)

Check for
updates

RLRecommender: A
Representation-Learning-Based
Recommendation Method for Business
Process Modeling

Huaging Wang, Lijie Wen®™) | Li Lin, and Jianmin Wang

School of Software, Tsinghua University, Beijing, China
whql6@mails.tsinghua.edu.cn, veralin1994@gmail.com,
{wenlj, jimwang}@tsinghua.edu.cn

Abstract. Most traditional business process recommendation methods
cannot deal with complex structures such as interacting loops, and they
cannot handle large complex datasets with a great quantity of processes
and activities. To address these issues, RLRecommender, a method based
on representation learning, is proposed. RLRecommender extracts three
kinds of relation sets from the models, both activities and relations
between them are projected into a continuous low-dimensional space,
and proper activity nodes are recommended by comparing the distances
in the space. The experimental results show that our method not only
outperforms other baselines on small dataset, but also performs effec-
tively on large dataset.

Keywords: Business process modeling + Ordering relations
Representation learning -+ Recommendation

1 Introduction

Business process models are constructed to describe the prescribed behavior of
business processes. One method to improve process modeling is process min-
ing. Nonetheless, most process mining algorithms rely on completely purified
event logs and real-world event logs are often noisy in most cases. Hence, pro-
cess modeling is usually conducted by analysts manually. Nevertheless, modeling
a business process from scratch is also highly complex, error-prone and time-
consuming. Thus, an accurate and efficient business process recommendation
method is required.

Business process recommendation has already been used in both academic
research and industry applications, and there are several existing works [1,2].
These traditional methods recommend the next nodes of an uncompleted model
by iterating all parts of all processes, and they have two main limitations:

1. These methods cannot deal with complex structures such as interacting loops
in Fig.1 (i.e., B and D, and C and D).
© Springer Nature Switzerland AG 2018

C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 478-486, 2018.
https://doi.org/10.1007/978-3-030-03596-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_34&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_34

Representation-Learning-Based Recommendation for Process Modeling 479

2. Existing methods cannot deal with large complex datasets with abundant
processes, whose activities complicatedly relate to each other.

To address these problems, business process repositories should be considered
as a whole. We find that business process repositories have several properties.
First, quite a few activities appear frequently through most processes. Second,
the flows in process models relate activities with each other. Thus, regarding
activities and relations between them as nodes and edges, process repositories
can be transformed into multi-relational data.

(02)

O—F—0—E—0—H—6
D
N

E—1C—F)

Fig. 1. An example for interacting loops

Recently, machine learning became a hot topic and there are a variety of
representation learning models to handle multi-relational data [3]. In represen-
tation learning models, multi-relational data is a directed graph whose nodes
are entities and edges are relations, and connections are represented as triples
(head entity, relation, tail entity). Existing representation learning models embed
both entities and relations into a continuous low-dimensional vector space [3],
and have been proven simple and effective in tasks such as entity prediction.

Motivated by this idea, RLRecommender, a representation-learning-based
recommendation method for process modeling, is proposed. To the best of our
knowledge, this is the first work that resolves process recommendation problem
using representation learning.

The remainder is organized as follows. In Sect. 2, we introduce RLRecom-
mender in detail. Experimental results are given in Sect. 3. Section 4 concludes
the paper and sketches future work.

2 The Representation-Learning-Based Method

Our method RLRecommender is composed of three phases: preprocessing, train-
ing and recommending as shown in Fig. 2. In this section, these three phases will
be presented one by one.

2.1 Preprocessing

Our first phase focuses on extracting relations between activities from Petri nets.
The definition of Petri nets can be found in [4]. Since the generated relation sets
can be saved at back-end, this part is conducted only once.

480 H. Wang et al.

Preprocessing Training

Extract
relations

(A, -»/<, B), (A, »/+, C)
(B, /<, D), (B, ~/«, E) =Input=>{TransE
(€, =/« D), (C, ~/«, E)
(D, /<, B), (D, /=, C)

Petri nets Relation set
Recommending

.—T (Al
® & Input

Current modeling step

(A, vector(A)), (8, vector(B)
(c, vector(C)), (D, vector(D))
(=/=, vector(Ry))

(e>—Al [E] (=7, vector(Ry))
D] «Output— (=/+, vector(Rs))
® ® 0 N .
: Find the activities
Recommendation result Trained model

Fig. 2. Overview of our method RLRecommender

“Direct After” Relations. For relation extraction, our first strategy (i.e.
RLafter) is to use only “direct after” relations, which is defined as follow.

Definition 1 (Direct after). In a Petri net N = (P, T, F), two transitions
x,y € T are in “direct after” relation (denoted as x — y) <= Tp € we, s.t.

y € pe.

The “direct after” relations can correctly depict the connections of transi-
tions. However, it cannot tell the differences between AND-splits and XOR-splits.

“Direct Causal” Relations. A combination of “direct causal” and “direct
inverse causal” is used as the relations as the second strategy (i.e. RLcausal).
We first define the two “direct causal” relations.

Definition 2 (Always/sometimes direct causal). In a Petri net N = (P, T, F):

— two transitions x,y € T are in “always direct causal” relation (denoted as
x—>»y) < dpE e, s.t. po = {y},

- two transitions x,y € T are in “sometimes direct causal” relation (denoted
asTr —y) <= xz—oyAz Ay

Two “direct inverse causal” relations are defined in a similar way (i.e. “always
inverse direct causal” relation (denoted as z «— y) and “sometimes inverse direct
causal” relation (denoted as x < y)).

The two “direct causal” relations describe the possible orders of transitions,
but they fail to distinguish transition groups {A, B} and {C, D} of the model
in Fig. 3.

Representation-Learning-Based Recommendation for Process Modeling 481

Fig. 3. An example that two “direct causal” relations cannot handle

“Direct Concurrent” Relations. We introduce “direct concurrent” relation
in the following. A combination of two “direct causal” relations and “direct
concurrent” relation is used as the third strategy (i.e. RLconcurrent).

Definition 3 (Always/never/sometimes direct concurrent). In a Petri net N =
(P, T, F):

— two transitions x,y € T are in “never direct concurrent” relation (denoted as
zly) < Ip e P, st x,y € pe,

- two transitions x,y € T are in “sometimes direct concurrent” relation
(denoted as x |+ y) <= Ip1,ps € te, t € T, p1 # pa, s.t. (|p1e] > 1V |pae| >
) Az €pie Ay € pre A(z fy),

— two transitions x,y € T are in “always direct concurrent” relation (denoted
asz ||y) < Ip1,p2 Ete, t € T ,p1 # pa, s.t. pre = {x}Apse = {ytA=(z }
y) Az lky).

When generating relation set, each “direct concurrent” relation would only
be recorded once between any pair of activities in the specific order such as
dictionary order (e.g. B || C is recorded while C' || B not).

The relation sets extracted from the model in Fig. 1 are shown in Table 1.

Table 1. The relation sets (direct after|direct causal/direct inverse causal|direct con-
current) extracted from the process model in Fig. 1

A|lB c D E
Al |=l=/=] -l =/
B | [l - =/« - =/«
c — =/« — =/«
Dl |=l—=/~] ol B Al | |4
E

2.2 Training a Representation Learning Model

The second phase of our method is to learn a representation learning model
through generated relation sets. This part can be done at back-end and the

482 H. Wang et al.

trained model can be saved and used for recommendation. The training model
we use is based on TransE [3].

For the training relation set T;., each triple (precursor activity, relation, suc-
cessor activity) (denoted as (p, 1, s)) is composed of two activities p, s € & (the
set of activities) and one relation r € #Z (the set of relations). The embeddings
take values in R*¥ (R*¥ means continuous k-dimensional vector space where k is
a model hyperparameter) and are denoted with the same letters, in boldface
characters (i.e. p, r, s € R¥). We want p + r ~ s when (p, r, s) holds and p +
r is far away from s otherwise. We use dissimilarity measure function d as the
distance measurement, and in this paper d stands for L1-norm (i.e. Manhattan
distance) while there are other choices such as L2-norm (i.e. Euclidean metric).

We minimize the margin-based loss function as the objective for training:

L= Z Z maz(y+d(p+r,s)—d(p +r,s),0) (1)

(p,ry8)ET (p’ ,T,SI)ET;

T, ={(p,rs)lp €} U{(p,r,s)s € 7} T, (2)

where +y is a margin hyperparameter, and TT, is a negative sampling set of training
set T,.. The triples in Trl are generated by replacing p or s in a triple in T, by
another activity. Note that a triple already in T;. will not be generated in TT,,. The
loss function L can reach minimum value only when d(p +7,s) < d(p +r,s")
for most (p, r, s).

2.3 Recommending

Our final phase is to recommend the activities using the trained model. After
training, the embedded vectors for activities and relations can be used for rec-
ommendation by predicting the successor activity in a triple. During process
modeling, the most suitable activities are recommended by traversing all activ-
ity vectors and calculating the distance with the sum of the vector of the previous
activity and the vector of the proper relation. Notice that the proper relation
can be either specified by user or chosen by the recommendation system.

More specifically, during the construction of one process, suppose the pre-
vious activity is p; € «/. For each relation set, we first check if each r; € Z is
valid after current position. Then we calculate the vector distance d(p; + r;, s;)
for each s; € &7. We then recommend K activities whose d(p; + 7, s;) are the
smallest. Here K is a parameter determined by user.

3 Experimental Evaluation

In this section, we first introduce the datasets and experiment settings. Then the
results on two different datasets are presented. The code, datasets and results
of our experiment are publicly accessible from GitHub!.

! https://github.com/THUBPM/RLRecommender/ .

https://github.com/THUBPM/RLRecommender/

Representation-Learning-Based Recommendation for Process Modeling 483

3.1 Datasets and Experiment Settings

Datasets. In this paper, two datasets are used to evaluate our method, including
large real dataset (LRD) [5] and small real dataset (SRD) [2]. The statistics of
them are listed in Table 2.

Notice that for LRD, we only use BPMN 1.1, BPMN 2.0 [6] and Petri net
models. All models are lowercased and only letters are retained, and non-English
models and the ones without activity names are deleted from the dataset. BPMN
models are transformed to Petri nets using the method in [7].

Table 2. Statistics of the two datasets used in the experiments

LRD |SRD
#Processes 23576 | 221
#Distinct activities 36801 | 52

#Activities per process |2-380 | 5-15
AND/XOR-split/join True | True
Cycle True | True

Other complex structures | True | False

Benchmarks. We use HitRate and F1 score to estimate the performance of
each method. For each position in a model, a list of K activity nodes are recom-
mended, denoted by A,. The set of activities that the real process actually has
at the current position is denoted by A;.

HitRate is the percentage of hits, which is defined as follow:

HitRate = #hit/#rec (3)

where #hit is the number of times when A, N A; # &, and #rec is the number
of recommendations.

F1 score is the harmonic mean of precision and recall, where precision and
recall are the percentage of correctly recommended activities in recommended
activity set and ground-truth activity set respectively. F1 score is defined as
follow:

F1 = (2 x Precision x Recall) / (Precision + Recall) (4)

Precision = (Z|A, NA) / (X]Ar]) (5)

Recall = (5|4, N A]) /(5] Ad) (6)

484 H. Wang et al.

Experiment Settings. Since the small dataset, benchmarks and experiment
protocol we use are the same as those in [2], we use the settings determined in
this paper for other state-of-the-art approaches.

For our method, we set the embedding dimension £ to 200, the margin value
~ in the loss function to 1.0, and the learning rate to 0.001. For the small and
large datasets, we train our model for 5000 and 1000 rounds, respectively.

The user could set K to a proper value due to the size of the dataset. We
conduct our experiment when recommendation number K is 1 to 5, we also show
the result for K =10 on LRD.

Experiments are conducted on an Intel Xeon E5-2620 v4@2.10 GHz CPU
computer with 128 G RAM, and three GeForce GTX 1080Ti GPU are used.

Experiment Protocol. We perform all experiments on SRD using five-fold
cross-validation. For LRD, we partition the 23576 models into 3041 models for
the testing set, 1759 models for the validation set and the rest for the training
set. For each model in the testing set, we conduct the experiment step by step
for each position.

For SRD, our method takes 2-3ms per recommendation. For LRD, our
method takes 0.1-0.3 s per recommendation.

3.2 Evaluation Based on Large Complex Real-Life Dataset

The other recommendation system failed to deal with LRD while our RLRecom-
mender is naturally capable of this situation. So we only conduct our methods
on this dataset. Figure4 shows the experimental results. We can conclude the
following:

1. All three methods achieve good accuracy performance. Since this dataset has
36801 distinct activities, we also test the situation when K =10, and the
HitRate is up to 89.2%, which is highly acceptable in real life.

2. Our methods cannot handle the situation when K =1, because the large
dataset contains too many activities and all models are complicated. Never-
theless, our methods perform well when K > 2.

3.3 Evaluation Based on Small Real-Life Dataset

We compared with three methods MCSD, xGED and xSED in [2] on SRD. The
results are shown in Fig. 5, from which we can observe that:

1. The RLRecommender based on “causal” and “concurrent” relations outper-
forms other methods on HitRate as recommendation number K increases.

2. For F1 score, our methods outperform the others most of the time. Especially,
when K =5, the improvement of F'1 score is up to 14.4%.

3. The methods based on “causal” and “concurrent” outperform “after” on
HitRate, while the latter performs better on FI score when K increases.

Representation-Learning-Based Recommendation for Process Modeling 485

~@— Rlafter
¢ RLcausal
08 040 —— RLconcurrent
0.35
0.6 0.30
[
©
0.25
% o
I 04 0.20
0.15
0.2
—@- Rlafter 0.10
—>¢ RLcausal
—&— RLconcurrent 0.05
12 3 a4 5 6 7 & s 10 1 2 3 4 5 & 7 & 9 10
Recommendation Number (K) Recommendation Number (K)
Fig. 4. Experimental results on LRD
—@- Rlafter
0.9 055 %~ RLcausal
—A— RLconcurrent
0.50 MCSD
0.8 ~*— xGED
—4— XxSED
0.45
JE 0.7
% o
= 0.40
T os6
—@- RLafter
¢ RLcausal 035
05 —A— RLconcurrent
MCSD 0.30
0.4 ~*— xGED
: —4— xSED
0.25
1 2 3 4 5 1 2 3 4 5
Recommendation Number (K) Recommendation Number (K)

Fig. 5. Experimental results on SRD

4. When K is small, such as K =1, traditional methods have higher HitRate
since they iterate all structures of the models and this dataset is small and
do not contain complex structures. Nevertheless, our methods still achieve
better performance on F1 score.

4 Conclusion and Future Work

A representation-learning-based recommendation method named RLRecom-
mender is proposed and it is the first recommendation method for process mod-
eling using representation learning. It first extracts the relations between activi-
ties with three strategies. Relation sets are then used to train the representation
learning model. The trained model is used in recommendation by finding the
nearest vector for each modeling step. Experiments show that RLRecommender
not only outperforms the state-of-the-art recommendation algorithms on small
real dataset, but also performs uniquely well on large real dataset.

Our future work would mainly focus on improving the accuracy by modifying
the current representation learning model. The current model only considers one
previous activity during recommendation, while several activities can be used
during one recommendation. We can also generate other kinds of relation set

486 H. Wang et al.

which may have positive effect on performance. Preliminary clustering can also
be conducted on activity labels in order to make recommendations based on
activities that relate to one another.

Acknowledgements. The work was supported by the National Key Research and
Development Program of China (No. 2016YFB1001101), the National Nature Science
Foundation of China (No. 61472207, No. 71690231), and BNRist.

References

o

Zhang, J., Liu, Q., Xu, K.: FlowRecommender: a workflow recommendation tech-
nique for process provenance. In: Proceedings of the Eighth Australasian Data Min-
ing Conference-Volume 101, pp. 55-61. Australian Computer Society, Inc. (2009)

. Deng, S., et al.: A recommendation system to facilitate business process modeling.

IEEE Trans. Cybern. 47(6), 1380-1394 (2017)

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787-2795 (2013)

Murata, T.: Petri nets: properties, analysis and applications. Proceed. IEEE 77(4),
541-580 (1989)

BPM Academic Initiative: BPMAI process model collection. http://bpmai.org/
OMG: Business Process Modeling Notation (BPMN) Version 2.0. (2011)

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inform. Softw. Technol. 50(12), 1281-1294 (2008)

http://bpmai.org/

	RLRecommender: A Representation-Learning-Based Recommendation Method for Business Process Modeling
	1 Introduction
	2 The Representation-Learning-Based Method
	2.1 Preprocessing
	2.2 Training a Representation Learning Model
	2.3 Recommending

	3 Experimental Evaluation
	3.1 Datasets and Experiment Settings
	3.2 Evaluation Based on Large Complex Real-Life Dataset
	3.3 Evaluation Based on Small Real-Life Dataset

	4 Conclusion and Future Work
	References

