
CrowdMashup: Recommending
Crowdsourcing Teams for Mashup

Development

Faisal Binzagr and Brahim Medjahed(B)

Department of Computer and Information Science,
University of Michigan - Dearborn, Dearborn, USA

{faisalb,brahim}@umich.edu

Abstract. Mashups involve the collaboration of multiple developers to
build Web applications out of pre-existing APIs. A large body of research
focused on recommending APIs for mashups. However, very few contri-
butions looked at recommending developers. In this paper, we propose
CrowdMashup, a crowdsourcing approach for mashup teams recommen-
dation. We analyze online developer communities and API directories
to infer developers’ interests in APIs through natural language process-
ing. We predict missing interest values using the alternating least square
method for collaborative filtering. We also model interactions (comments
and replies) among developers as a weighted undirected graph and intro-
duce a sociometric to identify socially related developers. We propose an
algorithm, based on the concept of cliques in graph theory, that combines
developers’ skills and sociometric to recommend efficient and balanced
teams. We describe a prototype implementation and conduct extensive
experiments on real-world data and APIs to evaluate our approach.

Keywords: Mashup · Crowdsourcing · Team recommendation
Sociometric · Skills

1 Introduction

The past decade has witnessed an increasing interest in mashup development [4].
For instance, the popular programmableWeb1 API directory currently includes
about 8,000 mashups. Mashups are Web applications that aggregate pre-existing
APIs (or services) to create valuable services with added functionality [27].
Mashup development generally involves several APIs requiring a variety of tech-
nological skills such as REST, SOAP, JSON, XML, and security. This often
calls for the collaboration of multiple developers to reduce the overall mashup
cost (e.g., development time). A large body of research focused on recommending
APIs for mashups [13]. However, very few contributions looked at recommending

1 https://programmableweb.com.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 679–693, 2018.
https://doi.org/10.1007/978-3-030-03596-9_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_49&domain=pdf
https://programmableweb.com
https://doi.org/10.1007/978-3-030-03596-9_49

680 F. Binzagr and B. Medjahed

developers to be part of mashup development teams. With the substantial num-
ber of available APIs and programmers, finding skilled mashup developers is not
straightforward. For instance, programmableWeb lists more than 19,000 APIs.
The StackOverflow2 and GitHub3 developer community platforms report esti-
mated 9 and 27 millions subscribers, respectively. Besides, the software industry
has recently seen a new trend where crowdsourcing companies (e.g., Topcoder4)
sell services to corporate, mid-size, and small-business clients, and pay commu-
nity members (i.e., developers) for their work. These companies also organize
open tournaments and programming challenges in which programmers are orga-
nized in teams to compete against each other. Therefore, it is important to form
balanced teams with skilled developers.

Crowdsourcing is a powerful sourcing model to perform a broad range of hard
tasks by splitting the work between workers [22]. It has been used in software
development to perform vital activities such as implementation, design, coding,
or testing [24]. Selecting appropriate developers should be performed carefully
to improve productivity [20]. In the context of mashups, two factors contribute
to successful developer recommendation. First, mashups involve various APIs
that require a large array of skills. A recent study shows that the interest of
project members toward specific tasks leads to better outcomes [15]. Hence, it
is vital to pick developers that possess the right skills, demonstrate significant
interest in the mashup, and have a good reputation among their peers. Second,
it is necessary to form teams with members that can get along with each other.
Studies have confirmed that strong social relationships among members increase
team performance [10]. Most interactions among mashup and API developers
take place via online communities such as StackOverflow and GitHub. Positive
discussions between developers, through questions and answers, tend to increase
their social ability and productivity.

In this paper, we propose CrowdMashup, a crowdsourcing-based approach for
recommending teams of developers for mashups. We analyze StackOverflow and
programmableWeb to generate teams that best statisfy mashup requirements. To
the best of our knowledge, this is the first work to address recommendation in
mashups from developer’s perspective. The main contributions of the paper are
summarized below:

– We use natural language processing [17] to assign interest scores to develop-
ers in using APIs. As developers may omit to comment on certain APIs, we
predict missing scores using the alternating least square method for collabo-
rative filtering [21]. We combine the computed interest scores and reputation
values of developers in the community to quantify their skills.

– We define a sociometric to assess social relationships among developers in the
community. Sociometry is a quantitative method in psychology for measuring
social relationships [26]. We model interactions (comments and replies) among

2 https://stackoverflow.com.
3 https://github.com.
4 https://topcoder.com.

https://stackoverflow.com
https://github.com
https://topcoder.com

CrowdMashup: Recommending Crowdsourcing Teams 681

developers as a weighted undirected graph. The weight of each edge represents
the number of interactions between developers modeled as nodes.

– We propose an algorithm to generate teams from mashup queries. The query is
a specification of the mashup requirements. We adopt the concept of cliques
from graph theory to identify strongly related developers [5]. A clique is a
subset of vertices from the sociometric graph where every two distinct vertices
are adjacent. We compare the skills of the developers in the clique along
with their sociometric scores to recommend top-t teams. We also describe a
prototype implementation and conduct experiments on real-world data and
APIs to evaluate our algorithm.

The rest of this paper is organized as follows. We propose the CrowdMashup
approach in Sect. 2. We describe the implementation and performance study in
Sect. 3. In Sect. 4, we overview related work. We conclude in Sect. 5.

2 The CrowdMashup Approach

The CrowdMashup architecture (Fig. 1) is composed of two major components:
Analysis of the Developer Community (ADC) and Crowdsourcing Team Gener-
ation (CTG).

Fig. 1. CrowdMashup architecture

ADC runs offline, i.e., independently of any request to create mashup devel-
opment teams. It analyzes the StackOverflow community to calculate and pre-
dict the interest of developers in adopting and using APIs. Nowadays developer
communities become a troubleshooting manual, where many developers share
experiences, issues, and solutions [18]. For instance, StackOverflow has more
than 16 million questions and 24 million answers in 2018. The LinkedIn API uses

682 F. Binzagr and B. Medjahed

StackOverflow as a reference, at their official page, to support programmers in
technical issues. Developer communities also showcase the level of affinity among
developers. Many programmers may end up collaborating in projects as a result
of their interactions in online communities [10].

CTG runs online at the reception of a mashup query from the mashup admin-
istrator. It returns efficient teams that best satisfy the mashup query require-
ments. The mashup administrator is a user or entity looking for teams of devel-
opers to collaborate on a mashup. Topcoder is an example of potential mashup
administrator. It offers software development services to third party clients, con-
tracting individual community programmers to work on specific tasks. It also
holds design competition, thus offering design services to clients.

2.1 Analysis of the Developer Community (ADC)

ADC analyzes StackOverflow to generate three data structures (Fig. 1): inter-
ests table (UI), reputation table (ÛR) and sociometric graph (SG).

User Interests Table (UI) - The initial step before analyzing the developer
community is to prepare the list of APIs used in that community. To that end, we
crawled all APIs from programmableWeb and extracted the name and primary
category of each service using the Scrapy framework5. Since StackOverflow has
about 66 millions comments (questions and answers), we focused on the ones
that are related to APIs. We filtered StackOverflow comments using the API
names retrieved from programmableWeb.

The next step is to analyze developers’ comments and assign scores of inter-
est in using APIs. For that purpose, we applied sentiment analysis to get the
interest score UI(ui) for each user ui. We parsed comments using Stanford NLP6

parser, which utilizes recursive neural networks (tree-structured models) for sen-
timent analysis [17]. For example, the comment “... Google Visualization API
has several ways to do each task so it’s important to know what you have already
done and we could start there...” returns a positive interest value about Google
Visualization API. An example of negative interest about Google Maps API
is: “I simply have no experience with the Google Maps API ...”.

Since certain APIs are not discussed by some developers, we ended-up with
missing interest scores (Fig. 2). To solve this problem, we utilized the Alternating
Least Squares (ALS) collaborative filtering technique [21]. In ALS, developers
and their scores are described by a small set of latent factors used to predict
the missing interest scores for all developers. Accordingly, we completed interest
scores for all developers and APIs as shown in Fig. 2. If an API is listed on
programmableWeb but unknown (i.e., not discussed) on StackOverflow, then
ALS cannot complete the missing interest scores for this API. To deal with this
issue, we average the interest scores of ui for all APIs on StackOverflow that
have the same category as the unknown API. Then, we assign the average score

5 https://scrapy.org/.
6 https://nlp.stanford.edu/.

https://scrapy.org/
https://nlp.stanford.edu/

CrowdMashup: Recommending Crowdsourcing Teams 683

as ui’s interest score for this API. If no API with similar category is commented
by ui, we average ui’s interest scores for all APIs discussed by ui (Fig. 2).

Fig. 2. Interests table

User Reputation Table (ÛR) - StackOverflow has a reputation system which
provides the level of expertise UR(ui) for each user ui. Since the extracted rep-
utation has highly distributed values, we applied the z-score normalization to
write reputation values into a standardized structure. The following formula
shows the final reputation ÛR for ui, where μ and σ represent the mean and
standard deviation of all reputation values, respectively:

ÛR(ui) =
UR(ui) − μ

σ

Sociometric Graph (SG) - Another major aspect in teams formation is the
social ability, or sociometry, among developers [26]. The idea is to make sure
that members of the same team can actually work together. Studies showed that
social relationships among members of the same team have a positive impact on
improving the team productivity [3]. In our approach, we use interactions among
developers via questions and replies in StackOverflow as a mean to estimate
their social relationships. Developers that engage in more conversations with
each other in online communities have more chances to successfully collaborate.

Fig. 3. Sociometric graph

We scanned the history of interactions among developers in StackOverflow
regardless if the questions/replies are related to APIs or not. Then, we modeled
those interactions as an undirected weighted graph, called sociometric graph

684 F. Binzagr and B. Medjahed

(SG). Each node in the graph represents a user (Fig. 3a). An edge (ui, uj) states
an existing interaction (question or reply) between users ui and uj . Developers
may interact at various levels, from few questions/replies to thousands. To cap-
ture this aspect, we label each edge (ui, uj) with a weight We(ui, uj) that gives
the number of interactions between users ui and uj :

We(ui, uj) = # interactions between (ui, uj)

2.2 Mashup Query Specification

Mashup administrators interact with CrowdMashup through mashup queries. A
mashup query Q defines the mashup requirements through a tuple Q = (t,m,A)
where:

– t: is the number of required teams.
– m: is the number of members within each team.
– A: is a list of APIs that compose the mashup.

Each element in the list A is defined as <APIID, APIw>. APIID is an ID
that uniquely identifies the API. APIw is the weight (in the range 0 to 1) of
the API. It represents the level of importance of the corresponding API in the
mashup. For instance, a location-based mashup (e.g., transportation) may rely
on a mapping API; the mapping API should be given a significant weight value
to make sure the most skilled developers are recommended for this API. A small
APIw implies that the API may not be mastered by all teams members; a big
APIw indicates that the API should be mastered by most teams members.

Example 1. Assume we want to build 5 teams of 3 developers for a mashup
that composes GoogleMaps (with ID 1 and weight 0.6), Foursquare (with ID 4
and weight 0.4) and Last.fm (with ID 5 and weight 0.1). The mashup query is
specified by t = 5, m = 3, and A = [<1, 0.6>,<3, 0.4>,<5, 0.1>].

Mashup administrators may not want to limit mashups to specific APIs by
providing the list of API categories instead of APIs. For instance, they may
refer to “Social” as a required category instead of Facebook or Twitter. In this
case, we automatically fetch all APIs that belong to the categories listed by the
administrator from programmableWeb and replace each category by the match-
ing APIs.

Example 2. Assume we want to build 5 teams of 3 developers for a mashup that
composes APIs from the Mapping and Social categories with 0.6 and 0.4 weights,
respectively. Assume that APIs with IDs 1, 30, and 47 belong to Mapping and
APIs with IDs 3, 17, and 22 relate to Social. The query is specified by t = 5, m = 3,
and A = [<1, 0.6>,<30, 0.6>,<47, 0.6>,<3, 0.4>,<17, 0.4>,<22, 0.4>].

CrowdMashup: Recommending Crowdsourcing Teams 685

2.3 Crowdsourcing Team Generation (CTG)

CTG generates teams that best satisfy the mashup query requirements. It uses
as input the sociometric graph SG as well as interests and reputation tables,
UI and ÛR. Before describing the CTG algorithm, we introduce the metrics to
calculate the performance of a team based on SG, UI , and ÛR.

We evaluate the skills of each user (i.e., developer) ui in the community based
on ui’s reputation and interest in each APIj ∈ A specified in the mashup. The
user’s interest in APIj is multiplied by APIjw to take into account the weight
(i.e., importance) assigned by the administrator to each API:

Userskills(ui) = ÛR(ui) ∗
∑

APIj∈A

UI(ui, APIj) ∗ APIjw (1)

Based on the skills of each user ui given in formula (1), we define the skills
of a team T composed of m members as the sum of the skills of all members:

Teamskills(T) =
∑

ui∈T

Userskills(ui) (2)

Using the sociometric graph SG, we also introduce the sociometric score
of T to quantify the level of collaboration between members. The sociometric
score Teamsociometric(T) of T accumulates the weights of all edges that connect
members in T and divide it by the number m of team members:

Teamsociometric(T) =

∑
ui∈T,uj∈T,(ui,uj)∈SG We(ui, uj)

m
(3)

From formulas (1) and (2), we define the overall performance of T by sum-
ming the skills and sociometric of the team:

TeamPerformance(T) = Teamskills(T) + Teamsociometric(T) (4)

The CTG algorithm (Algorithm 1) identifies strongly connected members
in the sociometric graph SG using the concept of cliques in graph theory. A
clique C is a subset of vertices of an undirected graph such that every two dis-
tinct vertices in C are adjacent [5]. We use the Bron Kerbosch algorithm [5]
to return cliques in the AllCliques list (line 3). Another important data struc-
ture is SharedCliques (lines 1 and 16). Each element SC in this list contains
common vertices between cliques as well as the remaining vertices (called poten-
tial vertices) in the cliques. For example, Fig. 3b depicts two adjacent cliques
C1 ={u1, u3, u4} and C2 ={u2, u3, u4}. The common and potential vertices are
defined by SC.common={u3, u4} and SC.potential={u1, u2}, respectively. Due
to space limitation, we omit the algorithm for the GetSharedCliques() function.

CTG uses AllCliques and SharedCliques to recommend the top-t (t is the
number of required teams). Each element in the returned TeamsList is composed
of the team’s members and performance of the team as defined in formula (4).
The algorithm first looks for cliques of size m (i.e., cliques with required number

686 F. Binzagr and B. Medjahed

of members). If more teams still need to be generated (TeamsList.size()<t),
then CTG explores the shared cliques.

Algorithm 1. Crowdsourcing Team Generation (CTG)

Input : ÛR Table, UI Table, Sociometric Graph SG, Mashup Query Q
Output: TeamsList (recommended teams)

1 SharedCliques ← null;
2 TeamsList ← null;
3 AllCliques ← BronKerboschAlgorithm(SG);
4 foreach C ∈ AllCliques do
5 if (C.size() == m) then
6 T = All users from C;
7 Calculate PerformanceTeam(T) of team T;
8 TeamsList.add(T, Performance(T));
9 AllCliques = AllCliques − C;

10 end
11 end
12 if (TeamsList.size() >= t) then
13 TeamsList ← sort(); //By team performance
14 Return Top-t teams from TeamsList;
15 end
16 SharedCliques = GetSharedCliques(AllCliques);
17 foreach SC ∈ SharedCliques do
18 if (SC.common.size() >= m) then
19 T = Top users from SC.common; // By skills or sociometric
20 Calculate PerformanceTeam(T) of team T;
21 TeamsList.add(T, Performance(T));
22 SharedCliques = SharedCliques − SC;
23 end
24 end
25 if (TeamsList.size() >= t) then
26 TeamsList ← sort(); //By team performance
27 Return Top-t teams from TeamsList;
28 end
29 foreach SC ∈ SharedCliques do
30 if (SC.common.size() < m) then
31 T = Users from SC.common + remaining top from SC.potential;

// By skills or sociometric
32 Calculate PerformanceTeam(T) of team T;
33 TeamsList.add(T, Performance(T));
34 SharedCliques = SharedCliques − SC;
35 end
36 end
37 TeamsList ← sort(); //By team performance
38 Return Top-t teams from TeamsList;

CrowdMashup: Recommending Crowdsourcing Teams 687

We identify the following three cases during team recommendation:

Case 1: Cliques have m members (lines 4–15) - CTG first parses cliques with
the exact number of members. If the size of a clique C is m, then all members
of C are used to form a team. We calculate the performance of T , insert T and
its performance to TeamsList, and remove C from AllCliques. If TeamsList
reaches the desired number t of teams (lines 12–15), TeamList is sorted based
on performance and the top-t teams are returned, hence ending the algorithm.
Otherwise, we process shared cliques (Case 2).

Case 2: Shared cliques have al least m members (lines 16–28) - CTG
processes shared cliques that have enough members in their common vertices.
It picks the top-m members from common vertices using one of two selection
options (line 19). (i) CTG by Skills: m members with the highest skills are
selected; and (ii) CTG by sociometric: m members with the highest sociometric
scores are selected. The corresponding teams are inserted into TeamsList as
described in Case 1; the shared cliques used to build the teams are removed from
SharedCliques. If TeamsList reaches the desired number t of teams (lines 25–
28), TeamList is sorted based on performance and the top-t teams are returned,
hence ending the algorithm. Otherwise, we proceed to Case 3.

Case 3: Shared cliques have less than m members (lines 29–38) - CTG
handles the shared cliques that do not have enough members in their common
vertices. It picks the remaining members from the potential vertices in the shared
cliques. The remaining members are selected using CTG by Skills or CTG by
Sociometric as described in Case 2 (line 31). Teams along with their calculated
performance are added to TeamsList and the top-t teams are returned.

3 Implementation and Performance

In this section, we describe the CrowdMashup prototype implementation. Then,
we evaluate the performance of our approach using real-world data and APIs.

3.1 CrowdMashup Prototype

We implemented a CrowdMashup prototype in Java. We used Google BigQuery7

to retrieve comments about APIs from StackOverflow. We collected 8,617 com-
ments related to 583 APIs. We used the Jgrapgt library8 to handle graphs
and identify cliques. We utilized Stanford Natural Language Processing
library to calculate developers’ attitude (interest) toward APIs. We used Apache
Spark’s scalable machine learning (MLlib) library9 to deal with missing
developers’ interest values.
7 https://cloud.google.com/bigquery/public-data/stackoverflow.
8 http://jgrapht.org/.
9 https://spark.apache.org/.

https://cloud.google.com/bigquery/public-data/stackoverflow
http://jgrapht.org/
https://spark.apache.org/

688 F. Binzagr and B. Medjahed

Fig. 4. The CrowdMashup user interface

Figure 4 shows CrowdMashup’s graphical interface. Mashup administrators
specify their queries through the Mashup Query pane (top left). They assign
the number of required teams and members in each team. Administrators enter
either a list of specific APIs or generic API categories along with their weights.
They also pick the algorithm to be used to generate teams: (1) Skills Only:
members are selected based on skills only. (2) Sociometric Only: members are
selected based on sociometric only. (3) CTG-Skills: uses both skills and socio-
metric but gives priority to skills in dealing with shared cliques (lines 19 and
31 in Algorithm 1). (4) CTG-Sociometric: uses both skills and sociometric but
gives priority to sociometric in dealing with shared cliques (lines 19 and 31 in
Algorithm 1). The generated teams are shown in the Recommended Teams pane
(bottom left). The pane shows each recommended team as a list of developer
IDs. It also displays the calculated performance of each team and orders the
generated teams based on their performance. The Team Analysis pane (right)
displays the two metrics for team recommendation: sociometric sub-graph and
team performances illustrated in a bar graph to visualize the performance of
different teams. The time to generate teams is also shown in this pane.

3.2 Experiments

The aim of the experiments is to assess the ability of CTG to select teams with
the best performance. We ran our experiments on a 64-bit Windows 10 environ-
ment, in a machine equipped with an Intel i7-7700HQ and 16 GB RAM. We mea-
sured the performance of the generated teams using three non-CTG algorithms:
Random (members are randomly selected), Skills Only, Sociometric Only; and
two CTG algorithms: CTG-Skills and CTG-Sociometric. We ran all experiments
on real-world data and APIs from StackOverflow and programmableWeb.

CrowdMashup: Recommending Crowdsourcing Teams 689

Fig. 5. Single query team performance for non-CTG (random, skills only, sociometric
only) and CTG (CTG-skills, CTG-sociometric) Algorithms

Figure 5 compares the five algorithms using the same mashup query to gen-
erate four teams with seven members per team. First, we compare CTG vs.
non-CTG algorithm in terms of team performance. CTG algorithms perform bet-
ter than non-CTG algorithms due to combining sociometric and skills. Besides,
CTG-Skills generates better teams than CTG-Sociometric. This is because ver-
tices that are outside cliques are unlikely to return high sociometric values.
Then, we compare the distribution of the performance of the four teams rec-
ommended by each algorithm. Figure 5 shows that team performance decreases
steadily from the first to the last team in both CTG algorithms. Hence, CTG
shows more balanced teams than non-CTG algorithms. For instance, there is
significant difference (more than double) between the performance of the first
and second teams in the Sociometric-Only algorithm.

Fig. 6. Multiple queries team performance for different team sizes

We also conduct experiments to explore how forming teams with various
sizes is handled by CTG. We randomly generated queries with sizes 5, 10, 15,

690 F. Binzagr and B. Medjahed

20, 25, and 30. We had 5 queries for each time size (for total of 30). As shown
in Fig. 6, CTG algorithms always show better team performances than the non-
CTG algorithms regardless of the team size. This is because non-CTG algorithms
ignore sociometric, skills, or both (in the case of random). Overall, generating
teams with bigger sizes (more than 10 members) leads to lower performance,
as it is harder to find a large number of developers with the right skills and
social relationships. Studies have shown that 3–7 developer teams are key to
successful software projects (3–5 person teams would be the best)10. Hence, this
makes CTG a suitable technique for team recommendation. For large team sizes
(e.g., 25), CTG-Skills shows better team performance than CTG-Sociometric as
finding cliques or shared cliques with larger sizes becomes challenging. For teams
of size 2–5, CTG-Skills and CTG-Sociometric are comparable, and they largely
outperform the three other algorithms: Random, Skills Only, and Sociometric
Only. In teams of size 6–10, CTG-Sociometric shows better team than CTG-
Skills as finding cliques or shared cliques with size 10 is still possible and improves
the overall team performance.

4 Related Work

The growth and popularity of crowdsourcing has led to significant research on
forming teams to facilitate collaborative software development [7]. Part of this
research has focused on team structure, while other contributions focused on the
complexity of the algorithm and economic factors for team building. [9] shows
that network structure between members has a vital effect on team formation. It
uses four different network structures to model team formation and compares the
performance of each structure. [6] takes advantage of social network information
and uses hierarchical structures (e.g., using “report to”) between team members.
[16] defines a self-organized team formation technique by allowing members to
rate each other and use other information such as demographics (e.g., age, gen-
der). [8] proposes a framework that recommends teams based on the skills and
connection among members. It uses co-authorship in DBLP and clustering algo-
rithms to find expert teams (sub-graph). [22] employs a dynamic programming
technique in crowdsourcing based on the prior familiarity of members to gener-
ate target teams. It considers the availability (response time) of the members to
find most familiar alternative members. [26] defines heuristic algorithms based
on notions such as weak and strong ties in social networks. It utilizes two metrics
to find social connection from an undirected weighted graph.

Several techniques dealt with the issue of improving the efficiency of the team
formation process. [28] proposes a genetic algorithm with the goal of finding the
best groups that can meet the defined tasks based on members availability, skills,
and price. [11] introduces an approach for forming teams with specific skills from
a vast professional community using network communication costs to optimize
team formation. It calculates communication costs by using minimum spanning
tree and the largest shortest path from the graph. [2] describes a greedy approach
10 http://www.qsm.com/process improvement 01.html.

http://www.qsm.com/process_improvement_01.html

CrowdMashup: Recommending Crowdsourcing Teams 691

for better performance considering team size and workload such as the number
of tasks allocated to each member.

[20] and [14] propose a team formation technique based on pricing to find
cost effective teams. [12] studies task coordination cost in crowdsourcing teams.
It aims to facilitate self-coordination and communication among teams by dis-
tributing and synchronizing the project tasks. [10] introduces a technique for
forming multiple teams to maximize the global efficiency of the teams considering
skills, availability, sociometric (relationship), and allowed time (part-full time)
members. [25] proposes a negotiation-based team formation technique where the
deal to join the team is used as a formation factor. [15] investigates how person-
ality affects team performance by applying the DISC (dominance, inducement,
submission, compliance) personality test. [23] discusses team elasticity in soft-
ware development such as the skills, experiences, response time and reliability
of the workers. [1] proposes a data leak-aware system in crowdsourcing team by
applying clustering algorithms that detect social interactions between members
to avoid data leakage. [19] conducts a statistical analysis to investigate how to
extract influence factors from successful teams.

CrowdMashup differs from existing approaches in multiples ways. First, to
the best of our knowledge, this paper is the first to look at team recommenda-
tion for mashups. Second, we define a two-level approach to analyze developer
communities. At the individual developer’s level, we infer developer’s interests
in APIs through natural language processing and collaborative filtering. At the
community level, we consider social relationships among developers as an impor-
tant factor to recommend team members. We model interactions among devel-
opers as a weighted undirected graph and find cliques to identify strongly related
developers. Note that our approach is different from the one introduced in [26]
where members of the same team are selected from different cliques to ensure the
impartiality of the execution result of a task. We use cliques to recommend teams
composed of (socially) strongly connected members to improve productivity.

5 Conclusion

We propose the CrowdMashup approach to recommend teams for mashup devel-
opment. The first CrowdMashup phase analyzes the StackOverflow developer
community to infer developers’ skills in using APIs. It also models the ability
of developers to collaborate with each other via a sociometric graph. The sec-
ond phase recommends crowdsourcing teams that best satisfy the requirements
of a mashup query. We introduce a team recommendation algorithm that com-
bines developers’ skills and sociometric. We provide a prototype implementation
and conduct experiments on real-world data and APIs from StackOverflow and
programmableWeb to evaluate our approach. Experiments show promising results
in generating efficient and balanced teams for mashup development.

692 F. Binzagr and B. Medjahed

References

1. Amor, I.B., Benbernou, S., Ouziri, M., Malik, Z., Medjahed, B.: Discovering best
teams for data leak-aware crowdsourcing in social networks. ACM Trans. Web
(TWEB) 10(1), 2 (2016)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power
in unity: forming teams in large-scale community systems. In: Proceedings of the
19th ACM International Conference on Information and Knowledge Management,
pp. 599–608 (2010)

3. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: Proceedings of the 21st International Con-
ference on World Wide Web, pp. 839–848 (2012)

4. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

6. Ding, C., Xia, F., Gopalakrishnan, G., Qian, W., Zhou, A.: Teamgen: an interactive
team formation system based on professional social network. In: Proceedings of the
26th International Conference on World Wide Web Companion, pp. 195–199 (2017)

7. Doan, A.H., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

8. Farhadi, F., Hoseini, E., Hashemi, S., Hamzeh, A.: Teamfinder: a co-clustering
based framework for finding an effective team of experts in social networks. In: 12th
IEEE International Conference on Data Mining Workshops, ICDM Workshops,
Brussels, Belgium, 10 December, pp. 107–114 (2012)

9. Gaston, M., Simmons, J., DesJardins, M.: Adapting network structure for efficient
team formation. In: Proceedings of the AAAI 2004 Fall Symposium On Artificial
Multi-agent Learning (2004)

10. Gutiérrez, J.H., Astudillo, C.A., Ballesteros-Pérez, P., Mora-Melià, D., Candia-
Véjar, A.: The multiple team formation problem using sociometry. Comput. Oper.
Res. 75, 150–162 (2016)

11. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June – 1 July, pp. 467–476 (2009)

12. Lee, S.W., Chen, Y., Klugman, N., Gouravajhala, S.R., Chen, A., Lasecki, W.S.:
Exploring coordination models for ad hoc programming teams. In: Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in Computing
Systems, pp. 2738–2745 (2017)

13. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), 1–41 (2016)

14. Liu, Q., Luo, T., Tang, R., Bressan, S.: An efficient and truthful pricing mecha-
nism for team formation in crowdsourcing markets. In: 2015 IEEE International
Conference on Communications (ICC), pp. 567–572 (2015)

15. Lykourentzou, I., Antoniou, A., Naudet, Y., Dow, S.P.: Personality matters: bal-
ancing for personality types leads to better outcomes for crowd teams. In: Pro-
ceedings of the 19th ACM Conference on Computer-Supported Cooperative Work
and Social Computing, pp. 260–273 (2016)

16. Lykourentzou, I., Wang, S., Kraut, R.E., Dow, S.P.: Team dating: a self-organized
team formation strategy for collaborative crowdsourcing. In: Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 1243–1249 (2016)

CrowdMashup: Recommending Crowdsourcing Teams 693

17. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
stanford coreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60 (2014)

18. Nasehi, S.M., Sillito, J., Maurer, F., Burns, C.: What makes a good code example?
A study of programming q&a in stackoverflow. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 25–34 (2012)

19. Pobiedina, N., Neidhardt, J., Calatrava Moreno, M.D.C., Werthner, H.: Ranking
factors of team success. In: Proceedings of the 22nd International Conference on
World Wide Web, pp. 1185–1194 (2013)

20. Rokicki, M., Zerr, S., Siersdorfer, S.: Groupsourcing: team competition designs
for crowdsourcing. In: Proceedings of the 24th International Conference on World
Wide Web, pp. 906–915 (2015)

21. Ryza, S., Laserson, U., Owen, S., Wills, J.: Advanced Analytics with Spark: Pat-
terns for Learning from Data at Scale (2017)

22. Salehi, N., McCabe, A., Valentine, M., Bernstein, M.: Huddler: convening sta-
ble and familiar crowd teams despite unpredictable availability. arXiv preprint
arXiv:1610.08216 (2016)

23. Saremi, R.L., Yang, Y., Ruhe, G., Messinger, D.: Leveraging crowdsourcing for
team elasticity: an empirical evaluation at topcoder. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP), pp. 103–112 (2017)

24. Stol, K.-J., Fitzgerald, B.: Researching crowdsourcing software development: per-
spectives and concerns. In: Proceedings of the 1st International Workshop on
CrowdSourcing in Software Engineering, pp. 7–10 (2014)

25. Wang, W., Jiang, J., An, B., Jiang, Y., Chen, B.: Toward efficient team formation
for crowdsourcing in noncooperative social networks. IEEE Trans. Cybern. 47(12),
4208–4222 (2017)

26. Yin, X., et al.: Social connection aware team formation for participatory tasks.
IEEE Access 6, 20309–20319 (2018)

27. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Comput. 12(5), 44–52 (2008)

28. Yue, T., Ali, S., Wang, S.: An evolutionary and automated virtual team making
approach for crowdsourcing platforms. In: Li, W., Huhns, M.N., Tsai, W.-T., Wu,
W. (eds.) Crowdsourcing. PI, pp. 113–130. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47011-4 7

http://arxiv.org/abs/1610.08216
https://doi.org/10.1007/978-3-662-47011-4_7
https://doi.org/10.1007/978-3-662-47011-4_7

	CrowdMashup: Recommending Crowdsourcing Teams for Mashup Development
	1 Introduction
	2 The CrowdMashup Approach
	2.1 Analysis of the Developer Community (ADC)
	2.2 Mashup Query Specification
	2.3 Crowdsourcing Team Generation (CTG)

	3 Implementation and Performance
	3.1 CrowdMashup Prototype
	3.2 Experiments

	4 Related Work
	5 Conclusion
	References

