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2

The Fiat-Shamir Zoo: Relating the
Security of Different Signature Variants

Matilda Backendal1,2(B) , Mihir Bellare1 , Jessica Sorrell1 ,
and Jiahao Sun1

1 Department of Computer Science and Engineering, University of California San
Diego, San Diego, USA

{mihir,jlsorrel}@eng.ucsd.edu,jis126@ucsd.edu
2 Faculty of Engineering, Lund University, Lund, Sweden

matilda.backendal.6668@student.lu.se

Abstract. The Fiat-Shamir paradigm encompasses many different ways
of turning a given identification scheme into a signature scheme. Secu-
rity proofs pertain sometimes to one variant, sometimes to another.
We systematically study three variants that we call the challenge (sig-
nature is challenge and response), commit (signature is commitment
and response), and transcript (signature is challenge, commitment and
response) variants. Our framework captures the variants via transforms
that determine the signature scheme as a function of not only the identi-
fication scheme and hash function (to cover both standard and random
oracle model hashing), but also what we call a signing algorithm, to
cover both classical and with-abort signing. We relate the security of the
signature schemes produced by these transforms, giving minimal con-
ditions under which uf-security of one transfers to the other. To apply
this comprehensively, we formalize linear identification schemes, show
that many schemes in the literature are linear, and show that any linear
scheme meets our conditions for the signature schemes given by the three
transforms to have equivalent uf-security. Our results give a comprehen-
sive picture of the Fiat-Shamir zoo and allow proofs of security in the
literature to be transferred automatically from one variant to another.

1 Introduction

Ed25519 [13] is a fast signature scheme with widespread usage including
in TLS 1.3, SSH, Signal, and Tor [22]. It is derived via the Fiat-Shamir
paradigm [17] applied to the Schnorr identification scheme [28]. It is not alone;
over the last three decades the Fiat-Shamir paradigm has been a popular
way to obtain signature schemes, for reasons including the following: Speed.
It yields some of our most efficient signature schemes. Proofs. The paradigm
is backed by proofs of security [1,21,27]. Extendability. Classically used with
number-theoretic schemes [17,20,26,28], extensions of the paradigm now provide
lattice-based schemes, some of which are proposed to NIST for post-quantum
standards [2,14,16,23].
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 154–170, 2018.
https://doi.org/10.1007/978-3-030-03638-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_10&domain=pdf
http://orcid.org/0000-0002-8677-8301
http://orcid.org/0000-0002-8765-5573
http://orcid.org/0000-0001-9227-1032
http://orcid.org/0000-0002-1806-5000
https://doi.org/10.1007/978-3-030-03638-6_10

The Fiat-Shamir Zoo 155

However, referring, above, to “the” Fiat-Shamir paradigm is misleading, for
the paradigm is not monolithic: It encompasses variant methods that, starting
from a given identification scheme, yield different signature schemes. This creates
some confusion, with proofs in the literature pertaining sometimes to one variant,
sometimes to another, yet being quoted without regard to which variant is being
considered. Extensions such as signing with aborts [2,14,16,23] bring further
variants.

This paper aims to provide a systematic and comprehensive picture of the
variants in a general setting, and give results relating their security under min-
imal assumptions. This allows us to leverage existing security proofs given for
one variant [1,21,27], automatically transferring them to another, rather than
prove security of different variants from scratch.

Background. An identification scheme ID is a 3-move interactive protocol.
The prover, having public key pk and secret key sk, sends a commitment Ct,
the verifier sends a random challenge Ch, the prover sends a response Rp, and
the verifier computes a decision d ← ID.V(1λ,pk,Ct,Ch,Rp) to accept or reject,
where 1λ is the unary representation of the security parameter λ. In a signature
scheme based on ID, the prover, now the signer, given message M , computes
Ct as before, sets Ch ← F(1λ,pk, (Ct,M)) to a hash of the commitment and
message, computes Rp and then returns a signature σ. We distinguish three
variants with regard to what σ consists of. (1) In what we call the transcript
variant [27], σ is (Ct,Ch,Rp). It is verified by checking that ID.V(1λ,pk,Ct,
Ch,Rp) = true and Ch = F(1λ,pk, (Ct,M)). (2) In what we call the com-
mitment variant [1,25], σ is (Ct,Rp). It is verified by setting Ch ← F(1λ,pk,
(Ct,M)) and checking that ID.V(1λ,pk,Ct,Ch,Rp) = true. (3) In what we
call the challenge variant [17,20,26,28], σ is (Ch,Rp). This usually yields the
shortest signatures but requires a commitment reproducing algorithm ID.CR that
allows the verifier to reproduce Ct ← ID.CR(1λ,pk,Ch,Rp) and then check that
Ch = F(1λ,pk, (Ct,M)).

The history of the various transforms is interesting. Fiat and Shamir
(FS) [17], GQ [20], Schnorr [28] and Okamoto [26] all gave challenge-style signa-
tures. However, the first security proofs, by Pointcheval and Stern (PS) [27], were
for transcript-style signatures, which seem to originate with them. The proofs of
Abdalla, An, Bellare and Namprempre (AABN) [1] were for commitment-style
signatures, which seem to originate with Ohta and Okamoto (OO) [25]. The
changes are (mostly) made silently: PS, OO, AABN (and subsequent literature)
tend to refer to their results as establishing security of the FS, GQ, Schnorr and
Okamoto schemes, but the proofs pertain to variants not only different from the
original ones but in some cases also different from each other.

Questions. We would like a fuller picture, that given an identification scheme ID
tells us, for each of the three variant signature schemes derived from ID, whether
or not the variant is secure. The above-mentioned results do not directly yield
this information. One approach to filling this gap would be to return to the tech-
niques in prior proofs and directly try to prove security of each variant signature

156 M. Backendal et al.

scheme. Given the complexity of the techniques, this would be tedious. Instead,
we seek relations between the variants. This means that for each pair DSx,DSy
of variant signature schemes derived from a given identification scheme ID, we
want to determine an assumption or condition Ax,y on ID under which the secu-
rity of DSx implies the security of DSy. Then, if we know from prior work that
DSx is secure, and can establish that ID satisfies Ax,y, we can conclude that DSy
is secure too. This would leverage existing proofs in a modular way. We seek
assumptions Ax,y as weak as possible, both to maximize potential applicabil-
ity and to understand, theoretically, what are the minimal requirements for a
relation to hold.

The literature does contain claims about such relations [2,18,21], but (as we
will discuss in more detail below) they are mostly informal, specific to particular
schemes, or make assumptions we will show to be unnecessarily strong.

Our framework. We capture the variants via transforms that we call general
to reflect a broader parameterization than in prior work. A general Fiat-Shamir
transform gFS determines a signature scheme DS = gFS[ID,F,S] based on input
parameters an identification scheme ID, a hash function F (allowed access to the
random oracle H) and (most novel) a signing algorithm S (also allowed access to
H). The signing algorithm takes 1λ,pk, sk,M and returns either ⊥ or an honest,
accepting transcript (Ct,Ch,Rp) satisfying Ch = FH(1λ,pk, (Ct,M)). But,
beyond requiring this condition, we do not prescribe how the signing algorithm
operates. To sign message M , run T ←$ SH(1λ,pk, sk,M), and return ⊥ as sig-
nature if T = ⊥. Otherwise, parse T as (Ct,Ch,Rp). Exactly what is returned
as the signature σ, and how that signature is verified, depends on the trans-
form. This is summarized for each of our three transforms gFStr,gFSct,gFSch

in Fig. 1, reflecting the three variants discussed above. The schemes are shown in
full in Fig. 4. As we will see, the broad parameterization enhances applicability
because our relations will hold for all choices of F,S.

Relations between security of signature schemes. The security
attribute we consider for the signature schemes, hereafter called uf-security, is the
usual unforgeability under chosen message attack [19] extended, due to growing
recognition of its importance, to the multi-user setting [5,21]. Now, given ID,F,S,
consider the three signature schemes DSx = gFSx[ID,F,S] for x ∈ {tr, ct, ch}.
We seek relations between their uf-security, as discussed above. This means that
for each (distinct) pair x, y ∈ {tr, ct, ch} we ask under what assumption Ax,y the
uf-security of DSx implies the uf-security of DSy.

Our results are summarized by the picture at the bottom of Fig. 1. That
DStr and DSct have equivalent uf-security is trivial. The interesting question is,
does uf-security of one of DSct,DSch imply uf-security of the other? The straight,
barred arrows say that in general (that is, without any condition beyond basic
completeness on the commitment reproducing algorithm) the answer is no. The
curved, un-barred arrows say the answer is yes, under conditions on the commit-
ment reproducing algorithm (formally, on the overlying identification scheme ID
that includes this algorithm) that we give. Specifically, Theorem 2 says that if ID

The Fiat-Shamir Zoo 157

Signature
Signature σ To verify σ, check this:Scheme

DStr=gFStr[ID,F, S] (Ct,Ch,Rp)
ID.V(1λ, pk,Ct,Ch,Rp) = true

Ch = FH(1λ, pk, (Ct, M))

DSct=gFSct[ID,F, S] (Ct,Rp) ID.V(1λ, pk,Ct,FH(1λ, pk, (Ct, M)),Rp) = true

DSch=gFSch[ID,F, S] (Ch,Rp) Ch = FH(1λ, pk, (ID.CR(1λ, pk,Ch,Rp), M))

DSctDSch DStr

SND, Th. 2

CNS, Th. 4

Th. 5Prop. 3

Prop. 1

Fig. 1. Top: Signatures and verification in the signature schemes given by our trans-
forms, where ID.CR is the commitment reproducing algorithm of ID. Signing of message
M (not shown) is done by letting (Ct,Ch,Rp) ←$ SH(1λ, pk, sk, M) and returning the
shown σ. Bottom: Relations between uf-security of the signature schemes.

has a property we define and call soundness (SND) then, if DSct is uf-secure, so
is DSch. Theorem 4 says that if ID has a property we define and call consistency
(CNS) then, if DSch is uf-secure, so is DSct. SND-security asks that it be com-
putationally hard to find a challenge and response such that the commitment
reproducing algorithm succeeds in returning a commitment but the resulting
transcript is not accepting. CNS-security asks that it be computationally hard
to create an accepting transcript in which the commitment is different from the
one given by the commitment reproducing algorithm. The reductions underlying
all our positive results are tight.

Breadth of applicability. The positive relations (un-barred arrows in Fig. 1)
hold for all choices of hash function F and signing algorithm S. This broadens
applicability. With regard to hashing, it means we can transfer security in both
the random oracle and the standard models: For x, y ∈ {tr, ct, ch}, if DSx pro-
vides uf-security with a random-oracle hash function then (assuming of course,
as necessary, properties of ID as above) so does DSy, but if DSx provides uf-
security with hash function SHA256, then so does DSy. With regard to signing,
this means that our framework captures both canonical and more modern vari-
ants of the Fiat-Shamir paradigm. For example, in the literature Fiat-Shamir
with aborts [2,14,16,23] is viewed as an extension of the canonical Fiat-Shamir
paradigm. In our framework, the canonical and with-abort variants correspond
simply to different choices of signing algorithm S (cf. Fig. 4), so our results apply
automatically to both.

158 M. Backendal et al.

We elaborate on the second point. We said above how the Fiat-Shamir
paradigm prescribes signing a message M , which we now call the canonical way:
generate Ct as would the honest prover, set Ch ← FH(1λ,pk, (Ct,M)), gener-
ate Rp as would the prover, then return σ computed from Ct,Ch,Rp according
to the variant (challenge, commit or transcript) of interest. This is captured for
us by setting S to the canonical algorithm on the bottom left of Fig. 4. This works
(yields a correct signature) if the identification scheme has perfect correctness.
However, in the identification schemes from lattices [2,14,16,23], the response
can be ⊥ with constant probability. So the process is modified to repeat picking
Ct,Ch,Rp as above until the conversation is accepting or some time bound is
exceeded, which is called signing with aborts. (In this case, the signature schemes
have imperfect correctness, returning ⊥ with negligible probability.) The chal-
lenge, commit and transcript variants for the signature schemes exist here too, so
the question of how their security relates arises again. We do not need to address
this separately. It is captured for us, and addressed by the results noted above,
simply by setting S to the algorithm on the bottom right of Fig. 4. Choices of S
beyond these two are possible as well, for potential further applications.

Perfect uniqueness. We have introduced the SND and CNS conditions on
commitment reproducible identification schemes, showing that they suffice for
transfer of uf-security between the signature variants. (SND allows the uf-
security of DSct to imply that of DSch, and CNS the converse.) We also define
a third condition called perfect uniqueness (P-UNIQ). It asks that a transcript
Ct,Ch,Rp be accepting if and only if the commitment reproducing algorithm
ID.CR returns exactly Ct on inputs Ch,Rp. Figure 6 says that P-UNIQ implies
both SND and CNS. Establishing P-UNIQ-ness of a commitment reproducible
identification scheme ID is thus a simple path (and one we will often be able to
use) to showing that all the signature variants derived from ID have equivalent
uf-cma security. However, Fig. 6 also says that P-UNIQ is a strictly stronger con-
dition than SND or CNS. So for some commitment reproducible identification
schemes, P-UNIQ may fail to be true, yet we might be able to directly establish
SND and CNS to show equivalence of uf-security of the signature variants.

Linear identification schemes. We’d like to know whether identification
schemes in the literature meet our conditions (P-UNIQ, or SND,CNS as nec-
essary). However, there are many schemes, and new ones keep appearing, and
testing them individually is tedious. Instead, we formalize linear identification
schemes and show that any linear identification scheme is (unconditionally)
P-UNIQ. Our results thus say that the three variant signature schemes ema-
nating from any linear identification scheme have equivalent uf-security.

We then show that classical identification schemes like FS [17], Sch [28],
GQ [20] and Ok [26] are linear. We also show that the Ly lattice based identifi-
cation scheme of [23] is linear. Since proofs of uf-security exist for at least one
signature variant for all these identification schemes, we can conclude that all
three variants are uf-secure.

The Fiat-Shamir Zoo 159

Lyubashevsky [24] directly gives a lattice-based signature scheme that he
does not derive via the FS paradigm. (Indeed the paper presents no identification
scheme.) We show how to capture it in our framework as gFSch[ID,F,SAID,F,t]
where SAt is the abort-based signing algorithm on the bottom right of Fig. 4 and
ID is an identification scheme that we define and show is linear. This means we
can define the other variant signature schemes and transfer the proofs of [24] to
them.

As the above indicates, the concept of linear identification schemes serves
also to unify the literature, showing that what look like different schemes are
in fact instances of one underlying scheme. We see this as something that was
understood but not, until now, formalized.

Due to lack of space, the material on linear identification schemes is entirely
omitted from this proceedings version and can be found in our full version [4].

Which variant should one use? Our work is about relating the security
of the different signature variants. The question of which variant to prefer in
usage is orthogonal, and the answer differs from case to case. We discuss the
choices briefly. The challenge variant gFSch usually yields the shortest signa-
tures (examples where this is true are FS [17], GQ [20], Sch in the group of
integers modulo a prime [28] and Ly [23]) but requires that ID be commitment
reproducible (meaning, there exists a commitment reproducing algorithm ID.CR)
which is not always true. When ID is not commitment reproducible, one can use
gFSct. Here, in some cases (like Sch over elliptic curve groups) the signature size
stays as small as with gFSch, but in other cases, it might grow. The transcript
variant gFStr is also an option for usage when commitment reproducibility is
lacking, but there seems no practical reason for this, because signatures are
always shorter with gFSct. We consider gFStr in this paper because it was the
variant for which the seminal work of Pointcheval and Stern [27] gave proofs.

Of course performance (including signature size) is just one criterion with
regard to a choice for usage. Another is security proofs. The general results in
the literature give proofs for gFSct [1] and gFStr [27], not gFSch. Our framework
and results can be used to transfer them to the (usually more efficient) gFSch.

Related work. Kiltz, Masny, and Pan [21] briefly note that DSch,DSct are
equivalent in terms of uf-security assuming the verification algorithm has a cer-
tain property. This seems to be equivalent to the identification scheme being
P-UNIQ. Figure 6 shows that the SND and CNS properties that allow us to
establish the same equivalence are implied by, and strictly weaker than, P-UNIQ,
making our results stronger. Also their results are for the canonical signing algo-
rithm, while ours are for an arbitrary one. Abdalla, Fouque, Lyubashevsky, and
Tibouchi [2] give results for commitment-style signatures with aborts, saying
that these transfer to the challenge style for their schemes because “the com-
mitment is uniquely determined by the challenge and response.” The phrase
in quotes is not too precise but the intent is likely P-UNIQ. Galbraith, Petit,
and Silva [18] show that, for their particular scheme, under weak conditions on
commitment reproducibility, security of the commit version implies security of

160 M. Backendal et al.

a version that is like the challenge one except that signature verification addi-
tionally checks that the verifier accepts the transcript. This is added verification
cost compared to the classical Fiat-Shamir style challenge variant, which is the
version we consider and which does not have such a check.

We view our work as unifying, systematizing and formalizing long-standing
understanding, scattered observations and folklore. Nothing in this paper is very
novel or technically difficult. Our hope is that it fills some gaps and can be a
point of reference for variants of Fiat-Shamir signatures.

Extensions. Beyond basic (uf-cma) signature schemes, identification schemes
have been used to build identity-based signatures [8], blind signatures [15,
27] leakage-resilient signatures [3,6], double authentication preventing signa-
tures [10] and beyond. Returning to the basic setting, variants of the Fiat-Shamir
paradigm offering better concrete security have been considered [9]. In all these
places and settings, the commit, challenge and transcript variants arise. One can
ask how their security relates, and extend our framework and results to answer
this question.

2 Basic Definitions

Notation. We let ε denote the empty string. If Z is a string then |Z| denotes
its length. If X is a finite set, we let x ←$ X denote picking an element of X
uniformly at random and assigning it to x, and we let |X| denote the size of X.
We use ⊥ (bot) as a special symbol to denote rejection, and it is assumed to not
be in {0, 1}∗. Both inputs and outputs to algorithms can be ⊥. We adopt the
convention that if any input to an algorithm is ⊥, then its output is ⊥ as well.
By λ ∈ N we denote the security parameter, and by 1λ its unary representation.
Recall that a function ν: N → R is negligible if for every positive polynomial
p: N → R there is a λp ∈ N such that ν(λ) ≤ 1/p(λ) for all λ ≥ λp.

Algorithms may be randomized unless otherwise indicated. Running time is
worst case. “PT” stands for “polynomial time,” whether for a randomized algo-
rithm or a deterministic one. If A is an algorithm, we let y ← AO1,...(x1, . . . ;ω)
denote running A on inputs x1, . . . and coins ω, with oracle access to O1, . . .,
and assigning the output to y. By y ←$ AO1,...(x1, . . .) we denote picking ω at
random and letting y ← AO1,...(x1, . . . ;ω). We let [AO1,...(x1, . . .)] denote the set
of all possible outputs of A when run on inputs x1, . . . and with oracle access to
O1, An adversary is an algorithm.

We use the code-based game-playing framework of [12]. (See Fig. 5 for an
example.) By Pr[G] we denote the probability that the execution of game G
results in the game returning true. We adopt the convention that the running
time of an adversary executing with some game refers to the worst case execution
time of the game with the adversary, meaning the time taken for oracles to
compute replies to queries is included. The random oracle (RO) model [11] is
captured by inclusion in the game of a procedure H that implements a variable
output length RO. See for example Fig. 3.

The Fiat-Shamir Zoo 161

Fig. 2. Operation of an identification scheme ID.

Identification schemes. An identification scheme ID (called a canonical iden-
tification scheme in [1]) specifies several algorithms and associated quantities,
as follows. In an initialization phase, via (pk, sk) ←$ ID.Kg(1λ), the prover runs
the key-generation algorithm ID.Kg on input the unary representation 1λ of
the security parameter λ to obtain a public key pk and a private key sk, both
of which she stores. It is assumed that the verifier is in possession of pk. (In
practice this is likely done via certificates, but that is not in the scope of the
identification scheme.) Identification then operates as depicted in Fig. 2. Via
(Ct,St) ←$ ID.Ct(1λ,pk), the prover generates a commitment Ct and corre-
sponding private state St. The verifier sends a challenge Ch ←$ ID.ChS(λ)
drawn at random from the challenge space ID.ChS(λ) = {0, 1}ID.ChL(λ) where
ID.ChL: N → N is the challenge length function associated to ID. The prover’s
response Rp ← ID.Rp(1λ,pk, sk,Ch,St) is computed via a deterministic algo-
rithm ID.Rp. The verifier’s decision d ← ID.V(1λ,pk,Ct,Ch,Rp), which is
either true, false or ⊥, is also computed deterministically. Algorithms ID.Kg,
ID.Ct, ID.Rp, ID.V are required to be PT.

The honest-transcript generating function HTRID,λ associated to ID and λ ∈
N takes input (pk, sk) ∈ [ID.Kg(1λ)], and returns a transcript of a conversation
between the honest prover and the verifier, as follows:

HTRID,λ(pk, sk)
(Ct,St) ←$ ID.Ct(1λ,pk); Ch ←$ ID.ChS(λ); Rp ← ID.Rp(1λ,pk, sk,Ch,St)
Return (Ct,Ch,Rp)

For λ ∈ N and (pk, sk) ∈ [ID.Kg(1λ)], we define the set of accepting
transcripts

ACCID,λ(pk) = { (Ct,Ch,Rp) : ID.V(1λ,pk,Ct,Ch,Rp) = true } .

Correctness, for most schemes, is simple, saying that honest transcripts are
always accepting: formally, for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we
have [HTRID,λ(pk, sk)] ⊆ ACCID,λ(pk). We call this perfect correctness. How-
ever we will need to also consider a relaxation where there is a correctness
error, and this has to be carefully formulated. We say that ID has correct-
ness error ν: N → R if for all λ ∈ N and all (pk, sk) ∈ [ID.Kg(1λ)] we have
Pr[(Ct,Ch,Rp) 	∈ ACCID,λ(pk)] ≤ ν(λ), where the probability is over (Ct,

162 M. Backendal et al.

Game Guf
DS,A(λ)

n ← 0 ; S ← ∅
(M, σ, i) ←$ ANew,Sign,H(1λ)
d ← DS.VH(1λ, pki, M, σ)
Return (d = true) ∧ ((i, M) /∈ S)

H(W, �)

If HT[W, �] = ⊥ then HT[W, �] ←$ {0, 1}�

Return HT[W, �]

Sign(i, M)

σ ←$ DS.SignH(1λ, pki, ski, M)
S ← S ∪ {(i, M)}
Return σ

New()
n ← n + 1
(pkn, skn) ←$ DS.Kg(1λ)
Return pkn

Fig. 3. Game for UF-CMA security of digital signature schemes in the multi-user
setting.

Ch,Rp) ←$ HTRID,λ(pk, sk). This captures the requirement that the verifier
accepts with probability at least 1 − ν(λ) in an interaction with the honest
prover. Some commonly occurring choices for ν are a constant, like ν(·) = 1/2,
or a negligible function, and in the latter case we say that ID has negligible
correctness error.

Signature Schemes. A (digital) signature scheme DS specifies several algo-
rithms and associated quantities, as follows. In an initialization phase, via
(pk, sk) ←$ DS.Kg(1λ), the signer runs the PT key-generation algorithm DS.Kg
on input 1λ to obtain a public key pk and a private key sk, both of which she
stores. It is assumed that the verifier is in possession of pk. (As with identi-
fication, how this happens is not in the scope of the signature scheme.) Via
σ ←$ DS.SignH(1λ,pk, sk,M), the signer generates a signature σ of a message
M ∈ {0, 1}∗. Via d ← DS.VH(1λ,pk,M, σ), a verifier can deterministically
obtain a decision regarding whether σ is a valid signature of M under pk.
The signing and verifying algorithms have oracle access to the random oracle
H and are required to be PT. We say that DS has correctness error ν: N → R

if, for all λ ∈ N, all (pk, sk) ∈ [DS.Kg(1λ)] and all M ∈ {0, 1}∗ we have
Pr[DS.VH(1λ,pk,M,DS.SignH(1λ,pk, sk,M)) 	= true] ≤ ν(λ), where the proba-
bility is over the random choices of H and the coins of DS.Sign. We say correctness
is perfect if ν(·) = 0.

Our security metric for signatures, called uf-security, is the usual unforge-
ability under chosen-message attack [19], but in the multi-user setting, due to
increasing recognition of the importance of the latter [5,21]. Consider game
Guf

DS,A(λ) in Fig. 3 associated to signature scheme DS and adversary A. By call-
ing the New oracle, the adversary can initialize a new user (signer), obtaining
her public key. The number of users n, being the number of queries to New, is
thus under the adversary’s control. Via the Sign oracle, the adversary can mount
its chosen-message attack, obtaining a signature on a message of its choice under
a user of its choice. The adversary eventually outputs a pointer i ∈ {1, . . . , n}

The Fiat-Shamir Zoo 163

to a user, a message M , and a claimed signature of M under pki, winning if
the signature is valid and non-trivial. We let Advuf

DS,A(λ) = Pr[Guf
DS,A(λ)] be

the probability that the game returns true. We say that DS is uf-secure if the
function Advuf

DS,A(·) is negligible for all PT adversaries A.

3 Transforms and Signature Relations

The FS transforms are usually viewed as turning an identification scheme into
a signature scheme in the random oracle model. Our general transforms take
not only an identification scheme, but a hash function F, so that both standard
model and random oracle model hash functions are covered. More novel, they
take a description S of a signing process, to cover the fact that FS has been used
in settings with and without abort. We begin with commitment reproducibil-
ity, needed for some of the transforms, then discuss the other parameters, and
then specify the transforms. We then define the SND and CNS security notions
for commitment reproducible identification schemes that allow us to relate the
security of the schemes emanating from the different general transforms. Finally
we study relations between security notions for commitment reproducible iden-
tification schemes.

Commitment reproducibility. A commitment reproducing algorithm for
identification scheme ID is a deterministic, PT algorithm ID.CR that returns
an output in {0, 1}∗ ∪{⊥}. We require the following completeness condition: for
all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and all (Ct,Ch,Rp) ∈ [HTRID,λ(pk, sk)] ∩
ACCID,λ(pk) we have Ct = ID.CR(1λ,pk,Ch,Rp). Completeness says that
the commitment in an accepting transcript of an interaction between the honest
prover and the verifier is uniquely determined by the challenge and response, and
moreover can be computed from them in PT by the commitment reproducing
algorithm. An identification scheme ID is commitment reproducible if it specifies
(in addition to the quantities it already specifies as per Sect. 2) a commitment
reproducing algorithm ID.CR that satisfies the completeness condition.

Commitment reproducibility is enough to define the gFSch transform, but
further attributes (SND,CNS) will be necessary to establish relations between
uf-security of the signature schemes.

Hashing. The gFS transforms use a hash function. Most of our results hold
regardless of the choice of the hash function, in particular both when it is a
standard-model function and when it is a random oracle. To capture this for-
mally, we define a hash function as a deterministic algorithm F that may have
access to a random oracle H. It is compatible with identification scheme ID if
FH(1λ,pk, x) ∈ ID.ChS(λ) for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all x and all
H. In our usage, x = (Ct,M) will consist of a commitment and message. By
setting FH(1λ,pk, x) = H((1λ,pk, x), �(λ)) for some �: N → N we can cover the
case where the hash function is a random oracle, but we can also, for example, set
FH(1λ,pk, x) = SHA256((1λ,pk, x)) to cover schemes where the hash function
has been instantiated via SHA256.

164 M. Backendal et al.

DStr.Sign
H(1λ, pk, sk, M)

T ←$ SH(1λ, pk, sk, M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ct,Ch,Rp) ; Return σ

DStr.V
H(1λ, pk, M, σ)

(Ct,Ch,Rp) ← σ
d0 ← ID.V(1λ, pk,Ct,Ch,Rp)
d1 ← (Ch = FH(1λ, pk, (Ct, M)))
Return (d0 ∧ d1)

DSct.Sign
H(1λ, pk, sk, M)

T ←$ SH(1λ, pk, sk, M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ct,Rp) ; Return σ

DSct.V
H(1λ, pk, M, σ)

(Ct,Rp) ← σ
Ch ← FH(1λ, pk, (Ct, M))
Return ID.V(1λ, pk,Ct,Ch,Rp)

DSch.SignH(1λ, pk, sk, M)

T ←$ SH(1λ, pk, sk, M)
If (T = ⊥) then return ⊥
(Ct,Ch,Rp) ← T
σ ← (Ch,Rp) ; Return σ

DSch.VH(1λ, pk, M, σ)
(Ch,Rp) ← σ
Ct ← ID.CR(1λ, pk,Ch,Rp)
If (Ct = ⊥) then return false
Return (Ch = FH(1λ, pk, (Ct, M)))

Algorithm SCH
ID,F(1

λ, pk, sk, M)

(Ct,St) ←$ ID.Ct(1λ, pk)
Ch ← FH(1λ, pk, (Ct, M))
Rp ← ID.Rp(1λ, pk, sk,Ch,St)
Return (Ct,Ch,Rp)

Algorithm SAH
ID,F,t(1

λ, pk, sk, M)

d ← false ; i ← 0
While (d = false and i < t(λ)) do:

i ← i + 1
(Ct,St) ←$ ID.Ct(1λ, pk)
Ch ← FH(1λ, pk, (Ct, M))
Rp ← ID.Rp(1λ, pk, sk,Ch,St)
d ← ID.V(1λ, pk,Ct,Ch,Rp)

If (d = true) then return (Ct,Ch,Rp)
Else return ⊥

Fig. 4. Top three panels show signing and verifying algorithms of the signature schemes
DStr, DSct and DSch obtained by applying the gFStr,gFSct and gFSch transforms,
respectively, to identification scheme ID, hash function F and signing algorithm S.
Bottom panel shows examples of signing algorithms.

Signing. Let ID be an identification scheme, and F a hash function compat-
ible with it. A signing algorithm compatible with ID and F is a PT algo-
rithm S that operates as T ←$ SH(1λ,pk, sk,M). We require that if T 	= ⊥
then it parses as (Ct,Ch,Rp) ← T satisfying Ch = FH(1λ,pk, (Ct,M)) and
(Ct,Ch,Rp) ∈ [HTRID,λ(pk, sk)] ∩ ACCID,λ(pk). That is, a non-⊥ signa-
ture is an honest, accepting transcript in which the challenge is the hash of
the commitment and message. We say that S has signing error ν: N → R if
Pr[SH(1λ,pk, sk,M) = ⊥] ≤ ν(λ) for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)] and
all M ∈ {0, 1}∗, where the probability is over the coins of S and H.

On the bottom left of Fig. 4 is the canonical signing algorithm SCID,F. This
is the classical choice, representing the usual, prescribed way to generate FS

The Fiat-Shamir Zoo 165

signatures. When ID has perfect correctness, SCID,F has zero signing error. On
the right is a signing with aborts algorithm SAID,F,t as per [23], where t: N → N

is a polynomial. This may be used when ID has imperfect correctness. It tries to
generate an honest, accepting transcript, returning ⊥ if it fails after t(·) attempts.
If ID has correctness error a (non-zero) constant ν(·) = ε < 1, then setting t(λ),
to, say, �log2(λ) · log(1/ε) will result in SAID,F,t having negligible signing error
in the case that F is a random oracle. For other choices of F, the correctness
error of SAID,F,t would have to be evaluated directly (this seems to be somewhat
glossed over in prior work) but for practical choices of F we expect it to still be
about ν by the random oracle paradigm [11]. Our transforms will not pin down
a particular way of generating signatures, but rather allow that to be specified
by a signing algorithm S that they take as input. This allows our results to cover
many different types of signing.

The gFS transforms. Let ID be an identification scheme, F a hash func-
tion compatible with it, and S a signing algorithm compatible with both. The
gFStr transform associates to ID,F,S the signature scheme DStr = gFStr[ID,
F,S] whose algorithms are specified in the first panel in Fig. 4. The gFSct trans-
form associates to ID,F,S the signature scheme DSct = gFSct[ID,F,S] whose
algorithms are specified in the second panel in Fig. 4. Assuming additionally that
ID is commitment reproducible, and letting ID.CR be its commitment reproduc-
ing algorithm, the gFSch transform associates to ID,F,S the signature scheme
DSch = gFSch[ID,F,S] whose algorithms are specified in the third panel of Fig. 4.
Although this is not explicitly indicated in the code, note that in all cases, as per
our general conventions, the signature verification algorithm returns ⊥ if its input
signature σ is ⊥. The correctness error of a signature scheme DS = gFS[ID,F,S]
given by one of our transforms is just the signing error of the signing algorithm
S. So, for example, if ID has perfect correctness and S = SCID,F, then DS has
perfect correctness.

Attributes of the commitment reproducing algorithm. Security of the
different variants of the FS transform will rely on different properties of commit-
ment reproducible identification schemes that we now introduce. In the following
let ID be a commitment reproducible identification scheme.

The strongest attribute is what we call Perfect Uniqueness (P-UNIQ). It
asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all Ch ∈ ID.ChS(λ) and all
Ct,Rp that are not ⊥ we have: ID.V(1λ,pk,Ct,Ch,Rp) = true if and only if
Ct = ID.CR(1λ,pk,Ch,Rp). Figure 6 says the SND,CNS attributes we define
next are implied by P-UNIQ, but strictly weaker than it.

We now introduce soundness. To understand it, we start with Perfect Sound-
ness (P-SND). This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)], all
Ch ∈ ID.ChS(λ) and all Rp we have: If Ct ← ID.CR(1λ,pk,Ch,Rp) is not
⊥ then ID.V(1λ,pk,Ct,Ch,Rp) = true. SND-security is a computational relax-
ation of this, asking that it be computationally hard to create a challenge and
response where commitment reproducibility succeeds but the transcript is reject-
ing. This is formalized in game Gsnd

ID,A(λ) in Fig. 5. Via oracle New, the adversary
can initialize a user (we are in the multi-user setting) and obtain not only its pub-

166 M. Backendal et al.

Game Gsnd
ID,A(λ)

n ← 0
(Ch,Rp, i) ←$ ANew(1λ)
Ct ← ID.CR(1λ, pki,Ch,Rp)
d ← ID.V(1λ, pki,Ct,Ch,Rp)
Return (d = false) ∧ (Ct �= ⊥)

New()

n ← n + 1 ; (pkn, skn) ←$ ID.Kg(1λ)
Return (pkn, skn)

Game Gcns
ID,A(λ)

n ← 0
(Ct1,Ch,Rp, i) ←$ ANew(1λ)
Ct0 ← ID.CR(1λ, pki,Ch,Rp)
d1 ← ID.V(1λ, pki,Ct1,Ch,Rp)
Return (d1 = true) ∧ (Ct0 �= Ct1)

New()

n ← n + 1 ; (pkn, skn) ←$ ID.Kg(1λ)
Return (pkn, skn)

Fig. 5. Games defining soundness (SND-security) and consistency (CNS-security) of a
commitment reproducible identification scheme ID.

lic key but also its secret key. It outputs a challenge Ch ∈ ID.ChS(λ) and response
Rp, as well as a pointer to some user i ∈ {1, . . . , n}. It wins if the commitment
reproducing algorithm, given pki,Ch,Rp, returns a non-⊥ value but the corre-
sponding transcript is rejected by the verifier. Let Advsnd

ID,A(λ) = Pr[Gsnd
ID,A(λ)].

We say that ID is SND-secure if the function Advsnd
ID,A(·) is negligible for every

PT adversary A.
We turn to consistency. Again, to understand it we start with Perfect Con-

sistency (P-CNS). This asks that for all λ ∈ N, all (pk, sk) ∈ [ID.Kg(1λ)],
all Ch ∈ ID.ChS(λ) and all Ct,Rp we have: If Ct 	= ID.CR(1λ,pk,Ch,Rp)
then ID.V(1λ,pk,Ct,Ch,Rp) 	= true. CNS-security is a computational relax-
ation of this, asking that it be computationally hard to create an accepting
transcript in which the commitment is different from the one given by the
commitment reproducing algorithm. This is formalized using game Gcns

ID,A(λ)
in Fig. 5. Via oracle New, the adversary can initialize a user and obtain both its
keys. It outputs Ct,Ch,Rp with Ch ∈ ID.ChS(λ) and a pointer to some user
i ∈ {1, . . . , n}. It wins if the transcript is accepting but the commitment repro-
ducing algorithm returns a commitment different from the one in the transcript.
Let Advcns

ID,A(λ) = Pr[Gcns
ID,A(λ)]. We say that ID is CNS-secure if the function

Advcns
ID,A(·) is negligible for every PT adversary A.

For convenience of our reductions, the definitions of soundness and consis-
tency are in the multi-user setting. A standard hybrid argument shows that
single user security (captured as security relative to adversaries making only one
call to New) implies multi-user security. This reduction is not tight, the advan-
tage degrading linearly in the number of queries to New. When we say that the
results in our paper are underlain by tight reductions we mean that the reduc-
tions in Theorems 2 and 4 are tight to the assumptions made in these theorems,
which are the multi-user versions of SND and CNS, respectively.

Signature scheme relations. We give the formal result statements under-
lying the picture at the bottom of Fig. 1. The proofs are in [4]. We start with

The Fiat-Shamir Zoo 167

whether uf-security of DSct implies that of DSch. The following Proposition says
that in general (meaning, with no conditions on the commitment reproducing
algorithm other than completeness) the answer is “no.” Theorem 2 will show
that SND-security of ID suffices to make the answer “yes.” For simplicity the
Proposition sets the signing algorithm to the canonical one, but the Theorem
holds for all signing algorithms.

Proposition 1. Let ID∗ be a commitment reproducible identification scheme
and F a hash function compatible with ID∗. Assume signature scheme DS∗

ct =
gFSct[ID

∗,F,SCID∗,F] is uf-secure. Then there is a commitment reproducible iden-
tification scheme ID such that F is compatible with ID and (1) DSct = gFSct[ID,F,
SCID,F] is uf-secure but (2) DSch = gFSch[ID,F,SCID,F] is not uf secure.

If ID has the stronger property of being SND-secure, then uf-security of DSct
does transfer to DSch. Note that ID as constructed in the proof of Proposition 1
is not SND-secure, so there is no contradiction. Hence the Proposition can also
be viewed as showing that the SND-security assumption is necessary for the
following Theorem. For conciseness, the theorem statement is asymptotic, but
it is underlain by a tight reduction explicitly stated and proved in [4].

Theorem 2. Let ID be a commitment reproducible identification scheme, F a
hash function compatible with ID and S a signing algorithm compatible with ID,F.
Let DSct = gFSct[ID,F,S] and DSch = gFSch[ID,F,S]. Assume ID is SND-secure
and DSct is uf-secure. Then DSch is uf-secure.

This result holds regardless of F,S, meaning no (extra) conditions are put
on these, which means we cover both canonical and with-abort signing via the
choices of S shown in Fig. 4.

We turn to the converse, asking whether uf-security of DSch implies that of
DSct. Analogously to the above, Proposition 3 says that in general the answer
is “no,” and Theorem 4 says that it becomes “yes” assuming ID is CNS-secure.

Proposition 3. Let ID∗ be a commitment reproducible identification scheme
and F a hash function compatible with ID∗. Assume signature scheme DS∗

ch =
gFSch[ID

∗,F,SCID∗,F] is uf-secure. Then there is a commitment reproducible
identification scheme ID such that F is compatible with ID and (1) DSch =
gFSch[ID,F,SCID,F] is uf-secure but (2) DSct = gFSct[ID,F,SCID,F] is not uf
secure.

Theorem 4. Let ID be a commitment reproducible identification scheme, F a
hash function compatible with ID and S a signing algorithm compatible with ID,F.
Let DSct = gFSct[ID,F,S] and DSch = gFSch[ID,F,S]. Assume ID is CNS-secure
and DSch is uf-secure. Then DSct is uf-secure.

Recall that the interest of gFStr is that the first proofs were for this vari-
ant [27]. However the following says it is equivalent in uf-security to gFSct.

168 M. Backendal et al.

P-UNIQ

P-SND ∧ P-CNS

P-SND P-CNS

SND CNS

Fig. 6. Relations between security notions for commitment reproducible identification
scheme. Arrows denote implications and barred arrows denote separations.

Theorem 5. Let ID be an identification scheme, F a hash function compatible
with ID and S a signing algorithm compatible with ID,F. Let DSct = gFSct[ID,
F,S] and DStr = gFStr[ID,F,S]. Then DSct is uf-secure if and only if DStr is
uf-secure.

Identification relations. We have defined several attributes of commit-
ment reproducing identification schemes: P-UNIQ, P-SND, SND, P-CNS, CNS.
Figure 6 determines the relations between the five notions, in the style introduced
by [7]. An arrow XX → YY is an implication: every commitment reproducible
identification scheme that has property XX also has property YY. A barred
arrow XX � YY is a separation: there exists a commitment reproducible identi-
fication scheme having property XX but not having property YY. Proofs of the
relations in Fig. 6 are in [4].

The picture shows a minimal set of implications and separations but deter-
mines the relation between any two nodes. For example, does P-CNS imply
P-SND? No, because if it did we would get a path from P-CNS to SND, contra-
dicting that shown separation.

What emanates from the relations? Recall we have seen that if DSct =
gFSct[ID,F,S] and DSch = gFSch[ID,F,S] then SND suffices for uf-security of
DSct to imply that of DSch, and CNS suffices for the converse. Figure 6 says that
P-UNIQ would also suffice for (both) these conclusions, but that SND,CNS are
strictly weaker assumptions. It also says that SND,CNS are distinct; neither
implies the other. In fact even P-SND does not imply CNS, and P-CNS does not
imply SND. So the conditions required for uf-security to transfer across DSch
and DSct are not symmetric.

Acknowledgments. The first and fourth authors were supported in part by Scott
Klemmer and the CSE Undergraduate Summer Research Internship program at the
Department of Computer Science and Engineering, University of California San Diego.
The second author was supported in part by NSF grants CNS-1717640 and CNS-
1526801, a gift from Microsoft corporation and ERC Project ERCC (FP7/615074). The
third author was supported in part by NSF grant CNS-1528068. The second author
thanks Tom Ristenpart for asking about the security of the different variants of Fiat-
Shamir signatures. We thank the NordSec 2018 reviewers for their comments.

The Fiat-Shamir Zoo 169

References

1. Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification to sig-
natures via the Fiat-Shamir transform: minimizing assumptions for security and
forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 418–433. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-
7 28

2. Abdalla, M., Fouque, P.-A., Lyubashevsky, V., Tibouchi, M.: Tightly-secure sig-
natures from lossy identification schemes. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 572–590. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 34

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

4. Backendal, M., Bellare, M., Sorrell, J., Sun, J.: The Fiat-Shamir zoo: relating
the security of different signature variants. Cryptology ePrint Archive, Report
2018/775

5. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 259–274. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 18

6. Bellare, M., Dai, W.: Defending against key exfiltration: efficiency improvements
for big-key cryptography via large-alphabet subkey prediction. In: ACM CCS 2017
(2017)

7. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055718

8. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based iden-
tification and signature schemes. J. Cryptol. 22(1), 1–61 (2009)

9. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016, Part II. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53890-6 15

10. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient
double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017, Part II.
LNCS, vol. 10175, pp. 121–151. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54388-7 5

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: ACM CCS 1993 (1993)

12. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

13. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

14. Bindel, N., et al.: qTESLA. Technical report, National Institute of Standards and
Technology (2017)

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-642-29011-4_34
https://doi.org/10.1007/978-3-642-03356-8_3
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/BFb0055718
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9

170 M. Backendal et al.

15. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 26

16. Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehle, D.:
CRYSTALS - dilithium: Digital signatures from module lattices. Cryptology ePrint
Archive, Report 2017/633

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Galbraith, S.D., Petit, C., Silva, J.: Identification protocols and signature schemes
based on supersingular isogeny problems. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017, Part I. LNCS, vol. 10624, pp. 3–33. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70694-8 1

19. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

20. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-45961-8 11

21. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS,
vol. 9815, pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 2

22. LANIX. Things that use Ed25519, August 2018. https://ianix.com/pub/
curve25519-deployment.html

23. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 35

24. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

25. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055741

26. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

27. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

28. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

https://doi.org/10.1007/3-540-48329-2_26
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-70694-8_1
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://ianix.com/pub/curve25519-deployment.html
https://ianix.com/pub/curve25519-deployment.html
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/BFb0055741
https://doi.org/10.1007/3-540-48071-4_3

Verifiable Light-Weight Monitoring for
Certificate Transparency Logs

Rasmus Dahlberg(B) and Tobias Pulls

Department of Mathematics and Computer Science, Karlstad University, Karlstad,
Sweden

{rasmus.dahlberg,tobias.pulls}@kau.se

Abstract. Trust in publicly verifiable Certificate Transparency (CT)
logs is reduced through cryptography, gossip, auditing, and monitoring.
The role of a monitor is to observe each and every log entry, looking
for suspicious certificates that interest the entity running the monitor.
While anyone can run a monitor, it requires continuous operation and
copies of the logs to be inspected. This has lead to the emergence of mon-
itoring as-a-service: a trusted third-party runs the monitor and provides
registered subjects with selective certificate notifications. We present a
CT/bis extension for verifiable light-weight monitoring that enables sub-
jects to verify the correctness of such certificate notifications, making
it easier to distribute and reduce the trust which is otherwise placed in
these monitors. Our extension supports verifiable monitoring of wild-card
domains and piggybacks on CT’s existing gossip-audit security model.

Keywords: Certificate Transparency · Monitoring · Security protocols

1 Introduction

Certificate Transparency (CT) [12] is an experimental standard that enhances
the public-key infrastructure by adding transparency for certificates that are
issued by Certificate Authorities (CAs). The idea is to mandate that every cer-
tificate must be publicly logged in an append-only tamper-evident data struc-
ture [2], such that anyone can observe what has been issued for whom. This
means that a subject can determine for herself if anything is mis-issued by
downloading all certificates; so called self-monitoring. An alternative monitoring
approach is to rely on a trusted third-party that notifies the subject if relevant
certificates are ever found. Given that self-monitoring involves set-up, continuous
operation, and exhaustive communication effort, the concept of subscribing for
monitoring as-a-service is simpler for the subject. This model is already preva-
lent in the wild, and is provided both by CAs and industry vendors—see for
example SSLMate’s Cert Spotter1 or Facebook’s monitoring tool2. Third-party

1 https://sslmate.com/certspotter/, accessed 2018-09-15.
2 https://developers.facebook.com/tools/ct/, accessed 2018-09-15.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 171–183, 2018.
https://doi.org/10.1007/978-3-030-03638-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_11&domain=pdf
http://orcid.org/0000-0003-0840-5072
http://orcid.org/0000-0001-6459-8409
https://sslmate.com/certspotter/
https://developers.facebook.com/tools/ct/
https://doi.org/10.1007/978-3-030-03638-6_11

172 R. Dahlberg and T. Pulls

monitors can also offer related services, such as searching for certificates inter-
actively or inspecting other log properties. The former is provided by Facebook
and Comodo’s crt.sh; the latter by Graham Edgecombe’s CT monitoring tool3.

It would be an unfortunate short-coming if CT did not change the status
quo of centralized trust by forcing subjects who cannot operate a self-monitor to
trust certificate notifications that are provided by a third-party monitor. While
it is true that a subject could subscribe to a large number of monitors to reduce
this trust, it is overall cumbersome and does not scale well beyond a handful
of notifying monitors (should they exist). To this end, we suggest a CT/bis
extension for verifiable Light-Weight Monitoring (LWM) that makes it easier to
distribute the trust which is otherwise placed in these monitors by decoupling
the notifier from the full-audit function of inspecting all certificates. Our idea
is best described in terms of a self-monitor that polls for new updates, but as
opposed to processing all certificates we can filter on wild-card prefixes such as
*.example.com in a verifiable manner. LWM relies on the ability to define a
new Signed Tree Head (STH) extension, and thus a CT/bis compliant log is
necessary [13]. At the time of writing CT/bis have yet to be published as an
IETF standard. We are not aware of any log that deploys a drafted version.

As a brief overview, each batch of newly included certificates are grouped as
a static Merkle tree in LWM. The resulting snapshot (also know as a fingerprint
or a root hash) is then incorporated into the corresponding STH as an extension.
An LWM subject receives one verifiable certificate notification per log update
from an untrusted notifier (who could be the log, a monitor, or anyone else),
and this notification is based on the smaller static Merkle tree rather than the
complete log. This is because monitoring as-a-service is mainly about identifying
newly included certificates. Moreover, we can order each static Merkle tree so
that verifiable wild-card filtering is possible. For security we rely on at least one
entity to verify that each snapshot is correct—which is a general monitoring
function that is independent of the subjects using LWM—as well as a gossip
protocol that detects split-views [1]. Since our extension is part of an STH,
we piggyback on any gossip-like protocol that deals with the exchange and/or
distribution of (verified) STHs [4,16,18,19]. Our contributions are as follows:

– The design of a backwards-compatible CT/bis extension for light-weight mon-
itoring of wild-card prefixes such as *.example.com (Sect. 3).

– A security sketch showing that an attacker cannot omit a certificate notifica-
tion without being detected, relying on standard cryptographic assumptions
and piggybacking on the proposed gossip-audit models of CT (Sect. 4.1).

– An open-source proof-of-concept implementation written in Go, as well as
a performance evaluation that considers computation time and bandwidth
requirements (Sect. 4.2). In particular we find that the overhead during tree
head construction is small in comparison to a sound STH frequency of one
hour; a notifier can easily notify 288 M subjects in a verifiable manner for
Google’s Icarus log on a single core and a 1 Gbps connection; and a subject
receives about 24 Kb of proofs per day and log which is verified in negligible

3 https://ct.grahamedgecombe.com/, accessed 2018-09-15.

https://ct.grahamedgecombe.com/

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 173

time (the order of μs for the common case of non-membership, and seconds
in the extreme case of verifying membership for an entire top-level domain).

Background on Merkle trees and CT is provided in Sect. 2. Related work is
discussed in Sect. 4.3. Conclusions are presented in Sect. 5.

2 Background

Suppose that a trusted content provider would like to outsource its operation
to an untrusted third-party. This is often referred to as the three-party setting,
in which a trusted source maintains an authenticated data structure through
a responder that answers client queries on the source’s behalf [20]. The data
structure is authenticated in the sense that every answer is accompanied by a
cryptographic proof that can be verified for correctness by only trusting the
source. While there are many settings and flavors of authenticated data struc-
tures [2,3,5], our scope is narrowed down to CT which builds upon Merkle trees.

2.1 Merkle Trees

The seminal work by Merkle [15] proposed a static binary tree where each leaf
stores the hash of a value and every interior node hashes its children (Fig. 1).
The root hash serves as a succinct snapshot of the tree’s structure and content,
and by revealing a logarithmic number of hashes it can be reconstructed to
prove whether a value is stored in a leaf. These hashes compose an audit path
for a value, and it is obtained by taking every sibling hash while traversing the
tree from the root down towards the leaf being authenticated. An audit path
is verified by reversing the traversal used during generation, first reconstructing
the leaf hash and then every interior node recursively (using the provided sibling
hashes) until finally reaching the root. Given a collision resistant hash function,
an audit path proves that a given leaf contains a value iff the reconstructed root
hash is known to be authentic. For example, the trusted source might sign it.

r ← H(hab‖hcd)

hcd ← H(hc‖hd)

hd ← H(d)hc ← H(c)

hab ← H(ha‖hb)

hb ← H(b)ha ← H(a)

Fig. 1. Merkle tree containing four values a–d. The dashed arrows show the traversal
used to generate an audit path for the right-most leaf (dashed nodes).

While non-membership of a value can be proven by providing the entire data
structure, this is generally too inefficient since it requires linear space and time. A

174 R. Dahlberg and T. Pulls

better approach is to structure the tree such that the node which should contain
a value is known if it exists. This property is often discussed in relation to certifi-
cate revocation: as opposed to downloading a list of serial numbers that represent
the set of revoked certificates, each leaf in a static Merkle tree could (for exam-
ple) contain an interval [a, b) where a is revoked and the open interval (a, b) cur-
rent [11]. Given a serial number x, an audit path can be generated in logarithmic
space and time for the leaf where x ∈ [a, b) to prove (non-)membership. Similar
constructions that are dynamic support updates more efficiently [3,7,14].

2.2 Certificate Transparency

The CA ecosystem involves hundreds of trusted third-parties that issue TLS
certificates [6]. Once in a while somebody gets this process wrong, and as a
result a fraudulent identity-to-key binding may be issued for any subject [8]. It
is important to detect such incidents because mis-issued certificates can be used
to intercept TLS connections. However, detection is hard unless the subjects who
can distinguish between anything benign and fraudulent get a concise view of the
certificates that are being served to the clients. By requiring that every CA-
issued certificate must be disclosed in a public and append-only log, CT layers
on-top of the error-prone CA ecosystem to provide such a view: in theory anyone
can inspect a log and determine for herself if a certificate is mis-issued [12].

It would be counter-intuitive to ‘solve’ blind trust in CAs by suggesting that
everybody should trust a log. Therefore, CT is designed such that the log can be
distrusted based on two components: a dynamic append-only Merkle tree that
supports verifiable membership and consistency queries [2], as well as a gossip
protocol that detects split-views [1,16]. We already introduced the principles
of membership proofs in Sect. 2.1, and consistency proofs are similar in that a
logarithmic number of hashes are revealed to prove two snapshots consistent. In
other words, anyone can verify that a certificate is included in the log without
fully downloading it, and whatever was in the log before still remains unmodified.
Unlike the three-party setting, gossip is needed because there is no trusted source
that signs-off the authenticated data structure: consistency and inclusion proofs
have limited value if everybody observes different (but valid) versions of the log.

Terminology, Policy Parameters and Status Quo. A new STH—recall
that this is short for Signed Tree Head—is issued by the log at least every Maxi-
mum Merge Delay (MMD) and no faster than allowed by an STH frequency [13].
An MMD is the longest time until a certificate must be included in the log after
promising to include it. This promise is referred to as a Signed Certificate Times-
tamp (SCT). An STH frequency is relative to the MMD, and limits the number
of STHs that can be issued. These parameters (among others) are defined in
a log’s policy, and if a violation is detected there are non-repudiable proofs of
log misbehavior that can be presented. For example, show an SCT that is not
included after an MMD, too many STHs during the period of an MMD, or two
STHs that are part of two inconsistent versions of the log. In other words, rather
than being a trusted source a log signs statements to be held accountable.

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 175

Ideally we would have all of these components in place at once: anyone
that interacts with a log audits it for correctness based on partial informa-
tion (SCTs, STHs, served certificates, and proofs), subjects monitor the logs for
newly included certificates to check that they are free from mis-issuance (full
download), and a gossip protocol detects or deters logs from presenting split-
views. This is not the case in practice, mainly because CT is being deployed
incrementally [18] but also because the cost and complexity of self-monitoring
is relatively high. For example, a subject that wants rapid detection of mis-
issuance needs continuous operation and full downloads of the logs. It appears
that the barrier towards self- monitoring have lead to the emergence of moni-
toring as-a-service, where a trusted third-party monitors the logs on a subject’s
behalf by selectively notifying her of relevant certificates, e.g., mail the operator
of example.com if ∗.example.com certificates are ever found. Third-party moni-
toring is convenient for logs too because it reduces the bandwidth required to
serve many subjects. However, for CT it is an unintuitive concept given that it
requires blind trust.

3 Light-Weight Monitoring

To reduce the trust which is placed in today’s third-party monitors, the idea
of LWM is to lower the barrier towards self-monitoring. As shown in Fig. 2,
an untrusted notifier provides a subject with efficient4 certificate notifications
that can be cryptographically verified: each batch of certificates is represented
by an additional Merkle tree that supports wild-card (non-)membership queries
(described further in Sect. 3.1), and the resulting snapshot is signed by the log as
part of an STH extension. As such, a subject can deal only with those certificates
that are relevant, relying on wild-card proofs to verify correctness and complete-
ness: said certificates are included and nothing is being omitted. Anyone can
check that an LWM snapshot is correct by inspecting the corresponding batch
of certificates. Notably this is a general monitoring function, rather than a selec-
tive notification component which is verifiable in LWM. This decoupling allows
anyone to be a notifier, including logs and monitors that a subject distrust.

3.1 Authenticated Wild-Card Queries

Thus far we only discussed Merkle trees in terms of verifying whether a single
value is a (non-)member: membership is proven by presenting an audit path
down to the leaf in question, while non-membership requires a lexicographical
ordering that allows a verifier to conclude that a value is absent unless provided
in a particular location. The latter concept naturally extends to prefix wild-card
queries—such as ∗.example.com and ∗.sub.example.com—by finding a suitable
ordering function Ω which ensures that related leaves are grouped together as
a consecutive range. We found that this requirement is satisfied by sorting on

4 Efficient iff less than a linear number of log entries are received per log update.

176 R. Dahlberg and T. Pulls

Log

Subject

NotifierMonitor

STH with snapshot extension

verify STH extension

verify notification

optional verify
batch, STH

noti
ficat

ion

batc
h, S

TH

Fig. 2. An overview of LWM. In addition to normal operation, a log creates an addi-
tional (smaller) Merkle tree that supports wild-card (non-)membership queries. The
resulting snapshot is signed as part of an STH extension that can be verified by any
monitor that downloads the corresponding batch. A subject receives one verifiable
certificate notification per STH from an untrusted notifier.

reversed subject names: suppose that we have a batch of certificates example.com,
example.org, example.net, and sub.example.com. After applying Ω we get the
static Merkle tree in Fig. 3. A prefix wild-card proof is constructed by finding
the relevant range in question, generating an audit path for the leaves that are
right outside of the range [17]. Such a proof is verified by checking that (i) Ω
indicates that the left (right) end is less (larger) than the queried prefix, (ii) the
leaves are ordered as dictated by Ω, and (iii) the recomputed root hash is valid.

r ← H(h01‖h23)

h23 ← H(h2‖h3)
h3 ← H(ten.elpmaxe)

h2 ← H(moc.elpmaxe.bus)

h01 ← H(h0‖h1)
h1 ← H(moc.elpmaxe)

h0 ← H(gro.elpmaxe)

Fig. 3. Merkle tree where the leaves are ordered on reversed subject names.

The exact details of reconstructing the root hash is a bit tedious because
there are several corner cases. For example, either or both of the two audit paths
may be empty depending on batch size (≤1) and location of the relevant range
(left/right-most side). Therefore, we omit the details and focus on the concept:
given two audit paths and a sequence of data items ordered by Ω that includes
the left leaf, matching range, and right leaf, repeatedly reconstruct interior nodes
to the largest extent possible and then use the sibling hash which is furthest
from the root to continue. For example, consider a proof for ∗sub.example.com
in Fig. 3: it is composed of (i) the left leaf data and its audit path h0, h23 on
index 1, (ii) the right leaf data and its audit path h2, h01 on index 3, and (iii)

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 177

the matching range itself which is a single certificate. After verifying Ω order,
recompute the root hash r′ and check if it matches an authentic root r as follows:

1. Compute leaf hashes h′
1, h′

2, and h′
3 from the provided data. Next, compute

the interior node h′
23 ← H(h′

2‖h′
3). Because no additional interior node can

be computed without a sibling hash, consider h0 in the left audit path.
2. Compute the interior node h′

01 ← H(h0‖h′
1), then finally r′ ← H(h′

01‖h′
23).

5

Given an Ω ordered list of certificates it is trivial to locate where a subject’s
wild-card matches are: binary search to find the index of an exact match (if
any), then up to t matches follow in order. This is not the only way to find the
right range and matches. For example, a radix tree could be used with the main
difference being O(t + log n) against O(t + k) complexity for a batch of size n,
a wild-card string of length k, and t matches. Since the complexity of generating
two audit paths is O(log n) for any number of matches, the final space and time
complexity for a wild-card structure based on an ordered list is O(t + log n).

3.2 Notifier

A notifier must obtain every STH to generate wild-card proofs that can be traced
back to the log. Albeit error-prone in case of network issues, the simplest way to
go about this is to poll the log’s get-STH endpoint frequently enough.6 Once an
updated is spotted every new certificate is downloaded and the wild-card struc-
ture is reconstructed. A subject receives her verifiable certificate notifications
from the notifier via a push (‘monitoring as-a-service’) or pull (‘self-monitoring’)
model. For example, emails could be delivered after every update or in daily
digests. Another option is to support queries like “what’s new since STH x”.

A subject can verify that a certificate notification is fresh by inspecting
the STH timestamp. However, it is hard to detect missing certificate notifica-
tions unless every STH trivially follows from the previous one. While there are
several methods to achieve this—for example using indices (Sect. 3.3) or hash
chains [14]—the log must always sign a snapshot per STH using an extension.

3.3 Instantiation Example

Instantiating LWM depends upon the ability to support an STH extension. In
the latest version of CT, this takes the form of a sorted list of key-value pairs
where the key is unique and the value an opaque byte array [13]. We could
reserve the keywords lwm for snapshots and index for monotonically increasing
counters.7 Besides an LWM-compliant log, an untrusted notifier must support
5 Two audit paths may contain redundancy, but we ignored this favouring simplicity.
6 It would be better if logs supported verifiable and historical get-STH queries.
7 Instead of an index to detect missing notifications (STHs), a log could

announce STHs as part of a verifiable get-STH endpoint. See the sketch
of Nordberg: https://web.archive.org/web/20170806160119/https://mailarchive.
ietf.org/arch/msg/trans/JbFiwO90PjcYzXrEgh-Y7bFG5Fw, accessed 2018-09-16.

https://web.archive.org/web/20170806160119/https://mailarchive.ietf.org/arch/msg/trans/JbFiwO90PjcYzXrEgh-Y7bFG5Fw
https://web.archive.org/web/20170806160119/https://mailarchive.ietf.org/arch/msg/trans/JbFiwO90PjcYzXrEgh-Y7bFG5Fw

178 R. Dahlberg and T. Pulls

pushed or pulled certificate notifications that are verifiable by tracking the most
recent or every wild-card structure. Examples of likely notifiers include logs (who
benefit from the reduced bandwidth) and monitors (who could market increased
transparency) that already process all certificates regardless of LWM.

4 Evaluation

First we discuss assumptions and sketch on relevant security properties for LWM.
Next, we examine performance properties of our open-source proof-of-concept
implementation experimentally and reason about bandwidth overhead in theory.
Finally, we present differences and similarities between LWM and related work.

4.1 Assumptions and Security Notions

The primary threat is a computationally bound attacker that attempts to forge
or omit a certificate notification without being detected. We rely on standard
cryptographic assumptions, namely an unforgeable digital signature scheme and
a collision resistant hash function H with 2λ-bit output for a security param-
eter λ. The former means that an LWM snapshot must originate from the
(untrusted) log in question. While an incorrect snapshot could be created inten-
tionally to hide a mis-issued certificate, it would be detected if at least one honest
monitor exists because our STH extension piggybacks on the gossip-audit model
of CT (that we assume is secure).8 A subject can further detect missing notifica-
tions by checking the STH index for monotonic increases and the STH timestamp
for freshness. Thus, given secure audit paths and correct verification checks as
described in Sect. 3.1, no certificate notification can be forged or omitted. Our
cryptographic assumptions ensure that every leaf is fixed by a secure audit path
as in CT, i.e., a leaf hash with value v is encoded as H(0× 00‖v) and an interior
hash with children L,R as H(0 × 01‖L‖R) [2,12]. To exclude any unnecessary
data on the ends of a range, the value v is a subject name concatenated with
a hashed list of associated certificates in LWM (subject names suffice to verify
Ω order).

CT makes no attempt to offer security in the multi-instance setting [9]. Here,
an attacker that targets many different Merkle trees in parallel should gain no
advantage while trying to forge any valid (non-)membership proof. By design
there will be many different wild-card Merkle trees in LWM, and so the (strictly
stronger) multi-instance setting is reasonable. We can provide full bit-security in
this setting by ensuring that no node’s pre-image is valid across different trees by
incorporating a unique tree-wide constant ct in leaf and empty hashes per batch,
e.g., ct ←$ {0, 1}λ. Melera et al. [14] describe this in detail while also ensuring
that no node’s pre-image is valid across different locations within a Merkle tree.

8 Suppose that witness cosigning is used [19]. Then we rely on at least one witness to
verify our extension. Or, suppose that STH pollination is used [16]. Then we rely on
the most recent window of STHs to reach a monitor that verifies our extension.

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 179

In an ecosystem where CT is being deployed incrementally without gossip, the
benefit of LWM is that a subject who subscribes for certificate notifications can
trust the log only (as opposed to also trusting the notifier). Therefore, today’s
trust in third-party monitoring services can be reduced significantly. A log must
also present a split-view or an invalid snapshot to deceive a subject with false
notifications. As such, subjects accumulate binding evidence of log misbehavior
that can be audited sometime in the future if suspicion towards a log is raised.
Long-term the benefit of LWM is that it is easier to distribute the trust which is
placed in third-party monitors, i.e., anyone who processes a (small in comparison
to the entire log) batch of certificates can full-audit it without being a notifier.

4.2 Implementation and Performance

We implemented multi-instance secure LWM in less than 400 lines of Go.9 Our
wild-card structure uses an existing implementation of a radix tree to find leaf
indices and data. To minimize proof-generation times, all hashes are cached in
an in-memory Merkle tree which uses SHA-256. We benchmarked snapshot cre-
ation, proof generation, and proof verification times on a single core as the batch
size increases from 1024–689,245 certificates using Go’s built-in benchmarking
tool, an Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz, and 2× 8 Gb DDR3 RAM.
We assumed real subject names from Alexa’s top-1M10 and average-sized cer-
tificates of 1500 bytes11, where a batch of n subject names refers to the n most
popular domains. Notably 689,245 certificates is the largest batch observed by
us in Google’s Icarus log between 2017-01-25 and 2018-08-05, corresponding to
an STH interarrival time of 27.1 h. The median (average) batch size and STH
interarrival time were 22818 (23751) certificates and 60.1 (61.6) min. Only two
batches were larger than 132077 certificates. Considering that Icarus is one of the
logs that see largest loads,12 we can make non-optimistic conclusions regarding
the performance overhead of LWM without inspecting other logs.

Figure 4 shows snapshot creation time as a function of batch size. Nearby the
median (215) it takes 0.39 s to create a snapshot from scratch, initializing state
from an unordered dictionary and caching all hashes for the first time. For the
largest batch, the snapshot creation time is roughly 10 s. Arguably this overhead
is still insignificant for logs, monitors, and notifiers because the associated STH
interarrival times are orders of magnitude larger.

Figure 5 shows proof generation time as a function of batch size while query-
ing for the longest wild-card prefix with a single match (membership), as well
as another wild-card prefix without any match in com’s top-level domain (non-
membership). There is little or no difference between the generation time for
these types of wild-card proofs, and nearby the median it takes around 7µs.

9 Open source implementation available at https://github.com/rgdd/lwm.
10 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip, accessed 2018-08-05.
11 https://www.grahamedgecombe.com/blog/2016/12/22/compressing-x509-

certificates, accessed 2018-08-15.
12 https://sslmate.com/labs/ct growth/, accessed 2018-08-15.

https://github.com/rgdd/lwm
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://www.grahamedgecombe.com/blog/2016/12/22/compressing-x509-certificates
https://www.grahamedgecombe.com/blog/2016/12/22/compressing-x509-certificates
https://sslmate.com/labs/ct_growth/

180 R. Dahlberg and T. Pulls

Fig. 4. Snapshot creation time as a function of batch size.

For the largest batch, this increased to 12.5µs. A notifier can thus generate 288
million non-membership notifications per hour on a single core. Verification is
also in the order of μs, which should be negligible for a subject (see Fig. 6).

Fig. 5. Membership and non-membership proof query time as a function of batch size
for a single and no match, respectively.

Fig. 6. Membership and non-membership verification time as a function of batch size
for a single and no match, respectively.

To evaluate the cost of generating and verifying a wild-card notification with
a large number of matches, we queried for com’s entire top-level domain (see
Fig. 7). In the largest batch where there are 352,383 matches, the proof genera-
tion time is still relatively low: 134 ms. This corresponds to 28.9 k notifications
per hour on a single core. The verification time is much larger: 3.5 s. This is

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 181

expected since verification involves reconstructing the root from all the match-
ing leaves, which is at least as costly as creating a snapshot of the same size
(cf. 218 in Fig. 4). While these are relevant performance numbers, anyone who is
interested in a top-level domain would likely just download the entire batch.

Fig. 7. Membership query and verification time for ∗.com.

Finally, the space overhead of a verifiable wild-card notification is dominated
by the two audit paths that enclose the matching subject names. Given that
an audit path contains at most �log2 n� sibling hashes for a batch of size n, the
median overhead is roughly one Kb per STH, log, and LWM subject. Viewed from
the perspective of a self-monitor, this is a significant bandwidth improvement: as
opposed to downloading the median batch of 32.6 Mb, one Kb and any matching
certificate(s) suffice. In the case of multiple logs, the bandwidth improvement is
even greater. For the notifier we already established that it is relatively cheap to
generate new notifications. Namely, in the single-core case of 288 M notifications
per hour the bandwidth overhead would be 640 Mbs (i.e., all proofs must be
distributed before the next STH is issued). A notifier can thus notify for a dozen
of logs and a significant amount of LWM subjects without running into any CPU
or bandwidth restrictions. Notably this is under the assumption of a sound STH
frequency—one hour in our evaluation, as used by Icarus and many other logs.

4.3 Related Work

Earlier work related to transparent certificate and key management often use
dynamic authenticated dictionaries [3,5,7,10]. CONIKS maps a user’s mail
address to her public key in a binary Merkle prefix tree, and after each
update a client self-monitors her own key-binding by fetching an exact-match
(non-)membership proof [14]. While our work is conceptually similar to CONIKS
since a subject receives one (non-)membership proof per log update, the main
difference is that LWM builds a new Merkle tree for each update in which wild-
card queries are supported. This idea is inapplicable for CONIKS because a
user is potentially interested in the public key of any mail address (hence the
ability to query the entire data structure on an exact-match). CONIKS is simi-
larly inapplicable for self-monitors in CT because a subject cares about wild-card
queries and new certificates. Without the need for wild-cards, any authenticated

182 R. Dahlberg and T. Pulls

dictionary could be used as a batch building block to instantiate LWM. While a
radix tree viewed as a Merkle tree13 could support efficient wild-card proofs, it is
more complex than necessary. Therefore, we built upon the work of Kocher [11]
and Nuckolls [17] with a twist on how to group the data for a new use-case:
LWM.

5 Conclusion

We proposed a backwards-compatible CT/bis extension that enables light-weight
monitoring (in short LWM). At the cost of a few hundred Kb per day, a subject
can either self-monitor or subscribe to verifiable certificate notifications for a
dozen of logs via an untrusted notifier. The security of LWM piggybacks on the
gossip-audit model of CT, and it relies only on the existence of at least one honest
monitor that verifies our extension. The cost of a compliant log is overhead during
the tree head construction, and this overhead is insignificant in comparison to a
log’s STH frequency. A notifier can generate verifiable certificate notifications—
even for wild-card queries for all domains under a top-level domain—in the order
of milliseconds on a single core. Given an STH frequency of one hour and 288 M
LWM subjects, the incurred bandwidth overhead is roughly 640 Mbps for proofs.
As such, a log could easily be its own notifier on a 1 Gbps connection. Further,
any willing third-party could notify for a dozen of logs on a 10 Gbps connection.

Acknowledgments. We would like to thank Linus Nordberg for value feedback. This
research was funded by the Swedish Knowledge Foundation as part of the HITS research
profile.

References

1. Chuat, L., Szalachowski, P., Perrig, A., Laurie, B., Messeri, E.: Efficient gossip
protocols for verifying the consistency of certificate logs. In: IEEE Conference on
Communications and Network Security (CNS), pp. 415–423, September 2015

2. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident logging.
In: 18th USENIX Security Symposium, pp. 317–334, August 2009

3. Crosby, S.A., Wallach, D.S.: Authenticated dictionaries: Real-world costs and
trade-offs. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(2), 17:1–17:30 (2011)

4. Dahlberg, R., Pulls, T., Vestin, J., Høiland-Jørgensen, T., Kassler, A.: Aggregation-
based gossip for certificate transparency. CoRR abs/1806.08817, August 2018

5. Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumulators, addi-
tional properties and relations to other primitives. In: Topics in Cryptology-
Proceedings of the Cryptographer’s Track at the RSA Conference (CT-RSA), pp.
127–144, April 2015

6. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J.A.: Analysis of the HTTPS
certificate ecosystem. In: Proceedings of the 2013 Internet Measurement Confer-
ence, pp. 291–304, October 2013

13 https://github.com/ethereum/wiki/wiki/Patricia-Tree, accessed 2018-08-15.

https://github.com/ethereum/wiki/wiki/Patricia-Tree

Verifiable Light-Weight Monitoring for Certificate Transparency Logs 183

7. Eijdenberg, A., Laurie, B., Cutter, A.: Verifiable data structures. Google
research document, November 2015. https://github.com/google/trillian/blob/
master/docs/VerifiableDataStructures.pdf. Accessed 16 Sep 2018

8. ENISA: Certificate authorities–the weak link of Internet security. Info notes,
September 2016. https://web.archive.org/web/20180527220047/www.enisa.euro-
pa.eu/publications/info-notes/certificate-authorities-the-weak-link-of-internet-
security. Accessed 16 Sep 2018

9. Katz, J.: Analysis of a proposed hash-based signature standard. In: Third Inter-
national Conference on Security Standardisation Research (SSR), pp. 261–273,
December 2016

10. Kim, T.H., Huang, L., Perrig, A., Jackson, C., Gligor, V.D.: Accountable key
infrastructure (AKI): a proposal for a public-key validation infrastructure. In: 22nd
International World Wide Web Conference (WWW), pp. 679–690, May 2013

11. Kocher, P.C.: On certificate revocation and validation. In: Proceedings of the
Second International Conference on Financial Cryptography (FC), pp. 172–177,
February 1998

12. Laurie, B., Langley, A., Kasper, E.: Certificate transparency. RFC 6962, IETF,
June 2013. https://tools.ietf.org/html/rfc6962

13. Laurie, B., Langley, A., Kasper, E., Messeri, E., Stradling, R.: Certificate trans-
parency version 2.0. Internet-draft draft-ietf-trans-rfc6962-bis-28, IETF, March
2018. https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-28, work in progress

14. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.:
CONIKS: Bringing key transparency to end users. In: 24th USENIX Security Sym-
posium, pp. 383–398, August 2015

15. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Advances in Cryptology (CRYPTO), pp. 369–378, August 1987

16. Nordberg, L., Gillmor, D.K., Ritter, T.: Gossiping in CT. Internet-draft draft-ietf-
trans-gossip-05, IETF, January 2018. https://tools.ietf.org/html/draft-ietf-trans-
gossip-05, work in progress

17. Nuckolls, G.: Verified query results from hybrid authentication trees. In: Proceed-
ings of the 19th Annual IFIP WG 11.3 Working Conference on Data and Applica-
tions Security, pp. 84–98, August 2005

18. Sleevi, R., Messeri, E.: Certificate transparency in Chrome: Monitoring CT logs
consistency. Design document, Google Inc., March 2017. https://docs.google.com/
document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe z-ls/edit?pref=2&
pli=1. Accessed 16 Sep 2018

19. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness
cosigning. In: IEEE Symposium on Security and Privacy (SP), pp. 526–545, May
2016

20. Tamassia, R.: Authenticated data structures. In: 11th Annual European Sympo-
sium (ESA) on Algorithms, pp. 2–5, September 2003

https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://web.archive.org/web/20180527220047/www.enisa.euro-pa.eu/publications/info-notes/certificate-authorities-the-weak-link-of-internet-security
https://web.archive.org/web/20180527220047/www.enisa.euro-pa.eu/publications/info-notes/certificate-authorities-the-weak-link-of-internet-security
https://web.archive.org/web/20180527220047/www.enisa.euro-pa.eu/publications/info-notes/certificate-authorities-the-weak-link-of-internet-security
https://tools.ietf.org/html/rfc6962
https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-28
https://tools.ietf.org/html/draft-ietf-trans-gossip-05
https://tools.ietf.org/html/draft-ietf-trans-gossip-05
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1
https://docs.google.com/document/d/1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe_z-ls/edit?pref=2&pli=1

Network and Cloud Security

CLort : High Throughput and Low Energy
Network Intrusion Detection on IoT

Devices with Embedded GPUs

Charalampos Stylianopoulos(B) , Linus Johansson, Oskar Olsson,
and Magnus Almgren

Chalmers University of Technology, Gothenburg, Sweden
{chasty,magnus.almgren}@chalmers.se

Abstract. While IoT is becoming widespread, cyber security of its
devices is still a limiting factor where recent attacks (e.g., the Mirai
bot-net) underline the need for countermeasures. One commonly-used
security mechanism is a Network Intrusion Detection System (NIDS),
but the processing need of NIDS has been a significant bottleneck for
large dedicated machines, and a show-stopper for resource-constrained
IoT devices. However, the topologies of IoT are evolving, adding inter-
mediate nodes between the weak devices on the edges and the powerful
cloud in the center. Also, the hardware of the devices is maturing, with
new CPU instruction sets, caches as well as co-processors. As an exam-
ple, modern single board computers, such as the Odroid XU4, come with
integrated Graphics Processing Units (GPUs) that support general pur-
pose computing. Even though using all available hardware efficiently is
still an open issue, it has the promise to run NIDS more efficiently.

In this work we introduce CLort , an extension to the well-known NIDS
Snort that (a) is designed for IoT devices (b) alleviates the burden of
pattern matching for intrusion detection by offloading it to the GPU.
We thoroughly explain how our design is used as part of the latest
release of Snort and suggest various optimizations to enable process-
ing on the GPU. We evaluate CLort in regards to throughput, packet
drops in Snort, and power consumption using publicly available traffic
traces. CLort achieves up to 52% faster processing throughput than its
CPU counterpart. CLort can also analyze up to 12% more packets than
its CPU counterpart when sniffing a network. Finally, the experimental
evaluation shows that CLort consumes up to 32% less energy than the
CPU counterpart, an important consideration for IoT devices.

Keywords: IoT · NIDS · GPU · Pattern matching · High throughput

1 Introduction

Even though Internet of Things (IoT) technologies have become widespread and
mature, cyber security is still a problem. Several attacks, across very different

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 187–202, 2018.
https://doi.org/10.1007/978-3-030-03638-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_12&domain=pdf
http://orcid.org/0000-0002-6845-9163
http://orcid.org/0000-0002-3383-9617
https://doi.org/10.1007/978-3-030-03638-6_12

188 C. Stylianopoulos et al.

environments, demonstrate in painstaking detail that the community needs to
build security mechanisms suitable for IoT, or else deployment may slow down. A
recent example is the series of attacks against the electricity network in both the
distribution and transmission grid in Ukraine by controlling the devices found
in substations.

Challenges to improve security in IoT stem from different factors. For a
long time, an IoT system was designed with very limited edge devices that
communicated with a powerful cloud. Even though the cloud could handle many
security mechanisms, the attacks happen at the edges of the network, targeting
devices that need to be cheap, conserve power and are too limited to run their
own security mechanisms. Fortunately, modern IoT systems have become more
heterogeneous with different types of devices. The previously limited edge is
becoming slightly more powerful with new processors and architectures, and the
powerful cloud has been complemented by a range of devices, the so-called fog
in-between the edge and the cloud, with devices that offer more computational
power and, for some applications, a much faster response rate than sending the
data to the cloud. These intermediate IoT devices promise to also improve the
security of the system as a whole.

In this paper, we take advantage of the recent maturity of IoT devices and
investigate how a network intrusion detection system, one of the cornerstones of
regular IT security, can run efficiently in the IoT. More specifically, as recently
released devices come with integrated co-processors or graphics processing units,
we investigate how to use the full hardware of a dedicated “security node” to
improve the speed (throughput) of the analysis, while using less energy to do
so. Moreover, as one challenge of IoT is the distributed nature of the system,
it may not be possible to define a single choke point for network analysis. As
we demonstrate that our solution processes packets faster, it may be possible to
run the intrusion detection system on existing nodes in the network while still
leaving enough CPU cycles for the nodes’ primary function.

The outline of the paper is the following. In Sect. 2, we outline background
concepts related to this work, namely Snort, the Aho-Corasick algorithm and
a high-level description of general purpose computing on GPUs. In Sect. 3, we
explain the design of our system followed by the evaluation in Sect. 4. Section 5
describes related work and we conclude the paper in Sect. 6.

2 Background

Given the prominence of Snort as a network intrusion detection system, we start
with an introduction to such systems in general and Snort in particular. We
then describe the pattern matching algorithm in Snort (Aho-Corasick). Finally,
we give a brief background on general purpose computing on GPU devices.

2.1 Network Intrusion Detection Systems and Snort

The purpose of a Network Intrusion Detection System (NIDS) is to inspect all
incoming and outgoing network traffic and alert for any malicious behaviour.

CLort : High Throughput and Low Energy Network Intrusion Detection 189

Many NIDS are signature-based, meaning that they rely on a set of patterns
that are part of known attacks or vulnerabilities. One of the benefits of NIDS,
over for example a firewall, is that they inspect not only the packet headers but
also the packet payload (a.k.a. deep packet inspection) in order to detect a wide
range of malicious attacks.

Nowadays, Snort is one of the most commonly deployed signature-based
NIDS. Originally developed in the late 90s, Snort has been in active development
ever since and has become the de facto NIDS. Its most recent version (Snort 3,
in alpha version when this paper is written), offers many new features, such as a
modular architecture, cross-platform support and multi-threaded processing of
traffic from different interfaces.

Snort relies on rules that determine what kind of malicious behaviour it
should look for in a packet. Rules usually contain a fixed string pattern, as well
as other options that need to be true to flag a packet as malicious (e.g., traffic
towards specific ports). A very brief outline of Snort’s processing pipeline is the
following: (i) Snort captures packets from a network interface or a capture file,
(ii) a decode module creates common metadata for this packet, such as source and
destination ports and encapsulated protocols, (iii) packets that belong to a TCP
stream are reassembled, (iv) a search engine performs pattern matching on the
packets, where the payload data are compared against the malicious patterns,
and (v) if a match is found, a validation step is invoked to ensure that the rest
of the rule options are also true for the packet containing the match. Finally,
(vi) Snort outputs a verdict for the packet (whether or not it is malicious).

The pattern matching in step (iv) is an expensive bottleneck and therefore
the focus of this paper. Snort uses the Aho-Corasick pattern matching algorithm,
as described below.

2.2 The Aho-Corasick Patten Matching Algorithm

Aho-Corasick [1] is a popular, state machine based algorithm that allows Snort
to match the payload against multiple patterns at the same time. The first
step of Aho-Corasick is to build a state machine out of all the patterns, where
the individual characters in the patterns become the transitions to new states.
The state machine is usually implemented as a two-dimensional state transition
array, with a row for each state and a column for every possible transition from
that state to the next one. An extra bit in the array is reserved for final states,
i.e. states that indicate that a full pattern has been matched.

After building the state machine at setup time, performing pattern matching
on the packet payload is relatively straightforward: starting from the initial state,
the algorithm examines one character and uses it to determine the next state.
The algorithm keeps jumping from state to state, based on the information found
in the state transition array. If the execution reaches one of the final states, a
pattern has been found in the payload and Snort will then check other parameters
of the full rule before sending out an alert.

190 C. Stylianopoulos et al.

We have chosen to use Aho-Corasick as a cornerstone for the work in this
paper because: (i) it is what Snort actually uses and (ii) it can be parallelized,
making it a good match for the GPU.

2.3 General Purpose GPU Computing

Originally designed for graphics processing tasks, in the last decade GPUs have
been proven increasingly successful for offloading computation from the CPU [5].
Hence, General Purpose Computing on the GPU (GPGPU computing) is a term
used for the use of GPUs to perform tasks that would be usually performed on
the CPU.

The internal architecture of GPUs involves thousands of threads (orders of
magnitudes more than on a standard CPU) that have a very simple pipeline
and generally operate on a lower frequency. As such, the GPU is an appealing
platform for computing tasks that benefit from a high degree of parallelization.

There are two main frameworks that make general purpose computing possi-
ble on GPUs: CUDA [10], developed by NVIDIA and OpenCL [8], an open-source
library developed by the Khronos Group. Although high-end desktop GPUs have
been extensively used for various projects using these two frameworks, embed-
ded GPUs, such as the one we use in this project, have only recently gained
support for GPGPU computing. The platform used in this work offers OpenCL
1.2 support, so we use this framework in this paper.

3 Design of CLort

As one of the most expensive operations of the NIDS for the CPU is the pattern
matching engine, we describe the design of CLort and the way it extends Snort by
offloading the pattern matching to the GPU. We start with the general, high level
design of CLort . Then, we discuss issues related to several steps of this design,
namely the transferring of data to and from the GPU and the parallelization
of pattern matching on the GPU. Finally, we show how optimizations, such as
the double buffering technique, are incorporated into our design to get the most
speedup.

3.1 CLort’s General Design

The general design of CLort is described in the left part of Fig. 1 (where the right
part is described later in Sect. 3.4). Incoming packets enter CLort ’s pipeline after
being processed by the first, pre-processing stages of Snort (see Sect. 2.1). The
payload of each packet is sent to the GPU, to be checked against the state
machine created by the patterns that are relevant to that packet. After that, the
GPU executes the kernel that implements the Aho-Corasick pattern-matching
algorithm. The CPU waits until the execution of the GPU is finished and the
results are available. After that, execution continues with the rest of Snort’s
pipeline that includes validating the matches and logging the verdict for the
packet (i.e. logging whether it is malicious).

CLort : High Throughput and Low Energy Network Intrusion Detection 191

Fig. 1. The left part shows the high level design of CLort , with the different steps
involved in offloading the pattern matching of Snort to the GPU. The right part depicts
an optimization with double buffering to increase the utilization of the CPU.

3.2 Data Transfers Between the CPU and the GPU

Performing the pattern matching on the GPU requires that relevant data is
transferred to the memory of the GPU, and then that the result is transferred
back to the CPU. In general, data transfers to and from the GPU’s device mem-
ory can be a significant bottleneck. However, for our hardware (further described
in Sect. 4.1), the particular characteristics of the GPU offer an interesting way
to alleviate that bottleneck. The Mali GPU of the Odroid XU4 does not have a
separate device memory but shares the physical memory with the CPU. Thus,
we can avoid unnecessary data transfers by mapping the memory region (using
OpenCL’s interface) of the data that we should send. The memory region is then
directly accessible to the GPU. To allow the CPU to read the results, we map
the region back to the CPU address space.

Related to data transfers, it is worth mentioning some details on the data
structures that are transferred (or, in our case, mapped) to the GPU, specifically
the state machine of Aho-Corasick (described in Sect. 2.1). Originally, the state
machine is a two-dimensional array, with a row for each state and a column
for each possible transition from that state to a next one. Here we note that:
(i) in order to be mapped to the GPU, the state machines need to be serialized
as a one-dimensional array (a simple transformation). The serialization and the
corresponding mapping of the memory only happen once per state machine
during setup, as the state machines are read-only data structures known at
the start of Snort. (ii) Snort creates multiple state machines based on traffic
characteristics (protocols, ports, etc.) and packets are matched against a state

192 C. Stylianopoulos et al.

machine that is relevant to their traffic which also our implementation respects:
when a packet is mapped to the GPU for processing, the correct state machine
is used as an argument to the kernel that will process that packet.

3.3 Search on the GPU: Parallel Aho-Corasick

When state machines and the packet payloads are available to the GPU, pattern
matching is performed using the Aho-Corasick algorithm (Sect. 2.2).

We parallelize Aho-Corasick in the following way: we split the payload data
into a number of chunks, equal to the number of available GPU threads. Each
thread is able to process its own chunk, in parallel, without the need for inter-
thread communication. The input is divided evenly, so that every thread has
equal amount of work to do, compared to the other threads. This avoids the
problem of some threads terminating early and stalling, which exists in other
parallelization methods for Aho-Corasick [9].

However, splitting the payload into chunks might result in a malicious pattern
being split across more than one chunk, with no single thread being able to
detect the full pattern in “their” part. In order to detect such patterns, we let
each thread process a fixed number of characters also from the chunk of the
next thread (equal to the length of the longest pattern). This way, at least one
thread will detect every malicious pattern. The disadvantage, however, is that
short patterns that exist at the beginning of the chunks will be reported by two
threads. We compensate by keeping an auxiliary data structure that holds the
length of every pattern that is associated with a final state (a state indicating
that a full pattern has been found). When we have a match in a thread, we
use this data structure to determine the starting position of the match. If the
start is within the chunk of the thread that found the match, it will be reported
otherwise it will be ignored (as the next thread “owning” that chunk will find
the same pattern and report it).

3.4 Packet Buffering: The Double-Buffering Technique

As mentioned in other work [7,18], launching a kernel for every single packet is
not efficient for two main reasons. Firstly, there is significant overhead associated
with launching a GPU kernel and it is good to amortize this cost over several
packets. Secondly, with a single packet, especially if the packet is small, there
might not be enough parallelism to fully exploit the GPU. There will not be
enough data to distribute to all available GPU threads or each thread will only
process a very small amount of data before exiting. For that reason, we buffer
packets on the CPU to submit in batches to the GPU. When a new packet arrives
in the Snort pipeline, it will be copied into a buffer. The processing of that packet
is postponed at this point and Snort can continue acquiring new packets. When
the buffer is full, we launch the GPU kernel to process all packets at once.
Having more data to process allows us to make the most of the parallelism the
GPU has to offer. Even though we introduce a small amount of latency before a
packet is being processed, it is not a problem on regular networks as the buffer

CLort : High Throughput and Low Energy Network Intrusion Detection 193

is significantly smaller than the traffic received during a short period of time.
However, as we describe later in Sect. 4, our current implementation that uses
buffers cannot make use of the final parts of Snort’s pipeline (validation and
verdict).

We have investigated two different designs in our work (Fig. 1). In the basic
design (to the left in the figure), when a kernel is being executed on the GPU,
the CPU waits until the end of the execution to get the results. While this is
a straightforward design, it does not optimize throughput for a node dedicated
for monitoring the network but may work well if there are other tasks needing
cycles on the CPU.

In the double buffering design (shown to the right), both the CPU and the
GPU perform work in parallel and, as will be shown in our evaluations, this
increases the utilization of the CPU. In short, in the double buffering technique,
as proposed by [19], two buffers are used to store packets on the CPU. When
the first buffer is full and the GPU starts processing packets, the CPU can
keep buffering packets in the second buffer. When the second buffer is also full,
the CPU will first collect the results from the GPU execution, before launching
another kernel to process data in the second buffer.

In Sect. 4.2 we measure the effect of the double buffering technique and show
that it successfully reduces the overall processing time.

4 Evaluation

We implemented CLort using the OpenCL framework. This section presents
the results from the experimental evaluation of CLort , using a wide range of
experiments to measure and evaluate the benefits that CLort brings in intrusion
detection for IoT. The experiments are performed on four versions of Snort: Snort
original, Snort modified (CPU), CLort single buffer (GPU), and CLort double
buffer (GPU). The Snort modified (CPU) is included to make the comparisons
as fair as possible. This version of Snort behaves just like CLort (buffers packets
and does not perform the validation and verdict steps from Sect. 2.1), but runs
the search on the CPU. All comparisons and relative speedups reported use
Snort modified (CPU) as a baseline.

4.1 Experimental Methodology

Hardware: We use the Odroid XU4 platform [12], a single board computer
with a big.LITTLE architecture (ARM Cortex-A15 and ARM Cortex-A7). The
reason for choosing this hardware platform is that it supports an integrated GPU
(ARM Mali-T628, 6 shader cores) that is compatible with OpenCL 1.2, allowing
us to perform General Purpose Computing on its GPU. The GPU offers many
interesting differences compared to standard high-end GPUs, such as individual
program counters for each thread, the lack of local memory, as well as a shared
device memory between the GPU and CPU (2 GB). The device also supports a
high speed Ethernet port, making it a good candidate for a high speed NIDS.

194 C. Stylianopoulos et al.

For a subset of the experiments (c.f. Sect. 4.4) an almost identical platform is
used (Odroid XU3), that, contrary to the XU4, is equipped with energy sensors
but with a slower network card.

The Odroid would most likely be counted as quite powerful for consumer
IoT in the home, but its cost could be motivated for professional settings for
industrial IoT, especially if the node can run several functions for the network.
Moreover, accounting for the recent trends of development of the hardware (i.e.
Raspberry Pie 3), it is likely that these devices will also be common in the
consumer space.

Table 1. The data sets used throughout the evaluation section.

Name Details

SmallFlows Appneta sample, 9.4 MB data, 1209
flows over a 5 min duration

BigFlows Appneta sample, 368 MB data, 40686
flows over a 5 min duration

ISCX12 131 The first 1 million packets from
ISCX2012 on 13 of June, 634 MB of
data from a data set that includes
activity from network infiltration

ISCX12 121 The first 1.5 million packets from
ISCX2012 on 12 of June, 1.01 GB of
data from a data set without
malicious activity

ISCX12 12 Full The entire file from ISCX2012 on 12
of June, 4.22 GB of data from a data
set without malicious activity

Realistic Traffic Traces: We use publicly available data sets that capture
a realistic behaviour of network traffic for the experiments in this paper. Five
different capture files are used, as shown in Table 1. The first two traffic traces
(hereby named SmallFlows and BigFlows) come from Appneta [2], the current
developers of Tcpreplay. SmallFlows is a synthetic capture representing a com-
bination of different applications and BigFlows is a capture of real traffic from
a busy private network.

The other capture files come from ISCXIDS2012 [15,16]. These data sets are
specifically designed to simulate real traffic in order to test and evaluate IDSs.
These capture files are larger, ranging from just a few up to several gigabytes.
As all capture files are publicly available, they form a repeatable baseline.

CLort : High Throughput and Low Energy Network Intrusion Detection 195

Rule Sets: Unless otherwise stated, we use the 829 rules (each rule containing at
least one pattern) that are enabled by default in Snort’s community distribution.
In Sect. 4.2, we experiment with bigger sets of rules.

Metrics: First, we measure the throughput : how much traffic is processed per
unit of time (Sect. 4.2). We then measure the percentage of received packets that
are analyzed by the NIDS (either Snort or CLort), when capturing live traffic
from the network interface (Sect. 4.3). We also measure the power consumption
(important consideration for IoT devices): what is the power consumption of
different hardware components when processing incoming traffic (Sect. 4.4).

4.2 Evaluating Throughput

The first set of experiments focus on throughput, by varying the traffic to be
analyzed as well as the number of rules in Snort.

Fig. 2. Throughput evaluation of CLort across different (a) data sets and (b) number
of rules.

196 C. Stylianopoulos et al.

Overall Throughput: Figure 2a presents the processing throughput across
different data sets, where we measure the complete execution of Snort (Sect. 2.1)
by reading the pcap files from disk. In these experiments, we use the default
number of rules (829 rules). The experiments were repeated 5 times and we
report the average and the standard deviation of the measured throughput across
all 5 runs.

First, both CLort versions that use the GPU consistently outperform the
CPU versions across all data sets in our experiments, suggesting that the GPU
is capable of accelerating the task of pattern matching. We achieve up to 52%
higher throughput compared to the CPU (modified) version of Snort, which is
significant, considering that: (i) we only offload pattern matching (step iv) from
Sect. 2.1, while the other steps of Snort’s processing (steps i-iii) are still part of
the measured time and (ii) we achieve it using resources (the embedded GPU)
that are already available on the platform.

Second, in almost all cases, the double buffering technique provides a perfor-
mance boost (up to 20%) compared to the single buffer approach. This means
that the double buffer optimization successfully overlaps the CPU and GPU
execution, keeping both processing units busy with useful work.

Varying the Number of Rules: By changing the number of rules, we can
determine how it affects the Snort runtime performance for scenarios with more
rules than the default community rule set (baseline, 829 rules). We enable all
available rules that contain fixed string patterns (3370 rules) and also create an
intermediate set with 2000 randomly chosen rules.

We run the experiments with several pcap files from Table 1, but only include
the ISCX12 121 data set as the results were similar across all runs. In Fig. 2b,
both CLort versions that utilize the GPU continue to outperform the CPU
versions of Snort. Increasing the number rules reduces the raw throughput of
all versions as expected since the state machines grow larger and there is extra
processing work for the rest of Snort’s pipeline. In the case of the full rule set, we
see that the relative speedup achieved by CLort is smaller. This is because many
of the extra rules introduce processing that is not related to the search engine
that we parallelize (e.g. many of the rules involve regular expression matching).

4.3 Sniffing the Network

The experiments in Sect. 4.2 show that CLort has a higher processing throughput
when reading packets from a capture file. In this section, we test the performance
of CLort in a setting much closer to the way a NIDS is deployed in practice by
capturing traffic directly from the network.

The experimental setup is the following. We connect the Odroid XU4, run-
ning CLort , to the span port of a switch (HP V1910-24G). As such, it sees all
traffic on the network segment handled by the switch. We then use a laptop
(MacBook Pro ’14) to replay the pcap files from the ISCX12 131 data set using
tcpreplay at different speeds. Also, versions of Snort and CLort use the default

CLort : High Throughput and Low Energy Network Intrusion Detection 197

Fig. 3. Percentage of the received packets that CLort managed to analyze, as we
increase the rate at which we replay traffic.

set of 829 rules. The network segment also contains a dhcp server, so there is
spurious minimal traffic in addition to the traffic being replayed by the laptop.

There are several potential bottlenecks in the system: the hardware replaying
the pcap file, the switch handling the span port, the network card of the Odroid
in promiscuous mode, the kernel processing before handing the packets to the
NIDS, and finally the NIDS’s pipeline. To exclude problems beyond our improve-
ments of Snort, we measure the ratio between the packets that are received by
the NIDS and the ones that the NIDS successfully analyzes.

Figure 3 shows the percentage of the received packets that CLort and Snort
manage to analyze at various traffic rates. After approximately 70 Mbps, all ver-
sions start dropping packets. However, both versions of CLort are able to process
a larger portion of the received packets, up to 12% more than the modified CPU
version of Snort. These results show that the throughput gained from using
the GPU translates to CLort being able to handle more packets than its CPU
counterpart.

4.4 Evaluating Energy Consumption

The final part of the evaluation studies the energy consumption. The ODROID-
XU4 is unfortunately not equipped with power measuring sensors. For this reason,
we use an older version (ODROID-XU3 [11]) for the energy consumption experi-
ments. The ODROID-XU3 is equipped with the same processor setup as well as the
same GPU and CPU as the ODROID-XU4. The only significant difference (for the
power consumption tests) between these two hardware systems is that the network
card is slower for the XU3 (100 Mbps instead of 1 Gbps), but the RAM speed and
the memory bandwidth is faster. The RAM speed of the ODROID-XU3 is 933 Mhz
and thememorybandwidth is 14.9 GB/s,whereas theRAMspeed of theODROID-
XU4 is 750 Mhz and the memory bandwidth is 12 GB/s.

198 C. Stylianopoulos et al.

(a) Power consumption on GPU (b) Power consumption on CPU(a15)

(c) Power consumption on RAM (d) Total power consumption

Fig. 4. Power consumption measurements of the CPUs, GPU and RAM.

We measured the power consumption of the following three components:
CPU (A15), GPU and RAM memory with a sample rate of 100 samples/second
running the ISC12 121 data set using the default number of rules. Figure 4
summarizes the results, with one graph each for the CPU, GPU, RAM, along
with the total power consumption. Note that each sub-figure uses its own scale
on the y-axis.

As expected, looking at Fig. 4a (the power consumption of the GPU in isola-
tion), we can see that only the GPU versions consume any power on the GPU,
while the CPU versions consume little to no power on the GPU. The double
buffer version of CLort consumes slightly more power than the single buffer, but
for a shorter period of time.

The power consumption of the CPU (A15) in Fig. 4b shows that the CPU
versions are almost equal in their execution time and they consume the most
power. The GPU versions utilize the CPU less; since the pattern matching has
been offloaded to the GPU, it leads to lower power consumption on the CPU.
The single buffer version consumes the least CPU power on average between the
different versions (close to 2 W) but runs longer than the double buffer version.

Figure 4c shows the power consumed by the memory, where the range on the
y-axis is very small compared to the other components. In general, the memory
is responsible for only a small part of the power draw in all versions, never

CLort : High Throughput and Low Energy Network Intrusion Detection 199

more than 0.08 W. Notice that the original version of Snort consumes the least
amount of power on average. This is because all other versions include extra
memory operations to read and write packet data to the buffers.

Figure 4d shows the total, aggregated power consumption from the different
components. Overall, the CPU versions of Snort and the double buffer version of
CLort have almost the same average power draw, though the double buffer ver-
sion has a much shorter execution time. The single buffer GPU version consumes
the least amount of power (2.63 W on average).

Table 2 summarizes the average power consumption, along with the total
energy consumed during the execution time of each version. The single buffer
version of CLort consumes 9.8% less power on average than the CPU version
making it a better fit for scenarios where the power envelope is limited. On
the contrary, the double buffer version of CLort consumes less energy in total
(32.4% less than the CPU), since it is able to process traffic faster. This, and in
conjunction with the results from Sect. 4.3 makes it an appealing alternative for
scenarios where the traffic load is high and the total consumed energy must be
minimized.

Table 2. Average power draw and total energy consumed for each version.

Version Average Power (W) Total Energy Consumed (Joule)

CLort GPU (double) 2.87 145.7

CLort GPU (single) 2.63 159.4

Snort CPU (modified) 2.91 215.6

Snort CPU (original) 2.83 217.5

5 Related Work

Below we discuss related work, divided into two lines of work: NIDS on high-end
systems with GPUs and then NIDS on devices typical of IoT.

5.1 NIDS on GPUs

Over the years, significant efforts have focused on accelerating the functions of
a NIDS using high-end, desktop GPUs. The seminal work by Jacob et al. [6]
was the first to offload the pattern matching on the GPU. Due to the lack
of general-purpose GPU programming APIs at the time, they used graphics
libraries (OpenGL). Their prototype, PixelSnort, achieved at best a 40% increase
in performance when the CPU was under high load, but with no noticeable per-
formance gain under normal load. Moreover, their pattern matching algorithm
is based on the Boyer-Moore algorithm [3], which evaluates each pattern indi-
vidually, making it hard to scale for a large number of patterns.

200 C. Stylianopoulos et al.

More recent work takes advantage of the ease of programming and perfor-
mance offered by general purpose APIs such as OpenCL and CUDA. Vasiliadis
et al. [18] use CUDA and implement the Aho-Corasick algorithm to offload pat-
tern matching and Xie et al. [20] use OpenCL to implement a modified version of
Aho-Corasick (PFAC [9]). Apart from differences with our design, both of these
works target high-end GPUs, while we focus on resource-constrained, embedded
GPUs that share resources with the CPU (memory).

Another, interesting line of work focuses on how to make efficient use of all
the computing devices in the system and orchestrate the processing between the
CPU and the GPU. Vasiliadis et al. [19] present Midea, a system based on Snort
that makes use of highly parallel CPUs, multiple GPU devices and networks
cards. They also describe different optimization techniques to alleviate bottle-
necks, due to data transfers and synchronization. Jamshed et al. [7] present Kar-
gus, a similar, highly parallel system based on their own, custom IDS. Recently,
Papadogiannaki et al. [13] presented a scheduler that dynamically distributes
the packet processing workload across a system with heterogeneous hardware
resources (including both discrete and integrated GPUs). Finally, Go et al. [4]
also show that integrated GPUs are a cost-effective alternative for packet pro-
cessing. All the above-mentioned work achieve very high processing throughput
using high-end CPUs and GPUs and target large-scale networks or even back-
bone traffic. Contrary, we focus on resource-constrained devices that better fit
the area of IoT networks.

5.2 NIDS on IoT Related Devices

Security for IoT and resource constrained devices is an active research topic.
A project that examines the feasibility of using Snort for resource-constrained
devices, similar to the spirit of this work, is RPiDS by Sforzin et al. [14]. In
this work, a Raspberry Pi 2 running Snort to function as a portable IDS was
thoroughly tested to evaluate the capacity of modern single-board-computers.
The measurements showed that the Raspberry Pi could run Snort without ever
filling its entire memory capacity. These results strengthen the argument that
single-board-computers are a reasonable choice for security in future IoT net-
works, especially since it is expected that hardware improves with time. How-
ever, when the authors experimented with live traffic they reported that there
are packet losses, even at low rates, which we also confirm in our experiments
(Sect. 4.3). This raises interesting questions on the bottlenecks involved in the
system that cause these losses. In this work, we take one step further and show
how more hardware feature available at these devices (e.g. the GPU) can be used
to improve the feasibility of a NIDS on resource-constrained devices and reduce
the above-mentioned packet losses.

Moving to even more low-end devices and cyber-physical systems, a large
body of work focuses on custom IDS that are tailored to the functionality of
such devices. One such example is Tabrizi et al. [17] that present a software
tool, which produces a customized IDS based on the memory capacity of the
targeted device. Given the user-defined security coverage functions, the security

CLort : High Throughput and Low Energy Network Intrusion Detection 201

properties of the system and memory requirements, the tool can produce an IDS
customized to operate on the specified system. The authors were able to produce
an IDS, tailored for an electrical smart meter, that operated on 4 MB of memory.
However, different from this work, they propose an anomaly-based IDS and their
main focus is on minimizing memory consumption for low-end devices.

6 Conclusion

In this paper, we consider the security of the Internet-of-Things and address
the processing challenges that are part of Network Intrusion Detection Systems.
Specifically, we propose CLort , a system based on the latest release of Snort
(version 3.0) that is designed to tackle the processing needs of NIDS for high-
end IoT devices by offloading pattern matching to a GPU. We describe the
system design and the effects of various optimizations, such as a double-buffering
technique.

We thoroughly evaluate the performance of CLort under realistic traffic and
show that by using the GPU: (i) CLort achieves up to 52% faster processing
throughput than Snort (ii) is able to process up to 12% more packets from the
network interface under high load and, (iii) achieves the above while consuming
32% less energy than its CPU counterpart.

The work in this paper suggests that using the GPU capabilities offered
by modern, high-end IoT devices is an appealing alternative that strengthens
security by alleviating the processing bottlenecks of security countermeasures,
such as network intrusion detection. The source code of CLort is available at
https://github.com/Arklights/Master.

Acknowledgements. The research leading to these results has been partially sup-
ported by the Swedish Civil Contingencies Agency (MSB) through the project “RICS”
and by the European Community Horizon 2020 Framework Programme through the
UNITED-GRID project under grant agreement 773717. We also thank Simon Kind-
ström for his help with the energy measurements.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855

2. Appneta: Sample captures. http://tcpreplay.appneta.com/wiki/captures.html/.
Accessed 18 Sep 2018

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977). https://doi.org/10.1145/359842.359859

4. Go, Y., Jamshed, M.A., Moon, Y., Hwang, C., Park, K.: Apunet: revitalizing GPU
as packet processing accelerator. In: 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), pp. 83–96. USENIX Association,
Boston, MA (2017)

5. GPGPU: General-Purpose Computation on Graphics Hardware. http://gpgpu.org.
Accessed 19 July 2018

https://github.com/Arklights/Master
https://doi.org/10.1145/360825.360855
http://tcpreplay.appneta.com/wiki/captures.html/
https://doi.org/10.1145/359842.359859
http://gpgpu.org

202 C. Stylianopoulos et al.

6. Jacob, N., Brodley, C.: Offloading IDS computation to the GPU. In: 22nd Annual
Computer Security Applications Conference (ACSAC 2006), pp. 371–380, Decem-
ber 2006. https://doi.org/10.1109/ACSAC.2006.35

7. Jamshed, M.A., et al.: Kargus: a highly-scalable software-based intrusion detection
system. In: Proceedings of the 2012 ACM Conference on Computer and Commu-
nications Security, CCS 2012, pp. 317–328. ACM, New York (2012). https://doi.
org/10.1145/2382196.2382232

8. Khronos group: OpenCL Overview. https://www.khronos.org/opencl/. Accessed
19 July 2018

9. Lin, C.H., Liu, C.H., Chien, L.S., Chang, S.C.: Accelerating pattern matching
using a novel parallel algorithm on GPUs. IEEE Trans. Comput. 62(10), 1906–
1916 (2013). https://doi.org/10.1109/TC.2012.254

10. NVIDIA: About CUDA. https://developer.nvidia.com/about-cuda. Accessed 19
July 2018

11. ODROID-XU3: ODROID-XU3. http://www.hardkernel.com/main/products/
prdt info.php?g code=g140448267127. Accessed 08 June 2018

12. ODROID-XU4: ODROID-XU4 User Manual. https://magazine.odroid.com/wp-
content/uploads/odroid-xu4-user-manual.pdf. Accessed 28 Mar 2018

13. Papadogiannaki, E., Koromilas, L., Vasiliadis, G., Ioannidis, S.: Efficient soft-
ware packet processing on heterogeneous and asymmetric hardware architec-
tures. IEEE/ACM Trans. Netw. 25(3), 1593–1606 (2017). https://doi.org/10.1109/
TNET.2016.2642338

14. Sforzin, A., Mármol, F.G., Conti, M., Bohli, J.: RPiDS: raspberry Pi
IDS - a fruitful intrusion detection system for IoT. In: 2016 Interna-
tional IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Toulouse, France, 18–21 July
2016, pp. 440–448 (2016). https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-
IoP-SmartWorld.2016.0080

15. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Intrusion detection evalua-
tion dataset (ISCXIDS2012), http://www.unb.ca/cic/datasets/ids.html. Accessed
08 May 2018

16. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput.
Secur. 31(3), 357–374 (2012). https://doi.org/10.1016/j.cose.2011.12.012

17. Tabrizi, F.M., Pattabiraman, K.: Flexible intrusion detection systems for memory-
constrained embedded systems. In: 2015 11th European Dependable Computing
Conference (EDCC), pp. 1–12. IEEE, September 2015. https://doi.org/10.1109/
EDCC.2015.17

18. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: high performance network intrusion detection using graphics processors. In:
Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp.
116–134. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87403-
4 7

19. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Midea: a multi-parallel intrusion
detection architecture. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, CCS 2011. ACM, New York (2011)

20. Xie, H., Xiang, Y., Chen, C.: Parallel Design and Performance Optimization based
on OpenCL Snort. In: Proceedings of the 2017 2nd Joint International Information
Technology, Mechanical and Electronic Engineering Conference, JIMEC (2017)

https://doi.org/10.1109/ACSAC.2006.35
https://doi.org/10.1145/2382196.2382232
https://doi.org/10.1145/2382196.2382232
https://www.khronos.org/opencl/
https://doi.org/10.1109/TC.2012.254
https://developer.nvidia.com/about-cuda
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://magazine.odroid.com/wp-content/uploads/odroid-xu4-user-manual.pdf
https://doi.org/10.1109/TNET.2016.2642338
https://doi.org/10.1109/TNET.2016.2642338
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0080
http://www.unb.ca/cic/datasets/ids.html
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1109/EDCC.2015.17
https://doi.org/10.1109/EDCC.2015.17
https://doi.org/10.1007/978-3-540-87403-4_7
https://doi.org/10.1007/978-3-540-87403-4_7

Detection of Covert Channels in TCP
Retransmissions

Sebastian Zillien1 and Steffen Wendzel1,2(B)

1 Centre of Technology and Transfer, Worms University of Applied Sciences,
Worms, Germany

{inf2643,wendzel}@hs-worms.de
2 Department of Cyber Security, Fraunhofer FKIE, Bonn, Germany

Abstract. In this paper we describe the implementation and detection
of a network covert channel based on TCP retransmissions. For the detec-
tion, we implemented and evaluated two statistical detection measures
that were originally designed for inter-arrival time-based covert channels,
namely the ε-similarity and the compressibility. The ε-similarity origi-
nally measures the similarity of two timing distributions. The compress-
ibility indicates the presence of a covert channel by measuring the com-
pression ratio of a textual representation of concatenated inter-arrival
times. We modified both approaches so that they can be applied to the
detection of retransmission-based covert channels, i.e. we performed a
so-called countermeasure variation.

Our initial results indicate that the ε-similarity can be considered
a promising detection method for retransmission-based covert channels
while the compressibility itself provides insufficient results but could
potentially be used as a classification feature.

Keywords: Covert channel · Steganography · Information hiding
Retransmission · TCP · Countermeasure variation

1 Introduction

Covert channels are stealthy communication channels capable of breaking a secu-
rity policy. In network environments, they can enable hidden communications
for malware and data exfiltration. In recent years, several cases of malware that
utilizes covert channels have been found [1]. However, covert channels can also
be applied to circumvent censorship.

A plethora of techniques for the creation of network covert channels are
known, including some channels that transfer hidden data within retransmis-
sions of frames or packets [6,12]. As retransmissions occur on a regular basis,
such covert channels can be considered difficult to detect [14], rendering them
attractive for cybercrime.

In this work we show that TCP retransmissions can be exploited to carry
hidden information. Moreover do we show that countermeasures used for the
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 203–218, 2018.
https://doi.org/10.1007/978-3-030-03638-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_13&domain=pdf
http://orcid.org/0000-0002-1913-5912
https://doi.org/10.1007/978-3-030-03638-6_13

204 S. Zillien and S. Wendzel

detection of another form of covert channels (those based on the modulation
of inter-arrival times) can be transformed to detect retransmission-based covert
channels. The idea of transforming a countermeasure designed for one hiding
pattern to another hiding pattern is called countermeasure variation and was
recently introduced by Wendzel et al. [11]. In this paper, we performed a coun-
termeasure variation for the ε-similarity and compressibility measures and exper-
imentally evaluated their performance. Both measures were originally introduced
by Cabuk et al. [2,3].

The remainder of this paper is structured as follows. Section 2 discusses
related work and Sect. 3 introduces the fundamentals of our TCP retransmission-
based covert channel as well as the two original countermeasures of Cabuk et al.
and our modifications of these approaches. We analyse the performance of our
countermeasures on regular Internet traffic in Sect. 4. We analyse the perfor-
mance of the two countermeasures on our covert channel in Sect. 5. Section 6
concludes and provides an outlook to future work.

2 Related Work

Covert channels were originally introduced by Lampson [7] and studied within
local operating environments [10]. Network covert channels were analysed since
the late 1980s, starting with work by Girling [4], Wolf [13] and Handel et al. [5].
Several surveys provide a comprehensive overview of the related hiding tech-
niques, e.g. [9,12,14].

Covert channels on the basis of retransmissions are rare but have been pro-
posed by different authors. In 2006, Krätzer et al. have shown a covert channel
that duplicates IEEE 802.11 frames to signal hidden information [6]. The authors
also performed an initial detectability analysis and Zander et al. state that
Krätzer’s covert channel could be hard to detect because normal frame retrans-
mission rates vary significantly [14].

Mazurczyk et al. developed RSTEG [8]. With RSTEG, the receiver does
not acknowledge received packets to cause a retransmission at the sender-side.
Then, the retransmitted packet is modified by the sender so that hidden data is
embedded.

Wendzel et al. proposed to encode hidden data by retransmitting selected
TCP segments [12], which is similarly to the previous approach by Krätzer et
al. and should be difficult to detect. However, covert channels based on TCP
retransmissions were not implemented so far. In this work, we describe such an
implementation.

Alternative approaches are feasible as well. For instance, DNS requests could
be duplicated and so could be typical commands (or command sequences), such
as NOOP commands in the FTP protocol.

Detection of Covert Channels in TCP Retransmissions 205

3 Covert Channel and Detection Measures

In this section we describe our TCP retransmission-based covert channel. After-
wards, we describe the two original detection measures by Cabuk et al. and how
we modified these measures to detect retransmission-based covert channels.

3.1 Implementation of a Retransmission-Based Covert Channel

Our covert channel uses artificial retransmissions of TCP segments to signal
covert data. Similarly to [6] our covert channel only transmits a single bit at
a time which reduces the possible covert bandwidth but offers less chances of
detection. Since we do not modify any packets within existing flows it is not
possible to detect our covert channel with methods that try to determine differ-
ences in retransmitted packets. Methods that perform such modifications exist,
e.g. RSTEG [8], and their detection can be accomplished by comparing retrans-
mitted packets.

To transmit a covert 1-bit the sender forces an artificial retransmission of
the corresponding TCP packet. To transmit a 0-bit the sender does not force
a retransmission of the packet. However, we do not use every single packet of
a TCP flow to transfer hidden bits, as this would introduce too many retrans-
missions within a short time. Therefore we introduce a configuration parameter
called density D , it controls how many of a flow’s packets can be used for sig-
naling hidden bits. This is done on the sender-side by only selecting every D-th
packet for the covert channel. The receiver on the other hand only listens for
a retransmission every D packets. With this parameter it is possible to con-
trol the amount of retransmissions that occur during a given time and in turn
it is also possible to control the distribution of retransmissions: we can cre-
ate a short burst of retransmissions or a longer more stretched transmission of
the hidden data. D also helps to adjust the covert channel to the surrounding
network’s characteristics and thereby reduces the suspiciousness of the covert
transmissions. While this parameter is mainly intended to decrease the suspi-
ciousness it can also improve the robustness of the covert channel: to disturb a
hidden message, a non-intended retransmission would have to occur for one of
the packets that actually carry a hidden meaning. The probability for such a
“real” retransmission to match a packet that signals covert data decreases with
increasing D .

The second feature that we implemented for the covert channel is a Hamming
(3, 1) code. This error-correcting code offers added robustness and another way
to alter the distribution of the retransmissions. The sender sends three bits
instead of a single bit. In other words, to send a 1-bit the sender forces the
retransmissions of three consecutive packets. Similarly to the density D , these
three packets can also be spread using the two parameters I and J . If the packet
with the number n was to be retransmitted the sender will retransmit the three
packets with the numbers n, n + I and n + J . Thus, I and J must be selected
so that I < D and J < D to prevent overlapping with the succeeding symbol
to be encoded with the packet nD, n ∈ N, n ≥ 2. The receiver interprets the

206 S. Zillien and S. Wendzel

retransmissions by majority. That means if two or more packets are recognized
as a retransmission by the receiver it interprets it as a 1-bit otherwise as a 0-bit.
The main reason for choosing a Hamming code is the robustness. With the added
redundancy it is more unlikely that a hidden bit is wrongly interpreted. On one
side two of the three retransmissions would have to be lost in order to lose an
entire 1-bit. And on the other side to flip a 0-bit two real retransmissions would
have to occur for the selected packets. This is further enhanced by the spread of
the three packets, making it more unlikely that real retransmissions will hit two
of the three packets.

The third feature we added to the implementation of the covert channel is the
offset O . With this configuration parameter it is possible to shift the beginning of
the covert channel transmission away from the beginning of the TCP connection
by O packets. In result, covert transmission can be initiated at different starting
points which offer again a way to alter the distribution of the retransmissions
and aids the channel’s covertness.

Our proof-of-concept implementation works with a PCAP interface. That
means we do not work with live traffic but with pre-recorded network traffic in
the sense that we modify existing traffic recordings. This offers the experimental
option to utilize the same traffic recording multiple times, also with different
covert channels. Our proof-of-concept implementation was created using Python.
We used Scapy1 to interface with the PCAP files. The implementation is split
into two scripts, one embeds a covert channel into a PCAP file and the other
extracts the hidden message at the receiver-side. The encoding works as follows:

1. We transform the message into a binary representation. This is done by con-
verting every character into its particular Unicode binary value. All 1s and
0s are then concatenated to a list.

2. We read the input PCAP file and extract all TCP sequence numbers. The
list of sequence numbers is sorted and each number is only added once. We
call this list seqNrs.

3. We create a list of sequence numbers that need to be retransmitted. This
is done by iterating over the list created in the first step. If a 0 is read
nothing is done. If a 1 is read the script notes the index i of the 1 and
adds the three corresponding sequence numbers to the retransmission list.
The sequence numbers are chosen based on their index in seqNrs. The three
indices are calculated as follows:

Idx1 = i · D + O
Idx2 = i · D + O + I
Idx3 = i · D + O + J

4. In the last step we write the output file. To this end, we iterate over all
packets that were read and copy each packet into a new list. For every packet
we check if the sequence number is in the retransmission list, if so the packet

1 https://scapy.net.

https://scapy.net

Detection of Covert Channels in TCP Retransmissions 207

is copied twice and the sequence number is removed from the retransmission
list. Once the output list is finished the output file is written.

To decode the hidden message again we have to perform the following steps:

1. We read the input file and extract a list of all TCP sequence numbers called
C and a list of the TCP sequence numbers of all retransmissions called R.
Both lists are ordered and sequence numbers are only added once.

2. We then iterate over C starting at the index O with a step size of D . For every
iteration we evaluate three sequence numbers from C . With the iteration
index i the three packets have the indices:

Idx1 = i
Idx2 = i + I
Idx3 = i + J

If at least two of the sequence numbers are contained in R a 1-bit is noted
otherwise a 0-bit.

3. We can now transform the 1s and 0s back to the hidden text message. To
this end, we transform the numbers from binary back to integers and then
the numbers back to characters.

3.2 ε-similarity

The first detection measure that we want to discuss is the ε-similarity. It was first
introduced by Cabuk et al. in [2] and was designed to detect inter-arrival time
based timing covert channels. To transmit a covert 1-bit a network packet had
to be sent during a pre-defined time slot. To transmit a covert 0-bit the sender
would artificially delay a packet and therefore maintain silence during the time
slot. This encoding resulted in recurring inter-arrival times. The idea behind the
detection measure is to determine if the inter-arrival times are similar to each
other, which would indicate the presence of a covert channel, or if they are not,
which would indicate regular traffic.

To calculate the ε-similarity all inter-arrival times of a network transmission
are extracted and sorted. Then for each two consecutive inter-arrival times Ti

and Ti+1 their relative difference λ is calculated as follows:

λi =
|Ti+1 − Ti|

Ti

The similarity score is then calculated as the percentage of λ values of a given
flow that are below the threshold ε. The similarity score is generally computed
for multiple ε-values to give a broader view.

Since both, the inter-arrival time-based and our TCP retransmission-based
covert channel represent covert timing channels [12] we decided to adapt the
ε-similarity for our own covert channel.

208 S. Zillien and S. Wendzel

We had to modify the detection measure based on two major differences
between the two covert channels. The first one being that our covert channel
does not use all packets to transmit the covert data, but only the retransmitted
packets. To account for that, we only consider retransmitted packets. The sec-
ond difference between the two covert channels is that our covert channel does
not use actual time differences as a way of signaling but it uses TCP sequence
numbers instead. Therefore we had to find a new way to measure the “distance”
between two retransmissions. To calculate this distance Δ we subtracted the
TCP sequence numbers of the succeeding retransmissions.

To calculate the ε-similarity for our retransmission-based covert channel we
used to following procedure that takes a recorded flow as an input:

1. Extract the TCP sequence numbers of all retransmissions from the recorded
flow.

2. Calculate the Δ values by subtracting the TCP sequence numbers of each
pair of consecutive packets.

Δi = Seqi+1 − Seqi

3. Sort the Δ values and calculate the relative differences λi of consecutive Δ
values.

λi =
|Δi+1 − Δi|

Δi

4. Finally, calculate the percentage of λ values that are below a certain threshold
ε.

The idea here is similar to the original idea. Our assumption was that regu-
lar traffic would have chaotic and random retransmissions and therefore lower
similarity scores while our covert channel will create retransmissions that have
rather similar distances and therefore will result in higher similarity scores.

3.3 Compressibility

The second detection measure that we implemented was also first designed by
Cabuk et al. for inter-arrival time based covert channels [3]. They analysed two
different but similar covert channel approaches. The first one uses the same
approach as in [2] (see above). The second one worked a bit differently. To
transmit a covert 1-bit the sender had to first send a packet, then wait a given
time t and then send the next packet. To transmit a covert 0-bit the sender
would wait for 2t time units before sending the second packet.

Although both covert channels are different, they result in similar variations
of the inter-arrival times. The so-called compressibility is a measure of order
for the inter-arrival times. It uses a compression algorithm and is based on the
idea that if the compression algorithm can find a pattern it results in a higher
compression than in case it cannot find such a pattern. In other words, when
there are many similar or equal inter-arrival times in a traffic recording (like in

Detection of Covert Channels in TCP Retransmissions 209

case of a typical covert channel), the compressibility measure would be higher
than for normal traffic.

To calculate the compressibility measure Cabuk et al. extracted the inter-
arrival times of all packets from a flow. Then the inter-arrival times are trans-
formed into a string that basically represents the first few digits behind the
comma and the number of leading zeros behind the comma of each inter-arrival
time. The string is then compressed using Gzip and the compression ratio is
calculated.

We modified the original approach so that it can be applied to the detection of
retransmission-based covert channels. The first aspect we changed was again to
only consider retransmissions instead of all packets. Secondly, we considered
TCP sequence numbers instead of the inter-arrival times. Finally, we modified
the string conversion. The original algorithm of Cabuk et al. was good for the
small values of inter-arrival times but did not perform too well with the typically
large values of 32 bit TCP sequence numbers. The algorithm to convert sequence
number deltas into a string is explained in Listing 1.1

Listing 1.1. Δ to string conversion

count = 65 # s t a r t i n g o f f s e t f o r in t−>char convers ion
while de l t a >= 1000 :

d e l t a = de l t a // 10 # // = f l o o r d i v i s i o n
count += 1

chunk = chr (count) + s t r (d e l t a)

To calculate the compressibility for a given traffic recording we used the
following procedure:

1. Extract the TCP sequence numbers of all retransmissions from a network
recording.

2. Calculate the Δ values by subtracting the TCP sequence numbers of each
pair of consecutive packets.

Δi = Seqi+1 − Seqi

3. Transform the Δ values into strings using the algorithm above and concate-
nate the strings to one string S .

4. Compress the string S using Gzip. The resulting compressed string is called
C .

5. Finally, calculate the compressibility κ as the compression ratio between S
and C

κ =
|S |
|C | .

The idea here is that regular traffic will produce rather irregular and random
retransmissions. Such retransmissions will result in a random string and that
means that the Gzip algorithm can only produce relatively small κ values. Covert
channel traffic on the other hand will contain more similarities in the retrans-
missions, resulting in a higher compressibility than regular traffic.

210 S. Zillien and S. Wendzel

4 Analysis of Retransmissions on the Internet

To prepare the configuration of our covert channel, we first analysed the retrans-
mission behavior of regular Internet traffic. To this end, we performed several
downloads from mirror servers of the Debian Linux distribution. During each
download session we transferred the same 15 megabyte file and recorded the
flow’s TCP transmissions with TShark2. We performed multiple downloads from
several servers and at different times of the day to obtain a broader sample set.
Table 1 shows the results of one selected download session. As shown the utilized
servers were linked to a different number of retransmissions. But the amount of
retransmissions seems not to correlate with the ping response time or with the
number of hops.

Table 1. Sample file download statistics of one download session; downloads were
performed from a network in the Frankfurt metropolitan area.

Location Hostname Date ØPing #Hops #Retrans

Armenia ftp.am.debian.org 2018-05-26 18:55 81ms 11 13

Australia ftp.au.debian.org 2018-05-26 18:58 313ms 24 0

Denmark gemmei.ftp.acc.umu.se 2018-05-26 19:00 52ms 25 0

Germany ftp.de.debian.org 2018-05-26 19:04 28ms 15 144

United States ftp.us.debian.org 2018-05-26 18:51 106ms 17 15

To obtain an understanding on how our detection measure would react to
regular traffic, we ran all traffic recordings through both detection measures:
we excluded recordings with very few retransmissions: for the ε-similarity we
excluded all recordings with less than 5 retransmissions and for the compress-
ibility we excluded all with less than 20 retransmissions.

Figure 1 visualizes the results of the reference traffic for the ε-similarity using
selected Debian mirrors with different retransmission behaviors. The recordings
of regular traffic produce generally smaller similarity scores for smaller ε-values
and have a steep incline with higher ε-values. The behavior for Armenia 1 can
be explained: almost all retransmission for this recording happened during one
singe burst. Therefore almost all retransmissions have the same distance to their
successor. This explains the unusually flat graph for Armenia 1.

Figure 2 shows the results for the compressibility measure for four selected
sites. As can be seen, the compressibility between the samples variated by up to
100%. We had to exclude several recordings since the compression algorithm
cannot work with short strings as their compressibility could become negative
due to Gzip meta-data. This already shows us a limitation of this approach, i.e.
it is not well suited for smaller recordings with only a few retransmissions.

2 https://www.wireshark.org/docs/man-pages/tshark.html.

https://www.wireshark.org/docs/man-pages/tshark.html

Detection of Covert Channels in TCP Retransmissions 211

Fig. 1. ε-similarity scores – reference traffic

Fig. 2. Compressibility scores – reference traffic

212 S. Zillien and S. Wendzel

5 Evaluation

In this section we analyse how our detection measures perform on covert channel
traffic. To this end, we created covert channels with multiple characteristics. In
particular, we created two sets of covert channels: the first set always applies
the same configuration parameters but different hidden messages. The messages
that were used are listed in Table 2. This test-set was created to analyse if the
hidden message’s content had any influence on the covert channel’s detectability.

Table 2. Hidden test messages

“AAAA” repeated multiple times

“ABABA” repeated multiple times

“TheQuickBrownFox” repeated multiple times

An alphanumeric random character string

The second test-set continuously transfers the same hidden message
“TheQuickBrownFox” but in combination with different configuration parame-
ters for each covert channel. For the second test-set the configuration param-
eters were encoded into the recording name using the following format:
“Covert O D I J”. The configuration parameters were chosen to hide the char-
acteristics of the covert channel traffic and are adjusted to the characteristics of
regular Internet traffic’s retransmissions. Especially do we spread the retrans-
mission further apart to reduce the sharpness of the “steps” (visible increases)
that can be seen in Fig. 4 to make the traffic similar to regular traffic.

5.1 ε-similarity

First, we performed an analysis of the ε-similarity. To results are shown in Figs. 3,
4 and 5. Figure 3 shows the Δ values of the sequence numbers. A distinct pattern
for the covert channel is recognizable while the regular traffic is far more random.

Figure 4 shows the sorted Δ values. For the covert channel one can see clear
“steps”, i.e. many packets had the same or highly similar distances between
them. The regular traffic does not show this characteristic. Moreover, regular
traffic shows some variations in the gradient but they are nowhere near as sharp
as the “steps” of the covert channel traffic.

Figure 5 visualizes the relative differences of λ values. The covert channel
creates a few distinct spikes that relate to the steps in Fig. 4 but the graph
always returns back to zero after a spike. Although the regular traffic does not
produce more spikes, we can see that the graph does not drop back to zero. That
means that the regular traffic produced more “non-zero” values than the covert
channel which results in lower similarity scores.

Detection of Covert Channels in TCP Retransmissions 213

(a) Typical Covert channel traffic (b) Regular traffic (Germany 2)

Fig. 3. Comparison: covert - regular: Δ values between retransmissions

(a) Covert channel traffic (b) Regular traffic

Fig. 4. Comparison covert - regular: sorted Δ values between retransmissions

(a) Covert Channel Traffic (b) Regular Traffic

Fig. 5. Comparison covert - regular: relative differences (λ values)

214 S. Zillien and S. Wendzel

0

0.2

0.4

0.6

0.8

1

1.2

Covert AA
#Retrans: 48

Covert AB
#Retrans: 48

Covert Fox
#Retrans: 93

Covert RNG
#Retrans: 111

ε-similarity - Covert Channel

ε= 0.001 ε= 0.01 ε= 0.1 ε= 0.2 ε= 0.5 ε= 1.0 ε= 2.0 ε= 4.0

Fig. 6. ε-similarity scores - covert channel traffic - test-set 1

Figure 6 visualizes the results for the complete first test-set. All four covert
channels have high similarity scores, even for lower ε-values. The incline with
growing ε-values is also flatter in comparison to regular traffic.

Figure 7 shows the results of the second test-set. The similarity scores for the
first three covert channels are very similar to the scores in the first test-set. That
means the spread of the retransmissions was not enough to hide the character-
istics of the covert channel traffic. For covert channels 4 and 5, the scores are
far more similar to regular traffic. That means we can hide our covert channel
from the detection by increasing the distance between the retransmissions and
therefore camouflaging the characteristic “steps”.

One detection heuristic could be implemented by looking at three different
similarity scores. We chose ε= 0.01 with an upper threshold of 0.997 (no lower
threshold), ε= 0.2 with a lower threshold of 0.95 and ε= 2.5 with a lower thresh-
old of 1.0 (both no upper threshold). With these ranges we were able to obtain
good results for a mix of all mentioned covert channels (Table 3). It must be
noted that our retransmission-based covert channel is already optimized due to
the parameters D, O, I and J and thus less detectable than a trivial one with
a constant D and no other parameter optimization. The false-negatives result
especially from the recordings “Cov. 0 500 100 200” and “Cov. 0 1000 300 700”.

Figure 8 provides a broader overview of the similarity results of covert chan-
nels in comparison to regular traffic. The values for the covert channels are
generally higher than those of regular traffic. However, outliers exist in both
cases.

Detection of Covert Channels in TCP Retransmissions 215

0

0.2

0.4

0.6

0.8

1

1.2

ε-similarity - Covert Channel

ε= 0.001 ε= 0.01 ε= 0.1 ε= 0.2 ε= 0.5 ε= 1.0 ε= 2.0 ε= 4.0

Fig. 7. ε-similarity scores - covert channel traffic - test-set 2; x-axis format follows the
form mentioned in Sect. 5 (“Covert O D I J”)

Table 3. Detection results - ε-similarity

Actual class

Covert channel Regular traffic

Detected class Covert channel 154 1

Regular traffic 6 130

(a) Covert channel traffic (b) Regular traffic

Fig. 8. Comparison covert - regular: similarity values

216 S. Zillien and S. Wendzel

In general we can conclude that the ε-similarity performs well for the detec-
tion of our TCP retransmission-based covert channel. But it is possible to hide
the covert channel by spreading the retransmissions further apart (i.e. sacrificing
bandwidth).

5.2 Compressibility

We applied the previously mentioned test-sets to evaluate the compressibility
measure. Figure 9a shows the results for the first test-set. The compressibility
scores for the covert channels are in the same region as those of the regular
traffic, i.e. for the first test-set it is not possible to differentiate between regular
and covert channel traffic based on the compressibility.

Fig. 9. Compressibility results - test-sets 1 and 2

We can explain these results with the compression algorithm: Gzip was used
and produces an overhead (meta-data of the compressed result C). That means
that for short strings S, C can actually increase when they are “compressed”.
Longer strings become shorter when being compressed, the overhead still distorts
our statistic significantly. We assume that this approach would need far more
retransmissions to function properly.

Figure 9b visualizes the results of the second test-set. As shown that the
compression ratio drops significantly with fewer retransmissions. Therefore it is
not possible to see a clear trend between regular and covert channel traffic.

Figure 10 gives an overview of the compressibility scores of multiple covert
channels in comparison to regular traffic. We can see that covert channels show
generally more higher values but we can also see an overlap with regular traffic.
Using an exemplary threshold κ = 6, we obtained the detection results shown in
Table 4.

Detection of Covert Channels in TCP Retransmissions 217

Table 4. Detection results - compressibility

Actual class

Covert channel Regular traffic

Detected class Covert channel 136 26

Regular traffic 24 51

(a) Covert channel traffic (b) Regular traffic

Fig. 10. Comparison covert - regular: compressibility values

We believe that the overlapping of legitimate and covert traffic for the com-
pression algorithm’s results distorts the detectability too much for the small num-
ber of retransmissions we worked with. We also believe that the compressibility
could perform better with larger input data, so that the compression algorithm
will receive more retransmissions to work with. However, this is a speculative
statement and thus, solely based on our results we conclude that the compress-
ibility measure is no promising candidate for the detection of retransmission-
based covert channels. However, it could potentially be useful as a feature for a
machine learning-based approach.

6 Conclusion

We introduced a novel covert channel based on TCP-retransmissions. Using
configuration parameters, we can adjust the covert channel’s covertness and
throughput.

We transformed two existing detection measures originally designed for inter-
arrival time-based covert channels so that they work with retransmission-based
covert channels. We were able to distinguish between covert channel traffic and
regular traffic based on a modified version of the ε-similarity. However, the covert
channel was not detectable when the distance between the artificial retransmis-
sions was comparably large.

The results for a second detection measure were less promising: the com-
pressibility scores for regular traffic and covert channel traffic did not show clear

218 S. Zillien and S. Wendzel

trends in our tests. We attribute this to the overhead introduced by the compres-
sion algorithm. We believe that the compressibility score might perform better
with larger input data.

In future work, we plan to conduct additional tests under different network
conditions. We especially plan to test the compressibility score with larger input
data.

References

1. Cabaj, K., Caviglione, L., Mazurczyk, W., Wendzel, S., Woodward, A., Zander,
S.: The new threats of information hiding: the road ahead. IT Prof. 20(3), 31–39
(2018)

2. Cabuk, S., Brodley, C.E., Shields, C.: IP covert timing channels: design and detec-
tion. In: Proceedings of 11th ACM Conference on Computer and Communications
Security, CCS 2004, pp. 178–187 (2004)

3. Cabuk, S., Brodley, C.E., Shields, C.: IP covert channel detection. ACM Trans.
Inf. Syst. Secur. 12(4), 1–29 (2009)

4. Girling, C.G.: Covert channels in lan’s. IEEE Trans. Softw. Eng. 13(2), 292 (1987)
5. Handel, T.G., Sandford, M.T.: Hiding data in the OSI network model. In: Ander-

son, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 23–38. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61996-8 29

6. Krätzer, C., Dittmann, J., Lang, A., Kühne, T.: WLAN steganography – a practical
review. In: Proceedings of 8th Workshop on Multimedia and security, MM&Sec
2006 (2006)

7. Lampson, B.W.: A note on the confinement problem. Commun. ACM 16(10), 613–
615 (1973)

8. Mazurczyk, W., Smolarczyk, M., Szczypiorski, K.: Hiding information in retrans-
missions. CoRR abs/0905.0363 (2009)

9. Mileva, A., Panajotov, B.: Covert channels in TCP/IP protocol stack – extended
version. Cent. Eur. J. Comput. Sci. 4, 45–66 (2014)

10. Millen, J.: 20 years of covert channel modeling and analysis. In: Proceedings of
1999 IEEE Symposium on Security and Privacy, pp. 113–114. IEEE (1999)

11. Wendzel, S., Eller, D., Mazurczyk, W.: One countermeasure, multiple patterns:
countermeasure variation for covert channels. In: Proceedings of Central European
Cybersecurity Conference (CECC 2018). ACM (2018, in press). https://doi.org/
10.1145/3277570.3277571

12. Wendzel, S., Zander, S., Fechner, B., Herdin, C.: Pattern-based survey and cate-
gorization of network covert channel techniques. ACM Comput. Surv. 47(3), 1–26
(2015)

13. Wolf, M.: Covert channels in LAN protocols. In: Berson, T.A., Beth, T. (eds.)
LANSEC 1989. LNCS, vol. 396, pp. 89–101. Springer, Heidelberg (1989). https://
doi.org/10.1007/3-540-51754-5 33

14. Zander, S., Armitage, G., Branch, P.: Covert channels and countermeasures in
computer network protocols (reprinted from IEEE communications surveys and
tutorials). IEEE Commun. Mag. 45(12), 136–142 (2007)

https://doi.org/10.1007/3-540-61996-8_29
https://doi.org/10.1145/3277570.3277571
https://doi.org/10.1145/3277570.3277571
https://doi.org/10.1007/3-540-51754-5_33
https://doi.org/10.1007/3-540-51754-5_33

What You Can Change and What You
Can’t: Human Experience in Computer

Network Defenses

Vivien M. Rooney and Simon N. Foley(B)

IMT Atlantique, Lab-STICC, Université Bretagne Loire, Rennes, France
vivrooney@gmail.com, simon.foley@imt-atlantique.fr

Abstract. The work of Computer Network Defense conducted, for
instance, in Security Operations Centers and by Computer Security Inci-
dent Teams, is dependent not alone on technology, but also on people.
Understanding how people experience these environments is an essential
component toward achieving optimal functioning. This paper describes a
qualitative research study on the human experience of working in these
environments. Using Grounded Theory, a psychological understanding
of the experience is developed. Results suggest that positive and nega-
tive aspects of the work are either amenable or not amenable to change.
Areas of tension are identified, and posited as the focus for improving
experience. For this purpose, psychological theories of Social Identity
Theory, Relational Dialectics, and Cognitive Dissonance, provide a way
of understanding and interpreting these components of Computer Net-
work Defence work, and can be used to assess the experience of staff.

1 Introduction

The technical tools and skills associated with individuals working in Security
Operations Centres, Computer Security Incident Response Teams, and other
Computer Network Defense environments [18], are well understood in terms
of being leveraged to improve operational functionality. How these individuals
experience their role is not well understood and is an understudied facet of
cybersecurity. Operationally, technology tends to be the focus, while the issues
concerning people and processes tend to be sidelined [18]. Among the issues
that we do know are that there is a high staff turnover and that the work
environment is characterized by multiple tensions [11,12]. As a consequence,
there is a loss of expertise and damage to team cohesion, as well as a need to
have a constant supply of new staff being trained. Focussing on the psychology
of the experience of these individuals has the potential to develop insights that
can be applied to improve their experience of work. Thus, while understanding
the technical tools and skills remains an essential part of understanding the
environment in which Computer Network Defenders work, what is also essential
is that we understand the human experience. The application of this knowledge
provides an opportunity to improve the functionality of such work environments.
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 219–235, 2018.
https://doi.org/10.1007/978-3-030-03638-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_14&domain=pdf
http://orcid.org/0000-0001-9983-5443
http://orcid.org/0000-0002-0183-1215
https://doi.org/10.1007/978-3-030-03638-6_14

220 V. M. Rooney and S. N. Foley

This paper describes an Applied Psychology research project with people who
work in Security Operations Centres and Computer Security Incident Response
Teams. Hereafter, we refer to these individuals as computer network defenders,
who are engaged in “the practice of defense against unauthorized activity within
computer networks, including monitoring, detection, analysis (such as trend and
pattern analysis), and response and restoration activities” [18]. The purpose of
this qualitative research was developing a psychological understanding of the
experience of people working in these environments, with the aim of applying
this knowledge to improve that experience and thereby improving functioning.

Methodologically, the project draws on Grounded Theory [2] which facilitates
gaining an understanding of everyday experience while at the same time sup-
porting development of theory. The analysis identified the factors that interplay
and comprise the experience of the staff, such as situational and organizational
components, providing insights into what working in these environments entails.

The primary contribution of the paper is five themes that emerged from
the study, as listed in Table 1. The results suggest that there are positive and
negative challenges intrinsic to the work being conducted that, as such, either
need not, or cannot, be altered. These intrinsic aspects can provide a learning
opportunity. For instance, emergent within-team communication was identified.
Theoretically, this is framed by Relational Dialectics, and is described as dialog-
ical discussion. The application of the knowledge gained in the research to the
development of a training platform would enable new staff to learn, and existing
staff to improve, this technique, and thereby support the goal of improving over-
all performance. Another example is understanding the team’s social identity.
The significance of social identity facilitates understanding the meaning of, for
instance, team membership, or the tensions and norms associated with being
part of a community. Furthermore, improvement in functioning can be achieved
in areas where uncertainty and ambiguity are a source of psychological stress.
A focus on the areas where alteration is possible would alleviate the associated
additional and avoidable burden. The relevant psychological theories are Social
Identity Theory, Relational Dialectics, and Cognitive Dissonance.

The paper is structured as follows. Section 2 reviews related research and
Sect. 3 provides an overview of the methodology. The five themes identified in
the study are explained in Sects. 4 and 5 considers how we can interpret, and
affect change, by drawing on existing psychological theory.

2 Related Work

Research on the work conducted by Computer Security Incident Response
Teams has adopted a largely cognitive perspective. For instance, research on
Cyber Security Analysts [8] has focussed on the formalization of the process
of sense making, describing the components as a series of four steps that take
place against a backdrop of experience. These are information seeking, obser-
vation analysis, insight development and result production. While experience is
regarded as playing an important role in sense-making, the researchers report

What You Can Change and What You Can’t: Human Experience 221

Table 1. Emergent themes and theories of Computer Network Defenders

Theme Description Amenable to change Applicable theory

Intrinsic Positive Regarded as being

inherently positive, not

needing explanation,

therefore less salient to

creating identity

Don’t want to

change

Social identity

Created Positive Explained as positive,

therefore highly salient to

creating identity

Don’t need to

change

Social identity

relational dialectics

Intrinsic

Negative

Inherent aspects of the

work, negatively regarded,

less salient for team

identity

Can’t change Social identity

cognitive dissonance

Created

Negative

Negative aspects of the

work less relevant to

creating team identity

Want to change Social identity

Areas of Tension Aspects of work regarded

with ambivalence, highly

salient for team identity

Want to change Social identity

cognitive dissonance

on the lack of a clear definition of experience in the literature. A similar app-
roach to understanding people working in Computer Security Incident Response
Teams focusses on Situation Awareness. This concerns a state of knowledge
within the context of a dynamic system, typically involving three stages. The
stages identified are perception, comprehension and projection [10]. The first
stage concerns information about the status, attributes and dynamics of rele-
vant elements within the environment. The second stage concerns how people
combine, interpret, store and retain that information. The final stage concerns
predictions based on the knowledge perceived and comprehended [5].

Adopting the perspective of organizational psychology in their research on
Computer Security Incident Response Teams, [3] report that people need blended
technical and interpersonal skills, such as the ability to know when and how a
problem being dealt with at the individual level ought to escalate and be dealt
with at team level. At the team level, they report that there is a need to collab-
orate both within and outside of an organization. The necessary cognitive tasks
for staff that the researchers identified are remembering, understanding, eval-
uating and analyzing. Similar to the Situation Awareness research [5,10], this
is detailed as the detection of patterns, focussing attention, combining pieces
of information to reach conclusions, and multitasking. The authors report that
effective information sharing and collective problem solving are required for a
successful Computer Security Incident Response. Thus, there is a need to under-
stand each other’s knowledge, skills and abilities. What is required is identified
as curiosity, investigative skills, the desire to acquire and share new knowledge
with others, problem solving ability and attention to detail.

222 V. M. Rooney and S. N. Foley

There has been limited qualitative research undertaken in this area, for exam-
ple, [15], have focussed on improving tool development for use by system adminis-
trators, identifying the work environment as being complex and risky, and having
unique information system requirements. Werlinger [17] used qualitative research
methods to study tool improvement, and identified the organizational, techno-
logical and human challenges in the context of information security. Kandogan
and Haber [6] used qualitative research to understand, describe and interpret
the meaning and significance of the work of security administrators, reporting
that, with experience, the event driven work is accomplished intuitively.

Taking a different perspective, [11,12] reported recently on their longitudinal
in-depth study of five Security Operations Centres, using qualitative research
methods. The authors report the existence of multiple tensions and contradic-
tions in the work environment, existing between different types of staff, between
staff and systems, as well as between staff and technology. Furthermore, it is
reported that because new working conditions are accompanied by new tensions,
it is necessary to address these issues on an on-going basis. For instance, new
tools create new problems, hence the need for on-going attention to the ensuing
tensions. Another example of tension concerns the role of metrics, specifically,
how their generation may seem like a goal in itself, rather than a reflection of
the work accomplished in the Security Operations Centre. Reported also is a
lack of awareness or understanding of the goals and challenges of staff both at
an interdisciplinary level, with financial, managerial and technical among the
examples. Within disciplines, there is also scope for lack of understanding, as
different levels of technicians and analysts are unaware of the difficulties, chal-
lenges and goals of other levels. Such difficulties are linked to burnout by the
authors, and the high staff attrition that is characteristic of Security Opera-
tions Centres. The researchers also noted that Security Operations Centres can
be very different, and that generalization may be unwarranted and misguided.
A particularist approach, whereby Security Operations Centres are individually
studied, may be warranted [11,12].

3 Approach and Methodology: Qualitative Research

The objective is to understand the experience of Computer Network Defenders.
Qualitative research methods facilitate understanding experience, thereby avoid-
ing limiting understanding to what is simply observable. Experience is comprised
of a broad range of interrelated components, such as personal values, beliefs and
social components. A Grounded Theory approach [2] was selected as the most
appropriate for a number of reasons. For instance, the topic is likely to have
been considered in depth by participants, which is particularly appropriate for
Grounded Theory data analysis. In addition, the approach facilitates iterative
data gathering and analysis, as it was anticipated that participant recruitment
for semi-structured interviewing [7] would continue throughout the duration of
the project. Figure 1 provides an overview of features of Grounded Theory.

What You Can Change and What You Can’t: Human Experience 223

Ethics and Recruitment. An ethical self-evaluation was conducted, following the
principles for research projects involving human participants recommended by
[14], and made available to participating organizations. This included protocols
for data privacy and informed consent while being cognizant of Intellectual Prop-
erty and other rights of participating organizations. Given the ethical require-
ments for informed consent in the project, recruitment was envisaged as being a
negotiated process. In line with the informed consent agreement, any information
that could lead to identification of participants is excluded.

Fig. 1. Overview of the Grounded Theory process

Data Gathering. The qualitative research method of semi-structured one-to-one
interviewing [7] was used. Interviews were conducted and transcribed according
to [9] in light of the Grounded Theory analytic process to be applied.

Data Analysis: Initial Coding. Using the TAMS software tool, line-by-line codes
were assigned (markup) to the text. The objective is the generation of codes
encapsulating the meaning of each piece of data, lending transparency and valid-
ity to the analytic process and findings. A total of 231 codes were generated.

Data Analysis: Memo Writing. Memos record the research process, analytic ideas
and direction, and potential theoretical development. Forty-four memos were
compiled, documenting the analytic process from the construction of the inter-
view schedules to development of a theoretical interpretation of the data.

Data Analysis: Categories and Codes. The purpose of this step is developing the
analytic direction. A total of 24 categories were identified, under which the 231
codes were grouped. The categories are described in Memos.

Data Analysis: Axial Coding. This facilitates identifying and exploring connec-
tions between categories, and the development of themes. During the analysis,
factors influencing the phenomena of interest emerge. These may be conditions
around phenomena, the particular context of the actions and their consequences.

224 V. M. Rooney and S. N. Foley

4 Results of the Study

Uncertainty and change are intrinsic characteristics of the experience of work-
ing in cybersecurity. From the perspective of the Computer Network Defenders
working in these specialized environments, the connotations of these intrinsic
qualities are both positive and negative. The positive aspects of uncertainty and
change mean that the work is always interesting, and that learning is part of their
everyday working life. Both of these aspects are highly salient to the choice made
to work in these environments. The negative aspects of uncertainty and change
are the additional stress that these unknowns bring to their working life. The
Computer Network Defenders are aware of the intrinsic benefits and difficulties.
In reconciling these opposing qualities, they are also aware that the demands of
their chosen field means that the work can be undertaken successfully only on a
short term basis. This duration is envisaged as being approximately two years.
Being intrinsic to the work, it is not possible to envisage how these positive and
negative qualities can be altered. However, there are factors that exacerbate the
aspects of the work that are intrinsically negative. Therefore, focussing efforts on
improvement on what it is possible to alter may provide a means of understand-
ing how best to ameliorate the difficulties faced. Taking steps to ameliorate the
negative aspects of the working conditions for Computer Network Defenders has
the potential to lessen the challenges of the work, therefore lowering the stress
levels experienced, and ultimately extending the period of time that staff are
willing to continue in their role. The benefit that can accrue with the attendant
loss of expertise is improved functioning of the working environment.

Setting. The working environments of Computer Network Defenders have
emerged in recent years in response to the need to deal with cyber threats and
attacks. Working in these areas means that circumstances change rapidly. New
problems arise, and, typically, the form that the new problem takes differs from
the previous event. Firstly, there is a process during which a new event must
be recognized and identified as such. Secondly, the particular form and sub-
stance of an event must be apprehended and understood. Thirdly, the most
appropriate method for dealing with the particular event must be ascertained
and formulated. Fourthly, the effectiveness of this process must be monitored
on an ongoing basis. Finally, a determination on when an event can be deemed
to have ended must be reached. As the foregoing illustrates, the nature of the
work undertaken by Computer Network Defenders is that it is characterized by
processes where change and uncertainty are intrinsic. As cyber attacks readily
change their form and substance, corresponding change in both the form and
substance of cyber defence work is a necessary and intrinsic quality.

In addition to the constant change that Computer Network Defenders
encounter, uncertainty is also characteristic. For instance, along with the unpre-
dictability of the form of cyber attacks as outlined above, the ordinary working
experience is of relative calm during which there is no crisis, punctuated by
periods when a crisis is taking place. During periods of calm, an attack is antic-
ipated. However, rather than being discrete, periods of crisis/non-crisis exist

What You Can Change and What You Can’t: Human Experience 225

on a continuum. During a crisis, the stakes for problem solving are high, and
finding a solution is imperative. A problem without a solution is not an option.
The uncertainty that is part of many aspects of the work presents challenges
at the individual as well at the team level, and hampers the process of optimal
decision-making that needs to be achieved. There are, however, tensions that it
is possible to address, such as those emerging from the uncertainty around the
use of intuition in problem solving, when the certainty of adhering to procedures
is what is prescribed. The work is changing, complex and challenging. The para-
dox is that it is these intrinsic qualities of the work that make it attractive and
satisfying for Computer Network Defenders, while at the same time being the
reason that such work is not envisaged as being long term.

Main Themes. There are five main themes emerging from the analysis. (1) Intrin-
sic Positive, (2) Created Positive, (3) Intrinsic Negative, (4) Created Negative,
and (5) Areas of Tension, as summarized in Table 1. Themes 1 to 4 concern
matters that tend to be definite, these are matters that can be termed black and
white in how they are explained and viewed by the Computer Network Defence
workers. While this dichotomy reflects how the individuals experience aspects
of their work in negative and positive terms, these aspects do not constitute a
source of additional stress for staff. Rather, the Computer Network Defenders are
aware that the work is stressful per se, and this is acknowledged and accepted.
Theme 5, however, concerns areas that do contribute additional stress to the
individuals and teams who work in Computer Network Defence. These areas are
characterized by ambivalence, and the uncertainty surrounding them is a site of
tension. These grey areas provide insights into areas where improvement in the

Intrinsic positive

Skills

The company protective

Crisis resolution & team-work

Attacker personified

Inherent good/gaining approval

Client to be helped The work

Intrinsic
negative

Working
alone/as
a team

Change
in team
& work

Crisis described
in detail

Becoming part of team

Information on defense
and cybersecurity

Created
positive

Being part of team

The tools

Areas of
tension

Intuition

Being part of community

Client as consumer/customer

Company commercial matters

Inherent bad/those gaining disapproval

Tension between differing agendas

Procedures

Work burden

Created
negative

Being isolated or
independent in
company

Physcial isolation/
working conditions

Fig. 2. The emergent themes and their code categories

226 V. M. Rooney and S. N. Foley

experience of the work may be achieved. Figure 2 provides an overview of these
themes with their identified code-categories. Themes are described discretely in
this section, while the links between them are also noted.

4.1 Intrinsic Positive

There are components that are intrinsic to the work, and are regarded as being
inherently positive. This means that staff regard these aspects as being good in
themselves, assigning them a high moral status. Being interested in the work for
its own sake is part of this, as is enjoying problem solving and being curious; work
that is boring is an anathema. The demanding and complex work means that
people are busy, with individuals playing multiple roles within the team. There
is enjoyment also in this variety, and having the freedom to approach complex
problem solving flexibly, including, for example, using intuition to conduct the
work, or choose to solve a problem, in a particular way. Understanding the
processes, and products and how these fit into the team’s work is also satisfying.
One of the most interesting aspects of the work is the nitty-gritty of getting your
hands dirty, devising a workaround, or building a solution to a problem.

Having and acquiring skills is regarded very positively, and this plays a dual
role for the creation of identity. The practical role is being able to learn and apply
skills to problem solving, and help in building solutions faster. The symbolic role
is that the acquisition of skills indicates proficiency and, as such, is a step in
becoming a fully integrated team member.

The crisis is the reason for the team’s existence, and the experience of crises
is positive. The crisis is not a source of enjoyment in itself, rather, the absorbing
and energizing challenge it presents is a positive aspect of the work for Com-
puter Network Defenders. The significance of the crisis is that other tasks are
dropped and attention is focussed on problem solving. During communication,
challenges and confrontations are part of how the individual team members bring
their unique strengths into play. Solving a crisis can be satisfying, particularly if
achieved quickly. The epitome of team cohesion is combining skills, experience
and minds to work on resolution, and this is enjoyable and satisfying. The pro-
cess of a crisis is engaging, energising, and as such is a positive, even an enjoyable
part of the work of the Computer Network Defenders. Resolution, nevertheless,
is marked by a feeling of relief. Along with enjoying this aspect of the work
for its interesting and challenging qualities, there is an awareness that attacks
impact on people, who will suffer as a consequence. The altruistic motivation to
help and protect people is a very positive component in the work, and in creat-
ing identity. As such this motivation, as well as the other positive components
described, are how the Computer Network Defenders reconcile the choice they
make to engage in work that they know is burdensome and demanding. Other
positive aspects of the work concern how an attacker can provoke emotion, such
as being detested, or playing a part in global terrorism. On a lighter note, a
potential attack can also be a source of fun, or tension relief, among the team,
and one example discussed is a potential attack being classified as innocuous.

What You Can Change and What You Can’t: Human Experience 227

4.2 Created Positive

There are aspects of the work that are deemed by participants as being positive.
The contrast with the preceding section is that these aspects are not regarded as
inherently positive, rather the participants choose that they are so, and there-
fore, in explaining how and why this is the case, they create their social identity.
Being part of the team is regarded as being important and positive. As a team
member, social norms apply, for example, that team cohesiveness is approved.
Team cohesiveness is essential to the success of the how the team work. Being
able to leverage team cohesiveness to engage in optimal ways of constructive
argument is an approved activity, and one that is highly salient to the commu-
nication within the team, and hence, its functionality. This can mean that, for
instance, during a crisis, even if going against one person’s intuition, another
team member’s suggestion will be taken on board. At such times, the team will
democratically confront and challenge proposed workarounds, as a way of reach-
ing the best solution. Communication within the team is easy, for instance, it
is easy to explain a question to another team member, in contrast to an out-
sider. This is important when on call, and especially important during a crisis.
Another example of the usefulness of the approved social norm of team cohesion
is that when people are on call they do not feel alone, they identify themselves
as part of the team, being able to rely on each other for help and advice. Being
alone in this context is a norm for the team that is entirely negative, in the sense
of not having support when dealing with a crisis or potential crisis. Being able
to rely on other team members is evidence of the mutual trust that the team
place in each other, and this is salient to the effectiveness and identity of the
team. Nevertheless, another part of the creation of the identity of the team is
being aware of themselves as individuals, holding differing views, for example, on
professional satisfaction, or having different skill sets, and strengths. Both the
fact of, and having knowledge of each individual’s strengths and weaknesses are
considered as positive norms. For the team’s social identity, understanding each
other as individuals is an approved norm, facilitating successful functionality.

4.3 Intrinsic Negative

Some components of the work cannot be altered, being an intrinsic part of the
Computer Network Defence work itself. These particular components are inher-
ently negative, and accepted as being so by the staff. While these components
are a source of stress, this is accepted as being part of the work, without ran-
cour. There is, therefore, no expectation that these components could possibly be
altered. Staff are reconciled to the stress they add to the burden of the work, and
are a part of the reason why the work is regarded as being something that can
be done successfully only in the shorter term. One component that is regarded
negatively, yet as being unavoidable, is the process of becoming accepted by, and
earning a place in, the team. As noted above, skills have a dual role and, simi-
larly, the state of being alone in the context of Computer Network Defense work
also has a dual role. Being alone, meaning being on call, or having to deal with

228 V. M. Rooney and S. N. Foley

a crisis without other team members, is regarded as being negative. A second
meaning is that if you are on call alone, then this signals that you are trusted
by the team, and this is a necessary step in becoming an accepted member of
the team. Membership, as noted earlier, is important to the creation of social
identity. The process of becoming a fully fledged member, while being negative,
is, nevertheless, accepted as part of the process of entering into the group.

The demands associated with a crisis are accepted as being stressful, and this
is negative. The uncertainty of duration, occurrence and resolution are negatively
regarded as creating stress, yet at the same time, accepted as an intrinsic part
of the work that they choose. A crisis can occur at any time, and at the initial
stage of a crisis, its duration an unknown. Rather than being dichotomous, the
crisis is described as a continuous state. A crisis is a spectrum of how the system
is functioning. This state can range from where a service is not provided, or it
may be a process of returning to the normal state, a service being re-established,
fixed, or working, although not as it was designed. The restoration to normal may
require time, hence a workaround might be used in order to achieve a functioning
system. Change is a feature of the crisis, rather than a dichotomy of existing/not
existing, and this, along with uncertainty, is accepted as an intrinsically negative
characteristic of the work. Change is intrinsic to the experience of Computer
Network Defence workers. This can encompass to the work itself, as described
above, as well as more mundane matters, such as the expansion of the team, or
the physical conditions of the work environment. Change can encompass what
is anticipated for the future of a team, its work, or its conditions.

Regarded as a necessary evil, procedures are important in linking the activ-
ities conducted by the staff to those outside of the team. The links are with
management and with other teams. Procedures can be a tool in the assessment
of responses to crises, and as such are regarded as a means of retrospectively
judging decisions made or actions taken during a crisis. This is significant because
adherence to procedures can have legal or financial consequences. Procedures are
regarded negatively for this, and other reasons as the work per se requires cre-
ative responses, in time critical situations. For instance, during a crisis, there is a
need to be able to communicate and research. In such circumstances, procedures
can slow down the process, and be regarded negatively, as a burden. There is,
however, ambivalence concerning procedures that stems from their usefulness,
as they can be effective as a memory aid, and are accepted as being necessary.
Similarly, the process for changing procedures is regarded as being onerous, yet
also necessary to ensure that any such changes are valid.

The demands of the work mean that while people enjoy some parts, they rec-
oncile themselves to being in the post for only a finite amount of time. The work
of the Computer Network Defenders can have a high profile within an organi-
zation, with correspondingly high expectations for performance to be excellent.
With the work itself being characterized by change, as discussed earlier, this
intrinsic characteristic compounds the requirement to meet the high expecta-
tions of those outside the team. This is an area where the work that is accom-
plished can be misunderstood, as can what it is possible to achieve, or the time

What You Can Change and What You Can’t: Human Experience 229

frame required to achieve a task. The demands of the actual work are high also,
for instance, being on call following a crisis, in the words of one participant, can
be draining. Similarly, the volume of information that is available is large, and
ensuring that what is what is not relevant is disregarded, and what is relevant
is apprehended and managed correctly, presents a challenge. Demands such as
these are an integral part of the work, and as such, are not expected to change.
What the Computer Network Defenders can change is their own position in rela-
tion to the work. While participants view components of their work in a very
positive way, as discussed earlier, they, nevertheless, do not envisage the job as
being a long term proposition. The choice that the individuals make is to engage
with work that they know is interesting and enjoyable, yet demanding, in the
knowledge that these very characteristics mean that their choice is for remaining
in the role for a limited duration.

4.4 Created Negative

There are aspects of the work that are deemed by participants as being negative.
The contrast with the previous section is that these aspects are not regarded as
inherent to the work, rather the participants highlight these as negative compo-
nents that it is possible to alter. While regarding a certain amount of indepen-
dence as positive, for instance, in managing some aspects of the work themselves,
or in generating a fix for a problem, there is the negative corollary of feeling
somewhat isolated from other teams. While physical isolation of the work envi-
ronment is necessary because of the need to be in an environment where they
can communicate freely, especially in relation to crises, this isolation is linked
to a negative sense of being apart from other teams in the organization. The
physical spaces that the teams occupy tend to be crowded and noisy, with peo-
ple working in close proximity. This is beneficial in facilitating communication
when needed, for example, during a crisis, however, the noise generated can be
distracting to doing one’s work, and hence can be draining for individuals. The
rotas and hours worked are also noted somewhat negatively. While their impor-
tance is the requirement for cover at all times, any improvement in planning
these would lessen the challenges faced as part of the work.

4.5 Areas of Tension

This theme focusses on the aspects of the work where there is ambivalence,
where duality is required in order to reconcile their role, and as such, this creates
additional and unnecessary tension for individuals and teams.

The Computer Network Defence workers construct their identity in the con-
text of the global fight against cyber terrorism. Creation of this identity is a
positive aspect of the work. The terms used to create this identity are likening
themselves to, for instance, firefighters. This conceptualization creates a positive
identity and belonging to a community that engenders pride in their work. Part
of this identity is the adoption of a protective role, as seen also in the context
of protecting and helping those who are suffering the consequences of an attack.

230 V. M. Rooney and S. N. Foley

The membership of this team of fighters means, however, that it also exists
externally to the organizational work environment. This team exists in a wider
community of experts, who are united in a global fight against attackers. As
part of the fight that they are engaged with, their advantage lies in the strength
that being united as a team entails. Their strategy to exploit this strength is the
sharing of information. Membership of this wider community creates the social
norm of being able to trust each other, as team membership requires. Team
members might be, for instance, people with expertise, working in other organi-
zations, who may know each other well. This enables information sharing to be
practiced within an environment of trust, and being able to do so is regarded as
being their main advantage in the fight against attackers. Herein lies the grey
area that is source of tension. The need to search for, discuss, gather, share and
manage information is regarded as a vital part of the work of Computer Network
Defenders. Managing information in this way is a delicate process, where trust
in people outside of the organization is a factor. There is, at the same time, an
awareness of the need to protect the interests of the company when informa-
tion is being sought and managed. The tension is in the links with those in the
wider global community, yet who are external to an organization. While there
is a formal procedure for making contact, this is a time consuming process, and
as noted earlier, this can hamper problem solving, especially when the need for
information is time sensitive. Consequently, an informal contact is more useful,
and is used despite doing so being a grey area. Negotiating this delicate pro-
cess constitutes a grey area in the work of Computer Network Defence workers,
and the ambivalence around needing to act informally, despite formality being
required, is a source of tension. Information per se can create difficulties in other
ways, and to alleviate its management, and therefore streamline the associated
work, obfuscating around information is a useful tactic. This is the case when dis-
closing information may be counter productive for the team in terms of creating
additional work for themselves with less time being available for their primary
team work of fighting against attackers. This is another grey area and as such a
source of additional tension for the staff.

Another area where the contrasting positions of uncertainty and certainty
is a source of tension in the work of Computer Network Defence teams is the
use of intuition. The uncertainty associated with intuition contrasts with the
certainty that procedures provide. Hence, the use of intuition is a grey area, and
as such, a source of additional tension for staff. As discussed above, the work
that is accomplished is always changing by necessity, as new attacks require new
solutions. Solutions are arrived at through a creative process that takes place
against a backdrop of the synthesis of, for instance, experience, insight, commu-
nication and technical skills. As we have seen, procedures are useful as a memory
aid and also to provide certainty for those for whom how and when solutions
to crises are provided may have legal and financial consequences. However, as
we have also seen, procedures can be a means of slowing down problem solving.
Slowing down a creative process hampers solutions to time sensitive problems.
Not using the resource that intuition constitutes when dealing with crises would

What You Can Change and What You Can’t: Human Experience 231

not cohere with the identity of the team as doing their utmost to protect and
help those in need, nor with the openness that is also part of the team ethos.
The need to downplay, or qualify the use of intuition in the work is another grey
area that creates additional stress for staff.

Tension also stems from the two differing concepts of the work of Computer
Network Defence teams. In reconciling these two concepts, a tension emerges as
part of the experience, which centres around the difference between the rhetoric
of the work, and the work as enacted. The rhetoric of the work is that there is cer-
tainty in what can be achieved. In the commercial enterprise context, certainty
is an advantage, for marketing or financial purposes. This is particularly so when
those outside of the Computer Network Defence work area do not fully under-
stand the problems and their solutions at a technical level, and the reassurance
that they desire can be provided. Misunderstanding the work of Computer Net-
work Defence teams can create difficulties, such as when there is simplification
in order to explain the work to non technical people. The enacted reality of the
work is that there are elements of uncertainty in terms of what is available from
the team, what is required in a particular situation, and what can be accom-
plished. The process of developing technical solutions may not be amenable to
the certainty that is desired, or a particular solution may be inappropriate in a
particular situation. This aspect of the work can be obfuscated by those whose
agendas differ from the Computer Network Defence workers. Part of the social
identity created by Computer Network Defence workers is altruistic, of being
protectors, like firefighters, helping those in need. Their identity encompasses an
ethos of protection, of seeing a crisis as a puzzle to be solved, and the enjoyment,
learning and interesting nature of the work is rooted in the reality of the work
they do, and an important part of creating their identity. Any obfuscation of the
enacted reality that conflicts with their moral stance, the altruistic ethos, is a
source of tension. Those with differing concepts of the work, or differing agendas,
are a source of tension. The need for the reconciliation of these opposing tensions
in the conduct of their day to day work creates an additional stress for the staff.

5 Changing the Experience

What links the areas of tension discussed in Theme 5 is the need to reconcile
the rhetoric of what ought to be done, with the enacted reality of practice. In
these areas, a blind eye is turned to the reality when this does not cohere with
what is prescribed. These grey areas are associated with uncertainty, when, for
instance, people need to make important decisions in time sensitive situations.
The necessity to cohere with a rhetoric of certainty, such as procedures and rules,
creates a tension when people use what is uncertain, such as intuition.

What we have learned from studying the experience of Computer Network
Defenders, is that these areas of uncertainty are a source of additional tension
in an environment already experienced as being demanding. With the goal of
improving the experience of these environments, the focus of resources on the
reduction of tension would be of practical benefit. This in turn could provide a

232 V. M. Rooney and S. N. Foley

means of improving the functionality of the work environment. The application
of theories from Psychology sheds light on the results, and how they might be
interpreted in order to understand as well as improve the experience of this work.

Social Identity Theory. [13] as a framework for the findings, illustrates how and
why identity is created at three differing levels. Team membership is the core
identity in Computer Network Defense. What is created at the individual level
is identity that is subsidiary to that at the team level. Similarly, the process
of attaining membership of the team is regarded as being intrinsically negative,
and thereby creates the corollary, of not being in the team, as subsidiary. The
social identity of being a team member is created in a very positive way, and as
such, the centrality of its role in relation to the other two levels is underscored.

How and why identity is created, as discussed, illustrates the varied compo-
nents that are important for the successful functioning of individuals and teams
in Computer Network Defense work. Understanding, developing and fostering
best practice in Computer Network Defense can be achieved by understanding
the significance of the components that establish team and individual identity,
and how they interrelate.

Relational Dialectical Theory. [1] provides a way of understanding how commu-
nication, a core activity in the work, is experienced within teams. The emergent
activity that is described in the findings once again foregrounds the importance
of team membership, as the participants describe the constructive and demo-
cratic discussion engaged in to create workarounds and solutions to problems.
The dialogue they engage in is open, constructive, and all voices are heard.

Engaging in a dialectical way means that assumptions are questioned, the
certainty of one perspective is not accepted, rather, argument and discussion is
oppositional and multi-vocal. The advantage of this way of communicating in
Computer Network Defence is that it encourages the articulation of all ideas,
even those opposed to what is dominant or accepted. In this way, the technique
provides a means of accessing, utilizing and benefiting from the depth and range
of skills and experiences available. This activity is linked to team cohesion, and
as such is regarded as being very positive. It is noteworthy that recent research
[16] on the development of applications for mobile software proposes dialectics
to improve the process. The context is the difference between how engineers and
attackers think, and the aim is lessening consensus and blind spots. The current
findings show problem solving in Computer Network Defence is not ordinary
discussion, rather it is active listening, valuing oppositional views, democrati-
cally taking account of all input, and where trust is a given. The team goal is
problem solving, and within this context, the tensions associated with commer-
cial and organizational goals are sidelined so as to facilitate the work. Relational
Dialectical Theory regards dialogue as a creative social process, rather than a
means of conveying information. Conceptualizing the emergent team communi-
cation activity in this way provides a framework for understanding this as part
of optimal functioning. Applying this knowledge to enable the necessary skills

What You Can Change and What You Can’t: Human Experience 233

to be developed and learned is an opportunity to improve how a core aspect of
Computer Network Defense work is undertaken.

Despite the accomplished communication techniques that are emerging, there
is a remaining area of tension, linked to problem solving. This area is the use of
intuition, which, as we have seen, is at variance with procedural requirements.

Cognitive Dissonance. [4] provides a useful theoretical framework for under-
standing such tension, or psychological stress generated, and why its reduction
could be a means of ameliorating the stress associated with Computer Network
Defense work, and thereby improve the work environment. In terms of the use
of intuition, what is required can be seen as a contradiction in terms, thereby
generating psychological stress. For instance, if there is a requirement for a flex-
ible and imaginative approach in a crisis, and the use of intuition is part of
this, while simultaneously, adherence to procedures needs to be demonstrated in
retrospect, then there is cognitive dissonance. The rhetoric of what is required
from staff contrasts with the enacted reality that they experience, and the result
is psychological stress. This can impact on the functioning of teams. This ten-
sion that is not inherent to the work per se, and as such is an area that can
be amended. Therefore, reducing the occurrence, or the impact of grey areas,
provides a valuable opportunity for the goal of achieving optimal functioning.

Cognitive Dissonance Theory can also be applied to another source of tension.
This relates to the identity of Computer Network Defence workers as part of a
global team battling attacks. The creation of this very positive social identity
engenders a sense of an altruistic community, and is a source of pride. The
grey area that is part of this identity, and where Cognitive Dissonance Theory
is useful, is in the links within this community, as they can extend beyond the
organizational structure. The duality that creates psychological stress is the grey
area of trusting the community, with the reciprocal exchange of information
that is an essential component of the work. While formal procedures exist to
facilitate communication outside an organization, they are cumbersome. In a
time-sensitive situation, informality is effective, and can be essential to optimal
functioning of a team. As with the use of intuition, any means of lessening the
psychological stress that this site of tension generates would be beneficial.

6 Conclusion

People working in Computer Network Defence are aware of what is entailed in
the choice they make to engage in high demand, high interest work. Part of
this is knowing that such an engagement will necessarily be of short duration.
The intrinsic qualities of the work render it unsustainable for longer duration,
and people factor this into their choice to engage shorter term. Hence, there
is no silver bullet that can be applied to the problem of staff attrition. While
changing the intrinsic qualities of the work is not possible, there are opportunities
to alleviate the stress experienced by staff. Paying attention to the experience of
Computer Network Defenders, and acting on what is learned could pay dividends

234 V. M. Rooney and S. N. Foley

in reducing stress, and enable a longer term engagement with the work. The
particularity of work environments varies, and Computer Network Defence is
no exception. Nevertheless, the current findings are a useful resource. Using the
theoretical framework of the five themes allows for the assessment of what is
happening in a work environment. Areas where change can be effected, and
that would be productive, can be identified. In this way, the findings provide a
focus for the most effective deployment of resources to improve the experience
of working in Computer Network Defence.

Acknowledgement. This work was supported by the Cyber CNI Chair of Institute
Mines-Télécom which is held by IMT Atlantique and supported by Airbus Defence and
Space, Amossys, BNP Parisbas, EDF, Orange, La Poste, Nokia, Société Générale and
the Regional Council of Brittany; it has been acknowledged by the French Centre of
Excellence in Cybersecurity.

References

1. Baxter, L., Braithwaite, D.: Relational dialectics theory. In: Engaging Theories in
Interpersonal Communication: Multiple Perspectives, pp. 349–361. Sage (2008)

2. Charmaz, K.: Constructing Grounded Theory. Sage Publications, London (2006)
3. Chen, T., Shore, D., Zaccaro, S.J., Dalal, R.S., Tetrick, L., Gorab, A.: An organi-

zational psychology perspective to examining computer security incident response
teams. Secur. Priv. 5(12), 61–67 (2014)

4. Festinger, L.: A Theory of Cognitive Dissonance. Stanford University Press, Palo
Alto (1957)

5. Jajodia, S., Albanese, M.: An integrated framework for cyber situation awareness.
In: Liu, P., Jajodia, S., Wang, C. (eds.) Theory and Models for Cyber Situation
Awareness. LNCS, vol. 10030, pp. 29–46. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-61152-5 2

6. Kandogan, E., Haber, E.: Security administration tools and practices. In: Security
and Usability: Designing Secure Systems that People Can Use (2006)

7. Kvale, S., Brinkmann, S.: InterViews. Learning the Craft of Qualitative Research
Interviewing, 2nd edn. Sage Publications, London (2009)

8. Liu, P., et al.: Human subject research protocol: Computer-aided human centric
cyber situation awareness: Understanding cognitive processes of cyber analysts.
Technical report ARL-TR-6731, Army Research Laboratory, MD, USA (2013)

9. O’Connell, D., Kowal, S.: Basic principles of transcription. In: Rethinking Methods
in Psychology. Part II, Discourse as Topic, chap. 7. Sage, London (1995)

10. Paul, C.L., Whitley, K.: A taxonomy of cyber awareness questions for the user-
centered design of cyber situation awareness. In: Marinos, L., Askoxylakis, I. (eds.)
HAS 2013. LNCS, vol. 8030, pp. 145–154. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-39345-7 16

11. Sundaramurthy, S., et al.: A human capital model for mitigating security analyst
burnout. In: Symposium on Usable Privacy and Security. USENIX (2015)

12. Sundaramurthy, S., et al.: Turning contradictions into innovations or: how we
learned to stop whining and improve security operations. In: Symposium on Usable
Privacy and Security (SOUPS). USENIX (2016)

13. Tajfel, H., Turner, J.: An integrative theory of intergroup conflict. In: The Social
Psychology of Intergroup Relations, pp. 33–47 (1979)

https://doi.org/10.1007/978-3-319-61152-5_2
https://doi.org/10.1007/978-3-319-61152-5_2
https://doi.org/10.1007/978-3-642-39345-7_16
https://doi.org/10.1007/978-3-642-39345-7_16

What You Can Change and What You Can’t: Human Experience 235

14. UK Economic and Social Research Council: Research ethics - ESRC. http://www.
esrc.ac.uk/funding/guidance-for-applicants/research-ethics/

15. Velasquez, N., Weisband, S.: Work practices of system administrators: implications
for tool design. In: Symposium on Computer Human Interaction for Management
of Information Technology. ACM (2008)

16. Weir, C., Rashid, A., Noble, J.: I’d like to have an argument, please: using dialectic
for effective app security. In: EuroUSEC 2017. Internet Society, April 2017

17. Werlinger, R., Hawkey, K., Beznosov, K.: An integrated view of human, orga-
nizational, and technological challenges of it security management. Inf. Manag.
Comput. Secur. 17(1), 4–19 (2009)

18. Zimmerman, C.: Ten strategies of a world-class cybersecurity operations center.
Technical report The MITRE Corporation, Bedford, MA, USA (2014)

http://www.esrc.ac.uk/funding/guidance-for-applicants/research-ethics/
http://www.esrc.ac.uk/funding/guidance-for-applicants/research-ethics/

Attack Simulation for a Realistic
Evaluation and Comparison of Network

Security Techniques

Alexander Bajic(B) and Georg T. Becker

Digital Society Institute, ESMT Berlin, Berlin, Germany
{alexander.bajic,georg.becker}@esmt.org

Abstract. New network security techniques and strategies, such as
Moving Target Defense (MTD), with promising narratives and concepts
emerge on a regular basis. From a practical point of view, some of the
most essential questions in judging a new defense technique are: What
kind of attacks—and under which conditions—can be prevented? How
does it compare to the state-of-the-art? Are there scenarios in which this
technique poses a risk? Answering these questions is often difficult and
no common framework for evaluating new techniques exists today.

In this paper we present an early operational version of such a practi-
cal evaluation framework that is able to incorporate static and dynamic
defenses alike. The main idea is to model realistic networks and attacks
with a high level of detail, integrate different defenses into this model,
and measure their contribution to security in a given scenario with the
help of simulation. To show the validity of our approach we use a small
but realistic enterprise network as a case study in which we incorporate
different realizations of the MTD technique VM migration. The quan-
titative results of the simulation based on attacker revenue reveal that
VM migration actually has a negative impact on security. Using the log
files containing the individual attack steps of the simulation, a qualita-
tive analysis is performed to understand the reason. This combination of
quantitative and qualitative analysis options is one of the main benefits
of using attack simulation as an evaluation tool.

Keywords: Moving target defense · Attack simulation
Attack graphs · Network modeling

1 Introduction

How to secure networks and systems against malicious actors is an extremely
important question in today’s digitized world. It is not surprising that new
approaches and techniques are being proposed on a regular basis. One of the
current trends in network security is Moving Target Defense (MTD). The idea

This research is supported by Rheinmetall.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 236–254, 2018.
https://doi.org/10.1007/978-3-030-03638-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_15&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_15

Attack Simulation for a Realistic Evaluation and Comparison 237

of MTD is to not treat systems as static but dynamically change their appear-
ance in ways that make reconnaissance and attacks considerably harder in prac-
tice. Several approaches for the network layer have been proposed. Maybe the
most popular being network address space randomization both at the IP as
well as at the MAC layer [1,6,15–17]. The increasing use of software defined
networks (SDN) gives further rise to this development [14,17]. Other examples
of network-based MTD techniques are dynamic resource mapping [10] or the
dynamic movement of anomaly detectors across a network [25].

However, measuring the effectiveness of these techniques is very difficult. A
considerable amount of published work looks at individual techniques, mainly
in a theoretical fashion. Still, the practical benefits of each technique are not
always apparent and general evaluation techniques applicable to a broader range
of defenses are yet to arrive. Furthermore, how the theoretical results map to
specific use cases and scenarios is often not obvious, making it difficult for practi-
tioners to evaluate a new security technique. Evaluation techniques that allow for
an easy application on real-world scenarios while preserving a solid theoretical
foundation could fill this gap.

In this paper we propose the utilization of attack simulation as an evaluation
technique to approach this topic. The simulation is based on a detailed model of
a realistic network as well as attack and defense actions. In contrast to previous
modeling approaches, attack actions do not only comprise vulnerability exploits
but also legitimate actions that have been observed in the real world and affect
the attackers progress during the phases of an attack. The results of such simu-
lation allow for the detailed inspection of interaction to unveil how attacks and
defenses counteract each other in practice. Additionally, they show the extent to
which a specific defense and its timing impact an attacker’s success with regard
to achieved goals and costs.

1.1 Main Contribution

The main contribution can be summarized as follows:

– We propose attack simulation based on realistic vulnerabilities and attack
steps as a method to evaluate dynamic defense techniques as advocated by
MTD, as well as static countermeasures against network-based attacks. The
level of detail exceeds that of previous work.

– We demonstrate the general applicability and usefulness of this approach
using a case study consisting of a small enterprise network and different
defense techniques (VM migration, VM resetting and IP shuffling). By pro-
viding results on measures such as attacker revenue and time spent, as well as
detailed information of started and performed actions, our approach allows
for both qualitative and quantitative analysis.

– Our evaluation of VM migration raises strong doubts if VM migration is a
useful defense technique for corporate networks. Depending on the scenario, it
can have a negative as well as positive impact on security. However, the pos-
itive impact was only an increase in attack time or decrease in the attacker’s

238 A. Bajic and G. T. Becker

success probability. In comparison, the negative impact was that new attack
paths became available, resulting in the attacker achieving attack goals that
were otherwise impossible to achieve in the given scenario.

2 Related Work

In the MTD community various analysis techniques have been proposed specifi-
cally designed to analyze and/or compare dynamic network security techniques.
Anderson et al. [3] present two mathematical models, one based on closed forms
and another one based on Stochastic Petri Nets, to evaluate the effect of dynamic
platforms as a defense on the success of attacks. Maleki et al. [18] utilize Markov
models to investigate the effect of IP address randomization on attacker success.
Connell et al. [5] focus on the trade-off between costs and gain by modeling
both the costs of a defense as well as the security gain of the defense to find an
optimum. As a case study they use VM migration with VM resetting, the same
defense we employ in our case study.

These approaches are mathematically sound, but assume a very simplified
attacker and defender model by reducing the investigated technique to the prob-
abilistic effect of changing a single parameter. In how far these results are appli-
cable to real world attacks remains unclear. Besides probabilistic models, also
game-theoretic approaches have been suggested to analyze MTD techniques.
Examples are the works of Prakash and Wellman [21], and Vadlamudi et al.
[24]. Zhuang et al. [29] presented an approach to analyze the effectiveness of
MTD techniques based on network graphs in which edges represent the com-
promisation of adjacent nodes. The model they suggest evaluates the likelihood
of successful attacks with and without MTD techniques. Zaffarano et al. [28]
present a framework to develop metrics for potentially relevant measures. These
metrics are derived from raw data that have been gathered in different virtual
environments with different attacker and defender objectives. Though neither
reproducible nor extensible, users of this framework can investigate the effect of
changes to a system through the sheer amount of data. A refined and more spe-
cific version of this framework is presented by Taylor et al. [23]. The framework
proposed by Connell et al. [4] puts strong emphasis on the formal description
of the mathematical model that allows for quantitative comparability. Yet, their
approach is static so that not all MTD techniques can be described.

Zhuang et al. [30] suggest to utilize simulation on the basis of conservative
attack graphs. They analyzed both VM-Shuffling and IP-Shuffling with help of
the by now discontinued Nessi2 platform [22]. Though Zhuang et al. do not
elaborate on the possibility to incorporate different defenses for the sake of com-
parative evaluation, they show that simulation on the basis of state descriptions
is viable. Hong and Kim [10] proposed to analyze MTD techniques with help of
their hierarchical attack representation model (HARM) that is based on attack
trees and graphs that are arranged on different layers. They do so for VM migra-
tion, OS diversification, and VM resetting to demonstrate their effectiveness.
However, their assessment does not consider continuous movement. They only

Attack Simulation for a Realistic Evaluation and Comparison 239

investigate whether or not a threat level can be reduced with the help of a con-
figuration change that is induced by one of the aforementioned techniques. This
way they turn the general question on when and how to move into an optimiza-
tion problem for a known threat, thus movement will ultimately stop as soon as
no further optimization is possible.

There exists a considerable amount of work on how to model attack steps to
create attack trees and graphs as well as their subsequent analysis, be it static or
based on simulation. Traditionally, attack graphs and trees are used to evaluate
the security of networks or systems with regard to a specific goal and not to
compare different defense techniques. Yet, by comparing an attack tree with
variations of itself that consider the presence of different defensive techniques,
one might derive a technique’s impact on reaching the defined goal. Our solution
is heavily influenced by these works.

Complete frameworks that describe networks with the help of modeling lan-
guages, automate tree/graph generation, and also perform quantitative eval-
uation are, for example, the TVA tool [12], MulVal [20], CAULDRON [11],
CySeMoL [9], and P2CySeMoL [8]. However, many approaches (e.g. MulVal and
Cauldron) aim for automated modeling with help of network scanners and auto-
matically generated exploit rules based on data from CVSS databases. While this
is suitable to automatically analyze large networks, it does not offer the required
level of detail for simulating complex interaction or attacker knowledge. Addi-
tionally, most frameworks do not consider the possibility of intermediate state
changes caused by dynamic defense techniques and the effect this has on the
corresponding attack graph. In the presence of an active defender, such attack
graphs require repeated renewal. Therefore, frameworks that rely on only one
initially generated attack graph are not well suited to analyze the effects of
dynamic defenses. A modeling approach which focuses on processes rather than
states is used in pwnPr3d [13,26]. These processes are directly translated into
attack steps. While it is capable of modeling dependencies of exploits and legiti-
mate actions in high detail, it appeared not to be trivial to do so for interaction
of attacker and defender.

3 Attack Simulation as an MTD Evaluation Tool

The primary goal is to get a realistic assessment of how various defenses perform
in different scenarios. As Evans et al. [7] have pointed out, utility of a specific
defensive technique is not universal but highly dependent on the context it is
used in. Additionally, such an investigation on performance should not be limited
to static defenses but incorporate a dynamic defender as is advocated by Moving
Target Defense. Simulation appears to be a suitable approach as it is capable
of incorporating numerous actors and can be applied to arbitrarily detailed sce-
narios. This allows for measuring the attacker’s success rate and revenue in the
presence of different defense techniques and, in turn, helps to determine which
of these techniques is most useful in which network scenario.

240 A. Bajic and G. T. Becker

3.1 Modeling Networks, Exploits and Defenses

In the presence of the various approaches to modeling and evaluation, part of
which have been shortly introduced in Sect. 2, we ultimately decided to employ
deductive reasoning on the basis of coherent state descriptions with the help of
Prolog, similar to MulVal. But unlike MulVal, we employ a more elaborate model
of attack steps and state descriptions. Since detailed models require considerable
effort when describing systems and actions, we first defined a high-level language.
This language is human-readable and can automatically be translated to Prolog
facts and rules. This has proven to be much more efficient than defining the
system directly in Prolog.

A crucial aspect of realistic modeling is the handling of attacker knowledge,
especially with regard to multi-stage attacks such as APTs (Advanced Persistent
Threats), where lateral movement through a network plays an important role.
Such movement is not only dependent on successful attacks but might equally
be enabled by previously gained information and the use of legitimate functions.
In realistic attacks, this is as important as exploits.

Key features of our modeling approach that achieve a higher level of detail
compared to HARM [10] or attack graph tools such MulVal [20] are:

– Modeling of attacker knowledge, i.e. IP-addresses, DNS names, usernames,
passwords, and other useful data (e.g. files representing attack goals).

– Modeling of legitimate functions such as database queries, remote shell, DNS
lookups and ARP cache queries.

– Each exploit is modeled manually according to CVSS or metasploit descrip-
tions and not simply based on the CVSS score and binary patch statuses.

– The results of exploits and attacker actions are freely programmable. This way
exploits are not restricted to grant remote code execution (RCE) privileges
or reveal credentials but more complex functionality such as return all data
in RAM (e.g. for Meltdown) is feasible as well.

3.2 Attack Simulation

The attack simulation itself is performed in a round-based fashion. Each attacker
and defender action takes a certain amount of rounds to execute and has a success
probability. In each round the defender acts first, followed by the attacker. To
be more precise, the simulation algorithm is as follows:

For n rounds repeat:

1. Defender Actions
(a) For each defender action that is due in the current round do the following:

If it is a probabilistic action, use a dice roll to determine if the action is
successful or not. If so, perform the action and modify the state of the
system accordingly. Finally, remove the action, no matter if successful or
not, from the list of ongoing actions.

Attack Simulation for a Realistic Evaluation and Comparison 241

(b) Check if new defense actions are available (by checking if an action is
feasible to execute as well as if it is in-line with the defense strategy).
For each new defense action determine the finishing time and check if it
has probabilistic parameters such as the direction of the shuffle. If so, use
a dice roll to determine the parameters. Then add them to the list of
ongoing defense actions.

2. Attacker action
(a) For each action in the list of ongoing attack actions, check if it is still

feasible in the current state. If not, because of a previous defense action,
for example, remove the action from the list of ongoing attacker actions.

(b) For each attacker action that is due in the current round do the following:
If it is a probabilistic action, use a dice roll to determine if it is successful
or not. If so, perform the action and modify the state of the system
accordingly. Finally, remove the action, no matter if successful or not,
from the list of ongoing actions.

(c) Check if new attacker actions have become available that are not already
in the list of ongoing actions. If so, calculate their finishing time and add
them to the list of ongoing attack actions.

In our simulation approach we assume that the attacker can perform all available
actions in parallel. However, once an action has been started, the same action
cannot be initiated with the same parameters again as long as it is in the list
of ongoing attacker actions. To illustrate this, an attacker can start a phishing
attack against five different targets in a single round. However, once he has
started a phishing attack against a target, the attacker has to wait until this
phishing attack was either successful, failed or was defended before launching
another phishing attack against the same target. But if the attacker learns of a
new target, he is free to start a phishing attack against this new target any time.

For each round the simulation engine stores the generated revenue and relates
the accumulated amount to the number of rounds that it took the attacker to
reach it. Hence, the simulation engine does not report costs on a per action
basis but counts the overall time till compromise, similar to the method used
by P2CySeMoL [8] and pwnPr3d [13]. The alternative would be to limit the
number of actions an attacker can execute in parallel and assign costs to each
action. However, this would require an intelligent attacker with a strategy, as
it would be crucial for the attacker to choose the correct action at the correct
time. Furthermore, many attacks can be automated so that—after the initial
development—actually executing them might be a matter of starting a script
and waiting. We, therefore, opted for a simulation in which each attack option is
initiated whenever it becomes available. This leads to a fairer comparison since
the results do not depend on how well the attacker AI has been tuned to a
defense technique. Note, however, that analyzing some countermeasures such as
honeypots requires the modeling of a smart attack. Modeling smart attackers
for such cases is interesting future research.

242 A. Bajic and G. T. Becker

4 Case Study

As a case study for our simulation-based evaluation approach we use VM shuf-
fling, VM resetting, IP shuffling, and combinations thereof as defenses. In the
absence of established benchmark networks we modeled our own reference net-
work, which is based on a typical layout for small enterprises and employs com-
monly used applications and services.

4.1 Defense Techniques

One of the MTD techniques we employ is frequently refered to as VM migration
or shuffling that is basically the (random) relocation of VMs across various phys-
ical hosts. The idea has been addressed in several articles dealing with MTD and
network defense in general [2,19,27]. It has also been used by Hong and Kim [10]
as well as Connell et al. [5] in their MTD assessment methodologies. Hong and
Kim assume the entire virtual node to be moved from one physical host to
another using live migration. That means, the VM is moved without loosing its
current state. We denote this defense technique as live migration in our exper-
iments. In their case study, consisting of three hosts and seven VMs, this live
migration changes the connectivity of the VMs which impacts the exploits that
can be carried out by the attacker.

Table 1. The list of defenses used in our case study. In addition to these defenses, the
scenario is also tested without any defenses.

Name Description Impact

Live migration The VM is migrated from one
physical host to another without
loosing its state

Moving a VM changes the
physical connectivity and hence
the routing

VM resetting The VM is restarted from
read-only memory, loosing all
state information

Any remote code execution
privileges on the VM previously
gained by the attacker are
removed

IP shuffling A new IP address is assigned to
the VM

Knowledge of the IP address
previously gained by the
attacker is removed

Cold migration The VM is migrated to a
different physical host, restarted
there from read-only memory,
and assigned a new IP

This is the combination of live
migration, VM resetting, and IP
shuffling

Connell et al. [5] assume a different form of VM shuffling which we denote
as cold migration. In their scenario, several VMs for the same applications can
exist in parallel and the shuffle operation starts a new VM “from scratch” on a
different host. New requests are then directed to this new VM and the old VM

Attack Simulation for a Realistic Evaluation and Comparison 243

Fig. 1. The network used in our case study, representing a fairly typical small enterprise
setup.

is shut down as soon as all old request are finished. The fact that VMs are shut
down and restarted from read-only memory ensures that attackers do not gain
persistence on these servers. Furthermore, they assume some form of IP shuffling
since each new VM gets a new IP via DHCP.

Note that this form of VM shuffling is much more difficult to realize in prac-
tice. It is only suitable for applications that do not need to persist data locally.
In our analysis we ignore this aspect and will assume that each VM that can
be shuffled using live migration can also be shuffled using cold migration to be
able to compare the security of both approaches. An overview of all employed
defenses is given in Table 1.

4.2 Network Layout and Software Landscape

Figure 1 shows the network setup for the envisioned small enterprise network.
The network is separated into a DMZ with servers accessible to the Internet, an
intranet with clients, and a server subnet. The communication between zones as
well as between machines in the server subnet is subject to firewalling. Further-
more, no machine beyond the DMZ is directly reachable from the Internet.

In the DMZ we assume two Xen servers that form a pool of hypervisors for
three VMs. These comprise a Microsoft Exchange server running on Windows
Server, and two VMs running on Ubuntu Server. One for the company’s Drupal-
based website, and one for a Tomcat server that hosts applications such as time
tracking that are accessible to employees from the intranet as well as from the
Internet after log-in.

244 A. Bajic and G. T. Becker

In the server subnet we assume four hosts, three of which form another pool
of Xen servers to host VMs, and one Ubuntu Server machine serving as a storage
system for backups. The VMs in this second pool comprise:

– A Windows-based Active Directory Server acting as the domain controller,
providing authentication services and network file sharing.

– A server running Base CRM, a proprietary customer relationship manage-
ment system, based on Ubuntu Server.

– A server for accounting applications such as Datev, based on Windows Server.
– Another Tomcat server that exclusively runs applications for the HR depart-

ment, based on Ubuntu Server.
– A Veritas Netbackup server to centrally command and control the backup

agents on the various backup clients, based on CentOS server.
– Two Ubuntu-based servers for DevOps purposes (e.g. Jenkins and Jira).
– Four SQL servers, two of which are based on Ubuntu Server (for the Tomcat

HR and Base CRM) and the other two being based on Windows Server (for
Active Directory and Exchange).

Finally, we assume the client computers to be located in the intranet, which
is connected to the server subnet and the DMZ through the second firewall. All
clients are based on Windows 10 and differ in the user groups that operate them.
They are equipped with the MS Office suite and backup agents.

In our example network, we modeled eight different attack goals that can be
achieved by an attacker. All these goals are based on the retrieval of information,
yielding different amounts of revenue which add up to 100 points in total. Four of
these information elements are classified as “customer data”, two of which yield
15 points each, the other two 10 points each. Additionally, there are two “finan-
cial data” elements, yielding 15 points each, as well as credit card information
and HR data for 10 points, each. All of this data can be accessed in different
ways. One way to access customer data is through the Base CRM frontend, if
respective credentials have been obtained from the various back-office clients.
Another option is to directly query the SQL server where data is stored, given
the fact that the attacker was able to obtain username and password. Yet another
possibility is to compromise the operating system that the SQL server is running
on and exfiltrate the database. The financial data can be accessed through the
CEO’s computer or through his/her e-mail account, again opening up different
ways to acquire this information. HR data can be obtained through compromis-
ing either the Tomcat server in the server subnet or the respective SQL server
where data is stored. Finally, credit card information can be retrieved through
access to the assistant’s computer or its backup.

The fact that our sample network utilizes Xen hypervisors to host VMs for
different purposes allows us to incorporate VM migration in our scenarios. From
a practical point of view it does not make sense to shuffle VMs from the DMZ
with those from the server subnet. Hence, we assume that VM shuffling is only
used to move VMs across hosts that belong to the same pool. To simulate the
changed physical connectivity mentioned by Hong and Kim we chose to directly

Attack Simulation for a Realistic Evaluation and Comparison 245

attach the hosts from the server subnet to the free ports of the routing firewall
FW2. By default, most hypervisors use a virtual switch that the hosted VMs
are attached to. We, therefore, assume that VMs located on the same host are
connected by the virtual switch of the hypervisor and can communicate with
each other regardless of the firewall setting in FW2. To summarize, the firewall
FW2 limits the communication between VMs located on different hosts but the
communication between VMs on the same host is not restricted.

It should be noted that the four VMs that serve as SQL servers for the differ-
ent applications are never migrated but strictly allocated to host 6. This is due
to the fact that the migration of VMs that contain large databases poses addi-
tional challenges in order to maintain availability and consistency. Additionally,
VM resetting conflicts with the database’s primary purpose to persist data.

4.3 Vulnerabilities and Attack Steps

Choosing realistic vulnerabilities and exploits, as well as legitimate actions that
contribute to the attacker’s progress is crucial for a fair and realistic evaluation.
Hence, the question arises how to choose vulnerabilities, functions and exploits.
Our approach was as follows: For the presented sample network we chose specific
and commonly used software and searched the CVSS database and metasploit
database for related entries since 2016. For each CVSS entry with a high score
we manually checked if the vulnerability is likely to be applicable in our scenario.
In particular, we chose to implement exploits that resulted either in remote code
execution, privilege escalation or the retrieval of information (e.g credentials,
RAM content etc.). We then manually modeled an exploit for the respective
vulnerability with a high level of detail that can entail a range of requirements
that need to be met. Similarly, we manually modeled realistic legitimate func-
tions of the assumed applications and systems which could also give the attacker
execution rights or valuable information. Examples of such legitimate functions
are remote shell for operating systems to gain remote code execution privileges,
ARP-cache lookups to retrieve IP addresses, or SQL queries to retrieve informa-
tion from databases.

One important aspect is defining the duration of an exploit as well as the
attack success probability. Although the CVSS entries include parameters that
are related to an exploit’s duration and likelihood of success (e.g. attack com-
plexity, exploit code maturity etc.), specific figures for these measures cannot
be derived from a given score. We, therefore, manually determined values for
duration and success rate based on a vulnerability’s description, the underlying
mechanism, and the availability of exploit code (e.g. in metasploit), noting that
these values could potentially be optimized with data obtained from real world
attacks.

In total we modeled 16 exploits as well as 10 legitimate functions an attacker
can call, resulting in 26 executable functions from an attacker’s perspective.

246 A. Bajic and G. T. Becker

Table 2. Example of attacker actions that were used in simulations that reached a
revenue level of 100 points in the experiment depicted in Fig. 3(c).

Name: phishingDocRCE (CVE-2016-0099) [exploit, metasploit exists]

Result: Attacker.remoteCodeExe+=App; Time and probability: 200 / 0.02,0.03,
or 0.05 (depends on client)

Requirements: App=officeSuite & OS.family=windows & OS=App.parent &
App.isPhishingVulnerable

Name: getCustomerData [legitimate function]

Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 1

Requirements: App=baseCrm & CRMUSER=App.user &
Attacker.knows=CRMUSER.password & Attacker.knows=CRMUSER.username &
OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: readData [helper function, next step after gaining RCE rights]

Result: Attacker.knows+=App.allData; Time and probability: 60 / 1

Requirements: App=Attacker.remoteCodeExe OR (OS=App.parent &
OS=Attacker.remoteCodeExe)

Name: backupServerRCE (CVE-2016-7399) [exploit, metasploit exists]

Result: Attacker.remoteCodeExe+=OS & Attacker.knows+=App.backupedData;
Time and probability: 33 / 1

Requirements: App=veritasBackupServer & OS=App.parent & OS.family=linux &
App.hasCVE20167399 & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: sqlQuery [legitimate function]

Result: Attacker.knows+=USER.databaseData; Time and probability: 30 / 1

Requirements: App=sqlServer & USER=App.databaseUser &
Attacker.knows=USER.password & Attacker.knows=USER.username &
OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=sqlport)

Table 2 shows a few example functions to provide an impression of the level of
detail used in our simulation1.

5 Experimental Results

We performed two independent experiments, one in which the attacker could
utilize exploits based on vulnerabilities published in 2016 (4 exploits plus
10 legitimate functions) and one with exploits based on vulnerabilities from
2017/2018 (12 exploits and 10 legitimate functions). In both cases we tested the
performance when using no defense technique, live migration, cold migration,

1 A table listing all functions with their requirements and effects can be found in the
appendix.

Attack Simulation for a Realistic Evaluation and Comparison 247

(a) (b) (c)

(d) (e) (f)

Fig. 2. Results of the attack simulation. Each defense was simulated 100 times for
exploits based on 2017/2018 vulnerabilities (a–c) and 2016 vulnerabilities (d–f). Results
are displayed with regard to reached threshold with the y-axis depicting the percentage
of simulations that reached the respective success threshold for the given round (x-axis).

IP shuffling, and VM resetting. Each simulation was started 100 times and
consisted of 8000 rounds each. Furthermore, we defined three revenue thresh-
olds of 40, 75 and 100 points respectively and measured how many simulations
reached these thresholds for a given number of rounds. The results are depicted
in Fig. 2.

In the experiment where exploits from 2017 and 2018 were used, no significant
difference between having no defense technique, IP shuffling or live migration can
be observed. The attack was successful fairly quick and all simulations achieved
the maximum revenue of 100 points. When VM resetting or cold migration were
enabled, it took more rounds for the attacker to reach revenue levels of 75 or 100.
Hence, one can say that they had a positive impact on security. Cold migration
is the combination of live migration, IP shuffling and VM resetting. The fact
that cold migration and VM resetting performed nearly identical indicates that
the security gain primarily results from VM resetting and not from migrating
(shuffling) VMs.

In the second experiment only four exploits and ten legitimate functions were
available, resulting in fewer viable attack paths. In this case, all defenses per-
formed similar for a revenue threshold of 40. However, revenue levels of 75 or 100
were only achieved when either live migration or cold migration was enabled. If
no defense technique, IP shuffling or VM resetting was used, these revenue levels
were never reached in any simulation run. The log data of the simulations reveal
that there was only one possible attack path to achieve at least 75 points. The
used attacker actions are listed in Table 2. The first step is that the attacker

248 A. Bajic and G. T. Becker

Fig. 3. The same analysis as in Fig. 2(d–f) but this time the starting position of the
backup server was on host 6 (same as the SQL servers) instead of host 5.

launches a successful phishing attack against one of the clients. The attacker
can then use the remote code execution privileges as well as the stolen DNS
names to launch an attack based on exploit “backupserverRCE” (CVE-2016-
7399) on the backup server. These first attack steps are independent from any
of the used defense techniques and generate more than 40 revenue points for the
attacker. This is due to data directly found on the attacked client and backup
server, as well as using the Base CRM server with stolen credentials of the client.
Besides data that directly generates revenue, additional useful data is stored in
the backup. In particular, it also contains configuration files of the “Base CRM”
and “Tomcat HR” servers and the corresponding SQL credentials. These SQL
credentials can then be used in the next attack step to retrieve customer data
and HR data using regular SQL queries and database management commands.
However, to perform these regular functions, the attacker needs to be able to
communicate with the SQL servers on host 5 via the SQL port 3302. Both nodes
that the attacker controls—the compromised client (phishing) as well as the
backup server (backupserverRCE)—are not whitelisted to communicate on the
SQL port. Since the backup server and the SQL server are located on different
hosts at the beginning, the firewall blocks such communication attempts. There-
fore, for no defense technique, IP shuffling or VM resetting the attacker cannot
call these SQL functions and, in consequence, never reaches revenue levels of
75 or above. However, the firewall cannot block communication between VMs
on the same host as they are, by default, attached to the same virtual switch.
The log data reveals that when live migration or cold migration is enabled, the
backup server is shuffled to the same host as the SQL databases roughly one-
third of the times. Hence, whenever the backup server was on the same host as
the SQL database, the attacker could download the data using SQL queries until
another shuffle operation migrated the backup server to a different host.

Please note that this scenario is exactly as discussed by Hong and Kim [10]
to assess the effectiveness of live migration. The migration of VMs changes the
physical connectivity and with it the attack paths. However, as our experiment
shows, this can have a significant negative impact on security as the migration
enables attack paths that would otherwise not exist.

Attack Simulation for a Realistic Evaluation and Comparison 249

5.1 Never Trust a Statistic You Have Not Forged Yourself

In our experiments depicted in Fig. 2, migration had a negative impact on secu-
rity. Only the removal of the attacker’s RCE privileges (which is being done in
VM resetting and cold migration) had a notably positive effect on security. How-
ever, resetting VMs only hindered the attacker and made attacks more difficult
with regard to the required time (rounds) to a full compromise but could not
completely fend off attacks. Of course, if resetting is done with a much higher fre-
quency it is possible to get results in which all attacks are completely defended.
However, such timings are not necessarily very realistic.

Indeed, one can also produce scenarios in which migration has a measurable
positive effect. If we look at the experiment based on the 2016 exploits, the
reason why the attack does not work if no migration is used is that the VMs
of the backup server and the SQL servers are not on the same physical host.
To generate positive results for migration, we therefore modified the starting
position of VMs and moved the backup server to the same host as the SQL
servers. Figure 3 shows the experimental results for this modified case for 2016.
In this case, migration contributed to security. The reason is that with migration
turned on, the backup server and the SQL server were on different hosts two-
thirds of the time, while for the other non-migrating defenses they were always
on the same physical host. Hence, attacking was more difficult in that it took the
attacker more rounds to exfiltrate the data. But please note that the attacker
was still able to exfiltrate all data within 8000 rounds in 90% (live migration)
and 80% (cold migration) of the simulations.

By tuning the scenario, one can heavily influence the results of the attack
simulation. However, attack simulation not only outputs revenue data but also
all attack steps performed by the attacker (i.e., log data). This data can be used
to understand why a defense performed a certain way, which is exactly what we
did to understand and describe the reason why migration performed so poorly
for the 2016 scenario in Fig. 2(e, f). Hence, these log data allow for a qualitative
analysis of the experiments which is useful to put the quantitative results into the
correct context. We would like to point out that this combination of quantitative
and qualitative analysis options is one of the great advantages compared to other
evaluation techniques.

6 Conclusion and Future Work

In the course of our case study, we conducted experiments with moving tar-
get defenses based on VM shuffling/migration. We showed that while random
VM migration can have a positive effect on security, it is more likely to have
a negative impact on security. VM migration changes the physical connectivity
and therefore influences attack steps. If the starting position is beneficial for the
attacker, moving the VMs increases the attack time because the attacker has
to wait until the VMs have shuffled back to a suitable position. However, if the
starting position does not allow an attack, random VM migration will eventu-
ally shuffle the position such that an attack becomes feasible. That means, the

250 A. Bajic and G. T. Becker

potential positive impact is only an increase in attack time while the negative
impact is that formerly impossible attacks now become feasible.

Hence, this case study shows that attack simulation based on realistic
exploits, functions and network setups is indeed useful to analyze and compare
defense techniques. One of the main benefits of this simulation approach is that
with the same experiment both a quantitative analysis based on the attacker
revenue as well as a qualitative analysis based on the log file of attack steps is
possible. This combination ensures that one can put the quantitative results into
the correct context.

To summarize, defense evaluation on the basis of attack simulation is not a
technique that generates reliable results at the press of a button. Instead, one
has to verify that the attack simulation models attacks and defenses with suffi-
cient accuracy for the tested defense techniques. In addition, example networks
and exploits must be selected to fit the intended application. Indeed, develop-
ing commonly accepted benchmarks consisting of a range of realistic networks
and exploits would be a very useful future research direction for the network
security community. But if one models the network and exploits with enough
details and uses a suitable scenario, attack simulation is a very helpful tool to
evaluate and compare network security techniques. It is especially useful as a
bridge between often quite theoretical research proposals and quantifiable and
practically relevant results suitable for practitioners and decision makers.

A Appendix

See Tables 3 and 4.

Attack Simulation for a Realistic Evaluation and Comparison 251

Table 3. Detailed overview of attacker actions based on exploits

Name: tomPrivEscalation (CVE-2016-9775, CVE2016-9774)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasTomPriv & Attacker.remoteCodeExe=App & OS=Linux

Name: privEscalationWindows (CVE-2016-0026) metasploit exists

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: (OS=Windows10 OR WindowsServer2016) & OS.hasWinPrivEscalation &
Attacker.remoteCodeExe=App

Name: backupServerRCE (CVE-2016-7399) metasploit exists

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupServer & OS=App.parent & OS.family=linux & App.hasCVE20167399 &
(Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: phishingDocRCE (CVE-2016-0099) metasploit exists

Result: Attacker.remoteCodeExe+=App; Time and probability: 20 / 33

Requirements: App=officeSuite & OS.family=windows & OS=App.parent & App.isPhishingVulnerable

Name: tomHttpPutRCE (CVE-2017-12615, CVE-2017-12617)

Result: Attacker.remoteCodeExe+=App; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasHttpPutVulnerability & OS=App.parent & (Attacker.knows=OS.ipaddress
OR Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=jmxport)

Name: jmxTomcatVulnerability (Blog 2017)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: App=tomcat & App.hasJmxEnabled & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & (App.jmxNoAuth OR (Attacker.knowsUsername(App) &
Attacker.knowsPassword(App)) & Attacker.reachable(OS,jmxport)

Name: privEscalationUbuntu (CVE-2017-0358)

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS=Ubuntu & OS.hasUbuntuPrivEscalation & OS=App.parent & Attacker.remoteCodeExe=App

Name: eternalBlueRCE (CVE-2017-0143 to 0148) metasploit exists

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: OS.family=Windows & OS.hasEternalBlue & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=smb)

Name: redirectBackupToCloud (CVE-2017-6409)

Result: Attacker.knows+=App.backupedData; Time and probability: 20 / 33

Requirements: App=veritasBackupServer & App.hasCloudVuln & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp/5637)

Name: backupClientRCE (CVE-2017-8895) metasploit exists

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupClient & Attacker.parent=OS & OS.family=windows & APP.hasSSLVuln &
(Attacker.knows=OS.ipaddress OR Attacker.knows=OS.dnsName) & Attacker.reachable(Os,Port=ssl)

Name: clientRCEoverServer (CVE-2017-6407)

Result: Attacker.remoteCodeExe=OS; Time and probability: 20 / 33

Requirements: App=veritasBackupClient & App.hasRCEfromServer & SERVER=App.server &
Attacker.remoteCodeExe=SERVER & OS=App.parent & Attacker.knows=OS.ipaddres & reachable(OS,Port=ssl)

Name: meltdown (CVE-2017-5715, 2017-5753)

Result: Attacker.knows+=Node.dataInRAM; Time and probability:

Requirements: NODE.type=Intel & OS.runsOn=NODE & OS.hasMeltdown & App.parent=OS &
Attacker.remoteCodeExe=App

Name: drupalRCE (CVE-2017-5715, 2017-5753) metasploit exists

Result: Attacker.remoteCodeExe+=App; Time and probability:

Requirements: App=drupal & App.hasRCEviaHttpGetVuln OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=http)

Name: sendMailExchangeRCE (CVE-2018-8154)

Result: Attacker.remoteCodeExe+=App; Time and probability:

Requirements: App=exchangeServer & OS=App.parent & OS.family=windows & USER=App.emailuser &
Attacker.knows=USER.username & Attacker.knows=USER.password & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName)

Name: exchangeDefenderRCE (CVE-2018-0986)

Result: Attacker.remoteCodeExe+=App; Time and probability:

Requirements: App=exchangeServer & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName)

252 A. Bajic and G. T. Becker

Table 4. Detailed overview of attacker actions based on legitimate functions as well
as helper functions

Name: readData (helper function, next step after gaining RCE rights)

Result: Attacker.knows+=App.allData; Time and probability: 20 / 33

Requirements: App=Attacker.remoteCodeExe OR (OS=App.parent & OS=Attacker.remoteCodeExe)

Name: pingscan

Result: Attacker.knows+=OS.ipaddress; Time and probability: 20 / 33

Requirements: Attacker.reachable(OS,Port=ping)

Name: arpCache (gives attacker all IP-addresses of the subnet of a compromised system)

Result: Attacker.knows+=TARGET.ipaddress; Time and probability: 20 / 33

Requirements: (App=Attacker.remoteCodeExe OR OS=Attacker.remoteCodeExe) & OS=App.parent &
SUBNET=OS.belongsToSubnet & TARGET.belongsToSubnet=SUBNET

Name: configureActiveDirectoryClients

Result: Attacker.remoteCodeExe+=TARGET; Time and probability: 20 / 33

Requirements: App=activeDirectory & Attacker.remoteCodeExe=App & TARGET=App.clients

Name: getCustomerData

Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 33

Requirements: App=baseCrm & CRMUSER=App.user & Attacker.knows=CRMUSER.password &
Attacker.knows=CRMUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: getMail

Result: Attacker.knows+=CRMUSER.data; Time and probability: 20 / 33

Requirements: App=exchangeServer & EMAILUSER=App.user & Attacker.knows=EMAILUSER.password &
Attacker.knows=EMAILUSER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=tcp)

Name: remoteDatabaseManagement

Result: Attacker.knows+=App.allDatabaseData; Time and probability: 20 / 33

Requirements: App=sqlServer & ADMIN=App.admin & Attacker.knows=ADMIN.password &
Attacker.knows=ADMIN.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=SQLPORT)

Name: sqlQuery

Result: Attacker.knows+=USER.databaseData; Time and probability: 20 / 33

Requirements: App=sqlServer & USER=App.databaseUser & Attacker.knows=USER.password &
Attacker.knows=USER.username & OS=App.parent & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=sqlport)

Name: remoteShellLinux

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS.family=Linux & OS.remoteShellEnabled & ADMIN=OS.root &
Attacker.knows=ADMIN.password & Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=22)

Name: remoteShellWindows

Result: Attacker.remoteCodeExe+=OS; Time and probability: 20 / 33

Requirements: OS.family=Windows & OS.remoteShellEnabled & ADMIN=OS.root &
Attacker.knows=ADMIN.password & Attacker.knows=ADMIN.username & (Attacker.knows=OS.ipaddress OR
Attacker.knows=OS.dnsName) & Attacker.reachable(OS,Port=3389)

Attack Simulation for a Realistic Evaluation and Comparison 253

References

1. Al-Shaer, E., Duan, Q., Jafarian, J.H.: Random host mutation for moving target
defense. In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol.
106, pp. 310–327. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36883-7 19

2. Almohri, H.M.J., Watson, L.T., Evans, D.: Misery digraphs: delaying intrusion
attacks in obscure clouds. IEEE Trans. Inf. Forensics Secur. 13(6), 1361–1375
(2018)

3. Anderson, N., Mitchell, R., Chen, I.R.: Parameterizing moving target defenses.
In: 2016 8th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1–6, November 2016

4. Connell, W., Albanese, M., Venkatesan, S.: A framework for moving target defense
quantification. In: De Capitani di Vimercati, S., Martinelli, F. (eds.) SEC 2017.
IFIP AICT, vol. 502, pp. 124–138. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58469-0 9

5. Connell, W., Menascé, D.A., Albanese, M.: Performance modeling of moving target
defenses. In: Proceedings of the 2017 Workshop on Moving Target Defense, MTD
2017, pp. 53–63. ACM, New York (2017)

6. Dunlop, M., Groat, S., Urbanski, W., Marchany, R., Tront, J.: MT6D: a moving
target IPv6 defense. In: Military Communications Conference - MILCOM 2011,
pp. 1321–1326, November 2011

7. Evans, D., Nguyen-Tuong, A., Knight, J.: Effectiveness of moving target defenses.
In: Jajodia, S., Ghosh, A., Swarup, V., Wang, C., Wang, X. (eds.) Moving Target
Defense. Advances in Information Security, vol. 54, pp. 29–48. Springer, New York
(2011). https://doi.org/10.1007/978-1-4614-0977-9 2

8. Holm, H., Shahzad, K., Buschle, M., Ekstedt, M.: P2CySeMoL: predictive, proba-
bilistic cyber security modeling language. IEEE Trans. Dependable Secur. Comput.
12(6), 626–639 (2015)

9. Holm, H., Sommestad, T., Ekstedt, M., Nordström, L.: CySeMoL: A tool for cyber
security analysis of enterprises. In: 22nd International Conference and Exhibition
on Electricity Distribution (CIRED 2013), pp. 1–4, June 2013

10. Hong, J.B., Kim, D.S.: Assessing the effectiveness of moving target defenses using
security models. IEEE Trans. Dependable Secur. Comput. 13(2), 163–177 (2016)

11. Jajodia, S., Noel, S., Kalapa, P., Albanese, M., Williams, J.: Cauldron mission-
centric cyber situational awareness with defense in depth. In: Military Communi-
cations Conference - MILCOM 2011, pp. 1339–1344 (2011)

12. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats.
Massive Computing, vol. 5, pp. 247–266. Springer, Boston (2005). https://doi.org/
10.1007/0-387-24230-9 9

13. Johnson, P., Vernotte, A., Ekstedt, M., Lagerström, R.: pwnPr3d: an attack-graph-
driven probabilistic threat-modeling approach. In: 2016 11th International Confer-
ence on Availability, Reliability and Security (ARES), pp. 278–283. IEEE (2016)

14. Kampanakis, P., Perros, H., Beyene, T.: SDN-based solutions for moving target
defense network protection. In: Proceeding of IEEE International Symposium on
a World of Wireless, Mobile and Multimedia Networks, pp. 1–6, June 2014

15. Kewley, D., Fink, R., Lowry, J., Dean, M.: Dynamic approaches to thwart adversary
intelligence gathering. In: Proceedings of the DARPA Information Survivability
Conference and Exposition II, DISCEX 2001, vol. 1, pp. 176–185 (2001)

https://doi.org/10.1007/978-3-642-36883-7_19
https://doi.org/10.1007/978-3-642-36883-7_19
https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/978-3-319-58469-0_9
https://doi.org/10.1007/978-1-4614-0977-9_2
https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.1007/0-387-24230-9_9

254 A. Bajic and G. T. Becker

16. Li, J., Yackoski, J., Evancich, N.: Moving target defense: a journey from idea to
product. In: Proceedings of the 2016 ACM Workshop on Moving Target Defense,
MTD 2016, pp. 69–79. ACM (2016)

17. MacFarland, D.C., Shue, C.A.: The SDN shuffle: creating a moving-target defense
using host-based software-defined networking. In: Proceedings of the Second ACM
Workshop on Moving Target Defense, MTD 2015, pp. 37–41. ACM (2015)

18. Maleki, H., Valizadeh, S., Koch, W., Bestavros, A., van Dijk, M.: Markov modeling
of moving target defense games. In: Proceedings of the 2016 ACM Workshop on
Moving Target Defense, MTD 2016, pp. 81–92. ACM (2016)

19. Neupane, R.L., et al.: Dolus: cyber defense using pretense against DDoS attacks
in cloud platforms. In: Proceedings of the 19th International Conference on Dis-
tributed Computing and Networking, ICDCN 2018, pp. 30:1–30:10. ACM (2018)

20. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: USENIX Security Symposium, Baltimore, MD, p. 8 (2005)

21. Prakash, A., Wellman, M.P.: Empirical game-theoretic analysis for moving target
defense. In: Proceedings of the Second ACM Workshop on Moving Target Defense,
MTD 2015, pp. 57–65. ACM, New York (2015)

22. Schmidt, S., Bye, R., Chinnow, J., Bsufka, K., Camtepe, A., Albayrak, S.:
Application-level simulation for network security. Simulation 86(5–6), 311–330
(2010)

23. Taylor, J., Zaffarano, K., Koller, B., Bancroft, C., Syversen, J.: Automated effec-
tiveness evaluation of moving target defenses: metrics for missions and attacks. In:
Proceedings of the 2016 ACM Workshop on Moving Target Defense, MTD 2016,
pp. 129–134. ACM, New York (2016)

24. Vadlamudi, S.G., et al.: Moving target defense for web applications using Bayesian
Stackelberg games: (extended abstract). In: Proceedings of the 2016 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2016, pp.
1377–1378 (2016)

25. Venkatesan, S., Albanese, M., Cybenko, G., Jajodia, S.: A moving target defense
approach to disrupting stealthy botnets. In: Proceedings of the 2016 ACM Work-
shop on Moving Target Defense, MTD 2016, pp. 37–46. ACM (2016)

26. Vernotte, A., Johnson, P., Ekstedt, M., Lagerstrm, R.: In-depth modeling of
the UNIX operating system for architectural cyber security analysis. In: 2017
IEEE 21st International Enterprise Distributed Object Computing Workshop
(EDOCW), pp. 127–136, October 2017

27. Wang, H., Li, F., Chen, S.: Towards cost-effective moving target defense against
DDoS and covert channel attacks. In: Proceedings of the 2016 ACM Workshop on
Moving Target Defense, MTD 2016, pp. 15–25. ACM, New York (2016)

28. Zaffarano, K., Taylor, J., Hamilton, S.: A quantitative framework for moving target
defense effectiveness evaluation. In: Proceedings of the Second ACM Workshop on
Moving Target Defense, MTD 2015, pp. 3–10. ACM (2015)

29. Zhuang, R., DeLoach, S.A., Ou, X.: A model for analyzing the effect of moving
target defenses on enterprise networks. In: Proceedings of the 9th Annual Cyber
and Information Security Research Conference, CISR 2014, pp. 73–76. ACM, New
York (2014)

30. Zhuang, R., Zhang, S., DeLoach, S.A., Ou, X., Singhal, A.: Simulation-based
approaches to studying effectiveness of moving-target network defense. In: National
Symposium on Moving Target Research. NIST (2012)

Sarracenia: Enhancing the Performance
and Stealthiness of SSH Honeypots
Using Virtual Machine Introspection

Stewart Sentanoe(B), Benjamin Taubmann, and Hans P. Reiser

University of Passau, Passau, Germany
{se,bt,hr}@sec.uni-passau.de

Abstract. Secure Shell (SSH) is a preferred target for attacks, as it
is frequently used with password-based authentication, and weak pass-
words can be easily exploited using brute-force attacks. To learn more
about adversaries, we can use a honeypot that provides information
about attack and exploitation methods. The problem of current hon-
eypot implementations is that attackers can easily detect that they are
interacting with a honeypot and stop their activities immediately. More-
over, there is no freely available high-interaction SSH honeypot that
provides in-depth tracing of attacks.

In this paper, we introduce Sarracenia, a virtual high-interaction SSH
honeypot which improves the stealthiness of monitoring by using virtual
machine introspection (VMI) based tracing. We discuss the design of the
system and how to extract valuable information such as user credential,
executed commands, and file changes.

Keywords: Honeypot · Virtual Machine Introspection · Secure Shell

1 Introduction

A Honeypot is a system that aims at gathering knowledge about attacks by
luring the adversaries to attack it [13,17]. One challenge of honeypots is to
ensure stealthy and reliable extraction of useful information that is not
directly noticeable to an adversary in order to learn more about honeypot-
aware attacks. This means that an adversary first checks if he is attacking a
real system and only runs the full attack when he is sure not to be connected to
a honeypot [19,25,38].

There are two kinds of honeypots that can gather in-depth traces of an attack:
the high-interaction and the medium-interaction honeypots. A high-interaction
honeypots monitor a real system either by installing a Man-in-The-Middle proxy
that captures the SSH session [30,35], or by tracing the execution using an in-
guest agent, such as a kernel modules. A proxy-based approach provides a high
level of stealthiness, however, it lacks the ability to reconstruct the full attack
e.g., when additional binaries are downloaded and deleted directly after the
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 255–271, 2018.
https://doi.org/10.1007/978-3-030-03638-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_16&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_16

256 S. Sentanoe et al.

execution, or when additional encrypted communication channels besides SSH
are used which can not be decrypted by an SSH proxy. In-guest agents can
provide in-depth tracing of the attack, but they can be detected, or disabled. To
the best of our knowledge, there is no in-guest agent based SSH high-interaction
honeypot.

Emulation is another commonly used approach for medium, or low-
interaction honeypot. Emulation means that the honeypot provides a service
that is similar to the expected one. Cowrie [23] is the most commonly used SSH
honeypot and emulates the behavior of an SSH server and Debian operating
system, which means that a user can log in to a system but all commands are
emulated, i.e., only log the execution of the command but do not really have any
other functionality. Because of this, it is pretty easy for an attacker to detect
whether a system is an emulated honeypot, or a real system.

To sum up, the problem with current SSH honeypot solutions is that they
are either easy to detect, or do not provide in-depth tracing to reconstruct full
attacks.

Virtual Machine Introspection (VMI) is the process of examining and moni-
toring a virtual machine (VM) from the outside, i.e., the virtual machine monitor
(VMM) point of view. VMI has proven to be effective in monitoring activities
of a VM without the presence of an in-guest agent either by using system call
tracing [7,10,24], or memory-based introspection [8,11,29,32]. In the past, it
has been shown that, compared to in-guest agents, VMI has several advan-
tages in intrusion detection systems (IDS) [10] and monitoring of virtual honey-
pots [15,22,27].

This paper introduces Sarracenia, a virtual high-interaction SSH hon-
eypot based on VMI which combine system call and user-space function tracing.
This approach produces less overhead than tracing just system calls to extract
information. The contributions of this paper are:

– The design and implementation of a VMI-based high-interaction SSH honey-
pot architecture that provides in-depth traces of attacks including executed
commands, session replay, a list of manipulated and downloaded files includ-
ing their content and the traffic of forwarded connections.

– Tracing mechanism that can be used to build another honeypot, malware
tracing, or IDS system.

– To tackle the problem of honeypot-aware attacks, we employ well-known
VMI-based tracing techniques of libvmi [24] and Drakvuf [21] in order to
achieve a better level of stealthiness and to trace the execution of user-space
function calls.

– The performance evaluation that measures the overhead added by VMI-based
tracing.

Our performance evaluation shows that Sarracenia can match the perfor-
mance of a normal SSH server with a small increase in execution time (approx-
imately 0.01 s) when used to trace simple activities.

When we monitor the file system changes, the execution time of the honeypot
increases by at least 0.08 s based on how many files are generated and extracted.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 257

Table 1. Comparison of SSH honeypots, a full circle represents for is supported or
high performance and an empty one for the opposite.

2 Related Work

This section reviews different approaches and related work concerning SSH hon-
eypots and their analysis as well as tracing techniques.

2.1 SSH Honeypots

The subsequent sections discuss different approaches for SSH honeypots. Table 1
summarizes the differences between them and Sarracenia and also shows which
features are supported by each approach.

Low-Interaction. Kojoney [6] is a low-interaction honeypot (developed by Jose
Antonio Coret) that emulates an SSH server. Emulation means that it imitates
the behavior of a real SSH service which means that not all functionalities of the
real SSH are available. Kojoney logs the username and password combination,
executed commands and terminal window size. The advantage of emulation is
that it can run mostly isolated (the honeypot process can run with restricted
user permissions) and lessens the chance that the adversaries can take over the
entire host. The disadvantage of this approach is that only a limited number
of shell commands are available, which means that scripts of adversaries might
fail or adversaries would leave the system without doing any further malicious
activities.

Medium-Interaction. Cowrie [23] (former: Kippo [31]) is a medium-
interaction honeypot which also emulates an SSH server just like low-interaction
but it adds fake Debian system which also emulated. The drawback is that not
all the commands work the same way as in a real system because each command
is re-implemented and does not provide full functionality. The file changes detec-
tion and extraction in Cowrie supports only selected commands such as wget,
curl and sftp/scp. It also supports port forwarding, but instead of forwarding it
to the real destination, it needs to be configured where to forward the data to
e.g., forwarding SMTP connection to an SMTP honeypot.

258 S. Sentanoe et al.

High-Interaction. SSHHiPot [30] and sshmitm [35] are a high-interaction SSH
honeypot that implement the concept of an active Man-in-The-Middle (MiTM)
proxy between the adversary and the SSH server.

The advantage of a MiTM approach is that all shell commands can be used
by the adversaries, so more information about the adversaries’ activities that
happen inside the VM (high-interaction) can be extracted and since no agent
inside is involved, it is difficult for the adversary to detect the monitoring.

The disadvantage of this approach is that it fails at detecting changes to the
file system, i.e., it cannot restore files that have been transferred via an additional
encrypted network communication channel such as https. Thus, it might not be
possible to analyze the actual malware sample of an attack.

High-interaction honeypot suffers the problem of finding a compromise
between restraining the network access to the other systems in order to pro-
tect and not contributing to further attacks and analyzing the full behavior of
ongoing attacks. The goal of Honeywall [9,28] is to control the network usage of
the successful attacks [4] by acting as a network bridge gateway of all honeypots
where the network activities are logged and iptables is used to apply network
rules that limit the network access.

There are some researches that focus on how to detect the presence of a
honeypot, or introspection system called anti honeypot [37] and introspection
detection [36]. For high-interaction honeypots, there are two main methods which
are: system level fingerprinting and operational analysis. One way to do system
level fingerprinting is by timing benchmark [12] which calculates the execution
time of commands. If the time is longer than on a sane system, it means that a
monitoring, or introspection system might be present. Operational analysis can
be done by executing several commands and compare the generated output of
the remote server with a sane system [38].

2.2 VMI-Based Honeypots and Tracing Method

VMI-Based Tracing. A VMI-based IDS [10] introduced by Garfinkel et al.
They added hooks that analyzed and observed VM CPU, memory, and emulated
devices in order to reconstruct the VM state. Using this same approach, Jiang
et al. [16] developed VMwatcher that is able to implement hooks into several
hypervisors to extract the memory and file system of a VM. The acquired data
is exported to a separate VM where the memory is compared to a clean-state
template and the file system is scanned by an anti-virus software.

Lengyel et al. [22] implemented a hybrid honeypot architecture that combines
a low-interaction honeypot to collect malware and a high-interaction honeypot
(sandbox) to analyze the captured malware. By monitoring the sandbox VM
using VMI, they were able to record all activities of the malware. To detect
anomalies, their system compared the result that obtained by the VMI against
the clean original state of the VM. Sarracenia uses the similar approach, but we
provide more API to do user-space function tracing that can be used to build
another honeypot, or an IDS system.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 259

We made a preliminary research on VMI based SSH honeypot [27]. We traced
write and read system call to extract the username and the password. The
method was effective, but not efficient since the overhead was pretty high and
pattern matching also needs to be done.

Kernel Module Monitoring. Block and Dewald [2] described how to monitor
and extract information from the heap memory. They built plug-ins for Rekall [5]
that are able to extract command history from zsh and password entry informa-
tion from a password manager called KeePassX.

Taint Analysis. Portokalidis et al. [26] built a honeypot system based on taint
analysis using QEMU. It works by tagging the data that comes from an unsafe
source and track the activities of the data. When a violation is detected, an
alarm is raised and deeper inspection is made. Portokalidis et al. [25] introduced
Eudaemon, a technique that analyzes a running process in an emulator which
provides extensive instrumentation in the form of taint analysis. Bosman et al. [3]
introduced Minemu, a fast x86 taint tracker that address the problem of dynamic
taint analysis which is high overhead.

3 System Architecture and Design

This section discusses the goals of Sarracenia, its architecture and components.

3.1 Goal

The goal of Sarracenia is to provide a virtual high-interaction honeypot that
aims at attracting adversaries that would normally leave a honeypot when they
detect that it is not a real system, in order to understand new attacks. Thus,
stealthy and reliable monitoring is required in order to reconstruct an attack
as accurately as possible. To achieve that, we capture all modifications and
interactions of an adversary with the system under analysis. Sarracenia traces
these actions of an adversary:

1. Entered and executed commands in order to replay the SSH session.
2. Rebuild files that have been transferred via scp/sftp.
3. File system changes to extract malware samples that have been loaded

over encrypted channels such as https.
4. Monitor port forwarding of the SSH server where the destination address

and the payload are extracted.

260 S. Sentanoe et al.

Xen

Honeypot VM

Debian

OpenSSH

Monitor VM

Ubuntu

LibVMI Monitor
OpenSSH
Debuging
Symbol

XSM

Security
domain

Fig. 1. Sarracenia’s component.

3.2 Components

The Sarracenia architecture uses two types of virtual machines. One virtual
machine is the honeypot and the other one monitors the honeypot as shown in
Fig. 1.

We downloaded the OpenSSH’s debugging symbol that match the honeypot’s
version (OpenSSH 7.2p2 Ubuntu-4ubuntu2.4, OpenSSL 1.0.2 g 1 Mar 2016). We
were able to extract the debugging information using libdwarfparser [18] and
libelf in order to get the symbols and the layout of the required data structures.
To avoid tracing problems coming from concurrency, the honeypot has only one
CPU. The monitoring VM is a normal Debian installation with tracing tools
installed. Both virtual machines are running on top of Xen.

The VMI access required from one VM to another VM is granted by using
policies of the Xen security modules (XSM). It controls the access of Xen
domains, hypervisor, and resources including memory and devices. We imple-
mented policies so that a monitoring VM can access the memory of a honeypot
but not vice versa. This concept is described by the CloudPhylactor [33] archi-
tecture.

3.3 Tracing Methods

In order to trace the control flow during an attack, we use VMI-based trac-
ing. The main challenges of Sarracenia are: bridging the semantic gap e.g., to
trace the user-space SSH daemon then extract the required information and low
overhead e.g., the monitoring mechanism not impacting the performance of the
honeypot which could be detected by an adversary. For low-level VMI function-
ality, we use LibVMI in conjunction with a self-written library [34] that simplifies
the insertion and processing of software breakpoints.

The performance impact of tracing is mainly caused by context switches
between the monitoring VM and the honeypot VM whenever information needs
to be extracted, e.g., the user credentials during the authentication process.
Thus, one goal of Sarracenia is to identify the best place in the control flow to
extract the required data to minimize VM context switches.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 261

The challenges associated with the semantic gap differ in these scenarios.
In the case of monitoring only the read system call, we need to determine the
call which, e.g., reads the password from the remote console and differentiate it
from the rest of the read calls. However, by monitoring the validation function we
have to know the symbol name of the function and where it is located in memory
so that we can intercept it. Additionally, we need to know the parameters and
also the layout of the data structures which can be extracted easily from the
debugging information of a binary file.

To intercept the control flow of the honeypot we use software breakpoints
there are two ways to do it:

Pure INT3: It replaces the original opcode at the beginning of a function
with the INT3 instruction, which causes an interrupt that is handled by the
monitor. INT3 approach is simpler but suffers an important problem which
is the race condition when multiple vCPUs are used.
Xen altp2m [20]: It creates two additional memory after the guest’s physical
memory which contains shadow copy of the target page with the trap and
empty page. Then, it sets an access permission for the shadow page. Whenever
there is access violation e.g., execute attempt, it can simply change the pointer
back to the original page, single step and change the pointer back to the
shadow copy. When an adversary tries to read or write the shadow copy, it
will change the pointer to the empty page. Thus, it conceals the breakpoint
well. The advantage of this approach is it works nicely with multiple vCPUs.
This approach also used by Drakvuf [21] which we used it for Sarracenia since
it provides straightforward API to attach a breakpoint. But, it turns out that
we able to detect the presence of Drakvuf by using ioremap function where
we probe the memory beyond the physical range. Drakvuf’s implementation
problems and the fixes are:

– The empty page consists of 00 (zero) where the real behavior according
to Intel Documentation [14] is that attempt to read the invalid memory
address (e.g., outside the physical range) will return all 1s (FF). We fixed
this issue by replacing the 00 with FF during the empty page initialization
process.

– The empty page is not protected by access control and write attempt
will be persistent. But, based on Intel documentation, write attempt of
invalid memory address will be ignored. We fixed this issue by add access
permission of the empty page and the shadow page. When write is exe-
cuted, the system notifies Xen to emulate the writing process and return
the emulation result. Thus, the value never get written to the memory.

Sarracenia implements two modes of operation for the tracing with different
overhead:

Process-bound: Breakpoints on system calls are attached and detached
dynamically based on the process that is running. To do this, we monitor
write access to the CR3 register that holds the addresses of the page direc-
tory base (PDB)—the data structure which is used by the memory manage-
ment unit for address translation—which is different for each process with

262 S. Sentanoe et al.

HoneypotMonitor

Attach breakpoints

Listen for events

Invoke events

clone SSH
Store process

information into the
monitoring list

exit SSH
Remove process

information into the
monitoring list

Continue
execution

t

t

f

f

f

HoneypotMonitor

Listen for events Invoke events

Store process
information into the

monitoring list

Remove process
information into the

monitoring list Continue
execution

By SSH?

Attach breakpoints

Detach breakpoints

clone SSH

exit SSH

f

f

f
t

t

t

Fig. 2. Control flow for new SSH connections (left: system-wide right: process-bound).

LibVMI. Whenever a new process is dispatched, the content of this register
is updated with the PDB of the next process. Thus, we can control that a
specific process is monitored. This requires a VM context switch at every
process change in order to check whether breakpoints should be set or not.
Additionally, the breakpoints must be written to memory or removed with
the original instruction if the new process should be monitored or not.

System-wide: All breakpoints are set from the beginning when the monitoring
is started which means that all processes are traced. This does not require a
context switch for every process change. However, it results in more context
switches for system calls at run-time.

4 Data Acquisition

In order to analyze the activities of an adversary, we can use different levels
of tracing with various amounts of information. In general, Sarracenia aims
at capturing the same information as Cowrie, which is: (1) Detection of new
SSH connections, (2) extraction of user credentials, source IP address and port,
session keys of an authentication process, (3) reconstruction of SSH sessions,
e.g., entered commands, (4) data of TCP port forwarding and (5) modification
of file system changes. Table 2 shows the traced function and system call for each
information extraction. In the subsequent sections, we describe how we extract
this data in detail.

4.1 New SSH Connection

In order to detect new connections to the honeypot, we monitor the clone system
call as shown in Fig. 2. OpenSSH invokes clone to create a child process that
handles each SSH session. When the session terminates, sys exit group is invoked.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 263

Table 2. Function and system calls that are traced for (1) Detection of new SSH
connections, (2) extraction of user credentials, source IP address and port, session keys
of an authentication process, (3) reconstruction of SSH session, i.e., entered commands,
(4) data of TCP port forwarding, and (5) modification of file system

Name 1 2 3 4 5

System Call clone ✓

sys exit group ✓

exec ✓

write ✓

seek ✓

close ✓

Function kex derive keys ✓

auth password ✓

sshbuf get u8 ✓ ✓

ssh packet send2 wrapped ✓ ✓

channel connect to port ✓

4.2 SSH Key Derivation, Source IP Address and Port Monitor

At the beginning of each SSH session, the key material is negotiated. To extract
the SSH session keys, source IP address and port number, two OpenSSH func-
tions are traced: kex derive keys and do authentication2. From the input param-
eter of kex derive keys, the hash h and the shared secret K can be extracted. In
this step, the memory address of the ssh struct which used to store the session
keys is stored. When do authentication2 is called, the input parameter of this
function holds information about the IP and port (remote and local) where the
remote IP can be collected to get the overview of the adversary’s location. At
this state, the authentication method is about to begin which means that the
session keys are already derived and can be extracted by accessing the memory
address of the ssh struct that was stored before.

4.3 Authentication Phase Monitor

The username and password of an authentication attempt can be extracted
from the input parameters of the function auth password. To accept multiple
passwords for a username, we modify the return value of the function by setting a
breakpoint to the instruction where the function returns to. Instead of returning
1 for the correct password and 0 for the incorrect password, we inject 1 to make
all passwords that are typed by the adversary to be accepted as long as the user
exists in the VM.

264 S. Sentanoe et al.

4.4 SSH Packet Monitor

Each SSH packet is encrypted during transmission via the network. In order to
extract the content of an SSH packet, we monitor two functions: ssh packet
send2 wrapped and sshbuf get u8 which responsible for the encryption and
decryption process of the SSH network packet.

4.5 SSH Session Monitor (Keystrokes)

In order to reconstruct an SSH session, we monitor the function ssh packet
send2 wrapped and extract the data section of the packet that contains the
keystroke. The keystrokes are stored in a JSON formatted file, which can be
replayed using asciinema.

4.6 Executed Command

To obtain the executed commands, the exec system call is traced. By tracing
exec, we are able to get an overview of which commands are executed during
an attack. Additionally, this is required to trace commands that are executed
inline, i.e., that are not executed in an SSH bash and thus are not recorded by
the SSH session monitor.

4.7 Port Forwarding

To extract the network packets which are forwarded by the SSH daemon,
Sarracenia monitors the channel connect to port function. The target IP and
port can be extracted from the function parameters. The payload itself can be
extracted from the SSH packet that explained in Sect. 4.4.

4.8 Changes on File System

In many cases, an adversary downloads additional malicious code from external
sources. These files can be important when it comes to analyzing the attack. As
there are several ways to download data (sftp, wget, curl, ...) Sarracenia uses
the general approach of monitoring changes to the file system which works with
different applications. Since adversaries might delete the file directly after exe-
cuting it, it might not be possible to analyze the disk image after the attack.
Thus, Sarracenia monitors changes to the file system and writes them into sep-
arate files.

To achieve that, Sarracenia monitors write, seek and close system calls. By
keeping track of the file descriptor in the process namespace, whenever write
is invoked by the same process, the data that is about to be written to that
particular file can be extracted. When close is invoked by that process, we stop
the tracking of a particular file descriptor.

Since monitoring this three systems calls is expensive as they are used by
many processes, we evaluate in Sect. 5 different approaches to minimize the
impact by using dynamic tracing, e.g., only monitoring these system calls for
a small set of processes.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 265

5 Evaluation and Discussion

The performance of the monitoring is an important aspect for a honeypot since
it can lower the stealthiness. Thus, this section discusses the performance of
Sarracenia.

Fig. 3. Function tracing overhead (auth password): (1) without tracing, (2) with trac-
ing - only extracting function parameters, (3) with tracing - setting a second breakpoint
to the end of the function to extract the return value and (4) with tracing - setting
a second breakpoint and modified the return value. Left: Using INT3 and right: using
altp2m.

5.1 Performance Analysis

Function Tracing Overhead. To quantify the performance impact of VMI
based control flow interception we measured the overhead of tracing one function
call. Therefore, we called the function auth password for 100 times and calcu-
lated the average runtime without (1) and with tracing (2–4). We distinguish
between three different tracing variants: (2) extracting function parameters at
the beginning of the function, (3) setting the second breakpoint to the end of
the function to extract the return value, and (4) modifying the return value by
writing to the RAX register. The results of the measurements are depicted in
Fig. 3.

Without any monitoring, it took 2.49 ms. When pure INT3 is used, it took
2.82 ms for (2), which is an increase by 0.33 ms. When we add another break-
point to intercept the return value (to accept all given password), it took 3.88 ms
(increased by 1.39 ms) and 3.92 ms (increased by 1.43 ms) for (4). The measure-
ments show that tracing increases the runtime of a process with small amount
of overhead. But, it is still important to intercept the control flow as little as
possible to minimize the overhead.

When altp2m is used, it took 2.60 ms, 3.70 ms and 3.73 ms which is an increase
by 0.11 ms, 1.21 ms, and 1.24 ms for (2), (3), and (4) respectively.

266 S. Sentanoe et al.

Fig. 4. Overhead of client’s execution time based on different scenario and configura-
tion where (1) is without monitoring as the baseline and (2) to (4) are monitored by
Sarracenia using pure INT3 (first row) and altp2m (second row).

System Performance. To measure the performance of Sarracenia’s monitor-
ing approach on the honeypot, we ran three use cases. For each use case, we
used time command and used the real time:

A. Simple command: Execute ls -alh command.
B. I/O intensive test: Download a file with 2 MB size using wget command.
C. I/O and CPU intensive test: Compile the Jansson library.

To measure the impact on the performance of the honeypot for each tracing
mechanism, we ran the four use cases with different configurations:

1 Without tracing: The baseline to calculate the overhead of the tracing
mechanism.

2 System-wide tracing - SSH functionalities: sys clone, sys exit group,
and all OpenSSH functions are monitored.

3 Process-bound tracing (whitelist) - with file change detection: all
system calls of OpenSSH functions are monitored. And, wget, curl, sftp and
scp are monitored for file system changes.

4 System-wide tracing - with file change detection: all system calls and
OpenSSH functions (see Table 2) are monitored.

We ran every combination of use-case and tracing mechanism 100 times. The
summary of time measurement is depicted in Fig. 4. The overhead is between
0.01 s and 9.93 s. For activity (A), the overhead of all approaches was relatively
small (min: 0 s max: 0.13 s). For activity (B), the overhead start to be varied

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 267

but still can be considered small since it started to do data extraction from the
memory (min: 0.01 s max: 0.62 s). For activity (C), the overhead started to be
high since more kinds of stuff are happening in the honeypot and more data are
extracted (min: 1.03 s max: 9.93 s).

Process-bound suffered the highest overhead due to the attachment and
detachment of a breakpoint process that increased the overhead which also
depends on how many processes that causes interrupt. To attach a breakpoint
using pure INT3 took 0.19 ms and 0.40 ms when altp2m is used. To detach a
breakpoint it took 0.15 ms and 0.11 ms when pure INT3 and altp2m is used
respectively. But, during runtime, altp2m approach can simply switch the page
table pointer instead of removing the INT3 opcode.

Based on the overall result, we recommend using altp2m and system-wide
tracing with file change detection approach for real-life deployment.

5.2 Stealthiness

As explained in Sect. 2.1, there are at least three approaches to detect whether a
system is a honeypot or being monitored: operational analysis (execute arbitrary
commands), system level fingerprinting (timing benchmark), detecting monitor-
ing agent. We tested these approaches against Sarracenia and Cowrie. Since
Sarracenia provides a fully fledged Linux system an attacker can execute and
install any required tools. Thus, he can not see any difference to a normal system
in contrast to Cowrie which only provides some limited amount of commands.

As discussed in Sect. 5.1 the overhead added to a single monitored function
call can be between 0.11 ms and 1.43 ms which can be used to detect the presence
of the introspection. This becomes noticeable when the same (monitored) system
call is invoked multiple times and the timing of an untraced system is known.
Reducing the impact of VMI-based tracing mechanisms is an ongoing research
topic and reducing it to improve the stealthiness must be addressed in future
work. Nevertheless, to the best of our knowledge when virtualization, e.g., in
cloud computing, is used it is common that functions are delayed since several
virtual machines share the same resources.

Sarracenia does not require any agent inside the honeypot. Thus, an adver-
sary is not able to directly detect any monitoring component.

5.3 Portability

Since we have to bridge the semantic gap and interpret the contents of memory
from the honeypot, it is important to discuss the portability of this approach,
i.e., whether the approach will work in newer versions of a Linux system or SSH
service. Sarracenia relies on the information we get from the System.map (func-
tion symbols of system calls) and the debugging information of the SSH daemon.
Since the honeypot virtual machine is under our control, both information can
be easily accessed or generated when the system is upgraded. Sarracenia is able
to run on a standard Xen installation where Intel hardware virtualization is
required.

268 S. Sentanoe et al.

5.4 Limitations

Sarracenia aims at extracting information from a virtual machine with VMI.
Thus, it is vulnerable to adversaries that produce a great number of outputs,
e.g., write a lot of data to files which are logged. This problem could be addressed
for examples by a maximum log size for each adversary. We also do not cover
attacks that target that SSH service, e.g., with buffer overflows. Then, we assume
that adversaries do not do the timing based measurement. In the future, we need
to discuss whether the timing behavior of intercepted functions can be used to
detect VMI based monitoring especially in cloud environments where several
virtual machines coexist on the same physical server. Lastly, we do not address
the problem of attackers that revisit our honeypot and detect that it has been
reset after a long period of time. This is a general problem of honeypots and is
out of the scope of this paper. Finally, we do not consider attacks that actively
put crafted data to main memory that subvert VMI based memory analysis [1].

6 Conclusion

In this paper, we presented Sarracenia, a VMI-based virtual high-interaction
SSH honeypot. We explained the architectural design of it and compared it
against several state-of-the-art approaches such as SSH emulation, Man-in-the-
Middle, and custom SSH implementation. Sarracenia’s mechanism can be used
to build another honeypot, malware tracing, and Intrusion Detection System.

Compared with other SSH honeypots, Sarracenia improves the stealthiness of
the monitoring by applying VMI-based tracing and by providing a fully-fledged
Linux system to an attacker. Sarracenia is able to extract useful information
such as user’s credentials, keystrokes, executed commands and changes on the
file system including files that transferred over encrypted network channels and
have been deleted after the execution.

Sarracenia’s performance varies depending on which tracing modules are
enabled. Since one approach to detecting the presence of an analysis tools, is
to check the timing behavior of a system, the stealthiness of VMI based tracing
depends on the implementation of the interception mechanism, e.g., the break-
points. Thus, minimizing the performance impact of each single breakpoints is
an important objective of future VMI research.

To assess the effectiveness level of Sarracenia, long-term deployment and
analysis of Sarracenia and other SSH honeypots are needed and it is the future
work of this research.

Acknowledgment. This work has been supported by the German Federal Ministry
of Education and Research (BMBF) in the project DINGFEST-EFoVirt and German
Research Foundation (DFG) in the project ARADIA.

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 269

References

1. Bahram, S., et al.: DKSM: subverting virtual machine introspection for fun and
profit. In: 2010 29th IEEE Symposium on Reliable Distributed Systems, pp. 82–91,
October 2010. https://doi.org/10.1109/SRDS.2010.39

2. Block, F., Dewald, A.: Linux memory forensics: dissecting the user space process
heap. Digit. Investig. 22, S66–S75 (2017)

3. Bosman, E., Slowinska, A., Bos, H.: Minemu: the world’s fastest taint tracker. In:
Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp.
1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23644-0 1

4. Briffaut, J., Lalande, J.F., Toinard, C.: Security and results of a large-scale high-
interaction honeypot. JCP 4(5), 395–404 (2009)

5. Cohen, M.: Rekall memory forensics framework. DFIR Prague (2014).
https://digital-forensics.sans.org/summit-archives/dfirprague14/Rekall Memory
Forensics Michael Cohen.pdf

6. Coret, J.A.: Kojoney - A Honeypot For The SSH Service (2006). http://kojoney.
sourceforge.net/. Accessed 17 Feb 2018

7. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hard-
ware virtualization extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, pp. 51–62. ACM (2008)

8. Dolan-Gavitt, B., Payne, B., Lee, W.: Leveraging forensic tools for virtual machine
introspection. Technical report GT-CS-11-05, Georgia Institute of Technology
(2011)

9. Enemy, K.Y.: Honeywall CDROM Roo 3rd Generation Technology. Honeynet
Project & Research Alliance, vol. 17 (2005). https://projects.honeynet.org/
honeywall/

10. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: Network and Distributed Systems Security Sym-
posium (NDSS), vol. 3, pp. 191–206 (2003)

11. Graziano, M., Lanzi, A., Balzarotti, D.: Hypervisor memory forensics. In: Stolfo,
S.J., Stavrou, A., Wright, C.V. (eds.) RAID 2013. LNCS, vol. 8145, pp. 21–40.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41284-4 2

12. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In:
Proceedings from the Sixth Annual IEEE SMC Information Assurance Workshop,
IAW 2005, pp. 29–36. IEEE (2005)

13. Hoopes, J.: Virtualization for security: including sandboxing, disaster recovery,
high availability, forensic analysis, and honeypotting. Syngress (2009)

14. Intel: Intel R© 100 Series and Intel R© C230 Series Chipset Family Platform Controller
Hub (PCH), May 2016

15. Jiang, X., Wang, X.: “Out-of-the-Box” monitoring of VM-based high-interaction
honeypots. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 198–218. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74320-0 11

16. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection and monitoring through
VMM-based “out-of-the-box” semantic view reconstruction. ACM Trans. Inf. Syst.
Secur. (TISSEC) 13(2), 12 (2010)

https://doi.org/10.1109/SRDS.2010.39
https://doi.org/10.1007/978-3-642-23644-0_1
https://digital-forensics.sans.org/summit-archives/dfirprague14/Rekall_Memory_Forensics_Michael_Cohen.pdf
https://digital-forensics.sans.org/summit-archives/dfirprague14/Rekall_Memory_Forensics_Michael_Cohen.pdf
http://kojoney.sourceforge.net/
http://kojoney.sourceforge.net/
https://projects.honeynet.org/honeywall/
https://projects.honeynet.org/honeywall/
https://doi.org/10.1007/978-3-642-41284-4_2
https://doi.org/10.1007/978-3-540-74320-0_11
https://doi.org/10.1007/978-3-540-74320-0_11

270 S. Sentanoe et al.

17. Joshi, R., Sardana, A.: Honeypots: A New Paradigm to Information Security. CRC
Press, Boca Raton (2011)

18. Kittel, T.: Library to parse dwarf information and access/use it in C/C++ (2014).
https://github.com/kittel/libdwarfparser. Accessed 17 Feb 2018

19. Krawetz, N.: Anti-honeypot technology. IEEE Secur. Privacy 2(1), 76–79 (2004)
20. Lengyel, T.K.: Stealthy monitoring with xen altp2m. https://blog.xenproject.org/

2016/04/13/stealthy-monitoring-with-xen-altp2m/. Accessed 13 Feb 2018
21. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.:

Scalability, fidelity and stealth in the drakvuf dynamic malware analysis system.
In: Proceedings of the 30th Annual Computer Security Applications Conference
(2014)

22. Lengyel, T.K., Neumann, J., Maresca, S., Kiayias, A.: Towards hybrid honeynets
via virtual machine introspection and cloning. In: Lopez, J., Huang, X., Sandhu,
R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 164–177. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38631-2 13

23. Oosterhof, M.: Cowrie SSH/Telnet Honeypot (2014). https://github.com/
micheloosterhof/cowrie. Accessed 17 Feb 2018

24. Payne, B.D.: Simplifying virtual machine introspection using LibVMI. Sandia
report, pp. 43–44 (2012)

25. Portokalidis, G., Bos, H.: Eudaemon: involuntary and on-demand emulation
against zero-day exploits. In: Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems, Eurosys 2008, pp. 287–299. ACM,
New York (2008). https://doi.org/10.1145/1352592.1352622

26. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic signature generation. SIGOPS
Oper. Syst. Rev. 40(4), 15–27 (2006). https://doi.org/10.1145/1218063.1217938

27. Sentanoe, S., Taubmann, B., Reiser, H.P.: Virtual machine introspection based SSH
honeypot. In: Proceedings of the 4th Workshop on Security in Highly Connected
IT Systems, pp. 13–18. ACM (2017)

28. Spitzner, L.: Know your enemy: Genii honeynets. The Honeynet Alliance (2005)
29. Srivastava, A., Giffin, J.: Tamper-resistant, application-aware blocking of malicious

network connections. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID
2008. LNCS, vol. 5230, pp. 39–58. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87403-4 3

30. Stuart: High-interaction MitM SSH honeypot (2016). https://github.com/
magisterquis/sshhipot. Accessed 17 Feb 2018

31. Tamminen, U.: Kippo - SSH Honeypot (2009). https://github.com/desaster/kippo.
Accessed 17 Feb 2018

32. Taubmann, B., Frädrich, C., Dusold, D., Reiser, H.P.: Tlskex: harnessing virtual
machine introspection for decrypting tls communication. Digit. Investig. 16, S114–
S123 (2016)

33. Taubmann, B., Rakotondravony, N., Reiser, H.P.: Cloudphylactor: harnessing
mandatory access control for virtual machine introspection in cloud data centers.
In: 2016 IEEE Trustcom/BigDataSE/I SPA, pp. 957–964. IEEE (2016)

34. Taubmann, B., Rakotondravony, N., Reiser, H.P.: Libvmtrace: tracing virtual
machines (2016)

https://github.com/kittel/libdwarfparser
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://blog.xenproject.org/2016/04/13/stealthy-monitoring-with-xen-altp2m/
https://doi.org/10.1007/978-3-642-38631-2_13
https://github.com/micheloosterhof/cowrie
https://github.com/micheloosterhof/cowrie
https://doi.org/10.1145/1352592.1352622
https://doi.org/10.1145/1218063.1217938
https://doi.org/10.1007/978-3-540-87403-4_3
https://doi.org/10.1007/978-3-540-87403-4_3
https://github.com/magisterquis/sshhipot
https://github.com/magisterquis/sshhipot
https://github.com/desaster/kippo

Sarracenia: Enhancing the Performance of SSH Honeypots Using VMI 271

35. Testa, J.: SSH man-in-the-middle tool (2017). https://github.com/jtesta/ssh-
mitm. Accessed 17 Feb 2018

36. Tuzel, T., Bridgman, M., Zepf, J., Lengyel, T.K., Temkin, K.: Who watches the
watcher? Detecting hypervisor introspection from unprivileged guests. Digit. Inves-
tig. 26, S98–S106 (2018)

37. Uitto, J., Rauti, S., Laurén, S., Leppänen, V.: A survey on anti-honeypot and
anti-introspection methods. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P.,
Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 125–134. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56538-5 13

38. Wang, P., Wu, L., Cunningham, R., Zou, C.C.: Honeypot detection in advanced
botnet attacks. Int. J. Inf. Comput. Secur. 4(1), 30–51 (2010)

https://github.com/jtesta/ssh-mitm
https://github.com/jtesta/ssh-mitm
https://doi.org/10.1007/978-3-319-56538-5_13

Authorization Policies Specification and
Consistency Management within

Multi-cloud Environments

Ehtesham Zahoor1(B), Asim Ikram1, Sabina Akhtar2, and Olivier Perrin3

1 Secure Networks and Distributed Systems Lab (SENDS), National University of
Computer and Emerging Sciences, Islamabad, Pakistan

{ehtesham.zahoor,i161022}@nu.edu.pk
2 Bahria University, Islamabad, Pakistan

sabina.buic@bahria.edu.pk
3 Université de Lorraine, LORIA BP 239 54506, Vandoeuvre-lès-Nancy Cedex, France

olivier.perrin@loria.fr

Abstract. Cloud computing can be defined as a model for providing on-
demand access to a shared pool of configurable computing resources. In
this paper we address the specification and consistency management of
authorization policies in Multi-Cloud environments, where an organiza-
tion may need services from more than one Cloud providers, for instance
to avoid vendor lock-in. We have proposed a formal Event-Calculus based
model to aggregate authorization policies from multiple Cloud providers.
We have also identified and categorized the policy conflicts and proposed
Event-Calculus models to reason about them. We have applied our app-
roach on policies from AWS, GCP and Microsoft Azure. Further, we have
provided tool support and detailed performance evaluation results.

Keywords: Multi cloud · Authorization policies · Integration
Event-calculus

1 Introduction

Cloud computing usage and adoption has been on the rise. Major Cloud
providers include Amazon Web Services (AWS), Google Cloud Platform (GCP),
Microsoft Azure and IBM Bluemix. In current architectures, organizations may
need services from more than one Cloud providers. This may be the case for
avoiding vendor lock-in or to simply requiring multiple resources available at
multiple Clouds. This can also be the case of Cloud bursting where a workload
in a private cloud bursts into a public cloud when the need arises.

One of the key challenges in Cloud adoption is security concerns and one app-
roach to handle these concerns is through the use of a security policy. The secu-
rity policy of an organization is a high-level specification of how to implement
security principles. For instance, an organization can specify which users can
access its resources by having an authentication policy. When a user attempts to
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 272–288, 2018.
https://doi.org/10.1007/978-3-030-03638-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_17

Authorization Policies Management within Multi-cloud Environments 273

access a resource, her credentials are matched with the organization’s authenti-
cation policy to identify the validity of user. Once a user has been authenticated,
the authorization process allows to determine who can access what resources,
under what conditions, and for what purpose. The authorization policy of an
organization is the high-level specification of these access control rules. All the
major Cloud providers provide some kind of access control or authorization ser-
vices such as AWS Identity and Access Management (IAM) service. However,
their capabilities, expressiveness and implementations differ.

The security challenges introduced above are further amplified in such Multi-
Cloud environments. In an environment that involves multiple Clouds with dif-
ferent authorization models, different implementations of the same authorization
model and different (possibly conflicting) access control policies, it becomes dif-
ficult to ensure consistency and aggregation. In this paper, we have proposed
a formal Event-Calculus based model to aggregate authorization policies from
multiple Cloud providers. Specifically our contributions include:

Policies aggregation: Our approach can aggregate authorization policies
in Multi-Cloud environments having different authorization models, different
implementations of the same model and with possibly conflicting authorization
policies. Our approach is formal and based on Event-Calculus.
Policy Conflicts Identification: We have identified and categorized policy
conflicts in Multi-Cloud environments. The conflicts include Authorization
model conflicts, Policy conflicts and Policy relationships.
Verification and decision: The proposed approach allows for both design
time verification and for policy evaluation based on actual request. The generic
models are organized such that the instantiated values can be easily changed
without modifying the core models.
Practical Approach: We have used a motivating example based on actual
Cloud providers and a broker providing a Multi-Cloud solution. We have
consistently discussed scenarios from AWS, GCP, Microsoft Azure and
RightScale, when highlighting limitation and contributions.
Tool support: The Event-Calculus models we have proposed are generic.
This approach has allowed us to provide tool support to convert authorization
policies from multiple Cloud providers automatically to Event-Calculus. We
have also presented performance evaluation results to justify the scalability
and practicality of the approach.

2 Background and Related Work

Authorization process is handled by having an authorization policy and the
choice of how the policy is applied can lead to different policy models. User
based access control (UBAC) model allows policies to be directly attached to
a user. Alternatively, in Role Based Access Control (RBAC) model, users are
grouped and assigned roles and then the authorization policies are applied on
the roles. RBAC suffers from one important scalability issue. As the number of

274 E. Zahoor et al.

users and diversity amongst permissions to be assigned to them increases, the
number of roles may eventually surpass number of users [1]. This limitation is
called the role explosion problem. Attribute based Access Control (ABAC) policy
model [2] considers the various components of the authorization process, i.e. the
resources, subjects and environment, to have some attributes. Authorization
policy using ABAC is then considered as a boolean function on these attributes.
ABAC model provides more flexibility and expressiveness than RBAC models
and it can subsume other policy models we discussed as the user and the role (as
needed for UBAC and RBAC respectively) can be considered as an attribute in
an ABAC model. In the domain of Cloud computing, authorization has attracted
research work in two directions. Some work involves handling the security issues
related to the data storage on the Cloud based services and [3] have proposed
Attribute-Based Encryption (ABE) where data is encrypted based on attributes
and only users with the same set of attributes can decrypt the data. Some
other related approaches deal with attribute hierarchies and revocation [4,5]
and keyword search as proposed in [6].

The other direction for authorization in the Cloud concerns the policy lan-
guages for specifying authorization policies. XACML (eXtensible Access Control
Markup Language) is based on the ABAC model. As it is XML based, some
approaches have considered providing formal semantics [7–9,11]. Some seminal
work in policy composition is presented in [12]. Authors have proposed an alge-
bra for policy composition from multiple domains and the approach can handle
heterogeneous and unknown policies. In [13] authors extend XACML to handle
policies from multiple contributors and an entity is first supposed to specify an
integration policy at its own end before merging its policies with another entity.
In [14] authors have proposed a method to integrate policies from multiple clouds
but they take into account homogeneous platforms and the approach is restricted
to OpenStack. In [15], the authors propose an algebra for fine-grained integration
of policies focused on generating XACML policies. In [16], authors introduce a
service brokering scheme to satisfy user requests. A fine grained access control
mechanism for data sharing in cloud federations has been proposed by [17].

From the literature review we can conclude that a number of approaches have
been proposed to provide formal semantics of XACML. Further, there exist some
approaches that address the problem of policy aggregation in distributed envi-
ronments. However, to best of our knowledge there exists no formal approach
that handles the policy aggregation and conflicts identification amongst access
control policies in Multi-Cloud environments, focusing on actual Cloud providers
and Multi-Cloud solutions. In an environment that involves multiple Clouds with
different authorization models, different implementations of the same authoriza-
tion model and different access control policies, it becomes difficult to ensure
consistency. We have both provided an approach for policies aggregation and
have also categorized and proposed approach to identify policy-conflicts in such
environments. Our approach is practical as we have applied our approach on
actual policies from AWS, GCP and Microsoft Azure and have provided tool
support to automatically fetch policies from the cloud providers and convert

Authorization Policies Management within Multi-cloud Environments 275

them to Event-Calculus models. Our work can be compared to [18] in which
authors have proposed verification of Intra and Inter policy conflicts for AWS
IAM policies, but this work concerns Multi-Cloud environments. Our Event Cal-
culus models are optimized (for instance by reducing the number of free vari-
ables) and the proposed approach allows for both design time verification and
for policy evaluation based on actual request.

The significance of our work is highlighted by the still widespread use of
RBAC for policy management in Cloud providers (and imposing limits to handle
the problem of role explosion). The policy management for Multi-Cloud solutions
(such as the one provided by the RightScale) are again based on RBAC and do
not provide options for policy aggregation possibly because of difficulty to handle
multiple Clouds with different authorization models, different implementations of
the same authorization model and different (possibly conflicting) access control
policies.

3 Authorization in the Cloud

Before presenting the proposed approach, we briefly discuss the authorization
services and models provided by major cloud providers including AWS, GCP
and Azure. We would also discuss the case of RightScale Multi-Cloud service
and a motivating example to be used for highlighting our contributions.

3.1 IAM Services by Major Providers

Amazon Web Services (AWS) is the Cloud solution provided by Amazon. It
provides an identity and access management service (IAM) to handle authenti-
cation and authorization of AWS users. IAM is based on policies and they are
high level descriptions that explicitly lists permissions. Each policy has a set of
statements. On a broad level a statement consists of a Resource, Action and an
Effect (whether access is allowed or denied). The policies are stored in a JSON
format. IAM policies can be either directly assigned to IAM Users, the UBAC
policy model, or to IAM Groups. The policy model thus supported by AWS is
both UBAC and RBAC. Role explosion is an issue associated with RBAC and
AWS does impose some IAM limits (for example number of policies attached to
a role). The Google Cloud Identity & Access Management (IAM) is the access
control service provided by Google Cloud Platform (GCP). The service allows
to add users and assign them different roles for different services provided by
GCP. You can use existing roles and also create new roles, by either manually
selecting permissions or inheriting them from an existing role. The authorization
model thus supported by GCP is RBAC. GCP also has a notion of policy and
it is possible to use Google Cloud Resource Manager API to get the IAM access
control policy for the specified project. An example policy is shown in Fig. 1.

Microsoft Azure, like GCP, also uses an RBAC model for authorization
specification. Space limitations restrict us to detail Azure RBAC further. A
number of cloud brokers are also providing Multi-Cloud solutions, such as the

276 E. Zahoor et al.

Fig. 1. An example of GCP IAM policy with two bindings

RightScale Multi Cloud Platform (RightScaleMC). RightScale works with major
cloud providers. They have provided a hierarchical solution based on RBAC.
Two types of accounts are supported, RightScaleAccounts and CloudAccounts.
The RightScaleAccounts are used to access the RightScale dashboard and other
services while the CloudAccounts are linked to the cloud provider account,
for instance an AWS account. As per the authorization model supported by
RightScaleMC, the roles provided by the RightScaleMC include admin, actor and
observer and other roles. The actor role allows to manage all cloud related activ-
ity including launching and terminating servers and running scripts on them.

3.2 Motivating Example

As a motivating example, consider the case when an organization is working on
a project that is using some services (such as storage and computation) from
multiple cloud providers such as AWS, Google Cloud and Microsoft Azure. As
discussed in the previous section, AWS provides both user based access con-
trol (UBAC) and RBAC. GCP and Microsoft Azure both provide RBAC. Con-
sider the case of an employee, named Alice, working on a project, mcProject,
that is using resources from multiple Cloud providers as shown in Fig. 2. In
terms of authorization policies in a Multi-Cloud environment, let us consider
the case of managing policies using the RightScaleMC. As per the authoriza-
tion model supported by RightScaleMC, for our example scenario we can create
a RightScaleAccount named mcProject. We can then create multiple CloudAc-
counts representing our access to multiple cloud providers. Before inviting team
members to the project we need to create roles. We can thus create an actor
role and invite different users including Alice to use our account.

For our motivating example, Alice and other project members are able to
use Multi-Cloud services using a RightScaleMC based approach. However if we
revisit the cloud management roles provided by RightScaleMC, we can identify
that the actor role is not fine grained and although a limited access is needed,

Authorization Policies Management within Multi-cloud Environments 277

Fig. 2. An example Multi-cloud scenario

Alice is allowed to do all the management operations on the Cloud. Principle of
least privilege would require fine grained access and is not currently possible. We
believe that the problem is not of merely increasing the number of roles to match
those of the Cloud providers but rather in key design choices regarding the policy
model. Increase in the number of roles would lead to role explosion. In a Multi-
Cloud environment the role explosion is even more evident and problematic as
the roles from multiple providers need to be aggregated.

4 Policies Aggregation in Multi-cloud Environments

In a Multi-Cloud environment, there is no agreed upon standard view of autho-
rization policies. Different cloud providers may provide different authorization
models, different implementations of the same authorization model and policy
specification approaches. Then, an organization may have its own policies and
thus policy aggregation is a complex process. The proposed approach is formal
and is based on an Attribute Based Access Control (ABAC) model as it can
both handle role explosion and it can subsume RBAC and UBAC.

4.1 Event-Calculus

Event-Calculus (EC) is a logic programming formalism [19] for reasoning about
actions over time. Actions, A, in EC are called events and their occurrence
trigger the state change for time-varying properties called fluents, F . In EC,
fluents represent anything whose value is subject to change over time, for instance
AccessGranted can be a fluent that may hold (is true) at certain time-points and
may not hold at others. Discrete EC limits time-points to integer values and
in this work, we would use the discrete EC and the associated reasoner, called
DECReasoner. Some EC predicates used in this work include happens(e,t), which
states that event e happens at time-point t ; holdsAt(f,t) which states that the

278 E. Zahoor et al.

fluent f holds at time point t and Initiates(e, f, t), which states that a fluent f
holds after timepoint t if event e happens at t.

The choice of EC is motivated by several reasons. EC is highly expressive
and can handle context-sensitive and indirect effects of events and commonsense
law of inertia. EC has an explicit time structure and can be used to model
temporal constraints and environment (for instance, access to some particular
resource should be allowed between specific time intervals). In this context, EC
can be used to model Allen’s intervals. Finally, Event-Calculus is very interesting
as the same logical representation can be used for verification at both design
time (static analysis) and runtime (dynamic analysis and monitoring). The EC
models presented in this work use the discrete Event-Calculus language [20].
Due to space limitations, we would only focus on core concepts1. The variables
used are universally quantified, unless explicitly specified, and their names are
shortened.

4.2 Rules Specification

We start our discussion by first presenting the EC models for the rules construct,
which can be used to specify an access rule.

;Sorts for attributes name/values
sort rule, atname, atvalue predicate AtHasValue (atname, atvalue)
;Fluents for Rules evaluation
fluent RuleTargetHolds(rule), RuleConditionHolds(rule)
fluent RuleEffectIsPermit(rule), RuleIsPermitted/Denied/NotApplicable(rule)
;Events for Rules evaluation
event (Mis)Match(rule), Approve/DenyRule(rule), RuleDsntApply(rule)

;These axioms link fluents with events
Initiates (Match(rule), RuleTargetHolds(rule), time).
Initiates(Approve/DenyRule(rule), RuleIsPermitted/Denied(rule), time).
Initiates(RuleDsntApply(rule), RuleIsNotApplicable(rule), time).

;Conditions on events occurrence
Happens(ApproveRule(rule), time) -> HoldsAt(RuleTargetHolds(rule), time) &
& HoldsAt(RuleEffectIsPermit(rule), time).
Happens(RuleDsntApply(rule), time) -> !HoldsAt(RuleTargetHolds(rule), time).

;Initial state of the Fluents
!HoldsAt(RuleIsPermitted/Denied/NotApplicable(rule),0).
;The goal for the reasoner
HoldsAt(RuleTargetHolds(rule),1) | !HoldsAt(RuleTargetHolds(rule),1).
HoldsAt(RuleIsPermitted/Denied/NotApplicable(rule),2).

Rules Model 1 (Meta-model for IAM Rules)

Each rule has a Target, an Effect and the associated Conditions. In the model
above, we first define some sorts, such as rule, atname and atvalue. These sorts
can be regarded as types and their instances represent individual rules, attribute
names and values respectively. The predicate AtHasValue links attribute name-
value pairs. In EC, a fluent’s value is subject to change over time and we have

1 Complete models can be found at https://www.icloud.com/iclouddrive/
0cwdSlable8lHOX NyBRhf5SA#nordsec.zip.

https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip
https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip

Authorization Policies Management within Multi-cloud Environments 279

defined fluents RuleIsPermitted/Denied/NotApplicable to represent rule state.
We have also defined some events whose occurrence at specific time-points would
affect the fluent state. EC Initiates/Terminates axioms link an event with flu-
ent state, for instance the Initiate axiom states that if the event ApproveRule
happens at time t, the fluent RuleIsPermitted would hold at t+1. Further, we
have defined some constraints on events occurrence. Finally we specify the initial
conditions for the fluents, they do not hold at time-point 0, and the goal for the
reasoner. The core logic includes the Match/Mismatch events occurrence as they
decide if the fluent RuleTargetHolds holds (it can only then be permitted/denied
based on rule effect) or does not hold (rule is considered to be not applicable,
RuleIsNotApplicable). The model above has been intentionally made generic and
can be considered as a meta-model to be included for the specification of any
specific rule. As an example on how to use the generic model, we can both model
the UBAC based IAM rule and RBAC based GCP rule as below.

load includes/rules/... ;generic model files

;load includes/input.e
atname Subject, Object, Action
atvalue Alice, AWSresource, AnyAction
AtHasValue(Subject,Alice). AtHasValue(Object,AWSresource)...
;Attributes would be specified in input.e based on the actual request

rule RuleAWS
;Specifying when the rule target holds
Happens(Match(rule),time) &
AtHasValue(Subject, atvalue1) & AtHasValue(Object, atvalue2) & AtHasValue(Action,
atvalue3) -> atvalue1 = Alice & atvalue2 = AWSresource & atvalue3 = AnyAction.

HoldsAt(RuleEffectIsPermit(RuleAWS),0).

Rules Model 2 (AWS IAM rule specification)

In the model above, we first include the generic meta-model files and then
specify attribute names/values and link them using a predicate AtHasValue.
We name the rule as RuleAWS and define a conditional axiom that the event
Match can only happen if the attribute name value pairs match. The model is
for the UBAC approach as supported by AWS. However, the proposed approach
is generic and is based on ABAC and we can thus easily model any GCP based
rule based on RBAC, as shown below:

...
rule RuleGCP
Happens(Match(rule),time) &
AtHasValue(Subject, atvalue1) & AtHasValue(Object, atvalue2) & AtHasValue
(Action,atvalue3) -> atvalue1=ProjMembers & atvalue2=GCPresource & atvalue3=Read.
HoldsAt(RuleEffectIsPermit(RuleGCP),0).

Rules Model 3 (GCP rule specification)

In order to reason about the above model, we can use the DECReasoner2

which attempts to find a solution (sequence of events) that leads from initial
2 http://decreasoner.sourceforge.net/.

http://decreasoner.sourceforge.net/

280 E. Zahoor et al.

fluents state to the goal. The solution shows which events happen and what
fluents hold true (shown with a plus(+) sign) at specific time-points.

49 variables and 151 clauses
...
0
RuleEffectIsPermit(RuleGCP).
Happens(Match(RuleGCP), 0).
1
+RuleTargetHolds(RuleGCP).
Happens(ApproveRule(RuleGCP), 1).
2
+RuleIsPermitted(RuleGCP).

Solution 1 (Rule evaluation using DECReasoner)

The solution above shows that as the attributes values are intentionally same
(in practice they would be populated based on the request) as the ones specified
in the rule, the rule target thus holds. Change in attributes will provide a different
solution where the event mismatch would happen and the rule would not apply.
Once the target of the rule holds, it is then evaluated based on its Effect that is
to either Permit or Deny. For the above rule, the effect was to permit access.

4.3 Authorization Composition

In order to provide an authorization model in a Multi-Cloud environment, rules
may need to be aggregated. This poses heterogeneity issues as the authorization
model by AWS is more high-level than of the one of GCP and Azure. In AWS,
policies contain multiple rules (statement in AWS) based on objects and actions.
GCP policies are different and they represent members assignment to the roles.
Azure also has the concept of a policy (although currently in the preview) but
it is different from the authorization policies. There are multiple approaches to
handle this heterogeneity. First, we can unwrap an AWS policy and consider
only AWS statements and then they can be combined with GCP and Azure
RBAC rules. This approach would result in better performance as we have less
constructs. As an alternative, we can group multiple rules for a GCP/Azure role
in a Policy and then it can be assigned to a Role. Finally, we can group each
GCP and Azure rule in a Policy of its own to be aggregated with other policies in
a PolicySet. The proposed approach is able to handle all the options above but
due to space limitations we would not discuss PolicySets needed to aggregate
policies.

Authorization Policies Management within Multi-cloud Environments 281

sort policy predicate PolicyHasRule(policy, rule)
;Fluents for Policy State/Evaluation
fluent PolicyIsPermitted/Denied(policy)
;Events for Policy State Change
event Approve/DenyPolicy(policy)
;Initiates Axioms for Events/Fluents
Initiates(Approve/DenyPolicy(policy), PolicyIsPermitted/Denied(policy), time).

;permit if even one of the rule is permitted - permit overrides
Happens(ApprovePolicy(policy), time) -> {rule} PolicyHasRule(policy, rule) &
HoldsAt(RuleIsPermitted(rule), time).
;Initial conditions for fluents
!HoldsAt(PolicyIsPermitted/Denied(policy),0).

Policy Model 1 (Meta-model for Policies)

In addition to conflict detection, the proposed approach can be used to model
other combination algorithms such as Permit Overrides and Deny Overrides.
Further, the combining algorithms can be based on temporal, cardinality (for
instance decision is based on majority x out of y rules), trust and other aspects.

;Permit if even one of the rules is permitted - permit overrides
Happens(ApprovePolicy(policy), time) -> {rule} PolicyHasRule(policy, rule) &
HoldsAt(RuleIsPermitted(rule), time).
;Deny if all of the rules are denied
Happens(DenyPolicy(policy), time) & PolicyHasRule(policy, rule) ->
HoldsAt(RuleIsDenied(rule), time).

Policy Model 2 (Meta-model for Policies - Combining Algorithms)

In order to see an example of policy composition, we instantiate the generic
Policy model shown above. Let us consider the following rules: RuleGCP and
RuleAWS were discussed in the previous section and similarly let us consider
that we have RuleAzure and RuleOrg representing the authorization rules at
Microsoft Azure and the Organization itself respectively.

;Load generic models for rules/policies and instantiated rules
load includes/rules/... load includes/policy/...
load includes/rules/defined/RuleAWS... /RuleGCP/RuleAzure/RuleOrg.e

policy CompositePolicy
PolicyHasRule(CompositePolicy, RuleGCP/RuleAzure...).
;Goal: Decide if the policy is permitted/denied
HoldsAt(PolicyIsPermitted(policy),3) | HoldsAt(PolicyIsDenied(policy),3).

Policy Model 3 (Policy Specification)

In the model above, we have already defined the model for rules and we add
them to a policy using the predicate PolicyHasRule. The result returned by the
DECReasoner is shown below. As only one rule RuleAWS matches the input,
the event Match happens for RuleAWS and the event Mismatch happens for
all others. Only one rule is thus permitted and all others are not applicable. As
the rule combination algorithm is permit-overrides, then at time-point 2, event
ApprovePolicy happens and the policy is considered permitted.

282 E. Zahoor et al.

0
RuleEffectIsPermit(RuleAWS/RuleAzure/RuleGCP...).
Happens(Match(RuleAWS), 0).
Happens(Mismatch(RuleAzure/RuleGCP/RuleOrg), 0).
1
+RuleTargetHolds(RuleAWS).
Happens(ApproveRule(RuleAWS), 1).
Happens(RuleDoesntApply(RuleAzure/RuleGCP/RuleOrg), 1). 2
+RuleIsPermitted(RuleAWS).
+RuleIsNotApplicable(RuleAzure/RuleGCP/RuleOrg).
Happens(ApprovePolicy(CompositePolicy), 2).
3
+PolicyIsPermitted(CompositePolicy).

Solution 2 (Policy evaluation result by DECReasoner)

5 Authorization Conflicts in Multi-cloud Environments

Authorization conflicts in Multi-Cloud environments can be categorized as syn-
tactic and semantic based conflicts. Syntactic conflicts include namespace con-
flicts and they can be handled by syntactically matching policies and using better
naming conventions. Policy redundancy on a basic level can also be considered
as syntactic conflict (however redundancy is more semantic than syntactic). In
this work we would focus only on semantic conflicts.

5.1 Policy Conflicts

Policy conflicts arise when the decision returned by a policy (including multiple
rules) is conflicting, that is, one policy returns Permit and the other Deny. As
each Cloud provider is in charge of its own resources and as the rules are defined
on Objects, it is unlikely that for any local object, aggregating policies from
multiple Clouds would result in a conflict. This can be handled by intra and
inter-policy conflicts identification within a Cloud, for instance in [18] we have
proposed conflicts related to AWS IAM policies. However, an organization may
have its own rules and when combined with the Cloud provider, it may lead
to inconsistencies and conflicts. There are multiple possibilities to handle such
conflicts. One option is to either signal the inconsistency in case of conflicting
policy decision. We can create a EC event InvalidatePolicy and corresponding
fluent PolicyIsInvalid. We can then specify an axiom that event InvalidatePolicy
happens in case of conflicting rules, as in the model below.

...
fluent PolicyIsInvalid(policy) event InvalidatePolicy(policy)
Initiates(InvalidatePolicy(policy), PolicyIsInvalid(policy), time).

;Policy is invalid if the rule outcome is conflicting
Happens(InvalidatePolicy(policy), time) -> {rule1, rule2}
PolicyHasRule(policy, rule1) & PolicyHasRule(policy, rule2)
& HoldsAt(RuleIsPermitted(rule1), time) & HoldsAt(RuleIsDenied(rule2), time)
...

Policy Model 4 (Updated meta-model for policy conflicts)

Authorization Policies Management within Multi-cloud Environments 283

As an alternative we can give policies some precedence, that is in case of
conflicts the higher priority policy should be given preference. For instance, the
RuleOrg should be given preference.

...
;Policy is permitted iff the rule from the organization says so
Happens(ApprovePolicy(CompositePolicy), time) & PolicyHasRule
(CompositePolicy, RuleOrg) -> HoldsAt(RuleIsPermitted(RuleOrg), time)
...

Policy Model 5 (Updated instantiated model for policy conflicts)

5.2 Policy Relationships

Policy redundancy can be considered as syntactic and semantic based conflict.
On a basic level we can syntactically check rules for redundancy and remove
the ones having same set of subject, object, effect and contextual information.
However such syntactic comparison may be less useful where the redundancy is
between relations of semantic of attributes. In general, a rule within a policy can
be considered as redundant when it does not change the outcome of the policy
decision.

For instance if an AWS policy contains a statement (rule) that Alice is per-
mitted to write on a resource. If the same policy contains another statement
(rule) that the role to which Alice belongs (ProjectMembers) is allowed to have
write access on the same resource, the first statement can be considered as redun-
dant. In this example the relationship is between the subject of the authorization
rule but this can also be extended to include objects, actions and even context.
For instance consider another statement (rule) that the role ProjectMembers is
allowed to perform any action on all the resources of any particular Cloud. Iden-
tifying and removing policy redundancy is a complex process and out of scope
of this work.

5.3 Authorization Model Conflicts

We finally discuss the inconsistencies arising from heterogeneity in policy models
being used by different Cloud providers. The conflicts can either result from
different authorization model being used by the providers. For instance, AWS
both provides UBAC and RBAC while Azure and GCP support RBAC. In order
to handle this conflict we have based our model on ABAC as it subsumes both
RBAC and UBAC. We detailed our ABAC model in previous section.

The policy aggregation conflicts can also result when the authorization model
is the same at different cloud providers. This is likely the case because of the
difference in implementation of the authorization model. For instance, Azure,
AWS and GCP all provide RBAC but the semantics and implementation are
different. In AWS there is a concept of Policy, which includes authorization
statements, and the policy is assigned to either a User or Role. The concept of
Policy is also there in GCP but it is just a binding of users (members) to the

284 E. Zahoor et al.

roles. The Policy concept in Azure (currently in preview) is different from RBAC
based authorization model and focuses on resources.

Further, in AWS, statements the policy/rule decision can be either Permit
or Deny and you can explicitly specify if the access should be denied. For GCP
and Microsoft Azure, the rule decision can only be to permit and the absence
of a (permit) rule is implicitly to deny the access. To further complicate rule
aggregation, in Microsoft Azure a rule may contain actions as well as nonactions,
which exclude some actions. Nonactions can most likely be better handled by
allowing a rule effect to be deny as well as permit. This poses some challenges
to our EC models and we can thus update our models such that if all the rules
belonging to a policy are evaluated as NotApplicable, the policy is considered as
denied.

;Deny if all the rules are either Denied or NotApplicable
Happens(DenyPolicy(policy), time) & PolicyHasRule(policy, rule) ->
HoldsAt(RuleIsDenied(rule), time) | HoldsAt(RuleIsNotApplicable(rule), time).

Policy Model 6 (Updated Rule Combining Algorithm)

6 Implementation and Performance Evaluation

In order to facilitate the process of fetching policies from the Cloud providers
and reasoning about them, we have developed a Web application3. Manually
writing policies by browsing Cloud service providers is a tedious task since the
number of rules and policies is very large (more than 500 rules for a GCP viewer
role). The Web application has been developed using Django, python 3.6.2 and
Bootstrap 4.0.0.

The first part of the Web application consists of fetching the policies from the
cloud service provider. At the first step, the user can add a provider by clicking
the Add Provider button. This presents the user with a popup where the user
can select a cloud provider from the dropdown menu. The next step of the web
application is dynamically loaded according to the cloud service provider that
the user selected, Fig. 3-A. In the case of AWS, the user has to provide his/her
access key and secret key. In the case of GCP, the user has to provide his/her
resource ID and API key. For Azure, the user has to provide his/her tenant
ID, client ID, key, and subscription ID. When the user presses the Fetch and
Convert Policy button, the web application fetches the policy from the cloud
service provider and displays it in a text box, Fig. 3-B.

The user can then view the aggregated policy (policy gets aggregated when-
ever the user presses the Aggregate button), Fig. 4-A. When the user clicks on the
Invoke DECReasoner button, the aggregated policy gets sent to DECReasoner
and the result is displayed in another text box, Fig. 4-B.

3 Due to space limitations, source code and implementation details are available at
https://www.icloud.com/iclouddrive/0cwdSlable8lHOX NyBRhf5SA#nordsec.zip.

https://www.icloud.com/iclouddrive/0cwdSlable8lHOX_NyBRhf5SA#nordsec.zip

Authorization Policies Management within Multi-cloud Environments 285

Fig. 3. Automatic conversion from Cloud policies to Event-Calculus Models

We have used an Amazon Elastic Compute Cloud (EC2) instance for
the performance evaluation of the proposed approach. The instance type was
m5.2xlarge, having 8 vCPUs and 32 GiB memory running Ubuntu Server 16.04.3
LTS. The DECreasoner version used was modified and improved, as we proposed
in [21]. The performance evaluation results are shown in Fig. 5. The Y-axis shows
the time-taken (in seconds) by increasing the problem size, as shown on the
X-axis. The cases for both design time policy consistency verification (having
axioms to make the fluent PolicyIsInvalid hold in case of inconsistency) and for
policy decision based on authorization requests are shown.

In general, the performance evaluation results are very encouraging and even
for complex policies (having around 200 rules) the approach scales well. In prac-
tice, it is rare to find policies with such number of rules and cloud providers
even pose limits to ease authorization process. DECReasoner uses two phases
for solution computation. In the first phase, it encodes the problem in a SAT
problem and then invokes a SAT solver. From the performance evaluation results

Fig. 4. Invoking DECReasoner for the aggregated policies

286 E. Zahoor et al.

we can see that the solution computation by SAT solver (relsat) scales well. The
Event-Calculus to SAT encoding process poses performance challenges but we
have handled them by intentionally modeling policies using less number of uni-
versally quantified free variables.

Fig. 5. Performance evaluation results

7 Conclusion

In this paper we address the specification and consistency management of autho-
rization policies in Multi-Cloud environments. The proposed approach can aggre-
gate authorization policies having different authorization models, different imple-
mentations of the same model and with different (possibly conflicting) authoriza-
tion policies. The proposed approach is formal and based on ABAC model and
it is by design a generic approach to handle different authorization models. We
have identified and categorized policy conflicts in Multi-Cloud environments. The
conflicts include Authorization model conflicts, Policy conflicts and Policy rela-
tionships. We have consistently discussed scenarios from AWS, GCP, Microsoft
Azure and RightScale, when highlighting challenges and contributions. We have
also provided tool support and presented performance evaluation results to jus-
tify the scalability and practicality of the approach. The performance evaluation
results show that policy evaluation results take less than 3 s to evaluate more
than 200 rules per policy and prove the scalability of our work.

Authorization Policies Management within Multi-cloud Environments 287

References

1. Elliott, A., Knight, S.: Role explosion: acknowledging the problem. In: Proceedings
of the 2010 International Conference on Software Engineering Research & Practice,
SERP 2010, Las Vegas, Nevada, USA, 2 volumes, pp. 349–355, 12–15 July 2010

2. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. NIST Special Publication 800–162 (2014)

3. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: INFOCOM 2010, pp. 534–542 (2010)

4. Zhu, Y., Huang, D., Hu, C., Wang, X.: From RBAC to ABAC: constructing flexible
data access control for cloud storage services. IEEE Trans. Serv. Comput. 8(4),
601–616 (2015)

5. Yang, K., Jia, X.: Expressive, efficient, and revocable data access control for multi-
authority cloud storage. IEEE Trans. Parallel Distrib. Syst. 25(7), 1735–1744
(2014)

6. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: verifiable
attribute-based keyword search with fine-grained owner-enforced search authoriza-
tion in the cloud. IEEE Trans. Parallel Distrib. Syst. 27(4), 1187–1198 (2016)

7. Bryans, J.: Reasoning about XACML policies using CSP. In: SWS, pp. 28–35
(2005)

8. Nguyen, T.N., Thi, K.T.L., Dang, A.T., Van, H.D.S., Dang, T.K.: Towards a flex-
ible framework to support a generalized extension of XACML for spatio-temporal
RBAC model with reasoning ability. In: ICCSA, vol. 5 (2013)

9. Kolovski, V., Hendler, J.A., Parsia, B.: Analyzing web access control policies. In:
WWW, pp. 677–686 (2007)

10. Liang, F., Guo, H., Yi, S., Zhang, X., Ma, S.: An attributes-based access control
architecture within large-scale device collaboration systems using XACML. In:
Yang, Y., Ma, M. (eds.) Green Communications and Networks. Lecture Notes in
Electrical Engineering, vol. 113. Springer, Dordrecht (2012). https://doi.org/10.
1007/978-94-007-2169-2 124

11. Tsankov, P., Marinovic, S., Dashti, M.T., Basin, D.: Decentralized composite access
control. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 245–264.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8 14

12. Bonatti, P.A., di Vimercati, S.D.C., Samarati, P.: An algebra for composing access
control policies. ACM Trans. Inf. Syst. Secur. 5(1), 1–35 (2002)

13. Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino, E.: XACML policy inte-
gration algorithms. ACM Trans. Inf. Syst. Secur. 11(1), 4:1–4:29 (2008)

14. Pustchi, N., Krishnan, R., Sandhu, R.S.: Authorization federation in IAAS multi
cloud. In: Proceedings of the 3rd International Workshop on Security in Cloud
Computing, SCC@ASIACCS 2015, Singapore, Republic of Singapore, pp. 63–71,
14 April 2015

15. Rao, P., Lin, D., Bertino, E., Li, N., Lobo, J.: An algebra for fine-grained integration
of XACML policies. In: Proceedings of 14th ACM Symposium on Access Control
Models and Technologies, SACMAT 2009, Stresa, Italy, pp. 63–72, 3–5 June 2009

16. Ramya, P., Saraswathy, S., Sharmila, S., Sivakumar, S.: T-Broker- a trust-aware
service brokering scheme for multiple cloud collaborative services. IEEE Trans. Inf.
Forens. Secur. 10(7), 1402–1415 (2015)

17. Alansari, S., Paci, F., Sassone, V.: A distributed access control system for cloud fed-
erations. In: International Conference on Distributed Computing Systems (2017)

https://doi.org/10.1007/978-94-007-2169-2_124
https://doi.org/10.1007/978-94-007-2169-2_124
https://doi.org/10.1007/978-3-642-54792-8_14

288 E. Zahoor et al.

18. Zahoor, E., Asma, Z., Perrin, O.: A formal approach for the verification of AWS
IAM access control policies. In: European Conference on Service-Oriented and
Cloud Computing (2017)

19. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Gener. Comput.
4(1), 67–95 (1986)

20. Mueller, E.T.: Commonsense Reasoning. Morgan Kaufmann Publishers Inc.,
California (2006)

21. Zahoor, E., Perrin, O., Godart, C.: An event-based reasoning approach to web
services monitoring. In: ICWS (2011)

Cyber Security and Malware

Cyber Hygiene: The Big Picture

Kaie Maennel(B), Sten Mäses, and Olaf Maennel

TalTech University, Tallinn, Estonia
{kaie.maennel,sten.mases,olaf.maennel}@taltech.ee

Abstract. Cybercrime is on the rise and it’s widely believed that an
appropriate cyber hygiene is essential to secure our digital lives. The
expression “cyber hygiene” appears in conversations, conferences, sci-
entific articles, legal texts, governmental publications and commercial
websites. However, what cyber hygiene is, what is appropriate or opti-
mal cyber hygiene, or what is really meant by this expression and related
practices—that is often varying and even somewhat contradicting. We
review and analyze selected academic papers, government and corporate
publications with the focus on implicit and explicit definitions of what
cyber hygiene means to the authors. We also draw parallels and con-
trast the expression in cyber security context and terminology (cyber
awareness, behavior and culture). We present a conceptual analysis and
propose a definition to assist in achieving a universal understanding and
approach to cyber hygiene. This work is intended to stimulate a clarify-
ing discussion of what appropriate “cyber hygiene” is, how it should be
defined and positioned in the wider cyber security context in order to
help changing the human behavior for achieving a more secure connected
world.

1 Introduction

Human factor is increasingly targeted by cyber criminals. A lot of work is being
done to improve “cyber hygiene”—a term that can be broadly perceived as
creating and maintaining online safety. Unfortunately, the definition of “cyber
hygiene” and its related practices are often varying, and sometimes even some-
what contradicting, therefore hindering the efforts to protect the information
assets. The lax use of the term can lead to situations where efforts to improve
cyber hygiene are not considering the context and have either too mild or too
strong effects. For example, some phishing awareness trainings can create so
much fear in employees that they do not open any e-mail attachments anymore,
including legit ones from paying customers, which has a negative impact on a
company’s productivity [1].

The expression “cyber hygiene” appears in the academic publications, adver-
tisements of commercial cyber security products, and everyday news. However, it
is not used consistently. For example, Wikipedia [5] indicates that cyber hygiene
relates to an individual, whereas the European Union Agency for Network and
Information Security (ENISA) refers to the organizational health (i.e., their
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 291–305, 2018.
https://doi.org/10.1007/978-3-030-03638-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_18&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_18

292 K. Maennel et al.

study [15] focuses on cyber hygiene programs targeted at businesses). In popular
media, the importance of cyber hygiene is often stressed, e.g., “For citizens the
most important thing they have to understand is cyber hygiene.” [9], or used
ambiguously, e.g., “[the organization] could have protected itself with proper
patching and better cyber hygiene” [20].

In this paper, we aim to provide a definition for “cyber hygiene” based on
literature review. We analyze selected academic papers, government and cor-
porate publications with the focus on implicit and explicit definitions of cyber
hygiene. We aim to gather existing knowledge on cyber hygiene and learn its
current use and positioning in information security. The objective is to stimu-
late a discussion within the community. The paper intends to be an initial step
towards a commonly accepted understanding of cyber hygiene. To the best of
our knowledge, this is the first work on a deeper dive on cyber hygiene meaning.

2 Results of Literature Review

The underlying research design consists of two phases. Firstly, conducting liter-
ature search. We put our focus on research papers in 2001–2018 in major sci-
entific databases. In addition, we also consider papers and brochures published
by governmental and corporate organizations. Secondly, the identified literature
is manually reviewed and analyzed for the purpose of definition cleaning and
applying this knowledge in cyber security context.

2.1 Cyber Hygiene in Academic Literature

In our research design we focus on the term “hygiene”, to see how this word
has embedded itself into academic literature in the cyber security context. The
search is limited to academic journals and book chapters, as peer reviewed and
credible academic content. The list of pre-defined search terms and databases
is shown in Table 1. The table presents total search results per database as of
February 2018. The manual review is limited to first 200 results in each database,
as relevance of the papers diminishes and likelihood of finding another topical
article is found to be low. The numbers in brackets indicate those papers, where
the term is used in cyber security context.

There are several attempts to define “cyber hygiene”, but in many instances
the term is used in different contexts without clearly defining it. We firstly look at
the full definitions provided, followed by implications from the context analysis.
As often no clear definition is provided, it has resulted in the various forms of
interpretations and uses of the expression.

Kickpatrick [44] quotes an industry expert who defines cyber hygiene as
“implementing and enforcing data security and privacy policies, procedures, and
controls to help minimize potential damages and reduce the chances of a data
security breach.” The definition is broad, in essence aiming to incorporate proce-
dures and controls of cyber defense in the organizational setting. The main focus
of the article is to give an overview of the market for cyber insurance. Practicing

Cyber Hygiene: The Big Picture 293

Table 1. Scope of literature review search on cyber hygiene and similar terms

Database
hygiene

Cyber
hygiene

Cyber(-)
hygiene

Cyber(-)
security
hygiene

Digital
hygiene

IS
hygiene

Internet
hygiene

Online
hygiene

GoogleScholar 493 (9) 24 (3) 41 (0) 104 (0) 11 (0) 41 (0) 26 (0)

Scopus 16 (6) 7 (6) 2 (2) 431 (0) 102 (0) 0 (0) 539 (0)

ACM Digital 7 (0) 0 (0) 0 (0) 14 (0) 49 (1) 11 (0) 1 (0)

EBSCOHost 4 (4) 4 (4) 4 (4) 6 (1) 1 (0) 15 (0) 24 (0)

IEEEXplore 69 (2) 2 (2) 90 (4) 610 (0) 208 (1) 267 (0) 436 (0)

ScienceDirect 195 (13) 1 (1) 171 (0) 41 (0) 8 (0) 39 (0) 76 (0)

SpringerLink 25 (1) 25 (1) 3 (0) 1 (0) 0 (0) 1 (0) 2 (0)

Taylor &
Francis

16 (3) 1 (0) 0 (0) 0 (0) 0 (0) 1 (0) 0 (0)

cyber hygiene is brought out also in other cyber insurance related articles, e.g.,
that “cyber-hygiene is important, but this needs to be proven” [25].

Pfleeger et al. [57] define security hygiene as “ways to encourage users of
computer technology to use safe and secure behavior online” and discuss how to
persuade individuals to follow simple, fundamental processes protecting them-
selves and others. The term is used more widely, not only in the cyber context.
The main focus of the article is user awareness and training. Similarly with
training focus, Kiely et al. [13] say that in information security management
people “must not only practice fundamental security “hygiene”—that is, imple-
ment security processes and procedures such as strong and frequently changed
passwords, separation of duties, and so on—but also receive added training for
securing enterprise data, communications, and so on (especially in more com-
plex enterprise systems).” Also, others use the term in training context, e.g.,
“cyber hygiene that trains an educated workforce to guard against errors or
transgressions that can lead to cyber intrusion” [35].

O’Connell [52] describes that a good cyber hygiene is “an essential step in
maintaining a good cyber defence is applying best practices and educating every-
one legitimately using the Internet on good network hygiene.” The author says
that due to increased cyber risk, the “standards for cyber hygiene have elevated,
especially for those who have access to vital information” [52]. This paper does
not define the cyber hygiene, but attributes it to the individuals by indicat-
ing that a good hygiene can be taught and through this cyber hygiene base
line increased. The main focus is “identification and application of rules with a
far better chance of keeping the Internet open and safer for all” [52]. Almeida
et al. [23] say that “cyber hygiene initiatives aim at using cybersecurity best
practices to appropriately protect and maintain systems and devices connected
to the Internet”.

Dodge et al. [31] describe “cyber hygiene” as a cybersecurity role of each
employee with computer, equal with employee responsibility to safeguard his or
her door keys or access codes (comparison to physical world). Singer [63] uses

294 K. Maennel et al.

the expression “to observe basic cyber hygiene” and brings an example of an
organization getting compromised via a memory stick left in the parking lot (only
defined by example). In other cases, the authors only provide an analogy, e.g.,
“best practices starting at an early age, potentially equating good cybersecurity
citizenship with good hygiene such as the importance of washing hands” [61].

Sheppard et al. [62] see it more as a perception, i.e., employee’s “cyber-
hygiene mentality” to prevent the spread of a cyber-attack caused by people
opening infected email links or organizations having lax password security pro-
cesses. They say that cyber hygiene extends to an organization’s supply chain
and that the lack of cyber hygiene hampers the organization’s ability to respond.
Thus, cyber hygiene and adequate protective measures are seen as an approach to
mitigate the consequences of cyber-attacks. The authors bring out inter-company
scope that is not usually mentioned in other articles.

Maybury [49] classifies fostering cyber hygiene (e.g., encrypting data at
rest/in motion, effective identity management, passwords) as part of asymmetry
principle under operations and maintenance. The author also points out that
much of today’s cyber hygiene efforts are toward human element and predicts
that soon they need to focus more on design and architecture [49].

Kerfoort [43] says “companies fail to practice basic cyber hygiene” and cyber
hygiene is mentioned in the context of adopting best practices and standards.
Mouradian says security awareness and training “should also have the goal of
cleaning up cyber hygiene across the board” [51]. Sanders discusses the creation
of cyber security practices in the organization’s culture, including the impact of
a good cyber hygiene to an organization, the role of senior executives (C-suite) in
responding to cyber attacks, and the employees understanding of cyber security
standards [58]. The organizational view is also taken by Beris et al. [24], who
say that when the organization has ensured security hygiene, this can contribute
to the behavior towards compliance. The security hygiene is defined “as process
of identifying and re-designing high-friction security” [24]. The hygiene in these
examples rather implies organizational policies and culture.

Dobbins [30] claims that attackers mostly exploit poor “online hygiene”. The
good online hygiene practices include, among others, avoiding malicious email
attachments, compromised websites, or infected media; employing antivirus and
antispyware scanners; updating applications, software, and operating systems
within 48 h of patches becoming available, etc. [30] This use of expression com-
bines behavioral and technical measures.

However, many authors simply focus on technical measures. [48] refers to
an industry expert: “...how you’ve configured your firewall or do you have a
firewall and how is it configured? Do you have AV? Do you have a patching
regime in place? It’s all good stuff: it’s all good cyber-hygiene!”. Some other
uses in technical context include [59], who says that“...security controls describe
basic cyber hygiene, such as maintaining accurate asset inventories and limiting
network ports and protocols, and will have limited effect against advanced cyber
tactics or even insider threat where there are many more unknowns”, and [32],
who writes that the best way to mitigate the threat is “just ordinary hygiene:

Cyber Hygiene: The Big Picture 295

downloading the patch to keep your software up to date, and making sure your
firewalls are operating”.

Furthermore, it is commonly claimed that cyber hygiene is a protective mea-
sure, e.g., “proper cyber hygiene would prevent most hacking attempts; how-
ever, cyber hygiene is not properly implemented in most organizations” [66],
“such attacks are made possible because organizations are not doing things like
basic cyber-hygiene around patching and understanding where their weaknesses
lie” [47], “poor hygiene is a risk factor” [28], and “adapt to better cyber hygiene
that will make phishing harder to achieve” [27]. The failures are blamed on the
bad hygiene—“the WannaCry attack were criticized for failing to observe basic
cyber hygiene” [19],“users avoid patching regularly or practice weak operational
security (i.e., cyber hygiene)” [39].

Several authors aim to classify user behaviors and incorporate “hygiene” into
their models. Kelley et al. [42] classify user security behaviors in two categories—
cyber hygiene and threat response behavior. Stanton et al. [64] developed a
six-element taxonomy of security behavior that varies along two dimensions:
intentionality and technical expertise. The lowest level of their categorization
is “basic hygiene (novice and benevolent user)”—whose “behavior requires no
technical expertise but includes clear intention to preserve and protect the orga-
nization’s IT and resources.” Another example is by Wang et al., who propose
e-hygiene model in which human factor is the major vulnerability of the informa-
tion security; and “Awareness, Capitals and Abilities form the three dimensions
that information users must act to minimize the risks of information malice” [65].

Some authors use the term in combination with activity, e.g., “cyber hygiene
scans of Internet-facing systems” [16]. This indicates that hygiene can be sepa-
rated from the person and considered as service, i.e., “the underlying infrastruc-
ture is maintained for you, including all patches and required cyber-hygiene” [50].

In Internet of Things (IoT) context, Oravec et al. [53] suggest that “Cyber
hygiene” strategies may soon expand from current computing technologies and
there is need for designing instructional materials in establishing cyber hygiene
routines. In [54], Oravec describes that “individuals engage in some minimal
cyberhygiene routines”. Fabiano [33,34] similarly refers to the need of establish-
ing expert consensus concerning “key risky user behaviors that may undermine
cyberhygiene in IoT environments”.

Overall, we note that the expression is finding its way into academic literature
in the cyber context. However, the “cyber hygiene” has various meanings and
used in many differing contexts in the academic literature. There is no common
approach whether hygiene has behavioral or technical implications, or whether
it is seen at individual or organizational level.

2.2 Cyber Hygiene in Non-Academic Use

For the non-academic publications, we use Google search engine and apply the
same keywords as for academic literature. However, as the Internet content is
extremely varied and rapidly changing, our research design focuses on finding
the main use cases in the United States of America (USA) and European Union

296 K. Maennel et al.

(EU), by international organizations and in the industry guidelines. We use
judgment to assess the reliability and relevance of the source and content for
our research purpose. We present our findings, starting from the governmental
and legal publications as they are in the capacity to set the standards followed
by corporate publications. In the cyber security standards and legislation the
term “cyber hygiene” is rather implicit by establishing set of baseline practices
of safeguarding (controls) to protect against cyber intrusions.

Examples of the USA and EU: In the USA, the “cyber-hygiene” term was
brought into public attention in the five-step National Hygiene Campaign in
April 2014, that was organized by the Center for Internet Security (CIS) and
the Council on CyberSecurity to help preventing hack attacks on computer sys-
tems [45] and promote cyber security as a public “health” issue [12]. The five
steps [12] were simply expressed as: (1) Count, (2) Configure, (3) Control, (4)
Patch, (5) Repeat [45]. An explicit use of the terminology can be found in The
Good Cyber Hygiene Bill [18] that was introduced in June 2017—it is still to
become a law but the draft suggests the National Institute of Standards and
Technology (NIST) to establish a set of baseline voluntary best practices for
safeguarding against cyber intrusions that would be updated annually. NIST
Special Publication [11], provides a catalog of security and privacy controls to
protect organizational operations, organizational assets, individuals, other orga-
nizations, and the state from a diverse set of threats including hostile cyber-
attacks, natural disasters, structural failures, and human errors. Awareness and
training is one of the security controls. There is also a small companies special
publication [10] that provides basic recommendations without forcing the busi-
ness to implement a specific technology. NIST itself offers no definition of cyber
hygiene in the glossary [7].

For the EU, ENISA has issued an overview document about cyber
hygiene [15]. The Interactive Terminology for Europe promotes the definition
of CIS [12]: protecting and maintaining computer systems and devices appro-
priately and using cyber security best practices [9]. ENISA uses analogy that
cyber hygiene should be viewed similarly to personal hygiene and, once prop-
erly integrated, it would consist of simple daily routines, good behaviors and
occasional checks to make sure the organizations’ online health is in optimum
condition [15].

Despite all the Member States having developed their national cyber security
strategies, such strategies have rarely (only in the United Kingdom (UK), France
and Belgium) translated into direct cyber hygiene programs that would provide
guidance around what constitutes good practice, according to [15]:

– The UK has Cyber Essentials guidance to identify the basic technical controls
required to defeat the vast majority of cyber attacks. There are only 5 control
areas and the emphasis is very much on physical infrastructure controls [4];

– France has set 40 Essential Measures for a Healthy Network, produced by
ANSSI10. The foundation guide covers 13 control areas and suggests in-depth
approach. Those controls are focused around standard office systems (separate

Cyber Hygiene: The Big Picture 297

guidance is available for SCADA/ICS systems) [2]. Because of the size and
perceived complexity of the 40 rules, there is a cut down version of 12 rules
to assist small to medium size enterprises [8];

– Belgium has a high level Cyber Security Guide that is split into two parts:
(1) 10 Key Security Principles which should be adopted by every business,
and (2) 10 “must do” security actions which look to turn the principles into
more accessible guidance. It also includes a self-assessment questionnaire [3].

All these initiatives focus largely on the organizational cyber hygiene from
a perspective of technical controls of the organization’s IT system. The human
aspects are considered in various degrees (mainly with focus on awareness) and
various levels of emphasis, e.g., Belgium’s guidance first principle is “implement
user education and awareness” compared to UK 5 cyber essentials that include
none. France recommendation list includes “RULE 39 - Make users aware of
the basic IT rules.” ENISA emphasizes need for a standard approach to cyber
hygiene across all the EU [15]. The new voluntary certification process suggested
in September 2017 by the European Commission will shape the standardization
of cyber hygiene in the EU over coming years.

International Organizations: CIS [12] defines cyber hygiene as a means to
appropriately protect and maintain IT systems and devices and implement cyber
security best practices. Developed by leading experts in the field of security, the
CIS Critical Security Controls (CSCs) are a prioritized, consensus based set of
twenty security controls designed to reduce the risk of cyber attack [12]. Controls
CSC 1 through CSC 5 are considered essential to success. These are referred to
as “Foundational Cyber Hygiene”—the basic things that one must do to cre-
ate a strong foundation for your defense: inventory authorized and unauthorized
devices; inventory authorized and unauthorized software; develop and manage
secure configurations for all devices; conduct continuous (automated) vulnera-
bility assessment and remediation; and actively manage and control the use of
administrative privileges. In addition, the CSC control 17 “Security Skills Assess-
ment and Appropriate Training to Fill the Gaps” [12] addresses the awareness
training by analyzing employees’ skills and behaviors. Periodic testing can be
used to monitor the awareness level among employees as well to measure the
training impact in time. Tripwire report [21] examines implementing security
controls that CIS refers to as “cyber hygiene” and reports that many issues
stem from a lack of basic cyber hygiene and the organizations need to improve
their fundamentals such as addressing known vulnerabilities, ensuring secure
configuration, and monitoring systems for changes. The CIS Controls align with
top compliance frameworks such as NIST, PCI, ISO, HIPAA, COBIT and oth-
ers [12].

Industry Initiatives: Payment Card Industry guidelines involve different lev-
els of content for different types of organization roles, e.g., IT administrators,
developers, and management. The approach is mainly technical and focuses on

298 K. Maennel et al.

educating the users about security standards and best practices [14]. In cloud
and mobile environment, VMware [17] uses cyber hygiene definition when refer-
ring to the basic things that an organization should have in place for cyber
defense. They propose five core principles of cyber hygiene (1. Least Privilege; 2.
Micro-segmentation; 3. Encryption; 4. Multi-factor Authentication; 5. Patching)
as a universal baseline. They also note that mandatory education process should
be in place for everyone.

3 Analysis and Discussion of Findings

Our literature review demonstrates that there is no commonly accepted cyber
hygiene framework and definition. Two themes emerged from the literature:
cyber hygiene as standard (set of practices), and cyber hygiene as behavior.
Both themes were represented both in individual and organizational context.
The literature brought out the interdisciplinary side of the cyber hygiene—it is
about both human behavior and technology. Based on the standards, the cyber
hygiene aspects are often seen as technological, and human side focuses more
on cyber security awareness. What makes finding a common approach more
challenging, is that the concept of cyber hygiene is highly subjective. It is a
human and business problem, not only an IT problem, and no two individuals or
organizations will implement it the same way—that makes it very challenging to
implement or measure it consistently. Nevertheless, having a solid foundation and
at least somewhat similar understanding will help to create a common baseline.

3.1 Origins, Existing Definitions and Use in Other Disciplines

To start with, it is interesting to define the components of the term “cyber
hygiene”: (1) Cyber—relating to or characteristic of the culture of computers,
information technology, and virtual reality, (2) Hygiene—conditions or prac-
tices conducive to maintaining health and preventing disease, especially through
cleanliness [6]. As combined and adapted, a simple definition could be as “con-
ditions or practices to stay secure and prevent attacks related to the information
technology”. When comparing this to the definitions in the dictionaries, then
Wikipedia [5] offers the following definition: “Cyber hygiene is the establishment
and maintenance of an individual’s online safety. It is online analogue of per-
sonal hygiene, and encapsulates the daily routines, occasional checks and general
behaviors required to maintain a user’s online “health” (security).” The further
explanation emphasizes that cyber hygiene relates to individual, rather than a
group or an organization. Collins Online Dictionary [6] proposes (approval is
pending as of August 2018): “Cyber hygiene refers to steps that computer users
can take to improve their cybersecurity and better protect themselves online.
Cyber hygiene habits need to be inculcated by users while using computing
tools.”

In order to find a definition for cyber hygiene that aligns with common under-
standing, it is helpful to understand origins of the word “hygiene”. It originates

Cyber Hygiene: The Big Picture 299

from New Latin hygina, from Greek hugieina, from hugis healthy [6]. Curtis [29]
defines hygiene as “the set of behaviors that animals, including humans, use to
avoid infection.” The humans appear to have hygiene instincts (reactions that
people find hard to explain). Curtis hypothesizes that the disgust is the urge
to avoid disease (stimuli) and “the perception of a disgusting cue should almost
automatically produce a hygienic reaction” independently from conscious deci-
sion making [29]. How can we use this knowledge in cyber hygiene context? The
problem is that most people do not see Internet as harmful, so hygiene reaction
simply does not kick in. In relation to metaphors used in mental models for secu-
rity, Camp [26] describes health and hygiene as one of the metaphors in security
context and specifies that “different examples and metaphors currently used as
inchoate mental models all indicate different responses by the user”.

Looking at the ways how the word “hygiene” has been adopted in other
disciplines, we use “occupational hygiene” as a comparison. The occupational
hygiene definitions include the anticipation, recognition, evaluation and control
elements, and as a discipline it aims separating people from unpleasant, haz-
ardous situations or exposures [38].

3.2 A Definition for Cyber Hygiene

We propose the following definition: “Cyber hygiene is a set of practices aiming
to protect from negative impact to the assets and human life from cyber secu-
rity related risks.” Therefore, secure behavior (in cyber security context) means
implementing cyber hygiene. It should be noted that commonly it is implicitly
indicated that the set of practices named “cyber hygiene” are relatively easy to
perform. Following basic cyber hygiene should be considered as normal as wash-
ing hands before eating (example of traditional hygiene). Nevertheless, similarly
to different general hygiene standards in different contexts (e.g., hospital, restau-
rant, coal mine) cyber hygiene is highly context dependent. The basic level of
cyber hygiene depends on security requirements.

In wider context, the cyber hygiene is an outcome of creating and maintaining
online safety of individual and organization based on their risk assessments and
taking different forms considering the technology they are using. The activities
are same, but performed in the different context (or level). Imagine a university
and a bank—the organizational type and culture provide different hygiene con-
text. For example, an organization can perform or take responsibility for some
of the individual tasks (e.g., patching and software updates are automated and
pushed down to employees by an IT department).

We think of cyber hygiene as set of practices performed to protect from cyber
harm and usually, it is also implied that such practices are relatively simple to
perform. The cyber threats connected to cyber hygiene are mainly focusing on
human factor—whether directly (e.g., phishing email inviting to insert sensitive
data) or indirectly (e.g., people being not motivated to use long and complex
passwords). The “practices” part in the definition indicates behavior that has
technological and psychological aspects. There are many models used to explain
behavior, see Fig. 1.

300 K. Maennel et al.

Fig. 1. Overview of selected behavior models to position cyber hygiene

The summary on Fig. 1 presents in comparative way the key elements of The-
ory of Planned Behavior (TPB) [22], Protection Motivation Theory (PMT) [36],
Knowledge Attitude Behavior (KAB) [60] and Fogg’s Behavioral Model [37]. The
cyber awareness campaigns are aiming to improve the attitude and motivation
for a more secure behavior. The security trainings take a step forward and are
aiming to increase the knowledge and skills related to the secure behavior.

The cyber hygiene is not the process itself, but the set of practices. There-
fore, a cyber hygiene measurement would map out the current practices of the
individuals at a timing of the hygiene level evaluation attempt. It is important to
note that the behavior depends on context and therefore the set of practices (i.e.,
cyber hygiene) can be very different in personal and in organizational settings.
Different context can limit the set of possible behaviors—e.g., an organization
can enforce its security policy by deleting all suspicious emails that are caught
by their firewall.

3.3 Related Terminology and Context

The cyber hygiene should be seen in wider context of cyber security and it is
helpful to compare and contrast it to some other close terms. We consider in rela-
tion to the cyber awareness, behavior and culture to encompass cyber security
framework from individual to organization. Figure 2 illustrates the connections
between related terms. It uses the KAB (knowledge, attitude, behavior) model
described by [56] as the basis to illustrate how cyber hygiene and related terms
are connected to each other.

Cyber Hygiene: The Big Picture 301

Fig. 2. Illustration of cyber hygiene and related terms

Cyber Security Awareness. Hänsch et al. [41] aimed to clarify the term
“security awareness” as it also lacked concise definition. They claim that since
there is no agreement on the term, different (and sometimes not compatible)
ways of raising and measuring security awareness exist—that is a very relevant
observation also for cyber hygiene. They analyze the existing literature and
conclude that “there is no ‘right’ or ‘wrong’ security awareness” and when talking
about it, researchers need to express what they mean by it. They conclude that
there are at least three ways of interpreting the term—perception, behavior and
protection [41]. The awareness brings focus attention on security, and allows
individuals to recognize IT security concerns and respond accordingly [7].

Often cyber hygiene and awareness are used interchangeably. Based on our
suggested definition, the cyber hygiene is a set of practices while security aware-
ness is commonly used connected to security knowledge. Having good cyber
hygiene can be an outcome of awareness, training efforts, individual’s attitudes,
peer pressure, motives, opportunities, etc. However, the awareness does not nec-
essarily translate into behavior or “good” cyber hygiene practices. The focus of
cyber campaigns (e.g., Cyber Security Month, Cyberstreetwise, Stay Safe Online,
etc.) is on awareness raising that is a cornerstone for achieving cyber hygiene.

Security Behavior. Security behavior is closely related to cyber hygiene. When
cyber hygiene is the set of protective practices, then security behavior shows
whether those practices are followed. According to Fogg, the behavior is a prod-
uct of motivation, ability, and triggers and to perform a target behavior, the
person must be sufficiently motivated, have the ability to perform the behavior,
and be triggered to perform the behavior at the same moment [37]. From infor-
mation security viewpoint, Guo [40] proposes a framework for conceptualizing
security-related behavior, as there are the divergent conceptualizations and clas-
sifies security-related behavior into four categories: security assurance behavior,
security compliant behavior, security risk-taking behavior, and security damag-
ing behavior [40]. The taxonomies such as [55] help to determine “good” and
“bad” behaviors related to cyber hygiene, i.e., represent desirable and undesir-
able behavior and are helpful in determining also cyber hygiene levels.

Cyber Security Culture. Security culture based on Mahfuth [46] is “integra-
tion process of beliefs, perceptions, attitudes, values, assumptions and knowledge

302 K. Maennel et al.

that guide, direct and manage employees’ perceptions and attitudes to influence
employees’ security behavior or to find an acceptable behavior for employees
when they are interacting with the information assets in their organizations.”
Cyber security culture is a wide term encompassing cyber security awareness,
secure behavior and cyber hygiene. Cyber security culture is also often mentioned
(e.g., [46]) to affect individual attitude regarding security measures.

4 Conclusion

In order to secure cyberspace, we need to educate every user about the dangers.
For an average internet user, “cyber hygiene” trainings will form the basis of
understanding. However, in order to make this first line of defense most effec-
tive it is important to have a common and solid definition to start from. In this
paper, we provided a definition for the term “cyber hygiene” based on extensive
academic literature review and selection of corporate and governmental publica-
tions in 2001–2018. We analyzed the current usage of expression “cyber hygiene”
in different dimensions to provide the comprehensive understanding of how this
term is used and positioned in the wider information security context. The results
show that cyber hygiene has made its way into the academic and non-academic
use, but the meaning and context varies significantly. Our proposed definition
is aligned with the common and historical use of the word hygiene and aims to
unify the understanding and approaches to support minimizing cybersecurity-
related risks. We hope that this paper can spark some discussions within the
community to build a solid foundation for a proper and secure cyber hygiene
culture in the future.

Acknowledgment. The authors would like to thank Archimedes SA and CybExer
Technologies for their support.

References

1. NIST (2018). https://www.nist.gov/video/youve-been-phished
2. Essential Measures for a Healthy Network, ANSSI. https://www.ssi.gouv.fr/en/

actualite/40-essential-measures-for-a-healthy-network/
3. Belgian Cyber Security Guide, ICC Belgium, FEB, EY, Microsoft, L-SEC, B-

CCENTRE and ISACA Belgium. https://www.b-ccentre.be/wp-content/uploads/
2014/04/B-CCENTRE-BCSG-EN.pdf

4. Cyber Essentials-Keeping UK Businesses Safe, CREST. http://www.
cyberessentials.org/index.html

5. Cyber hygiene. https://en.wikipedia.org/wiki/Cyber hygiene
6. Cyber hygiene. https://www.collinsdictionary.com/submission/1930/

Cyber+hygiene
7. Glossary of Key Information Security Terms, NISTIR 7298, Revision 2,

nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
8. Guide Des Bonnes Pratiques De L’informatique, CGPME / ANSSI. https://www.

ssi.gouv.fr/uploads/2015/03/guide cgpme bonnes pratiques.pdf

https://www.nist.gov/video/youve-been-phished
https://www.ssi.gouv.fr/en/actualite/40-essential-measures-for-a-healthy-network/
https://www.ssi.gouv.fr/en/actualite/40-essential-measures-for-a-healthy-network/
https://www.b-ccentre.be/wp-content/uploads/2014/04/B-CCENTRE-BCSG-EN.pdf
https://www.b-ccentre.be/wp-content/uploads/2014/04/B-CCENTRE-BCSG-EN.pdf
http://www.cyberessentials.org/index.html
http://www.cyberessentials.org/index.html
https://en.wikipedia.org/wiki/Cyber_hygiene
https://www.collinsdictionary.com/submission/1930/Cyber+hygiene
https://www.collinsdictionary.com/submission/1930/Cyber+hygiene
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
https://www.ssi.gouv.fr/uploads/2015/03/guide_cgpme_bonnes_pratiques.pdf
https://www.ssi.gouv.fr/uploads/2015/03/guide_cgpme_bonnes_pratiques.pdf

Cyber Hygiene: The Big Picture 303

9. IATE: Term of the Week-Cyber Hygiene. http://termcoord.eu/2017/10/iate-term-
of-the-week-cyber-hygiene

10. Small Business Information Security: the fundamentals, NIST. http://nvlpubs.nist.
gov/nistpubs/ir/2016/NIST.IR.7621r1.pdf

11. Special Publication 800–53 - NIST Computer Security Resource Center. Ver-
sion 5, August 2017. https://csrc.nist.gov/publications/drafts/800-53/sp800-53r5-
draft.pdf

12. The CIS Critical Security Controls for Effective Cyber Defense. Version 6.1. http://
www.cisecurity.org

13. Systemic security management. IEEE Secur. Privacy 4(6), 74–77 (2006). https://
doi.org/FEC0FD8D-A181-4AFD-BEA7-AEADF75DEE82

14. Information Supplement: Best Practices for Implementing a Security Aware-
ness Program, Security Awareness Program Special Interest Group PCI Secu-
rity Standards Council (2014). https://www.pcisecuritystandards.org/documents/
PCIDSSV1.0BestPracticesforImplementingSecurityAwarenessProgram.pdf

15. Review of cyber hygiene practices. ENISA, Heraklion (2016). http://publications.
europa.eu/publication/manifestation identifier/PUB TP0217008ENN

16. US officially accuses Russia of DNC hack while election systems come under attack.
Netw. Secur. 2016(10), 1–2 (2016). https://doi.org/10.1016/S1353-4858(16)30092-
7

17. Core Principles of Cyber Hygiene in a World of Cloud and Mobility, VMware,
August 2017. https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/products/vmware-core-principles-cyber-hygiene-whitepaper.pdf

18. The good cyber hygiene bill (2017). https://www.congress.gov/bill/115th-
congress/house-bill/3010/text

19. The WannaCry ransomware attack. Strateg. Comments 23(4), vii–ix (2017).
https://doi.org/10.1080/13567888.2017.1335101

20. The week that was, 29 October 2017). https://www.thecyberwire.com/issues/
issues2017/October/WTW 2017 10 29.html

21. Tripwire state of cyber hygiene report, August 2018. https://www.tripwire.com/
misc/state-of-cyber-hygiene-report-register/

22. Ajzen, I.: The theory of planned behaviour: reactions and reflections (2011)
23. Almeida, V.A.F., Doneda, D., de Souza Abreu, J.: Cyberwarfare and digital gover-

nance. IEEE Internet Comput. 21(2), 68–71 (2017). https://doi.org/10.1109/MIC.
2017.23

24. Beris, O., Beautement, A., Sasse, M.A.: Employee rule breakers, excuse makers
and security champions: mapping the risk perceptions and emotions that drive
security behaviors. In: Proceedings of the 2015 New Security Paradigms Workshop
NSPW 2015, pp. 73–84. ACM, New York (2015). https://doi.org/10.1145/2841113.
2841119

25. Bradbury, D.: Insuring against data breaches. Comput. Fraud Secur. 2013(2), 11–
15 (2013). https://doi.org/10.1016/S1361-3723(13)70020-4

26. Camp, L.J.: Mental models of privacy and security. IEEE Technol. Soc. Magaz.
28(3), 37–46 (2009). https://doi.org/10.1109/MTS.2009.934142

27. Chaudhry, J.A., Rittenhouse, R.G.: Phishing: classification and countermeasures.
In: 2015 7th International Conference on Multimedia, Computer Graphics and
Broadcasting (MulGraB), pp. 28–31. IEEE (2015)

28. Craig, J.: Cybersecurity research-essential to a successful digital future. Engineer-
ing 4(1), 9–10 (2018). https://doi.org/10.1016/j.eng.2018.02.006

29. Curtis, V.A.: Dirt, disgust and disease: a natural history of hygiene. J. Epidemiol.
Commun. Health 61(8), 660–664 (2007). https://doi.org/10.1136/jech.2007.062380

http://termcoord.eu/2017/10/iate-term-of-the-week-cyber-hygiene
http://termcoord.eu/2017/10/iate-term-of-the-week-cyber-hygiene
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.7621r1.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2016/NIST.IR.7621r1.pdf
https://csrc.nist.gov/publications/drafts/800-53/sp800-53r5-draft.pdf
https://csrc.nist.gov/publications/drafts/800-53/sp800-53r5-draft.pdf
http://www.cisecurity.org
http://www.cisecurity.org
https://doi.org/FEC0FD8D-A181-4AFD-BEA7-AEADF75DEE82
https://doi.org/FEC0FD8D-A181-4AFD-BEA7-AEADF75DEE82
https://www.pcisecuritystandards.org/documents/PCIDSSV1.0BestPracticesforImplementingSecurityAwarenessProgram.pdf
https://www.pcisecuritystandards.org/documents/PCIDSSV1.0BestPracticesforImplementingSecurityAwarenessProgram.pdf
http://publications.europa.eu/publication/manifestation_identifier/PUB_TP0217008ENN
http://publications.europa.eu/publication/manifestation_identifier/PUB_TP0217008ENN
https://doi.org/10.1016/S1353-4858(16)30092-7
https://doi.org/10.1016/S1353-4858(16)30092-7
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vmware-core-principles-cyber-hygiene-whitepaper.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/products/vmware-core-principles-cyber-hygiene-whitepaper.pdf
https://www.congress.gov/bill/115th-congress/house-bill/3010/text
https://www.congress.gov/bill/115th-congress/house-bill/3010/text
https://doi.org/10.1080/13567888.2017.1335101
https://www.thecyberwire.com/issues/issues2017/October/WTW_2017_10_29.html
https://www.thecyberwire.com/issues/issues2017/October/WTW_2017_10_29.html
https://www.tripwire.com/misc/state-of-cyber-hygiene-report-register/
https://www.tripwire.com/misc/state-of-cyber-hygiene-report-register/
https://doi.org/10.1109/MIC.2017.23
https://doi.org/10.1109/MIC.2017.23
https://doi.org/10.1145/2841113.2841119
https://doi.org/10.1145/2841113.2841119
https://doi.org/10.1016/S1361-3723(13)70020-4
https://doi.org/10.1109/MTS.2009.934142
https://doi.org/10.1016/j.eng.2018.02.006
https://doi.org/10.1136/jech.2007.062380

304 K. Maennel et al.

30. Dobbins, J., et al.: Choices for America in a Turbulent World: Strategic Rethink.
Rand Corporation (2015)

31. Dodge, R., Toregas, C., Hoffman, L.J.: Cybersecurity workforce development direc-
tions. In: HAISA, pp. 1–12 (2012)

32. Emerson, R.G.: Limits to a cyber-threat. Contemp. Politics 22(2), 178–196 (2016).
https://doi.org/10.1080/13569775.2016.1153284

33. Fabiano, N.: Internet of things and blockchain: legal issues and privacy. the
challenge for a privacy standard. In: 2017 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and
IEEE Smart Data (SmartData), pp. 727–734, June 2017. https://doi.org/10.1109/
iThings-GreenCom-CPSCom-SmartData.2017.112

34. Fabiano, N.: The internet of things ecosystem: the blockchain and privacy issues.
the challenge for a global privacy standard. In: 2017 International Conference on
Internet of Things for the Global Community (IoTGC), pp. 1–7, July 2017. https://
doi.org/10.1109/IoTGC.2017.8008970

35. Farwell, J.P., Rohozinski, R.: The new reality of cyber war. Survival 54(4), 107–120
(2012)

36. Floyd, D.L., Prentice-Dunn, S., Rogers, R.W.: A meta-analysis of research on pro-
tection motivation theory. J. Appl. Soc. Psychol. 30(2), 407–429 (2000)

37. Fogg, B.J.: A behavior model for persuasive design. In: Proceedings of the 4th
International Conference on Persuasive Technology, p. 40. ACM (2009)

38. Gardiner, K., Harrington, J.M.: Occupational Hygiene. Wiley, Hoboken (2008)
39. Gartzke, E., Lindsay, J.R.: Weaving tangled webs: offense, defense, and deception in

cyberspace. Secur. Stud. 24(2), 316–348 (2015). https://doi.org/10.1080/09636412.
2015.1038188

40. Guo, K.H.: Security-related behavior in using information systems in the work-
place: a review and synthesis. Comput. Secur. 32, 242–251 (2013)

41. Hänsch, N., Benenson, Z.: Specifying it security awareness. In: 2014 25th Inter-
national Workshop on Database and Expert Systems Applications (DEXA), pp.
326–330. IEEE (2014)

42. Kelley, D.: Investigation of attitudes towards security behaviors. McNair Res. J.
SJSU 14(1), 10 (2018)

43. Kerfoot, T.: Cybersecurity: towards a strategy for securing critical infrastructure
from cyberattacks (2012)

44. Kirkpatrick, K.: Cyber policies on the rise. Commun. ACM 58(10), 21–23 (2015)
45. Magnuson, S.: New cyber hygiene campaign seeks to curtail attacks. Nat. Defense

98(726) (2014)
46. Mahfuth, A., Yussof, S., Baker, A.A., Ali, N.: A systematic literature review: infor-

mation security culture. In: 2017 International Conference on Research and Inno-
vation in Information Systems (ICRIIS), pp. 1–6, July 2017. https://doi.org/10.
1109/ICRIIS.2017.8002442

47. Mansfield-Devine, S.: The death of defence in depth. Comput. Fraud Secur.
2016(6), 16–20 (2016). https://doi.org/10.1016/S1361-3723(15)30048-8

48. Mansfield-Devine, S.: Meeting the needs of GDPR with encryption. Comput. Fraud
Secur. 2017(9), 16–20 (2017). https://doi.org/10.1016/S1361-3723(17)30100-8

49. Maybury, M.T.: Toward principles of cyberspace security. In: Cybersecurity Policies
and Strategies for Cyberwarfare Prevention, pp. 1–12 (2015)

50. Mears, J.: The rise and rise of id as a service. Biometric Technol. Today 2018(2),
5–8 (2018). https://doi.org/10.1016/S0969-4765(18)30023-7

https://doi.org/10.1080/13569775.2016.1153284
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.112
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.112
https://doi.org/10.1109/IoTGC.2017.8008970
https://doi.org/10.1109/IoTGC.2017.8008970
https://doi.org/10.1080/09636412.2015.1038188
https://doi.org/10.1080/09636412.2015.1038188
https://doi.org/10.1109/ICRIIS.2017.8002442
https://doi.org/10.1109/ICRIIS.2017.8002442
https://doi.org/10.1016/S1361-3723(15)30048-8
https://doi.org/10.1016/S1361-3723(17)30100-8
https://doi.org/10.1016/S0969-4765(18)30023-7

Cyber Hygiene: The Big Picture 305

51. Mouradian, A.: Employees are lax on cyber fundamentals. Comput. Fraud Secur.
2017(8), 17–18 (2017)

52. O’Connell, M.E.: Cyber security without cyber war. J. Conflict Secur. Law 17(2),
187–209 (2012). https://doi.org/10.1093/jcsl/krs017

53. Oravec, J.A.: Emerging “cyber hygiene” practices for the internet of things (iot):
professional issues in consulting clients and educating users on IOT privacy and
security. In: 2017 IEEE International Professional Communication Conference
(ProComm), pp. 1–5. IEEE (2017)

54. Oravec, J.A.: Kill switches, remote deletion, and intelligent agents: framing every-
day household cybersecurity in the internet of things. Technol. Soc. 51, 189–198
(2017). https://doi.org/10.1016/j.techsoc.2017.09.004

55. Padayachee, K.: Taxonomy of compliant information security behavior. Comput.
Secur. 31(5), 673–680 (2012)

56. Parsons, K., McCormac, A., Butavicius, M., Pattinson, M., Jerram, C.: Determin-
ing employee awareness using the human aspects of information security question-
naire (HAIS-Q). Comput. Secur. 42, 165–176 (2014)

57. Pfleeger, S.L., Sasse, M.A., Furnham, A.: From weakest link to security hero: trans-
forming staff security behavior. J. Homeland Secur. Emerg. Manage. 11(4), 489–
510 (2014)

58. Sanders, R.: Embedding cyber-security into your company’s DNA. People Strategy
39(1), 8–9 (2016)

59. Savold, R., Dagher, N., Frazier, P., McCallam, D.: Architecting cyber defense: a
survey of the leading cyber reference architectures and frameworks. In: 2017 IEEE
4th International Conference on Cyber Security and Cloud Computing (CSCloud),
pp. 127–138. IEEE (2017)

60. Schrader, P.G., Lawless, K.A.: The knowledge, attitudes, & behaviors approach
how to evaluate performance and learning in complex environments. Perform.
Improv. 43(9), 8–15 (2004). https://doi.org/10.1002/pfi.4140430905

61. Shackelford, S.J.: Business and cyber peace: we need you! Bus. Horiz. 59(5), 539–
548 (2016). https://doi.org/10.1016/j.bushor.2016.03.015. THE BUSINESS OF
PEACE

62. Sheppard, B., Crannell, M., Moulton, J.: Cyber first aid: proactive risk manage-
ment and decision-making. Environ. Syst. Decis. 33(4), 530–535 (2013). https://
doi.org/10.1007/s10669-013-9474-1

63. Singer, P.W.: The ’Ocean’s 11’ of cyber strikes. Armed Forces J. (2012)
64. Stanton, J.M., Stam, K.R., Mastrangelo, P., Jolton, J.: Analysis of end user security

behaviors. Comput. Secur. 24(2), 124–133 (2005)
65. Wang, C.P., Snyder, D., Monds, K.: A conceptual framework for curbing the epi-

demic of information malice: e-hygiene model with a human-factor approach. Int.
J. Inf. Comput. Secur. 1(4), 455–465 (2007)

66. Winkler, I., Gomes, A.T.: Chapter 5 - how to hack computers. In: Winkler, I.,
Gomes, A.T. (eds.) Advanced Persistent Security, pp. 41–46. Syngress (2017).
https://doi.org/10.1016/B978-0-12-809316-0.00005-1

https://doi.org/10.1093/jcsl/krs017
https://doi.org/10.1016/j.techsoc.2017.09.004
https://doi.org/10.1002/pfi.4140430905
https://doi.org/10.1016/j.bushor.2016.03.015
https://doi.org/10.1007/s10669-013-9474-1
https://doi.org/10.1007/s10669-013-9474-1
https://doi.org/10.1016/B978-0-12-809316-0.00005-1

Estimating the Risk of Fraud Against
E-Services

Ahmed Seid Yesuf1(B) and Christian W. Probst2

1 Deutsche Telekom Chair of Mobile Business and Multilateral Security,
Goethe University Frankfurt, Frankfurt, Germany

ahmed.yesuf@m-chair.de
2 High-Tech Transdisciplinary Research Network, Unitec Institute of Technology,

Auckland, New Zealand
cprobst@unitec.ac.nz

Abstract. Industry is continuously developing, deploying, and main-
taining e-services to transform traditional offerings. While protection of
traditional services is well understood, their digital transformation often
is vulnerable to known and new attacks. These vulnerabilities open the
door for fraudsters to exploit the weaknesses of the new systems and asso-
ciated services, causing losses of billions of dollars for global economy.
This development is caused by the ease of developing new offerings, and
the difficulty of performing thorough risk assessment during their design
and development. Traditional risk assessment methodologies need to be
enhanced to include threat scenarios faced by e-services, and to enable
them to match the short development timeframes and to inform the
decision-making process. In this paper we present a fraud risk estima-
tion approach addresses these requirements. Based on a list of threat
scenarios, our approach calculates the potential risk using pre-computed
risk factors, and visualises the analysis result for an informed decision
making. In doing so, our approach increases visibility and awareness of
fraud risks, and reduces the time spent to calculate potential risks at
the design level and throughout development. Together, these properties
make our fraud risk estimation approach ideally suited for constantly
applied, iterative risk analysis.

Keywords: Risk estimation · Risk analysis · E-service · Fraud
Security

1 Introduction

Electronic services or e-services are an umbrella concept for services in different
areas utilising information and communication technologies, most prominently
the Internet. They are different from non-electronic services by their charac-
teristics of continuous improvement and deployment, transparent service feed-
back and rapid development [13]. Examples include e-Government and e-Health,
but also traditional services are increasingly transformed into e-services across
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 306–322, 2018.
https://doi.org/10.1007/978-3-030-03638-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_19&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_19

Estimating the Risk of Fraud Against E-Services 307

domains and industries in the process of streamlining operations and easing
interaction with both existing and novel services of organisations. Not surpris-
ingly, the technological transformation in providing e-services has also led to a
drastic increase of attacks and fraudulent activities by cyber criminals.

According to a report, attacks on e-services produce an estimated loss of
$600 billion in 2017 alone [9]. One of the most important cyber crimes against
e-services is fraud, that is the use of services with no intention of payment [3], and
the misuse of services for individual or organised benefits [2]. Fraudulent attacks
often exploit weaknesses at the social, technical, and economical layer [12]. This
could be avoided if stringent risk assessment would be applied continuously when
new or updated services are planned. However, the ease and speed of develop-
ing and deploying services today is diametrically opposed to the difficulty of
performing risk analysis.

A number of different security risk assessment methods are designed to iden-
tify and analyse different types of risks at a system level [15]. While the applica-
tion of these assessment methods generates a large number of threat scenarios,
there are at least three problems analysing the risk they pose. First, current
approaches collect information about the threat predominantly by brainstorm-
ing or doing expert interviews for further assessment [15]. This is often too
time-consuming a process, but especially so for e-services, considering their char-
acteristics and how little time it requires to release a new service to customers.
Second, an informed decision must be based on a calculation of the potential
risk based on relevant factors leading the threat scenario [8]. When these factors
are unavailable, decisions must be made based on incomplete inputs, and thus
will not be able to address potential risks against the service under assessment.
Third, a large number of threat scenarios could produce a corresponding large
number of risks to the service. The risks or their impact must be presented in
a human-readable format to support decision makers have informed decisions,
which requires tool support.

In this paper, we present Fraud Risk Estimation (FRE), an automated app-
roach that addresses the issues identified above. Fraud Risk Estimation pre-
calculates impact, likelihood, and consequently risks of threats based on different
risk factors. The resulting risks are visualised, to enable analysts to understand
and identify the largest risks and contributing factors. The calculations are per-
formed for different risk factors depending on threat scenarios, and are visualised
to support the decision-making process.

Our approach includes a novel method to address missing or unreliable val-
ues, which are notoriously difficult to account for in established methods. We
introduce sliders inspired by tools for analysing MRI results, where doctors look
for discontinuities in large sets of pictures instead of individual pictures. Sliders
enable the analyst to quickly see the risks for differing values of variables and
the risks these values lead too.

Compared to traditional approaches, our approach has the advantage of
assessing the service in terms of expected risks, directing decision makers to

308 A. S. Yesuf and C. W. Probst

the parts of a service that must be addressed to reduce the potential risks, and
enabling continuous risk analysis throughout the development process.

The rest of the paper is organised as follows. After a discussion of related
work in Sect. 2, we discuss the relevant definitions used to design FRE including
threat scenarios, risk factors and risk metrics in Sect. 3. Then, Sect. 4 presents
the proposed risk estimation approach, its architecture, the process of estimat-
ing risk, and algorithms. Section 5 presents the tool we developed for FRE, an
application of the approach to a case study, and an experiment on the perfor-
mance of the prototype. Section 6 discusses the advantages and weaknesses of
the FRE approach, and Sect. 7 summarises the paper with concluding remarks
and a discussion of future work.

2 Related Work

An important part of cybersecurity frameworks and standards is Security Risk
Assessment (SRA). The NIST Cybersecurity framework [11] and ISO 27001 [7],
for example, provide guidelines to SRAs and how to identify, analyse, and esti-
mate security risks. They require design and implementation steps according to
the type of risks a system or a service encounters. We discuss some exemplary
approaches we thought have applicability for service domains in estimating fraud
risks and compare them to our approach.

Structured Risk Analysis (SRA) is a method to help organisations take ratio-
nal steps to improve their information security [10]. The approach calculates the
actual risk from system vulnerabilities and service threats, and relies on user-
defined qualitative risk metrics. While the process is described very clearly, the
main concerns are the required user inputs and manual computation, and a lack
of visualisation of results.

CORAS is another model-driven SRA [16] with guidelines and steps to per-
form the assessment [1]. CORAS has eight steps, four of them focussing on
context-understanding, and the other four focussing on risk identification, esti-
mation, evaluation, and risk treatment. A software tool represents the context
visually, including unwanted incidents and possible treatments of the risks. Also
CORAS relies on expert input to understand the context and the risk analy-
sis steps, and the risk estimation relies solely on manual computation of risks,
making it difficult to apply for iterative risk analysis with changing context infor-
mation. This is especially relevant for e-services that are continuously developed
and deployed.

Factor Analysis of Information Risks (FAIR) is yet another SRA that takes
different risk factors into account [6]. It qualitatively estimates the impact of
different variables, but it also relies on expert knowledge to estimate the risk.

In contrast to these approaches, our approach supports automated calcula-
tion and visualisation of risks to facilitate informed decision making, and an
easy exploration of potential valuations of factors deemed relevant for a given
scenarios, for example, the likelihood of success, the skill level of a fraud agent,
etc. This is achieved through pre-computation of risk factors to estimate the

Estimating the Risk of Fraud Against E-Services 309

potential risk, and through visualisation of analysis results. These factors are
especially beneficial when expert inputs are incomplete.

Overall, FRE is not designed to substitute the risk assessment process of
well-established SRAs, but complements them through automatic computation
of risks from pre-computed likelihood values, visualising the analysis results to
be understandable by decision makers and supporting iterative risk estimation
when the context of threat agents and defenders is changing.

3 Baseline: Threat Scenarios and Risk Model

We now present our methodology motivated by the related work on risk analysis,
specifically on risk estimation. We define the concept of threat scenarios in e-
services and identify the factors or variables influencing fraud risk of e-services,
followed by the risk metrics for impact and likelihood. Table 1 introduces some
terms used throughout this paper.

Table 1. Concepts and Notations, all mutually exclusive.

Symbol Definition

Fe Fraud enabler
Fagent Fraudster who acts as an

agent
Fthreat A fraud threat i.e., combi-

nation of Fagent and Fe

Tasset Targeted asset direct or in-
direct

Frisk Combination of a Fthreat

and Fe that could affects
Tasset

SLi Skill level of an entity i
SecLi Security level of an entity i

Symbol Definition of Sets

A Actors = H ∪ O
B Actions of actors
C Communication media = N × R ×N
E E-service connections and interac-

tions
H Human actors
I Infrastructures
N E-service nodes = A ∪ B ∪ I ∪ Y
O Organisational actors
Y Assets (service, income, credential,

money)
R Relations, e.g., agreement, partOf,

possesses, communication

3.1 Threat Scenarios in E-Services

Models are widely used to represent software systems, business models, and ser-
vices to enhance understanding and communication between different stakehold-
ers [5]. An e-service model em ⊆ N ×C describes the target of assessment (ToA)
using nodes and interactions between nodes [17].

For instance, the IP-based Private Branch Exchange (IP-PBX) service we
consider in Sect. 5 is an e-service in the Telecom industry that delivers call and
data services using the Internet. IP-PBX switches Voice Over IP to public switch-
ing telephone network. The conceptual model of an IP-PBX system contains

310 A. S. Yesuf and C. W. Probst

independent actors, infrastructure, assets, and different types of connections,
some of which are shown in Table 2.

Table 2. Examples of nodes and connections in the IP-PBX case

Nodes actors (Telecom operator, company, employees, administrators of
IP-PBX), infrastructure (IP-PBX), assets (call, data, call
forwarding service)

Connections 〈company, agreement, Telecom operator〉, 〈employees, partOf,
company〉, 〈company, possession, call service〉, 〈employees,
communication, IP-PBX〉

A fraud agent is a person or a group of organised actors who aim to gain a
benefit by committing fraud. A fraud enabler is an entity with a potential weak-
ness that enables a fraud to happen when exploited by a fraud agent. A fraud
threat is the combination of a fraud agent and one or more fraud enablers. The
threat targets an asset, and its likelihood contributes to the fraud to happen.
These concepts are originally taken from Dubois et al. [4] and adopted for the
context of e-service models [18]. In this paper, we assume the list of threat scenar-
ios to be identified from the model using pattern-based risk identification [14,18],
an efficient technique to quickly assess threats in systems.

In e-service models, a fraud enabler is an actor, an action, an infrastructure,
or a communication medium, a fraud threat Fthreat is (Fagent, Fenabler, Tasset),
with Fagent ∈ A, Fenabler ∈ A ∪ B ∪ C ∪ I, and the target asset Tasset ∈ Y ×
[0, 1] × A, which has an owner and a likelihood of success.

3.2 Risk Factors

Risk factors describe behaviours of entities in an e-service model, and capture
the likelihood of a threat scenario to succeed and contribute to an actual risk.
To estimate the risk of a threat scenario, we analyse fraud threat scenarios and
the behaviours of model entities.

Skill level SLi defines the capability of a fraud agent to exploit a fraud
enabler, resulting in a risk, or of a defender to counter a possible threat. Depend-
ing on the actor, the skill level can be basic, intermediate, or high.

Noticeability is a property of an action to indicate whether a threat scenario
can be identified immediately at the time when a fraudster commits it, and can
be noticeable or unnoticeable. Time-dependent actions are noticeable within a
certain time limit, but time-independent actions require additional effort from
the defenders to be noticeable, otherwise it will stay unnoticeable. For example,
paying a contract fee is a time-dependent action that is required to be paid with
in a week or a month. This action is noticeable after a week or a month.

Security Level SecLi describes the level of protection from a threat for
technical entities in the model, and can be secure, not secure, or unknown. For

Estimating the Risk of Fraud Against E-Services 311

example, the communication between a customer and a service provider using
an uncertified communication medium is not secure.

Resource estimates the required resources to commit a fraud or defend
against it. In this paper, we assume resources to be constant and they play no
role in risk estimation, but could easily be added as another value.

3.3 Risk Metrics

A risk is defined as Frisk = impact× likelihood, leading to qualitative risk metrics
for fraud against e-service assets. Assets can be direct like service and income
generated by the service, or indirect, like credentials and personal identities.

The impact against direct assets is calculated based on the damage to that
specific service in terms of asset value. The impact against indirect assets is
calculated based on its contribution for the damage of direct assets. For example,
when a credential has a direct relation to a direct asset, the asset value of the
credential is the same as that of the asset. Otherwise, the contribution does not
have impact to the direct asset. Based on asset value x and agreed amounty of
the overall asset value, we compute impact:

Impact(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

VeryHigh if x ≥ 4/5y
High if 3/5y ≤ x < 4/5y
Medium if 2/5y ≤ x < 3/5y
Low if 1/5y ≤ x < 2/5y
Negligible if x < 1/5y

The likelihood of a fraud agent to succeed in exploiting a threat is calculated
using the risk factors of fraudsters and defenders. These include the SLf , SLd,
SecLi, noticeability, and resources. Assuming that the required resources are
constant, the likelihood varies depending on the target of the threat. For a threat
(a, e, (t, p, o)) with fraud agent a, enabler e, and targeted asset t, likelihood of
success p, and owner o, there are three cases to consider based on the enabler:

Likelihood((a, e, (t, p, o)), d) =

⎧
⎪⎨

⎪⎩

SLf→d if e ∈ A

SLf→d ∗ noticability if e ∈ B

SLf→d ∗ SecLi if e ∈ I ∪ C

where SLf→d is the skill level of fraudster Fagent against the skill level of the
defender d, which can be an actor, infrastructure, or communication medium. If
the enabler is an actor, the likelihood depends on SLf→d, which is computed by

SLf→d =

⎧
⎪⎨

⎪⎩

Likely if SLf > SLd

Possible if SLf = SLd

Unlikely if SLf < SLd

If the enabler is an action, the likelihood depends also on the noticeability.
Finally, if the enabler is an element of the infrastructure or communication

312 A. S. Yesuf and C. W. Probst

media, the likelihood depends on both SLf→d and the enabler’s security level
SecLe:

SecLe =

⎧
⎪⎨

⎪⎩

Likely if e is not secure
Possible if e is not known
Unlikely if e is secure

4 The Fraud Risk Estimation Framework

The Fraud Risk Estimation framework (FRE) analyses the possibilities of threats
against e-services to succeed, through computing the potential impact, calculat-
ing the overall risk, and visualising the analysis results. Together, these are the
crucial elements to assess the huge number of threat scenarios an e-service may
face, and to enable informed decision making. In this section, we present the
FRE framework and the algorithms applied, as well as a prototype tool.

4.1 The FRE Architecture

The architecture of FRE enables risk estimation by pre-computing the possible
variables for missing values. In other words, FRE automates the risk estimation
process to enable informed decision making. The high-level architecture is shown
in Fig. 1. The process of FRE, as shown in Fig. 2, is a three-stage process based
on input management, risk calculation (impact and likelihood calculations), and
the visualisation of the computed risks.

The input management provides the necessary data to perform the risk esti-
mation as discussed in Sect. 3: an e-service model to assess, a list of identified
threat scenarios, and risk factors. The list of fraud threats contains fraud agent,
fraud enabler, and targeted asset, the risk factors indicate the possibility of a
threat scenario to succeed in producing a potential risk (Sect. 3.2), and the e-
service model is a description or representation of the system with nodes (human
and organisational actors, actions and infrastructure and assets) and interactions
(communications, payment transactions and value exchanges including the cor-
responding asset values), similar to those developed by Yesuf [17,18].

Fig. 1. The Fraud Risk Estimation architecture (the boxes indicate the framework
components and the arrows indicate sequences).

Estimating the Risk of Fraud Against E-Services 313

Fig. 2. The process in FRE.

Algorithm 1 Impact computation
1: procedure computeImpact(t, maxT) � Threat t, max threshold maxT
2: assetV alue ← t.getAssetV alue
3: if assetV alue ≥ 0.8 · maxT then
4: impact ← 5
5: else if assetV alue ≥ 0.6 · maxT & assetV alue< 0.8 maxT then
6: impact ← 4
7: else if assetV alue ≥ 0.4 · maxT & assetV alue< 0.6 maxT then
8: impact ← 3
9: else if assetV alue ≥ 0.2 · maxT & assetV alue< 0.4 maxT then

10: impact ← 2
11: else
12: impact ← 1

13: return impact/5 � divide by 5 to interpret impact between 0 and 1

Algorithm 2 Compute likelihood
1: procedure computeLikelihood(t, rf) � Threat t, risk factor rf
2: fe ← t.getFraudEnabler
3: SL ← compareSkillLevel(rf.getSLF , rf.getSLD)
4: if fe = eservice.ACTOR then
5: likelihood ← SL/3
6: else if fe = eservice.ACTION then
7: u ← rf.getUnnoticeability
8: likelihood ← (SL × U)/6
9: else

10: SecL ← rf.getSecurityLevel
11: likelihood ← (SecL × SL)/9

12: return likelihood

314 A. S. Yesuf and C. W. Probst

Algorithm 3 Calculate risk
1: procedure CalcRisk(ts, rf , maxT) � List of Threats ts, risk factor rf
2: for t in ts do
3: impact ← computeImpact(t, maxT)
4: likelihood ← computeLikelihood(t, rf)
5: risk ← impact × likelihood

6: return listOfRisks

Algorithm 4 Visualise risk
1: procedure GraphVisualizer(rs, rf) � List of Risks rs, risk factor rf
2: set Y axis � values between 0 and 1

3: for i= 0; i< rs.size(); i + + do � adding coordinates for all risks

4: xi.impact ← r.impact �
5: xi.likelihood ← r.likelihood
6: xi.risk ← r.risk
7: addbargraph(xi) � addX − axisxi three-level bar graph

8: return listOfRisks

Based on these inputs, the automated computation performs an impact anal-
ysis, likelihood computation, and risk calculation. The impact analyser computes
the impact of a threat scenario based on the agreement between the service
provider and the user, in which the user agrees to pay a certain amount of fee
for the service (in this case the affected asset). Using the measure for impact
described in the previous section, the impact analyser compares the asset value
against the agreed asset value and produces an estimated impact, ranging from
negligible to high impact, resulting in a list of threat scenarios and their impact
value. In parallel, we pre-compute the likelihood of a threat scenario based on
one or more risk factors depending on the nature of the threat scenario and
considering the three cases described in the previous section.

Based on the results of the impact analyser and the pre-computed likelihoods,
the risk is calculated as their product with a value in the interval [0, 1]. The
output of this component is a list of threat scenarios with their associated risks.
The graph visualizer presents these analysis results in different ways to support
and enhance an informed decision making. It currently presents the calculated
risks either as a single threat scenario or for the whole list of threat scenarios.

For a single threat, the graph visualizer presents the corresponding risk in a
graph for all possible combinations of risk factors pre-calculated in the likelihood
pre-computation. For instance, if the target of the threat is an actor action, the
risk calculation is based on the skill level of the fraud agent, the skill level of the
defender, and the action’s noticeability. Based on the possible values, the risk
values for relevant combinations are shown in a graph. Both presentations of risk
values provide a range of tweaks to observe a high-level overview for potential
risks on an e-service and more specifically the risk of a threat scenario to succeed.

Estimating the Risk of Fraud Against E-Services 315

Algorithms 1, 2, 3, and 4 show the pseudo-code for implementing the FRE
architecture components described in Sect. 4.1, including impact analysis, likeli-
hood computation, risk calculation, and graph visualisation.

Fig. 3. Setting up risk factors in the FRE prototype.

4.2 Prototype Implementation

We have developed a stand-alone prototype1 of FRE, shown in Fig. 3. As men-
tioned in the previous sections, the inputs for FRE are a list of threat scenarios
and an e-service model. The prototype takes only an e-service model as input,
and identifies threat scenarios from the model using pattern-based risk identifica-
tion [14,18]. Each identified threat contains the information described in Sect. 3
about the targeted asset, fraud enabler, affected actor, and potential fraudster.

Risk calculation is performed in two ways: for an individual threat scenario
with all possible pre-calculated likelihoods, or for all threat scenarios with a given
combination of risk factors, which we call slider inputs. These sliders allow an
analyst to quickly change values of all variables, inspired by sliders in tools used

1 https://github.com/ahmedyesuf/FraudRiskEstimator/wiki.

https://github.com/ahmedyesuf/FraudRiskEstimator/wiki

316 A. S. Yesuf and C. W. Probst

Fig. 4. Visualisation of possible risks for a single threat.

Fig. 5. Visualisation of possible risks for all threats.

Estimating the Risk of Fraud Against E-Services 317

in analysing MRI scans, where doctors do not look at the individual images, but
quickly slide through the stack and look for discontinuities and rapid changes.

Based on chosen slider position, the calculated risks are visualised using
graphs. The graph for individual threats as shown in Fig. 4 helps to observe
the risk factors that result in a threat scenario being above or below a certain
risk level. The overview graph for all threat scenarios shown in Fig. 5 helps to
observe how many of the threat scenarios are found to be above or below a
certain risk level given the specific combination of slider inputs. Both ways of
presentation remarkably increase flexibility of displaying analysis results, and
improve the process of an informed decision making.

5 Case Study and Validation

We now apply the FRE framework to a case study from an e-service domain,
namely a telecommunication service [17], and evaluate the performance of the
FRE tool.

5.1 A Telecommunication Case Study

Consider a company that wants to use an IP-based Private Branch Exchange (IP-
PBX) system in their communication system, and has created a post-paid con-
tract with a Telecom service provider.

A postpaid contract is a type of service contract where users have to pay
fees within a certain period of time, in this case every month, based on the
usage of the IP-PBX service by the users of the company. Employees of the
company are the main users of the IP-PBX system with an administrator to
maintain and manage their services. Some of the IP-PBX services include call
forwarding, call services (internal and external), and remote connections to the
PBX system. An employee can use an IP-PBX service to communicate with
internal or external parties, or to connect to the IP-PBX system remotely to
get the same service if the feature is granted by the administrator. The service
provider has the responsibility to transfer the calls and other types of services
to the intended destination. For that, the service provider is supposed to create
agreements with other service providers.

Threat Scenarios. In this case study, different threat scenarios can be identified
due to social, technical, and other weaknesses of the entities of the case study. To
identify them, we have used the fraud threat model designed by Yesuf [18] that
provides us with recurrent problems occurring in most cases of e-service fraud.
Fraud threats include impersonation of actors, time-interval misuses, usage of
services beyond the expected limit, invisible collusion, insecure communication,
and exploitation of infrastructure vulnerabilities. There are more than 31 possi-
ble threat scenarios identified in this cases study. The following are some of the
threat scenarios from each threat model:

318 A. S. Yesuf and C. W. Probst

– Impersonation of employees to get remote credentials so a fraudster can use
it to access the IP-PBX system; affected asset: remote credential; asset value:
same value as direct assets with call and data service.

– Impersonation of IP-PBX admin to get admin credentials so a fraudster
can use calling, administrating and maintain IP-PBX system; affected asset:
admin credentials; asset value: the same or more than the asset value of call-
ing, administrating and maintaining IP-PBX system;

– A fraudster pretends to deliver maintenance work to the Company so that
the fraudster can get company call service and data service; affected asset:
call service; asset value: the same or less than the contact fee between the
service provider and the company;

– Unpaid service payment by the company for the services from the service
provider; affected asset: service provider’s contract fee; asset value: contract
fee;

– Invisible collusion of employees of the company and the other service provider
to increase the income of the other service provider which affects the main
service provider’s income; asset value: income of service provider; asset value:
income of the main service provider.

Risk Estimation. For the IP-PBX case study, the FRE framework computes and
visualises impact, likelihood, and impact for the threat scenarios identified. We
now discuss some of the threats.

The first case is the exploitation of remote credentials through an employee to
establish calls. The remote credential is an indirect asset with a direct relation to
the impact of call services. Thus, the impact of exploiting the remote credential is
as big as the asset value of the call services. Assuming that call services account
for 50% of the contract agreement, the impact of this threat is identified to be
high.

Calculating the likelihood requires to identify the fraud enabler of the threat
scenario, in this case an employee (actor). When the fraud enabler is an actor,
the likelihood is calculated by comparing the skill level SLf of the fraud agent
and the skill level SLd of the defender, which could be the company or the
service provider. Since the skill level is difficult to assess, FRE pre-calculates the
risk for all possible combinations of skill levels. The likelihood pre-calculation
algorithm, for example, computes the likelihood to be intermediate if both SLf

and SLd are intermediate. This results in risk of 0.8 × 0.66 = 0.52. As there are
three possible values of skill level (basic, intermediate and expert), in total, FRE
precomputes 9 different risk values that will be presented in a graph.

The second fraud we consider is enabled by maintenance work, which is an
action. The risk factors for an action are its noticeability and as before skill levels
of the fraud agent and defender, SLf and SLd, respectively. The action can be
noticeable or not, so FRE pre-calculates 18 risk values.

For a fraud agent with intermediate skill level, an expert defender, and an
unnoticeable action, the likelihood of the fraud agent to succeed is unlikely, due
to a computed value of (1 × 2)/6 = 0.5. Getting the company’s call service

Estimating the Risk of Fraud Against E-Services 319

access credential is worth the contract agreement, for which the impact is very
high (=1.0). The risk is therefore 0.5 × 1 = 0.5. This indicates that even though
the impact is very high, the risk would be reduced by having good defense mech-
anisms. The risk can even be reduced further by increasing the noticeability of
this kind of actions, for instance, requesting identity cards from the maintenance
workers before allowing entrance.

The same calculations are performed for all threat scenarios. The resulting
graphs for the IP-PBX case are shown in Fig. 5.

5.2 Experiment: Performance Validation

The models generated for real world scenarios from different domains can be
expected to become fairly large. To assess the scalability of the FRE framework
when analysing large models, we now evaluate its computational performance.

The two FRE components that contribute to the computation are the risk
calculator and the graph visualiser; the other components are inputs contributing
to these components. The input for testing is a list of threats identified in the case
study. To simulate the increased number of threats and observe the performance,
we created larger models from the case study threats, and observed the response
for several iterations. Figure 6 shows the test results, averaged over the iterations.

Fig. 6. The computational performance of FRE framework

The test result shows that the analysis time increases linear in the number of
threats. The risk calculation takes insignificant time compared to the visualisa-
tion, since the computations in the former are relatively straightforward, while
the visualisation uses an external graph library requiring more resources. Over-
all, for the objective of estimating risks for preventive measures, the prototype
can accommodate the increased number of threat scenarios.

320 A. S. Yesuf and C. W. Probst

6 Discussion

Informed preventive measures on e-service fraud are strongly dependent on the
analysis of possible threat scenarios on the target of the assessment and esti-
mating their potential risks. The FRE approach enhances the risk analysis and
estimation by providing an automated computation of risks from a given list of
threat scenarios, visualisation the analysis results and supports repeated analysis
when the context of the threat scenarios is changing.

The FRE approach leverages qualitative risk metrics to compute the impact
and compute the likelihood of threat scenarios. This provides a number of advan-
tages. It is impossible to compute absolute risk factors for new or revised version
of an e-services, as there are limited input data about the risk factors beforehand.
Pre-computing risks requires threshold values for risk factors of threat scenarios,
and having these facilitates the analysis of risks based on possible combinations
of risk factors. Thus, using qualitative risk metrics the FRE approach enables
the automation of risk calculation and visualisation of analysis results.

Another strength of the FRE approach is its scalability. As the evaluation in
the previous section shows, the response time increases linearly in the number of
threats, meaning that also large models can be analysed in short time. This is an
important factor for integrating FRE in a continuous risk assessment approach.

The FRE approach takes the e-service model as input, and uses it to obtain
data of threshold values which uses to compute the impact of threat scenarios.
This does not mean that the risks computed by FRE are dependent on the e-
service model, rather by providing the impact threshold as an input, it is possible
to make the FRE approach independent from requiring e-service models as an
input. The FRE approach currently targets e-services only due to the fact that
our risk factors and metrics are produced from the perspective of the e-service
domain. Yet the FRE approach can easily be extended to other domains by
modifying and adding risk factors based upon the characteristics of relevant
threat scenarios.

7 Conclusion and Future Work

E-services are characterised by rapid development, and continuous improvement
and deployment. Designing and implementing a system or a service requires to
perform risk analysis. Considering the characteristics of e-services, it is crucial
to perform risk analysis and estimation automatically to support the decision-
making process. In this regard, we propose the FRE approach to automatically
compute risks from a list of threat scenarios, and to visualise the risks.

Fraud Risk Estimation remarkably reduces the time spent in computing risks
using manual and traditional approaches by pre-computing the possible risk
factors for threat scenarios. This allows risk analysts to perform iterative risk
analysis by changing the context of threat scenarios within a very little amount
of time.

Estimating the Risk of Fraud Against E-Services 321

Factors for which no estimates are available, or are considered to be untrust-
worthy, FRE introduces variables and computes the risk by making these vari-
ables assume all possible values. For these variables, we introduce sliders that
allow an analyst to quickly change values of all variables. Sliders are inspired by
those used in tools for analysing MRI scans, where doctors do not look at the
indvidual images, but quickly slide through the stack and look for discontinuities
and rapid changes.

In general, as cybercriminals are always coming up with numerous ways of
committing fraud and attacks, security risk analysis needs to be supported with
automated approaches to prevent security and fraud risks before it happens.
Fraud Risk Estimation enables this approach. We are currently working with
experts from different domains on applying FRE to case studies from their
domain, in order to incorporate different risk factors for other types of threat
scenarios.

References

1. Aagedal, J.O., Den Braber, F., Dimitrakos, T., Gran, B.A., Raptis, D., Stolen,
K.: Model-based risk assessment to improve enterprise security. In: Proceedings
of Sixth International Enterprise Distributed Object Computing Conference 2002.
EDOC 2002, pp. 51–62. IEEE (2002)

2. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw.
Comput. Appl. 68, 90–113 (2016)

3. CFCA: Global telecom fraud report. Technical report, Communications Fraud Con-
trol Association (2015)

4. Dubois, É., Heymans, P., Mayer, N., Matulevičius, R.: A systematic approach to
define the domain of information system security risk management. In: Nurcan, S.,
Salinesi, C., Souveyet, C., Ralyté, J. (eds.) Intentional Perspectives on Information
Systems Engineering, pp. 289–306. Springer, Berlin Heidelberg (2010). https://doi.
org/10.1007/978-3-642-12544-7 16

5. Embley, D.W., Thalheim, B. (eds.): Handbook of Conceptual Modeling. Springer,
Berlin Heidelberg, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
15865-0

6. FAIR Institute: Fair (factor analysis of information risks) risk management (2018).
https://www.fairinstitute.org/fair-risk-management

7. ISO/IEC Information security risk management: ISO 27005:2011, Information
technology - Security techniques - Information security risk management (2011)

8. Johansen, I., Rausand, M.: Risk metrics: interpretation and choice. In: 2012 IEEE
International Conference on Industrial Engineering and Engineering Management
(IEEM), pp. 1914–1918. IEEE (2012)

9. McAfee CSIS: Net Losses: Estimating the Global Cost of Cybercrime. Technical
report, McAfee and the Center for Strategic and International Studies (2018)

10. McEvoy, N., Whitcombe, A.: Structured risk analysis. In: Davida, G., Frankel, Y.,
Rees, O. (eds.) InfraSec 2002. LNCS, vol. 2437, pp. 88–103. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45831-X 7

11. NIST: NIST cybersecurity framework, version 1.1. Technical report, National Insti-
tute of Standards and Technology (2018). https://www.nist.gov/

https://doi.org/10.1007/978-3-642-12544-7_16
https://doi.org/10.1007/978-3-642-12544-7_16
https://doi.org/10.1007/978-3-642-15865-0
https://doi.org/10.1007/978-3-642-15865-0
https://www.fairinstitute.org/fair-risk-management
https://doi.org/10.1007/3-540-45831-X_7
https://www.nist.gov/

322 A. S. Yesuf and C. W. Probst

12. Probst, C.W., Willemson, J., Pieters, W.: The attack navigator. In: Mauw, S.,
Kordy, B., Jajodia, S. (eds.) GraMSec 2015. LNCS, vol. 9390, pp. 1–17. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29968-6 1

13. Riedl, C., Leimeister, J.M., Krcmar, H.: Why e-service development is different: a
literature review. e-Serv. J. 8(1), 2–22 (2011)

14. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns: Integrating Security and Systems Engineering. Wiley,
New York (2013)

15. Shameli-Sendi, A., Aghababaei-Barzegar, R., Cheriet, M.: Txonomy o information
security risk assessment (ISRA). Comput. Secur. 57, 14–30 (2016)

16. da Silva, A.R.: Model-driven engineering: a survey supported by the unified con-
ceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015)

17. Yesuf, A.S.: MP-RA: towards a model-driven and pattern-based risk analysis of
e-service fraud. In: Yang, A., et al. (eds.) SERVICES 2018. LNCS, vol. 10975, pp.
172–180. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94472-2 14

18. Yesuf, A.S., Serna-Olvera, J., Rannenberg, K.: Using fraud patterns for fraud risk
assessment of e-services. In: De Capitani di Vimercati, S., Martinelli, F. (eds.)
SEC 2017. IAICT, vol. 502, pp. 553–567. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58469-0 37

https://doi.org/10.1007/978-3-319-29968-6_1
https://doi.org/10.1007/978-3-319-94472-2_14
https://doi.org/10.1007/978-3-319-58469-0_37
https://doi.org/10.1007/978-3-319-58469-0_37

PESTEL Analysis of Hacktivism
Campaign Motivations

Juha Nurmi1,2(B) and Mikko S. Niemelä1,3

1 Cyber Intelligence House Ltd., Singapore, Singapore
{juha,mikko}@cyberintelligencehouse.com

2 Tampere University of Technology, Tampere, Finland
3 Singapore Management University, Singapore, Singapore

Abstract. A political, economic, socio-cultural, technological, environ-
ment and legal (PESTEL) analysis is a framework or tool used to anal-
yse and monitor the macro-environmental factors that have an impact
on an organisation. The results identify threats and weaknesses which
are used in a strengths, weaknesses, opportunities and threats (SWOT)
analysis. In this paper the PESTEL framework was utilized to categorize
hacktivism motivations for attack campaigns against certain companies,
governments or industries. Our study is based on empirical evidence:
of thirty-three hacktivism attack campaigns in manifesto level. Then,
the targets of these campaigns were analysed and studied accordingly.
As a result, we claim that connecting cyberattacks to motivations per-
mits organizations to determine their external cyberattack risks, allowing
them to perform more accurate risk-modeling.

Keywords: PESTEL analysis · Security
Online anonymity · Hacktivism · Cyberattack · Political activism
Strategic management · Risk modeling

1 Introduction

In May 2007, the European Commission published a report “...towards a general
policy on the fight against cyber crime...” where cybercrime is defined as “...crim-
inal acts committed using electronic communications networks and information
systems or against such networks and systems...” [4]. Furthermore, the report
pointed out that cyber attacks are increasing and becoming more sophisticated
and internationalised.

The motivations are not always economical. Instead, hacktivism is a way of
protesting and it is motivated by ideology, religion, social causes or political
opinions [18]. Even many local protests have an aspect of global cyber hack-
tivism [18]. For example, in 2012, the hacker collective, Anonymous, drew atten-
tion to the Anti-Homosexuality Bill in Uganda and attacked several government
websites [18]. These protests had significant economical implications [18].

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 323–335, 2018.
https://doi.org/10.1007/978-3-030-03638-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_20&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_20

324 J. Nurmi and M. S. Niemelä

Fig. 1. The Anonymous hacktivist campaign manifesto (2010), source https://www.
undernews.fr/hacking-hacktivisme/avenge-assange-les-anonymous-s%E2%80%99app-
retent-a-venger-julian-assange.html. Response to the financial companies which
shutdown Wikileaks’ accounts and froze personal assets of Julian Assange (the founder
of Wikileaks).

Anonymous is a loosely-associated international hacktivist group, which only
exists online [9]. The group launched activism operations or campaigns, through
a series of distributed denial-of-service (DDoS) attacks on the government organ-
isations and corporate online systems [9]. A study of these campaigns suggests
that eighty-two percent were motivated by a defense of free speech or political
causes [9].

For instance, in November 2010, Wikileaks (an international non-profit organ-
isation that publishes secret information) released over 251,287 documents (the
United States (U.S.) diplomatic cables leak) [13]. These classified documents
had been sent to the U.S. State Department by its diplomatic consulates and
embassies around the world [13].

In December, financial companies terminated Wikileaks donations [14]. Pay-
pal closed the Wikileaks donation account, the Swiss bank, PostFinance, froze
the assets of Julian Assange (the founder of Wikileaks), and MasterCard and
Visa stopped payments to the organisation [14].

To protest this, the Anonymous group campaigned to assist WikiLeaks in
their quest to release classified government documents. Each Anonymous cam-
paign is accompanied by a manifesto. Figure 1 shows a part of the “Operation
Avenge Assange” manifesto.

As a result, the Anonymous campaign produced DDoS attacks which dis-
abled the PayPal website and disrupted the sites of Visa and MasterCard [12].
According to PayPal, the damage cost the company five million USD [12].

After a number of Anonymous protest attacks, hacktivism was weaponised
by national states [2] and is no longer driven by well-meaning amateurs. Instead,
it is increasingly militarised for geopolitical causes, such as to affect the United
Kingdom European Union membership referendum (2016) and the United States
presidential election (2016) [15]. These attackers are supported by government

https://www.undernews.fr/hacking-hacktivisme/avenge-assange-les-anonymous-s%E2%80%99appretent-a-venger-julian-assange.html
https://www.undernews.fr/hacking-hacktivisme/avenge-assange-les-anonymous-s%E2%80%99appretent-a-venger-julian-assange.html
https://www.undernews.fr/hacking-hacktivisme/avenge-assange-les-anonymous-s%E2%80%99appretent-a-venger-julian-assange.html

PESTEL Analysis of Hacktivism Campaign Motivations 325

institutions to conduct highly specialized attacks with clear a strategy. Hillary
Clinton, after losing the presidential election of 2016, even claimed that Vladimir
Putin has been conducting a “cyber cold war” against the west [15].

2 Background

In this chapter, a basic overview of a PESTEL analysis framework is provided
and a typical hacktivist campaign, manifesto and target list are described.

2.1 PESTEL

In this paper the political, economic, socio-cultural, technological, environment
and legal (PESTEL) framework is employed to categorize hacktivism motivations
for attack campaigns. PESTEL is a framework for strategic analysis [24], which
is also known as PEST analysis [5] and STEPE analysis [16]. Figure 2 represents
possible examples of factors under the PESTEL framework, which influences the
strategy of analysis.

For governments and companies, PESTEL analysis offers two basic functions:
first, it permits the identification of the operational environment and, second, it
provides data and information that will enable the company to predict future
situations and circumstances [24]. The factors examined in current literature are
described.

Political factors indicate the methods through which a government inter-
venes in the economy, for example, through government policy, political stabil-
ity, foreign trade policy, tax policy, labour law, environmental law and trade
restrictions. Accordingly, these political factors impact business performance.
Organizations must respond to the current and anticipated future legislation,
and adjust their operations accordingly.

Fig. 2. Political: A government might influence the economy or a certain industry.
Economic: Performance and patterns of the economy have direct long-term impact.
Social: These factors are cultural trends, demographics and population analytics.
Technological: Innovations in technology influence the operations of the industry.
Environmental: Factors are determined by the surrounding natural environment.
Legal: This includes regulations that affect the business environment and the market.

326 J. Nurmi and M. S. Niemelä

Economic factors include economic growth, interest rates, exchange rates,
inflation, disposable income of consumers and businesses. On occasion, the fac-
tors are categorised into macro-economical and micro-economical factors. Macro-
economical factors involve with the management of demand in a given economy
and micro-economical factors involve, for instance, the amount of money that
customers are able to spend. An economical environment impacts the business
performance of an organisation.

Social factors, also known as socio-cultural factors, are the areas that involve
shared beliefs and attitudes of the population. These factors include population
growth, age distribution, health consciousness, and career attitudes. These fac-
tors are of interest as they permit the marketers to understand the motivational
forces of their customers.

Technological factors change quickly and influence the markets and the man-
agement in three distinct avenues: firstly, in methods of producing services and
products; secondly, in methods of service and product distribution; thirdly, in
methods of communicating with the target markets.

Environmental factors have become important as a result of the increasing
scarcity of raw materials, pollution target requirements, ethical and sustainable
company practices and carbon footprint targets determined by governments.
These are only a few of the issues the marketers face with respect to this factor.
Increasingly, the consumers demand that the products are sourced ethically, and
if possible, from a sustainable source.

Legal factors include health and safety, equal opportunities, advertising stan-
dards, consumer rights and laws, product labeling and product safety. Companies
must be cautious of what is legally permissible in order to trade successfully. If
an organization trades globally, this can become a very complex factor, as each
country possesses its own rules and regulations.

Factors can be classified under multiple categories at the same time. For
instance, carbon footprint targets are considered both political and environmen-
tal factors.

PESTEL has been applied to investigate factors of emergence of cloud com-
puting and similar technologies [1]. Strategic analysis has been proposed as a
method to follow macro-economic and social trends from online data sources
in order to identify and monitor early indicators of security threats [7]. The
United Nations Office on Drugs and Crime The SOCTA Handbook - Guidance
on the preparation and use of serious and organized crime threat assessments
recommends PESTEL analysis for criminal activities [21].

For any organization, PESTEL analysis provides macro-environmental pre-
dictions and risk analysis, which is utilized in strategic management [5,16]. Cur-
rently, however, there is no data available to calculate the risk of hacktivism
against an organization. Without this data, it is difficult to perform accurate risk
management and formulate a risk-based approach to strategy execution [17].

In the U.S., the average cost of cyber attack is estimated to be two million
USD per organization and it is proposed that insurance be utilized as a tool

PESTEL Analysis of Hacktivism Campaign Motivations 327

for cyber-risk management related to information security [8]. It is important to
understand and estimate the risks associated with this proposal.

We selected the PESTEL framework because organizations are already per-
forming PESTEL analyses and PESTEL is already utilized as a tool to assess
organized crime threats. The discussion of this framework will be extended by
mapping cyber attack risks by hacktivist campaigns under the PESTEL frame-
work. This will be completed by compiling research regarding the motivations
of these attacks and identify whether they fit under PESTEL. In addition, we
will validate the identities of the targets selected according to the manifesto and
discuss the impact of the attacks on the targets.

2.2 Hacktivist Campaign Manifestos and Target Lists

The first step of a hacktivist campaign is to publish a manifesto. A manifesto
is a declaration of the intentions and motives of the campaign. Hacktivists pub-
lish their manifestos online and share them on social media. They explain their
motives and intentions to achieve public acceptance for the protest. For instance,
Fig. 3 demonstrates how Anonymous seeks public attention and followers to their
causes to prevent Japan’s whaling program in the Southern Ocean.

The second step of the campaign is to target online services with cyber and
DDoS attacks. After these attacks interfere the online services, Anonymous pub-
lishes new targets. For example, after attacking online services in Japan they
attacked online services in Iceland as well, for selling whale meat. For instance,
the target list of the “OpWhales” attack is shown in Fig. 4.

The target list contains HTTP server domain names, HTTP software names,
port numbers and IP addresses. The list is publicly available and shared on social
media. Anonymous provided DDoS tools for others to participate in the DDoS

Fig. 3. A part of the hacktivist campaign manifesto for “OpWhales”, an operation
in response to the hunting of whales for their meat. Anonymous commands people to
participate in the attack against Japan for lifting the ban on whale hunting.

328 J. Nurmi and M. S. Niemelä

Fig. 4. A target list of an Anonymous hacktivist campaign. Anonymous published a
list of online targets as a part of “OpWhales”. There were multiple similar target lists
during the operation. After targeting online services in Japan, Anonymous targeted
companies in Iceland for selling whale meat.

attack. As a result, an overwhelming amount of HTTP traffic overwhelmed the
sites and prevented these online services from operating normally.

Anonymous shared existing network stress-testing tools which could be uti-
lized to perform a DDoS attack on a target site by overwhelming the server
with HTTP traffic. Web-based tools can be utilized without installation as
they involve a website that executes the attack through a JavaScript code that
launches a flood of traffic from the user’s machine.

People voluntary visited the attack tool site and selected targets from the
target list, despite the fact that in many countries it is illegal to participate in
DDoS attacks. These attacks caused a significant amount of web traffic to the
targeted online services and resulted in an interruption for them.

Declaring participation illegal does not prevent these attacks [22]. There are
multiple techniques available to hide the origin of the attack. Anonymity net-
works, such as the Tor network, hide the IP address of the machine of the user
who participates to the DDoS attack [6,20]. Furthermore, there are anonymous
discussion channels, including the Internet Relay Chat (IRC) program channels
inside the Tor network. These anonymous communication channels are utilized to

PESTEL Analysis of Hacktivism Campaign Motivations 329

coordinate DDoS attacks against the targets. De-anonymisation of these users
or communication channels is technically very difficult [11]. See Fig. 7 in the
Appendix A as an example of an anonymous onion website that shares a tuto-
rial to connect IRC channels that operate inside the Tor network.

3 PESTEL Analysis for Hacktivism Campaign
Motivations

In this chapter, the motivations of hacktivist campaigns are studied and are
classified according to the PESTEL framework.

3.1 Motivations of Hacktivist Campaigns

Hacktivist campaign manifestos and target list data were assembled and studied.
Here, we present thirty-three campaigns between 2011–2018. The motivations of
the campaigns were examined, and we validated the selected targets according
to the motivations. We have gathered these events into one timeline in Table 1
of Appendix B.

Motivations are commonly clearly stated in the manifestos and other pub-
lications of the hacktivist groups [19]. An example of this is the “OpBahrain”
manifesto in Fig. 8 of Appendix C.

We validated that the targets that were selected according to these motiva-
tions. This indicates that campaigns follow their stated motives: the target lists
contains online services of industries, organization and governments which are,
in the hacktivist world view, involved with operations that the they are against.

As a result, we can claim that campaigns have a clear motivation as dictated
in the manifesto and that the campaigns follow their manifestos. The targets
are selected according to manifesto motivation. Hactivism is motivation driven,
indicating that it is reasonable to examine how these motivations are classified
with the PESTEL model.

3.2 Fitting the Motivations to the PESTEL Framework

In Fig. 5, the motivations are placed under political, economical, social, techno-
logical, environmental and legal categories. We selected the most suitable cat-
egory according to the campaign motivations, although, there is no absolute
methodology to perform categorisation and a campaign might fit under more
than one category.

For example, “OpSaveGaza” was against the Israeli bombing of Gaza (polit-
ical), “OpIcarus” was against the dominance of the financial sector (economic),
“OpNoDAPL” was regarding solidarity with Native American protests against
the Dakota Access Pipeline (social), “OpWhales” protested against whale hunt-
ing (environmental), and “OpAbdiMohamed” protested against police violence
in the U.S. (legal).

330 J. Nurmi and M. S. Niemelä

Fig. 5. Hacktivist follow their campaign motives and select targets that are, from their
point of view, involved in unethical activities. These motives can be categorized under
PESTEL: political, economical, social, technological, environmental and legal.

Fig. 6. We fit the motivations under political, economical, social, technological, envi-
ronmental and legal categories. Political motivation is the most popular category.

The motivations of hacktivists targets cover all PESTEL categories, however,
it appears as if technology is not often targeted by hacktivists. Instead, they are
more motivated by political, economical, social, technological, environmental and
legal causes (Pie diagram 6).

This does not indicate that there are no technological motivations for cyber
attacks. Many operations have a distinct technological aspect. Anonymous
published “OpSingleGateway” against Thailand after the passing of technical
surveillance methods, which permitted the government to censor websites and
intercept private communications without a court order or warrant. Notably
there was a “Operation Monsanto” against carcinogenic chemicals in food, which
are produced by Monsanto.

4 Results

In this paper, we have presented how attack campaigns fit under PESTEL at
the level of manifestos. Moreover, we validated that the targets are selected
according to motivations. Finally, we present analysis of these realistic cyber
attack threads to different industries.

I. Political. We demonstrated that hacktivist groups target governments and
companies if they provoke political activism against them. This is the most
frequent cause of the attack.

II. Economical. We indicated that economical decisions and circumstances
can cause hacktivist groups to attack companies and governments.

PESTEL Analysis of Hacktivism Campaign Motivations 331

III. Social. We demonstrated that cases of social causes can result in a swift
hacktivist response against companies and governments.

IV. Technological. We detected that technology itself is seldom the main
reason for attacks.

V. Environmental. We found that environmental causes are common reasons
to launch hacktivist campaigns.

VI. Legal. Our results indicate that a legal atmosphere has activated several
hacktivism campaigns.

Our results demonstrate that governments and companies are able to consider
the risk of cyber attacks when the PESTEL framework is employed in analysis.
For instance, if a company provides services to a whaling industry, they should
prepare to be targeted by hacktivist organisations. There is a significant price
attached to a cyber attack that disturbs their online services [10]. Or, if their
data is stolen during an attack [23].

5 Conclusion

Providing a usable framework to analyse the risk of cyber attack on the Internet
is an ongoing challenge for any organization. Fortunately, because of strategical
analysis, we are able to study the motivations of hacktivism. This permits a
company to forecast whether it is doing something that could motivate attacks
against its online systems.

Because organizations are already applying PESTEL analysis their to macro-
environmental predictions and risk analysis, they could look their organization
from the hacktivism point of view. Strategic management should ask two ques-
tions:

(1) What could cause our organization being targeted by hacktivists?
(2) What is the price of this risk?

After this, the strategic management is able to react accordingly.

6 Discussion

A PESTEL framework is not the only method to analyse risks and opportu-
nities. There are other frameworks available. These tools could be extended
to map cyber security risks. Also, hacktivism is not the only cause of cyber
attacks. Instead, hackers are increasingly supported by government institutions
and conduct highly-specialised attacks. These attacks have strategic and geopo-
litical causes. Previously the actors have been analyzed by Intel which developed
threat agent library (TAL) which describes the human agents that pose threats
to IT systems [3].

The number of effective cyber attacks is increasing steadily. It is possible that
new motivations for these attacks arise and these motivations could be organ-
ised under PESTEL. Clear limitation in our paper is that there is no absolute
methodology for the categorisation of the motivations. Human motivations are

332 J. Nurmi and M. S. Niemelä

various and complex. We need more research to improve understanding of the
motivations to predict hacktivism.

We believe that the price of cyber attacks should be calculated and this
leads to new research questions. More research is needed regarding the effects of
cyber crime and hacktivism. In addition, novel methods to estimate what is the
risk of being targeted by hacktivist groups and how to mitigate these risks are
necessary.

A Discussion Channels Within the Tor Anonymity
Network Are Used to Coordinate DDoS Attacks

Fig. 7. An example of anonymous onion website that shares a tutorial to connect IRC
channels. These services operate inside the Tor anonymity network.

B Hacktivist Campaigns, Motivations and Targets

PESTEL Analysis of Hacktivism Campaign Motivations 333

T
a
b
le

1
.

A
n

a
p
p
ro

x
im

a
te

d
ti

m
el

in
e

o
f

h
a
ck

ti
v
is

t
ca

m
p
a
ig

n
s.

T
h
ir

ty
-t

h
re

e
ca

se
s

w
er

e
ex

a
m

in
ed

fo
r

m
o
ti

va
ti

o
n

a
n
d

ta
rg

et
s.

T
h
e

m
a
in

ta
rg

et
se

ct
o
rs

a
n
d

co
u
n
tr

ie
s

a
re

li
st

ed
h
er

e.
T

h
e

n
u
m

b
er

o
f
ta

rg
et

s
re

fe
rs

to
u
n
iq

u
e

si
te

s
a
n
d

o
n
li
n
e

se
rv

ic
es

w
h
ic

h
w

er
e

a
tt

a
ck

ed
d
u
ri

n
g

th
e

ca
m

p
a
ig

n
.
A

n
o
n
.
re

p
re

se
n
ts

A
n
o
n
y
m

o
u
s,

C
y
F
i
re

p
re

se
n
ts

C
y
b
er

F
ig

h
te

rs
o
f
Iz

z
a
d
-D

in
a
l
Q

a
ss

a
m

,
a
n
d

N
W

H
re

p
re

se
n
ts

N
ew

W
o
rl

d
H

a
ck

er
s.

P
le

a
se

n
o
te

th
a
t

ti
m

el
in

e
is

n
o
t

cl
ea

r
b
ec

a
u
se

m
a
n
y

ca
m

p
a
ig

n
s

fa
il
ed

to
st

a
rt

o
r

w
er

e
re

-l
a
u
n
ch

ed
se

v
er

a
l

ti
m

es
.

T
h
e

m
a
in

ta
rg

et
se

ct
o
rs

a
n
d

co
u
n
tr

ie
s

a
re

li
st

ed
h
er

e.
F
in

a
ll
y,

th
er

e
a
re

ca
te

g
o
ri

es
o
f
m

o
ti

va
ti

o
n

u
n
d
er

th
e

P
E

S
T

E
L

fr
a
m

ew
o
rk

.
N

o
te

th
a
t

se
v
er

a
l

ca
m

p
a
ig

n
s

co
u
ld

in
tu

it
iv

el
y

fi
t

u
n
d
er

m
o
re

th
a
n

o
n
e

ca
te

g
o
ry

.
W

e
se

le
ct

ed
th

e
m

a
in

ca
te

g
o
ry

.

PESTEL Analysis of Hacktivism Campaign Motivations 13
B
eg

an
G
ro

u
p

C
am

p
ai
gn

n
am

e
M

ot
iv
at

io
n
s
an

d
re

as
on

s
in

m
an

if
es
to

M
ai
n

ta
rg

et
co

u
n
tr
ie
s
an

d
in
d
u
st
ri
es

T
ar

ge
ts

C
at

.
02

/2
01

1
A

no
n.

O
pB

ah
ra

in
B

ah
ra

in
in

te
rf

er
ed

pe
ac

ef
ul

pr
ot

es
t

Sa
ud

i
A

ra
bi

a;
go

ve
rn

m
en

t,
av

ia
ti

on
,
ed

uc
at

io
n,

m
ed

ia
,
fin

an
ci

al
,

sp
or

t,
m

ed
ic

al
an

d
en

er
gy

22
P
ol
.

06
/2

01
1

A
no

n.
O

pM
al

ay
si

a
A

ga
in

st
In

te
rn

et
ce

ns
or

sh
ip

in
M

al
ay

si
a

M
al

ay
si

a;
go

ve
rn

m
en

t
an

d
la

w
en

fo
rc

em
en

t
2

P
ol
.

07
/2

01
1

A
no

n.
O

pM
on

sa
nt

o
A

ga
in

st
a

se
ed

s
su

pp
ly

m
on

op
ol

y
an

d
ha

rm
fu

l
fa

rm
in

g
ch

em
ic

al
s

A
gr

ic
ul

tu
ra

l
bi

ot
ec

h
gi

an
t

M
on

sa
nt

o
2

T
ec

.
08

/2
01

2
A

no
n.

O
pM

ya
nm

ar
M

ya
nm

ar
re

fu
se

d
to

re
co

gn
iz

e
th

e
R

oh
in

gy
a

m
in

or
it
y

as
ci

ti
ze

ns
M

ya
nm

ar
;

go
ve

rn
m

en
t,

ed
uc

at
io

n,
m

ed
ia

,
ai

rl
in

es
,

en
er

gy
an

d
te

le
co

m
m

un
ic

at
io

ns
71

L
eg

.

08
/2

01
2

C
yF

i.
O

pe
ra

ti
on

A
ba

bi
l

A
n

an
ti

-I
sl

am
ic

sh
or

t
fil

m
w

er
e

up
lo

ad
ed

to
Y

ou
T
ub

e
in

Ju
ly

20
12

U
SA

;
ba

nk
in

g
an

d
fin

an
ci

al
28

S
o
c.

10
/2

01
2

R
ed

O
ct

ob
er

R
ed

O
ct

ob
er

D
at

a
co

lle
ct

io
n

E
as

te
rn

E
ur

op
e,

ce
nt

ra
l
A

si
a,

sp
ec

ifi
ca

lly
go

ve
rn

m
en

t
em

ba
ss

ie
s,

m
ili

ta
ry

in
st

al
la

ti
on

s,
en

er
gy

pr
ov

id
er

s,
re

se
ar

ch
fir

m
s

N
/A

N
/A

06
/2

01
3

A
no

n.
O

pT
ur

ke
y

R
es

po
ns

e
to

th
e

po
lic

e
cr

ac
kd

ow
n

of
pr

ot
es

ts
an

d
In

te
rn

et
ce

ns
or

sh
ip

T
ur

ke
y;

go
ve

rn
m

en
t,

m
ed

ia
,

po
lit

ic
al

pa
rt

y,
la

w
en

fo
rc

em
en

t,
fi-

na
nc

ia
l
an

d
te

le
co

m
m

un
ic

at
io

ns
32

35
P
ol
.

01
/2

01
4

A
no

n.
O

pW
or

ld
C

up
,

O
pH

ac
ki

ng
C

up
,

O
pM

un
di

al
20

14

A
ga

in
st

co
rr

up
ti

on
an

d
in

eq
ua

lit
y

in
B

ra
zi

l
B

ra
zi

l,
U

SA
;

go
ve

rn
m

en
t,

sp
or

t,
ai

rl
in

es
,

fin
an

ci
al

,
ed

uc
at

io
n,

te
le

co
m

m
un

ic
at

io
ns

,
en

er
gy

an
d

sp
or

t
39

E
co

.

01
/2

01
4

A
no

n.
O

pK
ill

in
gB

ay
,

O
pS

ea
-

W
or

ld
,
O

pW
ha

le
s

P
ro

te
st

ag
ai

ns
t

w
ha

le
hu

nt
in

g
Fa

er
oe

Is
la

nd
s,

Ja
pa

n,
C

hi
na

,
Si

ng
ap

or
e,

U
SA

,
N

or
w

ay
,
Ic

el
an

d,
T
ur

ke
y,

C
an

ad
a;

re
st

au
ra

nt
,

m
ed

ia
,

m
ar

in
e

se
rv

ic
es

,
lo

gi
st

ic
s,

lo
dg

in
g,

go
ve

rn
m

en
t,

fis
hi

ng
,
ai

rl
in

es
an

d
en

te
rt

ai
nm

en
t

40
1

E
n
v
.

07
/2

01
4

A
no

n.
O

pS
av

eG
az

a
P

ro
te

st
ag

ai
ns

t
Is

ra
el

bo
m

bi
ng

G
az

a
Is

ra
el

;
go

ve
rn

m
en

t
16

8
P
ol
.

09
/2

01
4

A
no

n.
O

pT
es

te
t

P
ro

te
st

to
ag

ai
ns

t
T
es

te
t

da
m

pr
oj

ec
t

to
sa

ve
th

e
Si

ve
ns

fo
re

st
,
Fr

an
ce

Fr
an

ce
;
go

ve
rn

m
en

t
an

d
co

ns
tr

uc
ti

on
in

du
st

ry
34

3
E
n
v
.

10
/2

01
4

A
no

n.
O

pH
K

,
O

pH
on

gK
on

g
R

io
t

po
lic

e
us

ed
te

ar
ga

s
an

d
pe

pp
er

sp
ra

y
on

pe
ac

ef
ul

pr
ot

es
te

rs
H

on
g

K
on

g,
C

hi
na

;
m

ed
ia

,
av

ia
ti

on
,
go

ve
rn

m
en

t
an

d
pa

rt
y

18
1

P
ol
.

04
/2

01
5

A
no

n.
O

pB
ea

st
D

em
an

d
of

w
or

ld
w

id
e

ba
n

on
se

xu
al

in
te

rc
ou

rs
e

w
it

h
an

im
al

s
U

SA
,
H

un
ga

ry
,
F
in

la
nd

;
zo

op
hi

lia
an

d
go

ve
rn

m
en

t
43

8
L
eg

.

09
/2

01
5

A
no

n.
O

pN
im

r
C

al
lin

g
on

Sa
ud

i
A

ra
bi

a
to

ha
lt

th
e

ex
ec

ut
io

n
of

A
l-
N

im
r

w
ho

pa
rt

ic
i-

pa
te

d
Sa

ud
i
A

ra
bi

an
pr

ot
es

ts
as

a
te

en
ag

er
Sa

ud
iA

ra
bi

a,
U

A
E

,M
E

N
A

;G
ov

er
nm

en
t,

fin
an

ci
al

,a
vi

at
io

n,
en

-
er

gy
,
m

ed
ia

an
d

ed
uc

at
io

n
13

2
L
eg

.

10
/2

01
5

A
no

n.
O

pS
in

gl
eG

at
ew

ay
A

ga
in

st
In

te
rn

et
ce

ns
or

sh
ip

in
T

ha
ila

nd
T

ha
ila

nd
;
go

ve
rn

m
en

t,
m

ili
ta

ry
an

d
m

ed
ia

94
L
eg

.

11
/2

01
5

T
ur

la
N

/A
R

us
si

an
st

at
e-

sp
on

so
re

d
gr

ou
p

ha
ck

ed
ov

er
10

0
w

eb
si

te
s

G
ov

er
nm

en
ts

an
d

bu
si

ne
ss

es
N

/A
P
ol
.

12
/2

01
5

P
ha

nt
om

Sq
ua

d
N

/A
A

D
D

oS
at

ta
ch

on
M

ic
ro

so
ft

’s
X

bo
x

L
iv

e
se

rv
ic

e
M

ic
ro

so
ft

’s
X

bo
x

L
iv

e
1

T
ec

.
12

/2
01

5
P
ac

kr
at

N
/A

T
ar

ge
ti

ng
So

ut
h

A
m

er
ic

an
co

un
tr

ie
s

w
it

h
m

al
w

ar
e

G
ov

er
nm

en
ts

an
d

bu
si

ne
ss

es
N

/A
N

/A
03

/2
01

6
N

W
H

O
pA

bd
iM

oh
am

ed
P

ro
te

st
in

g
po

lic
e

vi
ol

en
ce

:
a

17
-y

ea
r-

ol
d

A
bd

i
M

oh
am

ed
w

as
sh

ot
by

po
lic

e
w

hi
le

ho
ld

in
g

a
br

oo
m

st
ic

k
U

SA
;
Sa

lt
L
ak

e
C

it
y

po
lic

e,
fin

an
ci

al
an

d
ai

rp
or

t
6

L
eg

.

05
/2

01
6

A
no

n.
O

pI
ca

ru
s

O
p
er

at
io

n
I
C
ar

e,
ag

ai
ns

t
th

e
fin

an
ci

al
se

ct
or

do
m

in
an

ce
M

os
t

of
th

e
co

un
tr

ie
s

in
th

e
w

or
ld

;
fin

an
ci

al
an

d
st

oc
k

ex
ch

an
ge

39
0

E
co

.
08

/2
01

6
A

no
n.

O
pN

oD
A

P
L

So
lid

ar
it
y

w
it

h
N

at
iv

e
A

m
er

ic
an

pr
ot

es
t

ag
ai

ns
t

D
ak

ot
a

A
cc

es
s

P
ip

el
in

e
M

ai
nl

y
U

SA
;
fin

an
ci

al
,
de

fe
ns

e,
m

ili
ta

ry
an

d
go

ve
rn

m
en

t
46

S
o
c.

01
/2

01
7

Fa
nc

y
B

ea
r

A
P

T
28

In
fil

tr
at

in
g

T
V

st
at

io
ns

in
th

e
U

K
T

V
st

at
io

ns
in

th
e

U
K

N
/A

P
ol
.

01
/2

01
7

G
az

a
C

yb
er

ga
ng

N
/A

C
yb

er
es

pi
on

ag
e

ca
m

pa
ig

n
ag

ai
ns

t
go

ve
rn

m
en

ts
in

th
e

M
id

dl
e

E
as

t
A

re
a

G
ov

er
nm

en
ts

in
th

e
M

id
dl

e
E

as
t

ar
ea

N
/A

P
ol
.

02
/2

01
7

N
or

th
K

or
ea

N
/A

M
al

w
ar

e
ca

m
pa

ig
n

ag
ai

ns
t

So
ut

h
K

or
ea

T
he

So
ut

h
K

or
ea

n
go

ve
rn

m
en

t
N

/A
P
ol
.

02
/2

01
7

G
am

ar
ed

on
N

/A
C

yb
er

es
pi

on
ag

e
ca

m
pa

ig
ns

ag
ai

ns
t

th
e

U
kr

ai
ni

an
la

w
en

fo
rc

em
en

t
T

he
U

kr
ai

ni
an

go
ve

rn
m

en
t

N
/A

P
ol
.

02
/2

01
7

A
no

n.
O

pe
ra

ti
on

D
ar

kn
et

B
ri

ng
in

g
do

w
n

da
rk

ne
t

w
eb

si
te

s
th

at
ha

d
ch

ild
po

rn
og

ra
ph

y
Fr

ee
do

m
H

os
ti

ng
II

se
rv

er
s

1
S
o
c.

03
/2

01
7

A
P

T
10

O
pe

ra
ti

on
C

lo
ud

H
op

pe
r A

cc
es

s
to

se
ve

ra
l
M

SP
s,

a
ca

m
pa

ig
n

th
at

ra
n

si
nc

e
20

16
M

aj
or

M
SP

s
N

/A
P
ol
.

12
/2

01
7

A
no

n.
O

pD
om

es
ti

cT
er

ro
ri

sm
T
ak

in
g

do
w

n
12

ne
o-

N
az

i
si

te
s.

T
he

offi
ci

al
w

eb
si

te
of

C
ha

rl
ot

te
sv

ill
e

C
ha

rl
ot

te
sv

ill
e

ci
ty

,
V

ir
gi

ni
a,

go
ve

rn
m

en
t

13
S
o
c.

08
/2

01
7

A
no

n.
N

/A
B

re
ac

h
of

1.
2

m
ill

io
n

pa
ti

en
ts

in
th

e
U

K
N

at
io

na
l
H

ea
lt

h
Se

rv
ic

e
th

e
U

K
N

at
io

na
l
H

ea
lt

h
Se

rv
ic

e
1

N
/A

10
/2

01
7

A
no

n.
O

pe
ra

ti
on

C
at

al
on

ia
T

he
C

at
al

an
in

de
pe

nd
en

ce
cr

is
is

Sp
an

is
h

go
ve

rn
m

en
t

in
st

it
ut

io
ns

N
/A

P
ol
.

02
/2

01
8

G
ro

up
12

3
N

/A
A

to
ta

l
of

si
x

m
al

ic
io

us
ca

m
pa

ig
ns

fo
cu

se
d

on
So

ut
h

K
or

ea
n

ta
rg

et
s

So
ut

h
K

or
ea

n
in

du
st

ri
es

N
/A

P
ol
.

02
/2

01
8

D
ar

k
C

ar
ac

al
N

/A
T
ar

ge
ti

ng
vi

ct
im

s
ar

ou
nd

th
e

w
or

ld
to

co
lle

ct
us

ef
ul

in
fo

rm
at

io
n

G
o v

er
nm

en
ts

,
m

ili
ta

ri
es

,
ut

ili
ty

co
m

pa
ni

es
,
fin

an
ci

al
in

st
it

ut
io

ns
,

m
an

uf
ac

tu
ri

ng
co

m
pa

ni
es

an
d

de
fe

ns
e

co
nt

ra
ct

or
s

N
/A

N
/A

02
/2

01
8

N
/A

T
op

H
at

A
tt

ac
ki

ng
M

id
dl

e
E

as
te

rn
In

te
rn

et
us

er
s

w
it

h
m

al
w

ar
e

In
te

rn
et

us
er

s
in

th
e

M
id

dl
e

E
as

t
N

/A
N

/A

334 J. Nurmi and M. S. Niemelä

C OpBahrain Manifesto by the Anonymous Hacktivist
Group

Fig. 8. A manifesto of a hacktivist campaign. Anonymous published this manifesto
before it launched “OpBahrain” attacks against the Bahrainian government. The man-
ifesto describes clear motivation for the attacks.

References

1. Bakri, N.A.M., et al.: Pestle analysis on cloud computing
2. Caldwell, T.: Hacktivism goes hardcore. Netw. Secur. 5, 12–17 (2015)
3. Casey, T.: Threat agent library helps identify information security risks. Intel

White Paper (2007)

PESTEL Analysis of Hacktivism Campaign Motivations 335

4. Commission, E.: Towards a general policy on the fight against cyber crime. Tech-
nical report, COM (2007) 267 final (2007). http://eur-lex.europa.eu/LexUriServ/
LexUriServ.do?uri=COM:2007:0267:FIN:EN:PDF

5. Dale, C.: The uk tour-operating industry: a competitive analysis. J. Vacation Mark.
6(4), 357–367 (2000)

6. Dingledine, R., Mathewson, N., Syverson, P.: Deploying low-latency anonymity:
design challenges and social factors. IEEE Secur. Privacy 5(5), 83–87 (2007).
https://doi.org/10.1109/MSP.2007.108

7. Gómez-Romero, J., Ruiz, M.D., Mart́ın-Bautista, M.J.: Open data analysis for
environmental scanning in security-oriented strategic analysis. In: 2016 19th Inter-
national Conference on Information Fusion (FUSION), pp. 91–97. IEEE (2016)

8. Gordon, L.A., Loeb, M.P., Sohail, T.: A framework for using insurance for cyber-
risk management. Commun. ACM 46(3), 81–85 (2003)

9. Klein, A.G.: Vigilante media: unveiling anonymous and the hacktivist persona in
the global press. Commun. Monogr. 82(3), 379–401 (2015)

10. Lagazio, M., Sherif, N., Cushman, M.: A multi-level approach to understanding the
impact of cyber crime on the financial sector. Comput. Secur. 45, 58–74 (2014)

11. Nurmi, J., Niemelä, M.S.: Tor de-anonymisation techniques. In: Yan, Z., Molva,
R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394, pp. 657–671.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64701-2 52

12. Published by BBC: Anonymous hackers ‘cost PayPal 3.5m’ (2012). http://www.
bbc.com/news/uk-20449474

13. Published by Der Spiegel: State Department Secrets Revealed, How America Views
the World (2010). http://www.spiegel.de/international/world/state-department-
secrets-revealed-how-america-views-the-world-a-732819.html

14. Published by Der Spiegel: Visa, MasterCard Move To Choke WikiLeaks (2010).
https://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-
move-to-choke-wikileaks/

15. Published by The Guardian: Cyber cold war is just getting started, claims Hillary
Clinton (2017). https://www.theguardian.com/us-news/2017/oct/16/cyber-cold-
war-is-just-getting-started-claims-hillary-clinton

16. Richardson Jr., J.V.: The library and information economy in turkmenistan. IFLA
J. 32(2), 131–139 (2006)

17. Sheehan, N.T.: A risk-based approach to strategy execution. J. Bus. Strategy
31(5), 25–37 (2010)

18. Solomon, R.: Electronic protests: hacktivism as a form of protest in uganda. Com-
put. Law Secur. Rev. 33(5), 718–728 (2017)

19. Taylor, R.W., Fritsch, E.J., Liederbach, J.: Digital Crime and Digital Terrorism.
Prentice Hall Press, New Jersey (2014)

20. The Tor Project Foundation. https://www.torproject.org/
21. UN: United Nations Office on Drugs and Crime the SOCTA Handbook Guidance

on the preparation and use of serious and organized crime threat. United Nations
Office on Drugs and Crime (2010)

22. Wall, D.: Crime and the Internet. Routledge, London (2003)
23. Yar, M.: Cybercrime and Society. Sage, London (2013)
24. Yüksel, İ.: Developing a multi-criteria decision making model for pestel analysis.

Int. J. Bus. Manag. 7(24), 52 (2012)

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0267:FIN:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2007:0267:FIN:EN:PDF
https://doi.org/10.1109/MSP.2007.108
https://doi.org/10.1007/978-3-319-64701-2_52
http://www.bbc.com/news/uk-20449474
http://www.bbc.com/news/uk-20449474
http://www.spiegel.de/international/world/state-department-secrets-revealed-how-america-views-the-world-a-732819.html
http://www.spiegel.de/international/world/state-department-secrets-revealed-how-america-views-the-world-a-732819.html
https://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
https://www.forbes.com/sites/andygreenberg/2010/12/07/visa-mastercard-move-to-choke-wikileaks/
https://www.theguardian.com/us-news/2017/oct/16/cyber-cold-war-is-just-getting-started-claims-hillary-clinton
https://www.theguardian.com/us-news/2017/oct/16/cyber-cold-war-is-just-getting-started-claims-hillary-clinton
https://www.torproject.org/

Data Modelling for Predicting Exploits

Alexander Reinthal , Eleftherios Lef Filippakis , and Magnus Almgren(B)

Chalmers University of Technology, Gothenburg, Sweden
reinthal@student.chalmers.se, lefphilip@live.com,

magnus.almgren@chalmers.se

Abstract. Modern society is becoming increasingly reliant on secure
computer systems. Predicting which vulnerabilities are more likely to
be exploited by malicious actors is therefore an important task to help
prevent cyber attacks. Researchers have tried making such predictions
using machine learning. However, recent research has shown that the
evaluation of such models require special sampling of training and test
sets, and that previous models would have had limited utility in real
world settings. This study further develops the results of recent research
through the use of their sampling technique for evaluation in combina-
tion with a novel data model. Moreover, contrary to recent research, we
find that using open web data can help in making better predictions
about exploits, and that zero-day exploits are detrimental to the predic-
tive powers of the model. Finally, we discovered that the initial days of
vulnerability information is sufficient to make the best possible model.
Given our findings, we suggest that more research should be devoted
to develop refined techniques for building predictive models for exploits.
Gaining more knowledge in this domain would not only help preventing
cyber attacks but could yield fruitful insights in the nature of exploit
development.

Keywords: Exploits · Machine learning · Concept drift
Vulnerability management

1 Introduction

Every year, thousands of vulnerabilities are published. Most of these vulnera-
bilities are benign and never exploited. As an example, in 2017, 12 561 vul-
nerabilities were published with Common Vulnerabilities and Exposures (CVE)
identifiers, the industry standard of identifying vulnerabilities. Only 11% of these
vulnerabilities had proof-of-concept exploits attached to them, and only a frac-
tion of these exploits would ever actively be used in the wild. Since patching
a vulnerability is time consuming and costly, security teams have to triage the
vulnerabilities found in their system and patch the most critical vulnerabilities
first. The CVSS score has been a common tool for assessing the severity of a
vulnerability. However, previous studies have shown that CVSS scores are not
ideal indicators for which vulnerabilities are in need of patching [1].
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 336–351, 2018.
https://doi.org/10.1007/978-3-030-03638-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_21&domain=pdf
http://orcid.org/0000-0002-6071-8853
http://orcid.org/0000-0002-2770-3326
http://orcid.org/0000-0002-3383-9617
https://doi.org/10.1007/978-3-030-03638-6_21

Data Modelling for Predicting Exploits 337

Machine learning models could possibly be a good tool to use as a proxy of
likelihood of exploitation. The topic has been studied in academia for many years
but only recently gained traction in industry [11]. Having a functional machine
learning model would not only alleviate the manual labour involved in sorting
through the large volume of vulnerability information, but could potentially
provide valuable insight in the nature of exploitation.

Although many researchers have built machine learning models for exploit
prediction, recent research by Bullough et al. [3] has shown that the promising
results obtained in previous research [2,5,12] were most likely an artifact of
unrealistic treatment of data.

The goal of this study was to develop an understanding for how machine
learning models are affected by different assumptions about the data. Using a
novel method to aggregate data that accurately reflects knowledge about vul-
nerabilities prior to their exploitation, we make the following contributions:

– We confirm Bullough et al.’s result that the data undergoes concept drift for
samples collected during the time period 2015 to early 2018.

– We find that using online web chatter about vulnerabilities has a positive
impact on exploit prediction, and that zero-day vulnerabilities are detrimental
to the model’s performance.

– We discover that the early information about vulnerabilities is sufficient to
make the best possible prediction.

In Sect. 2, we outline previous work on predicting exploits using machine
learning. In Sect. 3, we describe our approach and give an overview of how we
treat the data. In Sect. 4, we describe our four experiments and present their
results. In Sect. 5, we briefly discuss our findings. Finally, in Sect. 6, we give
some concluding remarks.

2 Challenges and Related Work

This section will cover some pitfalls with making a predictive model for exploits
as well how researchers have tried to handle those problems. We limit this section
to the main related work [3,5,12] and discuss challenges that they faced in detail.

2.1 Realistic Data Aggregation

An important task when predicting future exploitation events is to assemble
data that excludes information after the vulnerability has been exploited. Since
most vulnerability databases update their data continuously, previous research
[3,5] has tried to redact the data to, for example, exclude references to exploit
databases. However, aggregating the correct data without knowing when some-
thing has been changed or what has been changed quickly becomes infeasible.
This practice comes with no guarantees that the vulnerability entries contain
the same information as it did before it was published in an exploit database.

338 A. Reinthal et al.

To combat this challenge, in this work we use NVD’s change log to backtrack
changes to approximately 8 days after publication in NVD. This way, our data is
representative of the knowledge of vulnerabilities before they became exploited.
For more details on how this was done, see Sect. 3.1.

2.2 Temporal Intermixing and Realistic Evaluation

Previous research has indicated that designing classifiers for exploit prediction
requires careful sampling of the training and test sets that respects time [3]. This
result was attributed to concept drift, a phenomenon which is often observed in
predictive models where the relationship between predictor variables and labels,
i.e. concepts, changes over time [8,13]. Most of previous researchers has assumed
that sampling of training and test sets do not have to respect time. Some have
assumed this explicitly [12], some have assumed this implicitly [2,5].

This study will try and recreate previous research [3] by conducting similar
experiments. These experiments are outlined in Sect. 3.

3 Approach

To better understand what data is needed to make good predictions on exploits,
we have designed two methods of aggregating data. These methods are outlined
in Sect. 3.1. In Sect. 3.2, we give the reader an overview of our data and our
feature engineering. Section 3.3 provides information on how we split the training
and test data and how we labeled our data. Section 3.4 covers how we configured
and tuned model parameters.

3.1 The Models

In the following section we describe the two models we designed that we call the
naive and the realistic model.

The naive model was constructed from the data provided by NVD “as-is”,
which is how the data has been used in previous research [3,5,12]. This model
collects NVD data and web chatter for an extended amount of time. The main
issue with this model is that it keeps collecting data even after the exploitation
event. Collecting information after that event will “leak“ information about the
future to the past. As such, the model cannot realistically be used for making
predictions about the future.

As an alternative, we introduce our realistic model that limits aggregation
by a cut-off time equal to the median number of days from NVD publication
to Exploit DB publication. In the following sections, we use ti,s to denote the
starting time of data aggregation of vulnerability i and ti,f to denote the finishing
time of data aggregation of vulnerability i.

Data Modelling for Predicting Exploits 339

First Public Mention Publication Day Last Modified Day

W
eb

 C
ha

tt
er

 D
en

si
ty

Time

Discard Keep Discard

Day of Exploit Event

ti,s ti,f

Fig. 1. This illustration shows during which period we aggregate data for vulnerabilities
in the naive model.

Naive Model. To compare the realistic model to related work on predicting
exploits, we designed the naive model which aggregates data as long as a vul-
nerability is active in the NVD database.

The naive model starts aggregating data from the day of the initial NVD
publication for each vulnerability i. As we have stated before, we call this day
ti,s. The final day for aggregating data, ti,f , is the date of last modification of
vulnerability i. Notice that this model will keep aggregating data even if the
vulnerability has been exploited. A schematic of this data aggregation can be
seen in Fig. 1.

Realistic Model. In the realistic model, illustrated in Fig. 2, we are more
careful with how we aggregate data. For each vulnerability i, we set the first day
of aggregation, ti,s (seen as the blue dashed line in Fig. 2), to be the day of first
recorded web mention.

If a vulnerability has been exploited the last day of aggregation ti,f is set to
the day of exploitation (dark green dashed line in Fig. 2). However, the majority
of vulnerabilities do not get exploited. In that case, ti,f is set to ti,s + n′ where
n′ is equal to the median number of days to exploitation from the first recorded
web mention. The statistic n′ is calculated by taking the median number of days
to exploitation for all exploited vulnerabilities in the data. The median statistic
is used as it is less influenced by outliers. In the exceptional case where NVD
has not had time to publish the vulnerability n′ days after the first recorded web
mention, ti,f is set to the day of NVD publication.

Notice that the cut-off n′ is in general the same across all vulnerabilities. This
gives each vulnerability approximately the same amount of time to collect data,
which is important to avoid creating biases in the data. For example, features

340 A. Reinthal et al.

W
eb

 C
ha

tt
er

 D
en

si
ty

Keep Discard

Exploit-Event

First Public Mention Cut-Off Time

ti,s ti,f

Fig. 2. This illustration shows how we set the cut-off day for collecting data for indi-
vidual vulnerabilities in the realistic model. (Color figure online)

such as number of days since published, will in the naive model be large for
vulnerabilities that stay relevant for longer periods of time which is usually the
case for exploited vulnerabilities.

3.2 Data Collections and Feature Engineering

To construct a machine learning algorithm, data was aggregated from three
sources and then combined together using the Common Vulnerabilities and
Exposures Identifier. In the following sections, we will describe each of the data
sources along with their contributions of features for the machine learning algo-
rithm. A complete summary of the features that were used in the algorithm can
be seen in Table 1.

Vulnerabilities. Each entry in the first collection is a vulnerability that has
been assigned a unique CVE-ID and has been published in the NVD database [9].
We took the vulnerability descriptions and converted them into a term frequency
inverse document frequency (TF-IDF) matrix. We also used the CVSS data by
converting categorical features using a one-hot encoding and rescaling numer-
ical features to standard normal distributions. Moreover, we constructed a set
of features for the most common sources of references. These features encode
the spread of references across web sites that report and document vulnerabil-
ities. For the naive model, we also calculate the number of active days of the
vulnerability.

Web Chatter. The second collection, called the web chatter collection, consists
of fragments of text that has been published online with at least one mention of a

Data Modelling for Predicting Exploits 341

Table 1. The features in our data set for both the naive and realistic model during a
run in February 2018.

Source Data

Category Raw data Modelled as

NVD References List of URLs Fraction of Common Sources

Nr. References Num. Scaled to N(0, 1)

CVSS Data Cat. One-hot Encoding

Num. Scaled to N(0, 1)

Description Text TF-IDF

CWE data Multi. Cat. Binary Vector

Published Date Date Time difference

Modified Date Date

Web chatter Source URLs List of URLs Fraction of Common Sources

Nr. Source URLs Num. Scaled to N(0, 1)

Source Language List of Languages Fraction of Common Languages

Captured Text Text TF-IDF

Exploit Label CVE-ID 1 ⇔ CVE-ID ∈ EDB

Publication Date Date Not in data frame

vulnerability present in our vulnerabilities collection. The data in this collection
was provided by Recorded Future’s cyber threat intelligence platform [10], which
actively scrapes many relevant sources of vulnerability information. Twitter,
GitHub and CERT announcements make up approximately 50% of the data in
this collection. The other 50% was collected from roughly 9 500 miscellaneous
sources such as paste bins, security forums and other cyber security information
platforms. The text fragments where later aggregated on CVE-ID and converted
into a TF-IDF matrix. Moreover, we also constructed a set of features that
encode the spread between languages and sources of web chatter.

Exploits. The data contained in the third collection are exploits published on
Exploit Database’s (Exploit DB) website [6]. Each entry in this collection is an
exploit that mentions one or more vulnerabilities found in our vulnerabilities
collection. Other exploit sources such as exploit kits, studied by for example
Allodi et al. [1], were initially considered but ruled out as their acquisition is
cumbersome and resulting models would not have been comparable with previous
research.

3.3 Training Sets, Test Sets and Labels

The training and test sets for both the naive and the realistic model have been
split in such a way that the training set contains past events and the test set

342 A. Reinthal et al.

contains future events (relative to the training set). For example, using this
model we could be training on last year’s vulnerabilities to predict the next
month’s exploits.

To split the data in future and past events, we set a cut-off day d′, which
one can interpret as the “present day” of the model. This parameter is chosen
to achieve an 80/20 split of training and test samples.

As shown in Fig. 3, given a cut-off day d′, a start of a vulnerability ti,s and an
end of a vulnerability ti,f , there are three cases which determine if a vulnerability
ends up in the training or the test set. Any vulnerability that is a past event
relative to the cut off day d′ is put in the training set (case 1). Any vulnerability
that is an ongoing vulnerability relative to the cut off day d′ is pruned from the
model (case 2). We do this in an effort to keep the model realistic as we do not
want to train the model on an event that has not yet been concluded. Finally,
the future events relative to the cut off d′ are put in the test set (case 3). These
future events are then used to evaluate the performance of our model.

Time

ytisne
D ytilibarenluV

Training

Cut-Off

ti,s ti,f

Test

Case 1

Case 2

Case 3

Start End

Fig. 3. Figure shows how training and test sets have been split for both the naive and
the realistic model.

Labels for supervised learning are created in the following way:

yi =

{
1 ⇔ i ∈ EDB
0 otherwise

where i is a vulnerability identified by its CVE-ID. This means that any vulner-
ability found in the exploit collection is labeled as exploited.

Table 2 displays the training and test split that we used for our data along
with the number of samples and the positive and negative class percentage. For
this realization of our data set, we used d′ = 2017-08-08 as our training-test split
parameter.

Data Modelling for Predicting Exploits 343

Table 2. Information about the training and test split with d′ set to 2017-08-08.

Nr. Samples Naive Nr. Exploited Realistic Nr. Exploited

Total 24944 809 (3.2%) 24323 809 (3.3%)

Training (Case 1) 19644 719 (3.6%) 19146 719 (3.8%)

Dropped (Case 2) 179 3 (1.7%) 72 3 (4.2%)

Testing (Case 3) 5121 87 (1.7%) 5105 87 (1.7%)

3.4 Supervised Learning Algorithm and Optimization

To perform supervised learning, we choose the eXtreme Gradient Boosting pack-
age (xgboost) [4] as it is generally known to produce good results on imbalanced
data sets. This implementation is based on the gradient boosting algorithm
designed by Friedman et al. [7] which is an ensemble model that typically uses
decision trees as predictors.

The choice of hyper-parameters were the result of a grid search, optimizing
for highest F1 across a 5-fold cross-validation on the training set. The resulting
parameters and ranges for the grid search can be seen in Table 3.

For the training phase of our model we optimize for maximum F1 score using
validation hold out. The validation set is a 10% stratified random subset of the
training set.

Table 3. Parameters used for our eXtreme gradient boosting algorithm, and the range
for hyper-parameter tuning using grid search.

η γ Depth

Naive 0.1 0.8 7

Realistic 0.2 0 8

Grid search range for tuning [0.1, 1] by 0.1 [0, 3] by 0.2 [4, 8] by 1

4 Results

In the following sections, we outline our experiments and study their respective
impact on a baseline model described in Sect. 4.1. The goal of these experiments,
which have been inspired by the work of Bullough et al. [3], is to develop an
understanding for how different modelling practices affect the results of our
classification algorithm. We apply these experiments to both the naive model
and the realistic model to see whether the outcome is due to how the data is
aggregated. The results of the classifiers are presented as precision and recall
plots, which have been derived by obtaining precision and recall values from
sweeping through the estimated likelihood values provided by the classifier.

344 A. Reinthal et al.

4.1 Experiment 0: The Baseline Models

To have something to compare our experiments against, we made baseline mod-
els that were not subjected to any of the experiments outlined in the coming
sections. The baseline models use the following assumptions.

– No zero-day exploits in the data.
– The training and test set are temporally separated with d′ = 2017-08-08 as

the separating day.
– Data include web-chatter features.

This is our best effort to modelling the problem as accurately as possible with-
out any known form of faulty assumptions or unrealistic performance boosts. The
baseline models are used for comparison in each experiment, and their respective
precision and recall values can be seen as the orange lines in the precision and
recall plots of each experiment, which are presented in Sects. 4.2, 4.3 and 4.4.

In Table 4, we present the maximum F1 score for the naive and realistic
baseline models, and in Fig. 4 we compare their precision and recall curves.
As seen in Table 4, the naive model has a lower maximum F1 score than the
realistic model, and in Fig. 4, we observe that the naive model has worse over all
performance since it has less precision for matching values of recall. This result
suggests that the first 8 days is enough to make predictive models for exploits,
realistic or not.

Table 4. The maximum F1 score of the naive and realistic baseline models with their
corresponding precision and recall values.

Naive Realistic

Precision 0.525 0.578

Recall 0.333 0.458

F1 Score 0.407 0.511

4.2 Experiment I: Including Zero-Day Exploits

To make predictions about future events, we have to exclude zero-day vulner-
abilities from our data set as these are announced after the exploit event has
occurred and cannot be predicted in a meaningful way.

Any exploit where ti,e ≤ ti,s for vulnerability i is considered a zero-day
exploit, where ti,e is the time of exploitation. In practical terms, this means
that any exploit published in EDB prior to publication in NVD is considered a
zero-day exploit. In this experiment, we put those vulnerabilities back into the
model to study the difference in performance. This experiment is similar to the
experiment performed by Bullough et al. [3] with the caveat that their zero-day
vulnerabilities were removed from their baseline model.

Data Modelling for Predicting Exploits 345

Fig. 4. Direct comparison of the classification performance for the naive and the real-
istic model.

In Fig. 5, we see the relationship between precision and recall for both our
naive and realistic models when including zero-day exploits (blue lines) and our
baseline models which exclude zero-day exploits (orange lines). In Table 5, we
see the maximum F1 scores achieved by our models along with their respective
precision and recall values.

We observe that both our experimental models perform worse than the base-
line models. In Table 5, we observe that the naive and realistic model have F1

scores of 0.407 and 0.511 respectively when excluding zero-days compared to
0.284 and 0.391 when including zero-days.

The fact that our naive model perform worse when including zero-day exploits
is the opposite effect of what Bullough et al. observed. Moreover, the fact both
models showed worse performance indicates that the relative time frame is not
likely the cause of our result being different from Bullough et al.’s observations.
We think our results show the opposite due to our zero-day exploits not making
up the majority of our labels. In their case, their zero-day exploits make up
approximately 90%1 of their total number of exploits. In comparison, zero-day
exploits make up approximately 27% of our exploits in the naive model and 30%
in the realistic model. When the zero-day exploits were removed from Bullough
et al.’s model, their class balance went from 17% to about 1.4%. In such a
scenario, a significant performance decrease should be expected.

A possible explanation to why our performance is decreased when including
zero-days is that those vulnerabilities are of a different class, i.e. their represen-
tations in the data are different than vulnerabilities that were exploited after
publication.

1 This percentage is estimated from Fig. 5 in their report [3].

346 A. Reinthal et al.

Fig. 5. Performance comparison of our naive model (a) and our realistic model (b)
when including zero-day exploits in the data. (Color figure online)

Table 5. Comparison of including zero-days for the naive, realistic and the results
from Bullough et al. [3]. Values of precision and recall have been chosen to maximize
the F1 score.

Naive Realistic Bullough et al.

Baseline Experiment Baseline Experiment Baseline Experiment

Precision 0.525 0.335 0.578 0.352 0.171 0.519

Recall 0.333 0.247 0.458 0.440 0.027 0.334

F1 Score 0.407 0.284 0.511 0.391 0.046 0.406

4.3 Experiment II: Temporal Intermixing

When using supervised learning on models that exhibit concept drift (see
Sect. 2.2), one needs to keep the training and test sets temporally separated
to establish the performance of the model when applied to new samples. This
experiment will test if the data used for predicting exploits shows signs of con-
cept drift. To test this, we compare a temporally separated training and test set
with temporally intermixed training and test set using d′ = 2017-08-08 as the
separating day between the training and the test set. The amount of concept
drift will be the difference in performance between the intermixed and separated
model.

As computed from the Table 7, the naive model has a 43.0% relative increase
in maximum F1 score, and the realistic model showed a 25.1% relative increase
in F1 score. These results indicate that both the naive and realistic models
are prone to concept drift. For comparison, Bullough et al.’s model achieved
a performance gain of 782.6% [3]. In the following paragraphs, we list three

Data Modelling for Predicting Exploits 347

Table 6. Properties of our training and test sets for the naive and realistic models when
randomly sampling their respective observations. The Δ column shows the relative
difference in percentage of samples from the baseline model to the experiment model.

Samples Naive Realistic

Baseline Δ Experiment Baseline Δ Experiment

Exploits Total 757 (2.86%) 0% 757 (2.86 %) 842 (3.3 %) 0 % 842 (3.36 %)

Dropped 354 (1.33%) −100% 0 (0 %) 66 (0.03%) −22.7% 51 (0.02 %)

Train 310 (1.85%) 43.0 % 548 (2.88%) 656 (3.59%) −4.3 % 686 (3.36 %)

Test 93 (1.74%) 42.8 % 144 (2.72%) 120 (2.33%) 23.0 % 156 (3.05 %)

differences in our models that are likely to have contributed to the vast difference
in performance gain between our models and the ones of Bullough et al.

Class Balance: Some of the difference in performance between the baseline
model and the experiment is due to a difference in class balance between the
test sets of the baseline model and the experiment. To highlight this difference,
we have included a Δ column in Table 6, which shows the difference in class
balance between the regular model and the experiment in relative percentage.
Bullough et al. [3] report a Δ = 55.7%2. Looking at the realistic model, we
observe a Δ = 23.0% for the test set. The extreme concept drift from Bullough
et al.’s experiment should be partially attributed to their Δ being significantly
higher than our realistic model.

Absolute Time Frame: Since we use data that span 3 years (January 2015
to February 2018) our model has less time for concept drift to occur, compared
to Bullough et al. [3] whose data span 6 years (2009 to 2015). Thus, Bullough
et al.’s larger absolute time frame could be a possible explanation for their model
exhibiting concept drift much larger than ours.

Relative Time Frame: When comparing the concept drift between the naive
and realistic models, we are effectively comparing how the aggregation time
frame of each sample impacts concept drift. As mentioned earlier, the naive
model is more prone to concept drift than the realistic. This means that both
the absolute time frame and relative time frame affect concept drift (Fig. 6).

4.4 Experiment III: Excluding Web Chatter

In this experiment we remove any features from our data set that relate to web
chatter data. The reason for this experiment is to determine the role of web
chatter’s impact on our predictions. Previous work by Bullough et al. showed
that including web chatter features had negligible impact on the performance of
their model. To test this result, we designed similar models which excludes the
web chatter feature group from our data frames, and compare performance of the
resulting classifiers with their respective baseline models (naive and realistic).
2 The Δ was computed from their reported class percentage of their test set which was

16.7% in their random split experiment and 9.3% in their temporally split model.

348 A. Reinthal et al.

Fig. 6. Performance comparison of our naive model (a) and our realistic model (b) of
splitting training and test sets temporally and using random sampling of training and
test.

Table 7. The classifier results from the maximum F1 score when doing temporal
intermixing of training and test sets. We included results from previous research for
comparison as well as a model that does not use temporal intermixing [3,5,12].

Naive Realistic [3] [12] [5]

Baseline Experiment Baseline Experiment Baseline Experiment Experiment Experiment

Precision 0.525 0.664 0.578 0.801 0.171 0.519 ≈0.20 0.8158

Recall 0.333 0.770 0.458 0.594 0.027 0.334 ≈0.70 0.8302

F1 Score 0.407 0.713 0.511 0.682 0.046 0.406 0.31 0.8229

In Fig. 7a, we observe that excluding web chatter (blue line) from the naive
model achieves higher precision for recall values in the range 0 to ≈0.60. This
means that the naive model benefits from excluding web chatter. However, as
seen in Fig. 7b, excluding web chatter (blue line) in the realistic model achieves
considerably worse precision for recall values in the range 0.25 and ≈1.

This result indicates that the web chatter features are adding irrelevant infor-
mation under the naive model. Conversely, the realistic model’s performance
decreased significantly when excluding web chatter features. This result indi-
cates that the web chatter has a positive impact under the realistic data model.
Finally, when comparing the performance of the naive model excluding web chat-
ter (blue line in Fig. 7a), to the realistic model including web chatter (orange
line 7b), we observe that the realistic data model still makes better predictions.
This result indicates that the information disseminated during the early days of
a vulnerability is enough to make the best exploit prediction possible (Table 8).

Data Modelling for Predicting Exploits 349

Fig. 7. Performance comparison of models that exclude web chatter features with the
baseline models. (Color figure online)

Table 8. The classifier results from the maximum F1 score on the test set when using
web chatter. We included results from previous research for comparison as well as a
model that does not use temporal intermixing.

Realistic Naive Bullough et al.

Baseline Experiment Baseline Experiment Experiment Baseline

Precision 0.525 0.740 0.578 0.777 0.466 0.426

Recall 0.333 0.430 0.458 0.291 0.342 0.311

F1 Score 0.407 0.544 0.511 0.424 0.394 0.359

5 Discussion

In Sect. 4.3, we observed that the model exhibited concept drift during the time
period 2015 to 2018. When a model exhibits concept drift, its ability to predict
new samples degrades over time. This result corroborates the results of Bullough
et al. who first made this discovery in 2017 [3]. Knowing more about when and
how concept drift occurs would not only benefit predictive models for exploits
but could yield insight about trends in exploit development.

The drastic decrease in percentage of zero-day exploits, from ≈90% of all
exploits published during the time period 2009 to 2015 [3] to about 30% during
2015 to early 2018, indicates that concepts or labels vary over time. This makes
individual studies difficult to compare. However, when we included zero-day
exploits in our model, we observed a decrease in performance which was the
opposite of what previous research observed [3]. A possible explanation for this
decrease is that zero-day exploits constitute a third class and introduce confusion
to our model when trying to fit the new class with the larger exploit class.

350 A. Reinthal et al.

Our results show that having a smaller relative time of aggregation can reduce
concept drift for a fixed absolute time frame. However, we never compare differ-
ent absolute time frames. It is possible that the effect of the relative time frame
has been exaggerated since the absolute time frame is still large. Untangling the
problem of the relative and absolute time frame’s impact on concept drift is an
interesting line of inquiry, that has practical implications for when the model
needs to be retrained, and is left for future work.

The utility of any predictive model is contingent on its quality of labels.
Exploit DB is known to contain many proof of concept exploits which usually
require advanced skills to be used in attacks against a system. Therefore, Exploit
DB’s credibility as a proxy for real world exploits is questionable. For any model
to have real world application, its ground truth needs to be upgraded or treated
differently to reflect real world threats.

6 Conclusions

In this paper, we investigated the feasibility of predicting exploits using a realistic
model of aggregating data. Through this model, we have found two conflicting
results to those presented by Bullough et al. [3]. We found that open web data
increases the predictive power of exploits and that using zero-day vulnerabilities
has a negative impact on exploits. We also learned that the data in this domain
has undergone concept drift during the time period between January 2015 and
February 2018. This result is in agreement with those of Bullough et al. [3]
which means that more effort have to be devoted to understand when concept
drift occurs to make timely updates of models that predict exploits.

Our main finding in this paper is that to make realistic predictions on vulner-
abilities, it is imperative to use a model that reflects the early state of knowledge
of vulnerabilities. This is likely the information that exploit developers use to
decide which vulnerabilities to focus their attention on.

Acknowledgements. The research leading to these results has been partially sup-
ported by the Swedish Civil Contingencies Agency (MSB) through the project “RICS”
and by the European Community’s Horizon 2020 Framework Programme through the
UNITED-GRID project under grant agreement 773717.

We would also like to thank Staffan Truvé and Michel Edkrantz at Recorded Future
for inspiration, access to data and the environment to perform the current study.

References

1. Allodi, L., Massacci, F.: Comparing vulnerability severity and exploits using case-
control studies. ACM Trans. Inf. Syst. Secur. 17(1), 1:1–1:20 (2014). https://doi.
org/10.1145/2630069

2. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning
to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2010, pp. 105–114. ACM, New York (2010). http://doi.acm.org/10.1145/
1835804.1835821

https://doi.org/10.1145/2630069
https://doi.org/10.1145/2630069
http://doi.acm.org/10.1145/1835804.1835821
http://doi.acm.org/10.1145/1835804.1835821

Data Modelling for Predicting Exploits 351

3. Bullough, B.L., Yanchenko, A.K., Smith, C.L., Zipkin, J.R.: Predicting exploitation
of disclosed software vulnerabilities using open-source data. In: Proceedings of the
3rd ACM on International Workshop on Security and Privacy Analytics, IWSPA
2017, pp. 45–53. ACM, New York (2017). http://doi.acm.org/10.1145/3041008.
3041009

4. Chen, T., He, T., Benesty, M., et al.: Xgboost: extreme gradient boosting. R pack-
age version 0.4-2, pp. 1–4 (2015)

5. Edkrantz, M., Said, A.: Predicting cyber vulnerability exploits with machine learn-
ing. In: SCAI (2015)

6. Exploit-DB Offensive Securitys Exploit Database Archive. https://www.exploit-
db.com/. Accessed 24 Aug 2017

7. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001). http://www.jstor.org/stable/2699986

8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 44 (2014)

9. National Vulnerability Database Computer Security Resource Center. https://nvd.
nist.gov/. Accessed 24 Aug 2017

10. Recorded Future’s threat intelligence platform
11. Roytman, M.: Quick Look: Predicting Exploitability, Forecasts for Vulner-

ability Management (2018). https://www.rsaconference.com/videos/quick-look-
predicting-exploitabilityforecasts-for-vulnerability-management

12. Sabottke, C., Suciu, O., Dumitras, T.: Vulnerability disclosure in the age of social
media: exploiting twitter for predicting real-world exploits. In: 24th USENIX Secu-
rity Symposium. USENIX Association, Washington, D.C. (2015)

13. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden
contexts. Mach. Learn. 23(1), 69–101 (1996)

http://doi.acm.org/10.1145/3041008.3041009
http://doi.acm.org/10.1145/3041008.3041009
https://www.exploit-db.com/
https://www.exploit-db.com/
http://www.jstor.org/stable/2699986
https://nvd.nist.gov/
https://nvd.nist.gov/
https://www.rsaconference.com/videos/quick-look-predicting-exploitabilityforecasts-for-vulnerability-management
https://www.rsaconference.com/videos/quick-look-predicting-exploitabilityforecasts-for-vulnerability-management

UpDroid: Updated Android Malware
and Its Familial Classification

Kursat Aktas and Sevil Sen(B)

WISE Lab, Department of Computer Engineering, Hacettepe University,
Ankara, Turkey

kurtas.ce@gmail.com, ssen@cs.hacettepe.edu.tr

Abstract. Android is the platform most targeted by attackers. While
security solutions have improved against such attacks on one side, attack-
ers introduce new variants of existing malware by employing new strate-
gies to evade them on another side. One of the most effective evasion
techniques widely used is updating malicious code at runtime. In this
study, an up-to-date dataset of such update attacks called UpDroid is
introduced and then analyzed. This dataset consists of 2,479 samples
belonging to 21 malware families, of which most have been discovered
in just the last few years. While this dataset gives an overview of recent
malware, it will also be useful for researchers working on dynamic anal-
ysis. Furthermore, in this study, a new classification algorithm based on
both static and dynamic features is introduced in order to group such
malware into families.

Keywords: Android · Mobile malware dataset · Update attacks
Dynamic code loading · Family classification · Static analysis
Dynamic analysis

1 Introduction

Android is still the platform most targeted by attackers [30]. According to a
recent Av-test report [7], the number of malicious programs targeting Android
has more than doubled in the last year. Mobile malware could damage end-
users through different aspects such as stealing banking information, gaining
root access and thereby corrupting the victim’s device. However, the primary
motivation of attackers is still driven by illicit financial gain [30]. Even Android
has modified its architecture to improve security, but that is only beneficial to
users who download the latest version of Android, which is rarely the case [30].

In the last few years, there has been significant growth in the number of new
Android mobile malware variants, but a drop in the number of new Android
mobile malware families [29,30]. Therefore, attackers are applying advanced eva-
sion techniques to existing malware. Updating application at runtime is one of
the most effective evasion strategies reported in the literature [8,25]. Since most
commercial anti-virus solutions are based on static analysis, they prove largely
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 352–368, 2018.
https://doi.org/10.1007/978-3-030-03638-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_22

UpDroid: Updated Android Malware and Its Familial Classification 353

ineffective against such update attacks. On the other hand, how to detect such
attacks and how to trigger them at runtime is an area needing further investiga-
tion. In order to accelerate studies in detecting update attacks and developing
dynamic analysis-based solutions, a dataset of update attacks is introduced in
this study. Such a dataset would prove useful for studies working on malware that
cannot be effectively detected by static analysis-based techniques. Researchers
working on input generation tools, fuzzing, and dynamic analysis could therefore
refer to this dataset. Even though the current mobile malware datasets consist of
some update attacks [4,34,37], this study introduces a dataset called UpDroid
which consists entirely of update attacks. The study also presents analysis of
the dataset, which is generally made up of different malware families than those
found in other datasets [4,34,37]. Even though UpDroid contains few families
that are common to the biggest recent malware dataset, AMD [34], it contains
different samples of those families. Furthermore most of the new families included
in UpDroid were released during or since 2015 (57.1%). Hence, this dataset is
also intended to be useful for studies working on up-to-date mobile malware
issues. The UpDroid dataset consists of 21 families and 2,479 samples. More
than half of these families (12 out of 21) were discovered during or since 2015,
while the remainder (9 out of 21) were discovered before 2015, and half of those
(4 families) have new variants discovered either in 2015 or since then.

During construction of the UpDroid dataset, some difficulties were faced with
familial classification of some malware, especially when most AV solutions could
not reach a decision on a single family. It is known that familial classification of
existing anti-virus solutions can be unreliable [14–16]. Therefore, in the current
study, a new mobile malware family classification system is introduced based on
both static and dynamic application features. With the proliferation of obfus-
cated and evasive malware, it is believed that using dynamic features has become
inevitable for the correct classification of malware families.

Malware familial classification has become significantly important with the
increased number of mobile malware variants seen in recent years. If the fam-
ily of a detected malware is known, specific steps can be taken to decrease or
reverse the damage caused by the malware. Furthermore, it helps to decrease
the number of samples that malware analysts need to analyze. Automatic cate-
gorization of a harmful application into its family provides security professionals
with an idea about the malware before carrying out the necessary manual anal-
ysis, and thereby, minimizes analysis time. To the best of our knowledge, only
one recent study called Ec2 [9] has proposed malware family classification by
applying hybrid features. The current study shows that the solution introduced
achieves a better rate of accuracy than the results published for Ec2, by using
fewer features.

354 K. Aktas and S. Sen

2 UpDroid Dataset

This study introduces the UpDroid dataset to the research community1. The
dataset consists of malicious applications using updating techniques in order to
evade detection. An update attack typically does not contain any malicious code
at the installation stage, waiting instead to add its malicious payload at runtime.
The loading of a malicious payload could happen at the start of the application
or it could use other triggering mechanisms such as event-based or, time-based
[8]. For attackers, there are different ways to load their malicious code. One of the
most used techniques is loading Java classes at runtime via ClassLoader objects.
In such a case, the loaded code can be retrieved from the apk file or from a remote
server at runtime. Another method is loading native code by using JNI (Java
Native Interface). Android enforces applications to use defined APIs for loading
native code. However, this loaded native code can also load and execute other
native code without using this API. In addition, the most recently loaded native
code can be stored as data and then be interpreted as code after loading. Because
of these reasons, providing security against update attacks using this technique
is more difficult than the class loading technique [24]. The last technique acquires
the malicious payload by using the Package Manager Service, which manages the
installation and deletion of applications in Android. Through this method, the
application requires the user’s confirmation in order to use the Package Manager.
Therefore, it needs to use phishing techniques in order to persuade the user of
its authenticity. The attacker then downloads and installs the actual malware
after gaining the root privilege. Because of the technique employed, these types
of malware are known as Dropper or Downloader.

The construction of the UpDroid dataset was carried out in three steps, as
shown in Fig. 1. Each step is explained in detail in the subsequent sections.

Fig. 1. Construction steps of UpDroid

2.1 Collection of Apps

In this phase, Android applications were collected from the Koodous platform
[19] and the ApkPure market store [3]. Koodous is a web platform for mal-
ware analysts which has built-in analysis tools such as DroidBox [2]. Apkpure
1 https://wise.cs.hacettepe.edu.tr/projects/updroid/dataset/.

https://wise.cs.hacettepe.edu.tr/projects/updroid/dataset/

UpDroid: Updated Android Malware and Its Familial Classification 355

is an unofficial application market. In order to obtain the dataset, three filter-
ing mechanisms were applied to the downloaded samples from Koodous. The
first filter downloads applications from the most recently uploaded to Koodous.
The primary reason is being to collect up-to-date malware. The second filter
selects applications not detected as malicious by other analysts, since the aim
is to add novel update attacks besides those already known to the dataset. For
the last filter, output of the built-in Dropbox tool in Koodous was employed,
which checks for applications with at least one loading activity using DexClass-
Loader. The most popular applications from each category are downloaded from
Apkpure. As a result, 11,490 applications were obtained from Koodous, together
with 6,299 applications from Apkpure.

2.2 Analysis of Apps

In this phase, the applications were run on an emulator for dynamic analysis.
In order to do that, each application was run for 15 min and their DroidBox
(4.1.2) outputs collected. All the file accesses that made by applications and all
the network traffic that applications generate was logged for further analysis.

Malicious applications can be triggered in many ways. For example, the mali-
cious payload could be loaded after a button is pressed, or after a certain period of
time has passed [8]. Triggering techniques could vary by malware family. System
events are one of the most used triggering techniques among malware. During
the analysis, it was observed that BroadcastReceiver registered during runtime
was one of the triggering mechanisms that update attacks apply. For example,
an application which loads malicious code at runtime may use the PackageAdded
receiver to ensure that the malicious package has been added. In this scenario,
an attacker could use the registerReceiver function in order to add this receiver
and bypass static analysis. Since DroidBox does not record registered receivers
at runtime, the Android image was recreated by adding this log to the register-
Receiver function on the Android framework. The other integration to DroidBox
is the Monkey tool, which is used for random input generation of an application.
Surprisingly, it is shown that the tools based on random exploration strategies
such as Monkey obtained higher code coverage than more sophisticated strate-
gies implemented by other tools [10]. Therefore, Monkey was chosen to be used
in the current study.

Three filtering mechanisms were employed to the DroidBox outputs to find
potential update attacks. All applications collected from Koodous and ApkPure
in the first phase were sent to those filtering mechanisms in order to find mal-
ware. Since most of the samples were collected from Koodous, they were already
expected to be malicious, but here the aim was to process update variants. In the
first filter, the relationship between dynamic code loading and data leakage has
examined. A malicious application typically uses some personal sensitive data
such as IMEI, IMSI, or phone number in order to identify the victim’s devices.
This data is generally leaked through the file system or over the network. This
filtering mechanism basically checks whether or not the app has both dynamic
loading and data leaking activities. If the code loading activity happens before

356 K. Aktas and S. Sen

the data leakage, then the application is considered as a possible candidate for
update attack. The second filtering mechanism checks for an opened connection
from the app to a malicious server after dynamic code loading. For this pur-
pose, all IP addresses fetched from DroidBox’s output are separated into two
groups (malicious and benign addresses) by using more than 200 blacklists [1].
Again, if the class loading activity happens before the connection to a malicious
server, then the application is labeled as a possible update attack. If the reverse
order happens, it is also considered as malicious, but since it is not an update
attack, it is discarded. In the third filter, both static and dynamic analysis are
employed to explore the relationship between native code loading, and both sen-
sitive data leakage and malicious server connection. If the app’s source code
has System.loadLibrary or System.load functions to import native codes, and it
performs one of the two malicious activities at runtime, then the application is
labeled as a possible update attack.

2.3 Dataset Validation

The final step was validation of the constructed dataset. Here, all potential can-
didate update attacks are sent to the VirusTotal [32] at first. If the application
is found to be malicious by more than 20 AVs and its dominant label given by
AVs belonging to an update attack family, it is kept in the dataset. This step
could have been directly applied to the collected applications in the first phase,
but the second phase was still carried out for the possibility of exploring novel
update attacks. Furthermore, results showed the filtering mechanisms to be suf-
ficiently effective as 82.66% of potential applications sent to the VirusTotal [32]
were confirmed as update attacks. Others undetected by VirusTotal [32] do not
necessarily mean that they are not update attacks. Therefore, they are sent for
the manual analysis as a possible new update attack. Manual analysis found 10
new attacks. While these 10 samples are added to the dataset, others undetected
by AVs are filtered out. Since these attacks showed adequate similarity to the
dataset’s existing families, they were not considered as novel update attacks.
However, it should be noted that they are also not considered as malicious by
AVs. Finally, only 7.1% of all collected samples escaped our filtering mechanisms.
Among these applications, if there are samples belonging to update families in
the dataset, these samples were also included to the dataset in order to increase
the dataset size.

If the number of AVs that give the most used label was used for more than
twice the number of AVs for the second most dominant label, then the most
dominant label was assumed to be reliable. Otherwise, the malware family was
assumed to be ambiguous. In this phase, 150 ambiguous malware was detected.
Such ambiguous malware was sent to the family classification algorithm devel-
oped in this study. Those 150 samples whose families were identified by this algo-
rithm were also included to the dataset. Details of the algorithm are explained
in the subsequent section.

UpDroid: Updated Android Malware and Its Familial Classification 357

Table 1. The UpDroid dataset overview

Family Sample Discovered Obfuscation Category Updating Tech. Triggering Tech.

Code Load Native Load Dropper Start Event Time

Asacub 66 2015 � Banking � �

BankBot 33 2015/7 � Banking � � � �

Extension 9 2013 Generic � �

FakeBank 8 2013/6 � Banking � �

FakeFlash 6 2012/7 � Banking � � �

FakeToken 12 2017 � Banking � � �

Krep 5 2013 Generic � �

Ksapp 2 2013 Generic � �

Leech 7 2015 � Generic � � �

Lotoor 11 2010/3 Generic � � �

Malap 193 2013 � Info Stealer � � �

Marcher 30 2013/7 � Banking �

Ogel 12 2015 � Generic � � �

Rootnik 41 2015/7 � Generic � � �

Shedun 630 2015 � Generic � �

SmsReg 291 2015 � Generic � � �

SmsSpy 66 2014/6 � Banking � �

Sprovider 5 2016 � Generic � �

Tordow 11 2016 � Banking � � � �

Triada 1026 2016 � Generic � � � �

Ztorg 15 2015 � Generic � � �

2.4 UpDroid Dataset Overview

As shown in Table 1, the UpDroid dataset has 21 malware families, and a total of
2,479 malware samples. In Table 1, for some families there are two discovery times
because some new variants of these families were discovered after its first release
into the wild. Overall, 51.7% of these families were collected during or after
2015. For observing the behaviors of malware families, a few samples from each
family were manually analyzed. During this analysis, it was observed that new
malware families are generally more sophisticated and complex than the previous
ones. For example, all four families not employing obfuscation techniques were
discovered prior to 2014; such as a sample of the Extension family that imports its
malicious native code immediately after it started. The author of this malware is
obviously not concerned with hiding the name of the native library to be loaded.

On the monetization side, the families are divided into three categories: bank-
ing, generic, and information stealing. Eight families belonging to the banking
category try to steal victim’s banking information. For example, Tordow targets
banks in Russia and has root access gain capability, encrypting files and acting
like ransomware besides the traditional banking malware [11]. It is observed that
new malware families in Android platforms have more than one feature to harm
victims such as Tordow. The generic category is used for families which have no
specific target. They usually try to infect the device and gain root access. Upon
obtaining the root privilege, they may, for example download other applications,
or join a botnet. For instance, Rootnik removes its icon from the menubar imme-

358 K. Aktas and S. Sen

diately after installation on the device and tries to gain root privilege. After that,
it tries to install aggressive advertisement applications. The last category belongs
to malicious applications which steal sensitive information from victims.

It is observed that 16 malware families use dynamic code loading, eight fami-
lies use native code loading and seven families use dropper technique for updating
itself. Another point is that most of the families use combinations of these tech-
niques. For example, the 2015 variant of the BankBot family uses only dynamic
code loading to import its malicious payload; whereas newer variants of the
same family firstly download and install a new apk, and then this new apk uses
dynamic code loading in order to import its malicious payload.

It is observed that nine malware families trigger their malicious code immedi-
ately after starting, whereas 11 families are event-triggered. These events could
be inputs given by the user, or system events, etc. In addition, five families use
time-based triggering [8]. Just like the updating techniques, some families use a
combination of different triggering techniques. Interestingly, all these observed
families were discovered during or after 2015, and use event-based and time-
based triggering mechanisms together.

3 Family Classification

Malware samples belonging to a same family share some common features.
Although the studies mainly focus on malware detection, malware family classi-
fication becomes more important each day due to increasing variations in each
family. It is known that commercial anti-malware tools are not reliable in identi-
fying the family [14–16]. A family classification algorithm was also needed for the
construction of the UpDroid dataset created in the current study. When anti-
malware solutions cannot agree on a family, the family classification algorithm
introduced in this study was employed. While most family classification studies
in the family classification rely on static features, they are seen as inadequate,
since an attacker can easily change static features by using various methods like
obfuscation, dynamic code loading, etc. Furthermore, some similarities between
samples belonging to the same family were observed during this study’s dynamic
analysis (see Fig. 2a and b). Figure 2a shows the activity-time relations for two
samples belonging to the SmsReg family. Both samples have similar sequences
of activities, but at different times. Since they are randomly triggered, it is an
expected result. But the density of activities carried out by each sample are
very similar, as demonstrated in Fig. 2b. Based on these observations, a family
classification algorithm based on static and dynamic features was aimed to be
investigated.

Besides the update attack families in the UpDroid dataset, new families are
also included for familial classification. Here, only families identified by VirusTo-
tal [32] are included in the dataset. Since AVs have different standards for naming
malware and malware families, 342 family names were collected from the Inter-
net [4,5,26,33] in order to extract family names from the outputs of AV. After
the family names were extracted, they were checked similarly checked as per the

UpDroid: Updated Android Malware and Its Familial Classification 359

Fig. 2. (a) Activity-time graphs, (b) Activity density graphs of two samples belonging
to the SmsReg family

AMD dataset’s construction [34]. If the number of AVs that gave the most used
label was used more than twice that of the number of AVs for the second most
dominant label, then the most dominant label was assumed to be reliable. Other-
wise, the malware was discarded. Since one of the main purposes of this study is
to examine features for classifying new malware families, the families discovered
in recent years were tried to be added to the dataset for the purposes of familial
classification. Most of the families used in the dataset (≈82%) were detected in
the last five years. This dataset called Last5Y is mainly constructed from sam-
ples in Koodous. The MalGenome and Drebin datasets, which are mainly used
for comparative purposes in the literature, were also evaluated in the results.
The PRAGuard dataset [21] was also aimed to be evaluated in this study in
order to assess the obfuscation resiliency of the proposed algorithm. However,
the samples in this dataset could not be run on the emulators and, the authors
of the dataset could not be reached on this matter.

3.1 The Method

For familial classification, features from both static and dynamic analysis were
collected. Since the studies based on static analysis in the literature perform to
a high level of accuracy, and dynamic features were observed to be similar for
malware samples belonging to the same family in this study, feature selection is
carried out both statically and dynamically. In the current study, the majority
of static features were extracted from the Manifest file, as shown in Table 2.
As pointed out in RevealDroid [16], permissions are very important for both
malware detection and familial classification. Therefore, supported permissions
by Android were used as boolean attributes. The count of custom permissions
defined by the application were also added to the static features. Other static
features are the number of activities, services and receivers given in the Manifest
file and the size of the APK file. It was also observed that some update attack
families (e.g., Shedun, Triada, etc.) define more activities, services and receivers
in the Manifest file not used in the source code. Since these components are
required for use by the downloaded code in the future, it should be defined
as such in the Manifest file. Therefore, the existence of such extra components
were also added as boolean values to the features list. To the best of the authors’
knowledge, this study is the first to employ this feature.

360 K. Aktas and S. Sen

Table 2. Features used for familial classification

Feature type Feature explanation Type Count

Static Number of custom permissions Numeric 1

Static Existence of each permission Boolean 102

Static Number of activities Numeric 1

Static Number of services Numeric 1

Static Number of receivers Numeric 1

Static Existence of extra components Boolean 3

Static APK size Numeric 1

Dynamic Number of opened/closed network connections Numeric 2

Dynamic Number of unique network connections Numeric 2

Dynamic Total size of network packets Numeric 1

Dynamic Number of sent/received network packets Numeric 2

Dynamic Number of crypto activities Numeric 3

Dynamic Usage of crypto algorithms Boolean 13

Dynamic Existence of sensitive leaked data for each type Boolean 23

Dynamic Number of data leakage for each way Numeric 3

Dynamic Total data leakage Numeric 1

Dynamic Number of registered receivers at runtime Numeric 1

Dynamic Number of read/write operations from some
directories

Numeric 6

Dynamic Number of file accesses Numeric 1

Dynamic Number of file read/write operations Numeric 2

Dynamic Number of sent SMSs Numeric 1

Dynamic Number of started phone conversations Numeric 1

Dynamic Number of DexClassLoader usage Numeric 1

Dynamic Number of started services Numeric 1

Dynamic Number of crypto operations Numeric 1

For obtaining dynamic features, the applications were run on the DroidBox
for a period of 15 min. Other than the total size of packets sent/received through
the network, all features demonstrated in Table 2 were extracted from DroidBox’s
output. The crypto activities were also collected. Here, the count of each activ-
ity (encryption, decryption, and key generation) was separately included in the
features, which differed from the literature. All crypto algorithms (AES, RSA,
etc.) supported by Android were used as boolean attributes. In order to observe
data leakage, 23 sensitive tainted data (IMSI, IMEI, etc.) were monitored by
DroidBox. All of them were included in the features list. DroidBox also logs the
way the data is leaked (e.g. through sms, file, network). The data leakage num-
bers for each way was also used as features. Another feature is the number of

UpDroid: Updated Android Malware and Its Familial Classification 361

registered receivers added to the Dropbox by the authors. It was observed that
some applications read the /proc/meminfo, /proc/cmdline, /proc/event direc-
tories which provide information about the system on which the application is
run. Therefore, the number of read operations from these directories were also
taken as a feature. Besides these directories, the number of read and write oper-
ations from the directory /data/data/appname, in which an application has legal
access to, was also added to the features. Finally, other outputs from the Droid-
Box were included. To the best of the authors’ knowledge, this study is the first
to use most of these dynamic features for familial classification. Some of these
features are the number of registered receivers at runtime, the number of each
data leakage, etc. As shown in Table 2, 175 features were collected in total.

In this study, techniques based on machine learning were employed for famil-
ial classification. The Weka tool [17] was utilized in order to implement classifi-
cation algorithms (J48, Random Forest, kNN) with their default parameters. A
malware family which has very few samples in training could negatively affect
the results. Therefore, families with fewer than 20 samples in both datasets were
removed and 20 fold cross-validation employed. As a result, 25 families and 3,994
samples remained in the Last5Y dataset, and 24 families and 4,476 samples in
the Drebin dataset.

3.2 Results

Results for the different classification algorithms are represented in Table 3. kNN
outperforms other algorithms. The results are detailed in Table 3, where FP
shows the weighted average of false positive rate of all families, and TP represents
the weighted average of true positive rate of all families. As can be seen, the
algorithms have high TP rates and very low FP rates for both datasets.

Table 3. Family Classification Results

Algorithm Accuracy (%) TP (%) FP (%)

Last5Y UpDroid Drebin Last5Y UpDroid Drebin Last5Y UpDroid Drebin

kNN 92.41 96.37 96.85 92.4 96.4 96.8 0.5 0.2 0.3

Random
Forest

91.08 96.2 95.87 91.1 96.2 95.9 0.5 0.4 0.6

J48 89.7 96.2 95.37 89.7 96.2 95.4 0.6 0.4 0.4

The proposed family classification approach called UpDroid was compared
with Ec2 [9]. To the best of the authors’ knowledge, Ec2 [9] is the closest work to
the current study, since it is the only application using both static and dynamic
features. Ec2 shows the performance of its algorithm on the Drebin dataset with
families of more than 10 samples. It performs five fold cross-validation, and
therefore, for the purposes of fair comparison, the same settings were applied
in the current study. The comparison results are demonstrated with the same

362 K. Aktas and S. Sen

performance metrics as Ec2 uses (MiF-micro F-score and MiAUC-micro area
under the curve) in Table 4. The results of the two common algorithms in each
study are shown. While Ec2 gives the best results with Random Forest, the cur-
rent study shows the best performance with kNN. However, overall, the current
study’s familial classification algorithm (kNN) shows better performance than
Ec2 in each metric, especially in MiAUC, the metric which is indifferent to class
imbalance. It shows also a high accuracy (95.05%) against the dataset containing
small families that have at least two samples. Please note that while Ec2 finds
the best parameters of classification algorithms by using hyper-parameter opti-
mization, the default parameters of such algorithms are employed in the current
study. Hence, no tuning is explicitly applied in order to outperform other studies.
Furthermore, while EC2 employs 190 static and 2048 dynamic features, UpDroid
uses 175 features. This indicates the selected features’ ability of distinguishing
malware that is built by analyzing recent malware.

Table 4. Comparison with Ec2 [9]

Approach Algorithm MiF MiAUC

Ec2 kNN 0.47 0.73

UpDroid kNN 0.96 0.98

Ec2 Random Forest 0.95 0.97

UpDroid Random Forest 0.94 0.99

Since most of the family classification studies use the MalGenome dataset for
evaluation, the performance of the proposed algorithm is also assessed on this
dataset. Since kNN produces the highest level of accuracy, it was elected to be
employed across all other relevant experiments of this study. For the purposes
of fair comparison, the same settings that FalDroid [15] used were applied in the
current study. All families having more than one sample is taken into account,
and 10-fold cross validation is applied. Table 5 compares the results with some
known static analysis-based classification algorithms in the literature. UpDroid
is clearly one of the best family classifiers. UpDroid is also effective on differenti-
ating families with few samples. FalDroid [15] and RevealDroid [16] are the most
recent works. While FalDroid shows comparable results with UpDroid, UpDroid
shows better performance than RevealDroid [16] considerably. DroidSieve [27]
performs slightly better on the MalGenome dataset (97.79%). Since DroidSieve
explores the use of obfuscation-invariant features for both malware detection
and family identification, it is quite effective against obfuscated malware. How-
ever, it should be noted that it uses a different experimental setting (66% split
for training) than the current study. Since the current study mainly focuses on
dynamic features for detecting obfuscated malwares, such static obfuscation-
invariant features could be considered to be added to the hybrid approach in the
future.

UpDroid: Updated Android Malware and Its Familial Classification 363

Table 5. Comparison with static analysis-based approaches

Approach Accuracy

DenDroid [28], 2014 94.2%

DroidSIFT [36], 2014 93.0%

Droidlegacy [14], 2014 92.9%

DroidSieve [27], 2017 97.79%

FalDroid [15], 2018 97.2%

RevealDroid [16], 2018 95.0%

UpDroid 97.32%

DroidScribe is the only familial classification work that is based on dynamic
features. Even though it improves the classification accuracy from 84% to 94% by
using Conformal Prediction, UpDroid still achieves a much better performance
(96.85%) on the same dataset, Drebin with the same setting.

False positive rates are quite low for all families. The highest false positive
rate is 0.7% for Adrd in Drebin and 0.9% for SmsReg in Last5Y. On the other
hand, except for the Boxer, SmsReg, Gappusin and LinuxLootor families, all
families show more than 90% true positive rate in Drebin. The same families also
decreased detection rates in other studies [4,9], due to being difficult to trigger,
and hence to detect. In contrast to Drebin, new malicious software seems more
sophisticated in order to evade security mechanisms. Nearly half of the families
has true positive rate under 90%. Especially the Youmi, Dowgin, and Kuguo
families decreased the overall results. As shown in the confusion matrix in Fig. 3,
these families are confused with each other. After analysis of these families,
many similarities among them are observed. All these families are obfuscated
aggressive advertisement malware, using the same installation strategy and the
same triggering mechanism to, steal the device information [34].

Fig. 3. Confusion matrix for the Last5Y dataset

364 K. Aktas and S. Sen

4 Related Work

There are typically two datasets used for comparison in research papers:
MalGenome [37] and Drebin [4]. The MalGenome dataset was the first mobile
malware dataset introduced in 2011. It consists of 1,260 malware from 49 dif-
ferent malware families. Drebin [4] is a larger dataset which was introduced
in 2014, and which also contains malware from the MalGenome dataset. A
dataset of obfuscated malware called PRAGuard dataset [21] was then released
in 2015; having collected malware from the MalGenome [37] and the Contagio
[12] datasets [12], and then applied different obfuscation techniques to them. The
most recent dataset introduced to the mobile security community is AMD [34].
It contains 24,553 samples from 71 malware families collected between 2010 and
2016. Besides these datasets, some researchers also share datasets used in their
studies (e.g. [16,20]). However, to the best of the authors’ knowledge, there is
no public dataset to be found in the literature that especially focuses on update
attacks.

Although there have been many studies for Android malware detection, they
generally do not perform malware family classification. The first work on auto-
mated familial classification is Droidlegacy [14]. The study classified piggybacked
applications based on the assumption that the most common code in a family
would be malicious and the Android API calls used by such malicious code are
used as the signature of a family. Although it performed with 98% accuracy on
family classification for a set of 11 families, the basic assumption lead to misclas-
sification of some applications, since they shared the code of a supporting library
(e.g. advertisement libraries) as the most common code. Other early studies on
mobile malware family classification were Dendroid [28], Droidminer [35], and
DroidSIFT [36]. Dendroid [28] proposed family classification based on statistical
analysis of an application’s code structure. While Droidminer [35] constructed
the behaviour graph of an application, DroidSIFT [36] was based on the simi-
larity of API dependency graphs of applications. A recent work also proposed
a familial classification system based on call graph similarity [15], in which, the
sensitive API call-related graph (SARG) of an application was extracted, and
which reduced the size of the function call graph of an application by approxi-
mately 72%. In order to calculate the similarity of SARG graphs, a new method
based on TF-IDF was proposed. Representative samples of each family were
determined based on this similarity metric, which greatly reduced the workload
for malware analysts. Although the study achieved a higher level of accuracy
(95% for Drebin dataset) compared to other approaches based on static anal-
ysis, it was not resilient to control flow obfuscation techniques. Another recent
study based on code similarity at the methods’ level also suffered from code
obfuscation techniques [22].

Recently, two further studies were proposed in order to detect and clas-
sify obfuscated malwares. RevealDroid [16] takes into account features which
could help detect obfuscated malwares such as reflection-based and native-code
features. The result showed RevealDroid to be a lightweight and obfuscation-
resilient approach compared to others, namely MUDFlow [6], Drebin [4], and

UpDroid: Updated Android Malware and Its Familial Classification 365

Dendroid [28]. DroidSieve also explores the features for both detecting obfus-
cated and non-obfuscated malwares, and introduced a set of novel features. It
was shown that the high-ranked features of malware classification for plain and
obfuscated malwares showed a degree of similarity. For example, it was shown
that permissions and used-permissions play an important role in detecting both
plain and obfuscated malware. Another study which employed only requested
permissions in the Manifest file for family classification [23] also supported this
result.

To the best of the current study’s authors knowledge, there has only been one
study called Droidscribe [13] that is based on the dynamic features of malware for
family classification. In the study, features related to the following groups were
extracted by using CopperDroid [31]: network access, file access, binder method,
and execute file. By applying SVM multi-class classification on these features, the
proposed approach achieved 84% accuracy on the Drebin dataset [4]. Although
the results were quite low when compared to static analysis-based approaches,
they increased up to a level of 94% accuracy by Conformal Prediction (CP),
which is a computationally expensive algorithm. Therefore, it is only applied
to malware for which SVM does not meet the desired classification quality. On
the other hand, CP returns a possible list of classes to which malware belongs.
Therefore, additional analysis is needed in order to select the right class, even
after applying CP.

Even though there are some research on investigating hybrid features of mal-
ware against Windows systems [18], there has only been one hybrid study on
mobile platform, called Ec2 [9], which is a very recent addition to the liter-
ature. The most important contribution of this work was the classification of
small malware families with less than 10 samples. In order to achieve that, an
ensemble approach which combines clustering and classification techniques in a
systematic way was proposed. Ec2 showed good results both on the Drebin and
Koodous datasets. It was also shown to perform better than Droidlegacy [14]. In
the current study, an effective hybrid-based family classification algorithm using
much fewer features is proposed.

5 Conclusion

A new dataset called UpDroid is introduced in this current study. Although there
are a few existing mobile malware datasets to be found in the literature, UpDroid
differs by only focusing on update attacks. Since updating techniques are one
of the most commonly used evasion strategies used by attackers, solutions need
to be developed against such attacks. It is believed that this dataset will accel-
erate studies working on malware which cannot be effectively handled by static
analysis alone. This dataset consists of 2,479 samples belonging to 21 malware
families; most of which were discovered in the last few years. The analysis of
this dataset both provides information about the update attacks and recently
introduced malware.

366 K. Aktas and S. Sen

Since update attacks download their malicious code at runtime, detection
and familial classification based static analysis techniques are largely ineffec-
tive against such attacks. As also encountered while constructing the UpDroid
dataset in this study, these attacks cannot be correctly grouped into families
by using the anti-virus solutions available on the market. While most of the
familial classification algorithms in the literature are based on static features,
they are largely ineffective against update attacks or malware using obfuscation
techniques. As recent malware usually employs such evasion techniques [34],
an obsufcation-resilient family classification algorithm is needed. Therefore, this
study introduces a new familial classification algorithm based on both static and
dynamic features. This algorithm shows better performance than Ec2 [9], which
is the first and only other familial classification algorithm to employ hybrid fea-
tures, by using much fewer discriminating features. The introduced algorithm
achieves a high degree of accuracy and a low false positive rate on both the
recent malware and the samples in the Drebin dataset.

Acknowledgment. This study is supported by the Scientific and Technological
Research Council of Turkey (TUBITAK-115E150). We would like to thank TUBITAK
for its support.

References

1. blcheck: Test a mail servers against black lists, March 2018. https://github.com/
darko-poljak/blcheck

2. Droidbox: Dynamic analysis of android apps, March 2018. https://github.com/
pjlantz/droidbox

3. Apkpure: Android market place, March 2018. https://apkpure.com/
4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN: effective

and explainable detection of android malware in your pocket. In: Proceedings of
the Network and Distributed System Security (NDSS) Symposium (2014)

5. Ashishb: android-malware, March 2018. https://github.com/ashishb/android-
malware

6. Avdiienko, V., et al.: Mining apps for abnormal usage of sensitive data. In: Pro-
ceedings of the 37th International Conference on Software Engineering, vol. 1, pp.
426–436. IEEE Press (2015)

7. AVTEST: Security report 2016/2017 (2017). https://www.av-test.org/fileadmin/
pdf/security report/AV-TEST Security Report 2016-2017.pdf

8. Aysan, A.I., Sen, S.: Do you want to install an update of this application? A
rigorous analysis of updated android applications. In: 2015 IEEE 2nd International
Conference on Cyber Security and Cloud Computing (CSCloud), pp. 181–186.
IEEE (2015)

9. Chakraborty, T., Pierazzi, F., Subrahmanian, V.: EC2: ensemble clustering and
classification for predicting android malware families. IEEE Trans. Dependable
Secur. Comput. (1), 1 (2017)

10. Choudhary, S.R., Gorla, A., Orso, A.: Automated test input generation for android:
are we there yet?(e). In: 2015 30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pp. 429–440. IEEE (2015)

https://github.com/darko-poljak/blcheck
https://github.com/darko-poljak/blcheck
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://apkpure.com/
https://github.com/ashishb/android-malware
https://github.com/ashishb/android-malware
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf
https://www.av-test.org/fileadmin/pdf/security_report/AV-TEST_Security_Report_2016-2017.pdf

UpDroid: Updated Android Malware and Its Familial Classification 367

11. Comodo: Comodo threat research labs warns android users of tordow v2.0
outbreak, March 2018. https://blog.comodo.com/comodo-news/comodo-warns-
android-users-of-tordow-v2-0-outbreak/

12. Contagio: contagio, March 2016. http://contagiodump.blogspot.com.tr/
13. Dash, S.K., et al.: DroidScribe: classifying android malware based on runtime

behavior. In: 2016 IEEE Security and Privacy Workshops (SPW), pp. 252–261.
IEEE (2016)

14. Deshotels, L., Notani, V., Lakhotia, A.: DroidLegacy: automated familial clas-
sification of android malware. In: Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014, p. 3. ACM (2014)

15. Fan, M., et al.: Android malware familial classification and representative sample
selection via frequent subgraph analysis. IEEE Trans. Inf. Forensics Secur. (2018)

16. Garcia, J., Hammad, M., Malek, S.: Lightweight, obfuscation-resilient detection
and family identification of android malware. ACM Trans. Softw. Eng. Methodol.
(TOSEM) 26(3), 11 (2018)

17. Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor.
11, 10–18 (2009)

18. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656
(2013)

19. Koodous: Online malware analysis platform, March 2018. https://koodous.com/
20. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der

Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: A view on current android
malware behaviors. In: 2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), pp. 3–17.
IEEE (2014)

21. Maiorca, D., Ariu, D., Corona, I., Aresu, M., Giacinto, G.: Stealth attacks: an
extended insight into the obfuscation effects on android malware. Comput. Secur.
51, 16–31 (2015)

22. Marastoni, N., Continella, A., Quarta, D., Zanero, S., Preda, M.D.: Group-
Droid: automatically grouping mobile malware by extracting code similarities.
In: Proceedings of the 7th Software Security, Protection, and Reverse Engineer-
ing/Software Security and Protection Workshop, p. 1. ACM (2017)

23. Ping, M., Alsulami, B., Mancoridis, S.: On the effectiveness of application charac-
teristics in the automatic classification of malware on smartphones. In: 2016 11th
International Conference on Malicious and Unwanted Software (MALWARE), pp.
1–8. IEEE (2016)

24. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G.: Execute this!
Analyzing unsafe and malicious dynamic code loading in android applications. In:
NDSS, vol. 14, pp. 23–26 (2014)

25. Qu, Z., Alam, S., Chen, Y., Zhou, X., Hong, W., Riley, R.: DyDroid: measuring
dynamic code loading and its security implications in android applications. In:
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 415–426. IEEE (2017)

26. Spreitzenbarth: Current android malware, March 2018. https://forensics.
spreitzenbarth.de/android-malware/

27. Suarez-Tangil, G., Dash, S.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro,
L.: DroidSieve: fast and accurate classification of obfuscated android malware. In:
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, pp. 309–320. ACM (2017)

https://blog.comodo.com/comodo-news/comodo-warns-android-users-of-tordow-v2-0-outbreak/
https://blog.comodo.com/comodo-news/comodo-warns-android-users-of-tordow-v2-0-outbreak/
http://contagiodump.blogspot.com.tr/
https://koodous.com/
https://forensics.spreitzenbarth.de/android-malware/
https://forensics.spreitzenbarth.de/android-malware/

368 K. Aktas and S. Sen

28. Suarez-Tangil, G., Tapiador, J.E., Peris-Lopez, P., Blasco, J.: DenDroid: a text
mining approach to analyzing and classifying code structures in android malware
families. Expert. Syst. Appl. 41(4), 1104–1117 (2014)

29. Symantec: Internet security threat report, April 2016. https://www.symantec.
com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf

30. Symantec: Internet security threat report, vol. 22, April 2017. https://www.
symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

31. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: NDSS (2015)

32. VirusTotal: Virustotal, March 2018. https://www.virustotal.com
33. Website, A.: Android malware behaviors, March 2018. http://amd.arguslab.org/

behaviors
34. Wei, F., Li, Y., Roy, S., Ou, X., Zhou, W.: Deep ground truth analysis of current

android malware. In: Polychronakis, M., Meier, M. (eds.) DIMVA 2017. LNCS,
vol. 10327, pp. 252–276. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60876-1 12

35. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp.
163–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 10

36. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware classi-
fication using weighted contextual api dependency graphs. In: Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pp.
1105–1116. ACM (2014)

37. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy (SP) pp. 95–109. IEEE (2012)

https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.virustotal.com
http://amd.arguslab.org/behaviors
http://amd.arguslab.org/behaviors
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-60876-1_12
https://doi.org/10.1007/978-3-319-11203-9_10

Evaluation of Cybersecurity Management
Controls and Metrics of Critical

Infrastructures: A Literature Review
Considering the NIST Cybersecurity

Framework

Barbara Krumay1(&) , Edward W. N. Bernroider2 ,
and Roman Walser2

1 Johannes Kepler University Linz, Linz, Austria
barbara.krumay@jku.at

2 WU Vienna University of Economics and Business, Vienna, Austria
{edward.bernroider,roman.walser}@wu.ac.at

Abstract. In recent years, cybersecurity management has gained considerable
attention due to a rising number and also increasing severity of cyberattacks in
particular targeted at critical infrastructures of countries. Especially rapid digi-
tization holds many vulnerabilities that can be easily exploited if not managed
appropriately. Consequently, the European Union (EU) has enacted its first
directive on cybersecurity. It is based on the Cybersecurity Framework by the
US National Institute of Standards and Technology (NIST) and requires critical
infrastructure organizations to regularly monitor and report their cybersecurity
efforts. We investigated whether the academic body of knowledge in the area of
cybersecurity metrics and controls has covered the constituent NIST functions,
and also whether NIST shows any noticeable gaps in relation to literature. Our
analysis revealed interesting results in both directions, pointing to imbalances in
the academic discourse and underrepresented areas in the NIST framework. In
terms of the former, we argue that future research should engage more into
detecting, responding and recovering from incidents. Regarding the latter, NIST
could also benefit from extending into a number of identified topic areas, for
example, natural disasters, monetary aspects, and organizational climate.

Keywords: Cybersecurity metrics � Cybersecurity controls
Critical infrastructures � Literature review

1 Introduction

Disruptions of the power supply happen occasionally and are most often caused by
force majeure such as heavy storms. In December 2015, approximately 230,000 people
in Ukraine were left without power for up to six hours. Remarkably, this outage was
not caused by heavy weather but due to the first successful cyberattack against a
nation’s power grid [1]. Not only energy suppliers, but also organizations in many
other industries are confronted with an increasing number of cyberattacks: financial

© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 369–384, 2018.
https://doi.org/10.1007/978-3-030-03638-6_23

http://orcid.org/0000-0001-5313-3833
http://orcid.org/0000-0003-4787-8358
http://orcid.org/0000-0003-4489-8599
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_23&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_23

services, health care or IT service providers – just to name a few. The new digital world
with its strong interconnectedness creates new business opportunities, but with its
increasing number of attack vectors also bears considerable risk. Until recently,
cyberattacks mainly targeted individuals or specific organizations at a micro level.
Today, more and more attacks are carried out at the macro level, trying to negatively
affect entire critical infrastructures (e.g. communication networks, household
appliances).

Consequently, over the last years governments around the globe have been
intensifying their efforts to better protect their national cyberspaces. Also, the Parlia-
ment of the European Union (EU), one of the world’s largest politic economies, in
2016 has adopted a Directive on cybersecurity to be transposed into national laws by
the Member States by May 2018 [2]. The new EU NIS Directive will require operators
of essential services to continuously monitor their cyberspace, integrate and consider
potential risk for own information systems and take appropriate technical and orga-
nizational security measures. Thus, organizations throughout the EU will have to find
and implement a well-defined set of metrics to successfully monitor and evaluate their
current cybersecurity status. Moreover, organizations operating critical infrastructures
in the EU will be required to evaluate and report any incidents to the relevant national
authority.

As with any statutory change, there is major uncertainty among all involved parties
(including legislators of the EU Member States). This uncertainty is also reflected by
the fact that as of July 2018, 17 out of 28 Member States were in delay and received a
letter of formal notice to fully transpose into national laws the first piece of EU-wide
legislation on cybersecurity [3]. Most large organizations already have internal control
systems in place, which could serve as a basis for the determination of suitable security
metrics. Those internal control systems are mainly based on leading frameworks such
as the Cybersecurity Framework by the US National Institute of Standards and
Technology (NIST). However, many organizations across the EU might be obliged to
implement additional measures to monitor their cyberenvironment for fully complying
with new legal regulations. So far, it is unclear whether the current reliance on
established frameworks will be sufficient for organizations to adequately monitor and
assess their cybersecurity situation. Also, it remains unclear whether existing literature
covers all relevant aspects for measuring an organization’s cybersecurity.

In this paper we will therefore review literature on controls and metrics for mea-
suring cybersecurity. Our aim is to contrast the results with the contents of the NIST
framework to show how well the NIST framework is covered by academic literature.
This allows us to pinpoint areas where additional research is needed. Additionally, we
aim to illuminate any potential blind spots which might occur when organizations
adopt the NIST framework unchallenged for measuring cybersecurity. Moreover, our
findings could either confirm or challenge the popular NIST framework and propose
some room for necessary extensions. In practice, our work might help operators of
critical infrastructure to better measure their cybersecurity status and thus help to
comply with the new EU NIS directive [2].

The remainder of this paper is organized as follows. First, we will give some
theoretical background and information about the context to ensure a common
understanding of the relevant terms and concepts. In a subsequent chapter, we will

370 B. Krumay et al.

explain the methodological approach we followed for conducting our literature review.
In chapter four, we will present the results of our literature review and discuss them in
chapter five together with contributions and limitations. The last chapter will conclude
our work.

2 Conceptual Background and Context

Cyberattacks can be defined as any “deliberate actions to alter, disrupt, deceive,
degrade, or destroy computer systems or networks or the information and/or programs
resident in or transiting these systems or networks” [4]. Basically, cyberattacks occur
since the existence of information systems. With organizations’ increasing reliance on
computer systems, also their dependence on the correct functioning of the adopted
technology became greater. The success of whole industries is mainly dependent on the
unobstructed operation of organizations’ technical infrastructures. Consequently,
organizations make investments to obtain a reasonable level of cybersecurity through
software, hardware, education and effective personnel [5].

However, recent studies show that both the number and severity of cyberattacks is
dramatically on the rise (e.g., [6, 7]). One explanation is that the opportunities to
perform attacks have grown. For example, the recent technological development
towards larger and more interconnected infrastructures (often referred to as Internet of
Things; in short IoT) make cyberattacks potentially even more harmful than before. An
array of devices such as Smart TVs with internet access might be integrated in a botnet
to bundle computational power for performing more powerful attacks against a given
target system (e.g., DDoS attacks). Also, the growing number of devices and inter-
connection led to more attack vectors and vulnerabilities which can be exploited.
Because attacks might also be exercised politically motivated, governments have
started legal initiatives to increase the level of cybersecurity among all relevant parties.

Usually, a set of controls is implemented to build an internal control system and
obtain a reasonable level of cybersecurity. According to the COBIT-Glossary a control
is “the means of managing risk, including policies, procedures, guidelines, practices or
organizational structures, which can be of an administrative, technical, management, or
legal nature” [8]. In addition, the COBIT website remarks that controls are “also used
as a synonym for a safeguard or countermeasure” [8]. Since a single, well-established
definition for controls does not exist, for the purpose of this research, we define
controls as safeguards or measures on the operational, administrative and strategic
levels to manage cybersecurity risks. By contrast, a metric has been defined as “a
verifiable measure, stated in either quantitative or qualitative terms and defined with
respect to a reference point” [9]. We refer to metrics as possibilities for measuring the
quality of cybersecurity management efforts, which allow for comparison with specific
cybersecurity goals and evaluations from former periods or across organizations.

2.1 Measuring Cybersecurity

Measuring an organization’s cybersecurity status has become an important but chal-
lenging task for today’s Chief Information Officers (CIOs) and Chief Information

Evaluation of Cybersecurity Management Controls and Metrics 371

Security Officers (CISOs). To accurately determine the cybersecurity investment needs,
a precise assessment of the current status is indispensable. Various factors make the
measurement of security hard: a lack of possibilities to test security requirements, the
interconnectedness of systems and exaggerated optimism of the management – just to
name a few [10]. One common approach for determining suitable metrics is reliance on
a set of metrics from a cybersecurity framework. Key Performance Indicators (KPIs)
and/or Key Risk Indicators (KRIs) can be deducted from the risks and controls pro-
posed. To give an example, subcategory PR.DS-7 from the NIST cybersecurity
framework (v1.1) states: “The development and testing environment(s) are separate
from the production environment” [11]. In the former environments, systems are less
reliable, e.g. due to unknown bugs or less strict privileges. Production systems need
stable environments to ensure continuous business operations. The degree to which the
production environment is separated from development or testing could be determined
as one of many metrics to estimate the current level of cybersecurity. Organizations
may rely on a mix of frameworks and only adapt the parts perceived as relevant [12].

2.2 NIST Cybersecurity Framework

The originators of the NIST define their cybersecurity framework as “a voluntary risk
management framework consisting of standards, guidelines, and best practices to
manage cybersecurity-related risk” [11]. The first version of the publicly accessible
framework was released in 2014 and updated to version 1.1 in April 2018. Although it
was originally intended as a framework for operators of critical infrastructures, its
contents were also considered by various other businesses over the last years. A cyber
exposure company’s survey among more than 300 US IT and security professionals has
shown that approximately 70 percent of the survey respondents see the NIST cyber-
security framework as a best practice [13]. It can thus be seen as a de facto standard
among CISOs, which is widely adopted globally. NIST built their framework based on
internal knowledge and contents of the following institutions: Center for Internet
Security (CIS) Controls V7, Control Objectives for Information Related Technology
(COBIT) V5, International Society of Automation (ISA) standards, International
Organization for Standardization (ISO) 27001.

The NIST cybersecurity framework consists of five different so-called functions,
which contain an overall number of 23 categories and 108 subcategories. Table 1
provides an overview of the framework’s contents. The originators point out that this
framework is not exhaustive but extensible and the order of the elements should not be
understood as any prioritization.

372 B. Krumay et al.

2.3 EU NIS Directive

Over the last year, governments around the world have started to increasingly recog-
nize the importance of assuring a reasonable level of cybersecurity. This awareness
might be the result of recent attacks on operators of critical infrastructures such as the
previously mentioned attack on the Ukrainian power grid. It is arguable that the number
of (also politically motivated) cyberattacks will further increase.

Consequently, in July 2016, the EU Parliament adopted the Directive on security of
network and information systems (Directive (EU) 2016/1148). In short, the directive is
often referred to as NIS Directive. In the European Union, it was the first legislation
with the aim to boost the overall level of cybersecurity in the EU. The Directive was
intended to be transposed into national law in all of the 28 Member States by May
2018. The NIS Directive mainly addresses operators of so-called essential services,
whose definition might vary slightly from country to country. Providers of essential
services will usually have access to or operate critical infrastructures. A fact sheet,
which was published in May 2018 substantiated the industries and infrastructures
which are covered by the following essential services [14]:

– Energy (electricity, oil and gas)
– Transport (air, rail, water and road)
– Banking (credit institutions)
– Financial market infrastructures (trading venues, central counterparties)
– Health (healthcare settings)
– Water (drinking water supply and distribution)
– Digital infrastructure (internet exch. points, DNS operators, TLD name registries)

Table 1. NIST functions (summary based on [11])

Function Function contents

Identify
(ID)

Identification and management of assets (incl. business environment),
governance of policies, procedures and processes to inform management of
cybersecurity risk, risk assessment, determination of risk appetite, development
of a risk management strategy (incl. IT of suppliers)

Protect
(PR)

Identity management, logical and physical access protection to assets and
network (incl. remote access). Regular review of permissions and
authorizations, assurance of authentication (e.g. multi-factor authentication),
training of users (awareness, roles, responsibilities), adequate data protection,
security policies for protecting information, maintenance and repairs of
components, log recording and regular audits

Detect
(DE)

Continuous monitoring of systems and assets, detection and impact estimation
of anomalous activities and, appropriate communication of detection
information, continuous improvement of detection processes

Respond
(RS)

Development of incident response plans and trainings based on predefined
criteria, clear roles and responsibilities, coordination and information exchange
with stakeholders, mitigation of incidents, documentation of lessons learned
and updating of response strategies

Recover
(RC)

Training and execution of recovery processes and procedures as required,
coordination of restoration activities with internal and external parties,
management of public relations and reparation of reputation after an incident

Evaluation of Cybersecurity Management Controls and Metrics 373

Operators of essential services should be identified by the governments until
November 2018. The NIS Directive aims to improve the level of cybersecurity through
three different means: (1) increased cooperation at EU-level, (2) improved cyberse-
curity capabilities at the national level, and (3) risk management and incident reporting
obligations for operators of critical infrastructures at the organization level.

Consequently, the national governments of the EU Member States have initiated
project with the aim of improving the national cybersecurity capabilities. Asking
organizations to objectively assess their cybersecurity status at an individual level is
already a challenging task. For instance, employees accountable for the company’s
information systems might tend to report positively biased information. In addition, the
selection of suitable metrics (which are available within the companies) is crucial to get
a good estimation. Even more challenging, those individual cybersecurity evaluations
must be aggregated and compared to get a picture of the national situation. Although
the leading cybersecurity frameworks are proven to a certain degree, there might be
some important aspects missing to assess an organization’s cybersecurity status. On the
other side, also solely relying on scientific papers might neglect some important areas.
By conducting a more holistic review of literature on cybersecurity metrics, we aim to
illuminate any potential blind spots both in specific framework such as NIST but also in
existing literature on measuring cybersecurity.

3 Methodological Approach

Based on a systematic literature review, we investigated the body of knowledge and
existing results in the area of cybersecurity metrics and controls. In general, we follow
the process as described by Levy [15], consisting of input, processing and output. For
the input, we first selected - with the help of six experts in the area of cybersecurity and
critical infrastructures - search terms related to security in the cyberspace (i.e.,
cybersecurity, information security, IT security, data security) and related to metrics
and controls (i.e., metrics, indicators, controls, measures, risks, management). In the
actual search procedure, we applied Boolean search mechanisms (e.g., “metrics” AND
“cybersecurity” AND “critical infrastructure” leading to approx. 3,500 results) for
combining the search terms.

Although starting with high-level journals and scientific databases is recommended
[15, 16], for our study it is important to use a wide variety of sources. Therefore - and
to gain a more holistic view - we used Google Scholar as our primary search engine,
using its mechanisms for excluding patents and cited sources. The search process
(12/2017–02/2018) resulted in more than 9,000 pre-selected articles, excluding double
matches, articles in foreign languages and results with dead links. In a next step, we
excluded all non-peer-reviewed articles (i.e., journals purely from practice, textbooks,
theses) resulting in approximately 7,500 articles. For further investigation, we selected
all papers, directly addressing controls or metrics of cybersecurity (respectively IS/IT
security) in the context of critical infrastructures as their main focus of research. As a
result, we were able to identify 320 peer-reviewed papers fitting the requirements.
Finally, we excluded all papers, which address more or less the same controls or
metrics (e.g., further developments of existing papers, papers related to the NIST

374 B. Krumay et al.

guideline), resulting in 56 papers. From these papers, we extracted 1,378 units (metrics
and controls) for further investigation.

Our level of analysis consists of the NIST guideline’s 23 categories. In case of any
doubts, we use the subcategories of the guideline as a reference. For this purpose, we
developed seven simple coding principles (see Table 2) for mapping the units extracted
from literature to the NIST framework (i.e. to its 23 categories). Rule R1, for example,
means that the unit “Sum of critical assets” [17] is a metric (M). Applying rule R2
implies that units (e.g., “% of securized areas”, “% of critical equipment with adequate
physical protection”, “% of secured configurations” [17]) are covered by the term “IS
security architecture” [17]. Therefore, we excluded the higher-level term “IS security
architecture” and used the underlying metrics as units of analysis. Regarding rule R3
and R4, the unit “Sum of critical assets” [17] has been directly mapped to the function
‘Identify’, based on the description of the NIST subcategory “Asset Management (ID.
AM): The data, personnel, devices, systems, and facilities that enable the organization
to achieve business purposes are identified and managed consistent with their relative
importance to organizational objectives and the organization’s risk strategy” [11].
According to R5, we marked the unit “Degree of organizational climate satisfaction”
[18] as ‘uncovered’. Regarding Rule R6 (and in the same way R7), the unit “Change
management - analyses of impacts that technology changes have on existing systems”
[18] is directly mapped to “Data Security (PR.DS): Information and records (data) are
managed consistent with the organization’s risk strategy to protect the confidentiality,
integrity, and availability of information” [11], yet indirectly mapped to other functions
such as ‘Identify’.

Table 2. Coding principles (pre-set)

R1 Based on the working definition of this paper, units are either controls (C) or metrics
(M)

R2 To avoid duplication of meaning, units on different levels (e.g., metrics which are
aggregated into one combined metric) from the same source, the highest level is
excluded from further investigation (E)

R3 General rule: every non-excluded unit must have one direct mapping (D) and may or
may not have one or more indirect (I) mappings to the NIST framework

R4 Every unit is directly (D) mapped to only one function of the NIST guideline (exclusive
mapping). Direct mapping means that this unit fits best into this one function (based on
categories of NIST)

R5 If a unit does not fit directly into one function, it is marked as ‘uncovered’ (U)
R6 Every unit may be mapped indirectly (I) to other functions of the NIST guideline, if it

holds aspects of these functions
R7 Every unit may be mapped indirectly to functions ‘uncovered - indirect’ (UI), if it holds

aspects not covered by NIST

Evaluation of Cybersecurity Management Controls and Metrics 375

Two researchers were trained on the coding procedure. To test intercoder reliability,
we used a simple percentage agreement method [19], assessing the agreement between
the coders from 0 (no agreement) to 1 (perfect agreement). Both coders were coding the
same 50 units and the results were compared. The agreement between the two coders
was about 0.91. In addition, we calculated intracoder reliability, also using 50 units for
coding, which have been coded by the same coder two times, three days after the first
coding round. The intracoder reliability 0.96 and 0.97 for the two coders. The coding
itself was done in July 2018 by both coders. After this first round, we cross-checked the
NIST functions and categories against the units to make sure that gaps are not resulting
from the coding rules. This led to changes in only a minority of the mappings (less than
2%) allowing us to assume that bias from the coding principles and coders is negligible.
Units which have been marked as ‘uncovered’ were further analyzed. In this stage we
applied coding techniques, which are often applied in Grounded Theory approaches
[20]. In particular, we applied a form of open coding and categorizing based on the
meaning of the ‘uncovered’ units.

4 Results

The results of the literature review are presented in three different ways. First, we
describe the sample, i.e. papers in the samples and units of investigation. Next, we
show in how far NIST framework functions are represented in the literature. Finally,
we present topics which are discussed in the literature but hardly covered by NIST
guideline.

4.1 Sample Description

As already described above, the sample consisted of 56 articles. The articles in the
sample are mainly published in academic journals (38) and conference proceedings
(16), only two were book sections from scholarly collections. All articles were pub-
lished between 2003 and 2017 with no clear peak on any year. Eleven of the articles
were published in eight journals with a 5-year impact factor above 3.5, mostly related
to the Information System (IS) and Computer Science (CS) community, (i.e. Decision
Support Systems [21], Expert Systems with Applications [22, 23], Reliability Engi-
neering & System Safety [24, 25], IEEE Transactions on Smart Grid [26, 27], Infor-
mation Sciences [28], Information Systems Journal [29], International Journal of
Information Management [30]). The highest impact factor in our sample, however, is
related to a journal with no clear relationship with IS nor with CS research (Renewable
& Sustainability Energy Reviews, IF 9.184, [31]). Thirteen of the papers in our sample
were cited more than 100 times; the oldest one in our sample [32] even about 1,000
times (according to Google Scholar).

Regarding the units of analysis, we excluded 325 units based on coding rule R2,
resulting in 1,053 units of analysis, 443 of which are metrics and 610 are controls
(coding rule R1). Regarding direct mapping, 918 units have been directly mapped to
NIST functions [11], leaving 135 which are not directly covered by NIST and addi-
tional 122 have aspects, which are not covered by NIST.

376 B. Krumay et al.

4.2 Mapped Metrics and Controls

Mapping the units to the NIST functions [11] revealed a rather clear, yet surprising
picture. Most of the units, which we were able to map directly, are related to the
functions ‘Identify’ (41.94%) and ‘Protect’ (44.88%). Interestingly, these two functions
are mainly covered by controls (about 2/3 per function). In comparison, the functions
‘Detect’ (8.06%), ‘Respond’ (4.03%) and ‘Recover’ (1.09%) were hardly covered by
the literature (see Table 3). By contrast, these functions are mainly covered by metrics.

Table 3. Mapping of metrics and controls to NIST guideline [11]; D = direct mapping;
I = indirect mapping

Function/Category D (%) I (%)

Identify (ID) 41.94 41.11
Asset management (ID.AM) 10.35 9.91
Business Environment (ID.BE) 5.77 8.03
Governance (ID.GV) 9.69 9.23
Risk Assessment (ID.RA) 13.94 8.21
Risk Management Strategy (ID.RM) 1.09 4.70
Supply Chain Risk Management (ID.SC) 1.09 1.03
Protect (PR) 44.88 31.54
Identity Management and Access Control (PR.AC) 7.52 2.31
Awareness and Training (PR.AT) 6.32 3.59
Data Security (PR.DS) 11.44 5.21
Information Protection Processes and Procedures (PR.IP) 8.50 14.36
Maintenance (PR.MT) 1.42 0.43
Protective Technology (PR.PT) 9.69 5.64
Detect (DE) 8.06 12.05
Anomalies and Events (DE.AE) 0.65 3.33
Security Continuous Monitoring (DE.CM) 3.81 5.30
Detection Processes (DE.DP) 3.59 3.42
Respond (RS) 4.03 11.88
Response Planning (RS.RP) 0.87 3.93
Communications (RS.CO) 0.00 0.77
Analysis (RS.AN) 2.18 3.59
Mitigation (RS.MI) 0.54 2.74
Improvements (RS.IM) 0.44 0.85
Recover (RC) 1.09 3.42
Recovery Planning (RC.RP) 1.09 1.79
Improvements (RC.IM) 0.00 1.03
Communications (RC.CO) 0.00 0.60

Evaluation of Cybersecurity Management Controls and Metrics 377

When looking at indirectly mapped units, the disproportional research focus soft-
ens. While ‘Identify’ (41.11%) and ‘Protect’ (31.54%) remain to be covered by the vast
majority of units, the rates related to ‘Detect’ (12.05%), ‘Respond’ (11.88%) and
‘Recover’ (3.42%) increased. Due to multiple mapping, metrics and controls indirectly
mapped are hard to compare. However, it can be said, that controls do more often have
indirect mappings, whereas 66% of all metrics were mapped within only one function
from the NIST guideline, 40% were even mapped directly to one category without any
further indirect mapping to other categories.

4.3 Uncovered Topic Areas

In our analysis, some units were marked as ‘uncovered’ (257 of which are 159 controls
and 98 metrics). We used these units for identifying ‘uncovered topic areas’ by coding
and categorizing them based on the underlying meaning or purposes of controls and
metrics. A brief overview presenting all uncovered topic areas is shown in Table 4. The
table provides metrics (M) and controls (C) (where applicable) which have been
assigned to these topic areas. These topic areas do not seem to directly align with the
NIST functions.

Table 4. Uncovered topic areas with examples (U = Number of Units, M = Number of Metrics,
C = Number of Controls)

Topic areas Representative examples U M C

Organizational
climate

M: “Degree of organizational climate satisfaction” [17]
C: “Enhance individual/group pride in the organization” [29]

65 13 52

Monetary
aspects

M: “Cost of image rebuilt after information security accidents”
[33]
C: “Security budget segregation” [17]

59 41 18

Executive
involvement

M: “Leaderships’ involvement in information security planning”
[18]
C: “Develop a management team that leads by example” [29]

25 5 20

Ethics C: “Create an organizational code of ethics” [29] 23 0 23
General
management

M: “documents scheduled for that month must be received
within five business days of due date” [34]
C: “Ensure a right balance between centralization and
decentralization” [29]

23 12 11

IT Service
Levels

M: “Customer Satisfaction” [33]
C: “SLA covers all the aspects of security when there is a third
party providing other services” [35]

22 11 11

Cognitive
response

C: “Instill a fear of consequences” [29] 18 0 18

Procurement M: “Testing ICT before acquisition” [18]
C: “Procure IT Resources” [36]

14 4 10

Business value C: “Contribution to the overall business” [32] 10 0 10
Natural
disasters

M: “Intensity of the extreme weather event” [37]
C: “Fire, voltage and flood protection of buildings and premises”
[18]

10 3 7

378 B. Krumay et al.

We will further elaborate on five uncovered topic areas, which are either prevailing
the analysis (i.e., organizational climate, monetary aspects, executive involvement,
ethics) or highly important in the context of critical infrastructure cybersecurity (i.e.,
natural disasters). In terms of organizational climate, 65 units (13 metrics, 52 controls)
have been assigned which relate to organizational climate in a company, such as
motivation and employee satisfaction (e.g. in [29, 32, 38]). Interestingly, aspects of
organizational climate, influencing overall cybersecurity are not directly listed in NIST.
They could be assumed as underlying ideas in categories where responsibilities and
communication are claimed (e.g. in Respond – Communication [11]), yet an immediate
mapping was not possible. Related in NIST is ID.AM-5 where ‘personnel’ is addressed
as a resource, but not further discussed. Development of skills, e.g., awareness, is
addressed in the category “Awareness and Training (PR.AT)” [11], as well as in “PR.
IP-11: Cybersecurity is included in human resources practices (e.g., deprovisioning,
personnel screening)” [11].

Regarding monetary aspects, we found 59 units (41 metrics, 18 controls), addressing
revenues or costs (see for example [29, 36, 39, 40]). Although in the description of the
NIST guideline monetary aspects are discussed in terms of “cybersecurity risks … can
drive up costs and affect revenue” [11], in the NIST functions, costs are hardly covered.
The sub-category “ID.AM-5: Resources (e.g., hardware, devices, data, time, personnel,
and software) are prioritized based on their classification, criticality, and business value”
[11] refers to resources in general, but not explicitly to monetary resources.

The picture is similar for executive involvement (25 units: 5 metrics, 20 controls),
which is discussed widely in the literature (e.g., [18, 29]), but rarely addressed in the
NIST guidelines. We found evidence for executive involvement in two sub-categories
(“PR.AT-4: Senior executives understand their roles and responsibilities”, “RC.CO-3:
Recovery activities are communicated to internal and external stakeholders as well as
executive and management teams”) and the category “Information Protection Processes
and Procedures (PR.IP): Security policies (that address purpose, scope, roles, respon-
sibilities, management commitment, and coordination among organizational entities),
processes, and procedures are maintained and used to manage protection of information
systems and assets” [11]. However, the literature discussed these issues in more depth,
e.g. “Top management’s engagement” [41], “Top Management: Leadership” [38] or
“Management Support (MS): Management involvement” [42].

Interestingly, ethics appears in the literature (23 controls, no metrics), yet is elided
by NIST. For example, Bernik and Prislan (2016) address “Ethical, socially responsible
and transparent security management” [18], Dhillon and Torkzadeh (2006) discuss
“value-based work ethics” [29] as a factor in cybersecurity management and van Eeten
and Bauer (2008) name “Ethics” [43] among the controls required in this area.

Finally, we found metrics (3) and controls (7), which relate to threats evolving from
natural disasters, such as “Exposure: natural hazards or change impacts that will affect
the system” [44] or “Fire, voltage and flood protection of buildings and premises” [18].
Especially in the context of critical infrastructures, we would have expected this topic
covered in the NIST guidelines. This topic could be in parts assigned to other functions,
such as ‘Asset Management’ or ‘Supply Chain Risk Management’ in the ‘Identify’-
function of the NIST guideline. Consequently, we marked these metrics and controls
only as ‘indirectly uncovered’.

Evaluation of Cybersecurity Management Controls and Metrics 379

5 Discussion, Contributions and Limitations

Critical infrastructures are the backbones of developed societies. Information systems
have become a vital part for managing them, thus, securing information systems
directly influences safety of critical infrastructures. Standards and guidelines support
providers of critical infrastructures in their cybersecurity management efforts.
The NIST cybersecurity framework [11] is most arguably one of the most important
risk management framework in this regard. It recently gained in influence since it is
used to guide contemporary legislation on cybersecurity [2]. For this reason, we
conducted a comprehensive literature review to firstly provide insights on how well the
NIST cybersecurity framework (version 1.1., 2018) is covered by academic literature.
Based on a content analysis guided by pre-set coding principles, we extracted 1,053
units (metrics and controls) from the found academic articles and matched these against
23 categories (functions) of the NIST guideline. By doing so, we were able to show that
academic research most distinctively investigates the NIST functions “identification”
and “protection” from cybersecurity threats in terms of investigating metrics (possi-
bility to measure and compare) and also controls (ability to manage). By contrast,
“detecting”, “responding to” and “recovering” from cybersecurity incidents are areas
that receive relatively scarce attention, especially when it comes to controls. It seems
that these dimensions, which are usually important components of a more compre-
hensive layered or in-depth security strategy, are often overlooked by academic studies.
NIST, however, explicitly states that a no function is more important than another and
calls for a balance over functions. This balance is certainly not evident in prior aca-
demic work. When looking at indirect inclusion, we noted slight reductions of the
detected imbalances. It seems that future research should pay more attention to directly
investigating how to manage and assess these important areas, which reflect the
soundness of cybersecurity management after a breach has happened.

Next, our study indicates ‘blind spots’ in the NIST framework as contributions to
practice, in particular to support the tasks of critical infrastructure providers. By
describing such ‘blind spots’, we suggest to practice to go beyond mere compliance
with the new EU NIS directive, and suggest that organizations pursue a cybersecurity
strategy which acknowledges additions to the framework depending on given needs.
Our analysis has revealed a number of potential gaps, which we called ‘uncovered topic
areas’ of the NIST framework. The detected underrepresentation of organizational
climate and social aspects is surprising. Academic literature has long established that in
particular social norms and organizational climate affect behavior and are influential in
achieving compliance [45]. Most importantly, the monetary aspects of cybersecurity
management are hardly covered in NIST, but well mentioned in academic literature
(e.g., [29, 36, 39, 40]). Despite the importance of safeguarding against cyberattacks
directed at critical infrastructure, the economic consequences for the involved orga-
nizations deserve greater attention. It is well accepted that any compliance initiative is
costly, and that many organizations struggle to meet time and cost objectives of related
control activities and audits, e.g. [46]. Additionally, we highlighted that executive
involvement (e.g. as role models), ethical aspects linking into organizational culture
and climate, and threats evolving from natural hazards also deserve clearer NIST

380 B. Krumay et al.

placements. Since the latter is also well considered in the wider IS security literature
(e.g. [47, 48]), it is surprising that NIST only rather unspecifically lists that response
and recovery plans related to disasters should be in place. Our analysis covering a
recourse of research concerned with critical infrastructure and natural disasters also
establishes the importance of natural hazards, which can be exploited by attackers, and
even offer metrics and controls to assure information system security and critical
infrastructure safety, e.g. “Probability of failure/inundation due to natural hazard”, [49],
“List of hazard initiating events” [50] or “Wind storm occurrence” [51]. It seems that
organizations would benefit from not only consulting NIST, but also these and other
studies to support cybersecurity management practice in their continuous assessment
duties.

In terms of limitations, we need to note the interdisciplinary characteristic of our
research topic around metrics and controls, and the ambiguities of these terms, which
together make any consolidation initiative more difficult. It is advised that many dif-
ferent research fields need to be consulted. While we accounted for papers in our
sample also outside the fields of information systems and computer science, it is likely
that we have missed papers using different terms. In our paper, we offered working
definitions of controls and metrics, which helped in terms of interpreting our findings.
For example, we noted that controls are often covering more than one function and
category, whereas the majority of metrics refer to one function or category only. This
may owe to the fact that metrics usually have a specific anchor point and measure one
particular phenomenon, whereas controls are broader and may cover multiple
situations.

6 Conclusion

Since the EU NIS directive mandates providers of essential services to improve
cybersecurity capabilities guided by risk management and incident reporting obliga-
tions, many organizations from the sectors energy, transport, banking, health, water,
and digital and financial market infrastructures need to consider the NIST cybersecurity
framework in order to assure a reasonable level of cybersecurity. This explicitly
includes assessing controls and applying metrics to report their security status and
maturity. Our study among the first to match the current version (1.1) of the NIST
framework issued in April 2018 and related academic bodies of knowledge to assist in
the evaluation of cybersecurity management. In doing so, we showed the coverage of
the NIST framework by research in terms of metrics and controls, and suggested areas
deserving more attention in future research. Additionally, we also suggested a number
of topic areas that seem missing or underrepresented in the NIST framework. Thus, our
study offers important insights for both research and practice for evaluating the man-
agement of cybersecurity-related risk, which is becoming a new regulatory requirement
for providers of critical infrastructures.

Acknowledgements. This study was funded by the KIRAS Security Program of the National
Austrian Research Promotion Agency (FFG) as part of the project CRISCROSS (No. 10652570).

Evaluation of Cybersecurity Management Controls and Metrics 381

References

1. European Political Strategy Centre: Building an Effective European Cyber Shield, p. 16
(2017)

2. European Commission: The Directive on Security of Network and Information Systems
(NIS Directive). In: Union, O.J.o.t.E. (ed.), vol. L194, pp. 1–30 (2018)

3. European Commission: July Infringements Package: Key Decisions. July Infringements
Package: Key Decisions, (2018)

4. Hathaway, O.A., Crootof, R., Levitz, P., Nix, H., Nowlan, A., Perdue, W., Spiegel, J.: The
law of cyber-attack. Calif. Law Rev. 100, 817–886 (2012)

5. Nagurney, A., Shukla, S.: Multifirm models of cybersecurity investment competition vs.
cooperation and network vulnerability. European Journal of Operational Research 260, 588–
600 (2017)

6. Accenture: Cyberthreat Scape Report (2017)
7. EY: Cybersecurity Regained: Preparing to Face Cyber Attacks (2017)
8. ISACA (2018). https://www.isaca.org/Pages/Glossary.aspx
9. Melnyk, S.A., Stewart, D.M., Swink, M.: Metrics and performance measurement in

operations management: dealing with the metrics maze. J. Oper. Manag. 22, 209–218 (2004)
10. Pfleeger, S.L., Cunningham, R.K.: Why measuring security is hard. IEEE Secur. Priv. Mag.

8, 46–54 (2010)
11. Sridhar, S., Hahn, A., Govindarasu, M.: Framework for improving critical infrastructure

cybersecurity, Version 1.1, Gaithersburg, MD, vol. 100, pp. 210–224 (2018)
12. Nicho, M., Muamaar, S.: Towards a taxonomy of challenges in an integrated IT governance

framework implementation. J. Int. Technol. Inf. Manag. 25, 2 (2016)
13. Dimensional Research: Trends in Security Framework Adoption (2016)
14. European Commission: Fact Sheet - Directive on Security of Network and Information

Systems, the First EU-wide Legislation on Cybersecurity, vol. 2020, pp. 7–10 (2018)
15. Levy, Y., Ellis, T.J.: A systems approach to conduct an effective literature review in support

of information systems research. Informing Sci. 9 (2006)
16. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature

review. MIS Quarterly xiii-xxiii (2002)
17. Torres, J.M., Sarriegi, J.M., Santos, J., Serrano, N.: Managing Information Systems Security:

Critical Success Factors and Indicators to Measure Effectiveness. In: International
Conference on Information Security, pp. 530–545. LNCS, (2006)

18. Bernik, I., Prislan, K.: Measuring information security performance with 10 by 10 model for
holistic state evaluation. PLoS ONE 11, 1–33 (2016)

19. Lombard, M., Snyder-Duch, J., Bracken, C.C.: Content analysis in mass communication:
Assessment and reporting of intercoder reliability. Hum. Commun. Res. 28, 587–604 (2002)

20. Strauss, A., Corbin, J.M.: Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Sage Publications, Inc. (1990)

21. Chu, A.M., Chau, P.Y.: Development and validation of instruments of information security
deviant behavior. Decis. Support Syst. 66, 93–101 (2014)

22. Sohn, M.H., You, T., Lee, S.-L., Lee, H.: Corporate strategies, environmental forces, and
performance measures: a weighting decision support system using the k-nearest neighbor
technique. Expert Syst. Appl. 25, 279–292 (2003)

23. Asosheh, A., Nalchigar, S., Jamporazmey, M.: Information technology project evaluation: an
integrated data envelopment analysis and balanced scorecard approach. Expert Syst. Appl.
37, 5931–5938 (2010)

382 B. Krumay et al.

https://www.isaca.org/Pages/Glossary.aspx

24. Knowles, W., Prince, D., Hutchison, D., Disso, J.F.P., Jones, K.: A survey of cyber security
management in industrial control systems. Int. J. Crit. Infrastruct. Prot. 9, 52–80 (2015)

25. Francis, R., Bekera, B.: A metric and frameworks for resilience analysis of engineered and
infrastructure systems. Reliab. Eng. Syst. Saf. 121, 90–103 (2014)

26. Hahn, A., Govindarasu, M.: Cyber attack exposure evaluation framework for the smart grid.
IEEE Trans. Smart Grid 2, 835–843 (2011)

27. Hahn, A., Ashok, A., Sridhar, S., Govindarasu, M.: Cyber-physical security testbeds:
Architecture, application, and evaluation for smart grid. IEEE Trans. Smart Grid 4, 847–855
(2013)

28. Feng, N., Wang, H.J., Li, M.: A Security risk analysis model for information systems: causal
relationships of risk factors and vulnerability propagation analysis. Inf. Sci. 256, 57–73
(2014)

29. Dhillon, G., Torkzadeh, G.: Value-focused asessment of information system security in
organizations. Inf. Syst. J. 16, 293–314 (2006)

30. Bojanc, R., Jerman-Blažič, B.: An economic modelling approach to information security risk
management. Int. J. Inf. Manage. 28, 413–422 (2008)

31. Arghandeh, R., von Meier, A., Mehrmanesh, L., Mili, L.: On the definition of cyber-physical
resilience in power systems. Renew. Sustain. Energy Rev. 58, 1060–1069 (2016)

32. Ittner, C.D., Larcker, D.F., Meyer, M.W.: Subjectivity and the weighting of performance
measures: evidence from a balanced scorecard. Account. Rev. 78, 725–758 (2003)

33. Huang, S.-M., Lee, C.-L., Kao, A.-C.: Balancing performance measures for information
security management: A balanced scorecard framework. Ind. Manag. Data Syst. 106, 242–
255 (2006)

34. Potter, J.G., Hsiung, H.: Service-level agreements: aligning performance and expectations.
IT Prof. 10, 41–47 (2008)

35. Abuhussein, A., Bedi, H., Shiva, S.: Evaluating security and privacy in cloud computing
services: a stakeholder’s perspective. In: International Conference for Internet Technology
And Secured Transactions 2012, pp. 388–395. IEEE (2012)

36. Sahibudin, S., Sharifi, M., Ayat, M.: Combining ITIL, COBIT and ISO/IEC 27002 in order
to design a comprehensive IT framework in organizations. In: Second Asia International
Conference on Modeling and Simulation, AICMS, pp. 749–753 (2008)

37. Jufri, F.H., Kim, J.-S., Jung, J.: Analysis of determinants of the impact and the grid
capability to evaluate and improve grid resilience from extreme weather event. Energies 10,
1–7 (2017)

38. Zammani, M., Razali, R.: An empirical study of information security management success
factors. Int. J. Adv. Sci., Eng. Inf. Technol. 6, 904–913 (2016)

39. Ben-Aissa, A., Abercrombie, R.K., Sheldon, F.T., Mili, A.: Defining and computing a value
based cyber-security measure. Inf. Syst. E-Bus. Manag. 10, 433–453 (2012)

40. Rabai, L.B.A., Jouini, M., Aissa, A.B., Mili, A.: A cybersecurity model in cloud computing
environments. J. King Saud Univ. Comput. Inf. Sci. 25, 63–75 (2013)

41. Merete, H.J., Albrechtsen, E., Hovden, J.: Implementation and effectiveness of organiza-
tional information security measures. Inf. Manag. Comput. Secur. 16, 377–397 (2008)

42. Flowerday, S.V., Tuyikeze, T.: Information security policy development and implementa-
tion: the what, how and who. Comput. Secur. 61, 169–183 (2016)

43. van Eeten, M.J., Bauer, J.M.: Economics of Malware: Security Cecisions, Incentives and
Externalities. OECD Science, Technology and Industry Working Papers 2008, pp. 1–68
(2008)

44. Stapelberg, R.F.: Infrastructure systems interdependencies and risk informed decision
making (RIDM): impact scenario analysis of infrastructure risks induced by natural,
technological and intentional hazards. J. Syst., Cybern. Inform. 6, 21–27 (2008)

Evaluation of Cybersecurity Management Controls and Metrics 383

45. Bauer, S., Bernroider, E.W.: From information security awareness to reasoned compliant
action: analyzing information security policy compliance in a large banking organization.
ACM SIGMIS Database DATABASE Adv. Inf. Syst. 48, 44–68 (2017)

46. Fogel, K., El-Khatib, R., Feng, N.C., Torres-Spelliscy, C.: Compliance costs and disclosure
requirement mandates: some evidence. Res. Account. Regul. 27, 83–87 (2015)

47. Zimmerman, R., Restrepo, C.E.: The next step: quantifying infrastructure interdependencies
to improve security. Int. J. Crit. Infrastruct. 2, 215–230 (2006)

48. Jouini, M., Rabai, L.B.A., Aissa, A.B.: Classification of security threats in information
systems. Procedia Comput. Sci. 32, 489–496 (2014)

49. Oh, E.H., Deshmukh, A., Hastak, M.: Vulnerability assessment of critical infrastructure,
associated industries, and communities during extreme events. In: Construction Research
Congress 2010: Innovation for Reshaping Construction Practice, pp. 449–469 (2010)

50. Chen, Y.-R., Chen, S.-J., Hsiung, P.-A., Chou, I.-H.: Unified security and safety risk
assessment - a case study on nuclear power plant. In: 2014 International Conference on
Trustworthy Systems and their Applications (TSA), pp. 22–28. IEEE (2014)

51. Li, G., et al.: Risk analysis for distribution systems in the northeast US under wind storms.
IEEE Trans. Power Syst. 29, 889–898 (2014)

384 B. Krumay et al.

Next Generation Cryptographic
Ransomware

Ziya Alper Genç(B) , Gabriele Lenzini , and Peter Y. A. Ryan

Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg, Luxembourg
{ziya.genc,gabriele.lenzini,peter.ryan}@uni.lu

Abstract. We are assisting at an evolution in the ecosystem of cryp-
toware —the malware that encrypts files and makes them unavailable
unless the victim pays up. New variants are taking the place once dom-
inated by older versions; incident reports suggest that forthcoming ran-
somware will be more sophisticated, disruptive, and targeted. Can we
anticipate how such future generations of ransomware will work in order
to start planning on how to stop them? We argue that among them there
will be some which will try to defeat current anti-ransomware; thus, we
can speculate over their working principle by studying the weak points
in the strategies that seven of the most advanced anti-ransomware are
currently implementing. We support our speculations with experiments,
proving at the same time that those weak points are in fact vulnera-
bilities and that the future ransomware that we have imagined can be
effective.

Keywords: Software security and malware · Ransomware
Anti-ransomware · Cryptographic techniques
Security evaluation and measurement

1 Introduction

Cryptographic ransomware, a breed of malware (also known as cryptoware) that
encrypts files, makes them inaccessible, and asks for a ransom to decrypt them
—an action that victims are unable to do, if encryption is strong— has boomed
in the last years. Their attacks have left in disarray companies and single users
alike creating an economic damage that has been estimated at billions of US
dollars [27].

As other virulent cyber-threats, ransomware evolves with time. In its latest
2018 annual incident report [29] Symantec shows that in the last two years about
one hundred more new families of ransomware have emerged (although less in
2017 than in 2016) and that, although certain families representatives like Cer-
ber, Locky, and TorrentLocker “have disappeared from the scene over the course
of the year” (ibid) the number of new variants per families has increased by 46%
in 2017, adding to the existing cryptoware samples about 350 new mutants.
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 385–401, 2018.
https://doi.org/10.1007/978-3-030-03638-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_24&domain=pdf
http://orcid.org/0000-0001-7198-7437
http://orcid.org/0000-0001-8229-3270
https://doi.org/10.1007/978-3-030-03638-6_24

386 Z. A. Genç et al.

Together with other white papers written by security professionals, like the
report of Kaspersky [13] and that of Barkly [1], such studies present ransomware
as a malware stock in continuous evolution, “a lucrative venture for cyber-
criminals, spurring an increase in ransomware variants and their sophistication”
(ibid).

In the attempt to contain the damage, anti-malware research has reacted
promptly. Anti-ransomware applications have stopped a tantamount number of
attacks (5.4 billions of them from some WannaCry variants only [1]) but defenders
and attackers are embraced in a race that has just started. At today, the severity
of ransomware threat is increasing and the worst is yet to come.

Is there a way to stop the threat? Is there a way to anticipate how the future
generation of ransomware will look like? Although at the time of writing, statis-
tics report that the sheer numbers of attacks is slowing down —Barkly in its
blog1 says that “in order to pull off a successful ransomware heist, the stars
really have to align for attackers. Not only do they have to infect a victim who
doesn’t have reliable backups (or the time/resources required to use them), the
victim also has to have quick and easy access to cryptocurrency, and be willing
to put their trust in a criminal and pay them upfront. Making matters more
difficult, attackers also have to price their ransom demands just right.”— ran-
somware are expected to become more sophisticated and more disruptive [1].
Those implementing strong cryptography like ExPetr, Petya and NotPetya are
even being used as disk wipers, that is, have become weapons of digital destruc-
tion in waster operations of cyberwar2.

Thus, the research question for us researchers is whether there is a way
to anticipate into what those sophisticated cryptoware will evolve in such a
way to be prepared when the attacks will come. There is of course a great
amount of criminal strategies that could work. Ransomware engineers can be
quite inventive in this business. However, in our opinion, there is at least one
direction that future ransomware will take, and we can guess it without invoking
any foresight skill. If the history of malware and virus teaches us something
(e.g., see [11,30]), some new generation of the threat will be designed to respond
to existing protections. Thus assuming that in the forthcoming generations of
ransomware there will be some trying to overcome those protections, we can
study the weaknesses in these latter’s working principles and imagine what those
evasive ransomware can do to dribble some of the most modern anti-ransomware
strategies.

The exercise is not exempt from ethical consequences. As J. P. Sullins points
out in “it must be acknowledged that working with malware is not ethically
neutral” [28]. We discuss our position in this regards in Sect. 7.1. The paper
opens with a review of seven of the most advanced anti-ransomware strategies
(Sect. 2). Then it discusses their limitations (Sect. 2), and speculates on what

1 Barkly, Must-Know Ransomware Statistics 2018, https://blog.barkly.com/
ransomware-statistics-2018.

2 For this reason, some does not even consider them be ransomware; they are however
cryptoware, and therefore in the scope of this paper’s research.

https://blog.barkly.com/ransomware-statistics-2018
https://blog.barkly.com/ransomware-statistics-2018

Next Generation Cryptographic Ransomware 387

a ransomware can do to evade their guard (Sects. 3 and 4). To prove that our
speculation are in fact more than a thought experiment, we implemented the
ransomware samples we have imagined and prove that it actually pass untouched
the anti-ransomware applications, if they are available to us (Sects. 5 and 6).
For those whose code is closed, or not yet implemented (e.g., only described in
research papers) we argue how our implementation is able to overcome them.
We conclude the paper by pointing the future work and by discussing the ethical
choices that we had to take in this kind of research and our motivation to even
start such work, and the code of conduct that we commit ourselves to follow
(Sect. 7).

2 Defense Techniques: The State of the Art

Cryptographic ransomware families share a common goal: to encrypt a victim’s
files. They also share a few fundamental tasks that they necessarily have to
execute to achieve the goal. For instance, they have to manage encryption and
decryption keys; and they have to read, encrypt (and if the victim is lucky)
decrypt, and write files. However, cryptographic ransomware comes in different
forms. Although constrained to perform those common steps, they can reach the
goal in different ways, so giving raise to different families of them.

For the same reason there are also many potential, not all necessarily effec-
tive, strategies to counteract ransomware. Current anti-ransomware approaches
implement mainly two strategies: key-oriented protection and behavioral
analysis.

Key-Oriented Protection (KP). The rationale of those who follow a key-oriented
protection strategy is that ransomware needs encryption keys and therefore it
is better to keep those keys under control. “Keep keys under control” is not a
simple action; current solutions have interpreted and implemented it in at least
three distinguished methods:

(KP-i) - controlling accesses over random number generator. In this method
the access to Cryptographically Secure Pseudo Random Number Genera-
tors (CSPRNGs) is controlled. CSPRNGs are functions that return good
quality random numbers, which are essential ingredient to construct strong
encryption keys. UShallNotPass [10] uses this principle. It allows access
to CSPRNGs only if the call comes from a whitelisted application; all unau-
thorized processes are blocked and the callers are terminated.

(KP-ii) - placing backdoors in random number generator. In this strategy, a trap-
door is inserted to the CSPRNG of the host system. The aim of this trapdoor
is to enable reproducing the previous outputs of CSPRNG for a given time.
Thus, the random numbers used by ransomware as a seed can be obtained
after an attack. Using these seed values, the keys used by ransomware are re-
derived and the files are restored. In [16], Kim et al. proposed this technique
to mitigate ransomware.

388 Z. A. Genç et al.

(KP-iii) - escrowing encryption keys. In this approach, cryptographic Applica-
tion Programming Interface (APIs) are hooked, encryption keys and other
parameters are acquired, and stored in a secure location. After a ran-
somware incident, these materials are used to recover the files. The first
key-escrow based ransomware defense systems are proposed independently
by Lee et al. [18] and Palisse et al. [21] and focused on only the built-in cryp-
tographic APIs. Later, PayBreak [17] extended this technique to include
the functions in third-party cryptographic libraries.

Behavioural Analysis (BA). Defenses that implement behavior analysis, monitor
the interactions of applications and measure certain factors that may indicate
the presence of a ransomware activity. Solutions diversify depending on the indi-
cators used to monitor for the presence of ransomware. We recognize four major
methods:

(BA-i) - measuring entropy inflation. Encryption increases the entropy of the
files. Therefore, encryption can be detected by measuring the entropy of files,
before and after file-write operations. A rough estimate of the entropy e, of a
byte array (xi)ni=1 that is often used is Eq. (1).

e =
255∑

k=0

P x
k log2

1
P x
k

where P x
k =

|{i : xi = k}|
n

(1)

Monitoring entropy changes is a method commonly used by Crypto-
Drop [25], ShieldFS [2], Unveil [14] and Redemption [15].

(BA-ii) - detecting content modification. Modern cryptographic algorithms pro-
duce ciphertext that completely differs from the plaintext data. Therefore, if
the similarity between original file and modified file is small, the file might
have been encrypted. In this respect, CryptoDrop utilizes sdhash [23]
tool to compute dissimilarity of files to detect encryption performed by ran-
somware.

(BA-iii) - identifying file-type changes. File type can be identified by position-
sensitive tests, e.g., reading byte values at specific locations in a file. In
contrary to benign applications, ransomware changes this information when
encrypting a file, transforming the file into an unknown type. Therefore,
changing file types is a strong indicator of ransomware activity. For example,
CryptoDrop uses file [4] utility to detect modifications of file types.

(BA-iv) - testing goodness-of-fit. Encryption produces data which have a pseudo-
random distribution. Based on this fact, DaD [20] employs χ2 goodness-of-fit
test to determine if the written data is close to random distribution and
conclude that the file is being encrypted. To this aim, observed byte array is
put into a frequency histogram with class interval 1 from 0 to 255. Let Ni

denote the number of variates in bin i, and ni be a known distribution. The
χ2 test value of this array is computed as in Eq. (2)

χ2 =
∑

i

(Ni − ni)
2

ni
(2)

Next Generation Cryptographic Ransomware 389

Indicators do recognize ransomware activities but also benign applications,
e.g., file compression utilities, show similar patterns. False positives can be
reduced by combining indicators, as CryptoDrop does with indicators (BA-i),
(BA-ii) and (BA-iii).

There are other indicators based on file access patterns e.g., read/write/
delete operations, access frequency, observed in ransomware attacks. Redemp-
tion, ShieldFS and UNVEIL use these indicators, but these systems are left
for a future analysis. The analyzed systems in this paper and their corresponding
defense techniques are given in Table 1.

Table 1. Select anti-ransomware systems and their main defense methods.

System (KP-i) (KP-ii) (KP-iii) (BA-i) (BA-ii) (BA-iii) (BA-iv)

Kim et al. [16] •
CryptoDrop [25] • • •
Lee et al. [18] •
UShallNotPass [10] •
Palisse et al. [21] •
DaD [20] •
PayBreak [17] •

3 Vulnerability Analysis of Countermeasures

“Every law has a loophole” says an old proverb, meaning that once a rule is
known, it becomes known also how to evade it. This holds true also in the
ransomware versus anti-ransomware arms race and in both ways. Knowing how
ransomware works, one can design more effective defenses; knowing how defenses
work, one can design more penetrating ransomware. In this section we discuss
potential limitations in current anti-ransomware, and we imagine and discuss
how future generation ransomware could evolve to overcome those defenses. In
this exercise, we apparently take the side of ransomware but the goal is to stimu-
late the scientific community to anticipate better defenses that can work not only
against current ransomware but also against forthcoming generation of them.
This choice is not exempt from consequences. We discuss in Sect. 7 the ethi-
cal aspects in this research and we comment on the code of conduct we have
committed ourselves to in developing this work.

3.1 Limits of Key-Oriented Protection

Key-oriented protection defenses aim at to prevent ransomware from using,
undisturbed, cryptographic APIs.

390 Z. A. Genç et al.

In this respect, (KP-i) controls CSPRNG APIs on the host system, and
(KP-ii) inserts a backdoor into CSPRNG APIs. A ransomware may evade these
defences by using an alternative source of randomness. The critical question is
whether there exist sources of randomness that are as good as CSPRNGs. We
will elaborate more on this approach in Sect. 4.

Instead, (KP-iii) logs parameters and outputs of CSPRNG, built-in crypto-
graphic APIs, and recognized functions in third-party libraries. As stated in [17],
the critical limitation of this approach is that recognizing statically linked func-
tions from third-party libraries is sensitive to obfuscation. Obfuscation does not
affect recognizing calls to built-in APIs, so evasion is possible when ransomware
binary is obfuscated and the ransomware refrain from using built-in APIs.

3.2 Limits of Behavioural Analysis

To detect cryptographic activities, behavioral analysis uses indicators, which
are features revealing the presence of certain suspect behaviours; it also relies
on constantly applying measurements and tests on files, before and after I/O
operations.

In this respect, (BA-i) tests if the entropy of the file increases during a write
operation using Eq. (1). It assumes that the encryption always increases the
Shannon Entropy of a file. Indeed, this assumption holds for standard ciphers
such as AES [3]. The entropy inflation test can be bypassed by changing the
encryption algorithm with a one that preserves the entropy of the blocks.

Likewise, (BA-ii) compares the contents of a file before and after a file write
operation and checks if the similarity score is above a threshold. A fully encrypted
file should look like a random data and the comparison should yield a score close
to 0, indicating a strong dissimilarity. This is true if the whole file is encrypted.
A partially encrypted file, when compared with the plaintext version, is likely
to result in high similarity scores: (BA-ii) may not be triggered while the file
becomes practically unusable.

(BA-iii) can also be easily bypassed. If ransomware saves the file header,
i.e., does not encrypt the lead bytes of the file, and encrypts the rest, than
the output of probe for file-type remains same. It should be noted that this
information is generic, i.e., publicly available, therefore cannot be considered as
a critical data. Consequently, ransomware would not lose any profit by omitting
the file-type identifying bytes. To nullify this strategy, anti-ransomware systems
may utilize context-sensitive tests which scan entire file to detect a file’s type,
with the expense of degraded performance. In the experiments (Sect. 6), however,
we haven’t encountered such a detection. We remark that this defense might be
bypassed by adding read/write routines for specific target file types, which is an
implementation effort.

Finally, (BA-iv) tests if the written data is close to random distribution,
based on the observation that standard ciphers like AES produce randomly
distributed outputs. For this aim, χ2 test given in Eq. (2) is used. However, if
the χ2 values can be kept constant during the obfuscation of file, this indicator
will not trigger the alarm.

Next Generation Cryptographic Ransomware 391

4 Future Ransomware Strategies

We present the blueprints of two novel ransomware samples that we claim are
able to evade the defense systems listed in Table 1. The architecture of the sam-
ples is similar to that of WannaCry from the point of key management3. That
is, each file in the victim’s computer is encrypted with a unique symmetric key.
Moreover, these symmetric keys are encrypted with a public key generated on
the victim’s computer. The corresponding secret key is then encrypted with the
master public key embedded in the binary executable.

While this approach brings the risk of private key’s being captured, it also
removes the necessity of active connection to our hypothetical (C&C) server
which might be blocked by network firewalls and cause ransomware to fail.

4.1 Bypassing Key-Oriented Defenses

Our first construction targets key-oriented defense systems. As we point in
Sect. 3.1, (KP-i) and (KP-ii) can be bypassed by utilizing an alternate ran-
domness source. However, to defeat (KP-iii) completely, it is also required to
statically link against a third-party library and apply obfuscation.

Deriving Encryption Keys. A simple technique to generate the file encryp-
tion keys that malware might adopt is what is known in Cloud computing circles
as Convergent Encryption [7]. Here, the cryptographic keys are derived from files
themselves. A simple implementation is as follows. Let E be an encryption algo-
rithm, H be a hash function, and F be the file. The technique consists in deriv-
ing the encryption key from hashing the file itself, that is H(F). The resulting
encryption is therefore E(F,H(F)).

The technique is free from the issues that may arise in the cloud computing.
While convergent encryption is useful in certain scenarios, in the context of cloud
computing, this technique may leak information as follows. For publicly-available
plaintext files, the adversary can check and learn if the ciphertext belongs to
these files. However, this is not really an issue in the context of ransomware: if
the user still has the plaintext file(s), say in a backup, then the ransomware will
not be effective anyway.

Our hypothetical ransomware thus computes H(F) and derives the key by
truncating this hash value to the length of K. This allows to evade the methods
(KP-i) and (KP-ii). To win (KP-iii), we need a little more care: H and E
must be statically-linked against a third-party library and obfuscated, otherwise
(KP-iii) can acquire and store the result of H where K lies therein. The same
requirement also applies to E. However, having a hash function in hand, the
necessity of a block-cipher can also be fulfilled in the context of ransomware.

3 This work focuses on the cryptographic aspects of ransomware. Other malicious
operations, e.g., spreading over network, are out of the scope of this paper.

392 Z. A. Genç et al.

Symmetric Encryption Method. Once the ransomware has got hold of good
grade encryption keys then it can employ various well-established symmetric
encryption techniques to the victim’s files, for example a stream cipher, e.g.,
based on a hash function in counter mode, or block cipher in an appropriate
mode, e.g., chained. The exact choice of algorithm is not so important as long
as it sufficiently cryptographically strong to render cryptanalysis significantly
more expensive than paying the ransom. However the algorithms should be fairly
simple so as to be coded compactly and easy to obfuscate.

To encrypt the files we built a stream cipher using a keyed hash function build
from H. Our construction utilizes H to generate a keystream in a similar way
to the counter (CTR) mode of block ciphers. The keystream and the plaintext
are combined using the exlusive-or (XOR) operation.

Let F be a plaintext stream such that F = P1 ||P2 || . . . ||Pn where each
Pi has equal bit length to output of H, except possibly Pn, and K = H(F).
Encryption of F is done as follows:

Si = H(K || i)
Ci = Pi ⊕ H(K ||Si)

for i = 1, 2, . . . , n − 1. For i = n, H(K ||Sn) is truncated to the length of Pn.
In our design, we assume that H is (i) one-way: given K, it should be hard

to find F such that H(F) = K; and (ii) collision-free: it should be hard to find
Si �= Sj such that H(K ||Si) = H(K ||Sj) (iii) pseudo-random: it is difficult to
guess H(K || i) —in our implementation, i has a fixed length of 32 bits— without
knowing K || i.

Voiding Memory Dump Analysis. Current software implementations of
symmetric cryptographic algorithms require the encryption keys to be retrieved
during the execution. Consequently, when encrypting files, the encryption keys
reside in the memory area of the ransomware4 process. Using this observation,
defense techniques emerged (e.g., [12]) which try to dump the memory of the
encrypting process and extract the keys to roll-back the damage.

Deriving keys from the files’ hashes overcomes this defense, as different files
will result in distinct encryption keys. If a defense system detects files being
encrypted, suspends the process and extracts the keys, it can only decrypt the
file which is currently being accessed. Previous files cannot be recovered anymore
as they are encrypted with different keys which were already destroyed at the
time of detection.

File Based PRNG. We have developed a pseudo-random number generator
(PRNG) which inputs files, outputs pseudo-random bytes and provides the suffi-
cient functionality for the purposes of ransomware. The PRNG has a pool, which

4 Actually, ransomware might try to inject malicious code into other processes. In this
case, memory of the encrypting process is dumped.

Next Generation Cryptographic Ransomware 393

is implemented as a byte array and initially filled with the hashes of files that
will be encrypted. As the ransomware needs n bytes of pseudo-random number,
n bytes are copied from the pool to the output buffer; the remaining bytes are
shifted so that they will be in the next output. The output blocks are hashed
and inserted again into the pool to prevent exhaustion. Our file based pseudo-
random number generator (F-PRNG) is depicted in Fig. 1. It should be noted
that as the files on victim’s computer gets more exclusive, i.e., different from
other people’s data, then the outputs of (F-PRNG) becomes harder to guess or
reproduce after the attack as the plaintext versions of the files will be destroyed.

Fig. 1. Design view of the F-PRNG. The pool is seeded by file hashes. As pseudo-
random bytes are requested from the F-PRNG, the output buffer is filled (dashed-
green) with the requested amount. The remaining part of the pool (turquoise) is shifted
accordingly. A copy of output bytes are hashed (purple), expanded (red) and inserted
to the pool. (Color figure online)

Expansion Process. After providing the output bytes, that part is removed from
the pool and the remaining bytes are shifted accordingly. This process shrinks
the pool so that it exhausts in some finite time. To prevent this, we feed the
pool with the pseudo-random numbers produced from the output that we call
expansion. The method we use for expansion is similar to the approach used by
Stark [26] and Eastlake [8], and described in Algorithm 1.

Asymmetric Key Pair Generation and Encryption. Ransomware needs
to store the locally generated file encryption keys securely. Modern ransomware
employs asymmetric algorithms for this task.

Our imaginary ransomware also follows the same strategy. It employs the
above F-PRNG to generate large primes to use in asymmetric algorithms, and
to generate the padding values used for randomization of ciphertext.

394 Z. A. Genç et al.

Algorithm 1. Expand a pseudo-random value to given length
1: function Expand(input , n)
2: global counter � Pool keeps this counter
3: � ← Length(input)
4: max ← ⌈

n
�

⌉

5: i = 0
6: output = []
7: for i < max do
8: counter += 1
9: r = Hash(bytes || counter) � Generate pseudo-random chunk

10: output = output || r � and add to output

11: output = Truncate(output , n) � Output is truncated to n bytes
12: return output

4.2 Evading Behavioral Analysis

Our second ransomware targets behavioral based defense systems that constantly
monitor file system activity and look for anomalies. In particular, its objective
is to encrypt files without triggering the indicators described in Sect. 2.

The presented variant, rather than using standard block ciphers, basically
employs a format preserving encryption algorithm. More specifically, the algo-
rithm produces ciphertext which is a pure pseudo-random permutation of plain-
text.

Bypassing File-Type Checks. File-type probing is performed by inspecting
the lead bytes of a file. Our ransomware therefore skips these bytes and starts
encryption at a safe position. We identified this threshold empirically, testing
over different file types including PDF, JPEG and DOCX. Our results shows
that skipping the first 5120 bytes is sufficient for evading (BA-iii).

Preventing Dissimilarity. Similarity of files is validated by comparing sdhash
digests which produces a score between 0 and 100. According to the developers of
sdhash, scores between 21–100 are considered as a strong indication of similar-
ity [24]. In our experiments, comparing encrypted files with originals produces
scores 0 or 1. However, we observed that partial encryption allows to obtain
scores higher than 21, depending on the encryption ratio. (BA-ii) might set a
lower threshold level, however, that would result in high false positive rates.
Even in this case, tuning the encryption ratio would allow to keep this indicator
silent. Figure 2 shows the partially encrypted files of different types and their
corresponding similarity scores.

Evading Statistical Tests. (BA-i) measures the Shannon entropy of the files
using Eq. (1), before and after file-write operations, and monitors the increase.
Standard encryption algorithms usually dramatically increase the file-entropy

Next Generation Cryptographic Ransomware 395

10050332520

Encryption Ratio (percent)

0

10

20

30

40

50
sd

ha
sh

Sc
or
e

PNG
JPEG

PDF
DOCX

XLSX
TXT

Fig. 2. Average scores of sdhash comparison of partially encrypted file types. Scores
above 21 (denoted by the dashed line) is considered as a strong indication similarity
between compared file contents.

and so this is detectable. Instead, one might use a transposition style cipher to
obfuscate files: the ransomware generates a pseudo-random permutation of the
bytes of the plaintext blocks. If, as is commonly the case, the anti-ransomware
tools use the measure Eq. (1) then clearly permutation of the bytes leaves this
invariant, and so this goes undetected.

There are two obvious drawbacks with this approach: firstly such a transposi-
tion encryption is cryptographically rather weak, and secondly it only works for
this particular measure of entropy of a string. A weak encryption may be good
enough for the purposes of the ransomware, as long as the cost of cryptanalysis
exceeds the ransom. Given that an easy counter is to use a different measure of
entropy, or better still use more than one, this would not seem to be a long-term
viable solution for the writers of ransomware.

Lastly, pure permutation technique also works against (BA-iv), the single
indicator that DaD employs to detect encryption. DaD computes the sliding
median of the χ2 values of the last fifty write operations and compares this
result to the threshold level αRW = 0.05. However, the χ2 statistics (computed
using Eq. (2)) remains constant under any permutation as the Ni values are not
altered but rearranged. As a result, the permuted data does not fit the random
distribution and (BA-iv) does not trigger the alarm.

5 Implementation

We have developed two prototypes in order to demonstrate the feasibility of the
methods described in Sect. 4. Both programs are implemented in C# language

396 Z. A. Genç et al.

targeting version 3.5 of .NET Framework. In addition, we ported the second
prototype to Python 3 (see Sect. 6).

The prototype which aims to bypass key-oriented defenses first enumerates
the target files in the victim’s computer. It uses an obfuscated SHA-256 function
to compute hashes and the F-PRNG is initialized with 50 files’ digests. This is
the maximum capacity of the F-PRNG’s pool which is implemented as a byte
array. Our novel ransomware uses RSA algorithm for public key encryption.
Once the F-PRNG is ready, two 1024 bit primes are generated, an RSA key
pair is computed, and the private key is encrypted with the embedded master
public key. Primality tests are performed using Miller-Rabin algorithm with the
iteration count set to 3 as indicated in [19]. F-PRNG is also utilized to generate
the padding values used for randomization of ciphertext.

The second prototype targets behavioral based approaches which monitors
file system activities. It has two working modes: partial and full encryption. The
former targets CryptoDrop and performs partial encryption and the latter
fully obfuscates files. In our design, we set block size to n = 64, i.e., read
64 bytes, permute this block and overwrite the original data. Fisher-Yates [9]
algorithm is utilized to permute the blocks. We remark that, while executing
Fisher-Yates algorithm, the required randomness is obtained from the CSPRNG
APIs as behavioral analysis based systems do not control these.

Both of the prototypes contain only encryption routines, file I/O functions,
and codes responsible for the key management tasks. As our main purpose is
to show potential attacks and not to develop a fully functional ransomware,
we deliberately omitted implementing all non-cryptographic functions, such as
spreading over the network and deleting the Volume Shadow Copy Service (VSS)
backups. Furthermore, our prototypes save a copy of encryption key in the same
directory for each encrypted file to prevent accidental damages.

6 Experimental Results

In order to verify the feasibility of the methods described in Sect. 4, we tested our
prototypes against ransomware defense systems in Table 1 that provides a imple-
mentation. In this regard, we conducted a series of experiments on PayBreak,
UShallNotPass, DaD and CryptoDrop.

The test environment is prepared as follows. We created a virtual machine
(VM) in VirtualBox5 and performed a clean install of 32 bit version of Windows
7 OS. Next, we created 5 directories on user desktop and randomly placed decoy
files therein. The decoy set contained 10 files with each of the extensions .docx,
.jpg, .pdf, .png, .txt and .xlsx, making 60 in total. Before our experiments,
we confirmed that the decoy files could be opened by the associated applications
and were free of any corruption. Finally, we deactivated User Access Control
(UAC) and Windows Defender to prevent interference, and took a snapshot of
the test system.

5 VirtualBox, https://www.virtualbox.org/.

https://www.virtualbox.org/

Next Generation Cryptographic Ransomware 397

We started experiments by testing the first prototype against UShallNot-
Pass. After running the executable of our first prototype, we observed that all
decoy files were encrypted while the UShallNotPass was active. We rollback
to the snapshot and started testing the next system, PayBreak6. Our proto-
type run and the files were encrypted, however, the log file of PayBreak did
not contain any cryptographic material. As a result, we observed that our first
prototype bypassed the software implementations of two key-oriented defense
systems.

We continued our experiments with the behavioral analysis systems. We first
tested the 32-bit version of DaD7 against our second prototype. We activated
DaD, executed the prototype and observed that all the decoy files were cor-
rupted. Therefore, we conclude that our prototype could evade DaD.

Finally, we evaluated our prototype against CryptoDrop8 as follows.
Although we did not have an open source implementation of CryptoDrop,
the mechanisms that [25] uses, i.e., file and sdhash tools are publicly available
and installable on a Linux system. Moreover entropy changes can also be moni-
tored using ent9 tool. Therefore, we re-implemented our prototype in Python 3
and run in partial encryption mode on a Linux system. We observed that file
command reported that the original and encrypted files are of exactly same type.
Moreover, all sdhash comparison scores were above 21 using %30 encryption.
Finally, ent tool measured the partially-encrypted files have the same entropy
with the original ones. Based on these results, we conclude that our prototype
can bypass CryptoDrop.

We remark that partial encryption causes damage sufficient to make the files
unusable. In our experiments we observed that images could not be rendered
and documents could not be read even with 20% encrypted files. Only exception
is the TXT files that we could read the non-encrypted contents.

7 Conclusion, Discussion, and Future Work

The purpose of this work is to warn the scientific community of forthcoming
ransomware threats. By talking about how seven cutting-edge anti-ransomware
solutions —at the time of this writing, implementing strategies of access con-
trol over random number generators, key escrow, and behavioral analysis are
the most advanced strategies known against active ransomware samples— could
be overthrown by smarter and more sophisticated malware, we hoped to have

6 Compiled from source available at: https://github.com/BUseclab/paybreak.
7 Downloaded from http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html.
8 This paper analyzes the academic paper version of CryptoDrop [25]. The software

available at https://www.cryptodrop.org/ is a proprietary & commercial product,
and its source code is not available. It may include undocumented measures other
than the ones in the academic paper, therefore, we could not inspect the code nor
analyze the actual implementation in this study.

9 ENT: A Pseudorandom Number Sequence Test Program, http://www.fourmilab.ch/
random/.

https://github.com/BUseclab/paybreak
http://people.rennes.inria.fr/Aurelien.Palisse/DaD.html
https://www.cryptodrop.org/
http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/

398 Z. A. Genç et al.

revealed what strategies those malware could trying to implement, so indicating
where anti-ransomware engineers have to focus their efforts. Since it is believed
that the ransomware threat will increase not in number of attacks but in sophis-
tication, to keep anti-ransomware ideas ahead of time may be a game-changing
factor.

That said, malware mitigation is an arms race and we expect new genera-
tions of ransomware coming soon with renovated energy and virulence, adapting
their attack strategies to challenge current defenses. New variants of ransomware
have been observed constantly during the last years. Those called scareware pre-
fer to exploit people’s psychology, threatening them into pay the ransom with-
out, however, doing any serious encryption: despite deceitful they are technically
benign applications. Others, however, will be variants of real cryptographic ran-
somware and able to overcome control and to encrypt a victim’s files using strong
encryption. A recent white paper by Symantec [29] reports that ransomware is
becoming instrument for specialists and targeted attack groups, a weapon not
only to extort money but to cover up other attacks and, when using strong
encryption, used in fact as a disk wiper. It is to this latter category that our
research is dedicated. As security professionals we feel compelled to be prepared
to face forthcoming threats thus to identify and anticipate potentially dangerous
ransomware variants, and warn the scientific community about them.

We are aware that the research we have ourselves embarked may give ideas
to criminals. But there is no reason to believe that criminals will not have those
ideas by themselves. In the history of malware (see e.g., [11]) criminals have
always tried to be one step ahead; besides, our research has nothing fancy and
it does not contain such an inventive step that cannot be reproduced by others.
It more humbly roots into how cryptography works. However, even with this
premise, we questioned ourselves about how to do this research ethically.

7.1 Ethical Code of Conduct

As we anticipated in the introduction, working with malware raises ethical ques-
tions [28], although we have not involved people in our research, nor we have
collected personal or sensitive data or attacked real operating systems, nor were
we involved in any conversations with criminal associations or victims, actions
which would have required us following specific guidelines as discussed in [5].

Despite having conducted our research in isolation, we agree with Rogaway’s
“The Moral Character of Cryptographic Work” [22] when he suggest to “be intro-
spective about why you are working on the problems you are”. We hope to have
motivated sufficiently why we started this research pathway in the first place.
At the same time we informed ourselves about the University of Luxembourg
Policy on Ethics in Research10; it suggests that researching on protection against
computer viruses is at risk of dual use. The guidelines recommend researchers

10 For more information, please visit https://wwwen.uni.lu/research/chercheurs
recherche/standards policies.

https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies
https://wwwen.uni.lu/research/chercheurs_recherche/standards_policies

Next Generation Cryptographic Ransomware 399

to “report their findings responsibly”, but there is no indication that may sug-
gest what is a responsible behavior. As well there are no guidelines in the ACM
Code of Ethics and Professional Conduct11, another manifesto we looked into.
It suggests principles, like “Avoid harm” and “Ensure that the public good is
the central concern during all professional computing work” but how to comply
with those principles is not told. The EU “Regulation No 428/2009” considers
software as a dual use item, so we are certain that there are ethical consideration
to address. Most of the literature on dual-use refers to life science and cannot
be migrated to computer science but the EU’s “Ethics for researchers” [6] sug-
gests something general that can be useful in our case: “special measures need
to be taken to ensure that the potential for misuse is adequately addressed and
managed”. Thus we decided to set up our own ethical practise which consist in
embrace two important measures: (i) Responsible Disclosure: before submitting
camera ready version, we informed all parties affected by the vulnerabilities that
we think we have disclosed in this paper, giving them all details about the flaws
and the potential attacks. We hope in this way to warn awareness in the scien-
tific community, and in particular in the researchers that engineered the defences
whole limitations we have discussed; (ii) Safe Handling of Hazardous Code: we
determined ourselves not to share any portion of the source code with the public,
not to send it unsecured in using insecure channels (e.g., emails) and to keep it
stored in an encrypted disk. At the same time all experiments have been done
with a machine whose access is strictly limited to the researchers involved.

7.2 Limitations and Future Work

Current BA systems use statistical tests to detect encryption. To evade this
protection, we had to use pure permutation to obfuscate files and this is definitely
not as secure as standard ciphers, e.g., AES algorithm. If the permutation can be
discovered practically, the ransomware cannot force the victims to pay. However,
the question is still open: does it provide the minimal security level in the context
of ransomware, i.e., decrypting might be possible but paying the ransom is more
economic than decrypting? Due to space restrictions, we leave this task for a
future work.

Pure permutation technique is successful against (BA-i) and (BA-iv). More-
over, it can be adopted to evade (BA-ii) and (BA-iii). Other systems, [2,14,15]
watch additional indicators to detect ransomware activity. We leave the task of
evaluating the feasibility of evading these indicators to a future research.

To the best of our belief, this work is the first one that proposes to gather
entropy from file contents in order to generate prime numbers; but we restricted
ourselves to achieve this aim by using merely a hash function. We remark that
the security of RSA key pair generation method should be carefully studied.

11 Available at https://www.acm.org/code-of-ethics.

https://www.acm.org/code-of-ethics

400 Z. A. Genç et al.

References

1. Barkly: 2017 Ransomware Report. Technical report. Barkly (2017)
2. Continella, A., et al.: ShieldFS: a self-healing, ransomware-aware filesystem. In:

Proceedings of the 32nd Annual Conference on Computer Security Applications,
pp. 336–347. ACM, New York (2016)

3. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

4. Darwin, I.: Fine Free File Command (2010). http://www.darwinsys.com/file/
5. Deibert, R., Crete-Nishihata, M.: Blurred boundaries: probing the ethics of

cyberspace research. Rev. Policy Res. 28(5), 531–537 (2011)
6. Directorate-General for Research and Innovation: Ethics for Researchers Facili-

tating Research Excellence in FP7. Technical report. European Commission, July
2013

7. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: Proceedings of the
22nd International Conference on Distributed Computing Systems, pp. 617–624.
IEEE, Washington, DC (2002)

8. Eastlake 3rd, D.: Publicly Verifiable Nominations Committee (NomCom) Random
Selection. RFC 3797, June 2004. https://tools.ietf.org/pdf/rfc3797.pdf

9. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, Oxford (1938)

10. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: No random, no ransom: a key to stop
cryptographic ransomware. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.) DIMVA
2018. LNCS, vol. 10885, pp. 234–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93411-2 11

11. Herrera-Flanigan, J.R., Ghosh, S.: Criminal regulations. In: Ghosh, S., Turrini, E.
(eds.) Cybercrimes: A Multidisciplinary Analysis, pp. 265–308. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-13547-7 16

12. Hirschberg, B., Kravchik, M., Haenel, A., Solow, H.: Ransomware Key Extractor
and Recovery System, April 2016. https://patentscope.wipo.int/search/en/detail.
jsf?docId=US215058675

13. Kaspersky: KSN Report - Ransomware in 2014–2016. Technical report. Kaspersky
(2016)

14. Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., Kirda, E.: UNVEIL: a large-
scale, automated approach to detecting ransomware. In: 25th USENIX Security
Symposium, pp. 757–772. USENIX Association, Austin (2016)

15. Kharraz, A., Kirda, E.: Redemption real-time protection against ransomware at
end-hosts. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.)
RAID 2017. LNCS, vol. 10453, pp. 98–119. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66332-6 5

16. Kim, H., Yoo, D., Kang, J.S., Yeom, Y.: Dynamic ransomware protection using
deterministic random bit generator. In: 2017 IEEE Conference on Application,
Information and Network Security (AINS), pp. 64–68, November 2017

17. Kolodenker, E., Koch, W., Stringhini, G., Egele, M.: PayBreak: defense against
cryptographic ransomware. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 599–611. ACM, New York (2017)

18. Lee, K., Oh, I., Yim, K.: Ransomware-prevention technique using key backup. In:
Jung, J.J., Kim, P. (eds.) BDTA 2016. LNICST, vol. 194, pp. 105–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58967-1 12

https://doi.org/10.1007/978-3-662-04722-4
http://www.darwinsys.com/file/
https://tools.ietf.org/pdf/rfc3797.pdf
https://doi.org/10.1007/978-3-319-93411-2_11
https://doi.org/10.1007/978-3-319-93411-2_11
https://doi.org/10.1007/978-3-642-13547-7_16
https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://patentscope.wipo.int/search/en/detail.jsf?docId=US215058675
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/978-3-319-58967-1_12

Next Generation Cryptographic Ransomware 401

19. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press Inc., Boca Raton (1996)

20. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.-L.: Data aware
defense (DaD): towards a generic and practical ransomware countermeasure. In:
Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol.
10674, pp. 192–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 12

21. Palisse, A., Le Bouder, H., Lanet, J.-L., Le Guernic, C., Legay, A.: Ransomware
and the legacy crypto API. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A.
(eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 11–28. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54876-0 2

22. Rogaway, P.: The Moral Character of Cryptographic Work. Cryptology ePrint
Archive, Report 2015/1162 (2015). https://eprint.iacr.org/2015/1162

23. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi,
S. (eds.) DigitalForensics 2010. IAICT, vol. 337, pp. 207–226. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15506-2 15

24. Roussev, V., Quates, C.: The sdhash tutorial (2013). http://roussev.net/sdhash/
tutorial/03-quick.html

25. Scaife, N., Carter, H., Traynor, P., Butler, K.R.B.: CryptoLock (and drop it):
stopping ransomware attacks on user data. In: 2016 IEEE 36th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 303–312, June 2016

26. Stark, P.B.: Pseudo-Random Number Generator using SHA-256. https://www.
stat.berkeley.edu/∼stark/Java/Html/sha256Rand.htm

27. Morgan, S.: 2017 Cybercrimes Report. Technical report. Cybersecurity Ventures
(2017)

28. Sullins, J.P.: A case study in malware research ethics education: when teaching bad
is good. In: Proceedings of IEEE Security & Privacy, San Jose, CA, USA, 17–18
May 2014. IEEE computer society (2014)

29. Symantec Corporation: Internet Security Threat Report. Technical report, April
2018

30. Touchette, F.: The evolution of malware. Netw. Secur. 2016(1), 11–14 (2016)

https://doi.org/10.1007/978-3-319-70290-2_12
https://doi.org/10.1007/978-3-319-70290-2_12
https://doi.org/10.1007/978-3-319-54876-0_2
https://doi.org/10.1007/978-3-319-54876-0_2
https://eprint.iacr.org/2015/1162
https://doi.org/10.1007/978-3-642-15506-2_15
http://roussev.net/sdhash/tutorial/03-quick.html
http://roussev.net/sdhash/tutorial/03-quick.html
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm
https://www.stat.berkeley.edu/~stark/Java/Html/sha256Rand.htm

Security for Software and Software
Development

Hardware-Assisted Program Execution
Integrity: HAPEI

Ronan Lashermes1(B), Hélène Le Bouder2, and Gaël Thomas3

1 INRIA-RBA SED and LHS, Rennes, France
ronan.lashermes@inria.fr

2 IMT-Atlantique, Brest, France
helene.le-bouder@imt-atlantique.fr

3 DGA-MI, Bruz, France

Abstract. Even if a software is proven sound and secure, an attacker
can still insert vulnerabilities with fault attacks. In this paper, we propose
HAPEI, an Instruction Set Randomization scheme to guarantee Program
Execution Integrity even in the presence of hardware fault injection. In
particular, we propose a new solution to the multi-predecessors problem.
This scheme is then implemented as a hardened CHIP-8 virtual machine,
able to ensure program execution integrity, to prove the viability and to
explore the limits of HAPEI.

Keywords: Program execution integrity · Control flow integrity
Hardware fault attacks · Instruction set randomization

1 Introduction

In order to ensure the security of an application, developers have to do every
thing they can to reduce the number of bugs that could lead to vulnerabilities.
But for the most critical applications, software must be proven correct. Yet one
bug missed and an attacker can, in some cases, execute arbitrary code. Moreover,
this bug can be absent in the binary but created at runtime with a hardware
fault injection, breaking software proofs assumptions.

Motivation. The problem is illustrated below with a simple example.

Listing 1.1. A simple loop in C.

int count = 0;

for(int i = 0; i < 100; i++) {

count ++;

}

The assembly code corresponding with the loop in listing 1.1 can be seen in
listing 1.2.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 405–420, 2018.
https://doi.org/10.1007/978-3-030-03638-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_25

406 R. Lashermes et al.

Listing 1.2. The same loop in x86 assembly.

movl $0 , -8(%rbp) // count = 0

movl $0 , -4(%rbp) // i = 0

jmp .L2

.L3:

addl $1 , -8(%rbp) // count++

addl $1 , -4(%rbp) // i++

.L2:

cmpl $99 , -4(%rbp) // compare i and 99

jle .L3 // if i <= 99, jump to .L3 else continue

In this case the program execution must ensure:

– instructions are executed in order,
– it is not possible to jump to an arbitrary instruction of the loop. Only the

“landing” instructions can be jumped to (first ones after L2 or L3).
– When executing a “landing” instruction, the previous state of the program

must be correct. E.g. the program state is one of the two authorized ones (a
proper definition of program state is given in Sect. 4). This implies that the
jumps are all legitimate.

– No instruction can be overwritten, no instruction can be skipped.

These guarantees must be valid even if the attacker is able to arbitrarily
modify instructions at runtime. In this case, execution must stop to prevent
further damages.

Contribution. This work proposes HAPEI to ensure that the intended software
is what is actually running on the chip. Inspired by SOFIA [13], the solution is a
hardware Instruction Set Randomization (ISR) scheme that ensures Instructions
Integrity (II) and Control Flow Integrity (CFI), even in the case of a Hardware
Fault Attacks on Instructions (HFAoI). We demonstrate that we can harden a
binary without any modification in the compilation chain with a CHIP-8 vir-
tual machine implementation. It means that the Instruction Set Architecture
(ISA) does not have to change in the compiler’s view: HAPEI is transparent
at the software level. During application installation (also called packing), the
instructions are encrypted. The encryption scheme encodes the authorized pro-
gram states and the transitions from one state to the next (effectively encoding
the Control Flow Graph (CFG)). During execution, instructions are decrypted
on-the-fly. The decryption is correct only if the program state is correct and the
control flow graph is followed.

Organization. In this paper, we start with the context and the necessary defi-
nitions in Sect. 2. After a review of similar relevant works in Sect. 3, the theory
behind HAPEI is presented in Sect. 4. A discussion on the security of the scheme
follows in Sect. 5. We propose an implementation detailed in Sect. 6 and finally
our conclusion is drawn in Sect. 7.

Hardware-Assisted Program Execution Integrity: HAPEI 407

2 Context

In order to specify and verify our proposal, we must precisely define the capacities
of the attacker and the integrity guarantees we provide.

Attacker models. Several models are considered:

– Code Injection Attack (CIA): an attacker tries to divert the control flow to
execute its own malicious payload.

– Code-Reuse Attack (CRA): an attacker tries to execute a malicious payload
composed by a sequence of legitimate pieces of programs (often called widgets
in Return-Oriented Programming).

– Hardware Fault Attacks on Instructions (HFAoI): the attacker can edit the
program, at runtime, by modifying instruction values.

– Hardware Fault Attacks on Data (HFAoD): the attacker can edit the program,
at runtime, by modifying data values.

Integrities. To protect against these attacks, the execution of the software must
enforce guarantees:

– Control Flow Integrity (CFI): the control flow cannot be modified (no arbi-
trary jumps). The control flow follows the valid CFG.

– Instructions Integrity (II): the instruction values must not be altered.
– Data Integrity (DI): the data handled by the program must not be altered.
– State Integrity (StI): the processor state (configuration, registers, program

counter, . . .) must not be altered.

Often, DI, II and StI are considered together under the name of System
Integrity (SI). Here we call Program Execution Integrity (PEI) the combination
of CFI and II.

Our scheme, HAPEI, ensuresPEI in order to protect against CIA, CRA and
HFAoI. Yet to be complete, a solution should also ensure DI. In our opinion,
one of the best solution would be to encrypt all data with one secret key per
application. Since in the following we consider only one application executing,
we suppose that data integrity is guaranteed at a higher level.

StI is probably the most difficult to guarantee in presence of an attacker with
hardware fault injection means. It is also very implementation specific, we discuss
in Sect. 5.3 how an attack can be achieved on our implementation because StI
is not guaranteed.

If numerous works discuss how to ensure integrities, most consider only CIA
and CRA attacker models. Yet, hardware fault attacks are a reality and must be
mitigated. Unfortunately, HFAoI is a much more powerful attacker model and
most previous schemes do not protect against it (cf Sect. 3).

408 R. Lashermes et al.

3 Previous Works

This work inherits from a long list of proposals to ensure CFI and SI in the
literature. In this section, we present the most relevant works (that we know of)
and show where they differ with HAPEI. In most cases, CFI and SI are viewed
as orthogonal and protected with different solutions.

CFI [3] consists in ensuring that the control flow cannot be tampered with. A
large literature exists on the subject, a recent review article by Burrow et al. [4]
compares many solutions. Paraphrasing Burrow et al. [4], ISAs usually have two
forward control-flow transfers: jumps and routine calls. We consider separately
direct jumps (where the destination address is static) and indirect jumps where
the destination address can only be determined at runtime. Most CFI solutions
try to verify that jumps can only reach legitimate addresses (forward edges).
A special case is the RETURN instruction that jump to the value on top of the
stack, to return from a routine call (backward edges). As a consequence, a part
of the CFG can be determined statically, but another part cannot due to indirect
jumps.

Abadi et al. [3] shows software CFI implementations: they propose code snip-
pets to replace dangerous instructions (indirect jumps. . .) in order to guarantee
CFI.

Tice et al. [15] demonstrate a software solution that leverages the compiler
to automatically insert the appropriate protections at jump sites (forward edges
only). In particular, they tackle the problem caused by virtual method tables,
necessary in some programming languages (e.g. C++) to enforce runtime poly-
morphism. In this situation, the method to call is decided at runtime and thus
requires an indirect call.

Backward edges (e.g. RETURN instruction) are traditionally protected with
a shadow stack [9]: the call stack is duplicated. On a RETURN instruction, the
return address on both stacks are read then compared. If they differ, an alarm
is triggered. Another possibility explored by Davi et al. [6,7] is to add instruc-
tions to the ISA for the sole purpose of validating function calls and returns.
On any indirect function call, the processor switch to a particular state. The
next instruction must be a special CFIBR label instruction in order to con-
tinue execution. The label is used to keep track of which functions are currently
executing.

These methods are efficient but focus on preventing CRAs. Because they are
more difficult to achieve, Hardware Fault Attacks are not considered. However,
hardware fault attacks have been known for some time. Dehbaoui et al. [8] shows
that electromagnetic pulses allow to recover a cryptographic secret key. Then
Moro et al. [12] describes the faulting mechanism and how it translates in a
software model. Hardware fault attacks can be generated by software. The recent
CLKSCREW work by Tang et al. [14], where the authors modify a phone’s
energy and clock controller to inject faults, demonstrates such an attack. Another
illustration is given by the RowHammer attack [16]. These attacks are relevant
and must be mitigated: HAPEI must ensure CFI even in the presence of HFAoI.

Hardware-Assisted Program Execution Integrity: HAPEI 409

CFI ensures that jumps, routine calls and returns are legitimate, but it does
not prevent an attacker to alter any other instruction. New mitigation techniques
should be used for that: II and DI must be ensured.

Most system integrity techniques rely on the encryption of memories, prefer-
ably with dedicated hardware. Danger et al. [5] introduce a new instruction
to selectively randomize parts of a program. Closer to us, Hiscock et al. [10]
propose a scheme that encrypt the whole application using a stream cipher. In
order to deal with multi-predecessors (where one instruction may have several
predecessors, thus breaking the stream pattern), the authors re-init the stream
cipher.

When specifically applied to instructions, which must be therefore decrypted
on-the-fly at execution, the technique is called Instruction Set Randomization
(ISR) [11]. Without the secret key, the attacker is unable to alter an instruc-
tion and predict the result after decryption. One of the most complete solution,
ensuring both CFI and II is SOFIA [13]. This work is the main inspiration for
HAPEI.

In SOFIA, to ensure CFI we must encode the authorized state of the program.
The solution, proposed in [13], is to mask the instructions with a key stream
depending on the Program Counter (PC) and the previous Program Counter
PCprev (for the previous instruction). Let i be an opcode (instruction value)
and i′ the corresponding encrypted opcode. Let Ek be an symmetric encryption
function with secret k.

i′ = Ek(PCprev||PC||...) ⊕ i (1)

This elegant solution ensure that an instruction can be decoded only if
PC and PCprev are correct. Effectively, it encodes all the possible succes-
sions of instructions and the correct instruction can be decoded only upon
correct PC and PCprev values. In order to ensure II, a Message Authentica-
tion Code (MAC) is computed and verified per batch of up to 6 instructions.
The MAC value is stored as two words at the beginning of each block. If an
instruction has two predecessors, a special case must be made: the multiplexor
block. In this block, the two first words correspond to the encrypted MAC val-
ues for the two possible predecessors: M ′

1e1 = Ek(PC1
prev||PC||...) ⊕ M1 and

M ′
1e2 = Ek(PC2

prev||PC||...) ⊕ M1. The encrypted MAC value not used (corre-
sponding to the wrong predecessor) must be skipped in a software transparent
way.

We acknowledge the power of this solution, and build our own upon it. Our
main issue with SOFIA is the separation between CFI and II. Since the CFI
mechanism relies on the Program Counter and not on the instruction value, an
additional mechanism is needed to ensure II. Finally the multiplexor block must
deal with possible predecessors in a non trivial way. It modifies the control flow
according to the actual predecessor where it should be predecessor agnostic (all
legitimate predecessors must be dealt with in the same way).

Our paper proposes an new solution to these problems, by relaxing the effi-
ciency requirements.

410 R. Lashermes et al.

4 HAPEI

4.1 Phases

In order to harden the application, a preparatory step is required to encrypt the
instructions. Only then, the application can be executed.

Packing. Packing is required to create the encrypted program, enriched with
the necessary metadata, following the scheme detailed below. It must be done
on the final device, since it requires a device-specific secret key k.

Execution. During execution, the encrypted instructions are deciphered on-the-
fly and executed. The decryption can only occur if the program state is correct.

4.2 Program Execution Integrity

SOFIA encodes the state of the program as the succession of PCprev and PC. We
propose instead to encode the state of the program as the history of all previous
executed instructions. Our proposal does not depend on the PC value (apart
when encoded in an instruction value). As such, the machine code is ensured
to be executed correctly: instructions integrity is ensured together with control
flow integrity.

Secondly, it becomes easy to check at anytime during execution that the
current state of the program is valid.

We suppose that the Control Flow Graph (CFG) of our program is perfectly
defined at compile time. There is no ambiguity on the destination address of
jumps and calls. This condition is trivially satisfied if there are no indirect jumps
or calls in our program. In the other case, it can be more tricky.

Let accn (standing for accumulator at instruction n) be a value representing
the state of the program when instruction in is about to be executed (n uniquely
identify one instruction). in and accn can be seen as values in F2w and F2b

respectively for some w and b. b is the instruction size (considered fixed) and w
is the security parameter.

Bootstrap. To bootstrap the encoding, one has to use an initialization vector IV
as input for the first executed instruction.

accinit = HMACk(IV) (2)

accinit is considered as a predecessor program state to the entry instruction. It
may be used in a multi-predecessor scheme or in the 1-predecessor one.

1-predecessor. The easy case is the 1-predecessor case. Our program snippet is a
succession of instructions [i1, i2, · · · , in, · · ·] where all instructions are executed
in order.

The instructions are encoded as

i′n = C (accn) ⊕ in, (3)

Hardware-Assisted Program Execution Integrity: HAPEI 411

where C is a compression function: a projection from F2b to F2w . C must ensure
that x cannot be deduced from C(x).

Obviously the state of the program must be updated, using secret key k:

accn+1 = HMACk(accn||in). (4)

You can see that the state of the program is encoded with a hash chain
depending on all previous instructions. The encoded instruction i′n can only be
decoded when the previous state of the program accn is correct. This is possible
only when instruction in is due. Decoding necessitates the same operations:

accn = HMACk(accn−1||in−1), (5)
in = C (accn) ⊕ i′n. (6)

2-predecessors, a naive and limited solution. Most programs necessitate branch-
ing. As a consequence, some instructions have 2 predecessors (2 possible previous
instructions at two different locations in the program).

As a consequence the previous state of the program may have 2 different
values: acc1n or acc2n. 1 out of the 2 possible values is required to decode in.

Let Σ = acc1n ⊕ acc2n, we can encode our instruction as:

{Σ, i′n = C
(
acc1n · acc2n

) ⊕ in}, (7)

i.e. the previous state is encoded as acc1n · acc2n.
Two cases are possible: the previous state is accn = acc1n or accn = acc2n.

Either case, the decoding is:

in = C (accn · (accn ⊕ Σ)) ⊕ i′n (8)

Yet this scheme has a huge weakness: it is impossible to encrypt the program
if cycles are present in the control flow. E.g. a loop’s first instruction has two
predecessors acc1n and acc2n where acc2n is the state of the program at the end of
the loop. Then it becomes infeasible to compute acc2n: it depends on acc1n · acc2n.
The self-reference cannot be solved, since in this case it would violate Hash-based
Message Authentication Code (HMAC) security requirements: one should not be
able to find a preimage given an output.

So this scheme works only if the control flow graph is a Direct Acyclic Graph
(DAG) which is very limiting in real life scenarios. Instead two solutions (A and
B) are proposed below with different security implications developed in Sect. 5.

p-predecessors, solution A. It is possible to generalize in order to allow up to p
predecessors for an instruction and for a control flow with cycles.

In order to allow cycles, we must “rebase” our program state for all instruc-
tions having several predecessors. In this case, the program state is a new uni-
formly random value (noted r below). The problem is now to map valid prede-
cessor states to this same new state.

Let r be a random value in F2b . Let accin, i ∈ [[1, p]] be the allowed previous
accumulator values for current instruction in. A polynomial P can be defined

412 R. Lashermes et al.

such that ∀i ∈ [[1, p]], P (accin) = r using Lagrange interpolation. Since the gen-
erated polynomial is minimal, it is constant if we do not define an additional
point. P (0) = d for d a random value (different than r) in F2b .

The p coefficients of P are stored as program metadata with the correspond-
ing instruction in. At packing, HAPEI encrypts with i′n = C(r)⊕ in. To decrypt
instruction in, we use accn = P (accn−1). Note that the polynomial evaluation
replaces the HMAC call.

p-predecessors, solution B. F2b can be decomposed in different subgroups μp

where
∀x ∈ μp, x

p = 1 (9)

(subgroup of pth-root of unity). Such subgroups exist for all p such that p | 2b−1.
For all valid p (depending on b), we can define a scheme that allows p prede-

cessors. For example, b = 16 allows a scheme with 5 predecessors (p = 5 divides
65535 = 216 − 1).

Let accin, i ∈ [[1, p]] be the allowed previous accumulator values for current
instruction in. Let r be a random value in F2b . Let m ∈ μp be a generator
value for the subgroup. We construct a polynomial P (in F2b) using Lagrange
interpolation such that ∀i ∈ [[1, p]], P (accin) = r · mi. The p − 1 coefficients of
P are stored as program metadata with the corresponding instruction in. At
packing, HAPEI encrypts with i′n = C(rp) ⊕ in. To decrypt instruction in, we
use accn = P (accn−1)p. Indeed, by construction

∀i ∈ [[1, p]], P (accin)p =
(
r · mi

)p
= rp · (mp)i = rp. (10)

In this scheme, polynomials have degree p − 1 instead of p in solution A: the
memory overhead is lower.

Ensuring Instruction Integrity. To check the II, it is enough to check an
accn against a truth value pre-generated at packing time. The more frequent
the check, the sooner a tempering is detected but the bigger is the required
metadata.

A second strategy is to have valid instructions forming a set Iv ⊂ F2w . If
card(Iv) << card(F2w) a wrongly decoded instruction will have a very low
probability of belonging to Iv, of being valid.

4.3 Key Management

In this scheme, the component responsible for managing the secret key k is crit-
ical. In most cases, the binary encryption cannot be performed at compilation
on the binary provider machine since it would requires to ship the (then shared)
secret along with the binary. As a consequence, any Instruction Set Randomiza-
tion (ISR) scheme using a secret key must have a packing phase that transform
an unmodified binary (or extended with the CFG information) into a hardened
one.

Hardware-Assisted Program Execution Integrity: HAPEI 413

The only other possibility is for the binary provider to encrypt the application
for each intended recipient, then to use public-key cryptography to share the
corresponding secret key with the targeted hardware.

4.4 Limitations

Apart from the performances overhead, our solution has severe limitations. Since
the CFG must be perfectly known at packing time, indirect jumps and calls
should be avoided. In particular, the scheme is not compatible with virtual
method tables required for runtime polymorphism in several languages (C++,
java, . . .). Additionally, the scheme is tailored for self-contained applications. If
the program must call external code (shared library, OS system call), things do
not play well. How to lift these limits should be investigated by the community.

5 Security Assessment

In this section, the security of the solution is analysed. As with most equivalent
schemes, the details are critical. In Sect. 5.1, we discuss about the security of
the proposed schemes. In Sect. 5.2, we analyse the security problems due to the
use of a stream cipher and how to overcome it. Finally, in Sect. 5.3, the limits
of the Program Execution Integrity (PEI) guarantees are shown.

5.1 Scheme Security

The scheme security relies on the secrecy of the key stream, the accumulator
values must remain secret. Can the attacker gain information on one accumulator
value, given she knows the encrypted instructions, the clear instructions (in the
most advantageous case for her) and the polynomials? If she learn a given accn−1,
then no information is gained on accn without the knowledge of the secret key
k per the cryptographic properties of the HMAC.

First, she can deduce C(accn) = i′n ⊕ in. If C is a cryptographically secure
hash function, then no information is gained on accn. Lower constraints on C
are possible, since we only care about the correct preimage security: the attacker
must find the correct preimage, not just a satisfying one.

p-predecessors, solution A. Let in be a p-predecessors instruction:

∃P ∈ F2b [X] |∀i ∈ [[1, p]], P (accin) = r (11)

with r a random value. P is a public non-constant polynomial but all accin and
r are secret.

Knowing P , the attacker cannot find any accin nor r: r can be any value in
F2b and for most r she can find corresponding valid accin. Yet if she learn r, then
finding the roots of P (X) − r is trivial. If she learn a given accin, then she can
compute r = P (accin), then find the other accumulator values. As a consequence,

414 R. Lashermes et al.

a polynomial links all corresponding secrets together. If one value is discovered,
all the others are too.

A same accumulator value can be used as a legitimate input to several polyno-
mials. Yet the resulting systems of equation are always underdetermined. There
is one unknown per polynomial corresponding to the random r value, plus at
least 1 secret accin value. But there again, in this case all secrets are linked:
discovering one may mean discovering the others.

The problem with solution A is that P is constructed in a very specific way:
Lagrange interpolation ensures that P (X)− r has p distinct roots (P has degree
p), the maximum possible. The attacker can use the peculiarity to gain informa-
tion on r and accin,∀i. Given a random polynomial Q of degree p, the probability
that Q has p distinct roots corresponds to the number of combinations to dis-
tribute p roots over 2b values divided by the total number of polynomials of
degree p. (

2b

p

)

(2b)p+1 . (12)

Since in our case, p << 2b, Eq. (12) becomes

1

p! (2b)p+1 . (13)

As a conclusion, a proportion of 1
p! random polynomials have p roots. The

greater the p, the better for the attacker that becomes able to discriminate r.
In most cases, p is low and 2b is high (b ≥ 128) so the security should not be
compromised since the attacker cannot possibly enumerate all possible r.

p-predecessors, solution B. This possibility for the attacker to discriminate r
given P is the main motivation for the alternative solution B. In this proposition,
r is not a special value with respect to P : P (X) − r · mi may have any number
of roots (≥ 1). But then, it means that additional roots may be considered
valid program states. Some random illegitimate accumulator values could be
mapped to the legitimate one. Since the attacker should not be able to control
the accumulator value, the security is not compromised.

Finally, the choice between solutions A and B depends on the attacker model:
if she can control accn, then solution A must be chosen. If not but she has a
huge computation power, solution B should be preferred.

5.2 Differential Attack

If the attacker is able to see the plain/decrypted instructions (or deduce from
observed behaviour), she can execute one arbitrary instruction ia.

i′n ⊕ e = C (accn) ⊕ in ⊕ e (14)

Hardware-Assisted Program Execution Integrity: HAPEI 415

To execute ia, simply choose e = in ⊕ ia. But the next state of the program
is

accn+1 = HMACk(accn||ia)
which is unpredictable for the attacker by the required properties of HMACk.
This attack is present in all schemes using a key stream (xoring a secret data
with the text).

The mitigation is to wait for in+1 valid decryption before executing in. In
this case, if the attacker tries to force execution of ia instead of in, II detects
the bad behaviour (cf Sect. 4.2).

5.3 Multi-successors Attack

In the proposed scheme, several instructions can have the same associated pro-
gram state. An example is given in listing 1.3.

Listing 1.3. A pseudo assembly program

i0: CMP R0, #0 // Compare register R0 with 0

i1: BEQ 3 // Go to i3 if equal

i2: JUMP 4 // Go to i4

i3: ...

In this example, the possible transitions from instruction i1 are i1 ⇒ i2 or
i1 ⇒ i3. i1 has two successors but both i2 and i3 have one predecessor. As a
consequence, acc2 = acc3 and encrypted instructions differential is conserved:
i′2 ⊕ i′3 = i2 ⊕ i3.

The attacker can switch these instructions at will and they will be correctly
decoded. A mitigation would require to includes a unique identifier in the accu-
mulator update formula:

accn+1 = HMACk(accn||in||n). (15)

But such an attack does not break Program Execution Integrity: the exe-
cution where the attacker switches the instructions is indistinguishable from a
legitimate execution apart from instruction addresses. The program is seman-
tically correct. And if the next instructions do not correspond to a legitimate
program execution, they cannot be correctly decrypted. In conclusion, this attack
illustrates the limits of the PEI guarantees. The Program Counter PC is part
of the processor state: StI is the guarantee that should prevent this attack.

6 Implementation

In order to test HAPEI, we implement it by modifying a CHIP-8 virtual machine
to run hardened programs. The sources for the reference and the hardened imple-
mentations can be found at https://gitlab.inria.fr/rlasherm/HAPEI. Licenses
are MIT for software and CC-BY-4.0 for non-software.

https://gitlab.inria.fr/rlasherm/HAPEI

416 R. Lashermes et al.

6.1 CHIP-8

CHIP-8 is an Instruction Set Architecture (ISA) initially intended to be run in
a virtual machine on 8-bits microcomputers (from the 1970s). Its purpose is to
run the same video games on different hardware. It is a good candidate for a
hardened implementation because of its simplicity: 35 instructions with only 1
indirect branch instruction. Binaries (called roms in the video game emulation
tradition) can be freely found on the internet. Additionally, its age means that it
can easily be run on any modern computer, even with additional cryptographic
computations, in real-time.

Our goal is therefore to run these roms in a hardened virtual machine. A
simulated fault injection process, a key press modifies the next opcode by a
randomly valid one, must be detected. In order to validate the hardened imple-
mentation, we compare it to a reference implementation (without the hardening)
and compare the behaviours.

The implementation is modularized: chip8lib contains all common structure
definitions and the machinery to parse opcodes into instructions (sum type val-
ues). chip8ref is the reference implementation, able to run, display and interact
with emulated video games. chip8hard is the hardened implementation, it packs
the current rom at startup then executes its encrypted version according to the
scheme presented in this paper (solution A).

6.2 Reference Implementation

The two implementations have been done in the rust language. Rust has great
performances and allows a simple representation of the virtual machine by using
sum types. The implementation has been inspired by the previous work at [2], but
modularized to factor code between the reference and hardened implementations.
The virtual machine is a 8-bit machine (word size) with 16-bit addresses.

6.3 Hardened Implementation

Packing. The hardened implementation must pack the application before exe-
cution. This step requires a precise control flow graph extraction. This extrac-
tion is done in a classical way. First we define a method cfg next that given
an instruction, its address and the call stack (stack to keep track of routine
calls and returns) return all addresses that can possibly be executed next (and
update the call stack). Then starting from the first address, we recursively call
cfg next on the next instruction for all possible call stacks. Meaning that if the
next instruction has already been included in the CFG previously but the call
stack is different than the one during the previous CFG inclusion, we continue
the analysis with the new call stack.

The difficulty lies in indirect branches that make CFG extraction difficult.
In the CHIP-8, there is only one such instruction JP V0, addr that jumps to

Hardware-Assisted Program Execution Integrity: HAPEI 417

address addr plus the content of register V0 (8-bit register). In our CFG extrac-
tion, we consider that the possible successors for this instruction are all addresses
between addr and addr + 255. Fortunately, all roms do not use this instruction.

Once the CFG has been extracted, we compute all accumulator values (pro-
gram states), polynomials and finally encrypt our instructions in the following
order:

1. accinit from IV.
2. For all multi-predecessors instructions, draw a new random accumulator

value. accinit is a predecessor for the entry instruction.
3. Compute recursively all remaining accumulator values.
4. Compute and store polynomials for all multi-predecessors instructions.
5. For all instructions, encrypt it using corresponding accumulator value.
6. Delete all accumulator values, we have to compute them on-the-fly at

execution.

Execution. At execution, the binary is already encrypted. At each tick of the
virtual machine, the following actions are performed in order to execute instruc-
tion in at address PC:

1. Is there a polynomial P associated with address PC?
2. If yes, then its a multi-predecessors case: update the accumulator state acc =

P (acc).
3. If there is no polynomial, then simply update the accumulator with the

HMAC function: acc = HMACk(acc||iprevious)
4. Then decrypt the instruction to be executed: in = i′n ⊕ C(acc).
5. If in is valid we can execute it, in the other case we are under attack.

Only one accumulator value must be remembered throughout the computa-
tion, lowering the cost of our solution. This cost is both a big performance hit
due to the on-the-fly decryption and accumulator update, and a memory over-
head required to store the polynomials. Since our implementation is a virtual
machine, the performance overhead cannot be meaningfully measured. But the
memory overhead can be precisely measured as shown on Table 1.

In this table, the hardening is performed for a set of binaries found in [1]. We
can see that the memory requirements at the 128-bit security level (size of one
field element) is important: more memory is required to store the polynomials
than the initial binary size.

Additionally, the roms are run in the reference virtual machine and in the
hardened virtual machine to confirm functional equivalence. Then a simulated
hardware fault injection mechanism is inserted. When a specific key is pressed,
the next opcode is replaced in memory with a random valid opcode. On the
reference implementation, the results of this fault injection is unpredictable:
strange patterns are displayed on screen, nothing happen, another game screen
is unlocked or we get a crash. In the hardened machine, the fault injection means
that all subsequent instructions will be wrongly decoded: a crash always follows
because of an invalid instruction value.

418 R. Lashermes et al.

Table 1. Hardening memory usage for a set of CHIP-8 roms found in [1] (solution A).

ROM name ROM
byte size

Instructions
count

Polynomials
count

Field
elements
count

Polynomials
byte size
(128-bit)

INVADERS 1283 202 28 99 1584

GUESS 148 49 8 25 400

KALEID 120 59 10 32 512

CONNECT4 194 67 5 19 304

WIPEOFF 206 101 15 47 752

PONG2 264 126 19 60 960

15PUZZLE 384 116 17 54 864

TETRIS 494 189 32 106 1696

BLINKY 2356 856 84 310 4960

VBRIX 507 218 27 93 1488

SYZYGY 946 414 44 149 2384

BRIX 280 134 17 57 912

TICTAC 486 194 23 89 1424

MAZE 34 13 3 10 160

PUZZLE 184 87 10 34 544

BLITZ 391 121 15 47 752

VERS 230 103 24 73 1168

PONG 246 117 18 57 912

UFO 224 106 15 48 768

TANK 560 236 42 139 2224

MISSILE 180 75 12 37 592

HIDDEN 850 258 24 81 1296

MERLIN 345 124 13 45 720

7 Conclusion

In this paper, a solution to ensure Program Execution Integrity is presented.
More precisely, Control Flow Integrity and Instructions Integrity are guaranteed
against Code Injection Attack, Code-Reuse Attack and Hardware Fault Attacks
on Instructions. This solution uses the program state, a hash chain of all previ-
ously executed instructions, in order to encrypt the program. Correct decryption
can only be achieved if the program state is correct.

The difficulty lies in the multi-predecessors case: how to handle the stream
cipher when an instruction has several predecessors? Here, the program state is
reinitialized with a random value and a polynomial is computed that maps all
previous program states to this new value.

Hardware-Assisted Program Execution Integrity: HAPEI 419

An implementation has been proposed as a CHIP-8 virtual machine. It shows
that the memory overhead is important and validates that the proposed scheme
is functional.

Further work can be done to optimize the performances: can we find better
mapping function than polynomials? Is there a more compact representation of
the program state, offering the same security level?

This work shows that instruction set randomization has a lot to offer in order
to provide guarantees at the hardware level.

References

1. CHIP-8 games pack. https://www.zophar.net/pdroms/chip8.html
2. Mike zaby’s CHIP-8 implementation. https://github.com/mikezaby/chip-8.rs
3. Abadi, M., Budiu, M., Erlingsson, Ú., Ligatti, J.: Control-flow integrity principles,

implementations, and applications. ACM Trans. Inf. Syst. Secur. (TISSEC) 13(1),
1–40 (2009). http://portal.acm.org/citation.cfm?doid=1609956.1609960

4. Burow, N., et al.: Control-flow integrity: Precision, security, and performance.
ACM Comput. Surv. (CSUR) 50(1), 1–33 (2017). http://dl.acm.org/citation.cfm?
doid=3058791.3054924

5. Danger, J.L., Guilley, S., Praden, F.: Hardware-enforced protection against soft-
ware reverse-engineering based on an instruction set encoding. In: Proceedings
of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop
2014, pp. 1–11. ACM Press, New York (2014). http://dl.acm.org/citation.cfm?
doid=2556464.2556469

6. Davi, L., et al.: HAFIX: hardware-assisted flow integrity extension. In: Proceedings
of the 52nd Annual Design Automation Conference, pp. 1–6. ACM Press, New York
(2015). http://dl.acm.org/citation.cfm?doid=2744769.2744847

7. Davi, L., Koeberl, P., Sadeghi, A.R.: Hardware-assisted fine-grained control-
flow integrity: towards efficient protection of embedded systems against soft-
ware exploitation. In: Design Automation Conference (DAC), 2014 51st
ACM/EDAC/IEEE, pp. 1–6. IEEE (2014). http://ieeexplore.ieee.org/document/
6881460/

8. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 7–15. IEEE
(2012). http://ieeexplore.ieee.org/document/6305224/

9. Frantzen, M., Shuey, M.: StackGhost: Hardware facilitated stack protection.
USENIX (2001)

10. Hiscock, T., Savry, O., Goubin, L.: Lightweight software encryption for embedded
processors. In: 2017 Euromicro Conference on Digital System Design (DSD), pp.
213–220. IEEE (2017). http://ieeexplore.ieee.org/document/8049788/

11. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: Proceedings of the 10th ACM conference on
Computer and communications security, p. 10 (2003)

12. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: Towards a fault model on a 32-bit microcontroller. In: 2013
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 77–88. IEEE
(2013). http://ieeexplore.ieee.org/document/6623558/

https://www.zophar.net/pdroms/chip8.html
https://github.com/mikezaby/chip-8.rs
http://portal.acm.org/citation.cfm?doid=1609956.1609960
http://dl.acm.org/citation.cfm?doid=3058791.3054924
http://dl.acm.org/citation.cfm?doid=3058791.3054924
http://dl.acm.org/citation.cfm?doid=2556464.2556469
http://dl.acm.org/citation.cfm?doid=2556464.2556469
http://dl.acm.org/citation.cfm?doid=2744769.2744847
http://ieeexplore.ieee.org/document/6881460/
http://ieeexplore.ieee.org/document/6881460/
http://ieeexplore.ieee.org/document/6305224/
http://ieeexplore.ieee.org/document/8049788/
http://ieeexplore.ieee.org/document/6623558/

420 R. Lashermes et al.

13. de Clercq, R., et al.: SOFIA: Software and control flow integrity architecture.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1172–1177. IEEE (2016)

14. Tang, A., Sethumadhavan, S., Stolfo, S.: CLKSCREW: Exposing the perils of
security-oblivious energy management. In: Proceedings of the Second Workshop
on Real, Large Distributed Systems. USENIX, OCLC: 255334142 (2017)

15. Tice, C., et al.: Enforcing forward-edge control-flow integrity in GCC & LLVM.
In: USENIX Security Symposium, p. 15 (2014)

16. van der Veen, V., et al.: Drammer: Deterministic rowhammer attacks on mobile
platforms. In: Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pp. 1675–1689. ACM Press, New York (2016). http://dl.
acm.org/citation.cfm?doid=2976749.2978406

http://dl.acm.org/citation.cfm?doid=2976749.2978406
http://dl.acm.org/citation.cfm?doid=2976749.2978406

Protecting Instruction Set Randomization
from Code Reuse Attacks

Roberto Guanciale(B)

Department of Theoretical Computer Science, KTH Royal Institute of Technology,
Stockholm, Sweden
robertog@kth.se

Abstract. Instruction Set Randomization (ISR) prevents code injec-
tion by randomizing the instruction encoding used by programs, thus
preventing an attacker from preparing a payload that can be injected in
a victim. In this paper we show that code-reuse attacks can be used to
circumvent existing ISR techniques and we demonstrate these attacks on
an ARMv7 CPU that has been extended with ISR support. To counter
this treat, we propose a new ISR that does not have the same vulnerabili-
ties as the existing solutions, imposes moderate decryption cost, does not
require additional memory per instruction, and affords efficient random
access to the encrypted code. These properties enable efficient hardware
implementation of our solution. In order to evaluate our proposal, we
implement the new ISR in a hardware simulator and we compare its
overhead with respect to existing ISR.

Keywords: Instruction Set Randomization · Code injection
Code-reuse attacks

1 Introduction

Memory corruption vulnerabilities (e.g. a buffer overflow or a dangling pointer)
can enable attackers to inject and execute arbitrary code. The wider adopted
countermeasure to this threat is executable space protection (W ⊕X), which uses
hardware memory protection to guarantee that executable regions of memory
cannot be overwritten. Instruction Set Randomization (ISR) is an alternative
defence that diversifies Instruction Set Architecture (ISA) by randomizing the
instruction encoding via encryption: code is stored encrypted and it is decrypted
on the fly when executed. If the attacker does not know the key used by the
victim, then it cannot prepare a payload that can be injected and executed. ISR
is attractive as complementary defence to W⊕X, since it cannot be circumvented
using the same attack vectors.

In general, neither W ⊕ X nor ISR prevent code-reuse attacks like return-
oriented and jump-oriented attacks. In many cases, code reuse attacks has been
demonstrated to be Turing complete and protection against these attacks is more
difficult than preventing code injection, since the protections require static anal-
ysis. Nevertheless, attackers are motivated to bypass code injection protection
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 421–436, 2018.
https://doi.org/10.1007/978-3-030-03638-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_26&domain=pdf
http://orcid.org/0000-0002-8069-6495
https://doi.org/10.1007/978-3-030-03638-6_26

422 R. Guanciale

using code-reuse attacks. In fact, bypassing the injection protection simplifies
the execution of arbitrary payloads (freeing from using a carefully crafted chain
of gadgets), it limits the size of data that must be compromised (making dif-
ficult to identify them), and it reduces the run-time overhead. Here, we show
that existing ISRs can be circumvented using code reuse attacks that implement
“code splicing” and “dynamic encryption.” In a splicing attack, the encrypted
code of the victim is copied and reused elsewhere. Dynamic encryption consists
in encrypting an arbitrary payload using information that can be observed by the
attacker, without the need of discovering the encryption key. We demonstrate
that both attacks can be implemented using code-reuse attacks. All gadgets used
in the attacks are selected from the libc binary, therefore the attacks can target
a wide range of programs that have memory vulnerabilities.

To handle this security threat, we propose a new ISR that cannot be circum-
vented using these attacks and that satisfies common requirements for a practical
hardware based ISR: moderate decryption cost, no usage of additional memory
per instruction, and efficient random access to the encrypted code. We use the
Xor-Encrypt-Xor (XEX) tweakable cipher and we bind the tweak to the address
of instructions, similarly to the usage of XEX for disk encryption. In order to
evaluate our proposal, we implemented the new ISR in the Gem5 simulator and
we compare it with respect to existing ISR approaches.

This paper is structured as follows. In Sect. 2 we discuss related work and
we present existing ISR solutions. The vulnerabilities of existing proposals and
the code-reuse attacks are described in Sect. 3. We present a countermeasure
to these threats in Sect. 4. We evaluate our proposal and compare with respect
with existing solutions in Sect. 5. Finally, in Sect. 6 we conclude and discuss open
ends.

2 State of the Art

Despite the existence of memory-safe languages and static analysis tech-
niques [15], there exist a large amount of software with memory vulnerabilities
that enable code injection. The severity of these attacks led the development of
several countermeasures. The most common class of defences pursue confining
the effects of memory errors, preventing them from modifying executable code.
For instance, Software Fault Isolation (SFI) [14,17,24] consists in compile-time
transformations that inline memory safety checks, which guarantee inalterability
of executable code.

The wider adopted countermeasure is executable space protection (W ⊕ X).
Modifiable data and program code are allocated in separated regions of memory,
and no region is made both writable and executable. This defense prevents most
code injection attacks without requiring substantial changes to programs or sig-
nificant overhead. On the other hand, W ⊕X has some limitations. It requires a
Memory Management Unit (MMU) (or Memory Protection Unit) which is miss-
ing in small embedded CPUs (e.g. Cortex M0). It cannot be used in early stages
of boot, when page tables are not configured. It cannot prevent attacks that do

Protecting Instruction Set Randomization from Code Reuse Attacks 423

not come from the CPU: A DMA enabled device (due to being physically tam-
pered or due to bugs in the device driver) can violate the W ⊕X policy imposed
to the CPU (the usage of a System MMU can mitigate this problem, at the
cost of increasing latency of device’s memory accesses). Finally, fault injection
attacks (e.g. rowhammer [19]) can be used with the intent of flipping attributes
of a page table or changing the behavior of a single instruction (e.g. to change a
branch conditional to a branch unconditional).

A different class of defenses relies on randomization and pursues hindering
the usage of vulnerabilities to execute malicious code. To accomplish something
meaningful, the attacker needs to know some details of the victim program, such
as location of vulnerable buffers, pointers, and functions. Diversification can be
used to prevent identification of these informations. All modern OSes support
Address Space Layout Randomization (ASLR), which permits to randomize the
base address of data and code [23]. More complex diversification techniques
include function reordering, data encoding randomization, stack layout random-
ization, code inlining and outlining, loop unrolling, instruction reordering, and
register allocation randomization (we refer to [13] for a detailed comparison of
existing diversification techniques).

A further example of diversification is Instruction Set Randomization
(ISR [12]). The idea is to randomize instruction encoding via encryption, hin-
dering the ability of preparing a malicious payload that can be injected in the
victim. The same opcode can be decoded as a LOAD instruction for a process,
but it can be decoded as a STORE (or even be invalid) for another one. ISR
does not need support for memory protection, thus its usage is possible in sce-
narios that prevent the adoption of W ⊕ X (e.g. small microcontrollers or early
stages of boot). Moreover, it can complement W ⊕ X since it is not affected
by the same weaknesses: it cannot be circumvented using external devices or
fault injection. Also, ISR, in conjunction with code diversification, can protect
against JIT code-reuse attacks, since it prevents an attacker from reading the
instructions generated by the diversification engine.

Fig. 1. Designs of hardware based ISRs

Hardware based ISRs usually require limited hardware modifications.
Instruction decryption can be placed just before the CPU fetch (Fig. 1a),

424 R. Guanciale

enabling the usage of ISR in CPUs that have no caches. A more efficient solu-
tion is to place the decryption between the I-cache and the memory subsystem
(Fig. 1b). The isolation between I-cache and D-cache enables the temporarily
storage of decrypted instruction in the I-cache, reducing the overhead of ISR.
Without modification to caches,1 it is not secure to place the decryptor after a
unified cache (e.g. Fig. 1c): a store operation can overwrite an instruction that
has been previously decrypted and saved in the unified cache, bypassing the ISR.

To be practical, a hardware based ISR must satisfy three requirements:

1. Decryption should be relatively cheap, thus limiting the run-time overhead,
2. Encrypted instructions should have the same length of the original ISA, thus

heavy modifications of the existing toolchains (e.g. compilers) and hardware
components (e.g. caches) are nor required,

3. Random access to the encrypted code should be supported, thus allowing
arbitrary control flows.

To satisfy requirement (1) the majority of existing ISRs use symmetric block
ciphers like AES. Requirement (2) prevents the usage of Message Authentication
Code (MAC) and authenticated encryption, since they require additional bits
to be stored alongside the program instructions. Therefore, ISRs usually do not
directly detect code injection, but they rely on the fact that any alteration of
the ciphertext will, with high probability, result in an undefined instruction or
memory fault, which can be detected by the operating system (Fig. 2).

Fig. 2. ISR modes

Requirement (3) makes impractical the usage of cipher block chaining, prop-
agating cipher block chaining, cipher feedback, and output feedback [11]. The
majority of ISRs use Electronic CodeBook (ECB) (Fig. 5a): every block of

1 The cache must be extended to keep track if a line has been filled due to a request
received from the I-port or from D-port. Then, hits are permitted only for requests
coming from the same port of the line.

Protecting Instruction Set Randomization from Code Reuse Attacks 425

instructions is independently encrypted/decrypted using the process key. Several
mechanisms have been proposed to manage these keys: they can be generated at
compile time, at deployment time, or at execution time; there can be a unique
key per process or different keys per memory-page. In Sect. 3.1, we demonstrate
that ISRs based on ECB are vulnerable to “splicing” attacks, where encrypted
code is copied and reused elsewhere. These attacks do not depend on the mech-
anism used to manage process keys.

An exception to the usage of ECB is represented by the adoption of counter
mode (CTR) by Polyglot [21] (Fig. 5b). In this case, every block of instructions
is encrypted by XORing it with the encryption of the starting address of the
block, which plays the role of a counter. When the instruction block is fetched
from memory, it is decrypted using the same procedure: by XORing the block
with the encryption of the program counter. CTR is appealing for two reasons:
the encryption of the program counter does not depend on the memory content,
which permits to execute the cipher while the block is fetched from memory,
and the usage of the instruction’s address prevents code splicing, since instruc-
tion blocks cannot be moved without affecting the decryption. However, CTR
cannot be used if the ciphertext (i.e. the content of memory), the plaintext (i.e.
the original instructions of the victim) and the counter (i.e. the location of the
instructions) are known by the attacker. For this reason, using CTR requires to
adopt further security measures like R⊕X [2] (which guarantees that executable
memory is not readable), code randomization (which prevents the attacker from
knowing the original program of the victim), and address space randomization
(which hinders the knowledge of the counter). In Sect. 3.1 we demonstrate that,
if these countermeasures cannot be taken or are circumvented, then CTR can be
bypassed using “dynamic encryption,” where information extracted from pro-
gram memory is used to encrypt and inject a malicious payload.

Existing attacks to ISRs focus on discovering the process’s key used by weak
encryption schemes. For instance, in [22] the authors demonstrate the possibility
of successfully extracting the key using an incremental attack. They target an
ISR that simply XORes instructions with a secret key, however the same strat-
egy can target other ciphers that are susceptible to known plaintext-ciphertext
attack. Here, we show that the majority of existing ISR solutions can be circum-
vented using code-reuse attacks without the need of extracting the ISR key, and
that these vulnerabilities can be countered by a new ISR scheme.

A notable exception to vulnerable ISRs is SOFIA [10]. This proposal relaxes
the last two requirements. (2) Instruction memory is fragmented in blocks (usu-
ally cache-line aligned) and the first word of a block contains the MAC of the
instructions in the block. This approach permits to directly detect alterations,
but requires to modify the assembler and linker. Also, it is impractical for cache-
less systems, since it requires to fetch the whole block to compute the MAC.
(3) Instructions are encrypted using CTR, where the counter is computed by
the program counters of the current and previous instructions (i.e. an edge of
the control flow graph). This prevents random accesses to instruction memory
and code reuse attacks. However, it requires to statically analyse the software

426 R. Guanciale

to extract an abstraction of the control flow, making difficult to protect closed
source binaries or large programs whose control flow is difficult to extract.

3 Circumventing Existing ISRs Using Code-Reuse
Attacks

In this section we demonstrate two attacks that can circumvent existing ISRs.
The implementation of these attacks is straightforward when the attacker has
direct access to memory, for example when he controls a compromised DMA
device whose memory accesses are not mediated by a system MMU. Moreover, we
show that these attacks can be implemented via code-reuse attacks using return
oriented programming (ROP) [8] and jump oriented programming (JOP) [5]. For
these attacks we assume:

1. the attacker can use memory errors to corrupt the victim’s control flow
2. control flow alterations are not detected
3. victim can read its own program memory
4. the attacker knows the memory layout of the victim
5. the attacker knows the original binary code of the victim.

We comment on these assumptions. (1–2) memory vulnerabilities are unfortu-
nately common and complete protection against ROP/JOP requires static anal-
ysis, which is challenging for systems whose source code is not available (e.g.
closed source drivers) or whose control flow graph is difficult to extract. More-
over, defence against code-reuse attacks are usually more expensive than ISR. (3)
R⊕X is not implemented in commodity CPUs. Moreover, since several compilers
mix code and read-only data (for example compilers that target ARMv7), obey-
ing R ⊕ X requires major changes to existing toolchains. (4) ASLRs techniques
have been bypassed due limited entropy in 32-bit architectures [20] and due to
data leakage (i.e. stack over-reads) in other architectures. (5) Even if effective,
code diversification is not widely adopted by commodity OSes. Also, diversifica-
tion techniques require transformation of binary or recompilation, which can be
difficult to implement in small devices, for early stages of boot, and for closed
source software. Finally, if a malicious process shares code-pages with the victim
(i.e. by using common libraries that are not diversified per-process), then the
attacker can probe his own code to discover part of the shared binary.

For our experiments we use the ARMv7 architecture [1], which is one of
the wider adopted CPU architectures for embedded devices. ARMv7 is a RISC
ISA with fixed instruction length (32-bits), which simplifies the usage of block
ciphers. We used the simulator of Sect. 5 to simulate an ARMv7 CPU equipped
with ECB and CTR based ISR and AES cipher. In both cases we successfully
injected and activated the victim payload using the attacks.

3.1 Code Splicing

The first attack targets ISRs that use ECB mode, which are the majority of the
existing proposals (e.g. ASIST [16]). We use E,D : K × {0, 1}8∗bs → {0, 1}8∗bs

Protecting Instruction Set Randomization from Code Reuse Attacks 427

to represent the encryption and decryption functions of a bs-bytes block cipher.
The victim code is represented by the function vc(i), which yields bs-bytes of the
instructions contained in the i-th block. The attacker payload is represented by
the list of instruction blocks b0, . . . , bn−1, which should be injected continuously
starting from the target address tb ∗ bs. Due to the usage of ECB, the memory
block starting from i ∗ bs contains the encryption of the instructions in the i-th
block: ci = E(vc(i),K).

A splicing attack consists in copying and reusing the encrypted code else-
where. For this reason, we assume that the victim code contains the instructions
of the payload: exist a0, . . . , an such that vc(ai) = bi. In this setting, the attacker
can inject the payload by simply copying the encrypted instructions from ai to
(tb + i) ∗ bs.

Even if the attacker cannot inject arbitrary code, he can transform the pay-
load’s binary to use only victim instructions. This allows code-reuse attacks that
can access a larger set of gadgets respect to the ones that are usually accessible
using ROP and JOP. To demonstrate the increased expressiveness of the gadgets
made accessible using this attack we analyzed the ARMv7 libc. In Table 1 we
report the number of gadgets available to the attacker using ROP or using code
splicing for ciphers with different block size. It is worth noticing that additionally
to a larger dictionary for the attacker, blocks can be connected without the need
of indirect jumps and the average length of the gadget is shorter. This increases
the number of gadgets that have no unwanted side effects (like additional memory
stores or function calls) and hinders detection by run-time monitors for control
flow integrity. Finally, some instructions are present in libc and are exploitable
using code splicing, but they are nor available via ROP or JOP gadgets: ltf
and stf that transfer floating point numbers between FPU and memory, and
rsb that provides reverse subtraction.

Table 1. Comparison of gadgets available via ROP and code splicing

ROP
gedgets

32 bits
(word)

64 bits
(PRINCE)

128 bits
(AES)

256 bits
(AES)

512 bits
(Cache line)

Number 10449 97102 48794 24569 12377 6230

Unique 1294 27900 40849 23484 12200 6224

Instructions 6.3 1 2 4 8 16

ROP Splicing for ARMv7. For our experiments we use a small victim pro-
gram that has a stack vulnerability and is statically linked with libc. All gadgets
are selected from the libc binary, thus the attack can target all ARMv7 appli-
cations that have a similar vulnerability. The attack uses three gadgets, whose
addresses are represented by g1, g2, and g3:

(G1) “pop r0, r4, pc” located in “memmove”

428 R. Guanciale

(G2) “ldr r0, [r0] ; pop r4, pc” located in “ wuflow”
(G3) “str r0, [r4, 0x10] ; pop r4, pc” located in “dlvsym doit”.

To copy the j-th encrypted instruction of the block ai (i.e. whose address is
ai ∗ bs + j ∗ 4) to the target location (tb + i) ∗ bs + j ∗ 4, the stack is corrupted
to contain the words of Fig. 3a. Initially, the victim control flow is hijacked to
activate G1. This pops three values from the stack, setting registers R0 and R4
to ai ∗ bs + j ∗ 4 and 0 respectively and jumping to g2. G2 loads from R0 into
R0, leading R0 to contain the encryption of bi[j]. Then two values are popped
from the stack; register R4 is set to (tb + i) ∗ bs + j ∗ 4 − 0x10 and the flow is
redirected to g3. G3 stores R0 into R4 + 0x10, thus writing the encryption of
bi[j] into the j-th word of the block tb + i, and pops two values from the stack,
activating the next gadget.

The attacker can repeat the stack content for every instruction of the payload
and chain together the gadgets. Alternatively, he can use the ROP attack to
inject a “loader,” which in turn injects the actual payload without using ROP.

Fig. 3. Corrupted stacks

3.2 Dynamic Encryption

The second attack targets ISRs that use CTR mode (i.e. Polyglot [21]). In this
case, the memory block starting from i ∗ bs contains ci ⊕ vc(i), where ci =
E(K, i∗bs) is the i−th counter block. Dynamic encryption consists in encrypting
an arbitrary payload using information that can be observed by the attacker, by
XORing the payload instructions with the content of the target memory address
and the original victim instruction. In fact, if mem′(tb+i∗bs) = mem(tb+i∗bs)⊕
(vc(tb+i)⊕bi) then mem′(tb+i∗bs) = ctb+i⊕vc(tb+i)⊕(vc(tb+i)⊕bi) = ctb+i⊕bi,
which is the encryption of the payload bi for the block tb + i (the same attack
can target ISRs that use one-time pad [3]).

Protecting Instruction Set Randomization from Code Reuse Attacks 429

ROP Dynamic Encryption for ARMv7. The attack uses two additional
gadgets, whose addresses are represented by g4 and g5:

(G4) “pop r3, pc” located in “ init”
(G5) “eor r0, r0, r4 ; str r0, [r3, 4] ; mvn ip, 0xf000 ; mov lr, pc ; sub pc, ip,

0x5f ; mov r2, 4 ; mov r0, 0 ; str r2, [r3] ; pop r4, r5, r6, pc” located in
“ internal atexit”.

G5 is the only gadget in libc that permits computation of xor. The gad-
get stores R0 ⊕ R4 into the address pointed by R3 + 4; sets register IP to
0xffff0fff ; jumps to 0xffff0fa0, invoking kuser memory barrier; stores 4
into the address pointed by R3; and pops four words from the stack. Notice that
additionally to writing into R3 + 4, the gadget also overwrites the address R3.
For this reason we do not encrypt the payload in-place. Instead, it is encrypted
in a buffer and then copied to the target location.

Figure 3b reports the content of the corrupted stack to encrypt the j-th
instruction of the i-th payload block bi[j] so that it can be used as valid instruc-
tion at the location ((tb+i)bs+j)∗4. The encryption is saved into the temporary
location bi,j . Initially, the victim control flow is hijacked to activate G1. This
pops three values from the stack, setting register R0 and R4 to ((tb+i)∗bs+j)∗4
and 0 respectively and jumping to g2. G2 loads from R0 into R0, thus leading R0
to contains the encryption of the instruction located at ((tb+ i)∗bs+j)∗4. Then
two values are popped from the stack; register R4 is set to vc(tb+i)[j]⊕bi[j] and
the control flow is redirected to g4. G4 pops two values from the stack, setting
R3 to bi,j − 4 and activating G5. The last gadget stores R0 ⊕ R4 into R3 + 4,
thus saving ctb+i[j] ⊕ b(i)[j] into bi,j , writes 4 into bi,j − 4 as side effect, and
activates the next gadget.

The attack can be repeated to encrypt the whole payload. Notice that the
temporary buffer must be filled in inverse order, to prevent gadget 5 to override
with 4 what has been encrypted by the previous iteration. Once the payload has
been encrypted into the temporary buffer, the original code can be overwritten,
using the same procedure of Sect. 3.1.

3.3 Jump Oriented Version of the Attacks

Some ISRs (i.e. Polyglot) provide protection against ROP attacks by encrypting
return pointers using the same hardware components used to decrypt instruc-
tions. However, the attacks of Sects. 3.1 and 3.2 can also be implemented using
JOP, without the need of using return instructions.

We use the instructions “ldr r3, [r6], #4; blx r3” located in “ run exit
handlers” as dispatcher. The register R6 is configured to point to a buffer that
contains the list of gadgets to execute. Hereafter, we use d and l to represent the
address of the dispatcher and of the gadget list respectively. When the dispatcher
is executed, the address of the next gadget is loaded, the pointer to the list of
gadgets is increased, and the gadget is activated.

430 R. Guanciale

For example, the splicing attack can be replicated using the following gadgets.
To load constants [v2, v4, v5, v7, v8] into registers [R2, R4, R5, R7, R8] we use gad-
gets G6 “pop {r0, r1, r3, ip, lr}; pop {r2}; ldr r1; [r0, #4]; bx r1” and G7 “pop r4,
r5, r6, r7, r8, lr; bx r3”. This requires the attacker to write into a memory loca-
tion x the address g7 and to store into the stack [x, , d, , , v2, v4, v5, l, v7, v8,].
A victim instruction can be loaded from address a into R1 by using gadget G8
“ldr r1, [r4]; mov r0, r6; blx r5” and setting v4 and v5 to a and d respectively.
The frame pointer FP can be set to a constant vfp via gadget G9 “pop {r4, r5,
fp, lr}; add sp, sp, #0xc; bx lr” and by storing [, , t, d] into the stack. Finally,
the register R1 can be saved in memory via gadget G10 “str r1, [fp, #−0x84];
ldr r0, [r3]; blx r8” and by setting vfp and r8 to the target address (i.e. where
the instruction should be copied) +0x84 and d respectively.

4 An ISR Resilient Against Code-Reuse Attacks

Our goal is to build an ISR that satisfies requirements 1–3 and that cannot be
circumvented using code-reuse attacks even if the adversary knows the program
layout, the original binary code, and the corresponding encryption.

Our strategy is to use a tweakable cypher, where the tweak depends on
the address of the instructions. Formally, a tweakable cypher is a map Ē :
K × T × {0, 1}n → {0, 1}n where for each key K and tweak T , Ē(K,T, ·) is a
n−bit permutation. We use XorEncrypt (XE) and XorEncryptXor (XEX) [18].
Let E,D : K × {0, 1}n → {0, 1}n be encryption and decryption of a n−bit
block cipher, the two tweakable ciphers are XE(K,T,M) = E(Δ ⊕ M) and
XEX(K,T,M) = E(Δ ⊕ M) ⊕ Δ, where Δ = E(K,T).

The basic idea (Fig. 4) is to use instruction locations as tweak. (1) The start-
ing address of a block of instructions is encrypted using the process key to
compute Δ, (2) the instructions are xored with Δ and then (3) encrypted using
the same key. In case of XEX, the result is further xored with Δ. When a block
of instructions is fetched, (1) the starting address of the block is encrypted using
the key to compute Δ, (2) the content of the memory is decrypted using the
same key and then (3) xored with Δ to recover the original instructions. In case
of XEX, the content of the memory must be xored with Δ before decryption.

The adoption of XE and XEX has several advantages. Regarding efficiency
(requirement 1), they permit to build a tweakable cypher out of a ordinary sym-
metric block cipher, permitting to use well studied and efficient hardware imple-
mentations. For XE the decryption of the instruction and the encryption of the
block address can be done concurrently, reducing the run-time overhead. Also, the
usage of the same cipher for computingΔ and for decryption of instructions enables
to reuse gates. The usage of block ciphers build permutations of ISA, preserving
the length of instructions (requirement 2), thus it does not require modifications of
the existing toolchains and caches. Binding the tweak to the address of instructions
permits random access to the instructions (requirement 3).

XE and XEX have been proved to produce tweakable ciphers that are secure
against chosen-plaintext attack and chosen-ciphertext attack respectively [18].
Intuitively, each tweak produces a different and apparently independent block

Protecting Instruction Set Randomization from Code Reuse Attacks 431

Fig. 4. ISR using XE and XEX. Gray boxes represent information known by the
attacker.

cipher. This makes the ISA randomization unique for each block, therefore
encrypted blocks can not be moved around without compromising their decryp-
tion. Also, the resulting ISR cannot be circumvented using dynamic encryption.
Even if the attacker knows the original instructions, the address of the block,
and the encrypted content of memory, it cannot take apart the encryption of the
instruction address from the instruction without knowing the key. For the same
properties, XE and XEX have been used for disk-encryption in IEEE P1619.2

5 Evaluation

To test and compare different ISRs we use the Gem5 simulator [4]. Gem5’s accu-
racy in modeling real systems has been evaluated in [7]. It can simulate several
ISAs (including ARM, x86, and MIPS) and CPU models. The TimingSimple
model is the simplest CPU model that takes into account timing of memory
accesses. It is a non-pipelined CPU that processes one instruction per cycle.
The O3 model is the most accurate CPU model. It is a pipelined and out-of-
order model that simulates dependencies between instructions, functional units,
memory accesses, and pipeline stages.

We extended the simulator with a new simulation object for instruction
decryption. The block ciphers used for decrypting instructions (D) and to
for encrypting addresses (E) can be configured independently among identity,
NULL, XOR, AES [9], and PRINCE [6]. This and the design of the new ISR
mode allows to use the same decryptor to emulate other ISRs:

– ECB using XOR, AES, or PRINCE can be emulated by setting D to the
corresponding cipher and E to NULL: i.e. a function setting Δ to 0

2 The standard supports using a different key for address encryption than for data
encryption; this does not harm security of XEX but it is not necessary.

432 R. Guanciale

– CTR using AES or PRINCE can be emulated by setting E to the correspond-
ing cipher and D to the identity function.

The PRINCE cipher is specially suitable for ISR. It is a block cipher that has
been optimized for low latency and easy hardware implementation. The cipher
permits to process one block of data within one clock cycle and its implementa-
tion requires low number of gates.

The decryptor can be deployed in configurations (a) and (b) of Fig. 1. In case
of configuration (a), if the size of the block of the cipher is larger than a word
(i.e. AES 4 words and PRINCE 2 words) the decryptor fetches from the memory
the complete block containing the instruction. This block in not cached.

Fig. 5. Styles of operation of the decryptor

Finally, the decryptor can use two operating styles. In “concurrent style”
(Fig. 5a), the functions E and D are executed concurrently and independently.
This style can be used for XE when encrypting the address is slower than fetching
the encrypted block from memory. In this case, concurrent style enables the
decryption of the instruction to start before that the encryption of the address is
completed, reducing the run-time overhead. However, hardware implementation
of concurrent style requires to duplicate gates of the cipher. In “sequential style”
(Fig. 5b), D starts after that E terminates. XEX must use this style because the
content of the memory must be xored with Δ before decryption. XE can also
use this style to reuse part of the gates of E to implement D. This is specially
convenient if PRINCE is used as cipher, since decryption for one key corresponds
to encryption with a related key. Also, if encrypting the address is faster than
loading the encrypted block from memory, then the time needed to execute E

Protecting Instruction Set Randomization from Code Reuse Attacks 433

can be masked by the time needed to access the memory, making sequential style
not slower than concurrent one.

The decryptor is independent of the size of the cache and the CPU sim-
ulated by Gem5. This permits to simulate the same programs using a simple
non-pipelined CPU, a in-order pipeline, and a out-of-order pipeline. The simu-
lator can be configured to simulate latency introduced by different ciphers. The
execution time of E and D is linearly depend on the number of blocks processed.
For instance, when configuration of Fig. 1a is used the decryptor processes one
block per interaction. If configuration of Fig. 1b is used, the cache line size is 64
bytes, and the cipher is AES, then the decryptor processes four blocks per inter-
action. This linear dependency on the number of blocks processed reflects the
assumption that, due to resource constraints, gates used for the cipher cannot
be duplicated to process several blocks concurrently.

5.1 Benchmarks

In order to compare different ciphers and modes of encryption we use a simple
compile time approach to encrypt programs. The main difficulty to support
ARMv7 is the fact the compilers (i.e. GCC) mix code and read-only data. In
fact, to support constants that cannot be expressed as operand of an instruction,
ARMv7 compilers use pc-relative LOADs, where the program counter is used as
base pointer for the load operation. This requires to store the constant relatively
to the position of the instruction loading it. Since instructions must be encrypted
while constants must be stored unaltered, we must ensure that no block contains
both instructions and constants. We use the following procedure:

1. The source code is compiled by GCC, which stops before assembly. No restric-
tion to the compiler optimizations are imposed during this step.

2. The ARMv7 assembly is transformed by a new tool, which inlines alignment
annotations between code fragments and read-only data fragments.

3. The transformed assembly is processed by GCC to produce the object file.
At this step optimizations are disabled.

4. The executable is encrypted using a new tool, which encrypts only the instruc-
tion blocks.

We use four benchmarks: “primes” computes the first hundred prime num-
bers (short execution, small program, small data); “dcraw” is a image processing
utility (short execution, small program, medium size data); “bzip2” is the stan-
dard compression utility (long execution, medium size program, large data);
“Himeno” is a benchmark by Ryutaro Himeno that uses a point Jacobi method
(long execution, small program, small data). All tests simulate 1Ghz single core
ARMv7 CPU with DDR3 memory. Configurations having L1 caches use 16 kB
instruction cache (64 bytes per line, 2-way associative, 2 cycles latency per hit
and response) and 64 kB data cache (64 bytes per line, 2-way associative, 2
cycles latency per hit and response). Configurations having L2 cache use 256 kB
unified cache (64 bytes per line, 8-way associative, 20 cycles latency per hit and

434 R. Guanciale

Table 2. Benckmarks

Native No
ISR

ECB
PRINCE

ECB
AES

CTR
AES

XEX seq.
PRINCE

XE conc.
AES

primes

no cache, no pipeline 31.774 ms +1.5% +57.9% +1.6% +1.5% +58.0%

L1, no L2, no pipeline 1.292 ms +0.1% +0.0% +0.1% +0.1% +4.6%

L1, L2, out-of-order 0.278 ms +8.6% +29.9% +14.3% +8.7% +28.1%

dcraw

no cache, no pipeline 28.103 ms +5.8% +59.7% +1.4% +5.9% +59.7%

L1, no L2, no pipeline 1.478 ms +0.0% +6.3% +0.3% +0.7% +6.4%

L1, L2, out-of-order 0.517 ms +12.0% +30.8% +14.3% +12.1% +30.9%

bzip2

no cache, no pipeline 8955.064ms +5.1% +51.2% +1.2% +5.2% +52.2%

L1, no L2, no pipeline 360.371ms +0.0% +0.0% +0.0% +0.0% +0.0%

L1, L2, out-of-order 89.054 ms −0.2% +0.5% +0.2% −0.2% +0.5%

Himeno tests

no cache, no pipeline 11910.075ms +6.6% +65.2% +1.6% +6.6% +65.3%

L1, no L2, no pipeline 424.484ms +0.0% +0.0% +0.0% +0.0% +0.0%

L1, L2, out-of-order 84.266 ms +0.0% +0.1% +0.0% +0.0% +0.1%

response). We assume that hardware implementation of AES processes one block
in 10 clock cycles, and hardware implementation of PRINCE processes one block
per clock cycle (for example, the latency introduced by ECB - AES that uses
L1 cache is 10 ∗ 64/16 = 40 cycles, the latency introduced by ECB - PRINCE
that uses L1 cache is 1∗64/8 = 8 cycles). The “No pipeline” CPU model is used
to simulate a simple controller, which cannot process multiple instructions con-
currently, the out-of-order model is used to simulate a commodity application
processor.

Table 2 reports the benchmarks for different configurations, hereafter we sum-
marize the main findings: • In absence of caches all ISRs that encrypt instruc-
tions (i.e. ECB and XE) using an expensive cipher (i.e. AES) severely impact
performance; • In presence case caches, the performance impact is higher for
short executions (i.e. primes and dcraw) than for long executions (i.e. bzip2 and
Himeno), since there is less reuse of decrypted instructions stored in cache; • AES
can be used efficiently only for CTR when there is no L2 cache (in this case,
the latency introduced by the counter encryption is masked by the time needed
for receiving the instructions from memory); • We don’t report benchmarks for
XE-PRINCE-concurrent, since it has no sensible benefits respect XEX-PRINCE-
sequential (the encryption of the instruction address usually terminates before
the instruction is fetched from memory); • XEX-PRINCE-sequential has no sen-
sible overhead respect ECB-PRINCE, but it can protect from splicing attacks.

Protecting Instruction Set Randomization from Code Reuse Attacks 435

• The usage of an efficient cipher for instruction encryption in XEX-PRINCE-
sequential adds a negligible overhead respect to CTR, but it can protect from
dynamic encryption attacks.

6 Concluding Remarks

We shown that existing ISRs can be circumvented using code-reuse attacks. ISRs
that use ECB mode are vulnerable to code splicing, which allows an attacker to
copy, move, and reuse fragments of the victim’s code. This attack is particularly
effective when the block of the cipher used by the ISR is small. ISRs that use CTR
mode (or one-time pad) are vulnerable to dynamic encryption, which permits
an attacker to encrypt an arbitrary payload without the need of compromising
the encryption keys. We demonstrated these vulnerabilities by implementing two
code-reuse attacks for ARMv7.

To counter these problems we proposed a new ISR mode that uses XEX. The
basic idea is to use a tweakable cipher and to bind the tweak to the address of
instructions. This ISR is not affected by the same vulnerabilities of ECB and
CTR, and effectively prevents our code-reuse attacks.

To evaluate our proposal, we implemented the ISR using the Gem5 simulator.
Our experiments show that if the instruction decryption is placed between the I-
cache and a unified L2-cache, then the overhead introduced by the ISR is small.
Also, the usage of low-latency ciphers like PRINCE can make this overhead
negligible.

We focused our analysis on the core part of the ISR: randomization of instruc-
tion encoding via encryption. Our proposal can fit recent developments on ISR.
An operating system can be extended to encrypt processes at load time, enabling
the same program to have different keys for different processes, or to re-encrypt
executable pages on demand. Also, page tables and TLBs can be modified to
allow different keys for each memory page and to enable processes to share
encrypted code of shared libraries.

Acknowledgments. Work partially supported by the TrustFull project financed by
the Swedish Foundation for Strategic Research.

References

1. ARMv7-A Architecture Reference Manual. http://infocenter.arm.com/help/index.
jsp?topic=/com.arm.doc.ddi0406c

2. Backes, M., Holz, T., Kollenda, B., Koppe, P., Nürnberger, S., Pewny, J.: You can
run but you can’t read: preventing disclosure exploits in executable code. In: CCS,
pp. 1342–1353. ACM (2014)

3. Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Random-
ized instruction set emulation to disrupt binary code injection attacks. In: CCS,
pp. 281–289. ACM (2003)

4. Binkert, N., et al.: The Gem5 simulator. ACM SIGARCH Comput. Arch. News
39(2), 1–7 (2011)

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c

436 R. Guanciale

5. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: CCS, pp. 30–40. ACM (2011)

6. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
208–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 14

7. Butko, A., Garibotti, R., Ost, L., Sassatelli, G.: Accuracy evaluation of Gem5
simulator system. In: ReCoSoC, pp. 1–7. IEEE (2012)

8. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: CCS, pp. 559–572. ACM
(2010)

9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES-the Advanced Encryption
Standard. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-04722-4

10. De Clercq, R., et al.: SOFIA: software and control flow integrity architecture. In:
DATE, pp. 1172–1177. IEEE (2016)

11. Dworkin, M.: Recommendation for block cipher modes of operation. Methods and
techniques. Technical report, NIST (2001)

12. Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering code-injection attacks with
instruction-set randomization. In: CCS, pp. 272–280. ACM (2003)

13. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: SP, pp. 276–291. IEEE (2014)

14. Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.-B., Gan, E.: RockSalt: better,
faster, stronger SFI for the x86. In: SIGPLAN Notices, vol. 47, pp. 395–404. ACM
(2012)

15. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: SIGPLAN Notices, vol. 42, pp. 89–100. ACM (2007)

16. Papadogiannakis, A., Loutsis, L., Papaefstathiou, V., Ioannidis, S.: ASIST: archi-
tectural support for instruction set randomization. In: CCS, pp. 981–992. ACM
(2013)

17. Philippaerts, P., Younan, Y., Muylle, S., Piessens, F., Lachmund, S., Walter, T.:
CPM: masking code pointers to prevent code injection attacks. ACM TISSEC
16(1), 1 (2013)

18. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-
2 2

19. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. Black Hat (2015)

20. Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: CCS, pp. 298–307. ACM (2004)

21. Sinha, K., Kemerlis, V.P., Sethumadhavan, S.: Reviving instruction set random-
ization. In: HOST, pp. 21–28. IEEE (2017)

22. Sovarel, A.N., Evans, D., Paul, N.: Where’s the FEEB? The effectiveness of instruc-
tion set randomization. In: USENIX Security Symposium (2005)

23. PaX Team: PaX address space layout randomization (ASLR) (2003)
24. Zhao, L., Li, G., De Sutter, B., Regehr, J.: ARMor: fully verified software fault

isolation. In: EMSOFT, pp. 289–298. IEEE (2011)

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2

A Uniform Information-Flow Security
Benchmark Suite for Source

Code and Bytecode

Tobias Hamann1(B), Mihai Herda2, Heiko Mantel1, Martin Mohr2,
David Schneider1, and Markus Tasch1

1 Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{hamann,mantel,schneider,tasch}@mais.informatik.tu-darmstadt.de

2 Department of Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
{herda,martin.mohr}@kit.edu

Abstract. It has become common practice to formally verify the cor-
rectness of information-flow analyses wrt. noninterference-like properties.
An orthogonal problem is to ensure the correctness of implementations
of such analyses. In this article, we propose the benchmark suite IFSpec,
which provides sample programs for checking that an information-flow
analyzer correctly classifies them as secure or insecure. Our focus is on
the Java and Android platforms, and IFSpec supports Java source code,
Java bytecode, and Dalvik bytecode. IFSpec is structured into cate-
gories that address multiple types of information leakage. We employ
IFSpec to validate and compare four information-flow analyzers: Cas-
sandra, Joana, JoDroid, and KeY. IFSpec is based on RIFL, the RS3

Information-Flow Specification Language, and is open to extensions.

1 Introduction

Research on information-flow security aims at end-to-end security guarantees
regarding confidentiality and integrity. Information-flow guarantees can be for-
malized based on the idea of noninterference, using the original property [20] or
variants of it [30]. These guarantees go beyond the ones provided by access
control: regarding confidentiality, for instance, attackers are not only pre-
vented from accessing secrets directly, but also from deducing sensitive infor-
mation from the observations they make during program runs. The field of
information-flow security originated already in the late seventies and early eight-
ies [14,17,18,20,31,36]. To date, information-flow analysis tools range from sci-
entific prototypes [4,6,21,27,32], to being part of commercial products [1,2].

Albeit it is clear that benchmark suites are catalyzers for technical progress
in tool development [38], only little effort has gone into the development of
benchmark suites for information-flow analysis tools. In many other areas of
Computer Science, the use of benchmark suites has become common prac-
tice, e.g., in hardware/software performance research [23,24], compiler research
[16], SAT/SMT solving [25], theorem proving [42], and model checking [26,35].
c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 437–453, 2018.
https://doi.org/10.1007/978-3-030-03638-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_27

438 T. Hamann et al.

Such benchmark suites enable the comparison of developed tools and techniques,
and provide a basis for fostering exchange between research groups and projects.

In this article, we present the novel benchmark suite IFSpec1 for bench-
marking information-flow analysis tools targeting source code and bytecode for
the Java and Android platforms. Each sample program in IFSpec is provided
in Java source code, Java bytecode, and Dalvik bytecode. IFSpec is designed to
cover a broad range of different types of information leakage commonly found
in real-world programs. By providing all samples for three different language
layers in a uniform fashion, IFSpec facilitates the evaluation and comparison of
information-flow analysis tools developed for these language layers on a common
set of samples, fostering the transfer of innovation across language layers.

We are aware of only two benchmark suites that have already been used
to evaluate information-flow analysis tools: SecuriBench Micro [41] and Droid-
Bench [6,19]. The samples of SecuriBench Micro were originally developed to
benchmark web application security analyses, but they can also be interpreted
from an information-flow security perspective and have been used to evalu-
ate information-flow analyzers targeting Java source code (e.g. [6,45]). Droid-
Bench was developed to compare the effectiveness of taint-analysis tools target-
ing Dalvik bytecode. With IFSpec, we aim to provide a benchmark suite for
the evaluation of information-flow analysis tools for multiple language layers of
the Java and Android platforms on a uniform set of samples.

Using IFSpec, we evaluate four information-flow analyzers. One of them tar-
gets Java source code, two Java bytecode, and one Dalvik bytecode. We present
insights on the soundness and precision for each of the evaluated tools. As a side
effect, our evaluation shows that IFSpec is indeed suitable for evaluating and
comparing information-flow analyzers for both source code and bytecode.
In detail, our two main contributions are the following:

– Our first contribution is IFSpec, a machine-readable benchmark suite for
information-flow analysis tools that target the Java virtual machine or the
Android platform. For each sample, a corresponding security policy is speci-
fied in a uniform fashion using RIFL, the RS 3 Information-Flow Specification
Language [8]. IFSpec is open for extensions, and we present three such exten-
sions in this article (subsuming the benchmarks from SecuriBench Micro and
DroidBench and making them more accessible). IFSpec enables the evalua-
tion of information-flow analyzers in a fully automated fashion.

– Our second contribution is an evaluation of four information-flow analysis
tools for multiple language layers of the Java and Android platforms using
the IFSpec benchmark suite: Cassandra [27], Joana [21], JoDroid [32], and
KeY [4]. Each of these four tools is built on solid theoretical foundations and
is designed to enforce specific, formally defined noninterference-like security
properties. We demonstrate how IFSpec can be used to assess the sound-
ness of such tools at the implementation level. In addition to presenting our

1 The benchmark suite, including all samples, evaluation results, the benchmarked
tools, information how to run information-flow analyzers on IFSpec, and how to
contribute to IFSpec is available under www.spp-rs3.de/IFSpec.

www.spp-rs3.de/IFSpec

A Uniform Information-Flow Security Benchmark Suite 439

results, we discuss how the trade-off between correctness and precision has
been addressed in the implementations of the evaluated tools.

2 RIFL in a Nutshell

The RS3 Information-Flow Specification Language (RIFL) is a language for spec-
ifying information-flow policies [8]. The machine-readable syntax of RIFL is for-
mally defined in an XML format. It enables the definition of information-flow
policies by specifying restrictions on the permitted information flow between
given security domains. The association of these security domains with concrete
sources and sinks of information is realized by function mappings.

Fig. 1. RIFL language modules [8]

A RIFL specification capturing
information-flow policies for a partic-
ular program consists of four aspects:
the interface of the program (in terms
of sources and sinks of information),
the collection of security domains, the
association of each source or sink of
information with a security domain,
and the specification of how information may flow between security domains.

Each of these aspects is specified in one of the individual language modules
of RIFL (represented by boxes in Fig. 1). RIFL comprises language-specific and
language-independent modules. Currently, RIFL supports the specification of
information-flow policies for Java source code, Java bytecode, and Dalvik byte-
code, which is sufficient for the purposes of this article. Note, however, that RIFL
can be extended to support additional target languages like, e.g., C/C++ or the
LLVM IR. In Fig. 1, white boxes represent language modules that are language-
independent, while gray boxes represent modules that are language-specific. The
clear separation of the language-independent and the language-specific parts in
RIFL has two benefits: Firstly, information-flow policies can be expressed and
understood at a high level, independently from the details of a specific pro-
gramming language. Secondly, a RIFL policy can be adapted to multiple target
languages by adapting the language-specific parts.

RIFL aims at compatibility with information-flow analysis tools that are
based on distinct security semantics. Hence, RIFL cannot have a fixed formal
security semantics. Naturally, one can interpret given RIFL specifications under
any chosen formally defined security semantics.

The flexibility in the language layer and in the security semantics were key
motivations for our choice of RIFL as specification language for IFSpec. The
separation of language-specific and language-independent aspects was beneficial
in our construction of the benchmark suite. For each sample, large parts of the
policy specification could be shared for Java source code, Java bytecode and
Dalvik bytecode. The flexibility in the security semantics allowed us to use the
security semantics underlying each tool’s security analysis.

440 T. Hamann et al.

3 IFSpec Benchmark Suite

IFSpec consists of samples that showcase information-flow vulnerabilities in
programs for the Java and Android platforms. Such vulnerabilities can be of
different kinds, e.g., involving direct information leaks, or implicit information
leaks that are, e.g., dependent on exceptional program behavior. The samples in
IFSpec cover a broad range of different kinds of information-flow vulnerabilities.

Figure 2 shows the architecture of IFSpec. Users of the benchmark suite
interact with a benchmark harness provided by IFSpec. This harness, provided
a tool configuration for the benchmarked tool, enables an automated benchmark-
ing on the IFSpec samples. Each sample in IFSpec is provided in a machine-
readable format for Java source code, Java bytecode and Dalvik bytecode.

IFSpec benchmark suite

benchmark
harness

tool
con figuration

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

IFSpec sample

sample interpretation

faithfulness
argument

sample
description

intuitive
policy

meta-information

categories

security
semantics

RIFL
version

sample kernel

ground
truth

RIFL
policy

analysis
scope

program

Fig. 2. IFSpec architecture and one sample in detail

3.1 Syntax and Security Semantics

Sample Format. As illustrated in Fig. 2, all samples in IFSpec share a uni-
form format with two mandatory parts (the sample kernel and the sample meta-
information) and one optional part (the sample interpretation). The sample ker-
nel provides all information that is used when benchmarking an information-flow
analysis tool in a machine-readable format and, thus, enables to automate the
benchmarking of the tool. It consists of four parts: The first part is the program
to be analyzed in the target language. The second part is the information-flow
policy for the program given as a RIFL specification for the target language. The
third part is a specification of the analysis scope that declares which methods
are part of the program’s environment, and which methods can be called by the
program’s environment. The fourth part is the sample’s ground truth, i.e. the
expected classification of the sample as secure or insecure.

The sample meta-information provides the tags associated with each sample
that describe categories of information-flow, the minimal RIFL version a bench-
marked tool must support to parse the RIFL specification, and the security
semantics considered when classifying a sample as secure or insecure.

A Uniform Information-Flow Security Benchmark Suite 441

The optional sample interpretation in IFSpec’s sample format provides a
detailed description of the program and its functionality, a description of the
intuitive security requirement for the program, and a faithfulness argument.
The faithfulness argument substantiates why the RIFL specification captures the
intuitive security requirement for the program. With this information the sample
interpretation supports users in understanding the implications of successfully
analyzing a sample or failing to do so.

Security Semantics. For the classification of the samples in IFSpec, we con-
sider four formal security properties: Termination-Insensitive Noninterference
for the Abstract Dalvik Language (TIN-ADL) [27], Sequential Noninterference
(SN) [10], Probabilistic Noninterference (PN) [10], and the flow∗-predicate [9].

We limit ourselves to these four properties because they were sufficient to
benchmark the information-flow analysis tools considered in Sect. 4. That is,
these security properties are enforced by at least one of the benchmarked tools.
The security property TIN-ADL is enforced by Cassandra [27], SN (resp. PN)
is enforced by Joana as well as JoDroid for sequential (resp. concurrent) pro-
grams [10], and the flow∗-predicate is enforced by KeY [9].

3.2 Core Samples of IFSpec

IFSpec provides 80 samples that contain test cases for information-flow analysis
tools. These samples have been contributed over a period of two years by over
20 researchers from the area of information-flow security. The vast majority of
these contributors are not developing information-flow analysis tools themselves.
Hence, they had no interest in tailoring the samples to the current technical
state of their tools, but were rather interested in identifying current limitations
of information-flow analysis tools. This adds to our confidence that our samples
avoid the pitfall of overfitting IFSpec to existing tools.

Categorization. Each sample in IFSpec is categorized with respect to prede-
fined types of information flow. The categories cover a wide range of information
leakage from simple flows, e.g., using direct assignment, to more sophisticated
flows caused by advanced language features, e.g., involving Java reflection. In
detail, the samples in IFSpec are categorized using the tags shown in the table
in Table Fig. 3. IFSpec contains samples for explicit information flow and for
implicit information flow via the control flow of sample programs.

Simple explicit information flows (e.g., via direct assignments or method
calls) are covered by the simple tag. Information flows that are caused by branch-
ing over a secret-dependent conditional are covered by the high-conditional tag.
The other six tags in Fig. 3 cover more sophisticated types of information flows.
For five categories, we provide samples covering both, explicit and implicit infor-
mation flows. The other three categories contain samples that are specific to
either explicit or implicit flows. Overall, IFSpec contains 46 samples for explicit

442 T. Hamann et al.

and 34 samples for implicit information flow. The categories present in IFSpec
contain samples that are relevant for evaluating information-flow analyzers.

Note that samples in IFSpec can be categorized into multiple tags at the
same time. This enables the expression of samples that combine multiple types
of information leakage covered by our tags, like, e.g., samples that contain an
implicit flow via exceptional control flow that is dependent on array contents.

Fig. 3. Sample tags and their distribution in IFSpec

3.3 Benchmark Harness

As part of IFSpec, we provide a benchmark harness for automatically bench-
marking tools on IFSpec’s samples. This benchmark harness is a configurable
Python script that generates a report on the benchmark results. Additionally,
the benchmark harness offers configuration options that enable, for instance, a
selective benchmarking specified by a list of tags, or concrete sample names.

For the tool-specific configuration, users of IFSpec instantiate the bench-
mark harness for their information-flow analysis tool by setting four JSON
options: the command that runs an analysis on the current sample, the outputs
by a tool when the benchmarked tool classifies a sample as secure or insecure,
respectively, and the target language of benchmarked the tool. Providing such a
tool-specific configuration for an information-flow analysis tool that implements
a RIFL frontend suffices to automatically benchmark this tool using IFSpec.

The report on the benchmark results consists of two parts. The first part is
a detailed overview of the samples where the tool output matched the expected
outcome (secure or insecure) and the samples where the actual result of the tool
did not match the expected outcome. The second part provides the overall recall
and precision for all samples and the recall and precision for each tag separately.
Using the benchmark harness reduces the effort for benchmarking information-
flow analysis tools by minimizing the necessary setup. In addition, it provides
the benchmark results in suitable format for further investigations.

3.4 Extensions of the IFSpec Benchmark Suite

In addition to the core samples of IFSpec, we provide three extensions to the
benchmark suite: an extension covering samples from the domain of web vulnera-

A Uniform Information-Flow Security Benchmark Suite 443

bility testing, an Android-specific extension covering peculiarities of the Android
platform, and a declassification extension specific to Java source code.

Web Vulnerability Extension. IFSpec subsumes SecuriBench Micro [41],
a benchmark suite for web application security analyses. Concretely, IFSpec
provides 152 samples that have been derived from the original 122 samples
of SecuriBench Micro. The samples contained in SecuriBench Micro are small
web applications that contain potential vulnerabilities caused by unchecked user
input. These vulnerabilities can be interpreted as a potential information leak,
i.e., each application contains a source where secrets from the environment enter
the application and a sink where the secret might be leaked. In fact, Security-
Bench Micro has been used to evaluate information-flow analysis tools [6]. For
SecuriBench Micro samples that contain occurrences of both, leaking and non-
leaking calls of methods that can potentially leak secret information, we derive
two samples in IFSpec: the unchanged insecure sample, and a secure sample
obtained by deleting all method calls that are actually leaking secret informa-
tion. Our integration of SecuriBench Micro into IFSpec makes all SecuriBench
Micro samples available for Java source code, Java bytecode and Dalvik byte-
code. Moreover, the samples now contain machine-readable specifications of the
security property.

Note that in our integration we identified seven samples where the classifica-
tion into secure or insecure in SecuriBench Micro did not match our interpreta-
tion from an information-flow perspective. For the integration of these samples
into IFSpec, we adjusted the classification of these samples as (in)secure accord-
ingly. An overview of these samples is provided as part of the IFSpec artifact.

Android Vulnerability Extension for Dalvik Bytecode. IFSpec sub-
sumes all 119 samples from DroidBench ([6,19]), a benchmark suite for taint-
analysis tools targeting the Android platform. The samples of DroidBench are
small Android applications, both secure and insecure. These samples do not con-
tain a formal, machine-readable specification of the information-flow policy, but
provide a human readable specification. This specification consists of a sample
description, a declaration of sources and sinks, and the number of leaks present in
the sample. By providing ground truths and a specification of the information-
flow policies, our extension makes all samples of DroidBench accessible in a
machine-readable format using the benchmark harness of IFSpec.

Declassification Extension for Java Source Code. We provide seven sam-
ples utilizing the support of escape hatches [37] in RIFL 1.1 for Java source code,
as language-specific extension for Java source code. In the samples, specific infor-
mation may be declassified at explicit program points. Declassification is one of
the research problems extensively studied in the research area of information-
flow security (e.g., [28,29,33,37]). Our extension shall be a first step towards
catalyzing technical progress in tool support for declassification. For details how
to utilize escape hatches in RIFL, we refer the interested reader to [8].

444 T. Hamann et al.

4 Benchmarking with IFSpec

We use IFSpec to compare four information-flow analysis tools developed for
the three target languages of IFSpec: Cassandra [27] (Dalvik bytecode), Joana
[21] (Java bytecode), JoDroid [32] (Dalvik bytecode), and KeY [4] (Java source
code). We evaluate each of these tools on the core samples of IFSpec, as well as
on the web vulnerability extension that subsumes SecuriBench Micro. IFSpec
enables us to evaluate these tools on a common set of samples. In addition, we
selectively evaluate tools on the other two extensions of IFSpec (cf. Sect. 3.4).

4.1 Benchmarked Tools

Cassandra [27] is an Android app store that integrates an information-flow anal-
ysis. It allows end users of mobile devices to specify their security requirements
and to check whether applications comply with their requirements before these
applications are installed. To this end, Cassandra implements a security type
system for Dalvik bytecode that is proven sound with respect to a formal notion
of noninterference. Within methods, the type system is flow-sensitive.

Cassandra does not analyze methods from third-party libraries or the
Android standard library. Instead, it uses manually provided method signatures
to specify the information flows in library methods. If Cassandra encounters a
call to a library method for which no method signature has been defined so
far, then Cassandra cannot ascertain whether the application is secure or inse-
cure. Such cases are reported. If better precision is desired, the set of method
signatures can be augmented.

Joana [21,22] is an information-flow analysis tool for full Java bytecode. It
leverages program dependence graphs (PDGs), a language-independent and flow-
sensitive representation of a program’s dependencies, and then uses slicing – a
form of graph reachability – on the PDG to determine whether a given source
may influence a given sink. This kind of check guarantees noninterference for
sequential programs [44] and for concurrent programs, there is an extension
which guarantees a form of probabilistic noninterference [10,12].

Joana incorporates library code in its analysis, so in principle all library
code that may potentially be used is required. For this purpose, Joana contains
method stubs of the Java Standard Libraries. Most importantly, these method
stubs provide implementations for some heavily used native methods. Joana
provides method stubs for different releases of the Java Standard Libraries, in
particular for Java 1.4 and Java 1.5.

JoDroid [32] is a variant of Joana which provides a front-end for the analysis of
Dalvik bytecode and in particular Android applications. Like Joana, JoDroid
generates a PDG from a given Android application but can additionally deal
with Android specifics like Android’s message passing mechanism or the fact
that an Android application consists of multiple entry points invoked by the
Android framework in certain patterns (the Android Activity Lifecycle [5]).

A Uniform Information-Flow Security Benchmark Suite 445

For JoDroid, Android SDK Platform packages [3] are used as method stubs.
These packages are used to compile an Android App for a specific API version.
They contain stub implementations of the respective API methods which throw
an exception if they are called. Hence, using an Android SDK Platform package
potentially causes unsound assumptions as it does not contain sound information
about the relation between method inputs and outputs. Note however that it is
possible to run JoDroid with more proper implementations of the Android API.

KeY [4] is a software verification tool based on deductive theorem proving for
Java programs annotated with an extension of the JML specification language.
KeY supports the specification and verification of the noninterference property.
For the evaluation we interpret the case in which a proof was not found as KeY
reporting the program to be insecure.

For handling library methods, KeY uses method contracts or the source code.
Method contracts are formally proven dependencies between the method inputs
and outputs. If method contracts are not available, the source code of the method
is included in the analysis. KeY’s handling of library calls cannot lead to unsound
results because all assumptions about the library methods are formally justified.
However, providing formally proven method contracts is difficult.

Sound Overapproximation of Benchmarking Results. When a bench-
marked tool reports a sample as (in)secure, we directly count this classification
for our experimental results. However, other outputs by the benchmarked tools
are possible. For instance, Cassandra outputs method calls and exceptions that
it cannot deal with in the analysis. Joana (and also its variant JoDroid) can
crash on a some samples. KeY throws an exception when a sample contains
library calls for which neither a stub with corresponding method contract nor
the source code is provided. For our experimental results, we uniformly interpret
such outputs as the tool reporting the corresponding sample to be insecure.

4.2 Terminology and Metrics for Benchmarking

For the evaluation of the four tools, we record the true positives, true negatives,
false positives, and false negatives. Furthermore, for each tool, we compute the
recall and precision on the samples used for benchmarking.

A true positive (TP) means that a tool correctly reports an information leak
in an insecure sample. A true negative (TN) means that a tool correctly reports
the absence of information leaks in a secure sample. A false positive (FP) means
that a tool incorrectly reports an information leak in a secure sample. False
positives indicate imprecision of a tool. A false negative (FN) means that a
tool does not report any information leak in an insecure sample. False negatives
indicate unsoundness of a tool. We summarize these terms in Fig. 4.

The recall of a tool is computed from the number of true positives and
false negatives in the benchmarking results as (#TP)/(#TP + #FN). Recall
indicates the percentage of samples correctly classified as insecure by the tool
with respect to all samples containing an information leak. For instance, a recall

446 T. Hamann et al.

Fig. 4. Classifications of possible benchmarking results for a sample

of 1 indicates that the tool soundly classifies all samples with an information
leak as insecure.

The precision of a tool is computed from the number of true positives and
false positives in the benchmarking results as #TP/(#TP + #FP). Precision
indicates the percentage of samples correctly classified as insecure by the tool
with respect to all samples classified as insecure by the tool. For example, a
precision of 1 indicates that the tool classifies only samples as insecure that
contain an information leak, i.e. it never classifies secure samples as insecure.
For both recall and precision a higher number indicates better tool performance
on the samples used for benchmarking.

4.3 Benchmarking Results

We evaluate each of the four tools on the core samples of IFSpec, as well as
on the web vulnerability extension. We present the overall results of bench-
marking the four tools in Fig. 5. In this table, the column “#samples” contains
the number of samples analyzed and the column “#soap samples” contains the
number of samples for which the result of a tool was soundly overapproximated
(cf. Sect. 4.2). Furthermore, the table lists the number of true positives (column
“TP”) and true negatives (column “TN”) as well as the number of false positives
(column “FP”) and false negatives (column “FP”) for each benchmarked tool.
The numbers of true positives and false positives are split into the number of
samples that are successfully analyzed and the ones soundly overapproximated.
The two numbers are separated by a “+”. In addition, Fig. 5 shows the recall
and precision of the tools on the samples used for benchmarking (rounded to
one decimal figure). For all four tools, we present a detailed overview on the
recall and precision for each tag in Fig. 6 (rounded to one decimal figure).

Benchmarking Results for Cassandra. The most noteworthy result of the
evaluation is that Cassandra produces no false negatives and thus achieves a
recall of 100%. This means that Cassandra reports all leaks in the shared sam-
ples of IFSpec. The absence of false negatives is the result of two aspects: (1)
The soundness proof of the security type system implemented in Cassandra for
almost the full instruction set of Dalvik bytecode. (2) The approach of only
adding method signatures that are guaranteed to correctly describe the flow of
information caused by library methods.

On the other hand, sound overapproximation of the result of Cassandra takes
place in the analysis of 109 samples, a comparatively large number. The sound

A Uniform Information-Flow Security Benchmark Suite 447

Fig. 5. Overview of benchmark results

overapproximation is largely due to missing signatures for library methods, which
is the case when a signature has not been manually provided yet or cannot be
provided due to the limited expressiveness of the format of method signatures. The
missing signatures cause Cassandra to report that it cannot ascertain the security
of the sample program. Sound overapproximation causes a relatively high number
of false positives, which has an adverse effect on Cassandra’s precision.

Further inspecting the results of Cassandra grouped by the tags of samples
reveals options for improving its precision. In Fig. 6, it becomes apparent that
precision is lower than average for two classes of samples in particular: Those
involving branches on secret information (high-conditional) and those involving
aliasing (aliasing). For the tag high-conditional, the relatively low precision can
be explained by the fact that the security type system of Cassandra does not
allow methods to be invoked in the control dependence regions of high condi-
tionals in order to prevent implicit flows of information via dynamic dispatch.
The relatively low precision for the tag aliasing can be explained by the fact
that the information-flow analysis of Cassandra is not object-sensitive.

Benchmarking Results for Joana. The results of Joana match the ground
truths for 174 of the samples in IFSpec. The 50 false positives are mainly caused
by the fact that Joana overapproximates actual program behavior. For instance,
Joana does not reason about values and does not rule out control flow which
is actually impossible due to algebraic invariants. Other sources of imprecision
include array handling (Joana does not distinguish between different cells of
the same array) and exceptional control flow.

The eight false negatives are due to two reasons. Seven false negatives are
caused by the usage of reflection: Joana tries to handle reflective code but leaves
it unresolved if it fails in doing so. The resulting PDG is then incomplete.

The second reason is that Joana models static initializers improperly: In
one example, the leak is caused by the fact that in Java, class initializers are
executed lazily. Joana on the other hand assumes that all class initializers are
executed upfront and hence misses the leak because it assumes that the leaking
statement is executed at a time when no secret information is available yet.

Benchmarking Results for JoDroid. Surprisingly, the benchmarking results
for JoDroid showed differences in 11 samples. These appear to be caused by

448 T. Hamann et al.

Fig. 6. Overview of benchmark results by tag

JoDroid’s Dalvik frontend, which not only reads in the bytecode but also per-
forms simple intraprocedural analyses on it.

In three examples Joana could deliver a result while JoDroid crashed. In
five examples, Joana did not report a flow and JoDroid did. Possible reasons
for this may include differences in the handling of static initializers and the
analysis of exceptional control-flow. Three more differences appear to stem from
a bug in JoDroid’s modelling of multidimensional arrays.

Benchmarking Results for KeY. Even though KeY is not designed for auto-
matic verification of information-flow security, it is able to successfully analyze
a small subset of the samples in IFSpec. Since KeY considers a sample secure
if and only if a noninterference proof can be derived, KeY has no false negatives
and, thus, a recall of 100%. A potential cause for the reported false positives of
KeY is the configuration of the applied automatic proof strategy causing it to
fail to find a proof. By further tweaking of the relevant parameters and providing
stronger auxiliary specifications (e.g. loop invariants) the results of KeY might
be improved. In some cases, an interactive proof would be necessary.

As already mentioned in Sect. 4.1, the treatment of library methods requires
sound assumptions about library methods. Since such assumptions are not pro-
vided, KeY cannot handle the library calls and, thus, a high number of samples
are soundly overapproximated.

4.4 Evaluation Results on the IFSpec Extensions

Aside from evaluating all four information-flow analysis tools on IFSpec’s core
samples and the web vulnerability extension, we used IFSpec’s extensions to
further evaluate selected tools. Concretely, we ran JoDroid on the Android
vulnerability extension, and KeY on the declassification extension.

Results on the Android Vulnerability Extension. We ran JoDroid on the
119 DroidBench samples that are integrated into IFSpec. JoDroid delivered

A Uniform Information-Flow Security Benchmark Suite 449

the correct results on 67 of them (54 true positives, 13 true negatives) and
incorrect results on 52 samples (seven false positives, 45 false negatives) – this
corresponds to a recall of 54.6% and a precision of 88.5%.

The false negatives shed light on JoDroid’s limits: It currently only has
rudimentary support for Android features like intents and dynamic broadcast
receivers and does not detect entry points corresponding to graphical interfaces.
Also, the results clearly show that the stubs we used for JoDroid are insufficient
as they do not reflect the dependencies of the actual library methods.

Results on the Declassification Extension. We used KeY to analyze three
selected samples from the seven samples in the IFSpec declassification exten-
sion: Declassification5, Declassification6, and Declassification7. For this, we
manually translated the RIFL specifications of these samples to JML, as KeY’s
RIFL parser does not yet support RIFL 1.1. In interactive mode, we were able to
prove the security of Declassification5 and Declassification6. We were unable
to prove the security of Declassification7 because it is insecure. The remain-
ing declassification samples were not analyzed because they use floating-point
arithmetic, which is not supported by KeY, or because they contain library calls.

5 Related Work

SecuriBench (Micro) and DroidBench. SecuriBench [40] is a benchmark
suite for security analyses of web-applications, consisting of nine real-world web
applications provided as Java source code that contain security vulnerabilities.
Similar to IFSpec and unlike SecuriBench, the samples in SecuriBench Micro
[41] explicitly are not real-world applications but small servlets which each focus
on particular web vulnerabilities. They are deployable on a Tomcat webserver,
which enables penetration testing and the benchmarking of runtime techniques.

The benchmark suite DroidBench [6,19] focuses on Android and was origi-
nally designed to compare FlowDroid [6] with other taint-tracking tools. Hence,
its samples contain potential information-flow vulnerabilities.

As described in Sect. 3.4, both SecuriBench Micro and DroidBench are inte-
grated into IFSpec. Using IFSpec’s machine-readable format, the samples from
both benchmark suites are made available for IFSpec’s benchmark harness and
thus accessible as a point of comparison for information-flow analyzers.

SAT, SMT and ATP Benchmark Suites. The SAT and SMT community
extensively develops benchmark suites to compare their tools [25]. The compar-
ison of the performance and capabilities of SAT and SMT solvers is performed
regularly in annual competitions [7,15]. The benchmarks used for these com-
petions are categorized into multiple tracks such that solvers that are specialized
in a certain type of problem can compete against each other in the corresponding
track. This can be compared to the tags used in IFSpec to flag similar samples,
which allow tool developers to focus on the kinds of flows and language features
supported by their tools when comparing their tools with each other.

450 T. Hamann et al.

The SAT and SMT benchmark samples all come with a fixed formal seman-
tics which simplifies the specification of benchmark problems. Information-flow
analysis tools on the other hand often come with distinct security semantics.
To accommodate these specific security semantics, the samples of IFSpec are
specified using RIFL which provides an informal semantics and a declaration for
the ground truth of each sample to which security semantics it is compatible.

In the area of automated theorem proving (ATP), the TPTP (Thousands
of Problems for Theorem Provers) benchmark suite [42] is widely accepted for
testing and evaluating ATP systems. One contribution of TPTP is a standardized
input and output format for ATP systems that enables sharing test problems
between researchers and ATP systems. This format is a key factor in TPTP’s
success [43]. Our use of RIFL also aims at standardizing input and output format,
albeit in the area of information-flow security.

Java Performance Benchmark Suites. Several benchmark suites exist for
Java (e.g., [11,13,39]), mostly focusing on JVM runtime performance and mem-
ory consumption. They differ mostly in their selection of samples. Like IFSpec,
they all contain a benchmark harness for running the individual samples and
reporting performance data. The DaCapo benchmark suite [11] consists of mul-
tiple real-world applications, while the JavaGrande benchmark suite [13] focuses
on computationally intensive and multi-threaded applications [39].

6 Conclusion

With IFSpec, we provide a benchmark suite for information-flow analysis tools
targeting Java source, Java bytecode, or Dalvik bytecode. The coverage of these
three language layers of the Java and Android platforms enabled us to evalu-
ate and compare Cassandra, Joana, JoDroid, and KeY on a uniform set of
samples, despite the differences between the respective target languages.

We provide all samples of IFSpec in a machine-readable format that employs
RIFL [8] for the specification of information-flow policies in a uniform fashion.
The only prerequisite for automatically benchmarking tools with IFSpec, both
static and dynamic ones, is the existence of a RIFL frontend. Naturally, develop-
ing such a frontend is easier for tools that clearly separate target programs from
policy specifications. This is why we refrained from extending our comparison
to tools that closely couple programs and policies, like, e.g., Jif [34].

For the future, we encourage researchers in the community to use IFSpec
to evaluate further information-flow analysis tools and to extend IFSpec. Note
that RIFL is based on the well established XML standard, and hence a multitude
of existing third party parsers can be used when implementing RIFL frontends.
We envision that this should be helpful for the development of such frontends.
Extensions to IFSpec could include the addition of samples to IFSpec, the cre-
ation of further extensions with language-specific examples, or the classification
of IFSpec’s samples for additional, formally defined information-flow proper-
ties. Albeit the current scope of IFSpec is not on testing scalability of analysis
tools, we see the addition of larger sample programs as one promising direction.

A Uniform Information-Flow Security Benchmark Suite 451

Acknowledgments. We thank the anonymous reviewers for their helpful comments
and the participants of the RS3 Staff Meeting 2016 for contributing to the samples
of IFSpec. This work was supported by the DFG under the projects DeduSec (BE
2334/6-3), IFC4MC (Sn 11/12-3), and RSCP (MA 3326/4-3) in the priority program
“Reliably Secure Software Systems” (RS3, SPP 1496).

References

1. HPE Security Fortify Static Code Analyzer (SCA). https://saas.hpe.com/en-us/
software/sca. Accessed 8 Aug 2018

2. IBM Security AppScan. https://www.ibm.com/developerworks/downloads/r/
appscan/index.html. Accessed 8 Aug 2018

3. SDK Platform Release Notes. https://developer.android.com/studio/releases/
platforms.html. Accessed 8 Aug 2018

4. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3_4

5. The Activity Lifecycle of Android. https://developer.android.com/guide/
components/activities/activity-lifecycle.html. Accessed 8 Aug 2018

6. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In: PLDI 2014, pp. 259–269 (2014)

7. Balyo, T., Heule, M.J., Järvisalo, M.: SAT competition 2016: recent developments.
In: AAAI 2017, pp. 5061–5063 (2017)

8. Bauereiß, T., et al.: RIFL 1.1: a common specification language for information-
flow requirements. Technical report TUD-CS-2017-0225, TU Darmstadt (2017)

9. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) LOP-
STR 2013. LNCS, vol. 8901, pp. 19–37. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-14125-1_2

10. Bischof, S., Breitner, J., Graf, J., Hecker, M., Mohr, M., Snelting, G.: Low-
deterministic security for low-deterministic programs. J. Comput. Secur. 26, 335–
336 (2018)

11. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA 2006, pp. 169–190 (2006)

12. Breitner, J., Graf, J., Hecker, M., Mohr, M., Snelting, G.: On improvements of
low-deterministic security. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS,
vol. 9635, pp. 68–88. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49635-0_4

13. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A benchmark
suite for high performance Java. In: JAVA 1999, pp. 81–88 (1999)

14. Cohen, E.S.: Information transmission in sequential programs. In: Foundations of
Secure Computation, pp. 297–335 (1978)

15. Cok, D.R., Déharbe, D., Weber, T.: The 2014 SMT competition. J. Satisf. Boolean
Model. Comput. 9, 207–242 (2016)

16. S. P. E. Corporation. Spec CPU Benchmarks. https://www.spec.org/benchmarks.
html#cpu. Accessed Apr 8 Aug 2018

17. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

18. Feiertag, R.J., Levitt, K.N., Robinson, L.: Proving multilevel security of a system
design. In: SOSP 1977, pp. 57–65 (1977)

https://saas.hpe.com/en-us/software/sca.
https://saas.hpe.com/en-us/software/sca.
https://www.ibm.com/developerworks/downloads/r/appscan/index.html
https://www.ibm.com/developerworks/downloads/r/appscan/index.html
https://developer.android.com/studio/releases/platforms.html
https://developer.android.com/studio/releases/platforms.html
https://doi.org/10.1007/978-3-319-12154-3_4
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-662-49635-0_4
https://doi.org/10.1007/978-3-662-49635-0_4
https://www.spec.org/benchmarks.html#cpu
https://www.spec.org/benchmarks.html#cpu

452 T. Hamann et al.

19. Fritz, C., Arzt, S., Rasthofer, S.: DroidBench 2.0. https://github.com/secure-
software-engineering/DroidBench. Accessed 8 Aug 2018

20. Goguen, J.A., Meseguer, J.: Security policies and security models. In: S&P 1982,
pp. 11–20 (1982)

21. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in Java
programs - a practical guide. In: ATPS 2013, pp. 123–138 (2013)

22. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009)

23. Hara, Y., Tomiyama, H., Honda, S., Takada, H., Ishii, K.: CHStone: a benchmark
program suite for practical C-based high-level synthesis. In: ISCAS 2008, pp. 1192–
1195 (2008)

24. Henning, J.L.: SPEC CPU2000: measuring CPU performance in the New Millen-
nium. Computer 33(7), 28–35 (2000)

25. Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on SAT. In: Sat
2000: highlights of satisfiability research in the year 2000, pp. 283–292 (2000)

26. Ku, K., Hart, T.E., Chechik, M., Lie, D.: A buffer overflow benchmark for software
model checkers. In: ASE 2007, pp. 389–392 (2007)

27. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
towards a certifying app store for Android. In: SPSM 2014, pp. 93–104 (2014)

28. Lux, A., Mantel, H.: Declassification with explicit reference points. In: Backes, M.,
Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 69–85. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04444-1_5

29. Lux, A., Mantel, H.: Who can declassify? In: FAST 2009, pp. 35–49 (2009)
30. Mantel, H.: Information flow and noninterference. In: van Tilborg, H.C.A., Jajo-

dia, S. (eds.) Encyclopedia of Cryptography and Security, 2nd edn., pp. 605–607.
Springer, New York (2011)

31. Millen, J.K.: Information flow analysis of formal specifications. In: S&P 1981, pp.
3–8 (1981)

32. Mohr, M., Graf, J., Hecker, M.: JoDroid: adding android support to a static infor-
mation flow control tool. In: SE 2015, pp. 140–145 (2015)

33. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing robust declassification. In:
CSFW 2004, pp. 172–186 (2004)

34. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java Infor-
mation Flow. http://www.cs.cornell.edu/jif. Accessed 8 Aug 2018

35. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6_17

36. Rushby, J.M.: Design and verification of secure systems. In: Proceedings of the
Eighth ACM Symposium on Operating System Principles, pp. 12–21 (1981)

37. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-37621-7_9

38. Sim, S.E., Easterbrook, S., Holt, R.C.: Using benchmarking to advance research:
a challenge to software engineering. In: ICSE 2003, pp. 74–83 (2003)

39. Smith, L.A., Bull, J.M., Obdrizalek, J.: A parallel Java grande benchmark suite.
In: SC 2001, p. 8 (2001)

40. Stanford SecuriBench. http://suif.stanford.edu/~livshits/work/securibench/intro.
html. Accessed 8 Aug 2018

41. SecuriBench Micro. https://github.com/too4words/securibench-micro. Accessed 8
Aug 2018

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://doi.org/10.1007/978-3-642-04444-1_5
http://www.cs.cornell.edu/jif
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-540-37621-7_9
http://suif.stanford.edu/~livshits/work/securibench/intro.html
http://suif.stanford.edu/~livshits/work/securibench/intro.html
https://github.com/too4words/securibench-micro

A Uniform Information-Flow Security Benchmark Suite 453

42. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–361 (2009)

43. Sutcliffe, G., Schulz, S., Claessen, K., Van Gelder, A.: Using the TPTP language for
writing derivations and finite interpretations. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS, vol. 4130, pp. 67–81. Springer, Heidelberg (2006). https://
doi.org/10.1007/11814771_7

44. Wasserrab, D., Lohner, D.: Proving information flow noninterference by reusing a
machine-checked correctness proof for slicing. In: VERIFY 2010

45. Zanioli, M., Ferrara, P., Cortesi, A.: SAILS: static analysis of information leakage
with sample. In: SAC 2012, pp. 1308–1313 (2012)

https://doi.org/10.1007/11814771_7
https://doi.org/10.1007/11814771_7

When Harry Met Tinder: Security
Analysis of Dating Apps on Android

Kuyju Kim, Taeyun Kim, Seungjin Lee, Soolin Kim, and Hyoungshick Kim(B)

Department of Computer Science and Engineering, Sungkyunkwan University,
Suwon, Republic of Korea

{kuyjukim,taeyun1010,jine33,soolinkim,hyoung}@skku.edu

Abstract. As the number of smartphone users has increased, so has the
popularity of dating apps such as Tinder, Hinge, Grindr and Bumbler.
At the same time, however, many users have growing privacy concerns
about these applications disclosing their sensitive and private informa-
tion to other service providers and/or strangers. This is particularly exac-
erbated due to the nature of dating apps requiring access to users’ per-
sonal contents such as chat messages, photos, video clips and locations.
In this paper, we present an analysis of security and privacy issues in
popular dating apps on Android. We carefully analyze the possibility of
software vulnerabilities on the five most popular dating apps on Android
through network traffic analyses and reverse engineering techniques for
each dating app. Our experiment results demonstrate that user creden-
tial data can be stolen from all five applications; three apps may lead to
the disclosure of user profiles, and one app may lead to the disclosure of
chat messages.

Keywords: Dating application · Privacy · Vulnerability · Android

1 Introduction

As the number of smartphone users has increased, online dating apps (e.g.,
Tinder1, Amanda2, Glam3, DangYeonsi4 and Noondate5) on smartphones have
become increasingly popular. In 2017, for example, Tinder, which is one of the
most popular dating apps, acquired more than 50 million users [5]. The revenue
of the “online dating” industry may reach as much as 1.3 billion USD in 2018.
This revenue is expected to develop at an annual growth rate of 3.9%, resulting
in a market volume of 1.6 billion USD in 2022 [4].

However, people also have growing privacy concerns about disclosing their
sensitive and private information to unauthorized third parties [9,11,19,22].
1 Tinder: https://tinder.com/.
2 Amanda: http://amanda.co.kr/.
3 Glam: http://www.glam.am/.
4 DangYeonsi: https://www.facebook.com/DangYeonsi.
5 Noondate: http://noondate.com/.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 454–467, 2018.
https://doi.org/10.1007/978-3-030-03638-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_28&domain=pdf
https://tinder.com/
http://amanda.co.kr/
http://www.glam.am/
https://www.facebook.com/DangYeonsi
http://noondate.com/
https://doi.org/10.1007/978-3-030-03638-6_28

When Harry Met Tinder: Security Analysis of Dating Apps on Android 455

Because dating services generally collect and store users’ personal information
(e.g., chat messages, sexual preferences, ethnic identity, educational level, polit-
ical views, music and food tastes, pictures, videos and user location), this infor-
mation is likely personally identifiable and very sensitive to users. For exam-
ple, a journalist from The Guardian who had been using the Tinder app found
that Tinder had collected about 800 pages of information about her, including
information on Facebook’s “like” feature, Instagram’s photos, her education, the
men’s age range she was interested in and the number of her Facebook friends [6].

There have been several previous studies that inspected privacy issues in
online dating apps. For example, Farnden et al. [13] analyzed what personal
information is stored in nine dating apps and how it was disclosed. Shetty et
al. [22] found that man-in-the-middle (MITM) attacks could be launched and
pose a serious threat of privacy breaches in several dating apps.

In this paper, we extend these previous studies by focusing on the detection of
software vulnerabilities (specifically related to privacy breaches) in online dating
apps on Android, and we designed a generic framework to identify them. Our
key contributions are summarized as follows:

– We present a generic framework to analyze software vulnerabilities in dating
apps on Android through (1) packet analysis, (2) API hooking, (3) storage
analysis, and (4) code decompilation.

– To show the feasibility of the proposed framework, we analyze the top five
most popular online dating apps in Android. Our experiment results demon-
strate that user credential data can be stolen from all the five apps; two
apps may lead to the disclosure of user profiles, and one app may lead to the
disclosure of chat messages.

The rest of the paper is organized as follows. Section 2 briefly summarizes
security-related features for typical dating apps. Section 3 enumerates the partic-
ular privacy issues which we target in dating apps on Android. Section 4 presents
analysis methods used to identify software vulnerabilities in dating apps that
can be exploited in privacy breaches. Section 5 presents our analysis results, and
Sect. 6 suggests defense mechanisms to prevent the risk such privacy breaches.
The related work is summarized in Sect. 7. Finally, Sect. 8 concludes with a sum-
mary of the research results and suggests our directions for future research.

2 Security-Related Features for Online Dating Apps

In this section, we briefly explain the security-related features that are required
for a typical mobile dating application.

User Account Management. An online dating service is a platform in which
users create an account and share personal data (e.g., user profile, messages, pho-
tos, interests and preference) with other users with the goal of finding a suitable
partner. Therefore, user account management is crucial. On smartphone appli-
cations, automatic login is popularly used by storing user credentials in files and

456 K. Kim et al.

offline databases. Because smartphones’ small keyboards make it difficult to type
complex login information, many users are attracted to the convenience of auto-
login capabilities. Unsurprisingly, user credential data is also a very attractive
target for attackers who want to steal users’ identities [10]. In this paper, we are
motivated to investigate whether user credential data in dating apps is securely
protected.

Matchmaking. In online dating services, matchmaking is useful to find poten-
tial partners. For successful matchmaking, the construction of accurate user
profiles (age, location, and preferences) is key. Therefore, a user is usually asked
to create his/her profile during user registration. Because sensitive user data can
be collected from user profiles, we also examine the potential risk of unintended
personal information being exposed in dating apps.

Communication Between an App and the Server. In general, the con-
ventional client-server model is the most widely used method for online dating
services. In an online dating service, communication channels between the appli-
cation and the servers in the dating service can be potential attack vectors and
should be securely protected from unauthorized access.

3 Threat Model

In this section, we describe the types of attackers that we target in this work,
and we discuss which assets need particular attention to be protected against
those attackers.

3.1 Attacker Types

We consider three different types of attackers: (1) Network sniffer, (2) Anony-
mous user, and (3) Co-located attacker. The common goal of all types of attack-
ers is to access user personal data without proper authorization from an online
dating service.

Network Sniffer. The first type of attacker is a network sniffer. This attacker
is only capable of intercepting and modifying the packets between a dating app
and the servers of the target online dating service through a traffic analysis tool.

Anonymous User. The second type of attacker is a registered user in an
online dating service. We call this attacker anonymous user. This attacker can
create an account for the service and download the client app to communicate
with the dating server. These attackers are not only capable of intercepting
and modifying the packets between a dating app and the servers through a
traffic monitoring tool, but are also capable of analyzing the behaviors (e.g.,

When Harry Met Tinder: Security Analysis of Dating Apps on Android 457

authentication methods, encryption methods, message payload structures, etc.)
of the target dating app. Additionally, they can leverage debugging tools and
reverse engineering techniques in their attacks because the dating app is under
the attacker’s full control. Anonymous users can also install a proxy on the user’s
smartphone in order to intercept HTTPS traffic and decrypt it on the proxy.

Co-located Attacker. The third type of attacker is co-located with the victim
and may have access any storage files on the victim’s smartphone. In Android,
there are four different local storage options: (1) Shared Preferences, (2) Internal
Storage, (3) External Storage, and (4) SQLite Databases (see https://developer.
android.com/guide/topics/data/data-storage). This type of attacker is possible
in many practical situations. For example, malware on Android devices is fre-
quently able to gain read access to the victim’s files. As another example, an
intelligence agency can try to gain access to a victim’s data on a smartphone
through debugging tools (e.g., Android Debug Bridge (ADB)) after the intelli-
gence agency is in possession of the victim’s smartphone. We call this attacker
co-located attacker.

Finally, we assume that the victim’s smartphone is already rooted or will be
rooted by the co-located attacker because some storage spaces on Android (i.e.,
Shared Preferences) can be accessed only on rooted devices.

3.2 Assets in Dating Apps

User Profile. In general, online dating services ask users to enter their personal
information to create their profiles, and they use this information to recommend
potential partners to each user. Unlike conventional social network services, how-
ever, more sensitive personal information is often needed to create user profiles.
For example, a user’s private information such as hobbies, interests, occupa-
tions, age, religious preferences, and/or sexual orientation can be included in
the user profile. Most users would assume that such service providers imple-
ment significant measures to protect user profile information from unauthorized
access and mismanagement through access control policies and mechanisms. In
practice, however, user profile information can often be harvested (e.g., through
enumeration attacks [16]).

Location Information. Many dating apps collect their users’ location informa-
tion in order to provide location-based recommendation services. Because many
users are concerned about revealing their private location information, many
service providers use location-based services without the need to reveal users’
specific private information. For example, the list of nearby users using the same
dating app is only displayed instead of other users’ exact location information.
However, this information can also be misused to infer a target user’s location
by means of triangulation [18].

https://developer.android.com/guide/topics/data/data-storage
https://developer.android.com/guide/topics/data/data-storage

458 K. Kim et al.

User Credential. In online dating apps, users have to create a user account
to use their dating services. For users’ convenience, most dating apps support
the automatic login feature, which results in storing user credentials (or login
credentials) as cookies or tokens on a user’s mobile device. In practice, how-
ever, user credentials can often be stolen by means of user credential cloning
attacks [10] and Cross-Site Scripting (XSS) attacks.

Chat Messages. In many cases, dating apps provide an instant messaging
service for their users. That is, dating app users can secretly exchange text mes-
sages, voices, pictures and videos with their potential partners using the instant
messaging feature. Because this communication typically includes sensitive or
private information, most dating apps try to protect the stored data via encryp-
tion so that only the authorized dating app itself can access the data.

4 Analysis Methods

In this section, we present in detail the methods we used for analyzing the dating
apps on Android. An overview of our analysis framework is presented in Fig. 1.
Given an APK file of the target dating app, we used several tools to effectively
analyze potential privacy breaches that may occur in the dating app.

To analyze dating applications, we downloaded the APK file of the target
dating application from an application mirroring site and installed the down-
loaded APK file. Following this, we conducted the analysis in two ways: static
and dynamic. To perform static analysis, we extracted the storage of the apps
from the device and also decompiled the APK file to analyze the reconstructed
source code. In addition, we performed dynamic analysis by using packet anal-
ysis techniques and hooking. The four analysis methods can be summarized as
follows:

Fig. 1. Flow of privacy issue analysis in mobile applications.

When Harry Met Tinder: Security Analysis of Dating Apps on Android 459

Packet Analysis. Most Android applications communicate with the server
when the apps are running. Therefore, we analyze the packets transmitted to
the server when the apps start to communicate personal information in the
packets. In an Android environment, tpacketcapture [7] can be used to inspect
packets generated by an application. When an Android app sends packets to
communicate with a web server, we can easily capture and analyze the packets
via a web proxy. In this case, after configuring a proxy tool, it is possible to
collect all packets for HTTP as well as HTTPS using fiddler [2] if a fiddler
certificate is installed on the Android device. However, many recent apps use the
SSL (Secure Socket Layer) pinning technique to prevent changing and analyzing
certificates with a debugging tool like fiddler. The SSL pinning technique utilizes
a hard-coded certificate in the APK, and when the application starts, it uses this
hard-coded certificate instead of any other available certificates. To bypass the
SSL pinning scheme, we used the ssl unpinning.apk provided by the Xposed
framework6. Xposed is a framework for modules that can manipulate the flow
of the system and apps without changing the APK file.

We analyze whether the IDs and passwords of users are securely delivered
to the server when users attempt to login to dating applications. Most of the
communication between the server and the client in dating apps take place under
the HTTPS (HyperText Transfer Protocol Secure) protocol. User credentials
are also sent to the server during the login process as an HTTPS request, and
the server sends a cookie or a token in response. After the user logs in, post-
authentication is continuously performed with the issued token or cookie to
maintain the login status. However, if SSL/TLS is misused, an attacker can
successfully decrypt HTTPS via MITM (Man-In-The Middle attack) attacks.
Additionally, if attackers are able to bypass the HSTS (HTTP Strict Transport
Security) configuration, they may be able to acquire sensitive information in
plaintext form.

API Hooking. API hooking is an attack method that can be launched on an
Android APK to output a specific value or change the behavior of an applica-
tion by intercepting user input at a specific point without modifying the source
code. At this time, repackaging the APK is not necessary. We take advantage of
the application frida [3]. Frida implements hooking with javascript and uses a
framework called appmon to monitor and automate API hooking, which greatly
facilitates the entire hooking process. appmon provides the scripts for the basic
APIs provided by Android (crypto, database, file system, etc.) and enables anal-
ysis and detection of potentially vulnerable behavior such as weak encryption,
database storing, and file storing through Android API hooking.

In many mobile apps, various cryptographic techniques are used to protect
sensitive data. If attackers have the ability to obtain some information such as
the key or the initial vector for encryption by analyzing the app, they can easily
decrypt the ciphertext acquired from the communication session with the server.

6 http://repo.xposed.info/.

http://repo.xposed.info/

460 K. Kim et al.

We analyze whether the cryptographic techniques are used correctly in dating
apps by using API hooking.

Storage Analysis. After installing the package, the data including shared pref-
erences, databases, and files are stored in a predetermined path for each package:
/data/data/[package name]. An application stores most of the information that
it uses in its path in various forms. It stores important information that the app
needs to work, such as configuration files, user credentials, personal information,
etc.

Therefore, we analyze the information stored in the path to check whether
any personal data is stored.

Code Decompilation. To understand the low-level behavior of the application,
we decompile the APK file and inspect the resulting Java code to analyze the
storage, encryption, hashing, and obfuscation techniques used on any personal
data. Through a source code analysis, an attacker can typically find more com-
plex vulnerabilities that could not be found simply by running the application.
Furthermore, he may be able to invoke unauthorized services or activities that
would never be invoked when the app is running. We also repackage the APK
after changing smali code to check the storage and processing of the personal
data.

5 Experiments

To conduct our experiments, we investigated the security of the four assets in
dating apps mentioned in Sect. 3.2. We selected 5 applications from the top 10
applications in Korea and in the US Google Play Store listed in appannie [1]
as of March 25th, and we analyzed the attack feasibility under the threat mod-
els mentioned in Sect. 3.1. The five applications we chose are Tinder, Amanda,
Noondate, Glam and DangYeonsi. In our experiments with these applications,
we used a rooted Google Nexus 5 running Android 8.0. We also used a PC for
manipulating packets through a Fiddler proxy server and for API hooking.

5.1 Network Sniffer

To analyze and sniff network traffic, we installed a Fiddler certificate on the
mobile device, and we performed an analysis of the captured packets after set-
ting up an HTTP proxy server on the PC. In this case, if an attacker success-
fully decrypts HTTPS via MITM, the data can be exposed. However, MITM
attacks were unsuccessful because all five apps implemented properly configured
SSL/TLS.

When Harry Met Tinder: Security Analysis of Dating Apps on Android 461

5.2 Anonymous User

User Profile. In dating apps, users often have to use points or cash before
they can view profiles of other users who interest them. However, if profiles are
requested continuously, users’ profiles can be collected, and queries can be made
without using any cash or points. In dating apps, every profile is given a profile
index. In the case of profile inquiry, if the profile index is the result of any hash
function, it is difficult for an attacker to request the profile of a certain user,
or even for the profile of any user because he first has to know the hash value
before he can query the profile.

An HTTP proxy tool like Fiddler can collect packets and manipulate col-
lected packets. In order to collect user profile information, we first tested if such
information can be collected by changing a parameter called profile indexes in
the profile inquiry packet. As shown in Table 1, of the five apps we analyzed,
three apps used consecutive numbers as profile indexes, and the remaining two
used random numbers as profile indexes. For the apps that used consecutive
numbers, except for the N app, user profiles could be viewed by the attacker.
However, for the apps that used random numbers, user profiles could not be
viewed.

In dating apps, personal information such as the user’s email information
is not visible in the application, but there are cases where it is actually visi-
ble in the packet. In one of the three apps where profiles could be stolen, we
extracted emails during profile collection by manipulating and sending the pro-
file request packet. A total of 883 email addresses were extracted from 1,000
different profiles, and it took 121.81 seconds. Multiple trials were performed to
extract email addresses, and we confirmed that similar results could be repeat-
edly obtained since the server did not block incoming profile request packets. All
email addresses obtained were deleted after the experiments.

Location Information. We also analyzed the user’s location exposure in dat-
ing apps. Of the five apps, four were collecting location information, and among
these four apps that collect location information, three were exposing distance
information to users. These three apps send GPS location information to the
server. When the attacker requests nearby user information, the server response
contains the distance between the user and the attacker.

Typically, only approximate distance, which is rounded to kilometers, is dis-
played to the user, but we confirmed that in some dating apps, exact distance
in meters is contained in the packets sent by the server. The fourth applica-
tion’s server only sends well-known locations that are close to the queried user,
and this makes it difficult for the attacker to acquire the exact location of the
queried user. However, when victim’s location does not change, the attacker can
repeatedly change his GPS information before sending requests and repeatedly
collect distances to the victim. If the attacker obtains three or more distances
between arbitrary coordinates and the victim, the victim’s exact location can be
calculated by triangulation.

462 K. Kim et al.

Table 1. Our analysis results with five dating apps in the anonymous user environment.

A app G app T app D app N app

User profile (✓) (random) ✓ (sequence) ✗ (random) ✓ (sequence) ✗ (sequence)

Location
information

- ✓ (distance) ✓ (distance) (✓) (special area) ✓ (distance)

User

credential

- - - - -

Chat

messages

- - - - -

✓ = applicable; ✗ = not applicable; (✓) = partially applicable

5.3 Co-located Attacker

User Credential. Most dating apps maintain users’ login status using an
authentication token or a cookie stored in the shared preferences when perform-
ing post-authentication. To analyze the security of user credentials, we extracted
and analyzed the storage of the dating app and analyzed the cookie content in
the packet. As shown in Table 2, four of the five apps that we analyzed store the
credentials in shared preferences which is stored as an xml file in the /data/-
data/[package name]/shared prefs/ path. Furthermore, the fifth app stores the
credentials as cookie which is stored as a database in the /data/data/[package
name]/app webview/Cookies file. The co-located attacker can use the app, mas-
querading as the victim, by cloning the credentials to the attacker’s device.

Chat Messages. Dating apps provide many functionalities for finding potential
partners, and one of them is the chat operation. All dating apps provide chat
capabilities, but it can be problematic if the contents of chats are easily viewed
by attackers. As shown in Table 2, the results of the chatting analysis in five
apps show that one of the apps stores the chat history in the database without
any encryption. This is depicted in Fig. 2. This means that this application’s
chat contents can be obtained from the storage on the device. Two of the five
apps use an external API. The two remaining apps use their own web services
to provide chat functionality, but the chat room index is random, making them
difficult to be extracted.

6 Countermeasures

In this section, we suggest several defense strategies to mitigate the privacy issues
described in Sect. 3.

User Profile. Many mobile applications provide user authentication function-
ality. The authentication services assign user indexes to the users in order to
authorize them. To prevent a user index from being guessed by attackers, a user
index with high entropy should be used. For example, using a hash function to
generate a user index with high entropy makes it difficult to guess the user index.

When Harry Met Tinder: Security Analysis of Dating Apps on Android 463

(a) Chat messages in the app. (b) Chat messages in the database.

Fig. 2. Leakage of chat messages.

Table 2. Our analysis results with five dating apps in the co-located attacker
environment.

A app G app T app D app N app

User profile (✓) (random) ✓ (sequence) ✗ (random) ✓ (sequence) ✗ (sequence)

Location
information

- ✓ (distance) ✓ (distance) (✓) (special area)✓ (distance)

User
credential

✓ (shared pref)✓ (shared pref) ✓ (shared pref)✓ (cookie) ✓ (shared pref)

Chat
messages

✗ (random) ✗ (external API)✓ ✗ (external API) ✗ (random)

✓ = applicable; ✗ = not applicable; (✓) = partially applicable

Location Information. Many mobile apps require users to grant GPS permis-
sion before location information of the users can be collected. However, if such
location collecting function is misused by a service provider, an attacker may
be able to obtain a victim’s location information. Examples include functions
that are responsible for providing the user’s latitude and longitude coordinates,
or providing an accurate distance when searching for nearby people. In order to
prevent exposure of the location information, it is necessary to insert intention-
ally vague location information or rough information so that the attacker cannot
find the exact location of the victim.

User Credentials. Most mobile apps use user credentials for post-
authentication. Examples of such user credentials are cookies, tokens, and ses-
sions. Reuse attacks are possible by cloning user credentials. To prevent reuse
attacks, expiration time of user credentials can be shortened. However, by doing
so, it is obvious that usability might be negatively impacted.

464 K. Kim et al.

Chat Messages. Many apps provide chat services for communication between
users. Such a chat service may be provided as a web service, or it may exist in a
database system. When it is provided as a web service, a chat index is calculated
in a similar method that is used to generate a user index. A chat index having
high entropy should be used to prevent any chat history from being exposed. On
the other hand, if mobile applications store chat history in a local database, it
should be stored after being securely encrypted to avoid exposure.

The issues mentioned in Sect. 3.2 are almost standard coding issues, where
app developers did not employ a security-by-design approach and violated best
practices. Developers should try to reduce these coding issues, but there are
many more difficulties. Previous research to teach better secure coding and to
improve app security exist [20]. That research provides an interactive IDE-based
security review tool to improve the security and privacy aspect of code written
by developers.

7 Related Work

Most social networking service (SNS) applications including social dating apps
provide various functions like searching for other users or discovering locations
of other users. Sometimes these basic functions may be maliciously used by
an attacker. Kim et al. [16] showed that Facebook’s search functionality could
potentially be misused to leak users’ sensitive personal information on a large
scale. Since the search function of Facebook enabled users to search for other
people using their phone numbers, a large amount of user profile data could
be collected by searching for consecutive phone numbers. Carmen et al. [9] and
Hoang et al. [15] discussed that mobile apps using location information of users
cannot guarantee the user’s location privacy because the user’s location can be
estimated by using trilateration. Especially, Hoang et al. [15] analyzed if three
dating apps (Jack’d, Grindr and Hornet) were protecting their users’ location
privacy securely. They found that the attacker could figure out the location of
other users in all the three apps using a trilateration method, even when the apps
provided the location-hiding option as a countermeasure to location estimation.
In this paper, we comprehensively analyzed not only these location providing
and search functions but also other functions provided by dating apps such as
acquaintances blocking and chatting.

Farden et al. [13] investigated privacy risks using forensic analysis, focusing
on storage in mobile devices in particular. The goal of this research was to
confirm what data was stored in mobile devices using forensic analysis. It was
shown that sensitive data such as usernames, profile pictures, sent messages and
authentication tokens could be recovered by an attacker in some dating apps.
Patsakis et al. [21] performed an analysis to test if sensitive personal information
and location information could be retrieved by capturing HTTPS packets in
some dating apps. In our work, we also analyzed how attackers can acquire user
credentials and chat messages from dating apps. We showed that if an attacker

When Harry Met Tinder: Security Analysis of Dating Apps on Android 465

can access the storage in the path of dating apps, then the attacker can access
sensitive data.

Wondracek et al. [26] introduced a de-anonymization attack that exploits
group member information on SNS. They showed that it was possible to identify
a particular user from a group of users or identify possible candidates. They also
showed that about 42% of users in the social network Xing who use groups could
not be uniquely anonymized. Dating apps provide anonymization to prevent
anyone from disclosing other users’ information such as names, emails, or cell
phone numbers that can be used to identify users. However, in this paper, we
showed that one of the dating apps automatically extracted an e-mail address
from other user profiles that were anonymized, which, in turn, can be used to
identify other users.

Privacy issues concerning sensitive user data on android mobile applications
were often discussed in some previous work [17,28,31]. These studies were per-
formed with permissions or predefined policies. In our paper, we analyzed the
privacy issues that could arise in the dating apps to identify more hazardous
privacy leaks than the ones discussed previously.

Android analysis technique can be generally divided into static analy-
sis [8,14,27,30], dymamic analysis [12,23,29] and hybrid analysis [24,25]. Most
of these analysis frameworks are used for malware analysis. When used for iden-
tifying privacy issues, only limited information such as phonebook, basic mobile
phone information (IMEI, USIMID) and location information can be analyzed
for outflow. With these frameworks, it is difficult to find a privacy issue specific
to dating applications similar to those discussed in this paper.

8 Conclusion and Future Work

In this paper, we examined sensitive assets in dating apps and how this critical
information is being stored in mobile devices. We also categorized the privacy
issues that may arise in dating apps into four categories (e.g user profiles, location
information, user credentials, and chat messages). We confirmed that at least one
of the four privacy issues occur in each of the five apps. Furthermore, we discussed
potentially serious attack scenarios that may compromise users’ privacy and
security.

Privacy issues that we listed in this paper are not exhaustive, and there
may be other privacy issues that we may not have considered. For instance, the
location tracking feature of dating apps might be used to predict the movement
of the user. Furthermore, personal user data in dating apps can be combined with
other user data collected from various sources (e.g., social network services) that
may lead to compromise of user privacy.

Our analysis methods are also applicable to other applications like instant
messengers that store information such as chat messages, photos, contacts, and
user profiles. Therefore, we plan to develop a generic framework to automatically
analyze such privacy breaches on Android applications.

466 K. Kim et al.

Acknowledgement. This research was supported by the MSIT (Ministry of Science,
ICT), Korea, under the ITRC (Information Technology Research Center) support pro-
gram (IITP-2018-2015-0-00403) supervised by the IITP (Institute for Information &
communications Technology Promotion).

References

1. Android app ranking. https://www.appannie.com. Accessed 25 Mar 2018
2. Fiddler. https://www.telerik.com/fiddler. Accessed 4 July 2018
3. Frida. https://www.frida.re/. Accessed 4 July 2018
4. Online dating apps growing. https://www.statista.com/outlook/372/100/online-

dating/worldwide. Accessed 4 July 2018
5. Tinder Hits $3 Billion Valuation After Match Group Converts Options. https://

www.forbes.com/sites/stevenbertoni/2017/08/31/tinder-hits-3-billion-valuation-
after-match-group-converts-options/. Accessed 4 July 2018

6. Tinder personal data. https://www.theguardian.com/technology/2017/sep/26/
tinder-personal-data-dating-app-messages-hacked-sold. Accessed 4 July 2018

7. tPacketCapture. https://play.google.com/store/apps/details?id=jp.co.taosoftware.
android.packetcapture. Accessed 4 July 2018

8. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-
mission specification. In: Proceedings of the Conference on Computer and Com-
munications Security (2012)

9. Carman, M., Choo, K.-K.R.: Tinder me softly – how safe are you Really on Tin-
der? In: Deng, R., Weng, J., Ren, K., Yegneswaran, V. (eds.) SecureComm 2016.
LNICST, vol. 198, pp. 271–286. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59608-2 15

10. Cho, J., Kim, D., Kim, H.: User credential cloning attacks in android applica-
tions: exploiting automatic login on android apps and mitigating strategies. IEEE
Consum. Electron. Mag. 7(3), 48–55 (2018)

11. Cobb, C., Kohno, T.: How public is my private life?: privacy in online dating. In:
Proceedings of the 26th International Conference on World Wide Web (2017)

12. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32(2), 5 (2014)

13. Farnden, J., Martini, B., Choo, K.K.R.: Privacy risks in mobile dating apps. In:
Proceedings of 21st Americas Conference on Information Systems (2015)

14. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of android. Technical report (2009)

15. Hoang, N.P., Asano, Y., Yoshikawa, M.: Your neighbors are my spies: Location
and other privacy concerns in GLBT-focused location-based dating applications.
In: Proceedings of 19th International Conference on Advanced Communication
Technology (2017)

16. Kim, J., Kim, K., Cho, J., Kim, H., Schrittwieser, S.: Hello, Facebook! Here is the
stalkers’ paradise!: design and analysis of enumeration attack using phone numbers
on facebook. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017. LNCS, vol. 10701, pp.
663–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72359-4 41

17. Li, L., et al.: Iccta: detecting inter-component privacy leaks in android apps. In:
Proceedings of the 37th International Conference on Software Engineering (2015)

18. Li, M., et al.: All your location are belong to us: breaking mobile social networks
for automated user location tracking. In: Proceedings of the 15th International
Symposium on Mobile ad hoc Networking and Computing

https://www.appannie.com
https://www.telerik.com/fiddler
https://www.frida.re/
https://www.statista.com/outlook/372/100/online-dating/worldwide
https://www.statista.com/outlook/372/100/online-dating/worldwide
https://www.forbes.com/sites/stevenbertoni/2017/08/31/tinder-hits-3-billion-valuation-after-match-group-converts-options/
https://www.forbes.com/sites/stevenbertoni/2017/08/31/tinder-hits-3-billion-valuation-after-match-group-converts-options/
https://www.forbes.com/sites/stevenbertoni/2017/08/31/tinder-hits-3-billion-valuation-after-match-group-converts-options/
https://www.theguardian.com/technology/2017/sep/26/tinder-personal-data-dating-app-messages-hacked-sold
https://www.theguardian.com/technology/2017/sep/26/tinder-personal-data-dating-app-messages-hacked-sold
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture
https://doi.org/10.1007/978-3-319-59608-2_15
https://doi.org/10.1007/978-3-319-59608-2_15
https://doi.org/10.1007/978-3-319-72359-4_41

When Harry Met Tinder: Security Analysis of Dating Apps on Android 467

19. Lutz, C., Ranzini, G.: Where dating meets data: investigating social and institu-
tional privacy concerns on tinder. Sage Social Media + Society (2017)

20. Nguyen, D.C., Wermke, D., Acar, Y., Backes, M., Weir, C., Fahl, S.: A stitch in
time: supporting android developers in writingsecure code. In: Proceedings of the
Conference on Computer and Communications Security (2018)

21. Patsakis, C., Zigomitros, A., Solanas, A.: Analysis of privacy and security exposure
in mobile dating applications. In: Boumerdassi, S., Bouzefrane, S., Renault, É.
(eds.) MSPN 2015. LNCS, vol. 9395, pp. 151–162. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25744-0 13

22. Shetty, R., Grispos, G., Choo, K.K.R.: Are you dating danger? an interdisciplinary
approach to evaluating the (In)security of android dating apps. IEEE Trans. Sus-
tain. Comput. (2017)

23. Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: automatic recon-
struction of android malware behaviors. In: Proceedings of the Network and Dis-
tributed System Security Symposium (2015)

24. Wang, S., State, R., Ourdane, M., Engel, T.: Riskrank: security risk ranking for ip
flow records. In: Proceedings of the 6th International Conference on Network and
Service Management (2010)

25. Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: ProfileDroid: multi-layer profiling of
android applications. In: Proceedings of the 18th Annual International Conference
on Mobile Computing and Networking (2012)

26. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-
anonymize social network users. In: Proceedings of the 31st Symposium on Security
and Privacy (2010)

27. Yang, Z., Yang, M.: LeakMiner: detect information leakage on android with static
taint analysis. In: Proceedings of the 3rd World Congress on Software Engineering
(2012)

28. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., Wang, X.S.: Appintent: analyzing
sensitive data transmission in android for privacy leakage detection. In: Proceedings
of the 20th Conference on Computer & Communications Security (2013)

29. Zhao, M., Zhang, T., Ge, F., Yuan, Z.: RobotDroid: a lightweight malware detection
framework on smartphones. Citeseer J. Netw. 7(4), 715 (2012)

30. Zhao, Z., Osono, F.C.C.: “TrustDroidTM”: preventing the use of smartPhones for
information leaking in corporate networks through the used of static analysis taint
tracking. In: Proceedings of the 7th International Conference on Malicious and
Unwanted Software (2012)

31. Zhu, H., Xiong, H., Ge, Y., Chen, E.: Mobile app recommendations with secu-
rity and privacy awareness. In: Proceedings of the 20th SIGKDD International
Conference on Knowledge discovery and data mining (2014)

https://doi.org/10.1007/978-3-319-25744-0_13
https://doi.org/10.1007/978-3-319-25744-0_13

Threat Poker: Solving Security
and Privacy Threats in Agile

Software Development

Hanne Rygge(B) and Audun Jøsang

University of Oslo, Oslo, Norway
hanneryg@ifi.uio.no, audun.josang@mn.uio.no

Abstract. Secure software development represents a fundamental part
of ‘security by design’ which in turn is a prerequisite for ‘privacy by
design’ in the terminology of GDPR (General Data Protection Regula-
tion). To follow and adhere to the principles of privacy by design and
security by design during software development is a legal requirement
throughout Europe with the introduction of GDPR in 2018. Secure soft-
ware development is typically based on specific methods that software-
design teams apply to discover and solve security threats and thereby to
improve the security of systems in general. This paper describes Threat
Poker as a team-based method to be exercised during agile software
development for assessing both security risk and privacy risk, and for
evaluating the effort needed to remove corresponding vulnerabilities in
the developed software.

1 Introduction

The adoption and application of practical methods for developing adequately
secure software has become a necessity for companies and developers in order to
produce legally compliant IT systems. The trend towards increasingly prescrip-
tive security and privacy regulations for IT systems such as GDPR (General Data
Protection Regulation) has resulted in very specific requirements with regards
to security and privacy in IT systems. Threat modeling and removal of rele-
vant vulnerabilities can be considered as the main elements which contribute to
strengthening the security of IT systems.

This paper introduces Threat Poker as an efficient method for secure sys-
tems development which stimulates developers to consider security and privacy
threats and to evaluate ways to remove or mitigate vulnerabilities related to
those threats. Threat Poker is a card game that is meant to be played during
Scrum meetings or other team meetings in agile software development projects.
The idea behind the game is to stimulate the team members to think about – and
discuss – relevant threats and risks to security and privacy resulting from each
new feature or user story being introduced and implemented in the incrementally
completed system.

c© Springer Nature Switzerland AG 2018
N. Gruschka (Ed.): NordSec 2018, LNCS 11252, pp. 468–483, 2018.
https://doi.org/10.1007/978-3-030-03638-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03638-6_29&domain=pdf
https://doi.org/10.1007/978-3-030-03638-6_29

Threat Poker 469

Threat Poker is in some aspects similar to Planning Poker [5], but while
Planning Poker is used mainly for time estimation of implementation efforts,
Threat Poker primarily focuses on the estimation of risks resulting from security
and privacy threats, and secondly on the estimation of the effort needed to solve
those threats, i.e. to remove relevant vulnerabilities. As required by GDPR,
it is necessary to consider both the security risks as well as the privacy risks
during the software development process. A security risk represents the potential
severity of a threat to cause harm which negatively affects information assets.
A privacy risk on the other hand represents the potential severity of a threat to
cause privacy harm to data subjects, i.e. to negatively affect the privacy of real
persons affected by the data. The victim of a threat is thus totally different in
the case of security risks and privacy risks respectively, which precisely is the
reason why these two risk types must be considered separately.

Section 2 below briefly mentions different models for software development, in
particular the waterfall and agile models. Section 2.1 offers a description of how
security is currently implemented in methods of software development. Section 2.2
describes the details of how to play Threat Poker. Section 3 describes qualitative
observations of a simple experiment with students at the University of Oslo partic-
ipating in a session of Threat Poker as part of a class in agile software development.
Section 4 provides a discussion and draws conclusions from this initial study.

2 SDLC - Software Development Lifecycle

Several software development models or approaches have been proposed and
applied during the last 30 years. Each model has its characteristics, advantages
and disadvantages, but common to them all is that they do not focus on security
[6] (p. 1098). A selection of five prominent development models are briefly anal-
ysed and compared in [8]. These are: Waterfall, Iteration, V-shaped, Spiral and
Agile. Scrum is a particular form of the Agile Model which is discussed below.

The waterfall method is the classical and most heavy-weight approach to
software development, whereas agile methods represent the most light-weight
and flexible approach. We will briefly describe the waterfall method and the
specific agile method called Scrum, as they represent very different approaches
to software development. Figure 1 shows the waterfall model.

Fig. 1. The waterfall model for software development

470 H. Rygge and A. Jøsang

The basic idea behind the waterfall model is that each phase must be fully
completed before the next phase, as symbolized by the waterfall metaphor where
water only flows downwards. This also implies that the complete set of require-
ments must be defined and fixed at the beginning of the project. In case it is
necessary to revisit a previous stage, then a costly overhead is to be expected
(metaphorically make water flow upwards), so this should be avoided. However,
it is typically the case that requirements have to be changed in the middle of
a software development project, so that many software development projects
based on the waterfall model have suffered large blow-outs in cost and time.

As a reaction to the rigid structure of the waterfall model several other models
have been proposed, where the Scrum method is illustrated in Fig. 2 below.

Fig. 2. The Scrum method for software development

The basic idea behind agile methods such as Scrum is that new or evolving
requirements can be specified in parallel with, or after already implemented
requirements [2]. This is possible by splitting the development into separate
stories where each story covers a set of requirements that can be implemented
and tested more or less independently of other stories. Each cyclic iteration in
the agile model is a sprint which are to be completed in a specific amount of
time, usually a few weeks. The major drawback of the agile model is that it often
does not scale well to large and complex development projects.

Specific security related tasks should be included in the various phases of the
SDLC, whether the development follows the waterfall model, the agile model, or
any other model. Due to the radical difference between the waterfall and agile
models, the development team needs to adapt the specific approach to secure
development depending on the model followed, as described in the next section.

Threat Poker 471

2.1 Secure Software Development

Security Design Principles. When considering security by design, i.e. to ade-
quately consider security during every step of the development process, it can be
helpful to consider common design principles. Several principles are defined by
OWASP (Open Web Application Security Project) in ASVS (Application Secu-
rity Verification Standard) [9]. These principles consists of: minimizing the attack
surface, establishing secure defaults, the principles of least privilege, defence in
depth, fail securely, don’t trust services, separation of duties, avoid security by
obscurity, keep security simple and fix security issues correctly. Security princi-
ples are worth considering when working on secure development, and they often
serve as a guide to what good design could look like. These are also helpful for
developers who might not have that much experience with security because it
gives an idea of what they should look for.

Secure Software Development in the Waterfall Model. Several models
have been proposed to ensure secure development in the waterfall model, includ-
ing the NIST framework for Security Considerations in the System Development
Life Cycle [7], as well as Microsoft’s Security Development Lifecycle (SDL) [3].

In Microsoft SDL, every phase of the waterfall model includes security related
tasks, which thereby contributes to reducing the number of vulnerabilities in the
delivered software.

Vulnerabilities are unintentional side-effect of software development. The
challenge for secure software development is precisely to avoid building vul-
nerabilities into the system. By looking at the list of 25 most common software
errors maintained by SANS1, we see that many of these are directly related to
irresponsible or sloppy programming practice.

Secure Software Development in the Agile Model. Agile development
can follow different development methodologies that all share a common set of
values and principles. These principles include allowing continuous changes in
the specifications, frequent deliveries, frequent meetings, both between the devel-
opers and business people, but also internally in the development team. Progress
is measured by working software, and the process should promote sustainability.
Simplicity is essential, as well as technical excellence and good design. The teams
should be self-organizing and at regular intervals, should reflect on the process
and adjust accordingly [2]. Agile methodologies are based on the continuity of
the many different processes involved, the planning, the testing, integration and
others. All agile methodologies are made to be lightweight and stress the impor-
tance of collaboration between team members and encourage them to quickly
and efficiently reach a decision [11,16].

There are relatively few studies in the literature on secure agile software
development models. In Wichers’ proposal [17] it is argued that secure software

1 http://www.sans.org/top25-software-errors/.

http://www.sans.org/top25-software-errors/

472 H. Rygge and A. Jøsang

development in the agile model needs a quite different approach to that of the
waterfall model.

In [17] it is recommended to identify all stakeholders and clarify what their
main security concerns are. From that analysis a set of threat models can be
extracted which in turn form the basis for stakeholder security stories. Then
during the development phase, one has periodic security sprints in between the
regular development sprints. It is also proposed to include a final security review
before deploying the final system.

Microsoft has presented a version of SDL for agile software development [4].
The Agile SDL model contains the same security steps as in the waterfall SDL
model, where these steps are grouped in 3 categories:

– One-Time practices: Foundational security practices that must be established
once at the start of every new Agile project.

– Every-Sprint practices: Essential security tasks done in every sprint.
– Bucket practices: Important security tasks that must be done regularly, but

not necessarily in every sprint.

Microsoft’s agile SDL model has merit, but one drawback is that it does
not separate between functional and non-functional security requirements. The
model for secure agile software development the we propose below is partially
inspired by the model described in [17] and by Microsoft’s Agile SDL model, and
at the same time offers several improvements over the models mentioned above.
Our approach to handling security in the agile model is based on the distinc-
tion between functional security controls and non-functional security controls,
as described below.

– Functional security controls reflect and implement user stories that are
directly related to security, such as when password management and verifica-
tion is used as a control to implement a user story for logon, or when ACLs
(Access Control Lists) are used as a control for specifying and enforcing poli-
cies for accessing various resources within a domain.

– Non-functional security controls are applied in order to eliminate or
mitigate vulnerabilities in the implementation of other user stories, such as
when applying secure programming techniques in order to avoid buffer over-
flow bugs, or when applying input filtering when designing a front-end to
an SQL database in order to avoid SQL-injection. Software designers must
understand that any type of user stories, both ordinary user stories as well
as specific security related user stories, must be implemented in a secure way.
The way to do that is precisely through non-functional security controls. The
idea is that security threats that are intrinsic to a specific user story should
be handled during the sprint for the same user story.

A further example of non-functional security controls is when implementing
a user story about the logic for handling the check-out of a shopping basket
on an e-commerce website, where a threat could be that the customer is able
to trick the system into changing the number of items after the price has been

Threat Poker 473

computed, so that the customer could receive many items but only pay for
one. This security concern must be handled during the sprint that implements
the check-out of shopping baskets. Based on these considerations we propose
to introduce a new security phase into the sprint iteration. This security phase
focuses specifically on identifying threats against the current user stories. The
new phase should also specify how the threats can be controlled or mitigated, and
should specify tests for those mitigation controls. The implementation of non-
functional security controls is then handled in the ordinary phase that develops,
integrates and tests the new functionality for the current sprint. Threat Poker
is precisely the technique to be used in the security phase.

The Scrum Method. Scrum is defined as “A framework within which people
can address complex adaptive problems, while productively and creatively deliv-
ering products of the highest possible value” [12]. It was introduced in the 1990’s
by creators Ken Schwaber and Jeff Sutherland, and has been used to great effect
by helping to improve the product as well as the teams working on them. The
Scrum method is built around Scrum teams and their predefined roles as well as
certain rules and events, and each component is an integral part of the scrum
process and is essential to the method. Each scrum team consists of members
that will have different roles with different functions. These roles consists of a
Product Owner, the development team, and the Scrum Master.

The scrum team needs to adhere to certain events defined in the scrum
method. These include the sprint, the sprint planning, the daily scrum, the
sprint review and the sprint retrospective. The Scrum method also consists of
a product backlog, which is everything that is needed in the product, and the
sprint backlog, which is a subset of the product backlog, certain items that are
to be completed in the current sprint and the plan for how this increment of the
product is to be delivered.

Security Backlog in Scrum. Like many development models, Scrum is not
built around implementation of security and does not provide a guide on how
to deal with the security aspects of the software that is being developed. Due
to this, there needs to be an effective way to implement security features into
Scrum and other agile methodologies. A way to do this is with the Security
Backlog. The Security backlog is a new backlog that is added to the scrum
model, and is used to manage the security risks associated with the software. In
addition to the backlog, another role is proposed to add to the Scrum model,
the Security Master, who should be a person who has considerable knowledge
about security and has the job of managing the Security Backlog. The Security
Backlog implements the security design principles to limit the vulnerabilities
and to reduce the security risks of the software. Using this method, forces the
Product Backlog to go through the Security Backlog and the Security Master
decides which features require security attention and these are added to the
sprint backlog to be carried out by the developers. Other security features that
the Security Master selected are added to the the Security Backlog [1].

474 H. Rygge and A. Jøsang

Secure Scrum. Another method used to implement security in scrum is the
Secure Scrum Model. Secure Scrum consists of four different components, Iden-
tification component, Implementation component, Verification component, and
Definition of Done component. These components are put on top of scrum and
they are used to influence the stages of the scrum process. In the implementation
component, security concerns are identified and marked in the Product Backlog.
The implementation component raises the awareness of the security concerns
which is used in Sprint Planning and the Daily Scrum meetings. The verifica-
tion component ensures that testing is possible with focus on security. Last, the
Definition of Done defines the Definition of Done for security related issues [10].

Protection Poker. Protection Poker is a method that can be used by devel-
opers to conduct software risk assessment when working with agile development
methods [13]. It was proposed by professor Laurie Williams at North Carolina
State University [18]. It was developed as a means to help agile development
teams prioritize security so as to prevent the attacks that could cause the most
damage. Protection Poker is a security game played with playing cards. It is
made to be played during planning meeting, if using scrum, it would happen
in the scrum planning sessions. During these sessions, the product owner will
explain the requirements of the feature to be developed. When the requirements
are understood, the process progress to a new discussion in the team where they
discuss the security ramifications this new feature could have. Misuse cases and
threat models must be examined to determine how the new feature may impact
the system, if it will make the system more or less secure, or whether the security
is impacted at all, and talk of how this might be solved. When this part of the
process is completed the participants will vote using the playing cards on the
security risk components according to the traditional security estimation model

Risk = (likelihood of incident) × (impact of incident). (1)

The team players will express their estimation of the likelihood of an incident
and the impact by throwing cards face down, and then discuss their estimations
when the card values are revealed. This process is continued over several rounds
until a consensus is reached.

Protection Poker is a Wideband-Delphi technique, which is based on the Del-
phi practice which was developed in the 1940’s by the RAND Corporation and
is used for making forecasts. In this practice participants make individual and
anonymous estimations, and show the result, but does not discuss the thoughts
behind them. Wideband Delphi was created as a variant to the original where
discussions would occur between each round [18].

Elevation of Privilege. Microsoft’s Elevation of Privilege is also an existing
method used to help with threat modeling. It was originally intended for those
new to threat modeling as well as those who do it occasionally, to expose them
to threat modeling and with it being a game, to bring some enjoyment to threat

Threat Poker 475

modeling for non-security experts. The Elevation of Privilege game is played
using a special deck of cards that consists of 84 cards, 74 of which are playing
cards and the rest divided into instruction cards, reference cards, an about card,
and a play and strategy flowchart card. The 74 playing cards are divided into
six different suits, Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of Privilege (STRIDE). These different cate-
gories form the STRIDE model [15]. Each card is made up of a number, a suit
and a description of a threat example corresponding to the suit of the card. The
threat descriptions mostly for the benefit of new and/or inexperienced players,
to provide helpful information and useful hints. Scoring is also a part of the game
and it is meant to encourage competition and to promote flow and a sense of
accomplishment, but the main aspect of the game is to bring some enjoyment to
threat modeling, both for beginners and also experienced security experts. The
Elevation of Privilege game starts by drawing a diagram describing the system
that is to be modeled and dealing the cards between the players. The cards are
played after the same suit and the threat linked to the system and for each
threat, a point is added to the player who submitted the threat. At the end of
the game the scores are tallied up and the one with the highest amount of points
wins the game [14].

2.2 Principles of Threat Poker

Secure software development means that the software team identifies relevant
threat scenarios, and then removes vulnerabilities so that the identified threat
scenarios are eliminated/blocked. Threat Poker assumes that the Scrum team
is able to identify relevant threats that can negatively affect or take advantage
of the functionality to be implemented during a sprint. This can be done by
considering adversarial goals from the attacker’s point of view, in the form of
’Misuse Cases’ and ’Evil User Stories’. STRIDE [15] is a methodology that can
assist team members in discovering threats. It is impossible to identify all rel-
evant threat scenarios, and the Scrum team simply has to do it as best they
can. Experience and expertise in threat modelling are important to be able to
identify as many threats as possible.

Threat Poker consists of a risk round and a solution round for each relevant
threat scenario. For each threat scenario, Threat Poker is played to:

1. Estimate both the security risk and the privacy risk resulting from the specific
threat scenario.

2. Estimate the time and effort needed to remove the vulnerabilities exploited
by the threat scenario, i.e. so that the threat scenario is blocked.

Each risk is due to a threat scenario, where a risk level is assessed by (1)
how easy it is to execute the threat from the attacker’s perspective, and (2) the
negative consequence of the event, as shown in Fig. 3. The risk level is calculated
as a conjunctive combination of these two factors. This risk assessment exercise
must be done separately for both security and privacy risks. In most cases,

476 H. Rygge and A. Jøsang

Fig. 3. Risk model for the factors of risk

it would be natural to say that a particular threat scenario causes both security
risk and privacy risk according to

⎧
⎨

⎩

Security risk = (ease of executing threat) × (potential security impact)

Privacy risk = (ease of executing threat) × (potential privacy impact)
(2)

The basic principle estimating (security and privacy) risks is that the
attacker’s chances of success increases with the ease of executing a threat sce-
nario, and that the resulting risk increases with the potential negative impact
resulting from the threat scenario. If a new feature makes the system easier to
attack, then the likelihood of an attack occurring will increase.

Figure 4 illustrates cards used for playing Threat Poker. Each player (member
of the Scrum team) gets an entire suite from the deck, i.e. of Hearts, Spades,
Diamonds or Clubs so that one card deck is sufficient for four players. For more
than four players, two or more card decks are needed. The suit colour has no
meaning other than separating the players from each other.

Fig. 4. Card suits

First comes the risk round where each player can play two cards (face down),
i.e. for security risk and privacy risk respectively. Low cards express low risk,
and high cards express high risk. Then the cards are turned to show their values.

Threat Poker 477

In case of significant deviations between card values, a discussion follows where
each player explains the reasoning behind the risk assessment. During the dis-
cussion the players typically influence each other’s estimations. The risk round
can then be repeated to converge risk estimates, and this pattern continues until
an approximate consensus is achieved.

Then follows the solution round where the players can play two cards (face
down) to estimate the effort of solving the threat, i.e. to remove vulnerabilities
so that the threat scenario is blocked. Low cards express low effort and short
time to implement the solution, while high cards express high effort and long
implementation time. Once the players have played their cards, the cards are
turned to show their values. A discussion then follows with repeated solution
rounds until an approximate convergence emerges.

In the risk round, the level of security risk is represented by even values: 2,
4, 6, 8, 10 and Q (Queen). The level of privacy risk is represented by odd values:
3, 5, 7, 9, J (Jack) and K (King). Table 1 gives the interpretation of each card
value in terms of security risk and privacy risk. The round starts by discussing
the threat scenario, which can also be discussed during repetition rounds.

Table 1. Risk levels

Even values: security risk levels Odd values: privacy risk levels

2 Insignificant security risk, ignore 3 Insignificant privacy risk

4 Very low security risk, only solve if
relatively low effort

5 Very low privacy risk, little or
limited effect on data subjects

6 Low security risk, should be solved
when moderate effort

7 Low privacy risk, transient or
moderate negative impact on data
subject

8 Moderate security risk, must be
solved even when significant effort
needed

9 Moderate privacy risk, long or
significant negative impact on data
subjects

10 High security risk, must be solved J High privacy risk, high and
permanent negative effect on data
subjects

Q Very high security risk, with
potentially very detrimental
consequences

K Very high privacy risk, with very
serious permanent negative effects
and potentially suicidal data
subjects

A (Ace) – Extreme security risk or privacy risk. The project owner should seriously
reconsider the viability of the user story of the present sprint.

The benefit of letting Scrum team members first play their cards face down
is that every member of the team initially is not influenced by any other team
member, and is subsequently prompted to discuss his or her opinion. This prin-
ciple will encourage less outspoken members to also share their expertise and

478 H. Rygge and A. Jøsang

knowledge with the rest of the team, but also to increase the general knowledge
of the team. This will also help with dealing with bias that may be introduced by
strong and or loud team members. Another benefit is to stimulate convergence
towards teams consensus according to the principle of the Delphi Method [18].

Since a specific threat can cause both security risk and privacy risk, the team
members can play both an even-value card and an odd-value card in the same
round. The team needs to converge towards a consensus for both security risk
and for privacy risk. Note that Table 1 lists the ace card ‘A’ as a special case,
i.e. extreme risk either for security or privacy.

During the solution round, the estimated effort of implementing the solution
as part of the present sprint is represented by the even values: 2, 4, 6, 8, 10 and Q
(Queen). This type of solution is typically a non-functional security requirement,
i.e. it is not a function that is part of the functional specification of the system.
On the other hand, odd values: 3, 5, 7, 9, J (Jack) and K (King) express that
the implementation of the solution is added to the backlog, i.e. it is not to be
done as part of the current sprint. This type of solution is typically a functional
requirement, i.e. it becomes a new item in the functional specification of the
system. Table 2 describes the interpretation of each card value in terms of effort
levels for the present sprint or to be part of a user story to be sent to the
backlog. Whenever relevant, both cards with even numbers and odd numbers
can be played. This round very similar to traditional planning poker. Before
playing, the team starts with a discussion about possible solutions of the threat,
which can also be discussed later during the solution round.

Since the solution of a specific threat can require components both as part
of the present sprint and in the backlog, the team members can play both an
even-value card and an odd-value card in the same round. The team needs to
converge towards a consensus for both security risk and for privacy risk. Note
that the ace card ‘A’ is a special case indicating that the solution is not a part
of the project. This is a rule concerning security issues where the solution is out
of the scope of the project and should be handed over to the appropriate people
to be deal with.

After both the risk and the solution rounds have been played, the score of
each threat will be calculated according to Eq. (3).

Threat Score = 2 × Risk Level − Effort Level. (3)

The decision to solve the threat should be set approximately when the threat
score is greater than or equal to 14, i.e.

IF Threat Score ≥ 14
THEN Solve threat
ELSE Ignore threat

(4)

Threat Poker 479

Table 2. Effort levels

Even values: sprint effort levels Odd values: backlog effort levels

2 Has already been solved 3 Will be solved as part of a user
story in the backlog

4 Very low effort, very easy to solve
in the present sprint

5 Very low effort, very easy to solve,
but should be done in a separate
sprint

6 Low effort, relatively easy to solve
in the present sprint

7 Low effort, relatively easy to solve,
but should be done in another
sprint

8 Moderate effort, relatively time
consuming to solve in the present
sprint

9 Moderate effort, relatively time
consuming to solve in another
sprint

10 High effort, the solution to this
threat will take most of the time of
most of the team in the present
sprint

J High effort, the solution to this
threat will be a major part of
another sprint

Q Very high effort, the solution will
be so time consuming that the
present sprint must be extended
significantly

K Very high effort, a separate sprint
is needed to only focus on solving
this threat

A (Ace) – Impossible to solve threat as part of the development project. The
solution must be sought outside of the project.

3 A Simple Threat-Poker Experiment

An experiment was conducted at the University of Oslo to observe the usefulness
of Threat Poker, the best way to perform it, and the result that could be gained
by implementing the method. Participants in the experiment were students in
the Bachelor course IN2000 Software Engineering during the Spring semester
2018. The experiment was as part of the course where the students get extensive
training in working in Scrum Teams.

During the planning phase of the experiment, an application was sent to
NSD (Norsk Senter for Forskningsdata), for approval due to the participants
being video recorded, which constitutes collection of personal data and thus is
a privacy issue. The experiment was approved and the students gave consent to
being video recorded, so the experiment could be conducted as planned.

The experiment was performed by several different student teams in the
software engineering course. The teams participating in the experiment were
comprised of between 2–6 students.

During the experiment it became evident that the students shared a lot of the
same general knowledge, but with some of them having more specified knowledge
about certain aspects of software security. While none of them were security

480 H. Rygge and A. Jøsang

experts, they all had thoughts and opinions about what should be required and
how this could best be implemented.

During the session in which Threat Poker was played and practiced, all the
participants took part in the discussion, asking questions, sharing knowledge,
trying to think what could go wrong with the user story in case of an attack,
how this could be exploited and how best to protect against the threat scenario.

The students were initially introduced to Threat Poker during an earlier lec-
ture in the course. Immediately before each group participated in the experiment
they were reintroduced to the method using a presentation about Threat Poker.
They were provided with the rules for the game, how it is played, the different
rounds, the purpose behind it, and the general process. They were also provided
with the interpretation of the different card values, and that even and odd values
indicated whether they were dealing with a security risk or a privacy risk. This
list and interpretation of card values – according to the participants – proved
extremely helpful when it came to the estimations because by doing it this way,
they got a guide on how their opinions should be estimated.

The students were given the same scenario that was to be discussed in the
form of specific user stories that had been predefined to give each team the same
starting point and to see the different groups under the same conditions and
observe how the different groups worked with Threat Poker and the different
observations they would make. The user stories were based on a specific hypo-
thetical system that was to be developed, and the students were tasked with
identifying and describing relevant threats to the system and how to deal with
those threats.

The students were observed and filmed during the entirety of the Scrum
meeting where they played Threat Poker. After the meeting they they were
asked about their impression of the process, what went well and what could
be improved to make the method more useful and intuitive. The observation of
the students during the Scrum meeting provided qualitative indications of the
advantages and disadvantages of playing Threat Poker as part of the meeting.
During the Threat Poker sessions, the students could be interrupted to help
clarify the different aspects of the process or information could be injected if
and when needed.

At the beginning of the Threat Poker session, each team was given the same
system description, the main requirements for the system, and the same user
stories to work from. The hypothetical system to be developed was an online
pharmacy e-commerce website. The user stories were set up in the form of: As
a user, I should be able to

The team was given a list of several of them and tasked with coming up with
the use case or misuse-case that could be associated with these user stories. The
user stories involved several different scenarios, comprising mostly of:

– As a user, I should be able to log into the system.
– As a user, I should be able to create/edit my profile.
– As a user, I should be able to order product.
– As a user, I should be able to see my orders.

Threat Poker 481

These user stories were set up in this way to provide a variety of security and
privacy threats that are often present in every-day systems and thus needs to be
addressed. For each user story, the teams were encouraged to come up with one
main security and/or privacy threat and focus on that for the discussion.

After identifying and briefly discussing the threat posed to the system or the
users, the team started playing the risk round by playing cards face down to
indicate their personal opinion on the severity of the security/privacy risks and
then showed their cards. When all cards had been showed, and new discussion
took place to explain the thought process behind the individual estimations of
each player. This gave each unique player a chance to share their opinion on
each threat, and to share their knowledge of how severe this threat could be if
allowed to exist in the system. This caused new information that had previously
not been discussed to surface and allowed for the students with more knowledge
to share their experience and the students with more limited knowledge to learn.

Since Threat Poker is a method that encourage those players with the highest
and lowest numbers to explain their reasoning, it helps to provide a way for all
members of the team to share their opinions, which is something that could be
seen during the experiment.

In the first discussion round, some students were more reluctant to share
their thoughts, but as the game progressed, and the cards were shown, each
member got to share their opinion and partake in the discussion. This process
repeated a few times until the group reached a consensus on the threat level, and

Fig. 5. Actual round with participants and cards playing Threat Poker

482 H. Rygge and A. Jøsang

the it progressed to the next round, where a discussion took place on how best
to solve this problem by using the blue cards to estimate the difficulty of the
implementation of the solution. Figure 5 shows a student Scrum Team playing
Threat Poker during the experiment.

For the students, a consensus was generally reached rather quickly, typically
requiring no more than two rounds of card estimation before switching between
the threat and solution rounds, and it seemed the most time went into figuring
out the misuse case that should be used in the Threat Poker round. To test this,
the last group was given specific misuse cases or specific threats to the system
and discussed this. This proved to be more efficient in some ways, in that it
allowed for more rounds of Threat Poker to be conducted, and let the last group
go through more user stories than the other groups had.

Doing it this way still allowed for specific threats to be discussed, but not for
new threats to be discovered by the team.

4 Discussion and Conclusion

Using Threat Poker helps estimating the seriousness of security and/or privacy
risks during software development, as well as how to deal with them. It should
also help with satisfying the requirement for privacy-by-design and security-by-
design which is now required in the development of computer software.

The general consensus from all the student groups was that this was a use-
ful technique, helpful to generate a discussion about security that should be
a mandatory part of the development process. Using Threat Poker forced the
groups to consider different threat scenarios and how to deal with them.

By giving the groups the same user stories, and by them having much of
the same knowledge and experience, it caused them to come up with many of
the same threats, and also caused much similarity in the solutions suggested.
The estimations provided by the team members was somewhat different inside
the group, but after a few rounds, they reached a consensus. When reaching a
consensus, the estimation differed from group to group, but was generally in the
same range for the similar threats.

While generally a very helpful technique, several different ways for improving
Threat Poker was suggested by the different groups. Chief among them was a
suggestion for the solution part of the card game.

Originally, when estimating the solution effort, blue-back cards were used,
and the numbers were used to estimate the simplicity. For the threat part, the
red cards were used, and the numbers estimating how dangerous the threat, or
how much damage could be caused by the threat. In the risk part, a low number
would indicate a low risk, but in the solution part of the game, a low number
would indicate how difficult it is to solve, meaning a 2 would be impossible or
insanely difficult to solve. The students in the group indicated that to make
Threat Poker more intuitive, the solution estimation with the cards should be
opposite from the original way, meaning, that a low number should indicate that
the solution would be easy to implement and the higher the number, the harder
to implement.

Threat Poker 483

This was tried with the last group, and from their perspective, this seemed
like the easier and more intuitive way of conducting the solution estimation part
of Threat Poker.

References

1. Azham, Z., Ghani, I., Ithnin, N.: Security backlog in Scrum security practices.
Technical report, Universiti Teknologi Malaysia (2011)

2. Beck, K., et al.: Principles behind the Agile Manifesto (2001). http://
agilemanifesto.org/iso/en/principles.html

3. Microsoft Corporation: SDL: Microsoft Security Development Lifecycle, Version
4.1 (2009)

4. Microsoft Corporation: Security Development Lifecycle for Agile Development, Ver.
1.0, 30 June 2009. https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx

5. Grenning, J.: Planning Poker or How to avoid analysis paralysis while release
planning. Technical report, Wingman Software (2002)

6. Harris, S., Maymı́, F.: CISSP All-in-One Exam Guide, 7th edn. McGraw-Hill, New
York (2016)

7. Kissel, R., et al.: Security considerations in the system development life cycle -
NIST Special Publication 800–64, Rev. 2. Technical report, National Institute of
Standards and Technology, October 2008

8. Mohammed, N., Munassar, A., Govardhan, A.: A comparison between five models
of software engineering. Int. J. Comput. Sci. Issues (IJCSI) 7(5) (2010)

9. OWASP: ASVS - Application Security Verification Standard v.3.0.1 2016 (2016)
10. Pohl, C., Hof, H.-J.: Secure Scrum: development of secure software with Scrum.

Technical report, Munich University of Applied Sciences (2015)
11. QASymphony: Agile Methodology: The Complete Guide to Understanding

Agile Testing (2017). https://www.qasymphony.com/blog/agile-methodology-
guide-agile-testing/

12. Schwaber, K., Sutherland, J.: The Scrum Guide (2017)
13. Shipley, G., Meneely, A., Williams, L.: Protection Poker: the new software security

“Game”. IEEE Secur. Priv. 8, 14–20 (2010)
14. Shostack, A.: Elevation of Privilege: Drawing Developers into Threat Modeling

(2012). https://www.microsoft.com/en-us/download/details.aspx?id=20303
15. Shostack, A.: Threat Modeling: Designing for Security, 1st edn. Wiley Publishing,

Indianapolis (2014)
16. VersionOne: Agile 101 General Learnings. https://www.versionone.com/agile-101/
17. Wichers, D.: Breaking the waterfall mindset of the security industry. In: OWASP

AppSec USA, New York (2008)
18. Williams, L., Meneely, A.: Protection Poker: the new software security “Game”.

Technical report, North Carolina State University (2009)

http://agilemanifesto.org/iso/en/principles.html
http://agilemanifesto.org/iso/en/principles.html
https://www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx
https://www.qasymphony.com/blog/agile-methodology-guide-agile-testing/
https://www.qasymphony.com/blog/agile-methodology-guide-agile-testing/
https://www.microsoft.com/en-us/download/details.aspx?id=20303
https://www.versionone.com/agile-101/

Author Index

Akhtar, Sabina 272
Aktas, Kursat 352
Almgren, Magnus 187, 336
Armknecht, Frederik 3
Atashpendar, Arash 104

Backendal, Matilda 154
Bajic, Alexander 236
Bastys, Iulia 19
Becker, Georg T. 236
Bellare, Mihir 154
Bernroider, Edward W. N. 369
Buldas, Ahto 138

Dahlberg, Rasmus 88, 171

Filippakis, Eleftherios Lef 336
Foley, Simon N. 219

Genç, Ziya Alper 385
Guanciale, Roberto 421

Hamann, Tobias 437
Hartmann, Lukas 38
He, Jun 121
Herda, Mihai 437
Holler, Philipp 38

Ikram, Asim 272

Johansson, Linus 187
Jøsang, Audun 468

Kesdoğan, Doğan 38
Khan, Mohsin 121
Kim, Hyoungshick 454
Kim, Kuyju 454

Kim, Soolin 454
Kim, Taeyun 454
Krumay, Barbara 369

Laanoja, Risto 138
Lashermes, Ronan 405
Le Bouder, Hélène 405
Lee, Seungjin 454
Lenzini, Gabriele 385
Liang, Hongliang 54
Liu, Wanping 121

Maennel, Kaie 291
Maennel, Olaf 291
Mandal, Avikarsha 3
Mantel, Heiko 437
Mäses, Sten 291
Mohr, Martin 437

Niemelä, Mikko S. 323
Nitschke, Mirja 38
Nurmi, Juha 323

Olsson, Oskar 187

Perrin, Olivier 272
Piessens, Frank 19
Policharla, G. Vamsi 104
Probst, Christian W. 306
Pulls, Tobias 88, 171

Reinthal, Alexander 336
Reiser, Hans P. 255
Rønne, Peter B. 104
Rooney, Vivien M. 219
Ryan, Peter Y. A. 104, 385
Rygge, Hanne 468

Sabelfeld, Andrei 19
Schneider, David 437

Sen, Sevil 352
Sentanoe, Stewart 255
Sorrell, Jessica 154
Stylianopoulos, Charalampos 187
Sun, Jiahao 154

Tasch, Markus 437
Taubmann, Benjamin 255
Teşeleanu, George 73
Thomas, Gaël 405
Truu, Ahto 138

Walser, Roman 369
Wang, Yudong 54
Wendzel, Steffen 203

Yang, Tianqi 54
Yang, Zheng 121
Yesuf, Ahmed Seid 306
Yu, Yue 54

Zahoor, Ehtesham 272
Zenner, Erik 3
Zillien, Sebastian 203

486 Author Index

	Preface
	Organization
	Contents
	Privacy
	Privacy-Preserving Distributed Economic Dispatch Protocol for Smart Grid
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Economic Dispatch Problem Formulation
	2.3 Distributed Solutions for ED
	2.4 Cryptographic Building Blocks

	3 Security Model
	3.1 Attacker Model
	3.2 Privacy Goals
	3.3 Privacy Leakage of the Binetti et al. Protocol

	4 Protocol Specification
	4.1 The Meetdemand Protocol
	4.2 The Permutation Protocol
	4.3 SMC Protocols

	5 Security
	6 Implementation Observation
	7 Conclusion and Future Work
	References

	Tracking Information Flow via Delayed Output
	1 Introduction
	2 Privacy Leaks
	2.1 IFTTT
	2.2 MailChimp
	2.3 Impact

	3 Tracking Information Flow via Delayed Output
	4 Security Model
	4.1 Semantic Model
	4.2 Preliminaries
	4.3 Projected Noninterference
	4.4 Projected Weak Secrecy

	5 Security Enforcement
	5.1 Information Flow Control
	5.2 Discussion
	5.3 Taint Tracking

	6 Related Work
	7 Conclusion
	References

	MixMesh Zones – Changing Pseudonyms Using Device-to-Device Communication in Mix Zones
	1 Introduction
	2 Related Work
	3 System Model
	4 Mix Zone Concepts
	4.1 Static Mix Zone
	4.2 Cell-Based Mix Zone with Time-Slots
	4.3 User-Centric MixMesh Zone
	4.4 Search for Relay Nodes

	5 Evaluation
	5.1 Model Setup
	5.2 Parametrization and Key Statistics
	5.3 Mix Zone Comparison
	5.4 MixMesh Configuration Comparison

	6 Discussion
	7 Conclusion and Further Work
	References

	AppLance: A Lightweight Approach to Detect Privacy Leak for Packed Applications
	1 Introduction
	2 Motivation
	3 AppLance: Design and Implementation
	3.1 Overview
	3.2 Variation and Proof
	3.3 Implementation

	4 Benchmark
	5 Evaluation
	5.1 Comparing with Existing Tools
	5.2 Effectiveness for Real-World Malware
	5.3 Performance Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	Cryptography
	Unifying Kleptographic Attacks
	1 Introduction
	2 Preliminaries
	2.1 Groups
	2.2 Zero-Knowledge Protocols
	2.3 SETUP Attacks

	3 Unified Setup Attacks
	3.1 The Main Setup Attack
	3.2 A Supplementary SETUP Attack

	4 Special Cases of the Unified SETUP Attacks
	4.1 Proofs of Knowledge of a Discrete Logarithm
	4.2 Proofs of Knowledge of an eth-root
	4.3 Proofs of Knowledge of a Discrete Logarithm Representation
	4.4 Proofs of Knowledge of an eth-root Representation

	5 Conclusions
	A Additional Preliminaries
	References

	Steady
	1 Introduction
	2 Overview of Steady
	2.1 Threat Model
	2.2 Properties and Requirements
	2.3 Setup and Policy Creation
	2.4 Device Logging and Creating Blocks
	2.5 Writing to and Reading from a Relay
	2.6 Collector Verification
	2.7 Proof Generation and Verification for Event Authenticity

	3 Formal Model of Steady
	3.1 Core Definitions and the Logging Scheme
	3.2 Properties

	4 Security of Steady
	4.1 Assumptions
	4.2 Properties and Proofs
	4.3 Relay Flushing and Device Forward Security

	5 Performance Evaluation
	6 Related Work
	7 Conclusions
	References

	Revisiting Deniability in Quantum Key Exchange
	1 Introduction
	1.1 Contributions and Structure
	1.2 Related Work

	2 Preliminaries in Quantum Information and QKE
	2.1 Quantum Key Exchange and Uncloneable Encryption

	3 Coercer-Deniable Quantum Key Exchange
	3.1 Defeating Deniability in QKE via Eavesdropping in a Nutshell
	3.2 On the Coercer-Deniability of Uncloneable Encryption
	3.3 Security Model
	3.4 Coercer-Deniable QKE via View Indistinguishability

	4 Deniable QKE via Covert Quantum Communication
	4.1 Covert Quantum Key Exchange
	4.2 Deniable Covert Quantum Key Exchange (DC-QKE)

	5 Deniability via Entanglement Distillation
	5.1 Deniable QKE via Entanglement Distillation and Teleportation

	6 Open Questions and Directions for Future Research
	References

	On Security Analysis of Generic Dynamic Authenticated Group Key Exchange
	1 Introduction
	2 Preliminaries
	3 Security Model for Dynamic Authenticated Group Key Exchange
	4 A Generic Compiler for Authenticated Group Key Exchange
	5 Conclusions
	References

	A Blockchain-Assisted Hash-Based Signature Scheme
	1 Introduction
	2 Related Work
	2.1 Hash-Based Signatures
	2.2 Server-Assisted Signatures
	2.3 Interactive Signature Protocols
	2.4 Authenticated Data Structures

	3 Approach
	3.1 Preliminaries
	3.2 The BLT Signature Scheme
	3.3 Desired Properties
	3.4 Design of the Proposed Scheme

	4 New Signature Scheme
	4.1 Components
	4.2 Initialization
	4.3 Signing
	4.4 Verification

	5 Discussion
	5.1 Server-Supported Signing
	5.2 Implementation of the Repository
	5.3 Practical Setup
	5.4 Efficiency

	6 Conclusions and Outlook
	References

	The Fiat-Shamir Zoo: Relating the Security of Different Signature Variants
	1 Introduction
	2 Basic Definitions
	3 Transforms and Signature Relations
	References

	Verifiable Light-Weight Monitoring for Certificate Transparency Logs
	1 Introduction
	2 Background
	2.1 Merkle Trees
	2.2 Certificate Transparency

	3 Light-Weight Monitoring
	3.1 Authenticated Wild-Card Queries
	3.2 Notifier
	3.3 Instantiation Example

	4 Evaluation
	4.1 Assumptions and Security Notions
	4.2 Implementation and Performance
	4.3 Related Work

	5 Conclusion
	References

	Network and Cloud Security
	CLort: High Throughput and Low Energy Network Intrusion Detection on IoT Devices with Embedded GPUs
	1 Introduction
	2 Background
	2.1 Network Intrusion Detection Systems and Snort
	2.2 The Aho-Corasick Patten Matching Algorithm
	2.3 General Purpose GPU Computing

	3 Design of CLort
	3.1 CLort's General Design
	3.2 Data Transfers Between the CPU and the GPU
	3.3 Search on the GPU: Parallel Aho-Corasick
	3.4 Packet Buffering: The Double-Buffering Technique

	4 Evaluation
	4.1 Experimental Methodology
	4.2 Evaluating Throughput
	4.3 Sniffing the Network
	4.4 Evaluating Energy Consumption

	5 Related Work
	5.1 NIDS on GPUs
	5.2 NIDS on IoT Related Devices

	6 Conclusion
	References

	Detection of Covert Channels in TCP Retransmissions
	1 Introduction
	2 Related Work
	3 Covert Channel and Detection Measures
	3.1 Implementation of a Retransmission-Based Covert Channel
	3.2 ε-similarity
	3.3 Compressibility

	4 Analysis of Retransmissions on the Internet
	5 Evaluation
	5.1 ε-similarity
	5.2 Compressibility

	6 Conclusion
	References

	What You Can Change and What You Can't: Human Experience in Computer Network Defenses
	1 Introduction
	2 Related Work
	3 Approach and Methodology: Qualitative Research
	4 Results of the Study
	4.1 Intrinsic Positive
	4.2 Created Positive
	4.3 Intrinsic Negative
	4.4 Created Negative
	4.5 Areas of Tension

	5 Changing the Experience
	6 Conclusion
	References

	Attack Simulation for a Realistic Evaluation and Comparison of Network Security Techniques
	1 Introduction
	1.1 Main Contribution

	2 Related Work
	3 Attack Simulation as an MTD Evaluation Tool
	3.1 Modeling Networks, Exploits and Defenses
	3.2 Attack Simulation

	4 Case Study
	4.1 Defense Techniques
	4.2 Network Layout and Software Landscape
	4.3 Vulnerabilities and Attack Steps

	5 Experimental Results
	5.1 Never Trust a Statistic You Have Not Forged Yourself

	6 Conclusion and Future Work
	A Appendix
	References

	Sarracenia: Enhancing the Performance and Stealthiness of SSH Honeypots Using Virtual Machine Introspection
	1 Introduction
	2 Related Work
	2.1 SSH Honeypots
	2.2 VMI-Based Honeypots and Tracing Method

	3 System Architecture and Design
	3.1 Goal
	3.2 Components
	3.3 Tracing Methods

	4 Data Acquisition
	4.1 New SSH Connection
	4.2 SSH Key Derivation, Source IP Address and Port Monitor
	4.3 Authentication Phase Monitor
	4.4 SSH Packet Monitor
	4.5 SSH Session Monitor (Keystrokes)
	4.6 Executed Command
	4.7 Port Forwarding
	4.8 Changes on File System

	5 Evaluation and Discussion
	5.1 Performance Analysis
	5.2 Stealthiness
	5.3 Portability
	5.4 Limitations

	6 Conclusion
	References

	Authorization Policies Specification and Consistency Management within Multi-cloud Environments
	1 Introduction
	2 Background and Related Work
	3 Authorization in the Cloud
	3.1 IAM Services by Major Providers
	3.2 Motivating Example

	4 Policies Aggregation in Multi-cloud Environments
	4.1 Event-Calculus
	4.2 Rules Specification
	4.3 Authorization Composition

	5 Authorization Conflicts in Multi-cloud Environments
	5.1 Policy Conflicts
	5.2 Policy Relationships
	5.3 Authorization Model Conflicts

	6 Implementation and Performance Evaluation
	7 Conclusion
	References

	Cyber Security and Malware
	Cyber Hygiene: The Big Picture
	1 Introduction
	2 Results of Literature Review
	2.1 Cyber Hygiene in Academic Literature
	2.2 Cyber Hygiene in Non-Academic Use

	3 Analysis and Discussion of Findings
	3.1 Origins, Existing Definitions and Use in Other Disciplines
	3.2 A Definition for Cyber Hygiene
	3.3 Related Terminology and Context

	4 Conclusion
	References

	Estimating the Risk of Fraud Against E-Services
	1 Introduction
	2 Related Work
	3 Baseline: Threat Scenarios and Risk Model
	3.1 Threat Scenarios in E-Services
	3.2 Risk Factors
	3.3 Risk Metrics

	4 The Fraud Risk Estimation Framework
	4.1 The FRE Architecture
	4.2 Prototype Implementation

	5 Case Study and Validation
	5.1 A Telecommunication Case Study
	5.2 Experiment: Performance Validation

	6 Discussion
	7 Conclusion and Future Work
	References

	PESTEL Analysis of Hacktivism Campaign Motivations
	1 Introduction
	2 Background
	2.1 PESTEL
	2.2 Hacktivist Campaign Manifestos and Target Lists

	3 PESTEL Analysis for Hacktivism Campaign Motivations
	3.1 Motivations of Hacktivist Campaigns
	3.2 Fitting the Motivations to the PESTEL Framework

	4 Results
	5 Conclusion
	6 Discussion
	A Discussion Channels Within the Tor Anonymity Network Are Used to Coordinate DDoS Attacks
	B Hacktivist Campaigns, Motivations and Targets
	C OpBahrain Manifesto by the Anonymous Hacktivist Group
	References

	Data Modelling for Predicting Exploits
	1 Introduction
	2 Challenges and Related Work
	2.1 Realistic Data Aggregation
	2.2 Temporal Intermixing and Realistic Evaluation

	3 Approach
	3.1 The Models
	3.2 Data Collections and Feature Engineering
	3.3 Training Sets, Test Sets and Labels
	3.4 Supervised Learning Algorithm and Optimization

	4 Results
	4.1 Experiment 0: The Baseline Models
	4.2 Experiment I: Including Zero-Day Exploits
	4.3 Experiment II: Temporal Intermixing
	4.4 Experiment III: Excluding Web Chatter

	5 Discussion
	6 Conclusions
	References

	UpDroid: Updated Android Malware and Its Familial Classification
	1 Introduction
	2 UpDroid Dataset
	2.1 Collection of Apps
	2.2 Analysis of Apps
	2.3 Dataset Validation
	2.4 UpDroid Dataset Overview

	3 Family Classification
	3.1 The Method
	3.2 Results

	4 Related Work
	5 Conclusion
	References

	Evaluation of Cybersecurity Management Controls and Metrics of Critical Infrastructures: A Literature Review Considering the NIST Cybersecurity Framework
	Abstract
	1 Introduction
	2 Conceptual Background and Context
	2.1 Measuring Cybersecurity
	2.2 NIST Cybersecurity Framework
	2.3 EU NIS Directive

	3 Methodological Approach
	4 Results
	4.1 Sample Description
	4.2 Mapped Metrics and Controls
	4.3 Uncovered Topic Areas

	5 Discussion, Contributions and Limitations
	6 Conclusion
	Acknowledgements
	References

	Next Generation Cryptographic Ransomware
	1 Introduction
	2 Defense Techniques: The State of the Art
	3 Vulnerability Analysis of Countermeasures
	3.1 Limits of Key-Oriented Protection
	3.2 Limits of Behavioural Analysis

	4 Future Ransomware Strategies
	4.1 Bypassing Key-Oriented Defenses
	4.2 Evading Behavioral Analysis

	5 Implementation
	6 Experimental Results
	7 Conclusion, Discussion, and Future Work
	7.1 Ethical Code of Conduct
	7.2 Limitations and Future Work

	References

	Security for Software and Software Development
	Hardware-Assisted Program Execution Integrity: HAPEI
	1 Introduction
	2 Context
	3 Previous Works
	4 HAPEI
	4.1 Phases
	4.2 Program Execution Integrity
	4.3 Key Management
	4.4 Limitations

	5 Security Assessment
	5.1 Scheme Security
	5.2 Differential Attack
	5.3 Multi-successors Attack

	6 Implementation
	6.1 CHIP-8
	6.2 Reference Implementation
	6.3 Hardened Implementation

	7 Conclusion
	References

	Protecting Instruction Set Randomization from Code Reuse Attacks
	1 Introduction
	2 State of the Art
	3 Circumventing Existing ISRs Using Code-Reuse Attacks
	3.1 Code Splicing
	3.2 Dynamic Encryption
	3.3 Jump Oriented Version of the Attacks

	4 An ISR Resilient Against Code-Reuse Attacks
	5 Evaluation
	5.1 Benchmarks

	6 Concluding Remarks
	References

	A Uniform Information-Flow Security Benchmark Suite for Source Code and Bytecode
	1 Introduction
	2 RIFL in a Nutshell
	3 IFSpec Benchmark Suite
	3.1 Syntax and Security Semantics
	3.2 Core Samples of IFSpec
	3.3 Benchmark Harness
	3.4 Extensions of the IFSpec Benchmark Suite

	4 Benchmarking with IFSpec
	4.1 Benchmarked Tools
	4.2 Terminology and Metrics for Benchmarking
	4.3 Benchmarking Results
	4.4 Evaluation Results on the IFSpec Extensions

	5 Related Work
	6 Conclusion
	References

	When Harry Met Tinder: Security Analysis of Dating Apps on Android
	1 Introduction
	2 Security-Related Features for Online Dating Apps
	3 Threat Model
	3.1 Attacker Types
	3.2 Assets in Dating Apps

	4 Analysis Methods
	5 Experiments
	5.1 Network Sniffer
	5.2 Anonymous User
	5.3 Co-located Attacker

	6 Countermeasures
	7 Related Work
	8 Conclusion and Future Work
	References

	Threat Poker: Solving Security and Privacy Threats in Agile Software Development
	1 Introduction
	2 SDLC - Software Development Lifecycle
	2.1 Secure Software Development
	2.2 Principles of Threat Poker

	3 A Simple Threat-Poker Experiment
	4 Discussion and Conclusion
	References

	Author Index

