
Claus Pahl
Maja Vukovic
Jianwei Yin
Qi Yu (Eds.)

 123

16th International Conference, ICSOC 2018
Hangzhou, China, November 12–15, 2018
Proceedings

Service-Oriented
ComputingLN

CS
 1

12
36

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 11236

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Claus Pahl • Maja Vukovic
Jianwei Yin • Qi Yu (Eds.)

Service-Oriented
Computing
16th International Conference, ICSOC 2018
Hangzhou, China, November 12–15, 2018
Proceedings

123

Editors
Claus Pahl
Free University of Bozen-Bolzano
Bolzano, Italy

Maja Vukovic
IBM Research
Thomas J. Watson Research Center
Yorktown Heights, NY, USA

Jianwei Yin
Zhejiang University
Hangzhou, China

Qi Yu
Rochester Institute of Technology
Rochester, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-03595-2 ISBN 978-3-030-03596-9 (eBook)
https://doi.org/10.1007/978-3-030-03596-9

Library of Congress Control Number: 2018960420

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-03596-9

Preface

The service-oriented computing (SOC) paradigm has established itself as an interdis-
ciplinary methodology that comprehensively addresses modern software development
needs. Service orientation combines established best-practice principles of modular-
ization and encapsulation, allowing architectures of large-scale software systems to be
designed, analyzed, and deployed successfully. The services paradigm enables the right
level of abstraction to achieve loosely coupled, independent, and reusable software
artifacts with well-defined interfaces. It has evolved into a technology to embody and
express the ubiquity of software that transforms our society from an industrial,
production-centric economy into a digital, service-centric economy. The International
Conference on Service-Oriented Computing (ICSOC) is the premier international
forum for academics, industry researchers, developers, and practitioners on all topics
related to services and service-oriented computing. ICSOC fosters cross-community
scientific innovation and excellence by gathering experts from various disciplines, such
as business process management, distributed systems, computer networks, wireless and
mobile computing, cloud computing, IoT and edge computing, cyber-physical systems,
networking, scientific workflows, services science, data science, management science,
and software engineering. Since the first edition in 2003, the ICSOC conference has
grown to become the top international forum in service-oriented computing for aca-
demics, industry researchers, developers, and practitioners to report and share the latest
research results and innovations.

ICSOC 2018, the 16th event in this series, took place in Hangzhou, Zhejiang, China,
during November 12–15, 2018. Following in the ICSOC tradition, it featured three
outstanding keynotes given by Schahram Dustdar (Technical University of Vienna,
Austria), Liming Zhu (Data61, CSIRO, Australia), and Jeff Zeng (Alibaba Group,
China), a research and industry presentations track, a panel session, as well as work-
shops, tool demonstrations, tutorials, and a PhD track.

This volume contains the proceedings of ICSOC 2018, the 16th International
Conference on Service-Oriented Computing. As with previous editions, this year’s call
for papers generated substantial interest from the community. A total of 273 research
and industry paper submissions were received from countries across all continents.
Each paper submission was carefully reviewed by at least three members of the Pro-
gram Committee (PC), followed by discussions moderated by a senior PC member who
made a recommendation in the form of a meta-review. The PC consisted of 172
world-class experts in service-oriented computing and related areas (151 PC members
and 21 senior PC members). The ICSOC 2018 program featured 40 full papers (ac-
ceptance rate of less than 15%) and 23 short papers. The selected papers cover a wide
variety of important topics in the area of service-oriented computing, including foun-
dational issues on service discovery and service-systems design, business process
modeling and management, economics of service-systems engineering, as well as

emerging concerns such as services in the cloud and edge, social networks, IoT, and
data analytics.

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2018. This high-quality program would not have been possible
without the expertise and dedication of our PC members, and in particular our senior
PC members, as well as the untiring efforts of the external reviewers. We are also
grateful for the guidance and commitment of the general chairs, Michael Sheng,
Zhaohui Wu and Xiaofei Xu, the workshop chairs (Xiao Liu, Michael Mrissa,
Liang Zhang), the PhD symposium chairs (Djamal Benslimane, Aditya Ghose,
Zhongjie Wang), the demonstration chairs (Antonio Bucchiarone, Wei Zhang,
Ying Zou), the panel chairs (Athman Bouguettaya, Jian Yang), the publicity chairs
(Bin Cao, Qiang He, Yanjun Shu, Paul de Vrieze), the publication chair (Qi Yu), the
finance chair (Bernd J. Krämer), the industry chairs (Min Fu, Lijie Wen), the spon-
sorship chairs (Dongjin Yu, Jun Shen), the Web chairs (Hai Dong, Adnan Mahmood),
the local organization chair (Shuiguang Deng), and the entire ICSOC Steering Com-
mittee. All of them helped make ICSOC 2018 a great success. Finally, we would like to
thank in particular all authors who submitted papers to the conference, and we con-
gratulate those authors whose papers appear in these proceedings. These papers reflect
the quality of the current state of the art in service-oriented computing research and
practice. We hope that you find these papers interesting and stimulating.

November 2018 Claus Pahl
Maja Vukovic
Jianwei Yin

VI Preface

Organization

General Chairs

Michael Sheng Macquarie University, Australia
Zhaohui Wu Zhejiang University, China
Xiaofei Xu Harbin Institute of Technology, China

Program Chairs

Claus Pahl Free University of Bozen-Bolzano, Italy
Maja Vukovic IBM Research, USA
Jianwei Yin Zhejiang University, China

Workshop Chairs

Xiao Liu Deakin University, Australia
Michael Mrissa University of Pau and Pays de l’Adour, France
Liang Zhang Fudan University, China

PHD Symposium Chairs

Djamal Benslimane Lyon University, France
Aditya Ghose University of Wollongong, Australia
Zhongjie Wang Harbin Institute of Technology, China

Demonstration Chairs

Antonio Bucchiarone FBK, Italy
Wei Zhang Macquarie University, Australia
Ying Zou Queen’s University, Canada

Panel Chairs

Athman Bouguettaya University of Sydney, Australia
Jian Yang Macquarie University, Australia

Local Organization Chair

Shuiguang Deng Zhejiang University, China

Publicity Chairs

Bin Cao Zhejiang University of Technology, China
Qiang He Swinburne University of Technology, Australia
Yanjun Shu Harbin Institute of Technology, China
Paul de Vrieze Bournemouth University, UK

Publication Chair

Qi Yu Rochester Institute of Technology, USA

Financial Chair

Bernd J. Krämer FernUniversität, Germany

Web Chairs

Hai Dong RMIT University, Australia
Adnan Mahmood Macquarie University, Australia

Industry Chairs

Min Fu Alibaba, China
Lijie Wen Tsinghua University, China

Sponsorship Chairs

Dongjin Yu Hangzhou Dianzi University, China
Jun Shen University of Wollongong, Australia

Steering Committee Liaison

Jian Yang Macquarie University, Australia

Steering Committee

Boualem Benatallah UNSW, Australia
Fabio Casati University of Trento, Italy
Bernd J. Krämer FernUniversität, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

VIII Organization

Senior Program Committee

Boualem Benatallah UNSW, Australia
Athman Bouguettaya The University of Sydney, Australia
Carlos Canal University of Malaga, Spain
Fabio Casati University of Trento, Italy
Flavio De Paoli Università di Milano Bicocca, Italy
Schahram Dustdar TU Wien, Austria
Xavier Franch Universitat Politècnica de Catalunya, Spain
Aditya Ghose University of Wollongong, Australia
Mohand Said Hacid University of Lyon, France
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
Gustavo Rossi UNLP, Argentina
Antonio Ruiz-Cortés University of Seville, Spain
Michael Sheng Macquarie University, Australia
Stefan Tai TU Berlin, Germany
Zahir Tari RMIT University, Australia
Samir Tata IBM Research, USA
Antonio Vallecillo University of Malaga, Spain
Mathias Weske HPI/University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Program Committee

Marco Aiello University of Stuttgart, Germany
Pedro Álvarez University of Zaragoza, Spain
Vasilios Andrikopoulos University of Groningen, The Netherlands
Alvaro Arenas Instituto de Empresa Business School, Spain
Ebrahim Bagheri Ryerson University, Canada
Luciano Baresi Politecnico di Milano, Italy
Thais Batista UFRN, Brazil
Moez Ben Haj Hmida National Engineering School of Tunis, Tunisia
Salima Benbernou Université Paris Descartes, France
Djamal Benslimane University of Lyon, France
Sami Bhiri Telecom SudParis, France
Domenico Bianculli University of Luxembourg, Luxembourg
Walter Binder University of Lugano, Switzerland
Juan Boubeta-Puig University of Cádiz, Spain
Omar Boucelma Aix-Marseille University, France
Lars Braubach Hochschule Bremen, Germany
Antonio Brogi University of Pisa, Italy
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Christoph Bussler Oracle Corporation, USA
Cristina Cabanillas Vienna University of Economics and Business, Austria

Organization IX

Wing-Kwong Chan City University of Hong Kong, Hong Kong, SAR China
Francois Charoy University of Lorraine, France
Faouzi Ben Charrada University of Tunis El Manar, Tunisia
Sanjay Chaudhary Ahmedabad University, India
Liang Chen Sun Yat-Sen University, China
Shiping Chen CSIRO, Australia
Lawrence Chung The University of Texas at Dallas, USA
Carlos E. Cuesta Rey Juan Carlos University, Spain
Edward Curry Insight Centre, Ireland
Hoa Khanh Dam University of Wollongong, Australia
Florian Daniel Politecnico di Milano, Italy
Bruno Defude Telecom SudParis, France
Shuiguang Deng Zhejiang University, China
Nirmit Desai IBM T.J. Watson Research Center, USA
Hai Dong RMIT University, Australia
Khalil Drira LAAS Toulouse, France
Yucong Duan Hainan University, China
Joyce El Haddad Paris Dauphine University, France
Abdelkarim Erradi Qatar University, Qatar
Rik Eshuis Eindhoven University of Technology, The Netherlands
Onyeka Ezenwoye Augusta University, USA
Noura Faci Université Lyon 1, CNRS, France
Marcelo Fantinato University of São Paulo, Brazil
Zhiyong Feng University of Posts and Telecommunications, China
Pablo Fernandez University of Seville, Spain
Joao E. Ferreira University of São Paulo, Brazil
George Feuerlicht University of Technology Sydney, Australia
Marios-Eleftherios

Fokaefs
York University, Canada

Xiang Fu Hofstra, USA
Walid Gaaloul Telecom SudParis, France
N. D. Gangadhar M S Ramaiah University of Applied Sciences, India
G. R. Gangadharan IDRBT, India
Claude Godart University of Lorraine, France
Mohamed Graiet ISIMM, Tunisia
Sven Graupner HP Labs, USA
Daniela Grigori Paris Dauphine University, France
Georg Grossmann University of South Australia, Australia
Nawal Guermouche Université de Toulouse, France
Amin Haller Australian National University, Australia
Jun Han Swinburne University of Technology, Australia
Chihab Hanachi IRIT Laboratory, Toulouse University, France
Qiang He Swinburne University of Technology, Australia
Richard Hull IBM Research, USA
Fuyuki Ishikawa National Institute of Informatics, Japan
Pooyan Jamshidi Columbia University, USA

X Organization

Hai Jin HUST, China
Ejub Kajan State University of Novi Pazar, Serbia
Anup Kumar Kalia IBM T.J. Watson Research Center, USA
Dimka Karastoyanova Kuehne Logistics University, The KLU, Germany
Nima Kaviani IBM, USA
Raman Kazhamiakin Fondazione Bruno Kessler, Italy
Marouane Kessentini University of Michigan, USA
Kais Klai University of Paris 13, France
Ryan Ko University of Waikato, New Zealand
Gerald Kotonya Lancaster University, UK
Philippe Lalanda Joseph Fourier University, France
Manuel Lama University of Santiago de Compostela, Spain
Henrik Leopold VU University Amsterdam, The Netherlands
Frank Leymann University of Stuttgart, Germany
Bin Li Wuhan University, China
Ying Li Zhejiang University, China
Marin Litoiu York University, Canada
Xuanzhe Liu Peking University, China
Xumin Liu Rochester Institute of Technology, USA
Zakaria Maamar Zayed University, United Arab Emirates
Zaki Malik Texas A & M University – Commerce, USA
Maude Manouvrier Paris Dauphine University, France
Massimo Mecella SAPIENZA Università di Roma, Italy
Brahim Medjahed University of Michigan – Dearborn, USA
Tommi Mikkonen University of Helsinki, Finland
Sumaira Sultan Minhas Fatima Jinnah Women University, Pakistan
Raffaela Mirandola Politecnico di Milano, Italy
Lars Moench University of Hagen, Germany
Naouel Moha UQAM, Canada
Mohamed Mohamed IBM Almaden, USA
Hamid Reza

Motahari-Nezhad
IBM Research, USA

Carla Mouradian Concordia University, Canada
Michael Mrissa University of Pau and Pays de l’Adour, France
Juan Manuel Murillo University of Extremadura, Spain
Nanjangud C. Narendra Ericsson Research, India
Surya Nepal CSIRO, Australia
Anne Ngu Texas State University, USA
Talal H. Noor Taibah University, Saudi Arabia
Alex Norta Tallinn University of Technology, Estonia
Guadalupe Ortiz University of Cádiz, Spain
Helen Paik UNSW, Australia
Olivier Perrin Lorraine University, France
Ernesto Pimentel University of Malaga, Spain
Pierluigi Plebani Politecnico di Milano, Italy
Pascal Poizat Université Paris Nanterre and LIP6, France

Organization XI

Karthikeyan Ponnalagu Robert Bosch India, India
Mu Qiao IBM Almaden Research Center, USA
Manfred Reichert University of Ulm, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Stefanie Rinderle-Ma University of Vienna, Austria
Colette Roland Université Paris 1 Panthéon Sorbonne, France
Diptikalyan Saha IBM Research India, India
Iman Saleh University of Miami, USA
Stefan Schulte TU Vienna, Austria
Aviv Segev KAIST, Republic of Korea
Lionel Seinturier University of Lille, France
Mohamed Sellami ISEP, France
Jun Shen University of Wollongong, Australia
Ignacio Silva-Lepe IBM, USA
Sergey Smirnov SAP, Germany
George Spanoudakis City University London, UK
Eleni Stroulia University of Alberta, Canada
Yehia Taher University of Versailles-St-Quentin-en-Yvelines, France
Monica Vitali Politecnico di Milano, Italy
Guiling Wang North China University of Technology, China
Jianmin Wang Tsinghua University, China
Jianwu Wang University of Maryland, USA
Xianzhi Wang Singapore Management University, Singapore
Yan Wang Macquarie University, Australia
Zhongjie Wang Harbin Institute of Technology, China
Ingo Weber Data61, CSIRO, Australia
Jun Wei Institute of Software, Chinese Academy of Sciences, China
Matthias Weidlich Humboldt-Universität zu Berlin, Germany
Lijie Wen Tsinghua University, China
Jin Xiao IBM T.J. Watson Research Center, USA
Hanchuan Xu Harbin Institute of Technology, China
Lina Yao UNSW, Australia
Sira Yongchareon Auckland University of Technology, New Zealand
Jian Yu Auckland University of Technology, New Zealand
Qi Yu Rochester Institute of Technology, USA
Gianluigi Zavattaro University of Bologna, Italy
Uwe Zdun Vienna University of Technology, Austria
Weiliang Zhao Macquarie University, Australia
Yan Zheng Aalto University/Xidian University, Finland
Zibin Zheng Sun Yat-sen University, China
Zhangbing Zhou China University of Geosciences, China
Olaf Zimmermann University of Applied Sciences of Eastern Switzerland

(HSR FHO), Switzerland
Floriano Zini University of Bologna, Italy
Christian Zirpins Karlsruhe University of Applied Sciences, Germany

XII Organization

Andrea Zisman City University London, UK
Ying Zou Queen’s University, Canada

Additional Reviewers

Nabil El Ioini Free University of Bozen-Bolzano, Italy
Ilenia Fronza Free University of Bozen-Bolzano, Italy
Martina De Sanctis Fondazione Bruno Kessler, Italy
Mahesh Babu

Jayaraman
Ericsson Research, India

Ramamurthy Badrinath Ericsson Research, India
Rafiqul Haque Cognitus R&D, UK
Frédéric Camps University of Toulouse, France
Nicolas Seydoux University of Toulouse, France
Ahlem Rhayem University of Sfax, Tunisia
V. S. Yerragudi Ramaiah University of Applied Sciences, India
Jonathan Sid-Otmane Sorbonne Université, France
Pierre Sutra Telecom SudParis, France
Donatella Firmani Università Roma Tre, Italy
Silvia Bonomi Sapienza Università di Roma, Italy
Umberto Grandi University of Toulouse 1 Capitole, France
Qianli Xing Macquarie University, Australia
Feng Zhu Macquarie University, Australia
Qi Wang Macquarie University, Australia
Burkhard Hoppenstedt Ulm University, Germany
Michael Stach Ulm University, Germany
Sebastian Steinau Ulm University, Germany
Kevin Andrews Ulm University, Germany
Yu Zhao Queen’s University, Canada
Guoliang Zhao Queen’s University, Canada
Taher Ahmed Ghaleb Queen’s University, Canada
Ehsan Noei Queen’s University, Canada
Weishi Shi Rochester Institute of Technology, USA
Minxun Zheng Rochester Institute of Technology, USA
Moayad Alshangiti Rochester Institute of Technology, USA
Sana Sellami Aix-Marseille Université, France
Shushu Liu Aalto University, Finland
Chen Liu North China University of Technology, China

Organization XIII

Abstract of Keynotes

Engineering the Smart Fabric of IoT, Services,
and Systems

Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria
dustdar@dsg.tuwien.ac.at
http://dsg.tuwien.ac.at

Abstract. This presentation explores the integration of people, software ser-
vices, and things with their data, into a novel resilient ecosystem, which can be
modeled, programmed, and deployed on a large scale in an elastic way. This
novel paradigm has major consequences on how we view, build, design, and
deploy ultra-large scale distributed systems and establishes a novel foundation
for an “architecture of value” driven Smart City.

In particular, this keynote talk addresses three novel paradigms for designing
the service-oriented information systems of the future: Elastic Computing,
Social Compute Units, and Osmotic Computing. These three paradigms serve as
a foundation for future large-scale distributed systems. Furthermore, we will
discuss our responsibilities as computer scientists, technologists, and researchers
for creating technologies, which benefit society in a positive way, thereby
strengthening the new fabric of interconnected people, software services, and
things into a novel resilient ecosystem.

Keywords: Internet of Things � Smart Cities � Cloud Computing

Distributed Trust: How Data-Driven
Applications, AI and Blockchain is Impacting

Service Oriented Computing

Liming Zhu1,2

1 Data61, CSIRO, 13 Garden Street, Eveleigh, NSW, Australia
liming.zhu@data61.csiro.au
http://data61.csiro.au/

2 School of Computer Science and Engineering,
University of New South Wales, Kensington, NSW, Australia

Abstract. A key premise of service oriented computing is about trusting the
computing behind the service interface. This often relies on trusting the entities
running the services and the algorithms behind the services. These assumptions
are being challenged. Trust in institutions is at its historical low while our life is
increasingly decided by complex data-driven algorithmic learnings that humans
do not fully understand. This talk will discuss the emerging of distributed trust
and how it may help improve trust in services and deal with black-box algo-
rithmic decision making. The talk will also discuss the role of consumer data
rights (a new legislation Australian government is introducing with Data61
being the standard setter) in driving new trustworthy service oriented
applications.

Deep Insight of End to End E-Commerce
Business Management

Abstract. In the context of E-Commerce eco-system, there are hundreds of
millions of consumers, thousands of businesses and shops, and hundreds of
delivery people. Alibaba Group, as one of the main E-Commerce providers,
cooperates with tens of thousands of software vendors to provide all necessary
software services to support the business. With the booming of eco-business,
more ecological roles in E-Commerce businesses emerge. For instance, Alibaba
Group has expanded its business scale from Taobao Software to several business
units, with 10000 plus technical staff. Large E-Commerce businesses such as
Alibaba Group need to support a large number of applications and business
modules, and cater for hundreds of business requirements and independent
changes on a daily basis. As such, there are several changes: (1) we lack a
requirement management mechanism from a full business chain perspective,
resulting in low cooperation efficiency; (2) The business and the platform are not
well separated, which makes it unable to support self-development of the
business; (3) The business customization is performed from the system’s per-
spective, instead of the full business chain’s perspective, thus bringing much
inconvenience to developers who need to understand hundreds of systems
during one round of business customization; (4) there is a lack of cross-market,
highly reusable and transplantable business assets.

In light of the above-mentioned challenges, we develop a product named
Halo. The main ideas of Halo are as below:

(1) Separation among businesses. Each business is assigned with a unique
“identity mark”, which is used for loading and executing the business
customization according to its identity, grouping and routing the business
sets based on their identities, monitoring and guaranteeing businesses with
intended identities. This ensures that the change of a business will not
affect another business.

(2) Scenario-based business capability SDKs. Based on the E-Commerce
eco-system of Alibaba Group, we extract several business capabilities,
each of which is mapped with a business customization SDK from the full
business chain’s perspective. All developers need to do is to understand
and apply these SDKs, which can be automatically deployed into the
targeted physical applications.

(3) Dynamic business deployment using containers. For large-scale distributed
applications, the use of containers is able to realize the rapid, incremental
and dynamic deployment and publishing of business customization
packages.

(4) Clear business definitions. Based on the separation of the management
domain and execution domain, we can define and present the visualization
of the businesses. Based on the same business execution framework, we
can realize the dream of “define once, execute at all places”, and make sure
that the business semantics inside the full business chain are consistently
understood by all the staff.

Based on those design ideas and decisions, we started developing Halo since
2015. Until now, Halo has been successfully applied in upgrading the systems of
several core business platforms, including the trading platform, the commodity
platform, the marketing platform and the fund platform. Compared to the old
mechanism, the use of Halo significantly reduces the threshold required for
developing the business customization, and increases development efficiency to
a large extent. Meanwhile, with the scenario-based business capability SDKs, it
is easier to achieve high reusability of business logics (e.g. pre-sale, e-certificate,
virtual commodities, payment on arrival of goods, etc.) in a cross-market and
cross-region manner.

Short Bio

Jeff Zeng is a senior staff engineer at Alibaba Group. He is now leading the core trade
platform which is the foundation of Alibaba’s key business. Jeff is also in charge of
Alibaba financial platform and business innovation by applying block chain technol-
ogy. Prior to this, he was a Global development Director of Small and Medium
Enterprise at SAP. He has been working on global enterprise product development in
the Internet industry for about 10 years. Jeff received his master degree from East China
Normal University, and bachelor degree from Shanghai University.

XX Deep Insight of End to End E-Commerce Business Management

Contents

Microservices

Microscope: Pinpoint Performance Issues with Causal Graphs
in Micro-service Environments . 3

Jinjin Lin, Pengfei Chen, and Zibin Zheng

Architecture-Based Automated Updates of Distributed Microservices 21
Fabienne Boyer, Xavier Etchevers, Noel de Palma, and Xinxiu Tao

Function-Splitting Heuristics for Discovery of Microservices
in Enterprise Systems . 37

Adambarage Anuruddha Chathuranga De Alwis, Alistair Barros,
Artem Polyvyanyy, and Colin Fidge

Services and Processes

High Performance Userspace Networking for Containerized Microservices . . . 57
Xiaohui Luo, Fengyuan Ren, and Tong Zhang

Guiding Architectural Decision Making on Quality Aspects
in Microservice APIs . 73

Uwe Zdun, Mirko Stocker, Olaf Zimmermann, Cesare Pautasso,
and Daniel Lübke

Adaptive Temporal Verification and Violation Handling
for Time-Constrained Business Cloud Workflows . 90

Haoyu Luo, Xiao Liu, Jin Liu, Bo Han, and Yun Yang

Towards Creating Business Process Models from Images 100
Neelamadhav Gantayat, Giriprasad Sridhara, Anush Sankaran,
Sampath Dechu, Senthil Mani, and Gargi B. Dasgupta

Service Trust and Security

Empowering Business-Level Blockchain Users with a Rules Framework
for Smart Contracts . 111

Tara Astigarraga, Xiaoyan Chen, Yaoliang Chen, Jingxiao Gu,
Richard Hull, Limei Jiao, Yuliang Li, and Petr Novotny

Context-Aware Trustworthy Service Evaluation in Social Internet of Things . . . 129
Maryam Khani, Yan Wang, Mehmet A. Orgun, and Feng Zhu

Cloudchain: A Blockchain-Based Coopetition Differential Game Model
for Cloud Computing. 146

Mona Taghavi, Jamal Bentahar, Hadi Otrok, and Kaveh Bakhtiyari

Business Services and Processes

Prediction of Invoice Payment Status in Account Payable Business Process . . . 165
Tarun Tater, Sampath Dechu, Senthil Mani, and Chandresh Maurya

Explaining Non-compliance of Business Process Models
Through Automated Planning . 181

Fabrizio Maria Maggi, Andrea Marrella, Giuseppe Capezzuto,
and Abel Armas Cervantes

A Genetic Algorithm for Cost-Aware Business Processes Execution
in the Cloud . 198

Guillaume Rosinosky, Samir Youcef, and François Charoy

Edge + IoT Services

Latency-Aware Placement of Data Stream Analytics on Edge Computing. . . . 215
Alexandre da Silva Veith, Marcos Dias de Assunção,
and Laurent Lefèvre

Optimal Edge User Allocation in Edge Computing with Variable Sized
Vector Bin Packing . 230

Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking,
John Grundy, and Yun Yang

RA-FSD: A Rate-Adaptive Fog Service Delivery Platform 246
Tiehua Zhang, Jiong Jin, and Yun Yang

A Service-Based Declarative Approach for Capturing Events from Multiple
Sensor Streams . 255

Zhongmei Zhang, Chen Liu, Xiaohong Li, and Yanbo Han

Response Time Aware Operator Placement for Complex Event Processing
in Edge Computing . 264

Xinchen Cai, Hongyu Kuang, Hao Hu, Wei Song, and Jian Lü

Enacting Emergent Configurations in the IoT Through Domain Objects 279
Fahed Alkhabbas, Martina De Sanctis, Romina Spalazzese,
Antonio Bucchiarone, Paul Davidsson, and Annapaola Marconi

Energy-Delay Co-optimization of Resource Allocation for Robotic Services
in Cloudlet Infrastructure . 295

Mahbuba Afrin, Jiong Jin, and Ashfaqur Rahman

XXII Contents

Services in IoT: A Service Planning Model Based on Consumer Feedback. . . 304
Christian Cabrera, Andrei Palade, Gary White, and Siobhán Clarke

Social and Interactive Services

Crowdsourcing Task Scheduling in Mobile Social Networks 317
Jiahao Fan, Xinbo Zhou, Xiaofeng Gao, and Guihai Chen

Cognitive System to Achieve Human-Level Accuracy in Automated
Assignment of Helpdesk Email Tickets . 332

Atri Mandal, Nikhil Malhotra, Shivali Agarwal, Anupama Ray,
and Giriprasad Sridhara

Crowdsourcing Energy as a Service. 342
Abdallah Lakhdari, Athman Bouguettaya, and Azadeh Ghari Neiat

Social-Sensor Composition for Scene Analysis . 352
Tooba Aamir, Hai Dong, and Athman Bouguettaya

QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing . . . 363
Chenlin Liu, Xiaofeng Gao, Fan Wu, and Guihai Chen

Recommendation

Expert Recommendation via Tensor Factorization with Regularizing
Hierarchical Topical Relationships. 373

Chaoran Huang, Lina Yao, Xianzhi Wang, Boualem Benatallah,
Shuai Zhang, and Manqing Dong

Software Service Recommendation Base on Collaborative Filtering
Neural Network Model . 388

Liang Chen, Angyu Zheng, Yinglan Feng, Fenfang Xie, and Zibin Zheng

A Weighted Meta-graph Based Approach for Mobile Application
Recommendation on Heterogeneous Information Networks. 404

Fenfang Xie, Liang Chen, Yongjian Ye, Yang Liu, Zibin Zheng,
and Xiaola Lin

Temporal-Sparsity Aware Service Recommendation Method via Hybrid
Collaborative Filtering Techniques . 421

Shunmei Meng, Qianmu Li, Shiping Chen, Shui Yu, Lianyong Qi,
Wenmin Lin, Xiaolong Xu, and Wanchun Dou

QoS-Aware Web Service Recommendation with Reinforced
Collaborative Filtering . 430

Guobing Zou, Ming Jiang, Sen Niu, Hao Wu, Shengye Pang,
and Yanglan Gan

Contents XXIII

Unit of Work Supporting Generative Scientific Workflow Recommendation . . . 446
Jia Zhang, Maryam Pourreza, Seungwon Lee, Ramakrishna Nemani,
and Tsengdar J. Lee

Mobile Crowdsourced Sensors Selection for Journey Services. 463
Ahmed Ben Said, Abdelkarim Erradi, Azadeh Gharia Neiat,
and Athman Bouguettaya

RLRecommender: A Representation-Learning-Based Recommendation
Method for Business Process Modeling . 478

Huaqing Wang, Lijie Wen, Li Lin, and Jianmin Wang

Service Analytics

Domain Knowledge Driven Key Term Extraction for IT Services 489
Prateeti Mohapatra, Yu Deng, Abhirut Gupta, Gargi Dasgupta,
Amit Paradkar, Ruchi Mahindru, Daniela Rosu, Shu Tao,
and Pooja Aggarwal

An Adaptive Semi-local Algorithm for Node Ranking in Large
Complex Networks . 505

Fanghua Ye, Chuan Chen, Jie Zhang, Jiajing Wu, and Zibin Zheng

User Location Prediction in Mobile Crowdsourcing Services 515
Yun Jiang, Wei He, Lizhen Cui, and Qian Yang

Leveraging Regression Algorithms for Process Performance Predictions. 524
Karthikeyan Ponnalagu, Aditya Ghose, and Hoa Khanh Dam

Using Machine Learning to Provide Differentiated Services in SDN-like
Publish/Subscribe Systems for IoT . 532

Yulong Shi, Yang Zhang, Hans-Arno Jacobsen, Bo Han, Mengxi Wei,
Runyuan Li, and Junliang Chen

Quality of Service

Constraint-Based Model-Driven Testing of Web Services
for Behavior Conformance . 543

Chang-ai Sun, Meng Li, Jingting Jia, and Jun Han

QoS Optimization of Service Clouds Serving Pleasingly Parallel Jobs 560
Xiulin Li, Li Pan, Shijun Liu, Yuliang Shi, and Xiangxu Meng

Estimating the Performance of Cloud-Based Systems Using Benchmarking
and Simulation in a Complementary Manner . 576

Haan Johng, Doohwan Kim, Tom Hill, and Lawrence Chung

XXIV Contents

Two-Phase Web Service QoS Prediction with Restricted
Boltzmann Machine. 592

Lu Chen, Yuyu Yin, Yueshen Xu, Liang Chen, and Jian Wan

Service Engineering

Constructing and Evaluating an Evolving Web-API Network
for Service Discovery . 603

Olayinka Adeleye, Jian Yu, Sira Yongchareon, and Yanbo Han

Stigmergic Service Composition and Adaptation in Mobile Environments . . . 618
Andrei Palade, Christian Cabrera, Gary White, and Siobhán Clarke

State of the Practice in Service Identification for SOA
Migration in Industry. 634

Manel Abdellatif, Geoffrey Hecht, Hafedh Mili, Ghizlane Elboussaidi,
Naouel Moha, Anas Shatnawi, Jean Privat, and Yann-Gaël Guéhéneuc

A Truthful Mechanism for Optimally Purchasing IaaS Instances
and Scheduling Parallel Jobs in Service Clouds. 651

Bingbing Zheng, Li Pan, Dong Yuan, Shijun Liu, Yuliang Shi,
and Lu Wang

Convenience-Based Periodic Composition of IoT Services 660
Bing Huang, Athman Bouguettaya, and Azadeh Ghari Neiat

CrowdMashup: Recommending Crowdsourcing Teams
for Mashup Development . 679

Faisal Binzagr and Brahim Medjahed

A Variation Aware Composition Model for Dynamic Web
Service Environments . 694

Soumi Chattopadhyay and Ansuman Banerjee

A Model-Driven Framework for Automated Generation and Verification
of Cloud Solutions from Requirements . 714

Hamid R. Motahari Nezhad, Taiga Nakamura, Adi Sosnovich,
Peifeng Yin, and Karen Yorav

Service Applications

Healthcare Application Migration in Compliant Hybrid Clouds 725
Anca Sailer, Bo Yang, Siddharth Jain, Angel E. Tomala-Reyes,
Manu Singh, and Anirudh Ramnath

Contents XXV

DAliM: Machine Learning Based Intelligent Lucky Money Determination
for Large-Scale E-Commerce Businesses . 740

Min Fu, Chi Man Wong, Hai Zhu, Yanjun Huang, Yuanping Li,
Xi Zheng, Jia Wu, Jian Yang, and Chi Man Vong

Service-Oriented Approach for Analytics in Industry 4.0 756
Philippe Lalanda and Denis Morand

eTOUR: A Two-Layer Framework for Tour Recommendation
with Super-POIs . 771

Chunwei Wang, Yuanning Gao, Xiaofeng Gao, Bin Yao,
and Guihai Chen

Service Management

Hierarchical Recursive Resource Sharing for Containerized Applications 781
Young Jin Kim, Young Choon Lee, Hyuck Han, and Sooyong Kang

A Fuzzy-Based Auto-scaler for Web Applications in Cloud
Computing Environments . 797

Bingfeng Liu, Rajkumar Buyya, and Adel Nadjaran Toosi

Runtime Monitoring in Continuous Deployment by Differencing
Execution Behavior Model . 812

Monika Gupta, Atri Mandal, Gargi Dasgupta, and Alexander Serebrenik

Leveraging Computational Reuse for Cost- and QoS-Efficient Task
Scheduling in Clouds. 828

Chavit Denninnart, Mohsen Amini Salehi, Adel Nadjaran Toosi,
and Xiangbo Li

QKnober: A Knob-Based Fairness-Efficiency Scheduler for Cloud
Computing with QoS Guarantees . 837

Shanjiang Tang, Ce Yu, Chao Sun, Jian Xiao, and Yinglong Li

Energy-Efficient and Quality of Experience-Aware Resource Provisioning
for Massively Multiplayer Online Games in the Cloud. 854

Yongqiang Gao, Lin Wang, Zhulong Xie, Wenhui Guo, and Jiantao Zhou

A Cost-Effective Deadline-Constrained Scheduling Strategy for a
Hyperparameter Optimization Workflow for Machine Learning Algorithms . . . 870

Yan Yao, Jian Cao, and Zitai Ma

Transparently Capturing Execution Path of Service/Job Request Processing . . . 879
Yong Yang, Long Wang, Jing Gu, and Ying Li

Author Index . 889

XXVI Contents

Microservices

Microscope: Pinpoint Performance Issues
with Causal Graphs in Micro-service

Environments

Jinjin Lin, Pengfei Chen(B), and Zibin Zheng

School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
linjj23@mail2.sysu.edu.cn

{chenpf7,zhzibin}@mail.sysu.edu.cn

Abstract. Driven by the emerging business models (e.g., digital sales)
and IT technologies (e.g., DevOps and Cloud computing), the archi-
tecture of software is shifting from monolithic to microservice rapidly.
Benefit from microservice, software development, and delivery processes
are accelerated significantly. However, along with many micro services
running in the dynamic cloud environment with complex interactions,
identifying and locating the abnormal services are extraordinarily diffi-
cult. This paper presents a novel system named “Microscope” to identify
and locate the abnormal services with a ranked list of possible root causes
in Micro-service environments. Without instrumenting the source code of
micro services, Microscope can efficiently construct a service causal graph
and infer the causes of performance problems in real time. Experimental
evaluations in a micro-service benchmark environment show that Micro-
scope achieves a good diagnosis result, i.e., 88% in precision and 80% in
recall, which is higher than several state-of-the-art methods. Meanwhile,
it has a good scalability to adapt to large-scale micro-service systems.

Keywords: Microservice · Kubernetes · Root cause analytics
Cloud computing

1 Introduction

Nowadays, driven by the emerging business models (e.g., digital sales) and IT
technologies (e.g., DevOps and Cloud computing), the architecture of software is
shifting from monolithic to microservice [20] architecture rapidly. With microser-
vice architecture, an application is decoupled into many loosely distributed fine-
grained services with complex interactions. Usually, these services are connected
by some light-weight network protocols such as REST and RPC protocols. But
each of them has simple and independent functions following the SRP (Single
Responsibility Principle) [20]. The microservice architecture has enabled soft-
ware systems with new properties such as strong scalability, agile development,
fast delivery, and so on. Even though, performance problems are not uncommon

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-030-03596-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_1

4 J. Lin et al.

in microservice systems due to external (e.g., configuration changes) and inter-
nal (e.g., software bugs) impairments [7], which brings significant impacts on
enterprise revenues. According to [14], Amazon experiences 1% decrease in sales
for additional 100 ms delay in response time per request while Google reports a
20% drop in traffic due to 500 ms delay in response time.

To keep microservices running continuously and reliably, it is necessary to
detect undesirable performance problems and pinpoint potential root causes.
However, it is notoriously difficult to achieve that in microservice environments
due to the following challenges:

• Complex network dependencies. With a microservice architecture, an
application is decoupled into many fine-grained components with an extraor-
dinarily complex network topology. Moreover, to connect different micro ser-
vices wrapped in a container, an overlay network such as flannel is always
adopted, which further increases the complexity of performance diagnosis.

• Continuous integration and delivery. A microservice system is evolving
all the time with continuous integration and delivery technologies. According
to a DevOps report from Puppet [1], an enterprise may have 1600 updates a
year. That means the anomaly detection and root cause diagnosis procedure
should adapt to these changes in order to achieve better results.

• Dynamic run-time environment. A microservice system often runs in a
containerized environment where the states of containers change frequently.
The highly dynamic environment exacerbates the difficulty of performance
diagnosis.

• A large volume of monitoring metrics. Since so many services co-exist
in micro-service systems, the volume of monitoring metrics (e.g., response
time) of these services is very large. The paper [23] states that Netflix, Uber
and OpenStack has 2,000,000 metrics, 500,000,000 metrics, and 17608 metrics
respectively to monitor. How to pinpoint the root causes = from these data
is a challenging problem.

Extensive studies have been done to resolve performance diagnosis prob-
lems in distributed systems. However, they either (e.g., X-Trace [12], Roots [15])
require to modify the source code of applications or platforms to obtain the ser-
vice dependencies or cannot adapt to the dynamics of microservice environments
(e.g., CauseInfer [7]). In order to address the aforementioned challenges and
shortages of previous work, we propose Microscope, a novel system to identify
performance problems and infer root causes with causal graphs towards microser-
vice systems. It basically comprises three procedures, namely data collection,
causality graph building, and cause inference. Once an anomaly is detected in
front-end services, a causality graph which denotes the anomaly propagation
paths is constructed automatically. Then the cause inference procedure is trig-
gered to pinpoint root cause with the causal graph. The causality graph is built
with no need domain knowledge and instrumenting the application. Microscope
leverages a conditioned graph traversing algorithm to locate the root causes
rather than a brute-force search, which significantly reduces the volume of per-
formance metrics to process. Moreover, Microscope works in real-time mode

Microscope: Pinpoint Performance Issues in Micro-service Environments 5

to adapt to the dynamics of microservice environments. We developed a proto-
type system and validated its effectiveness in a microservices benchmark, namely
Sock-shop [2], managed by Kubernetes. The results show Microscope achieves an
average 88% precision for root cause identification outperforming several state-
of-the-art methods. Meanwhile, it can be applied in a large distributed system
without a significant accuracy lose.

The contributions made by this paper are threefold:

• We propose a novel service dependency discovery method through capturing
and parsing the network-related system calls, which works automatically to
capture the real service instances dependency in real time.

• We provide a parallelized service causality graph building method based
on the service dependency and service impact graph co-located in a single
machine. We can precisely pinpoint the root causes at service instance level
with this causality graph.

• We design and implement a prototype of Microscope to infer the root causes
of performance problems without domain knowledge and application instru-
mentation, and achieve a high precision and recall with a low cost.

The rest of this paper is organized as follows. Section 2 presents the sys-
tem overview and formulation. Section 3 elaborates the details of Microscope.
In Sect. 4, we will evaluate Microscope in the controlled environment. And in
Sect. 5 we will compare our work with previous work. We discuss the advantages
of Microscope and Sect. 6 concludes this paper.

Fig. 1. Workflow of Microscope

2 System Overview and Formulation

Figure 1 shows an overview of Microscope. For data collection, Microscope
mainly collects two types of data: network connection information between two
service instances and SLO (Service Level Objective) metrics of each service
instance. To diagnose system anomalies, Microscope continually monitors the
SLO metrics of the front end within a sliding time window. When an SLO vio-
lation is detected, the root cause analysis is triggered. In service causality graph
building phase, Microscope uses the network connection information and SLO
metrics to build a causality graph. Then the cause inference engine starts from
the front end and traverses the entire causality graph along with the directed
edges. After that, Microscope gets a list of possible root cause candidates. Finally,
Microscope calculates a score for each candidate and ranks the candidates with
the score.

6 J. Lin et al.

3 System Design

3.1 Data Collection

In the data collection part, Microscope mainly collects two types of data, namely
network connection information between two service instances and SLO metrics
of each service instance.

Fig. 2. Workflow of capturing network connection information

Network Connection Information. This type of data is used for causality
graph building. Network connection is an important information to represent
the real service dependencies. However, most of time, the transmission between
client and server is bidirectional. Hence, we will get an opposite connection
direction when we observe in different hosts. For example, when we observe in
host (192.168.1.2) which sends a request network package, we get a connection
(192.168.1.2)→(192.168.1.3). But in host (192.168.1.3) which sends a response
network packet, we will get (192.168.1.3)→(192.168.1.2).

In order to address this issue, we introduce a novel method to capture the net-
work connection information by monitoring and intercepting system calls related
to network socket, such as socket(), connect(), send() and recv(). A network
socket is an internal endpoint for sending or receiving data within a computer
network. Each socket function relates to a socket variable. When we intercept a
socket system call, it parses the socket variable and parameters of this function
to get a client IP and a server IP according to the semantic meaning of function
name. For instance, if a connect() function is intercepted, the local address of
socket will be parsed as client IP and the peer address will be parsed as server IP.
Another situation is that if a accept() function is intercepted, the local address
will be parsed as server IP and the peer address will be parsed as server IP. So
we can get the direction of network connection and the real dependency between
two services.

The complete workflow of capturing network connection information shows
in Fig. 2. After the socket parsing, we get the raw network connection whose
ends are host IPs rather than service IPs. To know the corresponding service of
a host IP, we extract some information from infrastructures such as Docker and
Kubernetes. Combining with this information, we map the raw network connec-
tion(IP:Port) to parsed network connection ((service name, service instance)).
Finally, we get a bunch of records which describe the network connection infor-
mation from a service instance to another service instance.

Microscope: Pinpoint Performance Issues in Micro-service Environments 7

SLO (Service Level Objective) Metrics. This type of data is used for detect-
ing whether a service instance is abnormal and ranking root cause candidates.
According to our observations, most cloud-native applications that internally
generates performance metrics such as throughput for monitoring and mainte-
nance. If these data are not internally available, we can also crawl the service logs
to that end. For example, the spring boot framework provides a plug-in of service
log for monitoring. Therefore, we can easily get SLO metrics from cloud-native
applications in microservice environments. In this paper, we will use a unified
SLO metric, namely service request latency which is the service calling time,
which exposed by the services themselves. In the future work, we will explore
more SLO metrics in microscope for improving the effectiveness. Although it is
simple, it works well in Microscope.

3.2 Service Causality Graph Building

In this section, we describe the details of the service causality graph building.
The definition of the causality is that given two variables X and Y , we say X
is a cause of Y if the changes of X can affect the distribution of Y but not
vice versa, denoted by X→Y. In other words, X is a parent of Y , denoted by
X ∈ pa(Y). In a collective variable, if all the parents of Y have been determined,
the distribution of Y will be determined and not affected by other variables. In
this paper, X and Y represent the SLO metrics of each microservice. Note that
in the causality graph, it is not allowed two variables cause each other. So the
causality graph can be represented as a DAG (Directed Acyclic Graph).

Fig. 3. An example of service causality graph, where S1-S6 and M1-M2 represent
unrelated applications with several service instances.

Microscope constructs a causality graph based on the communicating service
instance dependencies and non-communicating service instance dependencies.
Each node in the causality graph represents a service instance, and the directed
edge between two nodes represents a direct “cause-effect” relation between two
service instances. Figure 3 shows an example of causality graph generated by
Microscope.

Communicating Service Dependency. The first type of dependency repre-
sents a dependency relation between two communicating service instances via
network. In previous studies, [7,23], they also use the network connection infor-
mation to construct causality graph. But the direction of dependency between

8 J. Lin et al.

two service instances are determined by some statistical methods such as Granger
Causality [13] and PC-algorithm [16]. So their results strongly depend on the
quality of data. Compared with these work, Microscope captures the directed
connection information to represent the communicating service instance depen-
dency relation without any statistical error.

To construct communicating service dependency, Microscope uses the parsed
network connection data directly which already contains two service instances
and the direction of dependency in each record. For example, (service-A,
instance-1)→(service-B, instance-1) represents (service-A, instance-1) is a cause
of (service-B, instance-1). Microscope uses the data collected in the last 10 min,
so the causality graph can be updated dynamically, which can exclude some inac-
tive service instances and improve the precision of root cause inference. However,
Microscope can also use data for longer periods of time and save static commu-
nicating service dependencies, which reduces the cost of building this type of
dependencies repeatedly.

Non-communicating Service Dependency. Due to local resource sharing,
the service may interfere with other services running in the same node, which
is called “non-communication service dependency”. For example, if a service
instance occupies all the CPU resource of a physical machine, the response time
of the other service instances in the same node, especially for computation-
intensive ones, is likely affected. Therefore, the SLO metrics changes of other
co-located services are also responsible for changes in the SLO metrics of the
current concerned services. We construct such relations by a statistical approach.

In one physical machine, the anomalies of Service A and Service B may
be caused by a common anomaly of Service C. To model these relations, we
adopt causal statistics [22] rather than the pair-wise correlation. Considering
the large volume of SLO metrics in microservice environments and the light-
weight requirement, we design our algorithm on the basis of PC-algorithm [16],
which is more computationally efficient than Bayesian network approaches [11].
To obtain such a DAG, we first construct a skeleton of the DAG, namely an
undirected graph. Then we orientate the skeleton with D-separation [16] rules.
A causal Markov condition [22] is used to produce a set of independent relations
amongst more than two variables and to construct the skeleton of a causality
graph. It is defined as

Definition 1. Given a DAG, G = (V,E), for every v ∈ V , v is independent of
the non-descendant of v given its direct pa(v).

In this paper, we leverage a conditional cross-entropy based metric G2 [22] to
qualitatively test whether X is dependent on Y given Z, where X, Y and Z are
disjoint set of variables in V , X and Y are single variables, but Z can be a set of
variables. We choose G2 instead of other methods like Gaussian independence
test [16] as it does not need any assumption on the distribution of each variable.
G2 is defined as

Microscope: Pinpoint Performance Issues in Micro-service Environments 9

G2 = 2mCE(X,Y |Z)

=
∑

z

P (z)
∑

x

∑

y

P (x, y|z)log(
P (x, y|z)

p(x|z) · p(y|z)
), (1)

where m is the sample size, CE(X,Y |Z) is the conditional cross entropy of X
and Y given Z. As stated in [22], under independence hypothesis, the metric G2

follows a χ2 distribution with a degree of freedom equals to

(NX − 1)(NY − 1)
∏

Z′ ∈Z

NZ′ , (2)

where NX , NY and NZ′ represent the number of values of variable X, Y and
Z

′
respectively. Hence, via a χ2 test, we can decide whether the independence

hypothesis is accepted. If the p-value exceeds the significance level ξ, namely
p-value > ξ (ξ = 0.02 in this paper), the independence hypothesis is accepted
otherwise rejected. If X is independent of Y given Z, then I(X,Y |Z) = 1.

PC-algorithm begins with a completely connected undirected graph, then
facilitates G2 to capture all the independence relationships within all variables
in pair-wise manner. The following work is to determine the causal directions
using D-separation [16] rules, which is demonstrated in our previous work [7] in
detail. Due to the limited space of this paper, we cannot show the details of this
PC-algorithm. Please refer to the paper [16] for the details of PC-algorithm. On
the basis of PC-algorithm, we construct a parallelized algorithm to construct
non-communicating service dependencies in micro-service environments more
efficiently. When the cardinality of Z equals 0, namely |Z| = 0, each pair of X and
Y is completely independent. Therefore, we leverage “MapReduce” [10] approach
to test their independence relations in parallel. Then, we get another undirected
graph with significantly reduced edges. If |Z| > 0, the independence tests of
X and Y given Z are independent any more as they share the intermediate
results. Under such a condition, we implement a multi-core parallel algorithm
in one node. That means we conduct one independence test per core. After the
parallelization of PC-algorithm, Microscope can construct the causal relations
in real time.

Once an anomaly is detected in the front-end services, the construction pro-
cedure of non-communicating service dependency is triggered. We first group
all the micro services based on physical machines. Let (S1, S2, · · · , Sn) denote
n services, N1, N2, · · · , Nm denote m machines, (Si, Nj) denote service i locates
on machine Nj , so all services are separated into m groups. For each group, we
leverage parallelized PC-algorithm to construct service dependency relations.
The inputs are time series of SLO metrics of micro services. In this paper, we
leverage the mean response time as the SLO metric. Other SLO metrics are also
adoptable. 200 data points starting from the abnormal moment are adopted to
construct the service dependency graph. The reason why we choose 200 is stated
in the sensibility analysis of Sect. 4. One point we observed from our experiments
is that some causal directions calculated by PC-algorithm are not consistent with
the service dependencies obtained by network analysis. In this scenario, we trust

10 J. Lin et al.

Algorithm 1. The parallelized PC-algorithm
Input: The significance level ξ used to test the conditional independence; the response time metrics

of micro services, R={R1, R2, R3, · · · , Rn}, set the maximal cardinality of Z as 3; the number
of CPU cores c;

Output: non-communicating service dependencies DAG, G
1: / ∗ ∗ Construct the skeleton of G ∗ ∗ /
2: Form the complete undirected graph Gu based on R
3: i=-1
4: repeat
5: i=i+1
6: if i == 0 then
7: / ∗ ∗ Map process ∗ ∗ /
8: Select one pair of (X, Y) from all the combinations
9: if I(X, Y) == 1 then
10: Record (X, Y)
11: end if
12: / ∗ ∗ Reduce process ∗ ∗ /
13: Collect all pairs of (X, Y) calculated by each Map process
14: Remove the edges X − Y recorded by (X, Y) from Gu

15: Update Gu

16: / ∗ ∗ Calculate service dependencies by multiple process on one machine ∗ ∗ /
17: else
18: for each ci ∈ (1, 2, · · · , c) do
19: Fork one process on one machine to conduct in independence tests
20: for each X ∈ X do
21: for each Y ∈ adj(Gu, X) do
22: /∗∗ adj(Gu, X) represents the set of metrics which are adjacent to X in Gu. ∗∗/
23: repeat
24: Choose Z ⊆ adj(Gu, X) \ {Y } with |Z| = i
25: if I(X, Y |Z) == 1 then
26: Remove X − Y from Gu

27: Update Gu

28: Make the separate set S(X, Y) = Z
29: end if
30: until edge X − Y is removed or all Z with |Z| = i have been chosen.
31: end for
32: end for
33: end for
34: end if
35: until |adj(Gu, X)| ≤ i, ∀X or i == 3
36: The skeleton,Gs = Gu

37: / ∗ ∗ Orient the directions in Gs with D-Separation rules∗ ∗ /
38: for all pairs of nonadjacent variables X, Y with common neighbor Z do
39: if Z /∈ S(X, Y) then
40: Replace X − Z − Y in Gs with X → Z ← Y
41: end if
42: end for
43: Orient Y − Z as Y → Z whenever there is an arrow X → Y
44: Orient X − Y as X → Y whenever there is chain X → Z → Y
45: Orient X − Y as X → Y whenever there are two chains X − Z → Y and X − L → Y
46: Finally, output G

the result obtained by the latter as it is the ground truth. Therefore, to avoid this
scenario, we preset the connections and directions of edges that can be obtained
by network analysis in the undirected graph.

For the sake of clarity, we show the pseudo code of our algorithm in Algorithm
1. The computational complexity of Algorithm 1 is dominated by the DAG
skeleton construction procedure. The worst case is bounded by O(nmax{pq, p2})
[17], where n is the data length of each metric, p is the number of metrics, q
is maximal size of the adjacent sets, i.e., the cardinality of Z, |Z|. When q is
large, the complexity increases exponentially. However, from the real data, we

Microscope: Pinpoint Performance Issues in Micro-service Environments 11

observe that q always stays at a low level q < 5. Hence this complexity is
affordable. We set q = 3 in this paper. The constructed non-communicating
service dependencies will be merged with communicating service dependencies
to form the final service causal graphs.

3.3 Cause Inference

We summarize the process of cause inference in Algorithm 2. Microscope con-
tinually monitors the SLO metrics of the front end. When an SLO metric is
detected as abnormal, the cause inference is triggered. Then the cause infer-
ence engine starts from this abnormal node in the causality graph and traverses
the causality graph along the opposite direction of edges, which represents the
dependency between two service instances. When a node is abnormal, the cause
inference engine will check its neighbors. If all the neighbors are normal, the
current node will be added to the set of root cause candidates and the engine
stops traversing its children. If there exist one or more abnormal children, the

Algorithm 2. The cause inference algorithm
Input: An original abnormal service instance, rootNode; A causality graph DAG, G;
Output: A ordered list of root cause candidates
1: // Find root cause candidates
2: stack ← Stack(); candidates ← List()
3: stack.push(rootNode)
4: while stack is not empty do
5: node ← stack.pop()
6: // adj(G,X) represents the neighbors which are adjacent to X in G.
7: if adj(G,node) is empty then
8: candidates.append(node)
9: continue

10: end if
11: children ← List()
12: for each neighbor ∈ adj(G,node) do
13: if neighbor is abnormal then
14: children.append(neighbor)
15: stack.push(neighbor)
16: end if
17: end for
18: if children is empty then
19: candidates.push(node)
20: end if
21: end while
22: // Scoring for each candidates
23: candidatesScore ← Dict()
24: for each candidate ∈ candidates do
25: candidatesScore[candidate] ← scoring(rootNode, candidate)
26: end for
27: return keys of candidatesScore sorted by value

12 J. Lin et al.

cause inference engine will continue to traverse these abnormal children. When
the traversal is finished, the engine gets a set of root cause candidates. Then
the engine calculates a ranking score for each root cause candidates. Finally, the
engine gets an ordered list of root cause with ranking score and the top one in
the list is considered to be the real root cause. In this paper, we use three-sigma
rule of thumb to detect if a service instance is abnormal and use the correlation
between the front end and the abnormal service instances as the ranking score.

To detect anomalies, we use a three-sigma rule of thumb. The so-called three
sigma rule of thumb expresses a conventional heuristic, that is, almost all values
are considered to be within the three standard deviations of the mean. Therefore,
it is empirically useful to treat the possibility of 99.7% as near certainty. In
mathematical notation, this fact can be expressed as Pr(μ−3σ < x < μ+3σ) ≈
0.9973. If a value of SLO metric is not within the three-sigma interval of the
last 10 min, we think this service instance is abnormal. Although it is simple, it
works in this paper and can adapt to system changes in real time.

To sort the root cause candidates and get the most possible real root cause,
we calculate the pearson correlation coefficient of SLO metrics between the front
end and each candidate as the ranking score. According to our observations, if
two service instances have a strong dependency relationship, the curves of service
request latency of them are very similar. With this method, Microscope has the
ability to diagnose real root causes even when several system faults happen at
the same time.

4 Experimental Evaluation

Experiment Settings. Microscope is evaluated in a self-constructed distributed
system. The controlled system contains four client physical servers that host the
benchmark. Each physical server machine has a 12-core 2.40GHz CPU, 64GB of
memory and runs with Ubuntu 16.04 OS. We evaluate Microscope in Kubernetes
platform. Kubernetes is an open-source system for automating deployment, scal-
ing, and management of containerized applications, which is one of best platform
for developing and running micro services.

Data Collection. To capture the network connection information, we develop
several tools from scratch. The captured network connection information is
recorded to a local log file. For forwarding and centralize log files, we use Filebeat
which offers a lightweight way to forward and centralize logs and files. Meanwhile,
we use elasticsearch to save all the network connection information harvested by
Filebeat from each physical nodes. To collect service request latency metrics,
we use Prometheus, an open-source systems monitoring and alerting toolkit, to
monitor the services instances. The sample interval in service request latency
metrics is 1 s.

Benchmark. Sock-shop [2] is a microservices demo that simulates the sale of
socks of an e-commerce website which is a widely used micro-service benchmark
designed to help demonstrate and test microservices and cloud-native technolo-
gies. It provides some key properties (e.g. Polymorphism) that a micro-service

Microscope: Pinpoint Performance Issues in Micro-service Environments 13

system should have. It contains 13 services in the form of microservices. In each
services instance, we configure the CPU resource limited to 1 GHz and the mem-
ory resources limited to 1GB. The replicas of service instances are set to 1–3.
The total service instances are 36. Furthermore, sock-shop contains a load gen-
erator, which defines user behavior, to simulate the query per second(QPS) on
a website with simultaneous users, so we adopt this load generator to generate
the workload and configure the load to keep the QPS about 5000.

Fault Injection. Our work focuses on locating the root cause service instances.
The service instance in Kubernetes is a Pod which contains one or more con-
tainers. To mimic the real performance problems, we inject faults to containers
in Pods. We inject the following faults: (1) CPU exhausting: we use stress [3],
a deliberately simple workload generator for POSIX systems, to exhaust CPU
resources in injected containers; (2) NetworkJam: we use “tc”, a traffic control
tool in Linux, to delay the network packets; (3) ContainerPause: for simulating
the status of hangup of a service instance, we pause the container with“PAUSE”
command of Docker. We do not kill containers because Kubernetes will recreate a
new replicated Pod immediately. For evaluating the effectiveness of Mircoscope,
each fault mentioned above will be injected in each service instances more than
5 times and last 1 min. The total number of fault injections is 240.

Evaluation Metric. We use the following metrics to evaluate the effectiveness.

• Precision at top K (PR@K) indicates the probability that the root cause
appears in the top K of ranking list if the cause inference is triggered. It
is important to capture the root cause at a small value of K, thereby result-
ing in lesser number of service instances to investigate. Here we use K=1,2,3.

• Recall at top K (Recall@K) is the fraction of real cause that has been retrieved
at top K of the ranking list over the total amount of fault injections. Here we
use K=1,2,3.

4.1 Effectiveness Evaluation

Microscope strongly relies on the causality graph, Fig. 4 illustrates a causality
graph obtained by Microscope in about 10 min when running a load genera-
tor. Different colors represent different applications. Via comparison with the

Fig. 4. The sample causality graph generated by Mircoscope in our system

14 J. Lin et al.

ground truth, we find that all the relations shown in Fig. 4 are indeed the service
call relations without any exception, which demonstrates that Microscope can
build a reasonable causality graph in real time without domain knowledge and
instrumenting the application.

Fig. 5. A view of service latency and causality graph of Sock-Shop

Figure 5 shows the curves of service request latency of four service instances
when 4 faults are injected respectively and the dependent relations between ser-
vice instances of sock-shop. To simplify the description, we keep only one replica
of each service. The curve of front-end and catalogue services in Fig. 5 show that
if a service is abnormal, it does affect other services which it depends on. But it
is not the case for the injected faults in payment service. The orders which the
payment depends on is strongly affected. However, it has a very subtle effect on
the front end. This is because Kubernetes has a load balancing mechanism. So
the cause inference may not be triggered and the precision and recall are low on
these types of services.

Figure 6 demonstrates the results of PR@1 and recall on several services of
Sock-shop. From Fig. 6, we observe that most of the PR@1 fall in the range
70%–100% in different services and faults, except the shipping and payment
service. One of the exceptions is we lack the results of shipping and payment

Fig. 6. The results of PR@1 and Recall@1

Microscope: Pinpoint Performance Issues in Micro-service Environments 15

with respect to network and container pause. This is because (i) the service
latency is collected by the process in the Docker container, (ii) these services
don’t request any other services, so the service latency is returned immediately
from the process without passing through the container network, (iii) we inject
the network delay to block the network in container rather than the process. So
the fault injection doesn’t work on these services. The other one of exceptions is
the results of CPU exhausting on shipping and payment. This is because (i) the
cause inference may not be triggered which mentioned above, (ii) both shipping
and payment are not computation-intensive, which the usage of CPU in these
service instances is the only 5 mHz. So even though we use stress tool to exhaust
the resources of CPU, these service instances still have a good response time.
Significantly, we get 100% at the fault of container pause, because it causes the
service latency missing and it’s a strong feature to diagnose.

Table 1. Performance

Catalogue Front-end Carts Orders User Shipping Payment

CPU exhausting

PR@1 86.7 100 66.7 90.0 90.0 57.1 33.3

PR@2 93.3 100 66.7 90.0 100 57.1 33.3

Recall@1 86.7 100 66.7 90.0 90.0 40.0 6.7

Recall@2 93.3 100 66.7 90.0 100 40.0 6.7

Network jam

PR@1 100 100 86.7 60.0 100 - -

PR@2 100 100 86.7 60.0 100 - -

Recall@1 100 100 86.7 60.0 100 - -

Recall@2 100 100 86.7 60.0 100 - -

Container pause

PR@1 100 100 100 100 100 - -

PR@2 100 100 100 100 100 - -

Recall@1 100 100 100 100 100 - -

Recall@2 100 100 100 100 100 - -

Table 1 demonstrate the performance of Microscope in Sock-shop on differ-
ent service and fault. It shows that Microscope can achieve an average 80%–
95% precision and recall for those computation-intensive and network-sensitive
services.

4.2 Comparisons

To validate the effectiveness of Microscope thoroughly, we compare it with sev-
eral state-of-the-art methods including TAN [9], NetMedic [18], Sieve [23], Roots

16 J. Lin et al.

Fig. 7. The comparison results in PR@1 and Recall@1

Fig. 8. Rank comparison result Fig. 9. The Diagnosis Result VS data
length

[15], CauseInfer [7], MonitorRank [19], and CloudRanger [24]. To compare with
TAN, we replace our service dependency construction approach with Tree Aug-
mented Bayesian Network approach; To compare with NetMedic, we leverage
NetMedic’s state correlation approach to estimate service dependencies; To com-
pare with Sieve, we adopt sysdig to obtain the static service call graph, a bi-
directed graph then leverage Granger Causality to obtain the dynamic service
dependencies with response time metrics; To compare with Roots, we imple-
ment the four root cause identification approaches mentioned in Roots. But
since Microscope cannot track each request, we leverage the aggregated response
time of requests instead of the response time of one single request to identify
root causes; To compare with CauseInfer, we capture the network packets and
leverage lag correlation to find service dependencies; To compare MonitorRank,
we use a random walk approach to find the root causes which has been imple-
mented in our previous work [24]; To compare with CloudRanger, we leverage
PC-algorithm to construct service dependencies with response time metrics of
micro services. Figure 7. shows the comparison result in PR@1 and Recall@1.
From this figure, we observe that Microscope achieves a significantly better
result, 3% higher than CauseInfer, 13% higher than CloudRanger, 35% higher
than Roots, in PR@1. Roots identifies the service which contributes the most
variance of the abnormal service as the root cause. However, in our experiments,
we observe that Roots always finds the first upstream service as the culprit rather

Microscope: Pinpoint Performance Issues in Micro-service Environments 17

than real root causes. That is why its result is not very good. Similarly, Mon-
itorRank also puts the first upstream service in the first rank. Compared with
CauseInfer, CloudRanger, and Sieve, Microscope constructs the service depen-
dencies by analyzing the network connection events rather than calculating the
statistical correlations, which is closer to the ground truth. From the perspective
of the rank of correct causes, Fig. 8 shows the comparison result between differ-
ent approaches when rank <= 10. From Fig. 8, we observe that Microscope can
find 88% of injected faults at Rank 1, which outperforms other approaches.

4.3 Discussion

Overhead. Table 2 shows the overhead of Microscope. Data Collection module
takes about 8% CPU utilization as we collect the network connection information
and service latency. Overall, Microscope is a light-weight tool for monitoring and
pinpointing the abnormal service instances.

Table 2. The overhead of Microscope

System module CPU Cost

Data collection(Network connection) 8% ± 2% CPU utilization(Single cpu core)

Data collection(SLO metrics) 4% ± 1% CPU utilization(Single cpu core)

Causality graph building 10 s(Single physical node)

Cause inference 2 s(Single physical node)

Sensibility. To evaluate the sensibility to the data length in constructing non-
communicating service instances dependency, we conduct several experiments.
Figure 9 illustrates the changes in the data length increasing. From this figure,
we observe that Precision and Recall stay at a low level when the length of data
is lower than 200. Because the service causal graphs calculated by PC-algorithm
are not precise enough. However, after “the knee point”, the service causal graphs
keep constant and the diagnosis results do not change anymore.

Scalability. Microscope is easy to scale up whether we add new service instances
or machines in a large distributed system. In order to test the scalability of the
system, we deployed more replicas of services instances with Sock-shop. From
Fig. 10, we can see that Microscope has only 7% accuracy degradation from 36
service instances to 120 service instances, showing good scalability.

Indeed, the micro-service system provides some fault-tolerance mechanisms
such as circuit-breaker, which aim to avoid cascading errors. Also some real
microservice infrastructures in kubernetes provide features such as scalability,
restart or load balance policies. Considering these, Microscope will resolve these
problem in the future work.

18 J. Lin et al.

Fig. 10. PR@1 vs serivce instances number

5 Related Work

RCA(Root cause analysis) in large distributed systems with many services is a
frustrating task. To pinpoint the root causes of performance problems, a large
number of researchers are dedicated to this area. In the following, we present
the relative work briefly.

Trace Based Work. Many famous tools fall into this category such as Magpie
[4], X-trace [12], Pinpoint [6] and The Mystery Machine [8]. These tools can accu-
rately record the execution path of the program and locate the error by detecting
source code or binary code. It’s helpful to debug distributed applications. How-
ever, deploying these tools is a daunting task and requires administrators to
understand the code well. Compared to them, Microscope doesn’t need instru-
menting the source code and domain knowledge. So it can be easily deployed and
used. Although Microscope does not detect true software bugs, it does provide
some hints. Roots [15] is a near real-time monitoring and diagnostics framework
for web applications deployed in a PaaS cloud without instrumenting the appli-
cation code. However, Roots only consider web applications and must modify
the front-end request server(typically a software load balancer) by instrumenting
the request identifier to an HTTP request, which hinders it to be widely used.

Signature Based Work. These methods employ a supervised learning
algorithm to classify performance anomalies under several typical scenarios.
CloudPD [21] uses a layered online learning approach to deal with the higher
occurrence of faults in clouds; Fingerprint [5] provides the basis for automatic
classification and identification of performance crises in a data center; All of
these methods require labeled data or problem tickets and have limited general-
ization on new anomalies. While Microscope is an unsupervised method, so it’s
able to capture new anomalies and have a good generalization.

Dependency Graph Based Work. In recent years, performance diagnosis
based on dependency graphs has become a surge. Using graph models, we can
not only understand the problem propagation path but also infer the root cause.
Sieve [23] infers metrics dependencies between distributed components of the sys-
tem by using Granger Causality tests. CauseInfer [7] automatically builds a two-
layered hierarchical causality graph and the dependency direction is determined

Microscope: Pinpoint Performance Issues in Micro-service Environments 19

by a lag correlation. This method strongly depends on data and the dependent
direction is generated by some statistical method. Compared to them, Micro-
scope uses the network connection information, which is real dependencies, to
build the causality graph. TAN [9] is used to infer performance issues at a metric
level, but it is not effective enough due to a lack of causality.

Finally, compared to much excellent performance monitoring and analysis
tools such as Splunk, CaleCd, and IBM Tivoli Gardens, Microscope provides
more advanced analysis capabilities, such as causality graph building and root
cause inference techniques, without the need for human intervention.

6 Conclusion and Future Work

This paper designs and implements Microscope, a novel system for helping oper-
ators and developers with pinpointing the root causes in microservices envi-
ronments. Microscope automatically builds a causality graph without domain
knowledge and instrumenting the application and infers the root causes along
the directed edges in the graph. The experimental evaluation shows that Micro-
scope not only can achieve a high precision and recall for performance diagnosis
but also is lightweight and can scale up readily in large distributed systems.

As part of future work, we plan to explore using more types of SLO metrics
and methods of ranking candidates to improve the effectiveness and general-
ization ability of Microscope to adapt more different types of services. We will
make Microscope more lightweight in order to work in real-time and validate
Microscope in some real microservice systems with more kinds of faults.

Acknowledgment. The work described in this paper was supported by the National
Key R&D Program of China (2018YFB1004804), the National Natural Science Foun-
dation of China (61722214) and the Guangdong Province Universities and Colleges
Pearl River Scholar Funded Scheme 2016.

References

1. https://puppet.com/blog/2017-state-devops-report-here
2. https://microservices-demo.github.io/
3. https://people.seas.harvard.edu/∼apw/stress/
4. Barham, P., Donnelly, A., Isaacs, R., Mortier, R.: Using magpie for request extrac-

tion and workload modelling. In: OSDI, vol. 4, pp. 18–18 (2004)
5. Bodik, P., Goldszmidt, M., Fox, A., Woodard, D.B., Andersen, H.: Fingerprinting

the datacenter: automated classification of performance crises. In: Proceedings of
the 5th European conference on Computer systems, pp. 111–124. ACM (2010)

6. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem
determination in large, dynamic internet services. In: Proceedings of International
Conference on Dependable Systems and Networks (DSN 2002), pp. 595–604. IEEE
(2002)

7. Chen, P., Qi, Y., Zheng, P., Hou, D.: Causeinfer: automatic and distributed per-
formance diagnosis with hierarchical causality graph in large distributed systems.
In: INFOCOM, 2014 Proceedings IEEE, pp. 1887–1895. IEEE (2014)

https://puppet.com/blog/2017-state-devops-report-here
https://microservices-demo.github.io/
https://people.seas.harvard.edu/~apw/stress/

20 J. Lin et al.

8. Chow, M., Meisner, D., Flinn, J., Peek, D., Wenisch, T.F.: The mystery machine:
end-to-end performance analysis of large-scale internet services. In: Proceedings
of the 11th symposium on Operating Systems Design and Implementation, pp.
217–231 (2014)

9. Cohen, I., Chase, J.S., Goldszmidt, M., Kelly, T., Symons, J.: Correlating instru-
mentation data to system states: a building block for automated diagnosis and
control. In: OSDI, vol. 4, pp. 16–16 (2004)

10. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

11. Ellis, B., Wong, W.H.: Learning causal Bayesian network structures from experi-
mental data. J. Am. Stat. Assoc. 103(482), 778–789 (2008)

12. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Stoica, I.: X-trace: a pervasive
network tracing framework. In: Proceedings of the 4th USENIX conference on Net-
worked systems design implementation, pp. 271–284. USENIX Association (2007)

13. Granger, C.W.: Investigating causal relations by econometric models and cross-
spectral methods. Econom.: J. Econom. Soc. 37, 424–438 (1969)

14. Ibidunmoye, O., Hernández-Rodriguez, F., Elmroth, E.: Performance anomaly
detection and bottleneck identification. ACM Comput. Surv. (CSUR) 48(1), 4
(2015)

15. Jayathilaka, H., Krintz, C., Wolski, R.: Performance monitoring and root cause
analysis for cloud-hosted web applications. In: Proceedings of the 26th Interna-
tional Conference on World Wide Web, pp. 469–478. International World Wide
Web Conferences Steering Committee (2017)

16. Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed acyclic graphs
with the PC-algorithm. J. Mach. Learn. Res. 8(Mar), 613–636 (2007)

17. Kalisch, M., Bühlmann, P.: Robustification of the PC-algorithm for directed acyclic
graphs. J. Comput. Graph. Stat. 17(4), 773–789 (2008)

18. Kandula, S., Mahajan, R., Verkaik, P., Agarwal, S., Padhye, J., Bahl, P.: Detailed
diagnosis in enterprise networks. ACM SIGCOMM Comput. Commun. Rev. 39(4),
243–254 (2009)

19. Kim, M., Sumbaly, R., Shah, S.: Root cause detection in a service-oriented architec-
ture. In: ACM SIGMETRICS Performance Evaluation Review, vol. 41, pp. 93–104.
ACM (2013)

20. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc., Sebastopol
(2015)

21. Sharma, B., Jayachandran, P., Verma, A., Das, C.R.: CloudPD: problem determi-
nation and diagnosis in shared dynamic clouds. In: 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1–12.
IEEE (2013)

22. Spirtes, P., et al.: Causation, Prediction, and Search. MIT press, Cambridge (2000)
23. Thalheim, J., et al.: Sieve: actionable insights from monitored metrics in distributed

systems. In: Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference,
pp. 14–27. ACM (2017)

24. Wang, P., et al.: Cloudranger: root cause identification for cloud native systems. In:
Proceedings of the 18th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2018). IEEE (2018)

Architecture-Based Automated Updates
of Distributed Microservices

Fabienne Boyer1(B), Xavier Etchevers2, Noel de Palma1, and Xinxiu Tao2

1 UGA/LIG, Grenoble, France
{fabienne.boyer,noel.depalma}@univ-grenoble-alpes.fr

2 Orange Labs, Paris, France
{xavier.etchevers,xinxiu.tao}@orange.com

Abstract. Microservice architectures are considered really promising to
achieve devops in IT organizations, because they split applications into
services that can be updated independently from each others. But to pro-
tect SLA (Service Level Agreement) properties when updating microser-
vices, devops teams have to deal with complex and error-prone scripts of
management operations. In this paper, we leverage an architecture-based
approach to provide an easy and safe way to update microservices.

Keywords: Microservices · Dynamic update
Architecture-based reconfigurations

1 Introduction

To facilitate agile development and operations (devops), many companies,
including established ones such as Netflix [1] and Uber [2], are switching to
a microservice architecture for their Cloud applications. With this approach,
applications are designed as loosely-coupled services deployed on distributed
PaaS (Platform-as-a-Service) sites and running in their own full-stack [3].

The key property that is expected from microservices is the notion of indepen-
dent replacement and updatability. Especially, microservices exhibit independent
lifecycles: they can be deployed and updated independently from each others.
The objective is to favor reactivity of small development teams, each team being
in charge of developing and evolving its own set of microservices through simple
and fast processes.

Such an objective is attractive, but the reality is much more complex because
microservices are often associated to SLA properties regarding availability, per-
formances, and resource costs [4,5]. To keep these properties at update time,
devops teams follow complex strategies. Typically, the well-known BlueGreen
strategy [6] intends to update a microservice with zero downtime, but requires
deploying and starting all the new microservices before stopping and uninstalling
the old ones. In comparison, the Canary strategy [7,8] minimizes the resources
used at update time, at the expense of a reduced availability: microservices are

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 21–36, 2018.
https://doi.org/10.1007/978-3-030-03596-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_2

22 F. Boyer et al.

updated in-place (new instances taking the place of the old ones), in an incre-
mental manner to slowly transfer the load from the current to the new version.

Using strategies to update microservices is considered relevant [9], but so far,
the process is managed manually or only automated through using scripts [10].
Scripts provide flexibility but their imperative form limits their ease of use. When
devops teams are provided with application-independent scripts, they have to
determine what script can be applied to process a given update. Furthermore,
they must check that the current state of their application meets the require-
ments of the chosen script. This is cumbersome and error-prone as most update
scripts encompass complex pipelines of PaaS commands. When update scripts
are designed specifically for a given application, they can be used in a much
easier and safer way, but the price is that devops teams have to compose these
scripts, facing the usual coding and debugging challenges.

This paper advocates switching from a script-based to an architecture-based
approach to automate microservices updates: instead of scripts processing PaaS
commands, update strategies are defined as sequences of elementary changes
being applied on an architectural model of a microservice application. Simply
put, this architectural model (also known as model@runtime [11]) reflects how
microservices are deployed on PaaS sites and how they are configured. Compared
to scripts, the benefits of the proposed approach are the following:

– ease of use: to update a microservice application, devops teams simply give
as input the desired target architecture, along with the strategy to follow,
without having to deal with low-level PaaS commands.

– preview: any update can be processed on the architectural model without
being applied on the effective system, allowing to preview its result in terms
of architectural changes.

– control: all stages of an update can be observed on the architectural model.
Moreover, at any stage an update can be stopped and resumed with a new
target architecture and/or strategy.

– robustness: failures occurring at update time are supported.

Leveraging an architecture-based approach raises two main challenges: (i)
determining an architectural model encompassing microservices deployed on het-
erogeneous PaaS sites and (ii) defining a strategy-driven update protocol relying
on this architectural model. This paper describes how these challenges were
addressed to provide an update framework that can add, remove, migrate, split,
or scale microservices as well as upgrade their code or change their configuration
across distributed and potentially heterogeneous PaaS sites.

The remaining of this paper is structured as follows. Section 2 summarizes
the background. In Sect. 3, we present the architectural model of the proposed
update framework. Section 4 describes the strategy-driven update protocol and
Sect. 5 focuses on the robustness aspect. An evaluation is given in Sect. 6 and we
conclude in Sect. 7.

Architecture-Based Automated Updates of Distributed Microservices 23

2 Background

2.1 Microservice Patterns

There is no standard definition for the microservice concept, but common pat-
terns guiding the development of distributed applications on Cloud platforms
[12]. We summarize hereafter the patterns that impact the processing of updates.

Microservices are independently deployable modules that run as self-
contained units encompassing an operating system along with the necessary run-
times, frameworks, libraries, and code. For improving scalability and availability,
each microservice can involve multiple redundant and distributed instances in
production.

Microservices communicate through lightweight protocols such as reliable
asynchronous bus [8]. They also interact through their provided and consumed
services, often exposed as Web services accessed through REST communica-
tions. Each instance of a microservice may expose a service through registering a
remote API along with a given route (url) at a registry (usually a per-application
registry) such as Consul1, Apache ZooKeeper2 or Netflix Eureka3.

Microservices tolerate the unavailability of the services they access. Two main
design patterns are used to this end. Firstly, microservices intend to be stateless
through keeping and retrieving any data through an external server, typically
a (per-microservice) database. Thereby, any available service instance can be
used to execute a given task. Secondly, microservices use smart proxies to access
services provided by others microservices [13]. Smart proxies manage the cases
where an accessed service is unavailable. Most commonly, depending on the SLA
properties of the accessed microservice, a proxy may either (i) select another ser-
vice instance, (ii) wait for the service to be restored, or (iii) produce a by-default
reply, following the circuit-breaker pattern [14,15]. By supporting the unavail-
ability of the services they access, microservices get independent lifecycles—they
can be deployed, started, scaled, stopped independently from each other.

2.2 Dynamic Update of Microservice Applications

To update microservices, a first approach is using the Command Line Interface
(CLI) provided by PaaS sites [16–18], Although powerful, the CLI is a low-
level interface that may be challenging to use directly as most applications are
composed of many microservices distributed across PaaS platforms [10].

A second approach relies on using frameworks striving towards continuous
delivery features. For instance, Spinnaker [19], AWS CodeDeploy [20] and IBM
UrbanCode [21] allow to deploy and update distributed microservices on hetero-
geneous PaaS platforms. Updating an application goes through a script-based
approach where devops teams specify a pipeline of low-level operations to exe-
cute. The main limitation is certainly that it is an imperative approach. First,
1 https://www.consul.io/.
2 https://zookeeper.apache.org/.
3 https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance.

https://www.consul.io/
https://zookeeper.apache.org/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

24 F. Boyer et al.

devops teams often have to compose the scripts, which faces the usual coding
and debugging challenges. Second, they need to check that scripts are com-
patible with the current state of the updated microservices. Third, they have to
make sure that applying such scripts will produce the desired target architecture.
Fourth, in case of failures, script-based approaches are usually not idempotent,
which requires either to rollback-restart the entire update process, or to analyze
the failure to determine how to restart forward, potentially requiring to adapt
the scripts.

Another framework, push2cloud [22], allows to update microservices deployed
on a single CloudFoundry PaaS site. Recently, push2cloud investigated an app-
roach allowing to express a desired target architecture. However, only mono-site
architectures are supported. Moreover, strategies are defined as pipelines of low-
level CloudFoundry-specific operations. Finally, failures are fixed and managed
manually.

From an academic perspective, [23] automates the deployment of microser-
vices according to a desired target architecture. However, the approach is con-
strained to using their own dedicated language [24] to program microservices and
does not consider update strategies. [10] aims at helping devops teams to man-
age consistent refactorings, by using a model of a microservice application that
covers both architectural and functional aspects. [25] provides an autonomous
tool to troubleshoot and repair microservice applications using canary testing
and version-aware routing techniques. [26,27] investigate on synthetizing a target
architecture for cloud components, considering capacity constraints and conflicts,
but they provide no actual mechanism to update running microservices. Other
architecture-based approaches for managing reconfigurations [11] are interesting
but do not consider any specifics of microservices. In particular, works such as
[28–30] have introduced formalisms for automating deployment processes, but
they consider components having dependent lifecycles and focus on the manage-
ment of their dependencies.

3 Architectural Model

With the proposed framework, devops teams update a microservice application
by simply giving as input the desired target architecture and the strategy to
follow. The strategy may be chosen among pre-defined ones or newly defined.

From a practical point of view, this framework should be launched on
a machine having a network connection towards the PaaS sites hosting the
microservices to update. Once launched, devops teams can invoke a pullArchitec-
ture command to get the current architecture of an application, and a pushArchi-
tecture command to update an application towards a given target architecture,
following a given strategy, as depicted in Fig. 1.

With both commands, the architecture of an application is expressed through
an architectural model specifying how microservices are deployed on PaaS sites

Architecture-Based Automated Updates of Distributed Microservices 25

devops team

PaaS site A

PaaS site B

PaaS site C

pullArchitecture /
pushArchitecture

PaaS operations
on microservices

Architectural model
of a microservice application

Current architecture

Sa Sb

M1

Sc

M2

M1

M2

M3

Fig. 1. Operational view

and how they are configured (Listing 1.14). To consider both PaaS-common
and PaaS-specific configuration attributes, a microservice is expressed as an
extensible set of (attribute, value) pairs5.

Architecture = (String appid, Set<PaaS−Site> sites);
PaaS−Site = (String siteid, Set<Microservice> services);
Microservice = (String msid, Set<String attribute, String value>);

Listing 1.1. Architecture model

The architectural model can be introspected and reconfigured through the
PaaSOperations interface (Listing 1.2). This interface provides four canonical
operations allowing to add, get, modify, or remove microservices, following a
CRUD (Create, Read, Update, Delete) approach [31]. For any PaaS targeted by
the framework, a specific implementation of this interface should be provided,
mapping canonical operations towards PaaS-specific operations6.

interface PaaSOperations{
Set<Microservice> get(String appid);
int add(String appid, Microservice m);
int remove(String appid, Microservice m);
int modify(String apid,Microservice m, Set<String attribute, String value>);
}

Listing 1.2. PaaS introspection and reconfiguration interface

Using the PaaSOperations interface, our framework can reconfigure a
microservice application towards a desired target architecture through the steps
given in Listing 1.3. As an example, let’s consider a target architecture upgrading
a microservice M , deployed on two CloudFoundry PaaS sites Sa and Sb, towards
a new version V0.2 (current version being V0.1).

4 appid, siteid and msid respectively identify a microservice application, a PaaS site,
and a microservice.

5 PaaS-common attributes include name, code-version, code-path, route, instances-
number, lifecycle-state (STARTED, STOPPED, etc.)).

6 So far, we mapped this interface for the Cloud Foundry and Heroku platforms.

26 F. Boyer et al.

reconfigure(String appid, Architecture Acurrent, Architecture Atarget) {
1: compute an architectural diff[27] between Acurrent and Atarget and

determine the reconfiguration operations (add, remove, modify) to process at each PaaS site
2: map the reconfiguration operations towards their PaaS−specific implementation
3: execute the PaaS−specific operations in parallel at each PaaS site

}

Listing 1.3. Core reconfigure function

At step 1, the reconfigure function determines that the following operation should
be processed at Sa and Sb:
→ modify(M,{(“code-version”,“0.2”),(“code-path”,“https : //gitX/M/M0.2.jar”)})
At step 2, the CloudFoundry implementation of the PaaSOperations interface
maps this operation as follow:
→ cf push M –var version=V0.2 -p https : //gitX/M/M0.2.jar

At step 3, this push operation is executed in parallel at site Sa and Sb. Notice
that such upgrade induces downtime, as the push operation stops M , loads its
new version of code, and then restarts it, a process taking several minutes in
average. The way to avoid downtime is using strategies.

4 Strategy-Driven Updates

A strategy forces an update process to follow a particular path of intermedi-
ate architectures, protecting SLA properties throughout the update process, as
illustrated in Fig. 2. For instance, still considering the previous upgrade case, the
BlueGreen strategy would protect the availability property through reaching a
first intermediate architecture where M is started in both versions V0.1 and V0.2,
before reaching another architecture where M in version V0.1 is stopped.

AC

intermediate architectures

target architecturecurrent architecture

strategy-driven
updateA1 A2 An

At

strategy-less update

Fig. 2. Strategy-driven update

To account for strategies, we design the pushArchitecture command as a fix-
point (Listing 1.4). At each step, the fix-point requests the strategy to compute
the next intermediate architecture along the update path, and then reconfigures
the application accordingly.

A strategy is simply defined as a sequence of transitions, each transition
managing elementary updates. To compute the next intermediate architecture,
a strategy goes through its transitions incrementally, until finding one that can

Architecture-Based Automated Updates of Distributed Microservices 27

evolve the current architecture closer to the target architecture (see Strategy
and Transition definitions in Listing 1.4).

pushArchitecture(String appid, Architecture Atarget, Strategy strategy) {
Architecture Acurrent, Anext;
Acurrent = pullArchitecture(appid, Atarget.sites);

while (Acurrent.differ(Atarget)) { ////////////// update fix-point
// compute next intermediate architecture
Anext = strategy.nextArchitecture (Acurrent, Atarget);
if (Anext == null) exit(”target unreachable”);
// reconfigure towards Anext
reconfigure (appid, Acurrent, Anext);
Acurrent = Anext;

}
}

abstract class Strategy {
// Sequence of transitions (to define in subclasses)
List<Transition> transitions;

// compute the next intermediate architecture to reach
Architecture nextArchitecture(Architecture Acurrent, Architecture Atarget) {

// process transitions until finding one moving closer to the target
for each Transition tr in transitions {

Architecture Anext = tr.process(Acurrent, Atarget);
if (Anext != null) return Anext;

}
return null;

}
}

interface Transition {
// returns null if the transition does not allow moving closer to the target
Architecture process(Architecture Acurrent, Architecture Atarget);

}

Listing 1.4. Strategy-driven updates

class AddRemoveStrategy extends Strategy {
// manages additions then removals of microservices,
List<Transition> = new List(Tadd, Tremove);

}

class Tadd implements Transition {
Architecture process (Architecture Acurrent, Architecture Atarget) {
// get microservices added in Atarget compared to Acurrent
List<Microservice> additions = Atarget.minus(Acurrent);
if (additions != null) {
// return an architecture including current miroservices plus the ones to add

Architecture Anext = Acurrent.clone();
Anext.add(additions);
return Anext;

} else return null;
}}
...

Listing 1.5. Example of strategy and transition definitions

For instance, a transition Tadd managing the additions of microservices
behaves as follow. Comparing the current and target architectures, it determines
if new microservices have to be deployed. If yes, it delivers a next architecture
containing the current microservices plus the new microservices to deploy. Symet-

28 F. Boyer et al.

rically, a transition Tremove determines if there are microservices to undeploy. If
yes, it delivers accordingly an architecture containing the current microservices
minus those to undeploy.

current architecture

M2

Site Sa

M1 transition
Tadd

intermediate architecture

M2

M1 M3

Site Sb Site Sa Site Sb

target architecture

M3

Site Sa Site Sb

transition
Tremove

Fig. 3. Using the basic AddRemove strategy

Listing 1.5 illustrates defining a strategy (named AddRemoveStrategy) com-
posed of the Tadd and Tremove transitions. Figure 3 depicts the behaviour
of this strategy when updating an elementary application composed of two
microservices (M1, M2) deployed on a site Sa. The target architecture only
contains the microservice M3 on Sb.

– At the first step, the update fix-point processes the first transition (Tadd)
of the strategy, that delivers the intermediate architecture composed of the
current microservices plus M3 deployed on Sb. The application is then recon-
figured towards this intermediate architecture.

– At the second step, the fix-point processes again the transition Tadd, that has
no more changes to perform. It then processes the next transition (Tremove),
that removes microservices not appearing in the target architecture (M1 and
M2 on Sa). The application is then reconfigured towards this architecture
and the fix-point terminates because the target has been reached.

Notice that transitions may apply changes over several steps of the fix-point.
Let’s consider a transition scaling up microservices horizontally as follow. For
each microservice to scale, new instances should be deployed and started one
by one7. Each time it is processed, this transition returns a next architecture in
which every microservice to scale has one more instance. When all microservices
have reach their target number of instances, it simply returns null.

5 Update Robustness

Two main kinds of failures may interrupt an update process, letting the applica-
tion in an arbitrary architectural state: first, the framework may faces a hardware
failure or a software one, for example a strategy raising an exception when com-
puting the next architecture; second, a microservice may fail when reconfigured
7 This pattern is required for microservices that do not support having several

instances started concurrently.

Architecture-Based Automated Updates of Distributed Microservices 29

on a PaaS site, for example it fails to start. With our approach, this is not a prob-
lem since any update process may be stopped at any time and later re-started as
a fresh update process. This kill-restart capability relies on the following main
properties.

– Runnability. Whatever the current architectural state for a microservice, it
can always be introspected and reconfigured by the PaaS site hosting it (even
a failed microservice can be restarted by PaaS operations).

– Idempotence. Transitions compare the current and target architectures to
determine the changes to process. Once a change has been done, a transition
just does not do it again. Thus it is always possible to restart an update
process that just failed.

Notice that re-starting an update process offers a way to change the tar-
get architecture and/or the strategy (Fig. 4), allowing the devops team to fix
some microservice configuration or to rollback to a previous architecture for the
updated application.

Fig. 4. Management of failures at update time

6 Evaluation

We evaluate our framework on the ease of programming strategies, the ease of
updating microservices, and the ability to protect SLAs at update time.

6.1 Ease of Programming Strategies

Let’s consider first the BlueGreen strategy that updates an application without
downtime – through installing, starting, and testing the new version (called the
green one) before uninstalling the current version (called the blue one). Once
the green environment is ready, incoming requests should be routed to it. We
defined such strategy with four transitions.

class BlueGreen implements Strategy {
List<Transition> = new List(Tadd, Tupdate, Tswitch, Tremove);

}

Listing 1.6. BlueGreen Strategy

30 F. Boyer et al.

In short, Tadd deploys microservices newly defined in the target architecture.
Tupdate deploys the green version of the microservices that are modified in the
target architecture (associating them to a temporary route (i.e., url) for testing
purposes). Tswitch switches from the temporary route to the regular one for
green microservices deployed at the previous step. Finally, Tremove removes
microservices that are no longer defined in the target architecture. The code
of the Tupdate and Tswitch transitions is shown hereafter (Tremove is quite
similar to Tadd given in Sect. 4). Altogether, these four transitions required only
54 lines of code.

class Tupdate implements Transition {
Architecture process(Acurrent, Atarget) {

Architecture Anext;
// get microservices modified in At compared to Ac
List<Microservice> modified = getModified(Ac, At);
if (updates != null) {

Anext = Ac.clone();
for each Microservice m in modified {

// deploy green version for the microservice to modify
Microservice mgreen = m.clone();
mgreen.route = m.get(”temporary−route”);
mgreen.set(”role”, ”green”);
mgreen.set(”blue−version”, m.get(”id”));
Anext.add(mgreen);

}
}
return Anext;

} // end of process method
}

class Tswitch implements Transition {
Architecture process(Acurrent, Atarget) {

Architecture Anext;
// get green versions of microservices in current architecture
List<Microservice> greens = getGreens(Ac);
if (greens != null) {

Anext = Ac.clone();
for each Microservice m in greens {

// remove blue version of the microservice
Anext.remove(m.get(”blue−version”));

// assign the regular route to the green version
m.set(”route”, m.get(”regular−route”));
m.set(”role”, ”blue”);

}
}
return Anext;

} // end of process method
}

Listing 1.7. Tupdate and Tswitch transitions

Additionally to the BlueGreen strategy, we programmed a dozen of other
classical update strategies8, some summarized in Table 1. Altogether, they only
required programming about fifteen transitions and each strategy was only com-
posed a few transitions (see column named nT). Overall, all transitions were
easy to program: (1) they were following similar patterns, essentially comparing
the current and target architectures to determine the next architecture, (2) they
only required a few lines of code (less than 30).

8 The code is available at https://github.com/tao-xinxiu/prototype-template-engine.

https://github.com/tao-xinxiu/prototype-template-engine

Architecture-Based Automated Updates of Distributed Microservices 31

Table 1. Some strategies programmed

Name Description nT

Straight Reach target directly (no intermediate architecture) 1

CleanRedeploy Remove all in current, deploy target, one microservice at a time 2

BlueGreen Reach target, creating green versions then removing old (blue)

versions for microservices to update

4

BlueGreenByGrpAs BlueGreen, but processes at most k microservices at a time per site4

Canary Reach target, incrementally stopping and restarting instances

for microservices to update, site by site

6

CanaryBySite As Canary, but all instances in parallel on a site 3

CanaryByInst As Canary, but all sites in parallel 6

Mixed Reach target, creating one new instance for any microservice to update

(for test pupose) then apply Canary strategy for pending instances

5

6.2 Ease of Updating Microservices

We report here on using the proposed framework to deploy and update a
microservice application composed of three microservices deployed on two PaaS
sites. To perform the initial deployment, we simply use the pushArchitecture
command with the Straight strategy and the desired initial architecture (shown
in the left part of the Fig. 5) as target.

Then, to update the application towards the target architecture shown in
the right part of the Fig. 5, upgrading M1 and removing M3, we decide to use
the BlueGreen strategy to avoid downtime. The framework allows us to follow
step by step the update, through the path of intermediate architectures. When
at the architecture 1, we perform some tests, checking that the newly deployed
microservice M ′

1 runs properly on Sa and Sb. Note that external client requests
are still routed to M1, as M ′

1 is assigned a temporary route.

initial architecture architecture 2 target architecture

Legend :

added microservices,
associated to temporary route

M2(x,1)

Sa Sb

M2(x,2)

M1'(r,2)

M1'(r,2)

M2(x,1)

Sa Sb

M1' (r, 2)

M3(y,1)

step 3M2(x,2)

M1' (r, 2)

architecture 1

M2(x,1)

Sa Sb

M1'(t,2)

M3(y,1)

M1(r,2)

M2(x,2)

M1'(t,2)

M1(r,2)

M2(x,1)

Sa Sb

M3(y,1)

M1(r,2)

M2(x,2)

M1(r,2)

removed
microservices

route changed
to regular one

step 1 step 2

Highlight a change
from precedent
architecture

M(x,y)

The microservice M
is deployed, associated
to the route x and
has y instances
running

Fig. 5. Elementary application update through the BlueGreen strategy

Once the final target architecture has been reached, we want to continue with
a new update, upgrading M ′

1 towards a new version M ′′
1 on Sa and Sb. Due to

32 F. Boyer et al.

a faulty configuration, M ′′
1 fails to run properly on Sb, automatically stopping

the update. Here we only have to fix M ′′
1 ’s configuration and re-issue the same

pushArchitecture request to continue the upgrade of M ′
1 towards M ′′

1 .
However, M ′′

1 ’s still fails to run properly on Sb. To fix the problem, we decide
to launch a new pushArchitecture command with the initial architecture as tar-
get, which rollbacks the partial updates we just tried. This results in the auto-
matic un-deployment of M ′′

1 on Sa and Sb.
Finally, to consider framework failures, we process updates along with a

script that randomly kills the framework. This time we consider longer processes,
updating one hundred microservices. Each time the framework is killed, whatever
the current state of the application, we just have to re-launch it and re-issue the
last pushArchitecture command to pursue the update towards the desired target.

6.3 Protecting SLA Properties: Real-Life Application Usecase

We used our framework to update a complete clone of a cross-canal order capture
application in live production at Orange, focusing on the simultaneous update of
two microservices ((C)atalog and (E)ligibility) that were deployed redundantly
over three distributed CloudFoundry (version 2.75.0) PaaS sites (S0, S1, S2). The
two microservices are about 10000 lines programmed in Java/Angular. Cloud-
Foundry ran on Cloudwatt [33] on top of OpenStack [34], under VMs with
medium flavor (4GB/2VCPU/50GB disk). The update to perform included a
code upgrade for the Catalog microservice and configuration changes for the
Eligibility microservice. We experienced with four strategies, comparing their
metrics: duration of the whole update process, downtime of the microservices
during the update (evaluated with Apache Jmeter), and resource consumption
(representative of the billing costs for the update). Each experiment was per-
formed 30 times. Results are given in Fig. 6.

Fig. 6. Update metrics

The Canary strategy (whise behavior is shown in Fig. 7) does not involve
additional cost in terms of resource usage. It ensures that any deployment of a

Architecture-Based Automated Updates of Distributed Microservices 33

C(r,3)

E(r,3)

current architecture

C(r,3)

E(r,3)

C(r,3)

E(r,3)

Sa Sb Sc

C(r,2)

C'(t,1)

architecture 2

C(r,3)

E(r,3)

C(r,3)

E(r,3)E(r,2)

E'(t,1)

C(r, 2)

E(r, 2)

architecture1

C(r,3)

E(r,3)

C(r,3)

E(r,3)

C(r,2)

C' (r, 1)

architecture 3

C(r,3)

E(r,3)

C(r,3)

E(r,3)E(r,2)

E' (r, 1)

C(r, 1)

C'(r,1)

architecture 4

C(r,3)

E(r,3)

C(r,3)

E(r,3)E(r, 1)

E'(r,1)

C(r,1)

C'(r, 2)

architecture 5

C(r,3)

E(r,3)

C(r,3)

E(r,3)E(r,1)

E'(r,2)

C'(r,2)

architecture 6

E'(r,2)

architecture 7

C(r,3)

E(r,3)

C(r,3)

E(r,3)

Sa Sb Sc

Sa Sb Sc

Sa Sb Sc

Sa Sb Sc Sa Sb Sc

Sa Sb Sc

E'(r, 2)

C(r,3)

E(r,3)

C(r,3)

E(r,3)E(r, 0)

C(r, 0)

C'(r, 3)

E'(r, 3)

Sa Sb Sc

instance-number
changed added

microservices
route changed to
regular one

Fig. 7. Real application update through the Canary strategy

new microservice instance is preceded by the removal of a current one. In the
version we used, the first new instance being deployed is associated to a tempo-
rary route to allow testing before continuing the update. Notice that in case of
high request load, some client requests may not be served as the microservices
have one less instance running during the update. Overall, this strategy involves
21 intermediate architectures to reach the target, 7 per site, sites being updated
sequentially. Its processing took about 10 min.

In comparison, the BlueGreen strategy updates the two microservices
through creating the three new (green) instances before removing the three cur-
rent (blue) ones, on all sites in parallel. Accordingly, it ensures zero downtime
but consumes nearly the double of memory during the update. The duration
is about 7 min, corresponding to the time required to create the new microser-
vices instances (which includes uploading their code), to switch their route, and
remove the three blue instances, on one site.

C(r,3)

E(r,3)

Sa

current architecture
C(r,3)

C'(rt,1)

Sa

architecture 1

E(r,3)

E'(rt,1)

architecture 2 architecture 3 architecture 4

Sb
Sc

Sa

Sb
Sc

C(r,3)

C'(r,1)

E(r,3)

E'(r,1)

Sa

Sb
Sc

C(r, 2)

E(r, 2)

C'(r, 2)

E'(r, 2)

Sa

Sb
Sc

C(r, 1)

E(r, 1)

C'(r, 3)

E'(r, 3)

Sc
Sb

target architecture

Sa

Sb
Sc

C'(r,3)

E'(r,3)

Fig. 8. Real application update through the Mixed strategy

34 F. Boyer et al.

The Mixed strategy (Fig. 8) updates microservices instance by instance, cre-
ating a new instance before removing an old one, across all sites in parallel. This
strategy takes approximately the same duration as BlueGreen, with no down-
time. It further limits the update cost in terms of resource usage since it uses
only one extra instance for each microservice while the BlueGreen doubles the
number of instances per site.

Finally, the Straight strategy delivers the shortest update duration (4 min),
as it reaches the target without going through intermediate architectures. The
duration corresponds to the time needed to update both microservices on one
site, the three sites being updated in parallel. This strategy does not consume
any additional resources but induces the largest downtime as the microservices
are stopped before their new version is uploaded, recompiled, and restarted.

7 Conclusion

With the proposed framework, devops teams update microservices through spec-
ifying target architectures and chosing strategies. They can follow an update step
by step, with the opportunity to change the strategy or adapt the target archi-
tecture at each step, which is key to handle failures gracefully. Since it permits
to pre-compute a path of intermediate architectures, the architecture-based app-
roach leveraged in this paper opens up an interesting perspective: predicting how
well a strategy will protect SLA properties during an update.

Acknowledgements. We would like to thank the Orange company for its valuable
collaboration in the presented work. This work was partially supported by the FSN
HYDDA and the EU FEDER STUDIO VIRTUEL projects.

References

1. Mauro, T.: Adopting Microservices at Netflix: Lessons for Architectural Design.
https://goo.gl/DyrtvI

2. Hoff, T.: Lessons Learned From Scaling Uber To 2000 Engineers, 1000 Services,
and 8000 Git Repositories. https://goo.gl/1MRvoT

3. Amundsen, M., McLarty, M., Mitra, R., Nadareishvili, I.: Microservice Architecture
- Aligning Principles, Practices, and Culture. O’Reilly Media, Sebastopol (2016)

4. Fowler, S.: Production Ready Microservices. O’Reilly, Sebastopol (2016)
5. Carnero, C.: Microservices From Day One: Build Robust and Scalable Software

From the Start. Apress, New York City (2016)
6. Fowler, M.: Blue-Green deployment (2010). https://martinfowler.com/bliki/

BlueGreenDeployment.html
7. Sato, D.: Canary update strategies (2014). https://martinfowler.com/bliki/

CanaryRelease.html
8. Tarvo, A., Sweeney, P.F., Mitchell, N., Rajan, V., Arnold, M., Baldini, I.:

Canaryadvisor: a statistical-based tool for canary testing (demo). In: International
Symposium on Software Testing and Analysis, ISSTA 2015, pp. 418–422 (2015)

https://goo.gl/DyrtvI
https://goo.gl/1MRvoT
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://martinfowler.com/bliki/CanaryRelease.html

Architecture-Based Automated Updates of Distributed Microservices 35

9. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, 1st edn. Addison-Wesley Prof, Boston
(2010)

10. Sampaio, A.R., et al.: Supporting microservice evolution, In: IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 539–543 (2017)

11. Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.): Models@run.time.
LNCS, vol. 8378. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08915-7

12. Newman, S.: Building Microservices - Designing Fine-Grained Systems, 1st edn.
O’Reilly, Boston (2015). http://www.worldcat.org/oclc/904463848

13. Montesi, F., Weber, J.: Circuit breakers, discovery, and API gateways in microser-
vices, CoRR, vol. abs/1609.05830 (2016)

14. Nygrad, M.T.: Stability patterns. Release It!: Design and Deploy Production-Ready
Software, 1st edn. Pragmatic Bookshelf, Raleigh (2007)

15. Fowler, M.: Circuit Breaker (2014). https://martinfowler.com/bliki/
CircuitBreaker.html

16. Cloud foundry. http://www.cloudfoundry.com/
17. Heroku. https://www.heroku.com/
18. Openshift. https://www.openshift.com/
19. Spinnaker. https://www.spinnaker.io/
20. AWS CodeDeploy. https://aws.amazon.com/codedeploy/
21. IBM UrbanCode. https://developer.ibm.com/urbancode/
22. Push2Cloud website. https://push2.cloud/
23. Gabbrielli, M., Giallorenzo, S., Guidi, C., Mauro, J., Montesi, F.: Self-reconfiguring

microservices. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory and
Practice of Formal Methods. LNCS, vol. 9660, pp. 194–210. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30734-3 14

24. Jolie. Official Web Site. http://www.jolie-lang.org/
25. Rajagopalan, S., Jamjoom, H.: App-bisect: Autonomous healing for microservice-

based apps. In: 7th USENIX Conference on Hot Topics in Cloud Computing, Hot-
Cloud 2015 (2015)

26. Di Cosmo, R., Lienhardt, M., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski,
J.: Automatic application deployment in the cloud: from practice to theory and
back. In: 26th International Conference on Concurrency Theory (CONCUR 2015),
vol. 42, Madrid, Spain, pp. 1–16 (2015)

27. Di Cosmo, R., Eiche, A., Mauro, J., Zacchiroli, S., Zavattaro, G., Zwolakowski, J.:
Automatic deployment of services in the cloud with Aeolus blender. In: Barros, A.,
Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp.
397–411. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-
0 28

28. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deploy-
ment of cloud applications. In: 25th IEEE International Conference on Tools with
Artificial Intelligence, ICTAI 2013, pp. 213–220 (2013)

29. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2012), pp. 263–274. ACM (2012)

30. Etchevers, X., Coupaye, T., Boyer, F., Palma, N.D., Salaün, G.: Automated config-
uration of legacy applications in the cloud. In: IEEE/ACM Conference on Utility
and Cloud Computing (UCC 2011), pp. 170–177 (2011)

31. Martin, J.: Managing the Data Base Environment, 1st edn. Prentice Hall PTR,
Upper Saddle River (1983)

https://doi.org/10.1007/978-3-319-08915-7
https://doi.org/10.1007/978-3-319-08915-7
http://www.worldcat.org/oclc/904463848
https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html
http://www.cloudfoundry.com/
https://www.heroku.com/
https://www.openshift.com/
https://www.spinnaker.io/
https://aws.amazon.com/codedeploy/
https://developer.ibm.com/urbancode/
https://push2.cloud/
https://doi.org/10.1007/978-3-319-30734-3_14
http://www.jolie-lang.org/
https://doi.org/10.1007/978-3-662-48616-0_28
https://doi.org/10.1007/978-3-662-48616-0_28

36 F. Boyer et al.

32. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. IEEE TSE 16(11), 1293–1306 (1990)

33. Cloudwatt. https://www.cloudwatt.com/fr/
34. Openstack. https://www.openstack.org/

https://www.cloudwatt.com/fr/
https://www.openstack.org/

Function-Splitting Heuristics
for Discovery of Microservices

in Enterprise Systems

Adambarage Anuruddha Chathuranga De Alwis1, Alistair Barros1(B),
Artem Polyvyanyy2, and Colin Fidge1

1 Queensland University of Technology, Brisbane, Australia
{adambarage.dealwis,alistair.barros,c.fidge}@qut.edu.au
2 The University of Melbourne, Parkville, VIC 3010, Australia

artem.polyvyanyy@unimelb.edu.au

Abstract. We present heuristics that help to identify suitable
consumer-oriented parts of enterprise systems which could be re-
engineered as microservices. Our approach assesses the key structural
and behavioural properties common to both enterprise and microser-
vice systems, as needed to guide a microservices discovery process and
coherently assess restructuring recommendations. Building upon existing
business object and system structural definitions, we present heuristics
for two fundamental areas of microservice discovery, namely function
splitting based on object subtypes (i.e., the lowest granularity of soft-
ware based on structural properties) and functional splitting based on
common execution fragments across software (i.e., the lowest granularity
of software based on behavioural properties). A prototype analysis tool
was developed based on the defined heuristics and experiments show that
it can identify microservice designs which support multiple microservice
characteristics, such as high cohesion, low coupling, high scalability, high
availability, and processing efficiency while preserving coherent features
of enterprise systems. In particular, we illustrate the usefulness of this
new approach by conducting a case study based on customer manage-
ment systems: SugarCRM and ChurchCRM.

Keywords: Microservice discovery · System reengineering
Cloud migration

1 Introduction

Microservices have emerged as the latest style of service-based software allowing
systems to be distributed through the cloud as fine-grained components, typi-
cally with individual operations, in contrast to services under a Service-Oriented
Architecture (SOA) which include all logically related operations [1]. As such,
microservices allow specific parts of systems and the business processes they
support, down to individual tasks, to be scaled up and replicated through the
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-030-03596-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_3

38 A. A. C. De Alwis et al.

cloud, and be flexibly composed in Web, mobile computing, and Internet-of-
Things (IoT) applications. These benefits originally led Netflix, and now Twit-
ter, eBay, Amazon and other Internet players, to develop novel architectures for
software solutions as microservices. Nonetheless, microservices have so far not
been adopted for the dominant form of software in businesses, namely enterprise
systems, limiting such systems’ evolution and their exploitation of the full ben-
efits of cloud-enabled platforms such as Google Cloud, Amazon AWS and IoT
[2].

Enterprise systems, such as enterprise resource planning (ERP), customer
relationship management (CRM) and supply chain management are large and
complex, and contain complex business processes encoded in application logic
managing business objects (BOs), in typically many-to-many relationships [3].
Restructuring enterprise systems as microservices is technically cumbersome,
requiring tedious search and identification of suitable parts of the system to
restructure, program code rewrites, and integration of the newly developed
microservices with the ‘backend’ enterprise systems. This is a costly and error-
prone task for developers, because enterprise systems have millions of lines of
code and thousands of BOs they manage, entailing a multitude of functional
dependencies, in and across many software packages and modules. In addition,
microservices are the most fine-grained and loosely-coupled form of software
components upon which to restructure large-scale enterprise systems. This leads
to major uncertainties about the best way to split enterprise systems functions as
microservices, to achieve high scalability and availability and low system laten-
cies through the cloud, while attaining high cohesion and low coupling between
software components.

Automated software re-engineering techniques have been proposed to
improve the efficiency of transforming legacy applications, addressing specifically
cohesion and coupling of software packages and components using static analy-
sis techniques that focus on source code and dynamic analysis techniques that
focus on software execution recorded in system logs. Even though these analyses
proposed to improve software search and metrics, studies show that the suc-
cess rate of software re-modularisation techniques, especially for large systems,
remains low [4]. The key stumbling blocks are the limited insights available from
syntactic structures of software code for profiling software dependencies and not
identifying the semantics available through the business object relationships [5].

Enterprise systems can provide enriched semantic insights, available through
the BOs that they manage which influence the software structure and the pro-
cesses they support. For instance, an order-to-cash process in SAP ERP is sup-
ported through functions of software components: multiple sales orders, deliveries
shared across different customers, shared containers in transportation carriers,
and multiple invoices and payments. To support this process, multiple functions
are invoked asynchronously, reflecting BO relationship types and cardinalities,
and are seen through cross-service interactions, correlations, and data payloads
[6]. Such insights provided by BO relationships are promising for improving the
feasibility of automated discovery applications. As examples, Pérez-Castillo et

Function-Splitting Heuristics for Discovery of Microservices 39

al. [7] used transitive closures of strong BO dependencies derived from databases
to recommend software functions hierarchies, while Lu et al. [8] demonstrated
process discovery using SAP ERP logs based on BOs.

This paper presents discovery techniques that help to identify suitable
consumer-oriented parts of enterprise systems which could be re-engineered as
microservices with desired characteristics such as high cohesion, low coupling,
high scalability, high availability and high processing efficiency. It does so by
providing an abstraction of the systems architecture, using key structural and
behavioural properties common to both enterprise and microservices systems,
considered essential to guide microservices discovery processes and coherently
assess their potential restructuring. The structural properties address the func-
tional composition of software, namely functions and their BO Create-Read-
Update-Delete (CRUD) operations, while behavioural properties focus on system
executions, at the level of operation invocations, reflecting single-entry-single-
exit sequences characteristic of these systems. This, in principle, allows enterprise
systems to be analysed at different units of structural and behavioural granular-
ity, and the resulting restructure recommendations to be conveniently assessed
for preservation of structural and behavioural properties. This paper addresses
two fundamental areas of microservice discovery, namely function-splitting based
on object subtypes (i.e., the lowest granularity of software based on structural
properties) and functional splitting based on common execution fragments across
software (i.e., the lowest granularity of software based on behavioural proper-
ties). This, we argue, provides a solid basis for future development of further
microservices discovery heuristics.

The remainder of the paper is structured as follows. Section 2 presents struc-
tural and behavioural properties of software systems, while Section 3 exploits
these properties to propose heuristics for discovering microservises in enterprise
systems. Section 4 discusses an implementation and validation of the proposed
heuristics. Related work is summarized in Section 5. The paper closes with a
conclusion.

2 Structural and Behavioural Properties of Enterprise
and Microservice Systems

This section describes the essential properties of a target system architecture that
comprise an enterprise system (ES) and a microservice (MS) system, which is
depicted in Fig. 1. This architecture will be used in our MS discovery approach
(detailed in Sect. 3). The architecture reflects a unified software structure for
both an ES and MS system, since a proper system migration from an ES to MS
system is an incremental process in which the most prominent components are
extracted and remodularized as MSs first [1]. Such remodularized MSs run in a
cloud setting and are integrated with the ‘backend’ enterprise system as depicted
in the Fig. 1.

The software structure of an ES (e.g., an ERP system) consists of a set of
self-contained modules (e.g., software components) drawn from different subsys-
tems (e.g., production management), deployed on a specific execution platform.

40 A. A. C. De Alwis et al.

Software Modules1

Legacy System

Functions1

OP1 [BO1]

OPn[BOn]

Function1

--

OP1 [BO1]

OPj[BOj]

Functionn

--

Software Modules2

Functionsn

--

OP1 [BO1]

OPk [BOk]

Function1

--

OP1 [BO1]

OPj [BOj]

Functionm

--

Legacy Database
System

BO1 BOj BOnBOk ---------

Microservice System

Container 1

Shared Context
DB

Microservicen

Functionsn

-

OP1

OPm

Microservicen

Functions1

Function1'[BO1]

-

OP1

OPn'

BO1 BOn

Shared Context
DB 1

Microservice1

Functions1

-

OP1

OPn'

BO1

Container n

Functionn'[BO1]

Function1'[BOm]

Functionm'[BOm]

Function1[BO1]

Functionn[BO1]

Map Functions

Function1

Functionn

MapOP1

Adapter

MapOPn

MapOP1

MapOPm

--
--

--

OPk [BO1]

--

Fig. 1. Architecture of enterprise and microservices systems.

Modules consist of a set of functions (e.g., software classes) and each function
consists of a number of operations (e.g., methods) aimed at manipulating BOs
through CRUD operations which typically have database access logic or data
processing logic applied to data stored in program variables and constants. The
data stored in a centralized database associated with a deployed ES relates to
BOs which process data resulting from business process executions supported
through functions (such as transactions).

MSs are remodularized and potentially extended parts or functions of ESs,
supporting consumer applications running in cloud applications. Since MSs are
functionally isolated and loosely-coupled parts connected to each other, much
like the components of a distributed system, they tend to concern individual BOs,
locally managed through a database. The managed data of MSs is synchronized
at discrete intervals with similar MS instances and with the backend ES. One
or more MSs can run in an execution environment known as a cloud container,
configured for specific execution characteristics, such as scalability or availability
applying to all the MSs of the container.

Despite structural differences, the behaviour of an ES and an MS system
is based on the invocation of operations, in well-defined processing sequences
reflecting the relationships of BOs they manipulate. For example, the creation of
a ‘purchase order’ will result in the invocation of functions involving the creation
of ‘line items’ reflecting a strict containment of objects. Similarly, processing
sequences between ‘Shipper’ and ‘Shipping order’ reflect weak containment while
processing sequences between ‘leads’ and ‘campaigns’ reflect an association. In
addition, normalization of a BO can result in additional process sequences. For
example, the creation of a ‘shipment’ BO will result in an invocation of a function
related to different shipments subtypes such as ‘ground home delivery shipment’
and ‘intra UAESO shipment’ based on the operational parameters provided at
run time. These different execution sequences of operations reflect a set of single-
entry-single-exit (SESE) regions [9] in an ES’s executions.

Function-Splitting Heuristics for Discovery of Microservices 41

Although an MS system executes in a manner similar to an ES, there are spe-
cific characteristics applicable only to an MS. Generally MSs run as distributed
systems which are deployed through different containers that help the MS system
to achieve high scalability and availability while executing services in an asyn-
chronous manner and managing security through configurations of API gateways
[1]. Scalability can be defined as allocation and de-allocation of the resources to
containers on demand according to the configuration properties. Such configura-
tion properties include load balancing and resource allocation policies optimizing
the resources within a container allowing it to provide high scalability at lower
cost. Furthermore, the configuration properties define circuit breaker threshold
values for each MS which resides in a container, which assures that a request is
redirected to another MS if it did not get a response from the initially accessed
MS within the threshold time period resulting in high availability. Since there
are multiple MSs in a single container, it can process multiple client requests in
an asynchronous manner while aligning with the system requirements of the ES.
All the MSs communicate through adapters which synchronize with the database
system which resides in the legacy ES and this helps to achieve consistency
among all the microservices which are distributed among multiple containers.
Finally, each MS is developed in order to provide a specific functionality to the
end user or the system, which makes them highly cohesive and loosely coupled
services. This understanding leads us to the following formal characterization of
the environment.

Let I and O be a universe of input types and output types, respectively.
Let OP, T and B be, respectively, a universe of operations, database tables, and
business objects. Finally, let β be a binary relation on B such that β+ is irreflex-
ive1. Relation β defines a subtype relation on business objects, i.e., for every
(b1, b2) ∈ β+ we say that b2 is a subtype of b1. As proposed in this paper, tech-
niques for the discovery of microservices rely on abstractions of ESs, as defined
below.

The data related BOs in ESs are disseminated through several database
tables.

Definition 2.1 (Business Object)
A business object b is characterized by a collection of database tables, i.e., b ⊆ T.

�

The BOs in ESs have complex relationships with the operations which perform
CRUD processes on them. Such operations are encapsulated in different functions
of ESs and MSs.

Definition 2.2 (Operation)
An operation op is a triple (I,O, T), where I ∈ I

∗ is a sequence of inputs, O ∈ O
∗

is a sequence of outputs, and T ⊆ T is a set of database tables.2 �
1 Given a binary relation α, by α+ we denote the transitive closure of α.
2 Given a set A, by A∗ we denote the set of all finite sequences that can be generated

by concatenating elements of A.

42 A. A. C. De Alwis et al.

An ES can be seen as a finite automaton with operations as labels.

Definition 2.3 (Enterprise system).
An enterprise system is a 5-tuple (Q,Λ, δ, q0, A), where:

◦ Q is a finite nonempty set of states,
◦ Λ is a set of operations, such that Q and Λ are disjoint,
◦ δ : Q × (Λ ∪ {τ}) → P(Q) is the transition function, where τ a is a special
silent operation such that τ �∈ Q ∪ Λ,
◦ q0 ∈ Q is the start state, and
◦ A ⊆ Q is the set of accept states.3 �

Let C and M be a universe of containers and microservices, respectively. Let
S be an enterprise system. By SESE (S), we denote the set of all (generalized)
SESE fragments of S, cf. [9]; clearly, one can interpret an ES as a workflow graph
with vertices defined by its states and a flow relation defined by its transition
function. Each SESE fragment of an ES induces a function, or a call graph, i.e.,
a subgraph of ES. We abstract a function as a triple (I,O,OP), where I and O
are sequences of inputs and outputs, respectively, and OP is a set of operations.
For our purposes, we define a MSs system as follows.

Definition 2.4 (Microservices System). A microservices system of an enter-
prise system S = (Q,Λ, δ, q0, A) is a 5-tuple (S,C,M, σ, μ), where:

◦ C ⊆ C is a set of containers,
◦ M ⊆ M is a set of microservices,
◦ σ : C → P(M) \ ∅ is a deployment function that maps each container c ∈ C
onto a non-empty set of microservices σ(c) that are deployed on c, and
◦ μ : M → P(SESE (S)) \ ∅ is a microservice definition function that maps each
microservice m ∈ M onto a non-empty set of SESE fragments, a.k.a functions,
μ(m) of S, such that:

– No two microservices are defined using the same function, i.e.,
∀m1∈M ∀m2∈M : (m1 �= m2) ⇒ ((μ(m1) ∩ μ(m2)) = ∅), and

– Every two functions used to define the microservices in M are either disjoint,
i.e., do not share an edge, or are in a subgraph relation. �

Given an enterprise system S, (S, {c}, {m}, {(c, {m})}, {(m, {S})}), where c ∈ C

and m ∈ M, is its elementary microservices system, or the elementary enterprise
and microservices architecture induced by S.

3 Automated Microservice Discovery

As described in Sect. 2, the behaviour of an ES and an MS system is based on
the invocation of functions which consist of well-defined sequences of operations
governed by BO relationships. Such sequences illustrate a particular execution
pattern based on the structure and behaviour of an organization. Therefore,
we argue that a proper analysis of these sequences of operations will help to

Function-Splitting Heuristics for Discovery of Microservices 43

A B

C

D

F G H

E

BO1 BO2 BO3

A B

C

D

F G

BO1 BO2 BO3

(a) (b)

E

A B D F G

BO1 BO2 BO3

(c)Graph 1 Graph 2 Graph 3

Fig. 2. Patterns of system executions and BO relationships.

derive prominent microserviceable components. This assumption leads us to two
heuristics which assist in MS discovery.

As an example, assume that an ES has three hypothetical processing
sequences, as depicted in Fig. 2, in which each node of the sequences represents a
system state after performing a CRUD operation. These states are linked to the
BOs on which different CRUD operations were performed. Figure 2(a) and (b)
capture the same execution order dependencies between states ‘A’, ‘B’, ‘C’, ‘D’,
‘E’, ‘F’, and ‘G’. Furthermore, the overlap between the execution patterns is
high, i.e., more than 80%, which emphasizes that CRUD operations were per-
formed on the same BOs. For instance, the campaign management module in
SugarCRM describes different types of publicity campaigns, such as newsletter,
email, and non-email. The execution paths and the BOs they execute upon are
similar. However, the BO attributes they use in the execution processes are often
different. This execution behaviour is explicit because of the structural splitting
of objects at the BO level, as described by Halpin and Morgan [10]. To address
this phenomenon, we define Heuristic 1.

Heuristic 1 (Subtype). Given an enterprise system S, a subtype relation exists
between a parent call graph x = (I,O,OP) ∈ SESE (S) and a child call graph
x′ = (I ′, O′,OP ′) ∈ SESE (S), iff I ′ ⊆ I, OP ′ ⊆ OP, and B′ ⊆ B, where B′

and B are the BOs manipulated by OP ′ and OP , respectively. To ensure that
the call graphs execute on the same BOs, we require that 80% of the states of
the parent appear in the child.

In addition, some execution sequences can occur often when executing a soft-
ware system. As an example, the execution pattern ‘A’, ‘B’, ‘D’, ‘F’, ‘G’ occurs
in Fig. 2(a), (b), and (c). This phenomenon depends on the functional relation-
ships that occur during execution time. For example, ‘B’ precedes ‘D’ in every
execution because, for instance, the data in ‘B’ is required for the execution
of ‘D’. In the functional structure level this can be described as a ‘has a rela-
tionship’ property, in which a class object of ‘D’ is referenced inside ‘B’. Such

3 Given a set A, by P(A), we denote the powerset of A.

44 A. A. C. De Alwis et al.

functional structure emphasizes that the same behaviour should be preserved in
all the system executions. To address this issue, we define Heuristic 2.

Heuristic 2 (Common Subgraph). Given an enterprise system S, a common
subgraph of two call graphs x, x′ ∈ SESE (S) is a call graph x′′ ∈ SESE (S), such
that x′′ ⊆ x and x′′ ⊆ x′.

A common subgraph which captures frequent executions can be used as a basis
for defining a microservice. This heuristic can be generalized to subgraphs com-
mon to multiple call graphs. Intuitively, choosing smaller common subgraphs
produces smaller microservices which helps to achieve higher scalability. On the
other hand, choosing larger subgraphs produces larger microservices which helps
reduce communication overheads and improve system efficiency.

Heuristics 1 and 2 can guide the discovery of microservices that potentially
support multiple microservice characteristics, such as high cohesion, low cou-
pling, high scalability, availability, and processing efficiency, while preserving
coherent features of enterprise systems. In what follows, this claim gets verified.

3.1 Discovery Process

Our microservice discovery and recommendation process based upon the above
heuristics consists of two components, i.e., a Business Object Analyser (BOA)
and a System Dynamic Analyser (SDA), as depicted in Fig. 3.

Since MSs are focused around accessing and transferring states of BOs, or
partitions of BOs, in the system [11], it is important to identify the BOs in a
given ES. Therefore, the BOA is comprised of a System Operation Extraction
Model (SOEM) and a Business Object Derivation Model (BODM). The SOEM
evaluates all the SQL queries to identify the relationships between database
tables, while the BODM derives the BOs based on the identified relationships
and data similarities, as described by Nooijen et al. [12].

System
Database

System
Source
Code

System Operation
(CRUD) Extraction

Model

Business Object
Analyser

Business Object
Derivation Model

Graph Clustering
and Analysis

Model

System Dynamics
Analyser

BO Relationship
Analysis and

SESE Derivation
Model

Execution
Call Graphs

Microservice Discovery and Recommendation Synthesizer

Microservice
Recomendation

Microservice
Recommendation

Interface

Fig. 3. An overview of our microservice discovery and recommendation process.

Function-Splitting Heuristics for Discovery of Microservices 45

The BOs identified by the BOA are provided as input to the SDA along
with call graphs of the ES. The graph clustering and analysis model in the
SDA identifies the Frequent Execution Patterns (FEP) in the provided set of
SESE (S). These FEPs get evaluated against the aforementioned heuristics and
classified into different categories, as described in Sect. 3.2. The categorized pat-
terns are evaluated by BO relationship analysis and a SESE derivation model.
The SESE derivation model identifies the BOs which are related to each node in
the extracted graph pattern and the SESE regions related to each BO. Finally,
the Microservice Recommendation Interface (MRI), provides different configu-
ration models for MSs by evaluating the results of the system dynamic analysis
model. Due to space limits, this paper only addresses the SDA and the MRI,
which analyse the system execution patterns and recommend MS configuration
models.

3.2 Microservice Discovery Algorithms

Given a set of call graphs of a legacy system, like the ones shown in Fig. 2, the
SDA and MRI derive sets of MS recommendations based on Heuristics 1 and 2
using Algorithms 1 and 2. Algorithm 1 derives a set of subgraphs in the given
set of call graphs of an ES, while Algorithm2 analyses the subgraphs to identify
functions which operate on single BOs to provide MS migration recommenda-
tions.

Algorithm 1 comprises four steps. The first step involves function
GRAPHSUMMARY , which computes the set of adjacency matrices MT of the
call graphs SESE (S) (line 1). Each adjacency matrix is generated in two steps.
First, the function constructs the set of all distinct states of the graphs. For
example, for the three call graphs in Fig. 2, this set comprises states ‘A’, ‘B’,
‘C’, ‘D’, ‘E’, ‘F’, ‘G’, and ‘H’. Then, for each call graph, the function creates
a matrix mt ∈ MT of size N × N , where N is the number of distinct states
(for the graphs in Fig. 2, the number of distinct states is eight). In a matrix
mt ∈ MT , a transition between two states q and q′ of the corresponding call
graph is represented by ‘1’ and the absence of a transition is represented by ‘0’.

The second step of Algorithm 1 constructs two matrices, the Augmented
Adjacency Matrix (AAM) mta and Augmented Graph Matrix (AGM) mtg,
which are of size N ×N (lines 3–10). At the beginning, all the values of mta are
initialized to ‘0’ and all the values of mtg are initialized to the empty set. Then,
the algorithm iterates over adjacency matrices mtk ∈ MT to compute statistics
on transitions. The indices of the graphs that contain a transition are recorded
in matrix mtg and the number of graphs that contain the transition gets stored
in matrix mta. The AAM and AGM generated for the call graphs in Fig. 2 are
shown in Fig. 4. In Fig. 4(a), the value in the AAM row ‘A’, column ‘B’ is ‘3’
because all the three call graphs depicted in Fig. 2 have a transition (an edge)
from node ‘A’ to node ‘B’. Similarly, in Fig. 4(b), the value in the AGM row ‘A’,
column ‘B’ encodes the graphs that contain the corresponding transition. Since
the transition is in all the three call graphs, the value has been set to ‘1’, ‘2’, ‘3’.

46 A. A. C. De Alwis et al.

Algorithm 1. Calculate AAM and AGM
Require: An enterprise system S.
1: MT = {mt1 , . . . ,mtn} := GRAPHSUMMARY (SESE(S)) //Generate the summary matrix
2: /∗ Iterate through each mtk in MT ∗/
3: for each k ∈ [1 .. n] do
4: for each i ∈ [0 .. N − 1], where N is the number of distinct states in SESE(S) do
5: for each j ∈ [0 .. N − 1] do
6: mta[i][j] := mta[i][j] + mtk[i][j]
7: mtg[i][j] := mtg[i][j] ∪ {k}
8: end for
9: end for
10: end for
11: Sub = 〈sub0, . . . , subm〉 := IDENTIFYSUBGRAPHS(mta,mtg) //Get common subgraphs
12: for each i ∈ [0 ..m] do
13: parents := {mt ∈ MT | subi is a subgraph of mt}
14: /∗ Record the similarity value for subgraph subi in the Sim list ∗/
15: Simi := similarity(subi, parents)
16: end for
17: return (Sub, Sim)

In the third step of Algorithm1 the generated matrices mta and mtg are
passed as input to the IDENTIFYSUBGRAPHS function which computes the
adjacency matrices of the common subgraphs Sub of the call graphs (line 11).

A B C D E F G H A B C D E F G H
A 0 3 0 0 0 0 0 0 A ∅ 1,2,3 ∅ ∅ ∅ ∅ ∅ ∅
B 0 0 2 3 0 0 0 0 B ∅ ∅ 1,2 1,2,3 ∅ ∅ ∅ ∅
C 0 0 0 0 2 2 0 0 C ∅ ∅ ∅ 0 1,2 1,2 ∅ ∅
D 0 0 0 0 0 3 0 0 D ∅ ∅ ∅ ∅ ∅ 1,2,3 ∅ ∅
E 0 0 0 0 0 0 2 0 E ∅ ∅ ∅ ∅ ∅ ∅ 1,2 ∅
F 0 0 0 0 0 0 3 0 F ∅ ∅ ∅ ∅ ∅ ∅ 1,2,3 ∅
G 0 0 0 0 0 0 0 1 G ∅ ∅ ∅ ∅ ∅ ∅ ∅ 1
H 0 0 0 0 0 0 0 0 H ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

(a) AAM (b) AGM

Fig. 4. Intermediate matrices used by Algorithm 1 computed for the call graphs in
Fig. 2.

In the fourth step, the algorithm iterates over subgraphs in Sub and measures
the similarity Simi between subgraph subi and all its parent graphs (lines 12–
16). The similarity is identified as the ratio of the number of nodes in subi to the
number of distinct nodes in all the parent graphs. Finally, the algorithm returns
the identified common subgraphs and calculated similarity values (line 17). If a
similarity value is greater than 0.8 for a particular subgraph, we identify that
the subgraph and its parent call graphs satisfy Heuristic 1.

The subgraphs which are common to all the call graphs in SESE (S) satisfy
Heuristic 2. However, further processing is required to identify functions that
act upon single BOs. To accomplish this check, we present Algorithm 2.

Algorithm 2 consists of three steps. The first step involves identifying the
states of the input subgraphs with no more than two incident transitions, a.k.a

Function-Splitting Heuristics for Discovery of Microservices 47

Algorithm 2. Compute functions for given BOs
Require: A set of BOs B and list of graphs Sub = 〈sub0, . . . , subm〉
1: for each i ∈ [0 ..m] do
2: Q := ∅
3: for each node q in subi do
4: if q is incident to less than three edges then
5: Q := Q ∪ {q}
6: end if
7: end for
8: QSi := Q //QS is a list of sets of nodes
9: end for
10: Y := GENERATEGRAPHS(QS ,Sub)
11: Z := Y
12: for each y ∈ Y do
13: /∗ Evaluate graph y to confirm that every operation in y is connected to the same b ∈ B and

if not remove it from Z ∗/
14: if y operates on more than one BO in B then
15: Z := Z \ {y}
16: end if
17: end for
18: return Z //Each function in Z operates over a single BO

single-entry-single-exit states (lines 1–9). It is expected that the input subgraphs
are generated by Algorithm 1. The loop of lines 1–9 iterates over all the sub-
graphs, while the loop of lines 3–7 runs over all the nodes of a current subgraph
to extract and record the “SESE” states (line 5). The constructed sets of “SESE”
states get stored in list QS on line 8.

In the second step of the algorithm function GENERATEGRAPHS con-
structs connected graphs composed of the nodes in QS that are subgraphs of
the graphs in Sub, and records the result in set Y (line 10).

In the third step, the algorithm evaluates each graph y ∈ Y to verify whether
all the operations captured in y are carried out on the same BO (lines 11–17).
If the operations relate to more than one BO, the graph gets removed from set
Z, which initially is assigned to contain all the graphs in Y . The BO mapping
is achieved by evaluating each database table t associated with operations of
graph y and mapping t to the BOs that are characterized by t. If an operation,
or several operations, of y relates to database tables that characterize more than
one BO, then y gets removed from Z. At the end of the third step of Algorithm2,
set Z is composed of all the functions that operate on a single BO, and this set
is returned on line 18. Finally, the functions in set Z get recommended to the
user as possible MSs.

4 Implementation and Validation

A proper MS should provide high execution efficiency with a desirable level
of scalability and availability. Furthermore the packages and components in it
should be highly cohesive and loosely coupled [1,16]. In order to validate our MS
discovery and recommendation process provides MSs with the desirable charac-
teristics, we developed a prototype4 based on the algorithm presented in Sect. 3.2
4 https://github.com/AnuruddhaDeAlwis/Subtype.git.

https://github.com/AnuruddhaDeAlwis/Subtype.git

48 A. A. C. De Alwis et al.

and experimented on SugarCRM5 and ChurchCRM6 which is detailed in our
technical report [17].

This section only presents the details of the experiments that we conducted
using the prototype on SugarCRM, which is a customer relationship management
system that has a complex system structure with more than 8,000 source files,
600 attributes divided between 101 tables. We specifically focused on the cam-
paign management module of SugarCRM to generate the execution sequences for
our microservice discovery process. In order to cover all the user cases related to
the campaign management module, 10 different executions7 related to the cam-
paign management, such as target creation, campaign creation, and template
creation, were performed and their log data was generated using the SugarCRM
system’s log functionality. The logs were then analyzed using the process mining
tool Disco8 and 10 different call graphs were generated, all together containing
around 200 unique execution nodes. The generated call graphs and the database
tables were provided as the input to the prototype.

Discovered MSs: Based on the call graphs and database tables, the prototype
identified three subtypes of campaigns, namely newsletter, email, and non-email,
which results in functional splitting of the ES based on object subtypes (satisfy-
ing Heuristic 1). In addition, the prototype identified common sequences related
to all the executions resulting in functional splitting of the ES based on execution
fragments (satisfying Heuristic 2).

Validation Process: The validation process was conducted by implementing
the recommended MSs in Google Cloud. Each MS was hosted in Google Cloud
using a cluster of size 2 which has two virtual CPUs and a total memory of
7.5 GB. The hosted MSs were exposed through the Google Cloud kubernetes
API, allowing third party computers to access them via API calls. In order to
validate the sub-typing recommendations, we implemented three MSs simulating
newsletter, email, and non-email campaigns, and another system to simulate the
legacy campaign module which covered all the campaign sub-types. In addition,
we implemented a MS with common segments, i.e., fragments with similar states,
communicating with other MSs simulating the common subgraphs recommen-
dations given by the framework. Each MS was tested against a load of 150,000
requests and 300,000 requests generated by 10 machines simultaneously, simu-
lating the customer requests, while recording their total execution time, average
memory consumption and average disk consumption. The results are shown in
Tables 1 and 2.

Based on the results reported in Tables 1 and 2, we calculated the scala-
bility, availability, and execution efficiency of different combinations and the
results obtained are summarized in Tables 3 and 4. The scalability was calcu-
lated according to the resources usage over time as described by Tsai et al. [13].
5 https://www.sugarcrm.com/.
6 http://churchcrm.io/.
7 http://support.sugarcrm.com/Documentation/Sugar Versions/8.0/Pro/

Application Guide/.
8 https://fluxicon.com/disco/.

https://www.sugarcrm.com/
http://churchcrm.io/
http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/
http://support.sugarcrm.com/Documentation/Sugar_Versions/8.0/Pro/Application_Guide/
https://fluxicon.com/disco/

Function-Splitting Heuristics for Discovery of Microservices 49

In order to determine the availability, first we calculated the time taken to pro-
cess 100 requests if a particular MS is not available. Then, we used the difference
between the total up-time and total down-time as described by Bauer et al. [14].
Efficiency gain was calculated by dividing the time taken by the legacy system
to process all requests by the time taken by each MS. Furthermore we calculated
the structural cohesion and coupling of the packages in legacy system and the
new MS systems as described by Candela et al. [4].

Table 1. Legacy system vs subtype MSs execution results.

Campaign type No. of requests Ex. time (ms) Avg mem (GB) Avg disk (GB)

Legacy 150,000 324,000 3.00375 2.09550

Legacy 300,000 741,600 3.04025 2.10050

Newsletter 150,000 201,600 2.95475 2.09150

Newsletter 300,000 396,000 3.00575 2.09975

Email 150,000 198,000 2.89075 2.09225

Email 300,000 446,400 2.97075 2.10125

Non-email 150,000 226,800 2.84550 2.09300

Non-email 300,000 432,000 2.92875 2.10125

Table 2. Legacy system vs common subgraphs MSs execution results.

System type No. of requests Ex. time (ms) Avg mem (GB) Avg disk (GB)

Legacy 150,000 399,600 3.0335 2.0915

Legacy 300,000 781,200 3.1665 2.1020

Common Seg. 150,000 194,400 2.9110 2.0926

Common Seg. 300,000 396,000 2.9905 2.1015

Table 3. Scalability, availability, and efficiency gains using subtyping.

Campaign type Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 2.652 2.626 99.856 99.918 1.000 1.000

Newsletter 1.963 1.937 99.910 99.956 1.607 1.873

Email 2.612 2.552 99.912 99.950 1.636 1.661

Non-email 1.867 1.821 99.899 99.952 1.429 1.717

50 A. A. C. De Alwis et al.

Table 4. Scalability, availability, and efficiency gains using common subgraphs.

Campaign type Scalability

[Mem]

Scalability

[Disk]

Availability

[150,000]

Availability

[300,000]

Efficiency

[150,000]

Efficiency

[300,000]

Legacy 1.9947 1.9205 99.9334 99.9667 1.0000 1.0000

Common MS 2.1314 2.0839 99.9334 99.9667 2.0556 1.9727

Table 5. Comparison of lack of cohesion and structural coupling.

System type Lack of cohesion Structural coupling

Legacy with campaign packages 104.00 17.00

MS with campaign packages 92.00 15.89

Legacy with commonality packages 55.83 18.00

MS with commonality packages 50.67 18.50

Experimental Results: According to Tsai et al. [13], the lower the number the
better the scalability. Thus, the newsletter and non-email MSs have better scala-
bility than the legacy system when considering both memory and disk usage over
time (refer to Table 3). In the email MS there is a scalability gain, even thought
it is not as significant as that of the gain in the newsletter and non-email MSs.
When considering availability we clearly observe that there is higher availability
in subtype MSs than in the legacy system. As the number of requests increased
from 150,000 to 300,000, subtype MSs were able to handle the request overload
while providing better availability than the legacy system. Most importantly,
when examining the request processing efficiency, each subtyping MS managed
to process the request at at-least 1.5 times the speed of the legacy system.

Table 4 reports that there is not much of a gain in scalability and availability
in the MS discovered and developed based on Heuristic 2 when compared with
the legacy system. In contrast, when comparing the efficiency gain, it is evident
that the common MS managed to process requests at at-least twice the acceler-
ated speed of the legacy system. Furthermore, when comparing the coupling and
cohesion values detailed in Table 5, it is evident that both campaign and com-
mon MSs attained a higher level of cohesion than the legacy system. In addition,
the campaign MS managed to achieve slightly better coupling when compared
with the legacy system even though there is a small increase in coupling in the
common MS. Similar results were obtained for the experiments conducted on
ChurchCRM’s service management module [17].

Provided Solutions: The obtained results have affirmed that MSs extracted
based on the recommendation of our prototype can provide the same services
to the users while preserving overall system behaviour and achieving higher
scalability, availability, efficiency, high cohesion, and low coupling.

Function-Splitting Heuristics for Discovery of Microservices 51

5 Related Work

Microservices have emerged as the latest style of service-based software allowing
systems to be distributed through the cloud as fine-grained components, typi-
cally with individual operations, in contrast to services under SOA which include
all logically related operations [1]. Even though microservices can support the
evolution of ERP systems by providing exploitation in cloud-enabled platforms
such as the IoT [2], the research conducted in this particular area is limited.
To the best of our knowledge there is no research related to the automation of
MS discovery in legacy systems, apart from the manual migrations achieved by
Balalaie et al. [15]. Balalaie et al. have described the complexity associated with
the system reengineering process while pointing out the importance of consider-
ing BOs and their relationships in the migration system process. Martin Fowler
emphasizes the importance of adapting BO relationships in microservices [16]
aligning with the Domain Driven Design principles.

However, the existing software re-engineering techniques do not consider the
complex relationship of BOs with their behaviours in the re-engineering pro-
cess. Furthermore, studies show that the success rate of existing software re-
modularisation techniques, especially for large systems, remains low [4]. A key
stumbling block is the limited insights available from syntactic structures of soft-
ware code for profiling software dependencies and evaluating their measurements
for coupling and cohesion metrics [5]. As such, to derive successful re-engineering
techniques, a methodology should consider the enriched semantic insights avail-
able through the BOs and functions in an ES.

In such a process, the first challenge would be identifying the BOs which
are distributed among several database tables in an ES system, and identifying
the relationships between them. Nooijen et al. [12] and Lu et al. [8] proposed
methodologies and heuristics to identify BOs based on the database schema and
information in database tables. However, according to Lu et al., the derived
BOs might not be perfect and they have to be reclustered with the help of
human expertise. A proper identification of BO relationships should consider
the behavioural aspects of the systems as described by Hull [11]. However, there
is still a gap in the area of correlating such behaviour with the underline BOs.
As such, it is important to establish novel methodologies which incorporate
both system behaviours and the business objects in the software re-engineering
process.

6 Conclusion

This paper presented two heuristics used for functional splitting of ESs based on
object subtypes and common execution fragments, while providing ground rules
for MS discovery. A prototype was developed based on the proposed heuristics
and validation was conducted by implementing the MSs recommended by the
prototype for SugarCRM and ChurchCRM. The study has demonstrated that
analysis of functions and BO CRUD operations while evaluating BO relation-
ships helps to identify efficient solutions to migrate legacy systems into MSs

52 A. A. C. De Alwis et al.

with high cohesion and low coupling while achieving better scalability, availabil-
ity, and execution efficiency. However, further analysis of BO relationships, such
as inclusive and exclusive containment should be considered to further optimize
the MS discovery process, and this will be carried out as future work.

References

1. Newman, S.: Building MSs NGINX. O’Reilly (2015)
2. Columbus L.: Internet Of Things (IoT) Intelligence Update (2017). https://

www.forbes.com/sites/louiscolumbus/2017/11/12/2017-internet-of-things-iot-
intelligence-update/43aa6f4c7f31

3. Magal, S.R., Word, J.: Integrated Business Processes with ERP Systems. Wiley,
Hoboken (2011)

4. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling
for software remodularization: is it enough? ACM Trans. Softw. Eng. Methodol.
(TOSEM) 25(3), 24 (2016)

5. Anquetil, N., Laval, J.: Legacy software restructuring: analyzing a concrete case.
In: 2011 15th European Conference on Software Maintenance and Reengineering
(CSMR), pp. 279–286. IEEE, March 2011

6. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol.
4422, pp. 245–259. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71289-3 20

7. Pérez Castillo, R., Garćıa Rodŕıguez de Guzmán, I., Caballero, I., Piattini, M.:
Software modernization by recovering web services from legacy databases. J. Softw.
Evol. Process. 25(5), 507–533 (2013)

8. Lu, X., Nagelkerke, M., van de Wiel, D., Fahland, D.: Discovering interacting
artifacts from ERP systems. IEEE Trans. Serv. Comput. 8(6), 861–873 (2015)

9. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Bravetti, M., Bultan, T. (eds.)
WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19589-1 2

10. Halpin, T., Morgan, T.: Information modeling and relational databases. Morgan
Kaufmann, Burlington (2010)

11. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332,
pp. 1152–1163. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88873-4 17

12. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-
centric and artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012.
LNBIP, vol. 132, pp. 316–327. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36285-9 36

13. Tsai, W.T., Huang, Y., Shao, Q.: Testing the scalability of SaaS applications. In:
2011 IEEE International Conference on Service-Oriented Computing and Applica-
tions (SOCA), pp. 1–4. IEEE, December 2011

14. Bauer, E., Adams, R.: Reliability and Availability of Cloud Computing. Wiley,
Hoboken (2012)

https://www.forbes.com/sites/louiscolumbus/2017/11/12/2017-internet-of-things-iot-intelligence-update/43aa6f4c7f31
https://www.forbes.com/sites/louiscolumbus/2017/11/12/2017-internet-of-things-iot-intelligence-update/43aa6f4c7f31
https://www.forbes.com/sites/louiscolumbus/2017/11/12/2017-internet-of-things-iot-intelligence-update/43aa6f4c7f31
https://doi.org/10.1007/978-3-540-71289-3_20
https://doi.org/10.1007/978-3-540-71289-3_20
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1007/978-3-642-19589-1_2
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1007/978-3-642-36285-9_36
https://doi.org/10.1007/978-3-642-36285-9_36

Function-Splitting Heuristics for Discovery of Microservices 53

15. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 15

16. Fowler, M.: Microservices a definition of this new architectural term (2014).
https://martinfowler.com/articles/microservices.html

17. De Alwis, A., Barros, A., Polyvyanyy, A., Fidge, C.: Technical report: function-
splitting heuristics for discovery of microservices in enterprise systems (2018).
https://eprints.qut.edu.au/119030/

https://doi.org/10.1007/978-3-319-33313-7_15
https://doi.org/10.1007/978-3-319-33313-7_15
https://martinfowler.com/articles/microservices.html
https://eprints.qut.edu.au/119030/

Services and Processes

High Performance Userspace Networking
for Containerized Microservices

Xiaohui Luo, Fengyuan Ren(B), and Tong Zhang

NNS Group, Tsinghua University, Beijing, China
{luo-xh17,zhangt14}@mails.tsinghua.edu.cn

renfy@tsinghua.edu.cn

Abstract. Containerized microservices have become popular for build-
ing systems using simple, lightweight, loosely coupled services. Due
to replacing the monolithic application with multiple microservices,
inner function calls become inter-microservice communications, which
increases the network pressure. However, the networking of container-
ized microservice built on the kernel that is inefficient. In this paper,
we propose DockNet, a high-performance userspace networking solu-
tion for containerized microservices. We (1) leverage DPDK and cus-
tomized LwIP as the high-performance data plane and TCP/IP stack,
respectively. (2) introduce a master-slave threading model to decouple
execution and management. (3) adopt namespace mechanism to con-
trol the access of microservices to data planes and employ timer-based
rate limiters to achieve performance isolation. (4) construct fast chan-
nels between partner microservices to improve network performance fur-
ther. In our various experiments, DockNet shows over 4.2×, 4.3×, 5.5× of
higher performance compared with existing networking solutions - kernel
bridge, Open vSwitch and SR-IOV, respectively.

Keywords: High-performance network · Container · Microservice

1 Introduction

Recently, containerized microservices have redefined the software development
landscape. Containerized microservices have been supported by leading cloud
providers, such as Amazon EC2 Container Service [4], and Microsoft Azure Con-
tainer Service [6]. Companies such as Netflix [3] and Uber [16], have replaced
their large monolithic applications into multiple small containerized microser-
vices that coordinate to provide required functionalities.

However, microservices increase the network pressure. Since a monolithic
application is divided into multiple containerized microservices, inner function
calls become inter-microservice communications (e.g., Remote Procedure Calls,
and RESTful APIs), which imposes great pressure on the network. For exam-
ple, over 99% of 5-billion API calls per day in Netflix are internal (but across
microservices) [14]. In other words, the microservice architecture makes a trade-
off between simplifying development and increasing network pressure.
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 57–72, 2018.
https://doi.org/10.1007/978-3-030-03596-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_4

58 X. Luo et al.

Unfortunately, network in the container is inefficient. Containers are essen-
tially processes running in separated and isolated runtime environments. The
network of a container is based on the kernel’s network stack. Recent researches
have shown the performance limitations in the kernel’s network stack [9,12,13],
which means that these limitations also affect container’s network performance.
Among these researches, userspace high-performance network stacks have shown
significant performance improvements [9,13].

In this paper, we motivate to introduce the userspace high-performance
network stack to containerized microservices. We summarize the requirements
as follows: (i) High-Performance. Although userspace network stacks can offer
high-performance, they cannot be directly used by containerized microservices.
Because the container’s network interface is built upon the kernel, we must pro-
vide another specialized userspace interface for the container. Meanwhile, we
also need to provide a userspace TCP/IP stack for these network services. (ii)
Easy Management. Userspace network stacks bypass the kernel, we must imple-
ment management functionalities in the userspace network stack. (iii) Isolation.
Multiple microservices running on the same host is common. We must provide
isolation mechanisms for both data plane security and performance guarantee.
(iv) Fast Intra-host Communication. In some scenarios, partner microservices
(e.g., one for requests, the other for responses) locate in the same host. Without
crossing the hosts, we should provide higher performance for intra-host commu-
nications.

We propose DockNet, a userspace high-performance networking stack for
containerized microservices using commodity hardware. DockNet (1) leverages
DPDK [5] and customized LwIP [10] as the high-performance data plane and
TCP/IP stack, respectively. (2) introduces a master-slave threading model to
decouple execution and management. In the master-slave threading model, the
master thread is responsible for control and management. The slave threads (i.e.,
the container threads) are only responsible for processing packets. (3) uses the
hardware-based flow director mechanism to virtualize a physical network inter-
face card (NIC) into multiple lightweight network interfaces, which effectively
supports multiple containers. For isolation, we adopt namespace mechanism to
control the access of containers to data planes. We also employ timer-based rate
limiters to achieve performance isolation. (4) constructs fast channels between
partner microservices to improve network performance further.

In our evaluations, DockNet achieves high throughput and low latency for
both intra- and inter-host traffics, effectively supports bandwidth isolation and
multiple containerized microservices, and outperforms dominant networking
solutions by more than 4.2× in service-oriented cases. Finally, we build a web
cluster based on DockNet to scale the web performance and demonstrate its
almost linear scalability.

The rest of this paper is organized as follows. In Sect. 2, we summarize the
existing container networking solutions and discuss the kernel inefficiency. In
Sect. 3, we present the overview of DockNet, describe its design and implemen-

High Performance Userspace Networking for Containerized Microservices 59

tation in detail. We validate and evaluate the performance of DockNet in Sect. 4.
Finally, the whole paper is concluded in Sect. 5.

2 Background

In this section, we first introduce existing networking approaches for container-
ized microservices. Then we discuss the performance limitations in the kernel.

Fig. 1. Container networking architectures.

2.1 Existing Approaches

We survey the existing network approaches to build containerized microservices.
Their fundamental techniques can be summarized as follows:

Software Switching: As Fig. 1(a) shows, the software switch is responsible for
forwarding packets to the correct receivers. Considering that the packets have
already arrived at the host, the extra forwarding operations are redundant. The
extra operations waste CPU cycles and make the whole procedure heavyweight.
Software switching is adopted by the mainstream container networking solutions,
such as Linux bridge and Open vSwitch (OVS) [1].

SR-IOV: As shown in Fig. 1(b), with SR-IOV [2], a virtual function (VF) acts
just like a real physical NIC. Packets can be directly be routed (by the hardware)
to the correct receivers. SR-IOV eliminates the forwarding costs and provides a
lightweight networking architecture. However, packets across different VFs needs
to be switched in the NIC’s embedded hardware switch. It means that in the
intra-host traffic cases, packet forwarding requires both VFs and the NIC, which
introduces two extra copies across the PCIe bus.

From the above, we can see that these existing networking solutions are
mainly built upon the kernel’s network stack that has performance limitations.

2.2 Kernel Inefficiency

Previous studies have exposed three main performance limitations of the ker-
nel: inefficient packet processing, general resource sharing, overheads of context

60 X. Luo et al.

switching. (1) Per-packet memory (de)allocation and heavy data structures (e.g.,
sk buff) limit the efficiency [12,13,17]. (2) Resources are shared in many folds: a
multi-thread application shares only one listening sockets [12,15], sockets share
file descriptors with the regular files [12]. (3) Frequent system calls result in
increasing the overheads of context switching [18]. To overcome these limita-
tions introduced by the kernel, many userspace approaches have been proposed.

High-Performance Packet I/O Frameworks: High-performance packet I/O
frameworks, such as DPDK [5], PSIO [7], PF RING [8] and netmap [17], are
closely correlated with network interface cards (NICs). These frameworks share
similar techniques to accelerate the packet processing: (1) Using memory pools
to store packets can reduce the (de)allocating costs during processing packets.
(2) Packets are sent/received in batches instead of one by one to amortize costs
of system calls. (3) Polling is used for receiving packets rather than triggering
interrupts. (4) Bypassing the kernel, data are transmitted between the framework
and applications directly.

Userspace Networking Stack: Systems such as mTCP [13] and IX’s data
plane [9] run their entire networking stack in the userspace. Userspace stacks
have the following benefits: (1) Without adverse effects of the complex kernel,
userspace networking stacks can optimize packet processing and eliminate expen-
sive system calls. (2) These approaches use lock-free data structures to scale on
multicore systems. (3) Flow-consistent hashing of incoming traffic is used for
pinning a flow to the same core. (4) Batching is extensively used to amortize
system call transition overheads and improve instruction cache locality.

3 System Design and Implementation

Figure 1(c) sketches the overall architecture of DockNet. DockNet provides Dock-
Pipes for containerized microservices for high-performance packet I/O. DockDae-
mon is responsible for functionalities related to management and control, such
as isolating DockPipes, setting flow directors to the hardware queues for directly
forwarding, and constructing fast channels between specific microservices.

3.1 DockPipe

A DockPipe is essentially a lightweight networking interface for a container.
Here we describe a DockPipe’s data structure, attaching, lightweight data path,
isolation, and fast channels.

Data Structure: Figure 2 shows that a DockPipe only consists of three types
of ring buffers: a receiving ring buffer, a transmitting ring buffer, and some
fast channel (FC) ring buffers. The receiving buffer and the transmitting buffer
are directly pinned to a pair of hardware queues. An FC ring buffer is used to
construct a fast channel. By using a fast channel, a container can directly put
packets into the receiver’s peer FC ring buffer.

High Performance Userspace Networking for Containerized Microservices 61

Fig. 2. Structure and isolation of
a DockPipe.

Fig. 3. Sharing of DockPipes and the struc-
ture of a fast channel.

DockPipe Attaching: The attaching of a DockPipe is controlled and managed
by DockDaemon. As Fig. 2 shows, When creating a DockPipe, DockDaemon
generates a mapping file which records the memory layout and offset of the
DockPipe. The container attaches to the DockPipe by loading and remapping
(using mmap()) the memory mapping file. After attaching, the container can
directly send or receive packets through the DockPipe. Through a DockPipe, a
containerized microservice is only allowed (1) to put packets into the buffer. (2)
to read packets from the buffer. The DockDaemon is responsible for real packet
moving, such as transmitting packets to the NIC and receiving packets from the
NIC.

High-Performance Data Path: A DockPipe uses DPDK as the high-
performance userspace packet I/O data plane. As shown in Fig. 2, a DockPipe is
directly pinned to a pair of hardware queues. DockDaemon sets hardware-based
filters (e.g., destination IP address) to the NIC. When packets arrive at the NIC,
the pre-configured filters (e.g. destination IP address) will guide the NIC and
redirect the packets to a specified hardware queue. Then, the packets are directly
put into the corresponding DockPipe’s receiving ring buffer through DMA.

DockPipe Isolation: When deploying multiple containerized microservices on
a single host, the security concern is critical: A DockPipe should be protected
and provides an isolated data plane for the granted container. Here we describe
how to isolate multiple DockPipes.

Since a DockPipe is remapped to a container by mmap() based on mem-
ory sharing, we can conveniently isolate DockPipes by controlling their scopes
of shared memory. In container-related techniques, the mount namespace
offers this capability. The mount namespace of a process is essentially the set of
mounted filesystems in its perspective. Conventionally, mounting or unmount-
ing a filesystem will change all processes’ scope because a global mount names-
pace can be seen by all processes. In the container context, we can utilize the

62 X. Luo et al.

per-process mount namespace. Then a process can have its exclusive scope of
mounted filesystems. Based on the per-process mount namespace, DockNet pro-
vides a lightweight isolation for DockPipes.

Take Fig. 2 for example, DockDaemon (1) generates DockPipe0’s memory
mapping file as dp0/dp.map. (2) mounts file dictionary dp0 (in mount namespace
mns0) to container0 by leveraging the mount namespace. In this way, DockPipe0
can only be accessed by container0 and is invisible to container1.

Fig. 4. Mounted filesystems (a) perspective of container1. (b) perspective of con-
tainer2.

Fast Channel Between DockPipes: In some particular scenarios (such as
private clouds) strict isolation is unnecessary. For example, partner container-
ized microservices belong to the same application and locate on the same host.
In such scenarios, DockNet can offer higher throughput and lower latency for
containerized microservices by constructing a fast channel.

We have explained how to use the mount namespace for controlling the scopes
of shared memory. By default, a DockPipe’s memory mapping file is mounted to
a single container, namely a DockPipe is monopolized by a container. However,
a DockPipe can also be remapped into two containers. In this way, a fast channel
(FC) between two containers can be constructed.

As illustrated in Figs. 3 and 4, a DockPipe can be remapped as either a
normal DockPipe or an FC, respectively. When a DockPipe is remapped as an
FC, only its FC receiving ring buffer is used. When a packet is ready to be
sent, the container first checks whether it can be sent through an FC. If so, the
container sets the packet’s pointer to the tail of the FC’s receiving ring buffer.
Otherwise, the container sends the packet to its DockPipe’s transmitting ring
buffer as usual. For instance, in Fig. 4, DockPipe1 is remapped to container1 as
a normal DockPipe, and remapped to container2 as an FC. When container2
sends packets to container1, the packets’ pointers are directly put into the tail
of DockPipe1 ’s FC receiving ring buffer. Then, container1 can directly consume
the packets from the head of DockPipe1 ’s FC receiving ring buffer. For Dock-
Pipe2, the receiving process is the same except for exchanging container1 and
container2 in sender/receiver locations.

High Performance Userspace Networking for Containerized Microservices 63

3.2 DockDaemon

DockDaemon offers management and control functionalities. The management
functionalities include assigning hardware queues to DockPipes, setting flow
directors for directly forwarding, isolate DockPipes, and (de)constructing fast
channels. Their technical essences have been described in Sect. 3.1.

In this section, we focus on the how to control DockPipes in DockDaemon.

Fig. 5. (a) shows the routine of the run-to-completion execution model. (b) shows that
of the multi-stage wheels execution model. (c) shows DockNet’s master-slave execution
model.

Threading Model: Threading model greatly affects the system performance.
Here we summarize the two existing models and propose the master-slave model.

(i) Run-to-completion model: As shown in Fig. 5(a), this model integrates
packet receiving/transmitting, protocol processing, and application logic
into a single executing routine. Due to eliminating unnecessary interme-
diate stages (e.g. context switches), this model can achieve low latency.
However, this model requires privileged access to the physical NIC, which
may result in security risks and increase the managing and controlling dif-
ficulty. IX [9] adopts this threading model, and its data plane optimizes for
both bandwidth and latency.

(ii) Multi-stage wheels model: As Fig. 5(b) shows, in this model, each pair of
threads are pinned to the same CPU core. One thread is responsible for
processing packets in the application. The other thread is devoted to receiv-
ing and sending packets. The decoupling can protect the physical NIC from
being directly accessed by the containers. However, the decoupling intro-
duces costs of thread context switches (the red arrow in Fig. 5(b)) and
incurs higher latency. This model is adopted by mTCP [13], which is spe-
cialized for handling short messages on multicore systems. Besides that,
the similar threading model is also applied to the kernel’s stack.

(iii) Master-slave model: Inspired by the two models above, we design a
master-slave model for containerized microservice networking. As shown in
Fig. 5(c), in this model, there is one master thread and many slave threads.

64 X. Luo et al.

The slave thread acts like the run-to-completion model and integrates all
related processing into a single executing routine. The master thread is
devoted to really moving packets, including sending packets to the physical
NIC, receiving packets from the physical NIC, and copying packets between
containers. The master and slave threads decouple the whole packet rou-
tine into two sub-stages. Because all the packets moving is done by the
master thread, it simplifies the control and management, such as limiting
the bandwidth. The decoupling also introduces extra overheads. To avoid
high costs caused by thread switching, we let the master thread monop-
olize a core. The slave threads use the other cores located on the same
CPU socket. In Fig. 5(c), the two red arrows mean the synchronization and
mutual exclusion that based on atomic operations.

By using the master-slave model, a DockPipe is only allowed to put packets
into or get packets from its ring buffer. DockDaemon controls all the packets
sending and receiving. The master-slave model can both achieve low latency
and simplify the controlling.

Timer-Based Rate Limiter: To achieve bandwidth isolation, we design a sim-
ple but efficient mechanism based on timer-based rate limiter in DockDaemon.
Two timers are introduced. One is fine-grained Tfine, and the other is coarse-
grained Tcoarse. They are triggered at different intervals. The fine-grained timer
produces tokens for each DockPipe, and the number of tokens constrains how
many bytes a DockPipe can send or receive. However, since a container may
keep silent for an extended period, it likely accumulates much more tokens than
others. Then it may consume too much bandwidth when it becomes active. To
solve this problem, the coarse-grained timer periodically clears all the tokens
and sets an initial number of tokens intermittently.

3.3 APIs

DockNet provides two types of APIs: DockDaemon commands and DockLib.
DockDaemon commands are received by DockDaemon through a kernel-based
listening socket. These commands are used for managing the DockDaemon, such
as creating or terminating a DockPipe, assigning a DockPipe to a containerized
microservice, limiting a DockPipe’s bandwidth. DockLib is used for containerized
microservices to access the DockPipe and develop applications. DockLib con-
tains a packet engine that interacts with DockPipe and a lightweight userspace
TCP/IP stack based on LwIP [10]. Figure 7 presents the skeleton of using Dock-
Net to write a TCP server containerized microservice.

Packet Engine: DockNet uses DPDK as the high-performance packet I/O data
plane. After remapping, a DockPipe offers its transmitting and receiving queue
for a container. Packet engine mainly includes two components: the sending com-
ponent and the receiving component. In the sending component, when packets
from the stack are sent to DockPipe, the engine first checks their destination IP
address. (1) If a packet’s destination IP matches a fast channel, the packet is

High Performance Userspace Networking for Containerized Microservices 65

Fig. 6. Packets processing routine.
Circle means a callback function
that needs to be registered by the
upper level code. Box means a nor-
mal function call.

Fig. 7. Skeleton of a TCP example.

directly appended to the remote peer’s FC receiving ring buffer. (2) If a packet’s
destination IP matches no fast channels, the packet is appended to the Dock-
Pipe’s transmitting ring buffer. In the receiving component, when receiving pack-
ets, the engine first tries to receive packets from its FC receiving ring buffer, then
goes to receive packets from its receiving ring buffer.

As shown in Fig. 6, the packet engine exposes a function pointer stack rx(),
through which the received packets can be sent to the upper network stack. The
packet engine thread repeatedly checks the two receiving ring buffers. After
receiving a packet, the engine delivers it to the stack through the callback func-
tion.

Userspace TCP/IP Stack Library: Since DockPipe’s ring buffers are all
located in userspace, DockNet needs to provide a userspace TCP/IP stack for
containerized microservices. In DockNet, we port the stack from LwIP. We
mainly modify its data structures to achieve zero-copy and be adapted to Dock-
Net. Here we briefly describe the key procedures of using DockNet to write a
TCP server code in a container. When the server starts, it first executes ini-
tializations. Then the server registers stack rx() callback function, which is
a function pointer inside DockPipe. Next, the server registers tcp recved()
callback function, which is a function pointer in DockLib. Finally, the server
launches a new packet engine thread and runs it, then blocks the main thread.
Both stack rx() and tcp recved() will be called in the engine’s thread context,
which avoids introducing context switching overhead.

66 X. Luo et al.

4 Evaluation

In this section, we evaluate DockNet with the following goals:

(i) Demonstrate that DockNet can provide high throughput and low latency
in both inter-host and intra-host communications.

(ii) Validate DockNet’s ability to guarantee performance isolation among
microservices.

(iii) Show that DockNet can support multiple containerized microservices.
(iv) Construct a web cluster based on containerized microservices to evaluate

the integrated performance of our DockNet.

Testbed: Our testbed consists of two machines, and each has two 6-core CPUs
(Intel Xeon E5-2620 v3 @ 2.4 GHz), 64 GB RAM, and an Intel NIC with two
10GbE ports. The NICs of the two machines are connected directly. By default,
we only use one 6-core CPU and one NIC port in the following experiments. Our
DockNet runs on Linux 3.10.0. TSO is turned on in kernel-based evaluations.
Each container is pinned to one single core.

Fig. 8. The basic performance benchmark of DockNet. In (a) and (b), two microservices
are deployed in two hosts. In (c) and (d), two microservices are deployed in the same
host. (a) and (c) show the goodput. (b) and (d) show the singe side latency.

4.1 Throughput and Latency

High throughput and low latency are critical requirements for containerized
microservices.

We construct a pair of TCP microservices, one being the server and the
other being the client, and deploy each microservice in a container. The two
applications directly exchange a fixed-size message back and forth. Two primary
metrics – goodput and one-way latency are measured. The reference networking
solutions include Linux bridge, OVS, SR-IOV, and DockNet. Figure 8 shows the
two primary performance metrics of four networking solutions under different
message sizes.

In Fig. 8(a) and (b), the two microservices (server and client) are deployed in
two different physical hosts. In this case, DockNet shows both the highest good-
put and the lowest one-way latency. Obviously, when the message size grows to

High Performance Userspace Networking for Containerized Microservices 67

100 KB, the link utilization of DockNet reaches 8 Gbps (i.e. line rate), while the
other three are still below 8 Gbps even when the message size equals 400 KB.
From the perspective of latency, DockNet also has lower one-way latency than
the other three solutions under all message sizes. It is because kernel bridge,
OVS, and SR-IOV provide kernel-based interfaces, which inevitably introduces
overheads, such as context switching and data copying between kernel and
userspace. Besides, kernel bridge and OVS also introduce the software switching
cost. Instead, DockNet leverages a user-level DockPipe to exchange data, thus
eliminates both data copying and context switching.

In Fig. 8(c) and (d), the two microservices are deployed in the same physical
host. SR-IOV shows inferior performance. Goodput is always below 8 Gbps, and
one-way latency reaches up to 400µs, which is far worse than other solutions.
The reason is that SR-IOV has to switch packets through the physical NIC,
and introduces the transmission cost over PCIe compared with other solutions.
The other four networking solutions all achieve superior goodput and latency,
and our DockNet and DockNet with FC achieve further better performance than
kernel bridge and OVS. We can see that, as the message size increases to 200 KB,
the goodput, of all solutions except for SR-IOV exceeds 22 Gbps, our DockNet
reaches over 27 Gbps, and DockNet FC achieves more than 35 Gbps. Both Kernel
bridge and OVS forward packets in the kernel, hence introduce data copying and
context switching overheads. However, DockNet based on the forwarding table
eliminates the context switching, and DockNet with FC removes both context
switching and data copying, therefore outperforms than other networking.

In summary, SR-IOV performs poorly in one-host scenarios but performs
well in two-host scenarios. Kernel bridge and OVS have good performance in
the one-host condition but still perform poorly in two-host tests. DockNet shows
excellent performance in both one-host and two-host tests.

Fig. 9. Rate limiter tests. (a) shows the ability to dynamically change the rate limiter.
(b), (c) and (d) shows different policies on two DockPipes.

4.2 Bandwidth Isolation

As stated above, bandwidth isolation is necessary for containerized microser-
vices to avoid aggressive microservices consuming too much bandwidth. Next,
we demonstrate DockNet’s ability to limit microservices’ maximal bandwidth.
We construct a pair of TCP client/server microservices as well as a pair of UDP

68 X. Luo et al.

client/server microservices. The four microservices are deployed in four differ-
ent containers, respectively. Two server and clients are arranged in one host,
respectively. During the test, two servers keep sending packets to their corre-
sponding receivers by a TCP flow and a UDP flow separately. Figure 9 depicts
the bandwidth usage under different rate limitations.

Figure 9(a) presents the results of two tests: (1) Without any rate limiters, the
throughput of the only TCP flow is evaluated as the baseline. The TCP through-
put is depicted as the blue (delta dotted) line. (2) After starting containers, peri-
odically change the rate of the limiter according to the value list {8000, 6000,
4000, 2000} (Mbps). The TCP throughput is described as the orange (square
dotted) line. Clearly, with the rate limiter, the flow throughput rapidly changes
in line with the rate limits, which validates the effectiveness of the rate limiter.

In the latter three subgraphs in Fig. 9, we first run the TCP flow, then start
the UDP flow at the 5th second and terminate it at the 17th second. Figure 9(b)
manifests the results without rate limiters, indicating that the UDP flow con-
sumes the majority of bandwidth and nearly beats down the TCP flow’s through-
put. In Fig. 9(c), only the UDP flow’s rate limiter is set to be 5 Gbps, in which
case the TCP flow can still occupy half of the whole bandwidth. In Fig. 9(d), we
set all DockPipes’ rate limiters to be 5 Gbps, and the result demonstrates that
the bandwidths of flows are appropriately isolated.

From above experiments, we show that DockNet can indeed limit the max-
imum bandwidth of a microservice and further enable the bandwidth isolation,
in both single-flow and multi-flow scenarios.

Fig. 10. Multiple microservices tests. (a) and (d) describes the total throughput and
latency results when microservices runs on one slave core. (b) and (e) describes the
results when microservices runs on one socket (5 slave cores). (c) and (f) describes the
results when microservices runs on two sockets (10 slave cores).

High Performance Userspace Networking for Containerized Microservices 69

4.3 Multi-container

It is common that multiple microservices are deployed on one host, in which case
the underlying networking has to support multiple containers. In this subsection,
we investigate DockNet’s performance when supporting multiple containerized
microservices.

In Fig. 10, we deploy multiple microservices in two physical hosts: one as
the server side and the other as the client side. Each microservice is assigned
a DockPipe, and all DockPipes are limited to the same rate by rate limiters
according to the number of containers. DockDaemon dedicates one master core,
while microservices are deployed on slave cores. When measuring the throughput,
each client keeps sending 1024B message to a server. In one-way latency tests,
each pair of server and client keeps exchanging a 1024B message back and forth.
In our experiment, microservices are respectively deployed on one slave core,
one socket (5 slave cores) and two sockets (10 slave cores) to observe DockNet
performance with the different number of cores. In the one-core and one-socket
cases, DockDaemon uses one core as the master core, while in the two-socket
case, two cores are used as master cores (each NUMA-node owns a master core).

Figure 10(a) and (d) show the throughput and one-way latency when
microservices are deployed on one core, respectively. Clearly, the overall through-
put sharply decreases as the number running microservices grows. Similarly, the
one-way latency drastically increases from 6.4µs to 7 ms as the number of con-
tainers grows from 1 to 2. Such performance degradation is mainly caused by
the container scheduling. Worse still, both the server and client will produce
such scheduling costs. Because the time slice is ranging from 3 ms to 24 ms in
our testbeds, such scheduling overheads are considerable and cause drastic per-
formance loss.

In Fig. 10(b) and (e), microservices are deployed on one socket (5 slave cores).
When the number of microservices is under 5, the total throughput always keeps
at about 9.4 Gbps, and each microservice’s latency maintains at about 6.4µs.
However, when the number of microservices is larger than 5, the scheduling
cost is introduced. Take the 6-microservice case for example. The slave cores
are corei (i = 1...5), two microservices are deployed on core1, and the other
four microservices are deployed on the rest four slave cores, respectively. From
their bandwidth usage, we can see that the scheduling cost only occurs on core1,
because there exists scheduling between two microservices on core1.

In Fig. 10(c) and (f), microservices are deployed on two sockets (10 slave
cores). DockDaemon employs two master cores located in two NUMA nodes. It
is shown that in the condition of no scheduling, the total throughput is always
9.4 Gbps, and all the microservices achieve low latency (about 8.7µs).

As our benchmark microservices are just receivers and echo servers, their cost
of processing a packet is at most 54.83 ns (only including consume the packet
in the application logic, excluding the TCP/IP processing). Nonetheless, real
workloads can spend more CPU cycles on processing received messages, which
relieves the I/O pressure. In these experiments, DockNet can properly work in
the actively stressful condition where containers almost do not spend any cycles

70 X. Luo et al.

on data processing. The experimental results in this subsection confirm that
DockNet is lightweight and hardly becomes the bottleneck in real workloads.

4.4 Application

In this subsection, we study the performance of DockNet used in real container-
ized microservices. As shown in Fig. 11(a), we assume that the web server’s
processing power is the bottleneck, so we can scale the web cluster’s processing
power by simply adding more web servers. The DockNet holds five microser-
vices. One acts as a NAT-based load balancer. The other four microservices all
construct fast channels with the NAT container.

Network Address Translation (NAT): The NAT-based load balancer pro-
vides the ability that there is no need to change the client’s behaviors because
it can alter the destination IP into inner IPs. It introduces overheads because of
modifying packets and searching lookup tables. To measure the overheads, we
deploy a NAT microservice and a TCP server microservice on the server host.
The client runs on another host. The server and the client behave similarly to
those tests in Sect. 4.1. In the NAT-enabled test, the client sends packets with 1-
Byte payload to the NAT, then the NAT transfers their destination IP addresses
and forwards them to the server. When the server sends packets to the NAT, the
NAT transfers the source IP addresses and sends them to the client. The results
shown in Fig. 11(b) indicate that NAT microservice only add about 1.05µs to
the single side latency.

Simple Web Server: We port httpd to DockNet as the simple web server
microservice and measure its performance. To avoid disturbance from disk access,
we use makefsdata to transfer HTML files to C arrays. The HTML-content C
codes can be directly compiled to the server. In this way, after processing HTTP
request, the server can directly find the content of files located in the C arrays.
One httpd microservice is deployed on the server host. On the client host, we use
wrk [11] to saturate the httpd server. The results presented in Fig. 11(c) show
that httpd running on DockNet can achieve the perfect performance. DockNet
improves 5.2×, 6.3×, 5.5× performance gain compared with kernel bridge, OVS,
and SR-IOV, respectively.

Web Cluster: To scalable the performance of processing HTTP requests, we
use NAT as the load balancer to distribute requests to multiple httpd containers.
We deploy a NAT microservice and multiple httpd microservices on the server
host, and add some computing code to mimic processing cost (about 10µs). wrk
is deployed on the client host to saturate the httpd servers. The performance of
the web cluster employing DockNet is shown in Fig. 11(d). It can be seen that
the total requests per second scale when deploying more httpd containers. The
performance scales 1.92×, 2.61×, 3.46× when deploying 2, 3, 4 httpd microser-
vices comparing to a single httpd microservices. It validates that DockNet can
be easily adopted in the real containerized microservices.

High Performance Userspace Networking for Containerized Microservices 71

Fig. 11. Real applications tests. (a) shows the configuration of the tests. (b) shows the
latency introduced by NAT. (c) shows the httpd’s transaction performance. (d) shows
the DockNet can scale the performance of the web-cluster.

5 Conclusion

DockNet proposes a novel high-performance userspace networking solution for
containerized microservices. DockNet splits the receiving/transmitting routine
into two sub-stages and proposes a master-slave execution model to achieve both
high performance and easy management, and provides a light-weight namespace-
based access control mechanism to isolate microservices. Meanwhile, microser-
vices mutually trusted can construct fast channels to achieve higher performance.
In experiments, we verify that DockNet can provide high throughput and low
latency in both intra-host and inter-host traffics, effectively support bandwidth
isolation and multiple microservices. In transactions testing, DockNet shows over
4.2−52.4× of higher performance compared with existing conventional network-
ing solutions. Finally, we build a DockNet-based web cluster and demonstrate
its almost linear scalability.

Acknowledgments. The authors gratefully acknowledge the anonymous reviewers
for their constructive comments. This work is supported in part by Suzhou-Tsinghua
Special Project for Leading Innovation.

References

1. Open vSwitch (2009). http://openvswitch.org/. Accessed 2 June 2018
2. An Introduction to SR-IOV Technology (2011). http://www.intel.com/content/

www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html.
Accessed 2 June 2018

3. Netflix: A Microscope on Microservices (2015). http://techblog.netflix.com/2015/
02/a-microscope-on-microservices.html. Accessed 2 June 2018

4. Amazon EC2 Container Service (2018). https://aws.amazon.com/ecs/. Accessed 2
June 2018

5. Intel DPDK: Data Plane Development Kit (2018). http://dpdk.org/. Accessed 2
June 2018

6. Microsoft Azure Container Service (2018). https://azure.microsoft.com/en-us/
services/container-service/. Accessed 2 June 2018

7. Packet i/o engine (2018). http://shader.kaist.edu/packetshader/io engine.
Accessed 2 June 2018

http://openvswitch.org/
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
http://techblog.netflix.com/2015/02/a-microscope-on-microservices.html
https://aws.amazon.com/ecs/
http://dpdk.org/
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/container-service/
http://shader.kaist.edu/packetshader/io_engine

72 X. Luo et al.

8. PF RING (2018). http://www.ntop.org/products/packet-capture/pf ring/.
Accessed 2 June 2018

9. Belay, A., Prekas, G., Klimovic, A., Grossman, S., Kozyrakis, C., Bugnion, E.: Ix:
a protected dataplane operating system for high throughput and low latency. In:
OSDI 2014, No. EPFL-CONF-201671 (2014)

10. Dunkels, A.: lwIP - A Lightweight TCP/IP stack (2002). https://github.com/
vadimsu/ipaugenblick. Accessed 2 June 2018

11. Glozer, W.: wrk- A Modern HTTP Benchmarking Tool (2012). https://github.
com/wg/wrk. Accessed 2 June 2018

12. Han, S., Marshall, S., Chun, B.G., Ratnasamy, S.: Megapipe: a new programming
interface for scalable network i/o. In: Presented as Part of the 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12), pp. 135–148.
Hollywood, CA (2012)

13. Jeong, E., et al.: mTCP: a highly scalable user-level TCP stack for multicore
systems. In: NSDI 2014, pp. 489–502 (2014)

14. Musser, J.: KPIs for APIs (2014). http://www.slideshare.net/jmusser/kpis-for-
apis. Accessed 2 June 2018

15. Pesterev, A., Strauss, J., Zeldovich, N., Morris, R.T.: Improving network connec-
tion locality on multicore systems. In: Proceedings of the 7th ACM European
Conference on Computer Systems. EuroSys 2012, pp. 337–350 (2012)

16. Reinhold, E.: Rewriting Uber engineering: the opportunities microservices provide
(2016). https://eng.uber.com/building-tincup/. Accessed 2 June 2018

17. Rizzo, L.: Netmap: a novel framework for fast packet i/o. In: 2012 USENIX Annual
Technical Conference (USENIX ATC 12), pp. 101–112. Boston, MA, June 2012

18. Soares, L., Stumm, M.: Flexsc: Flexible system call scheduling with exception-
less system calls. In: Proceedings of the 9th USENIX Conference On Operating
Systems Design and Implementation, pp. 33–46. USENIX Association (2010)

http://www.ntop.org/products/packet-capture/pf_ring/
https://github.com/vadimsu/ipaugenblick
https://github.com/vadimsu/ipaugenblick
https://github.com/wg/wrk
https://github.com/wg/wrk
http://www.slideshare.net/jmusser/kpis-for-apis
http://www.slideshare.net/jmusser/kpis-for-apis
https://eng.uber.com/building-tincup/

Guiding Architectural Decision Making
on Quality Aspects in Microservice APIs

Uwe Zdun1(B), Mirko Stocker2, Olaf Zimmermann2, Cesare Pautasso3,
and Daniel Lübke4

1 Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Vienna, Austria

uwe.zdun@univie.ac.at
2 University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland

{mirko.stocker,olaf.zimmermann}@hsr.ch
3 Software Institute, Faculty of Informatics, USI, Lugano, Switzerland

cesare.pautasso@usi.ch
4 innoQ Schweiz GmbH, Cham, Switzerland

ich@daniel-luebke.de

Abstract. Microservice APIs represent the client perspective on
microservice-based software architecture design and related practices.
Major issues in API design concern the quality aspects of the API.
However, it is not well understood today what the established practices
related to those quality aspects are, how these practices are related, and
what the major decision drivers are. This leads to great uncertainty in
the design process. In this paper, we report on a qualitative, in-depth
study of 31 widely used APIs plus 24 API specifications, standards, and
technologies. In our study we identified six recurring architectural design
decisions in two API design contexts with a total of 40 decision options
and a total of 47 decision drivers. We modelled our findings in a formal,
reusable architectural decision model. We measured the uncertainty in
the resulting design space with and without use of our model, and found
that a substantial uncertainty reduction can be potentially achieved by
applying our model.

1 Introduction

Many approaches have been proposed for designing service-based architectures
(see e.g. [15,17,23]). A recent approach which evolved from established prac-
tices in service-oriented architectures are microservices [14,22]. The microser-
vices approach emphasizes business capability- and domain-driven design, ser-
vice development in independent teams, cloud-native technologies/architectures,
polyglot persistence, lightweight containers, and a continuous DevOps approach
to service delivery (see [11,14,22]). When realizing microservices architectures a
core task is to design the service contracts or Application Programming Inter-
faces (APIs). In this context, we focus on the problem to design for, realize,
enforce and maintain quality aspects of the microservice API – which are of
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 73–89, 2018.
https://doi.org/10.1007/978-3-030-03596-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_5

74 U. Zdun et al.

key importance as the API is usually the only visible aspect of the microservice
from the client’s perspective. An API provider has to perform the balancing act
of providing a high-quality service in a cost-effective way. Quality of an API
has many dimensions, starting with the functionality, but also including many
other qualities such as reliability, performance, security, and scalability – some-
times the latter are referred to as Quality of Service (QoS) guarantees. They
are usually conflicting with each other, but almost always need to be balanced
with economic qualities such as costs and time to market. Many quality mea-
sures related to service QoS exist, but only a few of them are directly related to
APIs [13].

The main challenge for microservice API designers is to determine the appro-
priate quality trade-off during the design of the microservice API. Numerous
practices exist and have complex relations among each other. Many decision
drivers have to be understood and might be conflicting among each other. There-
fore, architects orienting themselves and navigating in the microservice API
design space usually face a high uncertainty in their decision making, related
to finding and assessing the knowledge needed for making an informed decision.
Once all required knowledge has been gathered, a high uncertainty on how to
combine which practices remains; the impact of these practices and their com-
binations on the many potentially relevant quality trade-offs is not clear either.
This paper aims to study the following resulting research questions:

– RQ1 (a) What are established practices to design for, realize, communicate
and maintain the quality of a microservice API? (b) What are the relations
among those practices? (c) What are decision drivers of those decisions? (d)
Which impact do the practices and their combinations impose on the decision
drivers?

– RQ2 (a) How high is the decision making uncertainty in this design space?
(b) Can this decision making uncertainty be reduced? If so, how?

This paper makes three major contributions. First, we gather knowledge
about established practices, their relations, and their decision drivers in the form
of a microservice APIs design space based on a qualitative study of 55
knowledge sources (including 31 widely used APIs). Our second contribution is
the codification of this knowledge in form of a reusable Architectural Design
Decision (ADD) model which we formally modelled based on a UML2 meta-
model. We also described newly documented patterns using pattern templates
(which can be found in another publication along with technical details [19],
whereas this paper focuses only on decision modelling aspects). In total we doc-
umented six decisions in two contexts with 40 decision options and 47 decision
drivers. Please note that we limited our scope to message representations in the
interface contracts, and excluded e.g. the architectural decisions required in ser-
vice implementations (which were addressed in our earlier works [23]). Finally,
we estimate the decision making uncertainty in this design space, calculate
the uncertainty left after applying the guidance of our ADD model, and compare
the two. Our model shows a potential to substantially reduce the uncertainty not

Guiding Architectural Decision Making 75

only by documenting established practices, but also by organizing the knowledge
in a model.

The remainder of this paper is organized as follows: In Sect. 2 we compare
to the related work. Section 3 explains the research methods we have applied in
our study. Then Sect. 4 describes our reusable ADD model. Section 5 provides
the uncertainty reduction estimation. The findings are discussed in Sect. 6, and
Sect. 7 concludes.

2 Related Work

Quite a number of studies on services focus on QoS aspects (see e.g. [13,18,21]).
In microservice-specific studies related to quality, topics like the increased oper-
ations qualities when combined with DevOps (see e.g. [1]), qualities in service
decomposition [7], or specific qualities like trade-offs in self-adaptive architec-
tures [8] are studied. The specific quality aspects of the API, which is of high
practical relevance as the API is the only part of the microservices visible to the
client, is not yet a major focus of study.

A number of approaches study microservice patterns and best practices: The
microservice patterns by Richardson [17] address microservice design and archi-
tecture practices. Another set of patterns on microservice architecture structures
has been published by Gupta [6], microservice best practices are discussed in
[11], and similar approaches are summarized in a recent mapping study [15]. So
far, none of those approaches has been combined with a formal model and API
quality is not a major focus.

Decision documentation models (examples are those covering service-oriented
solutions [23], service-based platform integration [12], REST vs. SOAP [16], and
big data repositories [5]) promise to improve the situation, but the focus on this
kind of research is not yet on API design. The model developed in our study
can be classified as a reusable ADD model [23]. Other authors have combined
decision models with formal view models [9]. We apply those techniques in our
work, but also extend them with a modelling approach and a detailed uncer-
tainty reduction estimation. Exploiting uncertainties has been used in software
architecture traceability research before [20].

3 Research Method

This paper aims to systematically study the established practices in the field of
microservice API quality aspects. A number of methods have been suggested to
study established practices. A classical method is pattern mining (see e.g. [3])
which starts with the authors’ own experiences, searches systematically for other
known uses in real-life systems, and then applies a series of feedback loops to
improve the pattern. A number of techniques have been suggested for improving
this research method. Hentrich et al. [10] define a pattern mining method as
a form of qualitative research resembling methods like Grounded Theory (GT)
[4]. Like GT, we studied each knowledge source in depth. We followed a similar

76 U. Zdun et al.

coding process, as well as a constant comparison procedure to derive our model.
In contrast to classical GT, our research began with initial research questions, as
in Charmaz’s constructivist GT [2]. Whereas GT typically uses textual analysis,
we used textual codes only initially and then transferred them into formal UML
models and text in pattern templates.

Our knowledge mining happened in many iterations. That is, we searched for
one or a few new knowledge sources, applied open and axial coding [4] to identify
candidate categories, and compared with the so-far-designed model continuously.
We improved this model incrementally. A crucial question in GT is when to stop
this process; here, theoretical saturation [4] has attained widespread acceptance
in qualitative research: We stopped our analysis when 5 to 7 additional knowledge
sources did not add anything new to our understanding of the research topic.
As a result of this very conservative operationalization of theoretical saturation,
we studied a rather large number of knowledge sources in depth (55 in total,
summarized in Table 1, see [19] for more details on the sources), whereas most
qualitative research often saturates with a much lower number of knowledge
sources. In addition to 31 APIs and their documentations, our search led us
to 24 additional knowledge sources (specifications, standards, and technologies)
directly related to the design of a number of APIs. Our search was based on our
own experience, APIs we have access to and worked with. We also used on major
search engines (e.g., Google, Bing) and online API directories and topic portals
(e.g., ProgrammableWeb, InfoQ) to find known uses and validate intermediate
results. We included knowledge sources, if they were about widely used APIs (i.e.,
many more users than just the original authors), use modern service technologies,
and follow at least some of the microservice tenets summarized in Sect. 1. Note
that not always those APIs are labelled as microservice APIs, but as microservice
tenets have been in use long before the microservice term was coined, and as
some RESTful HTTP APIs share the same technological underpinnings, we have
also considered them in our study.

Table 1. Knowledge sources included in the study

APIs studied 31 Amazon EC2 API, Amazon S3, AWS Lambda, Cloud Convert API,

Confluence REST API, Facebook Graph API, File Transfer Service

API, Finance Industry Web Service API, GitHub API v3, GitHub

API v4, Google Calendar API, Google Compute Engine, JIRA

Cloud API, LinkedIn API, Microsoft Azure, Microsoft Dynamics

CRM, Microsoft Graph API, Open Weather Map, Optimizely,

PayPal API, Quandl API, Salesforce API, Singlewire, Stripe API,

SWIFT, Swiss Bank API, Swiss Federal Administration registry of

companies web service API, Swiss Insurance API, TMForum REST

API, Twitter API, YouTube Data API

API-related

specifications,

standards,

technologies

studied

24 Adidas API Spec, Amazon API Gateway, apistylebook.com, Basic

Authentication, CHAP, EAP, EC SLA Guidelines, HTTP/1.1:

Conditional Requests, JSON API Spec, Kerberos, LDAP, MuleSoft

API Manager, OAuth, OpenID Connect 1.0, OWASP REST

Security, Play2 Guard, REST API design book, RESTful Web

Services Cookbook, RFC 7519, SAML, SLA Best Practices, SLA

Whitepaper, Suggested REST Practices, TM Forum Applications

Framework 3.0

Guiding Architectural Decision Making 77

4 Reusable ADD Model for API Quality

In this section, we report on the reusable ADD model that resulted from our
study. Figure 1 shows an overview of the reusable decisions and their relation-
ships, as well as their major decision contexts. Our model contains all kinds of
decision contexts in API design in a separate domain model of which we only
use a small part in this paper: Most decisions on API quality have to be made
for combinations of API clients and the API those clients access. Many such
decisions can be made for large groups of those combinations, such as all clients
with freemium access or all clients accessing a specific API. One decision needs
to be made at the level of operations in the API. Note that in Fig. 1 the deci-
sions inherit those contexts from their (sub-)categories. Below we describe our
findings for each of the decisions in detail. Note that all elements of our reusable
ADD model are instances of a meta-model (with meta-classes such as Decision,
Category, Pattern, AND Combined Group, and so on), which we introduce in
this paper implicitly in the text with the uses of the meta-classes in our model.
Please note that in this paper we focus on the decision models and their deci-
sion drivers. For space reasons, it is not possible to provide all technical details.
Detailed patterns explaining the decision options used in this paper, including
examples, known uses, and detailed discussions of decision drivers can be found
in another publication describing the patterns using pattern templates [19]. The
patterns are part of a larger pattern language effort started and summarized in
[24].

Quality Category : Category

Operation-Specific
Qualities : Category

Avoid Unnecessary Data
Transfer : Decision

Operation : Domain
Class

Endpoint-Specific Qualities
: Category

Client Identification
and Authentication

: Decision

Explicit Specification
of Quality Objectives

and Penalties : Decision

Prevent API Clients
From Excessive API

Usage : Decision

: AND Combined Group

API Client : Domain
Class

has sub-category

«decide for some instances
of»

has sub-category

«Consider If Not Decided
Yet»

«Consider If Not Decided
Yet»

«Consider If Not Decided
Yet»

«decide for some instances
of»

Metering and Charging
for API Consumption

: Decision

API : Domain Class

Communicate Errors
: Decision

Fig. 1. API quality: reusable ADD model – overview of required decisions and cate-
gories

Reusable Decision: Identification and Authentication of the API
Client. Identification and authentication are important for API providers that
are paid for or use freemium models: the API provider can grant authorization

78 U. Zdun et al.

based on the API client’s proven identity. This is key to ensure security, but also
impacts many other qualities; e.g., if unknown clients can access the API without
control or known clients can make excessive use of the API, the performance of
the system can degrade, reliability can be in danger, or costs (e.g., for used cloud
resources) can rise. The typical decision to be made here is shown in Fig. 2. The
simplest option is to chose no secure identification and authentication needed,
which is suitable only if the a number of clients is limited and if the risks with
respect to abuse or excessive use are low. The obvious alternative is to introduce
an Authentication mechanism for the API (which includes identification). An
API Key that assigns each client a unique token that the client can present to
the API endpoint for identification is a minimalistic solution. If security is an
issue, API Keys are not enough. In conjunction with an additional secret key
that is not transmitted, API Keys can be used to securely authenticate a client.
Another secure alternative are authentication or authorization protocols such as
OAuth, SAML, Kerberos, or LDAP.

API Key : Pattern

API Key Combined with
Secret Key : Pattern

Client Identification
and Authentication

: Decision

: Do Nothing

Authentication Protocol
: Practice

Authentication : Practice

Authorization Protocol
: Practice

«Variant»

«Option»
{name = "identification

and authentication
via shared secret,

secured with secret
key"}

«Option»
{name = "no secure

identification and
authentication needed"}

«Option»
{name = "identification

and authentication
via shared secret"}

«Option»
{name = "identification

and authentication
via a dedicated protocol"}

«Realizes»

«Option»
{name = "identification

and authentication
via a dedicated protocol"}

«Realizes»
«Includes»

Fig. 2. Client identification and authentication decision

There are a number of decision criteria that need to be considered in this deci-
sion. First of all, the level of required security, as outlined above. In addition, API
Keys are only a slight degradation in terms of ease of use for clients compared
to doing nothing; the other options are less easy to use as they require dealing
with more complex protocol APIs and setting up the required infrastructure.
In addition, the management of user account credentials required in authentica-
tion and authorization protocols can be tedious both on client and provider side;
this is avoided in all options using API Keys. With regard to the performance
of the solution, doing nothing has no overhead. API Key options have a slight
overhead for processing the key(s). Authentication and authorization protocols
tend to have more overhead as they also offer additional features. The API Key
options also decouple the client making an API call from the client’s organiza-
tion, as using the customer’s account credentials would needlessly give system
administrators and developers full account access.

Guiding Architectural Decision Making 79

Please that in our models we use the term practice as a superset of patterns
and other established practices; only those practices that have been described
in pattern form (e.g., in our related publications [19]) are denoted with the
stereotype Pattern, all other existing practices are denoted as Practice.

Reusable Decision: Communicate Errors. A common quality concern for
APIs is how to communicate errors as this has direct impacts on qualities like
avoiding and fixing defects, costs of defect fixing, robustness and reliability prob-
lems due to unfixed defects, and so on. Of course, one option is not to handle the
error at all, but this is usually not advisable – at least, for production APIs. A
common solution, if only one protocol stack is used (e.g., HTTP over TCP/IP),
is to use Protocol-level Error Codes, e.g., status codes in HTTP, but this does
not work if error reporting needs to work across multiple protocols, formats,
and platforms. In such cases the Error Reporting pattern should be used so
that replies include in addition to machine-readable error codes, also a textual
description of the error is provided for the API developer. Also such error mes-
sages can carry parameters and constants in order to allow internationalization
of error messages when reporting the to the user of the client application.

Error Reporting : Pattern Protocol-Level Error
Codes : Practice

: Do Nothing

«Can Be Combined With»

«Option»
{name = "perform

API-level error reporting"}

«Option»
{name = "communicate

errors only using
the application or
transport protocol

error codes"}

«Option»
{name = "provide

not specific solution
for communicating

errors"}

Communicate Errors
: Decision

Fig. 3. Communicate errors decision

Rate Limit : Pattern

Authentication : Practice

Prevent API Clients
From Excessive API

Usage : Decision

Client Identification
and Authentication

: Decision
: Do Nothing

«Can Use»

«Option»
{name = "yes"} «Consider If Not Decided

Yet»
«Option»

{name = "no"}

Fig. 4. Prevent API clients from exces-
sive API usage decision

The main decision drivers (see Fig. 3) to introduce any kind of error reporting
are help in fixing defects and increased robustness and reliability. Error reporting
leads to better maintainability and evolvability, and the more it explains errors
and thus reduces the effort in the task of finding the cause of a defect, the more
effective it is; thus the Error Reporting pattern performs better in this regard
than simple error codes. Error Reporting is also better performing with regard to
interoperability and portability as it better enables supporting protocol, format,
and platform autonomy. However, the more elaborate error messages can reveal
information that is problematic with regard to security, as revealing more infor-
mation about system internals opens up attack vectors. Error Reporting requires
more work, if internationalization is required, as the more detailed information
needs to be translated.

Reusable Decision: Preventing API Clients from Excessive API Usage.
Excessive use by a few clients can significantly limit the availability of the ser-
vice for other clients. Thus preventing excessive API usage by clients is needed.

80 U. Zdun et al.

Assuming API clients can be identified as previously discussed, their individual
usage of the API can be monitored for billing purposes. If offsetting the expense
of operating the microservice to its clients is not enough to limit their traffic
(e.g., using a Rate Plan, see next decision), an explicit Rate Limit can be intro-
duced to safeguard against API clients that overuse the API. The limit can be
expressed in number of requests per period of time. If this limit is exceeded,
further requests can either be declined, be processed later or with lower priority.

The decision is shown in Fig. 4. The major decision criteria to be considered in
this decision are: A certain level of scalability and performance needs to be main-
tained by the provider, but could be in danger if clients abuse the API. Means
for supporting client awareness of Rate Limits are required so that clients can
find out know how much of their limits they have already used up. Establishing
Rate Limits helps the provider to support qualities such as resilience, reliability,
and fault tolerance as they make it hard for clients to abuse the API in a way
that puts those qualities at risk. All these potential benefits must be contrasted
to the impact and severity of risks of API abuse and economic aspects. Intro-
ducing Rate Limits produces costs and can be seen critically by clients as well
as additional complexity if clients are allowed to negotiate their limits.

Reusable Decision: Metering and Charging for API Consumption. If
the API is a commercial offering, the API provider might want to charge for
its usage. Thus a means for identifying and authenticating clients is required
(see decision above). Then the provider can monitor clients and assign a Rate
Plan which measures API usage e.g. on a per-call level and is used to bill API
clients, advertisers, or other stakeholders accordingly. As shown in Fig. 5, we
can alternatively not meter and charge the client. In the context of a Rate Plan
sometimes a Rate Limit is used to ensure fair use. Figure 5 also illustrates possi-
ble variants of the Rate Plan pattern: Pricing can be based on actual usage, on

Rate Plan : Pattern

Rate Limit : Pattern

Authentication : Practice

Flat-rate Subscription
: Pattern

Freemium Model : Pattern

Usage-based Pricing
: Pattern

Auction-style Allocation
: Pattern

Market-based Allocation
: Pattern

Client Identification
and Authentication

: Decision
: Do Nothing

«Can Use»

«Can Use»

«Variant»

«Can Be Combined With»

«Can Be Combined With»

«Variant»

«Can Be Combined With»

«Variant»

«Can Be Combined With»

«Variant»

«Can Be Combined With»

«Option»
{name = "yes"}

«Consider If Not Decided
Yet»

«Option»
{name = "no"}

Metering and Charging
for API Consumption

: Decision

«Variant»

Fig. 5. Metering and charging for API consumption decision

Guiding Architectural Decision Making 81

market-based allocation (or with its sub-variant based on auctions), or on flat-
rate subscriptions. All those variants can be combined with a freemium model.

The major drivers for this decision are usually economic aspects, such as
pricing models and selecting a variant of the pattern that suits the provider or
the consumer business model best. The benefits of applying the pattern need to
be contrasted to the efforts and costs required to meter and charge customers.
Accuracy is central as API clients expect to be billed only for the services they
actually have consumed. Accurate metering requires an adequate meter granular-
ity to be defined. As information about metering and charging contains sensitive
information about clients, e.g. indications of how well they do in their markets,
it needs extra protection with regard to security.

Reusable Decision: Explicit Specification of Quality Objectives and
Penalties. Quality objectives are kept implicit and vague for many APIs. If
the client requires (or even pays for) stronger guarantees or the provider wants
to make explicit guarantees (e.g., to differentiate from competitors), an explicit
specification of quality objectives and penalties can be considered. This can be
done by introducing a Service Level Agreement (SLA) which is an extension of
the API description detailing measurable Service Level Objectives (SLOs) and
penalties in case of violation. Any Rate Plan and Rate Limit should refer to
the SLA if these patterns are used (and vice versa). SLAs require means for
identifying and authenticating clients; usually authentication practices have to
be used. There are a number of typical variants of the pattern: SLAs only used for
internal use, SLAs with formally specified SLOs, and those with only informally
specified SLOs, e.g., with natural language.

Service Level Agreement
: Pattern

SLA only for internal
use : Pattern

SLA with formally specified
SLOs : Pattern

SLA with informally
specified SLOs : Pattern Authentication : Practice

Rate Limit : Pattern Rate Plan : Pattern API Description : Pattern
Explicit Specification
of Quality Objectives

and Penalties : Decision

Client Identification
and Authentication

: Decision
: Do Nothing

«Variant» «Variant» «Variant» «Can Use»

«Can Use» «Can Use» «Can Use» «Option»
{name = "yes"}

«Consider If Not Decided
Yet»

«Option»
{name = "no"}

Fig. 6. Explicit specification of quality objectives and penalties decision

As shown in Fig. 6, the main decision drivers are: Attractiveness from con-
sumer point of view can be higher if guarantees about qualities can be made.
However, this must be contrasted to possible issues related to cost-efficiency and
business risks from a provider point of view. Some guarantees are required by
government regulations and legal obligations like those related to personal data

82 U. Zdun et al.

protection such as the EU General Data Protection Regulation (GDPR). If a
provider intends to make any guarantees about the quality of its service (typical
candidates concern the microservice availability, performance and scalability, or
security and privacy), then such qualities become decision drivers for this deci-
sion. Finally, the decision relates to business agility and vitality as the business
model of a client might rely on the above named qualities of a service.

Reusable Decision: Avoid Unnecessary Data Transfer. The decision
described in this section contains four patterns addressing different situations
in which unnecessary data is transferred by the operations of an API. Note that
in contrast to the prior decisions, this one needs to be made per operation as only
a detailed analysis of the individual needs of the clients can indicate whether
the data transfer can be reduced or not.

It can be hard for API providers to design operations that provide the
required data exactly: the needs of clients might not be predictable and/or differ
from each other. One solution is to let the API client provide a Wish List in
the request enumerating all desired data elements so that the API provider can
deliver only the desired elements in the response. A Wish List is not always easy
to specify, e.g., if only certain fractions of nested or repetitive parameter struc-
tures are required. An alternative that works better for complex parameters is to
let the client send a more expressive Wish Template that mirrors the structure
of the desired responses (but contains dummy data) in its request.

If multiple clients repeatedly request the same data, which seldom changes,
unnecessary data transfer can be avoided through a Conditional Request. To
make requests conditional, they contain additional metadata parameters so that
the provider may only process the request if a condition is met; e.g., in REST-
ful HTTP APIs, the provider could provide a fingerprint, which the client can
then include in subsequent requests to indicate the latest known version of the
resource that the client already has retrieved.

Another scenario is when one client makes multiple related requests that
form logical batches. If the provider receives and replies to all requests individ-
ually, performance and scalability may suffer. This can be avoided by defining
a Request Bundle as a container message that assembles multiple individual
requests and is accompanied by metadata such as number of and identifiers of
individual requests. Exchanging a single large message is usually more efficient
than transferring multiple short messages. This comes at a price of increased
effort for request processing on the provider side.

Sometimes no data transfer reduction is possible or wanted for the target
operation(s); no action has to be taken in that case. Alternatively, unnecessary
data transfer can be avoided through the patterns explained above. A combi-
nation of Conditional Request with either Wish List or Wish Template can be
useful to indicate which subset of changed data is requested. Request Bundle can
be combined with any of the prior alternatives, but combining multiple of the
patterns increases the complexity of the API.

The main decision driver for this decision as illustrated in Fig. 7 is the individ-
ual information needs of a client which need to be analyzed to find out which of

Guiding Architectural Decision Making 83

Avoid Unnecessary Data
Transfer : Decision

: Do Nothing Wish List : Pattern

Rate Limit : Pattern

Wish Template : Pattern Conditional Request
: Pattern Request Bundle : Pattern

«Option»
{name = "no data
transfer reduction

possible or wanted"}

«Option»
{name = "use simple

list to provide the
information"}

«Influences»

«Influences»«Influences»

«Can Be Combined With»

«Can Be Combined With»

«Option»
{name = "bundle multiple
requests in a container

message"}

«Option»
{name = "make data
transfer dependent

on a condition in
the request"}

«Option»
{name = "use a structured

template to provide
the information"}

«Influences»

Fig. 7. Avoid unnecessary data transfer decision

the patterns combinations can provide benefits. Consider situations where data
transfer over the network is perceived as a potential bottleneck: Data parsimony
can further drive the decision as the patterns can help to reduce bandwidth
consumption during data transmission. Avoiding unnecessary data transfers can
improve performance, as transferring all data elements to all clients all the time
would harm response time, throughput, processing time, cost, etc. Security can
be a driver to apply or not to apply the patterns Wish List and Wish Template:
enabling clients to provide options on which data to receive may unwittingly
expose sensitive data or open up additional attack vectors. On the other hand,
data that is not transferred cannot be stolen and cannot be tampered with.
Finally, going from an API with a fixed data representation to an API where
clients can dynamically determine what content will be retrieved – which all
four patterns do – increases the complexity of API design and programming.
This is e.g. evidenced in GraphQL which can be seen as an extreme form of
Wish Template. In addition, the special cases introduced by the patterns cause
more testing and maintenance efforts.

5 Preliminary Estimation of Uncertainty Reduction

Architectural decision making is always tied to the given context; e.g., our
ADD model documents decisions in two different contexts CON = {API &
API Client, API Operation}. In each context the architect needs to make a set
of decisions DEC. For each, d ∈ DEC there are a number of decision options
OPTd possible to choose for decision d. Finally, there is a set of criteria CRId
that need to be considered when making a decision d. There are many different
kinds of uncertainties involved in making ADDs in a field in which the archi-
tect’s experience is limited. The obvious contribution of our ADD model is that
it helps to reduce the uncertainty whether all relevant, necessary and sufficient
elements for making a correct decision have been found (for each of the sets
named above CON,DEC,OPT, and CRI). Another kind of uncertainty reduc-
tion is the uncertainty reduction our ADD model provides compared to using the

84 U. Zdun et al.

same knowledge, but in a completely unorganized fashion. We want to estimate
this kind of uncertainty reduction here. Exploiting uncertainties has been used
in a similar way in software architecture traceability research before [20]. Our
model provides organization to the design knowledge at a number of levels:

– It groups and interrelates decisions; e.g., Metering and Charging for API Con-
sumption requires consideration of Client Identification and Authentication
(see Fig. 5).

– It groups decision options in decisions and interrelates them; e.g., Per-
form Error Handling has three options OPTPerform Error Handling =
{Error Reporting, Protocol- Level Error Codes, Do Nothing}. Two of those
are related further: Error Reporting can be combined with Protocol-Level
Error Codes (see Fig. 3).

– It associates decision criteria to decisions; e.g., Metering and Charging for API
Consumption has 4 criteria CRIMetering and Charging for API Consumption =
{Economic Aspects, Accuracy, Meter Granularity, Security} (see criteria
explanations for Fig. 5).

– It pre-selects many of those criteria for the options; e.g., in Metering and
Charging for API Consumption, the criterion Security is pre-selected: Using
a Rate Plan has negative impacts on it; the option Do Nothing is preferable as
it has no security impact. In contrast, the criterion Economic Aspects needs
to be investigated further for both decision options in the concrete context
and thus cannot be pre-decided.

Here, we estimate the uncertainty reduction both for each individual deci-
sion and possible decision combinations in each context (uncertainty reduction
estimations are reported as rows in Table 2). We calculate each number both for
using our ADD model (denoted with ⊕ below) and not using our model (denoted
with � below):

– Number of decisions nodes (ndec): Our ADD model represents each decision
separately. So the number of decision nodes for a single decision d is always
ndec⊕

d = 1. Without our ADD model, each design solution (i.e., decision
option in the design space) that is not Do Nothing is a possible decision
node, and it can either be selected or not: ndec�

d = |OPTd \ {Do Nothing}|.
Please note that, if a design solution has variants, OPTd contains the base
variant plus each possible variant.

– Number of required criteria assessments in a decision (ncri): Our ADD model
includes explicit decision criteria per decision. Some of those are pre-decided,
others not. Let the functions decided() and undecided() select them, respec-
tively. If all criteria are decided in a decision, we only require one criteria
assessment (assessing the whole vector of decided criteria). If all criteria are
undecided, we need to make |CRId| assessments of criteria. Often some cri-
teria are decided, others not, so the number of criteria to be decided is in
general:

ncri⊕d =

{
1 + |undecided(CRId)|, for decided(CRId) > 0

|CRId|, for decided(CRId) = 0

Guiding Architectural Decision Making 85

Without our ADD model, we need to assess each criterion for each decision
node (as we have no pre-decided choices): ncri�d = |CRId| × |ndec�

d |.
– Number of possible decision outcomes (ndo): Our ADD model already mod-

els each decision option separately in |OPTd| including Do Nothing, so
ndo⊕

d usually equals |OPTd| unless the design space allows explicit com-
binations of solutions as additional outcomes. For instance, in the deci-
sion Metering and Charging for API Consumption the variant Freemium
Model can be combined with the base variant and all four other variants,
leading to an additional five outcomes. Let the function solComb() return
the set of possible solution combinations in the options of a decision; then
ndo⊕

d = |OPTd| + |solComb(OPTd)|.
The same is true in principle for the decisions made without our ADD model,
but as the decision d is here split into multiple separate decision nodes ndec�

d

and without the ADD model no information on which combinations are pos-
sible is present, we need to consider any possible combination in ndec�

d , i.e.,
the size of the powerset of the decision nodes: ndo�

d = |P(ndec�
d)| = 2|ndec�

d |.

For the context API Operation, there is only a single decision (i.e., avoid
unnecessary data transfer), but in the context API & API Client there are five
decisions. It is thus also important to calculate the total uncertainty reduction
in this context, where any number of those five decisions can be taken. The
combinations of ndec and ncri in a context c ∈ CON is with or without our
ADD model simply their sum for the decisions d in the context c; let inCon()
be a function selecting all decisions in a context:

ndecc =
∑

d∈{dec ∈ DEC| dec ∈ inCon(c)} |ndecd|
ncric =

∑
d∈{dec ∈ DEC| dec ∈ inCon(c)} |ncrid|

If multiple decisions need to be made, the combinations for ndo require us
to consider all possible combinations of decision outcomes of each and every
decision:

ndoc = |P(
⋃

d∈{dec ∈ DEC| dec ∈ inCon(c)} ndod)|.
Table 2 shows the results of the uncertainty reduction estimation. As can

be seen without our ADD model in general more decision nodes ndec need to
be considered, ranging from 0% to 83,33% for individual decisions; and totally
70,59% in the API client/API context and 75.00% in the operation context. For
the necessary criteria assessments ncri improvements are even higher, ranging
from 50% to 97,73% for individual decisions; and totally 90,16% in the API clien-
t/API context and 93,75% in the operation context. Here this high improvement
is mainly due to the pre-selected criteria, which lead to criteria assessments in
whole sets of criteria rather than evaluating each criterion separately. Finally,
for the number of possible decision outcomes ndo, the improvement in uncer-
tainty reduction for individual decisions ranges from 0% to 81,25%. The large
spread is due to the fact that without our ADD model, the number of options
rises exponentially: For decisions with larger numbers of decision options the
improvement is greater than for those with only a few options. In total we see
a 25% improvement in the operation context, as this is just a single decision.

86 U. Zdun et al.

Table 2. Uncertainty reduction estimation

Decision # Decision
nodes ndec

Criteria
assessments
ncri

Possible
decision
outcomes
ndo

Client
Identification and
Authentication
Decision

With design space 1 1 5

Without design space 4 44 16

Uncertainty reduction 75,00% 97,73% 68,75%

Perform Error
Handling

With design space 1 1 4

Without design space 2 18 4

Uncertainty reduction 50,00% 94,44% 0,00%

Preventing API
Clients from
Excessive API
Usage

With design space 1 4 2

Without design space 1 8 2

Uncertainty reduction 0,00% 50,00% 0,00%

Metering and
Charging for API
Consumption

With design space 1 4 12

Without design space 6 24 64

Uncertainty reduction 83,33% 83,33% 81,25%

Explicit
Specification of
Quality Objectives
and Penalties

With design space 1 2 5

Without design space 4 28 16

Uncertainty reduction 75,00% 92,86% 68,75%

Total in Context
API Client / API

With design space 5 12 268435456

Without design space 17 122 482754917909

Uncertainty reduction 70,59% 90,16% 99,94%

Avoid Unnecessary
Data Transfer =
Total in Context
Operation

With design space 1 2 12

Without design space 4 32 16

Uncertainty reduction 75,00% 93,75% 25,00%

The total for the API client/API context shows a 99,94% improvement; here we
use for both cases the same exponential function for calculation, but as individ-
ual decisions were performing much better with our model, the resulting total
number is much lower than without it.

Please note that the numbers are rough estimates only, not a formal evalua-
tion. They indicate that substantial uncertainty reduction is possible. To harden
them, further such estimations in other design spaces are required, which could
be the basis for developing a theory. Such a theory could then be validated in
empirical studies in realistic cases.

6 Discussion and Threats to Validity

We have studied knowledge on established practices on API quality aspects, rela-
tions among those practices, and decision drivers to answer RQ1 with multiple

Guiding Architectural Decision Making 87

iterations of open coding, axial coding, and constant comparison to first codify
the knowledge in informal codes and then in a reusable ADD model. Some of
our decision options were design patterns (documented in [19] and designated
as such in our models, see Figs. 2, 3, 4, 5, 6 and 7). Precise impacts on decision
drivers of design solutions and their combinations were documented as well; for
space reasons we only summarized those in the text and did not show them in
the UML models (see [19] for technical details).

The contributions to RQ1 in part already answer RQ2, in so far as each of
the pieces of knowledge is systematically derived from established knowledge,
which helps to reduce uncertainty regarding finding knowledge at all and find-
ing it correctly. In addition, we estimated the uncertainty reduction achieved
through the organization of knowledge in our ADD model in Sect. 5. We may
conclude that our ADD model (and similar models) have the potential to lead
to substantial improvements in uncertainty reduction in all evaluation variables
due to the additional organization it provides and pre-selections it makes. For
individual decisions, mastering and keeping in short term memory the necessary
knowledge for design decision making seems infeasible without the ADD model
(e.g., four decision nodes with 44 criteria assessments and 16 possible outcomes
for the first decision in Table 2), but quite feasible with our ADD model. Our
model also helps to maintain an overview of the decisions ndec⊕ and criteria
assessments ncri⊕ in the combined API client/API context. Only the number of
possible decision outcomes for the combination of multiple decisions seem chal-
lenging to handle, both in the ndo⊕ and ndo� case. That is, despite all benefits
of our approach, the uncertainty estimations also show that a limitation of the
approach is that when multiple decisions need to be combined in a context, main-
taining an overview of possible outcomes and their impacts remains a challenge
– even when a substantial uncertainty reduction and guidance is provided as
in our ADD model. Further research and tool support is needed to address this
challenge. As our numbers are only rough estimates, further research is needed to
harden them and confirm them in empirical studies, possibly based on a theory
developed based on such preliminary estimations.

While generalizability beyond the 55 knowledge sources we studied is possible
to a large extent, our results are limited to those sources and to a lesser extent to
very similar APIs. Most of the 55 source were public, Internet-wide APIs; we have
studied a few in-house APIs as well. This mix might have introduced bias or left
to the omission of important in-house practices in commercial enterprises. We
could only study the API quality aspects addressed in those sources. Thus, we do
not claim any form of completeness. Our results are only valid in our set scope.
In the various coding process and review stages of our research method, each
finding was checked in at least five iterations by different members of our author
team. However, possible misinterpretations or biases of individual researchers or
the whole author team cannot be fully excluded and might have influenced our
results. As the authors have many years of experience in the field (gained both
in industrial projects and in education of students and practitioners), we are
optimistic that this threat to validity is mitigated in our study to a large extent.

88 U. Zdun et al.

7 Conclusions

We have performed a qualitative study in which we have studied microservice
API quality aspects in 55 unique sources. Our study led to the identification of
six architectural design decisions with in total 40 decision options and in total 47
decision drivers modelled in a formal ADD model. In our uncertainty reduction
estimations we were able to indicate that the knowledge organization in our
ADD model can lead to a significant reduction of uncertainty where multiple
decisions need to be combined. In our future work, we plan to combine our ADD
model with other aspects of API design, apply the results in case studies e.g.
in different verticals or industries, and build and empirically validate a theory
based on the preliminary uncertainty reduction estimations.

Acknowledgements. This work was partially supported by Austrian Science Fund
(FWF) project ADDCompliance and FFG project DECO (no. 864707).

References

1. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

2. Charmaz, K.: Constructing Grounded Theory. Sage, Thousand Oaks (2014)
3. Coplien, J.: Software Patterns: Management Briefings. SIGS, New York (1996)
4. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for

Qualitative Research. Aldine de Gruyter, New York (1967)
5. Gorton, I., Klein, J., Nurgaliev, A.: Architecture knowledge for evaluating scalable

databases. In: Proceedings of the 12th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2015), pp. 95–104 (2015)

6. Gupta, A.: Microservice design patterns (2017). http://blog.arungupta.me/
microservice-design-patterns/

7. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar, S.,
Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 185–200. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44482-6 12

8. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: Proceedings of the SCC, pp. 813–818 (2016)

9. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for archi-
tecture decisions. J. Syst. Softw. 85(4), 795–820 (2012)

10. Hentrich, C., Zdun, U., Hlupic, V., Dotsika, F.: An approach for pattern mining
through grounded theory techniques and its applications to process-driven SOA
patterns. In: Proceedings of the 18th European Conference on Pattern Languages
of Program, pp. 9:1–9:16 (2015)

11. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term,
March 2004. http://martinfowler.com/articles/microservices.html

12. Lytra, I., Sobernig, S., Zdun, U.: Architectural decision making for service-based
platform integration: a qualitative multi-method study. In: Proceedings of WIC-
SA/ECSA (2012)

13. Menascé, D.A.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002)

http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
https://doi.org/10.1007/978-3-319-44482-6_12
http://martinfowler.com/articles/microservices.html

Guiding Architectural Decision Making 89

14. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Sebastopol (2015)

15. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: 6th Interna-
tional Conference on Cloud Computing and Services Science, pp. 137–146 (2016)

16. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. big web
services: making the right architectural decision. In: Proceedings of the 17th World
Wide Web Conference (WWW), pp. 805–814, April 2008

17. Richardson, C.: A pattern language for microservices (2017). http://microservices.
io/patterns/index.html

18. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-end
approach for QoS-aware service composition. In: IEEE International Conference on
Enterprise Distributed Object Computing Conference (EDOC 2009), pp. 151–160.
IEEE (2009)

19. Stocker, M., Zimmermann, O., Lübke, D., Zdun, U., Pautasso, C.: Interface quality
patterns - crafting and consuming message-based remote APIs. In: Proceedings of
the 23nd European Conference on Pattern Languages of Programs, EuroPLoP 2018
(2018)

20. Trubiani, C., Ghabi, A., Egyed, A.: Exploiting traceability uncertainty between
software architectural models and performance analysis results. In: Weyns, D.,
Mirandola, R., Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 305–321.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23727-5 26

21. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: Proceedings of the 12th International Conference on
World Wide Web, pp. 411–421. ACM (2003)

22. Zimmermann, O.: Microservices tenets. Comput. Sci. - Res. Dev. 32(3), 301–310
(2017)

23. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N.: Managing
architectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82(8), 1249–1267 (2009)

24. Zimmermann, O., Stocker, M., Lübke, D., Zdun, U.: Interface representation pat-
terns: crafting and consuming message-based remote APIs. In: Proceedings of the
22nd European Conference on Pattern Languages of Programs, EuroPLoP 2017
(2017)

http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
https://doi.org/10.1007/978-3-319-23727-5_26

Adaptive Temporal Verification and Violation
Handling for Time-Constrained Business

Cloud Workflows

Haoyu Luo1,2, Xiao Liu3, Jin Liu1(&), Bo Han1, and Yun Yang4

1 School of Computer Science, Wuhan University, Wuhan, China
{luohy,jinliu,bhan}@whu.edu.cn

2 School of Computer Science, South China Normal University,
Guangzhou, China

3 School of Information Technology, Deakin University, Geelong, Australia
xiao.liu@deakin.edu.au

4 School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia

yyang@swin.edu.au

Abstract. To achieve on-time completion of time-constrained business cloud
workflows, a large number of parallel cloud workflow instances need to be
constantly monitored so that temporal violations (namely intermediate runtime
delays) can be detected and handled timely. Over the last few years, many
strategies have been proposed but they are not adaptive enough to capture the
dynamic behaviors of business cloud workflows. In this paper, we introduce the
idea of “adaptiveness” into our strategy design. Specifically, we first present an
adaptive temporal checkpoint selection strategy where the time intervals
between checkpoints are adaptively determined at runtime, and then propose a
matching temporal violation handling strategy which can determine the required
lifecycle of cloud services. The evaluation results demonstrate that our adaptive
strategy can achieve both higher efficiency and better cost effectiveness com-
pared with conventional strategies.

Keywords: Temporal verification � Violation handling � Business workflow
Adaptiveness � Cloud computing

1 Introduction

Business workflow can provide partial or even full automation of business processes in
the domains of such as e-business and e-government. A notable feature of business
workflow is that there is usually a large number of workflow instances running in a
parallel fashion triggered by a large amount of concurrent user requests. To ensure the
scalability in processing parallel workflow instances, a rapidly increasing number of
business workflow applications are being deployed into the Cloud.

In business scenarios, a time-constrained workflow application needs to provide
timely response to business requests [1]. Failing to deliver requested results in time
may lead to the deterioration of user satisfaction, even huge financial loss. Therefore,

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 90–99, 2018.
https://doi.org/10.1007/978-3-030-03596-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_6

the correctness of a business workflow application depends not only on its logical
correctness, but also on its temporal correctness [2]. However, due to the dynamic
nature and uncertainties that exist during the running of workflows in the cloud,
temporal violations often occur which may have a serious impact on on-time com-
pletion of workflow instances. “temporal violation” means an intermediate violation of
time constraints during workflow execution that can be fixed locally to achieve overall
timely completion.

To ensure temporal correctness, workflow temporal behaviors need to be constantly
monitored at runtime so that temporal violations can be timely detected and handled [3,
4]. When dealing with the monitoring and verification of temporal behaviors for a large
number of parallel business workflow instances, throughput has been proved to be a
competent measurement for the requirements of efficiency and scalability [5]. The basic
idea is to select a set of time points along execution timeline as checkpoints, at which
temporal behavior (represented by workflow throughput) is verified to determine
whether a temporal violation occurs or not. If a temporal violation is detected, the
current temporal behavior needs to be adjusted by temporal violation handling
strategies.

To handle temporal violations, a temporal verification strategy and a temporal
violation handling strategy are required to address the problem of “Where” and “How”
respectively. In recent years, many related approaches have been proposed. However, a
common problem is that they are not adaptive enough to capture the dynamic behaviors
of business cloud workflows. To detect temporal violations, existing strategies verify
temporal behavior at a set of temporal checkpoints which are selected from predefined
system time points before workflow execution. These time points are usually equally
distributed and the fixed time intervals between them are empirically set. This is
inefficient as temporal behaviors constantly fluctuate at workflow runtime. In the
meantime, most approaches handle the detected temporal violations by adding new
resources. But the current work simply adds new resources with fixed lifecycles once a
temporal violation is detected, in regardless of workflow runtime temporal behavior.
Such kind of static approach may cause unnecessary cost of resource consumption.

For such an issue, we introduce the idea of “adaptiveness” into our strategy design.
Two adaptive strategies are proposed to answer the questions of “Where” and “How”
to handle temporal violations respectively. Specifically, we first present an adaptive
temporal checkpoint selection strategy for the question of “Where”. Instead of using
fixed time intervals, time interval between adjacent checkpoints is adaptive to workflow
execution states. This strategy is more sensitive to the variation of temporal behaviors,
which can improve the efficiency of temporal verification and decrease unnecessary
resource consumption. Then we present a matching temporal violation handling
strategy to answer the question of “How”. This strategy is designed to reduce or
eliminate time delays by accelerating the execution of workflow activities with extra
resources, e.g. service instances, provisioned to the cloud service nodes where temporal
violations are detected. Specifically, it addresses three major issues for the question of
“How”: (1) where to add extra resources; (2) how many resources are needed; (3) how
long their lifecycles should be. Experimental results show that our adaptive strategy can
achieve the target on-time completion rate with higher verification efficiency and at
least 19.4% less resource consumption compared with conventional strategies.

Adaptive Temporal Verification and Violation Handling 91

The rest of the paper is organized as follows. Section 2 presents preliminary def-
initions. Section 3 presents the adaptive temporal verification and violation handling
strategies. Section 4 demonstrate the experimental results. Section 5 concludes this
paper.

2 Preliminary

(1) Workflow throughput

A business workflow is made up of a set of activities in partial order. We denote the i th
activity of a business workflow as ai. The mean, expected and runtime completion
duration of ai is denoted as M aið Þ, E aið Þ and R aið Þ respectively. Accordingly, WFi is a
workflow with its mean, expected and runtime completion duration denoted as
M WFið Þ, E WFið Þ and R WFið Þ respectively.
Definition 1 (Workflow Throughput). Given a batch of q business workflow
instances WF{WF1, WF2, …, WFq} which starts at system time S0, the completion of
workflow activity aij contributes to the completion of the entire collection of workflows
with a value of M aij

� �
=T where T ¼ Pq

i¼1 M WFið Þ. Here, we assume that at the
current observation time point St, the set of new completed activities from the pre-
ceding nearest observation time point St�1 is denoted as afgjStSt�1

, then the system

throughput is defined as THjStSt�1
¼ MðafgjStSt�1

Þ=T .
Workflow throughput constraints is the expected accumulated workflow throughput

(namely the percentage of completion) that should be achieved by a specific system
time point. The value is decided by the throughput deadline assignment strategy [6].

(2) Queueing model for cloud services

At workflow runtime, a large number of instances are initialized in a short time. Since
the number of parallel workflow instances is much more than the dedicated cloud
services, workflow activities have to queue up on limited services. In this paper,
queueing model is employed to depict the queueing and execution process of parallel
workflow activities. We employ M/G/m/m+r model to formulate the behavior of the first
queueing system and G/G/m/m+r model for the rest k � 1 queueing systems [7]. The
discussion for the rationale of the model design can be found at our previous work [8].

(3) Throughput-based temporal consistency model

Temporal verification requires a temporal consistency model which defines the rela-
tionship between the current workflow execution state and target deadline.

Definition 2 (Throughput Consistency Model). Given the same batch of workflows
in Definition 1 and its final deadline F WFð Þ, at throughput checkpoint Sp, it is said to
be of a% consistency if:

92 H. Luo et al.

F kað Þ ¼ THjSpS0 þExp THjF WFð Þ
Sp

� �
ð1Þ

where ka is defined as the a% confidence percentile with the cumulative standard

normal distribution function of F li þ krið Þ ¼ 1
r
ffiffiffiffi
2p

p
R li þ kri
�1 e� x�lið Þ2=2r2i dx ¼ a%. THjSpS0

is the current runtime throughput until Sp, Exp THjF WFð Þ
Sp

� �
is the expected workflow

throughputs during the time between the checkpoint and final deadline. a% consistency
is a probability confidence for on-time completion.

3 Adaptive Temporal Verification and Violation Handling

3.1 Adaptive Temporal Checkpoint Selection Strategy

Definition 3 (Candidate Throughput Checkpoints). Given the same batch of work-
flow instances as in Definition 1, a system time point St along the workflow execution
timeline is a candidate throughput checkpoint if St � St�1 ¼ k � bt (k = 1, 2, 3, …).

Adaptive Temporal Verification and Violation Handling 93

k � bt is the time interval between adjacent candidate throughput checkpoints.bt is the
minimum time interval for system monitoring. k is a variable which is decided at
workflow runtime. Checkpoint selection strategy needs to figure out candidate
throughput checkpoints first, then determines whether they should be selected as a
checkpoint.

Algorithm 1 depicts the adaptive checkpoint selection strategy, which selects
checkpoints one by one at workflow runtime. Whether a candidate checkpoint is
selected as checkpoint or not depends on both the temporal behavior during the latest
monitoring window k � bt and the temporal behaviors of several prepositive check-
points. Temporal consistency state of the newly selected checkpoint influences the
decision of the next checkpoint. To reflect such a feedback and adjustment mechanism,
we integrate the proposed checkpoint selection strategy (Step 1) with throughput-based
temporal consistency model (Step 2) as an overall throughput consistency verification
approach.

3.2 Temporal Violation Handling Strategy

Once a temporal violation is detected at a checkpoint, temporal violation handling
strategy will be triggered to deal with the recovery of violation by accelerating the
workflow execution after the current checkpoint. In the scenario of business cloud
workflows, if a throughput violation is reported, temporal violation handling strategy
needs to increase the system throughput in a short period of time.

We design to handle temporal violations by recruiting extra resources (namely
adding more cloud service instances in queueing systems). The extra resources for
violation handling are recruited only for temporary use. Specifically, our proposed
temporal violation handling strategy needs to answer three major questions:

(1) Where to add resources?

Queueing system for a cloud service is regarded as a basic unit for violation handling.
Therefore, new resources are added into the queueing systems where local throughput
constraints are violated and these queueing systems are called violation handling
points.

Algorithm 2 (Step 1) explains the violation handling point selection strategy. When
a throughput violation is detected at checkpoint Sp (line 1), we need to calculate the
average response time (ART) of workflow activities in each queueing system during
Sp�1 and Sp (lines 2–3). If the ART of a queueing system exceeds the response time
constraint (RTC), the local throughput constraint will be violated inevitably, and this
queueing system is selected as a handling point (lines 4–5).

(2) How many resources are needed?

Adding extra service instances into a queueing system can increase the throughput of
cloud services and reduce the average response time of workflow activities. Here, an
essential question aroused is “to timely and completely handle temporal violations,
does adding more extra resources mean better effectiveness?” Our answer is “not
always”.

94 H. Luo et al.

Since it is impossible to obtain a closed formula to represent the probability dis-
tribution of general distribution “G” in M/G/m/m+r and G/G/m/m+r models, the
numerical relationship between the number of service instances and average response
time is not clear. Therefore, we conduct testing experiments and use the results as
reference.

We conduct two rounds of experiments to figure out how response time changes
with the number of cloud service instances in queueing systems with the above two
different queueing models. In the two queueing systems, the average execution time of
workflow activities is 6.1729 s and 13.5686 s. The minimum numbers of service
instances based on queueing rule are 6 and 12 (at the worst level of service). When we
add the first service instance into the two queueing systems, the average response time
of both systems declines dramatically. Afterwards, the average response time is
gradually getting close to the average execution time but has no evident decrease
despite that more service instances are being recruited. The reason is that adding new
service instances can only decrease the waiting time of workflow activities in the
queue.

Therefore, we only add one extra service instance into the queueing system for
violation handling to achieve the best cost-effectiveness. Even if in some cases adding
one service instance may not be sufficient to compensate all throughput deficit, the
handling strategy will be called again timely to add another service instance as tem-
poral behaviors are still constantly monitored by our temporal verification strategy.

Adaptive Temporal Verification and Violation Handling 95

(3) How long the lifecycle of these resources should be?

Algorithm 2 (Step 2) depicts how to determine the lifecycle of new resources for
temporal violation handling. If there is currently no recruited resource in the queueing
system, then we add a new resource with a basic lifecycle L (lines 11–12). The real
lifecycle T = m*L (m = 1, 2, 3, …). If there is already a recruited resource in the
queueing system (this resource is added in the queueing system at previous checkpoints
for violation handling and has not expired yet), then we check the residual time of this
resource. If RL\k � bt (namely the resource will expire before the next candidate
checkpoint Spþ 1), we extend its lifecycle by an extra basic lifecycle (lines 14–17).

By adaptively extending the resource’s lifecycle, our strategy can make sure only
one extra resource is required in the queueing system for temporal violation handling.

4 Evaluation

4.1 Experimental Settings

The simulation experiments are conducted in our cloud workflow system SwinFlow-
Cloud [9]. First, we simulate a continuous running of a large number of parallel
workflow instances. Basic experimental settings are similar to the settings our previous
work [10]. Arrival time and execution time of activities follow general distribution
which are simulated by Simulink1. Basic time unit bt is set as an equal interval of 30 s.
Basic lifecycle of recruited resources L is set as 1 min.

We compare our approach TVadap with the following two representative strategies:

• TVfixed: It selects checkpoints from a collection of time points along system timeline
with fixed interval. This strategy handles temporal violations by adding one extra
resource with fixed lifecycle into each selected queueing system [10].

• TVacti: It selects every workflow activity as candidate checkpoint [11]. If a temporal
violation is detected, one resource with a fixed lifecycle is added into each selected
queueing system (if there is no extra resource in the queueing system).

To get the baseline results for comparison purpose, we record the on-time com-
pletion rates of workflow instances under natural situation, i.e., without any temporal
verification or violation handling strategies (denoted as NIL).

In business scenario, a best strategy should be the one that can reach the target on-
time completion rate with high cost-effectiveness. Cost-effectiveness is measured by
the average resource consumption for every 1% increment from the baseline. The
formula is as follows:

H
c0%� c%

ð2Þ

where H denotes the total number of basic lifecycle of recruited resources needed by
each strategy, c% is the baseline on-time completion rate and c0% is the on-time
completion rate achieved by each strategy.

1 Simulink: https://www.mathworks.com/products/simulink.html.

96 H. Luo et al.

https://www.mathworks.com/products/simulink.html

4.2 Experimental Results

First, we compare TVadap with the other two strategies under different batches of
workflows. The workflow size is 25. In Fig. 1, each strategy can significantly improve
on-time completion rate when compared with the baseline NIL, and all of them can
reach the target on-time completion rate of 90%. However, in Table 1 the number of
checkpoints and resources consumption are obviously different. Since TVacti is working
at each workflow activity, the number of checkpoints is much more than the other two
strategies, and it can detect more temporal violations. But its resource consumption for
violation handling is several times higher than the other two strategies. TVfixed achieves
a slightly higher on-time completion rate than TVadap, but it consumes more resources.
In contrast, TVadap can reach the target on-time completion rate with the lowest
resource cost. Also, it achieves the highest verification efficiency with the minimum
number of checkpoints.

Figure 2 and Table 2 show the experimental results under different workflow sizes.
The number of parallel workflow instances is 6000. Similar to the above experiment
results, all the three strategies can reach 90% on-time completion. Compared with
TVfixed and TVacti, TVadap is the most cost-effective, which can achieve target on-time
completion with the least resource consumption.

Fig. 1. On-time completion rates with dif-
ferent number of instances

Fig. 2. On-time completion rates with differ-
ent workflow sizes

Table 1. Experimental results with different number of workflow instances

Strategies Checkpoints Resource lifecycle Average resource
consumption for
every 1% increment
from the baseline

3000 6000 10000 3000 6000 10000 3000 6000 10000

TVadap 86 102 121 118 141 252 12.47 10.75 14.61
TVfixed 132 145 159 172 169 336 16.03 11.74 18.33
TVacti 832 1471 2984 576 902 1685 57.26 74.54 93.36

Adaptive Temporal Verification and Violation Handling 97

5 Conclusion and Future Work

To achieve on-time completion of time-constrained business cloud workflows, tem-
poral violations occurred at workflow runtime need to be timely detected and handled.
In this paper, we present a temporal verification strategy and a temporal violation
handling strategy to tackle the problem of “Where” and “How” respectively for han-
dling temporal violations. Considering the fluctuation of workflow temporal behaviors,
the idea of “adaptiveness” is introduce into our strategy design. Compared with con-
ventional non-adaptive strategies, our strategies can achieve both higher efficiency and
better cost effectiveness.

In the future, we plan to extend the proposed strategies to a more complex envi-
ronment where instances of different business workflow are mixed in the batch of
parallel workflow instances.

Acknowledgement. The authors would like to acknowledge the support provided by the grants
of the National Natural Science Foundation of China (61572374, 61300042, U163620068,
U1531122, U1135005), the Academic Team Building Plan from Wuhan University
(WHU2016012), and the Australian Research Council Discovery Project (DP180100212).

References

1. Kumar, A., Sabbella, S.R., Barton, R. R.: Managing controlled violation of temporal process
constraints. In: 13th International Conference on Business Process Management, pp. 280–
296 (2015)

2. Wegener, J., Grochtmann, M.: Verifying timing constraints of real-time systems by means of
evolutionary testing. Real-Time Syst. 15(3), 275–298 (1998)

3. Falcone, Y., Havelung, K., Reger, G.: A tutorial on runtime verification. J. Eng. Dependable
Softw. Syst. 34, 141–157 (2013)

4. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Exception handling patterns in
process-aware information systems. BPM Center Report BPM-06-04, BPMcenter.org (2006)

5. Liu, X., Wang, D., Yuan, D., Wang, F., Yang, Y.: Workflow temporal verification for
monitoring parallel business processes. J. Softw.: Evol. Process. 28(4), 286–302 (2016)

Table 2. Experimental results with different workflow sizes

Strategies Checkpoints Resource
lifecycle

Average resource
consumption for
every 1% increment
from the baseline

15 20 25 15 20 25 15 20 25

TVadap 94 101 102 113 116 141 14.43 9.11 10.75
TVfixed 152 159 145 141 148 169 14.46 10.39 11.74
TVacti 957 1098 1471 623 816 902 54.75 67.44 74.54

98 H. Luo et al.

6. Liu, X., Wang, D., Yuan, D., Yang, Y.: A novel deadline assignment strategy for a large
batch of parallel tasks with soft deadlines in the cloud. In: Proceedings of 15th IEEE
International Conference on High Performance Computing and Communications & 10th
IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC),
pp. 51–58 (2013)

7. Khazaei, H., Mišić, J., Mišić, V.B.: Performance analysis of cloud computing centers using
m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. 5, 936–943 (2011)

8. Luo, H., Liu, J., Liu, X., Yang, Y.: Predicting temporal violations for parallel business cloud
workflows. Softw.: Pract. Exp. 48(4), 775–795 (2018)

9. Cao, D., Liu, X., Yang, Y.: Novel client-cloud architecture for scalable. In: Proceedings of
the 14th International Conference on Web Information Systems Engineering (WISE),
pp. 270–284 (2013)

10. Luo, H., Liu, X., Liu, J., Yang, Y.: Propagation-aware temporal verification for parallel
business cloud workflows. In: Proceedings of IEEE International Conference on Web
Services, pp. 106–113 (2017)

11. Wang, F., Liu, X., Yang, Y.: Necessary and sufficient checkpoint selection for temporal
verification of high-confidence cloud workflow systems. Sci. China Inf. Sci. 58(5), 1–16
(2015)

Adaptive Temporal Verification and Violation Handling 99

Towards Creating Business Process
Models from Images

Neelamadhav Gantayat, Giriprasad Sridhara(B), Anush Sankaran,
Sampath Dechu, Senthil Mani, and Gargi B. Dasgupta

IBM Research AI, Bengaluru, India
{neelamadhav,girisrid,anussank,sampath.dechu,sentmani,

gaargidasgupta}@in.ibm.com

Abstract. Business process modeling is an integral task needed for effi-
cient running of business operations. Often process models remain buried
in unstructured documents as images or screenshots. Such embedded pro-
cess model images may become quickly obsolete as the underlying busi-
ness process evolves. Thus, there is value in digitizing the unstructured
images. We propose a novel automated solution to transform a process
model image into the standard Business Process Model and Notation
(BPMN) format. Our deep-learning based approach performs well in
practice achieving good precision and recall.

Keywords: Business process models · Image processing
Deep learning

1 Introduction

Business Process Management (BPM) remains a central, foundational element
of running organizations today [1]. Companies use business process models for
documenting various business operations such as the process for hiring a new
employee, clearing a travel reimbursement claim and so on. Often process models
remain buried in unstructured documents as images or screenshots. They could
be drawn using standard drawing tools like PowerPoint or specialized modelling
tools such as Visio. In either case, such embedded process model images may
become quickly obsolete as the underlying business process evolves. This makes
transitioning of tasks and maintenance of process know-how adhoc and manual.

Thus, there is a lot of value in digitizing the unstructured images using
image processing technologies. The digitized flows could be used to understand
deviations in actual process operations or be updated to reflect evolution of the
process itself.

Standard off-the-shelf image recognition tools (such as Vision API (Google),
Watson Visual Recognition (IBM)) cannot recognize the various different shapes
and connectors in business process model images drawn according to the Business
Process Model and Notation (BPMN) standard [2].

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 100–108, 2018.
https://doi.org/10.1007/978-3-030-03596-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_7&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_7

Towards Creating Business Process Models from Images 101

In this paper, we provide a technique to automatically identify images
describing business processes and converting them to the standard BPMN for-
mat (as shown in the left and right parts of Fig. 1, respectively). To the best of
our knowledge we are the first to provide such a system.

Our specific contributions in this paper are as follows:

1. Given any image, automatically identify if the image represents a business
process (using a Convolutional Neural Network (CNN)).

2. Given a business process image, automatically identify 64 different kinds of
process model shapes (using another CNN).

3. Using optical character recognition techniques, extract text from the different
shapes of a process model image.

4. Identify the flow of activities in a business process image using computer
vision techniques.

5. Generate the output BPMN XML representing the input image.

The remainder of this paper is structured as follows: Sect. 2 describes our
deep learning based approach to transform a given image into a business process
model. Section 3 shows our evaluation while Sect. 4 puts our work in the context
of related works. We conclude in Sect. 5.

Fig. 1. Sample business process model image (left) and its BPMN XML (right).

2 Approach (System Architecture and Implementation)

In this section, we describe our approach. The input to our system is an image
(in standard formats such as JPEG, PNG) and the output is an XML in the
BPMN format (as shown in the left and right parts of Fig. 1, respectively).

A high-level architecture diagram of our approach is shown in Fig. 2. Each
step in our approach is described in a separate sub-section below:

102 N. Gantayat et al.

Fig. 2. System architecture diagram.

2.1 Identifying Business Process Model Images

We used a binary classifier to distinguish between business process model images
and non-business process model images. To train the binary classifier, we need
training data. Essentially, we need a large number of BPMN images as shown in
the left part of Fig. 1. For the model to learn effectively, there needs to be variety
in training data. Figure 1 has eight different activities spread across three swim-
lanes. It has five tasks (rectangles), one decision or gateway (rhombus/diamond)
and two events (circles). There are other basic BPMN shapes as well which are
not used in Fig. 1. Thus, we need to create variants of Fig. 1 with different num-
ber of tasks, gateways, events, swimlanes and other BPMN shapes. using the
Activiti Java library. We programatically created 35,000 BPMN XML files with
varying number of swim-lanes and varying number of BPMN entities such as
tasks, events, gateways. We then imported the BPMN XML files into an open
source modeling tool for BPMN, http://bpmn.io/ to render the process models.
Finally, we automatically downloaded the resulting model images using Sele-
nium, the browser automation tool. Thus, we gathered 35,000 business process
model images.

To handle variations in rendering across modeling tools, we also used
Microsoft Visio to generate another 20,000 business process model images. We
used the Visual Basic for Applications (VBA) to programatically create 20,000
process models in Visio and exported them as PNG images. Using Activiti, an
open source java BPM library we created another 10,000 images. Finally, we
created 5000 BPMN images from another modeling tool, IBM Blueworks Live.
We thus generated 70,000 business process model images overall.

We also created an equal number of non-process model images. To create this
set of images, we could have downloaded random images from the web. However,
such a set would not help distinguish between a process model (as in Fig. 1) and
a similar looking diagram such as a flow chart or a system architecture diagram
(as in Fig. 2). We thus automatically created charts and other diagrams that
look superficially similar to process models.

We set aside 20% of the above set of 140,000 images (i.e., 28,000 images) for
evaluation (described in Sect. 3). With the remaining 112,000 images we trained
different binary classifiers [3] as shown below:

1. Neural Network (Multi Layer Perceptron [MLP])
2. Support Vector Machines
3. Random Forests
4. Decision Tree
5. Naive Bayes
6. Logistic Regression.

http://bpmn.io/

Towards Creating Business Process Models from Images 103

During training, each image was first resized to a resolution of 224 × 224
pixels and passed through a popular Convolutional Neural Network (CNN) called
VGG19. We extracted 4096 features from its last convolutional layer, which were
then used for classification with each of the above classifiers. The evaluation of
this model is described in Sects. 3.1 and 3.2.

2.2 Contour Detection

We now describe our approach to automatically extracting contours. Contours
can be explained simply as a curve joining all the continuous points (along the
boundary), having the same color or intensity. The contours are a useful tool for
shape analysis, object detection and recognition.

The goal here is that given a business process model image input as in Fig. 1,
we want to identify contours such as the contour denoting the rectangle around
the shape with the text “Submit Reimbursement Claim”. A shape may have sub-
contours (especially if there is an icon inside it as in Fig. 3), while the entire Fig. 1
can be considered a contour. Thus, we need to find contours at the appropriate
level (i.e., the level of shapes). We use the OpenCV library [4] to find contours
as described below:

We first find all the contours recognized by OpenCV in the input image.
We then check if the contour is the outer-most contour (which represents the
entire figure) or a child contour i.e., a contour within another contour. We ignore
inner-most child contours and the outer-most contour. The remaining contours
are at the level of the swim-lanes, shapes and edges, which is the appropriate
level for our shape detection described next.

2.3 Identifying Different BPMN Shapes

Here we followed an approach similar to identifying whether an image represents
a business process model as described in Sect. 2.1. We used the same set of six
classifiers, with the difference being that these classifiers were not binary but
given a contour, were trained to classify the contour as being one of the 64
different BPMN shapes, a subset of which are shown Fig. 3.

As before, we need to create training data for these shapes. We will describe
the procedure for one shape, viz., the start shape denoted by a circle (the very
first shape in the first row of Fig. 3): We drew this shape using the tool bpmn.io.
We then downloaded the resulting BPMN XML and programmatically created
size variants of the same shape by varying its properties (For example, altering
the radius for a circle, changing width and height for a rectangle, varying text
in the shape and so on). With each variation, we used Selenium to import the
varied XML into the bpmn.io tool and then downloaded the rendered image. We
thus created 3,000 images for one shape. We repeated the process for all shapes.
These 192,000 images were used these to train another model whose task is to
distinguish between the 64 different shapes.

Here too we scaled the images to a resolution of 224 by 224 pixels and passed
them through the VGG19 Convolutional Neural Network (CNN) and used the

104 N. Gantayat et al.

4096 features to classify a shape as belonging to one of 64 types. The evaluation
of this model is described in Sects. 3.1 and 3.2.

Fig. 3. A subset of the BPMN shapes used in training

2.4 Text Extraction from Shapes

We now describe our text extraction technique. Most of the shapes have the text
inside, but some shapes have the text below as shown in Fig. 1. Typically, tasks
have text inside the shape, whereas shapes like start, end and certain kinds of
gateways contain the text below it. We used the well-known optical character
recognition tool, Tesseract [5] to extract text. As Tesseract is a well-proven tool
we did not evaluate text extraction.

2.5 Sequence Flow Detection (Edge Detection)

Here we describe the flow (edge) detection. The challenging part in edge detec-
tion is how in detecting the edge direction. The arrow heads which denote the
edge direction are actually small lines and may not be detected by existing line
detection algorithms. Thus, we need other approaches to detecting the direction.
We partition the contour (i.e., a small rectangle around the edge) into two equal
halves. The half with the arrow head will have more pixels and intensity than
the half without the arrow head. Thus, we can find the direction. Evaluation of
edge detection is described in Sect. 3.2.

2.6 Generating Output

Algorithm 1 shows the outline of how we generate the XML (as in the right half
of Fig. 1) which represents the output of our technique. We used the Activiti java
library to aid in the XML generation. As the output generation is primarily an
engineering task consisting of putting together identified shapes and edges, we
do not evaluate it.

Towards Creating Business Process Models from Images 105

Algorithm 1. Output Generation in BPMN
1 foreach identified shape do
2 create a corresponding shape object in BPMN
3 create bounds for the object (i.e., location, width,height) using dimensions from the

original figure
4 end
5 foreach identified edge do
6 create a corresponding flow between the shapes connected by edge
7 create a waypoint i.e, line length, origin and endpoints using dimensions from the

original figure
8 end

3 Evaluation

In this section, we describe our evaluation. Our experiments were geared towards
answering the following research questions (RQ):

– RQ1: With what accuracy can we distinguish between process model images
and non-process model images?

– RQ2: How accurately can we distinguish between the 64 BPMN shapes?
– RQ3: What is the accuracy of our edge detection (i.e., sequence flow)?

To answer the above research questions, we used two types of data:

1. Automatically generated data
2. Data obtained from our clients.

In the following sub-sections, we describe our evaluation with the above two
sets of data. Across both sets, the standard evaluation metrics of precision, recall
and F1-Score are used.

3.1 Evaluation with Generated Data

As described in Sect. 2, we had accumulated a set of 140,000 images consisting
of process models and non-process models. Of this, we had set aside 20% (i.e.,
28000) of the images for testing. We used these images to answer our research
question, RQ1. While we performed the experiments with the different classifiers
described in Sect. 2, we show the results for the MLP (Multi Layer Perceptron)
classifier [3] as it had the best results. The first row of Table 1 shows the results.
We achieve a very high precision and recall.

For answering RQ2 i.e., precision and recall of shape identification, we gath-
ered 20% of the 192,000 shapes we had generated for shape detection training.
These 38,400 shapes were used to find the precision and recall of shape detec-
tion. The second row of Table 1 shows the results. We again achieve a very high
precision and recall.

For BPMN image identification and shape detection, we used deep learning
and hence generated training data. Thus, we evaluated on a held-out set of data.
However, for edge detection i.e., RQ3 we did not use a learning approach, hence
we do not evaluate it here, its evaluation is described in the next sub-section.

106 N. Gantayat et al.

Table 1. Evaluation on generated data (MLP classifier)

RQ Precision (%) Recall (%) F1-Score

RQ1: BPMN image identification 1.0 0.98 0.99

RQ2: BPMN Shape detection 1.0 0.96 0.98

3.2 Evaluation with Client Data

We gathered twenty (20) random documents (Powerpoint or Word) from our
clients, which had a mixture of business process model images and other images
such as charts, app screen-shots and so on. Overall, there were 96 images with
24 of them being business process model images. In these 24 business process
models, we had overall 200 shapes and 210 edges.

Note that unlike the generated data set, here we do not have a readily avail-
able oracle or gold-set i.e., here we have to manually inspect the documents and
the images to find the total number of business process model images, shapes
and edges. Further, we have to manually compare the output from our tech-
nique with the actual image to compute precision and recall for images, shapes
and edges. As this is a time consuming task, we have lesser data points in this
evaluation as compared with the evaluation on generated data.

Table 2 shows the results. Similar to the evaluation on generated data, here
too the Multi-Layer Perceptron (MLP) performed the best and its results are
depicted. As can be seen from the table, our technique does achieve good preci-
sion and recall in BPMN image, shape and edge identification on client data.

Table 2. Evaluation on client data (MLP classifier)

RQ Precision (%) Recall (%) F1-Score

RQ1: BPMN image identification 1.00 0.92 0.95

RQ2: BPMN Shape detection 0.8 0.7 0.75

RQ3: Sequence Flow detection 0.75 0.6 0.67

3.3 Threats to Validity

Our approach is able to identify 64 different types of BPMN shapes, many of
which are similar to each other. The overall number of allowed shapes in the
official BPMN standard [2] is about 360. Thus, it is possible that our approach
may not work well with all variants. However, we believe that with additional
training data depicting the shapes not covered so far, our approach can identify
all the different BPMN shapes.

Towards Creating Business Process Models from Images 107

4 Related Work

To the best of our knowledge, we are the first to automatically identify images
that depict process models and convert a business process model image into the
standard BPMN XML format.

Sethi et al. [6] propose an approach to extract and understand deep learning
design flow diagrams available in a research paper and convert it into execution
ready source code. In their approach, there is no need to detect different kinds of
shapes (as the diagram only contains rectangles). The vocabulary is also limited,
making text recognition easier and the sequence flow is linear (top-down). Thus,
their approach cannot be used as is for our problem.

Other broad category of work deals with generating synopsis from images
such as tables and figures in papers [7], extracting information from line
graphs [8], charts [9]. None of the these work can be used partly or entirely
in our approach.

5 Conclusion

We described a novel approach using deep learning to automatically identify
process model images. We then proposed an automated approach to transform
a process model image into the standard BPMN XML format. This conver-
sion involved identifying different BPMN shapes using convolutional neural net-
works, detecting edges between the shapes via image processing, extracting text
from the shapes utilizing optical character recognition and finally generating the
BPMN XML. We demonstrated empirically that our approach works well with
good precision and recall.

References

1. Hull, R., Motahari Nezhad, H.R.: Rethinking BPM in a cognitive world: transform-
ing how we learn and perform business processes. In: La Rosa, M., Loos, P., Pastor,
O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 3–19. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45348-4 1

2. OMG: About the Business Process Model and Notation Specification Version 2.0
(2011). https://www.omg.org/spec/BPMN/2.0/About-BPMN/

3. Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., New York City (1997)
4. ITSEEZ: The Open Source Computer Vision Library Reference Manual, 2.4.9.0 edn.

April 2014
5. Smith, R.: An overview of the tesseract OCR engine. In: Proceedings of the Ninth

International Conference on Document Analysis and Recognition, vol. 2 (2007)
6. Sethi, A., Sankaran, A., Panwar, N., Khare, S., Mani, S.: DLPaper2Code: auto-

generation of code from deep learning research papers. CoRR abs/1711.03543
(2017). http://arxiv.org/abs/1711.03543

7. Bhatia, S., Mitra, P.: Summarizing figures, tables, and algorithms in scientific pub-
lications to augment search results. ACM Trans. Inf. Syst. 30(1), 3:1–3:24 (2012)

https://doi.org/10.1007/978-3-319-45348-4_1
https://doi.org/10.1007/978-3-319-45348-4_1
https://www.omg.org/spec/BPMN/2.0/About-BPMN/
http://arxiv.org/abs/1711.03543

108 N. Gantayat et al.

8. Ray Choudhury, S., Giles, C.L.: An architecture for information extraction from
figures in digital libraries. In: Proceedings of the 24th International Conference on
World Wide Web (2015)

9. Böschen, F., Scherp, A.: Formalization and preliminary evaluation of a pipeline for
text extraction from infographics (2015)

Service Trust and Security

Empowering Business-Level Blockchain
Users with a Rules Framework

for Smart Contracts

Tara Astigarraga1, Xiaoyan Chen2, Yaoliang Chen3, Jingxiao Gu2,
Richard Hull1(B), Limei Jiao2, Yuliang Li4, and Petr Novotny1

1 IBM T.J. Watson Research Center, Yorktown Heights, USA
{asti,hull,p.novotny}@us.ibm.com

2 IBM China Research Laboratory, Beijing, China
{xiaoyanc,gjxgu,jiaolm}@cn.ibm.com
3 Fudan University, Shanghai, China

yaoliangchen15@fudan.edu.cn
4 Megagon Labs, UC San Diego, San Diego, USA

yul206@eng.ucsd.edu

Abstract. The importance and adoption of Blockchain to support
secure and trusted collaborations between businesses continues to grow.
In today’s practice, most Blockchain smart contracts (which capture the
business processing logic) are written primarily by software developers.
To enable widespread adoption of Blockchain, business analysts and sub-
ject matter experts will need to have direct access to the smart contract
logic, including the abilities to understand, modify, and create substantial
portions of that logic. This paper describes a fully functioning framework
and system for specifying and executing smart contracts in which the core
logic is specified by a controlled English, business-level rules language.
The framework includes a browser-based smart editor for rules; a parser
generator that enables substantial variation in the rules syntax; code gen-
eration that maps to a RETE based rules engine; and execution of the
rules in either on-chain (using Hyperledger Fabric) or off-chain modes.
The paper describes the rules framework and possible extensions, and
identifies key aspects of Blockchain that impact the implementation.

1 Introduction

The shared ledger and Blockchain paradigms hold the promise of transforming
the ways that businesses collaborate by enabling a single source of truth, and
increased transparency through shared agreement about how business workflows
will be conducted. In particular, “smart contracts”, i.e., the programs that guide
the execution of transactions on Blockchain, are visible to and agreed upon by the
participants in a Blockchain-enabled collaboration. As such, Blockchain for busi-
ness collaboration opens new research challenges and industrial opportunities in
service-oriented computing, in particular in the areas of new styles of business
process management, distributed computing, and secure services. Today’s smart
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 111–128, 2018.
https://doi.org/10.1007/978-3-030-03596-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_8

112 T. Astigarraga et al.

contracts are primarily created by software developers, using standard program-
ming languages such as Golang, C++ or Java, and/or using domain-specific
languages and frameworks such as Ethereum’s Solidity [1] and Hyperledger’s
Composer [2]. However, because of the anticipated volume of business collabo-
rations on Blockchain in coming years, and thus the volume of smart contracts
to be created, it is paramount that business-level users be empowered to under-
stand, create and modify smart contracts, or at least large portions of them.
This paper describes a Business Collaboration Rules Language (BCRL) frame-
work and implemented system, that enables business-level users to specify and
maintain intricate business logic in Blockchain-enabled solutions. In particular,
the framework enables the use of the same rules language that can be executed
both as smart contracts on the Hyperledger Fabric [3], and in an off-chain rules
engine, thereby enabling a more seamless experience for managing overall busi-
ness collaboration solutions. This paper describes the rules framework, including
illustrations of the current rules language, overview of the system architecture
and extensibility, and discussion of the implications on the system related to
implementation on top of the Hyperledger Fabric.

The importance of empowering business-level users in connection with smart
contracts is highlighted in [4]. Recent articles have focused primarily on the
business process level of smart contracts, e.g., by providing an implementation
of BPMN on top of Ethereum [5,6] or describing how the business artifact app-
roach can leverage the data-centric nature of Blockchain [7]. This paper comple-
ments that work by providing a framework for specifying intricate business logic
through the use of business rules expressed in a controlled English. The integra-
tion of the BCRL framework with workflow-based smart contract frameworks is
left as future work.

This paper illustrates the framework with a particular version of the rules
language, called Business Collaboration Rules Language version 1.0 (“BCRL
1.0” or “BCRL” for short). This language is inspired largely from the BERL
language of IBM’s Operational Decision Manager (ODM) product [8]; this was
a tactical design decision based in part on enabling more rapid creation of the
first implementation. But the framework itself can support substantial exten-
sions and variations to that language. For example, it could be adapted to fol-
low the styles of other ODM languages, SBVR [9], the Oracle [10] and FlexRule
[11] business rule languages, etc. One enabler for this is the use of the Business
Domain Specific Language (BDSL) parser-generator, which is used to generate
both the language parser and a browser-based smart editor; BDSL is an internal
component [12] of the ODM product. BDSL includes multiple features specific
to the creation of domain-specific languages (DSLs) that are based on controlled
natural language, in particular around handling phrasing that would be ambigu-
ous for a traditional LALR parser. A second enabler is the use of a lightweight,
prototype, JavaScript-based rules engine called “nanoRETE”, which supports
the RETE algorithm for rules execution.

The rules engine framework has been implemented on the Hyperledger Fab-
ric in two ways. One modality relies on the fact that Hyperledger Fabric v1.1

Empowering Business-Level Blockchain Users 113

provides native support for JavaScript-based smart contracts. In this modality
the nanoRETE rules engine and some integration modules are loaded directly
into Fabric. The other modality takes advantage of the Hyperledger Composer
[2] and runs on Hyperledger Fabric v1.0.

As shown by the examples in this paper, the BCRL framework enables
business-level users to express and “own” large portions of the business logic
underlying smart contracts. The language itself follows the spirit of other
business-level rules languages and can be modified to fit popular syntactic styles,
thereby enabling more rapid adoption. The primary contributions of the paper
are the development of a framework that enables seamless use of such rules lan-
guage both on- and off-chain, and the description of how the framework was
brought into a fully implemented prototype system.

Section 2 provides an overview of the framework, illustrates BCRL 1.0, and
discusses possible extensions. Section 3 overviews the system architecture and
describes key components. Section 4 describes the main challenges that arise
when embedding a rules framework onto Hyperledger Fabric and how the BCRL
framework addresses them. Section 5 describes related languages and research,
and Sect. 6 offers brief conclusions.

2 Framework Overview and Illustrations

This section provides an overview of the rules framework, then illustrates it
with an example taken from the domain of billing for Technical Service Support
(TSS), and concludes with a discussion of some additional rule constructs that
can be incorporated into the framework. More details about the architecture,
language, and implementation are provided in subsequent sections.

As mentioned in the Introduction, the framework is focused on enabling
business-level users to specify and execute possibly intricate rules logic in a
Blockchain-enabled solution. The framework enables the use of the same rules
engine in two different ways – one on-chain and the other off-chain – to pro-
vide a more seamless experience for business-level users who are working on a
comprehensive Blockchain-enabled solution.

Figure 1 shows the high-level architecture of the rules framework. As shown
in the upper left, the framework includes a template-based editor for specifying
the domain model for a given solution. (In some contexts, the domain model
might be defined elsewhere, in which case it can be imported as JSON into the
solution.) The Smart Editor for Rules is shown in the upper right of the figure.

The primary function of the Code Generation component is to perform code
generation of executable rules based on the business-level rules and domain
model, and then to deploy them in rules engines both on-chain and off-chain. The
on-chain rules are triggered by transaction invocations, and typically result in
updates to the ledger and to the Worldstate (which in our architecture is main-
tained in CouchDB), and may yield notifications about the transaction outcome.
For off-chain rules, rules can be loaded into the off-chain Rules Engine Container
for execution. This engine acts primarily as a Policy Decision Point, but can also
read and update an off-chain database (currently, Cloudant).

114 T. Astigarraga et al.

Fig. 1. High-level architecture of rules framework

2.1 Illustration of Rules in Billing Use Case

We now present a case study of the rules framework in action. The example
was chosen in part to illustrate several different elements of the rules language
currently supported by the framework. This is based on a real-world use case
involving the generation of bills for a specific kind of Technical Support Services
(TSS). In this example, IBM is providing maintenance for a client, called here
ServerFarm, that operates numerous computer servers in data-centers spread
across numerous countries. The payment for services may vary by country, and
also by the level of service (in this case, either “Next Business Day” or “within
4 Hours”). The monthly bill for a given country and level of service is based on
the number of machines being maintained. That number is in turn determined
by examining the number of machines being maintained each week, and then
taking the maximum weekly quantity for the month.

Figure 2 shows the two main process flows used to manage the Billing pro-
cessing; these can be thought of as lifecycle models for the two primary entity
types arising in the application, namely Weekly Usage Records and Monthly
Billing Items. These lifecycle flows might be managed by a BPMN-based engine
or other processing engine. We use here an informal, direct representation for
these flows that includes constructs germane to Blockchain enabled solutions.
This includes responding to events of a given type (black diamond), tasks per-
formed off-chain (dashed line rounded box), and tasks performed on-chain (solid
line rounded box). In our example some off-chain tasks are performed manually,
and others performed automatically based on rule execution.

The key data sets are shown in Fig. 3. These are depicted more-or-less as
tables, but in fact are collections of JSON documents that are stored in noSQL
databases. The Install Base table, which resides off-chain in a Cloudant database,
holds data corresponding to contractual agreements between ServerFarm and its
customers. Figure 4 shows a representative document, showing a hypothetical

Empowering Business-Level Blockchain Users 115

Validate weekly record;
update World State; post
notification if invalid

Compute monthly bill;
update ledger (and
World State); post
notification if invalid

compute_weekly_usage
request (scheduler)

(IBM maintains
this rules logic)

compute_monthly_
charge (scheduler)

Invalid

W
ee

kl
y

U
sa

ge
 R

ec
or

d
M

on
th

ly
 B

ill
in

g
Ite

m

Invalid

Manual repair of
Billing Item request

modify_weekly_usage
(ad hoc)

recompute_monthly_
charge (ad hoc)

Check validity of Install Base
for past week and compute
weekly counts(rules-based,
automatic)

Client accept / reject
(ad hoc)

Record result
on chain

Accepted

Rejected

Invalid

Valid

insert_weekly_usage / update_weekly_usage
(invoked if computed weekly usage/update is valid)

Manual repair of
Weekly Usage
Insert/Update

Valid

Fig. 2. Two high-level process flows that guide the billing example

Fig. 3. Data schema used in billing example

customer in China, and one of their machines that ServerFarm is maintaining
offering category (called “asset sla” in that table) of “NBD”, between the spec-
ified contract start and end dates.

We now describe the three data sets maintained on the Hyperledger Fab-
ric. Following Hyperledger terminology the objects in these data sets are called
“assets”; they are identified by a unique key and have values that are JSON
documents that may change over time. Rate Table assets hold the monthly
charges paid by ServerHost to IBM for maintaining one server in a given country
and offering category. Weekly Usage Record assets hold weekly counts of servers
being supported. Monthly Billing Item assets hold the monthly charge for the
maintenance service for each country and offering category.

We now return to the processing flow for Weekly Usage Records shown in
Fig. 2. A scheduler is used to invoke the computation of these records on a weekly
basis. A first computation is performed by rules running off-chain in response
to a compute weekly usage event – an example of the payload of this kind of

116 T. Astigarraga et al.

event is shown in Fig. 5. This typically produces a record holding a weekly usage
count for a given country and offering category. That data is used as input for a
transaction request of type insert weekly usage sent to the Hyperledger Fabric,
and results in the weekly usage data being loaded onto the Blockchain. Figure 6
shows a representative Hyperledger asset that would be written into the ledger
as the outcome of that sequence of events.

Figure 9 illustrates the smart editor for rules and three of the rules used in
response to a compute weekly usage event. The rules are in a controlled English,
and the editor provides color coding for different syntactic elements.

Fig. 4. Representative JSON document from Install Base, which identifies one of the
machines that ServerHost is maintaining for one of its customers. (Customer name is
hypothetical.)

Fig. 5. Representative event, of type compute weekly usage, which would trigger an
off-chain computation followed by an on-chain computation.

Rule 1.1 illustrates the overall structure of rules, which includes a “when”
clause that refers to the type of event being processed, an “if” clause that includes
conditions, and a “then” clause that holds one or more actions. In Rule 1.1 the
“if” clause is testing whether the offering category field of the incoming event is
outside of the permitted values “NBD” or “4HR”.

Rule 1.2 provides a simple illustration of syntax checking by the smart editor.
Here the keyword ‘is’ is missing from the “if” clause; this is indicated at the
bottom of the screen, and also in a pop-up box if the user mouses over the
erroneous text.

Rule 1.3 illustrates several features supported in BCRL 1.0. This includes
a fourth building block for the rules, called “definitions”, that allows to define
sets of records (shown in this figure) and to select individual records (see Fig. 8).

Empowering Business-Level Blockchain Users 117

Fig. 6. Representative value of Hyperledger asset (key-value pair) written onto
the ledger as result of off-chain compute weekly usage event followed by on-chain
insert weekly usage transaction

In Rule 1.3 a set designated with variable name “the usage records” is built
from the Install Base database. A representative document from Install Base
is shown in Fig. 4. The rule builds “the usage records” using a combination of
‘and’ (“all of the following are true”) and ‘or’ (“at least one of the following are
true”) constructs. This rule also illustrates an action of creating a new record
and writing it into a database. The built-in function “sum” is used to take a
sum of values from the quantity field of the records in ‘the usage records’.

Fig. 7. Rule for inserting a weekly usage record into blockchain

The outputs of firings of Rule 1.3 will be used as the payload for
insert weekly usage transactions on the Hyperledger Fabric. Such transactions
may result in the firing of Rule 2.4 shown in Fig. 7, (The first digit in the rule
numbering scheme correspond to the different types of events/transactions that
can lead to rule firing.) This rule shows another capability of BCRL, specifically
the ability to perform a “not exists”, or said differently, to check that there are
no records satisfying a certain property. In this case we check that there is no
Weekly Usage Record asset already on-chain that corresponds to the same coun-
try, offering category, and week. (Updates to an existing Weekly Usage Record

118 T. Astigarraga et al.

Fig. 8. Rule used to compute monthly charge on blockchain

asset can be made using an update weekly usage transaction request.) As noted
above, Fig. 6 shows a representative Hyperledger asset that will be written onto
the ledger after Rules 1.3 and 2.4 have fired.

We pause to comment on the “when” clause in BCRL rules. This is used
primarily to provide a clustering and modularity for the overall set of rules. In
essence, if an event of a given type is pushed into the rules engine, then all rules
with “when”clause referring to that type are eligible for firing, including as the
result of rule chaining.

Finally, we describe Rule 5.1 in Fig. 8, which computes Monthly Billing Item
assets. The rule focuses on all weeks which start within the month. This rule
illustrates the construct for selecting a single element from the Rate Table, using
the “find one from” construct and also checking that the resulting record is
“defined”, which in this case includes a check that only one record was found.
The “then” clause illustrates the use of built-in arithmetic functions and the
aggregate operator “max”. Note also that the definition of one field value of
‘the monthly billing item’, specifically the “monthly charge” value, can refer to
previously defined field values of ‘the monthly billing item’. A representative
asset produced by this rule is shown in Fig. 10.

2.2 Discussion

As illustrated in the examples above, BCRL 1.0 provides business-level users
with the ability to express a broad variety of data manipulations, mainly in the
area of accessing and manipulating documents (off-chain) and assets (on-chain),
and also lists of such objects. Although not highlighted in the above examples, it
is important to note that the code generation maps the rules into the nanoRETE
engine, which can support rich chaining of the rules.

Empowering Business-Level Blockchain Users 119

Fig. 9. Illustration of smart rules editor

While BCRL can be used as-is to provide decision support for a variety of
applications, there are multiple simplifications and extensions that would be
beneficial; we mention some of these here.

BCRL 1.0 is quite verbose. This was an appropriate first step because it
provides a completely explicit way for expressing the constructs, a feature that
will be useful in contexts where more abbreviated variants may be confusing for
some users.

An important streamlining currently underway is to enable the parser and
code generation to take advantage of the meta-data about the data sets and the
event signatures. For example, in Rule 1.3 (Fig. 9) this would allow for replacing
the phrase “the week start date of ‘this event’” by “the week start date”, since
the only relevant object with that attribute is ‘this event’.

In terms of extensions, we see considerable value in enabling a construct
of form “then for each <variable> in <defined list>”. Inside that would be a

120 T. Astigarraga et al.

full “definitions-if-then” block, which is to be executed for each element of the
defined list.

Another extension would be to permit richer modularity in the specification
of rule sets. For example, we could imitate a paradigm found in ODM, which
is to allow the specification of several sets of rules that are connected into a
flowchart.

3 Implementation of Rules Framework

This section describes the primary components of the BCRL framework, includ-
ing the smart editor, the parsing, the code-generation, and the deployment both
on-chain and off-chain. Some technical considerations specific to operating on
Hyperledger Fabric are deferred until the next section.

The rules framework architecture separates execution code of business rules
from the other application components, such as rule scheduling, access control
and business data storage. This separation helps reduce the costs of application
maintenance by allowing the business users to modify the rules as necessary
without the need for other code changes. It also allows for maximum re-use of
components across on-chain and off-chain rules specification, deployment and
execution.

Fig. 10. Part of representative asset written onto the ledger as a result of a com-
pute monthly charge transaction. (The rate and monthly charge are proprietary so
omitted.)

Empowering Business-Level Blockchain Users 121

Parser generated
by BDSL

Domain Model
Spec in JSON

Smart Editor for BCRL
generated by BDSL

Rules Language parser
and editor generation

BCRL
Grammar

BDSL

Rule Spec in
BCRL

Abstract Syntax
Tree (XML)

Code Generator for
Rules

Rule File
(Rule.js)

Domain Models,
and Rule Sets

(Cloudant)

Packaging rules for
deployment

(onchain/offchain)

Rule Engine
(nanoRETE.js)

Integration
Components

Deploy package
(onchain/offchain)

Fig. 11. Components that support the rules language

An overview of the rule system generation architecture is shown in Fig. 11.
The four main components (forming a vertical column in the center of the figure)
act as a pipeline that maps BCRL rules into executable code.

The browser-based smart editor (top-most component) and the parser (just
below that) were created using the BDSL plugin [12] from IBM’s ODM product
[8]. BDSL can support grammars that capture highly flexible domain-specific
languages based on controlled English (or other natural languages). The smart
editor was illustrated in Fig. 9 above. The Smart Editor also incorporates infor-
mation about the domain model and types of events.

The parser produces an Abstract Syntax Tree (AST) based on BCRL. This
AST, along with the domain model information, serves as the input for the
code generator. This is the key component in this architecture, which generates
runnable JavaScript rule objects from the AST. In order to make the gener-
ated rule objects that can be run on both on-chain and off-chain environments,
a utility interface is abstracted to isolate the difference between on-chain and
off-chain. The main difference is related to database operations. The database
operations for on-chain are using Fabric APIs, such as getState, putState, get-
QueryResult, to access the Hyperledger Fabric Worldstate, which in our case is
maintained by a CouchDB instance. (See also Sect. 4.) In contrast, the database
operations for off-chain are using Cloudant APIs, such as insert and find, to
access the Cloudant database. Therefore, we use a variable named handler to
represent the utility interface in generated JavaScript rule objects. Both on-chain
and off-chain provide their own utility implementation in runtime.

The code generation process includes the following steps: (1) Traverse the
input AST to construct the rule set using the internal rule structure. (2) Generate
JavaScript rule objects from the rule sets using templates. (3) Store the generated
JavaScript rule objects into a file named rules.js for deployment into the rules

122 T. Astigarraga et al.

engine. (4) Store the generated JavaScript rule objects into the Cloudant if
required.

For the rule engine itself we use nanoRETE, a lightweight prototype
JavaScript engine that supports the RETE algorithm. (This can run natively
on Hyperledger Fabric v1.1, and can also run on Hyperledger Fabric v1.0 with
Composer and some integration modules.) The rule engine runs in a data-driven
approach. The context of an event changes, which may result in one or more
rules being concurrently eligible and scheduled for execution. The rule execution
may include querying business data, making computations and finally arriving
at some conclusions, possibly including notifications and/or database updates.

The bottom component is in charge of generating deployable packages. The
deployable packages include not only the generated rule file, but also supported
components, such as the rule engine and utility for database operations. Accord-
ing to on-chain and off-chain requirements, the deployment packaging will choose
the right components for packaging. The output packages can be deployed to on-
chain or off-chain environments.

The framework also provides a family of straightforward APIs to interact
with the deployed on-chain and off-chain rule engines. This includes APIs to
deploy rules and also to invoke rules processing. In the on-chain runtime, the
APIs communicate with Fabric Client SDK by gRPC and invoke smart contracts
on Hyperledger Fabric Blockchain. In the off-chain runtime, the APIs invoke the
business rules code directly by gRPC.

4 Implications of Execution on Hyperledger

In this section, we describe three aspects of the Hyperledger Fabric that must
be considered, when embedding a rule engine into smart contracts. We first
provide a high-level overview of the Fabric architecture and of the transaction
processing flow within which the Smart contract is executed. We then highlight
the implications and challenges of these to the design of the BCRL framework.

4.1 Fabric Architecture Overview and Transaction Processing Flow

Hyperledger Fabric provides the combination of the immutable shared ledger,
high performance of transaction processing, and security and privacy features
of private Blockchain. It is architected as a highly distributed system network
consisting of several specialized types of components. Note that this architec-
ture differs from standard Blockchain networks such as Ethereum, where all the
functionality is integrated into the peer. The center element is the ledger con-
sisting of a chain of blocks, which store the history of transactions along with
the identity of the transactions’ submitters and endorsers.

The submission of a transaction into the Fabric follows a precise sequence
of steps. Initially, a client node submits a “transaction proposal” containing
the arguments and name of the function to invoke in the smart contract, to

Empowering Business-Level Blockchain Users 123

the endorsing peers (i.e., peers which aside from the ledger, host the smart con-
tract). Upon reception, a peer invokes the smart contract in context of the peer’s
“Worldstate”. The Worldstate (similarly as the “state trie” in Ethereum) pro-
vides fast and efficient access to the data recorded in the ledger. Next, the client
node collects the response along with an endorsement (i.e., the digital signature
of the result) from each of the endorsing peers. Note that no modifications of
the ledger or Worldstate were made at this point. The client node then validates
that the responses are matching and that the collected endorsements adhere to
the endorsement (i.e., consensus) policy of the Blockchain network, and submits
them to the “ordering service”. The ordering service is a centralized component,
which receives endorsed transaction proposals, orders them into blocks, and sub-
mits the blocks to all peers of the Blockchain network. Upon reception of a block,
the peer validates the transactions of the block based on the endorsement policy,
commits the block into its ledger and projects the content of the block’s trans-
actions onto its Worldstate. Only at this point, the transaction and the state
modifications it introduces are added to the ledger.

In the context of the transaction processing flow, a smart contract of our
Rule-based framework is hosted on the endorsement peers of the network and
executed in response to the transaction proposals submitted by the client nodes.
The distributed nature of the network and the sequence of the transaction pro-
cessing steps has implications on the implementation of the of the smart contract
functions and the availability of the data during the smart contract execution.
In the following, we outline the key points.

4.2 Eliminating Non-determinism from Smart Contracts

The consensus in the Fabric network is centered on the comparison of the results
of execution of the smart contract on multiple peers. Only if the results of the
execution match among the required peers, the resultant transaction will be
added to the ledger. Thus, to produce a matching outcome, the execution of the
smart contact must lead to a deterministic result (i.e., given a set of arguments
and a state of the ledger) the smart contract hosted on any of the network peers,
must produce the same result.

In Hyperledger Fabric, the smart contract programming infrastructure of
golang and JavaScript languages does not prevent the execution of any func-
tions including those, which may produce a non-deterministic output (e.g., new
Date(), process.hrtime(), Math.random(), etc.). Therefore, unaware or mis-
taken use of these functions may lead to a faulty behavior of the smart contract.
It is thus the responsibility of the software engineer to ensure that the use of
these functions is avoided.

Our Rule-based Framework for Smart contracts prevents producing non-
deterministic results similarly as the Solidity language of Ethereum; by elim-
inating the non-deterministic functions from the set of features available in the
grammar. Furthermore, the execution instructions produced by the Codegen are
based only on deterministic functions.

124 T. Astigarraga et al.

This implementation leads to minor restrictions on the smart contract capa-
bility. When an output of a non-deterministic function is needed to be included
as part of a transaction; the function is executed once, prior to execution of the
smart contract. The non-deterministic function execution can be implemented
either in the middleware components prior to submitting a transaction proposal
to the peers or in the client node invoking the middleware. In either case, the
output of the non-deterministic function becomes an argument of the execu-
tion of the smart contract, and the same value is submitted to all peers of the
network.

4.3 Blockchain Phantom Reads

The invocation of a smart contract triggers a “simulation” of transaction execu-
tion. During the processing, invocations of the functions modifying the state of
the ledger are recorded into the WriteSet of the resultant transaction and do not
impact the state of the ledger and the Worldstate. In effect, during execution of
a single transaction, after the modification of an asset (i.e., key and value pair),
the subsequent request for the value of the asset will return the unmodified asset
value (i.e., phantom read).

The Rule-based framework is designed for smart contracts consisting of long
sequences of rules repeatedly modifying and accessing the same assets, incre-
mentally working towards the final result of the transaction. Thus, due to the
phantom read behavior, using the native functions returning unmodified values
would lead to faulty results. To support the needed functionality we are now
encapsulating the Fabric API such that the Worldstate is integrated with an
additional caching mechanism. This will allow for accessing the latest modifica-
tions necessary for incremental result building. At the same time, this mechanism
allows obtaining the currently valid, unmodified values stored in the Worldstate
with additional functions available in smart contract processing when needed.

4.4 Worldstate Indexes

In many smart contract contexts the queries against the Worldstate are focused
on requesting data based on a key of an asset. However, it is typical of many
rules to include associative queries against the Worldstate, that retrieve assets
based on properties and ranges of different attributes. The performance of these
queries is bound to the number of assets stored in the Worldstate and declines
with increasing size of the ledger.

To improve the speed of the asset retrieval, Fabric provides the ability to
define custom indexes along with the smart contract. However, it depends on the
skill of the smart contract designer, whether and which indexes will be defined as
well as how well these will support the execution of the smart contract queries.

The Rule-based grammar provides the opportunity for automated static code
analysis of the smart contract, necessary to automatically determine the indexes
needed for efficient execution of the associative queries in the rules. This is
because the Rule-based grammar leads to a clear expression of the sequences

Empowering Business-Level Blockchain Users 125

of data access operations as well as it explicitly includes the names of the keys
(either the unique keys of the assets or the paths within the assets when the
assets contain JSON) used to search for the data.

The index generating algorithm would have two main steps:

1. Identification of candidate keys - in this step the data access operations are
analyzed to determine which keys are good candidates for indexes.

2. Generation of indexes - in this step the candidate keys transformed into def-
initions of the database indexes.

The generation of the indexes can be executed as part of the Codegen and will
allow for transparent optimization of the overall performance of the rule-based
smart contract.

5 Related Work

In the early days, all smart contracts were programmed using full-purpose pro-
gramming languages such as Golang, C++ or Javascript.

Solidity [1] is more specifically targeted for the creation of smart contracts
on Ethereum. It is essentially a Turing-complete language based on C++ and
JavaScript-like syntax. Therefore, the language targets professional developers
rather than business users. In particular, expressing rules-style logic in Solidity
involves the use of ‘if’ and ‘else’ statements along with a set of braces containing
the rule specific code. Moreover, the chaining of rules has to be coded explic-
itly. In contrast, the BCRL framework supports a business level DSL based on
controlled English, and the rules chaining is supported implicitly with a general-
purpose RETE engine.

Some of the recent and emerging DSLs and environments for smart contracts
are intended for the software developer community. This includes the Hyper-
ledger Composer [2], which includes abstractions for “assets”(business-relevant
entities that whose representations are manipulated onchain), “participants” and
“transactions” (which manipulate the assets). As noted in [7], it would be natu-
ral to extend the Composer notion of assets with lifecycle models, in the sense of
Business Artifacts and Case Management. The Obsidean language [13] focuses
on abstractions for linear types and state-machine-based object lifecycles, in part
to reduce errors in smart contracts and to facilitate verification.

The R3 Corda initiative is developing an approach designed to support the
creation of smart contracts for Financial Services [14].

Citation [5] focuses on empowering business-level users to create and under-
stand smart contracts, by showing how the BPMN standard can be implemented
on top of Ethereum. This has led to the open-source Caterpillar system [6].

There is a long tradition of extending traditional business process manage-
ment systems with rules engines, to provide more flexibility to the business-level
users who maintain the processing logic. In a recent development the IBM ODM
rules engine has been integrated with Hyperledger, enabling on-chain smart con-
tracts to use REST APIs to invoke an ODM engine for decision support [15].

126 T. Astigarraga et al.

While the ODM engines are not running directly within the smart contract, they
are resident on the peer nodes that are executing the smart contracts, and can
thus be tightly integrated with the immutability, privacy and consensus-based
features of the Hyperledger Fabric.

The BCRL language presented here is inspired from the BERL rules lan-
guage, one of several supported by the ODM product. Another Controlled-
English rules language is found within the Semantics of Business Vocabulary
and Rules (SBVR) model [9], an Object Management Group (OMG) standard
that provides the vocabulary and syntax for documenting the semantics of busi-
ness vocabularies, business facts, and business rules. As noted in the introduc-
tion, BCRL could be adapted to follow the style of SBVR and/or commercially
available business rule languages [8,10,11]. The semantics of SBVR is a version
of higher-order logic that can be machine-processed and automatically analyzed
[16]. The expressive powers of BCRL and SBVR are not comparable. SBVR
supports deontic logic operators for expressing business rules in the style of obli-
gations and permissions; these are not supported by BCRL. On the other hand,
SBVR does not have an operational semantics (e.g. to express updates to the
business facts) so it is not directly executable on Blockchain as allowed by BCRL.
We believe that the BCRL framework could be extended to support most or all
SBVR’s expressive power.

6 Conclusions

This paper presents the BCRL framework that enables business-level users
to specify and deploy business rules as smart contracts on the Hyperledger
Blockchain fabric. The framework considers the use of Blockchain in the larger
context of business collaborations, and enables use of the same rules language
to be executed on-chain in smart contracts, and executed off-chain in business
processes that are hosted by individual collaboration stakeholders. As such, the
paper provides a key building block for empowering business-level users to pro-
gram and manage intricate business logic for business collaborations, that are
supported in a secure, distributed, service-oriented manner. Section 4 discussed
key aspects of Blockchain that our rules implementation needs to address.

The BCRL framework as presented here is focused largely on decision support
and associated updates to persistent data (both on-chain and off-chain). It will
be valuable to explore approaches for integrating BCRL with BPMN-oriented
and business artifact-oriented smart contract frameworks, to provide them with
rich decision support.

Verification of smart contracts has become a major desired feature in
Blockchain platforms like Ethereum [17,18] due to the high impact of vulner-
abilities in smart contracts (e.g. $50 million USD caused by the DAO hack
[19]). Specifying smart contracts in a rule language like BCRL not only enables
smart contract programming by business users but also introduces new oppor-
tunities for formal verification. This is because unlike common smart contract
languages which are Turing-complete in general (so verification is undecidable),

Empowering Business-Level Blockchain Users 127

the expressive power of BCRL is close to first-order logic (FOL), making for-
mal verification more feasible. In fact, the research on automatic verification of
data-centric business processes (see [20] for a survey) has followed this trend
and shown decidability results on various expressive specification models based
on FOL. Implementation of a verifier for data-centric business processes was
recently shown successful [21]. These results indicate that BCRL can be a good
starting point for future research on smart contract verification.

Acknolwedgements. The authors are grateful to Stephane Mery, Philippe Bonnard
and Jean Michel Bernelas from the ODM product group at IBM for their inspiration
around rules languages and Blockchain, and also for assistance with the nanoRETE
rules engine and the BDSL parser-generator. The authors are grateful to Jerome Simeon
for his numerous insights, especially in connection with the spectrum of design and engi-
neering issues that arise in Domain-Specific Languages. The authors are also grateful
to the team at IBM working on Blockchain for Technical Support Services, includ-
ing Saurabh Sinha, Nerla JeanLouis, and Shu Tao, for providing an environment and
grounded use cases for the exploration of business rules for smart contracts.

References

1. Ethereum: Solidity (2018). https://solidity.readthedocs.io/en/v0.4.21/. Accessed
17 Mar 2018

2. IBM: Hyperledger Composer Home Page. https://www.hyperledger.org/projects/
composer. Accessed 17 Mar 2018

3. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p.
30. ACM (2018)

4. Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Trans. Manag. Inf. Syst. (TMIS) 9(1), 4 (2018)

5. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Untrusted business process monitoring and execution using blockchain. In: La
Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 329–347.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 19

6. López-Pintado, O., et al.: Caterpillar: a blockchain-based business process man-
agement system. In: Proceedings of the BPM Demo Track and BPM Dissertation
Award co-located with 15th International Conference on Business Process Model-
ing, BPM 2017, Barcelona, Spain, 13 September 2017

7. Hull, R., Heath III, F.F.T., Vianu, V., Batra, V.S., Chen, Y.M., Deutsch, A.:
Towards a shared ledger business collaboration language based on data-aware pro-
cesses. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 18–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 2

8. IBM: IBM Operational Decision Manager. https://www.ibm.com/automation/
software/business-rules-management. Accessed 17 Mar 2018

9. OMG: Semantics of business vocabulary and business rules (SBVR), version 1.4
(2017). http://www.omg.org/spec/SBVR/1.4/PDF. Accessed 17 Mar 2018

10. Oracle: Fusion middleware designing business rules with Oracle business process
management (2016). https://docs.oracle.com/middleware/12212/bpm/rules-user/
toc.htm. Accessed 4 Aug 2018

https://solidity.readthedocs.io/en/v0.4.21/
https://www.hyperledger.org/projects/composer
https://www.hyperledger.org/projects/composer
https://doi.org/10.1007/978-3-319-45348-4_19
https://doi.org/10.1007/978-3-319-46295-0_2
https://doi.org/10.1007/978-3-319-46295-0_2
https://www.ibm.com/automation/software/business-rules-management
https://www.ibm.com/automation/software/business-rules-management
http://www.omg.org/spec/SBVR/1.4/PDF
https://docs.oracle.com/middleware/12212/bpm/rules-user/toc.htm
https://docs.oracle.com/middleware/12212/bpm/rules-user/toc.htm

128 T. Astigarraga et al.

11. Aghlara, A.: Business rule language (of FlexRule) (July 2015). http://www.
flexrule.com/archives/business-rule-language/. Accessed 4 Aug 2018

12. IBM: IBM Operational Decision Manager Version 8.6.0: Business Rules
Embedded developer guide (2014). http://www-01.ibm.com/support/docview.
wss?uid=swg21660485&aid=1. Accessed 17 Mar 2018

13. Coblenz, M.: Obsidian: a safer blockchain programming language. In: Compan-
ion Proceedings of the 39th International Conference Software Engineering, ICSE
Companion 2017 (2017)

14. Brown, R.G., et al.: Corda: an introduction. R3 CEV, August 2016
15. Mery, S., et al.: Make your blockchain smart contracts smarter with business rules.

http://ibm.biz/odm-blockchain. Accessed 17 Mar 2018
16. Marinos, A., Krause, P.: An SBVR framework for RESTful web applications. In:

Governatori, G., Hall, J., Paschke, A. (eds.) RuleML 2009. LNCS, vol. 5858, pp.
144–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04985-
9 15

17. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

18. Amani, S., et al.: Towards verifying ethereum smart contract bytecode in
Isabelle/HOL. In: CPP. ACM (2018, To appear)

19. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

20. Deutsch, A., et al.: Automatic verification of database-centric systems. ACM
SIGLOG News 5(2), 37–56 (2018)

21. Deutsch, A., et al.: Verifas: a practical verifier for artifact systems. In: VLDB (2017)

http://www.flexrule.com/archives/business-rule-language/
http://www.flexrule.com/archives/business-rule-language/
http://www-01.ibm.com/support/docview.wss?uid=swg21660485&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg21660485&aid=1
http://ibm.biz/odm-blockchain
https://doi.org/10.1007/978-3-642-04985-9_15
https://doi.org/10.1007/978-3-642-04985-9_15
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8

Context-Aware Trustworthy Service
Evaluation in Social Internet of Things

Maryam Khani(B), Yan Wang(B), Mehmet A. Orgun, and Feng Zhu

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia
{maryam.khani,feng.zhu3}@hdr.mq.edu.au

{yan.wang,mehmet.orgun}@mq.edu.au

Abstract. In Social Internet of Things (SIoT) environments, a large
number of users and Internet of Things (IoT) based devices are con-
nected to each other, so that they can share SIoT-based services. IoT-
based devices establish social relations with each other according to the
social relations of their owners in Online Social Networks (OSNs). In
such an environment, a big challenge is how to provide trustworthy ser-
vice evaluation. Currently, the prevalent trust management mechanisms
consider QoS-based trust and social-relation based trust mechanisms in
evaluating the trustworthiness of service providers. However, the exist-
ing trust management mechanisms in SIoT environments do not consider
the different contexts of trust. Therefore, dishonest SIoT devices, based
on their owners’ social relations, can succeed in advertising low-quality
services or exploiting maliciously provided services. In this paper, we
first propose three contexts of trust in SIoT environments including the
status and environment (time and location) of devices, and the types of
tasks. Then, we propose a novel Mutual Context-aware Trustworthy Ser-
vice Evaluation (MCTSE) model. The experiments demonstrate that our
proposed contextual trust evaluation model can effectively differentiate
honest and dishonest devices and provide a high success rate in select-
ing the most trustworthy services and providing high resilience against
different attacks from dishonest devices.

Keywords: Social Internet of Things · Contextual trust
Trustworthy service evaluation

1 Introduction

In recent years, a combination of the Internet of Things (IoT) and Online Social
Networks (OSNs) has led to the Social Internet of Things (SIoT) to facilitate
the discovery, selection, and composition of services provided by distributed IoT
based things [1,2,24]. Those things include personal devices (e.g., smartphones,
tablets), devices fitted with tags (e.g., RFIDs) in our environment, sensors and
actuators [24]. In SIoT environments, a device with a specific owner requests
services from or provides services to other devices, and establishes social rela-
tions with other devices based on social rules determined by their owners in an
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 129–145, 2018.
https://doi.org/10.1007/978-3-030-03596-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_9

130 M. Khani et al.

autonomous manner by considering their owners’ social networks [1,2]. Then, the
devices can exchange their friend lists with each other [1,2]. Moreover, devices
may establish different types of social relations with each other including own-
ership (devices belonging to the same user), co-work (devices collaborating to
provide common services), co-location (devices that are always used in the same
place), parental (devices belonging to the same manufacturers) and social device
relations (devices coming into contact continuously) [1,2].

Recently, a broad range of Social Internet of Things (SIoT) based applica-
tions have emerged [1], such as smart traffic management [23], smart airport [26],
and smart home [25]. To find the right source of information in such an SIoT
environment, a user’s devices can connect with other devices which are identified
by means of co-location relations. However, devices can be either honest, provid-
ing good quality services, or dishonest, providing poor-quality services. Dishon-
est devices may perform malicious trust-related attacks, such as Bad-Mouthing
Attacks (BMA), Ballot-Stuffing Attacks (BSA), Self-Promoting Attacks (SPA),
and On-Off Attacks (OOA) [3–5,9]. In order to mitigate against such attacks,
the issue of trust evaluation in SIoT environments arises and becomes promi-
nent. Firstly, when a service-consuming device looks for its needed service, some
service-providing devices may behave dishonestly and provide low-quality ser-
vices for their own benefit. Secondly, the resources of a service-providing device
could be maliciously exploited by some dishonest service-consuming devices [14].
Thirdly, dishonest devices may perform trust-related attacks to ruin the rep-
utation of other devices by reputation attacks (BMA and BSA) or to boost
their importance by self-interest attacks (SPA and OOA). Therefore, a reliable
SIoT environment needs to be built based on an effective trust management
mechanism for selecting trustworthy service-providing devices and trustworthy
service-consuming devices.

1.1 Background and Problem

A variety of context-aware trust evaluation approaches have been proposed in
Online Social Networks (OSNs) [12,22]. These approaches are mostly concerned
with the trust evaluation of social participants by considering the social contexts
between them. However, they do not consider social relations among devices
and the features of Internet of Things (IoT) service computing environments.
Furthermore, the existing trust management approaches in IoT [16,17,24,28]
only consider QoS (Quality of Service) trust metrics, without considering the
social relations between devices, which are very important characteristics of SIoT
environments.

To select trustworthy service-providing devices or service-consuming devices,
a variety of trust service evaluation approaches have been proposed in SIoT
environments [3–5,7,14,15,17,23]. To date, SIoT trust evaluation systems use
direct evidence, such as QoS-based trust, and indirect experiences, such as social
relation based trust, to evaluate the trust level of service-providing devices or
service-consuming devices. Though such trust evaluation mechanisms are applied
for indicating a device’s trustworthiness in many studies, they do not consider

Context-Aware Trustworthy Service Evaluation Management 131

the different contexts of devices (e.g., the status and environment of devices)
and the types of tasks. Therefore, they cannot ultimately select the most trust-
worthy service-providing devices or trustworthy service-consuming devices. A
motivating example is given below.

Example 1: There are different SIoT-based communities and IoT social net-
works, and users can register their IoT-based devices to these communities and
networks to use different SIoT-based services [1,2]. Users want to share the pro-
vided services by their devices specially when a device cannot provide requested
services from its user. Suppose that users A, B and C register their IoT-based
devices (e.g., smartphones, tablets, etc.) in the same SIoT-based communities.
Then, suppose that the smartphone of user A, has low battery, and thus auto-
matically searches the nearest devices to delegate the task of recording an on-line
video from an important event. Suppose, user B is on the way to leave the place
where user A is. B has a smartphone, with a low battery. User C is on the way
to reach the place where user A is, and user C has a tablet with full battery.
While the devices of users B and C provide the same services and have the same
social relations with those of user A, the tablet of user C is more trustworthy
when the status and environment (i.e., time and location) of devices are taken
into account. However, the existing trust evaluation mechanisms cannot differ-
entiate user B ’s device and user C ’s device in such a context because they do
not consider devices’ trustworthiness in different contexts, such as the status,
and the environment of the devices, and the types of tasks [9]. In the literature,
the existing studies on trust evaluation only consider a service-providing device’s
single context, such as a service context, but a multi-contextual model will be
more accurate in evaluating the trustworthiness of devices and thus in demand.

1.2 Contributions

To overcome the above-mentioned drawbacks, this paper proposes a novel
Mutual Context-aware Trustworthy Service Evaluation (MCTSE) model in SIoT
environments for trust enhanced service evaluation. The characteristics and con-
tributions of our proposed model are summarised as follows:

1. We first propose a classification of contexts of trust in SIoT environments
including the status of devices, environment (time and location) of devices,
and the types of tasks. Based on the context of trust in SIoT environments,
we propose a Contextual SIoT Trust Model consisting of independent and
dependent metrics.

2. Then, we propose two new concepts Context-aware QoS Similarity based
Trust (CQSST) and Context-aware Social Similarity based Trust (CSST), and
propose novel models for evaluating them. Then, we apply these new concepts
in the MCTSE model to evaluate the trustworthy of service-consuming and
service-providing devices.

3. We conduct simulations with 600 randomly generated service-consuming
devices and service-providing devices to evaluate the effectiveness of our
model. The experimental results show that our model outperforms three

132 M. Khani et al.

state-of-the-art models effectively in evaluating the trustworthiness of service-
providing devices and service-consuming devices. It can also differentiate hon-
est and dishonest devices with a high accuracy which perform tasks without
attacks or with different types of attacks, respectively. Therefore, our model
can select the most trustworthy services with high quality and with high
resilience against different malicious attacks of dishonest devices.

2 Literature Review

In this section, we first review the most relevant the contextual trust evaluation
techniques applied in OSNs. We then review the trust management techniques
proposed in IoT, and SIoT studies that are related to our work. We categorize the
proposed techniques into single-context (one or two simple contexts are applied
to trust evaluation) and multi-context (more complicated contexts are applied
to trust evaluation).

2.1 Trust Models in Online Social Networks (OSNs)

In the studies of trust evaluation in OSNs, some qualitative approaches have been
proposed. As an example of a single-context trust evaluation, Kuter et al. [12]
consider the confidence calculated by a person toward another in FilmTrust, a
movie recommendation system, but it is unclear how they calculate this context
factor. As an example of multi-context trust evaluation, Liu et al. [8] proposed
a complex online social network structure with a new concept called “Quality of
Trust” to introduce the evaluation of the trustworthiness of a service provider
along with a certain social trust path from the service consumer to the service
provider. They considered social information including social position, social
relation, and preferences of participants to select trustworthy trust paths. Zhan
et al. [22], in online multimedia social networks, used credible feedback of digital
contents, a feedback weighting factor, and user share similarity to evaluate a
direct trust between users.

Though context-aware trust evaluation and trust recommendation
approaches have been proved to be effective in OSNs, they are not directly
applicable in SIoT environments.

2.2 Trust Models in Internet of Things (IoT)

In IoT environments, there have been a few studies on trust management models.
The categorising of trust remains unclear due to the lack of classification of the
listed research activities in an obvious sorting logic. Razzaque et al. [24] proposed
different architectures of the IoT, and identified the relevant research challenges
in communication problems and information gathering problems. However, they
did not propose any solution for security and privacy problems. Zheng et al. [17]
indicated that trust contains more meanings than security. Trust in IoT is built

Context-Aware Trustworthy Service Evaluation Management 133

based on not only security, but also many other important factors such as hon-
esty, goodness, competence, reliability, and ability. Sfar et al. [16] reported that
trust management systems could be defined as deterministic trust (including
policy-based mechanism and certificates systems) and non-deterministic trust
(including recommendation-based, reputation-based systems, prediction-based,
and social network based systems). Recently, Chen et al. [28] proposed a trust
computation model based on fuzzy reputation in IoT systems. For trust compo-
sition, QoS trust parameters such as end-to-end packet forwarding ratio, energy
consumption, and packet delivery ratio are considered. However, contextual
information in both trust evaluation and trust recommendation has not been
considered yet.

Although IoT trust management systems share common features with SIoT
environments to provide services with different devices, the existing studies on
trust management in IoT systems do not consider the social aspects of the owners
of IoT devices.

2.3 Trust Models in Social Internet of Things (SIoT)

In SIoT environments, the existing trust management systems can be broadly
categorised into non-contextual and single contextual methods.

In a non-context-aware trust management model proposed in [6], Bao et al.
consider social relations in trust management for IoT. For trust composition,
they consider both QoS trust properties including honesty, cooperativeness, and
social trust such as community interest. However, the proposed factors for com-
puting cooperativeness based on the percentage of common friends are very
simple. Chen et al. [7] proposed an access service recommendation scheme for
effective service composition as well as resistance against malicious attacks. For
trust composition, they consider QoS trust metrics such as quality reputation
and energy status. Also, social trust is considered based on certain social sim-
ilarities. However, Chen et al. did not consider some trust properties such as
contextual and dynamic characteristics of trust. Chen et al. [5] proposed an
adaptive and scalable trustworthy service composition in SOA-based IoT sys-
tems. They only apply a single QoS trust to rate a service provider. However,
the social relations between devices are not considered.

As a single-context trust management model, Nitti et al. [15] proposed a
trust computation method which considers both direct and indirect trust. For
trust composition, QoS based trust (including transaction service quality and
computational capability) and social relation based trust (including centrality,
relation factor) are applied. In this model, trust is context-dependent but only
factors such as the number of transactions in a QoS based trust is considered
as a context. Therefore, their model is a single-context trust. Furthermore, Lin
et al. [14] proposed a contextual trust management model in which a context
consists of two components, task type and environment. They considered differ-
ent types of environments, for example, a hostile environment means that the
external condition is unsuitable for the current task. For trust composition, QoS
based trust (e.g., bandwidth, packet loss, etc.) and social based trust (social

134 M. Khani et al.

relationships, such as friendship) is applied. However, they only consider the
type of task and the situation of the environment as contexts, and they do not
consider other contexts such as time, location, and the features of a device, to
be multi-context.

To sum up, the existing trust management systems in SIoT environments
have not investigated context-aware (i.e., multi-contextual) trust evaluation and
recommendation yet. Moreover, context-aware trust models in OSNs cannot be
directly applied in SIoT environments because the specific characteristics of trust
in SIoT systems include direct (e.g., QoS-based trust), dynamic, etc, which
should be considered. In addition, existing trust models in IoT environments
do not consider the social relation among devices in SIoT environments.

3 Problem Statement and Metrics of Contextual Trust

3.1 Problem Statement

In our SIoT model, there are M devices which are denoted by D = {d1,, dM}
and there are N users which are denoted by U = {u1,, uN}. Let the social
network between users be represented by an undirected graph G = {U, E},
where E ⊆ U × U , and < u, v >∈ E means there is a social relation between u
and v. Moreover, there are I service-consuming devices and J service-providing
devices by considering the social relations o their owner which are represented
by SC = {SC1, ..., SCI} and SP = {SP1, ..., SPJ} respectively. In addition,
each of SCi or SPj is represented by a vector in a three dimensional space of
the contexts in SIoT including status (CS), environment (CE), and task type
(CT), which are represented by C = {CS , CE , CT }. Each of CS , CE , CT has
different values presented by CS = {CS1 , ..., CSh

}, CE = {CE1 , ..., CEh́
}, and

CT = {CT1 , ..., CT´́
h
}, respectively. The vectors of

−→
SCi and

−→
SP j are represented

by Eqs. (1) and (2), respectively. Each of SCi and SPj has a list of the owner’s
friends which is denoted by UFreSCi

and UFreSPj
, respectively, and a list of

owner’s community of interests which is denoted by UComSCi
and UComSPj

,
respectively. Also, let S = {s1, ..., sl} denote the set of services which are provided
or consumed by devices in different time τ = {t1, ..., tp}, and locations L =
{l1, ..., lq}. Moreover, each of SCi and SPj has a user satisfaction level or ground
truth [19] which is shown by GTSCi

and GTSPj
, respectively. The aim of this

paper is to provide a list of trustworthy SPs and SC s for each of SPi and SCj

in each transaction.

−→
SCi =

⎡
⎣

CSi

CEi

CTi

⎤
⎦ (1)

−→
SP j =

⎡
⎣

CSj

CEj

CTj

⎤
⎦ (2)

Context-Aware Trustworthy Service Evaluation Management 135

dk

dj

Time

Loca on

Service

di

Service Providing Devices
Service Consuming Devices
Sending or Receiving Services

Fig. 1. Contexts of
Trust in IoT environ-
ments

um

uP

un
Task Type B

Task Type C

Task TypeA

Task Type A

Task Type B

uk

uj

ui

Task Type C

The Owner of Service Providing Devices

The Owner of Service Consuming Devices
Social Rela ons related to Task

Fig. 2. Contexts of
Trust in OSN

Environments of
Device Context
(CE)

Requested or Provided the Type of Task Context (CT)

Status of Device Context (CS)

Fig. 3. Contexts of Trust in
SIoT environments

3.2 The Contexts of Trust in SIoT Environments

In general, devices in IoT environments may trust each other based on different
contextual factors, including different statuses of devices, such as energy, and
capability of computing, which provide or request different services at different
time and locations. In addition, the owners of devices in a contextual OSN [27]
may trust each other based on common social relations for different types of
tasks. For example, suppose that there are two devices dj and dk, as service-
providing devices, advertising the services requested by device di, as the service-
consuming device, in an SIoT environment. In this scenario, the QoS based trust
value evaluated by di for dj and dk varies at different time, locations and different
statuses of dj and dk. These contexts are considered as the contexts of trust in
IoT environments, as depicted in Fig. 1. Moreover, the social relation based trust
values evaluated by di by considering the common social relations between its
owner (ui) and the owner ui of dj and the owner uk of dk for different types
of tasks. Therefore, the task type context is considered as the context of trust
in OSNs which is shown in Fig. 2. By considering different contextual aspects
between devices in IoT environments and their owners in OSNs, we classify the
contexts of trust in SIoT environments in three categories including the status
of devices, environment (time and location) of devices, and the types of tasks.
Figure 3 depicts the space of the contexts of trust in SIoT environments. In such
a space, each device is considered as a service-providing device or a service-
consuming device which is shown with a vector in the three-dimensional space
of contexts including the status of devices, environment (time and location) of
devices, and the types of tasks. The contexts of trust in SIoT environments are
described as follows.

• The Status of a device (CS): The features of devices such as energy, and
the capability of computing.

• The Environment of a device (CE): Service-consuming devices and
service-providing devices may be located in different locations and may be

136 M. Khani et al.

available in different time (e.g., next 1 hour, next 2 hours, next 3 hours, and
etc.).

• Task type (CT): For example, a service-consuming device could trust a
service-providing device for task type A but not for task type B. A task type
context which is requested by a service-consuming device could be made by
a combination of some services. Here, only two services are considered. For
example, the task type of A is a combination of services including S1 and S2.

3.3 The Metrics of Contextual Trust Evaluation

Based on the classified contexts of trust in SIoT environments, we propose the
following metrics of contextual trust with significant effects on trust evaluation.

3.3.1 Independent Metrics
Independent metrics of a service-consuming device and a service-providing device
in SIoT environments refer to the individual preferences of the service-consuming
device and individual capabilities of the service-providing device that has direct
influence on contextual QoS based trust evaluation. Moreover, QoS refers to a
level of service that is satisfactory to some user requirements including perfor-
mance, cost, availability, etc. The independent metrics include expected QoS
and advertised QoS. Each of these parameters is shown in a vector in the two-
dimensional space of the status and environment contexts of trust.

• Let
−−−−−→
ExQoSCS ,CE

SC i denote the Expected Quality of Service (ExQoS) that is
requested by a service-consuming device i (SCi) at a specific status and
environment contexts (CS , SE)

• Let
−−−−→
AdQoSCS ,CE

SPj
denote the Advertised Quality of Service (AdQoS) that is

provided by service-providing device j (SPj) at a specific status and environ-
ment contexts (CS , SE). These parameters are depicted by Eqs. (3) and (4)
respectively.

−−−−−→
ExQoSCS ,CE

SCi =
[
CSj

CEj

]
(3)

−−−−→
AdQoSCS ,CE

SPj
=

[
CSi

CEi

]
(4)

3.3.2 Dependent Metrics
The dependent metrics illustrate the contextual social based trust value between
a service-providing device and a service-consuming device, which include social
similarity friendship, social similarity community, social similarity relations, and
contextual feedback of trust in the context of task type. We consider the fact that

Context-Aware Trustworthy Service Evaluation Management 137

the idea of friends has an important effect on the decision of someone. Therefore,
the more interests one has with another in a specific task type context the more
likely they trust each other in that task type context.

• Let SSimFreCT

SCi ,SPj
denote the Social Similarity Friendship (SSimFre)

that captures the degree of the common social friends between the owner of
a service-consuming device i and the owner of a service-providing device j
respectively which are evaluated by the service-consuming device i based
on its direct observations at the task type context. After two service-
providing and service-consuming devices exchange the friend lists of their
owners [2], i.e., UFreSCi

and UFreSPj
, they can compute two binary lists

including LFreCT

SCi
and LFreCT

SPj
where the size of each list is equal to

SFre = |UFreSCi
∪ UFreSPj

|. Each element in these lists will be 1 if the
corresponding owner is in UFreSCi

or (UFreSPj
) and has a relationship in

the specific task type context CT with SCi or (SPj), otherwise 0. The metric
of SSimFreCT

SCi,SPj
is calculated by Eq. (5).

SSimFreCT
SCi,SPj

=
LFreCT

SCi
.LFreCT

SPj

SFre
=

∑h
h́=1 LFreCT

SCi
[h́].LFreCT

SPj
[h́]

SFre
(5)

• Let SSimComCT

SCi ,SPj
denote the Social Similarity Community (SSimCom)

that captures the degree of the common communities between the owner of
a service-consuming device i and the owner of a service-providing device j
respectively which are evaluated by the service-consuming device i based on
its direct observations at the task type context. Moreover, the two service-
providing and service-consuming devices exchange the lists of community
interest of their owners [2], UComSCi

and UComSPj
. Then, they compute

two binary lists including LComCT

SCi
and LComCT

SPj
where the size of each list

is equal to SCom = |UComSCi
∪UComSPj

|. Each element in these lists will be
1 if the corresponding community interest is in UComeSCi

or (UComeSPj
)

and is related to the specific task type context CT , otherwise 0. The metric
of SSimFreCT

SCi,SPj
is calculated by Eq. (6).

SSimComCT
SCi,SPj

=
LComCT

SCi
.LComCT

SPj

SCom
=

∑q
q́=1 LComCT

SCi
[q́].LComCT

SPj
[q́]

SCom

(6)

• Let SSimRCT

SCi ,SPj
denote the Social Similarity Relation (SSimR) that cap-

tures the degree of common social relations (e.g. ownership, co-work, co-
location, parental) [1,2] between a service-providing device j with a service-
consuming device i at the task type context. We consider different weighted
values for each device social relations with other devices which are listed in
Table 1. For example, if two devices have the same owner while they provide
or request the same type of tasks, the weighted value is equal to 1. If they
have the same owner but they provide or request different types of tasks, the
weighted value is equal to 0.9. Moreover, if there are different social relations
between two devices, only the highest weight is considered.

138 M. Khani et al.

Table 1. Social Similarity Relations (SSimR)

Relationship Value

with CT

Value

without CT

Description

Ownership 1 0.9 Between devices that belong to the same owner

Co-work 0.8 0.7 Between devices that collaborative to provide common service

Co-location 0.6 0.5 Between devices that are in the same area

Social 0.4 0.3 Between devices that continuously interact with each other

Parental 0.2 0.1 Between devices that belong to the same production batch

• Let CFTCS ,CE ,CT

SPj →SCi
(n − 1) and CFTCS ,CE ,CT

SCi →SPj
(n − 1) denote the Contex-

tual Feedback of Trust (CFT) in the view of SCi and in the view of SPj

respectively, where n denotes the number of transactions between SCi and
SPj in the status and environment contexts of devices and the task type con-
text. CFTCS ,CE ,CT

SPj→SCi
(n − 1) denotes the previous direct feedback of a service-

providing device j toward a service-consuming device i at status and environ-
ment contexts of devices and the task type context and CFTCS ,CE ,CT

SCi→SPj
(n− 1)

denotes the previous direct feedback of the service-consuming device i toward
service-providing device j in the status and environment contexts of device
and the task type context, if there is any direct feedback. Moreover, let
V arianceCS ,CE ,CT

SCi →SPj
(K) denote the Variance of CFTCS ,CE ,CT

SCi→SPj
(n − 1) in

its K latest transactions and let V arianceCS ,CE ,CT

SPj →SCi
(K) denote the Vari-

ance of CFTCS ,CE ,CT

SPj→SCi
(n − 1) in its K latest transactions. The metrics of

V arianceCS ,CE ,CT

SCi→SPj
(K) and V arianceCS ,CE ,CT

SPj→SCi
(K) are calculated by Eqs. (7),

(8), (9) and (10) respectively. Then, the metrics of e
V ariance

CS,CE,CT
SCi→SPj

(K) and

e
V ariance

CS,CE,CT
SPj→SCi

(K) have been considered as coefficients applied to the previ-
ous direct feedback of service-providing device in our MCTSE model. There-
fore, if there is more variance in K latest transactions of a device, it means
that it was a dishonest device. Therefore, its dishonest behaviour is mem-
orized and it decreases the importance of its previous direct feedback. We
apply the e−x function where x is equal to the V ariance because the more
variance in the previous feedbacks, the less the trust value between them.
Moreover, the e−x function keeps the value of V ariance between 0 and 1.

V arianceCS ,CE ,CT
SCi→SPj

(K) =

∑n
x=n−k (CFT CS ,CE ,CT

SCi→SPj
(x) − CFT

CS ,CE ,CT
SCi→SPj

(K))2

k − 1
(7)

V arianceCS ,CE ,CT
SPj→SCi

(K) =

∑n
x=n−k (CFT CS ,CE ,CT

SPj→SCi
(x) − CFT

CS ,CE ,CT
SPj→SCi

(K))2

k − 1
(8)

CFT
CS ,CE ,CT
SCi→SPj

(K) =

∑n
x=n−k CFT CS ,CE ,CT

SCi→SPj
(x)

K
(9)

CFT
CS ,CE ,CT
SPj→SCi

(K) =

∑n
x=n−k CFT CS ,CE ,CT

SPj→SCi
(x)

K
(10)

Context-Aware Trustworthy Service Evaluation Management 139

4 Mutual Context-Aware Trustworthy Service Evaluation
(MCTSE) Model

4.1 Overview of the MCTSE Model

In our proposed MCTSE Model, we consider two concepts, including Context-
aware QoS Similarity based Trust, Context-aware Social Similarity based Trust,
in the computation of MCTSE, which are described below.

• Context-aware QoS Similarity based Trust (CQoSSTrust): Let
CQoSSTrustCS ,CE

SCi,SPj
denote the Context-aware QoS similarity based Trust

that captures the degree of similarity between the expected Quality of Service
which is requested by a service-consuming device i and the advertised qual-
ity of service which is provided by a service-providing device j at status and
environment context of the device. We apply the cosine similarity function to
calculate the similarity between two vectors

−−−−−→
ExQoSCS ,CE

SCi
and

−−−−→
AdQoSCS ,CE

SPj
.

Therefore, CQoSSTrustCS ,CE

SCi,SPj
is calculated by Eg. (11). As the maximum

QoS similarity based trust, CQoSSTrustCS ,CE

SCi,SPj
= 1 captures that the SPj

can provide the maximum expected QoSs of SCi while CQoSSTrustCS ,CE

SCi,SPj
=

0 indicates that there is no similarity between the expected QoSs of SCi and
the advertised QoSs of SPj . If

−−−−−→
ExQoSCS ,CE

SCi
= A and

−−−−→
AdQoSCS ,CE

SPj
= B then:

CQoSSTrust
CS,CE
SCi,SPj

= cos(θ) = |−→A × −→
B | =

A.B

‖ A ‖2‖ B ‖2
=

∑h
h́=1

A
h́

.B
h́

√∑h
h́=1

A2
h́

√∑h
h́=1

B2
h́

(11)

• Context-aware Social Similarity based Trust (CSSTrust): Let
CSSTrustCT

SCi,SPj
denote the Context-aware Social Similarity based Trust

that indicates the overall degree of social similarity between service con-
sumer SCi and service provider SPj at the task type context. Equations
(12), (13), and (14) are applied to compute CSSTrustCT

SCi,SPj
. We apply

the e−x function in Eq. (12) where x is equal to SDissimilarityCT (it
denotes Social Dissimilarity between SCi and SPj in the task type con-
text) because the more the dissimilarity between a service-consuming device
and a service-providing device, the less the trust value between them. More-
over, the e−x function keeps the value of CSSTrustCT

SCi,SPj
between 0 and 1.

CSSTrustCT

SCi,SPj
is applied as a weight for computing direct trust. If there is

no social similarity between the owners of two devices in SIoT environments,
CSSTrustCT

SCi,SPj
= e−SDissimilarityCT means that there is a less trust value

between the owners of devices. The social factors including social similarity
friendship, social similarity community, social similarity relations may have
different importance. Therefore, weight parameters wi are applied to adjust
the importance of these three social similarity factors.

CSSTrustCT

SCi,SPj
= e−SDissimilarityCT (12)

140 M. Khani et al.

SDissimilarityCT = 1 − SSimilarityCT (13)

SSimilarity
CT = w1 × SSimFre

CT
SCi,SPj

+ w2 × SSimCom
CT
SCi,SPj

+ w3 × SSimR
CT
SCi,SPj

(14)

4.2 Assessing Trust in SIoT Environments by MCTSE Model

Mutual Context-aware Trustworthy Service Evaluation (MCTSE) indicates the
trust evaluation between a service-providing device and a service-consuming
device while both of them evaluate each other and consider the contextual infor-
mation. Below, we describe two parts of the mutual context-aware trustworthy
service evaluation including: (1) Trustworthy Service Evaluation from Service-
Consuming Device i to Service-Providing Device j (MCTSECS ,CE ,CT

SCi→SPj
). It is

calculated by Eq.(15). It denotes the direct trust value from service-consuming
device j to service-providing device i. (2) Trustworthy Service Evaluation from
Service Providing Device j to Service-Consuming Device i (MCTSECS ,CE ,CT

SPj→SCi
).

It is calculated by Eq.(16). It denotes the direct trust value from service-
providing device j to service-consuming device i. Moreover, the variance is
applied to consider the trend of a service-providing device in its K previous trans-
actions. In the following equations, we apply δ as a weight (0 ≤ δ ≤ 1) to balance
the importance of CQoSSTrustCS ,CE

SCi,SPj
, CSSTrustCT

SCi,SPj
, CFTCS ,CE ,CT

SCi→SPj
and

CFTCS ,CE ,CT

SPj→SCi
.

MCTSECS ,CE ,CT
SCi→SPj

= δ × CQoSSTrustCS ,CE
SCi,SPj

× CSSTrustCT
SCi,SPj

+(1 − δ) × e
V ariance

CS,CE,CT
SCi→SPj

(K) × CFT CS ,CE ,CT
SCi→SPj

(n − 1).
(15)

MCTSECS ,CT
SPj→SCi

= δ × CQoSSTrustCS
SCi,SPj

+(1 − δ) × e
V ariance

CS,CE,CT
SPj→SCi

(K) × CFT CS ,CE ,CT
SPj→SCi

(n − 1).
(16)

5 Experiments

In this section, we introduce two experiments of our proposed MCTSE model
in a simulation where 300 service-consuming devices need to select the most
trustworthy service-providing devices from 300 service-providing devices.

Context-Aware Trustworthy Service Evaluation Management 141

5.1 Simulation Settings and Performance Comparison in SIoT
Environments

To simulate an SIoT environment, because there is a lack of a real dataset in the
literature, we create a synthetic dataset with 600 randomly generated devices
with different statuses, in which there are 300 service-providing devices and 300
service-consuming devices. These devices are randomly assigned to 200 users who
are selected from the synthetic dataset of the online social network Facebook
obtained from the synthetic Stanford Large Network Dataset Collection [13].
We assume that each user owns two devices on average. Each device has a role
as either a service provider or a service consumer. In addition, we assume that
after a direct interaction between the devices of two users, they exchange their
friend lists and profiles.

In our simulation, we classify the devices into two groups of honest and
dishonest devices who provide high-quality services and poor-quality services
respectively. The percentage of dishonest devices is set to 0% and 50% respec-
tively. The dishonest devices perform trust related attacks including BMA, BSA,
SPA, and OOA. To assess the performance of our proposed trust model, the user
satisfaction levels of service selections (or real service qualities of devices) are
considered as the “ground truth”. We compute the trust values of all honest
or dishonest devices using our proposed model and compare with the “ground
truth” to assess the accuracy of our model. For each honest device, a random
value in the range of [0.80, 0.85] is assigned to its ground truth (it shows that
an honest device provides high-quality service), and for each a dishonest device
a random value in the range of [0.55, 0.60] is assigned to its ground truth (it
shows that dishonest device provides poor-quality services). Moreover, we con-
sider the optimal parameters in our models obtained by trial and test: σ=0.8,
δ=0.5, w1=0.33, w2=0.33, and w3=0.33. In this paper, we select three state-of-
the-art trust management models in this field as the baseline models. They are
(1) SOA [5], as a non-context trust management model, (2) SubM [15] and (3)
ObjM [15], as two single-context trust management models, which are subjective
and objective models respectively. Each of these models is implemented using
C# programming. Then, trust-related attacks are modeled by applying their
descriptions [3–5,9].

5.2 Experiment 1: Effectiveness of Trustworthy Service Evaluation

Results & Analysis: Figure 4 shows the success rates of the MCTSE, SOA,
SubM, and ObjM models when there are different percentages of dishonest
devices (0% and 50%). When there are 50 % dishonest devices, we consider
three cases of different attacks, i.e, with BMA-BSA, with SPA, and with OOA,
respectively. From Fig. 4, we can see that MCTSE always has the best success
rate in all the cases. On average, MCTSE is 2%, 13.8%, 7.4%, 10.6%, and 10.2%
higher in success rate than the average of the three baseline models when there
are 0% and 50% dishonest devices who provide or consume services “without
attacks” and “with attacks” including BMA-MSA, SPA, and OOA respectively.

142 M. Khani et al.

0%-Without Attack 50%-Without Attack 50%-With BMA & BSA 50%-With SPA 50%-With OOA

The percentage of dishonest devices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MCTSE SOA SubM ObjM

0.97 0.970.960.98

0.82
0.77

0.690.70

0.79
0.75

0.67

0.77
0.72

0.660.64
0.69

0.630.66 0.65 0.67

Fig. 4. Comparison of the success rate of an honest device (iterations = 20) by increas-
ing the percentage of dishonest devices from 0% to 50%, which are also categorized
into the cases of “without attack” and “with different types of attacks”

The experimental results illustrate that the MCTSE model can select the most
trustworthy devices with the best quality service when compared with the other
three baseline models. This is because the MCTSE considers multiple contexts
of trust and thus is able to distinguish dishonest devices more accurately.

5.3 Experiment 2: Effectiveness in Resiliency Against Attacks

Results & Analysis: Figure 5a to d depict the trust results of a service-
consuming device toward the honest and the dishonest devices, who provide
or consume services without attacks, and with attacks including BMA-MSA,
SPA, and OOA. From Fig. 5b, we can see that, although the trust value of the
dishonest device has been promoted by good recommendation of other dishonest
devices, its trust value decreases quickly after it provides poor-quality services.
Moreover, although the trust value of the honest device was ruined by wrong
recommendations, its trust value increases after providing good service. From
Fig. 5c, we can see that the dishonest device boosts its importance when the
transaction number changes from 1 to 9, to be selected as a service provider, but
then from transaction 10 onwards it starts to provide poor-quality services. Our
model decreases the trust value of the dishonest device when it starts to provide
poor-quality services by applying the variance of feedback. From Fig. 5d, we can
see that when dishonest devices perform OOA, they behave alternatively well
and badly. The MCTSE model with the consideration of the contextual feed-
back of trust and its variance can detect this attack. The experimental results
illustrate that: (1) when an honest device provides high-quality services and acts
cooperatively, MCTSE increases its trust value; and (2) when a dishonest device
provides poor-quality services and acts maliciously, performing different types
of attack, MCTSE decreases the trust value of the dishonest device.

Context-Aware Trustworthy Service Evaluation Management 143

Fig. 5. The effect of feedback and context on the trust value of a dishonest device and
an honest device

6 Conclusion

In SIoT environments, trust evaluation has been taken as an important task
[3–5,7,14,15,17,23]. In this paper, we have proposed three contexts of trust,
including the status, the environment (time and location) of devices and the
task type. Then, we have proposed a Mutual Context-aware Trustworthy Service
Evaluation (MCTSE) model. The experimental results on a synthetic dataset
have demonstrated that the MCTE model can effectively identify honest and
dishonest devices. In our future work, we plan to propose a Mutual Context-
aware Trustworthy Service Recommendation model (MCTSR) and validate our
model on larger datasets.

References

1. Atzori, L., Iera, A., Morabito, G., Nitti, M.: The Social Internet of Things (SIoT)-
when social networks meet the internet of things: concept, architecture and network
characterization. Comput. Netw. 56(16), 3594–3608 (2012)

2. Atzori, L., Iera, A., Morabito, G.: SIoT: giving a social structure to the internet
of things. IEEE Commun. Lett. 15(11), 1193–1195 (2011)

3. Saied, Y.B., Olivereau, A., Zeghlache, D., Laurent, M.: Trust management sys-
tem design for the internet of things: a context-aware and multi-service approach.
Comput. Secur. 39, 351–365 (2013)

4. Chen, I.R., Bao, F., Guo, J.: Trust-based service management for social internet
of things systems, 13(6), 684–696 (2016)

144 M. Khani et al.

5. Chen, I.R., Guo, J., Bao, F.: Trust management for SOA-Based IoT and its appli-
cation to service composition, 9(3), 482–495 (2016)

6. Bao, F., Chen, R.: Trust management for the internet of things and its application
to service composition, Mobile and Multimedia Networks (WoWMoM). In: IEEE
International Symposium on a World of Wireless, pp. 1–6 (2012)

7. Chen, Z., Ling, R., Huang, C.M., Zhu, X.: A scheme of access service recommenda-
tion for the social internet of things. Int. J. Commun. Syst. 29(4), 694–706 (2015)

8. Liu, G.: Trust Management in Online Social Networks. PhD thesis, Macquarie
University (2013)

9. Guo, J., Chen, I.R.: A classification of trust computation models for service-
oriented internet of things systems. In: IEEE International Conference on Services
Computing, pp. 324–331 (2015)

10. Zhang, H: Context-Aware Transaction Trust Computation in E-Commerce Envi-
ronments. PhD thesis, Macquarie University (2014)

11. Lei Li: Trust Evaluation in Service-Oriented Environments. PhD thesis, Macquarie
University (2011)

12. Kuter, U., Golbeck, J.: Using probabilistic confidence models for trust inference in
web-based social networks. ACM Trans. Internet Technol. 10(2), 1–23 (2010)

13. Leskovec, J.: Stanford Large Network Dataset Collection. http://snap.stanford.
edu/data/

14. Lin, Z., Dong, L.: Clarifying trust in social internet of things. IEEE Trans. Knowl.
Data Eng. 30(2), 234–248 (2018)

15. Nitti, M., Girau, R., Atzori, L.: Trustworthiness management in the social internet
of things. IEEE Trans. Knowl. Data Eng. 26(5), 1253–1266 (2014)

16. Sfar, A.R., Natalizio, E., Challal, Y., Chtourou, Z.: A roadmap for security chal-
lenges in the internet of things. Digit. Commun. Netw. 4, 118–137 (2017)

17. Yan, Zheng, Zhang, Peng, Vasilakos, Athanasios V.: A survey on trust management
for internet of things. J. Netw. Comput. Appl. 42, 120–134 (2014)

18. Yang, G.: A health-IOT platform based on the integration of intelligent packaging,
unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans. Industr. Inf.
10(4), 2180–2191 (2014)

19. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of real-world web services.
IEEE Trans. Serv. Comput. 7(1), 32–39 (2014)

20. Zou, J., Wang, Y., Orgun, M.A.: A dispute arbitration protocol based on a peer-to-
peer service contract management scheme. In: 2016 IEEE International Conference
on Web Services (ICWS) (2016)

21. Zheng, Y., Mobasher, B., Burke, R.: Deviation-based contextual SLIM recom-
menders. In: Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pp. 271-280 (2014)

22. Zhang, Z., Wang, K: A trust model for multimedia social networks. Soc. Netw.
Anal. Min. 3(4), 969–979 (2013)

23. Truong, N.B., Lee, H., Askwith, B., Lee, G.M.: Toward a trust evaluation mecha-
nism in the social internet of thing. Sensors 17(6), 1346 (2017)

24. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., Clarke, S.: Middleware for inter-
net of things: a survey. IEEE Internet Things J. (2016)

25. Kim, J.E., Fan, X., Mosse, D.: Empowering end users for social internet of things.
In: Proceedings of the Second International Conference on Internet-of-Things
Design and Implementation, pp. 71-82 (2017)

26. Hussein, D., Han, S.N., Lee, G.M., Crespi, N., Bertin, E.: Towards a dynamic
discovery of smart services in the social internet of things. Comput. Electr. Eng.
58, 429–443 (2017)

http://snap.stanford.edu/data/
http://snap.stanford.edu/data/

Context-Aware Trustworthy Service Evaluation Management 145

27. Nitti, M., Girau, R., Atzori, L., Iera, A., Morabito, G.: A subjective model for trust-
worthiness evaluation in the social Internet of Things. In: IEEE 23rd International
Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC),
pp. 18–23 (2012)

28. Chen, D., Chang, G., Sun, D., Li, J., Jia, J., Wang, X.: TRM-IoT: a trust man-
agement model based on fuzzy reputation for internet of things. ComSIS 8(4),
1207–1228 (2011)

Cloudchain: A Blockchain-Based
Coopetition Differential Game Model

for Cloud Computing

Mona Taghavi1(B), Jamal Bentahar1, Hadi Otrok1,2, and Kaveh Bakhtiyari3,4

1 Concordia Institute for Information System Engineering, Concordia University,
Montreal, Canada

m tag@encs.concordia.ca, bentahar@ciise.concordia.ca,
hadi.otrok@kustar.ac.ae

2 Department of ECE, Khalifa University, Abu Dhabi, UAE
3 Interactive Systems, University of Duisburg-Essen, Duisburg, Germany

kaveh.bakhtiyari@uni-due.de
4 Department of Electrical Engineering, The National University of Malaysia,

Bangi, Malaysia

Abstract. In this paper, we introduce, design and develop Cloudchain,
a blockchain-based cloud federation, to enable cloud service providers to
trade their computing resources through smart contracts. Traditional
cloud federations have strict challenges that might hinder the mem-
bers’ motivation to participate in, such as forming stable coalitions
with long-term commitments, participants’ trustworthiness, shared rev-
enue, and security of the managed data and services. Cloudchain pro-
vides a fully distributed structure over the public Ethereum network
to overcome these issues. Three types of contracts are defined where
cloud providers can register themselves, create a profile and list of their
transactions, and initiate a request for a service. We further design a
dynamic differential game among the Cloudchain members, with roles of
cloud service requesters and suppliers, to maximize their profit. Within
this paradigm, providers engage in coopetitions (i.e., cooperative com-
petitions) with each other while their service demand is dynamically
changing based on two variables of gas price and reputation value. We
implemented Cloudchain and simulated the differential game using Solid-
ity and Web3.js for five cloud providers during 100 days. The results
showed that cloud providers who request services achieve higher prof-
itability through Cloudchain compared to those providers that supply
these requests. Meanwhile, spending high gas price is not economically
appealing for cloud requesters with a high number of requests, and fairly
cheaper prices might cause some delays in their transactions during the
network peak times. The best strategy for cloud suppliers was found to
be gradually increasing their reputation, especially when the requesters’
demand is not significantly impacted by the reputation value.

Keywords: Cloud service federation · Smart contract · Blockchain
Ethereum · Differential game

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 146–161, 2018.
https://doi.org/10.1007/978-3-030-03596-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_10&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_10

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 147

1 Introduction

To mitigate the issue of underutilized and over provisioned computing resources,
cloud providers scaled their pool of resources by forming cloud federations to
maximize their profit and provide guaranteed Quality of Services (QoS) [4,6,11].
In spite of the prominent federation advantages, cloud providers are reluctant to
participate in due to some strict challenges, mainly: 1- The stability of a federa-
tion is a key factor for the cloud providers to ensure their profitability [6]. Such a
stability requires long-term commitments from the providers, which is very hard
to obtain. 2- A federation needs to address the complications of a fair revenue
sharing model to warrant that each cloud provider will gain a revenue according
to the amount of computational resources contributed to the federation. 3- The
presence of unknown and untrusted participants in a federation can degrade the
QoS of the federated services [16]. The trust issue limits conventional federations
to enroll only trusted providers and disregard the new ones. 4- Having a large
pool of computing resources in a grand coalition might increase the opportunity
of botnet attacks. Meanwhile, forming a small federation might hinder the rev-
enue maximization of its participants [2]. 5- There are some security and privacy
concerns regarding the managed data and services as well as the creation and
management of the cloud federation itself. All the necessary information to man-
age a federation is usually maintained in a centralized trusted third party. This
implies that a federation must maintain roles concerning the authorization to
manage the participants’ information that yields, which makes not only a single
point of failure, but also raises trustfulness concerns [11].

Contributions: This research overcomes the traditional cloud federation issues
by contributing a novel architecture and an innovative strategic game model:

1. To provide a practical cooperative solution that any cloud provider can
embrace regardless of their market position and trustworthiness, we advo-
cate a fully distributed architecture with a democratic governance struc-
ture, called Cloudchain. To effectively enforce such a structure, Cloudchain
proposes an innovative exploitation of blockchain to prompt and support
interoperability and coopetition among the cloud providers over the public
Ethereum network. Within Cloudchain, cloud providers endeavor to overcome
the resource limitation in their local infrastructure by outsourcing their cus-
tomers’ requests to other members of the Cloudchain. Moreover, it allows
providers to access underutilized resources and lease them at cheaper prices.
By leveraging blockchain-enabled smart contracts [17], we eliminate the need
for trust in the federation and reduce barriers of entry [9].

2. To incentivize the cloud providers and help them make wise decisions about
the utilization of Cloudchain, a dynamic differential game is designed, solved
and simulated. This game aims to maximize the profit of the Cloudchain
members who cooperatively compete while their service demand is dynami-
cally changing. Two variables are considered to impact the cloud provider’s
revenue, the demand variability and the quality of the provided service: gas
cost and reputation value. Gas is a proportional amount that Ethereum pays

148 M. Taghavi et al.

to motivate the miners to participate in the mining process and to supply
a fair compensation for their computation effort [12]. Reputation value is
defined to assign a credibility proportional to the quality that a Cloudchain
member provides.

We implement the Cloudchain prototype using Solidity and Web3.js which is
available open source in Github1. We further simulated the differential game
using the Gratner’s rating dataset2 where five real-world providers trade their
services. Despite being costlier to transact for cloud-service providers who
request a service rather than supply, the obtained results proved it is economi-
cally justified to adopt Cloudchain.

2 Related Work

The literature about cloud-providers cooperation focuses on federation forma-
tion as coalitional games where capacity and revenue are shared [15]. Coronado
et al. had an intensive investigation on federation-formation variables among
cloud providers, including revenue sharing mechanisms, capacity and cost dis-
parity, and the presence of a big competitor [5]. They defined revenue sharing
mechanisms as the most important factor. Among these mechanisms, shapely
value and outsourcing models had the least and best performance, respectively.
They indicated that collaborating cloud providers can implement a mechanism
in which a provider outsources some of its business and gets a percentage of the
revenue. The outsourcing model allows the provider to keep some of the rev-
enue of its secured business, even though it is not able to fulfill that business
alone. The authors had an insight through the demand peaks and concluded that
cloud providers tend to stay in outsourcing collaboration when the demand is
high. However, interoperability, trust among cloud providers and service quality
or SLA are not considered in their study. The findings from this study con-
firm the superiority of outsourcing in terms of maximizing the profit of cloud
providers, which is what we are proposing in this paper in addition of having the
advantage of coopetition among cloud providers. The fact that providers tend to
collaborate when they face a hike in their demand, reinforces the consideration
of a dynamic and long/short-term federation like Cloudchain. The challenges
of interoperability and trust issues among cloud providers are also addressed
by the blockchain platform we propose in this paper. Another cloud outsourcing
model has been performed by Chen et al. [4] who analyzed the interrelated work-
load factoring and coalition formation game among private clouds. The authors
integrated two types of federations: (1) vertical (outsource workload to pub-
lic clouds), ad (2) horizontal (share resources with other private clouds. Their
experiments found this approach to be promising to improve the cloud’s ser-
vice quality and decrease the delay by 11%. However, their research was limited
to service quality and economic aspects of stable cooperation patterns without

1 https://github.com/kavehbc/Cloudchain.
2 https://www.gartner.com/reviews/market/public-cloud-iaas.

https://github.com/kavehbc/Cloudchain
https://www.gartner.com/reviews/market/public-cloud-iaas

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 149

considering other challenges of a traditional federation explained in the previous
section.

Very few efforts have been made to study the potential of blockchain in
real-world applications despite its great potential for businesses to share data
and collaborate in a secure and customized manner [13]. According to Trac-
tica, a market research firm, the annual revenue for enterprise applications of
blockchain is estimated to increase to $19.9 billion by 2025 [8]. The majority of
studies about blockchain’s application have focused on finance [19], energy [14]
and IoT applications [21]. In cloud computing and service industry, to the best
of our knowledge, there has been only one academic initiative that proposed a
cloud marketplace based on the blockchain technology. Klems et al. designed
Desmaa, a conceptual framework for trustless intermediation in service market-
places using blockchain [9]. This conceptual framework modeled the interactions
between a service provider and a service consumer and tried to overcome prob-
lems of conventional marketplace systems, such as barriers of entry and trans-
action costs. Yet, the outsourcing model with collaboration and competition
among cloud providers themselves are not considered in their research. More-
over, the providers’ profit and the best strategies for utilizing this marketplace
is not elaborated nor modeled. Even though the authors developed a prototype,
no evaluation and validation against real-world’s scenarios were provided.

3 Cloudchain Architecture

Cloudchain incorporates three types of smart contracts including a set of exe-
cutable functions and state variables. Similar contracts are proposed in [1] in
the context of medical data management. Contract 1 (C1) or Cloudchain Reg-
istery (CCR) is a global contract that maps cloud providers identification values
(including Name, Reputation Value, Computing Capacity and Storage Capacity)
to their Ethereum address identities (equivalent to public keys). The reputa-
tion values can be computed from the customers’ ratings given to each provider
through online rating platforms. Policies coded into the contract can regulate
registering new providers or changing the mapping of the existing ones. The cloud
provider registration can be restricted only to certified providers. CCR also maps
identities to the Cloudchain Contract (CCC) address on the blockchain, where
a special contract regarding each provider profile and list of services is recorded.

Contract 2 (C2) denotes Cloudchain Profile (CCP). It holds a list of refer-
ences to CCC, representing all the participants’ previous and current engage-
ments with other nodes in the system. CCP also implements a functionality to
enable provider notifications. Providers should register their requests in this con-
tract. Each transaction list stores a status variable. This indicates whether the
transaction is newly established, awaiting pending updates and has or has not
been completed. This contract is important as it stores the address of all new
CCC contracts, without which Cloudchain can simply lose the track of all the
contracts.

Contract 3 (C3) represents the Cloudchain Contract (CCC). It is issued
between two nodes in the system when one node accepts and provides the

150 M. Taghavi et al.

requested service for the other. The beneficiaries can also complete, or cancel
the contract. Once the contract is completed or canceled, the contract balance
would be transferred to the supplier-, or requester address respectively, and the
contract status would also be updated. There are two approaches to reduce the
size of the data as well as the cost of transactions over Cloudchain. The first
approach is a common practice for data storage in smart contracts and consists
of storing raw data off-chain, and meta-data, small critical data, and hashes
of the raw data on-chain [20]. However, the selection of off-chain data storage
has some concerns regarding the interaction between the blockchain and the off-
chain data storage. The other approach is to provide a common glossary among
cloud providers to define the generic terms and policies to be referred to in the
contract.

CPrSubmit VM requests, SLAi

Submit VM requests, SLA1

Submit VM requests, SLAn

Cl
ou

dc
ha

in

CPs

Miners

(2) Submit a new
request (CCP), deploy a
new CCC, make a
deposit, & set a
reputa on threshold

(1) Create CCR

(5) Update CCC to
confirm the comple on
of contract

(3) No fy about a new CCC

(4) Accept and update its
CCC

Confirm transac ons,
distribute rewards and
add calculate new blocks

Fig. 1. Cloudchain interactions

Figure 1 provides the steps taken by the Cloudchain members to register
and establish their requirements by interacting via Cloudchain. In step 1, a
provider registers in CCR. Each registered user is assigned with a public key
pair. Guaranteed SLA tenants require performance consistency and scale pre-
dictability. When a member faces a computing-resources deficiency to meet its
end users’ demand with guaranteed SLA, it can submit a request for a service
using CCP to deploy a CCC to the blockchain in step 2. Requesters are required
to pay a deposit in advance and it is stored in the contract. Meanwhile, a rule
for providers is set by the requesters to ensure that qualified providers could
ultimately receive the task, e.g. reputation value threshold. Function calls on

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 151

contracts are transactions, and those which update the contract storage need
to be validated by miners. Once a new block is mined with the newly linked
CCC, it would be broadcasted to other nodes in step 3. Through step 4, the first
node that accepts the request should update the respective CCC contract. Each
provider who accepts a task should deposit some coins or its reputation value to
guarantee the quality of the task. The contract termination and delivery of the
requested service have to be confirmed by the service requester in step 5. The
requester is required to rate the supplier based on the received service quality.

4 Cloudchain Members’ Revenue Optimization

A true blockchain-led federation will not happen unless cloud providers are
widely engaged and able to manage the costs and properly play their role. The
use of a differential game [3] is motivated by the need to model the time con-
strained and dynamic strategies of selfish cloud providers willing to maximize
their own revenue. Let us consider two typical cloud providers (CP) over Cloud-
chain, CPr as the provider who is facing a peak time and is going to request
some VMs from other Cloudchain members, and CPs as the Cloudchain member
that has some idle servers and is willing to rent them out with the price offered
by CPr. For simplicity and without losing generality, we will focus on a single
VM type, with φ denoting the capacity and the process rate of VM instances
that can be hosted by a typical CPj that can be CPr or CPs.

To make a request and create a contract, CPr has to define the price of gas
Gr for the created transaction (e.g. 5 gwei). If the price is high enough, the
transaction will be executed sooner, since miners will execute transactions with
the highest gas price first. If the price is set too low, CPr may end up waiting
longer for execution of its transaction and distribution of its request. This waiting
time may degrade the service quality for its users and hinder its profit. On the
other hand, setting a high gas price for every single transaction and update
incurs higher costs. So, the gas price is a decisive factor in profit optimization
and we define it as the control path at time t for CPr, denoted by Gr(t). In this
game, VM price is assumed to be given by CPr. To be qualified to supply a cloud
service, the provider CPs has to maintain a good reputation Rs which is given
based on the quality of service for end users and the quality of collaboration
(e.g. speedy communication) with the cloud provider that requested the service,
CPr. Even though the reputation value is given by CPr and not CPs itself, yet
it has a control over this value through the service quality and gas price of its
own transactions. Therefore, Rs(t) is considered as the control path of CPs to
coopete with CPr within Cloudchain to gain higher profit. Table 1 provides a
summary of the notations used in our model.

In order to capture the demand elasticities and variations specific for each
user, we define the user demand using the Cobb-Douglas function that models
well these elasticity aspects in terms of price and reputation, adopted from [18].
It is assumed that the user will have the opportunity to check the cloud provider

152 M. Taghavi et al.

Table 1. Notations used in Cloudchain

u End user index

r, s ∈ {1, 2, . . . , j, . . . , k} Requester and supplier in the set of k cloud providers in Cloudchain

G Cost of gas

M The amount of the cumulated gas for each block

M
′

The amount of required gas for each transaction

X Number of the transactions occurring over Cloudchain

ω Rate of transactions arrival for a CP in [0 − T]

Γ Rate of the block generation for miners in Cloudchain

φ/φ
′
/φ

′′
Provider’s active/idle/mining capacity

p/p
′

Price per VM for the end user/for the members of Cloudchain

R Reputation value of cloud provider in Cloudchain

Rw Reward value of mining

τ Block propagation time

η Rate of the impact of M over τ

θ̌ Rate of CPr demands rise due to the higher quality services of CPs

θ̂ Rate of D
′
r demands increase due to higher reputation of CPs

ψ Rate of CPr demands increase due to higher gas and higher quality

αu/βu CP price/rating variation for user u

δ Demand decay rate

μ The amount of VMs

C/C
′

Cost of the primary/outsourced capacity

rating that represents the actual user satisfaction level and reputation value
defined through Cloudchain. The user demand function is defined as follows:

Du = μ p−αu Rβu (1)

In the mining race, miners have to compete to solve proof of work and prop-
agate the block to reach consensus. The new blocks’ generation follows a Poisson

process with a constant rate
1
Γ

throughout the whole Cloudchain network [10].
Before the race, miners collect their selected pending transactions into their
blocks with a total gas amount of

∑k
j=1 Mj . When miner j propagates its block

to Cloudchain for consensus, the time for verifying each transaction is affected
by the size of transactions Mj . The first miner j who successfully has its block
achieves consensus will be rewarded based on the amount of the assigned capac-
ity φ

′′
j . Thus, miner j’s expected reward Rwj(φ

′′
j) is:

Rwj(φ
′′
j) = RwjPj(φ

′′
j ,Mj) (2)

where Pj(φ
′′
j ,Mj) is the probability that miner j receives the reward by con-

tributing a block. To win the reward, provider must perform a successful mining
and instant propagation. The miner may fail to obtain the reward if its new
block does not achieve consensus as the first. This kind of mined block that can-
not be added to the blockchain is called orphaned block. The block containing

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 153

a larger size of transactions has a higher chance of becoming orphaned since a
larger block requires more propagation time, thus, causing a higher delay for
consensus. As the arrival of new blocks follows a poisson distribution, miner j’s
orphaning probability, P0

j , can be approximated as:

P
0
j = 1 − exp(− 1

Γ
)τj (3)

Here, we assume miner j’s block propagation time τj is linear with the size of
transactions in its block, τj = Mjηj , where ηj is a constant that reflects the
impact of Mj over τj . Therefore, we obtain the reward probability as follows:

Pj(φ
′′
j ,Mj) = 1 − P

0
j = φ

′′
j e

−
1
Γ

Mjηj

(4)

Substituting Eq. 4 into Eq. 2 provides an estimation of total revenues that CPj

may obtain by attending the mining tournament. To model the transactions’
distribution, we use the compound Poisson process, which is a generalization of
the Poisson process where each arrival is weighted according to a distribution.
The compound Poisson process represents better the transactions dynamics.
In this case, the assumption is that transactions sent to Cloudchain follow a
Poisson process, but the amount of gas they require follows a compound Poisson
process. The reason is that the difference between the amount of gas is based
on the complexity of the transaction, for example, the creation of a contract
requires a much higher amount of gas than updating the contract. Therefore,
the probability of the required gas by Xj transactions occurring in [0−T] follows
an exponential distribution based on the compound Poisson process as follows:

Pj(X) =
e−ωT (ωT)Xj

Xj !
(5)

4.1 Cloud Provider as a Requester

Here we explain the scenario from the perspective of CPr that has to optimize
its profit CPPr while requesting VMs as follows:

CPPr(Gr(t),D
′
r(t), t) = (pr − φr Cr) Dr + (pr − p

′
sφ

′
s)D

′
r(t)

−e−ωT (ωT)Xr

Xr!
M

′
rGr(t) + Rwrφ

′′
r e

−
1
Γ

Mη
(6)

M
′
r represents the amount of required gas that depends on the complexity of the

transaction a provider wants to initiate. The transaction fees go to the miner that
mines the block, so if a provider attends a mining process, it will be rewarded
according to Eqs. 2 and 4. D

′
r(t) is the demand that CPr intends to outsource

to obtain the idle capacity of φ
′
s for a secondary price of p

′
. Considering the

154 M. Taghavi et al.

time-dependent profit functions of CPr in Eq. 6, the objective function is the
total discounted cloud provider’s payoff over the planning horizon [0 − T]:

maximize
∫ T

0

eρt{CPPr(Gr(t),D
′
r(t), t)}dt

subject to Ḋ
′
r(t) = Gβu

r (t)ψr + θ̌Rβu
s (t) − δrD

′
r(t)

D
′
r(0) = D

′
0r (7)

The users’ demands evolution over time is represented as Ḋ
′
r(t) for CPr that

increases when the service quality rises. The service quality is aggregated through
two factors of gas price that CPr pays and the reputation of CPs. The demand
decays at a certain rate of δr. It is important to note that Eq. 7 formulates an
optimal control problem with the gas price as a control variable and the cumula-
tive demand of CPr as a state variable. The analysis of differential games relies
profoundly on the concepts and techniques of optimal control theory [7]. To study
the dynamics of the payoff function and the path of control variable, we leverage
the Hamiltonian systems. Equilibrium strategies in the open-loop structures can
be found by solving a two-point boundary value problem for ordinary differen-
tial equations derived from the Pontryagin maximum principle in Hamiltonian
functions. The Pontryagin maximum principle gives the necessary condition for
a control path to be optimal open-loop control. To acquire the optimal control,
we first formulate the Hamiltonian system of the cloud provider’s payoffs:

Hr(Gr(t),D
′
r(t), λr(t), t) = (pr − φr Cr) Dr(t) + (pr − p

′
sφ

′
s)D

′
r(t)

−e−ωT (ωT)Xr

Xr!
M

′
rGr(t) + Rwrφ

′′
r e

−
1
Γ

Mη

+λr(t)(Gβm
r (t)ψr + θ̌Rβm

s (t) − δrD
′
r(t)) (8)

According to the control theory, the optimal control strategy of the original
problem must also maximize the corresponding Hamiltonian function. Thus,
based on the Pontryagin maximum principle, the candidate optimal strategy
has to satisfy the following necessary conditions:

∂Hr(t)
∂Gr(t)

= −e−ωT (ωT)Xr

Xr!
M

′
r + λr(t)βmGβm−1

r (t)ψr = 0 (9)

λ̇r(t) = ρλr(t) − ∂Hr(t)
∂D′

r(t)
= (ρ + δr)λr(t) − pr + p

′
sφ

′
s, λr(T) = 0 (10)

When only one boundary condition is specified as D
′
r(0) = D

′
0r, the free-end

condition is used as λr = 0 at t = T . The formulated differential equation Eq. 10
can lead us to the adjoint variable:

λr(t) =
pr − p

′
sφ

′
s

ρ + δr
(1 − e(ρ+δr)(t−T)) (11)

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 155

Replacing Eq. 11 in Eq. 9 gives us the optimal gas price control path as follows:

G∗
r(t) = (

M
′
re

−ωT (ωT)Xr (ρ + δr)
Xr!(pr − p′

sφ
′
s)(1 − e(ρ+δr)(t−T))βmψr

)
1

βm−1 (12)

4.2 Cloud Provider as a Supplier

Cloud provider as a supplier has a different scenario. CPs observes the total
demand of its own users, Ds, and the capacity preserved for the mining process
to determine the remaining capacity φ

′
s, to optimize its profit as follows:

CPPs(Rs(t),D
′
r(t), t) = (ps − φs Cs) Ds + (p

′
s − φ

′
s C

′
s)D

′
r(t)

−e−ωT (ωT)Xs

Xs!
M

′
sGs(Rs(t)) + Rwsφ

′′
s e

−
1
Γ

Mη

(13)

G(Rs(t)) denotes the gas cost that the suppliers pay to earn higher reputation for
having prompt communication. Considering the time-dependent profit functions
of CPs in Eq. 13, the objective function is the total discounted cloud provider’s
payoff over the planning horizon [0 − T]:

maximize
∫ T

0

eρt{CPPs(Rs(t),D
′
r(t), t)}dt

subject to Ḋ
′
r(t) = θ̂rRs(t)

βn − δsD
′
r(t)

D
′
r(0) = D

′
0r

(14)

The demand dynamics of CPs is defined based on the demand that it receives
from CPr that evolves with its own reputation and decays at a rate δs. By solving
a corresponding Hamiltonian system of Eq. 14, similar to Eq. 8, the optimal
reputation control path is obtained as follows:

R∗
s(t) = (

M
′
se

−ωT (ωT)XsGs(ρ + δs)

Xs!(p
′
s − φ′

s C ′
s)(1 − e(ρ+δs)(t−T))βnθ̂r

)
1

βn−1 (15)

5 Implementation, Simulation and Discussion

We implemented the coopetitive Cloudchain prototype on Ethereum using Solid-
ity (version 0.4.24), the script language on Ethereum, to test our proposed frame-
work and the effect of gas price and reputation values on cloud providers rev-
enues. This program is available open source in Github (See footnote 1). The
program was written with the main concern of the minimum consumption of gas
per each transaction and was tested using remix3, an online IDE for Solidity.
3 http://remix.ethereum.org/.

http://remix.ethereum.org/

156 M. Taghavi et al.

The gas price unit is in gwei, which is 1× 10−9 ether. Ethereum stores arbitrary
data in smart contracts in two ways. The first option is to store the data as a
variable in a smart contract. The cost of storing data in the contract storage
is based on the number of SSTORE operations on the contract variable. The
second option is to store arbitrary data as a log event. There are also mem-
ory variables such as contract arguments and defined memory variables, which
are not stored permanently inside the contracts. Memory variables are disposed
after the function execution is complete. In our implemented prototype, we used
solidity structures and variables to store provider’s data and requests inside
the contracts. Meanwhile, each transaction is logged with a summary using an
event to make it easily accessible for the other providers (blockchain nodes) to
track new transactions. Once a new transaction with a specific event (e.g. New
Request) is created, other providers can call the contract to get more informa-
tion and/or change contract stored data (e.g. to accept a new request). Calling
a contract and retrieving data are expensive transactions, the stored data as
events can provide enough information without any retrieval cost. The events
are retrieved and filtered using the Web3.js platform to notify the providers on
important changes (e.g. New registration, updates, deactivations, new requests,
etc.) in Cloudchain. CCR and CCP contracts are deployed once, but CCC would
be deployed every time a new request is registered.

Table 2. Provider’s estimated transactions and costs on Cloudchain based on the
proposed scenarios

Amazon EC2 Microsoft Azure Rackspace Century Link Alibaba cloud

Reputation value 88 82 84 60 82

Price per hour (p) 0.0058 0.005 0.084 0.025 0.0125

Price per hour (p
′
) 0.003 0.0025 n/a n/a n/a

Requestsa 0 0 8 15 17

Suppliesa 23 17 0 0 0

Cancellations a 0 0 0 3 2

Total gas 1,290,668 953,972 15,292,736 34,310,286 36,254,668

Gas price (gwei)b 15 15 15 12 11

Gas cost (gwei)c 19,360,020 14,309,580 229,391,040 411,723,432 398,801,348

Gas cost (USD)c $12.06 $8.91 $142.91 $256.50 $248.45

Transaction delay (s)d 27-66 27-66 27-66 27-4000 27-5459
aQuantity bTotal Gas×Gas Price cAverage dTime range of each transaction in seconds

For the sake of representation, we assumed a small number of 5 cloud
providers (Amazon, Microsoft, Rackspace, Alibaba cloud, and Century Link)
using Cloudchain for a duration of 100 days to investigate their economic gain
through the differential game. The scalability of our system for higher number
of cloud providers is not questioned since the Ethereum platform is proven to be
scalable. We simulated Rackspace, Alibaba and Century Link as cloud requesters
who make 8, 17 and 15 requests of service, respectively. Meanwhile, Amazon

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 157

accepts Rackspace and Century Links requests with a reputation threshold of
75, and Microsoft takes Alibaba’s orders, which were set for a minimum reputa-
tion of 85. Due to the limitation of Solidity in defining float numbers, we scaled
the reputation values collected from Gartner to [0–100]. The on-demand cloud
services’ prices are borrowed from the providers’ websites with an assumption
of the secondary price of Amazon and Microsoft to be two times less for the
Cloudchain members. The collected real-world data (e.g. reputation and price),
simulated number of requests and supplies, as well as the simulated results of
total gas consumption, gas price and transactions delays are shown in Table 2.
Since there is no time-dependent profit maximization model similar to our pro-
posal, not even in traditional centralized federations or related experiments to
be compared to, only the results of our model are reported.

In our simulated scenario, three cloud providers of Amazon, Microsoft and
Rackspace are supposed to be miners and collect their rewards. To make the
simulation more realistic, we followed up all the contract transactions from
registering in the Cloudchain up to confirmation of the contract completion,
depositing the payment and assigning a reputation. Century Link and Alibaba
are assumed to cancel their requests for few times after making the contract
before acceptation. As Table 2 depicts, the obtained gas consumptions of cloud
service requesters are much higher than those that answer these requests and
supply these services. This is why Alibaba has the most and Microsoft the least
gas consumption.

Fig. 2. Gas prices of the three cloud
service requesters

Fig. 3. Microsoft’s optimal reputation with
different values of (0.1 ≤ θ̂r ≤ 0.9)

The gas price of Amazon and Microsoft are considered as constant inputs
and they are set to 15. This price guarantees a fast execution of transactions
to avoid tarnishing their reputation and will not impose them huge cost due to
their minimal gas required as the role of suppliers. To estimate the time delay
for each transaction, we tested different prices in different time slots to obtain an

158 M. Taghavi et al.

0

1000000

2000000

3000000

4000000

5000000

6000000

0

20000

40000

60000

80000

100000

Amazon Microso Rackspace Alibaba
Cloud

Century
Link

Pr
ofi

t

De
m

an
d

Demand increment Cloud provider profit

Fig. 4. Average of cloud providers’ profit and demands’ evolution in Nash Equilibrium

approximate range of delay depending on the traffic of the Ethereum network.
The obtained optimal gas prices for the three cloud requesters are shown in

Fig. 2. Alibaba has to pay the minimal price, which is almost 11 gwei for the
whole period of time. This cloud provider has the highest number of requests,
so it is not profitable if it invests more money over gas. With this price, Alibaba
has to pay almost $248.45, at the time of writing this paper. However, because
of the cheap gas price, Alibaba has a delay of 27 to 5459 s for each transaction
(refer to Table 2). Even though high traffic happens not very often, yet, it would
be advisable to predict its demand in advance to avoid the delays that can
cause user dissatisfaction. Century Link also has to pay cheap gas price, but
not as cheap as Alibaba. It is reasonable since this cloud provider has less gas
consumption, higher end-users’ prices and lower reputation. To win the users’
satisfaction proportional to its service’s price, Century Link has to increase the
gas price sharply, to speed up the communication and avoid major delays. Based
on the results, Rackspace has to pay the highest price for the gas among the cloud
requesters. The main reason can be the highest end users’ price, the low amount
of transactions and gas consumption. The participation in the mining process
could also add up to its wealth to afford higher price and higher quality with
minimum delays. It worth to note that even though the gas is costly for all cloud
providers, it is a one-time cost for a permanent storage.

Figure 3 depicts Microsoft’s optimal reputation value during these 100 days
as obtained in our experiment. It is worth mentioning that Amazon showed a
similar pattern. To investigate the behavior of cloud requesters’ demand over
these reputation values, we considered the demand rate θ̂r varying from 0.1 to
0.9. As the effectiveness of reputation over demands’ rate raises, the provider has
to aim for a higher reputation at the beginning to earn the eligibility for more
demands. However, these optimums do not follow the same trend. In the case

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 159

of lower effectiveness, the provider has to increase the service quality and gas
price leading to a higher reputation over time, but as effectiveness gets intense,
the reputation starts to decline. This is where the provider has established its
credibility at first and made the major profit halfway through the period, and
the increase of reputation is not profitable anymore. This confirms that keeping
a high reputation is costly and not always economically justified.

Figure 4 presents a comparative analysis of the average of profit and demands’
evolution for the Cloudchain members. The demands’ evolution Ḋ

′
r(t) for cloud

service suppliers have noticed a higher spike. Yet, interestingly, cloud service
requesters have received a higher profit from Cloudchain due to fulfilling their
initial demand and selling to their own end-users. The cloud service requesters
could obtain cheaper prices from the suppliers and sell at their own prices.
However, it should be noted that they can face the risk of not fulfilling their
commitments to the end-users if none of the suppliers have the required preserved
capacity to rent out. Although it seems that Cloudchain benefits more the cloud
requesters, yet it is not true. The main profit of cloud suppliers is from their own
market and users, and they only rent the partial idle computing resources, which
are not being used. As the number of cloud service requesters elevates, their share
of profit from the outsourced demand and the mining rewards increases.

6 Conclusion

In this paper, we introduced a new distributed blockchain-based framework for
cloud providers federation to overcome the limitations of conventional central-
ized federations. Due to the coopetitive environment of Cloudchain, and high
expense of public smart contracts, we further designed and solved a differen-
tial game. This game modeled the best strategies of cloud providers to make a
request with an optimal transaction cost and time, as well as, to optimize their
reputation value to receive the requests from other providers. Cloudchain was
implemented using Solidity over the Ethereum network and the differential game
was simulated for a sample of five cloud providers during 100 days. The findings
can be summarized from two perspectives of the cloud service requesters and
suppliers. For cloud requesters with a high number of requests, spending high
gas price is not economically appealing. With cheaper gas prices, they might face
some delays in peak times, which needs to be predicted in advance. Although
requesters incurred higher costs from Cloudchain, yet they gained a significantly
high income by outsourcing some parts of their customers’ demands that could
not be fulfilled by their own. The results showed that cloud suppliers have min-
imal gas consumption, which makes it more affordable for them to pay higher
prices and enhance their communication and reputation. Though increasing the
reputation was not always the best strategy for highly reputed cloud providers,
a gradual increase is recommended when the requesters’ demand is not signifi-
cantly impacted. The end-user’s service price is found to be a very decisive factor
in deciding the level of quality and gas/reputation values for both of the cloud
service requesters and suppliers.

160 M. Taghavi et al.

References

1. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: MedRec: using blockchain for
medical data access and permission management. In: International Conference on
Open and Big Data, pp. 25–30 (2016)

2. Bairagi, A.K., Alam, M.G.R., Talukder, A., Nguyen, T.H., Hong, C.S., et al.: An
overlapping coalition formation approach to maximize payoffs in cloud computing
environment. In: 2016 International Conference on Information Networking, pp.
324–329 (2016)

3. Basar, T., Olsder, G.: Dynamic Noncooperative Game Theory, 2nd edn. Society
for Industrial and Applied Mathematics, Philadelphia (1998)

4. Chen, H., An, B., Niyato, D., Soh, Y.C., Miao, C.: Workload factoring and resource
sharing via joint vertical and horizontal cloud federation networks. IEEE J. Sel.
Areas Commun. 35(3), 557–570 (2017)

5. Romero Coronado, J.P., Altmann, J.: Model for incentivizing cloud service feder-
ation. In: Pham, C., Altmann, J., Bañares, J.Á. (eds.) GECON 2017. LNCS, vol.
10537, pp. 233–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68066-8 18

6. Hassan, M.M., Alelaiwi, A., Alamri, A.: A dynamic and efficient coalition forma-
tion game in cloud federation for multimedia applications. In: Proceedings of the
International Conference on Grid Computing and Applications, p. 71 (2015)

7. Hocking, L.M.: Optimal Control: An Introduction to the Theory with Applications.
Oxford University Press, Oxford (1991)

8. Jiao, Y., Wang, P., Niyato, D., Xiong, Z.: Social welfare maximization auc-
tion in edge computing resource allocation for mobile blockchain. arXiv preprint
arXiv:1710.10595 (2017)

9. Klems, M., Eberhardt, J., Tai, S., Härtlein, S., Buchholz, S., Tidjani, A.: Trustless
intermediation in blockchain-based decentralized service marketplaces. In: Max-
imilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 731–739. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
69035-3 53

10. Kraft, D.: Difficulty control for blockchain-based consensus systems. Peer-To-Peer
Netw. Appl. 9(2), 397–413 (2016)

11. Lee, C.A.: Cloud federation management and beyond: requirements, relevant stan-
dards, and gaps. IEEE Cloud Comput. 3(1), 42–49 (2016)

12. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 254–269 (2016)

13. Mendling, J., et al.: Blockchains for business process management-challenges and
opportunities. ACM Trans. Manag. Inf. Syst. 9(1), 4 (2018)

14. Münsing, E., Mather, J., Moura, S.: Blockchains for decentralized optimization of
energy resources in microgrid networks. In: Conference on Control Technology and
Applications, pp. 2164–2171 (2017)

15. Niyato, D., Vasilakos, A.V., Kun, Z.: Resource and revenue sharing with coalition
formation of cloud providers: game theoretic approach. In: 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pp. 215–224 (2011)

16. Ray, B., Saha, A., Khatua, S., Roy, S.: Quality and profit assured trusted cloud
federation formation: game theory based approach. IEEE Trans. Serv. Comput.
(2018). https://doi.org/10.1109/TSC.2018.2833854

https://doi.org/10.1007/978-3-319-68066-8_18
https://doi.org/10.1007/978-3-319-68066-8_18
http://arxiv.org/abs/1710.10595
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1007/978-3-319-69035-3_53
https://doi.org/10.1109/TSC.2018.2833854

Cloudchain: A Blockchain-Based Coopetition Differential Game Model 161

17. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997). https://doi.org/10.5210/fm.v2i9.548

18. Taghavi, M., Bentahar, J., Otrok, H., Wahab, O.A., Mourad, A.: On the effects of
user ratings on the profitability of cloud services. In: International Conference on
Web Services (ICWS), pp. 1–8 (2017)

19. Underwood, S.: Blockchain beyond bitcoin. Commun. ACM 59(11), 15–17 (2016)
20. Xu, X., et al.: A taxonomy of blockchain-based systems for architecture design. In:

International Conference on Software Architecture, pp. 243–252 (2017)
21. Zhang, Y., Wen, J.: The IoT electric business model: using blockchain technology

for the internet of things. Peer-To-Peer Netw. Appl. 10(4), 983–994 (2017)

https://doi.org/10.5210/fm.v2i9.548

Business Services and Processes

Prediction of Invoice Payment Status
in Account Payable Business Process

Tarun Tater(B), Sampath Dechu(B), Senthil Mani(B),
and Chandresh Maurya(B)

IBM Research AI, Bengaluru, India
{ttater03,sampath.dechu,sentmani,cmaurya1}@in.ibm.com

Abstract. Account payables are amount owed to vendors for goods and
services delivered to a company. Vendors raise invoices which go through
several processing steps before they are paid by a company. Companies
have contractual obligations with vendors for paying the invoices within
a stipulated time. Invoices that exceed this time attract penalty and
affect vendor satisfaction to work with the company. It is very critical
for large firms dealing with thousands of vendors for their day to day
operations to meet the service level agreements with vendors to avoid
penalties. Any assistance for practitioners, warning them of potential
invoices that can breach the service level agreements, can help them
in minimizing the penalties. In this research, we model the problem of
identifying delayed invoices as a supervised classification task. There
are three characteristics of this problem which are challenging from a
classification perspective: (i) the status of an invoice is affected by other
invoices that are simultaneously being processed, as there are limited
resources to process the huge volume of invoices, (ii) feature engineering
to capture the temporal aspect of the invoice and having the optimal
representation of the multiple data entries created per invoice, and (iii)
the number of paid late invoices are much smaller in percentage compared
to paid on time invoices in the training data set, hence the classes are
imbalanced. The results obtained by training an ensemble of classifiers
show that penalties can be avoided on more than 82% of the invoices
which are currently being penalized.

Keywords: Account payables · Vendor invoice management
Business process optimization · Predictive monitoring

1 Introduction

Procure to Pay (P2P)1 is a business process that integrates functionalities of
purchasing and Accounts Payables (AP) departments in large enterprises. Invoice
processing is a cumbersome process involving both manual and automated steps.
Vendor raises an invoice once he/she supplies goods/services to a company. It is

1 https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=14508.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 165–180, 2018.
https://doi.org/10.1007/978-3-030-03596-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_11&domain=pdf
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=14508
https://doi.org/10.1007/978-3-030-03596-9_11

166 T. Tater et al.

common for large enterprises to deal with thousands of vendors and pay millions
of invoices per year. Companies have contractual agreements with the vendors
to pay invoices in a stipulated time. Paid Late invoices attract penalties and
strain the relationship between the company and the vendor. In an independent
market research [1] across 500 accounts payable (AP) departments, conducted in
UK in 2015, the top concern expressed by participants was mitigating the paid
late invoices.

An invoice goes through several stages of scrutiny before it gets paid by the
account payables department. Large enterprises have dedicated teams for invoice
processing and payments. These teams are equipped with enterprise work flow
tools such as SAP VIM2 and similar ERP applications to ease the orchestration
of invoice processing, involving multiple levels of sanctity checks to validate
the invoice for payment. Most of the process work flow tools log the actions
performed on the invoice, the actor who performed the actions, start and end
time for every action taken, as change logs or event logs such as those generated
by SAP VIM. Companies have organizational roles such as Functional process
owner, Regional process owner, Global process owner who use these logs to check
on the health of the process, identify bottlenecks and take actions to improve
process efficiency and efficacy. There could be multiple reasons for an invoice to
get delayed for payment:

1. Information Mismatch between Vendor’s provided details & Invoice details.
2. Limited Resources available for processing the invoice leading to high priority

invoices delaying the processing of low priority invoices.
3. Invoice Expiry, which is the number of days remaining for the invoice to be

processed also affects the priority and assignment of resources to process the
invoice.

Identifying invoices which may be delayed is a laborious task due to the
large volume of invoices and their attributes. Some of the mentioned problems
such as information mismatch can be addressed by building software capabilities
like data validation in the invoice management system. However, such valida-
tion which might require re-work by vendors, does not impact the due payment
date of the invoice. Given such constraints, we have approached the problem
of predicting invoices’ status (“Paid late” or “Paid on time”) as a supervised
binary classification task. We consider the invoice details and the logs of actions
taken on an invoice to predict if the invoice is likely to be delayed and flag it for
moderation by concerned people at early stages of processing. This would help
in allocating resources appropriately to minimize the penalties being incurred
due to delayed payments.

Predicting invoice payment status will enable the process owners to take
remedial actions such as prioritizing the invoice for processing or re-negotiating
contracts with vendors. In our scenario, the problem translates to placing greater
emphasis on the paid late invoices. In our dataset, approximately 10.3% of the

2 https://www.opentext.com/what-we-do/products/opentext-suite-for-sap/
opentext-vendor-invoice-management-for-sap-solutions.

https://www.opentext.com/what-we-do/products/opentext-suite-for-sap/opentext-vendor-invoice-management-for-sap-solutions
https://www.opentext.com/what-we-do/products/opentext-suite-for-sap/opentext-vendor-invoice-management-for-sap-solutions

Prediction of Invoice Payment Status in Account Payable Business Process 167

invoices are paid late. We focus on predicting the paid late class (minority class)
with high precision as identifying the wrong invoices for moderation, will affect
the processing of other invoices, resulting in a vicious cycle. Similarly, we need to
have a high recall for the paid late class to avoid penalties on as many invoices as
possible. The metric used for evaluation in related work [16] which is accuracy,
can be misleading [5] in our scenario. For example, if we simply predict all
invoices to be paid on time, then we will report a 90% accuracy, but we would
not have addressed the problem of identifying paid late invoices. So, we use
metrics like precision and recall for the paid late class, and F1-score for the
classifier.

We use an ensemble of classifiers and achieve a precision of 89.3% and recall
of 82.7% on the paid late invoices.

The key contributions of our research are:

1. Using machine learning to predict the payment status of invoices to min-
imize the penalties incurred due to the invoices being delayed. Hence, our
predictions can enable the process owners to pro-actively work on flagged
invoices rather than rely on teams monitoring invoice processes or conduct
time consuming analysis on each invoice.

2. Modeling categorical features in a domain which has historical (temporal)
information as numerical features. This reduces the feature space considerably
(from ∼1900 to 88) in a way that all the unique values in a category are
replaced by few extra columns for each row. Otherwise, if one hot-encoding
or indexing is done on categorical features, it would result in ∼1885 features.

3. We propose and evaluate an ensemble approach for invoice late payment
prediction, encompassing supervised learning algorithms like Random forest
and Boosted Trees which are better suited for categorical features and SVM
and Logistic Classification better suited for numerical data.

We discuss prior art in Sect. 2, methodology in Sect. 3, empirical evaluation in
Sect. 4 and a better way to represent the categorical type features instead of
one-hot encoding for historical analysis of invoices in Sect. 5.

2 Related Work

In this section, we present some related work that has been done in the invoice
prediction domain. Zeng et al. [16] tackle the problem of invoice outcome predic-
tion in Accounts Receivable (AR) case. They formulate the prediction problem as
supervised classification problem and apply the existing classifiers (C4.5, Naive
Bayes etc.) to it. Our work differs from theirs in following ways: (1) we tackle
the problem in the Account Payables (AP) case while they tackle it in the AR
case. Secondly, they report Accuracy as a metric for class-imbalance classifica-
tion problem which is not a suitable metric of choice in this setting. Instead, we
report the metrics which are better suited for class-imbalance setting.

Smirnov et al. [12] models the invoice late payment time by survival analysis
and an ensemble of random survival forest on real data and show that random

168 T. Tater et al.

survival forest performs better when combined with historical data of repeated
debtors. Hu et al. [6] discuss prediction of invoice payment and improvement
in the process of collection. They use various supervised algorithms such as
decision tree, random forest, logistic regression, SVM, and cost-sensitive learning
for prediction and conclude that random forest outperform the other methods.
Additionally, their data set has paid late invoices as the majority class while in
our dataset, paid late is the minority class. Along similar lines, Hu et al. [7] use
supervised learning algorithms for invoice payment prediction.

An important point to note is that all the work discussed in this section solve
the problem of invoice prediction in the AR case. From our literature survey, we
find one work that solves the invoice prediction in the AP case. Younes et al. [15]
attempt to address the problem of invoice processing time, understanding the
delinquent invoices and the impact of delay in the invoice processing. They use
integrated lean-manufacturing and discrete event simulation as the first approach
and Markov chain modeling as the second approach for minimizing the overdue
invoices in the AP case. Lean manufacturing borrows the idea from assembly
line scheduling for managing the invoices and show encouraging results via sim-
ulation. The second approach that uses Markov process theory assumes each
service station as node in the Markov graph and compute the transition prob-
ability from one node to another node as the service time of the invoice. From
a monitoring business processes perspective, Meroni et al. [9] discuss an artifact
based approach. Cabanillas et al. [3] also discuss predictive task monitoring to
signal and control possible misbehaviors at runtime in business processes.

3 Methodology

In this section, we present our approach as illustrated in Fig. 1 to predict the
invoice payment status. We predict the invoice status at 2 logical time steps in
the complete process. One, when the invoice comes in the system, and there is
only invoice specific data present and no process data on that invoice. From a
business process perspective, this would help in flagging an invoice from the start
if its likely to be delayed. This prediction would primarily be based on invoice
specific features like amount, number of days allocated for invoice payment and
vendor details. Another prediction is done three days (variable hyper-parameter)
before the invoice is due. This would flag the invoice if its likely to be delayed
giving enough time to the processing team to expedite the invoice processing.

3.1 Data Preprocessing

We obtained the invoice process data from one of our large clients, which process
around 200 thousand invoices across multiple vendors per month. We had access
to two sets of data - basic invoice details, when it was raised in the system for
processing and the associated change log consisting of all the process actions
taken on the invoice. In total, we had 523147 invoices and associated 3.5M log
data. The invoice value ranged from less than a dollar to ∼236M$. We observed

Prediction of Invoice Payment Status in Account Payable Business Process 169

Fig. 1. Approach to predict late payment of invoices

around 7% of invoices as rated urgent, and around 9% of paid late invoices.
These paid late invoices were occurring for less than 50% of the vendors. The
summary stats of the data set is presented in Table 1, column 2. As illustrated in
Fig. 2(a), there was always a steady flow of urgent invoices across the year, and
the invoices that were paid late were also observed consistently across the time
period (Fig. 2(b)). We now discuss the various data preprocessing techniques
applied:

Fig. 2. Urgent invoices and invoice payment statistics

1. Attributes Filtering: There are 47 attributes describing each invoice with
information regarding vendors, their demographics, raw materials, amount
payable and the deadline for the payment. We removed attributes which
uniquely identify an invoice such as “Document Id”. Also, attributes con-
taining information populated after the invoice was created, which if consid-
ered, could bias the prediction of labels i.e., “Paid Late” or “Paid on Time”

170 T. Tater et al.

Table 1. Summary statistics of our data set

Attribute Before preprocessing After preprocessing

Number of invoices 523147 282622

Number of attributes 47 16

Number of paid late invoices 49835 (9.52%) 29221 (10.33%)

Number of paid on time invoices 473312 (90.5%) 253401 (89.6%)

Number of urgent invoices 7.04% 7.67%

Number of vendors 11532 8527

Number of countries 47 47

Categories of raw materials 10 10

Maximum amount of invoice (in $) 236 million 236 million

Mean amount of invoices (in $) 4352 4180

were filtered. Finally, we removed attributes which did not show any variation
across invoices. This retained 16 out of the initial 47 attributes.

2. Data Points Filtering: We removed data points which had incorrect, mis-
leading or missing values for attributes like “vendor name”, “invoice amount”,
“company code”, “due date” and “posting date”. Also, some invoices had
amount less than 0 which meant that the invoice was a “credit” invoice i.e.
the payment was done before the raw materials were procured. Some invoices
had due date prior to the posting date of the invoice making such invoices
delayed even before the processing had started. Few invoices did not have
matching data in the process logs and hence the information related to the
processing was missing. After removing all such erroneous data points, we
had 282622 invoices. The summary stats of the processed data set is listed in
Table 1, column 3.

3.2 Feature Extraction

In this section we describe the feature engineering approach and the resulting
features extracted to train the classifiers.

As discussed in the introduction, there are several reasons for an invoice to
be delayed. We concentrate on extracting features which tackle all these chal-
lenges. The processing time of an invoice depends on invoice specific attributes
as well as on other invoices which are being processed concurrently, as they are
competing for the same scarce resource (humans for manual tasks). The physi-
cal analogy can be that of vehicular traffic - more cars on the road will strongly
correlate to most of the cars being delayed. Similarly, if there are high number of
invoices in the system at a given time and each requiring multiple steps, this may
create bottleneck at few places in the process leading to delays. On the other
hand, lesser invoices may speed up the processing time. Inspired by Senderovich
et al. [11], we categorize the features broadly based on inter-case and intra-case
invoices:

Prediction of Invoice Payment Status in Account Payable Business Process 171

Table 2. Features & their types used for predicting invoice status

Feature class No. Feature & type Description

Urgent invoices 1 urgent invoices due (int) Number of urgent invoices due on the

day of prediction

2 urgent overall (int) Number of urgent invoices which were

due over the entire duration of an

invoice from “posting date” to “due

date”

Homogeneous invoices 3 load invoices (float) Number of invoices which were posted

between the days of date posting and

due date

4 actions load invoices (float) Number of actions (process steps)

taken on all invoices between the days

of date posting and due date

5 num invoice due previous day (int) Number of invoices that were due the

previous day before an invoice was due

Invoice specific 6 number of days (int) Number of days between date posting

and due date

7 number of working days (float) Number of weekdays between date

posting and due date

8 number of invoices due (float) Number of invoices which are due

when an invoice is posted

9 number of outstanding invoices (float) Number of invoices which are due and

already delayed

10 ratio paid late outstanding (float) Ratio of 8 and 9

11 invoices amount (in dollars) (float) The amount due for this invoice

12 vendor name (category) Vendor name who has submitted the

invoices

13 company code (category) Division of the multi-national

company which requested the material

14 company code country (category) Country of the division of the

multi-national company which

requested the material

15 document type (category) Type of submitted invoice

16 raw material (category) Category type of the raw material

17 commercial area (category) Commercial area of raw material

18 payment terms (category) Terms dictating invoice payment

19 invoice amount bucket (category) Invoice amount bucketed in bins

History dependent 20 paid late invoices (float) Number of invoices which were paid

late before the date posting of an

invoice

21 paid on time invoices (float) Number of invoices which were paid

on time before the date posting of an

invoice

22 ratio paid late paid on time (float) Ratio of 20 and 21

23 percent paid late vendor (float) Percentage of invoices which were

delayed to a vendor till the present

date

Process oriented 24 action (category) The action code taken on the invoice

25 number of actions (int) The total number of actions taken on

the invoice

26 number of days before first action (int) The number of days between the

invoice is raised and first action is

taken on the invoice

172 T. Tater et al.

Inter-case Invoices

– Case #1 Urgent Invoices: Invoices which need to be paid in a day or
two get preference over other invoices. If there are a bulk of such invoices
coming constantly, it will adversely affect the other invoices which were to be
processed and paid. So, we engineer the following two features:

• Number of invoices which were due in 1–2 days(n), 3 days prior to par-
ticular invoice(pi), since these n invoices may delay the processing for pi
invoice. (#urgent invoices due)

• Number of such invoices which were supposed to be paid in 1-2 days(m)
over the complete duration of a particular invoice. (#urgent overall)

– Case #2 Homogeneous Invoices: For invoices other than urgent invoices,
we consider that there is no priority between them. So, at a particular time,
the processing time of an invoice would depend on the number of other
invoices(#load invoices) and the number of actions(#actions load invoices)
being taken on them. It is a representative of the amount of load in the
system when a particular invoice was being processed.

Intra-case Invoices

– Case #3 Invoice Specific: Some invoices may go through a longer pro-
cess then others depending on multiple reasons such as the demograph-
ics, amount(#invoices amount(in $)), information provided or missing, etc.
The processing speed of the invoice will also depend on the number of
days(#no of working days) between the invoice posting date and the due
date. This would mean that different invoices may be treated differently
depending on these criteria. For example: between an invoice which needs
to go through 5 stages and is due in 10 days and another invoice which is due
only after 45 days, the earlier invoice would take precedence to ensure both
the invoices are being paid on time.

– Case #4 History Dependent: We only consider invoices from vendors
who have at-least 10 invoice payment transaction. We had this threshold
since, it represents the importance of the relationship with the vendor based
on the transaction history, and to have enough data points to consider history
dependent features like #percent paid late vendor. We also consider features
which signify historical payment status of all invoices(#paid late invoices and
#paid on time invoices).

– Case #5 Process Oriented: Once the invoice is posted, it goes through
multiple checks and steps before the invoice is paid. As discussed earlier,
we predict the invoice payment status 3 days before it is due. So, we take
into account the type of action(#action) and the total number of actions
(#number of actions) performed on the invoice at the time of prediction.

To summarize, we have 26 features with 17 numerical and 9 categorical types
across the five categories as listed in Table 2.

Prediction of Invoice Payment Status in Account Payable Business Process 173

Table 3. Comprehensive list of various classifiers evaluated in our approach

Classifier Description

SVM A non-probabilistic binary classifier

Logistic classifier Models the probability of the classes using the
logit function

Boosted Tree An ensemble of decision trees using gradient
boosting

Random forest Ensemble of decision trees combining ideas of
random selection of features and bagging

Neural network Trained a neural network with 3–8 layers with
binary cross-entropy loss

Liblinear [4] A classifier for solving large-scale regularized
linear classification problems

Cost-sensitive first-order sparse
online learning (CSFSOL) [13]

Online learning based algorithm for cost-sensitive
learning on large-scale sparse data

BBDT Balanced Bagging Decision Trees

BBLR Balanced Bagging Logistic Regression

BBAB Balanced Bagging Adaboost

BBGB Balanced Bagging Gradient Boosting

3.3 Classifiers Used

We used a supervised learning approach to train the classifiers listed in Table 3.
We evaluated each of these classifiers and used an ensemble on these classifiers to
improve our results as different models will be better suited for different subsets
of data [10]. We discuss the different approaches we evaluated for the ensemble:

1. Stacking [14]: Different classifiers such as Boosted Trees, Logistic classifica-
tion, SVM were trained over the predictions of different classifiers giving each
classifier an equal weight.

2. Plurality Voting (Most voted): The final prediction is the most predicted
value amongst all the classifiers.

3. Weighted Voting: The predictions of each model are weighted according to the
number of correct predictions made by them. So, the weight of each model
is the accuracy the individual model has. This was tried both for overall
accuracy as well as paid late accuracy.

4. Stacking with Confidence: Ensemble was trained on predictions from different
models. Along with the predictions, the confidence scores from each classifier
(wherever possible) are also considered as features.

4 Empirical Evaluation

In this section, we define the metrics and demonstrate the empirical evaluation
of different machine learning models on invoice late payment prediction.

174 T. Tater et al.

4.1 Metrics

Owing to the data imbalance in our case and contrary to the evaluation metrics
used in some of the literature for invoice late payment prediction [16] (mostly
accuracy), we aim to achieve high precision and reasonably high recall on paid
late invoices (minority class) because no action is needed for paid on time
invoices. High precision would mean that most of the invoices our approach labels
as “paid late” are indeed “paid late”. High recall here implies that our approach
is able to detect majority of the invoices which are going to be “paid late”. We
report precision-recall (PR) curve rather than Receiver operating characteristic
(ROC) curve because PR curve does not account for true negatives (TN) (as TN
is not a component of both precision and recall) and would not be affected by
the relative imbalance. The metric used for our evaluation are Precision, Recall,
F1-score, Average precision (AP) score and Area under PR-curve (AUPRC).

4.2 Training

For evaluating our approach, we consider only those invoices which have a min-
imum of 10 days for payment as majority of the invoices (93%) are due only
after 15 or more days from the date of posting. Also, for evaluating, we consider
invoices only from vendors which have more than 10 transactions. This serves
couple of purposes. First, this helps in concentrating on only vendors which are
dependable which in turn implies the importance of the relationship with that
vendor which may be because of the raw materials, cost or other demographics.
Therefore, invoices from such vendors should be given attention to maintain this
relationship. Secondly, it helps us identify additional features that capture the
vendor behavior, e.g. the number of times payment is delayed to a vendor. We
had a approximately 60:20:20 data split across train, test and validation. Since,
our task is time dependent, we don’t split according to approaches such as cross-
validation. We split the data based on time. Invoices which are cleared before a
date are considered for training and after that date in test data. The data split
is shown in Table 4.

Table 4. Data split for evaluating our classifiers

Training Validation Test

Paid on time 165721 41589 46091

Paid late 21112 5109 3200

4.3 Results

As discussed, we make predictions at 2 time steps, once when the invoice is raised
and once 3 days before the due date of the invoice. The precision (P), recall

Prediction of Invoice Payment Status in Account Payable Business Process 175

(R) and F1-score of the classifiers evaluated are listed in Table 5. In summary,
“Boosted Trees” and “Random Forest” performed the best. Although, we did an
extensive parameter search for these models, the recall of “paid late” class was
poor across classifiers. We had 26 derived features out of which 9 were categorical
type. Since, we had ∼1885 categorical values for these 9 categorical features, the
best results were observed for decision tree based models namely random forest
and boosted trees as the decisions at each node are based on values of the
features. Inspired by Avati et al. [2], we tried to address this problem through
Deep Learning. But the results were not satisfactory. Upon further analysis of
results, we figured one of the major reasons could be the explosion of features
while converting categorical features to numerical features. To avoid having an
implicit ordering between the categorical features when converted to numerical
features, the conversion was done using one-hot encoding instead of indexing the
values. This meant that there were ∼1885 binary features out of ∼1900 features.

Table 5. Precision, Recall and F1-score of classifiers evaluated.

Prediction time Method F1-score (%) Paid late (R)
(%)

Paid late
(P) (%)

Prediction when
invoice raised

Boosted Trees 95.84 39.93 91.10

Random forest 95.21 30.25 88.24

Logistic classification 94.69 35.4 67.32

SVM 95.48 36.18 86.41

Neural network 94.38 35.34 61.80

Prediction 3
days before
invoice due

Boosted Trees 96.24 43.87 96.36

Random forest 95.63 37.25 89.08

SVM 95.74 41.71 85.19

Logistic classification 95.16 33.18 72.58

Neural network 95.61 39.78 84.41

5 Extended Feature Set

To tackle the above mentioned feature explosion problem, we devised a better
representation of these categorical features into numerical features based on the
historical information present without resulting in the explosion in feature space.
The representation is based on the intuition about, how these features would
affect or factor into an individual’s analysis while processing these invoices. And
also how the historical data flow about each categorical type feature serves a
meaningful purpose for analysis. Our data comprised of categorical features like
vendor details, country, and other such demographics. So, for each of the 9

176 T. Tater et al.

categorical type features and their values, we derived following features which
is a representation of their influence on payment status. For each invoice, until
the date (d1) of prediction (i.e. 3 days before the due date):

1. n1 - Number of total invoices for particular value of that categorical feature
prior to d1

2. Percentage and number of invoices paid late out of n1

3. Percentage and number of invoices paid on time out of n1.

Further, for vendors, which had the most number of unique values (1459)
among other categorical features, we considered a moving window to accommo-
date seasonality and change in the vendor’s recent history of payment status.
For example: if a vendor has 25 invoices, out of which 20 are paid late and 5 are
paid on time, it might be that the last 5 invoices were paid on time. So, this sea-
sonality was taken into account. We derived more vendor specific features which
accounted for the payment status of vendor’s previous 3 and previous 5 invoices.
So, vendor names(#vendor name) were represented as following features:

– Total number of invoices processed for the vendor prior to a date.
– Percentage and Number of times invoices were paid late and paid on time

for the particular vendor prior to a date. This is to understand the previous
record with a particular vendor.

– Percentage and Number of times invoices paid late and paid on time for the
particular vendor during the last “n” (3, 5) times. (seasonality)

Table 6. Precision (P), Average Precision (AP), Recall (R), and F1-score of classifiers
evaluated with extended feature set.

Method F1-score (%) AP Paid late (R) (%) Paid late (P) (%)

Liblinear 97.58 0.65 64.41 97.59

CSFSOL 98.40 0.77 78.24 96.57

Boosted trees 96.74 0.54 51.96 96.18

Random forest 96.73 0.52 53.46 93.34

Logistic classification 97.56 0.65 68.80 91.50

SVM 97.95 0.70 77.8 89.31

BBDT 96.24 0.49 59.19 77.55

BBLR 97.09 0.64 84.83 74.15

BBAB 96.40 0.54 70.95 72.93

BBGB 98.01 0.72 81.86 86.77

Neural network 96.15 0.50 60.23 78.20

Prediction of Invoice Payment Status in Account Payable Business Process 177

5.1 Experimental Testbed and Settings

In this section, we show the parameters and setting used in all the experi-
ments. For Liblinear, command line options were (-s 5 -B 1 -e 0.001 -c .1 -
w-1 4 -w1 1). That means, we train L1-regularized l2-loss SVM with a bias
of 1 added to the training examples, parameter C is set to 0.1, weights given
to negative and positive examples are 4 and 1 respectively. We train the
SVM until error tolerance falls below 0.001. For training CSFSOL, we vary
the parameter λ and η in the range {0.003, 0.09, 0.3, 1, 2, 4, 8, 16, 32, 64} and
{0.0312, 0.0625, 0.125, 0.25, .5, 1, 2, 4, 8, 16, 32} respectively while weights are set
to (0.1, 0.9) for the negative and positive examples respectively. For training
ensemble of classifiers based on Balanced Bagging approach default settings of
Imblearn python package [8] is used.

For the Ensemble with confidence (SVM) used on all different models, we
performed a grid search on validation dataset, the parameters which worked best
were penalty (SVM) of 0.001 (penalty term on the misclassification loss of the
model), max iterations as 300 and class weights were inversely proportional to
the number of examples in the training data for each class. One of the intuitive
reason behind using the low penalty value was that: for a model, higher the
penalty, the model tries to maximize the margin for correctly classified examples.
But, the aim was to correctly classify as many invoices as possible (Fig. 3).

5.2 Results

In this section, we discuss the result of our empirical evaluation of the methods
used to predict paid late invoices with extended feature set (Table 6). CSFSOL
gave the best result when an individual classifier is considered. The Ensemble
classifier which performed the best was a SVM trained on predictions of all
classifiers along with the confidence score wherever available (Table 7). We would
like to emphasize the fact that F1-score is an overall performance score on both
the classes.

Table 7. Results obtained on different metrics using the various ensemble models. AP
= Average Precision P = Precision, and R = Recall

Method F1-score (%) AP Paid late R (%) Paid late P (%)

Majority voting 96.30 0.46 43.96 98.04

Weighted voting 98.04 0.72 79.28 89.45

Stacking 98.07 0.73 83.46 86.38

Stacking with confidence 98.23 0.75 82.75 89.33

The precision-recall curve shows the relationship between precision and recall
for different thresholds. Our PR curve demonstrates that the Ensemble classifier
with confidence (0.75) and CSFSOL (0.77) are better suited for our task as they

178 T. Tater et al.

Fig. 3. PR curves for best results

have a greater area under the curve. And with 0.77 and 0.75 AP score, both
precision and recall are reasonably good without affecting the other.

6 Discussion and Conclusion

From the results, we can observe that Ensemble with confidence and CSFSOL
outperform other methods in terms of the metrics evaluated.

Table 8. Top 5 Influential Features across classifiers

Feature category No. Feature & type Description

History dependent 1 paidLate vendor 3 (int) Number of times the payment was made late to

a particular vendor out of the previous 3 times

History dependent 2 paid on time vendor 5 (int) Number of times the payment was made on

time to a particular vendor out of the previous

5 times

Inter-case invoices 3 num invoice due previous day (int) Number of invoices that were due the previous

day before an invoice was due

History dependent 4 category paid late 3Days (int) Number of times the payment was made late in

a particular category out of the previous 3

times

Process oriented 5 process id 4 (int) Number of times the step 4 (step id - one of

the steps invoices may go through) was done

on the invoice

Influential Features: The top 5 influential features as shown in Table 8 prove
that historical dependence and seasonality play a major role in deciding whether
an invoice will be “paid on time” or “delayed”. Further, how far the invoice has
been in the process, along with number of concurrent invoices being processed,
also affects the invoice payment status.

Prediction of Invoice Payment Status in Account Payable Business Process 179

Generalizability: Based on our experience, most of the inter-case and intra-
case features used for prediction are expected to be available for any account
payables process, and collecting this data is very much feasible. The analysis,
preprocessing, features or models have nothing specific to the dataset we have
evaluated on. Hence, we can safely argue that most of our features and models
are generalizable for other data sets obtained from client accounts. We are in
the process of evaluating the same with few more client accounts data.

Future Work: Possible future work in this research includes, predicting the
number of days by which an invoice would be delayed, suggesting advancing of
processing of invoices in favor of other invoices such that the penalty (if any)
on late payments is minimized. Also, if the amount of invoice is high, they
should be treated separately since the penalty incurred on the delay would be
higher. Finally, these is scope for identifying which process steps are most time
consuming and provide suggestions on human resource management.

Implementation: We implemented the preprocessing of data using python2.7
and pandas library. Different libraries were used for different classifiers namely
PyTorch for implementing neural networks, liblinear [4] for liblinear, imbalance-
learn [8] for BBDT, BBLR, BBAB & BBGB. We implemented the CSFSOL
algorithm in C++. We used scikit-learn libraries for SVM, logistic classification
and boosted trees. The service to predict the payment status for a new invoice
was hosted on a server using flask which is a python based framework.

References

1. http://www.cimaglobal.com/Documents/Thought leadership docs/white-paper-
hub/2016-04-12-Invoice-Benchmark-Report.pdf. Concur (2016)

2. Avati, A., Jung, K., Harman, S., Downing, L., Ng, A., Shah, N.H.: Improving
palliative care with deep learning. arXiv preprint arXiv:1711.06402 (2017)

3. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task moni-
toring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014.
LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10172-9 31

4. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library
for large linear classification. J. Mach. Learn. Res. 9(Aug), 1871–1874 (2008)

5. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

6. Hu, P.: Predicting and improving invoice-to-cash collection through machine learn-
ing. Ph.D. thesis, Massachusetts Institute of Technology (2015)

7. Hu, W.: Overdue invoice forecasting and data mining. Ph.D. thesis, Massachusetts
Institute of Technology (2016)

8. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017). http://jmlr.org/papers/v18/16-365

9. Meroni, G., Di Ciccio, C., Mendling, J.: An artifact-driven approach to monitor
business processes through real-world objects. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 297–313. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 21

http://www.cimaglobal.com/Documents/Thought_leadership_docs/white-paper-hub/2016-04-12-Invoice-Benchmark-Report.pdf
http://www.cimaglobal.com/Documents/Thought_leadership_docs/white-paper-hub/2016-04-12-Invoice-Benchmark-Report.pdf
http://arxiv.org/abs/1711.06402
https://doi.org/10.1007/978-3-319-10172-9_31
https://doi.org/10.1007/978-3-319-10172-9_31
http://jmlr.org/papers/v18/16-365
https://doi.org/10.1007/978-3-319-69035-3_21

180 T. Tater et al.

10. Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1–2), 1–39 (2010)
11. Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.:

Intra and inter-case features in predictive process monitoring: a tale of two dimen-
sions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445,
pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-
5 18

12. Smirnov, J., et al.: Modelling late invoice payment times using survival analysis
and random forests techniques. Ph.D. thesis (2016)

13. Wang, D., Wu, P., Zhao, P., Hoi, S.C.: A framework of sparse online learning and
its applications. arXiv preprint arXiv:1507.07146 (2015)

14. Wolpert, D.H.: Stacked generalization. Neural Netw. 5(2), 241–259 (1992)
15. Younes, B.: A framework for invoice management in construction. University of

Alberta, Canada (2013)
16. Zeng, S., Melville, P., Lang, C.A., Boier-Martin, I., Murphy, C.: Using predictive

analysis to improve invoice-to-cash collection. In: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1043–1050. ACM (2008)

https://doi.org/10.1007/978-3-319-65000-5_18
https://doi.org/10.1007/978-3-319-65000-5_18
http://arxiv.org/abs/1507.07146

Explaining Non-compliance of Business
Process Models Through Automated

Planning

Fabrizio Maria Maggi1, Andrea Marrella2(B), Giuseppe Capezzuto2,
and Abel Armas Cervantes3

1 University of Tartu, Tartu, Estonia
f.m.maggi@ut.ee

2 Sapienza Università di Roma, Rome, Italy
{marrella,capezzuto}@diag.uniroma1.it

3 The University of Melbourne, Melbourne, Australia
abel.armascervantes@unimelb.edu.au

Abstract. Modern companies execute business processes to deliver
products and services, whose enactment requires to adhere to laws and
regulations. Compliance checking is the task of identifying potential
violations of such requirements prior to process execution. Traditional
approaches to compliance checking employ formal verification techniques
(e.g., model checking) to identify which process paths in a process model
may lead to violations. However, this diagnostics is, in most of the cases,
not rich enough for the user to understand how the process model should
be changed to solve the violations. In this paper, we present an approach
based on finite-state automata manipulation to identify the specific pro-
cess activities that are responsible to cause violations and, in some cases,
suggest reparative actions to be applied to the process model to solve the
violations. We show that our approach can be expressed as a planning
problem in Artificial Intelligence, which can be efficiently solved by state-
of-the-art planners. We report experimental results using synthetic case
studies of increasing complexity to show the scalability of our approach.

1 Introduction

This paper falls within the scope of Business Process Management (BPM), an
active area of research that is based on the observation that each product and/or
service that a company provides to the market is the outcome of a number of
activities [13]. Business processes (BPs) are the key instruments for organizing
such activities and understanding their interrelationships.

BPs are described using process models, which capture the ways in which BP
activities are carried out to accomplish a business objective, often with the help
of an explicit control flow expressed through a suitable graphical notation, such
as the ISO/IEC 19510:2013 standard BPMN. The BPM philosophy is built on
the idea that there always exists a BP model that can be used to automate the

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 181–197, 2018.
https://doi.org/10.1007/978-3-030-03596-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_12

182 F. M. Maggi et al.

BP execution. For this reason, process modeling is recognized as one of the most
important steps in the BPM lifecycle [13], and the modeling task is nowadays
supported by advanced techniques and tools that assist (human) process design-
ers in the definition of the BP model. Nonetheless, despite all efforts, design flaws
in BP models may still occur, and their impact may range from syntactically
incorrect models that cannot be properly executed to catastrophic faults that
yield legal aftermaths [20]. Consequently, a large branch of research in BPM has
focused on devising techniques for BP verification, with the aim of identifying
and fixing errors prior to BP execution.

The bulk of the research on BP verification has been devoted to check
domain-independent correctness criteria that depend exclusively on the structure
of BP models, such as proper termination, absence of deadlocks, etc. (e.g., see
[1,7,17]). However, the design of a BP requires also that its model adheres to sev-
eral existing domain-dependent compliance requirements set by managers, laws,
national and international regulations and standards. For instance, the Italian
Ministry of Economy and Finance enforces rules to control financial processes
in the public sector. The task of identifying potential violations of compliance
requirements in a BP model is known as compliance checking [28].

Existing approaches to compliance checking employ formal verification tech-
niques (e.g., model checking) to explain violations through a path in the BP from
the initial to the error state [6] or by detecting which specific activity [2] or deci-
sion [20] has triggered a violation. However, such techniques do not identify all
the activities of a BP path that can cause violations of compliance requirements.
On the other hand, performing this task in a manual way can be time-consuming
and error-prone since the amount of compliance requirements to be checked, as
well as the number of activities that violate them, can be large.

In this paper, we tackle the above issues by presenting a compliance checking
approach to identify all those activities of a BP model violating compliance
requirements and explaining the causes that lead to the violations. The starting
points of our approach are a BP model represented in BPMN and a list of
compliance requirements expressed as temporal declarative rules with the well-
established declare [25] language, which enjoys formal semantics grounded in
Linear Temporal Logic with finite execution semantics (ltlf) [26]. Then, our
approach leverages the fact that: (i) BPMN models can be converted into Petri
nets [12], which can be automatically unfolded to derive execution paths of the
BP model; and (ii) any ltlf formula φ can be translated into a non-deterministic
finite-state automaton (NFA) that accepts all paths satisfied by φ [10]. Based on
this, we provide a technique, based on NFA manipulations, to detect all activities
in any path of the BP model that violate a formula. We also show that such a
technique can be expressed as a planning problem in Artificial Intelligence (AI),
which can be efficiently solved by state-of-the-art planners.

We have implemented a plug-in of the Apromore BP analytics platform
(cf. http://apromore.org/) that realizes our approach by employing the Fast-
downward planner (cf. http://www.fast-downward.org/) to solve the compli-
ance checking problem. To motivate the employment of planning techniques, we

http://apromore.org/
http://www.fast-downward.org/

Explaining Non-compliance of Business Process Models 183

Fig. 1. BPMN model of the running example (original figure in [13])

performed several experiments that show how the complexity of the problem is
large and that a technique is necessary that can scale up adequately.

The rest of the paper is organized as follows. Section 2 introduces a running
example that will be used to explain our approach. In Sect. 3, we provide the
relevant background necessary to understand the paper. Section 4 presents an
overview of our compliance checking approach, while Sect. 5 discusses how to
reduce the compliance checking problem to a planning problem in AI. Then, in
Sect. 6, we report on experiment results performed on synthetic case studies of
growing complexity that show the scalability of our approach, while, in Sect. 7,
we discuss related work. Finally, in Sect. 8, we conclude the paper.

2 Running Example

Figure 1 shows the BPMN model of a running example taken from [13], which
will be used in the rest of the paper. It describes a BP for claim handling. A
claim is initially created and recorded. Then, a decision is taken on the claim. In
case of acceptance, an offer of benefit is made, the claim discharge is prepared,
and the benefit payment is recorded. Finally, in parallel, the claim is closed
and the outgoing payment is made. In case of rejection, the claim is marked as
“rejected”. After this, it is possible to review the claim rejection, and in case the
claim rejection is not accepted, the claim can be recorded again.

Supposing that this BP is executed in an insurance agency, we can realisti-
cally assume that, due to internal regulations or new governmental rules: (i) the
review of the claim rejection is not allowed anymore; (ii) due to the previous rule,
the rejection of the claim cannot be followed by a new recording; (iii) if the outgo-
ing payment has not been executed, then the claim cannot be closed. Given these
compliance requirements, we want to identify the parts of the BPMN model that
are not compliant, explain the violations and, in some cases, suggest reparative
actions to be applied to the BPMN model to make it compliant with the require-
ments. Note that techniques based on model checking produce a diagnostics
based on counterexamples specifying, for example, that the path 〈Create claim,
Record claim, Decide on claim, Reject claim, Review claim rejection, Record claim,
Decide on claim, Offer benefit, Prepare claim discharge, Record benefit payment,

184 F. M. Maggi et al.

Close claim, Operate ongoing payment〉 is not compliant with the requirements.
However, starting from this information, it is hard to pinpoint what is the reason
why each requirement is violated and what to do to solve such violations.

3 Background

3.1 BPMN and Petri Nets

Many notations have been introduced to represent BPs, such as BPMN, EPC,
YAWL or UML Activity Diagrams [13]. These languages allow process designers
to specify aspects linked to different perspectives, ranging from expressing the
ordering with which activities need to be executed and the mutual exclusions
among activities (control-flow perspective) to modeling the objects manipulated
by activities and the resources allowed to execute them. In this paper, we focus
on the core sub-set of BPMN,1 which is considered the de-facto standard for
modeling BPs. Specifically, to make our approach work, we impose the following
syntactic restrictions: (i) the admissible flow objects for a BPMN model are
activities, start and end events, intermediate events (if they can be translated
into activities), exclusive and parallel gateways, and a flow relation is used to
connect them; (ii) the model provides a finite number of start events and end
events; (iii) any admissible flow object is on a path from a start to an end event.
The use of core BPMN is not a significant limitation, since it realistically allows
us to cover the majority of modeling needs [13].

If, on the one hand, BPMN provides an intuitive way for BPM users to
model BPs, on the other hand, it is characterized by an ambiguous semantics.
Therefore, in order to explain the technical aspects of our approach, we needed
a simple language with clear semantics. For this reason, we opted for Petri nets
(PNs) [24], which provide the formal foundations of the core sub-set of BPMN
[12] and have proven to be adequate for modeling BPs [1]. This is especially
true when the focus is only on the control-flow perspective, which is the case
in this paper. A PN is a directed bipartite graph with two node types: places
(graphically represented by circles) and transitions (graphically represented by
squares) connected via directed arcs. Technically, a PN is a triple (P, T, F) where
P and T are the set of places and transitions, respectively, such that P ∩ T = ∅
and F ⊆ (P × T) ∪ (T × P) is the flow relation.

At any time, places in a PN may contain a discrete number of marks called
tokens, drawn as black dots. Any distribution of tokens over the places, formally
represented by a total mapping M : P �→ N, represents a configuration of the net
called a marking. When PNs are used to represent BPs, transitions are associated
with BP activities, and more specifically to activity labels, and markings indicate
the BP state [1]. Since concrete executions of BPs have a start and an end, PNs
need to be associated with an initial (respectively final) marking, characterized
by the presence of one token in at least one of the starting (respectively ending)
places of the PN and no tokens in any other place. The semantics of a PN defines

1 Notice that our approach can easily be transferred to other BP modeling languages.

Explaining Non-compliance of Business Process Models 185

how transitions route tokens through the net so that they correspond to a BP
execution. Due to page limit, we refer to [1,24] for the semantics of PNs. In this
paper, we focus on 1-bounded PNs (a.k.a. safe PNs), which impose that the
number of tokens in all places is at most 1 in all reachable markings, including
the initial one. Safe PNs are the basis for best practices in BP modeling, and the
behavior allowed by most of real-world BPs can be represented as safe PNs [18].

3.2 Declarative Temporal Rules and Finite State Automata

In order to provide automated support for compliance checking, compliance
requirements need to be expressed in a formal language. This, in turn, allows
for leveraging mature AI techniques. In this work, we focus on rules that can be
expressed using Linear Temporal Logic with finite execution semantics (ltlf).
We refer to [10] for the complete syntax and semantics of ltlf .

Since the direct use of temporal logics is inappropriate for most process
analysts that conduct BP modeling, we decided to use declare [25] for the
specification of compliance requirements. declare is a declarative modeling
language that allows us to describe a set of (temporally extended) rules that
must be satisfied throughout the BP execution. Unlike procedural models, where
all allowed executions must be explicitly represented, in declare, the orderings
of activities are implicitly specified by rules and anything that does not violate
them is possible during execution. The semantics of declare is grounded on
ltlf . A declare model D = (Z, πD) consists of a set of activities Z involved
in a BP and a collection of temporal rules πD defined over such activities.

Among all possible ltlf rules, some specific patterns have been singled out
as particularly meaningful for expressing declare models. For instance, if we
indicate as Rev activity Review claim rejection, absence(Rev) means that activ-
ity Rev cannot ever be performed; if we indicate as Rej activity Reject claim
and as Rec activity Record claim, not succession(Rej,Rec) means that if Rej
is performed, Rec cannot eventually be performed; finally, if we indicate
as Pay activity Operate outgoing payment and as Close activity Close claim,
precedence(Pay,Close) imposes that activity Pay must precede Close.

Given a BPMN model, the problem we want to address in this paper is
to identify and explain all potential violations of declare rules in the model.
To this end, we exploit the well-known equivalence between (regular) languages
and automata: any ltlf formula φ can be associated with a non-deterministic
finite-state automaton (NFA) A that accepts exactly all paths satisfying φ [10].
Formally, such NFA is a tuple A = 〈Σ,Q, q0, δ, F 〉, where: (i) Σ is the input
alphabet ; (ii) Q is the finite set of automaton states ; (iii) q0 ∈ Q is the initial
state; (iv) δ ⊆ Q × Σ × Q is the transition relation; and (v) F ⊆ Q is the set of
final states. Let t = e1 · · · en be a path such that ei ∈ Σ (with 1 ≤ i ≤ n) and
A the NFA associated with an ltlf formula φ. A computation of A on t is a
sequence σ = q0

e1−→ q1 · · · qn−1
en−→ qn such that, for i = 0, . . . , n−1, there exists

a transition qi
ei−→ qi+1 ∈ δ. Since A is non-deterministic, there exist, in general,

many computations of A on the path t. We say that A accepts t if there exists
a computation σ on t such that the last state is final, i.e., belongs to F .

186 F. M. Maggi et al.

3.3 Automated Planning

Planning systems are problem-solving algorithms that operate on explicit rep-
resentations of states and actions [16]. PDDL [15] is the standard Planning
Domain Definition Language; it allows us to formulate a planning problem
P = 〈I,G,PD〉, where I is the description of the initial state of the world,
G is the desired goal state, and PD is the planning domain. A planning domain
PD is built from a set of propositions describing the state of the world (i.e., the
set of propositions that are true) and a set of operators Ω (i.e., actions) that
can be executed. An action schema a ∈ Ω is of the form a = 〈Para,Prea,Effa〉,
where Para is the list of input parameters for a, Prea defines the preconditions
under which a can be executed, and Effa specifies the effects of a on the state
of the world. Both Prea and Effa are stated in terms of propositions in PD,
represented as boolean predicates and numeric fluents.

In recent years, the planning community has developed a plethora of planners
that embed very effective (i.e., scaling up to large problems) search heuristics,
which have been employed to solve collections of challenging problems from sev-
eral Computer Science domains [22]. There exist several forms of planning in
the AI literature. In this paper, we focus on planning techniques characterized
by fully observable and static domains, i.e., we rely on the classical planning
assumption of a “perfect world description” [16]. A solution for a planning prob-
lem is a sequence of operators—a plan—whose execution transforms the initial
state I into a state satisfying the goal G. To find a plan, we represent planning
domains and problems making use of the STRIPS fragment of PDDL 2.1 [15]
enhanced with the numeric features provided by the same language for keeping
track of the costs of planning actions and synthesize plans satisfying pre-specified
metrics.

4 The Approach

Our approach to compliance checking relies on 4 main steps to be performed
in sequence. First of all, in order to be properly enacted, the approach requires
that a process analyst provides as inputs: (i) a BPMN model to be checked for
compliance; (ii) a list of compliance requirements expressed as temporal rules
in declare [25]; (iii) a severity function that assigns non-negative costs to the
detected violations (see also Sect. 5).

With a BPMN model and a set of declare rules as inputs, we rely on
well-established transformation algorithms to convert these representations into
their corresponding formal counterparts. In particular, we first translate the
BPMN model into a PN by leveraging the technique described in [12]. In Fig. 2,
we show the PN derived from the BPMN model of Fig. 1. The black-colored
transitions are invisible transitions, i.e., they do not represent actual pieces of
work, but their introduction is sometimes necessary to properly represent the
process behavior. Then, we generate all the paths allowed by the PN, i.e., all the
complete executions of the PN from the initial to the final marking(s). To this
aim, we compute the complete prefix unfolding [23] of the PN, which provides a

Explaining Non-compliance of Business Process Models 187

Fig. 2. Petri net derived from the BPMN model in Fig. 1

0start 1
Rev

!Rev �

0start 1 2
Rej

!Rej !Rec

Rec

�

0start 12
Pay

Close
!Pay & !Close ��

Fig. 3. Automata derived from the declare rules introduced in Sect. 2: (a)
absence(Rev), (b) not succession(Rej,Rec), (c) precedence(Pay,Close)

finite behavioral representation of the model. Since PNs can contain cycles, i.e.,
infinite paths (possibly of infinite length), we adopt the technique defined in [3]
for computing the unfolding of the PN. This technique truncates the unfolding
once all possible markings of the PN have been observed so that only a finite
number of paths of finite length is generated.

We also translate the ltlf formula φ, associated to each input declare rule,
into a NFA that accepts exactly all paths satisfied by φ, using the technique
developed in [10]. For example, the declare rules defined in Sect. 2 can be
represented with the NFAs shown in Fig. 3.

At this point, we invoke an external planner that is in charge of identifying
the violations of the compliance requirements in any path extracted from the PN.
In particular, the violations are identified both wrt. each individual requirement
(by using the local automata represented in Fig. 3) and wrt. their conjunction
(by using a global automaton given by the product of all the local automata).

We address this problem by resorting to cost-optimal planning, a form of
classical planning where actions have costs, and where a successful plan of min-
imal cost (defined as the sum of the costs of the component actions) has to be
found. The intuition behind our solution is that actions capture wrong/missing
activities (having non-zero costs defined by the severity function) in the execu-
tion path under observation, and the goal is to make the path compliant with
the behavior expressed in the automata at a minimal cost. To this aim, the plan-
ner implements a technique based on NFA manipulations, which is extensively
presented in Sect. 5 together with its encoding in PDDL.

Finally, we visually present to the process analyst the violations of the com-
pliance requirements on the input BPMN model. Figure 4 shows the resulting
visualization of the running example. The figure is a screenshot of a plug-in
implementing the proposed technique available in the Apromore advanced BP

188 F. M. Maggi et al.

START EVENT

Create claim
Exclusive gateway

Review
claim rejecti

on
Reject claim

Exclusive gateway

Decide on
claimRecord claim Offer benefit Prepare claim

discharge
Record
benefit
payment

Operate
outgoing
payment Parallel gateway

Close claim

END EVENT

3/3 traces
require the
deletion of this
task

2/4 traces
require the
deletion of this
task

3/3 traces do
not require any
modification of
this task

4/4 traces do
not require any
modification of
this task

4/4 traces do
not require any
modification of
this task

4/4 traces do
not require any
modification of
this task

2/5 traces
require the
deletion of this
task

5/5 traces do
not require any
modification of
this task

4/4 traces do
not require any
modification of
this task

5/5 traces do
not require any
modification of
this task

Fig. 4. Visualization in Apromore

analytics platform.2 The visualization uses a color coding to suggest the amount
of paths that support a given change. If 100% of paths support the removal of
an activity, then the activity is greyed out; if from 66% to 99% of paths support
this removal, then the activity is highlighted in orange; if from 33% to 66% of
paths support the removal, then the activity is highlighted in yellow. Similarly,
the plug-in shows the percentage of paths supporting the addition of an activity
and, in case all paths agree with the addition, the plug-in suggests to add the
activity to the model. Note that the plug-in provides a way to automatically
repair the model. In particular, the grayed out elements can be removed and the
suggested additions can be confirmed. In the running example, the tool suggests
to remove Review claim rejection, since all paths support this operation, whereas
this is not the case for the violations related to Close claim and Record claim,
since these operations are not supported by all paths.

A screencast showing how the plug-in developed in Apromore works is pub-
licly available at: https://youtu.be/pVcv5DSSt5A.

5 Compliance Checking as Planning

In this section, we first demonstrate that the problem of identifying violations
of compliance requirements in a BP path can be solved with a technique based
on NFA manipulations (Sect. 5.1), and then we show how this technique can be
encoded as a planning problem in PDDL (Sect. 5.2).

5.1 A NFA Manipulations Technique for Compliance Checking

Let us consider a BP path t = 〈e1, ..., ek−1, ek, ek+1, ..., en〉 and an ltlf formula
φ. We are interested in “transforming” t into a new path t̂ that is compliant with
φ. To realize this transformation, we consider two kinds of violations, which can
be caused by wrong or missing activities, respectively. For example, suppose that
ek ∈ t violates φ: ek is said to be wrong wrt. φ, and its deletion from t results
in a new path t̂ = 〈e1, ..., ek−1, ek+1, ..., en〉 that is compliant with φ. Similarly,
a missing activity p can be added to a non-compliant path t at position k (with

2 Apromore is an open source platform, and the code as well as the links to the cloud
versions of Apromore can be found at http://apromore.org/.

https://youtu.be/pVcv5DSSt5A
http://apromore.org/

Explaining Non-compliance of Business Process Models 189

1 ≤ k ≤ n + 1) to make it compliant wrt. φ. After the addition, the resulting
compliant path is t̂ = 〈e1, ..., ek−1, p, ek, ek+1, ..., en〉.

The addition and deletion actions allow us to understand if the reason of a
non-compliance path is due to the absence/presence of missing/wrong activities
in t. Furthermore, these two actions are characterized by two values for the cost
quantifying the severity of the violation found. The final cost of the transfor-
mation will be the sum of the number of deletion multiplied by the deletion
cost plus the number of addition multiplied by the addition cost. Given what
explained above, we can define the compliance checking problem as follows:

Definition 1 (Compliance Checking). Given a BP path t and an ltlf for-
mula φ such that t violates φ, find a path t̂ that satisfies φ and such that the
transformation cost is minimal.

Compliance checking can be addressed by resorting to NFA. To see this,
let t = 〈e1, ..., en〉 be a BP path, φ the ltlf rule to check t against, and
A = 〈Σ,Q, q0, δ, F 〉 the corresponding NFA, which we call the constraint
automaton. From t, we define a further automaton, called the path automa-
ton, T = 〈Σt, Qt, q

t
0, δt, Ft〉, where: (i) Σt = {e1, ..., en}; (ii) Qt = {qt0, . . . , q

t
n}

is a set of n + 1 states; (iii) δt =
⋃

i=0,...,n−1〈qti , ei+1, q
t
i+1〉; (iv) F t = {qtn}. By

construction, T is deterministic and accepts only t.
Next, we augment T and A to make them suitable to our definition of com-

pliance checking, i.e., by adding transitions related to addition and deletion of
activities. From T , we generate the automaton T + = 〈Σ+

t , Qt, q
t
0, δ

+
t , Ft〉, where:

– Σ+
t contains all the activities in Σt, plus: one new activity del p, for all

activities p ∈ Σt; and one new activity add p, for all activities p ∈ Σ ∪ Σt;
– δ+t contains all the transitions in δt, plus: a new transition 〈q, del p, q′〉, for all

transitions 〈q, p, q′〉 ∈ δt; and, for all activities p ∈ Σ ∪ Σt and states q ∈ Qt,
a new transition 〈q, add p, q〉.

For example, if we indicate as Crt activity Create claim, and as Dec activ-
ity Decide on claim, the augmented path automaton T + associated to path
tex = 〈Crt,Rec,Dec,Rej,Rev〉, derived from the BP model of our running exam-
ple, is shown in Fig. 5.

t1start t2 t3 t4 t5 t6
Crt

add *

del Crt

Rec

add *

del Rec

Dec

add *

del Dec

Rej

add *

del Rej

Rev

add *

del Rev

Fig. 5. Example of augmented path automaton

Similarly, from A, we obtain an automaton A+ = 〈Σ+, Q, q0, δ
+, F 〉, such

that: (i) Σ+ contains all the activities in Σ, plus: one new activity add p, for all
activities p ∈ Σ; and one new activity del p, for all activities p ∈ Σ ∪ Σt; and

190 F. M. Maggi et al.

(ii) δ+ contains all the transitions in δ, plus: one new transition 〈q, del p, q〉 for
all q ∈ Q and p ∈ Σ ∪Σt; and one new transition 〈q, add p, q′〉 for all transitions
〈q, p, q′〉 ∈ δ. For instance, the declare rules defined in our running example can
be represented with the three augmented constraint automata shown in Fig. 6.

Intuitively, A+ accepts all paths t̂ that satisfy φ and have been obtained
by adding/removing missing/wrong activities to/from t, with the addi-
tions/deletions explicitly marked. For instance, if we consider path tex and its
augmented path automaton in Fig. 5, neither the constraint automata in Fig. 3
nor their augmented versions in Fig. 6 accept tex. However, if we “repair” tex by
removing Rev at the end, and we explicitly mark the repair with del Rev, then all
the augmented automata accept the new path t̂ex = 〈Crt,Rec,Dec,Rej, del Rev〉.

Thus, given a BP path t and many ltlf rules φ1, . . . , φn, compliance checking
is equivalent to searching for a “repaired path” t̂ accepted by both T + and
A+

1 , . . . ,A+
n (i.e., the augmented constraint automata for all ltlf rules), with a

minimal number of add/delete activities. We next show how to take advantage
of the planning technology to efficiently search for the desired repaired path.

5.2 Encoding in PDDL

In this section, we show how, given a set of augmented constraint automata
A+

1 , ..,A+
n obtained from n ltlf formulas φ1, .., φn, and an augmented path

automaton T + obtained from a path t, we build a cost-optimal planning domain
PD and a problem instance P in PDDL. PD and P can be used to feed any state-
of-the-art planners accepting PDDL 2.1 specification, as discussed in Sect. 3.3. A
solution plan for P amounts to the set of interventions of minimal cost to repair
the path wrt. the ltlf formulas.

Planning Domain. In PD, we provide two abstract types: activity and state.
The first captures the activities involved in a transition between two different
states of a constraint/path automaton. The second is used to uniquely identify
the states of any constraint automaton (through the sub-type automaton state)
and of the path automaton (through the sub-type path state). To capture the
structure of the automata and to monitor their evolution, we defined four domain
propositions as boolean predicates in PD:

0start 1

Rev

!Rev

del*

add Rev

�

0start 1 2

Rej

!Rej

del*

add Rej

!Rec

Rec

del*

add Rec

�

0start 12

Pay

del*
add Payadd Close

Close
!Pay & !Close ��

Fig. 6. Augmented constraint automata for declare rules: (a) absence(Rev), (b) not
succession(Rej,Rec), (c) precedence(Pay,Close)

Explaining Non-compliance of Business Process Models 191

– (path ?t1 - path state ?e - activity ?t2 - path state) holds if there
exists a transition in the path automaton between two states t1 and t2,
being e the activity involved in the transition.

– (automaton ?s1 - automaton state ?e - activity ?s2 - automaton state)

holds if there exists a transition between two states s1 to s2 of a constraint
automaton, being e the activity involved in the transition.

– (cur state ?s - state) holds if s is the current state of a constraint/path
automaton.

– (final state ?s - state) holds if s is a final state of a constraint/path
automaton.

Furthermore, we define a numeric fluent total-cost to keep track of the cost of
the violations. Notice that: (i) in PDDL, parameters are written with a question
mark character ‘?’ in front, and the dash character ‘-’ is used to assign types to
parameters; and (ii) we remain consistent with the PDDL terminology, which
allows for both the values of predicates and fluents to change as a result of the
execution of an action.

Planning actions are used to express the repairs on the original path t. Each
action is characterized by its preconditions and effects, stated in terms of the
domain propositions. In our encoding, we have defined three actions to perform
synchronous moves in the path automaton and in the constraint automata, or
to add/remove activities to/from the path automaton. In the following example,
we suppose that both actions add and del have cost equal to 1. We notice that
their cost can be customized to properly define the severity of a violation.

(:action sync

:parameters (?t1 - path_state ?e - activity ?t2 - path_state)

:precondition (and (cur_state ?t1) (path ?t1 ?e ?t2))

:effect(and (not (cur_state ?t1)) (cur_state ?t2)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))(cur_state ?s2))))))

(:action add (:action del

:parameters (?e - activity) :parameters (?t1 - path_state

:effect (and (increase (total-cost) 1) ?e - activity

(forall (?s1 ?s2 - automaton_state) ?t2 - path_state)

(when (and (cur_state ?s1) :precondition (and (cur_state ?t1)

(automaton ?s1 ?e ?s2)) (path ?t1 ?e ?t2))

(and (not (cur_state ?s1)) :effect(and (increase (total-cost) 1)

(cur_state ?s2)))))) (not (cur_state ?t1))(cur_state ?t2)))

We modeled sync and del in such a way that they can be applied only if there
exists a transition from the current state t1 of the path automaton to a subse-
quent state t2, being e the activity involved in the transition. Notice that, while
del yields a single move in the path automaton, sync yields, in addition, one
move per constraint automaton (all to be performed synchronously). In partic-
ular, a synchronous move is performed in each constraint automaton for which
there exists a transition involving activity e connecting s1 – the current state
of the automaton – to a state s2. Finally, add is performed only for transitions
involving activity e connecting two states of any constraint automaton, with the

192 F. M. Maggi et al.

Table 1. Experimental results: the time (in milliseconds) is the average per path

current state of the path automaton that remains the same after the execution
of the action.
Planning Problem. In P, we first define a finite set of constants required
to properly ground all the domain propositions defined in PD. In our case,
constants correspond to the state and activity instances involved in the path
automaton and in any constraint automaton. Secondly, we define the initial
state of P to capture the exact structure of the path automaton and any con-
straint automaton. This includes the specification of all the existing transitions
that connect two states of the automata. The current state and the final states
of any path/constraint automaton are identified as well. Thirdly, to encode the
goal condition, we first pre-process each constraint automaton by: (i) adding a
new dummy state with no outgoing transitions; (ii) adding a new special action,
executable only in the final states of the original automaton, which makes the
automaton move to the dummy state; and (iii) including in the set of final states
only the dummy state. Then, we define the goal condition as the conjunction
of the final states of the path automaton and of all the constraint automata. In
this way, we avoid using disjunctions in goal formulas, which are not supported
by all planners. Finally, as our purpose is to minimize the total cost of the plan,
P contains the following specification: (:metric minimize (total-cost)).

6 Evaluation

In order to investigate the level of scalability of our planning-based approach, we
performed (with our tool) several synthetic experiments employing BP models
and compliance requirements of increasing complexity. First, we created 4 BPMN

Explaining Non-compliance of Business Process Models 193

models with an increasing number of parallel branches.3 Then, we converted the
BPMN models into Petri nets and unfolded them thus obtaining 1121, 800, 961
and 1025 execution paths of average length 10, 25, 35 and 50, respectively.

Secondly, we defined 3 declare models (having the same alphabet of activ-
ities) containing 5, 10 and 15 rules that are known to be compliant with the
tested BPMN models. Then, to create declare models non-compliant with the
BPMN models, we changed some of the rules in the original declare models by
replacing 1, 3 and 5 rules in each model with their negative counterparts. In this
way, we were able to understand how performance scales up with longer paths
and more declare rules, considering a growing amount of violations. We point
out that real execution paths involve most often less than 50 activities, and com-
pliance requirements with 15 declare rules are considered to be large. So, one
should consider our test not only as a practical one based on realistic settings,
but also as one that is challenging. We used a standard cost function with cost
1 for any step that adds/removes activities to/from the input path, and cost 0
for synchronous moves. We tested our approach on the grounded version of the
problem presented in Sect. 5.2. The experiments were performed with a machine
consisting of a 2,7 GHz Intel Core i5 CPU and 8GB RAM. We configured the
Fast-downward planner, which is integrated in our tool, to employ the A*
searching algorithm to guarantee the optimality of the solution.

The results of our experiments can be seen in Table 1 and Fig. 7. Concerning
the table, for each combination “path length - size of declare model”, the
table reports the search time (averaged over all paths) required by the planner
for checking the compliance of all the rules included in the declare model: (i)
when tested in isolation (column “Search Time (isolated rules)”); and (ii) when
tested as a conjunction (column “Search Time (entire model)”). Notice also that
the rows of the table are split into clusters according to the number of declare
rules violated by any of the tested paths.

By analyzing Table 1 and Fig. 7, some conclusions can be drawn. Regarding
the experiments performed to check the compliance of a path against the indi-
vidual rules included in a declare model, it is evident that the amount of rule
violations has a small influence on the performance, differently from the size of
the declare models and the length of the paths. The latter two factors have
a major influence on the search time, though not in a dramatic way to pre-
clude from practical applicability. Conversely, the tests performed against the
entire declare models suggest that the presence of a large number of violations
becomes the key factor that influences the search time. This is more evident with
the largest declare model consisting of 15 rules. However, the results show that
the approach is feasible for offline reasoning and scales up well when declare
models and paths grow in size.

3 To guarantee the repeatability of our experiments, at https://goo.gl/rwNRw7, we
provide: the instructions to configure and run the tool; the BPMN and declare
models used for the experiments.

https://goo.gl/rwNRw7

194 F. M. Maggi et al.

Fig. 7. Performance of repairing violations through planning

7 Related Work

In the context of process mining, some techniques have approached the problem
of BP model repair based on event logs [4,14,21,27]. These techniques aim at
keeping the repaired model as similar as possible to the original model, while
capturing all the possible behaviors from the event log. Some research works also
exist that use planning techniques to deal with trace alignment in the context of
conformance checking [8,9,19]. Readers should observe that the aforementioned
approaches use event logs, while our approach is able to compare BP models
and temporal rules.

Approaches addressing a problem that is closer to the one we face in this
paper are presented in [6,20]. These approaches provide insights about violations
of temporal rules in BP models through model checking. In [6], the authors use
BPMN-Q to express compliance requirements visually and computational tree
logic (CTL) expressions to formally represent their semantics. Based on these
requirements a counterexample is provided to explain possible discrepancies wrt.
an input BPMN model. As already mentioned, model checkers provide coun-
terexamples to explain non-compliance, but the diagnostics can be difficult to
interpret. In [20], the authors aim at reducing the error paths produced by model
checkers to make their diagnostics more user-friendly. This approach provides the
user with diagnostics to understand the root cause of the violations, but it does
not provide detailed feedback to the user in terms of where each compliance
requirement is violated and why, and what to do to solve the non-compliance.
Instead, we try to provide a richer feedback that can be used to adjust the input
BP model in a semi-automatic way.

Explaining Non-compliance of Business Process Models 195

In [5], the authors introduce a compliance checking approach that identifies 4
pre-defined violation types and, for each of them, generates a resolution strategy
using automated planning. While we adopt a similar technique to the synthesis
of repair strategies, our approach is able to detect violations of any rule that can
be represented as an NFA.

In [11], the authors still deal with compliance checking of a BP model wrt.
temporal rules. However, this work is more focused on finding reparative actions
to be applied to the model to solve the violations. This problem is addressed by
making some assumptions on the input BP model and compliance requirements.
In particular, the input model needs to be a block-structured Workflow net
without loops. In addition, the compliance requirements can be expressed with
a sub-set of declare and the intersection of the set of the behaviors of the
BP model and the set of the behaviors of the declare rules needs to be non-
empty. These assumptions are needed to solve the repair problem, which is, in
general, extremely challenging. In our contribution, we find a different trade-
off in addressing this problem by providing general insights on where and why
a violation occurs and providing only in some specific cases suggestions about
reparative actions. This allows us to relax the assumptions made in [11]. Our
approach can indeed be applied to any safe PN and any compliance requirement
that can be expressed in ltlf .

For a general introduction to the topic of regulatory compliance checking,
the reader is referred to [29].

8 Concluding Remarks

Existing approaches to compliance checking employ verification techniques to
explain violations through counterexamples, which can be extremely unintuitive
in the presence of a large number of violations. Consequently, explaining viola-
tions using counterexamples could not be the most suitable solution to under-
stand how to change BP models to solve non-compliance. To tackle this issue,
in this paper, we have shown how automated planning can be used to efficiently
solve the problem of checking compliance requirements expressed in terms of
ltlf rules, by pointing at the BP activities where compliance is breached.

It is worth noticing that the objective of the evaluation was to stress the
scalability of planning techniques for checking the compliance of single BP paths
and declare models of growing size. However, when BP models include a large
number of parallel gateways and cycles, the number of unfolded BP paths quickly
explodes. As a consequence, part of the complexity moves from the size of BP
paths and declare models to the total amount of BP paths to be checked
for compliance. Therefore, as future work, we aim at improving the presented
technique to make it able to suggest reparative actions in larger sets of paths wrt.
the ones considered in this paper. In addition, we plan to detect non-compliance
that relates to time, resource and data aspects, such as activities that are not
performed by authorized actors or within given deadlines. This problem is far
from being trivial since it is, in general, undecidable. Thus, we need to explore
what kind of expressiveness limitations are required to ensure decidability.

196 F. M. Maggi et al.

Acknowledgments. The work of Fabrizio M. Maggi was supported by the Esto-
nian Research Council Grant IUT20-55. The work of Andrea Marrella was partially
supported by the projects METRICS (Sapienza grant), Social Museum & Smart
Tourism (Italian CTN01 00034 23154), DTC Lazio and Resilience of Metropolitan
Areas (ROMA) (Italian SCN 00064).

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circuits Syst. Comput. 08, 21–66 (1998)

2. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and
verification of properties: an approach based on temporal logic. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg
(2005). https://doi.org/10.1007/11575771 11

3. Armas-Cervantes, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Diagnosing
behavioral differences between business process models: an approach based on event
structures. Inf. Sys. 56, 304–325 (2016)

4. Armas-Cervantes, A., van Beest, N.R.T.P., La Rosa, M., Dumas, M., Garćıa-
Bañuelos, L.: Interactive and incremental business process model repair. In: CoopIS
(2017)

5. Awad, A., Smirnov, S., Weske, M.: Resolution of compliance violation in business
process models: a planning-based approach. In: CoopIS (2009)

6. Awad, A., Weidlich, M., Weske, M.: Visually specifying compliance rules and
explaining their violations for business processes. Vis. Lang. Comput. 22(1), 30–55
(2011)

7. Clempner, J.: Verifying soundness of business processes: a decision process Petri
nets approach. Expert. Syst. Appl. 41(11), 5030–5040 (2014)

8. De Giacomo, G., Maggi, F.M., Marrella, A., Patrizi, F.: On the disruptive effec-
tiveness of automated planning for LTLf-based trace alignment. In: AAAI (2017)

9. De Giacomo, G., Maggi, F.M., Marrella, A., Sardiña, S.: Computing trace align-
ment against declarative process models through planning. In: ICAPS (2016)

10. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. IJCAI
15, 1558–1564 (2015)

11. De Masellis, R., Di Francescomarino, C., Ghidini, C., Lapõnin, A., Maggi, F.M.:
Rule propagation: adapting procedural process models to declarative business rules.
In: EDOC (2017)

12. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

13. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-33143-5

14. Fahland, D., van der Aalst, W.M.P.: Model repair - aligning process models to
reality. Inf. Syst. 47, 220–243 (2015)

15. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. J. Artif. Intell. Res. (JAIR) 20, 61–124 (2003)

16. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning: Theory and Practice.
MK, Burlington (2004)

17. Kheldoun, A., Barkaoui, K., Ioualalen, M.: Formal verification of complex business
processes based on high-level Petri nets. Inf. Sci. 385, 39–54 (2017)

https://doi.org/10.1007/11575771_11
https://doi.org/10.1007/978-3-642-33143-5
https://doi.org/10.1007/978-3-642-33143-5

Explaining Non-compliance of Business Process Models 197

18. Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of
control flow in workflows. Acta Inform. 39(3), 143–209 (2003)

19. de Leoni, M., Marrella, A.: Aligning real process executions and prescriptive process
models through automated planning. Expert. Syst. Appl. 82, 162–183 (2017)

20. Lohmann, N., Fahland, D.: Where Did I Go Wrong? Explaining errors in business
explaining errors in business. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014.
LNCS, vol. 8659, pp. 283–300. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10172-9 18

21. Maggi, F.M., Corapi, D., Russo, A., Lupu, E., Visaggio, G.: Revising process mod-
els through inductive learning. In: zur Muehlen, M., Su, J. (eds.) BPM 2010.
LNBIP, vol. 66, pp. 182–193. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20511-8 16

22. Marrella, A.: What automated planning can do for business process manage-
ment. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 7–19.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74030-0 1

23. McMillan, K.L., Probst, D.K.: A technique of state space search based on unfolding.
Form. Methods Syst. Des. 6(1), 45–65 (1995)

24. Murata, T.: Petri nets: properties, analysis and applications. In: IEEE (1989)
25. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for

loosely-structured processes. In: EDOC, pp. 287–300 (2007)
26. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science

(1977)
27. Polyvyanyy, A., van der Aalst, W.M.P., ter Hofstede, A.H.M., Wynn, M.T.:

Impact-driven process model repair. ACM Trans. Softw. Eng. Methodol. 25(4),
1–60 (2016)

28. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75183-0 12

29. Sadiq, S., Governatori, G.: Managing regulatory compliance in business processes.
In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Manage-
ment 2. IHIS, pp. 265–288. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-642-45103-4 11

https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/978-3-319-10172-9_18
https://doi.org/10.1007/978-3-642-20511-8_16
https://doi.org/10.1007/978-3-642-20511-8_16
https://doi.org/10.1007/978-3-319-74030-0_1
https://doi.org/10.1007/978-3-540-75183-0_12
https://doi.org/10.1007/978-3-540-75183-0_12
https://doi.org/10.1007/978-3-642-45103-4_11
https://doi.org/10.1007/978-3-642-45103-4_11

A Genetic Algorithm for Cost-Aware
Business Processes Execution in the

Cloud

Guillaume Rosinosky(B), Samir Youcef, and François Charoy

Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
{guillaume.rosinosky,samir.youcef,francois.charoy}@loria.fr

Abstract. With the generalization of the Cloud, software providers can
distribute their software as a service without investing in large infras-
tructure. However, without an effective resource allocation method, their
operation cost can grow quickly, hindering the profitability of the ser-
vice. This is the case for BPM as a Service providers that want to handle
hundreds of customers with a given quality of service. Since there are
variations in the needed load and in the number of users of the service,
the allocation and scheduling methods must be able to adjust the cloud
resource quantity and size, and the distribution of customers on these
resources. In this paper, we present a cost optimization model and an
heuristic based on genetic algorithms to adjust resource allocation to the
needs of a set of customers with varying BPM task throughput. Experi-
mentations using realistic customer loads and cloud resources capacities
show the gain of these methods compared to previous approaches. Results
show that using our algorithm on split groups of customers can provide
even better results.

Keywords: BPM · Elasticity · Cloud · Optimization

1 Introduction

Consuming “Business Process Management as a Service” (BPMaaS) offer ben-
efits that IT people widely acknowledge. It reduces the operational burden and
allows to rely on the provider for the maintenance and provisioning of the service.
However, from the BPMaaS provider point of view, it increases the operational
complexity. The provider must ensure that all his customers receive the same
attention and a defined quality of service at all time. He must also ensure that
it operates at the best possible cost.

A Business Process Management System (BPMS) deployment is complex:
it requires application servers, process engines and database management sys-
tems. Clustered installations requiring load balancers can also be deployed for
high availability. Each customer has a different usage pattern and the number of
tasks to execute evolves constantly. Each cloud compute resource is costly and
has a capacity corresponding to its CPU, memory, storage and network speed,
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 198–212, 2018.
https://doi.org/10.1007/978-3-030-03596-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_13

A Genetic Algorithm for Cost-Aware Business Processes Execution 199

for a defined response time. In order to maintain an optimal infrastructure cost,
processes executions must be distributed on different cloud resources. Figure 1
shows an example with two customers (or tenants). They require different capac-
ity at each hour. We want to allocate the cheaper Cloud resources and distribute
the process execution of tenants on these resources to optimize the operational
cost.

Fig. 1. Multi tenant resource allocation and distribution tenants

In order to optimize resource usage, we must sometimes migrate tenants from
an installation to another. In Fig. 1, at time 5, tenant 1 is moved on the same
resource as tenant 2 because both require less capacity and fit on this resource.
A migration generates disruption of service on the customer side. We must stop
the processes and move the data from one installation to the other [1]. We must
find the best distribution of tenants on resources for each interval of time while
controlling the number of migrations for each tenant. This problem becomes
complex for a high numbers of tenants.

We propose an integer linear programming (ILP) model and a genetic algo-
rithm that aims at finding the best allocation strategy while limiting the number
of migrations per tenant. We improve our previous results [2] with a method that
provides a better cost elasticity.

In the next section, we describe our migration strategy model, our genetic
algorithm approach coupled to a solving of our model, and our previous iter-
ative heuristic. We then study experimental results on both of the approaches
compared to a baseline approach. We also show how we achieve interesting exper-
imental results. Then, we compare our results with the state of the art. The last
part concludes and presents our future work.

200 G. Rosinosky et al.

2 A Migration Strategy Based Model

In this Section we present the context for BPMaaS, our hypothesis and our
method to optimize resource cost. This can be seen as a resource allocation
problem with a constraint regarding the number of reallocations. Moving a ten-
ant from a resource to another generates a service disruption. We want to limit
their number to ensure stable quality of service for the customers. Thus, one of
our problems is to find the right time to move tenants. We call it the migration
strategy.

2.1 Context and Constraints

Our approach is tenant-centric. All customers (tenants) processes are executed
on the same BPMS installation. It is easier to manage deployments by customers
rather than by processes. Customer processes share business data and security
configuration that we need to manage together. Our assumptions are the follow-
ing:

BPMS Do Not Scale Infinitely. There is no such thing as an infinitely scal-
able BPMS installation. Even clustered installation reach a limit due to the
transactional nature of the database interactions. Thus, we use several BPMS
installations. In our approach, we assume our tenants can fit on the “bigger”
resource available.

Provisioning and Deprovisioning Takes Time. We cannot change instantly ten-
ant distribution, as computing instances instantiation, software installation, and
data migration takes time. Thus we compute resource allocation in a discretized
manner at fixed time interval or time slot. A time slot is a significant period of
time for the provider: it could be a few seconds or an hour.

A Tenant Is a Customer of the BPMaaS. Tenants run BPM processes composed
of tasks. To execute them, the BPMS needs computing power, network band-
width, disk and memory. It relies on separated compute instances for database
systems for data persistence, and load balancers for clustered installations.

Task Throughput Is Our Performance Metric. It corresponds to the number of
BPM tasks executed for one period of time (e.g. per second). This metric is
meaningful for the customers.

Our Approach Is Offline. We assume we know the required BPM task through-
put for each tenant and each time slot.

A Cloud Resource Has a Capacity Expressed in BPM Task Throughput. A cloud
resource (or resource) is one or several cloud compute instances that we use for
the database tier, BPM system tier, load balancer tier, etc. It supports a full
BPMS installation. A cloud resource can host several tenants. In our case, we
assume a tenant fits on one resource: tenants won’t be distributed on several
cloud resources.

A Genetic Algorithm for Cost-Aware Business Processes Execution 201

The Number of Migrations Must be Limited. We name migration the action
of moving a tenant data and processes from one cloud resource to another. It
requires the target cloud resource to be up and running. This action takes time
to be executed. If all tenants of a cloud resource are migrated, it can be released.
Migrations generate QoS breaks for the customers [1]. We limit their number for
each tenant depending on the Service Level Agreement.

Without an optimization method, a solution to allocate tenant to resources
would be to allocate each tenant on a resource that supports its maximum task
throughput. We call this solution, baseline method. This method is often used in
production, but can become very expensive.

We proposed in [2] a method based on an iterative heuristic and time series
segmentation. It computes the list of necessary cloud resources and a mapping
of tenants on each resource, time slot per time slot. We present it in the next
Section.

2.2 Allocation with an Iterative Heuristic and Time Series
Segmentation

In this part, we recall briefly our previous method [2]. It has two parts: first,
we choose a migration strategy i.e the time slots where each tenant can migrate,
and, second, we apply a heuristic using resources prices and capacity, tenants
needs, and their migration strategy in order to obtain the cloud resources and
the placement of tenants.

Fig. 2. Example of a migration strategy (Color figure online)

For the first part, a time series segmentation [3] allows to select good migra-
tion times for each tenant. We present in Fig. 2 two examples of migration strate-
gies, in red for two tenants. In this figure, Tenant 1 can only be migrated at the
end of time slots 1 and 4. For Tenant 2, it is time slots 2 and 3. This means both
tenants will be migrated at most 2 times. They will stay on their origin resource
if there is no migration authorization.

For the second part, our iterative timeslot heuristic is based on Variable Cost
and Size bin packing in which we added repacking steps. It takes as input the
tenant throughput by timeslot, the cloud resource prices and capacity, and the
migration strategies for the tenants.

202 G. Rosinosky et al.

This coupled approach provides better results than the baseline approach.
Still, the comparison with the solution computed with a solver showed that it is
far from the optimal cost. It is possible to enhance this solution. We propose to
use a genetic algorithm to find migration strategies that reduce the resource cost,
and propose an alternative to the iterative timeslot heuristic based on integer
linear programming. We present this model in the next Section.

2.3 An Efficient Model for Migration Strategies

Our problem is to find resource and tenant distributions for each time slot, for
given tenants’ loads, resource prices and capacity, and migration strategy. The
model we propose answers to this problem. Our model principle is based on the
absence of tenant migration when there no authorization to move. In this case,
simple placement constraints should exist, and no constraint exist when there is
an authorization to move in the migration strategy.

Let the following variables:

– T , the set of cloud resource types, with t its cardinality.
– I, the set of tenants with n its cardinality.
– J , is T ×I the set of all possible cloud resources associated with each tenant.

Its cardinality is m = t × n.
– Cj , and Wj represent respectively the cost and the capacity in terms of BPM

task throughput for the configuration j, with j in J .
– wi(k), the required capacity in terms of BPM task throughput for the tenant
i during time slot k.

– K defines all the time slots, from 0 to D, where D + 1 is the number of time
slots.

– xj
i(k), the assignment of tenant i to configuration instance j during time slot

k.
– yj(k), the activation of configuration j during time slot k.
– M , the maximum number of migrations of tenants between cloud resources

on all time slots.
– hi(k) with 0 ≤ k ≤ D − 1. hi(k) is equal to 0 if the tenant i is not allowed to

be migrated between time slot k and k+1, and equal to 1, if it is allowed. The
set of all hi(k) (for each tenant and each time slot) is a migration strategy.

– migration strategies assume the maximum number of migrations allowed per
tenant: ∀i ∈ I

∑k∈K
k hi(k) = M where M is the number of migrations. This

number depends on the SLA.

The objective is to minimize the total cost for all active cloud resources, for
each time slot, as shows Eq. 1.

min
j∈J∑

j

k∈K∑

k

Cjyj(k) (1)

A Genetic Algorithm for Cost-Aware Business Processes Execution 203

We must ensure that the following constraints are enforced:

∀i ∈ I,∀k ∈ K
j∈J∑

j

xj
i(k) = 1 (2)

∀j ∈ J ,∀k ∈ K
i∈I∑

i

wi(k)xj
i(k) ≤ Wjyj(k) (3)

∀j ∈ J ,∀i ∈ I,∀k ∈ K|hi(k) = 0, xj
i(k) = xj

i(k + 1) (4)

∀i ∈ I,∀j ∈ J ,∀k ∈ K, xi
j(k) ∈ {0, 1}, yj(k) ∈ {0, 1} (5)

Equation 2 represents the obligation for a tenant to be placed at each time
slot on an active cloud resource. Equation 3 means that the sum of the required
capacity for each tenant on one cloud resource cannot exceed the capacity of the
cloud resource. Equation 5 represents the variables we use. Equation 4 represent
the migration strategy. The equality constraint means that for a tenant i and
a time slot k, assignation values xi

j(k) will stay the same on time slots k and
k + 1. When a tenant is authorized to migrate between resources, there is no
constraint for this tenant. Generalizing this on all resources produces the desired
effect: tenants will be migrated from one resource to another only during the time
slots specified by the migration strategy. The pre-defined migration strategy is
symbolized here by the variable hi(k).

Finding cheap migrations strategies is primordial in our approach. This is
the goal of our genetic algorithm. We present it in the following Section.

2.4 Cost Optimization via Genetic Algorithms

A genetic algorithm is a well known meta-heuristic belonging to the family of
evolutionary algorithms, and inspired by natural selection [4]. Its principle is
to produce directed random evolutions on a population of individuals until it
obtains one or several individuals with a good fitness value. Individuals are
usually vectors of boolean values, whose corresponding fitness can be evaluated.
Iterations are triggered until an end condition is reached.

We want to find the best migration strategy for all the tenants and time
slots. Figure 3 shows our approach. The general principle is to use our iterative
time slot heuristic (or the restricted model we have described in the previous
Section) for evaluating migration strategies, until we find the best. To represent
an individual, we vectorize a migration strategy by concatenating migration
strategies of each |I| tenants (each one corresponding to a vector of D boolean
values, D+1 being the number of studied time slots). The size of the vector will
be D × |I|, with each element being equal to zero or one. For instance with two
tenants and three time slots, the first migrating on the second time slot and the
second tenant on the third time slot, we will have the following representation:[
0 1 0 0 0 1

]
.

204 G. Rosinosky et al.

Fig. 3. A genetic algorithm to find better strategies

The reader will find in Fig. 4 a brief description of the different steps of a
genetic algorithm. Compared to the traditional approach, we have switched the
mutation phase and the crossover phase. The co-hosted mutation requires to
know the cost of the migration strategy in the population. We compute the
cost in the fitness evaluation phase. The crossover phase generates potentially
unknown (not yet computed) migration strategies. Thus, we do it after the muta-
tion phase. In our case, “parents” are mutated instead of the offspring. In the
following, we describe the solution we designed.

Population Initialization. We initialize the population with several segmenta-
tion algorithm combinations (as we described in Sect. 2.2), and with random
individuals with the correct number of migrations for each tenant.

Fitness Evaluation. We want to find the migration strategies that produces
the lowest cost. The fitness score corresponds to the total cost of all the active
resources on the time slots. To evaluate it on the different individuals, we com-
pute the cloud resources allocation and placement of the tenants on it. In our
case, we run our iterative time slot heuristic [2] or a solver on our model pre-
sented in Sect. 2.4, for each individual (migration strategy) we need to evaluate.

A Genetic Algorithm for Cost-Aware Business Processes Execution 205

Fig. 4. Genetic algorithm phases

We keep the cloud resources and tenants assignation distribution in memory for
the next steps, and the fitness score.

Termination Condition. We use a time limit termination condition. This allow
us to compare different solutions based on this limit.

Parent Selection. For this step, we use a classical rank selection strategy. We sort
the population by fitness and we select randomly, and with a higher priority, the
individuals with the higher rank (lower fitness or price in our case) for parents.

A Specific Mutation: Co-hosted Tenant Migration Mutation Strategy.
In classic approaches, mutation updates randomly individuals, depending on a
mutation rate, switching scalar values from zero to one or the other way around
[4]. Here, the goal is to generate brand new individuals in the population, with
non tested configurations. In our case, we cannot use a totally random approach,
as the number of migrations for each tenant is bounded. However, even a ran-
domized approach keeping a fixed number of migrations will not provide the
desired effects as we can see on the left side of Fig. 5. We have noticed that most
of the times, resources are not liberated as only one of their tenants is autho-
rized to migrate. It limits the savings of resources liberation. We developed an
alternative mutation more suited to our problem.

It consists in shifting the authorization to migrate for each co-hosted tenant
at the indicated time slot for the reference tenant’s resource. To achieve this goal,
for each tenant, we browse the past time slots until we find an authorization to
migrate or until we reach the beginning of the time slot space. If we find one, we
set it to zero while setting to one the “destination” time slot. If the “destination”
time slot is already set to one, we ignore this behavior. The example on the
right side of Fig. 5 describes this principle. There, it is possible to migrate all
the tenants of resource R1 to the cheaper resource R2, and thus reduce costs1.

1 The simple approach on the left of Fig. 5 keeps tenants on resource R1, it can never
be freed.

206 G. Rosinosky et al.

Fig. 5. Basic tenant mutation vs cohosted mutation

Specific Offspring Generation: The Tenant Crossover Strategy. The crossover
phase consists in randomly mixing individuals (parents) of the current popula-
tion in order to generate new individuals (children) having characteristics of both
parents. The crossover technique that we use consists in switching the migration
time of random tenants. First, two children identical to two migration strategies
parents are generated. Then, depending on the number of tenants specified, each
one will see its migration times switched in the children.

Generational Replacement. We replace the entire population with the offsprings,
except for the best individuals from the original population (named elites). They
replace the less fit offspring in the future population.

In the next Section, we present our experiments and the results.

3 Experimentation

We have conduct tests with the cloud resource prices and sizes, and the seeds
of our previous work [2]. We consider 12 configurations, each composed of two
Amazon Web Services compute resources: one database resource (RDS) for the
database, and one compute instance (EC2) for the application server. Prices are
comprised between 0.177$ per hour for a BPM task throughput of 16.4 tasks per
second, and 4.126$ per hour for a BPM task throughput of 129.279 tasks per
second.

For the customer part, we vary the number of tenants (10, 25, 50 and 100),
and we use different throughputs in terms of BPM task per second. These
throughputs are based on usage of anonymous customers of the BPMS Bonita2.
We consider 6 configurations, needing a throughput respectively between 1 and
120, 14 and 16, 0 and 120, 1 and 3, 5 and 120, and 0 and 43.

We generate each tenant’s initial time slot throughput randomly following an
uniform distribution between the two throughputs. Our next step is to generate
2 http://www.bonitasoft.com/.
3 The data and the results are available at: https://doi.org/10.5281/zenodo.1173617.

The source code of the framework is not public, except for the segmentation library,
available at https://github.com/guillaumerosinosky/Segmentation/.

http://www.bonitasoft.com/
https://doi.org/10.5281/zenodo.1173617
https://github.com/guillaumerosinosky/Segmentation/

A Genetic Algorithm for Cost-Aware Business Processes Execution 207

the variation of throughput between time slots by adding or removing a random
value limited to one quarter of the difference between the maximum and the
minimum throughput. For our experiments, we used the Python library Inspyred
[5] for the genetic algorithm that integrated well with our environment.

Experiment Parameters. In order to obtain significant and realistic results, we
used the following parameters:

– each test is launched for 10 different random seeds (i.e tenants’ loads)
– a time slot size of one hour, as it was the reference duration of AWS cost

model for computing instances at the time of the experiment.
– we choose to consider 4 migrations per day. A migration produces an inter-

ruption of around 10 s depending on the quantity of data.
– we consider a 2 days period (thus limiting migrations to 8, for 48 time slots).
– we consider the following parameters for the genetic algorithm: the number

of elites individuals to 5, a mutation rate of 0.4, a population size of 20, a
number of mutation points corresponding to the number of tenants divided
by 5. These parameters were chosen following tests on multiple values for a
limited number of seeds each. Details on this choice cannot be included for
space restriction reasons.

– we limit the genetic algorithm computation to 600 or 1800 s and the solver
computation time to 5 s.

3.1 Results

Fig. 6. Mean genetic algorithm gain on best initial segmented population for 600 s of
running time (Color figure online)

In Fig. 6, we show the relative gain of this approach compared to our previous
approach (segmented approach) in red (in the upper part of the figure), and to
a baseline approach in blue (in the lower part of the figure). The gain is better

208 G. Rosinosky et al.

for 10 tenants than for 100 tenants since the system has more time to search for
the cheapest solution. For 10 tenants, we obtain more than 10% enhancement
compared to the previous approach, and more than 45% compared to the baseline
approach. However for 100 tenants, we have only a 1% enhancement.

It appears that either the iterative usage of the heuristic, the genetic algo-
rithm or the two of them is more efficient for a small number of tenants for the
same number of generations. This is why we conducted experiments where we
apply the proposition to subsets of the tenants and we aggregated the results as
described in the next Subsection.

3.2 The Splitting Strategy

For this solution, we split the set of tenants into small groups selected randomly.
We have tested different size of groups with various number of tenants and we
applied the previous method keeping the same total computation time. Figure 7
shows the results we obtained with the genetic algorithm and the iterative heuris-
tic. The x axis corresponds to the size of the groups of tenants. The y axis shows
the relative gain compared to the results with no partition. A subset size with
the same size as the number of tenants corresponds to no split, the gain is zero.

Fig. 7. Gain depending on splitting strategy for various split quantities.

We obtain the best results with partitions of 5 tenants in all cases. For the
experiments we ran, the gain varies from 5% to 15%. We have no good expla-
nation for this result that we can reproduce. Our tests with the solver give the

A Genetic Algorithm for Cost-Aware Business Processes Execution 209

same results for the size of the groups as with the heuristic. In the next Section
we present our results with groups of 5 tenants.

3.3 Results for Solver and Iterative Heuristic

We implemented our model (presented in Subsect. 2.4) using the optimization
library PuLP4 with the Gurobi solver5. For execution time and cost reasons,
we were not able to test every set of parameters. For instance, with our current
implementation, we managed to obtain results with the solver only up to a size
of 25 tenants for the partition. Indeed, the duration of the initialization part
and the required memory makes it impossible to run with more tenants. Thus
we have limited our tests to parts of 5 tenants, for a total of 50 and 100 tenants.
As we can see, the results stay close to the results of the heuristic. Figure 8 shows
the absolute gain we obtained, and the corresponding percentage compared to
the baseline approach cost, for 600 s and 1800 s of running time. We also present
the non-split result for the segmented approach (results of the previous paper),
and the split segmented approach where we apply time series segmentation on
the groups of 5 tenants instead of all the tenants simultaneously.

Fig. 8. Mean cost comparison for 50 and 100 tenants per group of 5

For 1800 s of execution time of the genetic algorithm, split heuristic give the
best results. Mean distribution costs are 51.34% for 50 tenants, and 51.72% for
100 tenants compared to the cost of the intuitive approach. Using the solver gives
good results but more expensive (respectively 55% and 54.19%). For 600 s of exe-
cution time, the results are more balanced: they vary between 54.2% and 55.64%.

4 https://pythonhosted.org/PuLP/.
5 http://www.gurobi.com/.

https://pythonhosted.org/PuLP/
http://www.gurobi.com/

210 G. Rosinosky et al.

The genetic algorithm does not enhance the results a lot for both approaches
after 600 s: 3% for the heuristic and less than 1% for the solver. Still, it enhances
the initial split segmented results from 61.3% to 51.34% for 50 tenants, and from
59.34% to 51.72% for 100 tenants.

We observe that the split segmented approach allows to gain more than 2%,
and to unleash the results of the genetic algorithm. Without splitting we gain
around 1% for 600 s of genetic algorithm compared to the original population
(non split segmented). When splitting, the genetic algorithm results in a gain
of 7.1% for 50 tenants, and 4.69% for 100 tenants compared to the split seg-
mented strategy. The absolute gain compared to the intuitive approach remains
worthwhile for 2 days: we save 1702$ for 50 tenants and 3319$ for 100 tenants
for a cost of respectively 3498$ and 6874$. The respective gain compared to our
previous work is 425$ and 763$.

4 Related Work

Many researchers have studied elasticity in the cloud and elasticity for BPM or
orchestration systems. Schulte et al. [6] did a general review on the topic and gave
directions for future research. In this paper, we focus on the resource allocation
and scheduling problem and use a tenant-centric approach based on BPM task
throughput, instead of the BPM process-centric from other approaches. Rekik et
al. [7] propose an integer programming model based on general hardware metrics
for BPM elasticity on the cloud. They base their approach on resource allocation
and BPM task scheduling. They do not consider multiple time slots, tenant
migration or multi-tenancy. Other attempts on BPM elasticity in the cloud exist
such as [8–10]. Though not cloud-related, Djedovic et al. propose in [11] a genetic
algorithm for BPM task scheduling to their corresponding resources. It uses a
representation of each resource. They want to minimize the waiting time and the
global resource cost. Junhke et al. [12] propose a task focused genetic algorithm
for BPEL workflows scheduling in distributed Clouds.

On other subjects than BPM, the machine reassignment problem6 is close
to our problematic. It considered software reassignment problem on virtual
machines including the migration cost. Gavranović et al. [13] obtained the better
results to this challenge. However, this problem is based on hardware metrics, and
aggregate migration cost in the objective function. Our problem is not exactly
virtual machine allocation since the hardware is already defined. Numerous other
attempts target virtual machines, such as [14]. Automated approaches based on
cloud offers retrieval and hardware requirement for software such as [15] are also
valuable.

These works do not consider simultaneously multi-tenancy, multiple instance
types, and migrations, except in the form of data transfer cost for [10] or aggre-
gated migration cost for [13]. In this paper, we present an evolution of our
previous work [2]. We have based our approach on time series segmentation for
deducing the “good” time slots to migrate tenants, and on the iterative use of
6 http://www.roadef.org/challenge/2012/en/.

http://www.roadef.org/challenge/2012/en/

A Genetic Algorithm for Cost-Aware Business Processes Execution 211

an enhanced version of our time slot heuristic [16]. We also presented the cor-
responding ILP (Integer Linear Programming) model. Results were encouraging
compared to a baseline approach, but could be improved regarding the results
that we obtain with a solver. We could not compare with other approaches since
most of them do not consider migrations of data as an issue. They scale up by
adding compute resources to the process engine, considering that access to the
database is not a problem. From our experience, at some point, the database is
always a bottleneck.

5 Conclusion

In this paper, we proposed a method for cost optimization of BPMaaS deploy-
ment based on tenant migration strategies and a genetic algorithm. We presented
a new integer programming optimization model. Both allows to obtain substan-
tial gains for BPMaaS providers. The result we obtain when we group the tenants
is interesting. It may be explained by the size of the objective space. The fact
that it is reproducible for different number of tenants shows that testing multiple
sizes may allow providers to save on the operation cost. Moreover, using other
metaheuristics such as simulated annealing or hill climbing could provide even
better results.

Our method was tested with BPM task throughput but could work with
other metrics that can be expressed as a scalar for both the cloud resources
and the tenants. We can consider for instance the number of processes, or the
number of HTTP requests that lead to transactional processing. Our methods
can then be generalized on systems non related to BPMS using multi-tenancy
and tenant-related persisted data. A BPMS execution engine behaves more or
less like a transactional web application. Our approach is offline and require to
anticipate on the tenant load. For many business cases, this is a valid assumption.
The server load is relative to the number of employees and the number of cases
they can execute everyday or hour with little variations. A next obvious step
would be to couple our algorithm with prediction systems. This would provide
an effective online algorithm. It could adapt to unforeseen variations.

Acknowledgment. The authors would like to thank Gurobi for the usage of their
optimizer, and Amazon Web Services for the EC2 instances credits (this paper is sup-
ported by an AWS in Education Research Grant Award).

References

1. Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Live database migration for
elasticity in a multitenant database for cloud platforms. Technical report, CS,
UCSB, Santa Barbara, CA, USA (2010)

2. Rosinosky, G., Youcef, S., Charoy, F.: Efficient migration-aware algorithms for
elastic BPMaaS. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS,
vol. 10445, pp. 147–163. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-65000-5 9

https://doi.org/10.1007/978-3-319-65000-5_9
https://doi.org/10.1007/978-3-319-65000-5_9

212 G. Rosinosky et al.

3. Lovrić, M., Milanović, M., Stamenković, M.: Algoritmic methods for segmentation
of time series: an overview. J. Contemp. Econ. Bus. Issues 1(1), 31–53 (2014)

4. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)
5. Garrett, A.: Inspyred: Bio-inspired Algorithms in Python - Inspyred 1.0 documen-

tation (2014). http://pythonhosted.org/inspyred/
6. Schulte, S., Janiesch, C., Venugopal, S., Weber, I., Hoenisch, P.: Elastic Business

Process Management: state of the art and open challenges for BPM in the cloud.
Future Gener. Comput. Syst. 46, 36–50 (2014)

7. Rekik, M., Boukadi, K., Assy, N., Gaaloul, W., Ben-Abdallah, H.: A linear program
for optimal configurable business processes deployment into cloud federation, pp.
34–41. IEEE, June 2016

8. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable business process
execution in the cloud. In: 2014 IEEE International Conference on Cloud Engi-
neering, IC2E, pp. 175–184, March 2014

9. Xu, J., Liu, C., Zhao, X., Yongchareon, S., Ding, Z.: Resource management for
business process scheduling in the presence of availability constraints. ACM Trans.
Manag. Inf. Syst. 7(3), 1–26 (2016)

10. Hoenisch, P., Hochreiner, C., Schuller, D., Schulte, S., Mendling, J., Dustdar, S.:
Cost-efficient scheduling of elastic processes in hybrid clouds, pp. 17–24. IEEE,
June 2015

11. Djedović, A., Žunic, E., Avdagić, Z., Karabegović, A.: Optimization of business
processes by automatic reallocation of resources using the genetic algorithm. In: XI
International Symposium on Telecommunications, BIHTel, pp. 1–7. IEEE (2016)

12. Juhnke, E., Dornemann, T., Bock, D., Freisleben, B.: Multi-objective scheduling
of BPEL workflows in geographically distributed clouds, pp. 412–419. IEEE, July
2011

13. Gavranović, H., Buljubašic, M., Demirović, E.: Variable neighborhood search for
Google machine reassignment problem. Electron. Not. Discrete Math. 39, 209–216
(2012)

14. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs
between profit and customer satisfaction for service provisioning in the cloud. In:
Proceedings of the 20th International Symposium on High Performance Distributed
Computing, HPDC 2011, pp. 229–238. ACM, New York (2011)

15. Garćıa, J.M., Mart́ın-Dı́az, O., Fernandez, P., Ruiz-Cortés, A., Toro, M.: Auto-
mated analysis of cloud offerings for optimal service provisioning. In: Maximilien,
M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp.
331–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 23

16. Rosinosky, G., Youcef, S., Charoy, F.: An efficient approach for multi-tenant elastic
business processes management in cloud computing environment, pp. 311–318.
IEEE, June 2016

http://pythonhosted.org/inspyred/
https://doi.org/10.1007/978-3-319-69035-3_23

Edge + IoT Services

Latency-Aware Placement of Data
Stream Analytics on Edge Computing

Alexandre da Silva Veith(B), Marcos Dias de Assunção, and Laurent Lefèvre

Inria, LIP, ENS Lyon, University of Lyon, 46 Allée d’Italie, 69364 Lyon, France
{alexandre.veith,marcos.dias.de.assuncao,laurent.lefevre}@ens-lyon.fr

Abstract. The interest in processing data events under stringent time
constraints as they arrive has led to the emergence of architecture and
engines for data stream processing. Edge computing, initially designed
to minimize the latency of content delivered to mobile devices, can be
used for executing certain stream processing operations. Moving opera-
tors from cloud to edge, however, is challenging as operator-placement
decisions must consider the application requirements and the network
capabilities. In this work, we introduce strategies to create placement
configurations for data stream processing applications whose operator
topologies follow series parallel graphs. We consider the operator char-
acteristics and requirements to improve the response time of such appli-
cations. Results show that our strategies can improve the response time
in up to 50% for application graphs comprising multiple forks and joins
while transferring less data and better using the resources.

Keywords: Data stream processing · Edge computing
Cloud computing · Resource management · Scheduling
Series parallel graphs

1 Introduction

Today’s instruments and services are producing ever-increasing amounts of data
that require processing and analysis to provide insights or assist in decision mak-
ing. Much of this data is received in near real-time and requires quick analysis. In
the Internet of Things (IoT) [18], for instance, continuous data streams produced
by multiple sources must be handled under very short delays. Under several data
stream processing engines, a stream processing application is a directed graph or
dataflow whose vertices are operators that execute a function over the incoming
data and edges that define how data flows between the operators. A dataflow
has one or multiple sources (i.e., sensors, gateways or actuators), operators that
perform transformations on the data (e.g., filtering, and aggregation) and sinks
(i.e., queries that consume or store the data).

In a traditional cloud deployment, the whole application is placed on the
cloud to benefit from virtually unlimited resources. However, processing all the
data on the cloud can introduce latency due to data transfer, which makes near
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 215–229, 2018.
https://doi.org/10.1007/978-3-030-03596-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_14&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_14

216 A. da Silva Veith et al.

real-time processing difficult to achieve. In contrast, edge computing has become
an attractive solution for performing certain stream processing operations, as
many edge devices have non-negligible compute capacity.

The deployment of data stream processing applications onto heterogeneous
infrastructure, however, has proved to be NP-hard [2]. Moreover, moving oper-
ators from cloud to edge devices is challenging due to limitations of edge
devices [1]. Existing work often proposes placements strategies considering user
intervention [19] whereas many models do not support memory and communica-
tion constraints [6,12]. Existing work also considers all data sinks to be located
in the cloud, with no feedback loop to actuators located at the edge [5,16]. There
is hence a lack of solutions covering scenarios involving smart cities, precision
agriculture, and smart homes comprising various heterogeneous sensors and actu-
ators, as well as, time-constraint applications that may contain actuators often
placed close to where data is collected.

In this paper, we introduce a set of strategies to place operators onto cloud
and edge while considering characteristics of resources and meeting the require-
ments of applications. We consider analytics applications with multiple sources
and sinks distributed across cloud and edge. In particular, we first decompose
the application graph by identifying behaviors such as forks and joins, and then
dynamically split the dataflow graph across edge and cloud. Comprehensive sim-
ulations considering multiple application settings demonstrate that our approach
can improve the response time in up to 50%.

The contributions of this work are: (i) it presents a model for Distributed
Stream Processing (DSP) applications in heterogeneous infrastructure (§2); (ii)
it introduces placement strategies for dynamically identifying how to split the
application graph across cloud and edge (§3); and (iii) it evaluates the strategies
against traditional and state-of-the-art schemes (§4).

2 System Model and Problem

This section introduces preliminaries and then describes the placement problem.

2.1 System and Application Models

The network topology is a graph N = (R,L) with a vertex set R =
(r1, r2, r3, . . .) of computational resources (i.e., cloud servers and edge devices)
and links L = (l1, l2, l3, . . .) interconnecting the resources. Each ri ∈ R has
capabilities in terms of CPU cpuri

and memory memri
expressed respectively in

Millions of Instructions per Second (MIPS) and bytes. A network link i↔j ∈ L
interconnecting resources i and j has bandwidth bdwi↔j and latency lati↔j

represented in bits per second (bps) and seconds respectively. We consider the
latency of a resource i to itself (i.e lati↔i) to be 0. The network topology is
known as we consider scenarios using Software Defined Network solutions [4] or
discovery algorithms such as Vivaldi [7] to determine and maintain the topology
information.

Latency-Aware Placement of Data Stream Analytics 217

A DSP application is viewed as a graph G = (O,S) whose vertices O are
operators that perform operations on the incoming data, and edges S that are
streams of events/messages flowing between the operators. The set of opera-
tors O comprises data sources Osrc, sinks/outputs Oout where data is stored or
published, and transformations Otrn performed over the data.

Each operator oi ∈ O has CPU cpuoi
and memory memoi

requirements
for processing incoming events, given respectively in Instructions per Second
(IPS) to handle an individual event and number of bytes to load the operator in
memory. The rate at which operator i can process events at reference resource
k is denoted by μ〈i,k〉 and is essentially μ〈i,k〉 = cpurk

÷ cpuoi
. When performing

a transformation on the incoming data, an operator can, for instance, parse
data or filter events hence reducing the number of events or their size. The
ratio of number of input events to output events is determined by the operator’s
selectivity ψoi

. The data compression/expansion factor is the ratio of the size of
input events to the size of output events, and is represented by ωoi

.

Fig. 1. Example of four operators and their respective queues placed on two resources.

Each event stream si→j ∈ S connecting operator i to j has a probability ρi→j

that an output event emitted by i will flow through to j. Here we consider that
such information is obtained via profiling techniques or from previous executions
of the application. Existing work has demonstrated how such information can be
obtained [14]. The rate at which operator i produces events is denoted by λout

i

and is a product of its input event rate λin
i and its selectivity. The output event

rate of a source operator k ∈ Osrc depends on the number of measurements
it takes from a sensor or another monitored device. We can then recursively
compute the input and output event rates for downstream operators j as follows:

λin
i = λout

k ∀sk→i ∈ S, k ∈ Osrc (1)

λin
j =

∑

si→j∈S
λin

i × ψoi
× ρsi→j

∀i ∈ O, i /∈ Osrc (2)

λout
j = λin

j × ψoj
∀j ∈ O, j /∈ Oout (3)

Likewise, we can recursively compute the average size ςin
i of events that arrive

at a downstream operator i and the size of events it emits ςout
i by considering

218 A. da Silva Veith et al.

the upstream operators’ event sizes and their respective compression/expansion
factors (i.e., ωoi

). In other words:

ςin
i = ςout

k ∀sk→i ∈ S, k ∈ Osrc (4)

ςin
j = ςin

i × ωoi
∀i ∈ O, i /∈ Osrc (5)

ςout
j = ςin

j × ωoj
∀j ∈ O, j /∈ Oout (6)

When placed onto available resources, operators within a same host commu-
nicate directly whereas inter-node communication is done via a communication
service as depicted in Fig. 1. If more events arrive than an operator can handle
when placed at a given resource, queues will form and the overall service time will
increase. Events are handled in a First-Served (FCFS) fashion both by operators
and the computation service that serialises messages to be sent to another host.
This guarantees the time order of events; an important requirement in many
data stream processing applications. We model both operators and the commu-
nication service as M/M/1 queues which allows for estimating the waiting and
service times for computation and communication. The computation or service
time stime〈oi,rk〉 of an operator i placed on a resource k is hence given by:

stime〈i,k〉 =
1

μ〈i,k〉 − λin
i

(7)

while the communication time ctime〈i,k〉〈j,l〉 for operator i placed on a resource
k to send a message to operator j on a resource l is:

ctime〈i,k〉〈j,l〉 =
1(

bdwk↔l

ςout
i

)
− λin

j

+ lk↔l (8)

Furthermore, the number of events waiting to be served, being processed, or
waiting to be transferred to another resource, enable us to compute the memory
requirements of operators at the resources onto which they are placed. The
number of events in service at an operator i at resource k is given by:

ϕcomp
〈i,k〉 =

λin
i

μ〈i,k〉

1 − λin
i

μ〈i,k〉

(9)

while the number of events waiting in the communication service to be trans-
ferred from operator i on resource k to operator j placed on resource l is:

ϕcomm
〈i,k〉〈j,l〉 =

λin
j(

bdwk↔l
ςout
i

)

1 − λin
j(

bdwk↔l
ςout
i

)
(10)

Latency-Aware Placement of Data Stream Analytics 219

The overall memory required by an operator i allocated on a resource k
comprises the memory needed to load it as well as the memory required by in-
service events, and events waiting to be serviced or waiting to be transferred to
another resource:

mem〈i,k〉 = ϕcomp
〈i,k〉 × ςin

i + memoi
+

∑

j∈O
l∈R

ϕcomm
〈i,k〉〈j,l〉 × ςin

i (11)

A mapping function M : O → R, S → L indicates the resource to which
an operator is assigned and the link to which a stream is mapped. The function
mo〈i,k〉 returns 1 if operator i is placed at resource k and 0 otherwise. Likewise,
the function ms〈i→j,k↔l〉 returns 1 when the stream between operators i and j
has been assigned to the link between resources k and l, and 0 otherwise. A path
in the DSP application graph is a sequence of operators from a source to a sink.
A path pi of length n is a sequence of n operators and n − 1 streams, starting
at a source and ending at a sink:

pi = o0, o1, . . . , ok, ok+1, . . . , on−1, on (12)

Where o0∈Osrc and on ∈Oout. The set of all possible paths in the application
graph is denoted by P. The end-to-end latency of a path comprises the sum of the
computation time of all operators along the path and the communication time
required to stream events on the path. More formally, the end-to-end latency of
path pi, denoted by Lpi

, is:

Lpi
=

∑

o∈pi
r∈R

mo〈o,r〉 × stime〈o,r〉 +
∑

r′∈R
ms〈o→o+1,r↔r′〉 × ctime〈o,r〉〈o+1,r′〉 (13)

2.2 Operator Placement Problem

The problem of placing a distributed stream processing application consists of
finding a mapping that minimises the aggregate end-to-end latency of all appli-
cation paths and that respects the resource and network constraints. In other
words, find the mapping that minimises the aggregate end-to-end event latency:

min
∑

pi∈P
Lpi

(14)

Subject to:
λin

o < μ〈o,r〉 ∀o ∈ O,∀r ∈ R|mo〈o,r〉 = 1 (15)

λin
o <

(bdwk↔n

ςout
o−1

)
∀o ∈ O,∀k↔n ∈ L|mo〈o,k〉 = 1 (16)

∑

o∈O
mo〈o,r〉λin

o ≤ cr ∀r ∈ R (17)

220 A. da Silva Veith et al.

∑

o∈O
mo〈o,r〉 × mem〈o,r〉 ≤ memr ∀r ∈ R (18)

∑

si→j∈S
k↔l∈L

ms〈i→j,k↔l〉 × ςout
i ≤ bwdk↔l ∀k ↔ l ∈ L (19)

∑

r∈R
mo〈o,r〉 = 1 ∀o ∈ O (20)

∑

k↔l∈L
ms〈i→j,k↔l〉 = 1 ∀si→j ∈ S (21)

Constraint 15 guarantees that a resource can provide the service rate required
by its hosted operators whereas Constraint 16 ensures that the links are not
saturated. The CPU and memory requirements of operators on each host are
ensured by Constraints 17 and 18 respectively. Constraint 19 guarantees the
data requirements of streams placed on links. Constraints 20 and 21 ensure that
an operator is not placed on more than a resource and that a stream is not
placed on more than a network link respectively.

3 Application Placement Strategies

This section explains how patterns in the DSP application graphs are identified
and then introduces strategies that employ the patterns to devise placement
decisions.

3.1 Finding Application Patterns

As depicted in Fig. 2, a dataflow can comprise multiple patterns such as (i)
forks, where messages can be replicated to multiple downstream operators or
scheduled to downstream operators in a round-robin fashion, using message key
hashes, or considering other criteria [16]; (ii) parallel regions that perform the
same operations over different sets of messages or where each individual region
executes a given set of operations over replicas of the incoming messages; and
(iii) joins, which merge the outcome of parallel regions.

We consider Series-Parallel-Decomposable Graphs (SPDG) and related tech-
niques to identify graph regions that present these patterns [8]. This informa-
tion is used to build a hierarchy of region dependencies (i.e. downstream and
upstream relations between regions) and assist on placing operators across cloud
and edge resources. The streams in the graph paths that separate the operators
are hereafter called the split points. Figure 2 illustrates the phases of the method
to determine the split points (green circles), where red circles represent operators
placed on edge resources whereas blue ones are on the cloud: (i) The method
starts with sources and sinks whose placements are predefined by the user; (ii)
split points are discovered (green circles) as well as sinks that correspond to
actuators that can be placed on the edge; (iii) the branches between the existing

Latency-Aware Placement of Data Stream Analytics 221

Fig. 2. Method for finding the dataflow split points, where red means placed on edge,
blue represents placed on cloud, and green delimits forks and joins. (Color figure online)

patterns (green, red and blue circles) are transformed into series regions; and
(iv) a hierarchy following the dependencies between regions is created.

Algorithm 1 describes the function GetRegions used to identify the patterns
and obtain the series regions. First, the function adds two virtual vertices to
the graph, one named virt src connected to all data sources and another named
virt sink to which all sinks are connected (line 2–4). The virtual vertices allow
for recognizing all paths between sources and sinks. Second, each path is iter-
ated moving operators to a temporary vector and classifying the operators as
upstream and downstream according to the number of input and output edges
(lines 5–8). If the operator is a split point, the temporary vector is converted to
a subset of regions set, and the temporary vector receives the current operator
(lines 9–10). Third, the function removes the redundant values (line 11). At last,
the region set is iterated comparing the regions by the first and the last position
values (equal values represent a connection) and consequently, they are stored
in the hierarchy set (lines 12–16).

3.2 Operator Placement Strategies

The region hierarchy allows us to determine the data paths and operator deploy-
ment priorities, based on which two strategies are applied: Response Time Rate
(RTR) that iterates the deployment sequence and for each operator estimates the
end-to-end latency (i.e. response time); and Response Time Rate with Region
Patterns (RTR+RP) which uses the hierarchy to split the application graph
across edge and cloud, optimizing only the response time on the edge.

Response Time Rate (RTR) is a greedy strategy that places operators incre-
mentally by evaluating the end-to-end latency of paths (Eq. 13) while respecting
the resource constraints (Eqs. 15–21). The response time of an operator in a path
comprises the time taken to transfer data and to compute an event. As an oper-
ator can be in multiple paths, the RTR strategy accumulates the time taken to
transfer data from multiple paths rather than evaluating each path individually.

RTR organizes the operators into deployment sequence and consecutively
calculates the response time for each operator by considering the previous map-

222 A. da Silva Veith et al.

Algorithm 1. Algorithm to detect forks and joins.
1 Function GetRegions(G = (O,S),Osrc,Oout)
2 O ← O ∪ virt src ∪ virt sink
3 S ← S ∪ svirt src→o, ∀o ∈ Osrc

4 S ← S ∪ so→virt sink, ∀o ∈ Oout

5 for p ∈ GetAllPaths(G, virt src, virt sink) do
6 for o ∈ p do
7 temp ← temp ∪ {o},∀o �∈ {virt src, virt sink}
8 ups ← |〈∗, o〉 ⊂ S|, downs ← |〈o, ∗〉 ⊂ S|
9 if ups > 1 or downs > 1 and o �∈ {virt src, virt sink} then

10 regions ← regions ∪ temp, temp ← {o}

11 Delete duplicate regions
12 for src series ∈ regions do
13 for dst series ∈ regions do
14 if src series �= dst series then
15 if src series[|src series| − 1] = dst series[0] then
16 hierarchy ← hierarchy ∪ {src series, dst series}

17 return hierarchy

Algorithm 2. Calculating the computational response times.
1 Function EstimateResponseTimes(N = (R,L),G = (O,S), o)
2 for child ∈ 〈o, ∗〉 ⊂ S do
3 upstreams ← 〈child, r〉, ∀r ∈ R and mo〈child,r〉 = 1

4 for r ∈ R do
5 comm ← 0
6 for mapping ∈ upstreams do
7 if GetHost(mapping) �= r then
8 com ← comm + ctime〈mapping〉〈o,r〉

9 if MeetConstraints then
10 rt ← rt ∪ 〈r, stime〈o,r〉 + comm〉
11 return rt

pings, resource capabilities, and operator requirements. The approach initially
obtains the region hierarchy and then establishes the deployment sequence
employing a breadth-first search traversal algorithm [17] to give priority to
upstream operators. Each operator of the deployment sequence has its response
time estimated for non-constrained computational resources (Algorithm 2). After
that, the resources are sorted in ascending manner by their response times and
the host with the shortest response time is picked, and the host’s residual capa-
bilities are updated.

Latency-Aware Placement of Data Stream Analytics 223

Response Time Rate with Region Patterns (RTR+RP) is a strategy
that handles complex dataflows that contain multiple paths from sources to
sinks. It explores the operator patterns (split points) and the sink placement
(cloud or edge) respecting the environment constraints (Eqs. 15–21). Based on
the region hierarchy (Fig. 3), the operators are classified and allocated. Operator
5, for instance, was reallocated since the edge does not respect the resource
constraints. RTR+RP aims to allocate operators across edge and cloud meeting
the response time rate only for operators located in the edge, in contrast to the
RTR strategy that evaluates the response time rate for all operators.

Fig. 3. Blue circles are operator candidates to be deployed on cloud whereas red circles
are candidates for edge. The right-hand graph shows the final deployment. (Color figure
online)

RTR+RP defines the deployment sequence similar to RTR, but it builds
upon the classification of the operators considering the served sink infrastructure
(candidate infrastructure). The classification is (i) cloud-only if the operator
serves only sinks placed on the cloud, and (ii) edge if the operator shares paths
with sinks located on edge. Each operator on the deployment sequence has its
candidate infrastructure evaluated. Edge candidates have their response time
estimated for non-constrained edge devices where the device with the shortest
response time is picked. On the other hand, cloud candidates do not have their
response time estimated, hence, the cloud hosts its operator candidates and those
that do not meet the constraints on edge. At last, after the operator mapping,
the resources have their residual capabilities updated.

4 Evaluation

In this section, we first describe the experimental setup and performance metrics
and then discuss experimental results.

4.1 Experimental Setup

We built a framework atop OMNET++1 to model and simulate distributed
stream processing applications. A computational resource is an entity with CPU,
1 Visit http://www.omnetpp.org/ for further details on OMNET++.

http://www.omnetpp.org/

224 A. da Silva Veith et al.

memory and bandwidth capabilities whereas operators comprise waiting queues
and transformation operations that pose demands in terms of CPU, memory
and bandwidth.

We model our edge devices as Raspberry PI’s 2 (RPi) (i.e., 4,74 MIPS2

at 1 GHz and 1 GB of RAM), and the cloud as AMD RYZEN 7 1800x (i.e.,
304,51 MIPS3 at 3.6 GHz and 1 TB of memory). The infrastructure comprises
two cloudlets [13] with edge computing nodes (Cloudlet 1 and Cloudlet 2) and
a Cloud. Each cloudlet has 20 RPi’s, whereas the cloud consists of 2 servers. A
gateway interfaces each cloudlet’s LAN and the external WAN [11] (the Internet).
The LAN has a latency drawn from a uniform distribution between 0.015 and
0.8 ms and a bandwidth of 100Mbps. The WAN has latency drawn uniformly
between 65 and 85 ms, and bandwidth of 1 Gbps [13].

As stream processing applications exist in multiple domains with diverse
topologies (e.g., face recognition, speech recognition, weather sensing), where
sensors/actuators ingest a variety of events (e.g., text, video, pictures, voice
record) in the system, we aim to capture this diversity my modeling and simu-
lating two scenarios with various application workloads:

Microbenchmarks: As in previous work [13], we first perform a controlled eval-
uation using a set of message sizes (10 bytes, 50 KB, and 200 KB) corresponding
to multiple data types such as text, pictures/objects, and voice records. Each
application, depicted in Fig. 4, has three input event rates (Table 1), a set of
CPU requirements according to the message sizes (10 bytes - 3.7952 IPS, 50 KB
-18976 IPS, and 200 KB - 75904 IPS) and a configuration of fork/join operators
to explore the path sizes. The operators have multiple selectivity and data com-
pression rates (100, 75, 50 and 25%). Sources ingest messages from sensors and
sinks act as actuators on cloudlets and databases/message brokers on cloud.

Table 1. Input event rate.

App 10 bytes 50 KB 200 KB

App1 124999, 624999, 1249999 24, 124, 249 6, 31, 62
App2 124999, 374999, 624999 24, 74, 124 6, 19, 31
App3 124999, 218749, 300000 24, 43, 62 6, 10, 15
App4 124999, 137499, 150000 24, 27, 30 6, 7

Fig. 4. Six-hop applications.

More Complex Applications: This scenario presents multiple operator
behaviors and larger numbers of operators. We crafted a set of application graphs
(Fig. 5) using a Python library4 and varying the parameters of the operators
using a uniform distribution with the ranges presented in Table 2. The cloudlets

2 https://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/.
3 https://reddit.com/r/BOINC/comments/5xog5v/boinc performance on amd

ryzen.
4 https://gist.github.com/bwbaugh/4602818.

https://hackaday.com/2015/02/05/benchmarking-the-raspberry-pi-2/
https://reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen
https://reddit.com/r/BOINC/comments/5xog5v/boinc_performance_on_amd_ryzen
https://gist.github.com/bwbaugh/4602818

Latency-Aware Placement of Data Stream Analytics 225

Table 2. Operator attributes.

Parameter Value

cpu 1–100

Data compression rate 10%–100%

mem 100–7500

Input event size 100–2500

Selectivity 10%–100%

Input event rate 1000–10000
Fig. 5. Complex applications.

host the sink and source placements, except for the sink on the critical path which
will be hosted on the cloud. We generated 1160 graphs randomly applying mul-
tiple selectivities, data compression rates, sink and source locations, input event
sizes and rates, memory, and CPU requirements. Inspired on the size of RIoT-
Bench [20] applications, a Realtime IoT Benchmark suite, we proposed two sets
of applications, namely: (i) large (AppA and AppB) containing 25 operators;
and (ii) small (AppC and AppD) holding 10 operators.

Metrics: The main performance metric is the application response time, which
is the end-to-end latency from the time events are generated to the time they
are processed by the sinks. To demonstrate the gains obtained by our approach,
we compared the proposed strategies against a traditional approach (cloud-only)
and a solution from the state-of-the-art [21] (LB). Cloud-only deploys all opera-
tors in the cloud, apart from operators provided in the initial placement. Taneja
et. al. (LB) iterates a vector containing the application operators, gets the middle
host of the computational vector and evaluates CPU, memory, and bandwidth
constraints to obtain the operator placement.

4.2 Performance Evaluation

Figure 6 summarizes the response times for all microbenchmarks. For App1 we
carried out 432 experiments (4 selectivities, 4 data compression rates, 3 input
event rates, 3 sink locations and 3 input event sizes) for each solution with a
pipeline application that may have messages with text, video, pictures, and voice
record. Each experiment ran for 300 s in simulation time. RTR and RTR+RP
have shown to be over 95% more efficient than cloud-only approach and LB. Ini-
tially, LB had its performance comparable to cloud-only, but LB lost performance
afterward due to its specific modeling (i.e., health care, and latency-critical gam-
ing) and method (computational ordering).

Cloud-only achieved 5% better results (when the blue line crosses the red at
≈200 ms) when handling voice records (200 KB), selectivity, and data compres-
sion rate equal to 1 (without reducing the size of the messages and discarding
events) and when the sink was placed on Cloudlet 2 and the source was located
on Cloudlet 1 (traverse WAN). For the scenario mentioned before, the operators
were CPU-intensive where Cloudlet 1 or 2 can host only one operator per edge
device at a time, which increases the communication costs. Moreover, RTR+RP

226 A. da Silva Veith et al.

Fig. 6. CDF of response time for microbenchmarks. (Color figure online)

outperformed RTR for sinks placed on cloud, mainly without message discarding
and no reduction on message sizes. Even further, to investigate the impacts gen-
erated by the split points, we launched App2, App3, and App4 and observed a
gradual performance loss (decreasing on the distance between green and red line
- ≈100 ms) according to the position between the split points and sinks, and the
location of sinks. When sinks and sources require events to traverse the WAN
and there is a low number of hops between the split point and sink, the proposed
strategies cannot define a reasonable dataflow split because of the assumption
to prioritize the sinks on the edge.

The complex application scenario investigates the outcomes for generic and
multiple path applications using various dataflow configurations. We launched
each experiment during 60 s of simulation time, and the sources and sinks were
distributed uniformly and randomly across the infrastructure, except for oper-
ator 17 on AppA, operator 24 on AppB, operator 9 on AppC, and operator 9
on AppD placed in cloud due to the critical path. Figure 7 shows the CDF of
response times. Even under large applications RTR+RP was able to reduce the
response time by applying the region pattern identifications and recursively dis-
covering the operator dependencies with a given sink placement onto dataflows
with various paths.

Fig. 7. CDF of response times for complex applications.

Our strategies outperformed cloud-only in over 6% and 50% under small
and large applications, respectively. Cloud-only poses high communication over-
head when the sink is located on cloudlets due to messages having to traverse
the internet at least twice. Similarly, we improve the response times in over

Latency-Aware Placement of Data Stream Analytics 227

23% (small) and 57% (large applications) compared to the LB approach. This
occurs because LB does not estimate the communication overhead and assumes
a shorter response time on cloudlets.

Fig. 8. Communication and computation time for sinks placed on cloud and cloudlets.

Figure 8 shows the communication latency which comprehends the total time
to transfer a message between the resources, and the computation that corre-
sponds to the total time to compute all operators. The communication cost for
sinks placed on cloudlets at cloud-only was about 160 ms, and RTR+RP was
76 ms. Our solution outperformed cloud-only in up to 52% by putting oper-
ators closer to cloudlet sinks, but sinks on the cloud. RTR+RP had a slight
performance loss of 3%. Hence, our approach is effective in reducing the commu-
nication cost, and, by doing so, it compensates the edge limitations and reaches
good results in minimizing the total response time.

5 Related Work

IoT services are increasingly being employed on environments that span multi-
ple data centers or on the edges of the Internet (i.e., edge and fog computing).
Existing work proposes architecture that places certain stream processing ele-
ments on micro data centers located closer to where the data is generated [3]
or employs mobile devices for stream processing [9,15]. The problem of placing
DSP applications onto heterogeneous hardware is at least NP-Hard as shown
by Benoit et al. [2]. To simplify the placement problem, communication is often
neglected [6], although it is a relevant cost in geo-distributed infrastructure [13].
Likewise, the operator behavior and requirements are oversimplified using static
splitting decisions as proposed by Sajjad et al. [19].

Meanwhile, many efforts have been made on modeling the placement prob-
lem of DSP application on heterogeneous infrastructure [16] using Petri nets
to formalize the application regions and the multiple response times that they
produce. On the other hand, Eidenbenz et al. [8] evaluated SPDG from its par-
allelism degree to decompose the application graph and by an approximation
algorithm to determine the placement. Cloud and edge have been explored to
supply application requirements. For instance, Ghosh et al. [10] proposed a model

228 A. da Silva Veith et al.

evaluating dynamically the time taken to process an operator into an exclusive
computational resource as well as the communication times. Similarly, Taneja
et. al. [21] offer a naive approach deploying the application graph across cloud
and edge using a constraint sensitive approach.

All contributions to the problem of placing DSP applications evaluate edge
devices for improving the network efficiency by treating the infrastructure
and application constraints to unleash the full potential of applications trig-
gered by IoT and smart scenarios. The present work considers edge and cloud,
and the restrictions created by their interactions. The target scenario includes
real-time analytics which comprises multiple forks and joins building multiple
paths between data sources and sinks. Our solution exploits the construction of
the paths to optimize the end-to-end application latency by decomposing the
dataflow and defining the operator’s placement dynamically.

6 Conclusions and Future Work

In this paper, we modeled the problem of placing DSP applications onto het-
erogeneous computational and network resources. We proposed two strategies
to minimize the application response time by splitting the application graph
dynamically and distributing the operators across cloud and edge. Our solu-
tions were evaluated considering key aspects to identify application behaviors.
The RTR strategy estimates the response time for each operator in all com-
putational resources while RTR+RP strategy splits the dataflow graph using
region patterns and then calculates the response time only for operators that
are candidates to be deployed on edge.

We simulated the strategies’ behavior and compared them against the state-
of-the-art. The results show that our strategies are capable of achieving 50%
better response time than cloud-only deployment when applications have multi-
ple forks and joins. For future work, we intend to investigate further techniques
to deal with CPU-intensive operators and their energy consumption.

Acknowledgements. This work was performed within the framework of the LABEX
MILYON (ANR-10-LABX-0070) of the University of Lyon, within the program
“Investissements d’Avenir” (ANR-11-IDEX-0007).

References

1. de Assunção, M.D., da Silva Veith, A., Buyya, R.: Distributed data stream pro-
cessing and edge computing: a survey on resource elasticity and future directions.
J. Netw. Comput. Appl. 103, 1–17 (2018)

2. Benoit, A., Dobrila, A., Nicod, J.M., Philippe, L.: Scheduling linear chain streaming
applications on heterogeneous systems with failures. Future Gener. Comput. Syst.
29(5), 1140–1151 (2013)

3. Buddhika, T., Pallickara, S.: Neptune: real time stream processing for internet of
things and sensing environments. In: IEEE International Parallel and Distributed
Processing Symposium, pp. 1143–1152, May 2016

Latency-Aware Placement of Data Stream Analytics 229

4. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: 10th ACM International Con-
ference on Distributed Event-Based Systems, pp. 69–80. ACM, New York (2016)

5. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Distributed QoS-aware
scheduling in Storm. In: 9th ACM International Conference on Distributed Event-
Based Systems, DEBS 2015, pp. 344–347. ACM, New York (2015)

6. Cheng, B., Papageorgiou, A., Bauer, M.: Geelytics: enabling on-demand edge ana-
lytics over scoped data sources. In: IEEE International Congress on BigData, pp.
101–108 (2016)

7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network
coordinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15–26 (2004)

8. Eidenbenz, R., Locher, T.: Task allocation for distributed stream processing. In:
IEEE INFOCOM 2016, pp. 1–9, April 2016

9. Elbamby, M.S., Bennis, M., Saad, W.: Proactive edge computing in latency-
constrained fog networks. In: European Conference on Networks and Communica-
tions, pp. 1–6, June 2017. https://doi.org/10.1109/EuCNC.2017.7980678

10. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and
cloud. ACM Trans. Cyber-Phys. Syst. 2(4), 24 (2017, to Appear)

11. Ha, K., et al.: The impact of mobile multimedia applications on data center con-
solidation. In: IEEE International Conference on Cloud Engineering (IC2E), pp.
166–176, March 2013

12. Hochreiner, C., Vogler, M., Waibel, P., Dustdar, S.: VISP: an ecosystem for elastic
data stream processing for the internet of things. In: 20th IEEE International
Enterprise Distributed Object Computing Conference, pp. 1–11, September 2016

13. Hu, W., et al.: Quantifying the impact of edge computing on mobile applications.
In: 7th ACM SIGOPS Asia-Pacific Workshop on Systems, APSys 2016, pp. 5:1–5:8.
ACM, New York (2016)

14. Kaur, N., Sood, S.K.: Efficient resource management system based on 4VS of big
data streams. Big Data Res. 9, 98–106 (2017)

15. Morales, J., Rosas, E., Hidalgo, N.: Symbiosis: sharing mobile resources for stream
processing. In: IEEE Symposium on Computers and Communications Workshop,
pp. 1–6, June 2014

16. Ni, L., Zhang, J., Jiang, C., Yan, C., Yu, K.: Resource allocation strategy in fog
computing based on priced timed petri nets. IEEE IoT J. 4(5), 1216–1228 (2017)

17. Peng, B., Hosseini, M., Hong, Z., Farivar, R., Campbell, R.: R-storm: resource-
aware scheduling in storm. In: 16th Annual Middleware Conference, Middleware
2015, pp. 149–161. ACM, New York (2015)

18. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan,
Y.: Echo: an adaptive orchestration platform for hybrid dataflows across cloud
and edge. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC
2017. LNCS, vol. 10601. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-319-69035-3 28

19. Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: Spanedge: towards
unifying stream processing over central and near-the-edge data centers. In: 2016
IEEE/ACM Symposium on Edge Computing, pp. 168–178, October 2016

20. Shukla, A., Chaturvedi, S., Simmhan, Y.: Riotbench: an IoT benchmark for dis-
tributed stream processing systems. Concurr. Comput.: Pract. Exp. 29(21), e4257
(2017)

21. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), pp. 1222–1228, May 2017

https://doi.org/10.1109/EuCNC.2017.7980678
https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1007/978-3-319-69035-3_28

Optimal Edge User Allocation in Edge
Computing with Variable Sized Vector

Bin Packing

Phu Lai1, Qiang He1(B), Mohamed Abdelrazek2, Feifei Chen2, John Hosking4,
John Grundy3, and Yun Yang1

1 Swinburne University of Technology, Hawthorn, Australia
{tlai,qhe,yyang}@swin.edu.au

2 Deakin University, Burwood, Australia
{mohamed.abdelrazek,feifei.chen}@deakin.edu.au

3 Monash University, Clayton, Australia
john.grundy@monash.edu

4 The University of Auckland, Auckland, New Zealand
j.hosking@auckland.ac.nz

Abstract. In mobile edge computing, edge servers are geographically
distributed around base stations placed near end-users to provide highly
accessible and efficient computing capacities and services. In the mobile
edge computing environment, a service provider can deploy its service on
hired edge servers to reduce end-to-end service delays experienced by its
end-users allocated to those edge servers. An optimal deployment must
maximize the number of allocated end-users and minimize the number of
hired edge servers while ensuring the required quality of service for end-
users. In this paper, we model the edge user allocation (EUA) problem
as a bin packing problem, and introduce a novel, optimal approach to
solving the EUA problem based on the Lexicographic Goal Programming
technique. We have conducted three series of experiments to evaluate
the proposed approach against two representative baseline approaches.
Experimental results show that our approach significantly outperforms
the other two approaches.

Keywords: Optimization · Resource management · Edge computing
Bin packing

1 Introduction

In recent years, the world has witnessed a surge in the number of cloud and
mobile network connected end-devices, including mobile phones, wearables, sen-
sors and a wide range of Internet of Things (IoT) devices. According to Ericsson’s
Mobility Report [4], it is predicted that there will be around 32 billion of such
connected devices by 2023. This has produced a great challenge for online ser-
vice providers in terms of guaranteeing a reliable and low-latency connection to
end-users, which is one of the key quality-of-service (QoS) requirements [12].
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 230–245, 2018.
https://doi.org/10.1007/978-3-030-03596-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_15&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_15

Optimal Edge User Allocation in Edge Computing 231

To tackle this issue, Cisco [1] has proposed the fog computing paradigm – also
called edge computing – in which computation, storage, and networking resources
are pushed closer to the edge of the network by deploying a number of intermedi-
ate edge servers with closer proximity to end-devices. This paradigm offers lower
network latency and greater scalability than the conventional centralized cloud
computing paradigm. This is particularly important for high volume streaming
applications or critical systems such as autonomous traffic systems, health care,
or cloud gaming, which require real-time decision making. In edge computing,
online service providers hire existing edge servers to host their services to serve
their end-users. Thin clients – such as wearables, sensors or smart phones – all
that have limited storage and computing capability, benefit from this architec-
ture by the capability to offload intensive computing tasks to the distributed
edge servers near them [17]. In this way, the central cloud is not required to per-
form all the computing tasks single-handedly, which is highly resource demand-
ing and generally incurs long network latency for end-users. Usually, an edge
server covers a specific geographical area so that the users within its coverage
can connect to it via LTE, 4G or Radio Network [5]. A number of edge servers
would be deployed in a distributed fashion (usually near cellular base stations
[5]) so that they can cover different geographical areas. The coverages of adjacent
edge servers usually partially overlap to avoid blank areas not covered by any
edge server. A user located in the overlapping area can connect to one of the
edge servers covering them (proximity constraint) that has sufficient computing
resource (capacity constraint) such as CPU, bandwidth, or memory.

Edge servers’ capacity, current workloads, coverages, the number of users
to allocate and their proximity to end-users can be obtained or calculated at
any time. Based on this information, while fulfilling the above constraints, an
optimization goal must be achieved from a service provider’s perspective – to
minimize the number of edge servers used – in order to attain an optimal solution
to the allocation of the service provider’s users due to the pay-as-you-go pricing
model applied in edge computing [12,17], which might incur higher costs when
the number of edge servers used increases. Additionally, due to the aforemen-
tioned constraints, there might be a number of users that cannot be assigned
to any edge servers. Those users will be connected directly to a central cloud
server. Therefore, another optimization objective is to maximize the number of
users allocated to hired edge servers.

We refer to the above problem as an edge user allocation (EUA) problem
then model it as a variable sized vector bin packing (VSVBP) problem, a non-
geometric generalization of the classical bin packing (BP) problem. The EUA
problem is critical in edge computing, however, has not been properly investi-
gated. Solutions to the task allocation problem in cloud computing have been
investigated in [8,14]. However, the edge computing architecture is different from
cloud computing, i.e., distributed vs. centralized. In addition, the various con-
straints and dynamic information discussed above significantly differentiate the
edge computing environment from the traditional cloud computing environment
with many unique characteristics. Thus, the approaches for task allocation in

232 P. Lai et al.

cloud computing are not suitable for solving the EUA problem, hence the need
for a new approach. In this paper, we make the following major contributions:

– we have modeled and formulated the EUA problem as a VSVBP problem;
– we have developed an optimal approach for solving the EUA problem using

the Lexicographic Goal Programming technique; and
– we have evaluated our approach against two representative baseline

approaches with extensive experiments to demonstrate its effectiveness.

The remainder of the paper is organized as follows. Section 2 motivates this
research with an example. In Sect. 3, we give a background of the VSVBP prob-
lem. Section 4 discusses the proposed approach, which is evaluated in Sect. 5.
Section 6 reviews the related work. Section 7 concludes this paper.

2 Motivating Example

A representative example of edge computing applications is large-scale mobile
gaming [6] - the fastest growing gaming model [10]. The cloud gaming model
has made online game platforms, such as Hatch1 and Sony PlayStation Now2,
more accessible for thin-client mobile players since the resource-expensive game
instance is running on a remote cloud server. Consider an increasingly popular
virtual reality game G, which requires a great amount of computing power for
graphic rendering. Employing the traditional centralized cloud model helps thin-
clients offload the heavy computation tasks; however, this approach introduces a
huge network delay due to the long distance between players and cloud servers.
Therefore, pushing the processing power closer to players with edge comput-
ing is a promising solution to this problem. Figure 1 shows an example of edge
computing architecture that can be implemented in this scenario.

Assume there are four edge servers in a specific area that can be used to host
game G. Each edge server covers a particular geographical area. Users who are
outside the coverage of an edge server will not be able to connect to it (prox-
imity constraint). For example, user u4 cannot be assigned to edge server s1
or s4 and has to be allocated to either server s2 or s3. Furthermore, we need
to take into account various capacity constraints such as bandwidth, memory,
processing power, etc. In Fig. 1, each edge server has a limited computing capac-
ity denoted as a vector 〈CPUcore,memory, V RAM, bandwidth〉. The aggregate
workload generated by users on a server must not exceed the remaining capac-
ity of that server. There are seven users within the coverage of edge server s2
with a total workload of 〈7, 7, 3.5, 28〉, exceeding the remaining capacity of server
s2(〈7, 8, 4, 25〉). Thus, the game provider cannot assign all of these users to a sin-
gle server s2. Since users u1, u2, . . . , u5 are also covered by other edge servers, it
is possible to allocate them to other servers to share the workload with server
s2. One potential solution would be to allocate users u1, u2 to server s1, users

1 https://www.hatch.live/.
2 https://www.playstation.com/en-gb/explore/playstation-now/.

https://www.hatch.live/
https://www.playstation.com/en-gb/explore/playstation-now/

Optimal Edge User Allocation in Edge Computing 233

1

2 4

3 Edge server s
User u

Coverage

1

2

3 4

5

6

<7, 8, 4, 25> <2, 3, 1.5, 10>

<5, 6, 2.5, 20>

<3, 4, 2.5, 8>

7
8

9

10
11

<1, 1, 0.5, 4>

<1, 1, 0.5, 4>
<1, 1, 0.5, 4>

<1, 1, 0.5, 4>
<1, 1, 0.5, 4>

<1, 1, 0.5, 4>

<1, 1, 0.5, 4>

<1, 1, 0.5, 4> <1, 1, 0.5, 4>

<1, 1, 0.5, 4>
<1, 1, 0.5, 4>

<1, 1, 0.5, 4>: <CPU, RAM, VRAM, Bandwidth>

Fig. 1. Edge computing deployment example

u3, u6 to server s3 and users u4, u5 stay with server s2. No proximity or resource
constraint is violated this way, but this might not be the optimal solution. If
we assign users u1, u2, u4 to server s2, users u3, u6 to server s3, and user u5 to
server s4, server s1 will no longer be required so the service provider can choose
not to hire it to lower the total cost of hiring edge servers. This solution satisfies
all the aforementioned constraints, uses the least servers to serve the most users,
as well as guarantees the QoS.

3 Background

Definition 1 (Classical Bin Packing (BP) Problem). Given an infinite
supply of identical bins S = {s1, s2, . . . , si} with maximum capacity C = 1 and
a set of n items U = {u1, u2, . . . , uj}. Let a value wj ≡ w(uj) be the size of item
uj that satisfies 0 < wj ≤ C and 1 ≤ j ≤ n. The objective is to pack all the
given items into the fewest bins possible such that the total item size in each bin
must not exceed the bin capacity C:

∑
uj∈U(si)

wj ≤ C,∀si ∈ S.

In the classical BP problem, one can normalize C = 1 without loss of gen-
erality since the bin capacity is just a scale factor. Aggregating item sizes not
exceeding the capacity of the corresponding bin is the only constraint. This
problem is known to be an NP-hard combinatorial optimization problem [3].

Definition 2 (Variable Sized Bin Packing (VSBP) Problem. Given a
limited collection of bin sizes such that 1 = size(s1) > size(s2) > . . . > size(sk),
there is an infinite supply of bins for each bin type sk. Let L = {s1, s2, . . . , sl}
be the list of bins needed for packing all items. Given a list of items U =
{u1, u2, . . . , uj} with size(uj) ∈ (0, 1], the objective of the VSBP problem
is to find an item-bin assignment so that the total size of the bins required∑l

b=1 size(s
b) is minimum.

234 P. Lai et al.

In the classical BP problem, all bins are homogeneous with a similar bin
capacity. VSBP is a more general variant of the classical BP in which a limited
collection of bin sizes is allowed. VSBP aims at minimizing the total size of the
bins used, which is slightly different compared to the objective of the classical
BP problem as discussed above.

Definition 3 (Vector Bin Packing (VBP) Problem). Given a set of n
items U = {u1, u2, . . . , uj}, the size of an item uj is denoted as a d-dimensional
vector wj = 〈w1

j , w
2
j , . . . , w

d
j 〉, wj ∈ [0, 1]d. One is given an infinite supply of

identical bins S = {s1, s2, . . . , si} with maximum capacity C = 〈11, 12, . . . , 1d〉.
The objective is to pack the set U into a minimum number of bin s such that
‖∑

uj∈U(si)
wj‖∞ ≤ 1,∀si ∈ S.

In the classical BP problem, the size of an item is presented as a single
aggregation measure. By contrast, the size of an item in the VBP problem is
associated with a multi-dimensional vector. The objective remains similar, in
which the sum of packed item size vectors must not exceed the bin capacity
vector in each dimension, which is normalized to 1 without loss of generality. The
VBP problem is also known as multi-capacity BP problem in some literature.

In the EUA problem, a bin is referred to as an edge server with the maximum
bin capacity being the remaining computing resource of that edge server. An item
is referred to as an edge user, which can be a mobile phone or any IoT device;
the size of an item is the amount of workloads generated by that user, mea-
sured by the computing resource needed to perform the requested task. In this
paper, we tackle the EUA problem from a service provider’s perspective. Thus,
all users of an application generate the same amount of workload. In the real
world, different edge servers may have different hardware specifications and host
different applications for different numbers of users. Thus, they have different
remaining server capacities, or computing resources. In addition, a computing
task has various resource requirements such as CPU core, memory, video RAM,
bandwidth, and so forth. Therefore, the amount of computing resource needed
for a task should not be calculated by a just a single aggregate measure; instead,
it can be represented as a d-dimensional vector where each dimension represents
a resource type. The proposed VSVBP problem for EUA is NP-hard since the
classical BP, which is NP-hard [3], is a special case of VSVBP where d = 1 and
all the bins are identical in their capacity dimensionality.

4 Our Approach

4.1 Definitions

Edge servers have differentiated remaining capacity and multi-dimensional
resource requirements for computation tasks. Therefore, the EUA problem can
be modeled as a mixture of the VSBP problem and the VBP problem, hence a
variable sized vector bin packing (VSVBP) problem. Our objective is to max-
imize the number of allocated users and minimize the number of hired edge
servers.

Optimal Edge User Allocation in Edge Computing 235

We first introduce relevant notations and definitions used in our model in
Table 1. In the EUA problem, every user covered by any edge server must be
allocated to an edge server unless all the servers accessible to the user have
reached their maximum capacities. If a user cannot be allocated to any edge
servers, or is not positioned within the coverage of any edge servers, they will be
directly connected to a service provider’s central cloud server.

Table 1. Key notations

Notation Description

S = {s1, s2, . . . , si} Finite set of edge server si, where i = 1, 2, . . . ,m

Ci = 〈C1
i , C

2
i , . . . , C

d
i 〉 d−dimensional vector with each dimension Ck

i being a resource type,
such as CPU utilization or disk I/O, representing the remaining
capacity of an edge server si, k ∈ {1, 2, . . . , d}

U = {u1, u2, . . . , uj} Finite set of user uj , where j = 1, 2, . . . , n

wj = 〈w1
j , w

2
j , . . . , w

d
j 〉 d−dimensional vector representing the size of the workload incurred

by user uj . Each vector component wk
j is a resource type,

k ∈ {1, 2, . . . , d}
U(si) Set of users allocated to server si. U(si) ⊂ U

dij Geographical distance between server si and user uj

cov(si) Coverage radius of server si

The total workload generated by all users allocated to an edge server must
not exceed its remaining capacity (1). Otherwise, the server will be overloaded,
causing service disruptions or performance degradation. Take Fig. 1 for instance.
The aggregate workload incurred by users u5 and u11 is 〈2, 2, 1, 8〉 does not exceed
the remaining capacity of server s4, 〈2, 3, 1.5, 10〉; therefore, this is a valid user-
server assignment. If we allocate users u1, u2, u3, u4, u5, u9, u10 to server s2, it
will be overloaded since the aggregate user workload 〈7, 7, 3.5, 28〉 exceed the
server’s remaining capacity 〈7, 8, 4, 25〉.

∑

uj∈U(si)

wj ≤ Ci, ∀si ∈ S (1)

In the classical BP problem, an item can be placed in any bins as long as the
bin has sufficient remaining capacity. However, in our problem, an edge server
covers a limited surrounding geographical region. Thus, an item (user) can be
assigned to specific bins (edge servers) since an edge server can only serve users
who are located within its coverage (2). Take Fig. 1 for example. Server s4 can
serve users u5 and u11 only. Since users might position in the overlapping areas
of different edge servers, there is an optimal solution to allocate as many users
as possible to as few servers as possible, which is the main focus of our research.

dij ≤ cov(si),∀i ∈ {1, 2, . . . ,m};∀j ∈ {1, 2, . . . , n} (2)

236 P. Lai et al.

Our primary objective is to maximize the number of users allocated to all hired
edge servers, which ensures the QoS from the service provider’s perspective:

maximize
∑

si∈S

|U(si)|, (3)

Our secondary objective is to find a user-server assignment {u1, . . . , uj} −→
{s1, . . . , si} such that the number of servers hired E is minimum:

minimizeE = |{si ∈ S|
∑

uj∈U(si)

wj > 0}| (4)

4.2 EUA Model

In this paper, we address the EUA problem with two optimization objectives: (1)
maximizing the number of users allocated and (2) minimizing the number of edge
servers hired, while satisfying the capacity constraint and proximity constraint.
Accordingly, we model the EUA problem as a Lexicographic Goal Programming
(LGP) problem [9]. In a lexicographic goal program, there are multiple opti-
mization objectives with a number of constraints. These objectives are ranked
by their levels of importance, or priorities. The solver will attempt to find an
optimal solution that satisfies the primary objective and then proceed to find a
solution for the next objective without deteriorating the previous objective(s).
An LGP program can be solved as a series of connected integer linear programs.
The LGP formulation of the EUA problem is as follows:

maximize
n∑

j=1

m∑

i=1

xij (5)

minimize E =
n∑

i=1

yi (6)

subject to:

n∑

j=1

wk
j xij ≤ Ck

i yi,∀i ∈ {1, . . . , n};∀k ∈ {1, . . . , d} (7)

dij ≤ cov(si),∀i ∈ {1, . . . , n};∀j ∈ {1, . . . , n} (8)
m∑

i=1

xij ≤ 1,∀j ∈ {1, . . . , n} (9)

yi ∈ {0, 1},∀i ∈ {1, . . . , n} (10)
xij ∈ {0, 1},∀i ∈ {1, . . . , n};∀j ∈ {1, . . . , n} (11)

where

yi = 1 if server si is hired.
xij = 1 if user uj is allocated to server si.
cov(si) is provided by edge computing providers.

Optimal Edge User Allocation in Edge Computing 237

The objective (5) maximizes the number of users that are assigned to hired edge
servers. The objective (6) minimizes the number of hired edge servers. Here,
objective (5) is ranked higher than objective (6) in terms of priority. There are
two groups of binary variables, i.e., xij (11) and yi (10).

Capacity Constraint: As described by (7), each edge server sj has a remaining
capacity of Ci = 〈C1

i , C
2
i , . . . , C

d
i , 〉, a d-dimensional vector. The aggregate work-

load of each resource type incurred by all allocated users must not exceed the
corresponding remaining capacity of their assigned server. Take Fig. 1 for exam-
ple. Assigning users u5, u11 to server s4 is valid since 〈2, 2, 1, 8〉 < 〈2, 3, 1.5, 10〉.
Proximity Constraint : As described by (8), only users located within the coverage
of an edge server can be allocated to the edge server. A user may be located in
the overlapping coverage of multiple edge servers. For instance, users u2, u3 can
be allocated to servers s1, s2 or s3.

Constraint family (9) ensures every user is allocated to at most one edge
server. In other words, a user can be allocated to either an edge server or service
provider’s cloud server.

5 Experimental Evaluation

In this section, we evaluate the performance of our approach by extensive exper-
iments with a comparison to two baseline approaches. All the experiments were
conducted on a Windows machine equipped with Intel Core i5-7400T processor
(4 CPUs, 2.4 GHz) and 8 GB RAM. The LGP problem modeled in Sect. 4.2 was
solved using IBM ILOG CPLEX Optimizer.

5.1 Baseline Approaches

Our approach will be benchmarked against two baseline approaches for user-to-
server assignment, namely random and greedy approaches:

– Random: Each user will be allocated to a random edge server as long as that
server has sufficient remaining capacity to accommodate the user and has the
user within its coverage.

– Greedy : Each user will be allocated to an edge server that has the most
remaining capacity and has the user within its coverage.

5.2 Experiment Settings

In this paper, we conduct experiments on data of base stations and end-users
within the Melbourne central business district area in Australia, which has a
total area of 6.2 km2.

238 P. Lai et al.

Experiment Data: We collect the location data of edge servers and end-users.
Australian Communications and Media Authority (ACMA) publishes the radio-
comms license dataset that contains the geographical location of all cellular base
stations in Australia, which we will use as the locations of edge servers [5]. The
coverage of each edge server is randomly set within a range of 450–750 m. In terms
of end-users’ locations, Asia Pacific Network Information Centre (APNIC) pro-
vides all IP address blocks allocated to Australia. We use an IP lookup service3 to
convert the obtained IP addresses into geographical locations. Since IP addresses
in the last octet are likely to have identical geographical addresses returned by
the IP lookup service, more end-users are uniformly generated around each of
the obtained geographical locations. The raw experimental data has been made
publicly available (EUA-dataset4).

Experimenting Parameters: In the experiments, we vary three setting
parameters that may have an impact on our approach:

(1) Number of end-users: We randomly select different numbers of end-users
n = 4, 8, 16, . . . , 512. For each setting, we run the experiment 100 times to
get 100 different random end-user distributions so that extreme cases, such
as overly dense or sparse user distributions, are properly neutralized.

(2) Number of edge servers: The n end-users are located within the combined
coverage of M edge servers. We assume that a total of m servers, where
m = 10%, 20%, . . . , 100%∗M , are available for accommodating those n end-
users.

(3) Remaining server capacity: We experiment various levels of remaining
server capacity based on the combined user workload. To be specific, we cal-
culate 100%, 150%, . . . , 300% of the combined user workload, then normally
distribute it to M edge servers collectively covering the n end-users.

Performance Metrics: We evaluate the three approaches, namely our VSVBP,
the random and the greedy baseline approaches, using the following metrics: (1)
the percentage of allocated end-users of all end-users, the higher the better; (2)
the percentage of hired edge servers of all available edge servers, the lower the
better; and (3) the execution time (CPU time), the lower the better.

Given the data and the experiment parameters, we conduct three sets of
experiments. The corresponding settings are described in Table 2. For each set,
we vary one parameter and keep the other two fixed to observe the impact of
each parameter on the approaches in the evaluation metrics.

In experiment set 1, the number of users vary from 4, 8, 16, 32, 64, 128, 256 to
512. All the edge servers, which have end-users within their coverage, can serve
those end-users. The total remaining server capacity is 300% of the combined
user workload. In experiment set 2, the number of users is fixed at 512, and the
total remaining server capacity is fixed at 300% of the combined user workload.
3 http://ip-api.com/.
4 https://github.com/swinedge/eua-dataset.

http://ip-api.com/
https://github.com/swinedge/eua-dataset

Optimal Edge User Allocation in Edge Computing 239

Table 2. Experiment settings

Factor Number of users Percentage of the total
number of servers

Remaining server capacity

Set #1 4, 8, . . . , 512 100% 300%

Set #2 512 10%, 20%, . . . , 100% 300%

Set #3 512 100% 100%, 150%, . . . , 300%

We change the number of edge servers that would be used to accommodate end-
user, i.e., 10%, 20%, . . . , 100% of all edge servers to be made available for hire.
In the last experiment set, we keep the number of users fixed at 512 and make
all edge servers available for hire. The changing factor is the remaining server
capacity – 100%, 150%, . . . , 300% of all users’ workload combined.

5.3 Experimental Results and Discussion

Figures 2, 3 and 4 show the results of the experiment set 1, 2 and 3, respectively.
The three performance metrics are depicted in each sub-figure: (a) percentage
of user allocated, (b) percentage of servers hired, and (c) execution time.

Figure 2 shows that in experiment set 1, as we increase the number of end-
users from 4 users to 512, the random approach performs poorly in terms of
allocated users percentage (only 20%–25% of the users are allocated) compared
to the greedy approach and our approach, which give an equal performance with
all users having been allocated. However, in terms of the number of edge servers
hired, our approach starts to outperform the greedy approach as the number
of end-users exceeds 32. The percentages of servers hired by the greedy and
the random methods keep growing as the number of end-users increases, up to
around 87.04% when serving 512 end-users. By contrast, our approach stably
uses only around 32% of all available edge servers, 2.7 times less than that of
the greedy approach, and remains steady even when the number of end-users
increases from 32 to 512.

32 128 256 512

20%

40%

60%

80%

100%

Number of users

A
ss
ig
ne

d
us
er
s
pc

t.

Our method

Random

Greedy

(a) Pct. of users allocated

32 128 256 512

20%

40%

60%

80%

Number of users

H
ir
ed

se
rv
er
s
pc

t.

(b) Pct. of servers hired

32 128 256 512
0

10

20

Number of users

C
P
U

T
im

e
(s
)

(c) Execution time

Fig. 2. Resulted metrics of set #1 (number of users changing)

240 P. Lai et al.

20% 40% 60% 80%100%

20%
40%
60%
80%

100%

Percentage of total no. of servers

A
ss
ig
ne

d
us
er
s
pc

t.

(a) Pct. of users allocated

20% 40% 60% 80%100%
30%
40%
50%
60%
70%
80%
90%

100%

Percentage of total no. of servers

H
ir
ed

se
rv
er
s
pc

t.

(b) Pct. of servers hired

20% 40% 60% 80%100%
0

10

20

Percentage of total no. of servers

C
P
U

T
im

e
(s
)

(c) Execution time

Fig. 3. Resulted metrics of set #2 (number of servers changing)

100%150%200%250%300%

20%
40%
60%
80%

100%

Combined user workload percentage

A
ss
ig
ne

d
us
er
s
pc

t.

(a) Pct. of users allocated

100%150%200%250%300%

30%
40%
50%
60%
70%
80%
90%

100%

Combined user workload percentage

H
ir
ed

se
rv
er
s
pc

t.

(b) Pct. of servers hired

100%150%200%250%300%

10

20

Combined user workload percentage

C
P
U

T
im

e
(s
)

(c) Execution time

Fig. 4. Resulted metrics of set #3 (remaining server capacity changing)

In experiment set 2, we change the number of edge servers available for hire.
As depicted in Fig. 3(a), the allocated user percentage follows a similar trend as
in experiment set 1. Regarding the percentage of hired edge servers (Fig. 3(b)),
our approach continues to outperform the other two approaches as the number
of edge servers increases.

Figure 4 shows that, in the last set of experiments, where the edge servers’
total remaining capacity increases, we can observe the same trending patterns
with our approach being the most effective out of the three approaches studied.
As we increase the combined user workload percentage from 100% to 300%, our
approach uses significantly fewer servers, dropping from 96.4% to 31.6% while
the greedy method has to use around 90% of the all available servers.

Note that in all three set of experiments, the random approach seems to per-
form better than ours with fewer hired servers on some occasions. For example,
when the number of users varies between 4 and 128 (Fig. 2(b)), when the total
number of hired edge servers percentage varies between 10% and 50% (Fig. 3(b)),
and when the total remaining server capacity changes between 100% and 200%
(Fig. 4(b)). In fact, the random approach does not produce better results in these
scenarios because although it uses fewer servers, the number of users allocated
is extremely small (only 6%–20% of all end-users experimenting) compared to
the other approaches, as shown in Figs. 2, 3, 4(a).

In terms of efficiency, the computation time of our approach increases con-
siderably as we increase any one of the three parameters. In experiment set 1
with 512 users, the greedy and random methods take only approximately 1.5 s
while our approach takes around 23.1 s to solve an instance of the EUA prob-
lem. This can also be observed in experiment sets 2 and 3, where we increase

Optimal Edge User Allocation in Edge Computing 241

the number of servers available for hired and the total remaining server capacity
respectively. Since the EUA problem is an NP-hard problem, it is expected that
our approach, which optimally solves the problem, will take the most time as
opposed to the other approaches, which can only make local decisions without
considering the problem globally.

In general, increasing one of the three experimental parameters will increase
the complexity of the EUA problem, which is an NP-hard problem, and thus
take more time to find an optimal solution. Our experimental results show that
the random approach is not able to maximize the number of users allocated (the
first optimization objective) as it can assign around only 20% of all the end-users
in the experiments. The greedy approach is able to assign a similar number of
end-users as our approach; the edge servers’ adequate remaining capacities allow
the greedy approach to find a capable edge server to accommodate most end-
users. However, as shown in Figs. 2, 3, 4(b), our approach hires much fewer
edge servers (the second optimization objective) than the greedy method to
accommodate all the end-users. This is shown in all three experiment results,
especially as the EUA problem scales up.

5.4 Threats to Validity

Threats to Construct Validity. The main threat to the construct validity in our
study lies in the comparison with the two baseline methods, i.e., the random and
greedy methods. The EUA problem studied in this research is a problem that has
not been investigated before in this domain. Thus, we selected these two common
and intuitive methods as baselines in our evaluation. Their designs are simple,
especially the random method, which employs no heuristics. As a result, our
approach is likely to obtain better experimental results, leading to a threat where
the comparison with the selected baselines might not properly demonstrate the
effectiveness of our approach in solving the EUA problem. To minimize this
threat, we conducted experiments with three changing parameters as described
in Table 2 to simulate different service deployment scenarios in the real world.
This way, we could reliably evaluate our approach through both comparison with
the baseline methods and also impacts of varying each experimental parameters
on our approach.

Threats to External Validity. A major threat to external validity is whether our
findings based on the experimental dataset can be generalized to other applica-
tion domains in edge computing. Since there is currently no real-world dataset for
this type of edge computing problems, we synthesized a dataset of edge servers
and end-users based on reliable real-world data sources (ACMA and APNIC).
However, this is a generic dataset, and it is possible that different application
domains might have different factors that could impact the experimental results,
such as the density and distributions of edge servers and end-users. Thus, our
approach was evaluated across a breadth of problem scoping, varying in size,
i.e., number of end-users, and complexity, i.e., number of edge servers and edge

242 P. Lai et al.

servers’ remaining capacities, to simulate as many types of edge server and end-
user density and distribution as possible, as well as their combinations. This
helped reduce the threat to the external validity of our evaluation and increased
the generalizability of our results.

Threats to Internal Validity. A threat to internal validity of our work is the
comprehensiveness of our experiments and whether or not the results are not
biased by the experimental parameter settings. To mitigate this threat, we car-
ried out extensive experiments with systematically selected parameters. The
three experimental parameters (discussed in Sect. 5.2) are the three represen-
tative parameters that directly impact the outcomes of the approaches. Also,
for each experiment set, we experimented with 100 different user distributions
randomly selected from the pool of users to eliminate the potential bias caused
by highly special scenarios such as overly dense or sparse distributions. Another
threat to the internal validity of our evaluation is where more sophisticated sce-
narios could be simulated, e.g., those where two or more of those parameters
change at the same time. In those scenarios, the results can be predicted in
general based on the results that we have obtained. For example, if the total
number of available edge servers and their total remaining capacities increase
at the same time, the percentage of used servers of all hired by our approach
will decline with a trend similar to but more significant than those shown in
Figs. 3(b) and 4(b).

Threats to Conclusion Validity. The lack of statistical tests is the biggest threat
to our conclusion validity. Statistical tests will be included in our future work
to prove a statistically significant relationship between the experiment settings
and the results. In this paper, we have compensated for this with meaningful
comparison baselines and extensive experiments that cover many different sce-
narios, varying in both size and complexity. When an experimental parameter
changes, the results are averaged over 100 runs of the experiment.

6 Related Work

Resource management in cloud computing has been extensively investigated
in the last decade in many research tracks such as load balancing [7], virtual
machine placement and provisioning [14], server and task allocation [8], etc.

Edge computing, or fog computing, is a new computing paradigm coined by
Cisco in 2012 [1]. Edge computing is a natural extension of cloud computing
with regard to the network topology and infrastructure deployment, where the
architecture is more geographically distributed compared to cloud computing.
This new architecture pushes the cloud resources closer to end-users. Barcelona,
Spain is one of the first cities implementing edge computing with many applica-
tions, including power monitoring in public spaces, access control and telemetry
of sensors, event-based video streaming, traffic analysis and regulation, and con-
nectivity on demand [15]. There are more than 3,000 edge servers deployed across

Optimal Edge User Allocation in Edge Computing 243

the city serving thousands of IoT devices. The sheer number of edge servers and
end-devices, with the horizontal scaling nature of edge computing, leads to the
need for effective and efficient resource allocation solutions.

Chen et al. [2] proposed a distributed game theoretic computation offloading
algorithm that was able to achieve a Nash equilibrium, minimizing the total
energy consumption and offloading latency in the multi-channel mobile edge
computing environment. By the proposed approach, they were able to optimally
decide whether the users should offload computing tasks to an edge server and if
yes, which wireless channel to be used for the computation offloading. In [16], Yao
et al. tackled the problem of cost-effective edge server deployment using integer
linear programming. They took into account the factors of resource capacity,
user-server latency, and deployment costs. In their research, each edge server
might not have the service installed to fulfill the requests from end-users. Thus,
users’ requests might have to travel across different edge servers until executed.
However, they assumed that each server covers a region exclusively with other
servers. They also assumed a predetermined edge server that first receives the
user request. Our research targets more realistic edge computing scenarios where
different edge servers’ coverages might partially overlap. The authors of [13]
also made an assumption that each small geographical area will only receive
coverage from only a single edge server, which will be unlikely to happen in real-
world scenarios. In [11], the authors formulated a problem similar to the EUA
problem but with different objectives, which are to reduce task completion time
and energy consumption. Yin et al. [18] addressed the edge server placement
and provisioning problem with the objective of maximizing users coverage and
minimizing network latency.

To the best of our knowledge, our work is the first to tackle the EUA problem
in scenarios with multiple edge servers and end-users that possess and require
multi-dimensional computing capacities. We also realistically and innovatively
address this problem with respect to proximity constraints with the aims to max-
imize the number of allocated users and minimize the number of hired servers.

7 Conclusion

Edge computing is a promising new computing architecture, especially for
high volume, data processing-intensive, latency-sensitive applications and ser-
vices. However, when an edge computing scenario scales up, an ineffective edge
user allocation solution will greatly increase the operational costs for service
providers. To address this problem, we formulated the edge user allocation
(EUA) problem as a variant of the bin packing problem named variable sized
vector bin packing, an NP-hard problem. We solved this problem using a Lex-
icographic Goal Programming technique with two optimization objectives, i.e.,
to maximize the number of users allocated and minimize the number of edge
servers hired. We then conducted extensive experiments in scenarios with var-
ious service deployment requirements. Our experimental results show that our
approach significantly outperforms two baseline approaches, greedy and random.

244 P. Lai et al.

It is capable of allocating the most end-users with significantly fewer edge servers
– nearly three times less than the greedy method – as the EUA problem scales
up.

This research has established a basic foundation for the EUA problem and
opened up a number of research directions. In our future work, we will take
into account the users’ mobility as well as the dynamics of users’ computation
tasks. In addition, apart from the proximity and capacity constraints, there are
several elements that also play an important role such as network latency, service
availability, pricing, and security.

Acknowledgments. This research is funded by Australian Research Council Discov-
ery Projects (DP170101932 and DP18010021).

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). https://
doi.org/10.1145/2342509.2342513

2. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016).
https://doi.org/10.1109/TNET.2015.2487344

3. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman
and Company, New York (2002)

4. Heuveldop, N.: Ericsson mobility report. Technical report, Ericsson, November
2017. https://www.ericsson.com/assets/local/mobility-report/documents/2017/
ericsson-mobility-report-november-2017.pdf

5. Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge computing
a key technology towards 5G. Technical report 11, European Telecommunications
Standards Institute (2015). http://www.etsi.org/images/files/ETSIWhitePapers/
etsi wp11 mec a key technology towards 5g.pdf

6. Lin, Y., Shen, H.: CloudFog: leveraging fog to extend cloud gaming for thin-client
MMOG with high quality of service. IEEE Trans. Parallel Distrib. Syst. 28(2),
431–445 (2017). https://doi.org/10.1109/TPDS.2016.2563428

7. Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE
Trans. Parallel Distrib. Syst. 12(10), 1094–1104 (2001). https://doi.org/10.1109/
71.963420

8. Ren, R., Tang, X., Li, Y., Cai, W.: Competitiveness of dynamic bin packing for
online cloud server allocation. IEEE/ACM Trans. Netw. 25(3), 1324–1331 (2017).
https://doi.org/10.1109/TNET.2016.2630052

9. Romero, C.: Handbook of Critical Issues in Goal Programming. Elsevier, Amster-
dam (2014)

10. Smith, J.: The mobile gaming report. Technical report, Business Insider Intelli-
gence (2016). http://www.businessinsider.com/the-mobile-gaming-report-market-
size-the-free-to-play-model-and-new-opportunities-to-market-and-monetize

11. Tran, T.X., Pompili, D.: Joint task offloading and resource allocation for multi-
server mobile-edge computing networks. CoRR abs/1705.0 (2017). http://arxiv.
org/abs/1705.00704

https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TNET.2015.2487344
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-november-2017.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
http://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g.pdf
https://doi.org/10.1109/TPDS.2016.2563428
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/TNET.2016.2630052
http://www.businessinsider.com/the-mobile-gaming-report-market-size-the-free-to-play-model-and-new-opportunities-to-market-and-monetize
http://www.businessinsider.com/the-mobile-gaming-report-market-size-the-free-to-play-model-and-new-opportunities-to-market-and-monetize
http://arxiv.org/abs/1705.00704
http://arxiv.org/abs/1705.00704

Optimal Edge User Allocation in Edge Computing 245

12. Varghese, B., Wang, N., Nikolopoulos, D.S., Buyya, R.: Feasibility of fog comput-
ing. CoRR abs/1701.0 (2017). http://arxiv.org/abs/1701.05451

13. Wang, L., Jiao, L., Li, J., Mühlhäuser, M.: Online resource allocation for arbitrary
user mobility in distributed edge clouds. In: 2017 IEEE 37th International Con-
ference on Distributed Computing Systems (ICDCS), pp. 1281–1290, June 2017.
https://doi.org/10.1109/ICDCS.2017.30

14. Wolke, A., Tsend-Ayush, B., Pfeiffer, C., Bichler, M.: More than bin packing:
dynamic resource allocation strategies in cloud data centers. Inf. Syst. 52, 83–95
(2015). https://doi.org/10.1016/j.is.2015.03.003

15. Yannuzzi, M., et al.: A new era for cities with fog computing. IEEE Internet Com-
put. 21(2), 54–67 (2017). https://doi.org/10.1109/MIC.2017.25

16. Yao, H., Bai, C., Xiong, M., Zeng, D., Fu, Z.: Heterogeneous cloudlet deployment
and user-cloudlet association toward cost effective fog computing. Concurr. Com-
put. 29(16), 1–9 (2017). https://doi.org/10.1002/cpe.3975

17. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata 2015, pp.
37–42. ACM, New York (2015). https://doi.org/10.1145/2757384.2757397

18. Yin, H., et al.: Edge provisioning with flexible server placement. IEEE Trans.
Parallel Distrib. Syst. 28(4), 1031–1045 (2017). https://doi.org/10.1109/TPDS.
2016.2604803

http://arxiv.org/abs/1701.05451
https://doi.org/10.1109/ICDCS.2017.30
https://doi.org/10.1016/j.is.2015.03.003
https://doi.org/10.1109/MIC.2017.25
https://doi.org/10.1002/cpe.3975
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/TPDS.2016.2604803
https://doi.org/10.1109/TPDS.2016.2604803

RA-FSD: A Rate-Adaptive Fog Service
Delivery Platform

Tiehua Zhang(B), Jiong Jin, and Yun Yang

School of Software and Electrical Engineering,
Swinburne University of Technology, Melbourne, Australia

{tiehuazhang,jiongjin,yyang}@swin.edu.au

Abstract. As the Internet of Things (IoT) technologies permeate peo-
ple’s daily lives, the sheer number of IoT applications has been developed
to provide a wide range of services. Among all, real-time IoT services
start to draw increasing attentions. Conventionally, cloud plays the role
as the service provider in IoT but is no longer considered as the rational
option for the real-time services due to service transmission latency and
communication overhead. Therefore, we propose a novel rate-adaptive
fog service delivery platform, namely RA-FSD, aiming at real-time ser-
vice provisioning and network utility maximization (NUM) of the under-
lying IoT resources based on the newly emerged fog computing paradigm.
The platform leverages fog nodes as either fog service provider to offer
timely services for end users, or service intermediaries to help track net-
work conditions and mitigate communication overhead. By doing so, ser-
vice consumers would always benefit from the fact that services produced
by IoT applications are in their proximity and thus delivered to desti-
nation in a prompt manner. A service rate-adaptive algorithm is also
developed as the key component of the RA-FSD platform to handle the
abrupt changes happened in IoT network, dynamically adjust service
delivery rate based on the network condition while retaining satisfactory
Quality of Service (QoS) to each service consumer, and support both
elastic and inelastic network services from heterogeneous IoT applica-
tions.

Keywords: Fog computing · Internet of Things (IoT)
Service-oriented networking · Network utility maximization (NUM)
Quality of Service (QoS)

1 Introduction

The proliferation of IoT technology has brought the unprecedented convenience
to people and draw widespread attentions from both academia and industry [3].
Currently, cloud plays a major role in providing these highly personalized,
context-aware IoT services because of the advantages like cost reductions, easy
deployment and strong reliability. However, the new challenges presented by

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 246–254, 2018.
https://doi.org/10.1007/978-3-030-03596-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_16

RA-FSD: A Rate-Adaptive Fog Service Delivery Platform 247

real-time IoT applications like stringent latency and Quality of Service (QoS)
requirement are not well addressed by the standalone cloud computing paradigm.

In order to address aforementioned issues and overcome inadequacy of the
cloud, fog computing is introduced. The idea of extending cloud to the edge
of network and closer to end users has been viewed as an alternative with the
overarching goal of “off-loading” from the cloud. Fog nodes, acting as the proxy
of both cloud and end devices/users (things), could be equipped with comput-
ing, storage and networking resources to accommodate various IoT applications.
Therefore, these applications could be deployed in fog rather than the conven-
tional approach on either resource-constrained IoT devices or remote cloud. In
this regard, fog and cloud complement each other to form a service continuum
that distributes respective services to end users [2].

Along with the rapid growth of IoT applications, heterogeneous services are
tailored for service consumers with certain QoS guarantee. In reality, stable
service delivery rate is a key component to meet the QoS and it could act as a
major part in service consumers perception with regard to overall performance of
service invocation [1]. In our work, the utility function is used to model the QoS
performance, which increases as the increasing of service delivery rate. From the
utility point of view, the services can be categorized into two main groups, i.e.,
traditional elastic services (e.g., file transfer, data analysis and web browsing),
in which each service attains a strictly increasing and concave utility function
to measure its QoS performance, and real-time inelastic services provided by
audio, video and multimedia real-time applications. Such inelastic services have
an intrinsic bandwidth threshold in nature and adopt the sigmoid-like functions
to describe the corresponding QoS [5].

There are several previous efforts made towards developing service delivery
architecture to connect service consumers and providers in IoT environment.
A vehicular data cloud platform is proposed in [4] to provide real-time infor-
mation, yet concerns like service transmission latency and transportation cost
are not discussed. Some service platforms aim to utilize underlying IT resources
to achieve good QoS through NUM, e.g, the automatic service routing plat-
form proposed in [1] and the multicast multirate service delivery platform in [8],
but their works either are not designed for IoT environment, or fail to support
inelastic, real-time IoT services. Given that, the advantages of RA-FSD platform
are highlighted as follows: (1) it seamlessly integrates fog computing into IoT
environment, and utilizes fog node as service provider equipped with more com-
putation and storage resources than traditional IoT devices; (2) it offers services
that are generated in the proximity of users, and both service transportation
cost and delivery latency are largely reduced; (3) beside elastic services, it also
supports real-time inelastic services.

2 Architecture of RA-FSD Platform

In this section, we introduce the architecture of RA-FSD platform and the com-
ponents inside. The platform is composed of heterogeneous things, fog nodes and

248 T. Zhang et al.

Fig. 1. Fog computing architecture, and example services provided by cloud and fog
nodes

the cloud. From the service-oriented computing perspective [7], things normally
play the role of service consumers/requesters, fog nodes equipped with computa-
tion, storage and networking power could serve as either service providers or ser-
vice intermediaries, in which service intermediaries help collect service requests
from bottom-level things, track network conditions, cooperate with providers to
adapt service transmission rate, and forward services back to requesters. Since
the cloud treats fog as the proxy in the edge network, it is noticeable that the
use of cloud is no longer mandatory under this platform, but one could choose
to continue using cloud as service provider for particular services, e.g., advanced
analytic service for big data.

Figure 1 presents a simple fog architecture with a multi-level hierarchy,
including different types of service provisioned inside. The bottom layer con-
sists of the end devices or users. The fog nodes have been positioned in the
middle two layers, and similar to the traditional IoT network, the cloud is at
the top layer. Taking advantage of the geographical locations, IoT applications
could deploy on the fog nodes in the vicinity of things and fog node is thus able
to serve as the real-time service provider in IoT network. In addition, fog node
selected as provider would form the corresponding service group in which a par-
ticular service could be disseminated. Specifically, the provider in each group will
gather feedback regarding downstream network conditions reported by service
intermediaries to adjust transmission rate for different service receivers. Service
intermediaries, on the other hand, collaborate with providers and could be con-
verted to the providers if needed, which increases the scalability and flexibility
of the platform. In general, the cloud is only used as service provider if that
service associates with a large volume of data processing and storage, or service
requested is delay-tolerant.

RA-FSD: A Rate-Adaptive Fog Service Delivery Platform 249

3 Analytic Framework and Optimization Problem

The NUM resources allocation problem in the fog-based IoT environment is for-
mulated in this section to make it support both elastic and real-time inelastic
services. In addition, we characterize the utility in terms of allocated service
transmission rate deriving from the underlying bandwidth of IoT network. Con-
sider a fog service delivery network consisting of a set of links L = {1, 2,, l},
each of which has respective capacity cl. There is a set of S = {1, 2,, s} ser-
vice groups, and each service group is devoted to providing one service. For
each service group s, there is only one unique service provider, which is either a
fog node or the cloud. A set of receivers in service group s could be defined as
Rs = {rs,1, rs,2,, rs,n}, and along with a set of links Ls ⊂ L. They together
form the corresponding service delivery tree for that service group, where the
provider stays at the root of the tree, and each receiver in Rs is connected to
the IoT network through the leaf fog nodes.

For each service receiver Rs,i ∈ Rs in a service group, Ls,i ⊂ Ls describes the
service delivery path from the provider of service group s to relevant receiver i.
Utility function Us(xs,i) has been selected on per-service basis, which is cus-
tomized to describe the QoS requirement. In addition, utility function should be
strictly increasing and continuously differentiable, but needs not be concave in
our work. xs,i represents the service delivery rate to receiver i in service group s.

We then formulate the following optimization problem, on the basis of mul-
ticast, multirate model similar to [8]:

P1 : max
x≥0

U(x) =
∑

s∈S

ns∑

i=1

Us(xs,i) (1)

subject to
∑

s∈S

xl
s ≤ cl, ∀l ∈ L (2)

xl
s = max

{i|l∈Ls,i}
xs,i = lim

N→∞

(∑

{i|l∈Ls,i}
xN
s,i

) 1
N

(3)

In Eq. (3), {i|l ∈ Ls,i} is a set of receivers that uses link l to receive the
corresponding service in service group s. This equation states that in service
group s, the service rate on link l is the same as the rate of the fastest downstream
receiver in this group. In addition, constraint (2) in this optimization problem
means that the aggregate service rate on link l across all service groups should
not exceed the link capacity (network condition). Then we replace (3) in (1) and
the Lagrangian multiplier could be yielded:

L(x, p) =
∑

s∈S

ns∑

i=1

Us(xs,i) −
∑

l∈L

pl

[
∑

s∈S

(∑

{i|l∈Ls,i}
xN
s,i

) 1
N

− cl

]
(4)

In order to make our platform support both elastic and inelastic services, a
pseudo utility function [5] is constructed as (5) to substitute the original opti-
mization problem P1:

250 T. Zhang et al.

Us(xs,i) =
∫ xs,i

ms

1
Us(y)

dy, ms ≤ xs,i ≤ Ms (5)

where ms and Ms represent minimum and maximum service delivery rate,
respectively. Based on the characteristic of original utility function Us,i(xs,i), this
pseudo utility function must be strictly increasing and concave as U ′′

s (xs,i) < 0.
By solving the optimization problem, the derived results could be further incor-
porated into the service rate-adaptive algorithm.

4 Service Rate-Adaptive Algorithm and Implementation

The algorithm is devised to take
advantage of the architectural sup-
port from the platform and is
deployed on all fog nodes to period-
ically check the network conditions
as well as adapt the service deliv-
ery rates accordingly. By choos-
ing appropriate fog node as service
provider, the corresponding service
generated could traverse less hops
than the cloud scheme and thus
make it suitable for delay-sensitive
IoT applications.

Algorithm 1 presents a sum-
mary of the algorithm, which
incorporates the analytic results
derived in Sect. 3 and comprises
two phases. The service interme-
diaries would firstly gather rele-
vant downstream links information,
then report it upwards recursively
to form the fog service continuum
(lines 2–3). Afterwards, several ser-
vice groups have been established,
and whenever a service requester
joins or leaves a service group (net-
work changes), the bottom-level fog
node is able to detect the change
and report it upwards, which consequently starts another round of phase 1. In
phase 2, fog nodes would firstly iterate through each downstream links and cal-
culate the current link status. More specifically, lines 5–10 deal with the link
price updating process, followed by the calculation of price weighting coefficient
in lines 11–17, which implies that this coefficient would continue to increase for
receiver with the largest service rate, while decreasing among other receivers.

RA-FSD: A Rate-Adaptive Fog Service Delivery Platform 251

Fig. 2. Fog architecture in the shopping mall use case

Lines 18–27 handle the service rate adjusting process, if and only if current node
f is a service provider.

5 Performance Evaluation on a Case Study

In this section, we verify the feasibility of proposed platform with the algorithm
through a real-world shopping mall use case. Besides, the numerical results are
meanwhile used to demonstrate the applicability and robustness of the RA-FSD
platform. It is worthwhile mentioning that, as elastic service is relatively easier
to be accommodated, our focus on the use case is to implement inelastic services
originated from real-time applications.

Figure 2 illustrates the topology of the IoT network empowered by fog archi-
tecture in the shopping mall. In this topology, all fog nodes represented as the
dot points are placed inside the shopping mall, along with two different sizes of
digital displays acting like things. The topmost fog node is configured as the most
powerful node among all, and operates as the main gateway of this autonomous
network. In addition, cloud is only used for data backup purpose.

The performance of RA-FSD platform is evaluated through simulations. The
fog network originally contains 7 links labeled as l1, l2,, l7 with relevant capac-
ities c = (6, 4, 10, 8, 8, 12, 18) (in Mbps), and these links have been shared
between two service groups s1, s2. In addition, two types of screens require dif-
ferent services transmission rates to satisfy respective QoS requirement. The
utility function U1(xs=1,i) = 1

1+ e−2(x−6) is used to reflect the QoS performance
of inelastic service 1, and U2(xs=2,i) = 1

1+ e−2(x−4) for service 2.
The simulations start at time t = 0, and service group 2 contains relatively

small screens r2,1, r2,2, r2,3, while service group 1 only has one big screen r1,1 at
the start. The minimum and maximum service delivery rates to each screen are
set to be 0 and 10 Mbps but will be adapted quickly based on the feedback of
network condition. The platform triggers the algorithm at the bottom-level fog
node at every time interval of 0.1 s and experimental results including service

252 T. Zhang et al.

Fig. 3. The service delivery rates in different service groups

rate and utility are expected to reach a stable state rapidly to demonstrate
the applicability of the platform. It is also noticeable that at t = 60 s, two
new displays r1,2 and r1,3 have joined service group 1 and establish connections
to fog nodes through links l8 and l9 (dashed-line links) with capacities of 10
and 8, respectively, while r2,3 has suddenly left service group 2 along with a
disconnection of link l4. The abrupt changes of topology is not uncommon in real-
world situation, which is hereby used to validate the robustness of the platform.

Fig. 4. The utility results in different service groups

The simulation results of service delivery rates (xs,i) and utility results (QoS)
in service groups 1 and 2 are shown in Figs. 3 and 4, respectively. It is clearly
observed that all service rates converge to the optimum under the complex IoT
network conditions even with the abrupt network changes. The platform is capa-
ble of eliminating the instability, and relevant fog service providers can concretely
adapt service rate for each receiver to maintain a relatively good QoS. The mini-
mum service delivery rate achieved in this scenario is 4 Mbps and the overall QoS
achieved by the platform retains the value of more than 0.5, which substantially
suffices the service requirements of displays in the shopping mall use case [6].

RA-FSD: A Rate-Adaptive Fog Service Delivery Platform 253

To conclude, the simulation results reconfirm that our proposed platform
is applicable and robust in real-world scenario, and also capable of handling
abrupt network changes. Furthermore, the convergence of service delivery rates
and corresponding utilities clearly demonstrate that the platform could support
real-time inelastic services offered by the fog service providers.

6 Conclusion and Future Work

In this paper, we have proposed a novel rate-adaptive fog service delivery plat-
form that is applicable for current IoT network. Important issues in traditional
service-oriented IoT network such as service transmission latency and huge band-
width waste have been well addressed by applying RA-FSD. Heterogeneous IoT
services now offered in the vicinity of things as fog node could serve as providers
that are only a few hops away. Additionally, fog nodes in our platform work
collectively to maintain the stability of the IoT network.

Our case study verifies that, on the basis of fog architecture, RA-FSD seam-
lessly integrates service rate-adaptive algorithm, and copes with real-world sce-
narios effectively even with the abrupt changes occurred in the IoT network
(new joiner or leaver). Moreover, both elastic and inelastic IoT services are well
supported in the platform. Our next phase of research will focus on developing
the provider “pick up” strategy, in which RA-FSD platform should dynamically
select a fog node as the service provider based on its characteristic such as com-
puting power, geographic location or network condition.

Acknowledgements. This work is partly supported by Australian Research Council
Discovery Project Grant DP180100212 and Australian Government Research Training
Program Scholarship.

References

1. Callaway, R.D., Devetsikiotis, M., Viniotis, Y., Rodriguez, A.: An autonomic ser-
vice delivery platform for service-oriented network environments. IEEE Trans. Serv.
Comput. 3(2), 104–115 (2010)

2. Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE
Internet Things J. 3(6), 854–864 (2016)

3. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the
SOA-based internet of things: discovery, query, selection, and on-demand provision-
ing of web services. IEEE Trans. Serv. Comput. 3(3), 223–235 (2010)

4. He, W., Yan, G., Da Xu, L.: Developing vehicular data cloud services in the IoT
environment. IEEE Trans. Ind. Inform. 10(2), 1587–1595 (2014)

5. Jin, J., Wang, W.H., Palaniswami, M.: Application-oriented flow control for wireless
sensor networks. In: International Conference on Networking and Services, p. 71.
IEEE (2007)

6. Karam, M., Payne, T., David, E.: Evaluating bluscreen: usability for intelligent per-
vasive displays. In: International Conference on Pervasive Computing and Applica-
tions, pp. 18–23. IEEE (2007)

254 T. Zhang et al.

7. Tsai, W.T., Sun, X., Balasooriya, J.: Service-oriented cloud computing architecture.
In: International Conference on Information Technology: New Generations, pp. 684–
689. IEEE (2010)

8. Wang, W.H., Palaniswami, M., Low, S.: Necessary and sufficient conditions for
optimal flow control in multirate multicast networks. IEE Proc.-Commun. 150(5),
385–390 (2003)

A Service-Based Declarative Approach
for Capturing Events from Multiple Sensor

Streams

Zhongmei Zhang1,2,3(&), Chen Liu2,3, Xiaohong Li1,
and Yanbo Han1,2,3

1 School of Computer Science and Technology, Tianjin University,
Tianjin 300350, China

gloria_z@126.com, xiaohongli@tju.edu.cn,

yhan@ict.ac.cn
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream

Data, North China University of Technology, Beijing 100144, China
liuchen@ncut.edu.cn

3 Institute of Data Engineering, School of Computer Science and Technology,
North China University of Technology, Beijing, China

Abstract. Existing event processing models require defining events in details
beforehand. It is thus challenging to handle uncertainty associated with various
sensor streams having dynamic interventions and correlations. In this paper, we
improve our previous service abstraction which can increase the value density of
primitive sensor streams in two aspects. To deal with the uncertainty, we add
declarative rules in our service abstraction for adaptively generating events from
different sensor streams that reflect various external stimuli. For extracting
events dynamically, we utilize the correlation analysis method to treat events as
variations of correlations. This paper reports the tryout use of our approach in
Chinese power grid for detecting abnormal situations of power quality.

Keywords: Sensor stream � IoT service � Declarative rule
Correlation analysis

1 Introduction

With the rapid development of Internet of Things (IoT), numerous sensors are deployed
and produce an overwhelming amount of stream data [1]. Individual sensor streams are
usually fine-grained, have relatively lower value density, and intervene with each other
dynamically. For obtaining more valuable information, many IoT applications try to
capture events from sensor streams from multiple sources. And it is challenging to
extract meaningful events from sensor streams with high efficiency and accuracy.

Event detection techniques [2–4] are already in use in various real-time enterprise
solutions. State of the art event processing models provide frameworks to represent and
reason events, but require working on fixed set of sensor streams and detailed defi-
nitions of event based on raw sensor streams [5]. However, the stream sources of
events are usually uncertain. And facing large amount of sensor stream, it is impractical

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 255–263, 2018.
https://doi.org/10.1007/978-3-030-03596-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_17&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_17

to define all detailed definitions of each variety of event. Hence, it is crucial to
adaptively choose relative stream sources and capture events without relying on pre-
defined event definitions.

We proposed a service abstraction, called proactive data service in our previous
works [6, 7]. In this paper, we aim to improve it and propose a service-based declar-
ative approach to deal with the above stated problems. Firstly, for dealing with the
uncertain stream sources, we utilize declarative rules, which indicate the mapping
between external stimuli and stream sources, to realize adaptive accessing and pro-
cessing of sensor streams in proactive data services. Secondly, we utilize correlation
analysis method to capture events as correlation’s variations. In many fields, such as
anomaly detection, electronic trading, etc., variation of correlation among sensor
streams can be regarded as a kind of abnormal events. Facing the inconsistency of
frequency and shift of correlation among multiple sensor streams, we propose a
Dynamic Time Warping (DTW)-based algorithm to obtain lag-correlation. Relying on
our declarative rules and the DTW-based event capturing algorithm, our proactive data
service can capture events from dynamic sensor streams.

2 Scenario

In most modern electric devices of Chinese power grid, a series of sensors are
deployed, such as voltage, current, frequency, etc. Each sensor is in charge of moni-
toring one indicator and produces a corresponding sensor stream. These sensor streams
are affected by various disturbance sources, such as wind farm, photovoltaic power
station, electrified railway etc., and show some abnormal statuses, i.e. originally cor-
related sensor streams become uncorrelated, which can be regard as events. Figure 1
shows some affections in sensor streams when various disturbances occur. The three
phase voltages (stream1, stream2, and stream3) are generally correlated. While when
two trains are passing by an electrified railway, the correlation is changed, and an
abnormal event “unbalanced three phase voltage” occurs.

stream1

stream2

stream3

stream4

stream5

d1 d2

d1: a train passing d2: two trains passing

0

1 0

2 0 1 7 / 6 / 4 8 :0 2 2 0 1 7 / 6 / 4 8 :3 1 2 0 1 7 / 6 / 4 9 :0 0 2 0 1 7 / 6 / 4 9 :2 8 2 0 1 7 / 6 / 4 9 :5 7 2 0 1 7 / 6 / 4 1 0 : 2 6

0

5

2 0 1 7 / 6 / 4 8 :0 2 2 0 1 7 / 6 / 4 8 :3 1 2 0 1 7 / 6 / 4 9 :0 0 2 0 1 7 / 6 / 4 9 :2 8 2 0 1 7 / 6 / 4 9 :5 7 2 0 1 7 / 6 / 4 1 0 : 2 6

0
2 0 1 7 / 6 / 4 8 :0 2 2 0 1 7 / 6 / 4 8 :3 1 2 0 1 7 / 6 / 4 9 :0 0 2 0 1 7 / 6 / 4 9 :2 8 2 0 1 7 / 6 / 4 9 :5 7 2 0 1 7 / 6 / 4 1 0 : 2 6

0 .0 4
2 0 1 7 / 6 / 4 8 :0 2 2 0 1 7 / 6 / 4 8 :3 1 2 0 1 7 / 6 / 4 9 :0 0 2 0 1 7 / 6 / 4 9 :2 8 2 0 1 7 / 6 / 4 9 :5 7 2 0 1 7 / 6 / 4 1 0 : 2 6

0 .0 4
2 0 1 7 / 6 / 4 8 :0 2 2 0 1 7 / 6 / 4 8 :3 1 2 0 1 7 / 6 / 4 9 :0 0 2 0 1 7 / 6 / 4 9 :2 8 2 0 1 7 / 6 / 4 9 :5 7 2 0 1 7 / 6 / 4 1 0 : 2 6

lag-correlation

Fig. 1. Examples of disturbances’ affection in sensor streams

256 Z. Zhang et al.

It is challenging to capture events from multiple sensor streams. Firstly, the sensor
stream sources of events are changeable with different disturbances. For example,
disturbance d1 affects stream4, and stream5, while disturbance d2 affects stream1,
stream2, and stream3. One event usually occurs instantaneously with the occurrence of
certain disturbance. Since the sensor stream is time-varying and irreversible, the
choosing and processing of sensor streams must be reflected immediately. Secondly,
the correlation among sensor streams may shift. Figure 1 shows that the trends of rising
and falling of stream4 and stream5 are similar but not synchronous strictly. And the
frequency and timestamps of data records in different sensor streams are different
generally. For example, stream2 and stream4 have lower frequency than other streams.

3 The Declarative Service-Based Approach

3.1 The Proactive Data Service Model

Figure 2 shows the core artifacts and important terms in our previous service
abstraction. Sensor streams are emitted by stream sources, e.g. sensor, producer,
publisher, emitter, and so on, and consumed by clients, e.g. users or applications.

A sensor stream can be defined as follow:

Definition 1 Sensor Stream. A Sensor stream can be represented as ssd ¼ sourceid;h
A;Ri, in which sourceid is the id of stream source, A is the attribute sets, and R ¼
r1; r2; . . .; ri; . . .f g is an infinite series of data record r ¼ ai; vih ijai 2 Af g; th i which is a

set of key-value pairs with a timestamp.
Typically, events are of a certain type, have a timestamp, and hold specific data. We

regard each record with its source and timestamp in a sensor stream as a sensor event,
which is generally fine-grained and with low value density. We abstract the ability of

s1 s2 s3

c1 c2 c3

rules

uri

rules

uri

rules

uri

service service

service
Service Space

(cloud environment)

Stream Sources
(producer, sensor,
publisher, emitter)

Sensor Streams

Sensor Event

Service Event

Event Processing
(stream operator,

processing element)

Declarative Rules

Client
(consumer,
application)

Fig. 2. Core artifacts and terminology in our method

A Service-Based Declarative Approach for Capturing Events 257

event processing as proactive data services, which can access and process multiple
sensor streams and generate service events with higher value density.

We regard the external stimulus as a special kind of event that can affect the stream
sources. For dealing with various stimuli, we utilize declarative rules to indicate the
mapping between stream sources and external events. For capturing events from sensor
streams, we utilize correlation analysis method which can work directly on sensor
streams. Figure 3 shows the structure of our proactive data service model.

To simplify the service modeling, we limit possible stream sources that can be
defined in declarative rules at present.

Definition 2 Proactive Data Service. A proactive data service can be formalized as
pds ¼ pdsid ; SS; eventin; eventout;DR;EP; hyperlinksh i, in which pdsid is the unique
identifier, eventin represents the input event streams, eventout represents the output event
streams generated by EP, SS is the possible stream source set, DR is the declarative
rules, EP means the event processing functions, which include both the algorithm
proposed in this paper and operations realized before, and the hyperlinks is an optional
parameter which indicates the targets of service events.

We define declarative rules based on Event-Condition-Action (ECA) rules, which
are originally used in active database systems to provide event-driven, instaneous
responses for conventional database systems [8]. In this way, the entire process requires
no intervention from users or external applications. Presently, we utilize the Pearson
Correlation Coefficient (PCC) [9] to measure the sensor streams’ correlations for
capturing the changes of correlation as events. The correlation among sensor data
usually shifts in time, which can be regarded as lag-correlation [10]. We consider the
lag-correlation analysis problem as to find the time lag vector to maximize the PCC,
and propose a DTW-based event capturing algorithm in our service abstraction.

3.2 The Setting of Declarative Rules

The triggered action in a declarative rule needs to be a continuous process with an end
point. Hence, we utilize an enhancement of ECA rule to represent the declarative rules.
We designed and realized several operations, which can be divided into three classes:
Transformation, Aggregation and Fusion [7]. Figure 4 shows an example of the
declarative rule, in which the action is indicated based on these operations. The stimuli

sensor/service
event streams

RESTful-like APIs

hyperlinksDR EP

service event
streams

eout starget

eout starget

eout starget

ein ops

ein ops

ein ops

event definition

con

con

con

Fig. 3. The structure of the proactive data service

258 Z. Zhang et al.

generated by a certain source can form an event stream. The condition is optional
which indicates the constraint of certain kind of stimulus. The actions indicate the
stream sources and corresponding processing behaviors. And the time period indicates
how long the actions continue.

The bottom part of Fig. 4 shows the sensor streams and their structure involved in
the declarative rule. The declarative rule includes one triggered action when an event
occurs, i.e. a train is passing by certain disturbance source. The action indicates the
sensor streams to be accessed and processed, i.e. rate_deviation and v_de, and the
operations on them, i.e. filtering events which are out of limit.

3.3 The Event Capturing Based on Lag-Correlation Analysis

At present, we calculate the correlations between each two sensor streams, and once
any two sensor streams’ correlation is changed, an event is captured. For obtaining the
correlation between two sensor streams, we keep analyzing limited sensor data in the
latest window based on time-based slide window. The correlation among sensor
streams usually shifts in time. For obtaining accuracy correlations, we aim to find the
time lag vector to amend the PCC, and formalize the lag-correlation analysis problem
as follows:

Definition 3 Lag-correlation Analysis Problem. given two sensor data sets Ei and Ej

in a slide window, suppose Ei = {ei(t1), ei(t2),…,ei(tn)} and Ej = {ej(t1), ej(t2),…,ej(tn)}, if
there exists a time lag vector D ¼ t01; t

0
2; . . .; t

0
n

� �
makes

corðEi;Ej;DÞ ¼
Pn

1 eiðtÞ � ei
� �

ejðtþ tk0Þ � ej
� �

ffiPn
1 eiðtÞ � ei
� �2

q
�

ffi
ejðtþ tk0Þ � ej
� �2

q � dcor;

in which dcor is a given threshold, we regard Ei and Ej are correlated.
To analyze the correlation between two sensor data, we can firstly obtain a time lag

vector that makes MAX corEi;Ej;D
� �

, and then justify if there is a lag-correlation through
comparing with given threshold.

We can calculate the time lag vector which makes the minimum Euclidian distance
of the normalized series, and then calculate the PCC of the original series based on the

on disturbance1
if type equals one train passing
do filter(rate_deviation,
 rate_deviation, >, deviationLimit)
 and filter(v_d,v_de, >, deLimit)
within 10 minutes

name
disturbance1
rate_deviation
v_de

structure
(sourceid, type, timestamp)
(rate_deviation,timestamp)
(v_de,timestamp)

Fig. 4. An example of the declarative rule

A Service-Based Declarative Approach for Capturing Events 259

time lag vector. DTW algorithm [11] is a robust method used to measure similarity of
time series, which can shift and distort the time-series to ignore the problem of time
axis scaling and shifting. In this paper we adopt a DTW-based algorithm to find the
time lag vector of two sensor data series. To ignore the problem of amplitude scaling,
we align sensor data series with DTW algorithm based on normalized sensor data
series. To avoid excessive time warping, we also set a maximum value for the time lag
vector.

We integrate the event capturing algorithm in our service abstraction, and set
actions in the declarative rules based on it. In this way, when receiving certain stimulus,
relative sensor streams can be accessed, the event capturing algorithm can be executed,
and events can be captured once the correlation is changed.

4 Evaluation

In this section, we mainly evaluate the efficiency and effectiveness of our service
abstraction.

4.1 Experiment Setup

The data set used in our experiments is from real sensor data in Chinese smart grid. We
selected sensor data from 2017-05-01to 2017-06-05, and from 281 electric devices in
certain province. We simulated the sensor stream for each sensor, strictly conforming to
the real time stamps, and design following criteria:

(1) System load. The system load of the proactive data service can be divided into the
load of CPU and memory.

(2) Event execution time. For each generated event, its execution time is the differ-
ence between the time when its corresponding sensor event is firstly received and
the time when it is generated.

(3) Accuracy. The accuracy includes precision precision ¼ D\ Tj j
Dj j � 100% and recall

recall ¼ D\ Tj j
Tj j � 100%, in which, D = {d1, d2, …, dm} is detected event list, and

T = {t1, t2,…, tn}is the actual event list.

4.2 Experiment Result and Analysis

We firstly evaluate the efficiency of our service abstraction through comparing services
with and without declarative rules. We set the numbers of stream source set in
proactive data service as 250, 500, 1000, 1500, 2000, and 2500.

Figure 5 and 6 show the system loads and execution times of different service
abstractions. It is obvious that the service abstraction with declarative rules has much
lower system load and less execution time, and the increase of system load and exe-
cution time of our service abstraction are much slighter. This is because that the senor
streams need to be processed in our service abstraction is much less.

For evaluating the effectiveness of our service abstraction, we calculated the pre-
cision and recall of events captured by DTW-based algorithm and normal correlation

260 Z. Zhang et al.

analysis algorithm. We obtained 1783 abnormal events as the actual event list by
consulting domain experts.

Figure 7 shows the average precision and recall of different event capturing
algorithms. It is obvious that our event capturing algorithm has much higher precision
and recall. Because we presently obtained the declarative rules from history sensor data
analysis, our service abstraction cannot handle the dynamic correlations between dis-
turbances and abnormal power quality events. It may affect the accuracy of our method.
But still, our method has an average precision over 89%, an average recall over 91%,
and increases the accuracy by about 20%.

0

50

100

150

200

250

300

500 1,000 1,500 2,000 2,500 3,000

m
em

or
y

lo
ad

 (k
b)

number of sources

our method brute force

0
10
20
30
40
50
60
70
80
90

100

500 1000 1500 2000 2500 3000

cp
u

lo
ad

 (%
)

number of sources

our method brute force

Fig. 5. The system loads of different service abstractions

0

50

100

150

200

250

500 1000 1500 2000 2500 3000

ex
ec

ut
io

n
tim

e(
m

s)

number of sources

our method brute force

Fig. 6. The execution times of different service abstractions

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

250 500 1000 1500 2000 2500

pr
ec

isi
on

(%
)

number of sources

DTW-based normal

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

250 500 1000 1500 2000 2500

re
ca

ll(
%

)

number of sources

DTW-based normal

Fig. 7. The accuracy of different event capturing algorithms

A Service-Based Declarative Approach for Capturing Events 261

5 Related Work

Event detection is one of the main objectives in sensor networks. A basic method is to
detected events based on preset threshold value defined by domain expert [2]. To
describe more complex event, Xue et al. [3] integrated the pattern-based approach with
an in-network sensor query processing framework, and defined 5 common basic pat-
terns to describe events. Various machine learning techniques have also been used to
decide whether an event has occurred or not [4, 12]. However, the above pattern-based
methods mostly based on pre-defined event patterns which indicated precise sources of
sensor streams.

One trend to promote the development of IoT is to regard IoT as Web of Thing
(WoT) where the open Web standards are supported for information sharing and device
interoperation [13, 14]. Zeng et al. [13] provided a survey on research works in WoT
domain, and providing composable services to enable physical-virtual mashups.
Federia et al. [14] proposed a framework which supported developers to model smart
things as web resources, and exposed them through RESTful APIs. Many works
provided data service to provide the event detection ability [15, 16]. Most existing
service-based methods needed to predefine the collaboration goals for service com-
position or collaboration, and didn’t support adaptive collaboration.

6 Conclusion

It is meaningful to set up suitable abstraction to increase value density of sensor stream
and promote its widespread use. Our previous service abstraction encapsulated fixed
sensor streams, and only generated events based on predefined event definition. In this
paper, we aim to propose a service-based declarative approach for capturing events
from uncertain sensor streams through improving our previous service abstraction in
two respects. We utilize declarative rules to deal with the uncertain stream sources, and
utilize correlation analysis method to capture events as the variation of correlation. To
verify the feasibility of our approach, we applied it for power quality event detection in
Chinese Power grid. A series of experiments demonstrate that our method has much
higher efficiency with high accuracy.

Acknowledgement. This paper is supported by National Natural Science Foundation of China
(No. 61672042), Models and Methodology of Data Services Facilitating Dynamic Correlation of
Big Stream Data, and National Key R&D Plan (No. 2017YFC0804406).

References

1. Heidemann, J., Stojanovic, M., Zorzi, M.: Underwater sensor networks: applications,
advances and challenges. Philos. Trans. 370(1958), 158–175 (2012)

2. Kapitanova, K., Son, S.H., Kang, K.D.: Using fuzzy logic for robust event detection in
wireless sensor networks. Ad Hoc Netw. 10(4), 709–722 (2012)

262 Z. Zhang et al.

3. Xue, W., Luo, Q., Wu, H.: Pattern-based event detection in sensor networks. Distrib. Parallel
Databases 30(1), 27–62 (2012)

4. Singh, Y., Saha, S., Chugh, U.: Distributed event detection in wireless sensor networks for
forest fires. In: Computer Modelling and Simulation, pp. 634–639. IEEE, Cambridge (2013)

5. Patri, O.P., Panangadan, A.V., Sorathia, V.S.: Sensors to events: semantic modeling and
recognition of events from data streams. Int. J. Semant. Comput. 10(04), 461–501 (2017)

6. Han, Y., Wang, G., Yu, J.: A service-based approach to traffic sensor data integration and
analysis to support community-wide green commute in China. IEEE Trans. Intell.
Transp. Syst. 17(9), 2648–2657 (2016)

7. Han, Y., Liu, C., Su, S.: A decentralized and service-based approach to proactively
correlating stream data. In: S2 International Conference on Internet of Things, pp. 93–100
(2016)

8. Paschke, A.: ECA-RuleML: an approach combining ECA rules with temporal interval-based
KR event/action logics and transactional update logics. CoRR, abs/cs/0610167 (2006)

9. Wu, S., Lin, H., Wang, W.: RLC: ranking lag correlations with flexible sliding windows in
data streams. Pattern Anal. Appl. 20(2), 601–611 (2017)

10. Guo, T., Sathe, S., Aberer, K.: Fast distributed correlation discovery over streaming time-
series data. In: ACM International on Conference on Information and Knowledge
Management, pp. 1161–1170 (2015)

11. Kate, R.J.: Using dynamic time warping distances as features for improved time series
classification. Data Min. Knowl. Discov. 30(2), 283–312 (2016)

12. Cui, W., Wang, P., Du, Y.: An algorithm for event detection based on social media data.
Neurocomputing 254, 53–58 (2017)

13. Zeng, D., Guo, S., Cheng, Z.: The web of things: a survey. J. Commun. 6(6), 424–438
(2011)

14. Paganelli, F., Turchi, S., Giuli, D.: A web of things framework for RESTful applications and
its experimentation in a smart city. IEEE Syst. J. 10(4), 1412–1423 (2017)

15. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware in
distributed sensor networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634,
pp. 502–517. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36978-3_34

16. Gao, F., Curry, E., Ali, M.I., Bhiri, S., Mileo, A.: QoS-aware complex event service
composition and optimization using genetic algorithms. In: Franch, X., Ghose, A.K., Lewis,
G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 386–393. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45391-9_28

A Service-Based Declarative Approach for Capturing Events 263

http://dx.doi.org/10.1007/3-540-36978-3_34
http://dx.doi.org/10.1007/978-3-662-45391-9_28

Response Time Aware Operator
Placement for Complex Event Processing

in Edge Computing

Xinchen Cai1, Hongyu Kuang1, Hao Hu1(B), Wei Song2, and Jian Lü1

1 State Key Lab for Novel Software Technology, Nanjing University,
Nanjing, Jiangsu, China

smldcxx@126.com, {khy,myou,lj}@nju.edu.cn
2 School of Computer Science and Engineering,

Nanjing University of Science and Technology, Nanjing, Jiangsu, China
wsong@njust.edu.cn

Abstract. A typical complex event processing (CEP) service is com-
posed by a set of operators organized as a directed acyclic graph. This
kind of service is usually used to handle large amounts of real-time data.
Meanwhile, edge computing has been widely accepted as a new paradigm
to improve the QoS of deployed services by making the services closer
to the data. Thus, the response time, which is a crucial QoS metric for
CEP services, can be significantly reduced by deploying CEP services on
the edge network. However, it is often unlikely for a single node of the
edge network to host all operators of a CEP service due to the limited
computing resources. Therefore, it is desirable for a CEP service to place
its operators on different nodes of the edge network to keep the response
time low, especially when the input rate of the CEP service significantly
increases. In this paper, we reduce the average response time of CEP ser-
vices by deploying the operators on the edge nodes dynamically according
to the predicted response time of CEP services. Specifically, we first pro-
pose a system model to capture the response time of the CEP services,
based on which we formulate the problem of the optimal placement of
CEP operators in the edge network. We then propose an algorithm that
predicts the response time of CEP services and deploys the operators on
the edge nodes with the minimum predicted delay. A simulation-based
evaluation demonstrates that, compared with two state-of-the art algo-
rithms, our algorithm can reduce the total response time by 33% and
45% on average, respectively.

Keywords: Complex event processing · Edge computing
Operator graph · Operator placement · Response time

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 264–278, 2018.
https://doi.org/10.1007/978-3-030-03596-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_18

Response Time Aware Operator Placement for CEP in Edge Computing 265

1 Introduction

Typically, a complex event processing (CEP) service is used to handle large
amounts of real-time data by using a set of operators organized as a directed
acyclic graph called operator graph. In practice, CEP services are usually
deployed on cloud data centers. However, this deployment results in deliver-
ing data from the edge of the network to remote cloud data centers and thus
seriously reduces QoS of CEP services due to the long distance between data
sources and remote cloud data centers, as well as the mass data transmission.

To address this issue, a new paradigm, called edge computing [12], has been
proposed to improve the QoS of deployed services by moving services from cloud
data centers to the edge of network. Consequently, a growing body of work
[2,4,14] focuses on deploying CEP services on the edge network (i.e., nearest to
the user [14]) to improve the QoS of CEP services, e.g., to reduce the response
time. However, due to the limited computing capacity, lots of users queries, and
large amounts of input events, congestion can easily occur at the nearest edge
node and increase the response time of CEP services dramatically. Therefore,
it is important to be aware of the response time of a CEP service during the
placement of its operators on suitable nodes of the edge network to keep the
response time low, especially when the input rate of the CEP service significantly
increases. We use the following example to demonstrate this situation.

Consider the example shown in Fig. 1. This figure depicts the placement of
a CEP service that queries traffic accident events, which are defined as a lane
switch event after a decreased speed event. The CEP service has an operator
graph consisting of a lane operator, a speed operator, and an accident operator.
The edge network contains three edge nodes: v0, v1, and v2. The resources capac-
ity of the nodes v0, v1, and v2 are 1, 2, and 2, respectively. The resources refers
to computing resources, such as CPU, etc. Connected devices deliver and cache
original data to the nearest node v0 in the edge network. An intuitive strategy
of reducing the response time is to deploy operators on the nearest edge node
[14]. As Fig. 1 shows, the lane operator is deployed on the nearest edge node v0.
At this moment, v0 has no resources to host other operators. Thus, the speed
operator and the accident operator are deployed on the edge node v1 which is
the second nearest edge node except v0. However, when the input rate of the
CEP services largely increases, large amounts of data have to be delivered from
the edge node v0 to v1. The congestion will occur and result in increasing the
response time. On the other hand, another placement strategy is to deploy oper-
ators distributed in the edge network to balance the load between edge nodes in
advance [6]; for example, deploying the accident operator to the edge node v2 to
reduce the load of v1. When the input rate is high, this placement can reduce
the response time compared to the first placement. However, when the input
rate remains low, this placement increases the transmission delay between edge
nodes and makes the response time even worse. In this paper, we argue that it
is important to balance the load of different edge nodes during the placement of
CEP operators by being aware of the response time of the operator graphs.

266 X. Cai et al.

Accident CEP service: G0

Edge Node v0

Edge Node v2

SpeedLane Acc.

Accident CEP service: G0

Edge Node v0

Edge N
ode v

1

Edge Node v2

SpeedLane

Acc.

Acc.

Speed

Lane

Data
source User

(a) Deploy operators on the nearest edge node (b) Balance the loads of different edge nodes

Edge N
ode v

1

Fig. 1. Deploy operators of a CEP service that queries accident events on the edge
network.

To achieve this goal, we first propose a combined model including CEP model
and edge model to capture the response time of CEP services. Based on the mod-
els, we predict the delay of these edge nodes according to the monitored informa-
tion. We then prove the optimal operator placement for CEP in edge computing
is NP-hard. Finally, we propose a novel approximation-based algorithm that
deploys the operators on the edge node with the lowest predicted delay. We
generate 100 operator graphs and 30 edge networks for our simulation-based
evaluation. The result demonstrates that our approach is able to maintain low
response time when the input rate of CEP services significantly increases.

This paper makes the following three contributions: (1) We propose a system
model to capture the response time of CEP services, and formulate a novel opti-
mization problem, that is, to find an optimal placement of CEP operators in the
edge network such that the response time of the CEP services is minimized. (2)
We prove the optimal operator placement problem for CEP in edge computing
is NP-hard. (3) We propose a novel response time aware operator placement
algorithm that keeps the average response time of the operator graphs low.

The rest of the paper is structured as follows. Section 2 reviews related
work. Section 3 describes the system models and problem formulation. Section 4
presents our response time aware operator placement algorithm. Section 5 reports
the evaluation results, and finally, Sect. 6 concludes the paper.

Response Time Aware Operator Placement for CEP in Edge Computing 267

2 Related Work

Operator placement problem has been widely studied in the last decades. The
basic form of the operator placement problem is stated as: given a network of N
nodes with some or all of them generating data processed by an operator, place
the operator in the network so as to reduce the network traffic [16]. Several
placement algorithms [2,10,11,16] have been proposed. These algorithms are
characterized by different assumptions and optimization goals. Pietzuch et al.
[10] design a stream-based overlay network for operator placement in distributed
stream-processing (DSP) systems that minimizes the network usage of a query,
while keeping the query delay low and picking nodes with adequate bandwidth.
However, their operator model is not organized as operator graphs. Rizou et al.
[11] present a distributed placement algorithm that minimizes the bandwidth-
delay product of data streams between operators. However, their approach does
not take the resources of the nodes into consider. Tziritas et al. [16] propose an
approach enabling both single and group operator migrations using evictions of
hosted operators. Although this work takes resources of nodes in the network
into consider, it focuses on how to migrate operators to improve a placement of
operators. Cardellini et al. [2] propose a general formulation of DSP placement
in distributed network. This work focuses on the scenes that data sources are
distributed in large scale network and do not take the input rate of CEP service
into consideration. In contrast, we focus on deploying CEP services to process
data near an edge node to infer meaningful events, especially when the input
rate of CEP services significantly increases.

Edge computing is the computational infrastructures that make services
closer to the end users [12]. The same concept is also called as cloudlet [13]
or fog computing [1]. Taneja et al. [15] conduct experiments to demonstrate
that edge computing can effectively improve its QoS. Hong et al. [4] proposed
an opportunistic spatio-temporal CEP hosted by edge computing. As far as we
know, this is the earliest work to deploy CEP on edge computing. How to offload
applications to edge nodes [8,18] is another research interest that quite close to
the operator placement problem in edge computing. The goal of this work is
to minimize the cost of a user. However, our goal is to minimize the average
response time of the CEP services queries. Saurez et al. [14] propose an incre-
mental deployment approach to greedily deploy operators on the nearest edge
node. However, they all do not consider the change of the input rate. Jia et al.
propose an user to edge computing allocation in wireless metropolitan area net-
works [5] and a load balance approach to finding an optimal redirection of tasks
between edge nodes [6]. However, the task model of this work has no graph struc-
ture. Our work is designed for CEP operator graphs whose input rate change
according to the data sources.

3 Models and Problem Formulation

In this section, we first discuss our CEP model and edge computing model. Then
we use these models to calculate the response time of CEP services, to give the

268 X. Cai et al.

Table 1. Main notation adopted in the paper

Symbol Description

Gedge = (Vedge, Eedge) The edge network Gedge consists of the edge nodes Vedge

and the connections between edge nodes Eedge

vi The ith edge node in Vedge

(vi, vj) The connection between the edge nodes vi and vj

c(vi) The resources capacity of the edge node vi

λ(vi) The execution rate of the edge node vi

w(vi, vj) The transmission rate between edge nodes vi and vj

Gcep = (Ω, L) An operator graph consists of the operators Ω and the
event streams L

c(ωi) The resources requirement of the operator ωi

Tr(X) The response time of the operator graph according to a
placement X

Tp The end-to-end delay of a path

X(ωi) = vu Deploy the operator ωi on the edge node vu

θt The thread of response time to redeploy operator graphs

Δt The time interval of replacement judgement

operator placement problem statement, and to prove this problem is NP-hard.
Table 1 summarizes the symbols that are used in this paper.

3.1 CEP Model

We assume that Ncep CEP services queries are sent to an edge node. A CEP
service can be represented as an operator graph Gcep = (Ω, L). Ω denotes the set
of operators. L denotes the event streams between the data sources, the opera-
tors, and the consumer. Each operator ωi ∈ Ω has the attributes c(ωi), denoting
the amount of resources required for the operator ωi execution. The resources
required to execute an operator include CPU, memory, etc. We simplified these
resource models as unit resources, like other works [2,6].

For example, in Fig. 1, Ω contains the speed operator ωspeed, the lane operator
ωlane, and the accident operator ωaccident. L contains (source, ωspeed), (source,
ωlane), (ωspeed, ωaccident), (ωlane, ωaccident), and (ωaccident, user). c(ωspeed),
c(ωlane), and c(ωaccident) are all one-resource units.

3.2 Edge Computing Model

Edge nodes are represented as vertexes Vedge. The network connections between
edge nodes are represented as Eedge. The edge network are represented as Gedge

= (Vedge, Eedge). Every node vi in the edge network has two attributes: (1)
c(vi), the amount of resources available in the edge node vi; (2) λ(vi), the events

Response Time Aware Operator Placement for CEP in Edge Computing 269

execution rate of the edge node vi. Every network connection (vi, vj) has the
attribute w(vi, vj), the transmission rate between the edge nodes vi and vj .

When a user sends a query to the nearest edge node for computing resources,
the edge node manages the placement of the operator graph. This edge node is
called as manage edge node. The manage edge node monitors the information
of the nearby edge nodes within H hops. These nearby edge nodes are called
candidate edge nodes. The operators can be placed on either the manage edge
node or candidate edge nodes. Thus, the size of the edge network is limited by
the number of hops H. H becomes larger when the operators have no suitable
edge nodes to be placed.

3.3 Response Time

The response time of an operator graph Gcep can be calculated as:

Tr(Gcep) = max
p∈πGcep

Tp (1)

where max
p∈πGcep

Tp means the worst end-to-end delay from a data source to the

consumer. Tp denotes the delay of a path in the operator graph Gcep. The path p
can be represented as (ωp1 , ωp2 , . . . , ωpnp

), where np denotes the number of oper-
ators in p. These operators are deployed on the edge nodes (vp1 , vp2 , . . . , vpnp

).
For example, in Fig. 2, the end-to-end delay of path1 is the worst. Thus, the

response time of operator graph G0 is Tr(G0) that equals to 120 ms. path1 is
(source, ωspeed, ωaccident, user). In Fig. 1(a), X(path1) = (v0, v1, v1, v0).

For Tp, we have:

Tp =
np−1∑

i=0

d(vpi
, vpi+1) +

np∑

i=0

TE(ωi) +
np∑

i=0

Tq(ωi) (2)

where d(vpi
, vpi+1) denotes the transmission delay between the edge nodes vpi

and vpi+1 . TE(ωi) denotes the processing delay of events in the operator ωi.
Tq(ωi) denotes the queuing delay of events in the operator ωi. In addition to
the above three delays, there is also the propagation delay. However, in the edge
network, the propagation delay, which is too low, can be ignored.

The transmission delay d(vpi
, vpi+1) can be calculated as:

d(vpi
, vpi+1) =

sz

w(vpi
, vpi+1)

(3)

where sz is the size of an event packet.
The processing delay of events in the operator ωi can be calculated as:

TE(ωi) =
1

λ(vpi)
(4)

where the average event process rate of vpi
is λ(vpi

) events per second (eps).

270 X. Cai et al.

The queuing delay mainly depends on the congestion level of the router. The
event rate from vpi

to vpi+1 can be represented as r(pi, pi+1) eps. The number
of channel between edge node vpi

and vpi+1 is n(vpi
, vpi+1). The queuing delay

of an operator ωi in a period t is calculated as:

Tq(ωi) =

⎧
⎨

⎩

t×sz×r(pi,pi+1)
w(vpi

,vpi+1)
, if Ec(pi) > 1

Ec(pi)
w(vpi

,vpi+1)−r(pi,pi+1)
+ 1

w(vpi
,vpi+1)

, if Ec(pi) <= 1
(5)

Ec(pi) = Ec(n(vpi
, vpi+1),

sz × r(pi, pi+1)
w(vpi

, vpi+1)
) (6)

Ec(n, u) =
un

n!
un

n! + (1 − u/n)
∑n−1

k
uk

k!

(7)

Equation 7 is known as Erlang’s C formula to calculate the queuing delay [7].
If the bandwidth is larger than the event rate in the connection, the queuing

time is calculated as Erlang’s C formula. Otherwise, the queuing time is calcu-
lated as Nt

w(vpi
,vpi+1)

, Nt = t × sz × r(pi, pi+1). Nt is the size of the data sent
to the queue in a period t. To avoid frequent replacements caused by excessive
changes in the input rate of operator graphs, we calculate the average event rate
in the last ten seconds as r(pi,pi+1).

Initially, when an operator ωi has not been decided where to be deployed, the
transmission delay is calculated as sz

w̄ , where w̄ denotes the average transmission
rate of the connections in the edge network. The execution time is calculated as
1
λ̄
, where λ̄ denotes the average event process rate of edge nodes.

3.4 Operator Placement Problem in Edge Computing

When the manage edge node receives a CEP service query, the operator graph is
pushed into an operator-graphs-queue Q = {Gcep(1), . . . , Gcep(Ncep)}. Optimal
operator placement problem in edge computing consists in determining a suitable
mapping between operators Ω and edge nodes Vedge to minimize the average
response time of operator graphs. For every operator ωi, we can get an edge
node vu that place ωi on vu, to minimize the average response time Tr(Q):

Tr(Q) =
∑Ncep

k=1 Tr(Gcep(k))
Ncep

(8)

and to satisfy:

∀vu ∈ Vedge, c(vu) ≥
|Ω|∑

i=1

((X(ωi) == vu)?c(ωi) : 0) (9)

Then, we prove this optimal problem is a NP-hard problem.

Theorem 1. Optimal operator placement problem for CEP in edge computing
is an NP-hard problem.

Response Time Aware Operator Placement for CEP in Edge Computing 271

Acc.SpeedData
Source

Lane

User

Data
Source Acc. User

Acc.

Speed Lane

Data
source

User

End-to-end delay of path1 is 120ms

Path1

Path2

End-to-end delay of path2 is 100ms

Fig. 2. Algorithm 1 preferentially deploys the speed operator.

Proof. First, we prove the decision problem of the optimal operator placement
problem is NP-hard. The decision problem is stated as: Ncep operator graphs
containing |Ω| operators and an edge network, can the operator graphs have a
feasible placement? In the special case: the input rate of Ncep operator graphs
are the same; the edge network has only two edge nodes, Vedge = {vi,vj}, with
capacity c(vi) = c(vj) = (

∑|Ω|
k=1 c(ωk))/2; w(vi, vj) is infinite, λ(vi) = λ(vj).

The resulting problem is the Partition problem [3] which is known to be NP-
hard. Finally, because the special case is NP-hard, the general decision problem
is NP-hard as well. The optimization problem is at least as hard as the decision
problem. Thus, optimal operator placement problem for CEP in edge computing
is an NP-hard problem.

Thus, if P �= NP, optimal operator placement problem for CEP in edge com-
puting cannot be solved in polynomial time. Thus, we propose an approximation-
based algorithm to solve this problem.

4 Algorithm

In this section, we propose a novel algorithm that balances the response time of
different paths to achieve the minimum average response time of operator graphs
(Eq. 8). The basic idea is to predict the end-to-end delay of all paths, and then
improve the placement of the path with the worst end-to-end delay, which can
directly improve the response time of the operator graph. The algorithm deploys
the operator logically closest to data source in the path on the edge node with
the minimum delay.

4.1 Response Time Aware Operator Placement Algorithm

The response time of the operator graphs is calculated by Eq. 1. Algorithm 1
first calculates the response time of different paths in an operator graph, and

272 X. Cai et al.

Algorithm 1. Response Time Aware Operator Placement
Input: Q = (Gcep(1),Gcep(2),. . . ,Gcep(Ncep)),Gedge

Output: X(Q)

1: //initial parameters
2: for all i = 1 → Ncep do
3: Get all paths p[i][] in Gcep(i) //the operators in p is in the order of from the

user to the data source
4: Np(i) = total number of paths in Gcep(i)
5: end for
6: X = ∅
7: for i = 1 → Ncep do
8: for j = 1 → Np(i) do
9: In[i][j] = Gcep(i).Source ;

10: end for
11: end for
12:
13: // make placement decision for every operator
14: while ∃ X(ω ∈ Ω) == ∅ do
15: gi = the index of the operator graph with the max response time;
16: pi = the index of the path with the max response time in Gcep(i)
17: ωsrc = In[gi][pi] //the operator whose output is the input of ωtar

18: ωtar = (p[gi][pi]).top //the operator connecting to the output stream of ωsrc

19: vtar = the edge node with the minimum delay to ωsrc

20: if vtar == ∅ then //cannot find an edge node that has resources
21: H = H + 1 ;
22: Restart Algorithm.
23: else
24: X(ωtar) = vtar // place ωtar on vtar
25: In[gi][pi] = ωtar //update input streams
26: p.erase(ωtar) //ωtar has been deployed
27: c(vtar) = c(vtar) - c(ωtar) //calculate new capacity of vtar
28: end if
29: end while
30: return X

then improves the placement of the path with the largest end-to-end delay. We
first find the operator graph gi with the maximum response time (line 15) and
the path pi with the maximum end-to-end delay in gi (line 16). The end-to-end
delay of the path pi limits the response time of the operator graph gi. Thus,
we try to improve the placement of pi. Then, we find the operator ωtar whose
input stream is the output stream of last deployed operator ωsrc in the path pi,
and the edge node vtar that has the minimum delay of the connection to ωsrc.
Algorithm 1 deploys the operator ωtar (line 18) on the edge node vtar (line 19).

For example, in the case of Fig. 1, at the moment that only the operator
ωlane is deployed, Fig. 2 shows how to select the operator ωtar in the operator
graph. Because the response time of path1 is the largest response time in the
paths (path1 and path2) and ωspeed is the undeployed operator connecting to

Response Time Aware Operator Placement for CEP in Edge Computing 273

the output stream of data source in path1, the Algorithm 1 preferentially makes
placement decision on ωspeed. Then, only the edge nodes v1 and v2 have capacity
to host ωspeed. The algorithm first assumes that ωspeed is deployed on v1 and v2,
calculates the response time of these two placements, and selects the placement
with the minimum response time. Thus, ωspeed is deployed on the edge node v1.

If all edge nodes within H hops have no resources, return ∅ (line 20). The
hops number of candidate edge nodes should be increased (line 21). the algorithm
is then restarted based on the new monitored information (line 22).

When the algorithm gets ωtar and vtar, the request is sent to the edge node
vtar for hosting the operator ωtar. If vtar accepts the request, system deploys the
operator ωtar on the edge node vtar (line 24). Otherwise, the algorithm deletes
the edge node and finds vtar again.

The manage edge node monitors information every Δt second. If the response
time of an operator graph exceeds the thread θt, the manage edge node rede-
ploys operators to improve the response time of the operator graphs. To avoid
fluctuation in the edge network transmission or the input rate of the operator
graphs, this replacement judgement is performed every Δt second.

4.2 Time Complexity

Algorithm 1 makes placement decision for every operator. The number of oper-
ators is |Ω|. For every operator graph, Algorithm1 calculates its response
time. The number of operator graphs is Ncep. The length of an path pi is
npi

. The time complexity of calculating the response time for an operator
graph is O(

∑Np

i=1 npi
. The largest number of operators in an operator graph

is |Gcep|. The worst case time complexity of calculating the response time for
an operator graph is O(|Gcep|2). The time complexity of finding the edge node
with minimum delay is O(|Vedge|). Thus, the time complexity of Algorithm1 is
O(|Ω| × |Gcep|2 × Ncep + |Ω| × |Vedge|).

5 Evaluation

We conduct simulations by using Omnet++ [17] that is a network simulation
tool widely used in the field of the discrete event simulation, e.g. the simulation
of MCEP [9]. There is no widely accepted real data set for CEP currently. By
using Omnet++, we change the input rate of the CEP services to evaluate the
performance of our algorithm in different workloads. We discuss the results of
the simulations in this section.

5.1 Reference Algorithms

As a reference for the results achieved by response time aware operator place-
ment algorithm, we compare our algorithm with two baseline algorithms: greedy
algorithm and load balance algorithm. Because both the load balance algorithm
and the greedy algorithm do not consider the application structure, we formu-
late the following rule for both algorithms: the order of placing operators is
determined by the shortest logical distance from the data source.

274 X. Cai et al.

Greedy Algorithm. Greedy algorithm [14] deploys operators on the edge node
closest to the input streams of the operators except the edge nodes which do not
have sufficient resources.

Load Balance Algorithm. Load balance algorithm [6] calculates the average
response time of every edge node, and then reduces the load of the overloaded
edge nodes by redirecting some of the operators to the underloaded edge nodes.

5.2 Simulation Environment

We randomly generate 30 different topologies of edge networks and 100 opera-
tor graphs to evaluate the response time aware operator placement algorithm.
We run two sets of simulation. In the first set of simulations, we run our algo-
rithm and two baseline algorithms in the different edge networks where the same
operator graphs are deployed. The initial capacity of edge nodes are 3, 4, and
5 resource units, respectively. In the second set of simulations, we run the algo-
rithms in a network where different operator graphs are deployed. The network
is the one whose simulation result is the most similar to the average result in the
first set simulation. In this network, the resources capacity of the edge nodes is
5 resource units. We report the average results of these simulations.

We set θt = 1 s and Δt = 20 s. Every 20 s, if the response time of the operator
graphs exceeds 1 s, the manage edge node redeploys operators to achieve lower
response time.

Edge Networks. Considering the goal of this paper and the core of our pro-
posed algorithms, i.e., deploying operators on the nearby edge nodes to keep the
response time low, relatively small sized edge networks are sufficient for our eval-
uation. Specially, we set up three different kinds of 10-node edge networks. The
first kind is a ring; the second kind is generated randomly with 15 links; and the
third kind is generated randomly with 20 links. We repeat 10 times simulations
on each network. In each simulation, we randomly choose a node in the edge
network as the manage edge node. The transmission rate is generated randomly
between 10 Mbps and 20 Mbps. The manage edge node initially monitors nearby
edge nodes within 2 hops.

CEP Operator Graphs. To simulate different structures of operator graphs,
100 operator graphs are generated randomly, 10 of which contains 3 operators,
30 of which contains 4 operators, and 60 of which contains 5 operators. In each
simulation, only one kind of operator graphs is sent to the manage edge node and
the number of operator graphs is 3. For each operator, 25% of events conform
to user-defined complex events sent to output streams. The resources capacity
required for an operator execution is one-resource units. We gradually increase
the input rate of the operator graphs to simulate a system from idle to busy.

Response Time Aware Operator Placement for CEP in Edge Computing 275

5.3 Simulation Results

As Fig. 3(a), (b), and (c) shows, in the first set of simulation, our algorithm
performs the best among the three algorithms. On average, our algorithm can
reduce the total response time by 76% compared to the greedy algorithm and by
82% compared to the load balance algorithm. Because of the extra monitored
information about the edge network, our algorithm adapts well to different net-
works.

0

2

4

6

8

10

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

th
e

av
er

ag
e

re
sp

on
se

 ti
m

e
(s

)

the input rate (eps)
Response-Time-Aware Load Balance Greedy

(a) The edge node capacity is 3.

0

2

4

6

8

10

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00th

e
av

er
ag

e
re

sp
on

se
 ti

m
e

(s
)

the input rate (eps)
Response-Time-Aware Load Balance Greedy

(b) The edge node capacity is 4.

0

2

4

6

8

10

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

th
e a

ve
ra

ge
 re

sp
on

se
 ti

m
e

(s
)

the input rate (eps)
Response-Time-Aware Load Balance Greedy

(c) The edge node capacity is 5.

Fig. 3. Place the same operator graphs
on the different edge networks.

0

1

2

3

4

5

6

7

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

th
e

av
er

ag
e

re
sp

on
se

 ti
m

e
(s

)
the input rate (eps)

Response Time Aware Load Balance Greedy

(a) An operator graph has 3 operators.

0

2

4

6

8

10

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00th

e
av

er
ag

e
re

sp
on

se
 ti

m
e

(s
)

the input rate (eps)
Response Time Aware Load Balance Greedy

(b) An operator graph has 4 operators.

0

5

10

15

20

60
0

75
0

90
0

10
50

12
00

13
50

15
00

16
50

18
00

19
50

21
00

22
50

24
00

25
50

27
00

28
50th

e
av

er
ag

e
re

sp
on

se
 ti

m
e

(s
)

the input rate (eps)
Response Time Aware Load Balance Greedy

(c) An operator graph has 5 operators.

Fig. 4. Place different operator graphs
on the same network.

When the capacity of edge nodes is limited, load balance algorithm performs
the worst (Fig. 3(a), (b)). In this case, congestion is inevitable. Load balances
algorithm redirects operators to other edge nodes, which makes data have to be

276 X. Cai et al.

delivered to the operators distributed in the congested edge nodes. The extra
network traffic aggravates the congestion. In contrast, our algorithm predicts
the delay to the edge nodes, and deploys operators on the edge node with the
lowest delay to keep the low response time. When the capacity of the edge nodes
becomes sufficient, greedy algorithm performs the worst. Because the average
load of edge nodes can be reduced by more resources, the load balance per-
forms much better in this situation. Greedy algorithm makes operators gathered
around the data source to reduce transmission delay. However, when the input
rate increases, the congestion occurs due to large amounts of data are sent to the
same edge node. Our algorithm avoids this by predicting the delay to different
edge nodes and deploying operators on the edge node with low delay.

As Fig. 4(a), (b), and (c) shows, in the second set of simulation, our algorithm
performs the best among the three algorithms. On average, our algorithm can
reduce the response time by 33% compared to greedy algorithm and by 45%
compared to load balance algorithm. We find that congestion is more likely to
happen if the operator graph has more paths, because more events from different
input streams are sent to an operator.

When the number of operators increases, the response time becomes higher
because there are more transmission between operators. The performance of
load balance algorithm becomes the worst in Fig. 4(c), because the algorithm
distributes more operators than before to balance the load of edge nodes, which
increases the transmission delay.

In Fig. 4(c), when the event input rate is low, our algorithm performs better
than the other two algorithms. When the input rate increases, our algorithm per-
forms worse than greedy algorithm, because the input rate increases faster than
the prediction of our algorithm. However, In Fig. 4(b) and (c), when response
time exceeds thread θt, the manage edge node updates the information about
the edge network and the CEP services (including the input rate), and then
redeploys the operator graphs resulting in the response time decreasing. These
results show that our algorithm can adapt to the dynamic environment, improve
the operator placement, and reduce the response time of CEP services.

Besides the response time, we also use bandwidth-delay to measure network
usage as an additional criterion. The lower bandwidth-delay product indicates
that the network load is lower [11]. Figure 5 shows the total network usage after
running the three algorithms. With operator number increasing in an operator
graph, due to the network transmission between different operators increases,
the network usage increases. Our algorithm performs the best because the algo-
rithm gives priority to the operator graphs with large input rate. Load balance
algorithm performs the worst because the algorithm distributes the operators in
the edge network resulting in more network transmission.

5.4 Threats to Validity

Construct Validity. In the simulations, we observe that our algorithm can
reduce the response time of the operator graphs deployed on the edge networks.
Because the problem is NP-hard, we cannot get the optimal solution in poly-
nomial time. Our algorithm greedily deploys the selected operators on the edge

Response Time Aware Operator Placement for CEP in Edge Computing 277

0

50000

100000

150000

200000

250000

300000

og-3 og-4 og-5
N

et
w

or
k

U
sa

ge
(m

b)
og-x denotes that an operator graph has x operators

Response Time Aware Greedy Load Balance

Fig. 5. Network usage versus different operator number.

node with the minimum delay, which is an approximate solution. We can reduce
threats to construct validity by searching more edge nodes instead of only the
edge node with the minimum delay.

External Validity. The threats to external validity come from our simulation
environment. Although we gradually increase the input rate of operator graphs,
dynamic network environment cannot be fully simulated.

6 Conclusions

We study response time aware operator placement for CEP in edge computing to
reduce the average response time of operator graphs. Since the optimal operator
placement problem is NP-hard, we present an approximation-based algorithm
to ensure the response time of operator graphs low. The evaluation results show
that our algorithm outperforms other approaches in the average response time of
operator graphs. We plan to improve our algorithm by searching more placements
and use real-world data in the experiments on actual systems in the future.

Acknowledgments. This work is supported by the National Key R&D Program of
China (Grant No. 2017YFB1001801), National Natural Science Foundation of China
(Grant No. 61690204, No. 61761136003), and the Collaborative Innovation Center of
Novel Software Technology and Industrialization.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16 (2012)

2. Cardellini, V., Grassi, V., Presti, F.L., Nardelli, M.: Optimal operator place-
ment for distributed stream processing applications. In: Proceedings of the 10th
ACM International Conference on Distributed and Event-based Systems, pp. 69–80
(2016)

278 X. Cai et al.

3. Hartmanis, J.: Computers and intractability: a guide to the theory of NP-
completeness (Michael R. Garey and David S. Johnson). SIAM Rev. 24(1), 90–91
(1982)

4. Hong, K., Lillethun, D.J., Ramachandran, U., Ottenwalder, B., Koldehofe, B.:
Opportunistic spatio-temporal event processing for mobile situation awareness. In:
Proceedings of the 7th ACM International Conference on Distributed Event-Based
Systems, DEBS 2013, pp. 195–206 (2013)

5. Jia, M., Cao, J., Liang, W.: Optimal cloudlet placement and user to cloudlet allo-
cation in wireless metropolitan area networks. IEEE Trans. Cloud Comput. 5(4),
725–737 (2017)

6. Jia, M., Liang, W., Xu, Z., Huang, M.: Cloudlet load balancing in wireless
metropolitan area networks. In: IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pp. 1–9 (2016)

7. Kleinrock, L.: Queueing Systems: Theory, vol. 1. Wiley-Interscience, Hoboken
(1975)

8. Liu, Y., Lee, M.J., Zheng, Y.: Adaptive multi-resource allocation for cloudlet-based
mobile cloud computing system. IEEE Trans. Mob. Comput. 15(10), 2398–2410
(2016)

9. Ottenwalder, B., Koldehofe, B., Rothermel, K., Hong, K., Lillethun, D.J.,
Ramachandran, U.: MCEP: a mobility-aware complex event processing system.
ACM Trans. Internet Technol. 14(1), 6 (2014)

10. Pietzuch, P.R., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.I.: Network-aware operator placement for stream-processing systems. In: 22nd
International Conference on Data Engineering (ICDE 2006), p. 49 (2006)

11. Rizou, S., Durr, F., Rothermel, K.: Solving the multi-operator placement prob-
lem in large-scale operator networks. In: 2010 Proceedings of 19th International
Conference on Computer Communications and Networks, pp. 1–6 (2010)

12. Satyanarayanan, M.: The emergence of edge computing. Computer 50(1), 30–39
(2017). https://doi.org/10.1109/MC.2017.9

13. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009)

14. Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwalder, B.: Incremen-
tal deployment and migration of geo-distributed situation awareness applications in
the fog. In: Proceedings of the 10th ACM International Conference on Distributed
and Event-based Systems, DEBS 2016, pp. 258–269. ACM (2016)

15. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 8–12 May 2017, Lisbon, Portugal, pp.
1222–1228 (2017). https://doi.org/10.23919/INM.2017.7987464

16. Tziritas, N., Loukopoulos, T., Khan, S.U., Xu, C.Z., Zomaya, A.Y.: On improv-
ing constrained single and group operator placement using evictions in big data
environments. IEEE Trans. Serv. Comput. 9(5), 818–831 (2016)

17. Varga, A., Hornig, R.: An overview of the OMNET++ simulation environment, p.
60 (2008)

18. Zhang, Y., Niyato, D., Wang, P.: Offloading in mobile cloudlet systems with inter-
mittent connectivity. IEEE Trans. Mob. Comput. 14(12), 2516–2529 (2015)

https://doi.org/10.1109/MC.2017.9
https://doi.org/10.23919/INM.2017.7987464

Enacting Emergent Configurations
in the IoT Through Domain Objects

Fahed Alkhabbas1,2, Martina De Sanctis3, Romina Spalazzese1,2,
Antonio Bucchiarone3(B), Paul Davidsson1,2, and Annapaola Marconi3

1 Department of Computer Science and Media Technology, Malmö University,
Malmo, Sweden

{fahed.alkhabbas,paul.davidsson,romina.spalazzese}@mau.se
2 Internet of Things and People Research Center, Malmö University, Malmo, Sweden

3 Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{msanctis,bucchiarone,marconi}@fbk.eu

Abstract. The Internet of Things (IoT) pervades more and more
aspects of our lives and often involves many types of smart connected
objects and devices. User’s IoT environment changes dynamically, e.g.,
due to the mobility of the user and devices. Users can fully benefit from
the IoT only when they can effortlessly interact with it. To accomplish
this in a dynamic and heterogenous environment, we make use of Emer-
gent Configurations (ECs), which consist of a set of things that connect
and cooperate temporarily through their functionalities, applications,
and services, to achieve a user goal. In this paper, we: (i) present the
IoT-FED architectural approach to enable the automated formation and
enactment of ECs. IoT-FED exploits heterogeneous and independently
developed things, IoT services, and applications which are modeled as
Domain Objects (DOs), a service-based formalism. Additionally, we (ii)
discuss the prototype we developed and the experiments run in our IoT
lab, for validation purposes.

1 Introduction

Since the technology becomes more and more affordable and connectivity
widespread, most objects and devices that would gain from being connected
to the Internet are being connected. We refer to the (possibly smart) devices
and connected objects as things [1,2]. Big market players, e.g., Ericsson1, fore-
see that in the coming years, things will form large heterogeneous and highly
distributed systems. As a result, the Internet of Things (IoT) will pervade and
potentially improve many aspects of our lives.

From a user perspective, the IoT environment changes dynamically, e.g.,
when the user moves or due to mobile devices. Given the high diversity of things
dynamically available in different and often unknown places, it is not feasible
to define a priori all the possible combinations of things to reach specific user
1 https://www.ericsson.com/res/docs/2015/mobility-report/ericssonmobility-report-

nov-2015.pdf.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 279–294, 2018.
https://doi.org/10.1007/978-3-030-03596-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_19&domain=pdf
https://www.ericsson.com/res/docs/2015/mobility-report/ericssonmobility-report-nov-2015.pdf
https://www.ericsson.com/res/docs/2015/mobility-report/ericssonmobility-report-nov-2015.pdf
https://doi.org/10.1007/978-3-030-03596-9_19

280 F. Alkhabbas et al.

goals. Additionally, users can fully benefit from the IoT only when they can
effortlessly interact with the dynamically available things to satisfy their goals.
To accomplish this, a significant engineering effort is needed to abstract from
the low-level interactions with the things. To this aim, we make use of Emergent
Configurations (ECs), which consist of a set of things that connect and cooperate
temporarily through their functionalities, applications, and services, to achieve
a user goal [1,2].

In this paper, we present (i) IoT-FED: an approach for Forming and enacting
Emergent configurations through Domain objects in the IoT. It exploits het-
erogeneous and independently developed things, IoT services, and applications
modeled as Domain Objects (DOs), a service-based formalism [3]. Specifically,
we present a process and an architecture realizing IoT-FED by leveraging an IoT
platform, and a developer guideline. Additionally, we present (ii) a prototype we
developed for validation purposes. The prototype is used to run experiments on
two scenarios: one including (real/hardware) things is realized in our IoT lab2

and the other where the hardware is simulated.
ECs are goal driven IoT systems, i.e., a user goal is the main driver to form

and enact an EC. In this paper we assume that: (A1) ECs are formed and enacted
within well-defined spatial boundaries (e.g., a room, a building). Therefore, we
envision the number of things that might potentially form an EC to be in the
scale of hundreds. This remarkably mitigates the well-known scalability issue in
the IoT [4]. (A2) ECs achieve non-time critical user goals, i.e., ECs are formed
and enacted within the time scale of seconds. (A3) ECs can be successfully
formed and enacted, i.e., some needed things and services to achieve the goal
are available and working until it is reached. Enabling the automated adaptation
of ECs is out of the scope of this paper.

The Adjust Light Scenario. A concrete example of IoT systems we deal with
is the Adjust Light (AL) Scenario that we will use throughout this paper.

(AL-office) Lara enters an office which is equipped with several IoT things includ-
ing light sensors, and connected curtains and lights. The things, with their func-
tionalities, are configured to be controllable by people in the office. Preparing for a
meeting, she requests as goal to increase the light level using an application running
on her smartphone. An EC formed by her smartphone, a light sensor, connected
curtain and light is enacted to achieve her goal. The light sensor measures the light
level in the room, the light is turned on and the curtain is partially opened. We
realized this scenario, including both its hardware and software, in our IoT lab.

(AL-hotel) Lara enters a hotel room which is equipped with three light sensors,
connected curtain and two connected lamps. The things, with their functional-
ities, are configured to be controllable by guests living in the room. Using the
same application running on her smartphone, Lara expresses her goal to decrease
light level in the room. Given that the curtain is closed, an EC formed by her
smartphone, one of the light sensors and the two lamps is enacted to reach her
goal. The light sensor measures the light level in the room, one of the two lamps
is turned off and the light intensity level of the second lamp is reduced.
2 http://iotap.mah.se/lab/.

http://iotap.mah.se/lab/

Enacting Emergent Configurations in the IoT Through Domain Objects 281

To realize the AL-scenario we leverage the Amazon AWS-IoT platform3,
which provides RESTful and publish-subscribe based APIs.

The remainder of the paper is organized as follows. Section 2 describes back-
ground notions of DOs. Section 3 illustrates IoT-FED in terms of its process,
architecture, and a guideline. Section 4 presents the AL-office Scenario real-
ized including hardware things, and the (software) prototype at work. Section 5
illustrates the validation of IoT-FED. In Sect. 6 lessons learned are discussed.
Section 7 surveys related works and Sect. 8 concludes the paper and draws future
research directions.

2 Background on the Domain Object Model

The Domain Object model is the building block of a design for adaptation app-
roach [3]. It allows to define independent and heterogeneous things and services
in a uniform way, allowing developers to work at an abstract level without need
to deal with the heterogeneity of things and protocols. In this section, we report
the main features of the DO model that support the ECs formation and enact-
ment, while other details can be found in [3,5].

The intuition behind the DO model is to separate what a system is designed
to do (e.g., adjust the light level) from how to do it (e.g., by combining available
light sensor S and actuators A1 and A2). The how can vary in different execution
contexts since can be provided by disparate things dynamically available. The
AL scenario highlights a high degree of heterogeneity in terms of: types of things
(e.g., sensors, actuators, smartphones) and their protocols (e.g., communication,
data, infrastructure).

Fig. 1. Adjust Light Scenario: a partial
overview of the DOs model of the system.

Things can be wrapped as
DOs, e.g., by applications devel-
opers. This is done una tantum.
After its wrapping, a thing is
seamlessly part of the framework
and exploited for the dynamic for-
mation and enactment of ECs.
In Fig. 1, we provide a partial
overview of the DOs model of
the AL Scenario. Each DO imple-
ments a specific domain prop-
erty which models a thing capa-
bility. For instance, the light

sensing property models the light
sensing capability of a light sen-
sor. Each DO has a core process
which defines its behavior. In addi-
tion, it exposes one or more frag-
ments (e.g., checkActuatorsStatus

3 https://aws.amazon.com/iot/.

https://aws.amazon.com/iot/

282 F. Alkhabbas et al.

and handleActuators) which describe the functionalities it provides. Both core
process and fragments are modeled as processes, by means of the Adaptive Perva-
sive Flows Language (APFL) [5]. Furthermore, each DO has domain knowledge,
which represents its view on the environment in which it is. A DO’s domain
knowledge consists of: (i) internal knowledge that is the domain concept it
implements e.g., the Actuators management in the Actuators Manager; (ii) exter-
nal knowledge that is domain concepts it requires for its execution e.g., the Lamp

actuating and Curtain actuating provided by other DOs.
Domain concepts are modeled as State Transition Systems (STS) [5]. The

execution of fragments and core process of a DO updates STS state in its knowl-
edge. Domain-specific concepts (e.g., light sensing) are usually implemented by
DOs wrapping real things (e.g., sensors, actuators). General-purpose concepts
(e.g., adjust light level), instead, might be realized by defining value-added DOs
(e.g., a DO modeling the AL application of our scenario), which exploit the
functionalities provided by the domain-specific ones.

Unlike traditional services, APFL allows the partial specification of the
expected behavior of a DO by defining abstract activities: activities which the
DO requires but it does not implement by itself. They are defined only in terms
of a goal (e.g., sense the light). At runtime, the execution of abstract activities is
performed through a specialization process, also called refinement mechanism.
It allows abstract activities to be refined according to the fragments offered by
other DOs, whose execution allows the abstract activity’s goal to be reached.
The so called Higher Order Abstract Activities (HOAA) enable a higher level of
abstraction. They are used to dynamically generate abstract activities deriving
from a performed reasoning activity, as explained in Sect. 4.2.

It is important to notice that fragments can be partially specified, too. Thus,
they can also contain abstract activities. This enables a chain of refinements
that we will detail in Sect. 4.2. The abstract activity refinement mechanism we
deal with in this paper is performed through the application of advanced tech-
niques for the dynamic and incremental service composition based on AI plan-
ning [5]. The AI planner takes as input the abstract activity’s goal, the available
fragments, the domain properties defined in APFL, and it returns a fragments
composition process whose execution guarantees to reach the goal. A dynamic
network of DOs is established at runtime to achieve the user goal. For instance,
the dashed arrows in Fig. 1 stand for potential runtime relations that DOs might
establish through the exchange of fragments (see Sect. 4).

3 The IoT-FED Approach

The IoT-FED approach includes (a) a process, (b) an architecture, and (c) a
guideline. The IoT-FED is a refinement of the abstract architectural approach
presented in [1] for enabling the automated formation and enactment of ECs in
the IoT. Another possible refinement of [1] is presented in [6] where the focus
is different compared to this paper, i.e., it is on the overall approach including
adaptation, there is no use of DOs, and it exploits a different software prototype
and scenario for experiments.

Enacting Emergent Configurations in the IoT Through Domain Objects 283

3.1 The IoT-FED Process

Figure 2 shows the IoT-FED process to enable the automated formation and
enactment of ECs exploiting DO technologies. Labels A to H on process activities
map them to one or more architectural components handling them in Fig. 3. The
process starts by specifying the user goal type and the goal spatial boundaries. As
already mentioned, the user expresses her/his goal via an application running on
one of the available smart device called the user agent. The goal type corresponds
to the type of functionality provided by the application running on the user agent
(e.g., adjust light level). The goal spatial boundaries correspond to the location
where the EC must be formed and enacted (e.g., Lara’s office). We consider
the goal spatial boundaries to be the same boundaries of the user agent. Given
these inputs, the core process of the DO corresponding to the specified goal
type (e.g., adjust light app DO in Fig. 1) is loaded, and its simulation starts.
This simulation is needed to check that an EC can be formed to achieve the
user goal in the given spatial boundaries. The goal is achievable if all abstract
activities in the core process can be refined successfully. All the core process
activities are traversed, without being executed. When an abstract activity is
found, a refinement process is performed to generate a plan (i.e., composition of
fragments) which refines it - if any.

Fig. 2. The EC formation and enactment process

The generated plan, which might itself contain abstract activities, is then
injected in place of the abstract activity it refines. If all found abstract activities
are refined successfully, an EC exists and is formed. The formed EC is made
up by the set of things whose corresponding DOs have been involved in the
refinement process, through the selection of their fragments. The formed EC
can then be enacted by instantiating the DOs forming it. Finally, the initial core
process where all the generated plans are injected, can be executed. In this work,
the fragments selection is purely functional. We plan to extend the process to
support some situational context and dependencies in selecting fragments and
consequently EC constituents.

284 F. Alkhabbas et al.

3.2 An Architecture Realizing IoT-FED

Figure 3 shows a possible refinement of the abstract architecture presented in
[1]. The architecture realizes the IoT-FED process of Fig. 2, exploits existing
components of the DOs technologies, and presents newly developed components.
In the following, we describe the components and their responsibilities.

Fig. 3. The IoT-FED architecture

Goal Manager. It is responsible for parsing the user goal and starting the EC
formation process. It has two sub-components: the Process loader, responsible
for specifying the user goal type and the spatial boundaries, and for loading the
DO process corresponding to the specified goal type; the Planner responsible
for the refinement of abstract activities in the loaded process.

Things Manager. It is responsible for managing available IoT things and DOs.
It includes: the IoT things administrator responsible for answering queries about
available IoT things, their capabilities and locations; the Domain objects man-
ager responsible for instantiating needed DOs and handling co-relations among
them.

Enactment Engine. It is mainly responsible for enacting the EC and includes
two sub-components: the Execution engine is responsible for both (i) simulating
and forming the EC - labels E and F in Fig. 2, and (ii) enacting it -labels G and H
in Fig. 2. During the EC formation, it handles the injection of the plans received
by the Planner in place of the abstract activities they refine, and during the EC
enactment it executes the final refined process that achieves the user goal. The
IoT thing instructor is responsible for passing the Execution engine instructions
to IoT things (e.g., get sensor readings).

Context Manager. It is responsible for maintaining the system knowledge.
It includes KB administrator responsible for retrieving data from the KB and
the Context parser responsible for parsing received context from the Execution

Enacting Emergent Configurations in the IoT Through Domain Objects 285

engine (e.g., new things states) and passing it to the KB administrator which
updates the KB.

Knowledge Base. It holds the internal system knowledge and includes four
repositories: the Things states stores knowledge about things operational states
(e.g., if lights are turned on or off); the DO Model that stores all the designed
DOs; the Thing2DO mapping stores associations between things and the DOs
representing them (e.g., the Sensmitter DO is a Light Sensor thing); the Capabil-
ity2DP mapping that stores information about capabilities and domain proper-
ties relations. Different domain properties can relate to the same capability. For
instance, the actuate light level capability can be mapped on both the Curtain

Actuating and Lamp Actuating domain properties.

IoT Services. The IoT-FED approach relies on a cloud platform to provide IoT
services which enable the management and interaction with things. We leverage
the Amazon AWS-IoT platform.

In general, realized components can be deployed to the Cloud (see Sect. 3.3),
standalone servers or to hybrid infrastructures. A potential infrastructure shall
posses capabilities of consuming available IoT services. The deployment model
and aspects about security, connectivity, interoperability, and so on are out of
the scope of this paper.

3.3 A Guideline About IoT-FED

To make IoT things and services available to be used through IoT-FED, a devel-
oper needs to do two main operations, here mapped on the development of the
AL prototype.

1. Register things in the AWS-IoT platform: using the notion of templates in the
AWS-IoT platform, developers can register different types of IoT things. For
each thing, three searchable attributes should be specified: (thing) location,
capabilities and REST endpoint automatically generated by the platform.
When a thing is set up for the first time, a developer needs to store the thing
initial state in the Things state repository. Finally, by exploiting the AWS-
IoT services, the Context manager can dynamically answer queries about
which things are available in a specific location, which of them have a specific
capability and how to communicate with them.

2. Model things, services and applications as DOs: we illustrate this task by
describing the modeled AL prototype in terms of DOs (see Fig. 1). The oper-
ational environment of the target system is defined through domain properties
representing capabilities (e.g., light sensing, lamp actuating) that have to be
registered in the Capability2DP mapping repository. Then, DOs implement-
ing the specified domain properties have to be designed. The REST endpoints
generated by the platform are invoked in the DOs processes activities. We can
distinguish three levels in the DO model. At domain grounding level there are
all the DOs of things offering functionalities and possibly requiring the inter-
action with third-party systems and things. DOs wrapping things have to be

286 F. Alkhabbas et al.

designed for each thing type and brand. For instance, the DOs of the things
that can be part of a smart room such as the Sensmitter light sensor -with
its fragments, e.g., senseLight. At platform level we have value-added DOs
offering value-added services, such as the Actuators Manager in Fig. 1. These
are defined through inter-dependencies among DOs implementing domain-
specific functionalities, e.g., the handling of actuator devices. At application
level we have the AdjustLightApp DO modeling as value-added DOs the user
application used for adjusting the light level in different locations -while the
user moves around. Each DO model has to be stored in the DO Model repos-
itory, and for those wrapping things, the mapping thing-DO is registered in
the Thing2DO mapping repository.

4 The AL-office Scenario and AL Prototype Running on
IoT-FED

This section presents: the realized AL-office Scenario including the
(real/hardware) things in our IoT lab exploited in the developed (software) pro-
totype, and the DOs dynamic mechanism leveraged for forming and enacting
ECs.

4.1 The Realized AL-office Scenario

The IoT things we used to develop the AL-office Scenario are: three climate
Sensmitters4 including light sensors, a Philips Hue light5 which has three bulbs
connected by a bridge, and motorized blinds we built consisting of a stepper
motor6 integrated with off the shelf blinds7. As said, to enable the management
and interaction with the things, we leveraged the Amazon AWS-IoT platform
and we deployed the architectural software components to an Amazon Elastic
Beanstalk8 instance running a Glassfish web server. Moreover, we use gateways
as intermediaries between the AWS-IoT platform and the used things that do
not have the processing and storage capabilities needed to connect directly to
the platform (see Fig. 3). Particularly, the Sensmitters transmit data through
a smartphone via Bluetooth technology. The hue light are connected through
an Arduino9 board, which also invokes the Philips Hue API services to adjust
the bulbs light levels. Likewise, the motorized blinds connect through another
Arduino board, which also sends the low level commands to rotate the stepper
motor, thus opening or (partially) closing the blinds. The communications among
the Enactment engine, Things manager and the IoT platform are MQTT10

4 https://www.senssolutions.se/.
5 https://www2.meethue.com/en-us.
6 https://components101.com/motors/28byj-48-stepper-motor.
7 https://jysk.se/gardiner/persienner/aluminium/alu-persienn-60x80cm-vit.
8 https://aws.amazon.com/elasticbeanstalk.
9 https://www.arduino.cc/.

10 http://mqtt.org/.

https://www.senssolutions.se/
https://www2.meethue.com/en-us
https://components101.com/motors/28byj-48-stepper-motor
https://jysk.se/gardiner/persienner/aluminium/alu-persienn-60x80cm-vit
https://aws.amazon.com/elasticbeanstalk
https://www.arduino.cc/
http://mqtt.org/

Enacting Emergent Configurations in the IoT Through Domain Objects 287

based. To develop the AL prototype, we followed the guideline about IoT-FED,
as anticipated in Sect. 3.3. In the following section we provide an example of the
AL prototype execution.

4.2 Running the AL Prototype on IoT-FED

When a user expresses a goal (at runtime) via a user agent, this triggers
the execution of the IoT-FED process (Fig. 2). The execution starts from the
AdjustLightApp DO, corresponding to the AL application running on the user’s
smartphone. Here, we describe the key mechanism contributing to the formation
and enactment of ECs, i.e., the dynamic refinement of DOs’ abstract activities
through the dynamic discovery, injection, and execution of fragment-based plans.

Figure 4 depicts the situation in which Lara enters her office and she wants
to adjust the light level in the room. We suppose that this can be done by
setting a slider bar (e.g., from 0 to 10 level) on the AL application interface.
Figure 4(a) describes the EC formation process of Fig. 2 performed by simulating
the execution of the AL core process. All its activities are traversed, looking for
abstract activities and checking that they can all be successfully refined through
some composition of fragments. If this is possible, at least one EC exists and
the generated refinement is injected in the original AL core process. Figure 4(b),
instead, describes the EC enactment process of Fig. 2 where the generated refined
AL core process can be executed. Note that, for the sake of description, in the
following we mix details of ECs formation and enactment. However, remind
that the EC enactment starts only if and after an EC is successfully formed.
The EC formation starts from the core process of the AL application11. When
its execution starts, information about the room where the user is located are
retrieved, in order to get the goal spatial boundaries. Then, among others, a
sequence of two abstract activities (represented with dotted lines and labeled
with a goal defined on top of domain properties) need to be refined. They refer
to the sensing and the actuating of the light level in the room, respectively. Then,
the refinement mechanism is triggered. In the following we list the refinement
steps performed while forming the EC.

Step 1 consists in finding a plan for the goal G1: SM = Sensor Discovered.
To this aim, the fragment HandleSensors from the SensorsManager is selected
for the refinement and injected in the AL process, in place of the Detect Light

Level abstract activity. During the EC enactment phase, the execution of this
fragment allows to send a Sensing Request, by specifying the required capability
(e.g., sense light level), and receive information about the list of available things
that might be exploited for the request. The Sensing Higher Order Abstract

Activity dynamically generates the Light Sensing abstract activity, after the
application understands that the required capability deals with the sensing of
the light, given that the SensorsManager handles different kinds of sensors.

Step 2 consists in finding a plan for the dynamically generated goal G3:

LS = Light Data Sent, which has been defined over the Light Sensing domain

11 For presentation purposes, in Fig. 4 we omit some details.

288 F. Alkhabbas et al.

Fig. 4. AL Scenario: an example of the EC formation (a) and the EC enactment (b).

property. It is interesting to notice that the Sensors Manager is not able to provide
itself the required fragment for the light sensing, because the sensing process
depends on the thing used to do it. Only during the execution, the system can
discover and select the proper things it needs, in the specific context in which
it is running. In the Lara’s office room, the Light Sensing fragment is given by
the Sensmitter sensor.

Step 3 and step 4 are performed by following the same procedure of steps 1
and 2, with the only difference that the system needs now to discover actuators
to set Lara’s desired light level. Specifically, a composition made by fragments
offered by the Philips Hue lights and the Stepper Motor actuators installed in
the office is used to reach the user goal.

The final AL application process executed to enact the AL EC is the one in
Fig. 4(b).

Enacting Emergent Configurations in the IoT Through Domain Objects 289

5 Validation

To evaluate the feasibility of IoT-FED, we conducted two experiments aiming at
answering: can IoT-FED be used to handle the dynamic formation and enactment
of ECs at runtime? Table 1 presents the specifications of two rooms correspond-
ing to the AL-office and the AL-hotel scenarios (see Sect. 1). For each room, we
defined the installed things, i.e., light sensors and actuators. Then, we wrapped
the things as DOs and made them usable by the IoT-FED following the guide-
lines presented in Sect. 3.3. Note that the feasibility of the domain object-based
approach is analyzed in [7]. The time for a developer to wrap a service as DO
is paid only una tantum; it varies depending on her/his knowledge of DOs and
expertise level and in the worst case is few hours.

Table 1. Office and hotel room’s stationary things.

Device type Office room Hotel room

Light sensors Sensmitter, LightMeter, WiStar, SensLight Sensmitter, DayLight, WiStar

Lamp actuators PhilipsHueLight, SmartLamp PhilipsHueLight, IkeaLamp

Curtain actuators HS-422-ServoMotor, StepperMotor HS-422-ServoMotor

Our experiments include 11 different things of various brands. Besides the
real world things (e.g., Philips Hue Light) we used to implement the AL-office
scenario, we modeled additional things to simulate more complex still realistic
settings. The office and hotel rooms are equipped with 8 and 6 different sta-
tionary things, respectively, in addition to Lara’s smartphone. We performed
sequential executions of <100> runs of the AL application per each room to:
(i) evaluate the IoT-FED ability to dynamically generate different ECs based on
available things; (ii) get insights on the IoT-FED performances. We evaluated
our approach using a dual-core CPU running at 2.7 GHz, with 8 Gb memory.

Fig. 5. ECs in the hotel room. Fig. 6. ECs in the office room.

290 F. Alkhabbas et al.

Figure 5 shows the different dynamically generated ECs and their occur-
rences over the 100 runs of the AL application in the hotel room. Based on
randomly requested light levels at each run, 14 different ECs were formed
and enacted. For instance, the EC number 1 is made as follows: EC1 =
〈smartphone,DayLight,HS − 422 − ServoMotor, IkeaLamp〉 and it occurs
9 times over the 100 runs. Compared with the hotel room, the office room
has one more light sensor and one more curtain actuator. Figure 6 illustrates
that with only two more devices in the domain space, 32 different ECs can
be formed12. For instance, the EC number 2 is made as follows: EC2 =
〈smartphone, LightMeter,HS − 422 − ServoMotor, PhilipsHueLight〉 and it
occurs 5 times over the 100 runs. For each EC occurrence, we also measured the
time required to form and enact it. Fig. 7 shows the average time for forming
and enacting ECs over the 100 runs of the AL scenario for both the hotel and
office rooms, i.e., 2.39 s and 2.44 s respectively.

One of the advantages of managing IoT domains w.r.t. Internet of Services

Fig. 7. ECs execution time per
room.

(IoS) domains is that we deal with simpler
DOs processes and fragments (i.e., made by
few activities and transitions). This positively
impacts on the time required for the dynamic
composition of fragments and keeps it in the
order of milliseconds. In summary, we can
draw positive conclusions about the feasi-
bility of the IoT-FED approach in forming
and enacting ECs in dynamic environments.
According to the assumption (A1) in Sect. 1,
we considered a realistic set of things in these
experiments, based on the spatial boundaries
where ECs are enacted. While for future work

we plan to apply the approach to additional real-world scenarios involving more
things.

6 Lessons Learned

DOs Formalism. IoT things are heterogeneous and operate using different
standards. This makes it evident that there is a need for other layers which
can handle complex processes such as enabling ECs formation and enactment.
Wrapping things as DOs has several advantages. For instance, as DOs, things
are represented in a uniform way, allowing developers to work at an abstract
level where they do not always need to deal with the heterogeneity of things and
protocols. Nevertheless, the DOs formalism can be further extended to better
meet IoT domain’s features and requirements. Particularly, when refining an
abstract activity, the fragments discovery and selection is currently functional.
Available fragments whose execution allows the abstract activity’s goal to be

12 For readability purposes, in Fig. 6, we show only a subset of the 32 ECs.

Enacting Emergent Configurations in the IoT Through Domain Objects 291

reached are selected and composed. However, specially in IoT domains, a non-
functional selection process would be more appropriate (e.g., to select the device
which has a good battery level instead of a random one).

Moreover, the Execution Engine currently operates in a centralized man-
ner. It should evolve to better deal with the execution of distributed systems.
Since IoT things are wrapped as DOs manually, the IoT-FED approach supports
expressing a set of goals whose types are specified at design time. We plan to
support the automated wrapping of things as DOs, thus enabling the definition
of new goal types at runtime. Currently, runtime failures require re-executing
the EC formation and enactment process to form new ECs which maintain the
achievement of user goals. We recall that enabling automated adaptation of ECs
is out of the scope of this paper.

Amazon IoT Platform and Deployment Services. On the one hand, the
AWS-IoT platform contributes several advantages to the IoT-FED approach. For
instance, it provides APIs which support managing and interacting registered
IoT things. The platform also supports routing a huge number of messages at
runtime. On the other hand, the platform imposes some limitations and restric-
tions. For instance, it puts sophisticated security requirements for registering
IoT things. Although the AWS Elastic Beanstalk facilitates the deployment pro-
cess, it may require developers to perform security related configurations when
applications are (re-)deployed to web servers.

7 Related Work

In the context of architectures, the IoT-FED architecture is compliant with the
IoT reference architecture proposed in [8]. The SOCRADES Integration Archi-
tecture (SIA) is a SOA architecture designed to couple the IoT with enterprise
services [9]. In SIA, processes are modeled at design time by using BPEL. The
authors also extended the BPEL language to enable the dynamic assignment
of services at the execution phase. In [10], the authors propose a service-based
architectural approach to enable efficient and adaptive composition of services.
Composite services are modeled and specified at design time, thus limiting sys-
tems flexibility.

The usage of business processes with their related technologies in the IoT
context [11] is a novel research field that opened interesting research challenges
[12]: from extensions of standard workflow languages (i.e., WS-BPEL, BPMN
2.0) proposed to support suitable communication paradigms for the IoT [13,14],
to workflow management systems (WfMS) for industrial IoT [15,16] to execute
and monitor IoT-based processes. WfMS suitable in dynamic contexts have also
been proposed, to adapt processes in case of failures by replacing the respective
resources (things or services) or workflow tasks [17,18]. The use of the APFL
language enables the IoT-FED approach to dynamically refine abstract pro-
cesses with concrete ones provided by available things, thus making it suitable
in dynamic contexts, too.

292 F. Alkhabbas et al.

The growing number of online resources, and services led to the rise of
methodologies and tools to create applications by combining them, referred to
as mashups. Most mashups approaches focus on the composition of web-based
interfaces and functionalities. In [19], the authors focus on the importance of
context-awareness and adaptivity of service mashups in dynamic environments,
otherwise, they tend to be misaligned with their execution environments. In [20],
the authors objective is that of overcoming the static nature of IoT applications
that, although highly responsive, are usually based on pre-compiled mashups,
being thus inflexible. The work is based on a decentralized goal-driven composi-
tion of pre-compiled service mashups and, similarly to IoT-FED, it relies on the
abstraction of the referring environment allowing to abstract service composi-
tion requirements. In last years, to facilitate the development of IoT application,
different mashups editors have been proposed, such as e.g., [21,22], providing
developers a visual support abstracting both things and services they can com-
pose together. Differently from [22] our approach includes, but is not limited
to, the use of REST services. Moreover, it allows applications to define dynamic
behaviors, due to the use of abstract activities refined through services compo-
sition when the context is known or discovered. The trade-off of the majority of
service mashups approaches in the literature is that applications rely on static
mashups that cannot deal with open environments. Service-oriented architec-
tures for planning, execution and adaptation of cyber-physical systems (CPS)
have been proposed in [23,24]. The approach proposed in [23] is based on a clean
separation between domain modeling, planning, execution, monitoring and actu-
ation services enabling the realization of large scale CPSs. In [24], the authors
propose a MAPE-K autonomic computing framework to manage adaptivity in
service-based CPSs.

Several approaches discuss coalitions of coordinating components, known
as choreography. For instance, in [25], a formal framework dealing with self-
adaptation in the context of choreographies is proposed. A group of interacting
components has also be seen as an ensemble. Languages to define ensembles have
been introduced (i.e., [26,27]) to specify what groups of components should be
present in the system together with mechanisms to select at runtime the ones
satisfying specific constraints (i.e., predicates). In the IoT-FED approach, the
system configuration is less-constrained by design and it leaves components to
freely interact to achieve a user goal in a specific context.

8 Conclusion and Future Work

In this paper, we presented IoT-FED, an architectural approach enabling the
automated and runtime formation and enactment of ECs in dynamic environ-
ments. The approach exploits the DO model and its technologies in the context
of IoT environments. We have presented both the process and the architecture
of the IoT-FED approach, with a guideline about how to use it. Additionally,
we presented the developed prototype used for running initial validation exper-
iments, which showed positive and promising results.

Enacting Emergent Configurations in the IoT Through Domain Objects 293

In the future, we plan work in a number of directions including: extending
IoT-FED to deal with the adaptation of ECs at runtime (leveraging the adap-
tation mechanisms of DOs); identifying and realizing additional realistic cases
that deals with multiple and possibly competing ECs and using them for more
extensive validation; extending the approach to deal with the selection and com-
position of things based on some non functional aspects.

Acknowledgment. This work was partially funded by the project SmartConstruction
(https://enoba.eu/projects/smartconstruction) (EIT Digital activity #18014) and by
the Knowledge Foundation through the Internet of Things and People research profile
(Malmö University, Sweden).

References

1. Alkhabbas, F., Spalazzese, R., Davidsson, P.: Architecting emergent configurations
in the Internet of Things. In: IEEE International Conference on Software Archi-
tecture, pp. 221–224. IEEE (2017)

2. Ciccozzi, F., Spalazzese, R.: MDE4IoT: supporting the Internet of Things with
model-driven engineering. In: Badica, C. (ed.) IDC 2016, vol. 678, pp. 67–76.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48829-5 7

3. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 27

4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things a survey. Comput. Netw.
54, 2787–2805 (2010)

5. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Incremen-
tal composition for adaptive by-design service based systems. In: IEEE Interna-
tional Conference on Web Services, ICWS. IEEE (2017)

6. Alkhabbas, F., Spalazzese, R., Davidsson, P.: ECo-IoT: an architectural approach
for realizing emergent configurations in the Internet of Things. In: Cuesta, C.,
Garlan, D., Pérez, J. (eds.) ECSA 2018. LNCS, vol. 11048, pp. 86–102. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00761-4 6

7. Bucchiarone, A., De Sanctis, M., Marconi, A.: ATLAS: a world-wide travel assis-
tant exploiting service-based adaptive technologies. In: Maximilien, M., Vallecillo,
A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 561–570.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 41

8. Bauer, M., et al.: IoT reference architecture. In: Bassi, A. (ed.) Enabling Things
to Talk: Designing IoT solutions with the IoT Architectural Reference Model, pp.
163–211. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-40403-0 8

9. Spiess, P., et al.: SOA-based integration of the Internet of Things in enterprise
services. In: IEEE International Conference on Web Services, pp. 968–975. IEEE
(2009)

10. Dar, K., Taherkordi, A., Rouvoy, R., Eliassen, F.: Adaptable service composition
for very-large-scale Internet of Things systems. In: 8th Middleware Doctoral Sym-
posium, pp. 2. ACM (2011)

11. Chang, C., Srirama, S.N., Buyya, R.: Mobile cloud business process management
system for the Internet of Things: a survey. ACM Comput. Surv. 49, 70:1–70:42
(2017)

https://enoba.eu/projects/smartconstruction
https://doi.org/10.1007/978-3-319-48829-5_7
https://doi.org/10.1007/978-3-662-48616-0_27
https://doi.org/10.1007/978-3-030-00761-4_6
https://doi.org/10.1007/978-3-319-69035-3_41
https://doi.org/10.1007/978-3-642-40403-0_8

294 F. Alkhabbas et al.

12. Janiesch, C. et al.: The Internet-of-Things meets business process management:
mutual benefit and challenges. In: arXiv preprint arXiv:1709.03628 abs/1709.03628
(2017)

13. Domingos, D., Martins, F., Cândido, C., Martinho, R.: Internet of Things aware
WS-BPEL business processes context variables and expected exceptions. J. UCS
20, 1109–1129 (2014)

14. Tranquillini, S., et al.: Process-based design and integration of wireless sensor net-
work applications. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS,
vol. 7481, pp. 134–149. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32885-5 10

15. Mass, J., Chang, C., Srirama, S.N.: WiseWare: a device-to-device-based business
process management system for industrial Internet of Things. In: IEEE Interna-
tional Conference on Internet of Things, pp. 269–275. IEEE (2016)

16. Seiger, R., Huber, S., Schlegel, T.: Toward an execution system for self-healing
workflows in cyber-physical systems. Softw. Syst. Model. 17, 551–572 (2018)

17. Seiger, R., Huber, S., Heisig, P.: PROtEUS++: a self-managed iot workflow engine
with dynamic service discovery. In: Central European Workshop on Services and
their Composition, pp. 90–92 (2017)

18. Wieland, M., Schwarz, H., Breitenbücher, U., Leymann, F.: Towards situation-
aware adaptive workflows: SitOPT - a general purpose situation-aware workflow
management system. In: IEEE International Conference on Pervasive Computing
and Communication, pp. 32–37. IEEE (2015)

19. Dorn, C., Schall, D., Dustdar, S.: Context-aware adaptive service mashups. In:
IEEE Asia-Pacific Services Computing Conference, pp. 301–306. IEEE (2009)

20. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Responsive decentralized
composition of service mashups for the Internet of Things. In: 6th ACM Interna-
tional Conference on the Internet of Things, pp. 53–61. ACM (2016)

21. Giang, N.Ky., Blackstock, M., Lea, R., Leung, V.C.M.: Developing IoT applications
in the Fog: a distributed dataflow approach. In: International Conference on the
Internet of Things, pp. 155–162. IEEE (2015)

22. Mayer, S., Verborgh, R., Kovatsch, M., Mattern, F.: Smart configuration of smart
environments. In: IEEE Transactions on Automation Science and Engineering, pp.
1247–1255. IEEE (2016)

23. Feljan, A.V., Mohalik, S.K., Jayaraman, M.B., Badrinath, R. : SOA-PE: a service-
oriented architecture for planning and execution in cyber-physical systems. In:
International Conference on Smart Sensors and Systems, pp. 1–6. IEEE (2015)

24. Mohalik, S.K., Narendra, N.C., Badrinath, R., Le, D.: Adaptive service-oriented
architectures for cyber physical systems. In: IEEE Symposium on Service-Oriented
System Engineering, pp. 57–62. IEEE (2017)

25. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive monitors for multi-
party sessions. In: IPDP, pp. 688–696. IEEE (2014)

26. Krijt, F., Jirácek, Z., Bures, T., Hnetynka, P., Gerostathopoulos, I.: Intelligent
ensembles - a declarative group description language and Java Framework. In:
IEEE International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pp. 116–122. IEEE (2017)

27. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic
systems programming: the SCEL language. In: TAAS (2014)

http://arxiv.org/abs/1709.03628
https://doi.org/10.1007/978-3-642-32885-5_10
https://doi.org/10.1007/978-3-642-32885-5_10

Energy-Delay Co-optimization
of Resource Allocation for Robotic
Services in Cloudlet Infrastructure

Mahbuba Afrin1(B), Jiong Jin1, and Ashfaqur Rahman2

1 School of Software and Electrical Engineering, Swinburne University of Technology,
Melbourne, VIC 3122, Australia
{mafrin,jiongjin}@swin.edu.au

2 Data61, CSIRO, Sandy Bay, TAS 7005, Australia
ashfaqur.rahman@data61.csiro.au

Abstract. Cloud based robotic services can be adopted for emergency
management in smart factory. When multiple robots work collabora-
tively in such system, optimal resource allocation for executing the tasks
of robotic services becomes a challenging problem due to the heterogene-
ity and energy consumption of resources. Since the tasks of multi-robotic
services are inter-dependent, the inconvenience of data exchange between
local robots and distant Cloud can significantly degrade the quality of
service. Therefore, in this paper, we jointly address the energy consump-
tion and service delay minimization problem while allocating resources
in proximate Cloud (Cloudlet) based multi-robot systems for emergency
management service in smart factory. A multi-objective evolutionary
approach, NSGA-II algorithm is applied to solve this constrained multi-
objective optimization problem. We augment the NSGA-II algorithm by
defining a new chromosome structure, presorted initial population, muta-
tion operator and selection of minimum distant solution from the non-
dominated front to the origin while crossing over the chromosomes. The
experimental results on the basis of synthetic data demonstrate that our
approach performs significantly well compared to benchmark NSGA-II.

Keywords: Resource allocation · Multi-robot system · Cloudlet
Optimization · Evolutionary algorithm

1 Introduction

In Cloud based multi-robot systems, Cloud offers virtualized resources, platform
and software services so that both localized robots and remote resources can be
utilized to process the tasks of robotic services. In a smart factory, such Cloud-
robotic services can manage entire production and supply chain. However, safety
assurance in smart factory during hazardous situation like fire occurrence is very
crucial. In this case, both robot and Cloud resources should complement each
other to process diversified tasks of emergency management service within a
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 295–303, 2018.
https://doi.org/10.1007/978-3-030-03596-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_20

296 M. Afrin et al.

stringent deadline. These tasks are usually inter-dependent, latency sensitive
and compute intensive. In addition, the resources are heterogeneous in terms of
processing capability and energy consumption [3]. In such scenario, an optimal
allocation of computing resources to the tasks with the aim of minimizing both
service delay and energy consumption is one of the key research challenges.

Taking cognizance of the afromentioned issues, we focus on energy-delay co-
optimized resource allocation for processing the tasks of emergency management
service such as fire driven emergency service in a smart factory across robot
and Cloud infrastructure. Tasks of this service require real-time response and
data transmission among robots and Cloud. Therefore, the concept of Cloudlet
[4] infrastructure is introduced between robot-Cloud. Cloudlet is a prominent
extension of Cloud closer to the data source that can provide multi-robot systems
with virtualized resources to execute latency sensitive services.

To the best of our knowledge, this is the first work to design a Cloudlet
based multi-robot framework for emergency management service in smart fac-
tory. Resource allocation in this context appears as a constrained multi-objective
optimization problem when both energy consumption of resources and over-
all makespan for processing the tasks are targeted to minimize simultaneously.
Since, multi-objective evolutionary algorithms help to generate pareto-optimal
solutions of such multi-objective optimization problem, in this paper, we extend
the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [2] to solve the
resource allocation problem for its capability of finding diverse set of solutions.
Here, we augment the NSGA-II by defining a new chromosome structure, pre-
sorted initial population based on the task size and processing speed of the
resources. Besides, while crossing over the chromosomes, rather than selecting
arbitrarily, the chromosome having minimum distant solution from the pareto-
front to the origin is selected to balance the values of both objectives in sub-
sequent generations. The results of our simulation experiments significantly
improves the benchmark NSGA-II in minimizing both objectives.

The rest of the paper is organized as follows. In Sects. 2 and 3, related work
and Cloudlet-based framework for multi-robot system are discussed, respectively.
The problem formulation and the solution mechanism are described in Sect. 4.
In Sect. 5, the efficacy of our proposed approach is validated through simulation
and Sect. 6 concludes the paper with future directions.

2 Related Work

In literature, the integration of Cloud services and multi-robot systems has
already been investigated. The concept of Robot as a Service through a Ser-
vice Oriented Architecture is defined in [1] that incorporates robot services in
Cloud. A smart city-based Cloud robotic framework for optimal task offloading
is designed in [7]. Motion and connectivity-aware offloading for Cloud robotic
services using evolutionary algorithm is further introduced in [6]. However, in
both [7] and [6], the offloading decision-making is done by a single robot.

Energy-Delay Co-optimization for Robotic Services 297

Task allocation in resource-constrained multi-robot systems for search and
rescue or other emergency and hazardous scenarios is discussed in [8]. Cost-
efficient deployment of robots for a search and rescue use case during large-scale
disaster management is explored in [5]. However, in the aforementioned works,
no multi-robot task allocation policy targeting both local and Cloud resources is
pursued. Nevertheless, considering the intrinsic constraints of Cloud and multi-
robot assisted smart factory during the execution of emergency management
services, neither the combined task allocation problem nor the solutions has
been enlightened in the literature so far.

3 Framework for Cloudlet Based Multi-robot System

The Cloudlet infrastructure between robot and Cloud forms a three-tier com-
putational framework and helps to execute emergency management service for
smart factory with less communication delay. In this framework, the robots using
Zigbee, Bluetooth and WiFi can communicate with each other. They also com-
municate with Cloudlet and Cloud through gossip protocols [3].

Fig. 1. Framework design for Cloudlet based multi-robot system

In a Cloudlet, Resource Manager (RM) creates a combined resource pool with
both local and remote resources while executing the emergency management ser-
vice as shown in Fig. 1. Here, we consider emergency fire management service in
smart factory as an example case scenario. This service consists of multiple tasks
such as fire origin and cause identification, human victim and hazardous mate-
rial detection, evacuation planning, navigation as well as management of exter-
nal help. These tasks are interdependent and orchestrated through a Directed
Acyclic Graph (DAG) based workflow model. We assume that the corresponding

298 M. Afrin et al.

tasks of a service and the meta-data of the tasks (inter-data dependency delay,
Quality of Service requirement etc.) are stored in the Cloudlet. Whenever an
event of interest triggers the service initiation, the RM residing in the Cloudlet
assigns the tasks to the combined resource pool.

4 Proposed Energy-Delay Optimized Resource Allocation

4.1 Multi-objective Optimization Problem Formulation

The optimal resource allocation for processing the service tasks is subject to
multiple constraints driven by the characteristics of tasks (e.g., latency sensitiv-
ity, interdependency, resource requirements, etc.). It turns into a multi-objective
optimization problem when simultaneous minimization of overall makespan for
completing the tasks and energy consumption of the resources are taken into
account. In the proposed Cloudlet-based framework, this multi-objective opti-
mization problem can be expressed through Eqs. 1 and 2 for the corresponding
set of tasks T and resources R. In Eq. 1, mt

r denotes the time required to com-
plete a task t ∈ T on a resource r ∈ R and it minimizes the overall makespan
∀t ∈ T . At the same time, Eq. 2 minimizes the overall energy consumption et

r

while processing each task t ∈ T on particular resource r ∈ R. The solution of
both equations points the assignment of task t ∈ T to resource r ∈ R through
non-zero value of binary decision variable xtr. The constraints of Eqs. 1 and 2
ensure that a task t ∈ T will not assign to multiple resources (Eq. 3), the total
task completion time will not exceed the maximum allowable delay MT to exe-
cute the service (Eq. 4) and the total energy consumption of resources should
be within the energy threshold, ET (Eq. 5). In addition, Eq. 6 signifies that the
assignment of a dependent task t ∈ T to a resource r ∈ R and its tolerable
inter-task data dependency delay δt will not be affected by the assignment of
all its predecessor tasks t′ ∈ T ′

t on computing resources r′ ∈ R. In this case,
maximum processing time pt′

r′ of the predecessor tasks and data exchange time
ηr′r, ∀t′ ∈ T ′

t is taken into account.

min
∑

t∈T ,r∈R

xtr × mt
r (1)

and
min

∑

t∈T ,r∈R

xtr × et
r (2)

subject to ∑

t∈T ,r∈R

xtr = 1 (3)

∑

t∈T ,r∈R

mt
r ≤ MT (4)

∑

t∈T ,r∈R

et
r ≤ ET (5)

max(pt′
r′ + ηr′r) ≤ δt;∀t′ ∈ T ′

t (6)

Energy-Delay Co-optimization for Robotic Services 299

4.2 Energy-Delay Co-optimization Using Multi-objective
Evolutionary Algorithm

To solve the resource allocation problem, we augment multi-objective evolu-
tionary algorithm, NSGA-II. In NSGA-II algorithm, solution of a chromosome
contains the values of different objectives obtained from fitness functions and the
solutions of a population are classified into different sets according to the ascend-
ing level of their domination. A set of solutions S dominates another solution set
S′ if each solution x ∈ S is no worse than solution x′ ∈ S′,∀x′ in every objectives
and each solution x ∈ S is strictly better than solution x′ ∈ S′,∀x′ in at least
one objective. If a solution set is not dominated by any other set of solutions, the
elements of that set is called the non-dominated solutions. Each set of solutions
represents a particular front on the solution space and the chromosomes gener-
ating those solutions are treated as the builder of the front. The non-dominated
set of solutions provides the optimal front (first front) on the solution space, is
termed as the pareto-front. Here, we extend the basic concept of NSGA-II and
further refine it to develop an energy-delay co-optimized resource allocation for
emergency management service in Cloudlet infrastructure as follows:

Population Initialization. In the augmented NSGA-II, rather than creat-
ing randomized initial population, a presorted initial population relying on the
heuristics is generated. Here, the set of resources R in the combined resource pool
is divided into k categories based on the ascending processing speed ρr,∀r ∈ R.
Similarly, the set of tasks T is also classified in k types according to the incre-
mental size λt,∀t ∈ T . Thereafter, taking the problem range and constraints
(Eqs. 3–6) into account, mathematical combination is used to conceptually assign
the tasks of j type to the resources of jth category for generating the chromo-
somes of initial population. The structure of chromosomes is aligned with the
steps of initial population creation, where a Gene Index symbolizes a particular
task and the Gene refers to a specific resource.

Domination Count and Ranking. The solution space of a population is deter-
mined by the outcome of its member chromosome’s fitness value on makespan
and energy objectives using Eqs. 1–2. The solutions of combined parent and child
population Ui for any generation gi; i ∈ {1...G}, generated by its member chro-
mosomes are ranked in different fronts within corresponding solution space based
on the level of their domination according to NSGA-II [2].

Selection of Population. Since the size of combined population Ui for any
generation gi is 2N , for iterative refinement, it is very important to select the
best N number of chromosomes from Ui to form the parent population Pi+1 for
the next generation gi+1. In this case, chromosome slots within Pi+1 is filled with
the builder chromosomes of comparatively better fronts on the solution space.

Crowding Distance Calculation. In selecting N number of chromosomes for
the parent population Pi+1 of next generation gi+1, sometimes the available slot
in Pi+1 can be less enough to accommodate the entire builder chromosome set
Fτ of a particular front. In this case, crowding distance of the solutions are

300 M. Afrin et al.

calculated to identify the compatible builder chromosomes of that front to fill
the available slot in Pi+1.

Extension of Genetic Operator. For a particular generation gi, while gener-
ating the child population Ci from the parent population Pi, genetic operators
such as fitness calculation, selection, crossover and mutation are applied. The
fitness of the population is determined through the objective functions discussed
in Eqs. 1–2. To imply mutation on the population, binomial distribution and to
make crossover of a particular chromosome with the fittest chromosome of the
population, simulated binary approaches are used. To select the fittest chromo-
some, for each chromosome c, the distance c.d of makespan and energy consump-
tion objective value (c.M, c.E) from the theoretical lowest value of makespan and
energy, (0, 0) is calculated. The chromosome having minimum distance value
from the origin is selected as the fittest chromosome of the population for mak-
ing crossover. However, the selection of final solution and characteristics of the
corresponding chromosome solely depends on the intention of service providers.

5 Simulation Results and Discussion

5.1 Simulation Environment

To conduct our experiments in Matlab, we use synthetic data, driven from real-
world references and selects system parameters carefully for fair evaluation [6].
The parametric values for the simulation environment are summarized in Table 1.
The value of simulation parameters within a specific range is set by a pseudo
random number generator. For simplicity of the simulation, we consider three
types of computing resources based on their heterogeneous processing speed. In
addition, we set the ratio of local and virtual resources in the combined resource
pool to 1

3 and the ratio of dependent and independent tasks is set to 2
5 .

5.2 Simulation Scenarios and Result Analysis

The performance of our proposed approach is compared with a benchmark strat-
egy which follows NSGA-II algorithm with randomized initial population and
arbitrary chromosome selection during crossover.

Comparison of Pareto-Optimal Solutions and Generations to Meet
Stopping Criteria. After 200 generations, the pareto-optimal solutions of our
augmented NSGA-II and benchmark NSGA-II on fixed number of heterogeneous
tasks (50) and resources (30) are depicted in Fig. 2(a). In this scenario, each
pareto-optimal solutions of energy-delay co-optimized approach provides better
outcome for both objectives, compared to the benchmark strategy. The initial
population of proposed approach that is determined based on the task’s size and
processing speed of resources, inherently minimizes the overall makespan and
energy consumption. In addition, selection of the chromosome having minimum
distant solution from the origin for crossover further improves its performance.

Energy-Delay Co-optimization for Robotic Services 301

Table 1. Simulation parameters

Parameter Value

Population size 50

No of generations 50–500

Mutation rate 0.5

Crossover rate 0.5

Number of tasks in a service 35–65

Number of computing resources 15–45

Processing speed of virtual resources 10000–30000 MIPS

Processing speed of local resources 8000–15000 MIPS

Per unit energy consumption of virtual resources 50–150 W

Per unit energy consumption of local resources 40–90 W

Tasks data size 5000–10000 MI

Allowable completion time of all tasks 5000 ms

Maximum allowable energy consumption of service 2500 W

Data dependency threshold 1500 ms

Communication bandwidth 128–512 Kbps

Therefore, after a fixed number of generations, it provides significantly better
solution than the randomized benchmark. The simulation results on Fig. 2(b)
represents the efficacy of proposed approach in achieving no further optimization
state within less generations compared to the benchmark strategy. For using pre-
sorted population, compared to the benchmark, our approach implicitly advances
a certain number of generations in meeting the stopping criteria.

Impacts of Varying Number of Tasks. The average makespan and energy
consumption for varying number of tasks while the number of generations (200)

52.2 52.4 52.6 52.8 53 53.2
Makespan (Sec)

83.4

83.5

83.6

83.7

83.8

83.9

84

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t)

NSGA-II (Benchmark)
NSGA-II (Augmented)

50 100 150 200 250 300 350 400 450 500
Number of Generation

50

100

150

200

250

300

350

400

450

500

G
en

er
at

io
ns

 R
eq

ui
re

 to
 M

ee
t S

to
pp

in
g

Cr
ite

ria
 NSGA-II (Benchmark)

NSGA-II (Augmented)

)b()a(

Fig. 2. (a) Pareto-optimal solutions and (b) Number of generations required to meet
stopping criteria

302 M. Afrin et al.

35 40 45 50 55 60 65
Number of Task

40

45

50

55

60

65

70
Av

er
ag

e
M

ak
es

pa
n

(S
ec

)
NSGA-II (Benchmark)
NSGA-II (Augmented)

35 40 45 50 55 60 65
Number of Task

60

65

70

75

80

85

90

95

100

105

110

Av
er

ag
e

En
er

gy
 C

on
su

m
pt

io
n

(W
at

t)

NSGA-II (Benchmark)
NSGA--II (Augmented)

)b()a(

Fig. 3. (a) Average makespan and (b) average energy consumption of resources for
varying number of tasks

and resources (30) are fixed, are illustrated in Figs. 3(a) and (b) correspondingly.
Since the resource number is fixed, with increasing of the tasks objective values
increases for both approaches. However, compared to benchmark, our proposed
approach provides improved solutions in this scenario due to presorted popula-
tion. In the presorted population, the computing resources are categorized based
on their processing speed for assigning the tasks to a particular type of comput-
ing resources according to their size. As a consequence, it generates efficient
initial population and refines it consistently after each generation.

6 Conclusion and Future Directions

Evaluation results acquired through simulating different scenarios show that our
augmented NSGA-II algorithm improves the benchmark NSGA-II algorithm by
minimizing both makespan and energy consumption. In future, our proposed
approach will be compared with other existing multi-objective problem solv-
ing approaches like PAES, SPEA. Furthermore, as our evaluation is based on
simulation, sources of uncertainty in the system and their effects on simula-
tion parameters, sensitivity of independent variables will be analysed and imple-
mented in real-world testbed. The impact of complexities on different tasks will
also be investigated. Utilizing edge resources for task allocation will be a good
extension.

Acknowledgement. The authors would like to thank Data61, CSIRO, Australia for
supporting the work.

References

1. Chen, Y., Du, Z., Garćıa-Acosta, M.: Robot as a service in cloud computing. In:
5th IEEE International Symposium on Service Oriented System Engineering, pp.
151–158. IEEE Computer Society, Washington (2010)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

Energy-Delay Co-optimization for Robotic Services 303

3. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applica-
tions. IEEE Netw. 26(3), 21–28 (2012)

4. Mahmud, M.R., Afrin, M., Razzaque, M.A., Hassan, M.M., Alelaiwi, A., Alruba-
ian, M.: Maximizing quality of experience through context-aware mobile application
scheduling in cloudlet infrastructure. Softw.: Pract. Exp. 46(11) (2016)

5. Mouradian, C., Yangui, S., Glitho, R.H.: Robots as-a-service in cloud computing:
search and rescue in large-scale disasters case study. CoRR (2017)

6. Rahman, A., Jin, J., Cricenti, A., Rahman, A., Panda, M.: Motion and connec-
tivity aware offloading in cloud robotics via genetic algorithm. In: IEEE Global
Communications Conference, pp. 1–6 (2017)

7. Rahman, A., Jin, J., Cricenti, A., Rahman, A., Yuan, D.: A cloud robotics framework
of optimal task offloading for smart city applications. In: IEEE Global Communi-
cations Conference, pp. 1–7 (2016)

8. Wu, D., Zeng, G., Meng, L., Zhou, W., Li, L.: Gini coefficient-based task allocation
for multi-robot systems with limited energy resources. IEEE/CAA J. Autom. Sin.
5(1), 155–168 (2018)

Services in IoT: A Service Planning
Model Based on Consumer Feedback

Christian Cabrera(B), Andrei Palade, Gary White, and Siobhán Clarke

Distributed Systems Group, School of Computer Science and Statistics,
Trinity College Dublin, Dublin, Ireland

{cabrerac,paladea,whiteg5,Siobhan.Clarke}@scss.tcd.ie
http://www.dsg.cs.tcd.ie/

Abstract. IoT offers a large number of services from different providers.
These services frequently need to be composed to provide novel appli-
cations. Current work in IoT service composition can be classified as
conversation-based or interface-based. Conversation-based approaches
need the manual definition of service plans, which is not feasible in IoT
because of the large scale. Interface-based approaches use planning to
automate the composition process. Such automation avoids human inter-
vention, but some incorrect services can appear in the discovered plans.
The efficiency of these approaches is poor because they perform inten-
sive search in large spaces. This paper proposes a model for service com-
position with minimal human intervention using consumers’ feedback.
Results show that our model outperforms its competitors.

Keywords: Internet of Things · Service Oriented Computing
Service composition · Service discovery

1 Introduction

The IoT and Service Oriented Computing (SOC) support cyber-physical sys-
tems where things offer capabilities as services that can be composed to create
novel applications [2,3]. This composition process is a transformation of con-
sumer requests into the execution of a set of services [9]. A service plan defines
the services to be executed but its discovery is challenging in IoT because of the
large number of services [4]. The composition approaches in IoT can be clas-
sified as conversation-based, or interface-based [12]. Service conversations use
process models [11] to represent service plans which are manually defined [8].
This considerable human intervention is not feasible in IoT because users cannot
know about all available services. Interface-based approaches compose services
based on planning algorithms. They can create service plans automatically, but
incorrect services can appear, affecting search accuracy [12]. Search latency is
also impacted by large search spaces and exhaustive exploration of all possible
services combinations. Novel composition mechanisms for IoT should include
historical data in progressive searches, with sensible ranking methods [10].
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 304–313, 2018.
https://doi.org/10.1007/978-3-030-03596-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_21

Services in IoT: A Service Planning Model Based on Consumer Feedback 305

This paper proposes a model to discover service plans in IoT that uses con-
sumer feedback to guarantee search efficiency minimising human intervention.
Consumer feedback (i.e., historical data from previous searches) determines if
a discovered plan was correct or incorrect and is used in our model to improve
search accuracy. The latency of the process is reduced through two strategies:
first, the use of consumers’ feedback avoids the exploration of incorrect com-
binations of services. Second, the model explores the plans according to how
well each plan meets the request’s requirements. The model explores the most
promising plans (i.e., search space reduction), and avoids wasting time on the less
promising plans (i.e., progressive search). The proposed approach is evaluated
and compared with a classic planning algorithm [6] and a conversation-based
approach [12] on both centralised and distributed infrastructures.

This paper summarises the related work in Sect. 2. Section 3 presents the
discovery process. Sections 4 and 5 present the evaluation and conclusions.

2 Related Work

Service composition in IoT can be classified as conversation-based and interface-
based [12]. Deng et al. [7] propose an architecture where requesters specify
a service conversation to select a composition with the lowest latency. Baker
et al. [1] propose a service composition algorithm where cloud-providers define
service conversations for each offered service. Users requests (i.e., I/O param-
eters) are matched with the service conversations. Urbieta et al. [12] present
a service composition model that selects services whose capabilities conform
a predefined service conversation. Conversation-based approaches offer good
retrieval accuracy. However, they are time-consuming, error-prone, and require
high human intervention [14]. It is not feasible to assume that users will know
about all the available services and all their possible combinations in large-scale
environments.

Interface-based approaches compose plans automatically. Zhao et al. [13]
introduce a mechanism where sensors are grouped into classes that are chained
using a planning algorithm to fulfill user goals (i.e., I/O parameters). The result-
ing plan is used to search services according to energy efficiency constraints.
Chen et al. [6] present an approach that supports adaptive service composition.
Service discovery is based on a planning algorithm that uses semantic match-
making of I/O signatures. Interface-based approaches offer automatic planning.
However, search precision can be affected negatively by the retrieval of incorrect
services [12]. For example, a service s1 that provides readings about wind speed
and a service s2 that consumes data of buses speeds are likely to match because
the output type of s1 is equivalent to the input type of s2 (i.e., both are speeds).
Both conversation and interface-based categories present performance problems
in terms of response time as they perform complex processes in full search spaces
and look for all the possible paths even when they are incorrect [6,12].

306 C. Cabrera et al.

3 Composition of Services in IoT Environments

We assume that a network of gateways manages the services offered by IoT envi-
ronments. Figure 1 shows the service discovery engine (SDE) that is deployed
on each gateway. It receives consumer requests and feedbacks, forwards dis-
covery messages to other gateways, and sends response messages to consumers.
Each gateway has a registry to store service descriptions that providers advertise
through a registry engine described in our previous work [3]. Service descriptions
are defined as sdesc = 〈id, I, O,D〉, consisting of an identifier, inputs, outputs,
and domains. A request is defined as r = 〈I,O〉, consisting of inputs and out-
puts. The engine uses a set of ontologies (i.e., knowledge model) to annotate
services and requests parameters and services domains. These ontologies are
defined by the OWLS-TC V41 and our previous work [5]. The service planner
and matchmaker use this semantic information to reduce the search space and
identify service relations. The planner uses consumers feedback to generate accu-
rate service plans. Consumers mark as correct or incorrect each discovered plan
and the feedback manager stores this feedback in two data structures:

Consumer
Feedback

Request
Response

Feedback
Update

Ontology
Concepts

Ontology
Concepts

Search Space
&

Feedback Information

Consumer Feedback

Request
Description

SR
MongoDB

Service
Consumer

Service
Matchmaker

Feedback
Manager

KM
Ontologies

Service
Planer

Request I/O
Service I/O Matching

Result

SDESDESDEs

Discovery
Message

Fig. 1. Service discovery engine.

– Plans: This stores past discovered plans as graphs that include vertices (i.e.,
services in a plan), and edges (i.e., relations between two services in a plan).

– Relationships: This stores each relation between two services (i.e., an edge
between two vertices) discovered by the SDE in past plans. Each relation
includes the source parameter type, the source service domain, the target
parameter type, the target service domain, the number of plans that have
included this relation, and the number of successful plans that have included
this relation. This counter of successful plans is updated when a consumer
sends the feedback of a plan that includes the relation.

Each identified relation between two services is validated against the con-
sumer feedback in the registry. This knowledge represents relationships between
1 OWLS-TC V4: http://projects.semwebcentral.org/projects/owls-tc/.

http://projects.semwebcentral.org/projects/owls-tc/

Services in IoT: A Service Planning Model Based on Consumer Feedback 307

domains and avoids the inclusion of services that have input/output relationships
but belong to non-related domains. For example, service S1 has body tempera-
ture as output and belongs to the health domain, service S2 has room tempera-
ture as input and belongs to the buildings domain. They have an input/output
relationship as S1 produces, and S2 consumes temperature measurements, but
it is incorrect and will be ignored because of the negative feedback.

Initial Plans
DefinitionReq,

Previous Plans

Search Space
Definition

initial
plans

services I/O
Relation

candidates

Request Inputs/
Candidates

Matchmaking
completed plans

Step 1 Step 2

Step 3

Service and Plans
Matchmaking

Historical
Validation

I/O
Relation

Process Recursion or
Request Forwarding

Publish Response and
Feedback Subscription

Candidates
Ranking

Candidates
Definition

top-k
candidatespartial plans

response

response

Historical
Validation

I/O
Relation

Plans
Definition

I/O
Relation

Plans
Ranking

plans

Fig. 2. Service discovery process.

Figure 2 shows the discovery process where the SDE searches for plans that
meet a request. This process starts when a gateway receives a request message
from the consumer or other gateways. This message includes two inputs: the
request that is the consumer requirement and includes the I/O parameters. And
a list of previous plans that is a set of graphs that partially solve the request and
was discovered previously. It is empty if the message comes from the consumer.
The SDE performs the planning process based on these inputs as follows:

Step 1: Initial Plans and Search Space Definition

The planner receives the request and previous plans. If the list of previous plans
is empty, the planner creates a graph with two vertices: initial and final. The
outputs of the initial vertex are the inputs in the request and the inputs of the
final vertex are its outputs. The final vertex is an unsolved vertex as there are
no vertices that provide their inputs. If the list of previous plans is not empty,
these partial plans are used as initial plans. The planner defines the search space
as a set of services which outputs can match to the unsolved vertices in a plan.
The planner queries the registry to get these services according to their I/O
parameters. This query (i.e., progressive search) improves the search efficiency
as the planner does less iterations in next steps.

Step 2: Candidates Plans Discovery

The planner tries to complete the initial plans using the search space from
the step 1. It uses the matchmaker that discovers I/O relations comparing two
service parameters and gives a score if the parameters match. This score is used
to rank and select the candidate plans (i.e., plans that can solve the request).
The matchmaker is based on matching methods that compare two parameters
(i.e., P1, P2) using their annotated types according to an ontology O as follows:

308 C. Cabrera et al.

– equivalent(P1, P2): The type of P1 is conceptually equivalent to the type of
P2 in O. This method gives a score of 4 to the relation between P1 and P2.

– plugin(P1, P2): The type of P1 is a sub-concept of the type of P2 in O. This
method gives a score of 3 to the relation between P1 and P2.

– subsume(P1, P2): The type of P1 is a super concept of the type P2 in O. This
method gives a score of 2 to the relation between P1 and P2.

– similarity(P1, P2): This method calculates the cosine similarity between P1

and P2. This method gives a score of 1 to the relation between P1 and P2.

The planner uses the consumers’ feedback to validate each discovered rela-
tion. It computes an historic success index (HSI) for a given edge (Eq. 1).

HSI(e) =
successfulP lans

totalP lans
(1)

where successfulP lans is the number of correct plans that have included the
edge e and totalP lans is the number of plans that have included the edge e.
The planner uses this index to determine whether a discovered relation is valid.
If HSI >= feedbackThreshold, the discovered relation is included in the plan.
The planner creates a candidate plan for each combination of valid discovered
relations for an initial plan. Previous planning approaches create and explore
candidates for all possible combinations, which increases their latency. The num-
ber of candidates can be large even with this constraint. Our model ranks and
selects the top k candidates based on the scores defined by the matchmaker.
Each candidate has a functional matching index FMI that defines how well it
meets the request’s functional requirements. This index follows the Eq. 2.

FMI(G(v, e)) =
∑n

i=1 xi

4n
(2)

where n is the number of edges in the candidate plan G, and xi is the score
for a particular edge according to the matchmaker. 4n is the maximum value
that the plan can receive. The candidate is added to the list of candidates if the
length of the list is less than or equal to K and FMI >= functionalThreshold.

Step 3: Response Definition and Feedback Management

The planner uses the matchmaker to define which of the candidate plans solve
the request. The matchmaker compares the outputs of the initial vertex (i.e.,
inputs of the request) with the inputs of the non-solved vertices in each can-
didate. The planner validates the discovered relations calculating the HSI and
comparing it with the feedbackThreshold. If the request is solved after this
process, the list of solutions is ranked using the FMI and published to the con-
sumer. Otherwise, the request and the list of ranked candidates is sent to the
next gateway where the process starts again with the candidates as a list of
previous plans. The SDE stores the solutions in the registry and subscribes to a
feedback message from the consumer. The consumer publishes feedback sending
the plan identifier and a boolean mark that states if the plan is correct or not.

Services in IoT: A Service Planning Model Based on Consumer Feedback 309

4 Evaluation

We implemented the SDE in Python 3.5, services and feedbacks are stored in a
MongoDB, and the communication is based on MQTT. We compare our model
against a classic planning algorithm [6] and a conversation based approach [12].
We measure search precision, latency in terms of response time (ms), and human
intervention in terms of number of bytes in the request and feedback. We deploy
the approaches in centralised and distributed infrastructures to evaluate its per-
formance. The centralised infrastructure uses the Kelvin cluster managed at the
Trinity Centre for High Performance Computing (TCHPC)2. One node hosts the
client that sends service requests and the SDE that solves them. The distributed
infrastructure is composed by 5 Raspberry Pi3 that run Raspbian, have 1 GB
of RAM and an SD card with 16 GB. One of the boards is the consumer and
sends requests to the other boards. We run five rounds of 100 requests for each
approach with different number of services in the environment. This number
varies from 2000 to 10000, incremented by 2000. We repeated this process for all
the combinations of the parameters in our model. The K value varies from 5 to
25, incremented by 10, the feedbackThreshold and the functionalThreshold
values vary from 0.0 to 1, incremented by 0.2.

The dataset is composed by 946 services and 47 requests from which responses
are composed plans that can include from 1 to 5 services. The composed plans
were validated to determine the set of relevant responses, this set has 14937
plans. 9054 mockup services are added to evaluate scalability. The implemented
approaches, and data sets used in this paper are available on the TCD GitLab3.

4.1 Results

We evaluate our model (i.e., feedback-based) with different values for its param-
eters (i.e., Feedback and Functional Thresholds, K Value, and Number of
Rounds). We apply a Kruskal-Wallis test with a multiple comparison of ranked
means to measure how the values of each parameter affects our model. The feed-
back and functional threshold do not have a significant impact on the results.
However, the best results are achieved when these thresholds have a value of 1.0.
The K value has a significant effect in both search precision and response time
(Fig. 3). The best results are achieved when K is 5. It improves the precision
because only the five most promising candidates are explored. The response time
is also minimised as the size of explored plans is small. The number of rounds
significantly affects search precision and response time (Fig. 4). It means that our
model is more efficient over the time when more consumer feedback is available.
The best results are achieved when the number of rounds is 5. The rest of this
section compares our model under these parameters against a classic planning
algorithm [6] and a conversation-based approach [12].

Figure 5 shows the search precision with 10000 services. The classic approach
achieves a precision mean of 0.63, the conversation-based approach achieves a
2 Kelvin Details - https://www.tchpc.tcd.ie/resources/clusters/kelvin.
3 Smart City SD - https://gitlab.scss.tcd.ie/groups/smartcitySD/subgroups.

https://www.tchpc.tcd.ie/resources/clusters/kelvin
https://gitlab.scss.tcd.ie/groups/smartcitySD/subgroups

310 C. Cabrera et al.

The mean ranks of groups 5 and 25 are significantly different
130 140 150 160 170

K
 V

al
ue

5

15

25 funct = 1.0
feedt = 1.0
round = 5

(a) Search Precision

2 groups have mean ranks significantly different from 5
80 100 120 140 160 180 200

K
 V

al
ue

5

15

25 funct = 1.0
feedt = 1.0
round = 5

(b) Search Response Time

Fig. 3. K value - Kruskal-Wallis analysis

2 groups have mean ranks significantly different from 5
200 220 240 260 280 300

R
ou

nd

1
2
3
4
5 funct = 1.0

feedt = 1.0
topK = 5

(a) Search Precision

2 groups have mean ranks significantly different from 5
180 200 220 240 260 280 300 320

R
ou

nd

1
2
3
4
5 funct = 1.0

feedt = 1.0
topK = 15

(b) Search Response Time

Fig. 4. Number of rounds - Kruskal-Wallis analysis

mean of 0.81 and the feedback-based approach achieves a mean of 0.8 in the
centralised infrastructure (Figure 5(a)). Figure 5(b) shows the search precision
in the distributed infrastructure. The conversation-based approach achieves a
precision mean of 0.4 and the feedback-based approach achieves a mean of 0.95.
Our model has a similar mean for search precision to the conversation-based app-
roach in the centralised infrastructure, but it overcomes its competitors in the
distributed infrastructure. The conversation-based approach precision is affected
when the registry is distributed because when a task is solved in a gateway it is
not explored in others. Our model has a better precision in the distributed infras-
tructure because in the centralised architecture there is more chance to explore
incorrect services. Conversation-based approach and feedback-based approaches
overcome the classic planning approach because it does not validate the dis-
covered services. The classic approach did not run properly in the distributed
infrastructure as its intensive search overloads the raspberry Pi boards.

Request
0 20 40 60 80 100

Se
ar

ch
 P

re
ci

si
on

0

0.5

1
Classic Conversation Feedback

(a) Centralised Infrastructure
Request

0 20 40 60 80 100

Se
ar

ch
 P

re
ci

si
on

0

0.5

1
Conversation Feedback

(b) Distributed Infrastructure

Fig. 5. Search precision with 10000 services

Services in IoT: A Service Planning Model Based on Consumer Feedback 311

Number of Services
2000 4000 6000 8000 10000

M
ill

is
ec

on
ds

106

0

1

2

3
Classic
Conversation
Feedback

(a) Centralised

Number of Services
2000 4000 6000 8000 10000

M
ill

is
ec

on
ds

104

0

1

2
Conversation
Feedback

(b) Distributed

Fig. 6. Discovery response time

Number of Services in the Plan
1 2 3 4 5

B
yt

es
 p

er
 R

eq
ue

st

0

1000

2000

3000 Classic Conversation Feedback

(a) Centralised

Number of Services in the Plan
1 2 3 4 5

B
yt

es
 p

er
 R

eq
ue

st

0

1000

2000

3000 Conversation Feedback

(b) Distributed

Fig. 7. Human intervention in bytes per request

Figure 6 shows the average latency with different number of services.
Figure 6(a) presents the results in the centralised architecture. The classic plan-
ning approach has the largest average latency, it varies from 11 min with 2000
services to 50 min with 10000 services. The conversation-based approach has the
next latency, it varies from 1458 ms with 2000 services to 5191 ms with 10000
services. Our approach is slightly better, its latency varies from 1458 ms with
2000 services to 3048 ms with 10000 services. Figure 6(b) shows the results in
the distributed infrastructure. Our approach offers the lowest average latency,
it varies from 1723 ms with 2000 services to 2175 ms with 10000 services. The
largest latency is 2290 ms with 6000 services. The conversation-based approach
latency varies from 7419 ms with 2000 services to 24273 ms with 10000 ser-
vices. Our approach has the best latency because it iterates over the services
that match, the conversation-based approach iterates over all the services in the
registry. Our approach outperforms the classic approach because of the K value
that limits the number of explored candidates. We analyse the human inter-
vention in each approach (Fig. 7). We measure the number of bytes per request
and feedback against the number of services in the discovered plans. The classic
and the feedback-based approaches have a human intervention around 700 bytes
per request for different plan lengths in the centralised scenario. The human
intervention in the conversation-based approach varies from 927 bytes with a
plan length of 1 to 2924 bytes with a plan length of 5 (Fig. 7(a)). Our approach
also has less human intervention in the distributed infrastructure (i.e., around
1000 bytes). The human intervention in the conversation-based approach varies
from 914 bytes with plan length 1 to 3062 bytes with a plan length of 5. The
conversation-based approach requires more human intervention when the plans

312 C. Cabrera et al.

length increases because the number of tasks to be defined is larger. Our app-
roach minimise this intervention because the number of request parameters do
not vary with the plans length. The human intervention in our approach is
slightly bigger than in the classic approach because it includes the feedback.

5 Conclusions

This paper presents a model for services in IoT which guarantees an efficient
service discovery. This model uses consumer feedback to validate the discovered
service relations. It avoids the exploration and inclusion of incorrect options.
Functional requirements are used to define the search space, and the selection
of candidates’ plans minimising the number of options to reduce the latency.
We compare our model against a classic planning algorithm and a conversation-
based approach in centralised and distributed infrastructures. Results show that
our model outperforms its competitors regarding search precision and response
time with minimal human intervention. We will investigate how to adapt our
model to larger environments such as smart cities in future work.

Acknowledgments. This work is supported by Science Foundation Ireland under
grant 13/IA/1885. Computational resources have been provided by the TCHPC funded
by eINIS.

References

1. Baker, T., Asim, M., Tawfik, H., Aldawsari, B., Buyya, R.: An energy-aware service
composition algorithm for multiple cloud-based IoT applications. J. Netw. Comput.
Appl. 89, 96–108 (2017)

2. Borgia, E.: The internet of things vision: key features, applications and open issues.
Comput. Commun. 54, 1–31 (2014)

3. Cabrera, C., et al.: Implementing heterogeneous, autonomous, and resilient services
in IoT: an experience report. In: 2017 IEEE 18th International Symposium on A
World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE (2017)

4. Cabrera, C., Palade, A., Clarke, S.: An evaluation of service discovery protocols in
the internet of things. In: Proceedings of the Symposium on Applied Computing,
pp. 469–476. ACM (2017)

5. Cabrera, C., Palade, A., White, G., Clarke, S.: The right service at the right place: a
service model for smart cities. In: 2018 IEEE International Conference on Pervasive
Computing and Communications (PerCom) (2018)

6. Chen, N., Cardozo, N., Clarke, S.: Goal-driven service composition in mobile and
pervasive computing. IEEE Trans. Serv. Comput. 11, 49–62 (2016)

7. Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., Zomaya, A.Y.: Mobility-aware
service composition in mobile communities. IEEE Trans. Syst. Man Cybern.: Syst.
3, 555–568 (2017)

8. Klein, M., Bernstein, A.: Toward high-precision service retrieval. IEEE Internet
Comput. 1, 30–36 (2004)

9. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. (CSUR) 48(3), 33 (2016)

Services in IoT: A Service Planning Model Based on Consumer Feedback 313

10. Pattar, S., Buyya, R., Venugopal, K., Iyengar, S., Patnaik, L.: Searching for the
IoT resources: fundamentals, requirements, comprehensive review and future direc-
tions. IEEE Commun. Surv. Tutor. 20, 2101–2132 (2018)

11. Thiagarajan, R.K., Srivastava, A.K., Pujari, A.K., Bulusu, V.K.: BPML: a pro-
cess modeling language for dynamic business models. In: Proceedings Fourth IEEE
International Workshop on Advanced Issues of E-Commerce and Web-Based Infor-
mation Systems 2002. (WECWIS 2002). pp. 222–224. IEEE (2002)

12. Urbieta, A., Gonzalez-Beltran, A., Mokhtar, S.B., Hossain, M.A., Capra, L.: Adap-
tive and context-aware service composition for IoT-based smart cities. Futur.
Gener. Comput. Syst. 76, 262–274 (2017)

13. Zhao, D., Zhou, Z., Ning, K., Duan, Y., Zhang, L.J.: An energy-aware service
composition mechanism in service-oriented wireless sensor networks. In: 2017 IEEE
International Congress on Internet of Things (ICIOT), pp. 89–96. IEEE (2017)

14. Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Automatically learning user preferences
for personalized service composition. In: 2017 IEEE International Conference on
Web Services (ICWS), pp. 776–783. IEEE (2017)

Social and Interactive Services

Crowdsourcing Task Scheduling in Mobile
Social Networks

Jiahao Fan, Xinbo Zhou, Xiaofeng Gao(B), and Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
{j.h.fan,zxb16161616}@sjtu.edu.cn, {gao-xf,gchen}@cs.sjtu.edu.cn

Abstract. With the growing popularity of mobile devices, a new
paradigm called mobile crowdsourcing emerged in the recent years.
Mobile users with restricted computational capability and sensing ability
are now able to conduct complex tasks with the help of other users in
the same mobile crowdsourcing system. In this paper, we consider the
mobile crowdsourcing system model based on the spontaneously-formed
mobile social networks (MSNs). We introduce two crowdsourcing task
scheduling problems under this system model, with one problem aim-
ing to minimize the operating cost of some crowdsourcing tasks and
the other focusing on minimizing the overall completion time of tasks
belonging to the same project. Correspondingly, under offline settings,
we propose an optimal algorithm and an approximation algorithm for
these two problems respectively. The optimality and the approximation
ratio are analyzed accordingly. Based on these two algorithms, we fur-
ther design two online algorithms to deal with the problems under online
settings and their competitive ratios are computed. Finally, we verify the
effectiveness and efficiency of the proposed methods through extensive
numerical experiments on synthetic datasets.

Keywords: Crowdsourcing · Task scheduling · Mobile social network

1 Introduction

With the rapid development of technology nowadays, small-sized portable mobile
devices are prevailing and this enables mobile users to conduct complex tasks
with the embedded powerful mobile sensors. These tasks may include air qual-
ity [4] and urban noise [11] measurement, traffic [6] and road surface [13] mon-
itoring, etc. Since the computational capability and sensing ability of a single
mobile user may not be enough to carry out a large project which consists of
many relatively small and independent tasks, it is necessary to seek the help of
other users and distribute these tasks among them in order to complete the whole
project as efficiently as possible. This forms the idea of mobile crowdsourcing.

Most mobile crowdsourcing activities are carried out in a large mobile crowd-
sourcing system. This kind of crowdsourcing systems usually requires quite a lot
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 317–331, 2018.
https://doi.org/10.1007/978-3-030-03596-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_22

318 J. Fan et al.

of human and material resources for management and maintenance. If a requester
just wants to distribute the crowdsourcing tasks through his social relationships
(including families, friends, colleagues, acquaintances, etc.), the requester may
conduct his own crowdsourcing activities by taking the advantage of the exist-
ing mobile social networks (MSNs) to avoid unnecessary overheads and thus save
the budget. This idea seems more appealing than the traditional crowdsourcing
paradigm to those requesters with limited budgets.

In this paper, we mainly focus on the task scheduling problems for MSN-
based mobile crowdsourcing systems. Unlike traditional task scheduling prob-
lems in mobile crowdsourcing, we require the requester and the crowd workers
to actually make person-to-person contacts, which are some probabilistic events
in the mobile social networks, so that crowdsourcing tasks can be sent by the
requester and their feedbacks can be delivered by the crowd workers. Each crowd-
sourcing task requires one contact between the requester and the crowd worker
when it is being distributed and another when its feedback is being delivered.
Our objectives are strongly related to the completion time of each task, which
consists of the time for its distribution, processing, and feedback delivery.

Suppose there is an operating cost related to task si when it is being scheduled
and processed in the mobile crowdsourcing system, and the cost is proportional
to the completion time of si. Then, the cost of si can be denoted as wiCi,
where wi is the proportion of the cost to the task completion time, and Ci is
the actual completion time of si. Our min-WCT problem aims to minimize the
total weighted completion time of all the crowdsourcing tasks, so that the total
cost of conducting the crowdsourcing campaign can be minimized. Meanwhile,
in some scenarios, the crowdsourcing tasks of a requester may be part of a larger
project, and all of them should be completed as soon as possible. Hence, we
introduce the min-MCT problem to minimize the maximum completion time of
all the crowdsourcing tasks (i.e., max Ci) in order to accelerate the progress of
the following stages in the project.

More specifically, the main contributions of this paper include:

1. We introduce two task scheduling problems for crowdsourcing in mobile social
networks and formulate them as the min-WCT problem and the min-MCT
problem respectively.

2. For the min-WCT problem, we propose an optimal offline algorithm named
LWF and give the proof of its optimality. Based on LWF, we design an online
algorithm named CosMOS to deal with min-WCT under online settings and
give the analysis of its competitive ratio.

3. For the min-MCT problem, we propose an offline approximation name LRSTF
and give the analysis of its approximation ratio. Based on LRSTF, we also
design another online algorithm named TiMOS to deal with min-MCT under
online settings and give the analysis of its competitive ratio.

4. We conduct extensive numerical experiments on synthetic datasets to com-
pare our algorithms with some traditional scheduling algorithms. Both the
theoretical analysis and the experimental results validate the effectiveness
and efficiency of our designs.

Crowdsourcing Task Scheduling in Mobile Social Networks 319

The rest of this paper is organized as follows. Section 2 discusses some related
works. Section 3 describes the MSN-based mobile crowdsourcing system model.
In Sect. 4, we formulate the min-WCT problem, and propose an optimal offline
solution named LWF and an online solution named CosMOS. In Sect. 5, we
formulate the min-MCT problem, and introduce an offline approximation named
LRSTF and an online solution named TiMOS. In Sect. 6, we conduct numerical
experiments to evaluate the performance of our designs. Section 7 is the final
conclusion.

2 Related Work

Mobile crowdsourcing is getting more and more research interests in the
recent years. Some of the literatures focus on the framework and application
design [9,18], while others pay more attention to the specific stages in the pro-
cess of mobile crowdsourcing, such as task scheduling [16], incentive mecha-
nisms [5], quality control [17], and security and privacy issues [15]. Generally,
there are three components or participants in a typical mobile crowdsourcing
system (MCS): requesters or crowdsourcers, crowd workers, and crowdsourcing
platform [14]. Specifically, to crowdsource a task, a requester submits the task
to a crowdsourcing platform, and optionally, after receiving the solutions pro-
vided by crowd workers, rates their qualities. Crowd workers choose to work on
those tasks and attempt to submit their solutions as feedback. An intermedia-
tion platform (i.e., crowdsourcing platform) builds a link between the requesters
and workers, which serves as a crowdsourcing enabler and has some rules for
the whole lifecycle of crowdsourcing, such as the skill-set, certification level, due
date, expected outcomes, and payments for the crowd workers.

With the growing popularity of mobile smart devices, the concept of the
mobile social networks (MSNs) gradually comes into our view. As an application
scenario, MSN is widely adopted in all kinds of problems including communi-
cation [19], social community detection [10], etc. Besides, researchers are also
interested in exploring inner features and characteristics regarding MSN itself.
In this paper, we focus on the task scheduling problems in MSN-based mobile
crowdsourcing systems. There have been plenty of previous literatures concern-
ing the topic of task scheduling problems [1–3]. Our problems may be similar to
the traditional scheduling problems on parallel machines, but our system model
includes a probabilistic event which is the person-to-person contact between the
requester and the crowd workers. In order to solve the problems, we have to
make online task scheduling decisions, and this makes our designs more realistic
and applicable under the scenario of crowdsourcing in mobile social networks.

3 System Model

In this section, we introduce the participants in the mobile social network (MSN)
and how they interact with each other under the paradigm of crowdsourcing.

320 J. Fan et al.

Here, the mobile social network model in [16] is adopted. Consider a crowd
of mobile users in the network, denoted as U = {u0, u1, . . . , um}. Each of these
mobile users carries a mobile device which supports wireless communication
and possesses certain processing capability to carry out some crowdsourcing
tasks. Two mobile users can communicate with each other only if they get close
enough for Bluetooth to work, or enter the communication range of some access
points respectively to interact indirectly via WiFi. Assume that the connection
duration and bandwidth are enough to satisfy our needs to communicate for the
purpose of crowdsourcing. We further adopt the mobility model in [7], where
the pairwise inter-contact time is exponentially distributed. This means that the
inter-meeting time between any pair of mobile users ui and uj (i �= j) follows the
exponential distribution with parameter λij . This parameter can be estimated
from historical communication records between ui and uj .

Under the paradigm of crowdsourcing, there is a user in the MSN that hopes
to recruit other mobile users to help complete some crowdsourcing tasks. The
user with this kind of need is called the requester, and those who have the poten-
tial to carry out these tasks are called crowd workers. Without loss of generality,
we assume u0 is a requester and the other m users {u1, u2, . . . , um} in the MSN
are crowd workers that are encouraged to participate in the crowdsourcing cam-
paign by some incentive mechanisms. Since crowd workers are not supposed to
communicate with each other, we denote λ0j as λj for simplicity.

Suppose that the requester u0 has n indivisible crowdsourcing tasks, denoted
as S = {s1, s2, · · · , sn}. The workload of task si ∈ S is represented by its
Required Service Time (RST), denoted as τi. Each crowdsourcing task should
be assigned to only one crowd worker by the requester. The distribution, as well
as the feedback, of each task requires one contact between the designated crowd
worker and the requester. In practice, it is more efficient for the requester to send
a batch of crowdsourcing tasks to a crowd worker at their first contact and receive
the feedbacks whenever they are ready at the time of their following contacts. We
use Λ = {S1, S2, . . . , Sm} to denote an scheduling decision of the n crowdsourcing
tasks to the m crowd workers, where

⋃
Sj∈Λ Sj = S and Sj1 ∩ Sj2 = φ(j1 �= j2).

A crowd worker will process the tasks assigned to him one by one until there
is none left. Thus, the Completion Time (CT) of task si includes three parts:
(a) the time for the requester u0 and the crowd worker uj , to whom we assign
the task si (i.e., si ∈ Sj), to meet for the first time and complete the task
distribution process (this includes the distribution of all the tasks in Sj), (b) the
time for uj to process all the tasks prior to si in Sj and task si itself, and (c)
the time for u0 and uj to meet again after the feedback of si becomes available.

Since we cannot foresee the exact time when the requester and the crowd
workers meet, we define the Expected Meeting Time (EMT), which is 1

λj
under

the assumption of the exponentially distributed inter-meeting time between u0

and uj , to represent the time in part (a) and part (c). Therefore, the completion
time of task si, which is denoted as Ci, consists of two expected meeting time
intervals and the time for the crowd worker uj to process all the tasks prior to
si in Sj and task si itself.

Crowdsourcing Task Scheduling in Mobile Social Networks 321

4 Cost Minimized Scheduling

In this section, we first formulate the cost-related min-WCT problem for crowd-
sourcing task scheduling. Then, we propose an optimal algorithm LWF to solve
the problem under offline settings, followed by the proof of its optimality. Finally,
we give an online algorithm CosMOS based on LWF to solve the problem under
online settings together with the analysis of its competitive ratio.

4.1 Problem Formulation

Consider the system model described in the previous section (Sect. 3). Assume
that all the tasks have the same required service time, i.e., τ1 = τ2 = · · · = τn.
Suppose there is an operating cost related to task si when it is being scheduled
and processed in the crowdsourcing system, and the cost is proportional to the
completion time of task si. Our goal is to minimize the total operating cost of
carrying out all the tasks in S. This is equivalent to the following definition of
the min-WCT problem.

Definition 1 (Minimizing the Weighted Completion Time (min-
WCT)). Given tasks S = {s1, s2, . . . , sn} with the same required service time
(i.e., τ1 = τ2 = · · · = τn) and their corresponding weights W = {w1, w2, . . . , wn},
min-WCT aims to find an scheduling decision Λ = {S1, S2, . . . , Sm} among
crowd workers U = {u1, u2, . . . , um} such that the total weighted completion
time of all the tasks

∑n
i=1 wiCi is minimized.

Denote
∑n

i=1 wiCi as WCT in this section for simplicity.

4.2 Offline Task Scheduling

First, we would like to consider the min-WCT problem under offline settings. In
this scenario, the requester is supposed to make the scheduling decision before
any contacts with the potential crowd workers and stick to this decision through-
out the entire crowdsourcing campaign.

Intuitively, we wish to reduce the completion time for tasks with large weights
so that we can reduce the total weighted completion time significantly. Following
this idea, we design the Largest Weight First (LWF) algorithm (Algorithm 1)
to solve the min-WCT problem under offline settings. The concept of a crowd
worker’s Expected Workload (EW) is defined as follows.

Definition 2 (Expected Workload (EW)). The expected workload EWj of
a crowd worker uj consists of three parts: (a) the expected meeting time for uj

and the requester u0 to meet for the first time and complete the task distribution
process, (b) the total required service time of all the tasks assigned to uj, i.e.,
the tasks in Sj, and (c) the expected meeting time for uj and u0 to meet again
and deliver the feedback of the tasks. Furthermore, we define EWj = 2

λj
if no

task is assigned to uj and Sj is empty.

322 J. Fan et al.

Algorithm 1: The LWF Algorithm
Input: S = {s1, s2, . . . , sn : τ1 = τ2 = · · · = τn},

W = {w1, w2, . . . , wn : w1 ≥ w2 ≥ · · · ≥ wn},
U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}

Output: ΛLWF = {S1, S2, . . . , Sm}
1 for j ← 1 to m do
2 Sj ← φ;
3 EWj ← 2

λj
;

4 for i ← 1 to n do
5 jmin ← arg min{EWk | uk ∈ U};
6 Sjmin ← Sjmin ∪ {si};
7 EWjmin ← EWjmin + τi;

8 return ΛLWF = {S1, S2, . . . , Sm};

The Optimality. We briefly describe the proof of its optimality as follows.
Assume Λopt = {S∗

1 , S∗
2 , . . . , S∗

m} is the optimal scheduling decision for the min-
WCT problem under offline settings.

Lemma 1. For any S∗
j ∈ Λopt, a task sjp ∈ S∗

j with a larger weight wjp is
processed prior to the processing of another task sjq ∈ S∗

j \{sjp} with a smaller
weight wjq (ties may be broken arbitrarily).

According to Lemma 1, we can conclude that in order to achieve the optimal
solution, tasks assigned to the same crowd worker must be processed in a non-
increasing order according to their weights by this worker.

Lemma 2. Suppose that we have somehow determined an scheduling decision
for {s1, s2, . . . , si−1} and this partial scheduling shall not be further changed,
which means all the other tasks must be scheduled behind them, the optimal
solution to the min-WCT problem under this condition must assign task si to
the crowd worker with the currently smallest expected workload, denoted as uj.

Then, we are ready to prove the optimality of the LWF algorithm as follows.

Theorem 1. As for the min-WCT problem, the LWF algorithm achieves the
optimal solution by assigning the task with the largest weight to the crowd worker
with the currently smallest expected workload in each round until all tasks in S
have been assigned.

Proof. We prove this theorem by induction. The base case where no task has
been assigned is trivial. For the inductive step, assume we can obtain the opti-
mal scheduling decision for tasks in {s1, s2, . . . , sk−1}(1 ≤ k ≤ n) by the LWF
algorithm. Then, according to Lemmas 1 and 2, we can also obtain the opti-
mal scheduling decision for tasks in {s1, s2, . . . , sk} through another round of
scheduling by the LWF algorithm. Finally, we can obtain the optimal scheduling
decision for all the tasks in S = {s1, s2, . . . , sn} from the output of the LWF
algorithm. This finishes the proof of Theorem 1.

Crowdsourcing Task Scheduling in Mobile Social Networks 323

4.3 Online Task Scheduling

Next, we would like to consider the min-WCT problem under online settings. In
this scenario, the requester does not need to make the final scheduling decision at
first. Instead, he can adjust his decision with the progress of the crowdsourcing
campaign. Since the requester gets a better knowledge of the crowd whenever he
meets a crowd worker, he can make the scheduling decision regarding this crowd
worker at the time of their first contact to improve the final result.

We build the Cost Minimized Online Scheduing (CosMOS) algorithm (Algo-
rithm2) based on our previous design. In the CosMOS algorithm, we make the
scheduling decision regarding each crowd worker at the time of his first con-
tact with the requester. When u0 meets uj , we determine a partial scheduling
decision of Sj = {sj1 , sj2 , . . . , sjk} and make it final. We denote the process of
determining Sj as decision step DSj in the CosMOS algorithm.

Algorithm 2: The CosMOS Algorithm
Input: S = {s1, s2, . . . , sn : τ1 = τ2 = · · · = τn},

W = {w1, w2, . . . , wn : w1 ≥ w2 ≥ · · · ≥ wn},
U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}

Output: ΛCosMOS = {S1, S2, . . . , Sm}
1 when u0 meets uj do
2 Sj ← φ;
3 EWj ← 1

λj
;

4 foreach k such that uk ∈ U\{uj} do
5 Sk ← φ;
6 EWk ← 2

λk
;

7 foreach i such that si ∈ S (in an increasing order of i) do
8 kmin ← arg min{EWk | uk ∈ U};
9 Skmin ← Skmin ∪ {si};

10 EWkmin ← EWkmin + τi;

11 S ← S\Sj ;
12 U ← U\{uj};

13 return ΛCosMOS = {S1, S2, . . . , Sm};

Performance Analysis. Without loss of generality, we assume that the
requester u0 meets the crowd workers in the order of u1, u2, . . . , um. Assume that
after decision step DSj , the total weighted completion time is WCTj . Obviously,
WCTCosMOS = WCTm. Furthermore, let WCT0 = WCTLWF.

Theorem 2. WCTLWF = WCT0 ≥ WCT1 ≥ · · · ≥ WCTm = WCTCosMOS.

Proof. In any decision step DSj(1 ≤ j ≤ m), we will not change the scheduling
of any of the tasks in

⋃
1≤i≤j−1 Si, and the total weighted completion time of

324 J. Fan et al.

these tasks remains unchanged before and after the decision step. As for the
remaining tasks, we can prove that the modified LWF algorithm achieves the
optimal solution under the condition that u0 has met uj by duplicating the proof
of the optimality of our LWF algorithm. Therefore, we have WCTj−1 ≥ WCTj ,
and this finishes the proof of Theorem2.

Now, we give the competitive ratio of the CosMOS algorithm as follows.

Theorem 3. Assume someone can foresee the mobilities of all the crowd work-
ers, so that he knows exactly at what time each meeting between the requester
and the crowd workers will happen. Based on this knowledge, he can give an
optimal online task scheduling decision, denoted as ΛOPT = {S∗

1 , S∗
2 , . . . , S∗

m}.
Then, we have

WCTCosMOS

WCTOPT
≤ 1 +

wmax

∑m
j=1

2
λj

wminτmin
.

Proof. First, we can give WCTOPT as follows.

WCTOPT =
m∑

j=1

∑

sjk
∈S∗

j

wjk(tj + t′j + Tjk + τjk).

If we adopt the scheduling decision of ΛOPT in the offline version of min-WCT
and denote it as Λ′, then we have

WCT ′ =
m∑

j=1

∑

sjk
∈S∗

j

wjk(
2
λj

+ Tjk + τjk)

= WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk(
2
λj

− tj − t′j)

≤ WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk · 2
λj

.

Since ΛLWF is the optimal scheduling for the offline version of min-WCT,
then we have WCTLWF ≤ WCT ′. Combined with Theorem2, we can get

WCTCosMOS ≤ WCTLWF ≤ WCT ′ ≤ WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk · 2
λj

.

The lower bound of WCTOPT should be n · wmin · τmin, and this gives us

WCTCosMOS

WCTOPT
≤ 1 +

∑m
j=1

∑
sjk

∈S∗
j

wjk · 2
λj

WCTOPT

≤ 1 +
wmax

∑m
j=1

2
λj

wminτmin
.

Thus, Theorem 3 holds.

Crowdsourcing Task Scheduling in Mobile Social Networks 325

5 Time Minimized Scheduing

In this section, we first formulate the time-related min-MCT problem for task
scheduling in mobile crowdsourcing systems. Then, we propose an approximation
algorithm LRSTF to solve the problem under offline settings, followed by the
performance analysis regarding its approximation ratio. Finally, we give an online
algorithm TiMOS based on LRSTF to solve the problem under online settings
together with the analysis of its competitive ratio.

5.1 Problem Formulation

In some cases, the crowdsourcing tasks of a requester may be part of a larger
project, and all of them should be completed as soon as possible. Hence, we
introduce the min-MCT problem to minimize the maximum completion time of
all these tasks in order to accelerate the progress of the following stages in the
project. In this problem, crowdsourcing tasks now have different values of the
required service time and there is no weight related to any of these tasks. Our
goal is equivalent to minimizing the completion time of the latest completed
task. The problem is formally defined as follows.

Definition 3 (Minimizing the Maximum Completion Time (min-
MCT)). Given tasks S = {s1, s2, . . . , sn} with required service time τi related
to task si, min-MCT aims to find an scheduling decision Λ = {S1, S2, . . . , Sm}
among crowd workers U = {u1, u2, . . . , um} such that the maximum completion
time of all the tasks max

1≤i≤n
Ci is minimized.

Denote max
1≤i≤n

Ci as MCT in this section for simplicity.

The NP-Hardness. Consider a special case of the min-MCT problem, in which
there may exist one requester and two crowd workers in the mobile crowdsourcing
system. The expected inter-meeting time between the requester and any one of
the crowd workers is assumed to be zero. In this case, the min-MCT problem is
equivalent to the PARTITION problem, which is traditionally considered to be
NP-hard according to [8]. Therefore, the general case of the min-MCT problem
is also NP-hard.

5.2 Offline Task Scheduling

The observation we have on the min-MCT problem is that we should leave the
tasks with relatively short required service time to the end of our scheduling pro-
cess so that the expected workloads of all the workers can be balanced and the
maximum completion time of all the tasks can be reduced. Unfortunately, this
idea only leads to an approximation rather than an optimal solution, which we
denote as the Longest Required Service Time First (LRSTF) algorithm (Algo-
rithm3). We claim that its approximation ratio is (32 − 1

2m) and omit its detailed
proof due to limited space.

326 J. Fan et al.

Algorithm 3: The LRSTF Algorithm
Input: S = {s1, s2, . . . , sn : τ1 ≥ τ2 ≥ · · · ≥ τn},

U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}
Output: ΛLRSTF = {S1, S2, . . . , Sm}

1 for j ← 1 to m do
2 Sj ← φ;
3 EWj ← 2

λj
;

4 for i ← 1 to n do
5 jmin ← arg min{EWk | uk ∈ U};
6 Sjmin ← Sjmin ∪ {si};
7 EWjmin ← EWjmin + τi;

8 return ΛLRSTF = {S1, S2, . . . , Sm};

5.3 Online Task Scheduling

Similar to our design of the CosMOS algorithm, we build the Time Minimized
Online Scheduing (TiMOS) algorithm (Algorithm4) based on the LRSTF algo-
rithm. In the TiMOS algorithm, we make the scheduling decision regarding each
crowd worker at the time of his first contact with the requester. When u0 meets
uj , we determine a partial scheduling decision of Sj = {sj1 , sj2 , . . . , sjk} and
make it final. We also denote the process of determining Sj as decision step DSj

in the TiMOS algorithm.

Algorithm 4: The TiMOS Algorithm
Input: S = {s1, s2, . . . , sn : τ1 ≥ τ2 ≥ · · · ≥ τn},

U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}
Output: ΛTiMOS = {S1, S2, . . . , Sm}

1 when u0 meets uj do
2 Sj ← φ;
3 EWj ← 1

λj
;

4 foreach k such that uk ∈ U\{uj} do
5 Sk ← φ;
6 EWk ← 2

λk
;

7 foreach i such that si ∈ S (in an increasing order of i) do
8 kmin ← arg min{EWk | uk ∈ U};
9 Skmin ← Skmin ∪ {si};

10 EWkmin ← EWkmin + τi;

11 S ← S\Sj ;
12 U ← U\{uj};

13 return ΛTiMOS = {S1, S2, . . . , Sm};

Crowdsourcing Task Scheduling in Mobile Social Networks 327

Performance Analysis. Without loss of generality, we assume that the
requester u0 meets the crowd workers in the order of u1, u2, . . . , um. First, we
need to calculate the difference between the solution given by LRSTF and the
optimal offline solution in each decision step. Assume that Λ

(j)
opt is the optimal

offline solution in decision step DSj , and Λ
(j)
LRSTF is the solution given by the

LRSTF algorithm. Obviously, ΛTiMOS is Λ
(m)
LRSTF, and we define Λ

(0)
LRSTF to be

ΛLRSTF. Then we have the following theorem.

Theorem 4. MCT
(j)
opt ≤ MCT

(j)
LRSTF ≤ MCT

(j)
opt + τmax.

Proof. First, since Λ
(j)
opt is the optimal offline solution in decision step DSj , we

have MCT
(j)
opt ≤ MCT

(j)
LRSTF. Combining the two inequalities below,

MCT
(j)
LRSTF ≤ τn(1 − 1

m
) +

∑n
i=1 τi +

∑m
j=1

2
λj

m

MCT
(j)
opt ≥

∑n
i=1 τi +

∑m
j=1

2
λj

m

we can get that

MCT
(j)
LRSTF ≤ MCT

(j)
opt + τn(1 − 1

m
) ≤ MCT

(j)
opt + τmax.

This finishes the proof of this theorem.

Similar to Theorem 2, we directly give the following theorem regarding Λ
(j)
opt.

Theorem 5. MCT
(0)
opt ≥ MCT

(1)
opt ≥ · · · ≥ MCT

(m)
opt .

Now, we can compute the competitive ratio of the TiMOS algorithm.

Theorem 6. Assume someone can foresee the mobilities of all the crowd work-
ers, so that he knows exactly at what time each meeting between the requester
and the crowd workers will happen. Based on this knowledge, he can give an
optimal online task scheduling decision, denoted as ΛOPT = {S∗

1 , S∗
2 , . . . , S∗

m}.
Then, we have

MCTTiMOS

MCTOPT
≤ 2 +

2
λminτmax

.

Proof. First, we can give MCTOPT as follows.

MCTOPT = max
S∗
j ∈ΛOPT

⎧
⎨

⎩
tj + t′j +

∑

sjk
∈S∗

j

τjk

⎫
⎬

⎭
.

328 J. Fan et al.

If we adopt the scheduling decision of ΛOPT in the offline version of min-MCT
and denote it as Λ′, then we have

MCT ′ = max
S∗
j ∈Λ′

⎧
⎨

⎩

2
λj

+
∑

sjk
∈S∗

j

τjk

⎫
⎬

⎭

≤ MCTOPT + max
{

2
λj

− tj − t′j

}

≤ MCTOPT +
2

λmin
.

Since Λ
(0)
OPT is the optimal scheduling for the offline version of min-MCT, we

have MCT
(0)
OPT ≤ MCT ′. Combined with Theorems 4 and 5, we can get

MCTTiMOS = MCT
(m)
LRSTF ≤ MCT

(m)
opt +τmax ≤ MCT

(0)
opt+τmax ≤ MCT ′+τmax.

Therefore, we have

MCTTiMOS ≤ MCTOPT +
2

λmin
+ τmax,

and further considering the fact that MCTOPT ≥ τmax, we have

MCTTiMOS

MCTOPT
≤ 1 +

2
λmin

+ τmax

τmax
= 2 +

2
λminτmax

.

Thus, Theorem 6 holds.

6 Evaluation

In this section, we carry out extensive numerical experiments to evaluate the
performances of the proposed algorithms.

6.1 Algorithms in Comparison

The first scheduling algorithm we would like to compare with is the Water Filling
(WF) algorithm described in [12] in the context of mobile computing. More
specifically, the WF algorithm assigns tasks to the earliest idle worker in their
initial order, which is also called the natural order or the list order.

For the min-WCT problem, we also implement the Smallest Weight First
(SWF) algorithm to assign tasks in a reverse order of the LWF algorithm. For
the min-MCT problem, we compare our design with another algorithm called
the Shortest Required Service Time First (SRSTF) algorithm to assign tasks in
a reverse order of the LRSTF algorithm. The SRSTF algorithm is the optimal
algorithm when we consider the problem of reducing the average completion
time of all the tasks, and its optimality is proved in [16].

Crowdsourcing Task Scheduling in Mobile Social Networks 329

6.2 Simulation Results

Figure 1 shows the simulation results when we change the number of crowd work-
ers, the average inter-meeting time between the requester and crowd workers,
the number of tasks and the average workload of tasks respectively. Given the
same conditions, LWF can always deliver a better result than WF or SWF.
Meanwhile, SWF performs even worse than WF.

Fig. 1. Performance comparisons for min-WCT on synthetic datasets

Figure 2 shows the simulation result when we change the number of crowd
workers, the average inter-meeting time between the requester and crowd work-
ers, the number of tasks and the average workload of tasks respectively. Given
the same conditions, LRSTF can always deliver a better result than WF or
SRSTF. Meanwhile, SRSTF performs almost as badly as WF.

7 Conclusion

In this paper, we discuss two problems regarding task scheduling for crowdsourc-
ing in mobile social networks. The first one is the min-WCT problem, which aims
to minimize the total weighted completion time of some crowdsourcing tasks. We
propose an optimal algorithm named LWF to solve this problem under offline
settings and give the proof of its optimality. Based on this optimal offline algo-
rithm, we further design an online algorithm named CosMOS to deal with the
min-WCT problem under online settings. By computing the competitive ratio,

330 J. Fan et al.

Fig. 2. Performance comparisons for min-MCT on synthetic datasets

we find that CosMOS can achieve near-optimal performance under certain cir-
cumstances. The other problem in discussion is the min-MCT problem, which
focuses on minimizing the maximum completion time among the tasks belong-
ing to the same project. Since the offline version of this problem is proved to
be NP-hard, we propose an approximation algorithm named LRSTF to solve
it and the approximation ratio is analyzed. Similarly, we design another online
algorithm named TiMOS to deal with the online version of the min-MCT prob-
lem and its difference with the optimal solution is bounded by a fixed value. At
last, we conduct extensive simulations on synthetic datasets to demonstrate the
performance of our algorithms. Both the theoretical analysis and the simulation
results validate the effectiveness and efficiency of our designs.

Acknowledgements. This work is supported by the National Key R&D Program
of China (2018YFB1004703), the National Natural Science Foundation of China
(61872238, 61672353), the Shanghai Science and Technology Fund (17510740200), the
CCF-Tencent Open Research Fund (RAGR20170114), and Huawei Innovation Research
Program (HO2018085286).

References

1. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling
problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

2. Bridi, T., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A constraint
programming scheduler for heterogeneous high-performance computing machines.
IEEE Trans. Parallel Distrib. Syst. (TPDS) 27(10), 2781–2794 (2016)

Crowdsourcing Task Scheduling in Mobile Social Networks 331

3. Ding, J., Song, S., Zhang, R., Chiong, R., Wu, C.: Parallel machine schedul-
ing under time-of-use electricity prices: new models and optimization approaches.
IEEE Trans. Autom. Sci. Eng. 13(2), 1138–1154 (2016)

4. Dutta, P., et al.: Common sense: participatory urban sensing using a network of
handheld air quality monitors. In: ACM International Conference on Embedded
Networked Sensor Systems (SenSys), pp. 349–350 (2009)

5. Fan, Y., Sun, H., Liu, X.: Poster: TRIM: a truthful incentive mechanism for
dynamic and heterogeneous tasks in mobile crowdsensing. In: ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom), pp. 272–274
(2015)

6. Farkas, K., Nagy, A.Z., Tomas, T., Szabó, R.: Participatory sensing based real-time
public transport information service. In: IEEE International Conference on Perva-
sive Computing and Communication Workshops (PerCom), pp. 141–144 (2014)

7. Gao, W., Li, Q., Zhao, B., Cao, G.: Multicasting in delay tolerant networks: a
social network perspective. In: ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc), pp. 299–308 (2009)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

9. Guo, B., Liu, Y., Wu, W., Yu, Z., Han, Q.: Activecrowd: a framework for optimized
multitask allocation in mobile crowdsensing systems. IEEE Trans. Hum.-Mach.
Syst. 47(3), 392–403 (2017)

10. Kim, P., Kim, S.: A detection of overlapping community in mobile social network.
In: ACM Symposium on Applied Computing (SAC), pp. 175–179 (2014)

11. Rana, R.K., Chou, C.T., Kanhere, S.S., Bulusu, N., Hu, W.: Ear-phone: an end-
to-end participatory urban noise mapping system. In: International Conference on
Information Processing in Sensor Networks (IPSN), pp. 105–116 (2010)

12. Shi, C., Lakafosis, V., Ammar, M.H., Zegura, E.W.: Serendipity: enabling remote
computing among intermittently connected mobile devices. In: ACM International
Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 145–
154 (2012)

13. Singh, G., Bansal, D., Sofat, S., Aggarwal, N.: Smart patrolling: an efficient road
surface monitoring using smartphone sensors and crowdsourcing. Pervasive Mob.
Comput. 40, 71–88 (2017)

14. Wang, Y., Jia, X., Jin, Q., Ma, J.: Mobile crowdsourcing: framework, challenges,
and solutions. Concurr. Comput.: Pract. Exp. 29(3), 1–17 (2017)

15. Wu, S., Wang, X., Wang, S., Zhang, Z., Tung, A.K.H.: K-anonymity for crowd-
sourcing database. IEEE Trans. Knowl. Data Eng. (TKDE) 26(9), 2207–2221
(2014)

16. Xiao, M., Wu, J., Huang, L., Wang, Y., Liu, C.: Multi-task assignment for crowd-
sensing in mobile social networks. In: IEEE Conference on Computer Communi-
cations (INFOCOM), pp. 2227–2235 (2015)

17. Yan, R., Song, Y., Li, C., Zhang, M., Hu, X.: Opportunities or risks to reduce labor
in crowdsourcing translation? Characterizing cost versus quality via a pagerank-
hits hybrid model. In: International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1025–1032 (2015)

18. Yuen, M., King, I., Leung, K.: TaskRec: a task recommendation framework in
crowdsourcing systems. Neural Process. Lett. 41(2), 223–238 (2015)

19. Zhang, J., Chen, Y., Hong, S., Li, H.: REBUILD: graph embedding based method
for user social role identity on mobile communication network. In: Tan, Y., Takagi,
H., Shi, Y. (eds.) DMBD 2017. LNCS, vol. 10387, pp. 326–333. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-61845-6 33

https://doi.org/10.1007/978-3-319-61845-6_33

Cognitive System to Achieve
Human-Level Accuracy in Automated
Assignment of Helpdesk Email Tickets

Atri Mandal1(B), Nikhil Malhotra2, Shivali Agarwal1, Anupama Ray1,
and Giriprasad Sridhara1

1 IBM Research AI, Bengaluru, India
2 IBM Global Technology Services, Bengaluru, India

{atri.mandal,nikhimal,shivaaga,anupamar,girisrid}@in.ibm.com

Abstract. Ticket assignment/dispatch is a crucial part of service deliv-
ery business with lot of scope for automation and optimization. In this
paper, we present an end-to-end automated helpdesk email ticket assign-
ment system, which is also offered as a service. The objective of the sys-
tem is to determine the nature of the problem mentioned in an incoming
email ticket and then automatically dispatch it to an appropriate resolver
group (or team) for resolution.

The proposed system uses an ensemble classifier augmented with a
configurable rule engine. While design of classifier that is accurate is one
of the main challenges, we also need to address the need of designing
a system that is robust and adaptive to changing business needs. We
discuss some of the main design challenges associated with email ticket
assignment automation and how we solve them. The design decisions for
our system are driven by high accuracy, coverage, business continuity,
scalability and optimal usage of computational resources.

Our system has been deployed in production of three major service
providers and currently assigning over 40,000 emails per month, on an
average, with an accuracy close to 90% and covering at least 90% of email
tickets. This translates to achieving human-level accuracy and results in
a net saving of about 23000 man-hours of effort per annum.

Keywords: Cognitive email assignment · Helpdesk automation
Ticket resolver group · Smart dispatch · Ensemble classifiers

1 Introduction

The landscape of modern IT service delivery is changing with increased focus
on automation and optimization. Most IT vendors today, have service plat-
forms aimed towards end-to-end automation for carrying out mundane, repeti-
tive labor-intensive tasks and even for tasks requiring human cognizance. One
such task is ticket assignment/dispatch where the service requests submitted by

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 332–341, 2018.
https://doi.org/10.1007/978-3-030-03596-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_23

Automated Email Assignment 333

the end-users to the vendor in the form of tickets are reviewed by a centralized
dispatch team and assigned to the appropriate service team i.e. resolver group.

The dispatch of a ticket to the correct group of practitioners is a critical step
in the speedy resolution of a ticket. Incorrect dispatch decisions can significantly
increase the total turnaround time for ticket resolution, as observed in a study
of an actual production system [2]. Several factors make the dispatcher’s job
challenging such as requirement of knowledge of the IT portfolio being managed,
roles and responsibilities of the individual groups, ability to quickly parse the
ticket text describing the problem and map it to the right group, which is often
not straightforward given the heterogeneous and informal nature of the problem
description. A number of different approaches have been proposed for automating
ticket dispatch [2,7,10,11]. Although automated email assignment may look like
a simple text classification problem at first glance it becomes quite complex and
challenging when considered at industry scale.

In this paper we present a deployed end-to-end automatic email dispatch
system having the following key features:

1. An ensemble based classification engine that uses supervised data in the form
of unstructured email text and resolver groups as labels. The choice of ensem-
ble is based on the results of comprehensive study performed with various
machine learning and deep learning models as presented in Sect. 4.2.

2. A rule engine with a customer-independent framework for rule specification
to ensure business continuity and handle domain specific content missed by
the ensemble classifier.

3. Experimental results with real customer data from three different datasets -
the largest of them having more than 700,000 emails and 428 resolver groups.
We were able to achieve human level accuracy with more than 90% coverage
on all the datasets with the proposed system using minimal computational
resources.

The remainder of the paper is organized as follows. Section 2 describes the
related work. Section 3 gives a system overview, and Sect. 4 discusses the different
components of the system in detail. We present our experimental results in Sect. 5
and conclusion in Sect. 6.

2 Related Work

A semi-automated approach based on confidence scores of Support Vector
Machines and discriminative keywords had been proposed in [2] for ticket dis-
patch. We have surpassed their work to (i) reach human level accuracy using
advanced ensemble techniques for automated dispatch, (ii) scale it to hundreds
of resolver groups and (iii) incorporate retraining strategies to adapt to chang-
ing data. Several other researchers have studied different aspects of the problem
of routing tickets to resolver groups [7,10,11]. The work in [11] approaches the
problem by mining resolution sequence data and does not access ticket descrip-
tion at all. Its objective is to come up with ticket transfer recommendations given

334 A. Mandal et al.

the initial assignment information. The work in [10] mines historical ticket data
and develops a probabilistic model of an enterprise social network that repre-
sents the functional relationships among various expert groups in ticket routing.
Based on this network, the system then provides routing recommendations to
new tickets. The work in [7] approaches the problem from a queue perspective,
related to the issue of service times and becomes particularly relevant when the
ticket that has been dispatched to a group needs to be assigned to an agent.
Some works have focused on applying text classification techniques to handle
tickets [3,12], by identifying the ticket category helping human dispatchers for
faster ticket assignment. The work in [4] attempts to classify the incoming change
requests into one of the fine-grained activities in a catalog. Some other works
[1,9] talk about a holistic approach of ticket category classification, cause analy-
sis and resolution recommendation. However, they do not automate the process
of assignment.

3 System Overview

Figure 1 shows the system architecture along with the data flow diagram. His-
torical email ticket data is downloaded from the ticketing tool (e.g. Remedy or
ServiceNow) using custom-built adapters. The downloaded emails are passed
through two stages of pre-processing for data enrichment. The resolver group
level pre-processing module uses techniques like resolver group merging, long
tail cutoff etc. to reduce the noise in the email data. The training data is further
enriched using text pre-processing methods. The enriched email data is then
trained using an ensemble of machine learning classifiers and the trained models
are stored in a database.

When a user sends an email to the helpdesk account a ticket is automatically
generated and stored in the backend ticketing tool. The newly generated tickets
are downloaded by the adapter and classified using the runtime that consists
of ensemble classifier and the rule engine. The classification system returns a
resolver group along with a confidence score. If the confidence score is above a
configured threshold the ticket is routed to the returned resolver group. Other-
wise the ticket is assigned back to manual queue for inspection by human agent.
The combination of ensemble classifier and rule engine ensures that a high per-
centage of tickets (more than 90%) are classified automatically by our system
with a low error rate.

4 Assignment Engine Components

4.1 Preparation of Training Data

Most large companies nowadays use ticketing tools like Remedy or ServiceNow
to maintain tickets obtained from various channels (voice, email, web etc.) by
the helpdesk. The ticketing tool organizes the email data into structured fields
containing relevant information about the ticket e.g. incident number, incident

Automated Email Assignment 335

Fig. 1. Architecture of the proposed system

type, date of creation, description, assigned group etc. We use custom adapters
to connect to the ticketing tool and extract fields relevant for training. Currently
the adapter extracts only the text portion of the email (viz. email subject and
body) along with the resolver group for training. The data collected by the
adapter is then converted into a format readable by the classifier. The steps
involved in training data preparation are described below.

Resolver Group Level Pre-processing. This type of pre-processing is a one-
time effort required during customer on-boarding phase. The purpose of this
pre-processing is to reduce noise in the training data. We reduce noise and enrich
training data for the resolver groups using the following techniques:

Merging Related Resolver Groups. Some of the resolver group labels in the
training data can be merged. Merging increases the size of the training data and
at the same time reduces the number of unique labels thus improving training
accuracy. We found that there are at least two types of resolver groups that can
be merged for assignment purpose viz. (a) Resolver groups with varying
escalation levels and (b) Region (or zone) specific resolver groups.

Long Tail Cutoff. We observed that in most of the datasets there are a large
number of resolver groups with very few samples. If we plot a histogram of
frequencies these groups will constitute more than 80% of the resolver groups
but less than 5% of training data. Our studies indicate that, if the long tail is
included in training, the overall accuracy of classification goes down along with
a significant increase in training time and model size. By restricting the num-
ber of resolver groups in training we reduce noise significantly and also avoid

336 A. Mandal et al.

class imbalance. Additionally, the resolver groups, which fall in the long tail,
can often be better predicted using the rule engine and using some augmenta-
tion techniques. As such our strategy was to divide the downloaded historical
data into 2 parts viz. IH = IT + IL where IH is the complete data downloaded
for training, IT is the data used for training classifiers and IL is the long tail.
Resolver groups belonging to IT will be classified using trained models while
those belonging to IL will be handled exclusively by the rule engine. In our sys-
tem we use the above strategy to retain at least 98% of data while cutting down
the resolver group count to less than 20%.

4.2 Classification Models

This section presents our study on the performance of various machine-learning
classifiers in classification of email data, in terms of accuracy and training time,
although the training is offline. For training the classification models, we con-
catenate the subject and the body of the email(description) with a space in
between and use the resulting string as our training data. The resolver group
acts as the label for our training data. Tables 1 and 2 show the impact of various
traditional machine learning models [6] and deep neural network models that
were used. In order to improve accuracy and coverage of the overall service, we
use an ensemble [5]. Each pair of models were combined, and the final ensem-
ble classifier was chosen based on the accuracy and coverage. As explained in
Sect. 4.1, rule engine is important to handle the long tail in class distribution and
the final chosen ensemble classifier in combination with the rule engine forms
the classification module of the service.

Table 1. Comparison of various machine learning algorithms w.r.t. accuracy and train-
ing time

LinearSVM KNN LR m-NB RF Adaboost Gradient boosting

Dataset A Accuracy (%) 87.3 80.12 79.48 72.68 81.41 31.5 75.6

Train-time (s) 7.8 260.5 43 17.3 363.75 4561 8612

Dataset B Accuracy (%) 83.42 72.58 79.95 64.19 74.91 32.98 65.1

Train-time (s) 76.12 2218.65 404.05 22.18 7190.16 332.97 95320.1

Dataset C Accuracy (%) 86.339 67.57 84.29 63.97 76.99 30.43 61.47

Train-time (s) 1001.06 1921.7 2992 167.5 20799.6 1288.63 126960

Training the Classifiers. We convert the training data samples into word vec-
tor representation before applying machine-learning algorithms. We observed
that using tf-idf representation increased the accuracy of traditional machine
learning algorithms for all datasets by at least 3–4%. Another observation was
that using bigrams also improved the accuracy for some datasets. Intuitively
we can argue that this is so because some bigrams like ‘account creation’,
‘account deletion’, ‘password reset’ etc. are useful indicators in deciding the

Automated Email Assignment 337

Table 2. Comparison of various deep neural networks w.r.t. accuracy and training
time

MLP CNN-WE LSTM-WE CNN-G LSTM-G CNNLSTM-G

Dataset A Accuracy (%) 85.8 74 76.94 74.01 71.64 73.24

Train-time (s) 184.12 183.75 5546.6 160.56 9833.7 1844.8

Dataset B Accuracy (%) 80.87 77.75 79.35 76.23 80.37 77.7

Train-time (s) 10858.15 8680.35 86651.57 1926 89280.94 23229.47

Dataset C Accuracy (%) 83.3 78.8 78.14 79.1 83.51 81.33

Train-time (s) 2779 4000.9 90149.9 9522.12 687483 116583.22

resolver group. The hyperparameters were chosen experimentally over 10-fold
cross-validation on the datasets.

However, for learning deep neural networks, tf-idf representation being
extremely sparse is not useful and hence we used word embeddings. There are
primarily two methods of learning the word embeddings: one in which word
embeddings are learnt while training the neural network; and second using pre-
trained word vectors. We experimented with both methods for classification
(models learning word embeddings being referred to CNN-WE, LSTM-WE, and
CNN-LSTM-WE in Table 2), and pretrained word-vector representations (100-d
GloVe vectors) [8] referred to as CNN-G, LSTM-G and CNN-LSTM-G.

4.3 Rule Engine

The rule engine is one of the key components of our end-to-end system and is
used to capture domain specific elements as well as to ensure business continuity.
Also, the resolver groups belonging to IT can only be predicted using the rule
engine as discussed in Sect. 4.1.

The rule engine is designed for ease of usage and configuration. Each rule in
the rule engine can be expressed by the following equation:

(f1 = φ1) ∧ (f2 = φ2) ∧ (f3 = φ3) ∧ (CE = R) ⇒ CF (1)

where CF is the resolver group predicted by the engine, φi is the value of the
ticket parameter i and CE is the resolver group predicted by the ensemble
classifier. Here φi can take a finite value (or regular expression) or the value X
(implying DON’T CARE).

4.4 Email Ticket Dispatcher

The email ticket dispatcher actually assigns the ticket to a specific resolver group
and updates the ticket. The dispatcher selects an ensemble of two classifiers to
optimize accuracy and coverage as shown in Fig. 3. It combines the results of
the ensemble classifier and rule engine using a dispatch algorithm to output the
final prediction and confidence score. If the confidence score of the final result is
below the configured threshold the ticket is assigned to the manual queue.

338 A. Mandal et al.

Table 3. Dataset details and results

Dataset A Dataset B Dataset C

Number of email tickets (N) 11562 423343 712320

Number of resolver groups 70 403 428

Duration of the dataset 6 months 12 months 15 months

Ensemble Accuracy (Xacc) 90.07% 86.17% 89.61%

Ensemble Coverage (Xcov) 93.67% 92.88% 93.83%

Assignment Engine Accuracy (Eacc) 92.73% 88.66% 92.13%

Assignment Engine Coverage (Ecov) 97.84% 93.3% 95.5%

5 Experimental Results

This section enumerates the results of the experimental setup of the assignment
engine. For evaluation we have used real datasets from three major helpdesk
service providers. The datasets are from two different domains viz. telecom and
supply-chain/logistics. To preserve client confidentiality we henceforth refer to
these datasets as Dataset A, Dataset B and Dataset C respectively. The datasets
were divided into training and test sets with a 90:10 split and we used 10-fold
cross-validation on the datasets. All our experiments were run on a NVIDIA
Tesla K80 GPU cluster with 4 CUDA-enabled nodes. We use open source
machine-learning libraries viz. Python scikit-learn and Keras for our experi-
ments. The dataset statistics as well as the final accuracy numbers achieved
by our system are described in Table 3. Please note that the deployment setup
is similar to our experimental setup but not identical; so numbers in produc-
tion may vary slightly. The details about production setup and results are not
included to preserve confidentiality.

(a) (b)

Fig. 2. Effect of different optimization techniques (a) Accuracy trend (b) Training
time.

Automated Email Assignment 339

5.1 Accuracy and Training Time

Figure 2 shows how the training techniques and preprocessing affect the accuracy
of prediction and training time. It shows the gradual increase in accuracy and
corresponding decrease in training time as we apply each technique(shown in
X-axis) incrementally. The accuracy and training time charts are shown for only
one of the datasets viz. dataset C which is our largest dataset - but the trend is
fairly similar across other datasets as well.

5.2 Human Accuracy vs. Assignment Engine Accuracy

We next look at the optimal selection of algorithms that maximize accuracy and
coverage. We assert that for business purposes the algorithms need to have at
least human-level accuracy with high enough coverage.

To compute human accuracy we mined audit logs of the ticketing systems.
Our experiments reveal that across all datasets the accuracy achieved by human
agents is about 85%. Therefore we select the confidence threshold such that the
expected accuracy of prediction is at least 85%. Figure 3 show the performance
of the best three algorithms at different confidence levels (ranging from 0.1 to
0.9). For dataset C a combination of linear SVM (confidence≥ 0.5) and MLP
(confidence ≥ 0.6) gave a slightly higher accuracy (89.61%) than that of LSTM-
G (confidence ≥ 0.5) and linear SVM (Xacc = 88.38%), although the individual
accuracy was marginally higher for LSTM-G compared to MLP. For this reason,
as also for other practical considerations like memory and CPU constraints as
well as training time our deployment in production uses an ensemble of linear
SVM and MLP. For the other two datasets SVM and MLP were clear winners.

(a) (b)

Fig. 3. At different confidence thresholds (a) Assignment accuracy (b) Assignment
coverage.

5.3 Observations

There are three main takeaways from our experimental results above. The most
important observation is that our assignment engine (ensemble classifier aug-
mented with rule engine) performs better, in terms of accuracy and coverage,

340 A. Mandal et al.

than all traditional machine-learning and deep learning algorithms. Secondly we
can see that simple machine learning algorithms like SVM and MLP are often
better than more computationally expensive deep learning algorithms in the
task of helpdesk email assignment automation. This result is somewhat surpris-
ing and unexpected, but is very significant from a product development stand-
point as these algorithms are easy to implement, require minimal computational
resources and provide better performance at runtime. Last but not the least we
observe that LSTM accuracy increases with the size of the dataset and for the
largest dataset (dataset C) it outperforms MLP. Thus our results indicate that
an ensemble of SVM and MLP will be a good trade-off for most practical pur-
poses but if we have a large enough dataset and infrastructure is not a concern
then the best choices are SVM and LSTM-glove.

6 Conclusion and Future Work

We have proposed email ticket assignment engine that uses an ensemble of
machine learning techniques, combined with a configurable rule engine, to per-
form automated dispatch. Our system achieves human-level accuracy and has
already been deployed for three customers in production. However, there are
still some areas in the system like rule engine which need human intervention
and can be automated. In future, we want to solve the problem of automatically
extracting rules based on data from misclassified emails. We would also like to
handle concept drift in utterances for better retraining. Last but not the least,
we need to enhance our assignment algorithm to handle email attachments.

References

1. Agarwal, S., Aggarwal, V., Akula, A.R., Dasgupta, G.B., Sridhara, G.: Automatic
problem extraction and analysis from unstructured text in it tickets. IBM J. Res.
Dev. 61, 4–41 (2017)

2. Agarwal, S., Sindhgatta, R., Sengupta, B.: SmartDispatch: enabling efficient ticket
dispatch in an it service environment. In: 18th ACM SIGKDD 2012 (2012)

3. Dasgupta, G.B., Nayak, T.K., Akula, A.R., Agarwal, S., Nadgowda, S.J.: Towards
auto-remediation in services delivery: context-based classification of noisy and
unstructured tickets. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.)
ICSOC 2014. LNCS, vol. 8831, pp. 478–485. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45391-9 39

4. Kadar, C., Wiesmann, D., Iria, J., Husemann, D., Lucic, M.: Automatic classifica-
tion of change requests for improved it service quality. In: 2011 SRII (2011)

5. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms (2004)
6. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
7. Parvin, H., Bose, A., Van Oyen, M.P.: Priority-based routing with strict deadlines

and server flexibility under uncertainty. In: WSC 2009 (2009)
8. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word represen-

tation. In: Empirical Methods in Natural Language Processing (EMNLP) (2014)
9. Potharaju, R., Jain, N., Nita-Rotaru, C.: Juggling the Jigsaw: towards automated

problem inference from network trouble tickets. In: USENIX (2013)

https://doi.org/10.1007/978-3-662-45391-9_39
https://doi.org/10.1007/978-3-662-45391-9_39

Automated Email Assignment 341

10. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: EasyTicket: a ticket routing
recommendation engine for enterprise problem resolution. In: VLDB 2008 (2008)

11. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by
resolution sequence mining. In: 14th ACM SIGKDD (2008)

12. Zeng, C., Zhou, W., Li, T., Shwartz, L., Grabarnik, G.Y.: Knowledge guided hier-
archical multi-label classification over ticket data. IEEE Trans. Netw. Serv. Manag.
14(2), 246–260 (2017)

Crowdsourcing Energy as a Service

Abdallah Lakhdari(B), Athman Bouguettaya, and Azadeh Ghari Neiat

The University of Sydney, Sydney, NSW 2000, Australia
alak5184@uni.sydney.edu.au,

{athman.bouguettaya,azadeh.gharineiat}@sydney.edu.au

Abstract. We propose a new framework for crowdsourcing energy ser-
vices from Internet-of-Things devices. We introduce a new crowdsourced
energy as a service and energy-related quality model considering spa-
tiotemporal aspects. We describe a new temporal composition algorithm
to compose energy services to satisfy a user’s energy requirement. The
temporal composition algorithm is a variation of fractional knapsack
algorithm. We conduct preliminary experiments to demonstrate the per-
formance and effectiveness of our approach.

Keywords: Crowdsourcing · IoT services · Spatiotemporal service
Temporal service composition · Energy as a service · Wearable device

1 Introduction

Internet of Things (IoT) has the ability to connect any physical object to the
Internet. It is expected that more than 50 billion devices will be connected to the
Internet by 2020 [10]. The existing infrastructure to deploy IoT applications relies
mainly on cloud computing. The Cloud offers external computing capabilities to
overcome resource constraints of some IoT devices in terms of storage capacity
and processing power. Recently, edge computing also provides a miniaturized
external computing capability for IoT devices. Edge computing consists of micro
datacenters implemented one hop away from the end user. There is an increasing
trend to moving computation resources even much closer to the user which makes
the computation and storage resources available locally [5].

A broad range of IoT devices comprise significant resources like processing,
storage, communication, and energy. These capabilities leverage IoT devices to
be possible computing resources. Crowdsourcing IoT resources provides unprece-
dented opportunities to create a self-sustained IoT ecosystem. Example of crowd-
sourcing IoT resources are WiFi hotspot sharing [9]. We propose a new approach
for crowdsourcing energy in IoT environment. We consider a particular set of
IoT devices called wearables. This set refers to any smart thing which can be
worn or hand-held like smart shirts, smart glasses, smart watches, smartphones
etc [12]. Energy could be easily available from harvested power of wearables or
just spare energy from smartphones. Nowadays, wireless power transfer technolo-
gies are broadly used in sensor networks and IoT [8]. Crowdsourcing energy relies
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 342–351, 2018.
https://doi.org/10.1007/978-3-030-03596-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_24&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_24

Crowdsourcing Energy as a Service 343

mainly on wireless power transfer for the delivery of energy from the providing
wearables to the consuming IoT devices.

We harness the service paradigm as a powerful mechanism to abstract the
functional and non-functional properties (QoS) of IoT based energy resources [1,
2]. Therefore, an IoT based energy resource is provisioned as a service, called
Crowdsourced Energy as a Service (EaaS). Connectivity and mobility are two
key challenges to unlock the full potential of crowdsourcing energy from wearable
IoT devices [4]. For an energy request, nearby IoT devices need to be discovered.
In addition, delivering energy services from an IoT device to another relies on
ensuring the connectivity between IoT devices. A short range distance is required
for a successful wireless delivery of energy. As a result, space and time attributes
are of paramount importance to define and select energy services. The main
contributions of this paper are: (i) a service model for crowdsourcing energy
from IoT devices, (ii) A Quality of Service QoS model to distinguish between
energy services, (iii) a temporal composition algorithm which is a variation of a
fractional knapsack and temporal knapsack algorithms offering required energy
and (iv) experiments are conducted based on a real dataset to illustrate the
performance and effectiveness of the temporal composition approach.

The remainder of the paper is organized as follow: Sect. 2 presents the crowd-
sourced energy service and QoS model. Section 3 details the proposed temporal
composition algorithm. Section 4 discussed the experimental results. Section 5
concludes the paper and highlights some future work.

Motivating Scenario
We consider a scenario of depleting battery of a smartphone user in a public
place like a coffeeshop where it is challenging to find a vacant power point. We
assume that the user needs to extend the lifetime of their smartphone’s battery
to run some critical applications e.g., make a call or look for a destination in the
Google map. Users may have different requirements in terms of energy capacity
and time availability. In our scenario, energy is offered by nearby wearable IoT
devices provided by the crowd. Some wearable IoT devices like smart shirts and
smart shoes can harvest and store energy for a long time. Wearables consume
a tiny amount of their harvested energy. They can share their energy wirelessly
as a service with nearby IoT devices [8]. Getting energy from one single service
may not fulfill a user’s requirement. In such case, multiple energy services need
to be combined to satisfy the user’s requirements. We propose to reformulate the
problem of finding and crowdsourcing energy in a coffeeshop as a spatiotemporal
service composition.

2 System Model and Problem Formulation

In this section, we first define the key concepts of a crowdsourced energy service.
We then give a formal definition for the problem of crowdsourced energy service
composition.

Definition 1: Crowdsourced Energy Service. A crowdsourced energy service ES
is a tuple of < Eid,Eownerid, F,Q > where:

344 A. Lakhdari et al.

– Eid is a unique service ID,
– Eownerid is a unique owner ID,
– F is the function of sharing energy by an IoT device owner Eownerid via an

IoT device d
– Q is a tuple < q1, q2, ..., qn > where each qi denotes a QoS property of ES

e.g., energy capacity.

The energy service is available just when the energy capacity is higher than
a predefined threshold by the provider Thr. This capacity will definitely change
overtime. It decreases because of the use of the IoT device while delivering the
energy to the service consumer. On the other hand, some IoT devices may not
be affected by delivering energy because they are either plugged to a power
point or self-harvesting. An example of such an IoT device is smart shirt which
harvests energy from a body heat. An energy consumption model is required to
estimate the real availability of the energy service. The real availability of an
energy service is affected by three factors, (i) the usage of the IoT device by
the providers themselves, (ii) the energy delivery to the consumer, and (iii) the
preference of the provider. Carroll et al. [3] define different usage patterns of
IoT devices. According to these patterns the energy consumption of the device
can be estimated. Providers who want to share their energy have to follow one
of these patterns as follows: Suspend i.e., not using their devices , Casual i.e.,
using them casually with few functionalities, or Regular i.e., using them with
a predictable usage behavior. We define α as a parameter related to the usage
pattern. We set α = 1 if the usage pattern is “Suspend”, α = 0.75 for “Casual”,
and α = 0.50 for “Regular”.

QoS parameters allow users to distinguish among crowdsourced energy ser-
vices. In the following, we propose quality attributes for an ES.

Definition 2: Crowdsourced Energy Service Quality Attributes.

– Intensity: Intensity shows the intensity of the wirelessly transfered current.
The current is transferred under a certain voltage. We assume that all IoT
devices related to energy services are functioning under a voltage between 3
and 5 V. These IoT devices are also compatible in term of voltage.

– Transmission success rate: Transmission success rate is the ratio between
the transmitted energy from an energy provider and the received energy by
an energy consumer [8]. The transmission success rate Tsr is calculated based
on the following formula.

Tsr =
Gtγ

Lp

(
λ

4π(D + β)

)θ

where Gt, Lp,γ, λ, β, θ, and D represent the transmission gain, polariza-
tion loss, rectifier efficiency, wave length, short distance energy transmission
parameter, path-loss coefficient, and the distance between devices, respec-
tively.

– Deliverable energy capacity: The energy capacity that a consumer real-
istically receives is affected by the Transmission success rate Tsr and the

Crowdsourcing Energy as a Service 345

state-of-charge of the IoT device battery EC, the usage pattern α, and the
predefined threshold by the device user Thr. It is given by milliAmpere hour
mAh. Deliverable energy capacity DEC is defined as follows.

DEC = α(EC − Thr)Tsr

– Location is the GPS location of ES that can transfer energy.
– Start time: Start time st is the time of launching an energy service by an

IoT device. It is assumed to be announced by energy service providers.
– End time: End time et is the time where the energy capacity remains higher

than the predefined threshold. If et < aet (aet means the announced end time
of the service by the provider), et is calculated based on an estimation formula
and not the end time announced by the service provider aet. Otherwise, et
is considered as the real end time of the energy service. Given the initial
energy capacity EC, intensity of the transferred current I, the start-time of
the energy service st, the usage pattern α, and the predefined threshold Thr,
the service real end time et can be estimated by the following formula:

et = st + α(EC − Thr)/I

Definition 3: Crowdsourced Energy Service Consumer Query. An energy service
query is defined as a tuple Q < t, l, re, d >:

– t refers to a timestamp when the query is launched,
– l refer to a location of an energy service consumer. We assume that a consumer

stays fixed after launching a query,
– re represents the required amount of energy,
– d refers to a user-defined charging period of time designated by its start time

and end time.

Definition 4: Temporal crowdsourced energy service composition problem. Given
a set of crowdsourced energy services SES = {ES1, ES2, . . . ESn} and a query
Q < t, l, Re, d >, the aim of our work is to transfer the required energy Re in
the time period d by selecting the optimal composition of nearby energy services
ESi ∈ SES .

3 Temporal Crowdsourced Energy Service Composition
Approach

We propose a deterministic spatiotemporal service composition framework for
crowdsourcing energy services. We assume that service providers are fixed in
space and they can transfer energy wirelessly inside a micro-region e.g., a cof-
feeshop. There is also an assumption that crowdsourced energy services are deter-
ministic i.e., there is a knowledge about service availability and QoS values a-
priori. First, we need an efficient indexing method for the fast discovery of energy
services. Location and time are intrinsic parts of energy services. Therefore, we
index energy services based on spatiotemporal characteristics The 3D R-tree is a

346 A. Lakhdari et al.

spatiotemporal index data structure which deals with range queries of the type
“report all objects within a specific area during the given time interval” [7].
Time is added as the third axis to spatial axes. When a query Q arrives, an
area is defined by the location of the consumer Q.l and a range allowing the
wireless power transmission between IoT devices. In our framework, we use 3D
R-tree to select energy services located in this defined area at the time interval
[Q.t,Q.t+d] (see Sect. 3.1). Then, we need a greedy approach to search through
all of available services and select an optimal composition plan along the query
duration (see Sect. 3.2). Figure 1 shows the time intervals of the five ES and the
query Q.

Fig. 1. Time intervals for nearby
energy services for a query Q (Color
figure online)

Fig. 2. Energy service composition
(Color figure online)

3.1 Crowdsourced Energy Service Selection

Each energy service has a time interval [st, et] and a location loc. Services are
filtered spatially by selecting just the services inside the area defined by the con-
sumer location Q.l and the user defined range r which allows a successful wireless
energy transfer. Services also are filtered temporally by choosing just those hav-
ing time interval within or overlapping with the query duration [Q.t,Q.t + d]
(see Fig. 1). Each leaf in the 3D R-tree is considered as ES. A search cube SC is
determined by the energy query location Q.l and duration Q.d. All leaves inside
or which overlap with the search cube are selected. The color in overlapping
services in Fig. 1 illustrates their new availability lifetime. For partially available
services, we recalculate the provided energy capacity according to their availabil-
ity lifetime. We consider a uniform distribution in term of energy consumption
for an IoT device and its delivery. We use the following formula to update DEC
of the partially available services.

ESi.DEC = (ESi.et − ESi.st) . ESi.I . ESi.T sr

where ESi.st and ESi.et are the new start time and end time of ES respec-
tively. ESi.I is the intensity of the wirelessly transferred current. ESi.T sr is the
wireless transmission success rate. We define a function called Service Selector.

Crowdsourcing Energy as a Service 347

The function has as an input, the position of the consumer Q.l, the starting
time of the query Q.t, and the duration of the query Q.d. The output is the set
of all nearby available services NearbyS within the query duration (Line 3 in
Algorithm 1).

Algorithm 1. Crowdsourcer
1: Input: Q.t, Q.d, Q.re
2: Output: CompServ // a set of energy services available during Q.d
3: NearbyS ← Service selector(Q.l, Q.t, Q.d)
4: if (∃ESi ∈ NearbyS | ESi.st ≥ Q.t and ESi.et ≤ Q.t + d) then
5: if there is one or multiple services satisfying the condition then
6: CompServ = {preferred ESi}
7: else // There is multiple services but not satisfying the condition
8: // Fractional temporal service composition
9: create new timeslot.st ← Q.d // Divide Q.d into time slots

10: For int t = Q.t to Q.t + d do
11: if (for all ESi ∈ NearbyS and t = ESi.st or t = ESi.et) then
12: previous timeslot.et ← t
13: if t �= Q.t + d then
14: create new timeslot.st ← t

15: EndFor
16: For each slot
17: Max ← (Max miniES.DEC)
18: if (miniES.DEC = Max) then
19: CompServ ← CompServ ∪ ({miniES })

20: EndFor
21: End

3.2 Temporal Composition Algorithm

A single energy service may not satisfy the required amount of energy. As a result,
we require to compose the optimal nearby energy services to fulfill the required
amount of energy within the query duration. We assume that an energy service
consumer does not receive more than one service at a time. The composition in
this situation is an optimal sequence of services or partial services along a query
time which fulfills the required energy.

We formulate our composition problem as a knapsack problem. A knapsack
problem [11] is the selection of a set of items having weights and values by
maximizing the total value of selected items and considering the limited weight
capacity of the knapsack. We interpret each ES as an item. The time intervals
[st, et], DEC, and the query duration are considered as weights, values, and the
knapsack weight capacity, respectively. Conversely to the classic knapsack prob-
lem where the items cannot be fractioned, time intervals of energy services can
be chunked. As a result, we reformulate our composition problem as a fractional
knapsack problem FKP [6]. We propose a greedy function Crowdsourcer which

348 A. Lakhdari et al.

aims to select an optimal set of ES based on their deliverable energy capacity
and time intervals. The inputs of Crowdsourcer are the query start time Q.t, end
time e.g., Q.t + d, and the required energy Q.re. The output of Crowdsourcer
is an optimal composition plan in which component energy services are ordered
based on their start times.

The Crowdsourcer first calls Service Selector. Service Selector returns
all available energy services within Q.d (Line 3 in Algorithm1). In the
previous example in Fig. 1, ES3, ES4, are selected as available services.
ES1, ES2, ES5 are selected as partially available services NearbyS =
{ES1, ES2, ES3, ES4, ES5}. After selecting candidate services, the Crowd-
sourcer searches if there exist an energy service which fulfills the required energy
Q.re. If the result is one or multiple services, the function can take the shortest
duration service, the earliest start time service, or a service providing the max-
imum of energy according to a consumer’s preferences (Line 6 in Algorithm 1).
It is possible that there exist multiple services providing less than the required
energy. A service composition is needed to achieve the required amount of energy.
Sometimes, it is not possible to get the required energy from all the available
service. In this situation, Crowdsourcer returns a set of available services which
provides the maximum available amount of energy within the query duration.

Our composition problem is formulated as a fractional knapsack problem to
find an optimal set of energy services providing the maximum amount of energy
within the query duration. The proposed approach selects the best composition of
services or parts of services (e.g., fractions) which provides the maximum energy
in the query duration. Our approach relies on dividing the query duration into
several time slots. Each time slot is limited either by the start time of an available
service or its end time (Lines 10 to 15 in Algorithm 1), see vertical lines in Fig. 2.
For example, start time of ES3 and ES4 define the first and second time slots,
respectively. All energy services are fractioned into mini services, one mini service
per time slot. ES3 is fractioned into three mini services, because ES3 crosses
three time slots. Solving fractional knapsack problem relies on choosing mini
services with highest density value ratio per each time slot (Lines 16 to 20 in
Algorithm 1). In our case, the density value ratio refers to the deliverable energy
capacity DEC on a unit of time hour. This ratio is the effectively transferred
current effI from an energy service:

effI = Tsr .
ESi.DEC

ESi.et − ESi.st

The blue segments in Fig. 2 represent the mini service providing the maximum
DEC in each time slot. The composition is the set of selected mini services from
the query start time Q.t to the end of its duration Q.t + d.

4 Experiment Results

We evaluate effectiveness and feasibility of the proposed composition frame-
work in terms of the number of served queries. We define different scenarios (see

Crowdsourcing Energy as a Service 349

Table 1. Different query scenar-
ios for short services providing
small amounts of energy

Q.re/Q.d Short Long

Low Scen 1 Scen 3

High Scen 2 Scen 4

Table 2. Different query scenarios
for short services providing large
amounts of energy

Q.re/Q.d Short Long

Low Scen 5 Scen 7

High Scen 6 Scen 8

Table 3. Different query scenarios
for long services providing small
amounts of energy

Q.re/Q.d Short Long

Low Scen 9 Scen 11

High Scen 10 Scen 12

Table 4. Different query scenarios
for long services providing large
amounts of energy

Q.re/Q.d Short Long

Low Scen 13 Scen 15

High Scen 14 Scen 16

Tables 1, 2, 3 and 4). To the best of our knowledge, there is limited research inves-
tigating temporal service selection. We compare the proposed temporal compo-
sition algorithm and a greedy selection algorithm as our baseline to show the
feasibility of our approach. The greedy selection algorithm selects the energy
service providing the maximum DEC among the available services within the
query duration Q.d.

All algorithms are implemented in Java. The experiments are conducted on
a 3.60 GHZ Core i7 processor and 8 GB RAM under Windows 10. We use Yelp
which contains people’s check-ins into coffee places and restaurants. We assume
that people who offer energy services from their wearables are lingering in a
coffee place. We define spatiotemporal features of energy services by check-in
and check-out times of customers at the coffee place. These times reflect start
time st and end time et of energy services at the coffee place. We augment our real
dataset with the synthetic QoS parameters. The energy service QoS parameters
including deliverable energy capacity DEC, intensity of the transferred current
I, and the transmission success rate Tsr are randomly generated. Similarly,
energy queries time Q.t and duration Q.d are generated from check-in and check-
out times of coffee place customers. The required energy Q.re is also randomly
generated for each query.

Tables 1, 2, 3 and 4 illustrate different query scenarios in terms of the required
energy and the query duration for services with short duration (Scen. 1 to Scen.
8). The same scenarios are defined with long services (Scen. 9 to Scen. 16) in
Fig. 4. For each scenario, energy queries are served by either the greedy selection
or the temporal composition algorithm. We assess the number of served queries
by both algorithms to conclude the best scenarios of our temporal composition
algorithm. Figures 3 and 4 show the number of served queries by energy services
with short and long duration. The results indicate the necessity of temporal

350 A. Lakhdari et al.

composition for almost all the queries requiring high amounts of energy when
the existing services have short duration and provide low amounts of energy like
the energy provided by wearables (e.g. Scen 2, Scen 4 in Fig. 3). Paradoxically,
the temporal composition is also required for short duration queries requiring
small amount of energy from long duration services (e.g. Scen 10, Scen 12 in
Fig. 4). This is because of the property of fractioning energy services into mini
services (see Sect. 3).

Fig. 3. Served queries with short ser-
vices

Fig. 4. Served queries with long ser-
vices

5 Conclusion

This paper proposed a novel approach for crowdsourcing energy services from
IoT devices. We defined an energy as a service model for crowdsourcing energy
from wearables. We defined a new quality model for energy services. We devised
a temporal composition framework to meet users’ energy requirements. A set of
experiments is conducted on a real dataset to illustrate the feasibility of the tem-
poral composition framework for energy services. The results also show that the
proposed framework deals effectively with the resource limitation of IoT devices
which is reflected by the services providing small amounts of energy. Future work
includes mobility-aware composition of crowdsourced energy services.

Acknowledgments. This research was partly made possible by NPRP 9-224-1-049
grant from the Qatar National Research Fund (a member of The Qatar Foundation)
and DP1601 00149 and LE180100158 grants from Australian Research Council. The
statements made herein are solely the responsibility of the authors.

References

1. Bouguettaya, A., et al.: End-to-end service support for mashups. IEEE Trans. Serv.
Comput. 3(3), 250–263 (2010). https://doi.org/10.1109/TSC.2010.34

2. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017). https://doi.org/10.1145/2983528

3. Carroll, A., Heiser, G., et al.: An analysis of power consumption in a smartphone

https://doi.org/10.1109/TSC.2010.34
https://doi.org/10.1145/2983528

Crowdsourcing Energy as a Service 351

4. Ghari Neiat, A., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91536-4

5. Habak, K., Ammar, M., Harras, K.A., Zegura, E.: Femto clouds: leveraging mobile
devices to provide cloud service at the edge. In: 2015 IEEE 8th International Con-
ference on Cloud Computing (CLOUD), pp. 9–16. IEEE (2015)

6. Ishii, H., Ibaraki, T., Mine, H.: Fractional knapsack problems. Math. Program.
13(1), 255–271 (1977)

7. Jun, B., Hong, B., Yu, B.: Dynamic splitting policies of the adaptive 3DR-tree
for indexing continuously moving objects. In: Mař́ık, V., Retschitzegger, W.,
Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 308–317. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-540-45227-0 31

8. Na, W., Park, J., Lee, C., Park, K., Kim, J., Cho, S.: Energy-efficient mobile
charging for wireless power transfer in internet of things networks. IEEE IoT J.
5(1), 79–92 (2018)

9. Neiat, A.G., Bouguettaya, A., Sellis, T., Mistry, S.: Crowdsourced coverage as a
service: two-level composition of sensor cloud services. IEEE Trans. Knowl. Data
Eng. 29(7), 1384–1397 (2017)

10. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things
from industrial market perspective. IEEE Access 2, 1660–1679 (2014)

11. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9),
2271–2284 (2005)

12. Seneviratne, S., Hu, Y., Nguyen, T., Lan, G., Khalifa, S., Thilakarathna, K., Has-
san, M., Seneviratne, A.: A survey of wearable devices and challenges. IEEE Com-
mun. Surv. Tutor. 19(4), 2573–2620 (2017)

https://doi.org/10.1007/978-3-319-91536-4
https://doi.org/10.1007/978-3-540-45227-0_31

Social-Sensor Composition for Scene
Analysis

Tooba Aamir1(B), Hai Dong1, and Athman Bouguettaya2

1 School of Science, RMIT University, Melbourne, Australia
{tooba.aamir,hai.dong}@rmit.edu.au

2 School of Information Technologies, The University of Sydney, Sydney, Australia
athman.bouguettaya@sydney.edu.au

Abstract. We consider the scene analysis as a service composition prob-
lem. A social-sensor cloud services composition model is proposed for the
scene analysis. Our proposed model selects and composes social-sensor
cloud services based on the user queries. Textual features of the social-
sensor cloud services, i.e., description, comments, and meta-data of the
social media images are used to reconstruct a scene. Our key contribu-
tion is an efficient and real-time composition of related images for scene
analysis relying on meta-data and related posted information. Analytical
results demonstrate the performance of the proposed model.

1 Introduction

The rich and explosive growth of social media data has resulted in the integration
of social data into a range of data-centric applications [1,2]. Recent communi-
cation devices like smartphones, i.e., social-sensors provide the ability to embed
sensor data directly into cloud-based social networks, i.e., social-sensor clouds
[2,4]. Monitoring these social-sensors’ activities provide multiple benefits in var-
ious domains. For example, urban management requires scene reconstruction
and analysis in an area. Suppose the surveillance of the road segment through
traditional sensors is limited in coverage. In such cases, social-sensors facilitate
to fill in the information gap within events or happenings [5].

Social-sensor data, e.g., social media image meta-data and related posted
data (e.g., location, description, and comments) are inherently multi-modal
because of the different data formats and sources in those social media plat-
forms. The multifaceted data poses a significant challenge for the efficient and
real-time delivery of the social-sensors’ data to the users [7,13]. In our previous
work, we propose the social-sensor cloud services to provide an open, flexible,
and reconfigurable platform for monitoring and controlling applications [4,5].
We abstract social-sensor cloud data, e.g., images’ annotations (meta-data and
related information like description and comments) as a service, i.e., social-sensor
cloud service, to fulfill the users’ information requirement [4,5].

This paper focuses on using the service paradigm as a vehicle to devise
a method for scene reconstruction and analysis without carrying out actual
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 352–362, 2018.
https://doi.org/10.1007/978-3-030-03596-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_25&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_25

Social-Sensor Composition for Scene Analysis 353

image processing. The aim is to provide the similar useful information about
the required scene as image processing does [5]. A complete scene analysis needs
images from multiple angles and different time intervals. In such cases, a compo-
sition of services is required to form multiple viewing angles to fulfill the users’
requirement(s) [10,12]. In this regard, we have identified the following challenges:

– Relevance Model for Spatio-temporal Cloud Service: The accurate information
regarding the context of the service is vital for better utilization and selection
of the social-sensor cloud service as per user requirements [8]. The relevance
of the service to the given query helps to ascertain whether the service is in
the same context as of the query.

– Spatio-temporal Composition. Social-sensor cloud services composition
becomes even more challenging in dynamic service environments character-
ized by changing conditions and context. An optimal composite service is a
set of social-sensor cloud services, providing the best-suited services at any
given time as per the users’ query. A spatio-temporal composition aims to
execute an optimal composition based on the functional attributes.

This paper accommodates the solution of the challenges mentioned above. We
propose a composite service that will provide the user-required view and related
information about any event or a happening for the scene analysis. The proposed
composition model forms a tapestry in the spatial aspect and a storyboard in
the temporal aspect. In the spatial aspect, the composition forms a scene by
selecting images from un-coordinated users and placing them in a tapestry-like
structure. In the temporal aspect, a timeline is formed by combining various
tapestries to form the story of the event.

2 Motivation Scenario

Let us assume an accident occurred on 5th July 2016 around 8:30 pm, on the
Pascovale Road, Glenroy. The crash involves two vehicles cars A and B crossing
an intersection. The service user, i.e., the police has queried a scene analysis of
the accident. The aim is to find the original behavior leading to the crash and
the objects of interest, i.e., the vehicles or people involved. In such case, anyone
in the area can act as a social-sensor by sharing images over a social network. We
rely on these social-media images as social-sensor cloud services in the vicinity
during that specific period to reconstruct the desired scene.

This work proposes a model for selection and composition of the social-sensor
cloud services based on the user query. The query includes a region of interest,
textual description and time of the queried event. The query includes (1) Query
phrase, e.g., a car accident involving Car A and B on city-bound Pascovale Road.
Car A and Car B are the objects of interest. (2) Query region, i.e., decimal
longitude-latitude position. For example, (−37.694264, 144.9131593) covering
the area of 10 m on all sides of the road. (3) Query time, e.g., 5th July 2016,
from 8:25 pm to 8:40 pm.

The basic functional attributes of a social-sensor cloud service Serv, are
abstracted from the social media image information. These include:

354 T. Aamir et al.

– Time T of the service at which the image is taken.
– Description D is a set of keywords or key-phrases providing additional infor-

mation regarding the image, e.g., Car A crashes in Car B, Car accident.
– Location L(x, y) is longitude and latitude position where the image is taken.
– Coverage Cov of the image is defined as VisD, i.e., the maximum visible

distance, covered by the image,
−→
dir, i.e., the orientation angle of the image

and α, the angular extent of the scene covered by the image.

It is assumed that the available services are tagged with location and time. We
index all the available services considering their spatio-temporal features using
a 3D R-tree [4,6]. The search space is reduced by selecting the services that are
spatio-temporally close to the querying location and contextually related to the
query description. For example, at time t−1, the descriptions of three images
img1, img2 and img3 show that Cars A and B were running along Pascovale
Road city-bound, and Car C was taking the exit from M80 Ring Road. Cars A
and B are objects of interest and therefore img1, img2 and img3 are selected due
to their contextual relevance to the query. Further, at time t0, the description of
an image img4 shows that Car A stopped and avoided the collision with Car C.
Therefore, Car C is considered as interacting with the object of interest Car A
and img4 is selected. Three images img5, img6 and img7 in the spatio-temporal
query region show that at the intersection, Car C ran the red light. At time
t1, four images img8, img9, img10 and img11 are selected due to their spatio-
temporal and contextual relevance. Images img8, img9 and img10’s description
says that Car B and Car A crashed. Image img11’s description says Car C
escaped the accident scene.

11 services (images) are selected in this scenario. We cluster the selected
services according to their spatio-temporal and contextual relationships. The
contextual clustering is based on the interaction and relations between the ser-
vices. The interactions and relationship between the objects of interest of the
services are determined on the basis of the semantic similarity between the
service description and the query description. The event-specific relationship
describing the vocabulary dictionary provided by domain experts is used for this
purpose. We assess the services for composability. The composability is assessed
by predefined relations, explained in the relevance and composability models
(Sect. 4). Finally, we build-up the composition, i.e., a visual summary by forming
a tapestry-like scene. The composition is formulated by selecting the composable
services covering the accident, the object of interests and the interacting object.
The composition depicts the cars crashed and the cars involved, i.e., Car A and
B crashed, and Car C escaped the crash scene.

3 Model for Social-Sensor Cloud Service

In this section, we have defined the social-sensor cloud service, selection, and
composition model.

Social-Sensor Composition for Scene Analysis 355

3.1 Model for an Atomic Social-Sensor Cloud Service

An atomic social-sensor cloud service Serv is defined by:

– Serv id is a unique service id of the service provider SocSen.
– F is a set of functional properties of the service Serv.

3.2 Functional Model of an Atomic Social-Sensor Cloud Service

The functional requirements capture the intended behavior of an atomic ser-
vice and form the baseline functionality. The minimal functional requirements
associated with an atomic service and their information sources are:

– Social-sensor device: The basic functional attributes of a social-sensor cloud
service associated with social-sensor device are time t, location L(x,y) and
coverage Cov of the sensor. We have discussed all these parameters in [5].

– Social-sensor service owner: Context Con of a social-sensor cloud service is
associates with the service owner. It is the description of a service provided
by the service owner. Context Con is defined by D and T. Description D of
the service provides additional information regarding the image. It is assumed
that the service’s description includes complete detail of the service specifics
related to the scene captured, e.g., objects captured, and their relations. Tags
T provide location and focus of the image.

– Social-sensor cloud: Interaction I is the social network provided information
regarding objects of interest in the image. It is assumed that the description
includes detail of the objects of interests. This description is provided by the
users of the cloud, i.e., social media, through comments. We assume that the
information collected though comments is trustworthy. The trustworthiness
of the comments is dealt in our previous work [3,9].

4 Social-Sensor Cloud Service Composability

In this section, we propose the social-sensor cloud service relevance and compos-
ability models for the social-sensor cloud services.

4.1 Model for Social-Sensor Cloud Service Relevance

The relevance of a service to a given query or another service helps to ascertain
whether the service is in the same context as of the query or the other service.
The relevance between two or more social-sensor cloud services can be described
as spatio-temporal closeness, contextual relatedness and interaction relevance.
The relevance between two services Serv1 and Serv2 can be defined as:

Spatial Relevance. RelS means Serv1 and Serv2 are close in space bound-
aries and have similar coverage direction. This encompasses (Serv1.Cov(α,dir)

∼=
Serv2.Cov(α,dir)), i.e., similar in directions and angles AND Serv1.L =

356 T. Aamir et al.

Serv2.L±Δ, i.e., close in the geo-location. Where, Δ is the max. allowed spatial
difference.

Temporal Relevance. Relt means Serv1 and Serv2 coincide in time, i.e.,
((Serv1.te = Serv2.ts±ε) | (Serv1.ts = Serv2.ts±ε) | (Serv1.te = Serv2.te)±ε).
Where, (Serv1.te = Serv2.ts ± ε) means the end time of serv1 is close to the
start time of Serv2. (Serv1.ts = Serv2.ts ± ε) means the start time of serv1 is
close to the start time of Serv2. (Serv1.te = Serv2.te ± ε) means the end time
of serv1 is close to the end time of Serv2. ε is the max. allowed time difference.

Spatio-Temporal Relevance. RelSt means Serv1 and Serv2 have overlap in
time and space. This encompasses RelS ∩ Relt.

Contextual Relevance. RelC means Serv1 and Serv2 share same or almost
similar context. This encompasses (Serv1.Con ∼= Serv2.Con). The contextual
relevance is based on the textual similarity of the contextual descriptions of
both services. Contextual relevance is calculated as a semantic distance between
the descriptions of the services and the query [5]. Event specific relationships
are used for the implementation of the similarity measure. These event spe-
cific relationships are described in the vocabulary dictionary provided by the
domain experts. We have used θ to define relatedLIN (Serv1.Con, Serv2.Con).
The higher value of θ shows higher similarity in context.

Interaction Relevance. RelI means Serv1 and Serv2 both share objects of
interest in the coverage (refer Sect. 4.1). This encompasses (Serv1.I ∩ Serv2.I)

4.2 Model for Social-Sensor Cloud Service Composability

The spatio-temporal and contextual composability of two or more social-sensor
cloud services can be defined as four instances:

– (RelSt ∩ RelC). Two or more services are composable if these services are
spatio-temporally and contextually relevant.

– (Relt ∩ RelC). Two or more services are composable if these services are
temporally and contextually relevant. In such cases, services might be located
outside the region of interest but still capture a scene inside.

– (RelS ∩ RelC). Two or more services are composable if these services are
spatially comparable and contextually relevant. In such cases, services are
available either before or after the required period.

– (RelC ∩ RelI).Two or more services might be composable if these services
share context and objects of interest. In such cases, services might be located
outside the region of interest but still capture some related objects of interest.

5 Social-Sensor Cloud Service Composition Approach

We propose an approach to filter, select and compose the best available social-
sensor cloud service to form a visual summary according to the user’s query. The

Social-Sensor Composition for Scene Analysis 357

composition is achieved by constructing the information context of the service
with the functional. The composite service comprises a set of selected atomic
services to form a visual summary of the queried event. The visual summary
offers an arrangement of the 2D images, forming a tapestry-like scene of the
required event. Our approach aims to efficiently compose the available services
into a single composite service that matches with the users’ requirements.

A query q can be defined as q = (Rgn, des, ts, te), giving the region of interest,
description and time of the required service(s).

– Rgn = {P < x, y >, l, w} [5], where P is a geospatial co-ordinate set, i.e.,
decimal longitude-latitude position and l and w are length and width distance
from P to the edge of region of interest.

– ts is the start time and te is the end time of the query.
– des is a phrase describing the query. Query description includes details of the

objects of interests obj, i.e., objects involved and the context of the query
cont, i.e., the scene to be captured.

5.1 Social-Sensor Cloud Service Selection

The indexing and spatio-temporal filtering of the services enable the fast discov-
ery of the services. We index all the available services using a 3D R-tree [4] and
select the services inside the bounded region of interest [5]. Next, the services are
selected and classified based on the relevance between the services, the queried
scene and the objects of interest. It might happen that the service does lie spatio-
temporally in the query area Rgn, but has no contextual relation with the query
q or has too much noise concerning unwanted information. In such cases, the
object(s) of interest and behavior relations are used for the service filtration.
The contextual relevance of all the services to a query’s scene and objects of
interest are assessed. Using previous research as reference we have set the value
of threshold θ = 0.5 for the contextual relevance [14]. The services related to the
queried scene and objects of interests are selected. The services are classified in
three sets according to their relevance: (1) spatio-temporally and contextually
relevant services SStC , (2) spatio-temporally relevant and interacting services
SStI and (3) contextually relevant and interacting services SCI .

5.2 Social-Sensor Cloud Service Composability Assessment

The composability rules aims to construct a composite service. Composability
assessment among component services is based on their spatio-temporal and
contextual parameters. The relevance and overlap is considered to define the
composability relations between the services, e.g., Serv1 and Serv2. We aim
to define composability of the service as quantitative relations. The relevance
between the services is an arithmetic mean of the considered parameters. It is
calculated as:

Rel(Serv1, Serv2) = [(RelSt(Serv1, Serv2)+
RelC(Serv1, Serv2) + RelI(Serv1, Serv2))]

(1)

358 T. Aamir et al.

where, RelSt(Serv1, Serv2) is based on the time of the services and their proxim-
ity in space. λ is the shortest distance between Serv1 and Serv2 and ϑ is the dif-
ference between coverage angles Serv1.Covdir and Serv2.Covdir. The thresholds
for the spatial relevance are set as λthr for distance and ϑthr for

−→
dir. Therefore,

the services are considered spatio-temporally relevant if difference between the
distance and direction of the services is below the threshold. RelC(Serv1, Serv2)
is the semantic distance between the descriptions of Serv1 and Serv2 (Refer
Sect. 5.1). RelI(Serv1, Serv2) is the count of the mutual objects of interest in
Serv1 and Serv2. The overlap between the services is considered:

Overlap(Serv1, Serv2) = Overlapspatial(Serv1, Serv2) (2)

The quantitative value of the mutual composability is calculated as:

Comp(Serv1, Serv2) = Rel(Serv1, Serv2) − Overlap(Serv1, Serv2) (3)

A geographic coverage patch GeoPatch is formed to assess the composability
of each service from the spatio-temporal and contextual selection SStC . A set
N of the spatio-temporally nearest services is selected for each GeoPatch. The
mutual composability Comp is calculated with each service in N. The process
of calculating the mutual composability of the services is repeated with the sets
N’ and N”. N’ is the set of the nearest services concerning the spatio-contextual
and temporal-contextual relevance. N” is a set of the nearest services based on
the contextual relevance and interaction. The assessment process of the mutual
composability is based on relevance and overlap of the services.

5.3 Social-Sensor Cloud Service Composition

The composition is handled as sewing a tapestry to form the scene. We start
with the central piece, concerning space and time, and build a tapestry around
it. The build-up is based on selecting the best composable services from the set
of nearest services. The best neighbor service is with the maximum relevance
and the minimum overlap.

The composition covers the visual summary of the whole queried scene, i.e.,
all objects of interest and their context. We choose the central service Servc in
terms of space and time from the spatio-temporal and contextual selection. We
further add Servc’s neighbors to a separate pool. We assume that the central
service is in the middle of the spatio-temporal dimension. Next, we extract the
best neighbor service Servk.bn from the pool and place it with Servc by joining
the patch. Servk.bn is selected according to the maximum composability. We
add neighbors of Servk.bn to the pool. The process of selecting the best neighbor
and joining to patch continues until we have any service in the pool. We reassess
the composability of the remaining services and start again with the nearest
service if the pool is empty. Spatial gaps in the composition are assessed after
the utilization of all services from the spatio-temporal and contextual selection.
Comp.C is the total coverage of the services in the composition overlapping the

Social-Sensor Composition for Scene Analysis 359

bounded region Rgn and within time ts and te. The relationship between Serv
and q.Rgn can be illustrated as:

Composition −→ {Comp ∈ ∪n
i=1Serv | (Comp.C ∩ Q.Rgn)∩

RelC ∩ RelI , ts ≤ t ≤ t e} (4)

In our previous work, we have discussed the coverage of the composition and
gap assessment [5]. We estimate and select an arbitrary neighbor Servkc′ if there
are any spatial gaps. Next, the best nearest service Servk.bn from the set of the
spatio-temporally relevant and interacting services. The process of selecting and
joining the services continues until we fill in the gaps and get the maximum
available coverage. The composite service is a series of spatial tapestries in time,
providing a timeline of the visual summary of the event.

6 Experiment and Evaluation

We focus on evaluating the proposed approach using the real dataset. The set
is a collection of 10000 user uploaded images downloaded from social networks
(flicker, twitter, google+). We had extracted their geo-tagged locations, the time
when an image was captured, post description and tags to create the services.
Further, the camera direction

−→
dir, the maximum visible distance of the image

VisD and the viewable angle α are abstracted as the functional property Cov.
We generated eight different queries based on the locations and events in

our dataset. We have evaluated the service composition based on the spatial
relevance in the first part of the experiment. The result of these experiments is
evaluated upon the traditional image processing technique SIFT (Scale-Invariant
Feature Transform) [11]. We used images’ geolocation information, associated
directions and viewing angles to gather an associated image dataset I from
Google Street View of the area of interest R. We first downloaded 360◦ views of
Google Street View using GPS from the image and collected the views related
to the service. Further, we compared the similarity between images in the com-
position and the image set I by SIFT features. This comparison is achieved
by individually comparing the key point feature vector of the images in I and
images in the composition, and finding the images’ matching features based on
the Euclidean distance of their feature vectors. Further, we assessed if the images
in the composition are correctly positioned in spatial relations. The evaluation
of the similarity threshold is set around 60%. 40% noise margin is given due to
traffic and pedestrian obstruction in the images.

We have assessed how useful the composite service is in completing the con-
textual storyboard in the second part of the experiment. The assessment is done
by manually analyzing the composition for the spatial-temporal and contextual
coverage. The effectiveness of the composite service is assessed upon the selec-
tion and composition of the related and accurate services. It is assessed if the
composite service contains the required object(s) of interest and their behavior
according to the user query.

360 T. Aamir et al.

Table 1. Relative accuracy in
spatio-temporal coverage

Queries
themes

Accuracy
rate of
SIFT
selection

Event-
oriented
queries

Q1 Bourke street
accident

57.9%

Q2 F1 race,
Melbourne

54.5%

Q3 Essendon
airport crash

36.8%

Q4 CBD random
accident

54.5%

Location-
oriented
queries

Q5 Melbourne
night

81.5%

Q6 Melbourne
central

78.6%

Q7 Melbourne
trams

75.0%

Q8 Elishbeth
street,
Melbourne
CBD

69.2%

Average 63.5%

Table 2. Precision and recall

Queries
themes

Precision Recall

Event-
oriented
queries

Q1 Bourke street
accident

51% 72%

Q2 F1 race,
Melbourne

55% 88%

Q3 Essendon
airport crash

73% 79%

Q4 CBD random
accident

77% 66%

Average 64% 76%

Location-
oriented
queries

Q5 Melbourne
night

88% 79%

Q6 Melbourne
central

68% 55%

Q7 Melbourne
trams

80% 53%

Q8 Elishbeth
street,
Melbourne
CBD

80% 74%

Average 79% 65%

6.1 Evaluation

We have evaluated the proposed approach by (1) accuracy in the spatial coverage
of the user required region, (2) effectiveness in selecting the related services (pre-
cision), and (3) effectiveness of the composite service in capturing the required
context, i.e., the object(s) of interest and their behaviors (recall). All images and
the composed services are manually analyzed by a human to form a baseline.

We have assessed the composite services by comparing the similarity between
the service image and the Google street view. SIFT image processing is used for
the comparison of all the eight queries (Table 1). We observed that approximately
63% of services in the compositions are accurately categorized in space. The 37%
error rate was reasonable due to the noise in the images. Noise is an obstruction
in the image affecting the scene building. For example, a vehicle obstructing the
building of interest can be considered as noise. Further, we have assessed the
composite services by manually analyzing the effectiveness of selecting the rele-
vant spatio-temporal services, i.e., precision (Table 2). The average precision of
the proposed approach for the location-based queries is 78% and for the event-
based queries is 64%. The effective spatio-temporal and contextual coverage are
assessed by recall (Table 2). The average recall of the proposed approach for
the location-based queries is 65% and for the event-based queries is 76%. The
results show that the values of precision are higher for the location-oriented
queries, e.g., Melbourne Central (Q6). The values of recall are higher for the
event or scene-oriented queries, e.g., Bourke Street Accident (Q1). Therefore, it

Social-Sensor Composition for Scene Analysis 361

is concluded that our proposed approach effectively helps in the accurate compo-
sition of the services for the scene analysis. The proposed approach considers the
related contextual data that describes the situation from various aspects, e.g.,
what has happened, where it happened, who is involved and what the effects on
surrounding area.

7 Conclusion

We propose a social-sensor cloud service composition approach based on the
spatio-temporal and contextual relevance. Our experiments evaluate the pro-
posed approach for an accurate and effective composition. We plan to focus on
the optimal social-sensor cloud service composition based on the uncertain time,
location and context requirements.

Acknowledgement. This research was partly made possible by NPRP 9-224-1-049
grant from the Qatar National Research Fund (a member of The Qatar Foundation)
and DP1601 00149 and LE180100158 grants from Australian Research Council. The
statements made herein are solely the responsibility of the authors.

References

1. Rosi, A., Mamei, M., Zambonelli, F., et al.: Social sensors and pervasive services:
approaches and perspectives. In: Proceedings of PERCOM (2011)

2. Aggarwal, C.C., Abdelzaher, T.: Social sensing. In: Aggarwal, C.C. (ed.) Managing
and Mining Sensor data. Springer, Boston (2013). https://doi.org/10.1007/978-1-
4614-6309-2 9

3. Aamir, T., Dong, H., Bouguettaya, A.: Trust in social-sensor cloud service. In:
Proceedings of IEEE ICWS (2018)

4. Aamir, T., Bouguettaya, A., Dong, H., et al.: Social-sensor cloud service selection.
In: Proceedings of IEEE ICWS (2017)

5. Aamir, T., Bouguettaya, A., Dong, H., Mistry, S., Erradi, A.: Social-sensor cloud
service for scene reconstruction. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 37–52. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69035-3 3

6. Neiat, A.G., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of
sensor cloud services. In: ICWS (2014)

7. Bouguettaya, A., Singh, M., et al.: A service computing manifesto: the next 10
years. In: CACM (2017)

8. Wang, H., Shi, Y., et al.: Web service classification using support vector machine.
In: Proceedings of IEEE ICTAI (2010)

9. Aamir, T., Dong, H., Bouguettaya, A.: Stance and credibility based trust in social-
sensor cloud service. In: Proceedings of WISE (2018)

10. Ghari Neiat, A., Bouguettaya, A., Sellis, T.: Spatio-temporal composition of crowd-
sourced services. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.)
ICSOC 2015. LNCS, vol. 9435, pp. 373–382. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48616-0 26

11. Lowe, D.G.: Distinctive image features from scale-invariant key points. IJCV 60,
91–110 (2004)

https://doi.org/10.1007/978-1-4614-6309-2_9
https://doi.org/10.1007/978-1-4614-6309-2_9
https://doi.org/10.1007/978-3-319-69035-3_3
https://doi.org/10.1007/978-3-662-48616-0_26
https://doi.org/10.1007/978-3-662-48616-0_26

362 T. Aamir et al.

12. Li, L., Liu, D., Bouguettaya, A.: Semantic based aspect-oriented programming for
context-aware web service composition. Inf. Syst. 36(3), 551–564 (2011)

13. Bouguettaya, A., Nepal, S., et al.: End-to-end service support for mashups. In:
IEEE TSC (2010)

14. Mihalcea, R., et al.: Corpus-based and knowledge-based measures of text semantic
similarity. In: Proceedings of AAAI (2006)

QITA: Quality Inference Based Task
Assignment in Mobile Crowdsensing

Chenlin Liu, Xiaofeng Gao(B), Fan Wu, and Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
ChanningLiu@sjtu.edu.cn, {gao-xf,fwu,gchen}@cs.sjtu.edu.cn

Abstract. With the rapid proliferation of mobile devices, Mobile
Crowdsensing (MCS) has become an efficient way to ubiquitously sense
and share environment data. Due to the openness of MCS, sensors and
workers are of different qualities. Low quality sensors and workers may
yield low sensing quality. Thus it is important to infer workers’ qual-
ities and seek a valid task assignment with enough total qualities for
MCS. To solve the quality inference problem, we adopt truth inference
methods to iteratively infer workers’ qualities. This paper also proposes
an task assignment problem called quality-bounded task assignment with
redundancy constraint (QTAR) based on truth inference. We prove that
QTAR is NP-complete and propose a (2 + ε) - approximation algorithm
QTA for QTAR. Finally, experiments conducted on real dataset prove
the efficiency and effectiveness of the algorithms.

Keywords: Mobile Crowdsensing · Task assignment · Truth inference

1 Introduction

In recent years, the rapid proliferation of mobile devices has changed people’s
lives. Mobile Crowdsensing (MCS) [2] has thus become an efficient way to ubiq-
uitously sense and share environment data with mobile devices. One of the sig-
nificant advantage of MCS comparing with traditional sensor networks comes
from its active involvement of workers to collect and share sensing data. For a
typical MCS, one of the most important problem is how to appropriately assign
tasks to workers, which has recently been widely studied by researchers [4,6,7].

Due to the openness of MCS, sensors and workers are of different qualities.
Low quality sensors and workers may yield low sensing quality. Low quality
devices may collect noisy, even inaccurate sensing data. Moreover, low quality
workers may randomly collect data ignoring the location constraints in oder
to deceive payment. To overcome the quality inference problem, this paper
introduce a method called truth inference to simultaneously infer the workers’
qualities and the truth of each task. Most existing truth inference methods are
redundancy-based, which means that one task is assigned to multiple workers.
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 363–370, 2018.
https://doi.org/10.1007/978-3-030-03596-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_26

364 C. Liu et al.

By guaranteeing a certain amount of redundancy for each tasks, this paper
investigates the quality-aware task assignment problem with budget constraint
and propose quality bounded task assignment with redundancy constraint
(QTAR). In QTAR, the total quality of selected workers exceeds the quality
bound while the overall cost is minimized in the task assignment process. Differ-
ent from tradition task assignment problem, we add redundancy constraint to
satisfy the preliminaries of truth inference, which requires that each task should
be assigned a certain or more amount of workers.

Therefore, our method is divided into two steps. Firstly, a truth inference
method is adopted to infer workers’ qualities based on previously aggregated
sensing data. Next, we solve QTAR with the inferred workers’ qualities in step
1. After workers finish their assigned tasks, the sensing data are aggregated and
prepared to be used in the following quality inference step. This method, which
is called Quality Inference Based Task Assignment (QITA), is an effective way
to improve the overall sensing quality of MCS.

This paper proves that QTAR problem is NP-complete and propose a (2+ ε)
approximation algorithm QTA for QTAR. Finally, we evaluate our algorithms
by conducting a series of experiments on both synthesis data and real dataset.

2 Related Work

In this paper, we focus on minimizing monetary cost for task assignment while
satisfying the quality constraint. In order to infer workers’ qualities under the
lack of real data, we adopt truth inference methods [1,9], which has been widely
studied in existing crowdsourcing works. Based on workers’ answers, truth infer-
ence methods iteratively infer the truth and workers’ qualities. Different from
online crowdsourcing, in MCS, the aggregated sensing data are numeric data such
as air quality and WiFi signal strength. A few researches studied truth inference
methods for numeric tasks. [5] assumed that the answers of workers follows cer-
tain biases and variance and the paper adopted EM algorithm to iteratively infer
the truth and workers’ qualities. Moreover, [3] considered the confidence of each
worker and proposed a confidence-aware truth discovery method to infer truth
by considering the confidence interval of the inference.

3 Problem Formulation

We consider an MCS consists of a cloud server, multiple sensing tasks and mul-
tiple workers with mobile devices. When a worker is assigned a sensing task,
her/he moves to the specified location to sense data. Based on the moving dis-
tance, cloud server allocates monetary reward to the worker. Let Cij denote the
monetary cost for assigning worker j to task i.

Suppose that there are m sensing tasks and n workers. Let T =
{t1, t2, . . . , tm} denote the set of tasks and W = {w1, w2, . . . , wn} be the set
of workers. The quality evaluation of worker j is represented by qj ∈ R

+,
the larger qj is, the more accurate the collected data of worker j will be. Let

QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing 365

Q = {q1, q2, . . . , qn} denote the set of workers’ qualities. We will further discuss
how to compute Q in Sect. 4. In order to satisfy the redundancy requirements R
of truth inference methods, for each task, the number of assigned workers is no
less than R.

Since we prefer to assign tasks to workers with higher qualities, this paper
aims to find a subset of worker set W with one task assigned to each worker,
such that the total worker quality is no less than the quality bound QB and
the overall cost is minimized. For each task, the number of assigned workers is
greater or equal to the redundancy requirement R. This problem is defined as
quality bounded task assignment with redundancy constraint (QTAR).

To solve the problem, we propose a method called Quality Inference Based
Task Assignment (QITA). There are two processes in QITA as follows:

Quality Inference: Based on the previously aggregated sensing data, QITA
adopts truth inference method to iteratively infer both the truth of tasks and
workers’ qualities. Workers who submit sensing data that are close to the truth
will be assigned higher qualities.

Task Assignment: With worker set W , Task set T and quality set Q, QITA
selects a subset S ∈ W as the selected worker set, then assigns one task for each
worker w ∈ S. After the workers finish their tasks, the aggregated sensing data,
which is denoted as D, will be used for next quality inference process.

Figure 1 shows the workflow of QITA.

Quality Inference Task Assignment

Q

t1

t2

t3

t4

Fig. 1. The Workflow of QITA

n

R R

nR

tasks:

subtasks:

Fig. 2. An example of tasks dividing
into subtasks

4 Quality Inference

Considering that the sensing data in MCS are mostly numeric numbers (e.g.,
WiFi signal strength, air quality index, etc.), we adopt quality inference algo-
rithm based on truth inference method called LFC N [5]. In this section we
introduce the modeling and quality inference algorithm of this method.

For the ith task ti ∈ T , let Si = {wi
1, w

i
2, . . . , w

i
mi

} denote the worker set
assigned to task ti. Let di

j = {di
j1, d

i
j2, . . . , d

i
jλ} be the aggregated sensing data

of worker wi
j for task ti. Assume that di is the truth (real sensing data) of task

366 C. Liu et al.

ti, our model is that the worker provides a noisy version of the actual true value
di. For worker wi

j we assume a Gaussian with mean di (the truth) and inverse-
variance (quality) qj , that is, Pr(di

j | di, qj) = N (di
j | di, 1/qj). To obtain the

exact methods of truth inference step and quality inference step, the LFC N
method adopts a Maximum-Likelihood Estimator as follows:

Assume the tasks are independent, for task ti, we suppose that a worker
need to sense for λ times of data to complete this task. Let di = {yi

1, y
i
2, . . . , y

i
λ}

denote the inferred truth for task ti each time the worker senses the data. q =
{q1, q2, . . . , qm} denotes the inferred quality of each worker. The likelihood of
the parameter θ = (di, q) given the observations Di can be factored as Pr(Di |
θ) = Pr(di

1,d
i
2, . . . ,d

i
mi

| θ). By maximizing the log-likelihood, we obtain the
update equation for the inferred quality and inferred truth

1
q̂j

=

∑λ
k=1 (di

jk − ŷi
k)2

λ
ŷi

k =

∑mi

j=1 q̂jd
i
jk∑mi

j=1 q̂j
(1)

Since the two parameters q and di are coupled together, by using the equa-
tions in Eq. (1), we can iteratively infer the qualities and truth until convergence.
Therefore we can reasonably infer the workers’ qualities by adopting the truth
inference based method. The inferred quality set will be used as an input of the
task assignment process of QITA.

5 Quality Bounded Minimum Cost Task Assignment

5.1 QTA: An Approximation Algorithm for QTAR

The goal of our assignment is to minimize the overall cost within the quality
bound and the redundancy constraint, which is formally formulated as QTAR
problem in Sect. 2. Let the redundancy constraint R = 0 and suppose the number
of workers m = 1, the problem can be reducted to a 0-1 knapsack problem and
thus QTAR is NP-complete.

To satisfy the redundancy constraint, we divide each task ti into R sub-
tasks. As is shown in Fig. 2, the subtasks have the same locations with the tasks
they are born from. Completing the original tasks with redundancy constraint
is equivalent to assigning more than one workers to these subtasks.

This paper proposes a (2+ ε) - approximation algorithm called QTA to solve
QTAR. This algorithm successively solves two related problems, then combines
the results of both problems as the final result.

Minimum Worker Matching (MWM): Assign exactly one worker to each
task and the total cost is minimized.

We formulate this problem as a Minimum Weighted Complete Mathcing prob-
lem. Let task set T and worker set W be the disjoint sets of nodes in a bipartite
graph. The edge set E where each edge has one endpoint in each of T and W
denotes the assignment between workers and tasks; let B = (T,W,E) denotes

QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing 367

such a bipartite graph. If edge (ti, wj) ∈ E, then task ti is assigned to worker
wj . We assume that the weight of each edge (ti, wj) ∈ E is the cost Cij .

By adopting a negative weight C̃ij = −Cij for each edge, we convert the
problem into a Maximum Weighted Complete Matching problem, which can be
solved in polynomial time by the Hungarian method (also been known as the
Kuhn-Munkres algorithm or Munkres assignment algorithm).

Quality Bounded Minimum Assignment (QBMA): An assignment sat-
isfying that the total qualities of workers exceeds the quality bound and the
overall cost is minimized. Each worker can only be assigned one task.

QBMA can be reduced from 0-1 knapsack problem when m = 1. Due to the
NP-completeness of QBMA, this paper proposes a dynamic programming based
FPTAS (1+ ε) - approximation algorithm by scaling the cost down enough such
that the costs of all assignments are polynomially bounded in n. Let Cmax denote
the maximum cost among workers and tasks, the algorithm is as follows:

Algorithm 1. FPTAS Approximation Algorithm for QBMA

1 Given ε > 0, let K = εCmax

n ;
2 For each possible assignment aij , define C

′
ij = �Cij

K � ;
3 Using the dynamic programming to find the minimum cost assignment S

′

with these as the costs of assignments ;
4 Output S

′
;

Suppose that aij represents an assignment between worker wj and task ti,
then we introduce our approximation algorithm QTA for QTAR.

Algorithm 2. QTA: An Approximation Algorithm for QTAR
Input: task set T , worker set W , quality set Q and quality bound QB

Output: assignment set S
1 Divide the QTAR into an MWM and a QBMA ;
2 Solve the corresponding MWM and QBMA, the output is A1 and A2;
3 Initially S = ∅ ;
4 foreach 1 ≤ j ≤ n do
5 foreach 1 ≤ i ≤ mR do
6 if aij ∈ A1 then S ← aij ; break ;
7 else if aij ∈ A2 then S ← aij ;

8 return S ;

In QTA, we divide the QTAR into an MWM and a QBMA. For the MWM,
we construct a bipartite graph B = (T,W,E1). Let T be the task set of mR
subtasks and W denote the worker set. The cost Cij denotes the edge weight
between ti and wj . For the QBMA, we find an assignment for task set T and
worker set W . Different from QTAR, each worker can only be assigned one task
while each task can be assigned to multiple or zero workers.

368 C. Liu et al.

5.2 Algorithm Analysis

We define C1, C2 and CS as the total cost of solutions of MWM, QBMA and
QTAR respectively. Then we define OPT2 and OPTS as the total cost of optimal
solutions of QBMA and QTAR. We claim that QTA is a (2 + ε)-approximation.
To prove it, we first prove the following two lemmas.

We define C1, C2 and CS as the total cost of solutions of MWM, QBMA
and QTAR respectively. Then we define OPT2 and OPTS as the total cost of
optimal solutions of QBMA and QTAR.

Theorem 1. QTA is a (2 + ε)-approximation algorithm.

Proof. In MWM, we find a complete match for tasks with minimum total cost
C1. Assume each task is only assigned to one worker in QTAR, the result of
QTAR is at most as good as MWM, which means the total cost of QTAR can
not be smaller than MWM. Thus C1 ≤ OPTS .

Comparing with QTAR, we ignore the redundancy constraint in QBMA,
thus the result of QTAR is at most as good as QBMA. Then we have C2 ≤
(1 + ε)OPT2 ≤ (1 + ε)OPTS .

In the combining step of QTA, we discard some assignment to ensure that
one worker is assigned exactly one task. The total cost decreases in this step,
which means CS ≤ C1 + C2. Finally, we have

CS ≤ C1 + C2 ≤ OPTS + (1 + ε)OPTS = (2 + ε)OPTS ,

which completes the proof.

6 Experiments

In this Section, we evaluate the performance of QITA by conducting a series
of experiment on both synthesis data and real dataset. From the results of our
experiments, the effectiveness and efficiency of QITA is proved.

6.1 Quality Inference Simulation Experiments

For each worker, we randomly generate Gaussian distribution data as the sensing
data. Suppose the truth is d and the quality of worker wj is qj , then the generated
data Dj satisfies the Gaussian distribution with d as the mean and 1/qj as the
variance. Initially, we have three kinds of workers: (1) bad workers with q = 1;
(2) normal workers with q = 10; (3) good workers with q = 100. For totally 30
workers, workers with ID (1–10) are bad workers, the next 10 workers are normal
workers and the last 10 workers are good workers. The three kinds fo workers
should be clearly distinguished in the result of quality inference.

As is shown in the following figures, for all workers, the average error between
inferred qualities and real qualities is less than 10%. Therefore, we can draw the
conclusion that the quality inference is accurate and effective (Figs. 3, 4 and 5).

QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing 369

Fig. 3. Worker (1–10) Fig. 4. Worker (11–20) Fig. 5. Worker (21–30)

6.2 Task Assignment Experiments

We evaluate our task assignment algorithms by conducting experiments on real
dataset TSMC2014 [8]. This dataset includes long-term (about 10 months) check-
in data in New York city and contains 227,428 check-ins. We randomly select
check-ins of different users as our worker set. The qualities of workers are gener-
ated by Gaussian Distribution with different means. Unless specified otherwise,
we suppose that the positions of tasks are randomly placed in the sensing area.
For each set of experiment parameter choices, we run the experiment 100 times
with randomized qualities for workers and locations for tasks then task the aver-
age as the result. Figure 6 provides the evaluation results.

Fig. 6. Performance of
QTA

Fig. 7. Quality compar-
ison

Fig. 8. Cost comparison

The total cost decreases with the increase of quality means. Higher mean of
qualities means higher average value of qualities, which makes it easier for QTA
to reach the quality bound. Moreover, with the decrease of quality bound, the
total cost also declines due to the decreasing demand for workers.

This paper evaluates QTA by implementing a benchmark: considering the
coverage quality. The coverage quality has been considered as an optimiza-
tion goal to improve sensing quality in many previous researches [4,7], which
is defined as the number of sensor readings in each MCS sensing cycle. The
larger amount of sensor readings in MCS, the higher the coverage quality.

370 C. Liu et al.

Figure 7 shows the comparison result of QTA and benchmark under different
quality bounds. The total quality of benchmark’s result becomes lower than
QTA with the increase of quality bound. The comparison result under different
total cost is illustrated in Fig. 8. The total quality of QTA’s result is larger than
benchmark when the amounts of total cost are close for both algorithms, which
proves the effectiveness and efficiency of QTA.

7 Conclusion

Motivated by the truth that low quality and malicious workers may yield low
sensing quality in MCS, we studied quality-aware redundancy-based task assign-
ment problem in MCS. We first adopted truth inference methods to iteratively
infer the truth and qualities based on the aggregated sensing data. By taking the
quality inference result as an input, we proposed quality bounded task assignment
with redundancy constraint (QTAR). We proved that QTAR is NP-complete and
proposed (2+ε)-approximation algorithm QTA for QTAR. By conducting exper-
iment on both synthesis data and real dataset, we compared the performance
between our algorithms and benchmarks. Experiment results showed that our
algorithms is efficient and effective.

Acknowledgement. This work is supported by the program of International S&T
Cooperation (2016YFE0100300), the China 973 project (2014CB340303), the National
Natural Science Foundation of China (Grant number 61472252, 61672353), the Shang-
hai Science and Technology Fund (Grant number 17510740200), and CCF-Tencent
Open Research Fund (RAGR20170114).

References

1. Dong, X.L., Berti-Équille, L., Srivastava, D.: Integrating conflicting data: the role
of source dependence. PVLDB 2(1), 550–561 (2009)

2. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49(11), 32–39 (2011)

3. Li, Q., et al.: A confidence-aware approach for truth discovery on long-tail data.
PVLDB 8(4), 425–436 (2014)

4. Philipp, D., Stachowiak, J., Alt, P., Dürr, F., Rothermel, K.: Drops: model-driven
optimization for public sensing systems. In: PerCom, pp. 185–192 (2013)

5. Raykar, V.C., et al.: Learning from crowds. JMLR 11, 1297–1322 (2010)
6. Wu, S., Gao, X., Wu, F., Chen, G.: A constant-factor approximation for bounded

task allocation problem in crowdsourcing. In: GLOBECOM, Singapore, pp. 1–6, 4–8
December 2017

7. Xiong, H., Zhang, D., Chen, G., Wang, L., Gauthier, V.: Crowdtasker: maximizing
coverage quality in piggyback crowdsensing under budget constraint. In: PerCom,
pp. 55–62 (2015)

8. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by
leveraging user spatial temporal characteristics in lbsns. IEEE Trans. Syst. Man
Cybern.: Syst. 45(1), 129–142 (2015)

9. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing: is
the problem solved? PVLDB 10(5), 541–552 (2017)

Recommendation

Expert Recommendation via Tensor
Factorization with Regularizing

Hierarchical Topical Relationships

Chaoran Huang1(B), Lina Yao1, Xianzhi Wang2, Boualem Benatallah1,
Shuai Zhang1, and Manqing Dong1

1 UNSW Sydney, Sydney, NSW 2052, Australia
{chaoran.huang,lina.yao}@unsw.edu.au

2 University of Technology Sydney, Broadway, NSW 2007, Australia
sandyawang@gmail.com

Abstract. Knowledge acquisition and exchange are generally crucial yet
costly for both businesses and individuals, especially when the knowledge
concerns various areas. Question Answering Communities offer an oppor-
tunity for sharing knowledge at a low cost, where communities users,
many of whom are domain experts, can potentially provide high-quality
solutions to a given problem. In this paper, we propose a framework for
finding experts across multiple collaborative networks. We employ the
recent techniques of tree-guided learning (via tensor decomposition), and
matrix factorization to explore user expertise from past voted posts. Ten-
sor decomposition enables to leverage the latent expertise of users, and
the posts and related tags help identify the related areas. The final result
is an expertise score for every user on every knowledge area. We experi-
ment on Stack Exchange Networks, a set of question answering websites
on different topics with a huge group of users and posts. Experiments
show our proposed approach produces steady and premium outputs.

Keywords: Knowledge discovery · Stack Exchange Networks
Expertise finding · Question answering

1 Introduction

Question and Answering (Q&A) websites are gaining momentum as an effective
platform for knowledge sharing. These websites usually have numerous users
who continuously contribute. Many researchers have shown interests in the rec-
ommendation issues on these websites such as identifying experts. Despite the
tremendous research efforts on user recommendation, no state-of-the-art algo-
rithms consistently stand out compared with the others. As the recent work
increasingly focuses on domain-specific expertise recommendation, there emerges
the research on multi-domain (or cross-domain) recommendation in the “Stack
Exchange (SE) Networks”1 repository. SE is a network of 98 Q&A subsites, all
1 stackexchange.com.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 373–387, 2018.
https://doi.org/10.1007/978-3-030-03596-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_27&domain=pdf
https://stackexchange.com/
https://doi.org/10.1007/978-3-030-03596-9_27

374 C. Huang et al.

following the same structure. This consistency enables us to expand our app-
roach from one subsites to the all the other subsites on SE. These subsites cover
various disciplines from computer science to even the Ukrainian language. Take
“Stack Overflow”2 (SO) as an example (Fig. 4). It is a software-domain-oriented
website where users can post and answer questions, or vote up/down to other
users’ questions and answers. The author of a question (a.k.a., the requester)
can mark an answer as accepted and offer a bounty to the answerer.

So far, there are two popular ways to locate experts: collaborative filtering
(CF) and content-based recommendation. The former extracts similar people
without understanding the contents while the latter focuses on building user
profiles based on users’ activity history. CF relies merely on ratings (e.g., scores
in SE networks) and therefore may not well handle sparse Q&A subsites data,
where many questions involve very limited users. Usually, users can vote on ques-
tions, and the vote counts can serve as ratings to the questions. An earlier work
[1] also suggests that the lack of information can be a challenge for recommenda-
tion techniques. The work aims to address the data sparsity issue by selectively
using the ratings of some experts. This experts presumed by this approach is
exactly the same experts we aim to find. As for content-based approaches, a
typical approach (e.g., [17]) builds user profiles based on user’s knowledge scores
and user authority in link analysis. The knowledge scores are called reputation in
[17], which is derived from users’ historical question-answering records. Srba et
al. [22] point out that some users may maliciously post low-quality content, and
those highly active spammers might be taken as experts in a system. Huna et al.
[11] solve this problem by calculating question and answer difficulties based on
three aspects of hints: the numbers of user-owned questions and answers, time
difference of the question being posted and answered, average answering time,
and score of the answer with the maximum of score among all the answers pro-
vided by the answerer. Although these approach may compute user reputation,
they also take considerable cost on building user profiles. Matrix Factorization is
one method that works on sparse data , while matrices can only store two dimen-
sions of data, which is not handy in many applications, where users’ attributes
can be vital to the identification of experts. Recently tensor-based approaches
became popular as an alternative to matrix factorization, made it feasible to
handle multi-faceted data [27]. For example, Ge et al. in [7] decompose a (Users,
Topics, Experts) tensor for the personalized expert recommendation; Bhargave
et al. [3] propose a (User, Location, Activity, Time) tensor decomposition along
with correlated matrix to make recommendations based on user preferences.

We aim to recommend experts in multiple areas simultaneously (Fig. 1). In
particular, we use the Stack Exchange networks dump, which contains various
areas, to build up a multi-domain dataset. We propose group lasso [15] that works
on a relationship tree formed upon the natural structure of the SE network. The
tree is used to guide the decomposition of 4th rank tensor data consisting of
questions, topics, voting and expertise information. We additionally factorize
selected matrices to provide additional latent information.

2 stackoverflow.com.

https://stackoverflow.com/

Expert Recommendation via Tensor Factorization 375

Fig. 1. Work-flow of our proposed methodology: for a given input query, experts are
output based on the detected topic of the query combined with our 4th order tensor,
which contains latent information like topics, questions, voting, and experts.

Our contributions in this work are as follows:

1. We take the hierarchical relationship between participants and topics into
account and build a model that combines tree-guided tensor decomposition
and matrix factorization;

2. We introduce the relationship tree group lasso to alleviate the data sparsity
problem;

3. We conduct experiments on real-world data and evaluate the proposed app-
roach against state-of-the-art baselines.

2 Related Works

Expert recommendation has been studied extensively in the past decade. Gen-
erally, skillfulness and resourcefulness of experts can assist users in making deci-
sions more professionally and solving problems more effectively and efficiently.
That is, making appropriate recommendations to users with the different require-
ment can be important.

The expert recommendation techniques apply to many areas, and different
fields may require differently in methodologies to handle different situations.
Baloga et al. [2] introduce a generative probabilistic framework for find experts
in various enterprise data sources. Daud et al. [4] devise a Temporal-Expert-
Topic model to capture both the semantic and dynamic expert information and
to identify experts for different time periods. Fazelzarandi et al. [6] develop
an expert recommendation system with utilizing the social networks analysis
and multiple data source integration techniques. Wang et al. [23] propose a
model ExpertRank which take both document profile and authority of experts
into consideration to perform better. Huang et al. [10] take advantage of word
embedding technology to rank experts both semantically and numerically. More
relate works can be found in a survey by Wang et al. [24].

The works mentioned above mostly focus on recommend experts for organi-
zations, enterprises or institutes. There is also some literature on recommending

376 C. Huang et al.

experts in Q&A System, which is more related to our work. Kao et al. [13]
propose to incorporate user subject relevance, user reputation and authority of
categories into expert finding system in Q&A websites. Riahi et al. [21] inves-
tigate two topic model namely Segmented Topic Model and Latent Dirichlet
Allocation model to direct new questions in Stack-overflow to related experts.
Ge et al. [7] propose a personalized tensor-based method for expert recommen-
dation by considering factors like geospatial, topical and preferences. Liu et
al. in [18] propose a method to rank user authority by exploiting interactions
between users, which is aimed to avoid potential impacts of users with consid-
erable social influences. They introduced topical similarities into link analysis
to rank user authorities for each question. Latent Dirichlet allocation is applied
to extract topics from both the questions and answers of users so that topical
similarities between questions and answers can be measured, and then related
users can be ranked by links. Huna et al. found Q&A communities often eval-
uate user reputation limited to the number of user activities [11], regardless of
efforts on creating high-quality contents. This causes inaccurate measurements
in user expertise and their value. Inspired by former works, they calculate user
reputations for asking and answering questions. The reputation results from the
combination of the difficulty score of a question and the utility score for the
question or answer. A utility score measures the distance between a score and
the maximum score of the post, and the difficulty measures the times that a user
spends on the question. The time spent on questions is normalized on each topic.
Fang et al. [5] are well aware of the quantity of social information Q&A website
can provide, along with the importance of user-generated textual contents. Their
idea to simultaneously model both social links and textual contents leads to the
proposed framework named “HSNL” (CQA via Heterogeneous Social Network
Learning). The framework adopts random walk to exploit social information and
build the heterogeneous social network, and a deep recurrent neural network was
trained to give a text-based matching score for questions and answers.

Our proposed model builds on tensor decomposition, which has been applied
to various fields such as neuroscience, computer vision, and data mining [16].
CANDECOMP/PARAFAC (CP) and Tucker decomposition are two effective
ways to solve tensor decomposition problems. We adopt the former in this work.
Tensor decomposition based recommender systems can also be found widespread
in recent studies. Rendle et al. [19] introduce a tensor factorization based ranking
approach for tag recommendation. They further improve the model by introduc-
ing pairwise interaction and significantly improve the optimization efficiency.
Xiong et al. [25] propose a probabilistic tensor decomposition model and regard
the temporal dynamics as the third-dimension of the tensor. Karatzoglou et
al. [14] offer a context-aware tensor decomposition model to integrate con-
text information with collaborative filtering tightly. Hidas et al. [9] investigate
approach which combines implicit feedback with context-aware decomposition.
Bhargava et al. [3] present a tensor decomposition-based approach to model the
influence of multi-dimensional data sources. Yao et al. [26] decompose tensor
with contextual regularization to recommend location points of interest.

Expert Recommendation via Tensor Factorization 377

3 Methodology

CANDECOMP/PARAFAC Tensor Decomposition, or CP Decomposition, is dis-
covered by Kiers and Möcks independently [16]. For a Rank-R size-N tensor X
(R ∈ N), let U1 ∈ R

I1×R, U2 ∈ R
I2×R, ..., UR ∈ R

IN×R, we have the decomposi-
tion:

X ≈
R∑

r=1

U1i1rU2i2r · · · URiNr (1)

While multiple methods can do tensor decomposition, the most common and
effective one shall be the alternating least squares (ALS) [16].

3.1 Relationship Tree Modelling

Our data is naturally divided into subsites, topics, and posts, as shown in Fig. 3.
This decomposition forms a tree, with subsites on top, and posts as leaves. As
our tensor models the expertise information based on user activities, this tree
reserves the relationships of entities. We illustarte the construction of the tree
as follows (Fig. 2).

Fig. 2. An example of modeled tree representation of hierarchical relationship

Given the tree T , we assume that the i-th level of T has ni nodes and
organized as Ti = {Gi

1, G
i
2, ..., G

i
ni

}. And so, a group Gv where node v ∈ V is in
the tree, and all leaves under v are in Gv. Now we can define a tree-structured
regulation as

Weight(U1) =
λW

2

J∑

k=1

ωi
j‖U1k‖22 (U1k ∈ Gi

j) (2)

This inspired from Moreau-Yosida regularization, and here λW is the Moreau-
Yoshida regulation parameter for tree T , ‖ · ‖ denotes Euclide an norm, U1k is

378 C. Huang et al.

a vector of U1, where U1 is the first factor matrix of the tensor X , which
corresponding to a question post and detailed explaination can be found in the
following subsection. Additionally, ωi

j is set by following Kim’s approach [15] and
it means a pre-set weight for j-th node at level i. ωi

j can be obtained by setting
two variables summed up to 1, i.e. sij for the weight of independent relevant
covariates selecting and gij for group relevant covariates selecting. We have:

d∑

i

n∑

j

ωj
i ‖U1

Gi
j

‖2 = λωj
0 (3)

where

ωj
i =

⎧
⎨

⎩
sij ·

∑
cqp∈Child(vi

j)
|ωq

p| + gij · ‖U1
Gi

j

‖2 vi
j is a internal node,

|U1
Gi

j

| vi
j is a leaf node.

(4)

3.2 Proposed Model

Our dataset is obtained naturally categorized by their subdomains, which we call
it “subsites” here. Additionally, in each subsite, we can find tags in every post,
and such information is often an indicator of the post’s topics. Accordingly,
after gathering those data, we can build a tree to represent such hierarchical
information (shown in Fig. 3).

All Stack Exchange subsites share the same structure. That means, in all this
subsites, answerers may propose multiple answers and questioners can adopt only
one answer for each question. Also, both question and answers can be commented
and voted, and the difference between vote-ups or vote-downs on each question
is calculated into a score. Figure 4 shows an example.

Fig. 3. Tree representation of hierar-
chical entity relationship

Fig. 4. An example of Stack Overflow
post (postId:34672987), here demonstrates
a question with its description and com-
ments, along with score of the question.

Expert Recommendation via Tensor Factorization 379

Fig. 5. Proposed decomposition

Instead of the simple score-user matrix based recommendation, we propose
a tensor-decomposition based tree-guided method, based on the basic idea of
Tree-Guided Sparse Learning [12].

1. A 4th-order-tensor, Question ×Topic×Voting×Expert. Shown in Fig. 5,
we denoted it as X ∈ R

I×J×K×L, where I is the number of questions, J
is the number of Topics, K is the number of voting of question towards
questioners, L is the expert users and the value of the tensor is the number
of expertise evaluation criterion. With limited users participated in certain
domains, it is believed that the tensor is very sparse. Additionally we denote
U1 ∈ R

I×R,U2 ∈ R
J×R,U3 ∈ R

X×R,U4 ∈ R
L×R as factor matrices of

tensor X .
2. A subsite×answerer matrix. We denoted this as M ∈ R

X×Z , where if
answerer z appears in subsite x, Mx,z = 1 else Mx,z = 0.

3. A topics×answerer matrix. We denoted this as N ∈ R
Y ×Z , similarly here,

when answerer z appears in topic y, My,z = 1 else My,z = 0.
4. Hierarchical relationship tree T of depth d. Due to the isolation of subsites and

their topics, our data show clearly a structured sparsity. Thus, we can utilize
tree-guided group lasso in our model. That is, besides above two supplement
matrices, we also use the tree shown in Fig. 3 to guide the learning.

After modeling the data, we apply CANDECOMP/PARAFAC (CP) tensor
decomposition to factorize the tensor and solve the tree-structured regression
with group lasso (Table 1).

First, we decompose the 4th-order tensor with regulation by Alternating
Least Square (ALS) as follows:

Tensor(U1,U2,U3,U4) =
1
2
‖X − �U1,U2,U3,U4�‖2F

+
λX
2

(‖U1‖2F + ‖U2‖2F + ‖U3‖2F + ‖U4‖2F)
(5)

Then, we can have the aforementioned 2 matrices decompose as:

Networks(S,A) =
1
2
‖Msite − SAT ‖2F +

λS

2
(‖S‖2F + ‖A‖2F) (6)

380 C. Huang et al.

Table 1. Symbol table

Symbol Description

X ∈ R
I×J×K×L A 4th-order-tensor,

I, J, J, L accordingly is the number of Question, Topic,
Voting and Expert

U1 ∈ R
I×R

U2 ∈ R
J×R

U3 ∈ R
X×R

U4 ∈ R
L×R

Factor matrices of tensor X

M ∈ R
X×Z subsite×answerer matrix

where X, Z are the number of subsite and answerer

N ∈ R
Y ×Z topic×answerer matrix

where Y are the number of topic

Ti = {Gi
1, G

i
2, ..., G

i
ni

} Set of node in the i-th level of tree T
Gni is the ni-th node in the level

Topic(T,A) =
1
2
‖Mtopic − TAT ‖2F +

λT

2
(‖T‖2F + ‖A‖2F) (7)

Since each subsite Sj contains a group of questions U1j , we expect Sj to be
similar to the average U1j , which can be solved as a regulation:

Site(S,U1) =
λS

2

U∑

j=1

‖Sj − 1
G1

j

∑

U1k∈G1
j

U1k‖22 (8)

By combining those objectives and regulations, we have the following objec-
tive function:

f(U1,U2,U3,U4,S,A,T) = Tensor(U1,U2,U3,U4)
+ Weight(U1) + Networks(S,A)
+ Topic(T,A) + Site(S,U2)

(9)

Equation 5 follows the CANDECOMP/PARAFAC Decomposition, accom-
plished by the ALS algorithm (see Algorithm1), which is a popular way to
decompose a tensor.

Computational Complexity Analysis. The time complexity of the above
decomposition includes two parts. The first concerns initializing the set of A(n)s.
We note the average of the dimension of our tensor as D, which we use to
represent the size of the tensor as DN . The initialization is a traverse of A(n)s
and has a time complexity of O(NDR). Assuming that we use index flip to
implement the matrix transpose, its time complexity is O(1). Thus, the total
time complexity on N loops is O((NDR)2 + N2DR) time. Combining the two
steps, we now have the time complexity of the algorithm as O((NDR)2).

Expert Recommendation via Tensor Factorization 381

Algorithm 1. CP Decomposition via Alternating Least Squares, where N -th
order tensor X of size I1 × I2 × ... × IN is decomposite into R components
Input: X ,R
Output: λ,A(1),A(2), ...,A(n)

Algorithm CP − ALS(X ,R)
initialize A(n) ∈ R

In×R for n = 1, 2, ..., N
1: for n = 1, 2, ..., N do
2: V ← A(1)�A(1) ∗ ... ∗ A(n−1)�A(n−1) ∗ A(n+1)�A(n+1)∗

... ∗ A(N)�A(N)

3: A(n) ← Xn(A(n) � ... � A(n+1) � A(n−1) � ... � A(1))V∗

4: normalize columns of A(n) and store norms as λ
5: if fit stops improve or iteration reach threshold then
6: break
7: end if
8: end for
9: return λ,A(1),A(2), ...,A(n)

4 Experiments and Evaluation

In this section, we report our experiments to evaluate our proposed approach. We
first briefly introduce our dataset and the evaluation metrics, and then present
the results analysis and evaluation.

Until now, there is no “gold standard” to evaluate our approach regarding
expert recommendation, to the best of our knowledge. Also, it is difficult to
judgment user’s expertise manually due to the large-scale data (e.g., our test data
contains more than 2 million users and nearly 20 million voting activities on 5
million posts) and the lack of ranking information in the dataset—the reputation
scores of users in Stack Exchange systems are computed globally, which cannot
be utilized to evaluate individual’s ability in specific domains or topics.

Similar to Huna et al. [11], we calculate the reputation score of each user by
topics, according to the rules adopted by Stack Exchange3. We simplify the rule
by removing bounty-related and edition-related reputation differences. Table 2
summarizes the simplification results. A rank can be established based on the

Table 2. Adopetd reputation rules

Activity Reputation gaines

Answer is upvoted +10

Question is upvoted +5

Answer/question is downvoted −2

Downvote an answer −1

Answer is accepted +15

3 https://stackoverflow.com/help/whats-reputation.

https://stackoverflow.com/help/whats-reputation

382 C. Huang et al.

built-in reputation scores of users, following the approach proposed by Huna
et al. [11]. The rank serves as a baseline for comparative performance evaluation.
Given the lack of a standard to measure verifiable expertise of users, we adopt
this idea and conduct comparison experiments.

4.1 Dataset and Experiment Settings

Dataset. As mentioned above, the Stack Exchange Networks includes 98 sub-
sites and massive data. We identified 14,220,976 users, 46,575,393 posts, 178,575
tags, and 178,184,014 votes. Computing at such a scale can be challenging to
any existing systems. Thus, in this work, we conducted experiments on several
reasonably selected subsets, which contains a feasible yet still decent volume of
data.

Table 3. Selected statistics profiles of experiment dataset

of Users # of Posts # of Tags # of Votes

apple 153360 202239 1048 720540

askUbuntu 420227 598530 3022 2543467

gis 63977 179507 2221 573263

math 315792 1807772 1518 6046107

physics 95485 234583 876 1055850

serverFault 302850 645711 3514 2048746

stat 111974 195038 1331 782689

superuser 500264 859690 5190 3281616

unix 188934 284114 2438 1276409

Note that, our method is a tree-guided tensor decomposition approach, where
the tree models the hierarchical entity relationships including topics informa-
tion. To keep the variance of the topics, we generate our testing subsets from
several independent subsites. These subsites are named as “apple”, “math”,
“stats”, “askubuntu”, “physics”, “superuser”, “gis”,“serverfault”, and “unix”.
Some selected statistics profiles can be found at Table 3.

Due to the massive scale of our data source and its high degree of sparseness,
a random sampling could end up output posts with an enormous number of
unrelated users and topics. Hence, we first sample randomly to select a subset
of users and then enumerations on posts tags and voting are performed. This
ensures the selected posts and votes are all related to the sampled users.

4.2 Results Analysis and Evaluation

Evaluation Metrics

– Precision@k. Precision@k is one of standard evaluation metrics in infor-
mation retrieval tasks and recommender systems. It is defined to calculate

Expert Recommendation via Tensor Factorization 383

the proportion of retrieved items in the top-k set that are relevant. Here our
frameworks return a list of users so that the Precision@k can be calculated
as follows:

P@k =
|{relevant top − k users} ∩ {retrived top − k users}|

|{retrived top − k users}|

– MRR. The Mean Reciprocal Rank is a statistic measure for evaluating
response orderly to a list, which here is average of reciprocal ranks for all
tested questions:

MRR =
1

|Q|
∑

i = 1|Q| 1
Ranki

Compared Methods

– Baselines. Apart from the reputation value calculated by Stack Exchange
rules mentioned earlier in Table 2, it also can be found that some baselines
are also often used apart from reputation value. Namely, lists generated by
rank by “Best Answer Ratio” of users and rank by “Number of Answers”
produced by users.

– MF-BPR [20]. Rendel et al. introduce pairwise BPR ranking loss into stan-
dard Matrix Factorization models. It is specifically designed to optimize rank-
ing problems.

– Zhang et al. [28], Z-Score by Zhang et al., is a well-known reputation mea-
sure, despite their original work is a PageRank based system and is not aimed
at measurements. This feature-based score can be resolved by q the number
of questions a user asked and a, the number of answers the user posted. That
is,

Z − Score =
a − q√
a + q

– ConvNCF [8]. Outer Product-based Neural Collaborative Filtering, a multi-
layer neural network architecture based collaborative filtering method. it use
an outer product to find out the pairwise correlations between the dimensions
of the embedding space.

Results Analysis. Figure 6 shows the evaluation results with respect to the
Precision and MRR of different methods, where precision measures the ability
to find experts and MRR the performance of outputting list of experts in cor-
rect order. We observed that our approach generally outperformed other tested
approaches, although some other approaches produces more accurate list when
the length of the requested list is no more than 3, and this can be claimed less
likely to be practical. Our approach yielded better ranks in most cases except
some case where very short lists were requested. Yet, It can be argued, in real
life applications, a the list of approximately 10 or more experts is largely sensible
and our approach will have substantial better performance. Also interestingly,
here we can see both precision and MRR decreases by the increase of K, which

384 C. Huang et al.

Fig. 6. Preformance comparison of our approach to others, tested with 250 users and
their historical data

Fig. 7. Precision and MRR of tests at various number of users

differs from our experience of previous work. And a further look at the distribu-
tion of reputation in our tested data reveals it actually sensible, as we can see
in Fig. 8, the distribution of users’ reputation is considerably uneven, given very
few people high have reputation, which are our goal of output, and most people
in the dataset are reputed at value 1. Additionally, to assess the stability of our
approach, we conducted tests with various size of input data, ranging from 100
users to 300 users. Besides acceptable fluctuations, the results demonstrate our
approach performs relatively stable, both in accuracy and quality (Fig. 7).

Fig. 8. Distribution of reputation of users in our dataset

Expert Recommendation via Tensor Factorization 385

5 Conclusion

In this paper, we have proposed a framework to identify experts across different
collaborative networks. The framework use tree-guided tensor decomposition
to exploit insights from Q&A networks. In particular, we decomposite a 4th
rank tensor with tree-guided lasso and matrix factorization to exploit the topic
information from a collection of Q&A websites in Stack Exchange Networks to
alleviate the data sparsity issue. The 4th rank tensor model of the data ensures
to keep as much as information as needed, which confirmed by experiments
and evaluation. Due to the lack of “Gold Standard”, we compared our approach
with baselines accordingly to the rank by the reputation score calculated by Stack
Exchange built-in approaches on each topic. The comparison results demonstrate
the feasibility of our approach. The proposed approach can be applied to broader
scenarios such as finding the most appropriate person to consult on some specific
problems for individuals, or identifying the desired employees for enterprises.

Acknowledgment. This research was undertaken with the assistance of resources and
services from the National Computational Infrastructure (NCI), which is supported by
the Australian Government.

References

1. Amatriain, X., Lathia, N., Pujol, J.M., Kwak, H., Oliver, N.: The wisdom of the
few: a collaborative filtering approach based on expert opinions from the web. In:
Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 532–539. ACM (2009)

2. Balog, K., Azzopardi, L., de Rijke, M.: A language modeling framework for expert
finding. Inf. Process. Manag. 45(1), 1–19 (2009)

3. Bhargava, P., Phan, T., Zhou, J., Lee, J.: Who, what, when, and where: multi-
dimensional collaborative recommendations using tensor factorization on sparse
user-generated data. In: Proceedings of the 24th International Conference on World
Wide Web, pp. 130–140. ACM (2015)

4. Daud, A., Li, J., Zhou, L., Muhammad, F.: Temporal expert finding through gen-
eralized time topic modeling. Knowl.-Based Syst. 23(6), 615–625 (2010)

5. Fang, H., Wu, F., Zhao, Z., Duan, X., Zhuang, Y., Ester, M.: Community-based
question answering via heterogeneous social network learning. In: Thirtieth AAAI
Conference on Artificial Intelligence (2016)

6. Fazel-Zarandi, M., Devlin, H.J., Huang, Y., Contractor, N.: Expert recommen-
dation based on social drivers, social network analysis, and semantic data rep-
resentation. In: Proceedings of the 2nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems, pp. 41–48. ACM (2011)

7. Ge, H., Caverlee, J., Lu, H.: Taper: a contextual tensor-based approach for per-
sonalized expert recommendation. In: Proceedings of RecSys (2016)

8. He, X., Du, X., Wang, X., Tian, F., Tang, J., Chua, T.S.: Outer product-based
neural collaborative filtering (2018)

9. Hidasi, B., Tikk, D.: Fast ALS-based tensor factorization for context-aware rec-
ommendation from implicit feedback. In: Flach, P.A., De Bie, T., Cristianini, N.
(eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 67–82. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33486-3 5

https://doi.org/10.1007/978-3-642-33486-3_5

386 C. Huang et al.

10. Huang, C., Yao, L., Wang, X., Benatallah, B., Sheng, Q.Z.: Expert as a service: soft-
ware expert recommendation via knowledge domain embeddings in stack overflow.
In: 2017 IEEE International Conference on Web Services (ICWS). pp. 317–324,
June 2017. https://doi.org/10.1109/ICWS.2017.122

11. Huna, A., Srba, I., Bielikova, M.: Exploiting content quality and question diffi-
culty in CQA reputation systems. In: Wierzbicki, A., Brandes, U., Schweitzer, F.,
Pedreschi, D. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 68–81. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-28361-6 6

12. Jenatton, R., Mairal, J., Bach, F.R., Obozinski, G.R.: Proximal methods for sparse
hierarchical dictionary learning. In: Proceedings of the 27th International Confer-
ence on Machine Learning (ICML 2010), pp. 487–494 (2010)

13. Kao, W.C., Liu, D.R., Wang, S.W.: Expert finding in question-answering websites:
a novel hybrid approach. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 867–871. ACM (2010)

14. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommen-
dation: n-dimensional tensor factorization for context-aware collaborative filtering.
In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 79–
86. ACM (2010)

15. Kim, S., Xing, E.P.: Tree-guided group lasso for multi-task regression with struc-
tured sparsity. In: Proceedings of the 27th International Conference on Interna-
tional Conference on Machine Learning, ICML 2010, pp. 543–550. Omnipress, USA
(2010). http://dl.acm.org/citation.cfm?id=3104322.3104392

16. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

17. Liu, D.R., Chen, Y.H., Kao, W.C., Wang, H.W.: Integrating expert profile, rep-
utation and link analysis for expert finding in question-answering websites. Inf.
Process. Manage. 49(1), 312–329 (2013). https://doi.org/10.1016/j.ipm.2012.07.
002

18. Liu, X., Ye, S., Li, X., Luo, Y., Rao, Y.: ZhihuRank: a topic-sensitive expert finding
algorithm in community question answering websites. In: Li, F.W.B., Klamma, R.,
Laanpere, M., Zhang, J., Manjón, B.F., Lau, R.W.H. (eds.) ICWL 2015. LNCS,
vol. 9412, pp. 165–173. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25515-6 15

19. Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning
optimal ranking with tensor factorization for tag recommendation. In: Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 727–736. ACM (2009)

20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-fifth
Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press
(2009)

21. Riahi, F., Zolaktaf, Z., Shafiei, M., Milios, E.: Finding expert users in community
question answering. In: Proceedings of the 21st International Conference on World
Wide Web, pp. 791–798. ACM (2012)

22. Srba, I., Bielikova, M.: Why is stack overflow failing? Preserving sustainability in
community question answering. IEEE Softw. 33(4), 80–89 (2016)

23. Wang, G.A., Jiao, J., Abrahams, A.S., Fan, W., Zhang, Z.: ExpertRank: a topic-
aware expert finding algorithm for online knowledge communities. Decis. Support.
Syst. 54(3), 1442–1451 (2013)

https://doi.org/10.1109/ICWS.2017.122
https://doi.org/10.1007/978-3-319-28361-6_6
http://dl.acm.org/citation.cfm?id=3104322.3104392
https://doi.org/10.1016/j.ipm.2012.07.002
https://doi.org/10.1016/j.ipm.2012.07.002
https://doi.org/10.1007/978-3-319-25515-6_15
https://doi.org/10.1007/978-3-319-25515-6_15

Expert Recommendation via Tensor Factorization 387

24. Wang, X., Huang, C., Yao, L., Benatallah, B., Dong, M.: A survey on expert rec-
ommendation in community question answering. J. Comput. Sci. Technol. 33(4),
625–653 (2018)

25. Xiong, L., Chen, X., Huang, T.K., Schneider, J., Carbonell, J.G.: Temporal collab-
orative filtering with Bayesian probabilistic tensor factorization. In: Proceedings
of the 2010 SIAM International Conference on Data Mining, pp. 211–222. SIAM
(2010)

26. Yao, L., Sheng, Q.Z., Qin, Y., Wang, X., Shemshadi, A., He, Q.: Context-aware
point-of-interest recommendation using tensor factorization with social regulariza-
tion. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2015, pp. 1007–1010. ACM, New
York (2015). http://doi.acm.org/10.1145/2766462.2767794

27. Yao, L., Sheng, Q.Z., Wang, X., Zhang, W.E., Qin, Y.: Collaborative location
recommendation by integrating multi-dimensional contextual information. ACM
Trans. Internet Technol. (TOIT) 18(3), 32 (2018)

28. Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities:
structure and algorithms. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 221–230. ACM (2007)

http://doi.acm.org/10.1145/2766462.2767794

Software Service Recommendation Base
on Collaborative Filtering Neural

Network Model

Liang Chen(B), Angyu Zheng, Yinglan Feng, Fenfang Xie, and Zibin Zheng

School of Data and Computer Science,
National Engineering Research Center of Digital Life, Sun Yat-sen University,

Guangzhou, China
{chenliang6,zhzibin}@mail.sysu.edu.cn,

{xieff5,fengylan6}@mail2.sysu.edu.cn, zanyu17@gmail.com

Abstract. With broad application of Web service technology, many
users look for applicable Web services to construct their target applica-
tion quickly or do some further research. Github, as a treasury including a
variety of software programs, provides functional code modules for those
in need, which has become their characteristic service. However, tremen-
dous Web services have been developed all the time which increase the
difficulty to find the target or interested services for users. Service rec-
ommendation has become of practical importance. There is few studies
in the personalized repository recommendation of Github. In this paper,
we present a general framework of PNCF, a preference-based neural col-
laborative filtering recommender model, and develop the instantiation of
PNCF framework in Github repository recommendation with language
preference called LR-PNCF. We use a neural network to capture the
non-linear user-repository relationships and obtain abstract data rep-
resentation from sparse vectors. Comprehensive experiments conducted
on a real world dataset demonstrate the effectiveness of the proposed
approach.

Keywords: Neural network · Recommender system
Github recommendation · Repository recommendation

1 Introduction

In our daily life, various services (e.g., Web service, API, mobile Apps) are
commonly used in all walks of life and continue to grow enormously. They exist
in various software systems, called by users to meet their needs. Specifically,
open source software repositories in social coding sites could be treated as one
kind of service provided by developers. Users explore functional code modules
in the massive software service to build their web application. In this paper, we
will focus on the research of this special service, i.e., software service.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 388–403, 2018.
https://doi.org/10.1007/978-3-030-03596-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_28&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_28

Software Service Recommendation Base on PNCF 389

As is widely known to programmers, Github1 is a large-scale open source
hosted platform popular with different developers from all over the world. Plen-
tiful users explore particular code service and use it in accelerating construction
of their complex application. As of April 2017, GitHub reports having almost
20 million users and 57 million code programs [6], making it the largest host
of source code service in the world [7]. These large-scale software services have
undoubtedly increased the difficulty of searching target code service for users.
However, there is not any personalized repository recommender for users. They
can only find the software service they are interested in by browsing popular
repositories or by following other friends. Thus, service recommendation has
become of practical importance.

To better offer users the software service of interest, it is crucial to design
customized recommendation lists for various users.

Traditional recommendation methods mainly include collaborative filtering
approach and content-based recommendation approach [4,20,22]. Jyun-Yu et
al. [10] extended the one-class collaborative filtering approach (OCCF) [18] and
proposed the Language-Regularized Matrix Factorization model (LRMF) based
on Bayesian Personalized Ranking (BPRMF) [19]. Tadej et al. [16] constructed a
network by projects and users on GitHub and then use link prediction to generate
personalized recommendation lists for various users. Xu et al. [25] considered
not only the user behavior, but also the content of repositories to improve the
recommendation accuracy. In our work, we take into account the programming
language preference from users and repositories as an important input.

In addition to the traditional recommender systems approaches, there are a
number of other methods including deep learning, tensor factorization, factor-
ization machines, and so on. These more advanced methods are good for taking
the quality of your recommenders to the next level.

The past few decades have witnessed the tremendous success of the deep
learning in many application domains such as computer vision, speech recogni-
tion and object detection [2,13,21]. Models with deep learning are mostly com-
posed of multiple processing layers. They use the backpropagation algorithm
to update the internal parameters of the model, which are used to compute
the representation in each layer. Trained in this way, models are able to learn
representations of data with multiple levels of abstraction [13].

Deep learning in recommender system has gained more attention [28]. Due
to its ability to capture non-linear relationships and better data presentation for
sparse high-dimensional vector, deep learning is able to gain good performance
in rating prediction in the recommendation.

Most recently, Google proposed the Wide&Deep model [1] to jointly train
wide linear models and deep neural network and apply it to Google Play. Guo
et al. [8] constructed a new neural network architecture to use deep learning for
feature learning in factorization machines for the recommendation. Similarly, He
et al. [9] explored the use of deep neural networks based on collaborative filtering
(CF). Another extension is CCCFNet (Cross-domain Content-boosted Collab-

1 Github: https://github.com.

https://github.com

390 L. Chen et al.

orative Filtering neural Network) [14], which combines CF and content-based
filtering in a unified framework. Moreover, they further embed this cross-domain
model into a multi-view neural network due to the advantages of capturing hid-
den representation learning.

In this paper, we explore an emerging technology in the recommendation,
which combines the repository recommendation with the use of the neural net-
work. We first introduce the framework of recommendation and later implement
it into a specific recommender of Github program.

Our contributions are listed as follows:

1. We propose a general framework of PNCF, a preference-based neural collab-
orative filtering recommender model, for repository recommender.

2. Due to a great influence of language preference on repository recommenda-
tion, we develop the instantiation of PNCF framework with language prefer-
ence called LR-PNCF in Github repository recommendation. In this model,
we abstract the language preference from users and repositories and consider
it as one of the inputs.

3. The result of the experiment shows that the model we proposed can outper-
form the existing state-of-the-art models in repository recommendation.

The remainder of this paper is organized as follows. In Sect. 2, we give an
overview of the service recommendation framework. In Sect. 3, we present an
instantiation of the PNCF framework for Github repository recommendation
with language preference. In Sect. 4, we conduct the model on a real-world
dataset compared other methods in the experiment. Section 5 makes a conclusion
and give details of the future work.

2 Framework Overview

We first present a general framework of PNCF, which is short for a preference-
based neural collaborative filtering recommender model. We adopt a multi-layer
representation to show the whole structure, shown in Fig. 1, where the model is
divided into four layers: Input layer, Embedding layer, Interaction Layer, and
Output Layer.

In the Input Layer, we obtain n sparse features from users and projects
respectively, which are set as xu1 ,xu2 , ...,xun for user u and xi1 ,xi2 , ...,xin for
item i. These feature vectors of user u or item i are then separately compressed
to low-dimensional vector through the Embedding layer and will be merged into
a concatenated vector, named user concatenated vector cu or item concatenated
vector ci respectively. This process will preserve the same or similar features in
the vectors before interaction training, allowing the same user or vector to have
the same suffix in vector and therefore enhancing the similarity between similar
users or items.

After merging, user concatenated vector cu as well as item concatenated
vector ci will be fed into a neural network to model the interaction φ between

Software Service Recommendation Base on PNCF 391

Fig. 1. Preference-based neural collaborative filtering recommender framework

user u and item i in the Interaction layer. Finally, score ŷ is output through the
Output layer to normalize the result.

Overall, PNCF framework can be formulated as below.

cu = [ϕ(xu1), ϕ(xu2), ..., ϕ(xun
)] (1)

ci = [ϕ(xi1), ϕ(xi2), ..., ϕ(xins)] (2)

ŷ = fout(φ(cu, ci)) (3)

After calculating the output scores of candidate repositories, we sort it into
a ranked list and select top-k items to recommend to user u.

3 Recommendation Model

In this section, we develop the instantiation of PNCF framework in Github repos-
itory recommendation with language preference, named LR-PNCF. In this case,
our ultimate goal is to recommend suitable repositories in Github. At this point,
users have a lot of features, such as language preference, various operations on
the repositories or auxiliary information of following users, as well as the repos-
itories. Since users in Github more likely to find programs with language they
used, the preference of language is heavily taken into consideration. Addition-
ally, the proposed model attempts to strengthen the similarity between similar
users by extending the processed feature vectors at the end of corresponding
latent vectors result in closer embedding vectors between similar users or items.
As shown above, we divide the model into four layers and give details for each
layer in implementation.

392 L. Chen et al.

3.1 Input Layer

The proposed recommendation model is a kind of sequential model, each layer
of which is arranged in sequence. The first layer is the Input layer. In this layer,
there consists of two kinds of input: identity and language preference vector for
each user or repository (Fig. 2).

Fig. 2. LR-PNCF, an instantiation of PNCF framework with language preference

For the input of identity, we define u and i as the identities of user and
repository. As usual, these two identities for user and repository are encoded by
one-hot encoding and is used to obtain the corresponding latent vectors from
the embedding matrix when training.

For input vectors of language preference from user or repository, we use
pu = {p1u, p2u, ..., pY

u } and pi = {p1i , p
2
i , ..., p

Y
i } to model the language preference

of user u and repository i. It is obvious that both users and repositories are
many-to-many relationships with language preference, we use preference vectors
to capture their language information. Consider the number of users and repos-
itories as M and N and the number of languages as Y , Here, Y determines the
rank of preference vectors |pu| = Y and |pi| = Y . We define the preference
matrix P ∈ R

(M+N)×Y . For preference vector pa = {p1a, p2a, ..., pY
a } from user or

repository a, there exists

pj
a =

{
1, if the jth language is favored by a

0, otherwise
(4)

For example, if there are totally 5 languages and user a is keen on the language 1,2
and 5, the language preference vector of user a is encoded as pa = (1, 0, 1, 0, 1).
As such, we convert the language preferences of users and repositories into cor-
responding preference vectors.

Software Service Recommendation Base on PNCF 393

3.2 Embedding Layer

Above the Input Layer is the Embedding Layer. This layer aims at learning a
dense vector to summarize the profile of each user or repository. In this layer,
we process the two kinds of input, identity input and preference vector, into one
dense vector. Since the input of identity is binarized sparse vectors with one-hot
encoding, we pick out corresponding latent vectors from the embedding matrix
E ∈ R

(M+N)×D marking it as eu and ei where D is the dimension of the latent
vectors. These two latent vectors will learn the context from the latent factor
model by using the information of an user-item rating matrix [9,12]:

min
e∗

∑
(yui − eiTeu)2 + λ(||ei||2 + ||eu||2) (5)

To be more specific, these latent vectors are initialized randomly following the
normal distribution and then trained to optimize the loss function with the rating
information.

For language preference input vector, it is a sparse, high-dimensional cat-
egorial features and thus we converted it into a low-dimensional and dense
real-valued vector through a feed-forward neural network. Language preference
vectors obtained from the Input layer are then fed into the input layers of a
feed-forward neural network:

p(0)
u = pu, p(0)

i = pi (6)

Each hidden layer in this neural network performs:

p(l+1) = f(W(l) × p(l) + b(l)) (7)

where f(·) is a specified activation function (often use ReLUs), p(l),b(l) and
W(l) are respectively the output, bias and weights at l-th layer.

To enhance the representation for embedding vectors of each user or repos-
itory, we merge the latent vector and preference vector into one concatenated
vector. We formularize the concatenation as follow, au and ai respectively for
user u or repository i:

au = [eu,p(l)
u], ai = [ei,p

(l)
i] (8)

3.3 Interaction Layer

The purpose of the Interaction layer is to conduct the interaction behaviours for
user or item embedding vectors acquired by the Embedding layer. We use f(.)
to model these learning behaviours.

q̂ui = f(au,ai) (9)

where au and ai is the embedding vectors for user u and repository i.

394 L. Chen et al.

In most of research, f(.) is represented by the inner product of input vectors
adding a bias from corresponding user and item. In this paper, we use MF
(Generalized Matrix Factorization) to model the interaction between the users
and repositories. Let ŷui denotes the output of the interaction layer and use the
inner product of au and ai to model the interaction:

q̂ui = aT
u ∗ ai =

L∑
j=1

aj
u ∗ aj

i (10)

where L is the dimension of the embedding vector. Interaction function can be
replaced by others common, classical or complicated neural network. In this
paper, we use the simplest interaction function since it works.

3.4 Output Layer

There raise a problem when we directly use the output of the Interaction layer
to be the rating prediction. It is obvious that the rating is calculated by a
linear combination of user embedding factors, item embedding factors and bias
in Eq. 10. These may fail in capturing the non-linear or more complex structure
implied in embedding vectors. Some research works on various fields, such as
natural language processing, show enhancement of representation learning when
using non-linear transformations.

We let ŷui denotes the final output of the neural network. Since ŷui is con-
sidered as the probability that the user u likes the repository i, we use sigmoid
function to limit the value into [0,1].

ŷui = σ(q̂ui) , σ(x) =
1

1 + e−x
(11)

where ŷui indicates the preference degree of the repository i for user u which
can be also considered as the rank score. In this way, we map user embedding
vectors and item embedding vectors into real-valued ratings. Based on the scores
of candidate repositories, one can sort all the repositories and the final ranked
list is generated.

3.5 Model Training

To learn the model parameters, there are many learning-to-rank algorithms can
fit into the above framework. Note that different approaches model the pro-
cess of learning to rank in different ways. These approaches are usually divided
into point-wise, pair-wise and list-wise approaches [15]. In this paper, we use
point-wise approach to train our model. Among different point-wise approaches,
ranking is commonly modeled as regression, classification and ordinal regression.
The most common use is Mean squared error which is largely applied in regres-
sion in machine learning. However, it is usually better to use cross-entropy error
to evaluate the quality due to the structure of neural network [11]. Moreover,

Software Service Recommendation Base on PNCF 395

this formular much the same as the negative logarithm of the likelihood function
when training parameters with probabilistic methods [9].

Let ŷui is the output of our model and yui is the desired output. Here yui = 1
represents repository i is favour by user u and otherwise yui = 0. The definition
of cross-entropy loss function as follows:

min
Θ

− 1
n

∑
[y ln ŷui + (1 − y) ln(1 − ŷui)] (12)

where Θ denotes the parameters of the model, n denotes the number of samples.
The above loss function can be minimized by updating its parameters using
optimization techniques like stochastic gradient descent.

Note that pointwise approach has its limitations. Since it does not consider
the relationship between any two items, the corresponding loss function does not
reflect the influence of different positions of items in the rank list.

4 Experiment

In this section, we evaluate the proposed model for Github Recommendation
using a subset of real-world Github dataset. We first give a brief introduction of
the dataset used in the experiment. And then describe two kinds of metrics and as
well the evaluation protocols. Subsequently, the baseline of the experiments and
their parameter setting including proposed LR-PNCF are illustrated. Finally
shows the results. The experimental results demonstrate better improvement
over competitive baselines.

4.1 Dataset Description

There are over one million people and three million public repositories in Github.
We screen out those who have more than 10 repositories and randomly drew a
part of it which contains about 3982 users and 4987 repositories. In Github, users
have multiple behaviours for public repositories. For example, they may fork,
watch or contribute coding to the repositories if they are interested. Therefore,
in our paper, we define that a user is considered to prefer a repository if the
user folk, watch or contribute coding to it. After the data is processed, there are
about 179370 ratings in the dataset, the sparsity of user-item matrix is nearly
0.9%.

4.2 Evaluation and Metrics

For experiment, we apply leave-one-out schema to evaluate the performance of
recommendation [9,19]. Leave-one-out validation involves selecting one item for
each user as the validation set and the rest observations as the training set.
For more efficient verification, we randomly select 100 unobserved items, along
with the test item, to generate the recommendation list for each user [5,9].
We assume that the user prefers repositories that have been observed over all

396 L. Chen et al.

other non-observed repositories [19]. E.g. user u interacts with repository i2 but
not repository i1, so we consider that user u prefers repository i2 over i1. The
higher score or rank of the test repository indicates the better performance of
the recommender.

To judge the ranked list quantitatively, we adopt two common metrics to
evaluate the performance of ranking: Hit Ratio (HR) and Normalized Discounted
Cumulative Gain (NDCG).

Hit Ratio is defined below:

HR@k =

{
1, ranki ≤ k
0, otherwise

(13)

where ranki denotes the rank of the test repository i of ranked list.
NDCG is ratio of DCG and iDCG. Here iDCG is the ideal discounted

cumulative gain. The above DCG is calculated by summing up all ”gains” along
the rank list with a log discount factor and is able to quantify the usefulness of
an item based on its position in the result list. Its formula is defined as:

DCG@K =
k∑

i=1

2r(i) − 1
log2(1 + ranki)

(14)

where r(i) denotes the desired rank of ith repository in recommendation list R.
Intuitively, HR measures whether the test repository is appeared in ranked

list and NDCG measure how good the quality of recommendation by focusing
on the position of the test repository.

4.3 Comparing Methods

We compare our recommendation approach with another recommendation algo-
rithm. These methods, except for the PopN, is related to matrix factorization
and are often used in repository recommendation:

1. PopN: Recommender is implementation by pushing the most popular repos-
itories to users. This non-personalized method rate items using some form
of popularity measure such as most forked or contributed even watched by
users.

2. GMF [12,17]: This is the basic matrix factorization using only user-repository
matrix for recommendations.

3. NCF [9]: This is a general framework named NCF, short for Neural network-
based Collaborative Filtering. We use one of its instances NeuMF in following
experiments.

4. BPRMF [19]: This is a matrix factorization model training with a generic
optimization criterion BPR-OPT. It optimizes the measure about rankings
directly. BPRMF is one of the common methods for ranking in the OCCF
problem.

Software Service Recommendation Base on PNCF 397

5. LRMF [10]: This is one of the state-of-the-art approaches for Github Rec-
ommendation, short for language-regularised matrix factorization. It based
on matrix factorization and is regularized by the relationships between user
programming language preferences.

In experiments, we set respective optimal parameters either according to
corresponding references or based on our experiments for all methods to be
validated. All of these methods executes 100 epochs. The initialization strategy
we adopt for all involved embedding matrixes is to be randomly initialized with
a uniform distribution within the interval [0, 1]. The radio of numbers of positive
and negative samples is 1:1 when training.

For BPRMF method, we train it in batches and execute 100 epochs as well. In
each batch, we randomly generate a certain number of pairs (u, repoi, repoj) fed
into a model where u denotes the user u, repoi denotes the repository observed
by user u and repoi denotes the non-observed repository. For LRMF method,
we apply bootstrapping-based stochastic gradient descent according to the orig-
inal paper. Refer to their experimental setting, we set c = 100 which indicates
we randomly select 100 authors for each user to calculate language preference
regularization. For LR-PNCF models, the dimension of preference vector p

(0)
u

and p
(0)
u in the following experiments is set to be 100. We use three layers in the

feed-forward neural network to dense the preference vector where the number of
neurons is the same as that of embedding vector e . Later, we will evaluate the
performance of the above model through quantitative indicators NDCG and HR
in the next subsection.

4.4 Experimental Results

In this section, we compare the performance of models mentioned above using
the metrics of HR and NDCG in the Top-K recommendation. Figure 4 and Fig. 3
shows the best HR and NDCG in evaluation for each competitive approaches.
Since the performance of PopN is to weak to be negligible, we remove the HR
and HDCG of PopN in comparison. In experiment, we focus on two issues. The
first problem is whether this proposed approach performs better than the other
comparative approaches. Another is how the performance of proposed method
is affected by the dimension of latent vectors or the number of recommendation
list. To simplify the explanation, we set dim as the dimension of latent vectors
and topk as the number of recommendation list. We carried out the experiments
where dim is assigned to 8,16 and 32 respectively with fixed value topk = 10
and topk is assigned to 10,20 and 30 respectively with fixed value dim = 8. All
other variables remain the same. In each experiment, we record the best HR and
NDCG in evaluation. The results are shown in Fig. 4 and Fig. 3. To show more
numerical information, we also present the value of best HR and NDCG onto
the Table 2 and Table 1 among the 100 epoches.

From the Fig. 4 and Fig. 3, we can see that the proposed model LR-PNCF
has the better HR and NDCG that the other competitive methods. BPRMF
and LRMF perform weaker when they are evaluated by the metrics of HR and

398 L. Chen et al.

Fig. 3. Best HR in different dimension of latent vectors and in different recommenda-
tion list size

NDCG while the proposed model LR-PNCF, as well as GMF and NCF, keeps
relatively high scores of metrics in different assignment of variables topk or dim.
GMF and NCF behave better that BPRMF and LRMF. Among them, LR-PNCF
outperforms other comparative methods in either HR or NDCG.

Shown in Table 2 and Table 1, LR-PNCF achieves higher HR and NDCG
where the maximum value of HR and NDCG can be increased by 13.9% and
18.3% compared with the NCF and by 12.1% and 8.7% compared with GMF
method under the same settings of dim and topk. Comparing the performance
differences between comparative models, those difference is the most significant
when the variables of dim and topk are assigned to smaller values. Especially
with topk increase, these difference are shorten.

Fig. 4. Best DNCG in different dimension of latent vectors and in different recommen-
dation list size

Additionly, in order to evaluate performance affected by the number of rec-
ommendation list, HR and NDCG were recorded under different assignment

Software Service Recommendation Base on PNCF 399

where topk = 10, 20, 30 respectively in Table 1. It can be clearly seen that HR
and NDCG go higher when topk increase. It is quite understandable that target
test items are easier to appear in the recommendation list expanding the list of
recommendations under the fixed total number of sorted items in evaluation. In
terms of the influence of the dimension of latent vectors, we recorded HR and
NDCG under different assignment where dim = 8, 16, 32 respectively in Table 2.
It can be clearly seen that HR and NDCG have a slight volatility when dim
increase, which may encounter the problem of overfitting.

Overall we can make the conclusion that our model obtains the best perfor-
mance and efficiency than other competitive methods.

Table 1. The best HR and NDCG in different topk

topk = 10 topk = 20 topk = 30

HR NDCG HR NDCG HR NDCG

BPRMF 0.1165 0.2179 0.2147 0.2126 0.3257 0.2215

LRMF 0.0944 0.2071 0.2049 0.2112 0.3039 0.2138

GMF 0.6188 0.3793 0.7652 0.4210 0.8589 0.4419

NCF 0.5853 0.3594 0.7240 0.3937 0.8179 0.4150

LR-PNCF 0.6667 0.4255 0.8064 0.4668 0.8709 0.4707

Table 2. The best HR and NDCG in different dim.

dim = 10 dim = 20 dim = 30

HR NDCG HR NDCG HR NDCG

BPRMF 0.1165 0.2179 0.1125 0.2149 0.1258 0.2215

LRMF 0.0944 0.2071 0.1015 0.2110 0.1102 0.2133

GMF 0.6188 0.3793 0.5972 0.3702 0.5982 0.3757

NCF 0.5853 0.3594 0.5806 0.3614 0.5848 0.3619

LR-PNCF 0.6667 0.4255 0.6489 0.4041 0.6173 0.3844

5 Related Work

In recent years, there is a variety of research works of service discovery and
recommendation, but only a handful of them in Github recommendation. Pre-
vious work can be mainly classified into three types, semantics-based, CF-based
and network-based. The semantics-based approaches mostly consider the seman-
tic similarity of web services that they define the similarity between two web

400 L. Chen et al.

services due to particular semantic aspects [24]. The CF-based approaches are
under the assumption that the target user has similar friends or target service
owns similar services, without considering the exceptional scenarios [17,18]. The
network-based approaches are to construct the information network based on
relations using their history information [16].

Lately, as a special software service, Github repository become a new object
of the recommendation system. The idea of matrix factorization represents a fea-
sible resolution for software service discovery and has forced various CF-based
approaches, e.g Probabilistic Matrix Factorization (PMF)[17], One-Class Collab-
orative Filtering (OCCF)[18]. Inspired by OCCF, Jyun-Yu et al. [10] proposed
the Language-Regularized Matrix Factorization (LRMF) by utilizing user’s pro-
gramming language preference, which is an improvement of matrix factorization
based on Bayesian Personalized Ranking(BPRMF) [19] and have achieved better
performance on the real-world dataset of Github. Tadej et al. [16] constructed
a network by the contributions based on Github data and then use link predic-
tion to generate personalized recommendation lists for various users. Xu et al.
[25] proposed a recommendation system named REPERSP, which is constructed
based on both the developers behavior and the content of each project.

With less feature engineering, deep neural networks can generalize better to
unseen feature combinations through low-dimensional dense embedding learned
for the sparse features. Recently, many people explore deep learning to improve
the performance of the recommendation. For the rating matrix, collaborative
deep learning has been extended by coupling deep learning for content informa-
tion and collaborative filtering [23,27].

Google presented the Wide & Deep learning framework [1] to achieve both
memorization and generalization in one model. Wide linear models memorize
sparse feature interactions using cross-product feature transformations, while
deep neural networks generalize to unseen feature combinations through low-
dimensional embedding. To avoid expertise feature engineering on the input in
the wide part, Guo et al. [8] proposed an end-to-end model called DeepFM com-
bining factorization machines with deep learning techniques for the recommen-
dation. Wang et al. [23] proposed a hierarchical Bayesian model called collabo-
rative deep learning (CDL), which jointly performs deep representation learning
for the content information and collaborative filtering for the rating (feedback)
matrix. Dong et al. [3] extended the stacked denoising autoencoder to integrate
additional side information into the inputs and presents a hybrid collaborative
filtering model with the deep structure of recommender systems. Similarly, He et
al. [9] proposed the NCF model, which is short for Neural Collaborative Filter-
ing. They use a neural architecture to learn an arbitrary function from data with
matrix factorization and multi-layer perception. To make full use of both explicit
ratings and implicit feedback, Xue et al. [26] proposed Deep Matrix Factoriza-
tion models (DMF) that map the users and items into low-dimensional vectors
and both of the input matrix and loss function consider both explicit ratings
and implicit feedback. CCCFNet [14], namely Cross-domain Content-boosted

Software Service Recommendation Base on PNCF 401

Collaborative Filtering Neural Network, is an extension of a unified framework
with content-based filtering.

6 Conclusion and Future Work

In this paper, we present a general framework of PNCF, a preference-based
neural collaborative filtering recommender model, and develop the instantiation
of PNCF framework in Github repository recommendation with language pref-
erence. To better illustrate, the model is divided into four layers: Input layer,
Embedding layer, Interaction layer, and Output layer. Then we explained the
implementation of each layer in detail. Additionally, we extract the language
preference from users and repositories to make the better performance of recom-
mendation.

The results of extensive experiments show that our methods can significantly
outperform the existing state-of-the-art repository recommender models. In this
work, we combine deep learning with collaborative filtering to further enhance
the effectiveness of the traditional recommender systems approaches.

In future, we will add more features of users and repositories to the input
layer, such as users’ actions on the repositories, rather than only using the impor-
tant but single language preferences. Moreover, due to the pointwise approach
has its limitations that it does not consider the relationship between any two
items, we will study pairwise learners for PNCF instead.

Acknowledgment. The paper was supported by the National Key Research and
Development Program (2017YFB0202200), the National Natural Science Foundation
of China (61702568, U1711267), the Program for Guangdong Introducing Innovative
and Enterpreneurial Teams (2017ZT07X355) and the Fundamental Research Funds for
the Central Universities under Grant (17lgpy117).

References

1. Cheng, H.T., et al.: Wide & deep learning for recommender systems. In: Proceed-
ings of the 1st Workshop on Deep Learning for Recommender Systems, pp. 7–10.
ACM (2016)

2. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends R©
Signal Process. 7(3–4), 197–387 (2014)

3. Dong, X., Yu, L., Wu, Z., Sun, Y., Yuan, L., Zhang, F.: A hybrid collaborative
filtering model with deep structure for recommender systems. In: AAAI, pp. 1309–
1315 (2017)

4. Dou, Y., Yang, H., Deng, X.: A survey of collaborative filtering algorithms for
social recommender systems. In: 2016 12th International Conference on Semantics,
Knowledge and Grids (SKG), pp. 40–46. IEEE (2016)

5. Elkahky, A.M., Song, Y., He, X.: A multi-view deep learning approach for cross
domain user modeling in recommendation systems. In: Proceedings of the 24th
International Conference on World Wide Web, pp. 278–288. International World
Wide Web Conferences Steering Committee (2015)

402 L. Chen et al.

6. Github: Celebrating nine years of github with an anniversary sale. https://
github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale.
Accessed 11 Apr 2017

7. Gousios, G., Vasilescu, B., Serebrenik, A., Zaidman, A.: Lean GHTorrent: GitHub
data on demand. In: Proceedings of the 11th Working Conference on Mining Soft-
ware Repositories, pp. 384–387. ACM (2014)

8. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. arXiv preprint arXiv:1703.04247 (2017)

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 173–182. International World Wide Web Conferences Steering Committee
(2017)

10. Jiang, J.Y., Cheng, P.J., Wang, W.: Open source repository recommendation in
social coding. In: Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1173–1176. ACM (2017)

11. Kline, D.M., Berardi, V.L.: Revisiting squared-error and cross-entropy functions
for training neural network classifiers. Neural Comput. Appl. 14(4), 310–318 (2005)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 330–37 (2009)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
14. Lian, J., Zhang, F., Xie, X., Sun, G.: CCCFNet: a content-boosted collaborative

filtering neural network for cross domain recommender systems. In: Proceedings of
the 26th International Conference on World Wide Web Companion, pp. 817–818.
International World Wide Web Conferences Steering Committee (2017)

15. Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends R© Inf.
Retrieval 3(3), 225–331 (2009)

16. Matek, T., Zebec, S.T.: GitHub open source project recommendation system. arXiv
preprint arXiv:1602.02594 (2016)

17. Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in
Neural Information Processing Systems, pp. 1257–1264 (2008)

18. Pan, R., et al.: One-class collaborative filtering. In: Eighth IEEE International
Conference on Data Mining, ICDM 2008, pp. 502–511. IEEE (2008)

19. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pp. 452–461. AUAI Press
(2009)

20. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering
recommendation algorithms. In: Proceedings of the 10th International Conference
on World Wide Web, pp. 285–295. ACM (2001)

21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61,
85–117 (2015)

22. Song, Y., Zhang, L., Giles, C.L.: Automatic tag recommendation algorithms for
social recommender systems. ACM Trans. Web (TWEB) 5(1), 4 (2011)

23. Wang, H., Wang, N., Yeung, D.Y.: Collaborative deep learning for recommender
systems. In: Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1235–1244. ACM (2015)

24. Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: a system for effective web service
discovery. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 441–444 (2012)

https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
http://arxiv.org/abs/1703.04247
http://arxiv.org/abs/1602.02594

Software Service Recommendation Base on PNCF 403

25. Xu, W., Sun, X., Hu, J., Li, B.: REPERSP: recommending personalized software
projects on GitHub. In: 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 648–652. IEEE (2017)

26. Xue, H.J., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep matrix factorization
models for recommender systems. In: IJCAI, pp. 3203–3209 (2017)

27. Yang, X., Guo, Y., Liu, Y., Steck, H.: A survey of collaborative filtering based
social recommender systems. Comput. Commun. 41, 1–10 (2014)

28. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: A survey
and new perspectives. arXiv preprint arXiv:1707.07435 (2017)

http://arxiv.org/abs/1707.07435

A Weighted Meta-graph Based Approach
for Mobile Application Recommendation
on Heterogeneous Information Networks

Fenfang Xie, Liang Chen(B), Yongjian Ye, Yang Liu, Zibin Zheng,
and Xiaola Lin

School of Data and Computer Science,
National Engineering Research Center of Digital Life, Sun Yat-sen University,

Guangzhou 510006, China
{xieff5,yeyj7,liuy296}@mail2.sysu.edu.cn,

{chenliang6,zhzibin,linxl}@mail.sysu.edu.cn

Abstract. Explosive growth in the number of mobile applications
(apps) makes it difficult for users to find relevant apps. Therefore, it
is an urgent task to recommend desired apps for users. Traditional
approaches focus on exploiting the context information, user’s interest,
privacy, security and other features for app recommendation. Most of
them do not consider heterogeneous information network (HIN) in the
scenario of mobile app recommendation. HIN contains rich structure and
semantic information, and it can satisfy various requirements of users
and generate better recommendation results. In this paper, we propose
a Weighted Meta-Graph based approach for app Recommendation,
called WMGRec, on HIN. Specifically, we firstly introduce the concept of
weighted meta-graph, which not only distinguishes different rating scores
to depict the subtle semantics but also utilizes meta-graph to capture
complex semantics. And then, we apply weighted meta-graph to measure
the semantic similarity between users and apps. Furthermore, we lever-
age non-negative matrix factorization on user-app similarity matrix to
obtain user latent features and app latent features. Finally, the concate-
nated user and app latent features are fed into the factorization machine
& deep neural network model to learn the higher-order interactions and
get the final prediction score. Extensive experiments conducted on two
real-world datasets validate the effectiveness of the proposed approach
compared to state-of-the-art recommendation algorithms.

Keywords: Mobile app recommendation · Meta-graph
Heterogeneous information network · Factorization
Deep neural network

1 Introduction

Mobile devices (e.g., smart phones, tablet computers) have been becoming
increasingly popular in recent years. They are gradually becoming a part of our
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 404–420, 2018.
https://doi.org/10.1007/978-3-030-03596-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_29

WMGRec for Mobile App Recommendation on HIN 405

daily life for study, entertainment, social intercourse, browsing news and busi-
nesses. Mobile devices promote the explosive growth of mobile apps. It becomes
considerably difficult and time-consuming for users to find a relevant mobile app
from a huge number of mobile apps. Therefore, it is essential to help users to
locate their desired apps. Mobile app recommendation is a good choice to solve
this problem and enhance user experience.

Previous studies concentrate on considering the context information, user’s
interest, privacy, security and other features for mobile app recommendation
[2,5,8,18,21]. They usually employ collaborative filtering (CF) (e.g., item-based
CF, user-based CF and matrix factorization) methods to recommend apps to
users. Most of them do not consider the rich structure and semantic information
on HIN. HIN has been widely exploited to data mining tasks, such as similar-
ity measure, clustering, classification, link prediction and recommendation [10].
There exist multiple object types (e.g., users, mobile apps, reviews, and rat-
ing scores) and rich relations among object types (e.g., use and used by relation
between users and apps, write and written by relation between users and reviews)
in the scenario of app recommendation, which naturally constitutes an HIN.
Exploiting the rich structure and semantic information can reveal subtle rela-
tions among objects. Therefore, it will satisfy different kinds of requirements of
users and improve recommendation performance. As an important characteristic
of HIN, meta-path is usually applied to model the multiple semantic information.
HIN accomplishes traditional CF methods by building various meta-paths. For
example, if we want to recommend apps to users, we can build a simple meta-path
“User-App-User” or “User-APP-APP” and learn from this meta-path to make
generalizations. These two kinds of meta-paths achieve the user-based CF and
item-based CF methods, respectively. From HIN’s schema, we can define more
complicated meta-paths like “User-Review-Topic-Review-App”. This meta-path
defines a similarity to measure whether a user tends to like an app if his/her
reviews are similar to those written by other users for the same app. In addition,
users only use and rate a limited number of apps in the real-world. Therefore, the
user-app rating matrix is considerably sparse. As a result, the recommendation
results obtained by matrix factorization may be inaccurate. The rich structure
and semantic information on HIN can alleviate this sparsity problem.

Inspired by the significance of HIN, we prefer to apply HIN to solve our app
recommendation problem. When utilizing meta-path based similarities to app
recommendation, there exist the following two major challenges: (1) Traditional
HIN and meta-path do not consider the attribute values (the rating scores in
app recommendation) on links. Ignoring the rating scores between users and apps
may result in bad similarity discovery and cannot reveal the subtle difference.
Figure 1 shows an example, given a meta-path “User-APP-User”, if both U1 and
U2 provide a rating score as 5 to Facebook, then U1 and U2 are quite similar
due to the same preference. If U1 gives a 5 score to Facebook and U2 gives a
1 score to Facebook, then U1 and U2 may not be so similar due to the totally
different taste. But the conventional meta-path regards these two cases as the
same. Therefore, it will result in inaccurate similarity and cannot recognize the

406 F. Xie et al.

Fig. 1. Example of HIN built by mobile app dataset

subtle difference. However, in the scenario of app recommendation, this difference
is very important because it can help to more accurately capture interactions
between users and apps. It is essential to extend the conventional meta-path for
considering attribute values on links. (2) Meta-path may not be very suitable to
describe the rich structure and capture complicated semantics. Figure 1 presents
a concrete example of this kind of case. Given a meta-path “User - Review -
Topic - Review - User”, which can be used to capture users’ similarity since
both of them write reviews and mention the same topic. However, if we intend
to capture the semantic relation that U1 and U2 provide rating scores to the
same app (e.g., Facebook), and at the same time, they mention the same topic
(e.g., crashing), the meta-path fails. As a result, it is essential to find a more
suitable way to capture such complex semantics. Meta-graph [3,6,19] is a good
way to represent the above mentioned semantic relation. Meta-graph computes
similarity between homogeneous type of entities over HINs, which can capture
more complex semantics that meta-path cannot.

To alleviate the above challenges, this paper proposes a weighted meta-graph
based approach for mobile apps recommendation on HIN. Specifically, we first
describe the concept of weighted meta-graph rather than meta-path to capture
the complicated semantics. Moreover, weighted meta-graph is used to measure
the semantic similarity between users and apps through distinguishing different
rating scores. And then, we use all latent features of all meta-graphs. For each
meta-graph, we first compute the user-app similarity matrix under the guidance
of the weighted meta-graph, and then exploit non-negative matrix factorization
to obtain user latent features and app latent features. Finally, by concatenat-
ing different user latent feature and app latent feature vectors computed from
different weighted meta-graphs, we use the factorization machine & deep neural
network (DeepFM) model to learn the low- and high-order interactions between
users and apps, and to further learn the rating matrix. Experimental results on
two real-world datasets demonstrate the proposed approach outperforms other
state-of-the-art recommendation approaches.

WMGRec for Mobile App Recommendation on HIN 407

In summary, the major contributions of this paper are three folds:

– To the best of our knowledge, we are the first to introduce the concept of
weighted meta-graph. The weighted meta-graph considers rating scores on
links and capture more complex semantic similarity between users and apps.

– We propose a weighted meta-graph based approach, which not only effectively
integrates rich structure and semantic information contained in app recom-
mendation, but also captures the higher order interactions between users and
apps. Furthermore, WMGRec can satisfy different kinds of requirement of
users and improve recommendation performance.

– Empirical studies on two real-world datasets verify the effectiveness of
WMGRec. WMGRec achieves better performance than other recommenda-
tion algorithms with the help of weighted meta-graph, non-negative matrix
factorization and DeepFM.

The rest of this paper is organized as follows. Section 2 presents the proposed
approach in detail. Section 3 analyzes and discusses the experimental results
and impact of parameters. Section 4 introduces some related works. Section 5
concludes the paper and gives some future directions.

2 Weighted Meta-graph Based Mobile App
Recommendation

In this section, the details of our proposed approach are described. For simplicity,
the same definitions of HIN and the corresponding network schema in [14] are
adopted in this paper. An illustration of the HIN network schema and meta-
graphs are shown in Fig. 2(a) and (b), respectively.

2.1 Basic Concepts

Given an HIN G = (V, E) and its network schema TG = (L,Q), where V is the
node set, E is the link set, L is the node type set, Q is the link type set. We
propose a novel concept, named weighted meta-graph, to capture complex rela-
tionship between two HIN objects.

Definition 1 Weighted Meta-graph. A meta-graph D is a directed acyclic graph
with a single source node Ns (i.e., with in-degree 0) and a single target node
Nt (i.e., with out-degree 0). Formally, D = (N ,M,Ns,Nt), where N ⊆ V is a
set of nodes and M ⊆ E is a set of links. For any node x ∈ N , x ∈ L; for any
link (x, y) ∈ M, (x, y) ∈ Q. If any link (x, y) has an attribute value c on it,
where c ∈ (0, C), C ∈ R

+, the meta-graph is called a weighted meta-graph; if any
link (x, y) has no attribute value on it, the meta-graph is called an unweighted
meta-graph.

Figure 2(b) illustrates a meta-graph D3, which depicts that two users provide
rating scores to the same app, and have mentioned the same topic at the same

408 F. Xie et al.

Fig. 2. Example of HIN network schema and meta-graphs used for mobile app dataset.
T: topics extracted from reviews; R: reviews; U: users; A: apps.

time. However, a meta-path fails to capture such complex relationship. A meta-
graph is convenient to express this kind of relationship. A meta-path (e.g., D1

or D2 in Fig. 2(b)) is a special case of a meta-graph. Therefore, we call it meta-
graph uniformly in the following. In addition, an unweighted meta-graph cannot
capture the subtle deference of users’ preference due to lack of considering rating
scores on links.

Definition 2 Atomic Meta-graph. If all attribute values in a weighted meta-graph
take a specific value, the meta-graph is called an atomic meta-graph. A weighted
meta-graph is a group of atomic meta-graphs which contains all atomic meta-
graphs that satisfy the constraint C.

The attribute value c in our datasets is an integer which is in the range
of [1, 5]. A toy example is shown in Fig. 3, “U 1A 1U” and “U4A 4U” are two
different atomic meta-graphs. The weighted meta-graph U iA j U|i = j is a group
of five atomic meta-graphs (e.g., U 2A 2U, U 3A 3U and U5A 5U).

Definition 3 Commuting Matrix. A commuting matrix M for a meta-graph D =
(L1L2...Ll) is defined as M = WL1L2 ◦ WL2L3 ◦ ... ◦ WLl−1Ll

, where WLiLj
is

the adjacency matrix between type Li and type Lj . ◦ can be two operations
(Hadamard product “�” and multiplication “·”).

To better comprehend the computation of commuting matrix, we take the
meta-graphs in Fig. 2(b) for example. For meta-graph D1, the commuting matrix
MD1 is computed as MD1 = WUA · WAU . For meta-graph D3, the computation
of the commuting matrix MD3 should be divided into four steps:

– Compute t1: t1 = WRA · WAR,
– Compute t2: t2 = WRT · WTR,
– Compute t3: t3 = t1 � t2,
– Compute MD3 : MD3 = WUR · t3 · WRU .

WMGRec for Mobile App Recommendation on HIN 409

2.2 Meta-graph Based Similarity

There are plenty of similarity measurements [16] to compute the similarity
between two objects. Herein, we exploit the most widely used similarity mea-
surement in HIN. Given a meta-graph D, PathSim [14] between two objects i
and j from the same type can be calculated as:

Si,j =
2Mi,j

Mi,i + Mj,j
(1)

where M is the commuting matrix for the meta-graph D, Mi,i and Mj,j are the
visibility for i and j in the network, namely, the number of meta-graphs between
themselves.

Fig. 3. A toy example for pathsim based similarity measurement on meta-graph

A toy example for PathSim based similarity measurement on unweighted
meta-graph (the upper part) and weighted meta-graph (the lower part) is pre-
sented in Fig. 3. After the process of path count (the number of path instances
between two objects), atomic meta-graph combination and normalization, the
traditional unweighted meta-graph considers that u1, u2, u3 are all similar with
each other. The weighted meta-graph draws a conclusion that only u1 and u2 are
similar due to their same taste in apps. Obviously, the result found by weighted
meta-graph is more accurate than that of unweighted meta-graph.

After obtaining the meta-graph based similarity of users, we can find the
similar users of a target user under a given meta-graph. And then, the similarity
between the target user and the app can be inferred according to his/her similar
users.

H
(l)
u,i,r =

∑

v

S(l)
u,v × Bu,i,r,

Bu,i,r = {1 Ru,i = r
0 otherwise,

(2)

410 F. Xie et al.

where S
(l)
u,v is the PathSim based similarity between user u and user v under the

meta-graph Dl. Bu,i,r is an indication function. If user u provides a rating score
r to app i, Bu,i,r is equal to 1; otherwise, it is equal to 0. H

(l)
u,i,r is the intensity

of user u rating app i with score r.
The similarity R̂(l)

u,i between user u and app i along a given meta-graph Dl

can be computed as follows:

R̂(l)
u,i =

N∑

r=1

r ×
H

(l)
u,i,r

∑N
k=1 H

(l)
u,i,k

(3)

2.3 Meta-graph Based Latent Features

By repeating the above similarity computation process to all meta-graphs, we
can obtain L different kinds of similarity matrices. We denote these similarity
matrices as R(1), . . . ,R(L). For each similarity matrix under a given meta-graph,
a non-negative matrix factorization [7] technique is applied to get the low-rank
matrix representation for users and apps. The idea of matrix factorization is that
a matrix is approximately equal to the multiplication of two low-rank matrices.
Mathematically,

R̂ ≈ U · A
s.t. U ≥0,A ≥ 0

(4)

By minimizing the following equation, the low-rank representation of users
and apps can be obtained:

min
U,A

1
2
‖I(R − R̂)‖2F +

λ1

2
‖U‖2F +

λ2

2
‖A‖2F (5)

where I is the indicator matrix. If the rating of user i on app j is observed, Iij

is 1; otherwise, Iij is 0. λ1 and λ2 are the hyper-parameters that control the
influence of the regularization term to avoid overfitting. ‖·‖F is the Frobenius
norm.

After factorizing all similarity matrices R(1), . . . ,R(L), we can obtain L types
of low-rank representation matrix pairs (U (1),A(1)), . . . , (U (L),A(L)). For each
pair of low-rank representation matrix U (l) and A(l), we concatenate the ith row
of U (l) (e.g., u

(l)
i) and the jth row of A(l) (e.g., a

(l)
j). Taking all meta-graphs into

consideration, we can finally get a sample or a feature vector xn like this:

xn = u
(1)
i , . . . , u

(l)
i , . . . , u

(L)
i︸ ︷︷ ︸

L×K

, a
(1)
j , . . . , a

(l)
j , . . . , a

(L)
j︸ ︷︷ ︸

L×K

(6)

where the value of i is from 1 to the number of users, the value of j is from 1 to
the number of apps. K is the number of latent factors. It could be different for
different matrices, but we keep it the same for simplicity.

WMGRec for Mobile App Recommendation on HIN 411

2.4 WMGRec Model

After the above calculation, we can get the concatenated feature vectors of sam-
ples. These features vectors are fed into DeepFM model to learn the low- and
high-order interactions between users and apps.

Fig. 4. The architecture of DeepFM

The architecture of DeepFM [4] is introduced in Fig. 4. The DeepFM model is
divided into two components: FM (factorization machine) component and DNN
(deep neural network) component. The two components share the same input
feature vectors. The FM component is an improved factorization machine [9].
As aforementioned, we have obtained the feature vectors. These feature vectors
are firstly fed into the embedding layer. The embedding techniques in neural
network have the advantage of reducing the dimensionality of feature vectors.
Secondly, the embedding vectors are put into the FM layer to learn the low-order
interactions between users and apps. FM is a good way to deal with sparsity data
and can be calculated in linear time. The output of FM component is formulated
as follows:

ŷ(X) = w0 +
f∑

i=1

wixi +
f−1∑

i=1

f∑

j=i+1

< Vi, Vj > xixj (7)

where, f is the length of the feature vector. w0 is the global bias, wi is the weight
of the ith variable. A row Vi within V ∈ R

f×d describes the ith variable with
d factors. X is the feature vector, which is concatenated by user latent features
and app latent features.

The DNN component is a traditional feed-forward neural network in which
data flows from the input layer to the output layer without looping back. DNN
can model complex non-linear relationships. For DNN component, embedding

412 F. Xie et al.

vectors are put into one or more hidden layer to learn the high-order interactions
between users and apps. The output of the embedding layer can be formulated
as:

z(0) = [e1, e2, ..., em] (8)

where ei is the embedding of the ith field and m is the number of fields. Then,
z(0) is fed into the DNN, and the forward process is:

z(q+1) = σ(W(q)z(q) + b(q)) (9)

where q is the layer depth and σ is an activation function. z(q),W(q), b(q) are the
output, model weight, and bias of the qth layer, respectively.

Through a series of hidden layers, the output of the final hidden layer is fed
into the output units. An activation function is used to acquire the output of
the DNN component.

yDNN = σ(W |Q|+1zQ + b|Q|+1) (10)

where |Q| is the number of hidden layers.
By combing the output of FM component and DNN component, all parame-

ters (e.g., including wi, Vi, and the network parameters W(q), b(q)) can be trained
jointly. The predicted rating score ŷ is calculated as follows:

ŷ = h(yFM + yDNN) (11)

where yFM is the output of FM component, and yDNN is the output of deep com-
ponent, and h is a linear regression. Note that we modify the original DeepFM
model (i.e., a classification task model) to fit our regression task (i.e., rating
prediction) by leveraging the linear regression in the output units.

3 Empirical Study

In this section, we first describe the two mobile app datasets. Then, we introduce
the evaluation metrics for performance comparison. Moreover, we compare our
WMGRec model with other state-of-the-art models. Finally, we study impact of
parameters on performance.

3.1 Dataset Description

We conduct experiments on two datasets. One dataset is crawled from a famous
app market Apple App Store. This dataset includes 12688 users and 10556 apps
with 335744 app ratings ranging from 1 to 5. The other dataset is crawled from
Google Play, provided by [8]. This dataset includes 14379 users and 25515 apps
with 330212 app ratings ranging from 1 to 5. The density (#Ratings

#Users×#Apps) of
Apple App Store and Google Play dataset are 0.2507% and 0.09%, respectively.
Both of the datasets also collect the reviews of users on apps. The detailed
statistics of two datasets are given in Table 1.

WMGRec for Mobile App Recommendation on HIN 413

Table 1. Statistics of the datasets

Dataset Relation of (A-B) Number of A Number of B Number of (A-B)

Apple App Store User-app 12688 10556 335744

User-review 12688 335744 335744

Review-app 335744 10556 335744

Review-topic 335744 4 973499

Google Play User-app 14379 25515 330212

User-review 14379 330212 330212

Review-app 330212 25515 330212

Review-topic 330212 4 288927

3.2 Evaluation Metrics

In the following experiments, we use Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to evaluate the errors between our predicted results
and the reality outcomes [15]. MAE is given by:

MAE =

∑
(i,j)∈Γtest

|r̂ij − rij |
|Γtest|

, (12)

and RMSE is denoted as:

RMSE =

√∑
(i,j)∈Γtest

(r̂ij − rij)2

|Γtest|
. (13)

where, Γtest represents the set of all user-app pairs (i, j) in the testing set, r̂ij

represents the predicted rating score of user i on app j, while rij is the observed
rating score of user i on app j in the testing set.

3.3 Performance Comparison

To validate the effectiveness of the proposed approach, we compare WMGRec
model with the following models.

– NMF [7]. This approach employs matrix factorization to user-app rating
matrix with a constraint that the factorized matrix is positive.

– FM [9]. This approach is the traditional factorization machine. It concatenates
user id and app id as sparsity features, and learns the interactions between
users and apps to complete the user-app rating matrix.

– SemRec [12]. This approach applies weighted meta-path based similarity, and
designs different kinds of strategies to predict the rating scores of users on
apps.

– FMG [19]. This approach utilizes unweighted meta-graph based similarity
and standard matrix factorization to obtain user and app latent features.
And then, it uses factorization machine to predict the rating scores of users
on apps.

414 F. Xie et al.

Fig. 5. Experimental results of all comparison methods

We employ the meta-graphs in Fig. 2(b) whose length are not longer than 4,
since the longer meta paths are not meaningful and they fail to produce good
similarity measure [14]. We repeat the experiments five times and use the average
RMSE and MAE of five rounds as the final result. The topics are extracted
from review texts by applying LDA (Latent Dirichlet Allocation) [1] model. The
number of hidden layers is 2. The dropout in WMGRec is 0.5 and learning rate
is set as 0.001. The latent factors and embedding size of all methods are fixed
as 10 for fair. The other parameters in those comparison methods are set with
the best performances.

Experiment results of all comparison methods are shown in Fig. 5. It can be
found that the denser training data brings better performance. The reason lies in
that with more observations in the training set, more information of the whole
matrix can be obtained. This leads to more accurate predicted rating scores
of users on apps. From Fig. 5, we can see that our proposed method beats the

WMGRec for Mobile App Recommendation on HIN 415

other state-of-the-art methods under all training data density (i.e., 60%, 70%,
80% and 90%) and evaluation metrics (i.e., RMSE and MAE). Specifically, the
performance of FM is better than that of NMF due to capturing interactions
between users and apps. HIN based approaches (e.g., SemRec, FMG, WMGRec)
are better than FM due to taking advantage of rich structure and abundant
semantics. The comparison between SemRec and FMG validates the effectiveness
of meta-graph. By comparing WMGRec with FMG, it indicates considering the
rating scores on links and applying DeepFM to learn high-order interactions are
indeed helpful to improve the recommendation accuracy. Concretely, compared
with FMG, the improvement of WMGRec on Apple App Store dataset is 1.15%
to 2.05% for RMSE and 4.25% to 4.99% for MAE. In addition, the improvement
of WMGRec on Google Play datset is 0.46% to 0.88% for RMSE and 0.62% to
1.31% for MAE. The enhancement of Google Play datset is smaller than that
of Apple App Store dataset, because the density of the former is considerably
sparse. Note that SemRec achieves the best MAE when the training data density
is 90%. That’s because it’s not always possible to get the best performance
of both evaluation metrics simultaneously, when optimizing the loss function.
Moreover, we mainly optimize the RMSE evaluation metric in this paper.

3.4 Study on Parameter Impacts

In this section, we discuss the impact of some major parameters on Apple App
Store dataset. In the following experiments, we fix 80% of the whole data as the
training set and the remaining 20% as the testing set.

learning rate
(a)

0.00001 0.0001 0.001 0.01 0.1 1.0

R
M

SE

1.45

1.5

1.55

1.6

learning rate
(b)

0.00001 0.0001 0.001 0.01 0.1 1.0

M
A

E

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Fig. 6. Impact of learning rate

Impact of Learning Rate. Learning rate is an important factor in machine
learning and deep learning. How to adjust the learning rate is one of the key steps
to train a model. When solving the minimum problem with gradient descent, the
gradient can be neither too large nor too small. If the learning rate is too large,
it will hinder the convergence. That is, the loss shocks near the extreme point. If

416 F. Xie et al.

the learning rate is too small, it will lead to the inability to quickly find a good
downward direction. Namely, when the number of iterations increases, the loss
keeps unchanged. In this experiment, we set learning rate from 0.00001 to 1.0.
As shown in Fig. 6, the RMSE and MAE firstly present a downward trend, and
then an upward trend. The best performance achieves when the learning rate is
set as 0.001. The result indicates that a relatively larger learning rate is helpful
to improve the recommendation accuracy.

Fig. 7. Impact of dropout

Fig. 8. Impact of embedding size

Impact of Dropout. Dropout [13] refers to a probability that each neural
network unit may be discarded from the network in the process of DNN training.

WMGRec for Mobile App Recommendation on HIN 417

Dropout is a regularization technique for reducing overfitting in neural networks.
We set the dropout from 0.1 to 1.0 with a step value of 0.1. As shown in Fig. 7,
the RMSE and MAE increase after the first decline. Our model can reach the
best performance when the dropout is set as 0.4 for RMSE and 0.9 for MAE.
The observation demonstrates that adding reasonable randomness to the model
can enhance the effectiveness of the model.

Impact of Embedding Size. Embedding size d determines how many embed-
ding features are extracted from feature vectors. Namely, the dimensionality of
embedding vector. To study the impact of embedding size, we vary it from 2
to 50. It can be observed from Fig. 8, when increasing the embedding size from
2 to 50 the RMSE and MAE value decline firstly, and then grow up. The low-
est RMSE can be obtained when the embedding size is 14. For MAE, the best
performance can be acquired when the embedding size is 4. The result shows
that a relatively smaller embedding size is better to achieve a good model. It is
reasonable because larger embedding size means higher computational cost.

4 Related Work

To the best of our knowledge, this paper is the first work to exploit weighted
meta-graph and HIN for mobile app recommendation. The work of this paper is
mainly related to two aspects: mobile app recommendation and HIN for recom-
mendation. Several studies referred to these two areas will be introduced in the
following.

Mobile App Recommendation. Most existing investigations usually consider
the context information, user’s interest, privacy, security and other character-
istics for mobile app recommendation. Liang et al. [8] proposed a broad learn-
ing approach for context-aware app recommendation with tensor analysis. Yin
et al. [18] proposed a mobile sparse additive generative model to recommend
apps by considering both user interests and category-aware user privacy pref-
erences. Huang et al. [5] presented a skewness-based framework for mobile app
permission recommendation and risk evaluation. Zhu et al. [21] proposed a novel
location-based probabilistic factor analysis mechanism to help people get an
appropriate mobile app. Cao et al. [2] proposed a novel version-sensitive mobile
app recommendation framework by jointly exploring the version progression and
dual-heterogeneous data.

HIN for Recommendation. HIN is widely applied to movie recommendation,
research collaborator recommendation, product recommendation and social rec-
ommendation. Shi et al. [12] proposed a weighted HIN and weighted meta-path
based personalized recommendation method to predict the rating scores of users
on items. Shi et al. [11] proposed a matrix factorization based dual regularization
framework to integrate different types of information. Yang et al. [17] generated
high quality expert’s profiles and proposed an approach based on the multiple
heterogeneous network features. Zhao et al. [19] proposed a group lasso regular-
ized FM to automatically learn from the observed ratings to effectively select

418 F. Xie et al.

useful meta-graph based features. Zheng et al. [20] proposed a new dual simi-
larity regularization to impose the constraint on users and items with high and
low similarities simultaneously. However, to the best of our knowledge, most of
the existing studies do not explored weighted meta-graph and HIN in the sce-
nario of mobile app recommendation. Weighted meta-graph takes into account
the rating scores to capture the subtle semantics. HIN contains rich structure
and semantic information, which can satisfy different kinds of requirements of
users and generate better recommendation results.

5 Conclusion

This paper presents a weighted meta-graph based approach for mobile app rec-
ommendation. Firstly, we utilize weighted meta-graph, which considers the rat-
ing scores on links and captures more complex semantics, to measure the seman-
tic similarity between users and apps. Then, we employ non-negative matrix
factorization to obtain user latent features and app latent features. Finally, we
exploit DeepFM model to predict the rating score of users on apps by leveraging
the concatenated user and app latent features. Furthermore, we conduct a series
of comprehensive experiments on two real-world datasets. First of all, we com-
pare WMGRec model with other baseline approaches under different training
data density, which indicates that our WMGRec model generates better recom-
mendations and improves the recommendation accuracy. And then, we study
how parameters (i.e., learning rate, dropout and embedding size) impact the
recommendation results.

In the future, we attempt to collect more attribute information (e.g., permis-
sion and category) of apps and social relation information (e.g., friends relation
and trust relation) of users to enrich features and semantics in the network.

Acknowledgments. The paper was supported by the National Key Research and
Development Program (2017YFB0202200), the National Natural Science Foundation
of China (61702568, U1711267), the Program for Guangdong Introducing Innovative
and Enterpreneurial Teams (No.2017ZT07X355) and the Fundamental Research Funds
for the Central Universities under Grant (17lgpy117).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

2. Cao, D., et al.: Version-sensitive mobile app recommendation. Inf. Sci. 381, 161–
175 (2017)

3. Fang, Y., Lin, W., Zheng, V.W., Wu, M., Chang, K.C.C., Li, X.L.: Semantic prox-
imity search on graphs with metagraph-based learning. In: 2016 IEEE 32nd Inter-
national Conference on Data Engineering (ICDE), pp. 277–288. IEEE (2016)

WMGRec for Mobile App Recommendation on HIN 419

4. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based
neural network for CTR prediction. In: International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1725–1731 (2017)

5. Huang, K., Han, J., Chen, S., Feng, Z.: A skewness-based framework for mobile
app permission recommendation and risk evaluation. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 252–266. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46295-0 16

6. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure:
computing relevance in large heterogeneous information networks. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 1595–1604. ACM (2016)

7. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Con-
ference on Neural Information Processing Systems (NIPS), pp. 556–562 (2001)

8. Liang, T., He, L., Lu, C.T., Chen, L., Yu, P.S., Wu, J.: A broad learning approach
for context-aware mobile application recommendation. In: International Conference
on Data Mining (ICDM), pp. 955–960. IEEE (2017)

9. Rendle, S.: Factorization machines. In: International Conference on Data Mining
(ICDM), pp. 995–1000. IEEE (2010)

10. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous infor-
mation network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2017)

11. Shi, C., Liu, J., Zhuang, F., Philip, S.Y., Wu, B.: Integrating heterogeneous infor-
mation via flexible regularization framework for recommendation. Knowl. Inf. Syst.
49(3), 835–859 (2016)

12. Shi, C., Zhang, Z., Luo, P., Yu, P.S., Yue, Y., Wu, B.: Semantic path based per-
sonalized recommendation on weighted heterogeneous information networks. In:
Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management (CIKM), pp. 453–462. ACM (2015)

13. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

14. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11),
992–1003 (2011)

15. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Clim.
Res. 30(1), 79–82 (2005)

16. Wu, J., Chen, L., Xie, Y., Zheng, Z.: Titan: a system for effective web service
discovery. In: Proceedings of the 21st International Conference on World Wide
Web, pp. 441–444 (2012)

17. Yang, C., Sun, J., Ma, J., Zhang, S., Wang, G., Hua, Z.: Scientific collaborator
recommendation in heterogeneous bibliographic networks. In: Hawaii International
Conference on System Sciences (HICSS), pp. 552–561. IEEE (2015)

18. Yin, H., Chen, L., Wang, W., Du, X., Nguyen, Q.V.H., Zhou, X.: Mobi-SAGE: a
sparse additive generative model for mobile app recommendation. In: International
Conference on Data Engineering (ICDE), pp. 75–78. IEEE (2017)

19. Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommenda-
tion fusion over heterogeneous information networks. In: Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), pp. 635–644. ACM (2017)

https://doi.org/10.1007/978-3-319-46295-0_16

420 F. Xie et al.

20. Zheng, J., Liu, J., Shi, C., Zhuang, F., Li, J., Wu, B.: Dual similarity regularization
for recommendation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z.,
Wang, R. (eds.) PAKDD 2016. LNCS (LNAI), vol. 9652, pp. 542–554. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-31750-2 43

21. Zhu, K., Zhang, L., Pattavina, A.: Learning geographical and mobility factors for
mobile application recommendation. IEEE Intell. Syst. 32(3), 36–44 (2017)

https://doi.org/10.1007/978-3-319-31750-2_43

Temporal-Sparsity Aware Service
Recommendation Method via Hybrid
Collaborative Filtering Techniques

Shunmei Meng1,2(&), Qianmu Li1(&), Shiping Chen3, Shui Yu4,
Lianyong Qi5, Wenmin Lin6, Xiaolong Xu7, and Wanchun Dou2

1 Department of Computer Science and Engineering,
Nanjing University of Science and Technology, Nanjing, China

{mengshunmei,qianmu}@njust.edu.cn
2 State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, China
douwc@nju.edu.cn

3 CSIRO Data61, Sydney, Australia
shiping.chen@data61.csiro.au

4 School of Software, University of Technology Sydney,
Ultimo, NSW, Australia

shui.yu@uts.edu.au
5 School of Information Science and Engineering, Qufu Normal University,

Jining, China
lianyongqi@gmail.com

6 Department of Computer Science, Hangzhou Dianzi University, Hangzhou,
China

linwenmin@hdu.edu.cn
7 School of Computer and Software,

Nanjing University of Information Science and Technology, Nanjing, China
xlxu@nuist.edu.cn

Abstract. Temporal information has been proved to be an important factor to
recommender systems. Both of user behaviors and QoS performance of services
are time-sensitive, especially in dynamic cloud environment. Furthermore, due
to the data sparsity problem, it is still difficult for existing recommendation
methods to get the similarity relationships between services or users well. In
view of these challenges, in this paper, we propose a temporal-sparsity aware
service recommendation method based on hybrid collaborative filtering
(CF) techniques. Specifically, temporal influence is considered into classical
neighborhood-based CF model by distinguishing temporal QoS metrics from
stable QoS metrics. To deal with the sparsity problem, a time-aware latent factor
model based on a tensor decomposition model is applied to mine the temporal
similarity between services. Finally, experiments are designed and conducted to
validate the effectiveness of our proposal.

Keywords: Service recommendation � Temporal � Sparsity
Collaborative filtering � CP decomposition

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 421–429, 2018.
https://doi.org/10.1007/978-3-030-03596-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_30&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_30

1 Introduction

With the rapid growth of public cloud offerings, service-oriented systems are becoming
large-scale and complex. It becomes more difficult for users to find the appropriate
services. Recommendation has been a hot research topic with the rapid growth of
information. There have been many efforts done both in industry and academia on
developing effective recommender systems [1, 2]. Collaborative filtering has been
proved to be one of the most successful recommendation methods to deal with
information overload in real world [3]. However, most of existing CF recommendation
models provide recommendations based on rating models directly without considering
context information, such as temporal influence. Actually, because of business com-
petition and temporal dynamics of cloud environment, most cloud services are time-
sensitive.

Recently, there have been some studies [4, 5] that investigate the importance of
temporal influence in recommender systems, which mainly focus on the temporal
dynamics on user preferences. Nevertheless, few works pay attention to temporal
influence to Quality of Service (QoS). Compared with traditional internet services, QoS
of cloud services is more sensitive to time due to the dynamics of cloud environment.
The correlation among cloud services and user behaviors over long time may be
weakened because of temporal dynamics. Thus it is important to consider the temporal
impact on QoS of cloud services. Besides, the data sparsity problem is always a serious
shortcoming to affect the performance of recommendation methods. Due to the sparsity
problem, existing similarity models in collaborative methods fail to capture the simi-
larity relationships between users or services effectively.

Based on these observations, in this paper, a temporal-sparsity aware service rec-
ommendation method via hybrid CF techniques is proposed. Firstly, temporal influence
is considered into neighborhood-based CF recommendation model by distinguishing
temporal QoS metrics from the stable QoS metrics. To address the data sparsity
problem and mine the similarity relationships between services over time adaptively, a
time-aware latent factor model based on tensor decomposition is presented. Finally,
experiments based on real-world service dataset are designed and conducted to validate
the effectiveness of our proposal.

2 Problem Formulation

In this section, some important concepts and definitions are presented. Firstly, to
mining the temporal features of QoS, the QoS metrics of services are divided into two
parts, i.e., stable QoS metrics and temporal QoS metrics:

Stable QoS Metrics and Temporal QoS Metrics: Stable QoS metrics are the metrics
evolving at a rather slow speed, which are regular features (such as availability).
Temporal QoS metrics are the metrics that have clear temporal features and present
dynamic trends over time, which are dynamic features (such as price and duration).

To analyze the temporal influence to recommendation performance, the history
time period of rating dataset is divided into K time slots, i.e., fT1; T2; . . .:; TKg. The

422 S. Meng et al.

temporal QoS metrics are distinguished from stable QoS metrics by measuring the
fluctuation of the rating for each individual QoS metric over time. The fluctuation of
QoS metric qh is measured by the variance of QoS rating for qh during the K time slots,
which is defined in Eq. (1):

FðqhÞ ¼ 1
K � Sj j

XSj j

s¼1

XK
k¼1

ðrqshk � rqshÞ2 ð1Þ

Where Sj j is the number of services in service set S, rqshk is the average rating of metric
qh in time slot Tk of service s, and rqsh is the overall average rating of qh in total time
period of service s.

A fluctuation threshold dt is given to decide whether a QoS metric is stable or
temporal. If FðqhÞ[dt, then qh can be seen as a temporal QoS metric, otherwise qh is
considered as a stable metric. So the QoS metric vector Q ¼ ½q1; q2; . . .; qH � can be
divided into two parts: stable QoS vector SQ ¼ ½sq1; sq2; . . .; sqa� and temporal QoS
vector TQ ¼ ½tq1; tq2; . . .; tqb� (a + b = H).

Global Nearest Neighbors: For a candidate service s, its global nearest neighbors are
the services that have the most similar QoS ratings with service s at the whole time
period of the history records.

Temporal Nearest Neighbors: The temporal nearest neighbors of service s are the
services that have the most similar QoS ratings with service s at time slot Tk and its
similar time slots, i.e., TsimðkÞ. (The definition of TsimðkÞ is given in Sect. 3.1).

3 Temporal-Sparsity Aware Service Recommendation
Method

In this paper, to make more appropriate recommendations from time-sensitive cloud
services, a temporal-sparsity aware service recommendation method based on hybrid
CF techniques is proposed. Our method can be designed as a three-phase process:
(1) Time slot aggregation, (2) Similarity calculation and similarity prediction, (3) Rat-
ing prediction, which are described in detail in the following.

3.1 Time Slot Aggregation

To make more accurate recommendations, we make predictions based on the QoS
ratings at the target time slot. However, the related rating dataset of the target user at the
target time slot maybe very spare. We provide an aggregation strategy to merge the
similar time slots for the target time slot.

A temporal similar coefficient uðTi; TjÞ is defined to measure the temporal close-
ness of the temporal QoS metrics between time slot Ti and Tj. As shown in Eq. (4),
uðTi; TjÞ 2 ½0; 1� is defined based on Pearson Correlation Coefficient (PCC). The
larger uðTi; TjÞ is, the closer the temporal features of candidate services between Ti and
Tj is. Given a threshold h to determine whether two time slots are similar.

Temporal-Sparsity Aware Service Recommendation Method 423

If uðTi; TjÞ� h, then time slots Ti and Tj can be considered to be similar. The similar
time slots of Ti is defined as TsimðkÞ and Tk � TsimðkÞ.

uðTi; TjÞ ¼
P

s2SðTiÞ \ SðTjÞ ðRTis � RTiÞ � ðRTjs � RTjÞffiP
s2SðTiÞ \ SðTjÞ RTis � RTi

�� ��2q
�
ffiP

s2SðTiÞ \ SðTjÞ RTjs � RTj

�� ��2q ð2Þ

In Eq. (2), SðTiÞ \ SðTjÞ is the set of coinvoked services by users at time slot Ti and
Tj, RTis is the average temporal QoS-rating vector of service s at Ti, RTi is the average
temporal QoS-rating vector of all candidate services in SðTiÞ \ SðTjÞ at Ti.

3.2 Similarity Calculation and Similarity Prediction

As presented in Sect. 2, there are two kinds of nearest neighbors in our work, i.e.,
global nearest neighbors (denoted as SGNN) and temporal nearest neighbors denoted as
STNN). The global nearest neighbors of a service s can be decided by Eq. (3):

simGNN
sv ¼

P
u2UðsÞ \UðvÞ RQus � RQs

� � � RQuv � RQv

� �
ffiP

u2UðuÞ \UðvÞ RQus � RQs

�� ��2� RQuv � RQv

�� ��2q ð3Þ

where UðsÞ \UðvÞ is the set of users that rated both service s and service v in the whole
time period. Here, we give a preset similarity threshold dsim, then the services that have
similarity with service s no less than dsim can be considered as global nearest neighbors
of service s.

Similarly, the temporal nearest neighbors of service s can be determined by Eq. (4).
The temporal nearest neighbors of service s at time slot Tk are the services that have
similarity with service s no less than dsim at time slot Tk and its similar time slots, i.e.,
TsimðkÞ.

simTNN
sv ðTkÞ ¼

P
u2UsvðTkÞ RQus � RQs

� � � RQuv � RQv

� �
ffiP

u2UsvðTkÞ RQus � RQs

�� ��2� RQuv � RQv

�� ��2q ð4Þ

where UsvðTkÞ ¼ fuju 2 UðsÞ \UðvÞ& tus 2 TsimðkÞ& tuv 2 TsimðkÞg, which is the set
of users that rated both service s and service v at TsimðkÞ.

To solve sparsity problem further, a time-aware latent factor model based on
CANDECOMP/PARAFAC (CP) decomposition [6] is applied to predict temporal
similarity between services. The triadic relations among services, neighbors and time
features are formulated as a three-dimensional similarity tensor Sim 2 <M�M�K . The
element in tensor Sim is denoted as simijk, which represents the temporal similarity of
service i and service j at time slot Tk. The tensor Sim is symmetric as simijk ¼ simjik.
Then, based on the CP decomposition model, the tensor Sim 2 <M�M�K can be
decomposed into a sum of component rank-one tensors:

424 S. Meng et al.

Sim 	
XR
r¼1

sr
 sr
 tr ð5Þ

where R is actually the rank of tensor Sim, which is defined as the smallest number of
rank-one tensors. sr and tr represent the latent factor vectors associated with service and
time, respectively.

Then the temporal similarity can be predicted by Eq. (6). The observed temporal
similarity can be broken into two components: biases and service-neighbor-time
interaction. The bias component contains the overall average similarity l and time bias
btk. In similarity prediction, we didn’t consider service bias.

ŝimijk ¼ lþ btk þ
XR
r¼1

sir
 sjr
 tkr ð6Þ

To learn the involved parameter btk and the involved vectors, i.e., sir , sjr and tkr, we
minimize the regularized squared error function:

min
b; s; t

X
ði;j;kÞ2Train

simijk � ŝimijk

�� ��2 þ kW ð7Þ

where Train is the set of the (i, j, k) pairs for simijk, which is known as the training set.

simijk is obtained by Eq. (4). W ¼ b2tk þ sirk k2 þ sjr
�� ��2 þ tkrk k2, which is applied to

regularize the learned parameters to avoid overfitting and the constant k controls the
extent of regularization. In this paper, we adopt stochastic gradient descent to solve
Eq. (7) by looping through all similarity values in the training set.

3.3 Rating Prediction

The prediction of target user i on candidate service j at Tk (denoted as rijk) is defined in
Eq. (8). The prediction consists of two parts, i.e., prediction based on the global nearest
neighbors and prediction based on the temporal nearest neighbors, which are combined
by a weight coefficient a. In our proposal, a is set as a=H, and 1� a ¼ b=H.

rijk ¼ a � �rj þ
P

s2SGNN ðjÞ ðris � �rsÞ � simGNN
isP

s2SGNN ðjÞ simGNN
is

�� ��
 !

þ 1� að Þ

� �rkj þ
P

s02STNN ðj;TK Þ ðris0 � �rs0 Þ � simTNN
is0 ðTkÞP

s02STNN ðj;TKÞ simTNN
is0 ðTkÞ

�� ��
 !

ð8Þ

Where �rkj is the average rating of service j at the aggregated time slot TsimðkÞ, SGNNðjÞ
and STNNðj; TkÞ respectively represent service j’s global and temporal nearest neighbor
set where the services have been used by user i, and ris represents the rating of user i on
service s, �rs is the overall average rating of services in SGNNðjÞ, and �rs0 is the overall
average rating of services in STNNðj; TkÞ.

Temporal-Sparsity Aware Service Recommendation Method 425

4 Experiment

4.1 Experimental Setup

Datasets: We employ a real-world service dataset to simulate the history QoS ratings
of services in the cloud market. The dataset is collected from a well-known travel
review site (www. tripadvisor.com). In our experiment, we use five-fold cross vali-
dation approach, and the dataset is split into 20% test data and 80% train data.

Comparative Approaches: To evaluate the effectiveness of our proposal, we compare
our method with four other approaches: Item-based CF algorithm using PCC (IPCC)
[7], regularized Singular Value Decomposition (RSVD) [8], a temporal QoS-aware
web service recommendation method via tensor factorization (TWS) [9], and a time-
aware hybrid collaborative recommendation method (THC) [10].

Performance Metrics: Four widely used metrics are applied to evaluate the statistical
accuracy of recommendation approaches: mean absolute error (MAE), root-mean-
square error (RMSE) [11], precision and recall [12].

4.2 Experimental Result

In our experiment, to evaluate the recommendation accuracy of our proposal, we
compare our method (denoted as TSSRec) with four approaches. Figure 1 shows the
best prediction performance (performance under the optimal parameter settings) of all
methods in MAE and RMSE. We can see that both of MAE and RMSE of TSSRec are
better than other four comparative approaches.

Figure 2 shows the performance of Top-N (N = 3, 5, 7) recommendations. Fig-
ure 2(a) and (b) present the precision@N and recall@N performance of all methods,

Fig. 1. Comparison of prediction performance in MAE and RMSE.

426 S. Meng et al.

respectively. It can be found that TSSRec also outperform other methods in Top-N
(N = 3, 5, 7) recommendation accuracy.

From the experimental results above, we can see that temporal influence is
important to service recommendation in dynamic cloud environment. And our method
achieves considerable improvement on recommendation accuracy compared to other
comparative approaches.

5 Related Work

In the past, there has been some research work which integrates temporal influence into
collaborative recommendation methods. Hu et al. [4] integrate temporal information
into both similarity measurement and QoS prediction by considering the time gap
between recommendation time and the occurring time of previous rating. The research
[5] considers time information into recommendations based on probabilistic models.
Wang et al. [13] adapt matrix factorization techniques to learn user-group affinity based
on two different implicit engagement metrics. Recently, more and more influence
factors, such as location influence, social influence, are considered into recommender
systems. Lian et al. [14] propose a collaborative location recommendation framework
to exploit the relations between users, activities and locations. The literature [15]
focuses on the problem of joint modeling user check-in behaviors for real-time POI
recommendation. Wang et al. [16] propose a spatial-temporal QoS prediction method
where the temporal QoS prediction is formulated as a generic regression problem and a
zero-mean Laplace prior distribution assumption is made on the residuals of QoS
prediction.

Fig. 2. Comparison of Top-N recommendation accuracy. (a) Comparison in precision@N.
(b) Comparison in recall@N.

Temporal-Sparsity Aware Service Recommendation Method 427

6 Conclusion

In this paper, a temporal-sparsity aware service recommendation method based on
hybrid CF techniques is proposed. Specifically, temporal influence is considered into
classical neighborhood-based CF model by distinguishing temporal QoS metrics from
stable QoS metrics. Accordingly, stable nearest neighbors and temporal nearest
neighbors are defined. Then a time-aware latent factor model based on CP decompo-
sition is integrated into neighborhood model to mine the temporal similarity relation-
ships between services to address the data sparsity problem. Finally, experiments based
on real-world service dataset are conducted to demonstrate the effectiveness of our
proposal. In our future work, we will do further research in collaborative recommen-
dation models based on multi-model integration and consider more context information
in dynamic cloud environment.

Acknowledgment. This paper is partially supported by the National Science Youth Foundation
of China under Grant No. 61702264, the Open Research Project of State Key Laboratory of
Novel Software Technology (Nanjing University) under Grant No. KFKT2017B07.

References

1. Yang, J., Liu, C., Teng, M., Chen, J., Xiong, H.: A unified view of social and temporal
modeling for B2B marketing campaign recommendation. IEEE Trans. Knowl. Data Eng. 30
(5), 810–823 (2018)

2. Zhang, Y., et al.: Personalized quality centric service recommendation. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 528–544.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_39

3. Meng, S., Dou, W., Zhang, X., Chen, J.: KASR: a keyword-aware service recommendation
method on mapreduce for big data applications. IEEE Trans. Parallel Distrib. Syst. 25(12),
3221–3231 (2014)

4. Hu, Y., Peng, Q., Hu, X., Yang, R.: Time aware and data sparsity tolerant web service
recommendation based on improved collaborative filtering. IEEE Trans. Serv. Comput. 8(5),
782–794 (2015)

5. Zhang, J.D., Chow, C.Y.: TICRec: a probabilistic framework to utilize temporal influence
correlations for time-aware location recommendations. IEEE Trans. Serv. Comput. 9(4),
633–646 (2016)

6. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–
500 (2009)

7. Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative
filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

8. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
Computer 42(8), 42–49 (2009)

9. Zhang, W., Sun, H., Liu, X., Guo, X.: Temporal QoS-aware web service recommendation
via non-negative tensor factorization. In: Proceedings of the 23rd International Conference
on World Wide Web, pp. 585–596. ACM (2014)

10. Meng, S., et al.: A temporal-aware hybrid collaborative recommendation method for cloud
service. In: 2016 IEEE International Conference of Web Services (ICWS), pp. 252–259.
IEEE (2016)

428 S. Meng et al.

http://dx.doi.org/10.1007/978-3-319-69035-3_39

11. Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?–
arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 7(3), 1247–1250
(2014)

12. Carullo, G., Castiglione, A., De Santis, A., Palmieri, F.: A triadic closure and homophily-
based recommendation system for online social networks. World Wide Web 18(6), 1579–
1601 (2015)

13. Wang, X., Donaldson, R., Nell, C., Gorniak, P., Ester, M., Bu, J.: Recommending groups to
users using user-group engagement and time-dependent matrix factorization. In: AAAI,
pp. 1331–1337 (2016)

14. Lian, D., et al.: Scalable content-aware collaborative filtering for location recommendation.
IEEE Trans. Knowl. Data Eng. 30(6), 1122–1135 (2018)

15. Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in
behaviors for real-time point-of-interest recommendation. ACM Trans. Inf. Syst. (TOIS) 35
(2), 11 (2016)

16. Wang, X., Zhu, J., Zheng, Z., Song, W., Shen, Y., Lyu, M.R.: A spatial-temporal QoS
prediction approach for time-aware web service recommendation. ACM Trans. Web
(TWEB) 10(1), 7 (2016)

Temporal-Sparsity Aware Service Recommendation Method 429

QoS-Aware Web Service
Recommendation with Reinforced

Collaborative Filtering

Guobing Zou1,2, Ming Jiang1,2, Sen Niu3, Hao Wu1, Shengye Pang1,
and Yanglan Gan4(B)

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
guobingzou@gmail.com, jimmyme520@gmail.com

2 Shanghai Institute for Advanced Communication and Data Science,
Shanghai University, Shanghai, China

3 College of Computer and Information, Shanghai Polytechnic University,
Shanghai, China

4 School of Computer Science and Technology, Donghua University, Shanghai, China
ylgan@dhu.edu.com

Abstract. With the overwhelming increase of web services on the Inter-
net, how to accurately perform QoS prediction has played a key role
in service recommendation. Recently, three kinds of approaches have
been presented on service QoS prediction based on collaborative filtering
(CF), including user-intensive, service-intensive and their combination.
However, the deficiency of current approaches is that all of the services
invoked by target user (or all of the users who invoked target service)
are applied to calculate average QoS, without the reduction to those dis-
similar with target service (or target user). In this paper, we propose a
reinforced collaborative filtering approach, where both similar users and
services are integrally considered into a singleton CF. The experiments
are conducted on a large-scale dataset called WS-DREAM, involving
5,825 real-world Web services in 73 countries and 339 service users in 30
countries. The experimental results demonstrate that our approach for
QoS prediction outperforms the competing approaches.

Keywords: Service-oriented computing · Service recommendation
QoS · Collaborative filtering

1 Introduction

With the rapid development of network technology and increasing demands on
service-oriented application integration, more and more software developers pub-
lish their softwares as web services on the Internet. It accelerates the interoper-
able machine-to-machine interaction and greatly promotes the advancements on
service discovery, optimum selection, automated composition and recommenda-
tion. However, as the overwhelming explosion on the number of the registered
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 430–445, 2018.
https://doi.org/10.1007/978-3-030-03596-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_31

Service Recommendation with Reinforced Collaborative Filtering 431

services, many of them merge with the same or similar functionality in a ser-
vice repository. That tends to be a labor-intensive challenging task for service
requesters to choose their desired services from a large-scale service repository.
Quality of Service (QoS) as a non-functionality criterion has been widely applied
as a key factor to differentiate those functionally equivalent web services. In many
cases, however, a target user has not invoked a target service. That is, there are
very few historical QoS invocations, leading to difficulty in recommending appro-
priate services to a target user. In this application scenario, how to designing an
effective approach of unknown QoS prediction for service recommendation has
become a critical research issue to be addressed.

Applying the techniques of collaborative filtering in recommender system,
correlative research efforts [1–7,9,10,12–14] have been made on service QoS pre-
diction. They can be grouped into model-based and memory-based approaches.
Matrix factorization (MF) [4–6,12,14] as the typical model-based technique has
been used for missing QoS prediction, where the original user-service QoS matrix
with sparsity is converted into two low dimensional matrices. Memory-based
collaborative filtering approaches for QoS prediction are usually classified into
user-based [2], service-based [7], and their linear combination with a confidence
weight [13]. They leverage similar users (or services) for a target user (a target
service) to predict unknown QoS.

Although these existing approaches can assist and facilitate QoS prediction
of web services, the deficiency is that they still cannot reach the accuracy satisfy-
ing service requesters’ demands. More specifically, the traditional collaborative
filtering algorithm consists of two major components, including average QoS
calculation and deviation migration calculation. It is observed that the existing
approaches either directly employ all the services that a target user has invoked,
or all the users who have invoked a target service, when performing average
QoS calculation. That is, they did not consider the discrepancies between all of
the services invoked by a target user and a target service. Simultaneously, the
differences between all of the users who invoked a target service and a target
user have also not been considered. That kind of collaborative filtering algo-
rithm decreases the purity on average QoS calculation and affects the accuracy
of QoS prediction. To partially solve this issue, enhanced collaborative filtering
algorithms have been proposed with the help of external context information,
such as a user’s geographical location. However, it is difficult to obtain context
information in real-world applications. Therefore, how to design an effective col-
laborative filtering algorithm for QoS prediction without any external heuristic
information support has become a challenging research issue.

To handle above issue, we proposed a novel reinforced collaborative filter-
ing algorithm (RECF) for QoS prediction. When performing user-based RECF,
the implicit context information from the service side is obtained by a ratio-
based similarity calculation method [10] in order to eliminate those dissimi-
lar services with the target one. It has been integrally taken into account for
calculating average QoS. In this way, the advantage of our approach is that
user-based and service-based similarity information can be integrated into a

432 G. Zou et al.

singleton collaborative filtering algorithm without additional parameters learn-
ing and estimation. Similarly, service-based RECF takes those dissimilar users
with the target one as hidden factors to promote QoS prediction.

To test the performance of QoS prediction, extensive experiments are con-
ducted on a large-scale real-world dataset called WS-DREAM, involving 5,825
real-world web services in 73 countries and 339 service users in 30 countries. We
compare our approach with seven existing collaborative filtering-based meth-
ods on QoS prediction accuracy. The experimental results demonstrate that our
approach can outperform those competing approaches.

The main contributions of this paper are summarized as follows.

• We propose a novel reinforced collaborative filtering framework for QoS pre-
diction, where the similarity calculation from user-perspective and service-
perspective are integrally integrated into a singleton CF method, instead of
a linear combination by weighted parameters.

• We propose an approach for optimizing the average QoS calculation. By
applying ratio-based similarity computation, implicit features among users
or services can be discovered without any external context information.

• We design and implement a prototype system and conduct extensive experi-
ments on a real-world dataset called WS-DREAM. The experimental results
demonstrate that our approach of QoS prediction is superior to existing com-
pleting methods in terms of accuracy.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 elaborates our approach of reinforced collaborative filtering for
service QoS prediction. Section 4 shows the experimental evaluation. Finally,
Sect. 5 concludes the paper.

2 Related Work

According to [2], collaborative filtering algorithms for service QoS prediction can
be mainly divided into two categories, including model-based and memory-based
approaches. We review the advancement on collaborative filtering algorithms for
QoS prediction that is highly related with our work.

In model-based collaborative filtering approaches, matrix factorization [4,5,
12,14] is the typical technique for predicting missing QoS values of web services.
It turns an original matrix into two low dimensional matrices to reveal pivot
features that can be used to estimate an unknown QoS value, where a target
user has not ever invoked a target service.

In memory-based collaborative filtering approaches, it consists of average
QoS calculation step and deviation migration step. This kind of approach has
three different variations, including user-based CF [2], service-based CF [7] and
their linear combination with confidence weights [13]. Based on historical QoS
invocation logs, neighborhood users or services can be chosen by similarity cal-
culation in deviation migration step. Moreover, correlative research works con-
centrated on how to more accurately quantify the correlation between users or

Service Recommendation with Reinforced Collaborative Filtering 433

services. The authors in [9] investigated the QoS distribution characteristics and
proposed a novel collaborative filtering approach for QoS prediction. It normal-
izes the QoS values to the same range and then unifies the similarity in different
multi-dimensional vector spaces. The authors in [10] proposed a novel ratio-based
similarity approach to measure neighborhood users and services. Compared with
PCC similarity [8] and cosine similarity [7], it is more precise for predicting the
unknown QoS of web services.

To further improve the prediction accuracy, several recent approaches have
been proposed by adding context information as heuristic knowledge during the
procedure of deviation migration. The authors in [4,12,14] took the geography
location of the users or services, the provider of the services and the infrastruc-
ture information into account to extract more accurate neighborhood users or
services. The authors in [1] found out a group of trusted users or services based
on pareto dominance comparison. In addition, time series was used to predict
the tendency information of missing QoS prediction of web services [3]. The
authors in [11] proposed a hybrid approach of QoS prediction via combining the
information from geography location and time series.

From the above investigation, we observe that the existing methods mainly
focused on how to improve the accuracy of similarity calculation in deviation
migration. However, they rarely made the reduction to those dissimilar services
invoked by a target user (or dissimilar users who invoked a target service) in
average QoS calculation. Although some of the recent research has borrowed
external context information as heuristic knowledge to optimize the similar ser-
vices for a target user (or similar services for a target user), they only apply them
to deviation migration, instead of average QoS calculation. That affects the pre-
diction accuracy of QoS prediction. The ideal way of overcoming the problem is
to design an effective approach to eliminate those dissimilar services (or users)
for more accurate QoS prediction of web services.

3 Reinforced Collaborative Filtering for QoS Prediction

In this section, we first formulates the problem of QoS prediction. Then, the
framework of our approach is illustrated. Finally, we elaborate user-based and
service-based reinforced collaborative filtering approach, respectively.

3.1 Problem Formulation

Definition 1 (Service Ecosystem). In a web service ecosystem, M =
<U, I,R>, U = {u1, u2, . . .} is a set of users and I = {i1, i2, . . .} is a set of
web services. R = {ru,i}m∗n is QoS matrix, where each entry ru,i represents the
invocation QoS value when u invoked i.

For example, Table 1 illustrates a service ecosystem, where U =
{u1, u2, . . . , u5} and I = {i1, i2, . . . , i6}. R = {ru,i}5∗6 is a QoS matrix and
each entry represents the response time when a user u invokes a service i.

434 G. Zou et al.

Table 1. Sample of user-service QoS matrix

U/I i1 i2 i3 i4 i5 i6

u1 0.0 0.228 0.237 0.0 0.0 0.0

u2 0.453 0.0 0.0 0.649 0.0 0.0

u3 0.0 0.0 0.0 5.782 0.239 0.25

u4 0.249 0.0 5.294 0.366 0.0 0.285

u5 0.0 0.288 0.0 0.0 0.328 5.93

Definition 2 (QoS Invocation Log). Given a service ecosystem M =
<U, I,R>, a QoS invocation log is defined as 3-tuple <u, i, ru,i>, where u ∈ U
is a user, i ∈ I is a service, and ru,i is the QoS value when u invoked i.

Note that if an entry of a QoS invocation log is equal to 0, indicating that
a user has not ever invoked a service. In such case, its QoS value need to be
further predicted for use. The QoS prediction problem is defined as below.

Definition 3 (QoS Prediction Problem). Given a service ecosystem M =
<U, I,R>, QoS prediction problem is defined as 3-tuple Q = <M,u, i>, where
u is a target user, i is a target service and ru,i has no invocation log. The goal
is to predict its QoS value r̂u,i.

The solution to a QoS prediction problem is <u, i, r̂u,i>. It indicates the
predicted value when a target user invokes a target service. Based on a set of
predicted QoS values, desired services can be recommended.

Definition 4 (Service Recommendation). Given a service ecosystem M =
<U, I,R>, a target user u, and a set of functionally equivalent services I ′, it
has no QoS invocation log from u to a service i′ ∈ I ′. Service recommendation
problem is defined as 3-tuple S = <M,u, I ′> and the goal is to choose a subset
of services from I ′ that the recommended services can be invoked with the best
predicted QoS by u.

By predicting missing QoS values on each service in I ′, we have their pre-
dicted QoS values as

Ru,I′ = {<u, i′1, r̂u,i′1>,<u, i′2, r̂u,i′2>, . . .} (1)

In terms of the ranking of predicted QoS values, a subset of web services can be
recommended to a target user. Here, we mainly focus on predicting QoS value
when a target user invokes a target service.

3.2 The Framework of Our Approach

Figure 1 illustrates the overall framework of our proposed approach. Given a tar-
get user and a target service, the procedure of task functionality goes through
four stages, including finding similar users (or services), detecting neighbor ser-
vices (or users), average QoS calculation, and deviation migration.

Service Recommendation with Reinforced Collaborative Filtering 435

PCC similarity

Historical
QoS records

Target user(or service)

(or user)Target service

Ra o-based
similarity

Similar users
(or services)

Neighbor services
(or users)

Average QoS
calcula on

Devia on
migra on

1

2

3 4

Fig. 1. The framework of our approach.

In the stage of finding similar users (or services), pearson correlation coeffi-
cient (PCC) is used to generate a group of similar users with the target user from
historical QoS records (or similar services with the target service). In the stage
of detecting neighbor services (or users), ratio-based similarity (RBS) is used to
generate a group of neighbor services with the target service (or users with the
target user). In the stage of average QoS calculation, taking all of the neighbor
services (or neighbor users) as inputs, we calculate average QoS. In the stage of
deviation migration, taking all of the similar users (or services) to calculate the
deviation migration. Furthermore, the predicted comprehensive QoS for a target
user invoking a target service can be finally calculated by integrally integrating
average QoS value and deviation migration in a singleton CF.

3.3 User-Based Reinforced Collaborative Filtering

Given a target user and a target service, the procedure of user-based reinforced
collaborative filtering approach for QoS prediction consists of finding similar
users based on PCC, detecting neighbor services based on RBS, average QoS
calculation and deviation migration.

(1) Finding Similar Users. Given a target user u, PCC [8] measures the cor-
relation between a target user u and another user v ∈ U in a service ecosystem.

SimPCC(u, v) =

∑

i∈Ic
(ru,i − r̄u)(rv,i − r̄v)

√

∑

i∈Ic
(ru,i − r̄u)2

√

∑

i∈Ic
(rv,i − r̄v)

2
(2)

Where Ic = Iu ∩ Iv is the intersection of web services that both u and v have
invoked previously, and ru,i is a vector of QoS values of service i observed by u.
r̄u and r̄v represent average QoS values of different services observed by u and
v, respectively.

436 G. Zou et al.

By the PCC similarity calculation, we choose the k similar users with the
highest similarity degree.

UPCC = topSimilar(u) (3)

As a result, UPCC contains a set of similar users with target user u from U .
In the deviation migration step, UPCC is used to aggregate deviated QoS values.

(2) Detecting Neighbor Services. Given a target user u, it corresponds to
a set of services Iu that have been invoked by u. In this step, we aim to reduce
these services and only remain a subset of services that hold similar historical
QoS invocation values with the target service i. Here, we filter out those services
dissimilar with the target service i by the ratio-based similarity (RBS) [10].

SimRBS(i, j) =

∑

u∈Uc

min(ru,i,ru,j)
max(ru,i,ru,j)

|Uc| (4)

Where Uc contains a set of common users who have invoked both i and j.
|Uc| is the number of users in Uc. ru,i and ru,j represent the QoS values while
u invoked i and j, respectively. min(ru,i, ru,j) and max(ru,i, ru,j) calculate the
minimum and maximum QoS values between ru,i and ru,j , respectively.

Note that if the ratio-based similarity between i and j tends to be 1, it reflects
that almost all the users are apt to obtain the highly close QoS values when they
invoked these two services. In other words, they share implicit characteristics and
provide similar invocation experiences, such as deployed in close geographical
locations with the same network setting or hosted by the same service provider.
However, we do not require the precisely underlying context information, since
the neighborhood relationship among services can be evaluated by analyzing the
historical invocation QoS values.

By setting a neighbor similarity threshold θ, we detect a subset of services
that have been invoked by the target user u and share highly close invocation
QoS values with the target service i.

I ′
u = {i′ ∈ Iu |SimRBS(i′, i) ≥ θ} (5)

After filtering out all of those dissimilar services from Iu, detected neighbor
services is used in average QoS calculation step.

(3) Average QoS Calculation. Given a target user u, we make a reduction
to all of the services Iu invoked by u and obtain a subset of neighbor services I ′

u,
where each service i′ ∈ I ′

u has a high similarity degree with the target service i.
Obviously, the target user could obtain similar QoS values with neighbor services
when invoking the target service. Naturally, we use neighbor services to initially
estimate the QoS value. For each i′ ∈ I ′

u, we calculate an initially predicted QoS
for the target user u.

r̂i
′
u,i =

{

ru,i′ ∗ SimRBS(i, i′) if i ≤ i′

ru,i′/SimRBS(i, i′) otherwise
(6)

Service Recommendation with Reinforced Collaborative Filtering 437

Where i′ and i represent the average QoS value of service itself, respectively.
SimRBS(i, i′) is the ratio-based similarity of the target service i and a neighbor
service i′. By calculating the predicted QoS on each neighbor service i′ ∈ I ′

u,
we get a group of predicted QoS values if the target user u invokes the target
service i.

AvgQoSu = {r̂
i′1
u,i, r̂

i′2
u,i, · · · , r̂

|I′
u|

u,i } (7)

Taking the ratio-based similarity between two services as weight, we calculate
the average QoS value for the target user u invoking the target service i.

uavg =

|I′
u|

∑

k=1

SimRBS(i, i′k) ∗ r̂
i′k
u,i

|I′
u|

∑

k=1

SimRBS(i, i′k)

(8)

The predicted average QoS value uavg is still a preliminary result, as we
mainly rely on the QoS values from those neighbor services similar to the target
service, while similar users with the target user are not taken into consideration
at this point. They are integrally integrated into the QoS prediction in deviation
migration step.

(4) Deviation Migration. It calculates the QoS deviation of each similar user
between the QoS obtained from invoking target service and its mean value, and
then accumulates and migrates these deviation values to the average QoS for a
target user.

First, based on found UPCC = {u1, u2, . . . , uk} for a target user u, we use
Eqs. (4)–(7) to obtain k groups of average QoS values.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

AvgQoSu1 = {r̂
i′1
u1,i

, r̂
i′2
u1,i

, · · · , r̂
|I′

u1
|

u1,i
}

AvgQoSu2 = {r̂
i′1
u2,i

, r̂
i′2
u2,i

, · · · , r̂
|I′

u2
|

u2,i
}

...

AvgQoSuk
= {r̂

i′1
uk,i

, r̂
i′2
uk,i

, · · · , r̂
|I′

uk
|

uk,i
}

(9)

After that, we use Eq. (8) to calculate and generate a set of average QoS
values for each similar user in UPCC .

AvgQoSUpcc
= {u1, u2, · · · , uk} (10)

Finally, applying collaborative filtering algorithm with uavg and Avg
QoSUPCC

, we make the final QoS prediction.

r̂u,i = uavg +

k
∑

m=1
SimPCC(u, um) ∗ (rum,i − um)

k
∑

m=1
SimPCC(u, um)

(11)

Where r̂u,i is the final predicted QoS value for a target user u when invoking
a target service i.

438 G. Zou et al.

3.4 Service-Based Reinforced Collaborative Filtering

Similar to user-based reinforced collaborative filtering, the procedure of service-
based RECF approach also includes the same four steps.

(1) Finding Similar Services. Given a target service i, PCC measures the
correlation between a target service i and another service in a service ecosystem.
we use PCC to evaluate the correlation between two services.

SimPCC(i, j) =

∑

u∈Uc
(ru,i − r̄i)(ru,j − r̄j)

√

∑

u∈Uc
(ru,i − r̄i)

2
√

∑

u∈Uc
(ru,j − r̄j)

2
(12)

Where Uc = Ui ∩ Uj is the intersection of users who have invoked both i and
j previously, and ru,i is a vector of QoS values of service i observed by u. ri and
rj represent average QoS values of i and j observed by a set of common users
in Uc, respectively.

By the PCC similarity calculation, we choose the k similar services with the
highest similarity degree.

IPCC = topSimilar(i) (13)

IPCC consists of a set of similar services with target service i from I. In the
deviation migration step, IPCC is used to aggregate deviated QoS values.

(2) Detecting Neighbor Users. Given a target service i, it corresponds to
a set of users Ui who have invoked i. In this step, we aim to eliminate those
dissimilar users with a target user u from Ui, where they have low similar histor-
ical QoS values on their commonly invocated services. Here, we still apply the
ratio-based similarity to measuring the neighborhood similarity degree.

SimRBS(u, v) =

∑

i∈Ic

min(ru,i,rv,i)
max(ru,i,rv,i)

|Ic| (14)

It is observed that if the similarity degree SimRBS(u, v) = 1, it reflects that
two users nearly received the same quality of QoS values when they invoked
their commonly requested services in Ic. The implicit possibility is that these
two users live in the same city and use the same network environment.

With a similarity threshold θ, we detect a subset of users who have invoked
the target service i and obtain highly close invocation QoS values with the target
user u.

Then, using a threshold to find out those users who are more similar to the
target user u.

U ′
i = {u′ ∈ Ui |SimRBS(u′, u) ≥ θ} (15)

By the elimination of the dissimilar users from Ui, detected neighbor users
is used in average QoS calculation step.

(3) Average QoS Calculation. Given a target service i, we make a reduction
to all of the users Ui who invoked i and obtain a subset of neighbor users U ′

i ,

Service Recommendation with Reinforced Collaborative Filtering 439

where each user u′ ∈ U ′
i has a high similarity degree with the target user u.

Similar to user-based reinforced collaborative filtering, we use neighbor users
to initially estimate the QoS value. For each u′ ∈ U ′

i , we calculate an initially
predicted QoS for the target service i.

r̂u
′

u,i =

{

ru′,i ∗ SimRBS(u, u′) if u ≤ u′

ru′,i/SimRBS(u, u′) otherwise
(16)

Here, u′ and u represent the average QoS value of user itself, respectively.
SimRBS(u, u′) is the ratio-based similarity of the target user u and a neighbor
user u′. By calculating the predicted QoS on each neighbor user u′ ∈ U ′

i , we get
a group of predicted QoS values.

AvgQoSi = {r̂
u′
1

u,i, r̂
u′
2

u,i, · · · , r̂
|U ′

i |
u,i } (17)

Taking the ratio-based similarity between two users as weight, we calculate
the average QoS value for the target service i to be invoked the target user u.

iavg =

|U ′
i |

∑

k=1

SimRBS(u, u′
k) ∗ r̂

u′
k

u,i

|U ′
i |

∑

k=1

SimRBS(u, u′
k)

(18)

In the same way, iavg is still a preliminary result, as we mainly rely on the QoS
values from those neighbor users similar to the target user, while similar services
with the target service are not considered at this point. They are integrally
integrated into the QoS prediction in deviation migration step.

(4) Deviation Migration. Based on found IPCC = {i1, i2, · · · , ik} for a target
service i, we use Eqs. (14)–(18) to calculate and generate a set of average QoS
values for each similar service in IPCC .

AvgQoSIPCC
= {i1, i2, · · · , ik} (19)

Finally, applying collaborative filtering algorithm with iavg and AvgQo
SIPCC

, we make the final QoS prediction.

r̂u,i = iavg +

k
∑

m=1
SimPCC(i, im) ∗ (ru,im − im)

k
∑

m=1
SimPCC(i, im)

(20)

Where r̂u,i is the final predicted QoS value for a target user u when invoking
a target service i.

440 G. Zou et al.

4 Experiments

4.1 Experimental Setup and Dataset

The experiments are conducted on a large-scale real-world dataset called WS-
DREAM [15], involving 5,825 real-world Web services in 73 countries and 339
service users in 30 countries. This dataset consists of two QoS invocation matri-
ces, one for response time and the other for throughput.

To validate the performance of our approach, we use the response time matrix
to perform our experiments. We extract the matrix into 1,873,838 QoS invocation
logs, after removing those invocations where a target user failed to access a target
service. All the QoS invocation logs are partitioned into two parts, one for the
training set and the other for the test set. During the experiments, the proportion
of the number of QoS invocation logs in training set among the whole dataset
is called density. The user-service QoS invocation matrix always keeps sparse
in real-world applications. Thus, we conduct a series of experiments with the
density varying from 0.04 to 0.32 with a step of 0.02. In order to fairly perform
reliable experimental evaluation, we repeat each experiment 5 times for each
density and calculate their average results.

4.2 Competing Methods

In order to show the feasibility and effectiveness of our approach, we compared
with seven competing approaches, including UMEAN, IMEAN, UPCC [2], IPCC
[7], WSRec [13], NRCF [9] and RACF [10].

– UMEAN. It is a user-based QoS prediction method. It averages the QoS
values that the target user invoked all of the services as the predicted result.

– IMEAN. It is a service-based QoS prediction method. It averages the QoS
values that all of the users invoked the target service as the prediction result.

– UPCC. It is a user-based QoS prediction method. It is required to find a set
of similar users to the target user. The prediction result combines the average
QoS value by UMEAN and the deviation migration based on the found similar
users.

– IPCC. It is a service-based QoS prediction method. It selects the most similar
services to the target service. The prediction result is composed of the average
QoS value by IMEAN and the deviation migration based on the found similar
services.

– WSRec. It is a QoS prediction approach by the combination of UPCC and
IPCC, which utilizes a parameter to respectively weigh the importance of
UPCC and IPCC.

– NRCF. It improves the accuracy of traditional collaborative filtering algo-
rithm for QoS prediction by novel similarity computation, where it normalizes
the QoS values of web services to the same range and unifies the similarity
in different multi-dimensional vector spaces.

– RACF. It a QoS prediction approach based on a novel similarity computation
method called ratio-based similarity (RBS). The prediction results can be
calculated by the similar users or services.

Service Recommendation with Reinforced Collaborative Filtering 441

4.3 Experimental Results on Accuracy of QoS Prediction

In the experiments, mean absolute error (MAE) is used as the evaluation metric
that measures the average absolute deviation of the predicted QoS values to the
ground truth ones. Thus, the smaller value it is, The better performance the
approach has. MAE is defined as below.

MAE =
∑N

i=1 |ru,i − r̂u,i|
N

(21)

Where ru,i and r̂u,i represent the ground truth QoS and predicted QoS of the
target user u invoking a target service i. N is the number of QoS invocation
logs for test. Under different densities of QoS invocation matrix, we compare
our proposed approach with the existing seven approaches on QoS prediction
accuracy. The experimental results are shown in Table 2.

Table 2. MAE within the different QoS matrix densities among competing methods

Density UNEAN IMEAN UPCC IPCC WSRec NRCF RACF RECF

0.04 0.8822 0.7138 0.7107 0.7339 0.6362 0.6528 0.5838 0.5655

0.06 0.8766 0.7004 0.6794 0.7177 0.6395 0.5892 0.5617 0.4837

0.08 0.8742 0.6890 0.6294 0.7048 0.6450 0.5514 0.5157 0.4453

0.10 0.8752 0.6887 0.6063 0.7000 0.6394 0.5312 0.4937 0.4332

0.12 0.8763 0.6880 0.5869 0.6535 0.6042 0.5104 0.4674 0.4197

0.14 0.8747 0.6832 0.5662 0.6145 0.5689 0.4910 0.4499 0.4099

0.16 0.8753 0.6844 0.5485 0.5764 0.5381 0.4770 0.4370 0.4027

0.18 0.8755 0.6821 0.5459 0.5516 0.5173 0.4677 0.4281 0.4028

0.20 0.8737 0.6819 0.5379 0.5351 0.5024 0.4607 0.4208 0.3946

0.22 0.8737 0.6792 0.5293 0.5185 0.4887 0.4483 0.4149 0.3905

0.24 0.8738 0.6791 0.5181 0.5072 0.4767 0.4405 0.4104 0.3843

0.26 0.8751 0.6801 0.5177 0.4973 0.4725 0.4396 0.4060 0.3859

0.28 0.8755 0.6787 0.5096 0.4855 0.4613 0.4339 0.4032 0.3766

0.30 0.8752 0.6778 0.5084 0.4783 0.4571 0.4296 0.3997 0.3789

0.32 0.8749 0.6779 0.4980 0.4672 0.4459 0.4249 0.3991 0.3692

From the experimental results in Table 2, it is observed that the prediction
accuracy on MAE among all of the competing methods decreases along with the
increase of density in QoS invocation matrix. The reason is that the similarity
degree can be more accurately calculated to improve the prediction result, as
the density becomes larger and sufficient QoS invocation logs can be provided.
Given a specific density, our proposed approach receives lower MAE than that of
existing ones, indicating that RECF is superior to those state-of-the-art methods
in terms of QoS prediction accuracy. The main reason is that we strategically

442 G. Zou et al.

eliminate all of the dissimilar services (or users) that boost the noisy of average
QoS calculation in traditional collaborative filtering methods.

In order to further test the QoS prediction accuracy, we count the QoS invoca-
tion logs of test samples within multiple deviation intervals and analyze the per-
formance among different approaches. QoS deviation represents the gap between
the predicted QoS value and the true real QoS value, which is shown in the form
of absolute value interval. In our experiments, the QoS deviation interval is set
to 0.04. In other words, the test samples’ QoS deviation intervals are divided
as [0.0, 0.04), [0.04, 0.08), [0.08, 0.12), . . . , [1.96, 2.0). We calculate the number of
samples in each QoS deviation interval as a percentage of the total test sam-
ples. Under the setting of QoS matrix density as 0.08 and 0.12, two groups of
experiments have been performed and the results are illustrated in Figs. 2 and
3, respectively.

For each subgraph in Figs. 2 and 3, the value of each point on the polyline in
lower part indicates the proportion of the number of test samples in that QoS
deviation interval to the total number of test samples. The polyline in upper part
is the cumulative value of the polyline in lower part till the point. It is observed
that from the Figs. 2 and 3 more test samples are distributed in lower QoS
deviation intervals when using our approach to predict QoS value, compared
with other existing seven approaches. More specifically, making statistics on
lower part in Fig. 2, we can find that 30% of test samples are distributed in
[0.0, 0.04) QoS deviation interval by our approach RECF, while UMEAN is 3%,
IMEAN is 14%, UPCC is 13%, IPCC is 6%, WSRec is 7%, NRCF is 14% and
RACF is 20%.

Fig. 2. The experimental results on distributions of QoS prediction among different
deviation intervals (density: 0.08)

Service Recommendation with Reinforced Collaborative Filtering 443

Fig. 3. The experimental results on distributions of QoS prediction among different
deviation intervals (density: 0.12)

From the above experiments, we conclude that our proposed approach out-
performs the existing competing ones for QoS prediction.

4.4 Impact of Parameter Tuning

In our proposed approach, there are two main parameters that affect the QoS
prediction accuracy. They are the top k number of similar users (or services) in
PCC similarity and neighbor similarity threshold θ in ratio-based similarity. In
order to analyze the trends of QoS prediction accuracy and find out the optimal
parameter value, we conduct two groups of experiments. Figure 4 illustrates that
when θ keeps constant, the MAE fluctuation of our RECF is measured along
with the changes of k at different densities. On the contrary, Fig. 5 shows that
when k remains unchanged, the MAE variation of our RECF is measured along
with the changes of θ at different densities.

Fig. 4. The experimental results of MAE affected by the parameter (k)

444 G. Zou et al.

Fig. 5. The experimental results of MAE affected by the parameter (θ)

We can observe from Fig. 4, the QoS prediction accuracy achieves the best
on MAE within different QoS matrix densities, when the number of similar users
is set to 4. The QoS prediction accuracy is almost unchanged, as the number of
similar users increases. However, the computational complexity grows with the
number of increasing similar users.

From the experimental results in Fig. 5, we can find that the QoS prediction
accuracy achieves the best on MAE within different QoS matrix densities when
the neighbor similarity threshold in ratio-based similarity is set as 0.72.

5 Conclusion

To effectively predict missing QoS of web servies, we proposed a reinforced col-
laborative filtering approach that eliminates dissimilar services (or users) for
improving QoS prediction accuracy. It goes through four steps: finding similar
services, detecting neighbor users, average QoS calculation and deviation migra-
tion. Extensive experiments are conducted on a large-scale real-world web service
QoS dataset. The results demonstrate its effectiveness competing with the exist-
ing methods. In the future work, we will apply our approach to the real-world
recommender systems for modern microservices. Moreover, since collaborative
filtering algorithm has high computational complexity, we will further optimize
our approach making it more efficient by incremental learning.

Acknowledgements. This work was supported by National Natural Science Foun-
dation of China (61772128), Shanghai Natural Science Foundation (18ZR1414400,
17ZR1400200) and Fundamental Research Funds for the Central Universities
(16D111208).

Service Recommendation with Reinforced Collaborative Filtering 445

References

1. Azadjalal, M.M., Moradi, P., Abdollahpouri, A., Jalili, M.: A trust-aware recom-
mendation method based on Pareto dominance and confidence concepts. Knowl.-
Based Syst. 116, 130–143 (2017)

2. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)

3. Ding, S., Li, Y., Wu, D., Zhang, Y., Yang, S.: Time-aware cloud service recommen-
dation using similarity-enhanced collaborative filtering and ARIMA model. Decis.
Support Syst. 107, 103–115 (2018)

4. He, P., Zhu, J., Zheng, Z., Xu, J., Lyu, M.R.: Location-based hierarchical matrix
factorization for web service recommendation. In: IEEE International Conference
on Web Services (ICWS), pp. 297–304. IEEE (2014)

5. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

6. Rennie, J.D., Srebro, N.: Fast maximum margin matrix factorization for collabo-
rative prediction. In: International Conference on Machine Learning (ICML), pp.
713–719. ACM (2005)

7. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filter-
ing recommendation algorithms. In: International World Wide Web Conference
(WWW), pp. 285–295. ACM (2001)

8. Shardanand, U., Maes, P.: Social information filtering: algorithms for automating
“word of mouth”. In: ACM CHI Conference on Human Factors in Computing
Systems, pp. 210–217. ACM (1995)

9. Sun, H., Zheng, Z., Chen, J., Lyu, M.R.: Personalized web service recommendation
via normal recovery collaborative filtering. IEEE Trans. Serv. Comput. 6(4), 573–
579 (2013)

10. Wu, X., Cheng, B., Chen, J.: Collaborative filtering service recommendation based
on a novel similarity computation method. IEEE Trans. Serv. Comput. 10(3),
352–365 (2017)

11. Xiong, W., Wu, Z., Li, B., Gu, Q.: A learning approach to QoS prediction via multi-
dimensional context. In: IEEE International Conference on Web Services (ICWS),
pp. 164–171. IEEE (2017)

12. Xu, Y., Yin, J., Deng, S., Xiong, N.N., Huang, J.: Context-aware QoS prediction
for web service recommendation and selection. Expert Syst. Appl. 53, 75–86 (2016)

13. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation
by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

14. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service QoS prediction
via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3),
289–299 (2013)

15. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed QoS evaluation for real-world web
services. In: IEEE International Conference on Web Services (ICWS), pp. 83–90.
IEEE (2010)

Unit of Work Supporting Generative
Scientific Workflow Recommendation

Jia Zhang1(B), Maryam Pourreza1, Seungwon Lee2, Ramakrishna Nemani3,
and Tsengdar J. Lee4

1 Carnegie Mellon University, Mountain View, USA
jia.zhang@sv.cmu.edu

2 NASA Jet Propulsion Laboratory, Pasadena, USA
3 NASA Ames Research Center, Mountain View, USA

4 Science Mission Directorate, NASA Headquarters, Washington, D.C., USA

Abstract. Service discovery and recommendation is playing increas-
ingly important role, as more and more reusable web services are pub-
lished onto the Internet. Existing methods typically recommend either
individual services, or multiple services without their interconnections.
In contrast, this research aims to mine service usage history and extract
units of work (UoWs) comprising a collection of services chained together
through intermediate components. A novel technique is proposed in this
paper to study how services collaborated, or could collaborate, in the
form of reusable UoWs to serve various workflows (i.e., mashups), based
on an evolving service social network. Upon receiving a scientific work-
flow request, a recommend-as-you-go algorithm simulates how human
minds work and relies on a sliding aggressiveness gauge to incrementally
recommend context-aware UoWs. In this way, we hope to move one step
further toward automatic service composition. Extensive experiments on
the real-world datasets demonstrate the effectiveness and efficiency of
the UoW-oriented service recommendation approach.

Keywords: Unit of work · Service composition
Recommend-as-you-go

1 Introduction

As service-oriented software engineering (SOSE) becomes mainstream, increas-
ingly more software components have been published onto the Internet as
reusable services (or so-called APIs as lightweight services). People can lever-
age and compose existing services as components to build new functionality (so-
called mashup or workflow) faster than before [8]. Thus, it is becoming increas-
ingly important to build techniques of service discovery and recommendation
to help people find and compose suitable services from a sea of available candi-
dates [12].

In science domain, our previous work [19] reveals that one major obstacle
stopping scientists from reusing services (i.e., algorithms) developed by peer sci-
entists is how to transform data types to feed in the (usually comprehensive)
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 446–462, 2018.
https://doi.org/10.1007/978-3-030-03596-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_32&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_32

Unit of Work Supporting Generative Scientific Workflow Recommendation 447

input of the algorithms. In Earth science, for example, a data analytics service
may require more than a dozen of parameters [19]. Unless one knows exactly
what such parameters mean and how to feed in data accordingly, she will be
reluctant to reuse the service. When multiple external services are used in a
scientific workflow, how to chain them remains a significant challenge. As indi-
cated by our earlier work, the past linkage among services may be useful in
service recommendation [20] and will help automatic service composition [7].

Take Fig. 1 as a highly simplified scenario. Assume that existing semantics-
based methods (e.g., [10]) have recommended three services (s1, s2, and s3) to
be included in a workflow request. How to link them together, however, remains
unresolved. As shown in Fig. 1, it is found that in a past workflow wf1, s1 and s2
were used together with an indirect path linking between them: s1 �−→ s2. This
means that the output of service s1 is transformed through some intermediate
steps and becomes the input of service s2. Similarly, in another past workflow
wf2, services s2 and s3 were indirectly linked together: s2 �−→ s3. Such prove-
nance means that one can reuse the past linkages to chain between s1 and s2, as
well as s2 and s3. Note that although the three services were never used together
in the past, by integrating the two chains s1 �−→ s2 and s2 �−→ s3, we will har-
vest an unprecedented service chain s1 �−→ s2 �−→ s3. This example illustrates
that by mining service usage history, the three services can be automatically
chained together without worrying how to transform data among them.

Fig. 1. Mining service usage history to facilitate service composition.

The example shown in Fig. 1 directly motivates this research, aiming to sys-
tematically study how to mine service usage history and identify reusable, and
maybe unprecedented, service chain snippets to facilitate automatic service com-
position. In concurrent database operations, a transaction is considered a unit
of work (UoW) meaning that all operations encompassed in a UoW either all
complete and become persistent, or have to rewind as if nothing happened. In
this project, we borrow this term UoW to represent a collection of services
chained together, maybe through some software components as glues,

448 J. Zhang et al.

to fulfill some business goals. In other words, this research aims to mine
workflow provenance and extract service units of work (UoWs) to facilitate new
workflow design and development.

The contributions of this work is three-fold. First, we coined the concept
of service unit of work and have developed a service social network to support
the recording and retrieval of service UoWs. Second, we have developed novel
algorithms to mine reusable service UoWs as a recommend-as-you-go service
serving context-aware workflow queries. Third, our experiments over the real-
life datasets have demonstrated the effectiveness and efficiency of our approach.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 introduces the UoW-driven workflow recommendation frame-
work. Section 4 describes our service UoW mining and recommendation algo-
rithms. Section 5 discusses and analyzes our experiments. Section 6 draws a con-
clusion.

2 Related Work

Service composition remains a fundamental topic in the field of service oriented
computing [12]. Paik et al. [11] divide service composition into four phases:
planning, discovery, selection, and execution. Receiving a user functional query,
the four stages generate abstract workflow tasks, map abstract tasks to service
instances, select a combination of service instances based on constraints, and
run service instances, in a sequential order. According to their categorization,
our work mainly falls in the third phase: service selection phase, where we aim
to decide on concrete service instances for abstract workflow tasks. However, a
typical service composition process carries two fundamental assumptions. First
is that a planning phase has resulted in a structured workflow plan, i.e., a ref-
erence model [4]. Second is that identified service components will be linked to
each other directly [2], meaning that the output of a service component has to
be plugged into another service component as input. In contrast, our research
raises the bar and aims to fill the gap by automatically chaining service compo-
nents based on their past collaboration history. Therefore, the starting point of
our work is a collection of abstract tasks identified, however their relationships
remaining to be decided by our work. As a result, our work does not require a
typical full service planning phase to generate a structure of abstract workflow
tasks interconnected.

A typical service selection phase focuses on finding a combination of service
instances mapping to the identified collection of abstract tasks, based on certain
constrains typically as QoS requirements or semantic compliances. Researchers
have applied various types of optimization methods to tackle the multiple QoS-
constrained service combination problem, including evolutionary algorithms [15]
and Integer Programming [17]. In contrast, our research is complementary to the
QoS-based service selection, in the sense that we focus on automatically finding
suitable connections among service components. In recent years, Rodŕıguez-Mier
et al. [12] optimize global QoS of the composition based on a service match graph

Unit of Work Supporting Generative Scientific Workflow Recommendation 449

containing all possible semantically matched edges between service candidates.
Different from their work where service connections are possible links based on
their semantic input/output descriptions, service connections in our work come
from historical successful service connections happened in past workflows. For
scientific researchers, such service connections are more trustworthy.

Semantic web technologies introduce rich and machine understandable repre-
sentations of service functions and properties, which facilitate automatic service
composition [10]. For example, Li et al. [9] analyze user requirements and ser-
vice descriptions and recommend services based on their semantic compatibility.
In recent years, researchers further leverage natural language processing and
machine learning to enhance service discovery and composition. For example,
Xia et al. [16] develop a category-aware service clustering and recommending
method for automatic workflow composition. In this work, we leverage their
techniques [9,16] to measure the distance toward the goal during service com-
position, to dynamically compute the greediness of our algorithm.

IBM’s MatchUp project [6] recommends workflow fragments (mashlets with
glue patterns) based on user context. Similarly, Roy Chowdhury et al. [3] recom-
mend composition patterns (data components and connectors) based on partial
mashup. Our work differentiates from theirs in three significant ways. First,
their work only consider service linkage patterns (glue patterns or connectors)
in individual workflows. In contrast, our work considers service linkage patterns
contributed by multiple workflows together, since we aggregate all past work-
flows into a service social network. Second, compared with their work aiming
to link identified services instances, our work aims to link identified conceptual
services and result in (partially) linked service instances. Third, while their work
only recommends linkage patterns between services and programmers still have
to develop actual glue code, our method will automatically reuse previous linkage
code to chain services together.

In addition to automatically linking service components, our work also, as
other workflow recommender systems do, recommends related services based on
the partial workflow placed by users. Based on a partial workflow, VisCom-
plete [7] examines comprised paths and recommends path extensions based on
a repository of workflows represented as graphs. Similarly, Zhang et al. [18]
and Deng et al. [4] extract workflow patterns (nodes and their upstream sub-
graphs) from past workflow provenance. Such patterns are used as templates to
match partially finished workflow to recommend extending nodes. In addition,
IBM’s MashupAdvisor [5] recommends related services based on conditional co-
occurrence probability and semantic matching. In contrast to their works focus-
ing on finding what may co-occur based on structural comparison, our method
focuses on finding services toward fulfilling the user intent.

The Business Process Management (BPM) community has contributed a
number of approaches that recommend patterns as reusable components based
on label/text similarity (such as [14]) or control flow patterns (e.g., [1]). In
contrast, our project focuses on finding glues to link service candidates together
based on the past workflows carrying the usage history of the services. Our

450 J. Zhang et al.

aim is to eliminate human efforts on linking services together. Furthermore,
by constructing a service social network, our work may extract unprecedented
service usage paths that may be useful for scientific experiments (i.e., workflow)
design.

3 UoW-Driven Workflow Recommendation Framework

In this research, we propose a novel technique to facilitate workflow design and
development. At each step during a workflow design, we recommend a context-
aware runnable group (i.e., Unit of Work) comprising multiple services, based
on a service social network constructed from service usage history. Meanwhile,
a sliding-window-like gauge is developed to predict the aggressiveness of a user
on selecting UoWs during the workflow design process.

Fig. 2. UoW-driven workflow recommendation framework

Figure 2 illustrates the overall blueprint of our UoW-driven workflow recom-
mendation framework using a highly simplified scenario. On the top left corner,
a UoW network is constructed offline based on existing workflows and services.
Meanwhile, the descriptions of the workflows and services are analyzed and their
intents are stored in databases. At time 1, upon receipt of a user query with over-
all goal and conceptual services identified (c1–c4), the Recommendation Engine
will decide the aggressiveness of the user (i.e., 4). After consulting with the
UoW network and the workflow and service intent databases, a connected UoW
with three service instances (s1–s3) will be recommended, covering three concep-
tual services (c1–c3). At time 2 after the user accepts the recommendation, her
aggressiveness drops to 1. Based on the partial workflow (i.e., UoW) at hand,
the Recommendation Engine will recommend service instance s4. Since s4 is not
connected to the UoW, the user has to build the connection herself. This scenario

Unit of Work Supporting Generative Scientific Workflow Recommendation 451

shows that our technique can not only help to find concrete service instances, but
also significantly save the user efforts on linking the service instances together.
Note that a finished workflow at time 3 will be added into the UoW network
and the workflow/service intent databases on the fly, as shown in Fig. 2. In the
next sections, we will explain the technique in details.

3.1 UoW Network Construction

In the first step, we describe how to construct a UoW network.

Definition 1 (Unit of Work - UoW). A unit of work is a connected directed
graph uow = <S′, E′> extracted from a directed graph of a workflow w =
<S,E> : uow ⊆ w, iff:

1. S′ ⊆ S
2. E′ ⊆ E
3. ∀si, sj ∈ S′,∃ path si �−→ sj and/or ∃ path sj �−→ si

where S is the set of services (vertices) used by the workflow, and E is the set
of edges linking between the services labeled with workflow identifier.

A uow might consist of a single service with no edge or it might be the entire
workflow. The number of uows depends on the edges existing between various
services. If we consider the set of all UoWs extracted from a workflow wi with k
edges among services to be {uow1,i, uow2,i, . . . , uowm,i}, then the size of this set
is m ≤ 2k. The set of all units of work extracted from a collection of workflows
can form a network of units of work as defined below.

Definition 2 (Network of Units of Work). A network of units of work over
M workflows is defined as Nuow = <S′′, E′′> where S′′ =

⋃M
j=1 Sj is the set of

all services included in all workflows, and E′′ =
⋃M

j=1 Ej is the set of all the
edges in the network each labeling with a workflow identifier.

The total number of uows that can be extracted from the whole network
would be ≥ |S′′| and ≤ 2|E′′|. A UoW network is constructed by creating a
directed graph with vertices to be the set of all services contained in all workflows,
and each labeled edge represents a path between a pair of services in a workflow.

3.2 Search Query Analysis

Based on our previous work [16] on service discovery driven by topic modeling,
assume that the network Nuow implies a collection of latent topics that can be
automatically extracted from all comprising workflow descriptions. Such latent
topics form an Intent space of T . Each service or workflow serves some func-
tionality, meaning that each of them can be represented by a distribution of
topics over T . Meanwhile, we use term context to represent the scenarios where
a service can serve, also in the form of a distribution of topics over |T | based on
its past contribution in workflows in the network.

452 J. Zhang et al.

Definition 3 (Service Intent and Context). A service s ∈ S′′ is defined
as a tuple s = <φs, ψs>. φs denotes the intent of service s as a distribution
of topics over the Intent space of the network Nuow, where its |T |-dimensional
vector of probabilities sum to 1:

∑|T |
i=1 pi,s = 1. ψs denotes the context of service

s as a union of the intent of workflows in the network Nuow, where service s is a
component: ψs =

⋃|M |
j=1 φwj

. φw denotes the intent of workflow w as a distribution
of topics over Nuow, where the |T |-dimensional vector of probabilities sum to 1:
∑|T |

k=1 pk,w = 1.

Note that through vector arithmetic, the context of a service also represents
a distribution of topics over the Intent space of the network Nuow. Consequently,
the intent of a uow can be viewed as a union of the intent of services included.

Definition 4 (Intent of Unit of Work). Intent of a unit of work u is defined
as φu = {φ1,u, φ2,u, . . . , φ|T |,u}, where the intent value can be calculated using a
SoftMax function σ such that:

φj,u = σ(
∑

s∈u

φj,s) =
e
∑

s∈u φj,s

∑|T |
j=1 e

∑
s∈u φj,s

(1)

where φj,s denotes the jth intent value of service s ∈ u and φj,u denotes the jth

intent value of uow u.
Before a user starts to design a workflow, a user query would be provided con-

taining information about the user’s goal of her desired workflow, which means
intents can also be extracted from the query to make it machine understandable.

Definition 5 (Intent of user query). Intent of a user query q, can be repre-
sented by φq as a distribution of topics in query q over the Intent space of the
network Nuow.

With the introduction of the intent and context of service/workflow/query,
a search query at a given time point can be defined as follows:

Definition 6 (Search Query). A search query at time t is a triple qt =
<Gq,Wt, At>, where Gq = <φq, P rq> is the final goal of the user which contains
φq as the user’s intent and Prq as the list of user’s desired conceptual services
identified, respectively. Wt represents the current partial workflow, and At is the
user’s current aggressiveness which will be defined shortly.

In the beginning, users may intuitively like to obtain UoW recommendation
that covers as many as possible conceptual services intended, even though some
irrelevant services (i.e., noises) are included. During a workflow design process,
however, the aggressiveness of a user choosing larger-sized units of work would
reduce as the workflow-in-progress grows towards the goal. Thus, a user’s aggres-
siveness can be defined as follows:

Unit of Work Supporting Generative Scientific Workflow Recommendation 453

Definition 7 (User’s Aggressiveness). The aggressiveness of user u, with
query q at time t, is a function of the number of user’s desired conceptual services
Gq and what she has achieved so far by her current workflow Wt:

At = α ∗ (1 − coverage(Wt, Gq.P rq)) + β ∗ similarity(φWt
, φq)

− γ ∗ noise(Wt, Gq.P rq)
|Wt|

(2)

where coverage is a function that computes the overlap rate of the current partial
workflow over the expected goals, similarity is a function that measures the
semantic (i.e., intent) similarity between the partial workflow and the user query,
and noise is a function that computes unwanted services introduced through the
UoWs, normalized. α, β, and γ are coefficients such that α + β + γ = 1.

3.3 Basic UoW Extraction and Recommendation

After the UoW network is built, Algorithm1 shows how to extract all candidate
UoWs from the network based on a user search query qt. This algorithm first finds
the desired conceptual intent from the user’s goals that have not been satisfied
yet by the user’s current workflow (line 3). Afterwards, for each of the conceptual
services, we find all the services in the network that have similar intents with
the similarity threshold of λ. In this way, we obtain candidate services that are
clustered based on the conceptual services to which they are similar (line 4). In
line 5, we fetch all the combinations from these services for satisfying the user’s
remaining desired conceptual services.

For finding the candidate UoWs, we try to find UoWs from the network
with connection to the user’s current workflow (lines 6–15). We first consider
service si from the current workflow to be our connection point to the candidate
UoWs. Then, we remove all other services in the current workflow from the
network and get all the weakly connected subgraphs from the remaining network.
Next, we try to focus only on the subgraph which contains our connection point.
Finally, for every combination of candidate services from different clusters, we
will add all the connected subgraphs attached to the connection point to the
UoW recommendation list.

Some candidate UoWs might not have any path in history to any of the
services in the user’s current workflow. However, they might actually help the
user towards her final goal and the user can decide how to attach them to her
current workflow. Thus, for finding such UoWs (lines 16–24), we first remove all
the current services from the network and then get all the weakly connected sub-
graphs in this remaining network. Then in the next step, for every combination
of service candidates and every subgraph subgraphj , we first find the services
S′ from this combination that exist in the selected subgraph. Finally, we add all
the candidate UoWs containing S′ in the subgraphj to the UoW candidate list.

In the very last line of the Algorithm1 (line 25), we add all the candidate
services to the recommendation list as individual UoWs. This way, if there is

454 J. Zhang et al.

Algorithm 1. Extract all candidate UoWs from network based on user query
1: procedure ExtractCandidateUoWs(Nuow, qt, Wt)
2: uowSetcandidate ← ∅
3: Pr′

q ← findRemainingIntent(qt, Wt)

4: candidateServiceClusters ← findCandidateServiceClusters(Nuow, Pr′
q)

5: candidateCompositions ← selectServiceCompositions(candidateServiceClusters)
6: for si ∈ Wt do
7: subnetwork ← Nuow − Wt → Nodes + si

8: connectedGraphs ← findAllConnectedGraphs(subnetwork)
9: subgraphsi

← findGraphContainingService(si)

10: for Sk ∈ candidateCompositions do
11: S′ ← find subset of Sk which is in subgraphsi

+ si

12: hypothesisGraph ← a graph containing S′ as nodes and no edges
13: addUoWs(uowSetcandidate, hypothesisGraph, S′, subgraphsi

, si)

14: end for
15: end for
16: subnetwork ← Nuow − Wt

17: connectedCompositions ← findAllConnectedGraphs(subnetwork)
18: for Sk ∈ candidateCompositions do
19: for subgraphj ∈ connectedGraphs do
20: S′ ← find subset of Sk which is in subgraphj

21: hypothesisGraph ← a graph containing S′ as nodes and no edges
22: addUoWs(uowSetcandidate, hypothesisGraph, S′, subgraphj)
23: end for
24: end for
25: add candidate services as single UoWs to the uowSetcandidate

26: return uowSetcandidate � List of UoW candidates
27: end procedure

no path between them in the history network, we can still recommend single
services to the user.

The function addUoWs used on lines 13 and 22 of Algorithm1 is presented
in Algorithm 2. This algorithm is used for recursively finding candidate UoWs
in a specific component, containing a number of desired services. The base case
in this algorithm (lines 2–6) is when the uowhypothesis is a weakly connected
graph and this is when we can add this UoW to the recommendation list. Here,
if we want the resulting UoWs to be connected to a connection point (which is,
as described before, a service from the user’s current workflow), then it should
also be among the services in the candidate hypothesis so that we can add it to
the candidate list (lines 3–5). However, if the hypothesis is still not connected
(lines 7–17), for every pair of services, we find the shortest path between them.
If found, we add the path to the hypothesis and try to find the candidate UoWs
with the remaining services and the extended uowhypothesis.

4 UoW Recommendation As-You-Go

With the preliminaries defined, the UoW recommendation problem can be for-
malized as to search for a largest-sized unit of work from the network of UoWs,
which is the closest to the goal of the user query with the minimum number of
irrelevant services. A comprehensive user query may take multiple steps during
some time period. At a given time, recommendation should take into consider-
ation of the partial workflow placed by users.

Unit of Work Supporting Generative Scientific Workflow Recommendation 455

Algorithm 2. Find candidate UoWs containing a given set of services in a given
connected subgraph recursively
1: procedure addUoWs(uowSetcandidate, uowhypothesis, S, component, s)
2: if uowhypothesis is connected then
3: if � ∃ s OR s ∈ uowhypothesis then
4: uowSetcandidate ← uowSetcandidate + uowhypothesis

5: end if
6: else
7: if S! = ∅ then
8: for si, sj ∈ S do
9: if ∃si
−→ sj ∈ component then

10: uowhypothesis ← uowhypothesis + shortestPath(si
−→ sj)
11: S ← S − Nodessi�−→sj

12: addUoWInComponent(uowListcandidate, uowhypothesis, S, component)
13: end if
14: end for
15: end if
16: end if
17: end procedure

Definition 8 (UoW Recommendation Problem). Given a search query q,
the UoW recommendation problem at time t is defined as finding a unit of work
(uow) in the network of UoWs (Nuow), such that under aggressiveness At:

1. max(coverage(uow,Gq.P rq))
2. max(similarity(φuow, φq))
3. min(noise(uow,Gq.P rq))

Based on the initial UoWs found in the last section, we develop an approach
which can answer the UoW recommendation problem defined above. Algorithm 3
searches the network of UoWs along with the user’s query and recommends a
set of UoWs.

In this algorithm, we first fetch a set of candidate UoWs by using Algorithm1
and then for each of these candidates, we make some examinations. We check
if the context is similar enough to the query’s context, and if the candidate has
enough useful services with respect to the user’s aggressiveness and the noise in
the whole candidate (lines 4–8). If the candidate UoW meets the criteria, it is
added to the candidate list. It should be noted that we consider threshold δ for
the context similarity. For checking the usefulness, we use the equation below:

NusefulServicesi

NV ′
i

− NusefulServicesi

≤ At (3)

Based on the above equation, we want the number of useful services in the
uowi with regard to the number of noise services (irrelevant services in uowi) to
be no more than the aggressiveness of the user at the time. In case the number
of noise is equal to zero, we only consider the number of useful services.

Finally in line 4, we sort the candidate list based on the NusefulServicesi

NV ′
i
−NusefulServicesi

in descending order and return the list to the user.

456 J. Zhang et al.

Algorithm 3. Recommend UoWs for the existing workflow
1: procedure RecommendUoWs(Nuow, qt, Wt)
2: recommendedUoWs ← ∅
3: uowListcandidates ← extractCandidateUoWs(Nuow, qt, Wt)
4: for uowi ∈ uowListcandidates do
5: if similarContexts(uowi, q) and isUsefulEnough(φuowi

, φq, Agq) then

6: recommendedUoWs ← recommendedUoW ∪ uowi

7: end if
8: end for
9: recommendedUoW ← Sort(recommendedUoWs)

10: return recommendedUoWs
11: end procedure

5 Experiments and Analysis

We have designed and conducted a collection of experiments to evaluate the
effectiveness and efficiency of our method over a real-world dataset.

5.1 Experimental Setup

We chose myExperiment.org as our testbed since it is the world largest service-
oriented scientific workflow repository. Its metadata was used to analyze work-
flow intent, and source code to analyze UoWs. Since the majority of workflows
were developed using Taverna tool, we crawled all the publicly available Tav-
erna workflows up to May 2018. This resulted in 3,277 workflows in different
versions from 2,030 unique workflows for our experiments. For each workflow,
we scrutinized all the services contained and extracted 513 unique services com-
ing in various types including: WSDL, SoapLab, BioMoby, and SADI services
along with the REST calls. Among all the initial list of workflows, we obtained
1,719 workflows which invoke at least one of those services. Totally, from these
services, 1,248 unique operations are used in all the workflows. We thus create
our UoW network as summarized in Table 1.

Table 1. Summary of experiments

Unique workflows 2,030

Workflow versions 3,277

Unique services 513

Unique service operations 1,248

Workflows with at least one service 1,719

Workflows with at least two services 511

Over the dataset, all workflows were sorted based on their creation dates. We
designed two types of experiments to study how our technique would have worked
in the history, starting from the oldest workflows toward the most recent ones.

https://www.myexperiment.org

Unit of Work Supporting Generative Scientific Workflow Recommendation 457

The difference between them is the way to create the UoW network. In the first
type of experiment, for each workflow under study, the UoW network contains
all in prior workflows. In the second type of experiment, for every workflow, the
UoW network remains almost the same - including all workflows in the testbed
except the one under study and its subsequent versions. The rationale is that
the UoW network would become very rich after many workflows join.

For each type of experiment, chronologically, each workflow served as a search
query, including its description and conceptual components (i.e., the proces-
sor names defined in all Taverna workflows). For each query, we ran our rec-
ommendation algorithm, used the top recommended UoW and continued the
recommend-as-you-go process, until either the goal of the workflow was reached
or the algorithm could not find any more UoWs.

Our baseline methods are the recommendation methods based on keywords,
semantics (i.e., the method in [12]) and patterns (i.e., the methods in [4,18]). All
baseline approaches were applied to our two types of experiments for comparison.

We used λ = 0.2 and δ = 0.01 for the experiments. The Dijkstra algorithm
[13] was used for finding the shortest paths in the UoW network. The experiments
were run on a Windows 10 64-bit machine with 64 GB memory and Intel i7-7700
CPU @ 3.60 GHz*8. The code was implemented in Java 8 and JGraphT library
was used for building the graphs and algorithms on top of them.

5.2 Evaluation Metrics

In order to evaluate our method, we adopted four evaluation metrics. Note that
the measurements are only applied to the final step of our method, because
our method operates a multi-step procedure to identify UoWs and services,
controlled by dynamically changing aggressiveness.

1. Average Precision: The average number of correctly predicted services at
the final step of the recommend-as-you-go process, for the top recommended
UoWs over the total number of services predicted Ncorrectly−predicted

Ntotal−recommended−services
.

2. Average Recall: The average number of correctly predicted services at the
final step of the recommend-as-you-go process, for the top recommended
UoWs over the total number of services in the test workflow Ncorrectly−predicted

Ntotal−WF−services
.

3. Accumulated Saved Steps: The accumulated number of steps saved for
reaching the last result, by using our approach.

4. Accumulated Saved Links: The accumulated number of decisions about
the connections among services saved for the user by our approach.

5.3 Experimental Results and Analysis

Recommendation Effectiveness: Since the starting point of the experiments
are just intents (i.e., descriptions) and a collection of conceptual components
(i.e., services candidates), without structural design (i.e., reference model), the
baseline methods based on patterns [4,18] will not work in the beginning.

458 J. Zhang et al.

We then studied how the pattern-based baseline methods could work after our
method identified the first-round of UoWs, meaning that when a partial structure
exists. For type 1 experiment, out of the 1,719 workflows in the testbed, 191
workflow designs require multiple steps in our method. For those workflows, the
baseline methods recommended services for 7 workflows. For type 2 experiment,
the baseline methods recommended 16 services out of 291 workflows that require
multiple steps in our method. The reason is that most of the services contained in
a workflow were not used together in earlier workflows, thus their co-occurrence
was not recorded in the pattern table/repository in the baseline methods. This
situation is common in scientific research, because scientific workflows typically
imply unprecedented experiment design.

We also studied whether the semantics-based baseline approach [12] could
work on the testbed. It does not due to a fact that scientific services (i.e., algo-
rithms) typically cannot be directly chained together without data transforma-
tion [19]. Thus, semantic input/output match-making among services did not
work well for the testbed.

In contrast, our approach successfully recommended services components for
all 1,719 workflows. Therefore, we will only discuss in detail the recommendation
quality of our approach under the two types of experiments.

2008 2010 2012 2014 2016 2018
Year

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

ci
si

on

(a)

Test 1
Test 2

2008 2010 2012 2014 2016 2018
Year

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 R
ec

al
l

(b)

Test 1

Test 2

2008 2010 2012 2014 2016 2018
Year

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

ci
si

on

(c)

Test 1

Test 2

2008 2010 2012 2014 2016 2018
Year

0

0.2

0.4

0.6

0.8

A
ve

ra
ge

 R
ec

al
l

(d)

Test 1

Test 2

Fig. 3. (a) Average precisions comparison (b) Average recalls comparison (c) Average
precisions comparison for workflows with more than one service (d) Average recalls
comparison for workflows with more than one service

Recommendation Quality: Figure 3 compares the precision and recall of our
algorithm in the two types of experiments aforementioned. For each diagram,
the x axis represents the timeline, and the y axis represents the average pre-
cision/recall for each day if our recommendation algorithm is applied on the
workflows published on the date. Figure 3(a) and (b) compare the recommenda-
tion precision and recall for all workflows in the testbed. For each figure, Test

Unit of Work Supporting Generative Scientific Workflow Recommendation 459

1 and Test 2 curves represent the precision/recall of our algorithm applied on
type 1 scenario (where Nuow only comprises all workflows published prior to the
date) and type 2 scenario (where Nuow contains all workflows except the one
under examination and its subsequent versions), respectively.

As it can be seen, type 2 experiment with a rich UoW network has demon-
strated more effective results, especially in the early times. For type 1 experi-
ment, the UoW network for those workflows in early experiments contains insuf-
ficient services and links to be used for the recommendation. However, as times
goes by, both precision and recall improve by having a richer UoW network.

From the 1,719 workflows, we also removed the ones with only one service in
order to investigate the results for more complex scenarios. Figure 3(c) and (d)
present the comparison results of the algorithms for the remaining 511 workflows.

Over the entire testbed, the average precision/recall of our proposed method
are 44/43% for type 2 experiments, comparing to 29/31% for type 1 experi-
ments. For workflows containing at least two external services, the average pre-
cision/recall of our method are 52/43% for type 2 experiments, comparing to
34/25% for type 1 experiment.

Development Efforts Saved: Figure 4 shows that accumulated develop-
ment efforts would have been saved by our approach, from the inception
of myExperiment.org to May 2018. The baseline method is a keyword-based
method, finding one service at a time. For each diagram, the x axis represents
the timeline. Figure 4(a) examines the development steps saved. The y axis rep-
resents the development steps saved for each day, if our algorithm was applied
on the workflows published on the date. For each workflow comprising N con-
ceptual services, the baseline method will require N steps. In contrast, our app-
roach recommends units of work each may comprising multiple services. There-
fore, development steps may be saved. Assume our algorithm recommends K
UoWs, each containing |uowi| services. We will have:

∑K
i=1 |uowi| = N . If each

uow is a single service, K = N ; otherwise, K < N . For each uowi, |uowi| − 1
steps will be saved. Therefore, for the entire process with K UoWs, a total of∑K

i=1(|uowi| − 1) = N − K steps will be saved. For the testbed, we identified
UoWs for 107 workflows under type 1 experiments, and 183 workflows under
type 2 experiments. As shown in Fig. 4(a), our algorithm accumulatively would
have saved 303 or 166 steps comparing to the baseline methods, in two types of
experiments respectively.

Figure 4(b) studies the service linkages saving using our approach. Unlike
the baseline method recommending only services and scientists having to chain
services manually, our approach recommends units of work including the linkages
among services. Consider again the same example above, where a workflow with
N conceptual services and our algorithm recommending K UoWs. Using the
baseline method, one has to make decision on C2

N connections. Using our method,
a total of

∑K
i=1 C2

|uowi| link consideration could have been saved. As shown in
Fig. 4(b), a rich UoW network significantly facilitates linkage saving, from an
accumulative 460 linkages comparing to about 242 linkages. As discussed earlier,

https://www.myexperiment.org

460 J. Zhang et al.

2008 2010 2012 2014 2016 2018
Year

0

50

100

150

200

250

300

350

N
um

be
r o

f S
av

ed
 S

te
ps

(a)

Test 2

Test 1

2008 2010 2012 2014 2016 2018
Year

0

50

100

150

200

250

300

350

400

450

500

N
um

be
r o

f S
av

ed
 L

in
ks

(b)

Test 2

Test 1

Fig. 4. Development efforts saved comparison (a) Steps saved (b) Links saved

chaining among data services may be a hard problem. As a result, our approach
may significantly save scientists’ time and let them focus on science.

Time Complexity: We also studied the performance of applying our recom-
mendation algorithm online. Using the same example where a workflow with
N conceptual service and a UoW network with S′′ services and E′′ edges, the
time complexity would become O(S′′N log(S′′N)). First, finding candidate ser-
vices will cost O(S′′N). Second, finding all their combinations for different clus-
ters will cost O(S′′N). Third, finding all service instances in the network will
cost O(|S′′| + |E′′|). Fourth, finding the shortest path between services will cost
O(|S′′|2). Fifth, sorting candidates will cost O(S′′(N + 1)log(S′′(N + 1))).

6 Conclusions

In this paper, we have presented a novel technique to facilitate workflow design
and development. At each step, we recommend a runnable group comprising
multiple services, based on a service social network constructed from service
usage history. Such a technique stands out for four significant reasons. First,
recommending multiple services instead of a single service shall shorten the over-
all design phase. Second, the recommended service group is derived from past
workflow usage history with analogous context, so the recommendation becomes
more trustworthy. Third, some unprecedented service collaboration patterns may
be extracted through the cross-workflow mining over the service social network.
Fourth, the recommended services are chained thus to save users efforts to inter-
connect them, which may be not only time consuming but also difficult.

We plan to continue our research in the following two directions. First, we
will further study the scalability of our technique and tune performance. Second,
we will study how to integrate our approach with existing methods focusing on
other phases during service composition process, toward building an end-to-end
service composition recommendation methodology and a tailored platform.

Acknowledgement. This work is partially supported by National Aeronautics and
Space Administration under grant NNX16AB22G, and National Science Foundation
under grant ACI-1443069.

Unit of Work Supporting Generative Scientific Workflow Recommendation 461

References

1. Van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14, 5–51 (2003)

2. Bevilacqua, L., Furno, A., di Carlo, V.S., Zimeo, E.: A tool for automatic generation
of WS-BPEL compositions from OWL-S described services. In: Proceedings of
IEEE International Conference on Software, Knowledge Information, Industrial
Management and Applications, Benevento, Italy, pp. 1–8 (2011)

3. Roy Chowdhury, S., Daniel, F., Casati, F.: Efficient, interactive recommendation
of mashup composition knowledge. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 374–388. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25535-9 25

4. Deng, S., et al.: A recommendation system to facilitate business process modeling.
IEEE Trans. Cybern. 47(6), 1380–1394 (2017)

5. Elmeleegy, H., Ivan, A., Akkiraju, R., Goodwin, R.: MashupAdvisor: a recom-
mendation tool for mashup development. In: Proceedings of IEEE International
Conference on Web Services, pp. 337–344. IEEE, Beijing (2008)

6. Greenshpan, O., Milo, T., Polyzotis, N.: Autocompletion for mashups. Proc. VLDB
Endow. 2(1), 538–549 (2009)

7. Koop, D., Scheidegger, C.E., Callahan, S.P., Freire, J., Silva, C.T.: VisComplete:
automating suggestions for visualization pipelines. IEEE Trans. Vis. Comput.
Graph. 14, 1691–1698 (2008)

8. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), Article no. 33 (2016)

9. Li, C., Zhang, R., Huai, J., Guo, X., Sun, H.: A probabilistic approach for web
service discovery. In: Proceedings of IEEE International Conference of Services
Computing, pp. 49–56. IEEE, Santa Clara (2013)

10. McIlraith, S.I., Son, T.C., Zeng, H.: Semantic web services. IEEE Intell. Syst.
16(2), 46–53 (2001)

11. Paik, I., Chen, W., Huhns, M.N.: A scalable architecture for automatic service
composition. IEEE Trans. Serv. Comput. 7(1), 82–95 (2014)

12. Rodŕıguez-Mier, P., Mucientes, M., Lama, M.: Hybrid optimization algorithm for
large-scale QoS-aware service composition. IEEE Trans. Serv. Comput. 10(4), 547–
559 (2017)

13. Skiena, S.: Dijkstra’s Algorithm. Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica, pp. 225–227. Addison-Wesley, Read-
ing (1990)

14. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business
process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC/ServiceWave-
2009. LNCS, vol. 5900, pp. 115–129. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10383-4 8

15. Wada, H., Suzuki, J., Yamano, Y., Oba, K.: E3: a multiobjective optimization
framework for SLA-aware service composition. IEEE Trans. Serv. Comput. 5(3),
358–372 (2012)

16. Xia, B., Fan, F., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API
clustering and distributed recommendation for automatic mashup creation. IEEE
Trans. Serv. Comput. 8(5), 674–687 (2015)

17. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

https://doi.org/10.1007/978-3-642-25535-9_25
https://doi.org/10.1007/978-3-642-10383-4_8
https://doi.org/10.1007/978-3-642-10383-4_8

462 J. Zhang et al.

18. Zhang, J., Liu, Q., Xu, K.: FlowRecommender: a workow recommendation tech-
nique for process provenance. In: Proceedings of the Australasian Data Mining
Conference, pp. 55–61. Australian Computer Society, Inc. (2009)

19. Zhang, J., et al.: Climate analytics workflow recommendation as a service -
provenance-driven automatic workflow mashup. In: Proceedings of IEEE Inter-
national Conference on Web Services, pp. 89–97. IEEE, New York (2015)

20. Zhang, J., Tan, W., Alexander, J., Foster, I., Madduri, R.: Recommend-as-you-
go: a novel approach supporting services-oriented scientific workflow reuse. In:
Proceedings of IEEE International Conference on Services Computing, pp. 48–55.
IEEE, Washington DC (2011)

Mobile Crowdsourced Sensors Selection
for Journey Services

Ahmed Ben Said1(B), Abdelkarim Erradi1, Azadeh Gharia Neiat2,
and Athman Bouguettaya2

1 Department of Computer Science and Engineering, College of Engineering,
Qatar University, Doha, Qatar
{abensaid,erradi}@qu.edu.qa

2 School of Information Technologies, University of Sydney, Sydney, Australia
{azadeh.gharineiat,athman.bouguettaya}@sydney.edu.au

Abstract. We propose a mobile crowdsourced sensors selection app-
roach to improve the journey planning service especially in areas where
no wireless or vehicular sensors are available. We develop a location
estimation model of journey services based on an unsupervised learning
model to select and cluster the right mobile crowdsourced sensors that
are accurately mapped to the right journey service. In our model, the
mobile crowdsourced sensors trajectories are clustered based on common
features such as speed and direction. Experimental results demonstrate
that the proposed framework is efficient in selecting the right crowd-
sourced sensors.

Keywords: IoT · Travel planning service · Spatiotemporal data
Crowdsourcing · Sensors selection · Unsupervised learning

1 Introduction

With the increasing use of mobile devices such as smartphones and wearable
devices mobile crowdsourced sensing is emerging as a new sensing paradigm
for obtaining required sensor data and services by soliciting contribution from
the crowd. Storing, processing and managing continuous streams of crowdsensed
data pose key challenges. The cloud offers a new paradigm, called sensor cloud
[5,6] to efficiently handle these challenges.

In our previous works [7,8,10], we explore a new area in spatio-temporal
travel planning by abstracting the problem using the service paradigm. We
assume that we have a map consisting of spatial routes which in turn consist of
segments. Each sensor cloud segment service is served by a journey vehicle (e.g.,
buses, trams or trains) and has a number of attributes and associated quality of
service. Th functional attributes of a line segment service include GPS coordi-
nates of the source and destination points and the mode of transportation (e.g.
train service). Quality of service parameters include times of arrival and depar-
ture, accuracy, cost and so on. Therefore, a journey would consist of composing
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 463–477, 2018.
https://doi.org/10.1007/978-3-030-03596-9_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_33&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_33

464 A. Ben Said et al.

a set of line segment services on the map according to a set of functional and
non-functional requirements. In [7,8,10], we made the assumption that the sen-
sor cloud services are modeled by fixed sensors, i.e. sensors embedded on the
journey vehicle e.g. bus, tram.

In this paper, we consider the scenario illustrated in Fig. 1 in which the crowd
is the source of information. Indeed, we solely rely on commuters providing real-
time geolocation data collected through their mobile devices (e.g. smartphone)
instead of fixed sensors, called Mobile Crowdsourced Sensors (MCS). These MCS
are abstracted on the cloud and can be used by the journey planning service to
serve commuters’ requests to find optimal journey plans. This is an interesting
development since MCS represent an alternate source of information in absence
of sensory infrastructure and eliminate the need to deploy costly sensory equip-
ment. Commuters representing the source of crowdsourced sensors are willing
to participate if they are convinced and well-incentivized, i.e. they are provided
with a reward either as a service compensation or money [9]. For example, par-
ticipants can benefit from enhanced journey planning and real-time transport
network update using the collected data. In addition, they can get credit com-
pensation according to the level of participation. In this scenario, we suppose
that commuters are well-incentivized to participate in sharing their real-time
locations.

Fig. 1. Overview of public transport scenario powered by MCS

The key challenge of leveraging MCS is to identify and access the “right”
crowdsourced sensors that are applicable to a particular journey planning
request. This is important as MCS will move from one mode of transporta-
tion to another, i.e., they would serve different sets of sensor cloud services at
different locations and times. As a result, there is a need to develop an efficient
selection technique to accurately identify MCS that will be mapped to the right
sensor cloud service.

This paper focuses on developing a MCS selection technique to enable an
optimal journey planning powered by MCS. Specifically, we propose an unsu-

Mobile Crowdsourced Sensors Selection for Journey Services 465

pervised learning approach to select and cluster the right mobile crowdsourced
sensors based on common patterns in their trajectories.

The main contributions of this paper are: (1) A new formal model of mobile
crowdsourced sensors allowing access to the right MCS in space and time to
enable identifying and tracking the location of journey vehicles. (2) A new unsu-
pervised learning approach for clustering MCS. (3) Novel quality measures based
on moving characteristic of MCS to assess the homogeneity of members of iden-
tified crowdsourced sensor clusters.

The rest of the paper is organized as follows: in Sect. 2, we review relevant
related works. In Sect. 3, we present the problem formulation and the proposed
model. In Sect. 4, we discuss the details of the proposed crowdsourced sensors
selection and clustering algorithm that allows the identification of journey vehi-
cles. In Sect. 5, we present and analyze the results of the experimental evaluation.
Finally, conclusions and future work are presented in the last section.

2 Related Work

Several research proposals have focused on mobile crowdsourcing for journey
planning service. Yu et al. [1] proposed a MCS-based travel package recommen-
dation system. A profile is constructed for each user to leverage spatio-temporal
features of check-in in points of interests (POI) which are hierarchically classified.
Each POI is characterized by its periodic popularity. These information are then
used in real-time to recommend personalized travel packages while taking into
account user preferences, POI characteristics, and spatio-temporal constraints
such as travel time and initial location. Ye et al. [2] used MCS to build the pat-
tern map of the metro line, which can then be used for localization. The system
consists of two phases: in the first one, patterns from user traces are extracted,
and mined to identify the ones which are linked to specific tunnels. This allows
to construct the graph of the metro line. In the second phase, the pattern map
is made available on the cloud for users to download. When user travels using
metro line, barometric pressure and magnetic fields data are logged along with
stop and running events. Therefore, the train and user locations are known. Shin
et al. [3] proposed a MCS-based approach for classification of transport mode.
Authors collected information including date and time, x-, y-, and z-acceleration
values, latitude and longitude. By analyzing these records, the walking pattern
is characterized and used to segment the overall activities. To determine the
travel mode of a vehicle-ride activity, the acceleration profile for each mode is
estimated and used to classify particular acceleration behavior into one of the
modes. In [4], authors proposed TrafficInfo, a participatory sensing based live
public transport information service. Instead of relying costly sensing infrastruc-
ture, the proposed service relies on contribution from the crowd to visualize the
actual position of the journey vehicle.

The aforementioned works consider the mapping between MCS and journey
vehicle (tram, metro, etc...) as a prerequisite or assume that the crowd are
fully cooperative and handle this mapping even though they can move from

466 A. Ben Said et al.

one mode of transportation to another or share erroneous information. However,
this assumption does not always hold. Indeed, such task requires an effective
incentive mechanism to motivate the participants. Furthermore, the crowd can
be indifferent to handle this task or introduce erroneous information. Therefore
it is essential to develop techniques for automatic selection of the right MCS
that enable the estimation of the journey vehicle location in real time.

The availability of data enjoying spatio-temporal properties has elicited new
data analysis paradigm to explore and extract new spatio-temporal patterns.
Spatiotemporal clustering is the process of grouping data objects based on space
and time relationships. Spatiotemporal clustering methods determine to which
cluster a given object belongs based on different features such as the speed, the
direction and the similarity in the trajectory origin and destination. Since tra-
jectory is a sequence of time-stamped location points of a moving object through
space, grouping moving trajectories is complex due to their continuous move-
ment. Thus, more efforts are needed to discover the interaction and change in
the spatiotemporal trajectory movements in order to achieve more accurate par-
titioning [11]. Recently, researchers are proposing modifications of existing clus-
tering algorithms to make them more suitable for spatiotemporal data. Birant
et al. [12] proposed a spatio temporal algorithm called ST-DBSCAN, an exten-
sion of the well known DBSCAN algorithm to the spatiotemporal domain. Avni
et al. [13] also extended the Ordering Points to Identify the Clustering Struc-
ture (OPTIC) algorithm to cluster spatiotemporal data for taxi recommendation
system. On the other hand, spatiotemporal pattern mining focuses on discover-
ing hidden movement patterns from the trajectories of moving objects. Multiple
methods were proposed to mine several types of movement patterns for groups
of objects that move together in a near space and time. These patterns include
periodic or repetitive pattern that concerns regular movement e.g. bird migration
[14,15], flock [16], convoy [17], swarm [14], leadership [18] and chasing [19].

The evaluation of spatiotemporal clustering approaches remains an open and
challenging issue. While the traditional clustering approaches require computa-
tion in single Euclidean space, the spatio-temporal clustering approaches need
computation in multiple spaces [20]. In addition, grouping spatio-temporal data
is affected by the large data size which leads to a trade-off between accurate
clustering results and computational cost [21]. Clustering is also affected by
noise and outliers. Additionally, the presence of clusters of different shapes, e.g.
ellipsoid, and of unbalanced sizes may result in the inaccurate data partition.
Indeed, some clustering algorithms, e.g. K-means, form clusters with a circular
shape which leads to misleading results.

3 System Model

Our objective is to identify journey vehicles and track their location by relying
solely on crowdsourced sensors. Therefore, it is important to select the right
subset of crowdsourced sensors. In this context, a group of MCS associated to
a journey vehicle are very likely to have similar spatiotemporal features. Our

Mobile Crowdsourced Sensors Selection for Journey Services 467

strategy consists of grouping or clustering the set of MCS that have common
patterns.

In the following, we first define preliminary concepts and then present the
problem statement. In the remainder, we refer to sensor cloud service as a journey
service. A journey network is a spatial representation of journey services (i.e.,
bus, train etc) available in a given area. It consists of journey service routes
composed of route segments (see Fig. 2). We formally define a route segment
and journey service as follows:

Definition 1: Route segment. A route segment (rsi) connects two nodes
representing the source and destination points. It is identified by a tuple
<nd, na, dist, speed, att> where:

– nd: GPS coordinates of the departure node.
– na: GPS coordinates of the arrival node.
– dist: Distance between nd and na.
– speed: Average travel speed along the route segment.
– att: Average travel time duration to traverse the route segment.

Definition 2: Journey Service. A Journey Service (JS) is modeled as a com-
position of route segments. JS is described by a tuple <JSid, RS, schedule>
where:

– JSid: A unique identifier of the service. We consider each inbound or out-
bound direction as a separate service (e.g., Bus-30-Manhattan-JFK-Express
is a service).

– RS: A list of route segments {rs1, rs2, . . . rsn} comprise the service route.
– schedule: Scheduled JS trips per day. It can also be represented by an average

headway which is defined as the time difference between any two successive
vehicles.

A journey service could be served by one or more Journey Vehicles (JV) such as
buses.

Definition 3: Journey Vehicle. A JV is identified by a tuple
<vs, dt, rs, loc, td, ta> where:

– vs: Journey service Id (e.g., bus line 100) whose journey vehicle is currently
serving.

– dt: Departure time from the start of the journey.
– rs: Current route segment being traversed by the vehicle.
– loc: Current vehicle location.
– td: Departure time for the current route segment.
– ta: Estimated arrival time to the next stop which is the arrival node of the

current route segment.

468 A. Ben Said et al.

Fig. 2. A journey network consists of journey service routes which in turn consist of
route segments

Crowdsourced sensors are constantly sending their location information to
a cloud-hosted journey service. These spatio-temporal records can be mod-
eled as MCS trajectory. Given a set of crowdsourced sensors represented by
their trajectories S = {Tr1, T r2, . . . , T rN}, where N is the number of tra-
jectories, the proposed algorithm discovers clusters of crowdsourced sensors
C = {C1, C2, . . . , CM}, where M is the number of cluster centers.

Definition 4: Crowdsourced sensor trajectory. A crowdsourced sensor tra-
jectory Tri is a set of sequential timestamped geolocations:

Tri = [(p1, t1), (p2, t2) . . . (pL, tL)]. A geolocation pi is a pair of latitude and
longitude sent by the sensor at time ti. L is the trajectory length. It can be dif-
ferent from one trajectory to another. We assume that trajectories are defined
for the same time intervals. A trajectory segment is a pair of consecutive times-
tamped geolocations: ts = [(pj , tj), (pk, tk)], tj < tk. A trajectory of length L is
composed of L − 1 trajectory segments. It is also characterized by its associ-
ated direction and speed. A cluster of crowdsourced sensors is a group of sub-
trajectories as illustrated in Fig. 3.

Fig. 3. An example illustrating a journey vehicle identification by clustering the crowd-
sourced sensor trajectories

A cluster center is an imaginary trajectory segment with specific character-
istics i.e. start and end point as well as start and end time. This particular
sub-trajectory is the representation of the journey vehicle.

Definition 5: Distance Function. A clustering algorithm, whether density
based, partitional or hierarchical, is formulated using a distance measure. To

Mobile Crowdsourced Sensors Selection for Journey Services 469

take the particularity of our trajectory data structure into account, we propose
to use the distance measure proposed by Lee et al. [22] illustrated in Fig. 4.
Specifically, the distance between trajectory segments ts1 and ts2 is a linear
combination of three distances: perpendicular distance d⊥, parallel distance d||
and angle distance dθ:

d(ts1, ts2) = d⊥(ts1, ts2) + d||(ts1, ts2) + dθ(ts1, ts2) (1)

where:

d⊥(ts1, ts2) =
l2⊥1 + l2⊥2

l⊥1 + l⊥2
(2)

d||(ts1, ts2) = min(l||1, l||2) (3)

dθ(ts1, ts2) = length(ts2) × sin(θ) (4)

Fig. 4. The distance measure between two trajectory segments

For more accurate distance measure between two geolocations, the Haversine
distance or Vincenty distance [23] can be used. However, for simplicity, we use
the classic Euclidean distance to calculate l||1, l||2, l⊥1 and l⊥2 which is suitable
for the small area of study used for evaluation.

Definition 6: ε-Neighborhood. The neighborhood of a trajectory segment tsi

with respect to ε > 0, denoted Nε(tsi), is a subset of trajectory segments and
defined as:

Nε(tsi) = {tsj | d(tsi, tsj) ≤ ε} (5)

It is the set of trajectory segments whose distance to tsi is less than a
threshold ε.

Definition 7: Core Trajectory Segment. A trajectory segment tsi is a core
trajectory segment defined with respect to ε and MinS > 0 iff:

|Nε(tsi)| ≥ MinS (6)

Where |Nε(tsi)| is the cardinality of Nε(tsi). A core trajectory segment highlights
the presence of dense region. MinS is a minimum number of neighbor trajectory
segments required to form a dense region around tsi.

470 A. Ben Said et al.

Definition 8: Following Degree (FD). The following degree between two
trajectory segments is established given the three possibilities illustrated in
Fig. 5. It takes into account whether the trajectory segments are converging,
diverging or parallel. It is defined as follows:

FD =

⎧
⎪⎨

⎪⎩

1, if d1 = d2

−1, if d1 < d2
d2
d1

, if d1 > d2

(7)

If the two trajectory segments originate from the same geolocation i.e. d1 = 0,
the trajectory segments are diverging and FD = −1. For the special case where
d1 = d2 = 0, FD is equal to 1.

Fig. 5. Three following scenarios

Definition 9: Trajectory Segment Direction (DR). The trajectory seg-
ment direction is defined as the counterclockwise angle of the trajectory seg-
ment with respect to the reference line of Equator. The direction can be also
derived from the accelerometer and the geomagnetic field sensor embedded on
the smartphone.

Definition 10: Trajectory Segment Speed (SP). The trajectory segment
is characterized by its speed. It is the distance between the departure node nd

and the arrival node na over the difference in time: tk − tj .

4 Mobile Crowdsourced Sensors Selection Algorithm

In this section, we propose our spatio-temporal crowdsourced sensors clustering
algorithm for crowdsourced sensors selection. We first present the details of the
algorithm. Then, we define the homogeneity score which is used to form clusters.

4.1 Spatio-Temporal Crowdsourced Sensors Clustering Algorithm

In classic clustering task, a high performance algorithm achieves a partition of
objects where members of each cluster are as homogeneous as possible with
respect to certain criteria. For example, a cluster should be as dense as possible.
The density can be quantified using a discrepancy measure such as the variance.

Our strategy for trajectory segment clustering originates from the follow-
ing intuitive idea: MCS contributing in identifying a journey vehicle associated

Mobile Crowdsourced Sensors Selection for Journey Services 471

to a journey service should (1) be as dense as possible and (2) share common
spatio-temporal patterns such as speed, following degree and direction. Conse-
quently, our algorithm seeks to identify dense regions with respect to predefined
parameters: ε and MinS. These regions indicate the presence of potential clus-
ters. However, it is important to identify clusters with the highest homogeneity
among each member. Therefore, we define a homogeneity score. It captures the
spatio-temporal dynamism of trajectory segments such as speed, direction and
following degree and then identifies the cluster with the highest homogeneity.

Our algorithm, detailed in Algorithm1, first identifies the list of core tra-
jectory segments (line 3–6) at each timestamp. Then, it considers every core
trajectory segment tsi and its ε-neighborhood as a potential cluster. It seeks
also to form clusters as homogeneous as possible with respect to a particular
score called the Homogeneity Score (HS). A potential cluster is added to the
set of clusters if it fulfills one of the following requirements:

– Its associated core trajectory segment has no other core trajectory segment
in the list of its ε-neighborhood (line 10–12)

– Its associated core trajectory segment has the lowest HS among the neighbor
core trajectory segments (line 14–17).

After a cluster of trajectory segments is formed, its cluster center can be used to
identify the associated journey service. In this regard, we consider the vectorized
version of the trajectory segments # »

ts1,
»
ts2, . . . ,

»
tsN where:

»
tsi =

⎛

⎝
xj+1 − xj

yj+1 − yj

tj+1 − tj

⎞

⎠ (8)

The average trajectory segment of N trajectory segments is defined as:

#»cc =
»
ts1 + # »

ts2 + . . . + # »
tsN

N
(9)

The journey vehicle is identified by the trajectory segment associated with
#»cc. Therefore, the spatio-temporal properties of the cluster centers correspond to
the journey vehicle properties. By gradually capturing the set of cluster center
and therefore the journey vehicle, we continuously update the journey service
and route segment attributes such as the speed and arrival time.

4.2 The Homogeneity Score

The Homogeneity Score HS is of paramount importance since it identifies the
clusters and therefore the journey vehicles. HS is a combination of three scores:
the following, the speed and the direction scores. It captures the spatio-temporal
properties of MCS. Indeed, members of a cluster are supposed to follow each
other with relatively the same speed and direction. These scores are defined as
follows:

472 A. Ben Said et al.

Algorithm 1. Crowdsourced Sensors Clustering
Input: Trajectory set S, ε, MinS
Output: Identified journey vehicles

1: ListCC ← ∅ # list of identified vehicles
Identify core trajectory segments

2: for every time slot Δt do
3: for tsi ∈ S do
4: if tsi is a core trajectory segment (Definitions 5 and 6) then
5: Insert tsi in ListCS

6: Calculate HS(tsi) using (13)
7: end if
8: end for
9: end for

Cluster trajectory segments
10: for every tsi ∈ ListCS do
11: if ∀ tsj ∈ Nε(tsi); tsj �∈ ListCS then
12: Calculate the cluster center cc
13: Insert

(
tsj , Nε(tsj), cc

)
in ListCC

14: else
15: for each tsj ∈ {

Nε(tsi) ∪ tsi

}
& tsj ∈ ListCS do

16: Identify tsj with the lowest HS
17: Calculate the cluster center cc
18: Insert

(
tsj , Nε(tsj), cc

)
in ListCC

19: end for
20: end if
21: end for

Definition 11: Following Score (FS). The following score FS of a core tra-
jectory segment tsi is defined as:

FS = |Nε(tsi)| −
|Nε(tsi)|∑

j=1,j �=i

FD(tsi, tsj) (10)

It evaluates how different the following score of the core trajectory segment
to the average following score of the cluster. A low FS score indicates better
homogeneity in terms of following.

Definition 12: Speed Score (SS). It measures the homogeneity of the cluster
in terms of speed. Indeed, a group of crowdsourced sensors should move with
the homogeneous velocity. Given a potential cluster defined with respect to core
trajectory segment tsi, SS is expressed as:

SS =

∣
∣ SP (tsi) − 1

|Nε(tsi)|
|Nε(tsi)|∑

j

SP (tsj)
∣
∣

max
j

{
SP (tsj)

} − min
j

{
SP (tsj)

} (11)

Mobile Crowdsourced Sensors Selection for Journey Services 473

SS evaluates the difference between the core trajectory segment speed and the
average speed of the clusters. A low SS score indicates better homogeneity in
term of speed.

Definition 13: Direction Score (DS). It measures the homogeneity of the
cluster in terms of direction. A group of crowdsourced sensors should move in the
same direction. Given a potential cluster defined with respect to core trajectory
segment tsi, DS is expressed as:

DS =

∣
∣ DR(tsi) − 1

|Nε(tsi)|
|Nε(tsi)|∑

j

DR(tsj)
∣
∣

max
j

{
DR(tsj)

} − min
j

{
DR(tsj)

} (12)

DS evaluates the difference between the core trajectory segment direction and
the average direction of the clusters. A low DS score indicates better homogene-
ity in term of direction.

Definition 14: The Homogeneity Score (DS). HS is the linear combina-
tion of the three aforementioned scores. It is expressed as follows:

HS = ω1 · FS + ω2 · SS + ω3 · DS (13)

Where ω1, ω2 and ω3 are tunable weights to adjust the contribution of each
score. The optimal cluster achieves the lowest HS.

5 Experimental Results

We conduct a set of experiments to show the effectiveness of our approach in
terms of Sum of Squared Error and accuracy.

5.1 Experimental Setup

For our experiments, we use the public bus transport dataset of New York City1.
The dataset tracks 90 bus services across New York city for a full day. The buses
arrival and departure times are recorded along with the geolocation of each
station. Each station has a unique id. Between two consecutive stations, we
randomly generate 40 geolocations with unique ids to simulate trajectories of
MCS.

The simulated sensors may be widespread and therefore can be out of the
route segments of interest. To deal with this issue, we used the following heuristic
to pre-filter the irrelevant sensors. Given the historic journeys of vehicles, we
establish the full regular route of every journey service such as a bus service. We
consider the complete geolocations of every bus stop as illustrated in Fig. 6 to
derive the static service route. This data is static (e.g. station geolocations) and

1 web.mta.info/developers/MTA-Bus-Time-historical-data.html.

http://web.mta.info/developers/MTA-Bus-Time-historical-data.html

474 A. Ben Said et al.

represent the journey service route as advertised by the service provider. Since
our objective is to spatiotemporally identify vehicles through MCS, we only
consider the crowdsourced sensors within a buffer area with radius R from the
path line. Indeed, the objective is to filter out irrelevant MCS, i.e. the ones that
do not contribute to identifying the journey vehicle and therefore the journey
service.

To assess the effectiveness of the algorithms, we use the Sum of Squared
Error (SSE). It reflects the overall compactness of the obtained data partition
by calculating the distance between the center of each cluster and its associated
objects. Therefore, the best clustering yields to the minimum SSE value which
is computed as follows:

SSE =
∑num cluster

i=1

(
1

2|Ci|
∑

tsk∈Ci

∑

tsl∈Ci

d(tsk, tsl)
)

(14)

We also propose a new index to evaluate the trajectory clustering results.
Inspired by the Xie-Beni cluster validity index [24], our proposed index named
Tra-Xie-Beni (Tra-XB), takes into consideration the intra-cluster homogeneity
as well as the inter-cluster separation. It is expressed as follows:

Tra-XB =

num cluster∑

i=1

∑

tsj∈Ci

d(tsj , cci)

min
i,j

d(cci, ccj)
(15)

The nominator term calculates the distance between every cluster cci and
tsj ∈ Ci. This quantifies the compactness of every cluster. The denominator eval-
uates the separation between clusters which is the minimum distance between
all cluster centers. Therefore, the best partition corresponds to the minimum
value of Tra-XB. In addition, we evaluate the spatial and temporal accuracy
of both approaches by: 1 - Calculating the spatial distance d(na, n̂a) between
the true destination node of the journey vehicle na and the estimated destina-
tion point n̂a computed by each algorithm. 2 - Calculating the temporal error
att−âtt between the actual average travel time att of the journey vehicle and the
average arrival time âtt computed by each algorithm. The estimated parameters
(n̂a, âtt) are identified by determining the closest cluster center end point and
its associated timestamp.

We provide a quantitative analysis for the first 30 timestamps of the sched-
ule, although our findings can be reproduced for any desired period. For the
simulation settings, we set ε = 0.002 and MinS = 17 for the proposed algo-
rithm while we choose for Traclus the optimal values of MinS and ε i.e. the
ones achieving the best performance. Similarly, we report the best performance
achieved by ST-DBSCAN. We also set ω1 = ω2 = ω3 = 1 and the preprocessing
radius R = 10 m.

Mobile Crowdsourced Sensors Selection for Journey Services 475

Fig. 6. Full bus route from the departure station to the arrival station

(a) SSE index for the first 30 timestamps (b) Tra-XB index for the next 30 times-
tamps

Fig. 7. Spatiotemporal accuracy

(a) Q64: spatial error (b) Q64: temporal error

Fig. 8. Spatiotemporal error

5.2 Discussion of Evaluation Results

Figure 7(a) depicts the SSE results of the algorithms for the first 30 timestamps
of the schedule. We notice that the proposed clustering approach achieves better
performance in terms of cluster compactness compared to ST-DBSCAN and Tra-
clus with two settings: Optimal MinS value and MinS = 17. This performance
is confirmed by the Tra-XB index results illustrated in Fig. 7(b). Therefore, we
can conclude that the proposed algorithm achieves the best clustering perfor-
mance with the best separation between clusters.

Figure 8(a) and (b) represent the spatiotemporal evaluation of Q64 bus
service starting from 164 Street/Jewel Avenue station at midnight to 108
Street/Queens Boulevard arriving at 9 min past midnight. The whole journey
consists of 16 route segments. First, we notice that Traclus algorithm was not
able to identify a cluster (5th and 6th Q64 bus instance) and therefore failed
to identify the journey vehicle. On the other hand, the proposed algorithm and
ST-DBSCAN exhibit better spatiotemporal accuracy. For example, for the 11th

Q64 bus instance, the spatial error achieved by the proposed algorithm is 0.002,
15 times less than the error achieved by Traclus. ST-DBSCAN achieves slightly

476 A. Ben Said et al.

better performance with spatial error= 0.0007. Furthermore, the proposed app-
roach and ST-DBSCAN compute te with almost 100% accuracy (error = −0.08 s
and −0.0475 s) unlike Traclus which achieved a temporal error of around 1 s.

We conclude that the proposed approach achieves better performance in accu-
rately identifying vehicles and estimating their location and their arrival time
to the next stop. It also achieves competitive performance compared to ST-
DBSCAN. This performance can be explained by the capacity of the proposed
approach to better capture the dynamism of the objects to be clustered since it
takes into account several features such as speed, direction and following degree
unlike density-based algorithm such as Traclus.

6 Conclusion

This paper proposed an approach to integrate real-time sensory data collected
from multiple mobile crowdsourced sensors (MCS) to find a better journey ser-
vice. We proposed and evaluated a clustering algorithm to select the right crowd-
sourced sensors, which enables the identification of the journey vehicles. This
also helps to estimate journey services’ location and arrival time to the next
stop. The proposed algorithm takes into account the following degree, speed
and direction of the crowdsourced sensors to build clusters of moving objects.
This cluster allows the identification of journey vehicles. Experimental results
demonstrate the effectiveness of the proposed algorithm in achieving better per-
formance in terms of cluster compactness compared to the existing approaches.
In future work, we will analyze the computation complexity of our approach
and develop an enhanced algorithm to detect clusters. Devising incentive mech-
anisms to encourage commuters to participate and contribute as a sensor is
another interesting future work direction.

Acknowledgment. This research was made possible by NPRP 9-224-1-049 grant
from the Qatar National Research Fund (a member of The Qatar Foundation) and
DP160100149 and LE180100158 grants from Australian Research Council. The state-
ments made herein are solely the responsibility of the authors.

References

1. Yu, Z., Feng, Y., Xu, H., Zhou, X.: Recommending travel packages based on mobile
crowdsourced data. IEEE Commun. Mag. 52, 56–62 (2014)

2. Ye, H., Gu, T., Tao, X., Lu, J.: Crowdsourced smartphone sensing for localization
in metro trains. In: Proceeding of IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, pp. 1–9 (2014)

3. Shin, D., et al.: Urban sensing: using smartphones for transportation mode classi-
fication. Comput., Environ. Urban Syst. 53, 76–86 (2015)

4. Farkas, K., Nagy, A.Z., Tomaás, T., Szábo, R.: Participatory sensing based real-
time public transport information service. IEEE International Conference on Per-
vasive Computing and Communications Demonstrations, pp. 141–144 (2014)

5. Ahmed, K., Gregory, M.: Integrating wireless sensor networks with cloud comput-
ing. In: Seventh International Conference on Mobile Ad-Hoc and Sensor Networks,
pp. 364–366 (2011)

Mobile Crowdsourced Sensors Selection for Journey Services 477

6. Neiat, A.G., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91536-4

7. Ghari Neiat, A., Bouguettaya, A., Sellis, T.: Spatio-temporal composition of crowd-
sourced services. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.)
ICSOC 2015. LNCS, vol. 9435, pp. 373–382. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48616-0 26

8. Neiat, A.G., Bouguettaya, A., Sellis, T., Dong, H.: Failure-proof spatio-temporal
composition of sensor cloud services. In: Franch, X., Ghose, A.K., Lewis, G.A.,
Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 368–377. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-45391-9 26

9. Zhang, X., et al.: Incentives for mobile crowd sensing: a survey. IEEE Commun.
Surv. Tutor. 18, 54–67 (2016)

10. Neiat, A.G., Bouguettaya, A., Sellis, T., Mistry, S.: Crowdsourced coverage as a
service: two-level composition of sensor cloud services. IEEE Trans. Knowl. Data
Eng. 29, 1384–1397 (2017)

11. Huang, Y., Chen, C., Dong, P.: Modeling herds and their evolvements from tra-
jectory data. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F.
(eds.) GIScience 2008. LNCS, vol. 5266, pp. 90–105. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87473-7 6

12. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal
data. Data Knowl. Eng. 60, 208–221 (2007)

13. Avni, M., Viswanath, G., Vinaya, N., ST-OPTICS: a spatial-temporal clustering
algorithm with time recommendations for taxi services, Ph.D. thesis (2017)

14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. Proc. VLDB Endow. 3, 723–734 (2010)

15. Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving
objects. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1099–1108 (2010)

16. Wachowicz, M., Ong, R., Renso, C., Nanni, M.: Finding moving flock patterns
among pedestrians through collective coherence. Int. J. Geogr. Inf. Sci. 25, 1849–
1864 (2011)

17. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. Proc. VLDB Endow. 1, 1068–1080 (2008)

18. Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leadership pat-
terns among trajectories. In: Proceedings of the 2007 ACM Symposium on Applied
Computing, pp. 3–7 (2007)

19. de Lucca Siqueira, F., Bogorny, V.: Discovering chasing behavior in moving object
trajectories. Trans. GIS 15, 667–688 (2011)

20. Shao, W., Salim, F.D., Song, A., Bouguettaya, A.: Clustering big spatiotemporal-
interval data. IEEE Trans. Big Data 2, 190–203 (2016)

21. Jiang, Z., Shekhar, S.: Spatial and spatiotemporal big data science. In: Jiang, Z.,
Shekhar, S. (eds.) Spatial Big Data Science, pp. 15–44. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-60195-3 2

22. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group
framework. In: SIGMOD, pp. 593–604 (2007)

23. Mahmoud, H., Akkari, N.: Shortest path calculation: a comparative study for
location-based recommender system. In: 2016 World Symposium on Computer
Applications and Research (WSCAR), pp. 1–5 (2016)

24. Xie, X.L.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 13, 841–847 (1991)

https://doi.org/10.1007/978-3-319-91536-4
https://doi.org/10.1007/978-3-662-48616-0_26
https://doi.org/10.1007/978-3-662-48616-0_26
https://doi.org/10.1007/978-3-662-45391-9_26
https://doi.org/10.1007/978-3-540-87473-7_6
https://doi.org/10.1007/978-3-319-60195-3_2

RLRecommender: A
Representation-Learning-Based

Recommendation Method for Business
Process Modeling

Huaqing Wang, Lijie Wen(B), Li Lin, and Jianmin Wang

School of Software, Tsinghua University, Beijing, China
whq16@mails.tsinghua.edu.cn, veralin1994@gmail.com,

{wenlj,jimwang}@tsinghua.edu.cn

Abstract. Most traditional business process recommendation methods
cannot deal with complex structures such as interacting loops, and they
cannot handle large complex datasets with a great quantity of processes
and activities. To address these issues, RLRecommender, a method based
on representation learning, is proposed. RLRecommender extracts three
kinds of relation sets from the models, both activities and relations
between them are projected into a continuous low-dimensional space,
and proper activity nodes are recommended by comparing the distances
in the space. The experimental results show that our method not only
outperforms other baselines on small dataset, but also performs effec-
tively on large dataset.

Keywords: Business process modeling · Ordering relations
Representation learning · Recommendation

1 Introduction

Business process models are constructed to describe the prescribed behavior of
business processes. One method to improve process modeling is process min-
ing. Nonetheless, most process mining algorithms rely on completely purified
event logs and real-world event logs are often noisy in most cases. Hence, pro-
cess modeling is usually conducted by analysts manually. Nevertheless, modeling
a business process from scratch is also highly complex, error-prone and time-
consuming. Thus, an accurate and efficient business process recommendation
method is required.

Business process recommendation has already been used in both academic
research and industry applications, and there are several existing works [1,2].
These traditional methods recommend the next nodes of an uncompleted model
by iterating all parts of all processes, and they have two main limitations:

1. These methods cannot deal with complex structures such as interacting loops
in Fig. 1 (i.e., B and D, and C and D).

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 478–486, 2018.
https://doi.org/10.1007/978-3-030-03596-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_34&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_34

Representation-Learning-Based Recommendation for Process Modeling 479

2. Existing methods cannot deal with large complex datasets with abundant
processes, whose activities complicatedly relate to each other.

To address these problems, business process repositories should be considered
as a whole. We find that business process repositories have several properties.
First, quite a few activities appear frequently through most processes. Second,
the flows in process models relate activities with each other. Thus, regarding
activities and relations between them as nodes and edges, process repositories
can be transformed into multi-relational data.

p2 B

C
D

p3

p4

p5

Ap1 E p6

Fig. 1. An example for interacting loops

Recently, machine learning became a hot topic and there are a variety of
representation learning models to handle multi-relational data [3]. In represen-
tation learning models, multi-relational data is a directed graph whose nodes
are entities and edges are relations, and connections are represented as triples
(head entity, relation, tail entity). Existing representation learning models embed
both entities and relations into a continuous low-dimensional vector space [3],
and have been proven simple and effective in tasks such as entity prediction.

Motivated by this idea, RLRecommender, a representation-learning-based
recommendation method for process modeling, is proposed. To the best of our
knowledge, this is the first work that resolves process recommendation problem
using representation learning.

The remainder is organized as follows. In Sect. 2, we introduce RLRecom-
mender in detail. Experimental results are given in Sect. 3. Section 4 concludes
the paper and sketches future work.

2 The Representation-Learning-Based Method

Our method RLRecommender is composed of three phases: preprocessing, train-
ing and recommending as shown in Fig. 2. In this section, these three phases will
be presented one by one.

2.1 Preprocessing

Our first phase focuses on extracting relations between activities from Petri nets.
The definition of Petri nets can be found in [4]. Since the generated relation sets
can be saved at back-end, this part is conducted only once.

480 H. Wang et al.

Fig. 2. Overview of our method RLRecommender

“Direct After” Relations. For relation extraction, our first strategy (i.e.
RLafter) is to use only “direct after” relations, which is defined as follow.

Definition 1 (Direct after). In a Petri net N = (P, T, F), two transitions
x, y ∈ T are in “direct after” relation (denoted as x → y) ⇐⇒ ∃p ∈ x•, s.t.
y ∈ p•.

The “direct after” relations can correctly depict the connections of transi-
tions. However, it cannot tell the differences between AND-splits and XOR-splits.

“Direct Causal” Relations. A combination of “direct causal” and “direct
inverse causal” is used as the relations as the second strategy (i.e. RLcausal).
We first define the two “direct causal” relations.

Definition 2 (Always/sometimes direct causal). In a Petri net N = (P, T, F):

– two transitions x, y ∈ T are in “always direct causal” relation (denoted as
x � y) ⇐⇒ ∃p ∈ x•, s.t. p• = {y},

– two transitions x, y ∈ T are in “sometimes direct causal” relation (denoted
as x ⇀ y) ⇐⇒ x → y ∧ x �� y.

Two “direct inverse causal” relations are defined in a similar way (i.e. “always
inverse direct causal” relation (denoted as x � y) and “sometimes inverse direct
causal” relation (denoted as x ↼ y)).

The two “direct causal” relations describe the possible orders of transitions,
but they fail to distinguish transition groups {A, B} and {C, D} of the model
in Fig. 3.

Representation-Learning-Based Recommendation for Process Modeling 481

D

Ep1 F p6

p3

p2

C
B
A p4

p5

Fig. 3. An example that two “direct causal” relations cannot handle

“Direct Concurrent” Relations. We introduce “direct concurrent” relation
in the following. A combination of two “direct causal” relations and “direct
concurrent” relation is used as the third strategy (i.e. RLconcurrent).

Definition 3 (Always/never/sometimes direct concurrent). In a Petri net N =
(P, T, F):

– two transitions x, y ∈ T are in “never direct concurrent” relation (denoted as
x ∦ y) ⇐⇒ ∃p ∈ P , s.t. x, y ∈ p•,

– two transitions x, y ∈ T are in “sometimes direct concurrent” relation
(denoted as x � y) ⇐⇒ ∃p1, p2 ∈ t•, t ∈ T, p1 �= p2, s.t. (|p1•| > 1 ∨ |p2•| >
1) ∧ x ∈ p1• ∧ y ∈ p2• ∧ ¬(x ∦ y),

– two transitions x, y ∈ T are in “always direct concurrent” relation (denoted
as x ‖ y) ⇐⇒ ∃p1, p2 ∈ t•, t ∈ T, p1 �= p2, s.t. p1• = {x}∧p2• = {y}∧¬(x ∦
y) ∧ ¬(x � y).

When generating relation set, each “direct concurrent” relation would only
be recorded once between any pair of activities in the specific order such as
dictionary order (e.g. B ‖ C is recorded while C ‖ B not).

The relation sets extracted from the model in Fig. 1 are shown in Table 1.

Table 1. The relation sets (direct after|direct causal/direct inverse causal|direct con-
current) extracted from the process model in Fig. 1

A B C D E

A → | � / ↼ | → | � / ↼ |
B | | ‖ → | ⇀ / � | → | ⇀ / � |
C → | ⇀ / � | → | ⇀ / � |
D → | � / ↼ | → | � / ↼ | | | ∦

E

2.2 Training a Representation Learning Model

The second phase of our method is to learn a representation learning model
through generated relation sets. This part can be done at back-end and the

482 H. Wang et al.

trained model can be saved and used for recommendation. The training model
we use is based on TransE [3].

For the training relation set Tr, each triple (precursor activity, relation, suc-
cessor activity) (denoted as (p, r, s)) is composed of two activities p, s ∈ A (the
set of activities) and one relation r ∈ R (the set of relations). The embeddings
take values in Rk (Rk means continuous k-dimensional vector space where k is
a model hyperparameter) and are denoted with the same letters, in boldface
characters (i.e. p, r , s ∈ Rk). We want p + r ≈ s when (p, r, s) holds and p +
r is far away from s otherwise. We use dissimilarity measure function d as the
distance measurement, and in this paper d stands for L1-norm (i.e. Manhattan
distance) while there are other choices such as L2-norm (i.e. Euclidean metric).

We minimize the margin-based loss function as the objective for training:

L =
∑

(p,r,s)∈Tr

∑

(p′ ,r,s′)∈T ′
r

max(γ + d(p + r , s) − d(p
′
+ r , s

′
), 0) (1)

T
′
r = {(p

′
, r, s)|p′ ∈ A } ∪ {(p, r, s

′
)|s′ ∈ A } − Tr (2)

where γ is a margin hyperparameter, and T
′
r is a negative sampling set of training

set Tr. The triples in T
′
r are generated by replacing p or s in a triple in Tr by

another activity. Note that a triple already in Tr will not be generated in T
′
r . The

loss function L can reach minimum value only when d(p + r , s) < d(p
′
+ r , s

′
)

for most (p, r, s).

2.3 Recommending

Our final phase is to recommend the activities using the trained model. After
training, the embedded vectors for activities and relations can be used for rec-
ommendation by predicting the successor activity in a triple. During process
modeling, the most suitable activities are recommended by traversing all activ-
ity vectors and calculating the distance with the sum of the vector of the previous
activity and the vector of the proper relation. Notice that the proper relation
can be either specified by user or chosen by the recommendation system.

More specifically, during the construction of one process, suppose the pre-
vious activity is pi ∈ A . For each relation set, we first check if each ri ∈ R is
valid after current position. Then we calculate the vector distance d(pi + r i, si)
for each si ∈ A . We then recommend K activities whose d(pi + r i, si) are the
smallest. Here K is a parameter determined by user.

3 Experimental Evaluation

In this section, we first introduce the datasets and experiment settings. Then the
results on two different datasets are presented. The code, datasets and results
of our experiment are publicly accessible from GitHub1.
1 https://github.com/THUBPM/RLRecommender/.

https://github.com/THUBPM/RLRecommender/

Representation-Learning-Based Recommendation for Process Modeling 483

3.1 Datasets and Experiment Settings

Datasets. In this paper, two datasets are used to evaluate our method, including
large real dataset (LRD) [5] and small real dataset (SRD) [2]. The statistics of
them are listed in Table 2.

Notice that for LRD, we only use BPMN 1.1, BPMN 2.0 [6] and Petri net
models. All models are lowercased and only letters are retained, and non-English
models and the ones without activity names are deleted from the dataset. BPMN
models are transformed to Petri nets using the method in [7].

Table 2. Statistics of the two datasets used in the experiments

LRD SRD

#Processes 23576 221

#Distinct activities 36801 52

#Activities per process 2-380 5-15

AND/XOR-split/join True True

Cycle True True

Other complex structures True False

Benchmarks. We use HitRate and F1 score to estimate the performance of
each method. For each position in a model, a list of K activity nodes are recom-
mended, denoted by Ar. The set of activities that the real process actually has
at the current position is denoted by At.

HitRate is the percentage of hits, which is defined as follow:

HitRate = #hit/#rec (3)

where #hit is the number of times when Ar ∩ At �= ∅, and #rec is the number
of recommendations.

F1 score is the harmonic mean of precision and recall, where precision and
recall are the percentage of correctly recommended activities in recommended
activity set and ground-truth activity set respectively. F1 score is defined as
follow:

F1 = (2 × Precision × Recall) / (Precision + Recall) (4)

Precision = (Σ|Ar ∩ At|) / (Σ|Ar|) (5)

Recall = (Σ|Ar ∩ At|) / (Σ|At|) (6)

484 H. Wang et al.

Experiment Settings. Since the small dataset, benchmarks and experiment
protocol we use are the same as those in [2], we use the settings determined in
this paper for other state-of-the-art approaches.

For our method, we set the embedding dimension k to 200, the margin value
γ in the loss function to 1.0, and the learning rate to 0.001. For the small and
large datasets, we train our model for 5000 and 1000 rounds, respectively.

The user could set K to a proper value due to the size of the dataset. We
conduct our experiment when recommendation number K is 1 to 5, we also show
the result for K = 10 on LRD.

Experiments are conducted on an Intel Xeon E5-2620 v4@2.10 GHz CPU
computer with 128 G RAM, and three GeForce GTX 1080Ti GPU are used.

Experiment Protocol. We perform all experiments on SRD using five-fold
cross-validation. For LRD, we partition the 23576 models into 3041 models for
the testing set, 1759 models for the validation set and the rest for the training
set. For each model in the testing set, we conduct the experiment step by step
for each position.

For SRD, our method takes 2–3 ms per recommendation. For LRD, our
method takes 0.1–0.3 s per recommendation.

3.2 Evaluation Based on Large Complex Real-Life Dataset

The other recommendation system failed to deal with LRD while our RLRecom-
mender is naturally capable of this situation. So we only conduct our methods
on this dataset. Figure 4 shows the experimental results. We can conclude the
following:

1. All three methods achieve good accuracy performance. Since this dataset has
36801 distinct activities, we also test the situation when K = 10, and the
HitRate is up to 89.2%, which is highly acceptable in real life.

2. Our methods cannot handle the situation when K = 1, because the large
dataset contains too many activities and all models are complicated. Never-
theless, our methods perform well when K ≥ 2.

3.3 Evaluation Based on Small Real-Life Dataset

We compared with three methods MCSD, xGED and xSED in [2] on SRD. The
results are shown in Fig. 5, from which we can observe that:

1. The RLRecommender based on “causal” and “concurrent” relations outper-
forms other methods on HitRate as recommendation number K increases.

2. For F1 score, our methods outperform the others most of the time. Especially,
when K = 5, the improvement of F1 score is up to 14.4%.

3. The methods based on “causal” and “concurrent” outperform “after” on
HitRate, while the latter performs better on F1 score when K increases.

Representation-Learning-Based Recommendation for Process Modeling 485

Fig. 4. Experimental results on LRD

Fig. 5. Experimental results on SRD

4. When K is small, such as K = 1, traditional methods have higher HitRate
since they iterate all structures of the models and this dataset is small and
do not contain complex structures. Nevertheless, our methods still achieve
better performance on F1 score.

4 Conclusion and Future Work

A representation-learning-based recommendation method named RLRecom-
mender is proposed and it is the first recommendation method for process mod-
eling using representation learning. It first extracts the relations between activi-
ties with three strategies. Relation sets are then used to train the representation
learning model. The trained model is used in recommendation by finding the
nearest vector for each modeling step. Experiments show that RLRecommender
not only outperforms the state-of-the-art recommendation algorithms on small
real dataset, but also performs uniquely well on large real dataset.

Our future work would mainly focus on improving the accuracy by modifying
the current representation learning model. The current model only considers one
previous activity during recommendation, while several activities can be used
during one recommendation. We can also generate other kinds of relation set

486 H. Wang et al.

which may have positive effect on performance. Preliminary clustering can also
be conducted on activity labels in order to make recommendations based on
activities that relate to one another.

Acknowledgements. The work was supported by the National Key Research and
Development Program of China (No. 2016YFB1001101), the National Nature Science
Foundation of China (No. 61472207, No. 71690231), and BNRist.

References

1. Zhang, J., Liu, Q., Xu, K.: FlowRecommender: a workflow recommendation tech-
nique for process provenance. In: Proceedings of the Eighth Australasian Data Min-
ing Conference-Volume 101, pp. 55–61. Australian Computer Society, Inc. (2009)

2. Deng, S., et al.: A recommendation system to facilitate business process modeling.
IEEE Trans. Cybern. 47(6), 1380–1394 (2017)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

4. Murata, T.: Petri nets: properties, analysis and applications. Proceed. IEEE 77(4),
541–580 (1989)

5. BPM Academic Initiative: BPMAI process model collection. http://bpmai.org/
6. OMG: Business Process Modeling Notation (BPMN) Version 2.0. (2011)
7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process

models in BPMN. Inform. Softw. Technol. 50(12), 1281–1294 (2008)

http://bpmai.org/

Service Analytics

Domain Knowledge Driven Key Term
Extraction for IT Services

Prateeti Mohapatra1(B), Yu Deng2, Abhirut Gupta1, Gargi Dasgupta1,
Amit Paradkar2, Ruchi Mahindru2, Daniela Rosu2, Shu Tao2,

and Pooja Aggarwal1

1 IBM Research, Bangalore, India
pramoh01@in.ibm.com

2 IBM Research, Yorktown Heights, NY, USA

Abstract. IT service support agents are trained on knowledge sources
with large volumes of domain-specific documents, including product
manuals and troubleshooting contents. Self-assist applications, such as
search and support chat-bots must integrate such knowledge in order
to conduct effective user interactions. In particular, the very large vol-
ume of domain-specific terms referenced in training documents must be
accurately identified and qualified for relevance to specific context of
support actions. We propose a weakly-supervised approach for extrac-
tion of key terms from IT support documents. The approach integrates
domain knowledge to refine the extraction results. Our approach obvi-
ates the need for extensive expert work creating manual annotation and
dictionary collection, as typically required in traditional supervised solu-
tions, as well as the limited accuracy obtained in unsupervised methods.
Results show that domain knowledge based refinement helps improve the
overall accuracy of mined key terms by 25–30%.

Keywords: Key term extraction · Domain knowledge · IT support

1 Introduction

In IT services, the goal is to help customers resolve defects or usage issues for
products or services they acquire. Agent-assist and self-assist applications are
industry staples that help address the content complexity challenge [2]. These
applications leverage AI technology to understand user requests and provide
solutions or recommendations for next steps. A key part of understanding user
requests involves identification of the relevant key terms in the domain.

The business of IT services is highly challenging, as customer satisfaction is
directly influenced by speed and quality of support resolution provided. Most
challenges stem from the large volume of products, components, their configu-
ration context and documentation that have to be at the fingertips of technical
support agents. AI technology based components are trained at large on product
documents, but a considerable performance boost is achieved by explicitly uti-
lizing domain-specific terms, such as names and actions related to products and
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 489–504, 2018.
https://doi.org/10.1007/978-3-030-03596-9_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_35&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_35

490 P. Mohapatra et al.

components. These terms become the key terms or features that help evolve the
functionality for request and response understanding in those components, as
they provide discriminative topical information about the content [22]. Further-
more, key terms in a document are building blocks for constructing a knowledge
graph, which provides context information and inference capabilities for search
and chat-bots.

It is a challenge to identify all relevant domain-specific key terms across stag-
gering volumes of installation guides, user manuals and troubleshooting docu-
ments. For instance, there are over 100K relevant articles for IBM Server Power
Platform1, and over 60k documents for the storage brand of Storwize2. While the
manual approach of identifying key terms is the most accurate, it is not feasible
to do so for technical support content. Automation and accuracy of key term
extraction are critical solution requirements. In this paper, we address the prob-
lem of automatically extracting key terms in IT services content, and propose
and evaluate the accuracy of several methods. Namely, domain-specific key term
extraction is to identify lexical expressions that represent important concepts in
a given domain. These key terms are building blocks of entity recognition which
affects the quality of cognitive applications on top of search, chat-bot/dialog
systems, and knowledge graph creation etc.

Key term extraction in the literature has focused on detecting mentions of
person, place, and organization [15,20]. Large open knowledge bases like Yago,
DBPedia and Wordnet include general concepts, with limited coverage for the
technical domain. Figure 1(a) shows a troubleshooting article and its important
domain specific key terms (highlighted using green boxes). The article also shows
(marked in red boxes) generic English terms which have minimal relevance in
the context of the domain. If the article needs to be returned by a search appli-
cation then the important key terms in green boxes should be extracted, and
not the generic terms. Table 1 shows a sample of key terms from the page in
Fig. 1(a), their domain-importance, and whether they can be extracted using
standard noun phrase extractions, Yago, or through DBPedia concepts. These
repositories contain a large amount of generic words and concepts and the idea
is to validate if they can capture domain specific key terms indigenously. Table 1
shows that these approaches miss important terms like drive fault type 3
while reporting non-useful terms like user response and following steps,
indicating that these approaches are noisy and not useful for building technical
support specific domain applications.

Prior art has addressed the problem of automated extraction of domain-
specific key terms in different settings of domain knowledge. Methods are super-
vised - using large set of manually created key term annotations ([19], weakly-
supervised - using only a few seed key terms [22], and unsupervised - using no
annotation at all [9,11]. Weakly supervised and unsupervised methods use vari-
ous statistical filters to reduce the large share of false positives. However, these
methods do not address specific features of technical support content. Technical

1 https://www.ibm.com/it-infrastructure/power.
2 https://www.ibm.com/it-infrastructure/storage/storwize.

https://www.ibm.com/it-infrastructure/power
https://www.ibm.com/it-infrastructure/storage/storwize

Domain Knowledge Driven Key Term Extraction for IT Services 491

Table 1. Key terms extracted from relevant methods

Sample terms from page Domain imp. Noun phrase Found in Yago DBPedia concept

Drive fault type 3 Y Y N N

Enclosure Y Y Y N

Canister Y Y Y Y

User response N Y Y Y

Following steps N Y Y Y

documents are loaded with acronyms, error codes, their explanations, executable
commands and their outputs. Key terms often also tend to be subjective. The
dense information in the pages, different vocabularies used, subjectivity across
documents and less proportion of English dictionary words necessitate research
effort to address them.

These tangible points for improved techniques to extract technical key terms
have motivated us to design and develop a system for domain specific key term
mining. Our intuition is that from a generic collection of key terms, domain
specificity implemented as a set of noise removal methods can help us arrive at
a good set of relevant key terms. We propose a novel weakly-supervised tech-
nique that uses various linguistic and non-linguistic features to output a relative
ranking of key terms for any technical document. The algorithm begins with
a generic extraction of candidate terms and refines them with domain glos-
saries. Domain annotations based on linguistic features like action-orientation
or symptom-description along with position and frequency of the terms within
the documents are used as indicators of document theme. We show that the
proposed mining improves key term mining by as much as 30%.

2 Motivating Example

A big motivator for mining accurate key terms is related to automated knowl-
edge graph creation. A Knowledge Graph (KG) consist of entities and relations
connecting these entities. KG based approaches have been used extensively for
question answering in the open domain. For example, with entities and relations
in a KG, system can do a better job on query disambiguation and understanding
a user’s intent, which leads to more accurate answers. KG based organization
of content has also been used for efficient information retrieval and conversation
applications in technical support.

2.1 Knowledge Graph Creation

The construction of Knowledge Graph relies heavily on extraction and linking
of correct entities and relations. Identifying domain-specific key terms therefore
becomes a crucial first step toward this endeavor. For example, as explained in
[4], before extracting relations to populate a knowledge base from a large corpus
of text documents, the system needs to run Entity Detection and Linking to

492 P. Mohapatra et al.

identify entity mentions, which are essentially terms that people use to refer to
those entities.

In Sect. 2.2, we will show an example to illustrate the domain specific terms
important for IT Support, which are crucial for forming entities to construct a
knowledge graph for this domain.

(a) Text Snippet (b) Key Terms Extracted Using
Watson NLU

Fig. 1. Error code 1686 & its resolution for IBM Storwize 5500 product

2.2 Example on Term Extraction

A typical technical-support troubleshooting article describes issues that a user
may encounter (called symptoms) along with the suggested fixes thereof (called
resolution procedures). Figure 1(a) illustrates a troubleshooting document for a
particular error code (1686) related to the IBM Storwize product3. This article
mentions the error code 1686 and the accompanying error message Drive fault
type 3 in its title. Following the title is a detailed description of the symptom
(in this case it is vacuous repetition of the error message). The User Response
section details the resolution procedure, which are the steps a user can take to
address the symptom.

There are several domain-specific key terms that we need to automatically
identify in this text for generation of nodes and relations in a knowledge graph.
First, the error code, 1686 is an important key term. Second, the entire error
message (Drive fault type 3) is a key term that appears in text analysis as
a noun term (i.e., sequence of common nouns and cardinal numbers). For a
different error message symptom, such as, The enclosure identity cannot
be read, the subject noun term enclosure identity is a relevant keyterm.

Other terms of interest are mentioned in the resolution procedure. These
terms are typically objects of the actions described in the resolution. For exam-
ple, in the example above, Reseat the drive, the object drive, and the action

3 https://www.ibm.com/support/knowledgecenter/en/STHGUJ 7.7.0/com.ibm.
storwize.tb5.770.doc/code 1686.html.

https://www.ibm.com/support/knowledgecenter/en/STHGUJ_7.7.0/com.ibm.storwize.tb5.770.doc/code_1686.html
https://www.ibm.com/support/knowledgecenter/en/STHGUJ_7.7.0/com.ibm.storwize.tb5.770.doc/code_1686.html

Domain Knowledge Driven Key Term Extraction for IT Services 493

reseat, are important keyterms in the technical support domain. Other objects
like canister and enclosure are also domain-specific key terms. Similarly, the
term sense data is an important term in the storage domain as well. The exam-
ple article also contains terms, such as Explanation and User Response, which
are not relevant for the technical support domain directly.

We submit that it is necessary to leverage available domain-specific knowl-
edge and linguistic analysis to refine relevant terms identified by domain agnostic
state-of-art language analysis services, such as Watson Natural Language Under-
standing (NLU)4. Figure 1(b) contains keywords extracted using Watson NLU
service with confidence scores above our set threshold of 0.5. While some of
the identified terms, like Drive fault type or sense data are extremely rele-
vant for the technical support domain, other terms, such as following steps
and User response, are not relevant. Furthermore, some of the relevant terms
cannot be identified (e.g., error codes), or have low confidence scores.

3 Domain Knowledge Driven Term Extraction

There are two possible approaches to extracting domain-specific key terms from
text: (1) domain knowledge in the form of glossaries is used as a seed for gen-
erating the candidates followed by an item set expansion approach using word
embeddings for creating the final set of domain key terms [1], and (2) candidates
are created by generic methods (noun phrases and standard tools like NLU and
then domain glossaries along with word embeddings are used to filter out noise
to create the final set of domain key terms. To evaluate the relative merit of the
two approaches, we have annotated relevant key terms for twenty documents
related to a hardware product and obtained the precision/recall/F1 scores in
both cases. The noise removal methods had almost twice the precision, slightly
less recall, and overall a 60% better F1 score over the item set expansion method.
Hence, for the rest of the paper, we have started with generic terms and refined
them using domain knowledge, in order to mine the most relevant key terms.

Our method, as illustrated in Fig. 2, comprises the following steps:

1. Candidate key terms are extracted using generic techniques
2. Noise filtering techniques are used to discard key terms not relevant to the

domain of technical support service. Our proposal includes the following noise
filter criteria:

– Document-level relevance metric;
– IT product domain-specific glossaries and word embeddings;
– IT-support-specific annotations, referring to concepts such as symptom,

problem, and resolution.

Filters are applied sequentially, and key terms ranked beyond a threshold are
discarded. In the remainder of this section, we discuss each of these steps.

4 https://natural-language-understanding-demo.ng.bluemix.net.

https://natural-language-understanding-demo.ng.bluemix.net

494 P. Mohapatra et al.

Fig. 2. Major components for key term extraction

3.1 Select Candidate Generic Key Terms

The set of generic candidate key terms comprises of noun phrases and
adjective phrases [5,8,13] that are identified using part-of-speech analysis
and pattern matching. The pattern is defined by the regular expression
(adjective) * (noun)+. Chunking, lemmatization, and POS tagging are done
using the Spacy toolkit 5. Candidate contiguous words are concatenated together
to form candidate phrases. In addition, document analysis with generic key term
extraction tools, such as Watson NLU [21], are included to generate candidate
key terms.

3.2 Filter by Document Relevance

Relevant key terms in a document demonstrate a strong correlation with where
and how many times they appear in a document. Building on the work proposed
by [3], we use an unsupervised method for key term extraction and relevance scor-
ing by incorporating words’ sentence position information, and their frequency
in the document.

Given a document, sentence tokenization and part-of-speech (POS) filter
(using Spacy) are applied to generate key term features. The relevance score
for ranking the terms is based on the insight that a key term is highly likely to
be important if it occurs frequently and more recently in the current document.
Recency of a word is related to its sentential positioning in the document. Each
candidate key term is weighted with its inverse sentence position in the docu-
ment. The position score is multiplied with its frequency score to get the final
score of a term. For example, if a term is found on the following positions: 2nd,
5th and 10th, its score is 1

2 × 1 + 1
5 × 2 + 1

10 × 3 = 1.2. The score of each term is
divided by the total number of sentences to get a normalized score.

Mathematically, for a document p, let φ(c) denote the set of candidate terms,
and freq(c, i) be the frequency of c in the ith position. The score S(.) of a key
term c in p is

5 https://spacy.io/.

https://spacy.io/

Domain Knowledge Driven Key Term Extraction for IT Services 495

S(c, p) =

∑
i

1
posi

× freq(c, i)

nsents

posi is the ith sentence where c appears, nsents is the number of sentences in
the document.

The well-known Pareto principle [10] is used to select the set of key terms
for domain-specific documents. The procedure for Pareto analysis requires

1. Sorting the key terms in decreasing order of scores,
2. Key term-wise cumulating the scores,
3. Normalizing the cumulative scores so that the maximum cumulative normal-

ized score equals 1.

Key terms are filtered out if they account for more than 98% of cumula-
tive normalized score. Key terms are considered important and relevant if they
account for less than 40% of cumulative normalized score. For the remaining key
terms, domain-specific knowledge are used to further remove noisy key terms.

3.3 Filter Based on Domain Glossaries

Presence of key terms in domain glossaries and dictionaries is a good indica-
tor of whether the word is relevant for the domain or not. Glossaries contain
important words in the domain and their meanings. If available, they can serve
as good noise removal filters. However, removing all extractions which do not
match glossary terms exactly leads to sparsity. To overcome this limitation, we
propose using embeddings to retain words that are “close to” glossary words.
Word vector embeddings are used to measure if an extraction is “close” to any
glossary term To create word vectors for potentially multi-word glossary terms,
we used the word2term script from [17], running it twice over a large corpus of
unlabeled documents. word2vec is applied after annotating common terms of
upto three words as a single token. However the algorithm doesn’t create vec-
tors for all bigrams or trigrams, but only ones that frequently co-occur. Also,
some extracted key terms or glossary terms could be longer than three words.
The algorithm described in Algorithm 1 is used to create vectors for multi-word
terms by averaging over all possible segmentations of the term, and adding vec-
tors of segments inside a segmentation.

To compare the distance of an extracted key-term to a glossary term, both L2
distance (the euclidean or straight-line distance between two points or vectors)
and cosine distance between their vectors are considered with different values of
distance thresholds.

3.4 Filter Based on Domain Knowledge Annotations

Domains are often expressed by an ontology of important “aspects”. Technical
support involves various well understood attributes like a detailed description of
the problem (symptom), error codes, and steps (procedures) that should be taken
to fix the problem. Consider the snapshot of a DB2 support document in Fig. 3.
Here, the document mentions the symptoms (marked within red boxes), the error

496 P. Mohapatra et al.

code SQL3004N, and procedures (marked within the blue box). Annotations
representing these attributes can be good indicators of key term importance. For
example, when a key term occurs in the problem description it is highly likely
that its domain relevance is high. key terms are ranked based on the document
annotations and those below a rank threshold are discarded.

A Semantic Parser [7] is used to extract these attributes from technical sup-
port documents using rules built on the grammatical structure of sentences.

ALGORITHM 1. Algorithm to create vectors for multi-word terms
Input: Multi-word term (term), Dictionary of term vectors from word2vec

(term vectors)
Output: A vector for the input term, (term vector)
if term in term vectors
then

return term vectors[term]
else

// Tokenize the input term into words
term tokens = tokenize(term)

// Get all possible segmentations of these tokens
segmentations = get all segmentations(term tokens)

term vector = []
foreach segmentation in segmentations
do

segmentation vector = []
segments found = 0
foreach segment in segmentation
do

// Check if segment is present in term vectors
if segment in term vectors
then

segmentation vector += term vectors[segment]
segments found += 1

end

end
// Weigh the segmentation vector by the number of segments found
segmentation vector *= segments found/len(segmentation)

term vector += segmentation vector

end
// Average the overall vector over all the segmentation vectors
term vector /= len(segmentations)

return term vector
end

Domain Knowledge Driven Key Term Extraction for IT Services 497

Fig. 3. Illustration of Annotation of attributes on a Support document

Two deep parsing components are used: English Slot Grammar (ESG) followed
by Predicate Argument Structure (PAS) for linguistic analysis of text [16].

The method for re-ranking key terms based on domain annotations is pre-
sented below, where 1 is an indicator function, S̄ denotes the average of scores
(S) for all key terms in a document. DA is the set of all terms in domain anno-
tations for the document, and G is the set of all glossary terms. The adjusted
score, Ŝ, is increased if the key term is present in domain annotations or glossary,
by the amount S̄. Ŝ is then used for re-ranking key terms.

Ŝ(c, p) = 1[[c ∈ DA]]S̄ + 1[[c ∈ G]]S̄ + S(c, p)

4 Evaluation

The experiments in this section demonstrate that using document relevance and
domain knowledge helps noise removal effectively. Two domain datasets are con-
sidered, which are very different with respect to type/structure of IT support
content, and to the technology and terms. The first dataset comes from a hard-
ware domain of hybrid storage solutions, referred to as Storwize. The second
dataset is a popular middleware product, referred to as DB2. Ground truth
knowledge of important key terms for each of the two domains is collected from
human annotators, across 50 documents. The metrics F1 and MRR (Mean Recip-
rocal Rank) are used to evaluate the efficacy of the noise removal techniques on
the above datasets. In addition, a dedicated evaluation framework is used to eval-
uate the extraction of key terms in a larger set of documents without ground
truth.

498 P. Mohapatra et al.

4.1 Data

The documents collected for DB2 and Storwize are from IBM’s Knowledge Cen-
ter sites6. We use a set of 172 DB2 documents and 50 Storwize documents,
which are identified as answers of certain questions from end users in IT ser-
vices. Ground truth knowledge of important key terms for each of the two
domains is collected from human annotators, across 50 documents. Glossaries
for Storwize and DB2, with 5K and 2K items respectively, are collected from
the same site. Two question-answer datasets are created, comprising of those
questions from end users along with accepted answer documents. A subset of
these question-answer pairs were annotated with important key terms by domain
experts. Table 2 summarizes both the datasets, where DB2WithGT and Storwiz-
eWithGT datasets contain ground truth-labeled key terms, # Docs is the num-
ber of documents in each dataset, # Keyterm is the number of ground truth key
terms or encompassing terms in each dataset, and Avg Keyterm is the average
number of ground truth key terms per document.

For running our evaluations, we used the ground truth key terms where
available, and used key terms from problem titles otherwise.

Word embeddings are built only for the Storwize domain using 50, 000 doc-
uments. Details are described in Sect. 4.3.

Table 2. Datasets used in our experiments

Dataset #Docs #Keyterm Avg Keyterm

DB2WithGT 22 421 16.84

StorwizeWithGT 25 614 24.56

DB2 (All) 172 722 4.19

Storwize (All) 50 127 2.54

4.2 Evaluation Metrics

The following evaluation metrics are used to compare performance of the differ-
ent experimental setups [14]:

1. Precision (P), Recall (R), and F1 measure (F1) are computed for each exper-
imental setup. Precision is the percentage of correctly extracted key terms by
the total extracted key terms, Recall is the percentage of correctly extracted
key terms by the total ground truth key terms, and F1 is the harmonic mean
of precision and recall.

6 https://www.ibm.com/support/knowledgecenter/.

https://www.ibm.com/support/knowledgecenter/

Domain Knowledge Driven Key Term Extraction for IT Services 499

2. Mean Reciprocal Rank (MRR) [12] between the ground truth key terms and
the final relevance ranking of the key term.

MRR =
1

|D|
∑

d∈D

∑

i

1
ranki

where, D is the set of documents, and ranki is the rank of the key term in
document d.

4.3 Results and Discussions

The focus of the evaluation presented in this section is to compare the various
noise removal methods.

First, we address the efficacy of the individual stages in the domain specific
noise removal pipeline, i.e. generic key terms extraction, key term extraction
with document relevance, glossaries and word embeddings. Generic candidate
key terms are identified using tools like Spacy and Watson NLU as discussed
in Sect. 3. Spacy’s lemmatizer is used to lemmatize the extracted and assigned
key terms. Precision, recall and F1 are computed based on the ground truth key
terms for all the setups.

Table 3 reports the comparative analysis. Here, domain knowledge refers to
using both glossaries and domain knowledge annotations. The results show that
adding domain knowledge increases precision thus helping in noise removal. How-
ever, negative filtering using domain knowledge is likely to reduce the importance
of a term to the extent that a key term is removed from the “gold” set. This
could lead to a reduction in the recall measure. In terms of the F1 score, use of
document relevance with domain knowledge outperforms the other approaches
by 28% for the two datasets. In Storwize, additionally using word embeddings
improved the F1 score over baseline by 30%.

The results for embeddings in Table 3 for Storwize are reported for the best
word2vec [17] model. We next show the results of experiments with the two vari-
ations of the word2vec model: CBOW and Skipgram along with some relevant
window sizes. Having trained a word2vec model on 50, 000 Storwize documents,
Table 4 shows the performance of the eight best embedding approaches on ground
truth key terms. These are the models with different methods for training word
vectors and different distance metrics used for pruning. Here, CBOW-NEG〈X〉-
L2 are the word vectors trained with CBOW model with Negative Sampling and
window size of X, with L2 distance used for pruning. Similarly, SKIPGRAM-
NEG〈X〉-COSINE are the word vectors trained with Skipgram model and nega-
tive sampling and window size of X, with Cosine distance used for pruning. We
show here only the embedding results for Storwize and not for DB2 because the
low number of documents in the latter domain are insufficient to learn embed-
dings.

Next we evaluate the ranking scheme discussed in Sect. 3.4 where key terms
are re-ranked based on domain knowledge. In Table 5, KT refers to generic key
terms, and DK refers to domain knowledge. Precision, recall and F1 scores are

500 P. Mohapatra et al.

Table 3. Performance comparison: with ground truth

Dataset Method Precision Recall F1

DB2 Generic key terms 0.242 0.879 0.38

Generic key terms + domain knowledge 0.278 0.846 0.419

Generic key terms + document relevance + domain knowledge 0.356 0.779 0.489

Storwize Generic key terms 0.284 0.844 0.425

Generic key terms + domain knowledge 0.33 0.793 0.466

Generic key terms + document relevance + domain knowledge 0.398 0.728 0.515

Generic key terms + document relevance + domain knowledge embeddings 0.534 0.585 0.559

Table 4. Performance comparison (storwize): with ground truth

Model Generic key terms Generic key terms + document relevance

Precision Recall F1 Precision Recall F1

CBOW-NEG3-L2 0.627 0.191 0.293 0.752 0.299 0.428

CBOW-NEG3-Cosine 0.554 0.553 0.553 0.534 0.585 0.559

CBOW-NEG5-L2 0.63 0.192 0.295 0.752 0.299 0.428

CBOW-NEG5-Cosine 0.457 0.659 0.539 0.445 0.676 0.537

SkipGram-NEG3-L2 0.623 0.2 0.303 0.744 0.302 0.43

SkipGram-NEG3-Cosine 0.609 0.455 0.52 0.596 0.519 0.555

SkipGram-NEG5-L2 0.623 0.192 0.294 0.747 0.302 0.429

SkipGram-NEG5-Cosine 0.402 0.689 0.507 0.399 0.702 0.509

shown in comparison for the top@N (N = 2,4,6,8) on the two datasets. The use
of domain knowledge increases F1 scores as N gets larger - beyond N larger than
2, there is a 3–5% increase in F1. The table also reports the MRR scores for the
different combinations on these datasets with similar gains.

Table 5. Ranking performance comparison: precision, recall, F1

Dataset Method Top2 Top4 Top6

P R F1 MRR P R F1 MRR P R F1 MRR

DB2 KT 0.82 0.13 0.23 0.097 0.705 0.234 0.35 0.128 0.598 0.288 0.389 0.138

KT + DK 0.818 0.133 0.228 0.0967 0.705 0.239 0.357 0.13 0.629 0.3 0.405 0.14

Storwize KT 0.76 0.2 0.317 0.147 0.63 0.285 0.392 0.17 0.547 0.336 0.416 0.122

KT + DK 0.8 0.204 0.326 0.149 0.69 0.303 0.42 0.176 0.6 0.37 0.459 0.189

Because of the lack of ground truth for a majority of domain-specific technical
support documents, we designed a new evaluation framework to evaluate the
ranking consisting of these steps: (i) First, we shortlisted a set of questions from
end users for the two product with their corresponding answer document(s). We
shortlisted 350 questions for Storwize and 400 questions for DB2. (ii) Subject

Domain Knowledge Driven Key Term Extraction for IT Services 501

matter experts were provided with these questions and were asked to annotate
possible important key terms in them. Five experts in total participated in this
task. (iii) We assumed these key terms extracted from the questions to be the
“pseudo” ground truth. (iv) We calculated the precision, recall and F1 measure
for each experimental setup.

Table 6 presents the comparative analysis of the different setups. We present
the result of the best threshold value of domain knowledge embeddings to remove
noisy extractions. As shown in the table, the precision is relatively low. This is
because, as shown in Table 2, the number of key terms annotated from questions
is very small, since in most cases the questions are very short in length. Compared
to questions, the documents are much longer and the average number of key
terms extracted from documents is much bigger.

Table 6. Performance comparison: with pseudo ground truth

Dataset Method Precision Recall F1

DB2 Generic key terms 0.06 0.727 0.113

Generic key terms + domain knowledge 0.073 0.718 0.133

Generic key terms + document relevance + domain knowledge 0.094 0.687 0.166

Storwize Generic key terms 0.0384 0.696 0.0729

Generic key terms + domain knowledge 0.048 0.696 0.09

Generic key terms + document relevance + domain knowledge 0.06 0.685 0.112

Generic key terms + document relevance + domain knowledge embeddings 0.196 0.286 0.233

Based on the results shown above, we can clearly see the benefit of using
domain knowledge to extract and rank relevant key terms for domain-specific
documents, thus helping us to remove noisy key terms.

5 Related Work

Domain-specific terms are essential to many knowledge management applica-
tions, and the limitations of manual identification have motivated many research
efforts.

Supervised methods, suggested by [19], start from a significantly large volume
of content labeled with domain-specific terms, and provide classification models
that decide if a given term is relevant for the domain. The approach provides the
best performance, but, the overhead of generating labeled content has redirected
research to focus on unsupervised and weakly supervised methods.

One group of related works is interested to discover domain specific terms
given a domain corpus. These words address the problem, similar to the one
that we have addressed in the paper. Wang et al. [22] described an approach
for using deep learning model together with a weakly supervised bootstrapping
paradigm to automatically extract domain specific terms. It is an approach to
boost the performance of deep learning models with very few training examples.
This approach does not leverage any prior knowledge of a domain explicitly, as

502 P. Mohapatra et al.

we do. Riloff et al. [18] proposed a mutual bootstrapping method to both the
semantic lexicon and extraction patterns simultaneously, starting from unanno-
tated training texts and a handful of “seed words”. However, this method does
not address the issue of extracting domain-specific terms.

In a different context, domain-specific key terms are identified in order
to distinguish across domains [9,11] and then used for feature extraction in
broader text analysis tasks. More specifically, given a corpus that spans multiple
domains, domain-specific statistics, such as term frequency and inverse document
or domain frequency [9], and entropy impurity [11] are used to determine the
set of key terms most representative for a domain. In [23] domain-specific terms
are extracted using an iterative bootstrapping method to learn term components
from seed terms and then a maximum forward matching method and domain fre-
quency is used to extract additional components. Our solution uses similar term
frequency methods but applies them along with other domain-specific linguistic
features in order to reduce the amount of false positives.

Frakes et al. [6] have emphasized the need for accurate automatic domain
vocabulary selection. The objective of their work is to evaluate various automatic
vocabulary extraction metrics (normalized and non-normalized term frequency
metrics), domain analysis against the domain vocabulary provided by subject
matter experts. Their analysis of various metrics confirms that term frequency
is one of most important factors along with stop word list (removal of common
English words) and stemming (grouping the related terms in a common term by
removing suffixes and prefixes). Our solution starts with curated list of terms as
input, hence need for stop word removal is not necessary. In addition to term
frequency, our algorithm takes the position of the term into consideration to
boost the term score.

6 Conclusion and Future Work

In this paper, we present a weakly-supervised approach to extract key terms from
IT services documents, leveraging prior knowledge in the domain. Experimental
results show that using domain knowledge effectively improves the quality of
terms extracted from generic tools. Hence, having domain knowledge (in terms
of glossaries and domain corpus) will definitely help in further extracting domain-
specific key terms. In the future, we will further refine the key term extraction
process by leveraging the cross document features. In addition, we will discover
semantic relationships between the extracted terms (for the purpose of knowledge
graph construction).

References

1. Contractor, D., Singla, P., Mausam: Entity-balanced Gaussian pLSA for automated
comparison. In: HLT-NAACL (2016)

2. Deng, Y., et al.: Advanced search system for IT support services. IBM J. Res. Dev.
61(1), 3:27–3:40 (2017). https://doi.org/10.1147/JRD.2016.2628658

https://doi.org/10.1147/JRD.2016.2628658

Domain Knowledge Driven Key Term Extraction for IT Services 503

3. Florescu, C., Caragea, C.: PositionRank: an unsupervised approach to keyphrase
extraction from scholarly documents. In: Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1105–1115. Association for Computational Linguistics (2017). https://doi.org/10.
18653/v1/P17-1102

4. Glass, M., Gliozzo, A., Hassanzadeh, O., Mihindukulasooriya, N., Rossiello, G.:
Inducing implicit relations from text using distantly supervised deep nets. In: Pro-
ceedings of the 17th International Semantic Web Conference (ISWC 2018) (2018)

5. Gollapalli, S.D., Caragea, C.: Extracting keyphrases from research papers using
citation networks. In: Proceedings of the Twenty-Eighth AAAI Conference on Arti-
ficial Intelligence, pp. 1629–1635 (2014)

6. Gupta, A., Akula, A., Dasgupta, G., Aggarwal, P., Mohapatra, P.: Desire: deep
semantic understanding and retrieval for technical support services. In: Drira, K.,
et al. (eds.) ICSOC 2016. LNCS, vol. 10380, pp. 207–210. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68136-8 26

7. Gupta, A., Akula, A., Dasgupta, G., Aggarwal, P., Mohapatra, P.: Desire: deep
semantic understanding and retrieval for technical support services. In: Drira, K.
(ed.) ICSOC 2016. LNCS, vol. 10380, pp. 207–210. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68136-8 26

8. Hulth, A.: Improved automatic keyword extraction given more linguistic knowl-
edge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2003, pp. 216–223, Stroudsburg, PA, USA (2003)

9. Kim, S.N., Baldwin, T., Kan, M.Y.: An unsupervised approach to domain-specific
term extraction. In: Proceedings of the Australasian Language Technology Asso-
ciation Workshop 2009, pp. 94–98 (2009)

10. Koch, R.: The 80/20 Principle: The Secret to Achieving More with Less (1999)
11. Liu, T., long Wang, X., Yi, G., Xu, Z.M., Wang, Q.: Domain-specific term extrac-

tion and its application in text classification. In: Proceedings of 8th Joint Confer-
ence on Information Sciences, pp. 1481–1484 (2005)

12. Liu, Z., Huang, W., Zheng, Y., Sun, M.: Automatic keyphrase extraction via topic
decomposition. In: Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing. pp. 366–376. EMNLP ’10, Association for Computa-
tional Linguistics, Stroudsburg, PA, USA (2010). http://dl.acm.org/citation.cfm?
id=1870658.1870694

13. Liu, Z., Li, P., Zheng, Y., Sun, M.: Clustering to find exemplar terms for keyphrase
extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 1 - Volume 1, EMNLP 2009, pp. 257–266,
Stroudsburg, PA, USA (2009)

14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

15. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003-Volume 4,
pp. 188–191. Association for Computational Linguistics (2003)

16. McCord, M.C.: Slot grammar. In: Studer, R. (ed.) Natural Language and Logic.
LNCS, vol. 459, pp. 118–145. Springer, Heidelberg (1990). https://doi.org/10.1007/
3-540-53082-7 20

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Burges, C.J.C., Bot-
tou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013)

https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.18653/v1/P17-1102
https://doi.org/10.1007/978-3-319-68136-8_26
https://doi.org/10.1007/978-3-319-68136-8_26
https://doi.org/10.1007/978-3-319-68136-8_26
http://dl.acm.org/citation.cfm?id=1870658.1870694
http://dl.acm.org/citation.cfm?id=1870658.1870694
https://doi.org/10.1007/3-540-53082-7_20
https://doi.org/10.1007/3-540-53082-7_20

504 P. Mohapatra et al.

18. Riloff, E., Jones, R.: Learning dictionaries for information extraction by multi-level
bootstrapping. In: AAAI 1999. AAAI (1999)

19. da Silva Conrado, M., Salgueiro Pardo, T.A., Rezende, S.O.: A machine learning
approach to automatic term extraction using a rich feature set. In: Proceedings
of HLT-NAACL 2013, pp. 16–23 (2013). http://www.aclweb.org/anthology/N13-
2003

20. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In: Proceedings of the Sev-
enth Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4,
pp. 142–147. Association for Computational Linguistics (2003)

21. Vergara, S., El-Khouly, M., Tantawi, M.E., Marla, S., Sri, L.: Building Cognitive
Applications with IBM Watson Services: Volume 7 Natural Language Understand-
ing (2017)

22. Wang, R., Liu, W., McDonald, C.: Featureless domain-specific term extraction with
minimal labelled data. In: Proceedings of the Australasian Language Technology
Association Workshop 2016, pp. 103–112 (2016)

23. Zhang, C., Niu, Z., Jiang, P., Fu, H.: Domain-specific term extraction from free
texts. In: 2012 9th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), pp. 1290–1293. IEEE (2012)

http://www.aclweb.org/anthology/N13-2003
http://www.aclweb.org/anthology/N13-2003

An Adaptive Semi-local Algorithm
for Node Ranking in Large Complex

Networks

Fanghua Ye1,2, Chuan Chen1,2(B), Jie Zhang1,2, Jiajing Wu1,2(B),
and Zibin Zheng1,2

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
{yefh5,zhangj379}@mail2.sysu.edu.cn

2 National Engineering Research Center of Digital Life, Sun Yat-sen University,
Guangzhou, China

{chenchuan,wujiajing,zhzibin}@mail.sysu.edu.cn

Abstract. The issue of node ranking in complex networks is a classical
problem that has obtained much attention over the past few decades,
and a great variety of methods have consequently been developed. These
proposed methods can be roughly categorized into the global and local
methods. The global methods are usually time-consuming and the local
methods may be inaccurate. In this paper, we propose a novel semi-local
algorithm ASLA (Adaptive Semi-Local Algorithm) that seeks a tradeoff
between the time efficiency and the ranking accuracy to overcome the
limitations of the global and local methods. ASLA is able to adaptively
determine the potential influence scope for each node. Then, the influence
value of each node is calculated based on such a personalized influence
scope. Finally, all the nodes are ranked according to their influence val-
ues. To evaluate the performance of ASLA, we have conducted extensive
experiments on both synthetic networks and real-world networks, with
the results demonstrating that ASLA is not only more efficient than the
global methods but also more accurate than the local methods.

Keywords: Node ranking · Adaptive algorithm · Complex networks

1 Introduction

The complex network is a widely adopted scheme to represent many real-world
complex systems, including social networks, information networks, service net-
works [8,20], and so on. Identifying influential nodes in these complex networks
is of great significance to many practical applications, such as friend recommen-
dation, viral marketing, and software system analysis [3,19]. Besides, identifying
influential nodes plays an important role in understanding the structures and
functions of complex networks. As a consequence, identifying influential nodes
has attracted much attention in recent years [4,18].

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 505–514, 2018.
https://doi.org/10.1007/978-3-030-03596-9_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_36&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_36

506 F. Ye et al.

The problem of identifying influential nodes is typically formulated as node
ranking. Due to the great theoretical and practical significance of identifying
influential nodes, various methods have been proposed to rank nodes in com-
plex networks. These node ranking methods can be roughly categorized into
the local methods and the global methods. Typical existing node ranking meth-
ods include but not limited to degree centrality [7], local centrality [2], coreness
centrality [10], cluster centrality [1], closeness centrality [16], betweenness cen-
trality [6], and Katz centrality [9]. Among them, degree centrality is the simplest
yet widely used metric, but it fails to identify influential nodes in some cases,
because it is based on a node’s nearest neighbors that contain very limited infor-
mation. Local centrality is an improved version of degree centrality by taking
the fourth-order neighbors of each node into consideration. It has been pointed
out that the location of a node is more significant than the number of its imme-
diate neighbors in evaluating its spreading influence [10]. Therefore, coreness
centrality has been proposed to determine the importance of nodes in a network
more accurately [10]. Cluster centrality is developed based on the observation
that the local clustering usually plays a negative role in the spreading process
[14]. Unlike degree centrality, cluster centrality considers not only the number of
the nearest neighbors but also the interactions among them. All these methods
are neighborhood-based methods (i.e., local methods). That is, they are very
time-efficient but lack performance guarantee. On the contrary, the closeness
centrality, betweenness centrality, Katz centrality, etc. are path-based metrics
(i.e., global methods). They take the global information of a network into con-
sideration, thus can give better ranking results. However, these global methods
are very time-consuming and consequently cannot be applied to large complex
networks. Detailed descriptions of these methods can be found in [12].

In order to overcome the limitations of the existing node ranking methods,
we propose a novel adaptive semi-local algorithm ASLA, which aims to seek
a tradeoff between the time efficiency and the ranking accuracy. Specifically, to
quantify the importance of nodes, ASLA first adaptively determines the potential
influence scope for each node, and then calculates the influence value of each node
based on such a personalized influence scope. Finally, the ranking list of all nodes
is given by their influence values in a descending order. Extensive experimental
studies on both synthetic and real-world networks have shown that ASLA can
achieve excellent performance in terms of both effectiveness and efficiency.

2 Basic Concepts

Let G = (V,E) be an undirected and unweighted simple network with N = |V |
nodes and M = |E| edges, where V and E denote the node set and the edge
set respectively. In the following, we provide some basic concepts that form the
foundation of the proposed ASLA algorithm.

Definition 1 (D-Shell). The d-shell of node u, denoted by Sd
u, consists of all

the nodes v at depth d of node u, that is, the length of the shortest path between

An Adaptive Semi-local Algorithm for Node Ranking 507

nodes u and v is d. The 0-shell of node u is defined as the node itself. The 1-shell
of node u is exactly its immediate neighbors.

Consider the toy network shown in Fig. 1. The 1-shell of node v2 consists of
all its immediate neighbors, i.e., nodes v1, v3, v4, v5, v6, v7, v8, v9. While the
2-shell of node v2 only contains node v10.

Fig. 1. A toy network as examples. Node v1 plays the role of a bridge, thus, its influence
value should be high, although its degree is low.

Definition 2 (Outer Degree). The outer degree of node v in the d-shell of
node u, denoted by kd

u(v), is defined as the number of edges that connect node
v to nodes in the (d + 1)-shell of node u. The total outer degree of the d-shell
of node u, denoted by Kd

u, is defined as the sum of the outer degrees of all the
nodes v in the d-shell of node u. Thus, K0

u = ku,Kd
u =

∑
v∈Sd

u
kd

u(v), where ku

denotes the degree of node u, i.e., the number of edges incident to node u.

It is noted that the total outer degree of the d-shell is not necessarily the
number of nodes in the (d+1)-shell. In fact, the total outer degree of the d-shell
is the total number of edges connecting nodes in the d-shell to nodes in the
(d + 1)-shell. We define the total outer degree of the d-shell as the number of
edges outward from this shell to the next shell instead of just merely the number
of nodes in the next shell, the advantage of which is that this definition takes
more structural information into account. Consider the network shown in Fig. 1
again. Assume that node v10 is the starting node, the total outer degree of the
1-shell is 8, obviously it is larger than the number of nodes (i.e., 5) in the 2-shell.

Definition 3 (Outer Density). The outer density of the d-shell starting from
node u, denoted by Dd

u, is defined as the total outer degree of this shell divided
by the total number of nodes in this shell. That is, Dd

u = Kd
u/|Sd

u|, where |Sd
u|

denotes the total number of nodes in the d-shell of node u.

Definition 4 (Influence Scope). The influence scope of node u, denoted by
C(u), is composed of its nearest neighbors, the next nearest neighbors, and so on.
C(u) is formulated as C(u) =

⋃
0≤d≤d̄ Sd

u, where d̄ satisfies the condition that
the outer density of the d-shell is no larger than some threshold α, i.e., Dd̄

u ≤ α.
When more than one d-shell satisfies the condition, d̄ is taken as the smallest d.

508 F. Ye et al.

Definition 5 (Influence Value). The influence value of node u is defined as

F (u, α) =
∑

0≤d≤d̄

f(d)(Kd
u + |Sd

u|), (1)

where f(d) is a nonincreasing function and the nonnegative parameter α is used
to control the scale of node u’s potential influence scope C(u).

Consider two extreme cases: α = 0 and α ≥ kmax, kmax is the largest degree
of nodes in network G. When α = 0, the d-shell will spread to much of the
network, thus the influence scope tends to cover all the nodes in the entire
network. When α ≥ kmax, the d-shell cannot spread outward at all, thus the
influence scope just contains the starting node itself. F (u, α) takes node u’s
neighbors from 1-hop up to d̄-hop into consideration, which demonstrates that
F (u, α) is a semi-local measure for the importance of nodes in network G.

Now let us shed more light on F (u, α). Suppose that f(d) = 1 for all d
values. According to Eq. (1), F (u, α) is composed of two parts:

∑
0≤d≤d̄ Kd

u and
∑

0≤d≤d̄ |Sd
u|. The first part is the sum of the total outer degrees of all the d-shells

contained in the influence scope C(u), which represents the propagation ability
of node u. The second part is the total number of nodes covered by C(u), which
characterizes the aggregation ability of node u. Therefore, F (u, α) captures
the propagation ability and aggregation ability simultaneously. As a result, even
one node has high aggregation ability, its influence value may be very small for
its poor propagation ability. For example, as shown in Fig. 1, when α = 1.0, the
influence value of node v12 is 16, while the influence value of node v1 is 32. As we
can see, node v1 plays the role of a bridge in the exemplary network. Therefore,
even though node v12 has a larger degree, it is less influential than node v1.

Problem Statement. Given an undirected and unweighted network G = (V,E)
and a parameter α ≥ 0, the problem is to compute the influence value F (u, α)
for each node u ∈ V (Note that the final definition of F (u, α) is given in Sect. 3).

3 The Adaptive Semi-local Algorithm

In this part, we propose a novel adaptive semi-local algorithm ASLA to combat
the problem of node ranking in complex networks. ASLA aims to seek a tradeoff
between the poor-quality local methods and the time-consuming global methods.
Due to the introduction of the additional parameter α to adaptively adjust the
influence scope of each node flexibly, ASLA is expected to be not only more
efficient than the global methods but also more accurate than the local methods.

It is clear that the function f(d) should be properly set to calculate the exact
influence value F (u, α). To be better in line with actual occasions that the closer
d-shells tend to be more significant than the farther ones, we take the form of
f(d) as e− d

ku , i.e., f(d) = e− d
ku . In general, nodes with larger degrees tend to

have stronger ability to spread outward. Thus, we introduce the factor 1
ku

into
the exponent. Besides, to better capture the influence scope of each node, the

An Adaptive Semi-local Algorithm for Node Ranking 509

parameter α should be personalized. In this work, we define the parameter αu of
node u as ku

kmax
α, i.e., αu = ku

kmax
α. One may note that the propagation ability

and the aggregation ability defined in Eq. (1) are highly possible to fall in distinct
ranges, which may be caused by the sparsity of networks. To reduce the skew of
this two abilities, we normalize both abilities into the range of [0, 1]. Based on
these discussions, the influence value (i.e., the semi-local centrality) of node u in
network G is finally defined as

F (u, αu) =
∑

0≤d≤d̄

e− d
ku (

Kd
u

M
+

|Sd
u|

N
). (2)

Algorithm 1. The Adaptive Semi-Local Algorithm: ASLA
Input: Network G = (V, E), parameter α;
Output: F (u, αu) for each node u ∈ V .
1: for each node u ∈ V do
2: J [u] ← −1; αu ← ku

kmax
α; F (u, αu) ← 0;

3: for each node u ∈ V do
4: Q ← empty queue; Enqueue u → Q; J [u] = u; d ← 0;
5: while (true) do
6: |Sd

u| ← the current number of nodes in Q;
7: Kd

u ← TotalOuterDegree(u, d); Dd
u ← Kd

u/|Sd
u|;

8: F (u, αu) ← F (u, αu) + e
− d

ku (
Kd

u
M

+
|Sd

u|
N

);

9: if Dd
u ≤ αu then

10: break; � d = d̄
11: while (|Sd

u| > 0) do
12: Dequeue v ← Q; |Sd

u| ← |Sd
u| − 1;

13: for all w ∈ S1
v and J [w] �= u do

14: Enqueue w → Q; J [w] ← u;
15: d ← d + 1;
16: return F (u, αu) for each node u ∈ V .

Our new method ASLA will calculate the influence value of each node accord-
ing to Eq. (2), and the corresponding pseudocode is outlined in Algorithm1,
where TotalOuterDegree(u, d) is a procedure to calculate the total outer degree
of the d-shell of node u, and J [w] = u is used to indicate that node w has been
contained in the influence scope of node u, i.e., w ∈ C(u). The inputs of Algo-
rithm1 include network G and parameter α. Then, it calculates the personalized
parameter αu for each node u ∈ V (line 2). To determine the importance of all
the nodes, Algorithm 1 is quite straightforward. It calculates the influence value
of each node separately (line 3). More specifically, to calculate the influence value
of each node u ∈ V , the key points are to determine all the d-shells contained
in C(u) and the corresponding total outer degree in each d-shell. To this end,
Algorithm 1 resorts to a queue Q to store the nodes in each d-shell (line 4). In

510 F. Ye et al.

the d-th iteration, the nodes contained in Q just form the d-shell of node u (line
6). In order to find nodes in the next shell (i.e., the (d + 1)-shell), Algorithm 1
searches all the neighbors of each node in the d-shell, then the nodes contained
in the (d + 1)-shell are added to Q (lines 11–14). Note that in each iteration,
the calculation of the total outer degree of the d-shell can be finished by simply
summing over the outer degrees of all nodes in this shell (line 7), thus we omit
the details of the TotalOuterDegree(u, d) procedure. The processing of node u
terminates when the outer density reaches its threshold αu (lines 9–10).

Let Nαu
denote the number of nodes contained in u’s influence scope C(u),

and kavg denote the average degree of all nodes. Then the processing of node
u will take O(Nαu

kavg) time, for the reason that Algorithm1 will traverse all
the immediate neighbors of each node in C(u). Therefore, Algorithm 1 will take
O(NNαkavg) time to calculate the influence values for all the nodes. Here, we use
Nα to denote the average size of the influence scopes of all nodes. It is obvious
that Nα is closely related to α. When α = 0, we have Nα ≈ N . However, when
α ≥ kmax, we have Nα ≈ 1. Thus, the time complexity of Algorithm1 can be
controlled flexibly with a proper α. Moreover, Algorithm 1 is naturally suitable
for parallel processing. Algorithm1 also shows great advantages when one only
cares about the importance of partial nodes.

To intuitively demonstrate the effectiveness of ASLA, we list the top-10
ranked nodes of different methods on the toy network (see Fig. 1) in Table 1.
As can be seen, for betweenness centrality and closeness centrality, the top-3
ranked nodes are v1, v2, v10. When α = 2.0, ASLA can provide the same result.
However, local centrality fails to identify these nodes. For example, it gives a
very low rank to the bridge node v1. Since degree centrality gives low ranks to
nodes with small degrees, it also fails to identity the bridge node v1.

Table 1. Comparison of the top-10 ranked nodes on the toy network as shown in
Fig. 1. DC: Degree Centrality; LC: Local Centrality; BC: Betweenness Centrality; CC:
Closeness Centrality; ASLA-1: ASLA with α = 1.0; ASLA-2: ASLA with α = 2.0.

Methods 1 2 3 4 5 6 7 8 9 10

DC v2 v12 v13 v14 v10 v11 v16 v15 v17 v1

LC v12 v13 v14 v11 v16 v10 v15 v17 v1 v2

BC v2 v1 v10 v12 v13 v11 v14 v16 v3 v4

CC v1 v2 v10 v12 v13 v11 v3 v4 v5 v6

ASLA-1 v10 v13 v2 v1 v11 v14 v16 v12 v15 v17

ASLA-2 v10 v2 v1 v11 v16 v12 v13 v15 v14 v17

An Adaptive Semi-local Algorithm for Node Ranking 511

4 Experiments

4.1 Experimental Settings

We conduct experiments on both synthetic and real-world networks. The syn-
thetic networks are generated by SNAP [11], a general graph mining library. The
generated synthetic networks include the Erdos-Renyi network ER (1K nodes,
5K edges) and the Power-Law network PL (5K nodes, 7K edges). The real-world
networks are downloaded from Network Repository [15], including Epinions (27K
nodes, 100K edges) and Douban (155K nodes, 327K edges).

The proposed method ASLA is compared with five representative node rank-
ing methods including two global methods: betweenness centrality (BC) [6] and
closeness centrality (CC) [16]; and three local methods: local centrality (LC) [2],
k-core decomposition based coreness centrality (KC) [10], and hybrid centrality
(HC) [17]. Since KC and the influence scope of ASLA are both relevant to the
community structure [5] of networks, we also choose KC as a benchmark. HC
can be treated as a combination of LC and KC. It considers the coreness and the
neighborhood of a node simultaneously. Different from LC, HC just takes into
account the information contained in the third-order neighbors of each node.

The brand-new robustness value metric (denoted by R) [13] is adopted to
assess the quality of ranking results. Smaller R indicates better results. R is
defined as R = 1

N

∑N
I=1 δ(I), where δ(I) denotes the fraction of nodes in the

largest connected component after removing I nodes from the original networks.

Fig. 2. Performance of different methods on synthetic networks.

Fig. 3. Effects of parameter α on our method ASLA.

512 F. Ye et al.

4.2 Results on Synthetic Networks

We first evaluate the performance of different ranking methods on the two syn-
thetic networks. In this experiment, the parameter α is fixed at 1.0. Recall that
Algorithm 1 only involves a single parameter α, as the personalized threshold
αu of node u is calculated as αu = ku

kmax
α. The results are shown in Fig. 2. As

can be seen, BC has the best performance. While the performance of CC, LC,
KC and HC is very poor. Even though CC is a global method, its performance
is not satisfactory. Our method ASLA obtains comparable performance with
BC. The results verify our hypothesis that ASLA is capable of achieving better
performance than the local methods.

We then evaluate the effects of parameter α on our method ASLA. For the
ER network, we vary α from 1 to 10. For the PL network, we vary α from
10 to 100. The results are reported in Fig. 3. From Fig. 3, we can see that the
performance of ASLA decreases as α grows larger. This is because larger α will
lead to a smaller influence scope for each node, thus less information is considered
when calculating the influence value. Therefore, when high ranking accuracy is
required, α should be set to a small number.

4.3 Results on Real-World Networks

In this part, we first evaluate the performance of different ranking methods on the
real-world networks. The results are illustrated in Fig. 4. As observed on the syn-
thetic networks, ASLA and BC obtain much better performance than the other
four ranking methods. Although ASLA is a semi-local method, it characterizes
the propagation ability and the aggregation ability of each node simultaneously.
Thus, ASLA can obtain comparable performance with the global method BC.

Fig. 4. Performance of different methods on real-world networks.

We further evaluate the efficiency of ASLA. We first report the time cost of
different ranking methods in Fig. 5(a). Note that we have adopted logarithmic
scale for the y-axis in this figure. As can be seen, the global methods BC and
CC run very slow, the local methods LC, KC and HC run much faster. We can
also see that ASLA is much faster than the global methods. For example, BC

An Adaptive Semi-local Algorithm for Node Ranking 513

takes about two days on the Douban network, while ASLA takes less than one
hour. In addition, with the aid of the parameter α, the time complexity of ASLA
can be controlled flexibly. Next, we test the time overheads of ASLA via varying
α from 10 to 100. The results are shown in Fig. 5(b), which is a double y-axes
figure. It is observed that on both Epinions and Douban, the time cost of ASLA
decreases rapidly as α grows larger. These results indicate that ASLA is capable
of being applied to large-scale complex networks.

Fig. 5. Comparison of time cost on real-world networks.

5 Conclusion

In this paper, we propose a novel adaptive semi-local method ASLA to iden-
tify influential nodes in complex networks. ASLA seeks a tradeoff between the
time efficiency and the ranking accuracy. Therefore, ASLA can be applied to
large complex networks. The main advantage of ASLA is that it can determine
the potential influence scope for each node adaptively. Then the influence value
of each node is calculated to capture the propagation ability and the aggrega-
tion ability simultaneously. Extensive experiments have been conducted and the
results demonstrate the effectiveness and efficiency of ASLA. For future work,
it is valuable to develop more advanced algorithms to further speed up ASLA.
It is also valuable to design other functions to calculate the influence values of
nodes.

Acknowledgement. This work was supported by the National Key Research and
Development Plan (2018YFB1003800), the National Natural Science Foundation of
China (61722214), the Guangdong Province Universities and Colleges Pearl River
Scholar Funded Scheme 2016 and the Pearl River S&T Nova Program of Guangzhou
(201710010046). Chuan Chen and Jiajing Wu are the co-corresponding authors.

514 F. Ye et al.

References

1. Chen, D.B., Gao, H., Lü, L., Zhou, T.: Identifying influential nodes in large-scale
directed networks: the role of clustering. PloS one 8(10), e77455 (2013)

2. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes
in complex networks. Phys. A 391(4), 1777–1787 (2012)

3. Domingos, P., Richardson, M.: Mining the network value of customers. In:
SIGKDD, pp. 57–66. ACM (2001)

4. Dong, J., Ye, F., Chen, W., Wu, J.: Identifying influential nodes in complex net-
works via semi-local centrality. In: ISCAS, pp. 1–5. IEEE (2018)

5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
6. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry

40(1), 35–41 (1977)
7. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw.

1(3), 215–239 (1978)
8. Gekas, J.: Web service ranking in service networks. In: ESWC (2006)
9. Katz, L.: A new status index derived from sociometric analysis. Psychometrika

18(1), 39–43 (1953)
10. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat.

Phys. 6(11), 888–893 (2010)
11. Leskovec, J., Sosič, R.: SNAP: a general-purpose network analysis and graph-

mining library. ACM Trans. Intell. Syst. Technol. 8(1), 1 (2016)
12. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes

identification in complex networks. Phys. Rep. 650, 1–63 (2016)
13. Morone, F., Makse, H.A.: Influence maximization in complex networks through

optimal percolation. Nature 524(7563), 65 (2015)
14. Petermann, T., De Los Rios, P.: Role of clustering and gridlike ordering in epidemic

spreading. Phys. Rev. E 69(6), 066116 (2004)
15. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph

analytics and visualization. In: AAAI (2015). http://networkrepository.com
16. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603

(1966)
17. Wang, Z., Du, C., Fan, J., Xing, Y.: Ranking influential nodes in social networks

based on node position and neighborhood. Neurocomputing 260, 466–477 (2017)
18. Ye, F., Liu, J., Chen, C., Ling, G., Zheng, Z., Zhou, Y.: Efficient influential individ-

uals discovery on service-oriented social networks: a community-based approach.
In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS,
vol. 10601, pp. 605–613. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69035-3 44

19. Zhang, J., Wu, J., Xia, Y., Ye, F.: Measuring cohesion of software systems using
weighted directed complex networks. In: ISCAS, pp. 1–5. IEEE (2018)

20. Zheng, Z., Ye, F., Li, R.H., Ling, G., Jin, T.: Finding weighted k-truss communities
in large networks. Inf. Sci. 417, 344–360 (2017)

http://networkrepository.com
https://doi.org/10.1007/978-3-319-69035-3_44
https://doi.org/10.1007/978-3-319-69035-3_44

User Location Prediction in Mobile
Crowdsourcing Services

Yun Jiang, Wei He(B), Lizhen Cui, and Qian Yang

School of Software, Shandong University, Jinan, China
sdu jy@163.com, {hewei,clz}@sdu.edu.cn, 791907346@qq.com

Abstract. In recent years, mobile crowdsourcing has been integrated
into people’s lives. A variety of mobile crowdsourcing services have
emerged and been widely used, such as Gigwalk, Foursquare, and Uber.
Due to the uncertainty of task distribution and workers’ trajectory, as
well as diverse worker interests and capabilities, it is crucial to effec-
tively predict the mobile workers’ trajectories such that they are willing
to get to the location and perform their tasks with as little travel and
time cost as possible. In this paper, we propose a context-sensitive pre-
diction approach for workers’ moving path in mobile crowdsourcing ser-
vices. We predict the upcoming location of workers through movement
rules, real-time perception of workers’ moving path and contexts when
assigning spatial tasks on a crowdsourcing platform, thereby pushing a
task to the workers who will enter the region within the deadline of the
task. Our location prediction method can avoid workers’ extra cost such
as time and charges in performing tasks. The analysis and simulation
experiments based on real data sets show that this method can effec-
tively predict the location of a worker and achieve better results in task
assignment and completion.

Keywords: Mobile crowdsourcing · Context · Location prediction
Task assignment

1 Introduction

Jeff Howe’s definition of ”crowdsourcing” is: “A company or organization that
outsources tasks that were performed by employees in the past to a non-specific
public of the network in a voluntary form [3]. Mobile crowdsourcing services
extend traditional crowdsourcing patterns to mobile space, and it does not
require workers to perform tasks on a fixed web platform, but increases the
constraints of time and location. The core issue is task assignment. Mobile crowd-
sourcing task assignment aims at assigning spatial tasks (i.e., tasks related to
location and time) to a worker set [4], and the workers will complete it in a sep-
arate or cooperative manners, while meeting the requirements for time, location
and other constraints of the task [1,2,5].

With the rapid development of computer network and the number of mobile
intelligent terminal increasing, mobile crowdsourcing service platform can receive
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 515–523, 2018.
https://doi.org/10.1007/978-3-030-03596-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_37&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_37

516 Y. Jiang et al.

the task by the task publisher or the request of the worker to perform task
anytime and anywhere, which puts forward high requirements for whether the
platform can allocate tasks in time and dynamic adaptability. Today, a majority
of the task assignment strategies are simply assigning tasks directly to workers
near the task without paying attention to the variation of the workers’ own
trajectories and locations. If the workers are going away from the location of
the task, they will probably refuse to accept the task. Because the location of
workers will be far away from the task’s location, the platform needs to pay extra
cost to encourage workers to perform. This will not only reduce the success rate
of task assignment, but also increase the time cost of workers and the additional
cost of the platform.

We know that diverse data from different sources and types hide much valu-
able information. This paper takes into account that the user’s historical track
data can also bring us a lot of useful information. By analyzing these historical
data, we can get the information about users’ behaviors, interests and prefer-
ences. The user’s location region is predicted based on the current location and
information of the user and then tasks in the region are allocated to him.

When predicting, this paper is not only concerned with the binary relation
of “user-location”, but also taking into consideration the context information
of the user (such as time, task location, weather, etc.) to form a “context-user-
location” relationship. It enables us to automatically discover and use context
information when predicting, and to satisfy users’ personalized needs changing
with the change of contextual information. For example, users are more willing
to go to sports and eat after work rather than go to dinner first. Compared with
workdays, users are more willing to go to entertainment plaza on weekend. In
this paper, time is divided into workday and weekend. It is regarded as a kind
of temporal context information and is integrated into the user’s location pre-
diction process. The context information is appropriately fused into the location
prediction algorithm. On the one hand, it accords with the practical significance
of contextual information; on the other hand, it has substantial help in location
prediction and improves the accuracy of prediction.

The main contributions of this paper are as follows:

(1) Based on the discrete historical data, we mine the context dependent user
movement pattern.

(2) Based on the context dependent user movement pattern, we propose a loca-
tion prediction algorithm for mobile crowdsourcing workers, which can pro-
vide support for spatial task assignment.

(3) Based on the experiments on real data sets, we verify the validity and accu-
racy of the proposed mobile user location prediction algorithm.

The rest of this paper is organized as follows. In Sect. 2, we mainly discuss
the related work; in Sect. 3 we give the definition; in Sect. 4, we propose the
method, describe the specific algorithms and examples; in the Sect. 5, we show
the experimental results; and in Sect. 6, we draw conclusions of this paper.

User Location Prediction in Mobile Crowdsourcing Services 517

2 Related Work

There are usually two ways of location prediction. The first is to predict the
current location based on the last access point of the user, and to predict the
location by calculating the transfer probability. The Markov and hidden Markov
algorithms in paper [10,12] are used for location prediction, combined with the
relationship of the user and the time matching, which is only related to the trans-
fer probability of the previous location to the current location. Paper [7] uses
the ramble algorithm and the Markov algorithm for the simultaneous prediction;
the user access path and the time interval are also the influencing factors of the
prediction. The paper [6] predicts its future cell based on the user’s current cell.
Although the user’s current location information has the most important mean-
ing to predict its future location, it can greatly improve the system’s pretest
performance if the location information of the user’s previous period of location
is also taken into consideration.

The second way is to collect historical location point information to predict
the current location. Paper [13] model the location of historical activities, and
take the moving trend of the user as an important factor in location prediction.
SPM (Sampled Pattern Matching) algorithm [8], PPM (Prediction by Partial
Matching) algorithm [9] also based on the Markov model for trajectory predic-
tion. These algorithms are based on the trajectory prediction based on Markov
expansion, and some improvements have been made in improving the prediction
accuracy or optimizing the time space complexity. However, there are still some
problems, such as the lack of historical information, which leads to the lack of
prediction accuracy in simple Markov models.

Li et al. [14] referred to the historical trajectory of workers, and recommended
a route that contains as many tasks as possible for workers. Although the paper
overcomes the problem of dynamic programming path, it can update the route
timely when new tasks arrive. However, the influence of contextual information
on workers is not taken into consideration, and workers may refuse to accept the
recommended route.

In this paper we improve the location prediction method proposed in paper
[13], add the influence of contexts to the prediction of movement patterns, taking
into account the differences in user movement patterns on weekends/holidays
and workdays, and extract movement rules based on context-sensitive movement
patterns to improve the accuracy and adaptability of location prediction.

3 Problem Definition

In order to enhance the understanding, this section introduces the relevant def-
initions of the methods in this paper (Table 1).

Definition 1. Workers’ Movement Patterns (WMPs). Context dependent
movement pattern WMPs is a sequence composed of multiple region numbers,
which indicates that workers have been visited one after another in a day,

518 Y. Jiang et al.

expressed as Wmp(w) = (< (r1, t1), (r2, t2), . . . , (rn, tn) >,C,supp). Movement
Patterns can describe the trajectory of workers in daily life. C is context infor-
mation, this paper mainly considers the context of time, and the C is divided
into workday and weekend; supp is support, which is used to measure the possi-
bility of a route appearing in the user’s historical trajectory, supp≥0. We refer
to the Apriori algorithm for calculation and threshold setting. In this paper, the
threshold is set to 1.33.

Definition 2. Workers’ Movement Rules(WMRs). A movement rule, WMRs,
describes the transfer relationship between regions which workers arrived at,
expressed as Wmr(w) = < (r1, t1), (r2, t2), . . . , (rk−1, tk−1) > → < (rk, tk) >.
< (r1, t1), (r2, t2), . . . , (rk−1, tk−1) > is the rule head, which represents the
worker’s current trajectory, and the tail of the rule < rk > represents the region
where the worker will arrive with the greatest probability. The movement rule
is obtained on the basis of the movement pattern. The following table gives an
example of the set of movement rules:

Table 1. An example of movement rule set

< (r1, t1) > → < (r2, t2), . . . , (rk, tk) >

< (r1, t1) >,< (r2, t2) > → < (r3, t3), . . . , (rk, tk) >

. . .

< (r1, t1), (r2, t2), . . . , (rk−1, tk−1) > → < (rk, tk) >

4 Location Prediction Based on the Mining of Movement
Rules

The location prediction process is shown in the Fig.1.

4.1 Generate Regions

The method proposed in this paper is based on regional prediction, all discrete
location points in the history log of the mobile crowdsourcing platform are first
clustered into regions, so the transfer of locations in worker’s historical trajectory
is converted to the transfer of regions. Assume that locations of all tasks in this
paper can also be included in these regions, the location points can be aggregated
into regions by using K-Means algorithm, thus to realize the transfer from points
to regions.

Since the location points are discrete and relatively sparse, we use the k-
means algorithm. The algorithm is simple and efficient for large datasets, and
has low time complexity and space complexity.

User Location Prediction in Mobile Crowdsourcing Services 519

Fig. 1. Location prediction process for mobile workers

Table 2. A set of workers’ move-
ment patterns

L

Cand C supp Cand C supp

< 2 > PD/WD 3 < 2, 3 > PD 2

< 3 > PD/WD 3 < 3, 8 > WD 2

< 4 > PD/WD 3 < 4, 3 > PD/WD 1.3

< 6 > PD/WD 2 < 6, 4 > WD 2

< 6, 4, 2 > WD 1.5

Table 3. Movement rule set

Movement rules

Rule Context Confidence

< 2 >→< 3 > PD 66.7

< 3 >→< 8 > WD 66.7

< 4 >→< 3 > PD/WD 50

< 6 >→< 4 > WD 100

< 6 >→< 4, 2 > WD 75

< 6, 4 >→< 2 > WD 75

4.2 Mining Workers’ Movement Patterns

In this section, we refer to Apriori algorithm, detailing how to mine workers’
movement patterns. It is known that multiple workers’ actual route, the first
step is to determine the time context, then mining the workday and weekend
movement pattern respectively. First we obtain a candidate pattern set C1 of
length 1, calculate the support and add into the movement pattern set L1 of
length 1 if the support is greater than the threshold 1.33 set in this paper.
Observe which regions can be directly reached from the current region L1, and
add their region numbers to the set and form a candidate pattern set C2 of length
2. Then calculate the support and add those greater than the threshold into the
movement pattern set L2 of length 2. According to this rule, continue to generate
movement pattern sets until no one is left. Finally, combine the pattern together.
Table 2 gives an example of worker context dependent movement pattern (WD
represents workday, and PD represents weekend).

520 Y. Jiang et al.

4.3 Generate Movement Rules

For a rule R:< (r1, t1), (r2, t2), . . . , (rk−1, tk−1) > → < (rk, tk) >, confidence is
defined using the following formula:

confidence =
< (r1, t1), (r2, t2), . . . , (rk, tk) > .supp

< (r1, t1), (r2, t2), . . . , (rk−1, tk−1) > .supp
(1)

If the confidence of a rule is higher than the pre-set confidence threshold
(coffmin), it will be selected for the next regional prediction phase. Since the
movement pattern is extracted based on different contexts (workday/weekend),
each movement rule also needs a contextual label to indicate a specific context.

Assume that the confidence threshold is 50, then the set of movement rules
is shown in Table 3 (WD represents workday, and PD represents weekend).

4.4 Predict Workers’ Regions

Prediction of regions is the last stage, and the pseudocode of the algorithm is
described below:

Algorithm 1. MobilityPrediction()
Input: The current trajectory of the worker, P=< (r1, t1), (r2, t2), . . . , (ri−1, ti−1) >;

Set of movement rules,r; The maximum number of location for each prediction,m
Output: set of predicted regions, PRegions
1: PRegion = φ //Initially the set of predicted regions is empty
2: k=1
3: for rule r:< a1, a2, . . . , aj >→< aj+1, . . . , ai > ∈ R //check all the rules in R do
4: if P.time = R.context and < a1, a2, . . . , aj > is contained by P= <

(r1, t1), (r2, t2), . . . , (ri−1, ti−1) > then
5: MatchingRules←MatchingRules ∪ r//Add it into the set of matching rules
6: TupleArray[k]=(aj+1, n, r.confidence)//Add the (aj+1, n, r.confidence)

tuple to the Tuples array
7: k = k+1
8: end if
9: end for

10: TupleArray←sort(TupleArray)//descending order the Truples array according to
the second element of truples, which is the length of the corresponding rule’s head

11: TupleArray←sort(TupleArray)//descending order the Truples array according to
the third element of truples,which is the confidence of the corresponding rule

12: index = 0
13: while index<m &&index<TupleArray.length do
14: PRegions ← PRegions∪ TupleArray[index]
15: index = index +1
16: end while
17: return PRegions

User Location Prediction in Mobile Crowdsourcing Services 521

When scanning, if the context information is inconsistent, skip the current
rules and then scan the next rule which can improve the efficiency of the algo-
rithm. After getting the matching rule set, they are first sorted according to the
length of the header, and then sort according to the confidence. This ensures
that the prediction based on the longest sequence is as much as possible, and
the accuracy of the prediction is improved.

After predicting the location of workers, the tasks in the region are then
recommended to workers. The purpose of task assignment is to achieve local
optimization by allocating the maximum tasks within a period of time. We
consider the change of the worker’s movement trajectory, and then allocate the
task to him to avoid the extra time and travel cost of the workers. It will increase
the success rate of the task assignment, maximize the number of assignment tasks
and reduce the cost of the platform.

5 Experiment

5.1 Experimental Design

In order to test the proposed method in real-world environment, we use the data
set of Gowalla, a location-based social network, on which users can sign-in at
different locations, including user time, latitude, longitude, and ID of location.
More than 644 million data from 2009 to October 2010 are collected; we selected
the top 1 million data with user number from 0 to 4806 as our data set, containing
more than 4,000 users and 45,000 different locations.

In the experiment, the locations and users of the data set are used to rep-
resent the spatial crowdsourcing tasks and the locations of workers. As long as
the worker arrives at the designated place to sign in, it is considered that the
crowdsourcing task has been accepted and completed. Although the data set do
not come directly from spatial crowdsourcing, it provides the distributions of
workers and tasks. Since the algorithms studied in this paper rely on locations,
we use this data set to draw some reasonable conclusions about their relative
performance.

5.2 Experimental Result

As shown in Fig. 2, we can see that after dividing into workdays and weekends,
the success rate of workdays is significantly higher than that we don’t distinguish
workdays. After our investigation and analysis, a worker has only two days in a
week and has a weekend trajectory, the data volume is small, on the other hand,
the choice of workers is too much, but the impact is small. The main reason
is insufficient data. After dividing the workdays, not only the success rate is
improved, but also the time complexity of the algorithm is lower. Owing to we
can directly judge whether workdays are based on the context labels, reduce the
time of scanning rules, and then efficiently predict the region and assign tasks.

522 Y. Jiang et al.

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
cluster

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

#k

WMP-Workday
WMP
WMP-Weekend

Fig. 2. Match of WMP prediction

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
cluster

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

#k

WMP
UMP

Fig. 3. Accuracy of WMP and UMP
prediction

5.3 Experimental Evaluation

Next, we compare the WMP-methods in this paper with the UMP-methods
proposed by Yavas et al. [13] from the perspective of accuracy of the region
number that the test set predicted, as shown in Fig. 3.

The accuracy is defined as follows:

Accuracy#k =
|hit#k|
|Total| (2)

Accuracy#k represents the accuracy on condition that there are k-clusters;
hit#k represents the number of data items predicted successfully; |Total| repre-
sents the total number of the sign-in data items by k-clusters.

It is clear that the accuracy of this method is higher than the UMP-method
in [13]. We consider the sequential of the historical track of the workers, the
probability of a user going to the first 100 locations is 0.5 greater than that of
the following locations, which indicates that there is some potential connection
between locations, not only considering the last region when predicting [11]. We
take into account the areas that workers have been visited in the history, which
greatly improves the accuracy, and further increases the probability of success
in task assignment.

6 Conclusion

In mobile crowdsourcing services, it is crucial to effectively predict the mobile
workers’ trajectories, so that they are willing to get to the location and perform
their tasks with travel and time costs as little as possible. We propose a context-
sensitive prediction approach for workers’ moving path in mobile crowdsourcing
services. Thereby, when assigning spatial tasks on a crowdsourcing service plat-
form, a task can be pushed to the workers who will enter the region within the
deadline of the task. Our approach can avoid workers’ extra time and travel cost
in performing the spatial tasks, and as a result, it is expected to increase the

User Location Prediction in Mobile Crowdsourcing Services 523

probability that a task is accepted and completed, and ultimately improve the
success rate of task assignment.

Acknowledgements. This work is supported by Natural Science Foundation of Shan-
dong Province under Grant No. ZR2018MF014 and No. ZR2017MF065.

References

1. Dang, H., Nguyen, T., To, H.: Maximum complex task assignment: towards tasks
correlation in spatial crowdsourcing. In: ACM International Conference Proceeding
Series, pp. 77–81 (2013)

2. Deng, D., Shahabi, C., Demiryurek, U.: Maximizing the number of worker’s self-
selected tasks in spatial crowdsourcing. In: ACM Sigspatial International Confer-
ence on Advances in Geographic Information Systems, pp. 324–333 (2013)

3. Howe, J.: The rise of crowdsourcing. Wired 14(14), 1–5 (2011)
4. Kazemi, L., Shahabi, C.: GeoCrowd: enabling query answering with spatial crowd-

sourcing. In: International Conference on Advances in Geographic Information Sys-
tems, pp. 189–198 (2012)

5. Kazemi, L., Shahabi, C., Chen, L.: GeoTruCrowd: trustworthy query answer-
ing with spatial crowdsourcing. In: ACM Sigspatial International Conference on
Advances in Geographic Information Systems, pp. 314–323 (2013)

6. Laasonen, K.: Clustering and prediction of mobile user routes from cellular data.
In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005.
LNCS (LNAI), vol. 3721, pp. 569–576. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564126 59

7. Li, W., Xia, S.X., Liu, F., Zhang, L.: Hybrid Markov location prediction algorithm
based on dynamic social ties. IEICE Trans. Inform. Syst. E98.D(8), 1456–1464
(2015)

8. Meng, W., Fang, R., Li, C., Yu, Q.: Soft network coding design in two-way relay
channel. In: Global Communications Conference, pp. 4441–4446 (2013)

9. Pang, L., Zhang, Y., Li, J., Ma, Y., Wang, J.: Power allocation and relay selection
for two-way relaying systems by exploiting physical-layer network coding. IEEE
Trans. Veh. Technol. 63(6), 2723–2730 (2014)

10. Robards, M.W., Sunehag, P.: Semi-Markov kmeans clustering and activity recogni-
tion from body-worn sensors. In: IEEE International Conference on Data Mining,
pp. 438–446 (2009)

11. Wang, W., Yin, H., Sadiq, S., Chen, L., Xie, M., Zhou, X.: SPORE: a sequential
personalized spatial item recommender system. In: IEEE International Conference
on Data Engineering, pp. 954–965 (2016)

12. Yang, Y., Wang, Z., Zhang, Q., Yang, Y.: A time based Markov model for auto-
matic position-dependent services in smart home. In: Chinese Control and Decision
Conference, pp. 2771–2776 (2010)

13. Yavaş, G., Katsaros, D., Ulusoy, Ö., Manolopoulos, Y.: A data mining approach
for location prediction in mobile environments �. Data Knowl. Eng. 54(2), 121–146
(2005)

14. Li, Y., Yiu, M.L., Xu, W.: Oriented online route recommendation for spatial crowd-
sourcing task workers. In: Claramunt, C., et al. (eds.) SSTD 2015. LNCS, vol. 9239,
pp. 137–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22363-6 8

https://doi.org/10.1007/11564126_59
https://doi.org/10.1007/11564126_59
https://doi.org/10.1007/978-3-319-22363-6_8

Leveraging Regression Algorithms for
Process Performance Predictions

Karthikeyan Ponnalagu1(B), Aditya Ghose2, and Hoa Khanh Dam2

1 Robert Bosch, Bangalore, India
karthikeyan.ponnalagu@in.bosch.com

2 University of Wollongong, Wollongong, Australia
aditya.ghose@gmail.com,hoa@uow.edu.au

Abstract. Industry-scale context-aware processes typically manifest a
large number of variants during their execution. Being able to predict
the performance of a partially executed process instance (in terms of
cost, time or customer satisfaction) can be particularly useful. Such
predictions can help in permitting interventions to improve matters for
instances that appear likely to perform poorly. This paper proposes an
approach for leveraging the process context, process state, and process
goals to obtain such predictions.

Keywords: Variability · Contextual factor analysis
Business process mining

1 Introduction

Execution of complex business processes that are specifically knowledge driven,
generally leads to significant amounts of event records corresponding to the exe-
cution of activities in the processes. Dealing with large scale process variations [9]
is a significant challenge in process centric enterprise organizations. This is typi-
cally the case in Business Process Outsourcing (BPO) support organizations, as
they support multiple business processes for different clients. Given the strictness
and penalty aspects of violating service contracts governing such business pro-
cesses, these organizations tend to improve the performance aspects of individual
process executions Most of the current literature assumes that the performance
of a process instance is entirely determined by what happens over the course of
the execution of the process instance. We see limitations in such assumptions [7],
when applied in knowledge intense process models, where the specific instance
executions are dictated by other factors that are not part of process executions.
Mining such factors and discovering correlations with process performance and
validity of execution remains a significant challenge. Research works [8,11] in the
field of process flexibility management, treats goal models as one of such factors
that dictate execution of processes, in addition to contexts. Goal models [10]
provides a natural underpinning for both validating and classifying process exe-
cutions as different variants. In this paper, we argue that the correlation of
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 524–531, 2018.
https://doi.org/10.1007/978-3-030-03596-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_38&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_38

Leveraging Regression Algorithms for Process Performance Predictions 525

semantic effect traces with goal alignments and associated context facilitates
a comprehensive approach for predicting performances. In our earlier work [8],
we discussed the notion of process effect logs as a series of time stamped ticket
description entries, along with the semantic trace (effects from process execu-
tion), task details, performance time spent and the process instance identifier.
The process performance time is defined as the time interval between the start
and completion of execution of a process instance.

2 Motivating Example

Fig. 1. Annotated incident resolution process in VAGAI tool

526 K. Ponnalagu et al.

Fig. 2. Incident management goal model

In this paper, we consider an Incident management process design depicted
in Fig. 1 as our running example. A process log1 containing 1400 executed
instances of this process design is considered for the evaluation of our proposed
approach. A total of over 25000 task execution records is available as part of
this process log. Each process instance in this log indicates how after receiving a
complaint from a customer, an incident ticket is created, resolved and closed. We
leverage annotated goal models with end effects as illustrated in Fig. 2. Such a
goal model can be constructed through a goal refinement machinery as discussed
in [2].

A variety of outcome predicting process monitoring techniques have been
proposed in the literature [6]. In [4], the authors clearly establish the need for
a general framework for mining and correlating business process characteris-
tics from event logs. In [1], the authors discuss construction of a configurable
process model as a family of process variants discovered from a collection of
event logs. The existing works in the area of contextual correlation of business
processes have addressed different challenges related to collaboration, contract
conformance, process flexibility [5]. In comparison our work uses contextual fac-
tors and semantic effect traces on both partial and completed executions to
correlate and predict execution deviation based on goal alignments. Works such
as [3] focuses on generating performance predictions leveraging process simula-
tion data. Works such as [12] focus on generating hybrid process model creation
by leveraging event log clusters. In comparison, we focus on an orthogonal app-
roach of discovering multiple process designs that are goal aligned variants of
the original process design.

3 Identifying Process Context, Goals and Process State

Contextual information can be traced from process instances to a range of time-
stamped information sources, such as statements being made on enterprise social
1 https://www.scribd.com/document/333254045/IncidentLog.

https://www.scribd.com/document/333254045/IncidentLog

Leveraging Regression Algorithms for Process Performance Predictions 527

media, financial market data, weather data and so on. Process log time-stamps
can be correlated with time-stamps in these repositories of information to derive
a wealth of information about the context within which a process instance was
executed. In our proposed approach, we leverage this specific category of con-
textual information.

The performance indicators associated with process effect assertions are typ-
ically influenced with the entailment to specific OR-refinement sub goals (Email
confirmation or Telephonic confirmation with customer) in the goal model. Given
a state S and a set of effect assertions e obtained from events accruing from the
execution of a task, the resulting partial state is given by S ⊕ e, where ⊕ is a
state update operator [8]. Similarly, given a normative state SN and a set of effect
assertions eN obtained from events accruing from the execution of a task in a
process, the resulting partial state is given by SN ⊕eN where ⊕ is a state update
operator. We also use a knowledge-base KB of domain constraints. If S∪e∪KB
is consistent, then S⊕e = S∪e. Otherwise, S⊕e = e∪{s | s ⊆ S, s∪e∪KB is con-
sistent, and there does not exist any s′ where s ⊂ s′ ⊆ S such that s′ ∪e∪KB is
consistent}. We start with an initial partial state description (which may poten-
tially be empty) and incrementally update it (using ⊕) until we reach the par-
tial state immediately following the final task in the process instance. Towards
achieving this, the proposed machinery leverage the OR-refinement goal cor-
relations associated with each state transition from the process event log. For
generating goal correlations based on the end effects (at the process or task lev-
els), we have leveraged the Process Instance Goal Alignment Model (PIGA)
discussed in our previous work [8]. Therefore, given a goal-realizing effect group
S, finding correlation with a goal G in formal terms is simply finding the truth
assignments in the CNF expression of G using the cumulative end effects of S.
Towards generating PIGA, the list of state transitions and the goal decomposi-
tion model as input are considered. Then, for each event group in the process
log, the truth assignments of all goals in the goal model are validated. This is
repeated for all event groups in the process log to identify the “valid process
instances”. The representation of each process instance as a list of maximally
refined correlated goals constitutes the completion of generating Process Instance
Goal Alignment (PIGA).

The CCGM generated for our running example is illustrated in Table 1. For
example as observed in row 3, 11 process instances are partially executed with-
out a resolution to a reported incident due to a collection of contextual factors
(CM3). To support predictions both at the process and individual task levels, we
have leveraged two categories of effect log data sets: Process Data Set (PD),
where record in this data set is a tuple { Process Instance Identifier, a seman-
tic trace, process execution time, context, aligned OR-refinement sub-goals }
and Task Data Set (TD) : Each record in this data set is a tuple { Process
Instance Identifier, Task Identifier, semantic trace from the execution of task,
task execution time, total process execution time, context, task aligned goals,
process aligned goals}.

528 K. Ponnalagu et al.

Table 1. Context correlated goal models (CCGM)

No. of

instances

Observed state effects OR-refined goal

entitlement

Context name (value)

62 T4: (Resolution Suggested) (Link to Existing

Problem, Close

Problem)

CM1 = Connection(‘Remote’,

‘NotAvailable’,

‘BehindFirewall’),

CustomerExpertise(‘High’),

CustomerPriority(‘Low’)

155 T3: (Resolution Known) (Link to Existing

Problem, Close

Problem)

CM2 = Solution(‘Known’,

‘AutoFix’, ‘BroadCast’),

CustomerAffected(‘Group’)

11 T5: (Resolution Cancelled) (Close Problem) CM3 = Agent(‘New’),

ProblemOrigin(‘3rd Party’,

‘NotUnderContract’)

51 T5: (Ticket NotEnriched) (Escalate Problem) CM4 = CustomerProvided

(‘NoEventTrace’,

‘NotReproduced’)

10 T1: (Problem NotCategorized),

T9: (Problem DetailIncomplete)

(Escalate Problem,

Link to Existing

Problem)

CM5 = Agent(‘New’),

ProblemAutoCategory(‘Failed’)

5 T2: (Problem SeverityWarning),

T3: (Set TicketPriorityHigh)

(Escalate Problem,

Enrich Problem)

CM6 = Agent(‘Expert’) , Prob-

lemAutoCategory(‘Complex’)

31 T4: (Customer NotNotified) (Escalate Problem,

Enrich Problem)

CM7 = CustomerSupport

(‘Rare’), CustomerPro-

vided(‘NoEventTrace’,

‘NotReproduced’)

For our evaluation in this paper, we used Watson Analytics Engine’s Deep QA
pipeline, to generate insights for some very interesting questions. The training
data set belongs to two categories of process log data sets PD and TD. The
questions that were asked using both these data sets are listed in Table 2.

4 Empirical Evaluation

In this section, we will evaluate our proposed approach using the event log data
set, discussed in Sect. 2. Our evaluation is conducted in two phases : Phase 1
: This is basically a pre-processing step that enables generation of effect logs,
which are provided as input data to the Watson Analytics Engine (discussed in
Phase 2). The VAGAI tool [8] annotates semantic traces from process logs with
goal alignments to generate process effect logs (PD) and task effect logs (TD)
respectively2. Phase 2 : Watson Analytics Engine for generating performance
and goal alignment predictions using the PD and TD data sets respectively as
depicted in Table 2. For individual task level executions, the alignment predic-
tions are at OR-refinement sub goal levels (providing alternate realization of its
parent goal) for a given goal model. This is based on the accumulated effects at
the completion of corresponding task execution.

2 https://www.scribd.com/document/333254045/IncidentLog.

https://www.scribd.com/document/333254045/IncidentLog

Leveraging Regression Algorithms for Process Performance Predictions 529

Table 2. Questions to Watson Analytic Engine

Question ID Question text Used data set Question type

Q01 Given a performance limit - what are
the most commonly occurring
semantic effect traces?

TD Exploratory

Q02 What are the context sets associated
with processes taking high
performance time?

TD Exploratory

Q03 Given the effect sequence E1E2E3,
what is the probability of the process
being aligned for a given goal G?

PD Predictive

Q04 Given the current effect sequence
taking performance time N, what is
the projected completion time of the
process

PD Predictive

Q05 Given the current context, and the
current effect sequence, what is the
remainder of the effect sequence for a
successful (goal-aligned) execution

TD Predictive

Q06 Given the current context, what will
be the number of instances that are
aligned with Goal G1?

PD Predictive

Q07 Given the current context, what is the
probability of this instance to
conclude with a specific effect
sequence?

PD Predictive

Q08 Given the tickets with current effect
sequence, what is the average total
performance time of completion of
these tickets?

TD Predictive

Q09 Given the current context, how many
executed instances will be valid ?

TD Predictive

Q10 Given the current effect sequence,
which process designs the completed
instances will be aligned with?

TD Predictive

The consolidated view of predictive insights as a visualization is depicted
in Fig. 3. Here the performance prediction in terms of total process execu-
tion time is depicted for each observed effect at completion of a task. We
started with questions of type Q01, Q02 to generate the predictions of pro-
cess performance time (in minutes) for each of the six contextual factors
DataIssues + AgentExplow,DataIssues + Highseverity, RemoteResolution
+ CustomerNew, RemoteResolution + AlertsComplete, SoftwareUpgrade,
PasswordReset + AgentExplow, PasswordReset + Severity High at specific

530 K. Ponnalagu et al.

Fig. 3. Performance predictions at partial states

semantic traces in the execution of process instances. This consolidated rep-
resentation generated using the Watson Analytics Engine helps in predicting
performance at different partial states of an instance execution. This demon-
strates the impact of contexts on the execution of otherwise similar process
execution instances. Similarly using this prediction model represented in Fig. 3,
we can make predictions of performances at multiple states of process execution.
This eventually can lead the organization to evaluate their resource deployment
strategies, shifting to a different process design variant.

5 Conclusion

Organizations increasingly tend to analyze the performance drifts in day to day
execution of customer and context sensitive business processes. In our proposed
approach, we leverage goal correlated process variations and contextual factors
mined from process log and goal correlated state transitions mined from effect
logs. In our future work, we will focus on correlating dynamic run-time variations
in contextual factors with shifts in goal alignment.

Leveraging Regression Algorithms for Process Performance Predictions 531

References

1. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Mining configurable
process models from collections of event logs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 33–48. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40176-3 5

2. Ghose, A.K., Narendra, N.C., Ponnalagu, K., Panda, A., Gohad, A.: Goal-driven
business process derivation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R.
(eds.) ICSOC 2011. LNCS, vol. 7084, pp. 467–476. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25535-9 31

3. Heinrich, R., Merkle, P., Henss, J., Paech, B.: Integrating business process simu-
lation and information system simulation for performance prediction. Softw. Syst.
Model. 16(1), 1–21 (2015)

4. de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating
business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM
2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10172-9 16

5. Magdaleno, A.M., de Oliveira Barros, M., Werner, C.M.L., de Araujo, R.M.,
Batista, C.F.A.: Collaboration optimization in software process composition. J.
Syst. Softw. 103, 452–466 (2015)

6. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-
6 31

7. Mrquez-Chamorro, A.E., Resinas, M., Ruiz-Corts, A.: Predictive monitoring of
business processes: a survey. IEEE Trans. Serv. Comput. 1, 1 (2017)

8. Ponnalagu, K., Ghose, A., Narendra, N.C., Dam, H.K.: Goal-aligned categorization
of instance variants in knowledge-intensive processes. In: Motahari-Nezhad, H.R.,
Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 350–364. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23063-4 24

9. Reichert, M., Hallerbach, A., Bauer, T.: Lifecycle management of business process
variants. In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process
Management 1. IHIS, pp. 251–278. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-642-45100-3 11

10. Ruiz, M., Costal, D., España, S., Franch, X., Pastor, Ó.: GoBIS: an integrated
framework to analyse the goal and business process perspectives in information
systems. Inf. Syst. 53, 330–345 (2015)

11. Weske, M.: Business process management architectures. In: Business Process Man-
agement. Springer, Heidelberg (2012) https://doi.org/10.1007/978-3-642-28616-
2 7

12. Yu, Y., et al.: Case analytics workbench: platform for hybrid process model creation
and evolution. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM
2015. LNCS, vol. 9253, pp. 226–241. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23063-4 16

https://doi.org/10.1007/978-3-642-40176-3_5
https://doi.org/10.1007/978-3-642-25535-9_31
https://doi.org/10.1007/978-3-319-10172-9_16
https://doi.org/10.1007/978-3-319-10172-9_16
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-07881-6_31
https://doi.org/10.1007/978-3-319-23063-4_24
https://doi.org/10.1007/978-3-642-45100-3_11
https://doi.org/10.1007/978-3-642-45100-3_11
https://doi.org/10.1007/978-3-642-28616-2_7
https://doi.org/10.1007/978-3-642-28616-2_7
https://doi.org/10.1007/978-3-319-23063-4_16
https://doi.org/10.1007/978-3-319-23063-4_16

Using Machine Learning to Provide
Differentiated Services in SDN-like
Publish/Subscribe Systems for IoT

Yulong Shi1,2(B), Yang Zhang1, Hans-Arno Jacobsen2, Bo Han1, Mengxi Wei1,
Runyuan Li1, and Junliang Chen1

1 State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing 100876, China
{shiyulong2015,yangzhang,hanbo92,wmx,lirunyuan,chjl}@bupt.edu.cn

2 Middleware Systems Research Group, University of Toronto,
Toronto M5S 1A1, Canada

jacobsen@eecg.toronto.edu

Abstract. At present, most publish/subscribe systems assume that all
participants have the same Quality of Service (QoS) requirements. How-
ever, in many real-world IoT service scenarios, different users may have
different delay requirements. How to provide differentiated services has
become an urgent problem. The rise of Software Defined Networking
(SDN) provides endless possibilities for meeting customized services due
to greater programmability. In this paper, we first propose two new
methods to predict the queuing delay of switches. One is an improve-
ment of the traditional Random Early Detection (RED) algorithm; the
other is a machine learning method using the eXtreme Gradient Boosting
(XGBoost) model. Then we describe an SDN-like publish/subscribe sys-
tem architecture and priority queues supported by OpenFlow switches
to realize differentiated services. In order to guarantee QoS, we present
a two-layer queue management mechanism based on user requirements.
In the end, we compare our delay prediction methods with the RED
method and verify the effectiveness of the two-layer queue management
mechanism. Experimental results show that our solution is effective.

Keywords: Publish/Subscribe · Software Defined Networking
Quality of Service · Queue management · Machine learning

1 Introduction

Internet of Things (IoT) is the third wave of the world’s information indus-
try revolution following computers and the Internet. Especially in recent years,
with the widespread popularity of smart phones and the development of sens-
ing technology, such as Radio Frequency Identification (RFID), barcodes, and
Quick Response (QR) codes, IoT devices and services have increased explosively.
Different devices, end users and application scenarios have different Quality of
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 532–540, 2018.
https://doi.org/10.1007/978-3-030-03596-9_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_39&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_39

Providing Differentiated Services in SDN-like Pub/Sub 533

Service (QoS) requirements. However, how to meet these requirements is a huge
challenge. It is a good way to solve these problems by providing QoS-ware dif-
ferentiated services.

Middleware systems play an important role between the network layer and
application layer of IoT. The publish/subscribe (pub/sub) system is an event-
driven middleware system which provides distributed, asynchronous, loosely
coupled communication between message producers (publishers) and consumers
(subscribers). Publishers publish events, subscribers receive events which they
express their interests in. The full decoupling provided by a pub/sub paradigm
in time, space and synchronization between publishers and subscribers makes it
particularly suitable for large-scale distributed IoT service deployments.

Software Defined Networking (SDN) is an emerging networking paradigm in
which the control plane is separated from the forwarding plane. In this way,
SDN simplifies the design, management of networks and also makes the network
have more programmability. SDN-like is a new pub/sub model [5] that further
extends pub/sub decoupling. We can make full use of the programmability of
SDN-like to provide differentiated services for customized user requirements.

Most pub/sub systems consider that all subscribers have the same QoS
requirements [3]. However, in real-world scenarios, different users may have dif-
ferent delay requirements. Many delay-sensitive IoT applications need real-time
response to anomalies which should be dealt with high priority to prevent any
danger. Wang et al. [4] tried to use the Random Early Detection (RED) algo-
rithm to predict the queuing delay of switches. However, it is inaccurate because
we cannot get the enqueued and dequeued data at the same time, there is often
a significant difference compared to the real delay. In this paper, we propose an
improved RED algorithm and a machine learning method to predict the delay. In
order to guarantee QoS, we present a two-layer queue management mechanism.
The evaluations demonstrate the effectiveness of our solution.

The major contributions of this paper are as follows:

– To the best of our knowledge, we are the first to predict the queuing delay of
switches using the eXtreme Gradient Boosting (XGBoost) model of machine
learning. We also propose the Incremental Difference Method (IDM), an
improvement of the RED algorithm, and compare the performance of them.

– We describe an SDN-like pub/sub system architecture and how to use priority
queues to provide differentiated services for subscribers.

– We present a two-layer queue management mechanism based on user require-
ments from two different perspectives: (1) The local queue bandwidth adjust-
ment algorithm for a single switch in the SDN controller; (2) The global QoS
control strategy for all switches on the path from a publisher to a subscriber
in the administrator of the system.

The remainder of the paper is organized as follows. Section 2 describes
the preliminaries. Section 3 proposes an SDN-like pub/sub system architecture.
Section 4 introduces the queuing delay prediction method. Section 5 presents the
two-layer queue management mechanism. Section 6 provides the experimental
results. Section 7 concludes this paper with an outlook on future research.

534 Y. Shi et al.

2 Preliminaries

XGBoost Model. XGBoost model is an effective machine learning method pro-
posed by Tianqi Chen in 2016 [2], which can solve regression prediction problems.
In [2], the objective function is proposed as shown in Eq. (1). We use the classic
Root Mean Square Error (RMSE) loss function as the evaluation function, as
shown in Eq. (2).

Obj(t) =
n∑

i=1

l(yi, ŷi(t−1) + ft(xi)) +
K∑

k=1

Ω(fk) + const (1)

RMSE =

√
1
n

∑n
i=1(ŷi − yi)2 (2)

Here, l(yi, ŷi(t−1) + ft(xi) is the loss function, Ω(fk) is the regularization
term. RMSE is the square root of the mean of the squares of the errors between
the prediction ŷi and the target yi.

RED Algorithm. The basic principle is that it monitors the average queue
length to reflect the queue congestion. The RED formula is shown in Eq. (3).

avgQ = (1 − w) ∗ avgQ + w ∗ qLen (3)
qLen = enQ − deQ (4)

Delay = avgQ/Width (5)

Where avgQ is the average queue length, qLen is the real-time queue length, w
is the weight, enQ and deQ are the total number of bytes enqueued and dequeued,
respectively. Delay is the queuing delay. Width is the queue bandwidth.

Incremental Difference Method. Equation (4) can be improved as follows:

qLen = ΔenQ − ΔdeQ + qLen (6)

Where ΔenQ and ΔdeQ are the increment of enQ and deQ, respectively. This
method does not need to guarantee the simultaneity of getting the enqueued and
dequeued data, avoiding the influence of measurement time difference on data.

3 SDN-like Pub/Sub System Architecture

SDN-like Pub/Sub System Architecture. The SDN-like pub/sub system
architecture is shown in Fig. 1, which includes one administrator and several
clusters. The administrator is responsible for the global network management
and interacts with the controller of each cluster. A cluster contains a controller,
several switches, publishers and subscribers. Border switches are used to inter-
connect clusters. Users communicate with the system by Web Service Notifica-
tion (WSN). The system contains three layers: global management layer, control

Providing Differentiated Services in SDN-like Pub/Sub 535

Administrator

Controller

Cluster

Publisher

Border Switches

Cluster

Control Layer

Data Layer

Subscriber

Global Management

A
dvertisem

ent

Subscription

Event

OpenFlow Message

WSN

SDN Switch

Fig. 1. SDN-like pub/sub system architecture

layer and data layer. Our SDN-like pub/sub system is mainly implemented in
the control layer, namely, SDN controllers.

Two-Layer Queue Management Mechanism. The two-layer queue man-
agement mechanism is shown in Fig. 2. It is implemented in the control layer
and the application layer. Specifically, the local queue bandwidth adjustment is
implemented in the control layer; the global QoS control is implemented in the
application layer. The priority queue is mainly implemented in SDN switches.

Topic Encoding. In our topic-based pub/sub system, topics are represented
as a Lightweight Directory Access Protocol (LDAP) topic tree. The topic, event
type and queue priority are encoded into binary strings of the 128 bits IPv6
multicast address in the header of packets. They are used to match flow tables
directly when forwarding.

Priority Queue. Different priority queues have different bandwidths. The band-
width size determines the forwarding capability of queues. In this way differen-
tiation services are provided. OpenFlow switches can support up to 8 priority
queues per port. These queues are numbered from 0 to 7, and the larger the
queue number is, the higher the priority is. Messages are divided into three lev-
els according to their emergency degrees: low, medium, high. The low priority
messages enter queue 5, the medium enter queue 6, and the high enter queue 7,
as shown in Fig. 2.

4 Queuing Delay Prediction Using XGBoost

Data Preprocessing. We collect a large amount of real data, such as band-
width, package size by capturing data packets and logging once per monitoring

536 Y. Shi et al.

SDN Controller

User

Queue Management

Local Queue
Bandwidth Adjustment

Queuing
Delay

Acquisition XGBoost

RED

IDM

Topology
Maintenance

Traffic
Management

SDN Switch

Flow Table
Match

C
lassifier

Scheduler A
gent

Queue 7

Queue 6

Queue 5

Packet In

Port i

Packet Out

OpenFlow Southbound API OF-config

Table Miss

Administrator

Queue Management

Global QoS Control

Application
Layer

Control
Layer

Forwarding
Layer

Northbound API

Pub/Sub
Middleware

Routing
Computation

Flow Table
Maintenance

SubscriberPublisher

Scheduler Server

T
w

o- layer
Q

ueue M
anagem

ent

RESTful RESTful

Priority Q
ueue

Fig. 2. Two-layer queue management mechanism

period (200 ms). Then we get the queue data after preprocessing by cleaning
dummy data, filling missing values and calculation.

Feature Selection. Packets distribution means the distribution of packet trans-
mission time intervals. The packets distribution shows periodicity, so we use the
Autoregressive Integrated Moving Average (ARIMA) model [1] to obtain the
cycle. We also perform a covariance test on the cycle between two adjacent
packets. The correlation coefficient is 0.87293211. This higher value shows that
there is little difference in their waveform distribution, and this method is rea-
sonable. so we use packets distribution as a feature. In raw data, there are many
features represented by string that the XGBoost model cannot receive, so we
encode them into integer.

Table 1. Training results

XGBoost parameter RMSE

min child weight=10; subsample=0.7; 5.42028e+07

colsample bytree=0.7; scale pos weight=0.8;

max depth=4; eta=0.1; early stopping rounds=30;

min child weight=10; subsample=0.7; 5.59389e+07

colsample bytree=0.7; scale pos weight=0.8;

max depth=6; eta=0.1; early stopping rounds=40;

min child weight=10; subsample=1; 7.49699e+07

colsample bytree=1; scale pos weight=1;

max depth=10; eta=0.1; early stopping rounds=50;

Model Training and
Parameter Adjustment.
We use the XGBoost
model for training. The
tree model is easily over-
fitting, so we divide train-
ing set by 20% as vali-
dation set and set it as
watchlist to obtain the
optimal number of iter-
ations. We also use the

Providing Differentiated Services in SDN-like Pub/Sub 537

score of the verification set no longer declining for 10 generations consecutively as
a criterion for early stop. The training results are shown in Table 1. The smaller
the RMSE is, the closer the prediction is to the real value, so we choose the first
row in Table 1.

5 Two-Layer Queue Management Mechanism Based on
User Requirements

We achieve the two-layer queue management mechanism from two perspectives.
One is the local bandwidth adjustment for a single switch, SDN controllers adjust
the bandwidth according to the queue priority and the queuing delay. The other
is the global control for all switches on the path. The administrator configures
the delay constraint of each switch as the local bandwidth adjustment reference.

Local Queue Bandwidth Adjustment Algorithm. The bandwidth of each
queue needs to be readjusted according to the delay and the queue priority. The
constraints for queues are as follows:

wq ∗ tq = AvgQq, q = 5, 6, 7 (7)
tq ≤ Tq, q = 5, 6, 7 (8)
∑7

q=5 wq = Port (9)
wq > 0, q = 5, 6, 7 (10)

Minimize(c5 ∗ t5 + c6 ∗ t6 + c7 ∗ t7) (11)

Where wq is the bandwidth of queue q, tq is the queuing delay, AvgQq is the
average queue length, Tq is the delay constraint, Port is the total bandwidth of
each switch port. Equation (11) is the adjustment goal, namely, minimizing the
weighted delay of queues. cq is queue weight (coefficient).

Algorithm 1. Local Queue Bandwidth Adjustment Algorithm
Input: wq , tq , cq, Tq, q = 5, 6, 7 //tq is predicted by the XGBoost model, IDM or RED algorithm.
Output: Bq , Dq

1: Initialize Bq = wq , Dq = 0, Port = 100
2: AvgQq = wq ∗ tq

3: Sum =
∑7

q=5(AvgQq ∗ cq)
1
2

4: if tq ≤ Tq then //Lines 4∼6, use Eqs. (9)∼(11) to reason

5: Bq = Port ∗ (AvgQq ∗ cq)
1
2 /Sum //calculate the new bandwidth Bq

6: Dq = Sum ∗ (AvgQq/cq)
1
2 /Port //calculate the new delay Dq

7: else
8: notify the administrator to adjust Tq

9: end if

In Algorithm 1, Bq is sent to the switch, and Dq is fed back to the adminis-
trator. The complexity of Algorithm 1 is O(1).

538 Y. Shi et al.

Global QoS Control Strategy. We use Uj to represent the delay requirements
proposed by subscriber j. There is a lower delay limit ti for hop (switch) i. We
use fi to represent the queuing delay fed back by the controller where switch i
resides. For the whole path, the constraints are as follows:

∑n
i=1 Ti ≤ Uj , j = 1, 2, ...,m (12)

Ti ≥ ti, 1 ≤ i ≤ n (13)
Minimize(Uj − ∑n

i=1 Ti) (14)

T ′
i =

fiUj∑n
i=1 fi

Ti (15)

Where n is the number of hops, m is the number of subscribers of a topic.
T ′
i is the new delay constraint, Ti is the last one. We use the best adaptation

principle to adjust the bandwidth, as shown in Eq. (14). If it has a solution, the
administrator will take Ti as the Tq of node i, and send it to the controller. If no
solution, the administrator will notify the subscriber by controller to resubmit a
new one. The administrator recalculates T ′

i of each switch according to Eq. (15).
The global QoS control strategy is shown in Algorithm2. The complexity of

Algorithm 2 is O(n).

Algorithm 2. Dynamic Threshold Calculation Algorithm
Input: CurrentDelay, LastDelayConstraint, UserDelay, Path, Priority, ConstraintTable
Output: Res //the new delay constraint
1: Initialize Res = 0, temp = 0
2: for Switch in Path do //calculate the sum of the last delay constraint on the path
3: Con = ConstraintTable.get(Switch).get(Priority)
4: temp = temp + Con
5: end for
6: Res = CurrentDelay ∗ UserDelay ∗ temp/LastDelayConstraint

This strategy makes full use of the administrator’s characteristics which can
control the global network. In this way, the delay of the entire path can satisfy
the user needs, realizing the SDN-like topic-based differentiated services.

6 Performance Evaluation

Experiment Setup. We use three SDN-enabled physical switches and several
PCs to setup the experiment topology as shown in Fig. 3. Each OpenDayLight
controller, switches and some hosts form a cluster such as G1. The switch model
is Pica8-p3290, the bandwidth of each switch port is 100 Mb/s.

Providing Differentiated Services in SDN-like Pub/Sub 539

Control Path
Data Path

P1

S1 S2 S3

SW1 SW2 SW3

C1 C2 C3

Controller: C1, C2, C3
Switch: SW1, SW2, SW3
Publisher: P1
Subscriber: S1, S2, S3
Group: G1, G2, G3

Administrator

G1 G2 G3

Group

Fig. 3. Experiment topology

Queuing Delay Prediction Methods
Comparison. In this experiment, we set
the bandwidths of queue 5, 6 and 7 are
10 Mb/s, 30 Mb/s and 60 Mb/s, respec-
tively. For each queue we run three queu-
ing delay prediction methods. The packet
size is 1 KB. The experimental results
about queue 5 are shown in Fig. 4. We
can conclude that the two new methods
are both better than the RED method,
and XGBoost is better than IDM, so we
choose the XGBoost method for the follow-
ing experiments.

Local Queue Bandwidth Adjustment Algorithm Verification. For each
combination of three priority queues, we compare the delay and packet loss rate
under different frequencies of sending packets. The experimental results about
one queue congestion are shown in Fig. 5. The bandwidth of queue 7 is 60 Mb/s
before adjustment. When the frequency is between 5000 and 10000, queue 7
starts congestion, the delay remains at 125 milliseconds. After the adjustment,
the queue starts becoming congested when the frequency is between 10000 and
20000, the delay remains at 83 milliseconds, the packet loss rate drops signif-
icantly and the bandwidth of this queue is 88 Mb/s. The data show that this
algorithm is effective.

 0

 2

 4

 6

 8

 10

 12

1000 3000 5000 10000 20000

D
el

ay
 (s

)

Number of Packets Sent Per Second

Real
RED
IDM
XGBoost

Fig. 4. Prediction methods comparison

 0

 20

 40

 60

 80

 100

 120

 140

1000 3000 5000 10000 20000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

D
el

ay
 (m

s)

Pa
ck

et
 L

os
s

R
at

e

Number of Packets Sent Per Second

Q7_Delay_No
Q7_Delay_Adjust
Q7_Loss_No
Q7_Loss_Adjust

Fig. 5. Local queue bandwidth adjustment

7 Conclusion

We propose an effective machine learning method using the XGBoost model to
predict the queuing delay of switches. Experiments show that it is better than
IDM and the traditional RED method. We also present an SDN-like pub/sub

540 Y. Shi et al.

system architecture and a two-layer queue management mechanism based on user
requirements to provide differentiated IoT services. Experimental results show
that our solution is effective. However, we only use three OpenFlow physical
switches to do the experiments due to their high costs, therefore it is difficult to
involve routing problems. In the future, we will try to solve these problems. On
the other hand, we can combine the local queue bandwidth adjustment algorithm
and routing algorithms to improve the QoS of pub/sub systems.

Acknowledgement. This research is supported by the National Key Research and
Development Program of China (No. 2018YFB1003800), the State Scholarship Fund
of China Scholarship Council (No. 201706470069), China Postdoctoral Science Foun-
dation (No. 2017M620617). The authors would like to thank Geoffrey Elliott at the
University of Toronto and the anonymous reviewers for reviewing this manuscript.

References

1. Bartholomew, D.: Time series analysis forecasting and control. J. Oper. Res. Soc.
22(2), 199–201 (1971)

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

3. Tariq, M.A., Koldehofe, B., Koch, G.G., Khan, I., Rothermel, K.: Meeting
subscriber-defined QoS constraints in publish/subscribe systems. Concurr. Com-
put.: Pract. Exp. 23(17), 2140–2153 (2011)

4. Wang, Y., Zhang, Y., Chen, J.: Pursuing differentiated services in a SDN-based IoT-
oriented pub/sub system. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 906–909. IEEE (2017)

5. Zhang, K., Jacobsen, H.A.: SDN-like: the next generation of pub/sub. arXiv preprint
arXiv:1308.0056 (2013)

http://arxiv.org/abs/1308.0056

Quality of Service

Constraint-Based Model-Driven Testing
of Web Services for Behavior

Conformance

Chang-ai Sun1(B), Meng Li1, Jingting Jia1, and Jun Han2

1 School of Computer and Communication Engineering, University of Science and
Technology Beijing, Beijing 100083, China

casun@ustb.edu.cn
2 School of Software and Electrical Engineering, Swinburne University of Technology,

Melbourne, VIC 3122, Australia

Abstract. In the current Web Service Description Language (WSDL),
only the interface information of a web service is provided without any
indication on its behavior logic. Naturally, it is difficult for the service user
and developer to achieve a shared understanding of the service behavior
through such a description. A particular challenge is how to make explicit
the various behavior assumptions and restrictions of a service (for the
user), and make sure that the service implementation conforms to them
(for the developer). In order to improve the behavior conformance of ser-
vices, in this paper we propose a constraint-based model-driven testing
approach for web services. In our approach, constraints are introduced in
an extended WSDL, called CxWSDL, to formally and explicitly express
the implicit restrictions and assumptions on the behavior of web services,
and then the predefined constraints are used to derive test cases in a
model-driven manner to test the service implementation’s conformance
to these behavior constraints from the user’s perspective. We have con-
ducted an empirical study with three real-life web services as subject pro-
grams, and the experimental results have shown that our approach can
effectively validate the service’s conformance to the behavior constraints.

Keywords: Web services · Conformance testing
Model-driven testing · Test case generation

1 Introduction

In the context of Service Oriented Architecture, the implementation of web ser-
vices is separated from their interface description. Service users invoke a web ser-
vice only based on its interface description written in WSDL. Since WSDL pro-
vides only the signature information for web service invocations, such as types,
messages, operations and bindings, a service description in WSDL cannot help
consumers to understand the way in which the web service should be invoked
because it does not indicate any restrictions or assumptions on the behavior of
a service.
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 543–559, 2018.
https://doi.org/10.1007/978-3-030-03596-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_40&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_40

544 C. Sun et al.

The behavior expected of a web service is the key to achieve the proper
use of the service. A feasible way of avoiding the potential misuse of a ser-
vice is to enhance the service description with the restrictions and assumptions
that underlie its behavior as intended by the service developer. Furthermore,
such behavior description can also be used to test the service implementation
to ascertain the service’s conformance to the expected behavior. However, this
kind of behavior-related information is neither formally nor explicitly described
in the WSDL description.

In this paper, we propose a constraint-based model-driven testing approach to
improve the understanding and conformance of web service behavior. We lever-
age the description of behavior constraints to establish a bridge between service
developers and service users. Constraints are used to formally and explicitly
describe the implicit behavior restrictions and assumptions on service invoca-
tions and to validate the service implementation’s conformance to them. The
main contributions of this paper are as follows:

1. We summarize a range of common behavior constraints for web services that
are useful for potential violation detection.

2. We design an extended WSDL, called CxWSDL, to incorporate the formal
description of behavior constraints.

3. We develop a model-driven testing technique to validate the service implemen-
tation’s conformance to the behavior constraints. The technique first derives
a service behavior model from the constraint-enriched description of a service
written in CxWSDL. Then, it uses three coverage criteria to generate test
sequences from the behavior model, aimed at exercising the service implemen-
tation’s support for the constraints. Test suites are consequently generated
from the test sequences using a constraint solver, and used to test the web
service from the user’s perspective.

4. We evaluate the effectiveness of the proposed approach with three real-life
web services.

The rest of this paper is organized as follows. Section 2 presents an
overview of our approach. Section 3 summarizes the common behavior con-
straints and presents a formal description for them. Section 4 discusses the
proposed constraint-based model-driven testing technique. Section 5 reports an
empirical evaluation of the proposed approach. Section 6 discusses related work
and the paper is concluded in Sect. 7.

2 Approach Overview

Our approach aims to achieve better understanding and conformance of ser-
vice behavior and has two major aspects. First, we introduce behavior con-
straints to express the implicit restrictions and assumptions expected of a web
service’s implementation. In this regard, we extend WSDL to enable the explicit
description of the various constraints on the invocation of a web service, result-
ing in CxWSDL (W eb ServicesDescriptionLanguagewithConstraints). The

Constraint-Based Model-Driven Testing of Web Services 545

service description written in CxWSDL provides the basis for a shared under-
standing of the service’s behavior constraints between service users and service
developers.

Second, we propose a model driven testing technique that first derives a
Constraint − basedBehaviorModel (CBM) of the service from its extended
description in CxWSDL, then generates test cases from its CBM, and finally
validates the service implementation’s conformation to the constraints by exe-
cuting the generated test cases. The proposed testing framework is shown in
Fig. 1, which consists of five major components:

(1) CxWSDL Parsing, which parses the CxWSDL document provided by the
web service developer to obtain the operations and constraints document
for the web service, the SOAP message environment and the XSD (XML
Structure-definition Document) for invoking these operations.

(2) Behavior Model Construction, which constructs the web service behavior
model according to the operations and constraints document.

(3) Test Path Generation, which uses three coverage criteria and the web service
behavior model to generate test sequences.

(4) Test Case Generation, which outputs an executable test suite by means of
a constraint solver, taking as input a decision table provided by the web
service developer and the previously generated test sequences.

(5) Test Case Execution, which simulates a client by executing the test cases,
validates the conformance and violations to the constraints, and generates
a test report according to the test results.

Behavior Model
Construction

Test Path
Generation

Test Case
Generation

Test Execution

CxWSDL Parsing

WS Under
Test

WS Under
Test

Test Report

Constraints

Test Sequences

Test Suite

WS-DT

CxWSDL
XSD

Model

Soap Env

Fig. 1. Framework of model-driven testing of web services

546 C. Sun et al.

A tool, called MDGen, has been developed to provide automated support for
the above process. Its details cannot be included due to space limitation.

3 Constraints and Their Formal Description

This section summarizes the different types of behavior constraints and presents
a formal description for them.

3.1 Types of Behavior Constraints

In our approach, constraints are used to explicitly express the behavioral assump-
tions and restrictions behind a service’s implementation, which makes it possible
to achieve a shared understanding between service developers and service users.
That is, the service developer states the assumptions and restrictions in the
description of a service via constraints, while a service user understands the
service behavior via the stated constraints to achieve proper invocation of the
service. From a literature review, we summarize the following common assump-
tions and restrictions, the misunderstanding of which may result in possible
failures of service invocations.

– Time Constraint [16], which is necessary for restricting the service availability,
especially when a service is being modified or in an inactive or maintenance
state. If the access is outside its available period, a service invocation fault
may happen due to the unavailability.

– Region Constraint [16], which restricts the valid range of IP addresses in case
some operations of a service can only be accessed in a specific network.

– Parameter Restriction Constraint [7,18], which specifies the type and range
of an input parameter of an operation.

– Parameter Relation Constraint [8,18], which states a relationship between
the input parameters of different operations. Even if the input parameters
conform to the WSDL type restrictions of the operations, the operation invo-
cations may fail due to a violation of such a relationship constraint between
the operations.

– Sequence Constraint [1,2,4], which can be a Sequential Constraint or a
Repeated Invocation Constraint. The former specifies the order in which oper-
ations need to be performed or invoked for the service to function correctly,
and the latter specifies whether an operation can be invoked repeatedly.

– Invocation Constraint [15], which identifies the other operations called by a
given operation. An operation of a web service can involve another operation
in performing its tasks, and thus it is important to trace and state such
cascading relationships.

Constraint-Based Model-Driven Testing of Web Services 547

3.2 Formal Description of Constraints

We now consider the formal description of the above constraints. Due to the XSD
type system can be used to define the types in a message and restriction defines
the acceptable values for XML elements or attributes, the XSD restriction is well
suited to describing Parameter Restriction Constraint. For description of other
constraints, we introduce specific description constructs and their grammar is
given in the Extended Backus-Naur Form (see Fig. 2).

<Constraint> ::= ‘{’ ((‘“paraRelation”:’ <ValuePR> ‘,’ ‘“ipRegion”:’ <ValueIR> ‘,’ ‘“invokeOp”:’ <ValueIO> ‘,’
‘“preOp”:’ <ValuePO> ‘,’ ‘“Iteration”:’ <ValueI>) | (‘“eTime”:’ <eDate>)) ‘}’

<ValuePR> ::= ‘[’ ‘]’ | ‘[’<ElementsPR>‘]’
<ElementsPR> ::= <Relationship> | <Relationship> ‘,’ <ElementsPR>
<Relationship> ::= ‘“’ <OpName> ‘.’ <OpParameter> <RelationSymbol> <OpName> ‘.’ <OpParameter> ‘”’
<RelationSymbol> ::= ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘!=’
<ValueIR> ::= ‘“’ <IpAdress> ‘-’ <IpAdress> ‘”’
<IpAdress> ::= <IpField>‘.’ <IpField>‘.’ <IpField>‘.’ <IpField>
<IpField> ::= (‘25’[0-5]|‘2’[0-4][0-9]|((‘1’[0-9][0-9])|([1-9]?[0-9])))
<ValueIO> ::= ‘[’ ‘] ’ | ‘[’<ElementsIO>‘]’
<ElementsIO> ::= ‘“’ <OpName>‘”’ | ‘“’ <OpName>‘”’‘,’ <ElementsIO>
<OpName> ::= ([A-Z] | [a-z] | ‘_’ | ‘$’) (([A-Z] | [a-z] | [0-9] | ‘_’ | ‘$’))*
<OpParameter> ::= ([A-Z] | [a-z] | ‘_’ | ‘$’) (([A-Z] | [a-z] | [0-9] | ‘_’ | ‘$’))*
<ValuePO> ::= ‘“’ <Exp>‘”’
<Exp> ::= (‘(’<Exp>‘)*’ | ‘(’<Exp>‘)+’ | ‘(’<Exp>‘)|(’<Exp>‘)’ | ‘(’<OpName>‘)(’<OpName>‘Response_succ)’)*
<ValueI> ::= ‘“true”’ | ‘“false”’
<eDate> ::= ‘“’<DateFormat>‘”’
<DateFormat> ::= the value of Date Class whose Format is yyyy-MM-dd

Fig. 2. The grammar of CxWSDL

– Constraint identifies behavior constraints, expressed in the form of
JSON attribute-value pairs, including Parameter Relation Constraints (i.e.
paraRelation), Region Constraints (i.e. ipRegion), Invocation Constraints (i.e.
invokeOp), Sequential Constraints (i.e. preOp), Repeated Invocation Con-
straints (i.e. Iteration), and Time Constraints (i.e. eTime).

– ValuePR states the Parameter Relation Constraints, which is a JSON array
consisting of multiple relationships. A relationship between two parameters
consisting of parameter names and relation operators. The relation operators
include =, >, <, >=, <=, and ! =.

– ValueIR states the Region Constraints, normally specifying the address range
from which an operation can be accessed.

– ValueIO states the Invocation Constraints, which is a JSON array of multiple
operation names that identify other operations called by an operation.

– ValuePO states the Sequential Constraints, which defines the sequential
dependencies required for an operation being correctly executed, in a form of
regular expressions, supporting repetition (*, +) and alternation (|).

548 C. Sun et al.

– ValueI states whether an operation can be invoked repeatedly, indicated with
true or false.

– eDate states the available time for a web service in the yyyy-mm-dd form.

To support the deployment of a service whose description is written in
CxWSDL, we utilize the <documentation> element in WSDL, which is a con-
tainer for human readable documentation. Time Constraints are added to the
<documentation> element under the <service> element, and other types of con-
straints are added to the <documentation> element under each <operation> ele-
ment. In this way, an existing container that supports WSDL-based web services
can be directly used to deploy an extended service with behavior constraints in
CxWSDL without any modifications.

4 Constraint-Based Model-Driven Testing of Web
Services

This section presents our approach to detecting invocation violations to service
behavior constraints, which improves the behavior conformance of services in a
service-based system.

4.1 Constraint-Based Behavior Model Generation

In order to detect the improper invocations that violate the behavior constraints,
we uses Model Based Testing (MBT) [12] for test case generation and viola-
tion detection. In particular, we propose the Constraint-based Behavior Model
(CBM) of a web service based on event sequence graph.

Definition 1 (CBM). The Constraint-based Behavior Model is defined as a 4-
tuple CBM = <Ns,D, V,E>, where

– Ns is the name of the model corresponding to a given web service,
– D is the available date of web service,
– V is a finite set of nodes in the CBM , representing the request events (oper-

ation invocations) or response events (responding to the request),
– E is a finite set of edges, representing a directed transfer from one node to

another, i.e. E ⊂ V × V .

Definition 2 (Node). Let V be the node set of a CBM . Each node vi in V =
{ v0, . . . , vn } is represented as a 6-tuple vi = <Nd, Id, C, Pre, Suc, T>, where

– Nd is the name of vi,
– Id is the unique identity of vi,
– C is the set of constraints of vi as defined in Sect. 3,
– Pre is the set of Preceding Nodes of vi,
– Suc is the set of Succeeding Nodes of vi,

Constraint-Based Model-Driven Testing of Web Services 549

– T is the type of vi, where the different node types are: Start (i.e. the entry
of the CBM), Initial (i.e. the initialization of a service invocation process),
End (i.e. the end of the CBM), Request (i.e. a request event), and Response
(i.e. a response event).

Definition 3 (Preceding Node). Let V be the node set of a CBM . We refer
to vi as a Preceding Node of vj (denoted as preNode(vj)), if and only if the
following condition is true: vi ∈ V , vj ∈ V , and (vi, vj) ∈ E.

Definition 4 (Succeeding Node). Let V be the node set of a CBM . We refer
to vi as a Succeeding Node of vj (denoted as sucNode(vj)), if and only if the
following condition is true: vi ∈ V , vj ∈ V , and (vj , vi) ∈ E.

Definition 5 (Edge). Let E be the edge set of a CBM. Each edge ei in E = {
e0, . . . , em } is defined as a 3-tuple ei = <Ne, FR, TO>, where

– Ne is the name of the edge ei,
– FR refers to the identify of the source node of ei,
– TO refers to the identity of the target node of ei.

We propose Algorithm 1 to construct a CBM from a CxWSDL document. It
has the following major steps:

– Initialization (lines 1–5): Initialize the Behavior Model, G, set its name prop-
erty and Time Constraints, and add the Start, Initial, and End nodes to
G.

– Add nodes into the model (lines 6–15): Parse the CxWSDL document to
identify the set of the operations of the web service under test. For each
operation, add the Request and Response nodes to G and associate each node
with the constraint properties.

– Build sequence relation of nodes (lines 16–25): Set the sequence relation of
nodes according to the sequence-related constraints.

– Add edges (lines 26–30): For each node in the model, add an edge between
the node and each of its Succeeding Nodes to the set of edges of G.

Note that the sequence-related constraints determine the behavior model’s
structure, which will be used to generate the test sequences (see Sect. 4.2). The
non-sequence-related constraints are associated with the model’s nodes, and will
be used to generate test cases (see Sect. 4.3).

4.2 Test Sequence Generation

Test sequences can be generated from the service behavior model and they are
classified into two types, namely Constraint comPliant Sequences (CPSs for
short) and Constraint conFlicting Sequences (CFSs for short).

Definition 6 (Constraint Compliant Sequence). Let V and E be the node and
edge sets of a CBM, respectively. A sequence of nodes <v0, . . . , vk> is called a
Constraint Compliant Sequence (CPS), if (vi, vi + 1) ∈ E for i = 0, . . . , k − 1,
and v0 is the CBM’s Start node and vk is the CBM’s End node.

550 C. Sun et al.

Algorithm 1. Behavior Model Construction
Input:

CxWSDL document
Output:

G: Constraint-based Behavior Model ;
1: Parse CxWSDL to get service name (sn), valid time (vt), and operation set

(OpSet);
2: Initialize G, set G.V ← ∅ and G.E ← ∅;
3: Let G.Sn ← sn and G.D ← vt;
4: Add a Start node start, an Initial node init, and an End node end to G.V ;
5: Let start ← preNode(init) and init ← sucNode(start);
6: for each operation op in OpSet do
7: Add Request node req, set its attributes and constraints ;
8: Add all Response nodes to resSet, set their attributes and constraints ;
9: for each node res in resSet do

10: res ← preNode(req), req ← sucNode(res);
11: if Iteration = true then
12: req ← preNode(res), res ← sucNode(req);
13: end if
14: end for
15: end for
16: for each node n in G.V do
17: if n.T = Request then
18: if preOp = null then
19: init ← preNode(n), n ← sucNode(init);
20: else
21: Parse the preOp constraint;
22: Set the preceding and succeeding correlation between nodes;
23: end if
24: end if
25: end for
26: for each node n in G.V do
27: for each fnode in n.Suc do
28: Add < n, fnode > to G.E and set its attributes;
29: end for
30: end for

Definition 7 (Constraint Conflicting Sequence). Let V and E be the node and
edge sets of a CBM, respectively. A sequence of nodes <v0, . . . , vk> is called a
Constraint Conflicting Sequence (CFS), if there exists a (vi, vi + 1) /∈ E, for i
= 0, . . . , k − 1.

For a large-scale application, there may be many services that collaborate
with each other and thus a large number of operations are included in such ser-
vices. It is impractical or even impossible to test all the possible event sequences
or paths. Thus, we define three coverage criteria to control the number of the
generated test sequences.

Constraint-Based Model-Driven Testing of Web Services 551

– Request Node Coverage, which requires that all nodes whose type is Request
be covered at least once.

– Response Node Coverage, which requires that all nodes whose type is Response
be covered at least once.

– Edge Coverage, which requires that all edges should be covered at least once.

As to the generation of CPSs, we employ an open source testing tool, Graph-
Walker [11]. GraphWalker provides a general model traversal strategy support-
ing the generation of test sequences that execute each of the elements in a given
model. As to the generation of CFSs, we first parse the Sequential Constraint
and Repeated Invocation Constraint, and then generate the sequence that violates
these Sequence Constraints. If there is a Sequence Constraint for an operation,
a CFS test sequence is generated for this operation. If the Repeated Invocation
Constraint is false, we generate a sequence that invokes an operation repeatedly.
If an operation has a Sequential Constraint, we generate a sequence that invokes
the operation without including any preceding operations.

We propose Algorithm 2 for generating test sequences from a service’s CBM,
which has five major steps:

– Initialization (lines 1–2): Initialize the Constraint Compliant Sequence set
(Tss), the Constraint Conflicting Sequence set (cTss), the initial test
sequence set (initTss), and the set of elements (eleCoverSet), and set the
coverage criterion.

– Set Coverage Criterion (lines 3–12): Based on the selected coverage criterion,
traverse G to obtain the set of elements (eleCoverSet) to be covered.

– Generate CPSs (lines 13–16): For each element ele in eleCoverSet, use
GraphWalker to generate initial CPSs test sequences (initTss).

– Remove Redundant Sequences (lines 17–25): For initTss, delete the redun-
dant sequences and obtain the final CPS test sequences tss.

– Generate CFSs (lines 26–36): Generate the CFS test sequence set cTss.

4.3 Test Case Generation

We first use the constraint solver tool Z3 to generate the combinations of input
parameter values that satisfy the constraints involved in each test sequence,
then incorporate such parameter values into corresponding SOAP messages,
and finally generate the executable test cases.

The executable test cases on each test sequence are derived from the behavior
model and the decision table for the operations of a web service. The Decision
Table (DT) is a triple DT = <C,E,R>, where the Conditions part (C) specifies
a set of constraints on the input parameters that can be evaluated to true or false,
the Events part (E) contains a set of response events related to the Response
type nodes, the Rules part (R) denotes a specific value of any combination of the
conditions and their corresponding execution events. For a parking fee service
PFC, for example, R3 in Table 1 means that if the login License input parameter
to operation login satisfies a regular expression (i.e., MATCH (login License,

552 C. Sun et al.

Algorithm 2. Test Sequence Generation
Input:

G: Constraint-based Behavior Model ;
gf : a graphml file;

Output:
Tss: a CPS set ;
cTss: a CFS Set ;

1: Let initTss ← ∅, Tss ← ∅, cTss ← ∅, and eleCoverSet ← ∅;
2: Set a Coverage Criterion cc;
3: if cc = Request Node Coverage then
4: Parse G to get ReqNodeSet whose element is a Request node;
5: eleCoverSet ← ReqNodeSet;
6: else if cc = Response Node Coverage then
7: Parse G to get ResNodeSet whose element is a Response node;
8: eleCoverSet ← ResNodeSet;
9: else

10: Parse G to get EdgeSet whose element is an Edge;
11: eleCoverSet ← EdgeSet;
12: end if
13: for each element ele in eleCoverSet do
14: Generate test sequence ts which covers ele;
15: Add ts to initTss;
16: end for
17: while eleCoverSet != ∅ do
18: Get the maximum length ts in initTss;
19: Get the element set eleTCoverSet which ts covers;
20: if eleTCoverSet != ∅ then
21: eleCoverSet ← eleCoverSet - eleTCoverSet;
22: initTss ← initTss - ts;
23: Tss ← Tss + ts;
24: end if
25: end while
26: Parse G to get ReqNodeSet whose element is a Request node;
27: for each node n in ReqNodeSet do
28: if n.Iteration = false then
29: Generate test sequence ts which repeated calls to n;
30: Add ts to cTss;
31: end if
32: if n.preOp != null then
33: Generate test sequence ts which directly calls to n;
34: Add ts to cTss;
35: end if
36: end for

[BJ][A-Y][0-9]{5}) and the login loginTime input parameter is between 0 and
24, then the response event is loginResponse succ. Thus, each rule of the DT
defines a pre-condition of a Response node. Table 1 shows an example DT for
the operation login of PFC, which has three rules, namely R1, R2, and R3.

Constraint-Based Model-Driven Testing of Web Services 553

Table 1. Decision Table for a login operation

Rules

R1 R2 R3

Conditions MATCH(login License, [BJ][A-Y][0-9]{5}) == true F T T

0 <= login loginTime <= 24 T F T

Events loginResponse succ
√

loginResponse fail
√ √

We traverse all the nodes of a test sequence to get their associated con-
straints. For the Request node, we obtain the related input parameter name and
type from CBM and convert these constraints into variable definitions of Z3.
For the Response node, we first parse the decision table for the node, select the
appropriate rule where the event is the target node. Then, we convert those con-
ditions to assert commands of Z3. For example, the loginResponse fail node
has two rules (i.e. R1 and R2 in Table 1). We then run the constraint solver
script to get the solution (combinations of input parameter values) that satis-
fies the constraints mentioned above. Finally, we combine the parameter value
combinations with the test sequences to form the executable test cases.

The above process only considers which element should be covered, with-
out taking into account the state of the transferred data when the element is
executed. Therefore, we propose a set of test suite generation strategies based
on these coverage criteria with or without considering the node state in the
test sequence, namely: ReqN-S and ReqN-NS representing Request Node Cover-
age with and without considering the state of node, respectively; ResN-S and
ResN-NS representing Response Node Coverage with and without considering
the state of node, respectively; E-S and E-NS representing Edge Coverage with
and without considering the state of node, respectively.

4.4 Test Execution

We execute the service under test with the generated test cases wrapped in SOAP
messages. In our experiment, these SOAP messages are coded into a client script.
During the execution, we monitor the invocations of the service operations from
the client script and determine whether an invocation violates the constraints.
If a violation is detected, we record the type of constraint violated by the test
case. Finally, we check whether such violations are as intended by the test cases.

5 Evaluation

5.1 Research Questions

In this study, we aim to answer the following research questions:

554 C. Sun et al.

RQ1 Can CxWSDL effectively describe all the presented behavior constraints?
To answer this question, we examine possible underlying restrictions
and assumption in the experimental web services and evaluate whether
CxWSDL is able to describe them.

RQ2 Can the proposed behavior constraint-based testing technique validate the
behavior conformance of web services from a user perspective?
To answer this question, we evaluate whether our approach can effectively
detect service invocations that violate the behavior constraints during exe-
cution as intended by the test cases, by comparing the expected and actual
invocation violations.

RQ3 What is the difference between the test suites generated using different
coverage criteria in terms of violation detection effectiveness?
To answer this question, we evaluate whether the test suites generated
using different coverage criteria show different detection effectiveness of
invocation violations.

5.2 Subject Programs

We choose three web services to evaluate the effectiveness of our technique. Park-
ing Fee Calculation (PFC) calculates the parking fee according to the vehicle
type (e.g. motorcycle, van, coupe), the parking day (whether weekend or work-
day), the parking time, and whether using a discount coupon. Expense Reim-
bursement System (EXP) assists the sales director of a firm in determining the
fee to be charged to each senior sales manager or sales manager for any exces-
sive mileage in the use of the company car, and in processing reimbursement
requests regarding various kinds of expenses such as airfare, hotel accommoda-
tion, meals, and phone calls. PostalMethods (PostalWS) provides the service of
mailing documents such as letters, invoices, notices, and contracts.

PostalWS is a real-world web service provided by PostalMethods.com
(http://www.postalmethods.com/), while PFC and EXP are two web services
developed based on real-world business specifications. In order to illustrate the
diversity of constraints, we derived another variant for each of PFC and EXP,
denoted as PFC2 and EXP 2, respectively. PFC2 considers an additional Time
Constraint, and EXP 2 excludes the Region Constraint.

5.3 Result and Analysis

Following the process of specifying behavior constraints in CxWSDL, deriving
behavior model, generating and executing test cases using MDGen, we have
tested each of the subject web services and collected experimental data relevant
to the three research questions. Due to space limitation, further details of the
experiments can not be included in the paper.

http://www.postalmethods.com/

Constraint-Based Model-Driven Testing of Web Services 555

Table 2. Summary of violation detection effectiveness

Services Coverage strategy

ReqN-S ReqN-NS ResN-S ResN-NS E-S E-NS

V TS V TS V TS V TS V TS V TS

PFC 73 109 3 4 82 118 5 6 82 118 5 6

PFC2 109 109 4 4 118 118 6 6 118 118 6 6

EXP 21 21 3 3 41 41 6 6 209 209 6 6

EXP 2 1 21 0 3 21 41 3 6 25 209 3 6

PosatlWS 7 26 5 12 85 102 13 20 85 152 13 23

(1) Expressive power of CxWSDL for behavior constraints descrip-
tion. We have analyzed each operation for PFC, PFC2, EXP, EXP 2 and
PostalWS, obtained the behavioral constraints of these experimental ser-
vices. The different types of behavior constraints for the different experi-
mental services are shown in the second column in Table 3.
We can see that the subject services cover all the six types of behavioral con-
straints discussed in Sect. 3. Furthermore, all these constraints are described
in CxWSDL documents, which can be deployed and accessed in the same
way as a WSDL document. In summary, the result shows that CxWSDL
can adequately express the service behavior constraints proposed in this
paper.

(2) Behavior conformance. After generating the behavior model and test
sequences for each subject service, we generate test cases using six test
case generation strategies. Each strategy and the number of test cases in
the associated test suites are shown in Table 2. The test suites contain both
constraint-conforming and constraint-violation test cases, where V refers to
the number of test cases that detected violations and TS refers to the total
number of test cases. In our experiment, once the CxWSDL document is
obtained, it is easy to generate the CBM and test suite automatically using
MDGen. The results show that our approach can detect all the improper
invocations and can correctly locate the violations as determined by the
types of service constraints being violated, as shown in Table 3.

(3) Effectiveness of different coverage criteria. Table 3 shows the violation
detection effectiveness of the different coverage strategies. The number of
related test cases generated using different coverage criteria are given in
the third to eighth columns. The results show that the Response Node and
Edge coverage criteria can cover more types of behavior constraints than
the Request Node coverage criterion.

556 C. Sun et al.

Table 3. Distribution of detected violation by different test case generation strategies

Services Constraints Coverage strategy

ReqN-S ReqN-NS ResN-S ResN-NS E-S E-NS

PFC paraRestriction 0 0 7 1 7 1

preOp 36 1 36 1 36 1

Iteration 37 2 37 2 37 2

paraRelation 0 0 2 1 2 1

PFC2 eT ime 108 3 110 4 110 4

paraRestriction 0 0 7 1 7 1

Iteration 1 1 1 1 1 1

EXP paraRestriction 0 0 20 3 20 3

invokeOp 12 1 3 1 9 1

ipRegion 9 2 18 2 180 2

EXP 2 paraRestriction 0 0 20 3 20 3

invokeOp 1 0 1 0 5 0

PosatlWS paraRestriction 0 0 52 7 52 7

preOp 7 4 7 4 7 4

Iteration 0 1 2 1 2 1

paraRelation 0 0 24 1 24 1

6 Related Work

Many research efforts have been made to address the challenging issues of web
services testing. We describe closely related work from the perspective of exten-
sions to WSDL and model-based testing techniques.

6.1 Extensions to WSDL

A service description contains basic information as well as additional infor-
mation, such as exceptions, operational semantics, and contractual conditions.
Researchers have proposed extensions to WSDL with various purposes, such as
testing and behavioral modeling.

For testing web services, Tsai et al. [15] proposed four types of extensions to
WSDL (input-output dependency, invocation sequence, hierarchical functional
description, and concurrent sequence specification) to support the description of
dependencies. Similarly, Sneed et al. [14] extended WSDL with the pre-condition
assertions, and Jiang et al. [8] extended WSDL using Design-by-Contract for
precisely locating faults when the web service does not meet its requirements.

For modeling service behaviors, Sheng et al. [13] extended WSDL with
Semantic Markup for Web Service (OWL-S) and Web Service Semantics
(WSDL-S) to support the description of service behaviors. Bertolino et al. [3]

Constraint-Based Model-Driven Testing of Web Services 557

extended WSDL with Protocol State Machine to describe the prescribed ordering
of operation invocations. Heckel et al. [6] extended WSDL with graph transfor-
mation rules to support the modeling of both the service’s behavior and the
client’s requirements.

In this work, we have extended WSDL with constraints to support the
description of restrictions or assumptions of service behaviors, and a formal
language is provided for expressing common constraints. Such an extension pro-
vides the basis for testing the conformance of web services to their behavior
constraints from a user perspective.

6.2 Model-Driven Testing of Web Services

Various models have been proposed for testing web services or their composites,
such as Finite State Machine (FSM) [5,9,10], Event Sequence Graph (ESG) [1,
4], and Unified Modeling Language (UML) [17,19].

Keum et al. [9] proposed to model web service behaviors with Extended Finite
State Machine (EFSM) and generate test cases from the EFSM model to achieve
a better test coverage. Endo et al. [5] proposed a model-based testing process for
service-oriented applications, and FSM was used to model and support test case
generation. Similarly, Kiran et al. [10] proposed an FSM model-based approach
to testing composite services, which focuses on the test coverage required for
testing the component services individually and their compositions.

Endo et al. [4] proposed an integrated testing strategy for web services, which
first used ESG to model web services under test, then generated test cases from
the ESG model, finally conducted a coverage analysis after the test case exe-
cution. Belli et al. [1] proposed a model-based approach to testing composite
services, in which message exchanges in a web service were viewed as events
modeled using ESG. These techniques mainly focus on structural testing of web
services or their compositions without considering internal constraints on the
invoked services.

Wu et al. [17] proposed a combination of EFSM and UML sequence diagram,
called EFSM-SeTM, from which various coverage criteria are defined to test all
possible scenarios. Similarly, Zhang et al. [19] proposed an extended UML activ-
ity diagram to model the behavior of BPEL service compositions, and defined
coverage criteria on the model. These techniques focus on coverage testing of
composite services, while ignoring behavior conformance of component web ser-
vices.

In this work, we have proposed a model-driven approach to testing web ser-
vices’ conformance via behavior constraints from a user’s perspective. The service
behavior is modeled using ESG derived from constraints expressed in CxWSDL,
and test cases are generated from the behavior model with respect to coverage
criteria. Unlike the existing model-based testing approaches that mainly focus on
test coverage of web services or their compositions, our approach focuses on the
behavior conformance of web services, and connects the description of behavior
constraints to service executions with executable test cases.

558 C. Sun et al.

7 Conclusion

In this paper, we have proposed a constraint-based model-driven testing app-
roach for testing the behavior conformance of web services. Our approach lever-
ages constraints to provide more accurate descriptions of the behavior logic of
web services and consequently enhances the testing of services through such
behavior-based test case generation and execution. Experimental results have
shown that our approach can effectively generate test cases and detect the ser-
vice invocations that violate the service behavior constraints.

In future work, we plan to consider further types of constraints and carry
out evaluations with more complex real-life web services.

Acknowledgment. This work is supported by the Beijing Natural Science Founda-
tion of China under Grant No. 4162040, the National Natural Science Foundation of
China under Grant No. 61872039, the Aeronautical Science Foundation of China under
Grant No. 2016ZD74004, the Fundamental Research Funds for the Central Universities
under Grant No. FRF-GF-17-B29, and China Postdoctoral Science Foundation under
Grant No. 2017M620617.

References

1. Belli, F., Endo, A.T., Linschulte, M., Simao, A.: A holistic approach to model-based
testing of web service compositions. Softw.: Pract. Exp. 44(2), 201–234 (2014)

2. Belli, F., Linschulte, M.: Event-driven modeling and testing of web services. In:
Proceedings of the 32nd IEEE International Computer Software and Applications
Conference, pp. 1168–1173. IEEE CS (2008)

3. Bertolino, A., Polini, A.: The audition framework for testing web services interop-
erability. In: Proceedings of the 31st International Conference on Software Engi-
neering and Advanced Applications, pp. 134–142. IEEE CS (2005)

4. Endo, A.T., Linschulte, M., Simao, A.D.S., Souza, S.R.S.: Event-and coverage-
based testing of web services. In: Proceedings of the 4th International Conference
on Secure Software Integration and Reliability Improvement Companion, pp. 62–
69. IEEE CS (2010)

5. Endo, A.T., Simao, A.: Model-based testing of service-oriented applications via
state models. In: Proceedings of the 8th IEEE International Conference on Services
Computing, pp. 432–439. IEEE CS (2011)

6. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 4

7. Hou, K.J., Bai, X.Y., Lu, H., Li, S.F., Zhou, L.Z.: Web service test data generation
using interface semantic contract. J. Softw. 24(9), 2020–2041 (2013). (in Chinese)

8. Jiang, Y., Xin, G.M., Shan, J.H., Xie, B.: Research on a testing technology based
on design-by-contract. J. Softw. 15, 130–137 (2004). (in Chinese)

9. Keum, C.S., Kang, S., Ko, I.-Y., Baik, J., Choi, Y.-I.: Generating test cases for web
services using extended finite state machine. In: Uyar, M.Ü., Duale, A.Y., Fecko,
M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 103–117. Springer, Heidelberg
(2006). https://doi.org/10.1007/11754008 7

https://doi.org/10.1007/978-3-540-31984-9_4
https://doi.org/10.1007/11754008_7

Constraint-Based Model-Driven Testing of Web Services 559

10. Kiran, M., Simons, A.J.H.: Model-based testing for composite web services in cloud
brokerage scenarios. In: Ortiz, G., Tran, C. (eds.) ESOCC 2014. CCIS, vol. 508, pp.
190–205. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14886-1 18

11. Kristian, K.: Graphwalker (2017). http://graphwalker.github.io
12. Micskei, Z.: Model-based testing (MBT) (2017). http://mit.bme.hu/∼micskeiz/

pages/mbt.html
13. Sheng, Q.Z., Maamar, Z., Yao, L., Szabo, C., Bourne, S.: Behavior modeling and

automated verification of web services. Inf. Sci. 258(3), 416–433 (2014)
14. Sneed, H.M., Huang, S.: WSDLTest - a tool for testing web services. In: Proceedings

of the 8th IEEE International Workshop on Web Site Evolution, pp. 14–21. IEEE
CS (2006)

15. Tsai, W.T., Paul, R., Wang, Y., Fan, C., Wang, D.: Extending WSDL to facilitate
web services testing. In: Proceedings of the 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), pp. 171–172. IEEE CS (2002)

16. Wang, P.W., Ding, Z.J., Jiang, C.J., Zhou, M.C.: Constraint-aware approach to
web service composition. IEEE Trans. Syst. Man Cybern. Syst. 44(6), 770–784
(2017)

17. Wu, C.S., Huang, C.H.: The web services composition testing based on extended
finite state machine and UML model. In: Proceedings of the 5th International
Conference on Service Science and Innovation, pp. 215–222. IEEE CS (2013)

18. Xu, L., Chen, L., Xu, B.W.: Testing web services based on user requirements. J.
Softw. 36(6), 1029–1040 (2011)

19. Zhang, G., Mei, R., Zhang, J.: A business process of web services testing method
based on UML 2.0 activity diagram. In: Proceedings of the Workshop on Intelligent
Information Technology Application, pp. 59–65. IEEE CS (2007)

https://doi.org/10.1007/978-3-319-14886-1_18
http://graphwalker.github.io
http://mit.bme.hu/~micskeiz/pages/mbt.html
http://mit.bme.hu/~micskeiz/pages/mbt.html

QoS Optimization of Service Clouds
Serving Pleasingly Parallel Jobs

Xiulin Li1, Li Pan1(B), Shijun Liu1(B), Yuliang Shi1,2(B), and Xiangxu Meng1

1 School of Software, Shandong University, Jinan 250101, China
lixiulind@163.com, {panli,lsj,shiyuliang,mxx}@sdu.edu.cn

2 Dareway Software Co., Ltd., Jinan 250101, China

Abstract. A service cloud could improve its QoS (Quality of Service)
by partitioning jobs into multiple tasks and processing those tasks in
parallel. In contrast to processing all jobs with the same degree of par-
allelism (DOP), dividing jobs into different groups and processing them
with varying DOPs may achieve better performance results, especially
focusing on those jobs which have a greater impact on performance of
service clouds. In this paper, we describe a novel differentiated DOP
policy, which divides jobs into several groups identified by jobs’ service
time and sets proper DOPs for different groups of jobs. Then, we pro-
pose a parallel multi-queue and multi-station analytical model for service
clouds with our differentiated DOP policy, to predict important perfor-
mance metrics. Thus this model can guide cloud providers to determine
optimal DOPs and resource allocation schemes for different groups to
improve the total QoS of a service cloud. We also present a new metric,
called Optimized Performance of Groups (OPG), to quantify the level
of performance optimization of every group. The objective is to maxi-
mize the minimum OPG to ensure OPG within a certain range, thereby
enforcing a fair trade-off between all groups. Through extensive experi-
ments, we validate the effectiveness of the proposed differentiated DOP
policy and analytical model.

Keywords: QoS optimization · Service cloud
Pleasingly parallel jobs · Degree of parallelism

1 Introduction

Because of economies of scale and other factors, service clouds usually operate
a large number of resources to provide a wide range of professional services to
users at low prices [5,15]. Thus more and more users are beginning to migrate
their jobs to service clouds. In general, in order to meet requirements of users,
service cloud providers need to provide effective job execution strategies and
resource allocation schemes to accelerate jobs’ execution and thus to improve
QoS (Quality of Service), which is a measurement of the overall performance of a
service cloud and includes response time, waiting time, probability of immediate

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 560–575, 2018.
https://doi.org/10.1007/978-3-030-03596-9_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_41&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_41

QoS Optimization of Service Clouds 561

service, and so on [3,9]. Taking a rendering service cloud as an example, after
accepting a batch of rendering jobs submitted by users, it could divide those
jobs into different groups and process them with proper resources and degrees
of parallelism (DOPs) to speed up the processing of the jobs.

Users

Users

A cloud center

Server pool1

Group N

Group 1

Server poolN

Server pool2

Dividing jobs into several groups
identified by jobs' service time.

 A server pool would serve a
group of jobs on a FCFS basis.

Users submit jobs.

Allocating all servers
into N server pools
to keep consistent with
the number of groups.

 ...
 ...
 ...

 ...

 ...

 ...

 ...
Group 2

Fig. 1. A motivating example for a service cloud with differentiated DOP policy

A special kind of service cloud which serves pleasingly parallel jobs is consid-
ered in this paper, such as rendering service cloud [17], translating service cloud
[16], designing and manufacturing service cloud [4], and so on [13]. A main char-
acteristic of a pleasingly parallel job is that it can be partitioned into multiple
tasks and these tasks are independent of one another and thus can be served
separately by different servers in parallel without any overhead [6]. In contrast
to processing all jobs with the same DOP, dividing jobs into different groups and
processing them with varying DOPs may achieve better QoS, especially focusing
on jobs that have a greater impact on performance of service clouds. However,
for a service cloud provider, determining proper DOPs and resource allocation
schemes for different groups of jobs to achieve optimal QoS is particulary com-
plicated. This is mainly because of the following three reasons:

– The DOP of jobs can make a big difference in a service cloud’s performance.
A higher DOP could accelerate the processing of jobs, and thus improve the
performance of a service cloud. However, it could cause more servers to be
occupied which leads newly arrived tasks to be blocked.

– When the number of servers is fixed, allocating servers to serve different jobs
can also make a big difference in a service cloud’s performance. For example,
if we allocate more servers for one group of jobs, there may not be enough
severs available for other jobs. It could cause more jobs to wait in the buffer
and increase mean response time of the jobs so that the number of completed
jobs may drop in duration.

– When the optimal performance metrics are pursued, such as mean response
time or mean waiting time of service clouds, the level of performance opti-
mization of some groups of jobs may become ignored. This will lead to an
unfair trade-off between different groups.

562 X. Li et al.

For achieving optimal QoS of service clouds, performance analytical models
are usually established for service clouds, which could guide cloud providers to
determine proper DOPs and resource allocation schemes. For dealing with the
problem of QoS optimization for parallel jobs in service clouds, several studies
have used queuing theories to establish analytical models [7,14,19]. These models
could predict the important performance metrics of service clouds to help cloud
providers improve the QoS of parallel jobs with the same DOP, but they cannot
interpret more complicated situations where jobs have varying DOPs.

In this paper, for dealing with the problems of QoS optimization of service
clouds serving jobs with varying DOPs, based on queuing theory, we propose
a parallel multi-queue and multi-station analytical model to evaluate service
clouds’ performance. Based on homogeneous Markov chain model, we solve our
analytical model to obtain an approximate estimation of important performance
metrics such as mean service response time, mean waiting time, and so on. As
different sizes of jobs have diverse impacts on performance of service clouds,
we propose a differentiated DOP policy which divides jobs into several groups
identified by jobs’ service time and sets proper DOPs for different groups of jobs,
as shown in Fig. 1. Then, we divide all servers into multiple server pools to remain
consistent with the number of groups and one server pool serves one group of jobs
on a FCFS (First Come First Serve) basis. Thus, based on our analytical model,
we can determine optimal DOPs and resource allocation schemes for different
groups of jobs, and thus improve the QoS of service clouds. We also propose a
metric, called Optimized Performance of Groups (OPG), to quantify the level of
performance optimization of each group, which is the ratio between the response
time a group of jobs has spent in a service cloud without differentiated DOP
policy and the response time this group would have spent in that service cloud
with differentiated DOP policy. The objective is to maximize the minimum OPG
to ensure OPG within a certain range, thereby enforcing a fair trade-off between
all groups. Through extensive simulations based on synthetic data, we validate
the effectiveness of our analytical model and differentiated DOP policy.

The rest of the paper is organized as follows. Section 2 describes our differen-
tiated DOP policy. Section 3 describes our parallel multi-queue and multi-station
model and solves our model to obtain performance metrics for a service cloud.
Section 4 describes our proposed performance metric. Section 5 presents and dis-
cusses analytical results as well as simulation results. We discuss the related
works in Sect. 6. Finally, we state concluding remarks and future work in Sect. 7.

2 Differentiated DOP Policy

Dividing jobs into different groups and processing them with varying DOPs may
achieve better QoS, especially focusing on jobs that have a greater impact on
performance of service clouds. In this paper, we describe a differentiated DOP
policy in order to set proper DOPs for different jobs. Since different sizes of
jobs have a diverse impact on performance, it could improve the QoS of service
clouds obviously if we set a higher DOP for jobs which require longer service

QoS Optimization of Service Clouds 563

time. In this work, we divide jobs into N groups which are {group1, group2, . . . ,
groupN} identified by jobs’ service time. There are N +1 points of service time:
{t0, t1, . . . , tN} and t0 < t1, . . . , < tN . If the service time of a job is within the
range of ti−1 to ti, this job will be divided into groupi, so that service time of
jobs in groupi is within the range of ti−1 to ti, for 1 ≤ i ≤ N . Then, we could set
a proper DOP for each group of jobs and use di to denote the DOP of groupi.

We only consider the case of identical servers and allocate c identical servers
contained in a service cloud into N server pools to remain consistent with the
number of groups, which are {pool1, pool2, . . . , poolN}, as shown in Fig. 1. Servers
in a server pool would serve a group of jobs on a FCFS basis, e.g., pooli contains
ci servers that serve jobs from groupi. Therefore, we have:

N∑

i=1

ci = c (1)

In order to achieve specific QoS and save costs, we need to determine optimal
settings, such as resource allocation schemes or DOP settings. Thus, a proper
analytical model is needed to predict the performance metrics with different
resource allocation schemes and DOP settings.

3 Analytical Model Formulation

In this work, based on queuing theory, we propose a parallel multi-queue and
multi-station model to evaluate the performance of service clouds serving jobs
with varying DOPs, as shown in Fig. 2. N queues can be constructed for a service
cloud with differentiated DOP policy, which are {queue1, queue2,. . . , queueN}.
In queuei (1 ≤ i ≤ N), ci servers in server pooli serve jobs from groupi.

 ...

 ...

 ...
 ...

 ..
.

 ...

 ...

 ...

 ..
.

 ..
.

λ1

λN

λ2

Job arrivals

Buffer

Buffer

Buffer

d1μ1

d1μ1

d1μ1

Sever stations

Sever stations
dNμN

dNμN

dNμN

 Jobs served

 Jobs served

 ...

 ...

 ...
Dividing jobs identified
by jobs' service time.

Fig. 2. A parallel multi-queue and multi-station model for jobs with varying DOPs

In order to obtain performance metrics of a service cloud, we need to predict
performance metrics of all queues in that service cloud. For queuei that is any one
of all queues, before jobs are partitioned, we assume that job arrivals follow an
approximate Poisson process with a rate of λi and service time is an approximate

564 X. Li et al.

exponentially distributed with a rate of μi, as is widely assumed in previous
works [20]. This is because if job arrivals follow a Poisson process and service
time is exponentially distributed, analytical results of these jobs can supply
approximate lower bounds in performance prediction for other distributions of
job arrivals, such as random distributions or normal distributions [14].

As discussed above, before jobs are partitioned, it can be concluded that
queuei can be modeled as an M/M/ci queuing system. However, after jobs are
partitioned into tasks, the actual probability distribution of service time would
not follow the original distribution. As tasks will occupy more servers, the num-
ber of busy servers is different from the number of jobs in service clouds. Thus,
we need to carefully establish a parallel multi-station analytical model for queuei

serving the tasks partitioned from the original jobs, which is an important part
of the parallel multi-queue and multi-station model.

3.1 Multi-station Model for Queuei

Based on M/M/ci queuing model of queuei, we describe a parallel multi-station
model for queuei, as shown in Fig. 2. In this work, a partition method is designed
to help us establish a multi-station model for queuei. All ci servers contained
in queuei are divided into di stations of servers, which are {Ci1, Ci2, . . . , Cid}.
We use cij (j ∈ {1, . . . , di}) to denote the number of servers contained in the
station Cij . Here when dividing servers into multiple stations, a main principle
we use is to equally divide all servers into di stations. Therefore, each server
station consists of the same number of servers, which means ci1 = ci2 = . . . =
cid = �ci/di�. At each station, tasks will be served on a FCFS basis by one of
the servers in that station. If at least one server is idle in each server station at
the time when a job arrives, tasks of this job will get into service immediately.
If all servers are busy at the time when a job arrives, the job will wait in the
buffer. We assume that the buffer size of a service cloud is unlimited, so that
jobs won’t be lost. Based on our partition method, we describe how to obtain
the relevant parameters of tasks in every station.

If a system could be modeled as an M/M/c queuing system and jobs in this
system could be equally partitioned into k (k > 0) tasks, as the property of expo-
nential distribution, the service time of tasks is also exponentially distributed
[2]. However, its base has changed, and the mean service time of the tasks is
1/k of the mean job service time. In our analytical model, before entering into
servers, each job is equally partitioned into di tasks which have the same service
time. Then by dividing all servers equally into di stations, after an arriving job
is equally split into di tasks, each task could be assigned to one of the di sta-
tions individually and no two stations could accept a same task. Thus all the
stations have the same workload to serve and since they have the same num-
ber of servers with the same processing capability, they would achieve the same
performance metrics in processing these tasks. Based on the above description,
we can conclude that the service time in each server station is an independent
identically distributed (IID) random variable having negative exponential dis-
tributions, with mean service time of 1/(diμi). The arrival of each job is the

QoS Optimization of Service Clouds 565

same as its tasks. So task arrivals follow a Poisson process, which means the
task interarrival time is exponentially distributed with a rate of λi, the same as
the primitive job. The traffic intensity ρi denotes the average proportion of time
for which each of the servers is occupied. Thus, the traffic intensity of one server
station could be defined as ρi = λi/(ci1diμi), where for practical reasons, it is
known that ρi < 1.

As discussed above, we can establish an M/M/ci1 queuing system for each
station. All di stations have the same processing capability and the same work-
load, so that the performance metric of one station can represent the performance
of other stations as well as queuei. Thus we can analyze the server station Ci1 to
obtain its performance metrics through the proposed analytical model and then
conclude performance metrics of the whole queuei from that.

In order to construct the analytical functions to calculate the important
performance metrics, we need to calculate the steady-state probabilities of the
number of tasks in the M/M/ci1 queuing system of server station Ci1, which
can be figured out by using a homogeneous Markov chain.

Underlying Markov Model. In this work, we establish a homogeneous
Markov chain for server station Ci1 to calculate the important performance
metrics. We model the number of tasks in server station Ci1 (both those in ser-
vice and those queued but not yet served) at the moments immediately before
a new task arrival as a Markov point. Then by enumerating these instances as
{0, 1, 2, . . . , n−1, n}, we can obtain a homogeneous Markov chain. Therefore, we
can calculate the steady-state probabilities of the number of tasks in the queuing
system to obtain the performance metrics of this server station.

When the steady-state system stays at state n, we use Pn (0 ≤ n) to denote
the probability of having n tasks in the system immediately before a new task
arrives. The balance equations can be established as:

diμiP1 = λiP0 (2)

(n + 1)diμiPn+1 + λiPn−1 = (λi + ndiμi)Pn (1 ≤ n ≤ ci1) (3)

ci1diμiPn+1 + λiPn−1 = (λi + ci1diμi)Pn (ci1 < n) (4)

The normalization equation of the transition probability matrix P is:

∞∑

j=0

Pj = 1 (5)

As we have defined above, the traffic intensity for Ci1 server station is:

ρi = λi/(ci1diμi) (ρi < 1) (6)

566 X. Li et al.

Using recurrence relations to solve differential equation (2) (3) (4) via (5)
(6), in which Pn can be deduced from Pn−1 that we have known, we can obtain
the steady-state probability as:

P0 = [
ci1−1∑

k=0

1
k!

(
λi

diμi
)k +

1
ci1! × (1 − ρi)

(
λi

diμi
)ci1]−1 (7)

Pn =

{
1
n! (

λi

diμi
)nP0 (n ≤ ci1)

1
ci1!×ci1n−ci1 (λi

diμi
)nP0 (ci1 < n)

(8)

Calculating Performance Metrics for Queuei . Once we have obtained the
steady-state probabilities, which are the basis of steady-state queuing service sys-
tem, we can use them to construct analytical functions to calculate the important
performance metrics concerning Ci1 server station. As previously discussed, the
performance metrics of one server station can be taken as the performance met-
rics of queuei. Now we illustrate how to calculate the following five important
performance metrics, which are the mean number of tasks queued in the buffer,
the mean number of tasks in queuing system, mean response time, mean waiting
time, and the probability of immediate service.

We use Lqi to denote the expectations of the mean number of jobs queued
in the buffer of queuei, which is the waiting queue length. Therefore:

Lqi =
∞∑

n=ci1+1

(n − ci1)Pn (9)

We use Lsi to denote the expectations of the mean number of all jobs cur-
rently in queuei (including both jobs being served in servers and jobs waiting in
the buffer). Therefore:

Lsi =
λi

diμi
+ Lqi (10)

We use Wsi to denote mean response time of queuei, which is the sum of
jobs’ service time and jobs’ waiting time. We have discussed that the average
number of all jobs in the system is Lsi, thus according to Little’s Law [8]:

Wsi =
Lsi

λi
(11)

As is known, when a job arrives, if all servers are busy, the job will wait in
the buffer until it can be served by an idle server. Thus, according to Little’s
Law, the average waiting time can be calculated as:

Wqi =
Lqi

λi
(12)

At the time when a new job arrives, if there is no job waiting in the buffer and
at least one server out of a station is idle, the new job will be served immediately.

QoS Optimization of Service Clouds 567

Thus the probability of immediate service PIi can be calculated as:

PIi =
ci1−1∑

n=0

Pn (13)

3.2 Calculating the Performance Metrics for a Service Cloud

Once the performance metrics of queuei are obtained, we can use them to calcu-
late the performance metrics concerning a service cloud, which are the mean of
all jobs’ performance value. Using Ws to denote mean response time of a service
cloud and Qi (i ∈ {1, . . . , N}) to denote the number of jobs contained in queuei.
Mean response time of a service cloud can be calculated as:

Ws =
∑N

i=1 Qi · Wsi∑N
i=1 Qi

(14)

Using Wq to denote mean waiting time of a service cloud and Wqi to denote
mean waiting time of queuei, mean waiting time of a service cloud can be cal-
culated as:

Wq =
∑N

i=1 Qi · Wqi∑N
i=1 Qi

(15)

Using PI to denote the probability of immediate service of a service cloud
and PIi to denote the probability of immediate service of queuei, the probability
of immediate service of a service cloud can be calculated as:

PI =
∑N

i=1 Qi · PIi∑N
i=1 Qi

(16)

Based on the analytical results, we can determine proper DOP settings and
resource allocation schemes to achieve the optimal mean response time, mean
waiting time and the probability of immediate service, and thus to improve the
QoS of service clouds.

4 The Proposed Performance Metric

However, when optimal performance metrics are pursued, such as mean response
time or mean waiting time of service clouds, the level of performance optimiza-
tion of some groups may be ignored. This will lead to an unfair trade-off between
different groups. Therefore, we propose a new metric, called Optimized Perfor-
mance of Groups (OPG), which is the ratio between the response time a group
of jobs has spent in a service cloud without differentiated DOP policy and the
response time this group would have spent in that service cloud with differenti-
ated DOP policy. Using Wspi to denote the response time that groupi has spent
in a service cloud without differentiated DOP policy and Wsdi to denote the

568 X. Li et al.

response time that groupi of the jobs would have spent in a service cloud with
differentiated DOP policy. Hence, OPGi can be formulated as follows:

OPGi =
Wspi

Wsdi
(17)

The metric OPGi is used to evaluate the level of performance optimization of
groupi. OPGi is within the range of (0, +∞), and the lower it is, the worse level
of performance optimization the groupi has. If the minimum OPG of all groups
is less than a certain value which is a lower bound of the level of performance
optimization, we need to improve the OPG of the group which has the minimum
OPG of all groups by determining a higher DOP or allocating more servers to this
group. Our final objective is to maximize the minimum OPGi to ensure OPGi

within a certain range, thereby enforcing a fair trade-off between all groups when
mean response time of all jobs are optimized.

5 Experimental Evaluation

In order to evaluate the effectiveness of our proposed differentiated DOP policy
and analytical model, we have built a discrete event simulator of the cloud server
system and conducted extensive experiments based on synthetic data extracted
from real-world rendering jobs.

5.1 Simulation Methodology and Parameter Settings

There are four main purposes of our experimental simulations. First, the effec-
tiveness of our proposed differentiated DOP policy is validated by comparing it
to the performance of a service cloud without the policy. Second, the effective-
ness of our proposed analytical model is validated by investigating whether the
performance metrics predicted by the analytical model are close to the simu-
lation results. Third, we examine how the parameter settings, such as different
combinations of DOP settings or resource allocation schemes, can improve the
QoS of a service cloud. Finally, we investigate whether the minimum OPG of all
experiments is higher than the lower bound of the level of performance optimiza-
tion and if not, we had better maximize the minimum OPGi of that experiment
by increasing the DOP or allocating more servers to groupi to enforce a fair
trade-off between all groups. For these aims, we built a simulator, in which we
can change the number of servers, resource allocation schemes and DOPs.

In all of the simulations, the number of jobs used in each simulation is above
10000, and the testing time is more than 168 h (7 days). The service time of all
jobs is collected from our working rendering service platform, which is within
the range of [70 min, 130 min). Jobs are assigned into three groups identified by
jobs’ service time. Jobs’ service time of group1 is within the range of [70 min,
90 min) and mean service time is 80 min. Jobs’ service time of group2 is within the
range of [90 min, 110 min) and mean service time is 100 min. Jobs’ service time of
group3 is within the range of [110 min, 130 min] and mean service time is 120 min.

QoS Optimization of Service Clouds 569

The jobs’ service time of all groups is approximate exponentially distributed.
Considering the characteristics of real-world rendering job arrivals, we assume
that job arrivals of all groups follow an approximate Poisson process and the
mean job interarrival time of group1, group2 and group3 are 1.5 min, 1.4 min
and 1.35 min respectively. Then, we could set a DOP for each group. Besides, we
assume that the lower bound of the level of performance optimization is 0.9. Jobs
in service clouds won’t be lost as buffer size without limit. These settings are in
reasonable sizes considering the real-world rendering service cloud and they are
kept the same for all of the simulations. For other parameters concerning each
simulation, we will explain them in the respective subsections.

5.2 Effect of Resource Allocation on Performance

Table 1. Resource allocation schemes

Experiment number NoS in group1 NoS in group2 NoS in group3 All servers

Experiment 1 58 76 106 240

Experiment 2 58 84 98 240

Experiment 3 62 80 98 240

Experiment 4 62 84 94 240

Experiment 5 66 76 98 240

Experiment 6 66 80 94 240

In this subsection, we investigate the influence of different resource allocation
schemes on a service cloud’s performance. Cloud providers need to determine how
to allocate servers to serve different groups to achieve an optimal performance
of a service cloud. For this aim, we randomly select six experiments, which have
different resource allocation schemes for three groups, and investigate which
scheme has better mean response time, mean waiting time or OPG. Experiment
settings are introduced in Table 1. Besides, we use ‘NoS’ to denote the number
of servers.

Response time, waiting time and the minimum OPG are shown in Table 2. It
shows that the resulting mean response time and mean waiting time of all jobs
are different with the change of resource allocation schemes. A service cloud
would get an optimal response time and waiting time when 62 servers are allo-
cated to serve group1, 80 servers are allocated to serve group2 and 98 servers
are allocated to serve group3. We find that compared with other experiments,
groups in experiment 3 don’t have higher traffic intensity. We could observe that
allocating fewer servers to serve the group in which jobs require shorter service
time would lead to a poor result, as the change of NoS has a greater influence
in traffic intensity of that group.

Table 2 also shows that the simulation results are less than the analytical
results when the traffic intensity is bigger. This is mainly because the following

570 X. Li et al.

Table 2. Effect of resource allocation on performance

Experiments Method Response time Waiting time The minimum OPG

1 Simulation 55.41 5.25 0.87

Analytical 57.36 7.35

2 Simulation 53.54 3.37 0.87

Analytical 55.50 5.50

3 Simulation 52.50 2.32 0.96

Analytical 54.05 4.05

4 Simulation 54.35 4.18 0.91

Analytical 56.29 6.29

5 Simulation 53.22 3.06 0.91

Analytical 55.91 5.91

6 Simulation 53.30 3.14 0.91

Analytical 56.45 6.45

two reasons. First, queuing theory has assumed that the jobs’ service time is
within the range of [0, +∞). In reality, the jobs’ service time of one group is
within the certain range, e.g., jobs’ service time of group1 is within the range of
[70 min, 90 min). Obviously, the jobs in each group don’t contain the jobs with a
service time that exceeds the upper limit or that is under the lower limit, which
has a significant impact on performance. Second, as the service time of all jobs is
collected from real-world working rendering service platform, jobs’ service time
in each group is not completely following exponential distribution. So analytical
results and simulation results show little difference, which is less than 10 min.
More importantly, our analytical model can accurately indicate the trend of
performance change and its results can supply approximate lower bounds in all
situations. Thus, we can conclude that the analytical model could help us to
determine proper resource allocation schemes to achieve optimal QoS of service
clouds.

The resulting minimum OPG of all experiments is also detailed in Table 2.
OPG of experiments 1 and 2 are less than 0.9. In this situation, we had better
allocate more servers to the group which has the minimum OPG to ensure a fair
trade-off between all groups.

5.3 Effect of DOP on Performance

In this subsection, we investigate the influence of different combinations of DOP
settings on response time and the immediate service rate. We also investigate
the minimum OPG of every experiment to ensure a fair trade-off between all
groups. 240 servers contained in a service cloud are allocated to three groups.
Considering the same traffic intensity, we allocate 60 servers to serve group1,
80 servers to serve group2 and 100 servers to serve group3. In all cases, the

QoS Optimization of Service Clouds 571

traffic intensity is reasonably set as ρ = 0.88. We then select 8 experiments,
that contain different combinations of DOP settings. Experiment settings are
introduced in Table 3. Experiment 1 and 5 are comparative experiments which
won’t use our differentiated DOP policy. Then we compare the performance
metrics of experiment 2, 3, and 4 with experiment 1. We also compare the
performance metrics of experiment 6, 7, and 8 with experiment 5.

Table 3. Experiment settings with varying DOPs and their minimum OPG

Experiments DOP of
group1

DOP of
group2

DOP of
group3

The minimum OPG

1 2 2 2

2 2 2 5 0.93

3 2 5 2 0.93

4 5 2 2 0.97

5 4 4 4

6 2 4 10 0.47

7 4 4 10 0.85

8 4 5 10 0.85

The minimum OPG of all experiments is shown in Table 3. The OPG of
experiment 6 is 0.47, which means at least one group’ performance is seriously
worse than before. Thus, even if mean response time of all jobs is better than
before, this parameter setting is not recommended. In this situation, we had
better set a higher DOP to the group, which has the minimum OPG in all
groups, to ensure a fair trade-off between all groups.

E1 E2 E3 E4 E5 E6 E7 E8
Experiment Number

20

30

40

50

60

R
es

po
ns

e
T

im
e

Analytic Results
Simulation Results

Fig. 3. Mean response time

E1 E2 E3 E4 E5 E6 E7 E8
Experiment Number

0.4

0.5

0.6

0.7

0.8

0.9

Pr
ob

. o
f

Im
m

ed
ia

te
 S

er
vi

ce Analytic Results
Simulation Results

Fig. 4. Immediate service rate

The resulting response time is shown in Fig. 3. It can be noted that in contrast
to processing all jobs with the same DOP, dividing jobs into different groups
and processing them with varying DOPs has diverse service response time. As

572 X. Li et al.

different groups of jobs have different influences on performance, we find that
setting a higher DOP to a group that requires longer service time could achieve
optimal performance, which proves the validity of our differentiated DOP policy.

Comparing with experiment 5, experiment 6 has poor performance results
which include mean response time and the minimum OPG. Thus, we need to set
a higher DOP for the group that has the minimum OPG of all groups to opti-
mize mean response time, as shown in experiment 7 or 8. Therefore, analytical
model could be helpful in setting DOPs for different groups to achieve optimal
performance.

The probability of immediate service is shown in Fig. 4. In contrast to treating
all jobs with the same DOP, treating jobs with varying DOPs produces an inferior
immediate service rate. With the increasing of DOP, immediate service rate of
all jobs decrease rapidly. Thus, when pursuing optimal immediate service rate,
DOP should be limited.

Figures 3 and 4 also show that analysis results given by our proposed analyt-
ical model are close to simulation results and the results can supply approximate
lower bounds in all situations. Thus, the analytical functions are valid for esti-
mating response time and the probability of immediate service. Finally, we can
conclude that the analytical model could help us to determine proper DOPs for
different group to achieve optimal QoS of service clouds.

6 Related Work

With the rapid development of cloud computing technologies, there are more
and more researchers focusing on optimizing QoS of a cloud center by estab-
lishing analytical models. Performance analysis generally focuses on evaluating
a system’s key performance metrics such as response time, throughput, and so
on [18].

In [9,20], the cloud center is modeled as a queuing system with single task
arrival and finite buffer capacity. For evaluating the performance of cloud com-
puting, these analytical models obtain accurate estimations of the complete prob-
ability distribution of response time and other important performance indicators.
Based on these accurate estimations, cloud providers could determine proper
buffer space for different classes of tasks to avoid sudden long delay.

[11] and [10] propose analytical performance models that address the com-
plexity of cloud centers. It has been assumed that a cloud center has a number
of servers and each server has been configured as a number of virtual machines
(VMs). They obtain a detailed assessment of cloud center performance. Sev-
eral performance metrics are defined and evaluated to analyze the behavior of a
cloud data center: utilization, availability, waiting time, and responsiveness [1].
A resiliency analysis is also provided to take into account load bursts. However,
these analytical models cannot work well with parallel jobs.

In [12], the analysis model has been extended to a system where jobs consist
of multiple tasks that have general independent service time distributions. The
model could account for the deterioration of performance due to the workload

QoS Optimization of Service Clouds 573

at each node. In [2], the authors propose a mathematical model to predict the
performance of parallel jobs based on a queuing system. This model has a good
accuracy in predicting execution time and waiting time. In [19], the researchers
focuses on the jobs that may consist of multiple tasks with each task requiring a
VM for its execution. It has derived job blocking probabilities and distribution of
the utilization of resources as a function of the traffic load under various scenarios
for systems with both homogenous and heterogeneous VMs. In a previous study,
we have proposed an approximate analytical model for cloud computing centers
serving parallelizable jobs using M/M/c/r queuing systems [14]. This model has
a good accuracy in predicting metrics of parallelizable jobs with the same DOP.
The above models concern parallel jobs, but they didn’t consider the problem of
differentiated processing of jobs.

As discussed above, current performance analysis models cannot deal with
the situations of service clouds serving parallel jobs with varying DOPs. Our
approach can establish an analytical model for jobs with varying DOPs. Using
this model, we can obtain an accurate estimation of the complete probability
distribution of response time, waiting time and probability of immediate service,
which could guide cloud providers to determine optimal DOPs and resource
allocation schemes to achieve specific QoS of service clouds.

7 Conclusions and Future Work

Dividing jobs into different groups and processing them with varying DOPs could
achieve better performance results, especially focusing on jobs that have a greater
impact on performance of service clouds. In this paper, for a service cloud that
serves pleasingly parallel jobs, we propose a differentiated DOP policy, which
divides jobs into several groups identified by jobs’ service time and sets proper
DOPs for different groups of jobs. Then, we propose a parallel multi-queue and
multi-station analytical model for a service cloud with our proposed policy to
predict performance metrics. This model could help us make optimized decisions
in determining DOPs and resource allocation schemes for different groups of jobs,
and thus to improve the QoS of a service cloud. Besides, we present a metric
named OPG, which quantifies the level of performance optimization of every
group. The objective is to maximize the minimum OPG, thereby enforcing a fair
trade-off between all groups. Through extensive experiments based on synthetic
data extracted from real-world rendering jobs, we validate the effectiveness of
our differentiated DOP policy and analytical model.

For the future work, we plan to extend our research to QoS optimization of
service clouds which contain composite parallelizable services. Besides, we also
plan to further validate our approach by collecting workload traces from more
real-world cloud systems.

Acknowledgments. The authors would like to acknowledge the support pro-
vided by the National Key Research and Development Program of China (2017YF
A0700601, 2018YFB1003800), the Key Research and Development Program of Shan-
dong Province (2017CXGC0605, 2017CXGC0604, 2018GGX101019, 2016GGX106001,

574 X. Li et al.

2016GGX101008, 2016ZDJS01A09), the Natural Science Foundation of Shandong
Province for Major Basic Research Projects (No. ZR2017ZB0419), the Young Schol-
ars Program of Shandong University, and the TaiShan Industrial Experts Program of
Shandong Province (tscy20150305).

References

1. Bruneo, D.: A stochastic model to investigate data center performance and QoS in
IaaS cloud computing systems. IEEE Trans. Parallel Distrib. Syst. (TPDS 2014)
25(3), 560–569 (2014)

2. Chao, S., et al.: Predicting the performance of parallel computing models using
queuing system. In: Proceedings of International Symposium on Cluster, Cloud
and Grid Computing (CCGrid 2015), pp. 757–760 (2015)

3. Cordeiro, T.D., et al.: Open source cloud computing platforms. In: Proceedings
of International Conference on Grid and Cooperative Computing (GCC 2010),
Nanjing, China, pp. 366–371 (2010)

4. Dazhong, W., et al.: Cloud-based design and manufacturing: a new paradigm in
digital manufacturing and design innovation. Comput.-Aided Des. 59, 1–4 (2015)

5. Feng, G., Buyya, R.: Maximum revenue-oriented resource allocation in cloud. Int.
J. Grid Util. Comput. 7(1), 12–21 (2016)

6. Gunarathne, T., et al.: Cloud computing paradigms for pleasingly parallel biomedi-
cal applications. In: Proceedings of ACM International Symposium on High Perfor-
mance Distributed Computing (HPDC 2010), Chicago, Illinois, pp. 460–469 (2010)

7. Haghighi, A.M., Mishev, D.P.: A parallel priority queueing system with finite
buffers. J. Parallel Distrib. Comput. 66(3), 379–392 (2006)

8. Keilson, J., Servi, L.D.: A distributional form of little’s law. Oper. Res. Lett. 7(5),
223–227 (1988)

9. Khazaei, H., et al.: Performance analysis of cloud computing centers using
m/g/m/m+r queuing systems. IEEE Trans. Parallel Distrib. Syst. (TPDS 2012)
23(5), 936–943 (2012)

10. Khazaei, H., et al.: Analysis of a pool management scheme for cloud computing
centers. IEEE Trans. Parallel Distrib. Syst. (TPDS 2013) 24(5), 849–861 (2013)

11. Khazaei, H., et al.: A fine-grained performance model of cloud computing centers.
IEEE Trans. Parallel Distrib. Syst. (TPDS 2013) 24(11), 2138–2147 (2013)

12. Khazaei, H., et al.: Performance of cloud centers with high degree of virtualization
under batch task arrivals. IEEE Trans. Parallel Distrib. Syst. (TPDS 2013) 24(12),
2429–2438 (2013)

13. Li, S., et al.: Energy-aware scheduling of embarrassingly parallel jobs and resource
allocation in cloud. IEEE Trans. Parallel Distrib. Syst. (TPDS 2017) 28(6), 1607–
1620 (2017)

14. Li, X., et al.: Performance analysis of cloud computing centers serving parallelizable
rendering jobs using m/m/c/r queuing systems. In: Proceedings of International
Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA, USA,
pp. 1378–1388 (2017)

15. Liu, C., Shang, Y., Duan, L., Chen, S., Liu, C., Chen, J.: Optimizing workload
category for adaptive workload prediction in service clouds. In: Barros, A., Grigori,
D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 87–104.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48616-0 6

https://doi.org/10.1007/978-3-662-48616-0_6

QoS Optimization of Service Clouds 575

16. Mai, X.T., et al.: Policy-aware optimization of parallel execution of composite
services. In: Proceedings of International Conference on Services Computing (SCC
2015), New York, USA, pp. 106–113 (2015)

17. Pan, L., An, B., et al.: Nash equilibrium and decentralized pricing for qos aware
service composition in cloud computing environments. In: Proceedings of Interna-
tional Conference on Web Services (ICWS 2017), Honolulu, HI, USA, pp. 154–163
(2017)

18. Seneviratne, S., Levy, D., Buyya, R.: A taxonomy of performance prediction sys-
tems in the parallel and distributed computing grids. Eprint Arxiv arXiv:1307.2380
(2013)

19. Vakilinia, S.: Modeling of the resource allocation in cloud computing centers. Int.
J. Comput. Telecommun. Netw. 91, 453–470 (2015)

20. Yang, B., Tan, F., Dai, Y.-S., Guo, S.: Performance evaluation of cloud service
considering fault recovery. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom
2009. LNCS, vol. 5931, pp. 571–576. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10665-1 54

http://arxiv.org/abs/1307.2380
https://doi.org/10.1007/978-3-642-10665-1_54
https://doi.org/10.1007/978-3-642-10665-1_54

Estimating the Performance
of Cloud-Based Systems Using
Benchmarking and Simulation
in a Complementary Manner

Haan Johng1(B), Doohwan Kim1, Tom Hill2, and Lawrence Chung1

1 University of Texas at Dallas, Richardson, TX 75080, USA
{haanmo.johng,doohwan.kim,chung}@utdallas.edu
2 Fellows Consulting Group, LLC, Dallas, TX, USA

tom@fellowsconsultinggroup.com

Abstract. Estimating future runtime performance and cost is an essen-
tial task for Chief Information Officers in deciding whether to adopt a
Cloud-based system. Benchmarking and simulation are two techniques
that have long been practiced towards reliable estimation. Benchmark-
ing involves (potentially) high cost and time consumption, but often-
times yields more reliable estimates than simulation, while the simula-
tion is much cheaper and faster than benchmarking, but less reliable.
In order to deal with this dichotomy, we propose a complementary app-
roach to estimating the performance of Cloud-based systems, whereby
performance estimates can be obtained in a fast, inexpensive, and also
reliable way. In this approach, the ontological concepts of a benchmark
model, whose benchmark results have already been obtained, are mapped
into those of a simulation model, while the mismatches and similarities
between the two models are taken care of, through measures of similarity
between the two. This ontology-driven construction of simulation models
is intended not only to yield more reliable simulation results but also to
help better explain why the simulation results may, or may not, be reli-
able. To validate our complementary approach, simulation models are
constructed using CloudSim, and the simulation results are compared
against the corresponding benchmark results, by using our prototype
tool, collected from Amazon Web Service (AWS) and Google Compute
Engine (GCE) by using the Yahoo! Cloud Serving Benchmark (YCSB)
tool. These experiments show that the simulation results show about
90% accuracy with respect to the benchmark results, and additionally
we feel we could better explain why this happens.

Keywords: Cloud computing · Benchmark · Simulation
Goal-orientation · Complementary approach

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 576–591, 2018.
https://doi.org/10.1007/978-3-030-03596-9_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_42&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_42

Estimating the Performance of Cloud-Based Systems 577

1 Introduction

Cloud computing is being increasingly adopted in various real-life software sys-
tems, thanks to its potential benefits, such as cost reduction, improved perfor-
mance, elasticity, and scalability - the so-called non-functional characteristics.
In deciding whether to adopt Cloud computing in the early design phase, esti-
mating such non-functional characteristics in a fast, inexpensive, and reliable
manner is an essential task for Chief Information Officers (CIOs) with limited
time constraints and budgets, especially when initial requirements are ambigu-
ous, incomplete, inconsistent and changing [1–5].

Cloud benchmarking and simulation are two techniques long practiced for
performance estimation. Although Cloud benchmarking typically yields reli-
able estimates, it is potentially expensive and time-consuming to use Cloud
resources to process benchmark transactions. The nature of requirements in the
early design phase (e.g., the unclear and changing number of concurrent users)
increases the time and cost of benchmarking various architectural designs in
Clouds [6–9]. On the other hands, Cloud simulation, which is faster and cheaper
than benchmarking, has a difficulty of ensuring reliability and understandabil-
ity of the simulation results, because of the reduced fidelity of the simulation
model. For example, when representing the CPU clock speed, Cloud simulations
tend to use Million Instructions Per Second (MIPS), while real-world Clouds use
Gigahertz (GHz) [10–12].

To deal with this dichotomy, we propose a complementary approach, using
both benchmarking and simulation, to estimating the performance of Cloud-
based systems, whereby performance estimates can be obtained in a fast, inex-
pensive, and also reliable manner. Our approach is complementary in the sense
that benchmarks enhance reliability and understandability of the simulation
model, and simulation results reduce the cost and time for benchmarking Clouds
by narrowing down the architecture design space. In our approach, the ontologi-
cal concepts of a benchmark model, whose benchmark results have already been
collected, are mapped into those of a simulation model, while similarities between
the two models are considered and highlighted to help better explain why the
simulation results may, or may not, be reliable. This work draws on our previous
work [9,13,14], which used benchmarking neither for guiding the development
nor estimating the reliability of simulation models, but for simply comparing
the results of simulation against its corresponding benchmarking results, even
this only if available.

For validating our complementary approach, simulation models are con-
structed by using CloudSim, and the simulation results are compared against
the corresponding benchmark results obtained from benchmarking Amazon Web
Service (AWS) and Google Compute Engine (GCE), by using the Yahoo! Cloud
Serving Benchmark (YCSB) tool and a Cassandra NoSQL Database. In our
experiments, the simulation results show about 90% accuracy regarding the
benchmark results. Additionally, we also feel we could better explain why or
why not our simulation results are reliable, and our approach helps evaluate and
validate Cloud design alternatives in the early design stages.

578 H. Johng et al.

In the rest of this paper, Sect. 2 provides related work, and Sect. 3 presents our
proposed approach. Section 4 describes our experiments, followed by observations
and discussions in Sect. 5. In the end, a summary of contributions and future
directions are described.

2 Related Work

The key distinctive of our work lies in the use of a complementary approach, using
benchmarks and simulations together, in estimating the performance of Cloud-
based systems in a fast, inexpensive, and also reliable manner. More specifically,
our work proposes a five-step process for capturing the ontologies of estimation,
benchmark, and simulation, and mapping the benchmark ontologies to simula-
tion ontologies, while considering the similarities, and mismatches, between the
two. Our work also provides a prototype tool for our semi-automated approach.

While there seems to be little or no other work that proposes a comple-
mentary approach to estimating the performance of Cloud-based systems in a
fast, inexpensive, and also reliable manner, some parts of our work share some
similarity with some previous work, although they deal with only one, without
regard to the other.

Concerning benchmarking, Cloud benchmark studies show the benchmark-
based approach is expensive and time-consuming, leading to unsatisfaction for
the CIOs with low budgets and restrictive time constraints [6–8]. Moreover,
a case study [15] described difficulties in finding similar Cloud benchmarks to
the design alternatives. Although these studies addressed the problems in the
benchmark-based approach, there seems to be a lack of studies on solutions
alleviating the issues - this further motivated our work in this paper.

Concerning simulation, simulation-based approaches to cloud computing
have challenges, when ensuring that simulation results are reliable and under-
standably so. There seems to be a lack of papers describing how to construct
cloud simulation models that understandably ensure the reliability of the model.
For example, the MIPS values used in the simulation-based approaches widely
ranged from as small as 250 to as high as 20,000 [10–12,16].

3 Our Framework for a Complementary Approach

Our approach, using benchmarks and simulations in a complementary manner,
consists of a five-step process and a prototype tool. The five-step process starts
with capturing the ontology of applications, benchmarks, and simulations and
ends with a design that outputs reliable and understandable performance esti-
mates. Additionally, the similarity and mapping are taken care of among the
ontologies; simulation models are constructed by using the ontological relation-
ships and are used to confirm and reconfirm the quality of the design alternatives.
The tool supports capturing and mapping the ontologies, measuring similarities,
and running simulation models.

Estimating the Performance of Cloud-Based Systems 579

The Gane-Sarson DFD of the five steps is shown in Fig. 1. Each step is
envisioned for use in an interactive, iterative, and interleaving manner rather
than in a strictly sequential manner and enhance the outcomes of each step by
utilizing new information obtained from the later steps.

Fig. 1. A 5-step process for estimating the performance of Cloud-based system

3.1 Step 1: Identifying Estimation Ontology

Ontology, which is a set of essential concepts and interrelationships among them,
plays a key role in successfully designing a domain by explicitly illustrating
whether essential concepts are involved in the design or omitted. In our context,
we identify the ontology of estimating the performance of Cloud-based systems,
which means capturing essential system concepts for the estimations. Besides
the ontology of the estimation, our approach takes account of softgoals of the
estimation, such as cheap, fast, and reliable estimation; for example, the ontol-
ogy of reliable estimation, the ontology of fast estimation, and the ontology of
inexpensive estimation.

Estimation goals and ontology are extracted from our previous work and
other literature [9,14,17]. Later, they are represented in a goal model using
Softgoal Interdependency Graph (SIG). The SIG provides a useful framework
for various domains to carry out the reasoning for deriving the goals, ontology,
and interdependency among them [1,18,19]. The aim of the goal model is not
meant to construct the completely generalized goal model from first principles.
Rather, as initial research of its kind, the goal model is intended to act as an
example to describe how goal models work in our approach and potentially as a
reference goal model. If a reference goal model needs to be brought up in future
works, it is required to be refined and customized because every domain has
different stakeholders, ontologies, goals, and priorities.

580 H. Johng et al.

Fig. 2. Estimating ontology using softgoal interdependency graph

Figure 2 illustrates a goal model using SIG. The SIG represents a softgoal
in the form of type[topic]. The type part represents the softgoal type, and the
topic part describes the ontology of the softgoal, such as inexpensive[Cloud Esti-
mation]. Each softgoal is labeled as {Gi|1 ≤ i ≤ 34}. To satisfy a softgoal, we
decompose the softgoal into sub-softgoals. For example, inexpensive[Cloud Esti-
mation] (G3) is decomposed into inexpensive[Machine Usage Fee] (G9), inex-
pensive[Network Usage Fee] (G10), and inexpensive[Storage Usage Fee] (G11).
If the three sub-softgoals are satisfied, then the inexpensive[Cloud Estimation]
(G3) can be satisfied. Likewise, to satisfy fast[Cloud Estimation] (G1), Fast[Data
Loading] (G4) and Fast[Workload Processing] (G6) need to be satisfied.

In order for Cloud estimation to be reliable (G2), the models of estimation
techniques, such as the estimation model, benchmark model, and simulation
model, should be reliable (G6). To ensure the reliability of the estimation mod-
els, the ontologies of each model must be reliable (G7), which means each model
should sufficiently include essential system concepts. Furthermore, because our
approach utilizes the three complementary models, the ontological differences
between them need to be low (G8). For example, the benchmark ontologies need
to cover the estimation ontologies. Specifically, as the ontologies of the mod-
els can be classified into workload ontology and resource ontology [17], there
should be low differences in workload ontology (G14) and resource ontology
(G15). For example, a benchmark should have similar workload ontology to an
estimation workload ontology. The ontology of estimation model is labeled as

Estimating the Performance of Cloud-Based Systems 581

{Oi|1 ≤ i ≤ 23}. For example, workload ontology is labeled as O1, and resource
ontology is shown as O12. The workload ontology O1 is represented as O1 =
{O2,O3,{O4},{O5}}, where O4 = {O6,O7,O8} and O5 = {O9,O10,O11}. Like-
wise, the resource ontology O12 is decomposed as O12 = {O13,{O14},{O15}},
where O15 = {O16,O17}, O14 = {O18,O19,{O20},O21}, and O20 = {O22,O23}.

3.2 Step 2: Capturing Benchmark Ontology and Defining Mapping
Rules

The goal model with estimation ontology, constructed at the previous step, is
used in an interactive, iterative and interleaving manner as a guide to provide
insights into what benchmark ontologies to capture, which are depicted in Fig. 3
using the Class diagram. In the backward direction, while capturing the bench-
mark ontologies, the ontologies unrecognized in the previous step can be cap-
tured, which results in an enhanced estimation ontology in the goal model.

Fig. 3. Benchmark and simulation ontology (Color figure online)

582 H. Johng et al.

For example, while capturing the benchmark ontologies that corresponds to
the estimation ontology from [15,20], data size, data access distribution, and data
distribution were captured as critical factors that impact the performance; these
were not explicitly identified in the estimation ontology extracted from previous
studies [14,17,21]. Then, the goal model is enhanced with the new ontology (i.e.,
the low difference[O5: Data Ontology]) and the sub-ontologies O9,10,11.

This study captures the Yahoo! Cloud Serving Benchmark (YCSB) ontology
and the CloudSim ontology because the YCSB benchmark data collected from
benchmarking Amazon Web Service (AWS) and Google Compute Engine (GCE)
are utilized to construct the simulation models using Cloudsim. The ontologies
are clustered into workload ontology and resource ontology, and the interrela-
tionships among ontologies are depicted in the left part of Fig. 3.

The estimation ontologies are heuristically mapped onto the those of YCSB
with the same semantics, and the mapping is expressed as below. The O11 is not
mapped onto the YCSB ontology as YCSB does not provide the data distribution
functionality.

– Oi: entities of the estimation ontology O, with index {1 ≤ i ≤ 23}.
– Y Oi: entities of the YCSB ontology Y O.
– smap1:Oi → Y Oi, a semantic mapping function, entity index i ∈ N. The

estimation ontology Oi is mapped onto Y Oi if the entities are semantically
identical.

– smap1(Oi) = Y Oi, where {Oi, Y Oi|1 ≤ i ≤ 23 and i �= 11}.

3.3 Step 3: Capturing Simulation Ontology and Defining Mapping
Rules

Since the simulation ontologies have distance from the real-world Cloud ontolo-
gies, the Cloud benchmark ontologies, captured in the previous step, are mapped
onto the simulation ontologies to complement the semantics of the simulation
ontologies, which results in enhancing the reliability and understandability in
the simulation models. We have captured the CloudSim ontology by adopting
and refining the simulation model in our previous work [14], and the simulation
ontology is illustrated on the right side of Fig. 3 in blue.

The technical difficulty in the mapping is ontological mismatches between
the benchmark and simulation. The semantics of the three simulation ontologies
do not directly match with the benchmark ontologies: the number of Cloudlets,
the length of each Cloudlet, and the MIPS value of the CPUs. According to [16],
Cloudlets are Cloud-based application services, where Cloudlet length is a pre-
defined instruction length and data transfer overhead. However, it is difficult to
precisely define what “Cloud-based application service” is and what “pre-defined
instruction length” means regarding Cloud benchmarks.

For mapping ontologies, we define a mapping rule that maps semantics of
benchmark ontologies and the values thereof onto simulation ontologies. The goal
model in Fig. 2 acts as a guide along the same lines as the step 2. The ontologies

Estimating the Performance of Cloud-Based Systems 583

that are semantically identical (e.g., memory size (Y O21)) are directly mapped
onto simulation ontologies (e.g., ram size(CO21)).

For the three mismatched ontologies, we define the number of Cloudlets
as the number of concurrent users (O2) and the Cloudlet length as the num-
ber of transactions (O7) that each user generates. Since we defined the rules,
smap1(O2) = Y O2 and smap1(O7) = Y O7, the number of client threads in
each benchmark data is assigned to the number of Cloudlets, and the opera-
tion count that each client thread generates is assigned to the Cloudlet length.
This is because the benchmark settings for the number of client threads and the
operation count are known values, but the instruction length is not. Converting
benchmark transactions to the instruction length is a non-trivial task because
of difficulties in obtaining the internal information for the conversion from the
Cloud providers, such as the compiler version, hypervisor version, optimization
options, or VM deployment policies.

The mapping is illustrated in the Fig. 3 with red lines and can be expressed
as below.

– COi: entities of the CloudSim ontology CO
– smap2:Y Oi → COi, a semantic mapping function, entity index i ∈ N. The

estimation ontology Y Oi is mapped onto COi if the entities are semantically
identical

– vmap:Y Oi → COi, a value mapping function, entity index i ∈ N. A value of
Y Oi is mapped onto a configuration COi

– smap2(Y Oi) = COi, where, {Y Oi, COi|i = {12, 13, 14, 18, 19, 21, 22, 23}}
– smap2(Y O7) = CO7

– smap2(Y Oi) = CO2, where {Y Oi|1 ≤ i ≤ 10 and i = {16, 20}}
– vmap(Y O2) = CO2

– vmap(Y Oi) = COi {Y Oi|i = 7, 18, 21, 22, 23}.

The mapping rules aim to show an example for describing how to map bench-
mark ontologies to simulation ontologies for building reliable and understandable
simulation models. The more benchmark data and mapping rules are developed,
the more reliable simulation models for diverse domains can be constructed.
Each mapping rule can have a weight, representing how much the mapping is
satisfiable, and the maximum weight value is configurable in a fuzzy way. We
assumed that every mapping rule has the maximum weight of five.

3.4 Step 4: Constructing Simulations and Measuring Reliability

After assigning the semantics and values of benchmark ontologies to simula-
tion ontologies, except for MIPS, we drive the MIPS value to run the simu-
lations, by utilizing benchmark data, as described in Algorithm1. Algorithm 1
takes the inputs, such as machine type (type in), the number of concurrent
users (threads in), the number of servers (servers in), and the number of oper-
ations (operations in), and returns a simulation throughput (t). One assump-
tion is that n number of benchmark data is collected. The variables, which are

584 H. Johng et al.

type[i], threads[i], servers[i], and operations[i], contain the machine type, the
number of client threads, the number of servers, and the number of operations
of ith benchmark data respectively. The throughput of the ith benchmark is
saved in th[i].

Algorithm 1. Construct a simulation model and run a simulation
input : type in, users in, severs in, operations in: machine type and the

number of concurrent users, servers, and operations
output: t: simulated throughput

1 for i = 0; i < n; i + + do // n: the number of benchmark data

2 t=0, mips=random initialization() ; // t: simulated throughput

3 cl, len, vms = mapping(type[i], threads[i], servers[i], operations[i]);

4 while |t − th[i]| ≥ threshold do // th[i]: the ith benchmark throughput

5 if t < th[i] then
6 mips = mips + delta;
7 else
8 mips = mips − delta;

9 t=run simulation(mips, cl, len, vms);

10 M [i] = mips ; // M: a set of the mips values

11 equ = derive mips equation(M, type, threads, servers, operations);
12 mips est = derive mips value(equ, typein, userin, serversin, operationsin);
13 len, cl, vms = mapping(type in, users in, servers in, operations in);
14 return run simulation(mips est, cl, len, vms);

Lines 1–10 are a forward and backward process to find MIPS values that
yields simulation throughputs similar to the benchmark throughputs. The mips
variable is randomly initialized. The function mapping() abides by the mapping
rule defined at Step 3 to map ith benchmark settings to the number of Cloudlets
(cl), the length of each Cloudlet (len), and the number of servers (vms) that
are needed to run CloudSim simulations (run simulation()). If the difference
between simulation throughput t and ith benchmark throughput th[i] is less
than the threshold, the mips value is kept in M [i]. Otherwise, the mips value
is adjusted by delta and the simulation is rerun. The variables threshold and
delta are user-definable variables.

The function derive mips equation() in Line 11 is to derive a MIPS equation
(equ) using the set of MIPS values (M) and simulation settings mapped from
the benchmark settings. Our work uses non-linear regression to derive the MIPS
equation because the size of the collected benchmark data is limited. However,
other techniques could yield better equations. For example, if more benchmark
data is collected, we can consider applying machine learning techniques. In that
case, the simulation settings, obtained from the mapping() function, can act as
features, and the (M) can be used as labels.

Lines 12–14 run a simulation using the input benchmark settings that must
be simulated. The value of the mips variable is derived in Line 12 using the

Estimating the Performance of Cloud-Based Systems 585

MIPS equation, and the other simulation parameters are obtained in Line 13.
Line 14 runs the simulation and returns the simulation throughput.

To yield reliable performance estimates by using benchmarks and simula-
tion, the benchmark ontology has to be similar to the estimation ontology
(similarity1), and the simulation ontology must be similar to those of the bench-
mark (similarity2). Therefore, the reliability of the simulation is measured as
below.

reliability = similarity1(Oest, Reb, Oben) ∗ similarity2(Oben, Rbs, Osim) (1)

Oest, Oben, and Osim are the ontologies of estimation, benchmark, and simu-
lation respectively. Reb is a mapping rule from estimation ontology to benchmark
ontology. Rbs is a mapping rule from benchmark ontology to simulation ontol-
ogy. When given a rule for mapping R from the source ontology Os to the target
ontology Ot, the similarity between the two ontologies is measured as below.

similarityi(Os, R,Ot) =
n∑

i=1

(
wRi

WR
∗ wOsi∑m

j=1(wOsj
) ∗ rOsi

) (2)

The variable n is the number of rules in the mapping rule R, WR is the
maximum weight value of the rule R, and wRi

is the weight of each rule. The
variable m is the total number of ontologies in Os, wOsi

is the weight of an
ontology of Os in a rule Ri, and rOsi

is the number of mapping rules with which
the ontology of Os in the rule Ri is associated.

For example, let us assume that there are only three mapping rules
smap(Y O2) = CO2, smap(Y O2) = CO3, and smap(Y O3) = CO3. The maxi-
mum weight of the rule is assumed five and each rule has a weight of four. Y O2

and Y O3 have a weight of three. In this case, WR is five, wR1−3 is four, wOs1−3

is three, and the summation of wOs1−3 is nine. Since Y O2 is associated with two
rules, rOs1−2 is two. and rOs3 is one.

3.5 Step 5: Deriving Cloud System Architecture and Experimenting
on Cloud

After building simulations, various workload and resource configurations can be
simulated to derive architectural alternatives, such as the different number of
concurrent users, servers, and various server types.

Let us assume a scenario that a CIO wants good performance (e.g., the
throughput of over 10,000 operations per second), stable performance (e.g., sta-
ble throughput between 100 to 400 concurrent users), and inexpensive monthly
cost (e.g., monthly fee less than 400 USD). Then the simulation shows the results
that when the CIO uses three nodes of i2.xlarge instances, the good performance
goal is satisfied because the throughput is from 11,000 to 15,000 (Ops/Sec). How-
ever, it costs 1,842.48 USD per month as the hour cost of the instance is 0.213
USD. On the other hands, when the CIO select three nodes of m4.large instances,

586 H. Johng et al.

Fig. 4. A Prototype Tool

the monthly fee would be 259.2 USD as the hour cost is 0.12 USD; therefore,
the goal of the inexpensive monthly price is achieved. However, the simulated
throughputs are from 5,600 to 8,000 (Ops/Sec). By using the simulation, the
CIO can derive Cloud design alternatives with trade-off analysis.

Since the requirements in the early design stage are ambiguous and chang-
ing, it is essential for CIOs to come up with Cloud design alternatives quickly,
inexpensively, and also reliably in the initial design phases, which helps quickly
make decisions and reduce trial and error in the later stages.

3.6 A Prototype Tool for Capturing Ontologies, Defining Mapping
Rules, and Running Simulations

Figure 4 shows a tool helping the five-step process. In the Ontology View tap,
users can define new ontologies or load pre-defined ontologies to refine the ontolo-
gies and weights. Likewise, pre-defined mapping rules can be loaded and refined
in the Mapping View tap. After ontologies and mapping rules are configured, the
tool automatically calculates the similarities among the ontologies, constructs
simulation models, runs simulations, and measures the simulations reliability.
The console tap displays the results.

Estimating the Performance of Cloud-Based Systems 587

Fig. 5. Results of Cloud Benchmarking

4 Experiment

The objective of our experiments is to show proof of concepts in our approach,
constructing reliable simulation models complemented by benchmarks. Since few
papers describe how to build reliable Cloud simulations, our experimental results
are compared with Cloud benchmark data.

4.1 Benchmark Data

Figure 5 illustrates the Cloud benchmark data, collected from Amazon Web Ser-
vice (AWS) and Google Compute Engine (GCE) by using the Yahoo! Cloud
Serving Benchmark (YCSB). The benchmark data is utilized to construct the
simulation models and used as a baseline to evaluate our simulation results.

The YCSB benchmark used the Cassandra NoSQL database and ran on
m4.large, c4.large, r3.large, and i2.large instances of AWS and n1-standard-2
instances of GCE. The operation proportions for reading, updating, and inserting
were respectively 63.25%, 21.64%, and 15.09%. The operation count and record
count increased as the number of concurrent users rose. The operation count rose
from 100,000 to 9,200,000. The record count increased from 255,550 to 8,922,472,
and the number of concurrent users was 10, 40, 80, 160, 320, 640, and 920.

4.2 Simulation Experiments

In the simulation experiments using CloudSim, m4.large instances of AWS were
selected. In every iteration of the experiments, the number of instances increased

588 H. Johng et al.

from 3 to 9, and the number of concurrent users increased from 10 to 960.
Figure 6a shows a comparison between the simulation results and the original
benchmark data. The dotted lines show the simulation throughput results and
the straight lines depict the benchmark throughput results with the same work-
load and infrastructure settings as the simulation.

We cross-validated the simulation models by running Cloud benchmarks with
workload configurations that have not been collected, such as 60, 120, 240, and
480 concurrent users and then compared the simulation models with the new
benchmark results. Figure 6b shows throughput comparisons between the bench-
marks and simulations. The experiments for cross-validation show 9.79(%) of
Mean Absolute Percentage Error (MAPE) and 665.73 ops/sec of Mean Absolute
Error (MAE). In other words, the simulation models show 90.21(%) accuracy.

(a) Validations of simulation models (b) Cross-validations of simulation models

Fig. 6. Cloud Simulation Results

The validation results are compared to the reliability and similarity mea-
surements described in the previous section. After applying the mapping rules,
the reliability equation yields 0.9042, where similarity1 is 0.9565 and similarity2

is 0.9454. In other words, the measured reliability of the simulation models is
90.42%, which is similar to the accuracy evaluation result.

5 Observations and Discussion

We have focused on explaining the five steps for constructing simulation mod-
els complemented by benchmarks. Our approach is semi-automated helped by a
prototype tool; the tool’s users can either define new ontology, mapping rules,
and reliability quantification scheme or refine the ones as references for future
applications. The tool then automates constructing simulation models, running
simulations, and measuring the models reliability. The ontologies, mapping rules,
and reliability quantification scheme that are described in this paper seem to
yield reliable simulation models. Moreover, by mapping the benchmark ontolo-
gies to those of a simulation, the semantics of ontologies in a simulation become
understandable and traceable.

Estimating the Performance of Cloud-Based Systems 589

One threat to the validity of our approach, specifically regarding the ontolo-
gies, mapping rules, and reliability quantification, is its limitation to be general-
ized because the range of experiments and benchmark data were limited. Instead
of fully generalizing our approach to fit all domain, we intend to offer as many
references - i.e., reference ontologies, reference mapping rules, and reference relia-
bility quantification defined by users in the different domain - as possible, then let
users select and refine one, like a catalog. However, constructing and maintaining
ontologies are non-trivial tasks in practice. Since we discussed throughput only
in our evaluation, our approach must cover a broader range of QoS parameters.
To approach those problems, more extensive case study is required. Last, the
automation for constructing simulation models currently only partially works
for specific mapping rules such as those described in this paper.

6 Conclusion

We presented a complementary approach, using both benchmarking and simu-
lations together, as among the first of its kind, to estimating the performance
of Cloud-based systems, in a fast, inexpensive and also reliable manner. In this
approach, mapping benchmark ontologies to those of simulations enhance the
reliability of simulation-based estimations, and in a more understandable man-
ner. More specifically, our work proposes a five-step process for capturing the
ontologies of estimation, benchmark, and simulation, and mapping the bench-
mark ontologies to simulation ontologies, while considering the similarities, and
mismatches, between the two, with the incorporation of a quantification scheme
for the simulation reliability and an algorithm for helping automate the con-
struction of simulation models. A prototype tool has also been presented for
supporting our five-step semi-automatic process. The results from our comple-
mentary approach-based simulation show that they are indeed reliable to the
extent that they are similar to the YCSB benchmark results, when using Cas-
sandra on AWS and GCE.

As future work, we plan to apply our approach to a wide variety of different
types of domains and investigate more ontologies pertaining to such domains,
while also considering mapping rules for them. Investigations of more systematic
approaches for ontology mapping schemes and reliability quantification schemes,
instead of just a few heuristic ones, lie ahead as well. Work is also under-
way towards fuller implementation of our prototype tool, e.g., for managing
graphically-oriented goal-oriented models and mapping between them.

Acknowledgments. We would like to thank Amazon, Inc., for the AWS in Education
Grant Award, and also Google, Inc., NTT Data, and NSF for their respective grants.
We also thank Chengzu Yu for your helpful reviews.

590 H. Johng et al.

References

1. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. Kluwer Academic Publisher, New York (2000)

2. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: 3rd IEEE International Symposium on Requirements Engineering,
pp. 226–235 (1997)

3. Rolland, C., Souveyet, C., Achour, C.B.: Guiding goal modeling using scenarios.
IEEE Trans. Softw. Eng. 24(12), 1055–1071 (1998)

4. Mistry, S., Bouguettaya, A., Dong, H.: Economic Models for Managing Cloud Ser-
vices. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-73876-5

5. Andrikopoulos, V., Strauch, S., Leymann, F.: Decision support for application
migration to the cloud. In: Proceedings of CLOSER, vol. 13, pp. 149–155 (2013)

6. Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking. Springer, Hei-
delberg (2017). https://doi.org/10.1007/978-3-319-55483-9

7. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit anal-
ysis of cloud computing versus desktop grids. In: IEEE International Symposium
on Parallel and Distributed Processing, pp. 226–235 (1997)

8. Iosup, A., Prodan, R., Epema, D.: IaaS cloud benchmarking: approaches, chal-
lenges, and experience. In: Li, X., Qiu, J. (eds.) Cloud Computing for Data-
Intensive Applications, pp. 83–104. Springer, New York (2014). https://doi.org/
10.1007/978-1-4939-1905-5 4

9. Chung, L., Subramanian, N., Hill, T., Park, G.: Silverlining: a simulator to forecast.
CrossTalk, p. 29 (2015)

10. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Futur. Gener.
Comput. Syst. 28(5), 755–768 (2012)

11. Castañé, G.G., Nuñez, A., Llopis, P., Carretero, J.: E-mc2: a formal framework
for energy modelling in cloud computing. Simul. Model. Pract. Theory 39, 56–75
(2013)

12. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J.,
Llorente, I.M.: iCanCloud: a flexible and scalable cloud infrastructure simulator.
J. Grid Comput. 10(1), 185–209 (2012)

13. Hill, T., Supakkul, S., Chung, L.: Run-time monitoring of system performance: a
goal-oriented and system architecture simulation approach. In: 1st International
Workshop on Requirements@ Run. Time, pp. 31–40 (2010)

14. Chung, L., Hill, T., Legunsen, O., Sun, Z., Dsouza, A., Supakkul, S.: A goal-
oriented simulation approach for obtaining good private cloud-based system archi-
tectures. J. Syst. Softw. 86(9), 2242–2262 (2013)

15. Shapira, G., Chen, Y.: Common pitfalls of benchmarking big data systems. IEEE
Trans. Serv. Comp. 9(1), 152–160 (2016)

16. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

17. Lera, I., Juiz, C., Puigjaner, R.: Performance-related ontologies and semantic web
applications for on-line performance assessment of intelligent systems. Sci. Comput.
Program. 61(1), 27–37 (2006)

18. Park, G., Chung, L., Zhao, L., Supakkul, S.: A goal-oriented big data analytics
framework for aligning with business. In: Proceedings of 3rd IEEE International
Conference On Big Data Service And Applications, pp. 31–40 (2017)

https://doi.org/10.1007/978-3-319-73876-5
https://doi.org/10.1007/978-3-319-55483-9
https://doi.org/10.1007/978-1-4939-1905-5_4
https://doi.org/10.1007/978-1-4939-1905-5_4

Estimating the Performance of Cloud-Based Systems 591

19. Johng, H., Kim, D., Hill, T., Chung, L.: Using blockchain to enhance the trustwor-
thiness of business processes: a goal-oriented approach. In: Proceedings of IEEE
International Conference on Services Computing, pp. 249–252 (2018)

20. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of 1st ACM Symposium on
Cloud Computing, pp. 143–154 (2010)

21. Sancho, P.P., Juiz, C., Puigjaner, R., Chung, L., Subramanian, N.: An approach to
ontology-aided performance engineering through NFR framework. In: Proceedings
of 6th ACM International Workshop on Software and Performance, pp. 125–128
(2007)

Two-Phase Web Service QoS Prediction
with Restricted Boltzmann Machine

Lu Chen1,2, Yuyu Yin1,2, Yueshen Xu3(&), Liang Chen4,
and Jian Wan1,2,5

1 School of Computer, Hangzhou Dianzi University, 310018 Hangzhou, China
{chenlu,yinyuyu,wanjian}@hdu.edu.cn

2 Key Laboratory of Complex Systems Modeling and Simulation of Ministry of
Education, Hangzhou, China

3 School of Computer Science and Technology, Xidian University,
710126 Xi’an, China

ysxu@xidian.edu.cn
4 School of Data and Computer Science, Sun Yat-Sen University,

510006 Guangzhou, China
chenliang6@mail.sysu.edu.cn

5 School of Information and Electronic Engineering,
Zhejiang University of Science and Technology, 310023 Hangzhou, China

Abstract. Collaborative filtering (CF) has been widely used in quality of ser-
vice (QoS) prediction. However, most of traditional CF-based methods always
suffer from overestimation of similarity computation and invalid neighbors. To
address these problems, we propose a two-phase QoS prediction approach based
on restricted Boltzmann machine (RBM). In the first phase, we propose an
RBM-based approach to predict missing QoS values for invalid neighbors,
which can identify similar neighbors with high accuracy. In the second phase,
we propose a user-based CF method to predict, which utilizes user similar
neighbors. Experimental results conducted in a real-world dataset show that our
approaches can produce superior prediction accuracy and are not sensitive to
parameter settings.

Keywords: Web service � QoS prediction � Collaborative filtering
Restricted Boltzmann machine

1 Introduction

With the number of Web services growing dramatically, different service providers
offer many Web services with the same or similar functions. It has been an urgent task
to recommend suitable services for users from a large number of service candidates [1].
There are two types of properties for a service, functional properties and non-functional
properties. The non-functional properties are also known as quality-of-service (QoS). It

The two authors Yuyu Yin and Lu Chen contribute equally to this paper, so they are co-first authors.

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 592–600, 2018.
https://doi.org/10.1007/978-3-030-03596-9_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_43&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_43

is a spotlight of how to improve the prediction accuracy of QoS and how to provide
service recommendation with high quality [2].

In recent years, many researchers have applied collaborative filtering (CF) to QoS
prediction and obtained better prediction accuracy [2]. A crucial task of CF-based
methods is to identify neighbors. The prediction accuracy largely relies on the quality
of the identified neighbors. To improve the quality of identified neighbors, some
existing works focus on the improvement of similarity computation. But in the case of
high data sparsity, we notice that the number of neighbors of a user is quite limited.
Also, there exist some invalid neighbors that need to be filtered, which did not invoke
the target service or are not observed by the target user (we name these neighbors as
invalid neighbors) and those neighbors will be not used to predict missing QoS values.
Such filtering is likely to lead to low prediction accuracy because of lack of available
neighbors.

To address these problems, we propose a two-phase approach for QoS prediction,
which is based on restricted Boltzmann machine (RBM). The first prediction phase is to
predict missing values for invalid neighbors, and further identify similar neighbors. The
second prediction phase is to compute the final prediction results by user-based CF
method. From the experimental results, it can be seen that our approach can make better
use of identified neighbors and alleviate data sparsity problem.

In summary, the main contributions of this paper are as follows.

1. It proposes a novel neighbors selection method. It employs RBM model to predict
missing values for invalid neighbors, and further filters the neighbors with network
location and geographical information. The proposed method can complete the task
of selecting high-quality neighbors.

2. It conducts sufficient experiments on a real-world dataset, and compares the pro-
posed methods to many existing methods. The experimental results demonstrate the
effectiveness and high robustness to parameter values of our method.

The rest of this paper is organized as follows. Section 2 discusses the related work.
Sections 3 and 4 elaborate the proposed approach, and the experimental results are
presented in Sect. 5. Section 6 concludes the whole paper.

2 Related Work

The traditional CF methods can be classified into two categories: neighbor-based
methods and model-based methods [2]. Many neighbor-based CF methods have
achieved success in recommendation systems [3]. Wu et al. [4] proposed a ratio-based
method to compute similarity, which improved the prediction accuracy and could be
computed faster than other compared methods.

One difficulty in neighbor-based CF methods is the data sparsity problem [5].
Owing to the high sparsity of data, the neighbor-based CF methods cannot accurately
obtain similar neighbors. In recent years, some studies try to solve this problem. Wu
et al. [5] proposed a time-aware neighbor-based CF approach with better accuracy at
high sparsity. These earlier works put attention to similarity computation, but this paper
also focuses the selection of neighbors.

Two-Phase Web Service QoS Prediction with Restricted Boltzmann Machine 593

Moreover, it is difficult for neighbor-based methods to handle large amount of data.
Therefore, researchers turned to study model-based CF methods. There are several
representative model-based approaches, including Matrix Factorization (MF) [6] and
restricted Boltzmann machine (RBM) [7]. In recent years, some researchers exploited
the potential of RBM in extracting features and solving data sparsity problem [8].

To fully take advantage of neighbor-based methods and model-based methods,
some researchers tried to combine the two types of approaches. Inspired by such an
idea, in this paper, we propose a novel model by both leveraging the RBM-based
model and neighbor-based model to predict missing QoS values.

3 The Whole Framework

We present the proposed whole framework in Fig. 1, which consists of two phases.

In the first phase, we use the Euclidean distance to compute the similarity among
users. The similarity computation result is used to build the initial similar neighbors set.
Next, we employ RBM model to predict all missing QoS values for invalid neighbors.
We further identify fine-grained neighbors from the initial neighbors set based on
network location and geographical information. In the second phase, we propose the
user-based CF model to predict final results.

4 The Proposed Prediction Approach

4.1 The First-Phase Prediction

Similarity Computation. In this section, we propose a Euclidean distance in simi-
larity computation.

Su;v ¼ 1

1þ

ffiPM
i¼0

qu;i��quð Þ� qv;i��qvð Þð Þ2
Mj j

s ð1Þ

User-Service Matrix

? ?

? ?

?

? ?

? ?

u1 u2 u4 u5u3

s1

s2

s4

s3

s5

Similarity
Computation

RBM
model

First-phase
Prediction

Neighbors
Selection

Location
Information

Final Similar
Neighbors Set

Prediction
Results

Second-phase
Prediction

User-based CF
Initial Similar
Neighbors Set

Neighbors
Filtering

Prediction for
candidate neighbors

Fig. 1. The whole framework

594 L. Chen et al.

where Su;v is the similarity of user u and user v. M ¼ Mu \Mv is the set of services that
are invoked by both user u and user v, qu;i is the QoS value of target service i invoked
by target user u, and qv;i is the QoS value of target service i invoked by user v. We add
a one value in the denominator to prevent the denominator from being zero. �qu is the
average QoS of user u and �qv is the average QoS of user v.

Neighbors Selection. After the similarity computation between different users and
different services, we could have directly chosen the top K most similar neighbors.
However, in the current neighbors set, some neighbors are not applicable, because such
neighbors probably do not have invoked each target service, which lowers the number
of available neighbors and further damages prediction accuracy. To fix this issue, we
propose to use RBM model to predict missing QoS values for those neighbors which
have not invoked a target service (in user side). Our aim is to ensure that all neighbors
can be applicable for reliable prediction. Meanwhile, we further filter some other
neighbors by utilizing the network location and geographical information. Such fil-
tering can improve the quality of similar neighbors. Then, a similar neighbors’ set N
(u) of user u is finally formed. N(u) is composed of two subsets N1(u) and N2(u).
N1(u) is the set of predicted neighbors and N2(u) is the set of valid neighbors.

Prediction Based on RBM Model. The next task is the missing QoS values predic-
tion for the users in set N1(u). We propose an RBM model to finish this task. Suppose
that we have M services, N users, rounded QoS values from 1 to K, and a user invoked
m services. Each user is treated as a single training case of an RBM, and we still use an
RBM to predict missing values. Each RBM shares the same number of hidden units
H that represent features, but an RBM only has visible softmax units U for the services
invoked by that user. An RBM can only have a few connections in high sparsity of the
real case of services invocation. Let U be a K � m observed binary indicator matrix
with uki ¼ 1 if the user u has invoked service i as the value of being k, and 0 otherwise.
The energy function of user-oriented RBM is defined as

Eðu; h;W ; bÞ ¼ �
XM

i¼1

XN

j¼1

XK

k¼0

Wk
i;jhju

k
i þ

XM

i¼1

log Zi

�
XM

i¼1

XK

k¼0

uki b
k
i �

XN

j¼1

hjbj

ð2Þ

where Wk
i;j is a symmetric interaction parameter between the QoS value k of the i-th

service and the j-th feature. bki and bj are two biases to reflect the innovation preference

of services i and j. Zi ¼
PK

k¼0
expðbki þ

P
j
hjWk

i;jÞ is the normalization term that ensures

PK

k¼0
Pðuki ¼ 1jhÞ ¼ 1. According to the conditional multinomial distribution and con-

ditional Bernoulli distribution, the distributions of services and features are

Two-Phase Web Service QoS Prediction with Restricted Boltzmann Machine 595

Pðuki ¼ 1jhÞ ¼
expðbki þ

Pn

j¼1
uki W

k
i;jÞ

PK

k¼0
expðbki þ

Pn

j¼1
hjWk

i;jÞ
ð3Þ

Pðhj ¼ 1juÞ ¼ rðbj þ
Xm

i¼1

XK

k¼0

uki W
k
i;jÞ ð4Þ

where rðxÞ ¼ 1=1þ expð�xÞ is the sigmoid activation function. With the conditional
distributions in Eqs. (3) and (4), we can directly use the contrastive divergence algo-
rithm for training [9], in which the updates for each parameter are as follows.

@ logPðu; hÞ
@Wi;j

¼ eð uihj
� �

data� uihj
� �

recÞ; ui [0

@ logPðu; hÞ
@ai

¼ eð uih idata� uih irecÞ; ui [0

@ logPðu; hÞ
@bj

¼ eð hj
� �

data� hj
� �

recÞ

ð5Þ

where �h idata represents the probability distribution of a hidden layer in the case of a
visible unit. �h irec represents the probability distribution of the model definition after the
reconstruction using the contrastive divergence algorithm, and e is the learning rate.
Among these, ui [0 ensures that only the data that satisfy ui [0 are used in the
model.

After the model is trained, the probability that a user v invokes a service i with a
QoS value being k can be obtained directly based on the known QoS values set U. The
RBM prediction of the missing QoS value q̂v;i is:

q̂v;i ¼ l�maxðPðvki ¼ 1jVÞlÞ ð6Þ

where maxðPðvki ¼ 1jVÞlÞ is the maximum value of the probability that the user v in-
voked the service i and the received QoS is k, and l is the score corresponding to the
maximum value of the probability.

4.2 The Second-Phase Prediction

To improve the final prediction accuracy, we also propose a user-based CF method to
predict in the second phase.

The neighbors set N(u) for target user u is generated in the first-phase, which has
two subsets, that is, the predicted neighbors set N1(u) and valid neighbors set N2(u).
The final prediction result is computed as follows.

596 L. Chen et al.

q̂u;i ¼

P
v12N1ðuÞ

ðq̂v1;iÞ � Su;v1 þ
P

v22N2ðuÞ
ðqv2;iÞ � Su;v2

P
v12N1ðuÞ

Su;v1 þ
P

v22N2ðuÞ
Su;v2

ð7Þ

where q̂v1;i represents the first-phase prediction results of target service i after being
invoked by user v1. Su;v1 is the similarity of target user u and user v1. qv2;i is the QoS
value of target service i after being invoked by user v2. Su;v2 is the similarity of target
user u and user v2.

5 Experiment and Evaluation

We use the public dataset WSDream to conduct the experiments [10]. This dataset has
been widely used by many researchers. WSDream dataset contains 5825 services and
339 users, including two QoS attributes: response time and throughput.

5.1 Evaluation Metric and Parameter Setting

We use the mean absolute error (MAE) and normalized mean absolute error (NMAE)
metrics to evaluate the prediction accuracy. MAE and NMAE are computed as

MAE ¼ 1
N

X

u;i

jqu;i � q̂u;ij;NMAE ¼ MAE
ð P
ðu;iÞ2TestSet

qu;iÞ=N ð8Þ

where qu;i represents the real QoS value, q̂u;i represents the prediction result, and N is
the number of values in test set.

5.2 Performance Comparison

In order to reflect the real case of service invocation, we randomly select a part of data
from the original WSDream dataset as training set, and the rest data form the test set. In
this study, we generate four training sets with different sparsities, where the sparsity
degree d is 2.5%, 5%, 10%, 15%, and 20%, respectively.

To better evaluate the performance of the proposed method, we compare our
methods with the following state-of-the-art competitive QoS prediction methods. The
experimental results are present in Table 1. The parameters in the compared methods
are set according to the default settings in their original papers.

1. RBM (restricted Boltzmann machine) [7]: This method uses the RBM-based CF
algorithm to predict missing values.

2. WSRec [10]: A hybrid model composed of user-based CF and item-based CF.
3. LFM (latent factor model) [6]: LFM decomposes the user-service matrix by

dimensionality reduction to learn implicit features and produce predictions.
4. CAP (credibility-aware prediction model) [11]: CAP is a novel credibility-aware

QoS prediction method, which employs two-phase K-means clustering algorithm.

Two-Phase Web Service QoS Prediction with Restricted Boltzmann Machine 597

5. JLMF [12]: JLMF is an MF model based on network location information and
influence of neighbors.

6. LE-MF (location-enhanced matrix factorization) [13]: A matrix decomposition
model that introduces location information and trust mechanism.

7. U-RBM (user-oriented RBM): Our proposed model with being named as U-RBM.

In Table 1,MAE is the mean absolute error, NMAE is the normalized mean absolute
error, and d is the sparsity of training sets. We can have following observations.

1. The proposed prediction methods U-RBM is superior to the compared methods in
on both MAE and NMAE measures.

2. In all cases of training set densities, our proposed models achieve consistently lower
errors. Specially, in the case of high data sparsity (e.g., d = 2.5% and 5%), the
prediction accuracy of U-RBM model is still the highest, which indicates that U-
RBM can better deal with data sparsity problem.

5.3 Sensitivity Analysis of Parameters

Impact of TopKUser. The parameter TopKUser denotes the number of similar
neighbors. A higher sparsity means less available training data. The evaluated value of
TopKUser is from 4 to 20.

Table 1. Accuracy comparison (a smaller value means a higher accuracy)

Models d = 2.5% d = 5% d = 10% d = 15% d = 20%
MAE NMAE MAE NMAE MAE NMAE MAE NMAE MAE NMAE

RBM 0.9812 1.1986 0.8354 1.0291 0.7880 1.0082 0.7850 0.9868 0.7780 0.9830
WSRec 0.7040 0.8600 0.6794 0.8375 0.6211 0.7948 0.6037 0.7589 0.6020 0.7607
LFM 0.6983 0.8531 0.5783 0.7129 0.5644 0.7222 0.5438 0.6836 0.5350 0.6760
CAP 0.6503 0.7944 0.5452 0.6730 0.5040 0.6184 0.4865 0.5969 0.4635 0.5688
JLMF 0.6470 0.7904 0.5393 0.6612 0.5167 0.6335 0.5041 0.6180 0.4750 0.5824
LE-MF 0.6525 0.7971 0.5734 0.7066 0.5136 0.6571 0.4827 0.6068 0.4646 0.5870
U-RBM 0.6375 0.7787 0.5333 0.6473 0.4982 0.6374 0.4747 0.5967 0.4621 0.5864

Fig. 2. Impact of TopKUser

598 L. Chen et al.

As shown in Fig. 2, with the increase of TopKUser,MAE values decrease initially. This
is because as the number of similar neighbors increases, the probability of selecting the
real similar neighbors of a target user becomes larger. Also, the similar neighbor
filtering adds those users that are highly similar to the target user. This is because there
are no public invocation records, and those users are prevented from being similar
neighbors on account of other users who do not have a strong similarity but are still
selected. So the reliability of similar neighbors is enhanced.

6 Conclusions

In this paper, we propose an approach for QoS prediction based on RBM model. We
proposed a novel similarity computation method. Then, the RBM was proposed to
predict missing values for invalid neighbors. We also employed network location and
geographical information to further improve the selection quality of neighbors. The
extensive experiments conducted in a real-world dataset verified the effectiveness of
our models.

Acknowledgments. This paper is supported by National Natural Science Foundation of China
(No. 61702391), Natural Science Foundation of Zhejiang Province (No. LY12F02003) and
Shaanxi Province (No. 2018JQ6050), National Key Technology Support Program (No. 2015
BAH17F02) and Fundamental Research Funds for Central Universities (JBX171007).

References

Wu, Y., Xie, F., Chen, L., Chen, C., Zheng, Z.: An embedding based factorization machine
approach for web service QoS prediction. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol,
M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 272–286. Springer, Cham (2017a). https://doi.
org/10.1007/978-3-319-69035-3_19

Zheng, Z., Ma, H., Lyu, M.R.: QoS-aware web service recommendation by collaborative
filtering. IEEE Trans. Serv. Comput. 1(2), 140–152 (2010)

Yin, Y., Yu, F., Xu, Y., et al.: Network location-aware service recommendation with random
walk in cyber-physical systems. Sensors 17(9), 2059 (2017)

Wu, X., Cheng, B., Chen, J.L.: Collaborative filtering service recommendation based on a novel
similarity computation method. IEEE Trans. Serv. Comput. 10(3), 352–365 (2017b)

Wu, C., Qiu, W., Wang, X., et al.: Time-aware and sparsity-tolerant QoS prediction based on
collaborative filtering. In: IEEE ICWS, pp. 637–640 (2016)

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems.
ACM Comput. 42(8), 30–37 (2009)

Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative
filtering. In: International Conference on Machine Learning, pp. 791–798 (2007)

Tramel, E.W., Manoel, A., Caltagirone, F., et al.: Inferring sparsity: compressed sensing using
generalized restricted Boltzmann machines. In: Information Theory Workshop, pp. 265–269
(2016)

Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural
Comput. 14(8), 1771–1800 (2002)

Two-Phase Web Service QoS Prediction with Restricted Boltzmann Machine 599

http://dx.doi.org/10.1007/978-3-319-69035-3_19
http://dx.doi.org/10.1007/978-3-319-69035-3_19

Zheng, Z., Ma, H., Lyu, M.R., et al.: WSRec: a collaborative filtering based web service
recommender system. In: IEEE ICWS, pp. 437–444 (2009)

Wu, C., Qiu, W., Zheng, Z., et al.: QoS prediction of web services based on two-phase K-means
clustering. In: IEEE ICWS, pp. 161–168 (2015)

Yin, Y., Song, A., Min, G., et al.: QoS prediction for web service recommendation with net-work
location-aware neighbor selection. Int. J. Softw. Eng. Knowl. Eng. 26(4), 611–632 (2016)

Xu, Y., Yin, J., Deng, S., et al.: Context-aware QoS prediction for web service recommendation
and selection. Expert Syst. Appl. 53(C), 75–86 (2016)

600 L. Chen et al.

Service Engineering

Constructing and Evaluating an Evolving
Web-API Network for Service Discovery

Olayinka Adeleye1(B), Jian Yu1, Sira Yongchareon1, and Yanbo Han2

1 Department of Computer Science, Auckland University of Technology,
Auckland 1010, New Zealand

{olayinka.adeleye,jian.yu,sira.yongchareon}@aut.ac.nz
2 Beijing Key Laboratory for Large-scale Stream Data Processing,

North China University of Technology, Beijing, China
yhan@ncut.edu.cn

Abstract. Web-APIs enable cross-organizational functionality integra-
tion over the Web and thus are the foundation of modern distributed
service-based systems. However, despite the rapid increase in the num-
ber of Web-APIs available on the Internet, the discovery and uptake
of appropriate Web-APIs by businesses on a Web scale is still a great
challenge. One of the main reasons is that Web-APIs registered on direc-
tories such as ProgrammableWeb.com are in general isolated, as they
are registered by diverse providers independently and progressively. In
this paper, we present a method for analyzing the Web-API ecosystem
and propose a complex-network-based approach for building an evolving
social network for Web APIs. We conduct our analysis in two phases:
First, from the complex network perspective, we investigate mashups and
Web-APIs interactions and analyze the Web-API popularity distribution
using the popular ProgrammbleWeb dataset. Second, we quantitatively
measure the Preferential Attachment mechanism which is a key driver of
an evolving network. Based on our analysis, we propose an approach to
construct an evolving Web-API social network based on the theoretical
procedure of the Barabási-Albert complex network model. Results pre-
sented in this work will not only provide insight into the topology of the
Web-API ecosystems but also serve as a practical guide for designing an
evolving-network-based solution for service discovery.

Keywords: Web APIs · Complex network analysis
Preferential attachment · Evolving networks · ProgrammableWeb

1 Introduction

The emergence of Web 2.0 coupled with the rapid development in Web service
technology has led to a continual increase in the number of Web services and

This work was supported in part by the National Key Technology R&D Program
of China (2017YFC0804406) and the National Natural Science Foundation of China
(61672042).

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 603–617, 2018.
https://doi.org/10.1007/978-3-030-03596-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_44&domain=pdf
https://www.programmableweb.com/
https://doi.org/10.1007/978-3-030-03596-9_44

604 O. Adeleye et al.

their compositions. Nowadays many real-world applications such as online social
media, online shopping, weather forecast, and disaster prevention [14,15] invoke
web services via accessible endpoints to implement their functionalities. Mod-
ern web services with features such as RESTful architecture, JSON data, and/or
JavaScript interface are usually called Web-APIs1 in order to distinguish from
the traditional SOAP-based web services; and multiple Web-APIs can be quickly
composed into a webpage or application called mashup. This shortened software
development life cycle leads to the formation of the so-called Web service ecosys-
tem [5,16], where new services emerge, some old ones perish, and service vendors
and developers collaborate to develop innovative software solutions. A typical
representation of an evolving service ecosystem is ProgrammableWeb2, which
is currently the largest online Web-API directory, with over 19,000 Web-APIs
belonging to more than 400 predefined categories, and over 6,000 mashups as
at May 2018. It also provides information such as date of introduction, profile,
and developers. The perishing of some existing Web-APIs and the emergence of
new ones coupled with their dynamic collaborations drive the evolution of this
service ecosystem over time [12].

For most service ecosystems, one of the main issues is the isolation of Web-
APIs, which limits their discoverability. For instance, in ProgrammableWeb,
Web-APIs have categories, and several Web-APIs can be involved in one mashup,
but there is no direct connection or relationship between two Web-APIs. The
reason behind this is that Web-APIs are usually registered by diverse service
providers independently over time, and the connections or social relationships
between Web-APIs are never directly created.

In this paper, we propose an evolving-complex-network-based approach to
constructing a social network for Web-APIs based on their popularity in the
service ecosystem. To achieve this, we first study the underlying topology of
ProgrammableWeb and analyze the popularity distribution of Web-APIs in the
ecosystem, using the dataset in a period of thirteen years (2005–2017). Then, we
measure the Preferential Attachment (PA) of the ecosystem, which is the key
mechanism that governs the evolution of many existing real world networks [11].
And finally, we incorporate our findings into the construction of an evolving
social network of Web-APIs using the well-established Barabási-Albert model [3]
in complex networks.

The main contribution of this paper includes:

1. We analyzed the popularity distribution of Web-APIs on ProgrammbleWeb
based on mashup-API relationships and measured the PA mechanism which
defines the topology of the ecosystem. To the best of our knowledge, this is
the first time that PA is measured for a service ecosystem.

2. We designed and implemented an evolving social network model for Pro-
grammableWeb Web-APIs which facilitates service discovery and serves as a

1 https://en.wikipedia.org/wiki/Web API. Note that in this paper, we coin “Web” and
“APIs” together as one term “Web-APIs” to emphasize the atomicity of this term.

2 http://www.programmableweb.com.

https://en.wikipedia.org/wiki/Web_API
http://www.programmableweb.com

Constructing and Evaluating Evolving Web-API Network 605

stepping stone for developing advanced evolving network models for service
ecosystems.

The rest of this paper is organized as follows. Section 2 is the background and
related work; Sect. 3 presents the analysis of the ProgrammableWeb ecosystem
and also the analysis results including popularity distribution and PA; In Sect. 4,
we present an approach to the construction of an Web-API evolving network and
discuss its application in service discovery; Finally, Sect. 5 is the conclusion and
future work.

2 Background and Related Work

In this section, we discuss the background of this work and the related work in
complex network analysis, evolving Web service ecosystem analysis, and existing
service social network construction approaches.

Over the years, complex networks have been extensively studied and sev-
eral significant discoveries have been made including the well-acclaimed small-
world networks [24] and scale-free networks [4]. Various mechanisms that gov-
erns a network’s topology and evolution have been investigated and found
ubiquitous among many real world networks. In particular, preferential attach-
ment and growth have garnered special attention in evolving complex networks
research [3,21], not only because they are fundamental to explaining the topo-
logical features observed in many real world networks but also because they
have been empirically validated to be the drivers of many evolving networks.
For instance, the topology of the Internet, the World Wide Web and the citation
network have been investigated using evolving network models and shown to
be fundamentally governed by the PA and growth mechanisms [1–3]. In terms
of evolving network models, the PA and growth driven Barabási-Albert (BA)
model [3] is the foundation of other models such as the fitness-based Bianconi-
Barabási model [6].

There have been a number of studies investigating the evolutionary proper-
ties of service ecosystems and the complementary features of services and their
compositions particularly on ProgrammableWeb. Weiss et al. [25], examined the
structure of the mashup ecosystem using the ProgrammableWeb dataset. The
authors analyzed the relationships of mashups and Web-APIs using a bipartite
graph, and found that while the growth rate of new Web-APIs and mashups
is linear, the distribution of mashups over APIs follows a power-law. Huang
et al. [12] used a network analysis approach to study both the usage patterns
and the evolution traces of Web-APIs in the ProgrammableWeb. The authors
conducted their analysis based on two derived networks: the Composition-Service
network, which is the same bipartite graph of Mashup-APIs used in [25] and the
Service-Service network, which is a network of services that are used together
in the same mashups. The authors found that the service popularity distribu-
tion is highly concentrated, which is consistent with the findings in [25], and
they also found that the reuse rate of services is low and the advanced use of
many services together is still rare, which provides evidence to our motivation

606 O. Adeleye et al.

of building a social network for services/Web-APIs. To better present the Pro-
grammableWeb ecosystem, Lyu et al. [16] used a three-level hierarchical view to
visualize it based on the Mashup-API graph, the tag graph, and domain graph.
Wang et al. [23] also explored ProgrammableWeb data patterns from the user
perspective with a User-API network.

As for the research on constructing service social networks, Fallatah et al. [9]
proposed to add service-service, user-user, and user-service links to build a ser-
vice social network. Based on the network, metrics such as user popularity, ser-
vice market share, and user satisfaction can be measured. Simulation was done
but how to build such network from real-world data was not discussed. Semantic
information mined from service descriptions is a good reference for adding links
among services. Wang et al. [22] used domain knowledge to calculate the degree
of semantic match between any two services and then a threshold can be set to
determine the number of links in the network. Similarly, Feng et al. [10] con-
structed three types of service networks based on the subsume, sequential-total
(the output of service A covers the input of service B), and sequential-part (the
output of service A partially covers the input of service B) semantic relations.
Clearly such networks are static without considering any dynamical properties.
From the evolving network perspective, Chen et al. [7] built a service social
network partially based on the Bianconi-Barabási (BB) model. One limitation
of their work is that the fitness parameter of an existing service node is calcu-
lated dynamically on the arrival of a new service, while the BB model requires
a quenched/fixed fitness value for a node, which makes the closed-form solution
of the BB model not applicable to this network.

3 Analysis and Results

In this section, we investigate the topology and dynamical mechanism of the Pro-
grammbleWeb registry. For the topology, we look at the popularity, or degree
distribution of the Web-APIs based on the mashup-API bipartite graph. We
first discuss data acquisition and processing, then we analyze the data in three
steps: visualization, model fitting, and comparison with existing classical network
models such the Poisson, exponential and log-normal distributions. For dynam-
ical/evolving mechanisms, we investigate and measure preferential attachment.

3.1 Data Acquisition and Processing

We collected the time-stamped raw data, which contains information regard-
ing Web-APIs and mashups from June 2005 to November 2017 in Pro-
grammableWeb. Since the ProgrammableWeb backend database is not publicly
accessible, only its web pages can be employed for collecting the data. We used
data scraping to crawl data from ProgrammableWeb web pages. The web pages
are separated into two categories: Web-APIs and mashups, where every Web-API
has properties including name, description, publication date, and category; sim-
ilarly, each mashup also contains the above metadata plus the list of Web-APIs

Constructing and Evaluating Evolving Web-API Network 607

Table 1. Summarize features of the programmableweb dataset

Number of Web APIs acquired 16,138

Number of Mashups acquired 5,883

Average number of Web APIs invoked by Mashups 2.1

Number of Mashups with less than 2 services 241

Number of Web APIs invoked in at least one Mashup 1,525

Table 2. Top 5 most consumed Web-APIs

Web APIs Number of links

GoogleMap 2,072

Twitter 663

Youtube 557

Flickr 484

Facebook 377

invoked within it. Table 1 gives an overview of the ProgrammableWeb dataset.
After pre-processing and removing redundant mashup points, we have 16,138
Web APIs and 5,883 Mashups for our analysis.

3.2 Affiliation Network of Web-APIs and Mashups

To extract the popularity distribution of Web-APIs in ProgrammableWeb, we
model the ecosystem in the form of an affiliation network that depicts the invo-
cation relation between mashups and Web-APIs. As shown in Fig. 1, technically,
the network is a bipartite graph, where the edges indicate which Web-APIs are
invoked by which mashups: G = (M �A,E) where M is the set of Mashups and
A is the set of Web-APIs, and for any edge (m,a) ∈ E,m ∈ M and a ∈ A.

Although there are over 16,000 Web-APIs in ProgrammableWeb, only 1,525
of them appear in one or more mashups. We found that the Google Map Web-API
takes a center stage in the affiliation network, attracting 2,072 edges/mashup-
consumption, which account for about 35 percent of the total mashups in the
ecosystem. As shown in Table 2, Popular social media Web-APIs such as Twit-
ter, Youtube, Flickr, and Facebook also appear 663, 557, 484, and 377 times
respectively in the network. We also found that less than 7% of the Web-APIs
involved in the network are consumed more than 100 times, and over 47% of the
Web-APIs are used less than 4 times.

The complete affiliation network is visualized using the Force-Atlas 2 layout
in Gephi3 as shown in Fig. 2. The hubs as listed in Table 2 are clearly visible in
the figure as disks with Google-Maps API being the largest one sitting at the
bottom.

3 https://gephi.org/.

https://gephi.org/

608 O. Adeleye et al.

Fig. 1. Illustration of the Mashup-
API bipartite graph

Fig. 2. Visualization of the Mashup-API affili-
ation network

3.3 Web-API Nodes Degree Distribution

An integral part of analyzing the topology of a network is the plotting and fitting
of its degree distribution p(k). Networks with long-tailed degree distribution
that follows a power-law are known to exhibit the scale-free topology. Most
real networks such as the internet, WWW and the citation network are scale-
free networks [3]. On the other hand, networks with exponentially-decaying-tail
degree distribution are collectively referred to as exponential Networks.

Plotting. To gain insight into the popularity of Web-APIs, we plot the degree
distribution of the 1,525 Web-APIs based on their degrees in the affiliation net-
work. As shown in Fig. 3, both the PDF (Probability Density Function) in log-log
scale, linear binning, and the CCDF (Complementary Cumulative Distribution
Function) in log-log scale are plotted.

In Fig. 3a, the small degree region demonstrates a log-linear relation between
p(k) and k (log p(k) ∼ −γ log k, or p(k) ∼ k−γ), which is a typical feature of the
scale-free network; while a plateau is formed at the large k region as typically
we have only one copy of each large-degree node and this plateau affects our
ability to estimate the degree exponent γ [3]. One way to extract information
from the tail of the distribution is to use the CCDF (Fig. 3b), which enhances
the statistical significance of the large-degree region, and if p(k) follows the
power-law, then the CCDF is also power-law: P (k) ∼ k−γ+1.

Fitting. In order to determine the best fit for the Web-API degree dataset, we
first fit the data to four classical models including Power-law, Exponential, Log-
normal, and Poisson. Figure 4 shows the result of the fitting when kmin = 4. We
can see that both the power-law and the log-normal offer a good fit to the data,
while the exponential and the Poisson fit poorly to the data.

Constructing and Evaluating Evolving Web-API Network 609

Fig. 3. Degree distribution plot of the Web-APIs nodes in the affiliation network 3a
shows the Log-log plot (linear-binning) of the Web-APIs degree distribution 3b shows
the CCDF plot of the degree distribution in log-log scale.

Table 3. Plausibility of fitting Power-law, Log-normal, Exponential, and Poisson mod-
els to the Web-API degree data

Parameter Power-Law Exponential Log-normal Poisson

γ 2.200837 - - -

p-value 0.783 0.000 0.667 0.000

To quantitatively measure the plausibility of each distribution, next we con-
ducted a goodness-of-fit test based on the Kolmogorov-Smirnov (KS) distance
which measures the difference between the model and the empirical data, and
a p-value ∈ [0, 1] is calculated to measure the model plausibility. The closer p
is to 1, the more likely that the difference between the model and the empirical
data is attributed to statistical fluctuations alone. If p is very small, the model
is not a good fit to the empirical data [3].

Table 3 shows the resultant p-values for each distribution. Clearly, power-law
is the most plausible fit (p-value = 0.783) and next to it is log-normal (0.667);
for both exponential and Poisson, the p-value is zero.

Exponent Estimating. In the above, we have justified that the power-law
model provides the best fit to our data, next we use MLE (Maximum Likelihood
Estimation) to estimate the scaling parameter/degree exponent γ [17]:

γ̂ = 1 + n

[
n∑

i=1

ln
ki

kmin

]−1

(1)

where ki, i = 1 . . . n are the observed values of k such that ki ≥ kmin, kmin

represents the minimum degree of node in the network.

610 O. Adeleye et al.

Fig. 4. Fitting Power-law (PL), Log-normal, Exponential, and Poisson models to the
Web-API degree data

The assumption for estimating the parameter is that γ > 1, since the case of
γ ≤ 1 does not exist in real world [8].

When kmin = 1, the appropriate estimator for γ was given as:

ζ ′(γ̂)
ζ(γ̂)

= − 1
n

n∑
i=1

ln ki (2)

where ζ(γ̂) is the Riemann Zeta function.
Otherwise, when kmin > 1, the appropriate estimator for γ is:

ζ ′(γ̂, kmin)
ζ(γ̂, kmin)

= − 1
n

n∑
i=1

ln ki (3)

Using the method described in [8], which is also based on the KS distance,
we can find the optimal kmin with respect to each data point and select the
value that gives the minimal KS distance between the CCDF of our data and
the fitted model. The resultant γ value for the CCDF is around 2.2 (or the γ
value for the PDF is 3.2), which is close to that of the Internet (γ = 3.42) [3].

3.4 Measuring Preferential Attachment

Real-world networks reach their current size by adding new nodes to the network
progressively, and a common phenomenon occurs, where new nodes tend to con-
nect to existing nodes with high degree. This phenomenon is called Preferential
Attachment (PA) [4]. If the probability that a newly arrive node connects to an
existing node i is proportional to the degree of that node ki, or

Π(ki) =
ki∑

j

kj
(4)

Constructing and Evaluating Evolving Web-API Network 611

Table 4. Preferential attachment measurement

Node span α (Newman) α (PAFit)

10 0.97 ± 0.05 1.09 ± 0.06

20 0.96 ± 0.05 1.08 ± 0.06

50 0.95 ± 0.07 1.06 ± 0.07

100 0.94 ± 0.06 1.05 ± 0.08

Monthly 0.96 ± 0.09 1.03 ± 0.09

then we call it linear-PA. The combination of growth and linear-PA play a critical
role in shaping a network’s topology and are responsible for the emergence of
the scale-free property [3].

We can use the exponent α to classify different types of PA

Π(k) ∼ kα (5)

if α is 1, then PA is linear; if α is less than 1, then PA is sub-linear; otherwise
PA is super-linear [3].

We aim to detect the presence of PA in the Web-API node set of the affiliation
network of ProgammableWeb and also measure its α value. To do so, we can
examine the degree increase of a node i between a fixed span Δt: Δki = ki(t +
Δt) − ki(t). For example, if Δt = 5, ki(t + Δt) is the degree of node i after five
new nodes joined the affiliation network. The relative change Δki/Δt should
follow

Δki

Δt
∼ Π(ki) (6)

Actually, to reduce the noise we can measure the cumulative preferential attach-
ment:

π(k) =
k∑

ki=0

Π(ki) (7)

We employ both the PAFit method [20] and Newmans’s method [18] to esti-
mate PA. As we can see in Table 4, Node Spans 10, 20, 50, 100, and monthly all
output consistent results of α ≈ 1, which demonstrates the existence of linear-
PA, or scale-free property, of Web-APIs in the ProgrammableWeb affiliation
network.

4 Constructing an Evolving Web-API Network

In this section, we propose a complex-network-based approach to constructing
an evolving social network for Web-APIs. We first discuss the limitation of the
projection-based approach that projects the affiliation network to an one-mode
API-API network; then, we present the evolving network model, and the strategy
and procedure we use to construct the social network for ProgrammableWeb
APIs; then we discuss the topological property of the constructed network; and
finally we discuss an application of the constructed network in service discovery.

612 O. Adeleye et al.

4.1 Limitation of the Projection-Based Approach

In order to build a social network for service ecosystems such as Pro-
grammableWeb, a simple approach is directly applying one-mode projection to
mashup-API affiliation network to derive an API-API network. This approach
has been used in [13,16]. Figure 5 illustrates how to project an affiliation network
onto an one-mode API-API network.

The limitation of this approach is apparent: Only Web-APIs used in mashups
(suppose every mashup contains at least two Web-APIs) will appear on the pro-
jected network. For example, the ProgrammableWeb affiliation network contains
only 1,525 Web-APIs, which is less than 10% of the total 16,138 Web-APIs on
the registry. Furthermore, the popularity/number-of-links of a Web-API node
on the projected network is discounted as there are mashups that use only one
Web-API, and such links are not counted in the projected network (for example
the link between M5 and A6 in Fig. 5).

4.2 Network Model and Construction Strategy

As discussed in Sect. 3.4, the combination of growth and PA are the two generic
mechanisms that drive many real-world networks, and we have validated the
presence of both growth and PA in the ProgrammableWeb affiliation network.
Based on that, we aim to build a growing/evolving network of Web-APIs that
preserve both the topology properties of affiliation network and the popularity
information of the Web-API nodes, while including all the Web-APIs in the
ecosystems.

We base our model on the Barabási-Albert evolving network model [3]. For
the growth aspect, it involves continuous addition of new nodes (Web-APIs) into
the network, therefore increasing the number of nodes in the network through-
out its life span. To do so, first, we initialize the network, starting with fully
connected m0 number of nodes. At every time step, we add a new node with m
links.

To incorporate PA, we dynamically estimate the probability that a link of
the new node connects to an existing node i depends on its degree ki using the
linear-PA equation (Eq. 4) described in Subsect. 3.4.

Figure 6 illustrate the network’s growth and PA mechanism (assuming m0 =
4,m = 1): at time 0, four fully connected nodes form the initial network; at time
1, Node 5 joins the network; based on linear-PA, as Node 1–4 each has the same
degree, each of them has the same probability to attract Node 5 to connect to it,
which is 3/12, or 1/4; at time 2, based on linear-PA, the probabilities for node
1–5 to attract the new node are [3/K, 3/K, 4/K, 3/K, 1/K] where K = 13 is
the total degree of the network and the numerator is the degree of each existing
node.

Based on the growth and the linear-PA, older nodes always have better chance
to attract links than newer nodes as they have better degree/popularity. Specific
to ProgrammableWeb, to preserve the popularity information in the affiliation
network, we need to define a strategy on when a Web-API joins the growing

Constructing and Evaluating Evolving Web-API Network 613

Fig. 5. Affiliation network projection Fig. 6. Illustration of Web-API net-
work growth procedure

network; i.e., we need to sort the full list of Web-APIs and put them onto the
network one-by-one (or step-by-step) based on their position in the sorted list.
A simple strategy is stated below:

– First, We sort the Web-API nodes based on their degree (or popularity) in
the affiliation network in a descending order so that higher-degree nodes are
in the front to produce L1;

– Then, for Web-APIs that do not appear in the affiliation network we sort
them based on their date of publication/birth in an ascending order so that
older nodes are in the front to produce L2;
(it is worth noting that date-of-birth is also used in [19] as a measure of
popularity.)

– Finally, we just append L2 in the end of L1 and put the node into the network
one-by-one based on their order in the list.

The complete network construction procedure is described below:

Procedure
Input Parameters (N : number of nodes, m0: number of initial nodes, m: number
of links added at each time step)

1. Creating node list: Sort Web-APIs nodes based on popularity and date-of-
birth;

2. Initializing network: Start with a fully connected m0 number of most popular
nodes;

3. Growth: At each time step, a new node with m number of links is added
and connected to m number of already existing nodes in the network, where
m ≤ m0;

614 O. Adeleye et al.

Fig. 7. Overview of the Web-API
network

Fig. 8. Degree distribution of the Web-API
Network; from bottom to top: m = 1 (red),
m = 3 (grey), m = 5 (green) and m = 7 (yel-
low). (Color figure online)

4. Preferential attachment: With probability Π(ki), the new node connects to
an already existing node i with degree (ki). Probability Π(ki) is estimated
dynamically based on Eq. (5).

5. After all N nodes join the network, we obtain the popularity-based, evolving
Web-API network.

An overview of the constructed ProgrammableWeb API network containing
all its Web-APIs is shown in Fig. 7, with popular nodes labelled. Next, we analyze
the topological property of this network.

4.3 Topological Properties of the Web-API Network

In this subsection, we discuss three main topological property of the constructed
Web-API network in terms of degree distribution, network diameter, and clus-
tering coefficient.

Degree Distribution. Figure 8 shows the degree distribution (log-binning)
with N = 16138, m0 = 4, and m = 1(red, γ = 2.782), m = 3 (grey, γ = 2.823),
m = 5 (green, γ = 3.05) and m = 7 (yellow, γ = 3.002).

Theoretically, we can use the continuum theory [3] to estimate the degree
exponent of the degree distribution

p(k) ≈ 2m1/βk−γ (8)

where β = 1/2 is the dynamical exponent and γ = 1/β + 1 = 3.

Constructing and Evaluating Evolving Web-API Network 615

So the constructed Web-API network is a scale-free network with degree
exponent γ ≈ 3.

Network Diameter. Network diameter d is the maximum of the shortest dis-
tances between any two nodes. If a network’s diameter is proportional to lnN ,
then it is a small-world network [24]. Theoretically, the expected value of the
diameter of the Web-API network is [3]:

〈
d
〉 ∼ ln N

ln lnN
(9)

If we plug in N = 16138, we get
〈
d
〉 ≈ 4.27. For m = 5 and m = 7, the actual

diameters are 6 and 5 respectively, which are consistent with the expected value.
As d grows slower than lnN , the Web-API network is ultra-small.

Clustering Coefficient. A clustering coefficient measures the density of links
in a node’s immediate neighborhood, and the average clustering coefficient of
a network can be obtained by averaging over all its nodes. Theoretically, the
average clustering coefficient of the Web-API network is [3]:

〈
C

〉 ∼
(
InN

)2
N

(10)

If we plug in N = 16138, we get
〈
C

〉 ≈ 0.006. For m = 5 and m = 7, the
actual clustering coefficient are 0.005 and 0.007 respectively, which are consistent
with the theoretical value.

4.4 Applying Web-API Network in Service Discovery

In this section, we discuss one application of the Web-API network in service
discovery. Consider a new service consumer, who wants to leverage different Web-
APIs from different domains (say Dictionary, Translation and Social) to create
a mashup that allows users to find the meaning of a word in English, translate
to French and post it on social media. In order to navigate through the Web-
API network and discover require Web-APIs, a link-as-you-go approach [7] can
be used. As illustrated in Fig. 9, the user can zoom-in to the network, starting
from Twitter API and then navigate through by following social links to discover
Oxford dictionary (OX) and then Google Translate (GT) API. Such user activity
pattern is very similar to surfing the WWW; just in our case the user is surfing
the service network.

616 O. Adeleye et al.

Fig. 9. Web APIs Discovery with link-as-you-go approach.

5 Conclusion and Future Work

In this paper, we propose an evolving-network-based approach for construct-
ing a social network for Web-APIs based on their popularity in the service
ecosystem. We achieve this by first studying the underlying topology of the Pro-
grammableWeb service ecosystem from the complex network perspective and
analyze the popularity distribution and preferential attachment of Web-APIs
in the ecosystem; then, we incorporate our findings into the construction of an
evolving social network of Web-APIs using the well-established Barabási-Albert
model. In the future we want to do further research in the following directions:
(1) As the construction strategy of the network is purely based on node popu-
larity, we plan to investigate other strategies that consider factors such as node
fitness and similarity; (2) The clustering coefficient of the constructed network
is low compared to real-world networks; we plan to investigate strategies that
can build better clustered networks.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web.
Nature 401(6749), 130 (1999)

2. Barabási, A.-L.: Network science: luck or reason. Nature 489(7417), 507 (2012)
3. Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)
4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science

286(5439), 509–512 (1999)
5. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Prof. 8(5), 31–37

(2006)
6. Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks.

EPL (Europhys. Lett.) 54(4), 436 (2001)

Constructing and Evaluating Evolving Web-API Network 617

7. Chen, W., Paik, I., Hung, P.C.K.: Constructing a global social service network for
better quality of web service discovery. IEEE Trans. Serv. Comput. 8(2), 284–298
(2015)

8. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

9. Fallatah, H., Bentahar, J., Asl, E.K.: Social network-based framework for web
services discovery. In: 2014 International Conference on Future Internet of Things
and Cloud (FiCloud), pp. 159–166. IEEE (2014)

10. Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network.
Comput. J. 58(6), 1293–1305 (2015)

11. Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A., Dubé, L.J.: Structural
preferential attachment: network organization beyond the link. Phys. Rev. Lett.
107(15), 158702 (2011)

12. Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: a network
analysis on a service-mashup system. In: 2012 IEEE 19th International Conference
on Web Services, Honolulu, HI, USA, 24–29 June 2012, pp. 552–559 (2012)

13. Huang, K., Fan, Y., Tan, W.: Recommendation in an evolving service ecosystem
based on network prediction. IEEE Trans. Autom. Sci. Eng. 11(3), 906–920 (2014)

14. Kavitha, R., Anuvelavan, S.: Weather master: mobile application of cyclone disaster
refinement forecast system in location based on gis using geo-algorithm. Int. J. Sci.
Eng. Res. 6, 88–93 (2015)

15. Lee, J., Niko, D.L., Hwang, H., Park, M., Kim, C.: A GIS-based design for a smart-
phone disaster information service application. In: 2011 First ACIS/JNU Interna-
tional Conference on Computers, Networks, Systems and Industrial Engineering
(CNSI), pp. 338–341. IEEE (2011)

16. Lyu, S., Liu, J., Tang, M., Kang, G., Cao, B., Duan, Y.: Three-level views of
the web service network: an empirical study based on programmableweb. In: 2014
IEEE International Congress on Big Data (BigData Congress), pp. 374–381. IEEE
(2014)

17. Muniruzzaman, A.N.M.: On measures of location and dispersion and tests of
hypotheses in a pare to population. Calcutta Stat. Assoc. Bull. 7(3), 115–123
(1957)

18. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Phys. Rev. E 64(2), 025102 (2001)

19. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguná, M., Krioukov, D.: Popular-
ity versus similarity in growing networks. Nature 489(7417), 537 (2012)

20. Pham, T., Sheridan, P., Shimodaira, H.: PAFit: a statistical method for measuring
preferential attachment in temporal complex networks. PloS one 10(9), e0137796
(2015)

21. Pham, T., Sheridan, P., Shimodaira, H.: Joint estimation of preferential attachment
and node fitness in growing complex networks. Sci. Rep. 6, 32558 (2016)

22. Wang, H., Feng, Z., Chen, S., Xu, J., Sui, Y.: Constructing service network via
classification and annotation. In: 2010 Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), pp. 69–73. IEEE (2010)

23. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup commu-
nity. In: IEEE International Conference on Information Reuse and Integration, IRI
2009, pp. 126–131. IEEE (2009)

24. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440 (1998)

25. Weiss, M., Gangadharan, G.R.: Modeling the mashup ecosystem: structure and
growth. R&D Manag. 40(1), 40–49 (2010)

Stigmergic Service Composition and
Adaptation in Mobile Environments

Andrei Palade(B), Christian Cabrera, Gary White, and Siobhán Clarke

School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland
{paladea,cabrerac,whiteg5,siobhan.clarke}@scss.tcd.ie

Abstract. Users within a limited geographic area can form service-
sharing communities using the services deployed on their mobile devices.
Creating Quality of Service (QoS) optimal service compositions in such
decentralised and dynamic environments is challenging because of the
service providers’ mobility and the inherent dynamism in the available
services. Existing proposals for mobile environments either use template-
matching composition or require a-priori knowledge about the QoS objec-
tives’ weights, which limits the composition’s flexibility in such envi-
ronments. This paper presents a stigmergic-based approach to model
the decentralised, flexible and dynamic service interactions of providers
in a mobile environment. A nature-inspired optimisation mechanism is
used to approximate the set of QoS optimal compositions that result
from these interactions. To facilitate adaptation of the composite during
execution, we introduce a procedure that encourages the exploration of
service composition configurations that emerge as a result of providers’
mobility. We evaluate the performance of the proposed approach with a
no-adaptation variant, a Dijkstra-based, a Greedy and a Random app-
roach. The results show that the proposed approach can obtain superior
solutions compared with current optimisation methods for flexible service
composition in mobile environments at the cost of increased overhead.

Keywords: Stigmergic · Flexible · QoS-aware service composition

1 Introduction

Recent developments in wireless communications technologies allow the mobile
users within a limited geographical area to share services deployed on their
mobile devices to form a service-sharing community, which can enable new
service-based applications. Such applications are generally distributed among
several devices since a single device is not capable of executing an entire appli-
cation. For example, a smart route planner for users in a mall can be opportunis-
tically provisioned by exploiting the ad-hoc interactions of a personal-shopper’s
phone, a nearby car’s satellite navigator, and the mall’s information kiosk to
enable the requested functionality [8,17]. Apart from the functional require-
ments, this composition process should create solutions with the best possible
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 618–633, 2018.
https://doi.org/10.1007/978-3-030-03596-9_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_45&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_45

Stigmergic Service Composition and Adaptation in Mobile Environments 619

QoS. In the envisioned environment this is challenging because services may
fail, their qualities may decline because of the mobility of devices, or function-
ally similar services with better QoS may appear during the execution of the
composition.

Most service composition proposals use a template-matching approach to
provision QoS optimal configurations. This approach relies on functionally-
equivalent services, but with different QoS, to be optimally assigned to a prede-
fined workflow of tasks. Such an exactly-defined request affects the composition’
flexibility when the environment is dynamic [8]. The services can be combined in
an input-output dependency graph, where each node corresponds to one service,
and an edge is a matching between two connected services. Planning-based algo-
rithms can be used to find paths in this graph using goal-driven approaches [8].
Without QoS consideration, the shortest path is normally identified. With QoS
considerations, finding an optimal path is difficult. The shortest path might not
be optimal, since a longer path may have better QoS. The providers’ mobility and
the dynamism in services deployed on their devices may affect the search [30].

The existing QoS optimisation mechanisms for planning-based service com-
position in mobile environments require a-priori knowledge about QoS objec-
tives’ weights, and use exact or heuristics methods to find one optimal solution.
This requirement reduces the composition’ flexibility, and does not allow for dif-
ferent quality trade-offs to be thoroughly investigated. Also, the exact or heuris-
tics methods trade optimality for computational efficiency, or vice-versa [7].
Nature-inspired metaheuristics address these limitations by constructing one or
more solutions and gradually improve these through an iterative process. How-
ever, the existing proposals are limited to template-matching composition [16]
or require a centralised perspective [26,28]. Mobile environments need flexible
interactions, which may benefit from decentralised processing.

Stigmergic coordination has been used successfully in finding QoS opti-
mal routes in networks with frequent link disconnections, and rapid topology
changes such as Mobile (Vehicular) Ad-Hoc Networks [25]. However, the existing
stigmergy-based proposals are limited to template-matching composition [16].
An efficient and effective QoS optimisation method for planning-based service
composition that can quickly find a set of QoS optimal compositions in a mobile
environment is required to provide higher utility with acceptable overhead.

This paper presents a stigmergic-based approach to model the decentralised,
flexible service interactions in a mobile environment. New compositions (with
better QoS) may emerge as a result of providers’ mobility. The main contribu-
tions of this paper are: (1) a nature-inspired optimisation method to approximate
the set of QoS optimal compositions; (2) to facilitate composition adaptation
during execution, a procedure that encourages the exploration of new service
composition configurations that emerge as a result of providers’ mobility. We
evaluate the performance of the proposed approach and compare the results with
a no-adaptation variant, a Greedy, a Dijkstra-based and a Random approach.
The proposed approach can obtain superior solutions compared with existing
optimisation methods for flexible service composition in mobile environments.

620 A. Palade et al.

The paper defines the QoS optimisation problem in planning-based compo-
sition in Sect. 2, presents the stigmergic modelling of composition, the proposed
QoS optimisation and adaptation procedure in Sect. 3, the implementation and
evaluation of these methods in Sect. 5, and the evaluation results in Sect. 6.
Section 7 presents the related work, and Sect. 8 concludes the paper.

2 Problem Description

The services deployed on mobile devices in a geographic area such as a mall [8]
or an university campus [9] can be used to create new service-based applications.
To enable such applications, services can be clustered based on their syntactic
or semantic similarity using a Service-Specific Overlay Network [1]. Goal-driven
service composition using planning-based algorithms can automatically solve a
user’s request using the available services in these clusters [8].

Figure 1 shows the result to a user’s request, which is a service dependency
graph with three possible service composition solutions (paths): P0, P1 and P2.
In this example, the inputs of service S2 can be satisfied by the outputs of service
S1. When two or more nodes (services) in the graph share the same input, an
execution guidepost is created [8]. An execution guidepost Gi = <Rid,D> is a
split-choice control element in the composition process that maintains a set of
execution directions (branches) D for a composition request Rid. Each element
in the set D is defined as dj = <id,w>, where j ≤ |D|, w represents the set
services in the branch and id represents the identifier of the branch. For example,
at G2 two paths can complete the execution: P6: {S4 → S6} and {P6 → S7}. In
the envisioned environment, new service compositions can emerge as a result of
providers’ mobility. New nodes can be attached at runtime to the graph if they
can provide the required inputs/outputs [8,9].

Apart from the functional requirements, a composite service needs to satisfy
non-functional requirements. Given a set of QoS objectives, the challenge is how
to efficiently construct a composite service that maximises the satisfaction of
these QoS requirements. Such multi-objective optimisation problems are charac-
terised by several objectives that have to be optimised simultaneously. When a
user’s preferences about each objective weight are known, the task is to find the
service combination that can optimise a global utility function. However, when
this information is not available, compromises among multiple objectives need
to be made to identify the set of Pareto-optimal solutions. A Pareto-optimal
solution is a solution that is not dominated by any other solution in the set. The
population of such solutions form the Pareto-optimal set (Pareto-front) [14,23],
and are generally identified using non-dominated sorting techniques [15].

While the QoS values of each service in the graph can generally be esti-
mated using existing QoS prediction mechanisms [27], finding valid paths in this
dynamic graph is challenging. The QoS values of services may be time-dependent,
or services may become un-available because of the mobility of service providers.
In contrast to optimisation towards a static optimum, the goal in a dynamic envi-
ronment is to track as closely as possible the dynamically changing optima [4].

Stigmergic Service Composition and Adaptation in Mobile Environments 621

Paths at G1:
P3:{S1→S2}
P4:{S3→S4→S6}
P5:{S3→S5→S7}

Paths at G2:
P6:{S4→S6}
P7:{S5→S7}

Paths at Start:
P0:{S0→S1→S2}
P1:{S0→S3→S4→S6}
P2:{S0→S3→S5→S7}

S0 G1 S3

S2

G2

S4

S5

Branch 1

Branch 2

Branch 3

Branch 4

S1

S6

S7

End

Si RT Th
0 5.982 0.334
1 0.228 17.543
2 0.237 25.316
3 0.221 9.049
4 0.222 9.009
5 0.527 5.692
6 0.453 4.415
7 0.566 189.045

Start

Pi RT Th
P0:{S0→S1→S2} 6.447 0.334
P1:{S0→S3→S4→S6} 6.878 0.334
P2:{S0→S3→S5→S7} 7.296 0.334
P3:{S1→S2} 0.465 17.543
P4:{S3→S4→S6} 0.896 4.415
P5:{S3→S5→S7} 1.314 5.692
P6:{S4→S6} 0.675 13.424
P7:{S5→S7} 1.093 5.692

Services Table Paths Table

Legend

Pi – i-th path
Si – i-th service
Gi – i-th guidepost
RT – Response Time
Th – Throughput

Fig. 1. A service dependency graph with 3 available service compositions (paths): P0,
P1 and P2. Paths P3, P4, P5, P6, P7 are alternative paths that can be selected at
execution time. Services table shows the QoS for each service i in the graph, and path
table shows the aggregated QoS for each path. These values are aggregated using the
formulas in Table 1.

Prior optimisation methods for planning-based service composition in mobile
environments used exact or heuristics algorithms to address this problem. Exact
algorithms can find the optimal solution, but lack scalability because of their
exponential complexity. Heuristics have polynomial complexity, but do not offer
any worst-case guarantees on how close the QoS values of the returned solutions
come to the QoS values of the Pareto-optimal ones [23]. Also, the existing pro-
posals require a centralised perspective, which, in the envisioned environment,
is a single point of failure or has the potential to cause processing and communi-
cation bottlenecks because of frequent state updates. Mobile environments need
flexible interactions, which may benefit from decentralised processing.

Table 1. QoS aggregation formulas.

Parameter Aggregation formula Description

RT (Response time)
∑n

i=1 rti rt - response time of i-th service

Th (Throughput) min(thi) th - throughput of i-th service

3 QoS Optimisation Mechanism

Stigmergic coordination, exhibited by the social insects to coordinate their activ-
ities, can be used to enable service-based applications in mobile environments.
A set of mobile software agents interact with the environment by encoding

622 A. Palade et al.

application-specific information as pheromone to achieve certain tasks. These
agents achieve collaboration and self-organisation by exchanging pheromone and
performing several pheromone operations. A service is composed by a group of
service agents that can form an organisation in order to collaborate. We use this
abstraction to model the decentralised, flexible service interactions in a mobile
environment. We are extending the notation used by Moustafa et al. [16] to
account for the forward-backward motion of the mobile agents, which is used to
reinforce the optimal paths [21].

Definition 1. Service Agent (sa). A tuple sa = <id, F>, where id is the
agent’s identifier and F is the pheromone store used during composition.

Definition 2. Pheromone Store (F). A tuple F = <id, f>, where id is the
identifier of the direction and f is the pheromone value associated with that direc-
tion.

Definition 3. Memory Store (M). A set M = {sa0, . . . , san} where each
element in the set is a service agent.

Definition 4. Mobile Agent (ma). A tuple ma = <id,M>, where id is the
identifier of each agent, and M is the memory store associated with that agent.

The proposed QoS optimisation method is inspired by Ant Colony Optimisa-
tion [25]. The mechanism uses a decentralised architecture, which allows service
composition configurations to adapt in mobile environments. A service compo-
sition request is satisfied by a requester service agent. Using a service discovery
component, a user’s request can be functionally modelled as a service depen-
dency graph (Fig. 1). Each service in the service dependency graph is modelled
using a service agent. A node in the graph is a service agent, and can function
as a source, destination or intermediate node. The source and destination node
can be the service requester agent. The intermediate nodes are the composition
participants. Each intermediate node (service agent) stores a list of addresses of
the service agents that can provide the next service in the graph. A pheromone
level is associated with each service agent in the list. The quantity of pheromone
is associated with the quality of the service provided by that service agent.

For each service composition optimisation task, a set of mobile agents is
used. The mobile agents communicate through the pheromone store of each
service agent. The mobile agents modify this value, to communicate the quality
of solution to other mobile agents that visit the node. The number of mobile
agents is task dependent. For simplicity, this number is set to the number of
nodes in the service dependency graph. This number can affect the overhead, as
well as the performance of the optimisation method. In this work we focus on
the impact of the environment variables on the optimisation mechanism.

The mobile agents can iteratively traverse the graph in a forward-backward
motion. The forward moving mobile agents use the intermediate nodes’ proba-
bility routing tables to advance in the graph:

Pd =
τα
d

∑N
i τα

i

(1)

Stigmergic Service Composition and Adaptation in Mobile Environments 623

where d is a branch in the set of branches D (as defined in Sect. 2), and τi is the
pheromone level associated with the first node (service agent) from branch d. As
they travel towards the destination node, the forward agents collect paths’ QoS
information. This information contains the QoS of each service component in the
path and is added to the agent’s memory store and aggregated. When all the
forward agents reach the destination node, the identified paths are filtered using
a non-dominated sorting technique [15] to identify the Pareto-optimal paths
(optimal solutions). At the destination node, forward agents become backward
agents only if their identified path is Pareto-optimal. As backward agents move
in the reverse path, the intermediate nodes modify their pheromone store using:
τi = τi + τi ∗ (Q/li) (positive reinforcement) where τi is the pheromone level,
Q is a constant and l is the length of the i -th path. To allow for new paths to
emerge, an evaporation procedure τi = τi ∗ (1− ρ) is used. Heuristic information
is not used in this work to avoid expensive network state dissemination.

4 Adaptation Procedure

To facilitate composition adaptation during execution, a procedure that encour-
ages the exploration of new service composition configurations that emerge as
a result of providers’ mobility is required. The stigmergic optimisation mecha-
nism can converge to the optimal solution by selecting the path with the highest
pheromone value. However, the envisioned environment introduces two addi-
tional challenges to finding the optimal configuration: (1) services in the service
dependency graph may join or leave at any time because of the mobility of the
providers; (2) the QoS of the services offered by such providers may vary in time.
Therefore adaptation procedure must be promoted to effectively address these
issues.

To facilitate composition adaptation during execution, and allow other
parts of the solution space to be explored, we use a pheromone smoothing
scheme. This scheme allows identified optimal paths to be reinforced with lesser
pheromone [22]. This allows for other (some previously marked as non-optimal)
paths to be explored. Each element in the pheromone store is updated as follows:

τij′ = τij + δ ∗ (τmax − τij) (2)

where τij′ is the new pheromone level, τij is the previous pheromone level, δ is
a smoothness coefficient and τmax is the maximum pheromone level that can be
associated with this path.

While evaporation adopts a uniform discount rate for every node, the
pheromone smoothing technique places a greater reduction in the reinforcement
of pheromone concentration on the optimal path(s), by reducing the rate of rein-
forcement of dominant paths [21]. Previous research showed that such technique
can prevent the generation of dominant paths. Stuzle and Hoos [22] introduced a
similar mechanism to solve the travelling salesman problem, but in a stationary
environment. Also, this approach showed promising results in a dynamic, but
stationary Wireless Sensor Networks environment [5].

624 A. Palade et al.

In the envisioned environment, the topology of the service dependency graph
can change continuously. The devices on which the services are deployed may
move out of range, or may be power depleted. If these services are part of the
optimal service composition paths, when the environment changes, other paths
in the service dependency graph may become optimal during the execution of the
composition. Also, new service composition may emerge because of the mobility
of users, which may have more optimal QoS.

In this paper, we are proposing this approach as an adaptation handling
procedure for planning-based service composition in mobile environments. Each
service agent is allocated with two pheromone update rules, which will be exe-
cuted periodically. These rules are the evaporation and pheromone smoothing of
each element in the pheromone store.

5 Implementation and Evaluation

The proposed QoS optimisation method is implemented and evaluated using the
Simonstrator platform [19]. The proposed QoS optimisation algorithm, both with
and without the adaptation handling, produces a set of solutions for each traver-
sal of the service dependency graph. First, we evaluate how well the proposed
QoS optimisation mechanism approximates the set of Pareto-optimal solutions.
We perform the evaluation with and without adaptation handling. Second, we
measure utility of the produced solutions and the introduced overhead of the
proposed QoS optimisation mechanism, with and without adaptation handling.
We compare the results with a Dijkstra-based, a Greedy and a Random app-
roach. The two objectives considered in this evaluation are the response time
and the throughput, but multiple objectives can be considered such as battery
lifetime of devices and service availability. We assume that each node in the
service dependency graph stores the estimated QoS value.

5.1 Performance Metrics

PS (A) - Size of Dominated Space: This metric was introduced by Zitzler
and Thiele [35] and indicates how well the Pareto-optimal set is approximated
by the set of solutions A. Here, the set A contains only non-dominated solutions.
The greater the size of the space dominated, the closer the solutions are to the
Pareto-optimal set [26]. This metric is calculated as follows:

PS(A) = S(A)
Max I∗Max II , and

S(A) = (Max I − x1) ∗ (Max II − y1) +
∑n

i=2(Max I − xi) ∗ (yi−1 − yi)
(3)

where MaxI and MaxII are the maximum values of Objective I and Objective
II. These two values are used to create the Reference Point XR. As an example,
Fig. 2 shows the composition of set A, which is a Pareto front made of 5 points.
The dominated space is given by the orange surface.

Stigmergic Service Composition and Adaptation in Mobile Environments 625

Max II

Max IObjective I

O
bj

ec
tiv

e
II X1

X2
X3

X4
X5

XR

Fig. 2. PS (A) metric. Example of space dominated (in orange) by a given Pareto set
(points X1, X2, X3, X4 and X5) when two objectives are minimised. (Colore figure
online)

Utility. This metric indicates the overall satisfaction of QoS requirements of
a service composition configuration [2]. Certain QoS values such as response
time are considered negative criteria and need to be minimised to increase user
satisfaction, whereas others such as throughput are considered positive criteria
and need to be maximised.

Uimin =

{
Qmax

i −Qi

Qmax
i −Qmin

i

1
Uimax =

{
Qi−Qmin

i

Qmax
i −Qmin

i
ifQmax

i − Qmin
i �= 0

1 ifQmax
i − Qmin

i = 0
(4)

where Qi is a QoS value, and Qmin
i and Qmax

i are the minimum/maximum
QoS values available for Qi. Equation 5 computes the utility of each service
composition configuration as follows:

Utilityg =
n∑

1

Ui ∗ Wi (5)

where Wi represents the importance weights assigned to the i -th metric. Each
weight is a number in the range [0, 1] and the sum of all weights is equal to 1.
In this evaluation, all objectives carry an equal weight.

Overhead. The overhead measures the number of exchanged messages between
the nodes used during the composition. This metric includes all the types of
messages that are exchanged, including retransmission or probing messages.

5.2 Evaluated Algorithms

We chose several QoS optimisation mechanisms designed for planning-based ser-
vice composition to compare their utility and overhead with our proposed model.
Each algorithm was implemented in the simulator. Also, two versions of proposed
QoS optimisation were formalised:

1. ACO: the implementation of the QoS optimisation mechanism described in
Sect. 3, without the adaptation procedure.

626 A. Palade et al.

2. E-ACO: an extension to ACO, which uses the proposed adaptation proce-
dure introduced in Sect. 4.

An important limitation of the selected baseline algorithms is that they
require user’s QoS preferences and they produce a single solution, whereas the
proposed QoS optimisation mechanism can does not have a requirement for user
input (for QoS weights) and may produce a set of solutions. We use the util-
ity metric to select a single solution from the set of Pareto-optimal solutions
produced by ACO and E-ACO algorithms. We compare the utility values and
overhead with the existing proposals for QoS optimal service composition in
mobile environments:

1. SimDijkstra: An exact algorithm that uses a Dijkstra-based algorithm to
find the shortest path in the service dependency graph [11]. The execution of
the algorithm finishes when the end node is reached.

2. GoCoMo: A heuristics-based algorithm that uses a Greedy-based approach
to select the path with the highest utility value to the user. It uses monitors
to collect QoS of potential paths. Probes are sent regularly to update the QoS
information from the leaf nodes to each guidepost in the service dependency
graph [8].

3. Random: Randomly selects the next service in the service dependency graph.
This algorithm shows the expected value of a random solution and provides
a baseline that the specialised algorithms should easily outperform [13].

5.3 Test Case Generation

For the purpose of evaluation, we use a scenario based on an adaptive route
planner application [8]. Such an application can be built using services provided
by the available (mobile) devices in the environment. Many services can pro-
vide similar functionality and more than one service composition configuration
may be available. The composition with the optimal QoS should be selected to
maximise user satisfaction of non-functional requirements.

The response time and throughput of the final composite service were mea-
sured. These values are used to compute the utility of the final composition plan.
For ACO and E-ACO, we also measure the size of the dominated space based on
a reference point fixed using the best QoS values for response time and through-
put. In this evaluation, the reference point was set to the highest throughput
plus 5 units and the lowest response time minus 0.1 units. For each algorithm
presented in Sect. 5.2 we also measured the ovearhed. To minimise the impact
of external factors on our results, the presented algorithms were executed 100
times per problem instance to compute the averages.

5.4 Environment Setup

The mobile devices in the environment move at a speed of 7.5 to 13.5 m/s. The
other environment’s properties are: size - 1000*1000 m, communication range -

Stigmergic Service Composition and Adaptation in Mobile Environments 627

250 m, and movement model - Gauss Markov. Each device is set to offer one
service. Each service has QoS values. We use a QoS dataset to initialise the
QoS of each service participant, which consists of a matrix of response time and
throughput values for 339 users by 5,825 services [34]. To address the dynamism
in the services available in the environment, these QoS values are randomly
changed after every service iteration by multiplying every QoS value with a ran-
dom number in the interval [0.9, 1.1]. For simplicity, only QoS discrete numerical
values are considered in this work.

In ACO and E-ACO a number of parameters need to be set before running
the algorithm such as the number of mobile agents, the factor α, parameter
Q, the pheromone coefficient ρ, and the initial pheromone level in each node. A
larger number of mobile agents improves the convergence rate, however, overhead
is introduced. We set the number of mobile agents to be equal to the number
of nodes in the service dependency graph. The other parameters are initialised
as follows: α = 0.9 , ρ = 0.01, τinitial = 10.0, and Q = 10. The adaptation
procedure is initialised using τmax = 20.0 and δ = 0.5. The smoothing rate is
set to (evaporation rate) * 0.5.

6 Results

6.1 Size of Dominated Space

Figure 3 shows how the size of the dominated space achieved by ACO and E-
ACO evolves as the number of iterations is increased. The size of the dominated
space indicates how well the Pareto-optimal set is approximated by the identified
solutions. The greater the size of the space dominated, the closer the solutions
are to the Pareto-optimal set. This metric was defined in Sect. 5.1. We show the
results of this evaluation for the cases when the number of available paths (size
of the solution space) is 16, 32, 64, and 128. When 16 paths are available, the size
of the dominated space for ACO is 63.32% after 10 iterations and decreases to
60.54% after 250 iterations, whereas for E-ACO maintains a level of 64%. When
the number of paths increases to 32, ACO obtains 64.07% after 10 iterations and
decreases to 60.56% after 250 iterations, whereas E-ACO slowly increases from
64.35% to 64.76%.

Both ACO and E-ACO increase the size of their dominated space as the
number of available paths increases. For example, when 128 paths are available
ACO achieves 67.59% and E-ACO achieves 66.96%. However, ACO maintains
the same decreasing slope and achieves 64.51% after 250 iterations, whereas E-
ACO achieves 68.45% after 250 iterations. We also report that when the size of
the solution space is 64, ACO achieves 67.05% after 10 iterations and 62.90%
after 250 iterations, whereas E-ACO achieves 66.96% after 10 iterations and
68.45% after 250 iterations.

6.2 Utility

Figure 4 shows the results of the utility evaluation as the number of available
paths (service composition configurations) is increased. We show the results of

628 A. Palade et al.

Fig. 3. Evolution of PS (A) metric (defined in Sect. 5.1) after 250 iterations for different
number of paths (higher is better).

this evaluation for the cases when the number of available paths (size of the
solution space) is 16 (Fig. 4a), 32 (Fig. 4b), 64 (Fig. 4c), and 128 (Fig. 4d). The
utility is calculated using the configurations produced by ACO and E-ACO in
the last 5 iterations, and the configurations produced by SimDijkstra, GoCoMo
and Random. This metric was defined in Sect. 5.1. Both objectives have equal
weights.

By increasing the number of iterations, two trends can be observed for ACO
and E-ACO: (1) the utility of both increases as the number of paths increases,
and (2) the utility of ACO is higher than the utility of E-ACO after 100 itera-
tions. This difference decreases as the number of paths increases. When 16 paths
are available, ACO achieves an utility of 86.58% and E-ACO achieves an utility
of 80.38%. This decreases to 93.26% for ACO and 88.52% for E-ACO, when 128
paths are available. The SimDijkstra and Random algorithms have the lowest
utility for almost all runs. GoCoMo performs comparably to ACO and E-ACO.

6.3 Overhead

Figure 5 shows the overhead (number of exchanged messages) after 250 iterations
as the number of available paths in the service dependency graph varies. In
GoCoMo, a global state mechanism periodically disseminates network state to
all participating nodes, which explains the high overhead. This mechanism is
not used in SimDijkstra and Random and the overhead introduced by these two
algorithms is insignificant. However, the utility of solutions of these algorithms is
considerably lower than the utility produced by ACO and E-ACO and GoCoMo.
ACO and E-ACO introduce a higher overhead than the other approaches because
of the large number of agent messages. This number is task dependent, and, for
simplicity, it was set to the number of nodes in the service dependency graph.
Tuning this parameter would likely reduce the overhead, though this needs to
be verified.

Stigmergic Service Composition and Adaptation in Mobile Environments 629

(a) (b)

(c) (d)

ACO E-ACO SimDijkstra GoCoMo Random

Fig. 4. The utility of solutions produced by the evaluated algorithms (higher is better)
after 250 iterations for different number of paths. The results are averaged over 100
executions.

Fig. 5. The overhead when various number of paths are available (lower is better). The
results are averaged over 100 executions.

630 A. Palade et al.

7 Related Work

Most QoS-aware service composition mechanisms use a template-matching app-
roach where the user’s request is a predefined set of abstract tasks and the goal
is to find an assignment of services to pre-defined abstract tasks to maximises a
QoS-related user benefit. Such approaches used exhaustive search, genetic algo-
rithms [6], linear and integer programming [2,3,32] to select, for each task, an
optimal service candidate from a functionally-equivalent list of candidates.

Planning-based service composition was introduced to address the functional
limitation of the template-matching model. However, the existing proposals have
limited support for non-functional requirements in mobile environments. They
use exact and heuristic approaches to find an optimal QoS composition plan.
GraphPlan [30], SimDijkstra [11], and Rodriquez et al. [20] presented a Dijkstra-
based algorithm to find compositions paths that satisfy users’ QoS objectives
subject to constraints. To improve resilience of the composition, Jiang et al. [11]
return the top-k optimal paths. However, these works do not address the dynamic
nature of a mobile environment. GoCoMo [8] and Kalasapur et al. [12] use a
heuristics approach based on greedy selection to find the service composition
configuration with the highest utility to the user. These planning-based service
composition approaches require a-priori knowledge about the user’s objectives,
which reduces the flexibility of composition in a dynamic environment.

Nature-inspired metaheuristics have been designed to address challenges
that are common in large-scale, dynamic and decentralised networks [10]. Such
algorithms can support self-organisation, self-configuration, and collaboration
in changing environmental conditions. They can dynamically adapt to ensure
end-to-end communication between devices and provide efficient management of
available resources. These algorithms can balance the trade-off between compu-
tation efficiency and optimality [21], and can obtain a set of solutions having two
important properties: good convergence and diversity in solutions. The conver-
gence represents the distance to the set of Pareto-optimal solutions. The diver-
sity property refers to obtaining a uniform-spaced set of solutions to indicate
a good exploration of the search space without losing any valuable informa-
tion [14]. Such methods are approximate because they start from constructing
one or more complete solutions and gradually improve these solutions during
the iterative process. This makes it possible to track the quality of the solutions
found during each iteration, and stop as soon as acceptable results are identified.

The existing stigmergic-based proposals for QoS-aware composition used
ACO-based algorithms to identify the set of optimal solutions. MO ACO [33]
use an ideal vector with the best QoS value to guide the exploration of solution
space and identify the path with the highest utility. Wu and Zhu [29] combine
a transaction-aware service composition and a QoS-aware service composition
model to find the optimal candidate for each abstract task. AACO [24] adjusts
the pheromone evaporation factor at runtime based on the dynamics of the
environment. ACO-WSC [31] present an ant-colony optimisation to minimise the
length of the composition plans when composition participants are cloud services.
However, these proposals do not maintain populations of non-dominated solu-

Stigmergic Service Composition and Adaptation in Mobile Environments 631

tions. MOACO4WS [18] uses a reset strategy to address adaptation in dynamic
environments. The existing proposals either are limited to template-matching
composition [16,28] or require a centralised perspective [26].

8 Conclusion and Future Work

The main contributions of this work are a nature-inspired optimisation method
to approximate the set of QoS optimal compositions when composing services
deployed on mobile devices, and an adaptation procedure to facilitate the explo-
ration of new service composition configurations (with potentially better QoS)
that emerge as a result of providers’ mobility. The existing proposals for service
composition in such environments are limited to template-matching composition
or require a-priori knowledge about the QoS objectives’ weights. Previous work
in service composition showed that template-matching composition can limit the
flexibility of composition when the environment is dynamic. Also, new services
may emerge as a results of mobility of providers, and the requirement of user
input may affect the time of providing the user with new service composition
configurations. The proposed mechanism is designed for planning-based service
composition, and does not require user input. The mechanism, with and without
using the adaptation procedure, is evaluated in a dynamic scenario where various
number of compositions can be created. In our evaluation, we control this num-
ber to measure the performance of the proposed QoS optimisation mechanism,
and compare the results with GoCoMo, SimDijkstra and a Random approach.

The results show that the proposed QoS optimisation mechanism can achieve
a higher utility at the cost of increased overhead compared to the existing base-
line proposals for planning-based service composition for mobile environments.
Also, the results show that the proposed adaptation procedure improves the
approximation of the set of QoS optimal service composition configurations that
emerge as a results of providers mobility. The decrease in utility of solutions
when the adaptation procedure is used can be motivated by the selection of
weights that are used to evaluate this metric. However, the adaptation proce-
dure can achieve a better approximation of the Pareto-optimal solutions than
the no-adaptation variant. In our future work will explore the case when differ-
ent utility weights are used. Also, in our future work we will investigate how the
number of agents used in ACO and E-ACO affects the overhead.

Acknowledgment. This work was funded by Science Foundation Ireland (SFI) under
grant 13/IA/1885.

References

1. Al-Oqily, I., Karmouch, A.: A decentralized self-organizing service composition for
autonomic entities. ACM TAAS 6(1), 7 (2011)

2. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-
cient QoS-aware service composition. In: Proceedings of the 18th International
Conference on World wide web, ACM (2009)

632 A. Palade et al.

3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6) (2007)

4. Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D.
(eds.) Swarm Intelligence. Natural Computing Series. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-74089-6 2

5. Cai, W., Jin, X., Zhang, Y., Chen, K., Wang, R.: ACO based QoS routing algorithm
for wireless sensor networks. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.)
UIC 2006. LNCS, vol. 4159, pp. 419–428. Springer, Heidelberg (2006). https://doi.
org/10.1007/11833529 43

6. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-
aware service composition based on genetic algorithms. In: Proceedings of the 7th
Annual Conference on Genetic and Evolutionary Computation, pp. 1069–1075.
ACM (2005)

7. Chattopadhyay, S., Banerjee, A.: Qos constrained large scale web service compo-
sition using abstraction refinement. IEEE Trans. Serv. Comput. (2017)

8. Chen, N., Cardozo, N., Clarke, S.: Goal-driven service composition in mobile and
pervasive computing. IEEE Trans. Serv. Comput. 11(1), 49–62 (2018)

9. Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., Zomaya, A.Y.: Mobility-aware
service composition in mobile communities. IEEE Trans. Syst. Man Cybern.: Syst.
47(3), 555–568 (2017)

10. Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: Ant colony optimization for
routing in mobile ad hoc networks in urban environments. IDSIA (2008)

11. Jiang, W., Hu, S., Liu, Z.: Top K query for QoS-aware automatic service compo-
sition. IEEE Trans. Servi. Comput. 7(4), 681–695 (2014)

12. Kalasapur, S., Kumar, M., Shirazi, B.A.: Dynamic service composition in pervasive
computing. IEEE Trans. Parallel Distrib. Syst. 18(7), 907–918 (2007)

13. Klein, A., Ishikawa, F., Honiden, S.: SanGA: a self-adaptive network-aware app-
roach to service composition. IEEE Trans. Serv. Comput. 7(3), 452–464 (2014)

14. López-Ibánez, M., Stutzle, T.: The automatic design of multiobjective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

15. Mishra, K., Harit, S.: A fast algorithm for finding the non dominated set in multi
objective optimization. Int. J. Comput. Appl. 1(25), 35–39 (2010)

16. Moustafa, A., Zhang, M., Bai, Q.: Trustworthy stigmergic service composition and
adaptation in decentralized environments. IEEE Trans. on Serv. Comp. 9(2), 317–
329 (2016)

17. Palade, A., Cabrera, C., White, G., Razzaque, M., Clarke, S.: Middleware for
internet of things: a quantitative evaluation in small scale. In: 6th IEEE Workshop
on the IoT: Smart Objects and Services, pp. 1–6. IEEE (2017)

18. Qiqing, F., Xiaoming, P., Qinghua, L., Yahui, H.: A global ToS optimizing web ser-
vices selection algorithm based on MOACO for dynamic web service composition.
In: IFITA, vol. 1. IEEE (2009)

19. Richerzhagen, B., Stingl, D., Rückert, J., Steinmetz, R.: Simonstrator: Simulation
and prototyping platform for distributed mobile applications. In: Proceedings of
the 8th International Conference on Simulation Tools and Techniques (2015)

20. Rodriguez-Mier, P., Mucientes, M., Lama, M.: Hybrid optimization algorithm for
large-scale QoS-aware service composition. IEEE Trans. Serv. Comput. 10(4), 547–
559 (2015)

21. Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing:
survey and new directions. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum.
33(5) 560-572 (2003)

https://doi.org/10.1007/978-3-540-74089-6_2
https://doi.org/10.1007/11833529_43
https://doi.org/10.1007/11833529_43

Stigmergic Service Composition and Adaptation in Mobile Environments 633

22. Stützle, T., Hoos, H.H.: Max-min ant system. Future Gener. Comput. Syst. 16(8),
889–914 (2000)

23. Trummer, I., Faltings, B., Binder, W.: Multi-objective quality-driven service
selection-a fully polynomial time approximation scheme. IEEE Trans. Softw. Eng.
40(2) 167-191 (2014)

24. Wang, D., Huang, H., Xie, C.: A novel adaptive web service selection algorithm
based on ant colony optimization for dynamic web service composition. In: Sun,
X., Qu, W., Stojmenovic, I., Zhou, W., Li, Z., Guo, H., Min, G., Yang, T., Wu,
Y., Liu, L. (eds.) ICA3PP 2014. LNCS, vol. 8630, pp. 391–399. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11197-1 30

25. Wang, L., Shen, J.: A systematic review of bio-inspired service concretization.
IEEE Trans. Serv. Comput. 10(4), 493–505 (2017)

26. Wang, L., Shen, J., Luo, J.: Facilitating an ant colony algorithm for multi-objective
data-intensive service provision. J. Comput. Syst. Sci. 81(4), 734–746 (2015)

27. White, G., Palade, A., Clarke, S.: QoS Prediction for Reliable Service Composition
in IoT. In: Braubach, L., Murillo, J.M., Kaviani, N., Lama, M., Burgueño, L.,
Moha, N., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10797, pp. 149–160. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91764-1 12

28. Wu, Q., Ishikawa, F., Zhu, Q., Shin, D.H.: QoS-Aware multigranularity service
composition: modeling and optimization. IEEE Trans. Syst. Man Cybern.: Syst.
46(11), 1565–1577 (2016)

29. Wu, Q., Zhu, Q.: Transactional and QoS-aware dynamic service composition based
on ant colony optimization. Future Gener. Comput. Syst. 29(5), 1112–1119 (2013)

30. Yan, Y., Chen, M., Yang, Y.: Anytime QoS optimization over the PlanGraph for
web service composition. In: Proceedings of the 27th Annual ACM SAC (2012)

31. Yu, Q., Chen, L., Li, B.: Ant colony optimization applied to web service composi-
tions in cloud computing. Comput. Electr. Eng. 41, 18–27 (2015)

32. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5)

33. Zhang, W., Chang, C.K., Feng, T., Jiang, H.y.: QoS-based dynamic web service
composition with ant colony optimization. In: 2010 IEEE 34th Annual COMPSAC
2010

34. Zheng, Z., Zhang, Y., Lyu, M.R.: Investigating QoS of Real-World Web Services.
IEEE Trans. Serv. Comput. 7(1) 32-39 (2014)

35. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

https://doi.org/10.1007/978-3-319-11197-1_30
https://doi.org/10.1007/978-3-319-91764-1_12

State of the Practice in Service
Identification for SOA Migration

in Industry

Manel Abdellatif1,2(B), Geoffrey Hecht1,4, Hafedh Mili1, Ghizlane Elboussaidi3,
Naouel Moha1, Anas Shatnawi1, Jean Privat1, and Yann-Gaël Guéhéneuc2

1 Département d’informatique, Université du Québec à Montréal, Montréal, Canada
manel.abdellatif@polymtl.ca

2 DGIGL, Polytechnique Montréal, Montréal, QC, Canada
3 Ecole de Technologie Supérieure, Montréal, QC, Canada

4 DCC, University of Chile, Santiago, Chile

Abstract. The migration of legacy software systems to Service Ori-
ented Architectures (SOA) has become a mainstream trend for modern-
izing enterprise software systems. A key step in SOA migration is the
identification of services in the target application, but it is a challeng-
ing one to the extent that the potential services (1) embody reusable
functionalities, (2) can be developed in a cost-effective manner, and (3)
should be easy to maintain. In this paper, we report on state of the
practice of SOA migration in industry. We surveyed 45 practitioners of
legacy-to-SOA migration to understand how migration, in general, and
service identification (SI), in particular are done. Key findings include:
(1) reducing maintenance costs is a key driver in SOA migration, (2)
domain knowledge and source code of legacy applications are most often
used respectively in a hybrid top-down and bottom-up approach for SI,
(3) industrial SI methods focus on domain services–as opposed to techni-
cal services, (4) there is very little automation of SI in industry, and (5)
RESTful services and microservices are the most frequent target archi-
tectures. We conclude with a set of recommendations and best practices.

1 Introduction

Software maintenance consumes the bulk of IT budgets, as legacy applications
become harder to extend, fix, or even sustain in operation–with the obsoles-
cence of the hardware and software on which they were built [14]. Rewriting
from scratch is seldom an option, for two major reasons: (1) the substantial
effort required to rewrite (tens of) millions of lines of code, and (2) the amount
of valuable domain or procedural knowledge embodied, but otherwise undocu-
mented, in such applications. Hence, application modernization remains essential
to ease the maintenance of legacy systems and make them more flexible without
losing their business values.

The migration of legacy systems to Service-Oriented Architecture (SOA) is
one avenue for their modernization. SOA makes it possible to develop complex
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 634–650, 2018.
https://doi.org/10.1007/978-3-030-03596-9_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_46&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_46

State of the Practice in Service Identification for SOA Migration in Industry 635

and inter-organizational applications by integrating/orchestrating high-quality
and reusable services. The migration of legacy systems to SOA requires identify-
ing services, which is considered the most challenging task of the overall migra-
tion process [13]. Service Identification (SI) consists in identifying, in legacy
systems or/and from the system domain decomposition, reusable services that
may embed valuable business logics. The reusable services must meet a range of
expectations concerning their capability, quality of service, and efficiency of use.

Several SI approaches have been proposed in the literature of academic
research [4,10,16]. However, these approaches are based on few evidence and
out of touch with industry practices due to the little knowledge about the state-
of-the-practice of SI as part of ‘real’ migration projects. Therefore, in this paper,
we want to minimize the gap with industry by understanding industrial prac-
tices and identifying best practices of legacy applications migration to SOA in
general and SI in particular. Thus, we wanted to answer the following research
questions:

– RQ1. What kind of systems are being migrated to SOA?
– RQ2. Why are such systems being migrated?
– RQ3. What approaches are being used for application migration, in general,

and SI in particular?

To this end, we surveyed 45 SOA migration practitioners using an online
survey, and interviewed eight of them to answer these questions. We identify
key findings including: (1) reducing maintenance costs is a key driver in SOA
migration, (2) domain knowledge and source code of legacy applications are
most often used respectively in a hybrid top-down and bottom-up approach
for SI, (3) SI focuses on domain services, (4) there is little automation–the
process of migration remains essentially manual, and (5) RESTful services and
microservices are the most frequent target architectures.

This paper is structured as follows. Section 2 presents the related work.
Section 3 describes the study design. The results of the online survey are pre-
sented in Sect. 4. Section 5 reports the results of the interview sessions, which
are discussed in Sect. 6. We conclude in Sect. 7 with recommendations and best
practices for SI.

2 Related Work

Seldom are research surveys related to the migration of legacy systems to SOA.
Razavian and Lago [15] conducted an industrial survey about legacy-to-SOA
migration approaches by targeting seven SOA solution providers. They argued
that all industrial migration approaches share the same set of activities as they
start by transforming the business models of legacy systems to continue with
service design and implementation. Taibi et al. [19] also performed a survey
on migration to microservices architectures, filled by 21 practitioners. The sur-
vey focus on the migration reasons and report that reducing maintenance cost
is the main reasons of legacy-to-microsevices migration. Although these study

636 M. Abdellatif et al.

approaches and results are similar to ours, their focus differ deeply as we cover
more in details state of the practice on SI in terms of (1) the methods used, (2)
the artifacts used by these methods, (3) the processes of these methods, and (4)
the outputs of these processes. We also cover more participants and report best
practices for SI.

More in general, a number of primary studies have been proposed in the liter-
ature about SI. Many of the proposed techniques rely on Business Process Models
(BPMs), to identify services within the context of legacy migration [11,17,18].
These techniques decompose processes into tasks and then map these tasks to
legacy source code elements to identify candidate services. Other SI techniques
use heuristics based on the technical properties of services, as reflected in vari-
ous metrics [1,10,12]. Such techniques often use these metrics to drive clustering
and machine learning algorithms that identify software artefact clusters as can-
didate services. However, they do not always produce good candidate services.
Other AI-based techniques use ontologies and Formal Concept Analysis to iden-
tify services in legacy systems [2,8,20]. They too, are complex and not ready for
industrial applications. Other techniques put service interfaces around existing
functional components and subsystems [4,6,16,17] but do not infer such clusters
from finer-grained software artefacts. These so-called wrapping-based techniques
are suitable for integration problems, but do not solve the maintenance issues.

3 Study Design

The survey presented in this paper was conducted between October 2017 and
March 2018 and aimed to investigate the state of the practice in SOA migration,
and, in particular, service identification. Our study consisted of four main phases:

A- Preparation of the Online Survey. We created a web-based survey (see
https://goo.gl/forms/EE31KeA7R7pUeTYI2) using Google forms. The survey
was prepared based on our literature survey of the state-of-the art methods for
SI and informal discussions with some subject matter experts. This helped iden-
tify the dimensions/aspects of the questionnaire, the individual questions, and
the possible answers for each question. Before publishing the survey, we per-
formed a pilot with six potential subjects, three from academia and three from
industry, to validate the relevance of the questions, their wording, the coverage
of the answers, etc. The six ‘testers’ went through the questions and suggested
minor changes. The final survey contained six sections: (1) participants’ profes-
sional and demographic data, (2) type of migrated system, and reasons for the
migration, (3) general information about SI methods (perception of importance,
strategy, inputs, level of automation), (4) detailed technical information about SI
(technique/algorithm used, quality metrics considered), (5) Information on the
types of services sought and targeted technologies, and (6) Information about
the tools used, and the suggested best practices.

B- Selection of Participants. We targeted developers with an industrial expe-
rience in SOA migration. Identifying and soliciting such developers was chal-
lenging. We relied on (1) information about companies that offer modernization

https://goo.gl/forms/EE31KeA7R7pUeTYI2

State of the Practice in Service Identification for SOA Migration in Industry 637

services, (2) online presentations and webinars made by professionals that had
the professional’s contact information, and (3) search queries on LinkedIn pro-
files, such as “legacy migration OR legacy modernization OR SOA architect OR
SOA migration OR Cloud migration OR service migration OR service mining”.
Once we identified potential participants, we sent them invitations via e-mail,
LinkedIn, Facebook, and Twitter. We chose not to solicit more than three pro-
fessionals from any given company to: (1) have an as wide representation as
possible, and (2) to not overburden a single organization with our request.

C- Online Survey. We invited 289 professionals to participate, and kindly
asked them to forward our invitations to other people in their network who have
experience in SOA migration and SI. The survey was completed by 47 people,
two of which did not participate in SOA migration projects and whose responses
were discarded, leaving us with 45 complete responses.

D- Validation. We assessed the reliability of the answers in the online survey
by looking for spurious/facetious answers, contradictions between answers, etc.
To be able to validate improbable answers, one question of the survey asked
participants if they agreed to be contacted for a follow-up 30-min interview, and
24 out of 45 agreed; however only eight could be interviewed in the end and
the results of those interviews are shown in Sect. 5. A two-pass method [5] was
used to analyze our transcripts of the individual interviews (see https://goo.gl/
ZYv2Ut for sample transcripts). The first pass of the analysis consists of thematic
coding to identify broad issues related to legacy-to-SOA migration in general
and SI in particular. The second pass of analysis was performed using axial
coding to identify relationships among the identified issues. Major factors were
identified using meta-codes. The meta-codes were then used to identify similar
patterns across the data from the multiple interviewees. Overall, the answers
were plausible, and the eight detailed interviews confirmed the questionnaire
answers, although provided us with more in-depth information.

4 Analysis of the Results of the Online Survey

In this section, we describe the results of our survey. We allowed multiple answers
to most questions of the survey, therefore the sum of the computed percentage
may exceed 100% in some cases. The given percentages are computed based on
the total number of participants who answered a given question.

A- Participants. We reached a total of 45 participants who were involved
in legacy-to-SOA migration projects in different capacities: 50% were software
architects, 23.7% were directors of technology, and 21% were software engineers.
The remaining 5.3% of participants mentioned other positions such as migration
specialists, project managers and CEOs. They work in different industries: 64%
were in technology and telecommunication, 20% from banking and insurance,
12.8% from health, and 3.2% from education. In terms of experience, 78% had
more than 10 years of experience, and this was somewhat reflected in their age

https://goo.gl/ZYv2Ut
https://goo.gl/ZYv2Ut

638 M. Abdellatif et al.

distribution: 23% were less than 35 years old, 39% were between 36 and 45,
20.5% were between 46 and 55, and 17.5% were over than 55 years old.

B- Types of Legacy Systems. The results show that the legacy sys-
tems included mainframe applications, transactional applications, ERP systems,
monolithic client-server applications, software-analysis tools, and visualization
tools; 13% of these were less than 5 year old, 18% were between 5–10 year old,
and 69% were more than 10 years old. In terms of size, 62% of the systems were
deemed large, 36% were medium size, and 2% were deemed small. Cobol (52.6%)
and Java (57%) were the two most prominent languages for legacy systems.
Figure 1 shows the many other languages used in the migrated applications.

Finding 1: Practitioners migrate different types of old legacy systems imple-
mented mainly in Cobol and Java.

2%
2%

4%
2%

13%
11%

4%
33%

4%
29%

49%
18%

13%
18%

53%

SPL
Pascal

ORACLE forms
PHP

Assembler
PL/1

Fortran
CICS
RPG

Javascript
Java

C#
C++

C
COBOL

0 5 10 15 20
Number of responses

Fig. 1. Used languages in legacy systems

24%

38%

64%

38%

42%

38%

64%

82%

Other
Testability
Flexibility

Availability
Reliability

Performance
Interoperability

Maintenance

0 10 20 30
Number of responses

Fig. 2. Reasons for migration

C- Motivations for Legacy-to-SOA Migration. We asked about the moti-
vations behind the migration of legacy systems to SOA. We provided a list of
reasons for the migration as shown in Fig. 2. The most prevalent motivation
was to reduce maintenance costs (82%). Practitioners reported during the inter-
views that the cost involved in maintaining legacy systems can be high due
to (1) the poor/outdated documentation of these systems; (2) the obsolete/old
programming languages used to implement these systems; (3) the decay and dif-
ficulty to understand the architectures, designs, and implementations of these
legacy systems; and, (4) the lack of developers with the skills necessary to main-
tain these systems. The second most significant motivation to migrate legacy
systems was to improve their flexibility (64%). We have been told during the
interviews that practitioners have difficulties with legacy systems because they
do not allow companies to have the flexibility required to carry out day-to-day
tasks for evolving systems to meet new business requirements. The improvement
of the interoperability of the legacy systems with the migration to SOA was the
third most significant motivation (64%). During the interviews, practitioners
told us that SOA eases the interoperability of heterogeneous systems by exploit-
ing the pervasive infrastructure of the network. Thus, it offers the possibility
to continue using and reusing the business capabilities provided by legacy sys-
tems in new, modern systems [9]. Improving system availability and testability

State of the Practice in Service Identification for SOA Migration in Industry 639

as well as improving performance were other motivations of industrial legacy-to-
SOA migration projects (38% each). Participants also mentioned other business
and technical reasons for migrating legacy systems to SOA, such as improving
business agility, having new user interfaces, and embracing new technologies.

Finding 2: Reducing maintenance costs, improving the flexibility and interop-
erability of legacy systems are the main motivations to migrate legacy systems.

D- Importance of Identifying Reusable Services from Legacy Systems.
We asked about the importance of identifying reusable services in the source code
of legacy systems during the migration process: 87% of the participants qualified
it as important while only 13% thought that it is not. We explain this agreement
by the benefits of software reuse, which (1) increases software productivity by
shortening software-development time, (2) reduces software development costs
by avoiding the reimplementation of existing services, (3) reduces maintenance
costs because the reused services were functional and have been well-tested, and
(4) reduces the risk of introducing new failures into the process of enhancing
or creating new business services. We explain the 13% of disagreement as some
participants undertook top-down migrations rather than bottom-up or mixed
migrations and the former does not require identifying services in source code.

Finding 3: Identifying services in legacy applications is an important step in
legacy-to-SOA migration.

44%
69%

9%
7%

27%
9%

53%
49%

16%
71%

58%
76%

Documentation
Human Expertise

Ontology
State Machines diagrams

Data Flow diagrams
Activity diagrams

Use Case
User Interfaces

Execution traces
Business Process

Database
Source Code

0 10 20 30
Number of responses

Fig. 3. Used inputs for SI in industry

9%
13%

4%
7%

47%
13%

20%
60%

22%

None of the above
Feature location

Machine learning
Genetic algorithms

Wrapping
Heuristics−based

Formal concept analysis
Functionality clustering

Class clustering

0 5 10 15 20 25
Number of responses

Fig. 4. Used techniques for SI in industry

E- Inputs of SI. Through a literature review, we identified several types of
inputs used for SI. We listed these inputs in our survey and asked participants
on which inputs they relied to identify services. Figure 3 shows that the most
used inputs were source code, business process models, databases, and human
knowledge. 76% of the participants relied on the recovery of the business logic of
legacy systems through the analyses of the source code to identify services with
high business value. 71% relied on the mapping of business processes with the
legacy source code to extract reusable services through human expertise. These
artifacts may help software engineers to have a better understanding of the legacy
systems. Finally, participants rarely relied on ontologies, activity diagrams, state

640 M. Abdellatif et al.

machine diagrams, and execution traces to identify services. This observation
may be due to their unavailability or complexity to establish especially since our
practitioners deal with large systems.

Finding 4: Many software artifacts can be used for SI. Practitioners mostly used
source code, business process models, databases, and human expertise. There is
a very low interest in relying on ontologies, activity diagrams, state machine
diagrams, and execution traces to identify services.

F- Directions of SI. We asked participants about their choices of direction for
identifying services. We proposed three directions: (1) Top-down: starting from
domain-specific conceptual models, like business concepts and process models,
to identify services, which are then specified and implemented through a forward
engineering process; (2) Bottom-up: starting by analyzing the existing legacy sys-
tem artifacts and identifying services from reusable legacy code; and (3) Mixed:
starting both from domain-specific conceptual models and the analyses of the
legacy system to identify services. We found that 53% of the participants use a
mixed direction to identify services. Participants used almost equally top-down
and bottom-up directions with 23% and 24% each. We explain these observa-
tions as follows: (1) practitioners relied on source code and business process
models as reported in Finding 4, (2) practitioners also relied on extracting the
business logic of legacy systems because documentation was not always avail-
able, (3) practitioners prioritized reuse and avoided development from scratch to
reduce time and costs, and (4) practitioners faced limitations due to the lack of
legacy experts/knowledge, unavailability of up-to-date documentation, program
comprehension, and challenges of reverse-engineering legacy systems.

Finding 5: Practitioners highly rely on a mixed direction to identify services
during legacy-to-SOA migration process.

G- Techniques for SI. We asked about the techniques that they used to iden-
tify services. As depicted in Fig. 4, we found that 60% of the participants relied
on clustering functionalities of the legacy systems and exposing these clusters
as services. 47% of them relied on some black-box techniques, like wrapping,
because they either consider the migration as an integration problem or did not
want to modify the core functionalities of the legacy systems because it provided
useful services. We observed a low interest in using machine-learning techniques,
formal-concept analysis, or meta-heuristic algorithms to identify reusable ser-
vices. Using these techniques may be challenging for practitioners because they
are dealing with large systems to migrate and so the knowledge required to
establish these techniques could be time consuming and may not lead to opti-
mal results. Also these techniques are researched by academics and not mainly
by professionals (see Sect. 2). Finally, 9% of the participants mentioned that they
did not use any techniques and performed SI manually.

Finding 6: Functionality clustering and wrapping are the most used techniques
of SI in industry.

State of the Practice in Service Identification for SOA Migration in Industry 641

H- Analyses Types for SI. We asked about the types of analyses that they per-
formed for SI (static, dynamic, textual, and–or historical analyses). We observed
that 87% of the participants relied on static analyses of the source code of the
legacy systems to identify services. 43% of them reported that they relied on run-
time analyses. Participants also relied on textual analyses for the identification
processes. Textual analyses include elements such as features identification tech-
niques, natural language processing, legacy documentation analysis, etc. Only
18% of the participants reported that they relied on historical analyses (analyses
of different versions of the legacy system) to extract candidate services, which
may be due to (1) the unavailability of several versions of the legacy system and
(2) the difficulty to study the evolution of a legacy system to gather valuable
information to identify reusable services.

Finding 7: Practitioners mostly relied on static analyses of the source code of
their legacy systems for SI.

11%
42%

40%
29%

62%
20%

29%
47%

24%
44%

None of the above
Adaptation Effort

Cost
Number Of services

Service Reuse
Self−descriptiveness

Composability
Granularity

High Cohesion
Loose Coupling

0 10 20
Number of responses

Fig. 5. Desired services quality criteria
for SI in industry

38%

38%

73%

56%

49%

73%

Infrastructure

Utility

Application

Entity

Entreprise

Business

0 10 20 30
Number of responses

Fig. 6. Types of the migrated services

I- Services Quality Criteria. We asked the participants about the quality
metrics/criteria that they sought during SI. We identified the quality criteria,
listed in Fig. 5. Service reusability was the most sought quality criteria by the
participants (62%), followed by service granularity (47%), and loose coupling
(44%). Reusability was defined by participants as both a measure of the amount
of source code reused in the services and the amount of services reused in the
systems. Costs and the adaptation effort were also considered by the participants
during the identification process (40% and 42% respectively). However, they
did not consider self-descriptiveness, high cohesion, composability, and the total
numbers of services when identifying services.

Finding 8: Only few service quality criteria are desired by practitioners in the
SI process: reusability, granularity, and loose coupling.

J- Types of the Identified Services. We provided practitioners with a tax-
onomy classifying service types into domain-specific (business) services versus
domain-neutral (technical) services. The provided domain-specific services are:
(1) business services, enterprise services, application services and entity services.
The technical services are utility services and infrastructure services. We report

642 M. Abdellatif et al.

the results in Fig. 6. As domain-specific services represent the business core func-
tionalities of SOA, they were the most targeted services (i.e., business and appli-
cation services) during the SI processes compared to technical services. Utility
and infrastructure services were the less targeted services because they are SOA-
specific services and utility services are relatively easy to implement.

Finding 9: SI is a business-driven process that prioritized the identification of
domain-specific services rather than technical services.

K- Service Technologies. We asked the participants about the services tech-
nologies that they targeted during migration. We found that 75% of them use
REST services, 60% use SOAP and only 4.5% use Service Component Architec-
ture (SCA). Surprisingly, half of the participants reported that they focused on
identifying microservices in legacy systems. While there is no precise definition of
this architectural style, microservices are gaining interest among organizations,
especially with the growth of the Cloud and DevOps paradigms [7].

Finding 10: Restful services are the most targeted service technology in legacy-
to-SOA migration.

L- Automation of SI. We asked the participants about the degree of automa-
tion of their SI techniques as well as the tools they used to this end (for the
lack of space, we report the list of tools in https://goo.gl/ZYv2Ut). We found
that many different tools are being used as well as manual analyses and in-house
tools put together for the migration of particular legacy systems. However, not
one set of tools supports adequately the migration of systems to SOA. We also
found that the majority of the techniques used by the participants to identify
services are either semi-automatic (51%) or manual (42.3%). Only three par-
ticipants (6.7%) mentioned the use of tools to identify automatically reusable
services. We highly believe based the reported tools that these fully-automatic
approaches deal with re-engineering tasks as well as wrapping techniques that
automatically expose legacy systems functionalities as services.

Finding 11: There is a lack of automation of SI techniques in industry but
input from human experts is essential to annotate/qualify intermediate or final
results of SI.

M- Threats to the Validity.
Construct validity threats refers to the extent to which operationalizations

of a construct (in our case the survey and interview questions and terminology)
do actually measure what the theory claims. To minimize this threat, we used
both open and closed questions in the survey and tried to minimize the ambi-
guities through our pilot study as we mentioned in Sect. 3.

Internal validity acquiescence bias is a kind of response bias where respon-
dents have a tendency to agree with all the questions in the survey or to indicate
a positive connotation. It is sometimes referred to the tendency of a respondent
to agree with a statement when in doubt. We mitigate this threat by doing inter-
view sessions to validate the survey answers. We also eliminated responses where

https://goo.gl/ZYv2Ut

State of the Practice in Service Identification for SOA Migration in Industry 643

participants selected all the possible choices for all the questions. We also miti-
gate this threats by checking the responses to questions that are related to each
others (e.g. the used input for SI and the identification direction, etc.). Finally,
we decided not to have incentives for participating in our survey to minimize
social desirability bias.

External validity the survey participants might not be representative of
the general population of software developers migrating legacy systems to SOA.
Thus, the generalizability of our survey might be limited. The mitigation of this
threat to validity is very challenging because (1) we are targeting practition-
ers with very specific technical skills; and (2) professionals are in general not
eager to communicate the details of their in-house tools and techniques of mod-
ernization approaches. To mitigate this risk, we advertised our survey through
various channels (e.g., LinkedIn, Twitter, Facebook and email) and targeted
professionals from different legacy modernization companies. Also, to the best
of our knowledge, our sample size is one of the largest such size among many
papers in empirical software engineering in general and modernization in partic-
ular (see Sect. 2). Participants could freely decide whether to participate in the
study or not (self-selection). They were informed about the topic of the survey,
the estimated time to complete the survey, the research purpose of the study
and the guarantee of the anonymity of their identity and that of their answers.

5 Interview Sessions

Eight participants among the 45 agreed to carry phone interviews. Table 1
describes their profiles. The initial purpose of the interviews was to ask the par-
ticipants to elaborate on some of their answers or resolve contradictions among
their answers. However, the interviews often ended with discussions on issues not
addressed in the survey. The interviews also allowed participants to rectify some
of their answers and for our part to obtain presentations and white papers about
their migrations. We now summarize salient facts gathered from the interviews
in terms of the adopted migration strategies and directions of SI.

Table 1. Information about the participants in the interview sessions

Participant Profession Years of experience Country

P1 Technical solution architect 25 years Germany

P2 Legacy modernization and enterprise IT architect 18 years India

P3 Mainframe modernization specialist 33 years USA

P4 Legacy and data Center senior consultant 30 years Italy

P5 Software modernization expert 15 years Canada

P6 IT architect 20 years Canada

P7 Director of technology 12 years Canada

P8 Software engineer 7 years France

644 M. Abdellatif et al.

5.1 Migration Strategies

We asked the interviewed participants about their adopted migration strategies
to migrate legacy software systems to SOA. We identified three strategies: rehost-
ing, legacy system re-architecture, and rehosting followed by re-architecture.

A- Rehosting (P1, P3, P6) consists of moving a legacy system with minimal
changes from one platform, typically legacy mainframes, to more modern alter-
natives such as Linux, Unix, or Windows in two ways: (1) by running emulators
or virtual machines of the source platform on the target platforms (e.g., a VMS
or AS400 emulator/virtual machine on Linux) or (2) by rewriting the parts of
the systems that interface with the target platforms. The business logic and data
of the legacy systems remain unchanged on the new platform. Rehosting is done
when the hardware or software platforms become too costly to support–or are
no longer supported–by the manufacturer/vendor. The systems can be wrapped
within services once they are integrated on the new platforms.

B- Legacy systems re-architecture (P1, P2, P5) is a migration strategy
in three steps applied each on three different layers: the application-code layer,
which contains the legacy code in Cobol, PL1, etc.; the information layer, which
gathers data access through files, databases etc.; and, the business-process layer
which describes the business logic of the system. The three migration steps are:
(1) Legacy system discovery and migration planning, it focuses on cataloging and
understanding all the assets in the legacy systems, “we are importing the code in
our toolset. We are looking for dependencies and capturing business processes.
We just take a look if everything is complete” said P1; (2) Design, this phase
consists in designing the new system, a “future case analysis repository” that
contains enhancements to the legacy business processes and all the modernized
data and future SOA model are stored in the information layer ; and (3)Target
system development and test, this phase “is a very classic software development
phase just to develop and test the new SOA based system” said P1.

C- Legacy systems re-hosting and re-architecture (P1, P4, P7, P8)
aims to build new SOAs that yield the business values of the legacy systems
while minimizing costs related to legacy hardware and ensuring a progressive and
incremental replacement of the legacy code. This migration strategy is mainly
used to “minimize disruption while ensuring business continuity” said P8. It
avoids the “big-bang” migration strategy by (1) re-hosting the legacy systems to
modern platforms to minimize hardware costs, (2) creating wrappers to hide the
internal legacy functionalities, and (3) replacing progressively the legacy code.

5.2 Directions of SI

We detail in this section the adopted directions of SI by our interviewees.
A- Bottom-up strategies (P1, P3, P4, P5) consist of identifying artifacts of

the legacy code that implement reusable business functions to be repackaged as
services: “Through the bottom-up SI strategy we want to reuse the existing legacy
code certainly, but not the architecture. Most of legacy systems that we deal with
have about 25 millions lines of code. If we want to write them again, it can take

State of the Practice in Service Identification for SOA Migration in Industry 645

years” said P5. The artifacts used by bottom-up approaches include the source
code, data flow analyses, legacy system interfaces, databases, documentations,
and human expertise. Reverse-engineering tools were used to understand the
legacy systems and extract their business logic, especially when there is a lack of
documentation and experts. Several interviewees reported using both in-house
and open-source tools to reverse-engineer systems. For example P5 used an in-
house tool based on the Knowledge Discovery Model (KDM) to obtain call and
data-flow graphs of COBOL systems. P5 relies on functionality clustering and
pattern matching to identify reusable services: “We are searching for patterns
and we are looking for business rules or business logic that match with these
patterns and heuristics. We are doing data flow analysis with slicing to identify
reusable business functions that can be grouped and deployed as services”. Many
interviewees (P1, P3, P4, and P5) also relied on techniques for detecting code
clones to identify reusable services. “What we also do in many cases is looking
for duplicate code pattern because in many cases business rules are duplicated,
you need to decide what to take out of this” said P4.

B- Top-down strategies (P7) starts from the analysis of domain-specific
conceptual models and requirements to specify the services of the targeted SOA.
P7 recommended to use this strategy when (1) legacy source code is not available,
(2) legacy source code is not reusable, (3) cost of re-engineering and integrating
legacy systems is high, and (4) organizations are mature enough in terms of
business processes. P7 reported that they adopted a semi-automatic top-down
strategy for SI to migrate a legacy banking system to SOA. They used BPMN
process models of the banking legacy system as input. They begun by identifying
the entity-services and the application services. They then moved to higher-level
services, such as task-centric services, and finally developed an orchestration
layer that represented business services. This strategy is based on the analysis
of “information” used in each activity of the business processes. P7 explained
that “information could be a document, reports, windows, screens, an entity etc.
that is required in the execution of an activity”. To identify entity services from
business processes, key information manipulated in the business process models
was identified. An information is considered as key by P7, if it meets at least
one of the following conditions: (1) its number of occurrences exceeds a given
threshold and (2) it is related to a highly solicited activities.

C- Mixed strategies (P1, P2, P3, P4, P5, P6, P8) rely on reverse-
engineering techniques to document the legacy systems, extract the business
logics, and identify reusable pieces of code that can be exposed as services. They
also rely on forward-engineering techniques to define the business processes of
the target SOAs and to design and implement the services. P2 said: “Sometimes
if the source code is available and documentation is not, we use some parser
based tools to reverse-engineer these applications. These tools will create some
documentation from the code and then that documentation is used to do the for-
ward engineering and complete the targeted SOA road map”. He also argued that
“through this documentation we create use cases for forward engineering to com-
plete the identification, the design and the implementation of the services”. P1

646 M. Abdellatif et al.

said “we document everything in our system and then at the very end we identify
the business rules mark them in the code and you can extract them afterwards
[...] we have a list of business processes and core code description and we also
document this, and based on this we are creating our service-oriented material”.

D- Final choice of the identified services is a manual process driven by
subject-matter experts. P5 said: “We make proposition about the services that
we identify and ask the customer if it makes sense. Sometimes at technical level
we have better knowledge than the customer but not from business process level”.

5.3 Threats to Validity

Internal Validity. Social desirability is a bias that leads any respondent to
deny undesirable traits and report traits that are socially desirable. To minimize
this threat, we did not put any incentives for the participants to participate in the
interviews. We also guaranteed the interviewees their anonymity and emphasized
that all the reported information will be only for research purposes.

External Validity. Information from our interviews is not generalizable as the
number of the interviewees is a bit on the low end for software engineering
studies. However, it is acceptable given that it is unquestionably difficult to find
interviewees in legacy-to-SOA migration domain. We only sought to obtain a
better understanding of the results of the online survey. Also, Table 1 shows
that our interviewees are experts in legacy-to-SOA migration and, thus, that
our sample is still reliable because we are dealing with subject-matter experts.

Conclusion Validity. The information from our interviews also show some
threats to the validity of our conclusion because some interviewees contradict
each other or, for one interviewee, change their answers to the survey. However,
this threat is acceptable because we use these interviews with the purpose to
mitigate and discuss the answers to the survey.

6 Discussions

After analysing the survey and interview data, we highlight the following facts.

Importance of Service Identification From Legacy Systems. We observed
that SI is an important step in the overall legacy-to-SOA migration process for
most practitioners, especially when it comes to the context of SI from legacy
systems. As emphasized by P4 “It is important because we are able to identify
the reusable of the code. SI is considered as the main helmet to measure the
impact of the migration [...] you need to understand the migration cost which
is in many cases too expensive, you have to cut the cost by identifying reusable
pieces of the legacy code in a cost-effective way”. Thus, the agreement about the
importance of identifying reusable services in industry can be explained by the
benefits of software reuse. However it should be noted that SI is not always fine-
grained as mentioned by P6 “We basically wrap the legacy system and expose
all its functionalities as services”.

State of the Practice in Service Identification for SOA Migration in Industry 647

Business-Value Driven Service Identification. We notice that not all ser-
vice quality criteria are equally targeted by practitioners. Unlike academia,
efforts in industrial SI strategies are made to deal with business constraints
such as the recovering of the business logic of legacy systems and extracting
reusable functionalities with high business value. There are big investments by
practitioners to preserve the business logic of legacy systems rather than to care
about service quality constraints. As it is stated by P2, SI is mainly driven by the
customers business needs: “Our customers do not really focus on these features.
I am not saying that these quality criteria are not necessary but because of the
business constraints, considering service quality metrics become a lower priority
comparing to timing to finish the project and return in investment issues”. Also,
technical constraints may hinder the consideration of quality metrics: targeting
quality metrics while identifying reusable pieces of code that can be exposed as
services may not be suitable for all legacy technologies like mainframe legacy
systems for example: “For banking mainframes systems it is not easy to use that
kind of approach since we are dealing with routines” stated P4.

Automation and Experts Feedbacks. The full automation of SI process is
not the primary focus of practitioners. It is even the case of big moderniza-
tion companies as it is stated by P1 “In our SI methodology we are not doing
everything automatic, automation is about 70% of all the migration project”.
However, there is automation in wrapping and reverse engineering techniques to
document and extract the business logic of legacy systems when the documenta-
tion is absent. Feedback loop with business analysts and customers is considered
essential by practitioners to decide about the pertinence of a candidate identified
service. Practitioners also do not take the risk to try to fully automate the SI
process as it is a challenging problem with unpredictable results, time consuming
and needs a lot of research investments.

Gap Between Academia and Industry. None of the interviewed practition-
ers mentioned the use of research papers or academic resources for their migra-
tion projects. From the point of view of practitioners, “academics do not see the
larger picture of the real industrial problems and challenges they are facing” as
stated by P2. The lack of cost-effective academic SI technique and the lack of
validation on real enterprise-scale systems is a problem that hinders knowledge
transfer between academia and industry.

7 Conclusion and Recommendations

We presented a state of the practice of SI in industry to support the migration
of legacy software systems to SOA. We surveyed 45 industrial practitioners and
interviewed eight of them to collect, analyze, and report their experiences with
the migration of legacy systems. Our results showed that reducing maintenance
costs and improving the flexibility and interoperability of legacy systems are the
main motivations to migrate these systems to SOA. They also showed that SI is
perceived by practitioners as an important step for the migration, in particular

648 M. Abdellatif et al.

to identify reusable code in the legacy systems. In addition, they showed that SI
is a process driven by business value rather than quality criteria, even though
some practitioners consider some quality criteria (mainly reusability, granularity,
and loose coupling). Finally, our results showed that SI remains a manual process
in which human experts’ feedbacks is essential.

We drew several lessons from these results, which we summarize as follows.

Service Identification is a Business-Value Driven Process. When identi-
fying services we must focus on the functional clusters that implement useful and
reusable business functions. We must not focus on technical/architectural prop-
erties, as many academic techniques do (e.g., [1,2,11,12]). While the research
literature identifies many service types, SI must first and foremost focus on
identifying domain services, i.e., entity, business, and process services that have
business values.

A Deep Understanding of the Domain and a Great Familiarity with
the Legacy Systems are Necessary. Because SI is driven by business values,
we must have a deep understanding of the domain, including its main entities
and processes. We must also be familiar with the legacy systems in which to
identify services. While the research literature assumes that the SI techniques
are independent of the legacy experts, they should allow incorporating seamlessly
knowledge from experts who are familiar with the systems.

The Input Must be Source Code and Production Data. According to
the old military adage, if the terrain differs from the map, trust the terrain.
With legacy systems, documentation (the map) may be absent or awfully out
of date. The source code (the terrain) is the only reliable source of information
about what the current system does. Production data, as stored for example in
databases or JCL scripts, also contain valuable, up-to-date information about
the systems. Therefore, while the research literature has been recently studying
Q&A forums and other similar documentations, it should also strive to reconcile
and improve the analyses of different up-to-date sources of information.

The Output Must be High-Value, Coarse-Grained Services. Regardless
of the targeted SOA technology, be it SOAP, RESTful, or microservices, the
output of any SI technique must be high-value, coarse grained domain services.
While the research literature has been concerned by the implementation (and
quality thereof) of services, it should seek to define, assess, and optimize the
business values of the identified services.

The Process Must Follow a (Proven) Methodology. Migration projects
are complex endeavors, regardless of the source and target technologies. There is
value in adopting or adapting an existing SOA migration methodology because
such methodologies prescribe processes, deliverables, and quality metrics to guide
the migration. While the research literature proposes techniques, the participants
recommended using existing methodologies including Oracle’s OUM Methodol-
ogy, IBM’s Service-Oriented Modelling and Architecture (SOMA) methodology
[3], and devising SI techniques as parts of these methodologies.

State of the Practice in Service Identification for SOA Migration in Industry 649

In future work, we plan to build an exhaustive catalogue of best practices
for SI. We also want to identify issues that the research community can address
to facilitate knowledge transfer between academia and industry in the context
of legacy-to-SOA migration.

Acknowledgements. The authors would like to thank all the practitioners who
replied to us. This work was supported by the Fonds Québécois de Recherches - Nature
et Technologies. The second author is also supported by the Proyecto FONDECYT de
Postdoctorado N3180561.

References

1. Adjoyan, S., Seriai, A., Shatnawi, A.: Service identification based on quality metrics
object-oriented legacy system migration towards SOA. In: SEKE, pp. 1–6 (2014)

2. Amiri, M.J., Parsa, S., Lajevardi, A.M.: Multifaceted service identification: process,
requirement and data. ComSIS 13, 335–358 (2016)

3. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.:
SOMA: a method for developing service-oriented solutions. IBM Syst. J. 47(3),
377–396 (2008)

4. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: Migrating interactive
legacy systems to web services. In: CSMR, p. 10 (2006)

5. Charmaz, K., Belgrave, L.: Qualitative interviewing and grounded theory analysis.
In: The SAGE Handbook of Interview Research, pp. 347–365 (2012)

6. Chenghao, G., Min, W., Xiaoming, Z.: A wrapping approach and tool for migrating
legacy components to web services. In: ICNDC, pp. 94–98 (2010)

7. Di Francesco, P., Malavolta, I., Lago, P.: Research on architecting microservices:
trends, focus, and potential for industrial adoption. In: ICSA, pp. 21–30 (2017)

8. Djeloul, M.: Locating services in legacy software: information retrieval techniques,
ontology and FCA based approach. WSEAS Trans. Comput. (Greece) (2012)

9. Erl, T.: SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle River
(2007)

10. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: a system-
atic approach to service decomposition. In: ESOCC, pp. 185–200 (2016)

11. Huergo, R.S., Pires, P.F., Delicato, F.C.: A method to identify services using master
data and artifact-centric modeling approach. In: ACM SAC, pp. 1225–1230 (2014)

12. Jain, H., Zhao, H., Chinta, N.R.: A spanning tree based approach to identifying
web services. Int. J. Web Serv. Res. 1(1), 1 (2004)

13. Khadka, R., Saeidi, A., Jansen, S., Hage, J.: A structured legacy to SOA migration
process and its evaluation in practice. In: MESOCA, pp. 2–11 (2013)

14. Lewis, G., Morris, E., O’Brien, L., Smith, D., Wrage, L.: Smart: the service-oriented
migration and reuse technique. Technical report, DTIC Document (2005)

15. Razavian, M., Lago, P.: A survey of SOA migration in industry. In: Kappel, G.,
Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
618–626. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-
9 48

16. Rodŕıguez-Echeverŕıa, R., Maclas, F., Pavón, V.M., Conejero, J.M., Sánchez-
Figueroa, F.: Generating a REST service layer from a legacy system. In: Escalona,
M.J., Aragón, G., Linger, H., Lang, M., Barry, C., Schneider, C. (eds.) Informa-
tion System Development, pp. 433–444. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07215-9 35

https://doi.org/10.1007/978-3-642-25535-9_48
https://doi.org/10.1007/978-3-642-25535-9_48
https://doi.org/10.1007/978-3-319-07215-9_35
https://doi.org/10.1007/978-3-319-07215-9_35

650 M. Abdellatif et al.

17. Sneed, H.M., Verhoef, C., Sneed, S.H.: Reusing existing object-oriented code as
web services in a SOA. In: MESOCA, pp. 31–39. IEEE (2013)

18. Souza, E., Moreira, A., De Faveri, C.: An approach to align business and it per-
spectives during the SOA services identification. In: ICCSA, pp. 1–7 (2017)

19. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2017)

20. Zhang, Z., Yang, H., Chu, W.C.: Extracting reusable object-oriented legacy code
segments with combined formal concept analysis and slicing techniques for service
integration. In: QRS, pp. 385–392 (2006)

A Truthful Mechanism for Optimally
Purchasing IaaS Instances and Scheduling

Parallel Jobs in Service Clouds

Bingbing Zheng1, Li Pan1(B), Dong Yuan2, Shijun Liu1(B), Yuliang Shi1,3(B),
and Lu Wang1

1 School of Software, Shandong University, Jinan, China
bbingzheng@163.com, {panli,lsj,shiyuliang,luwang hcivr}@sdu.edu.cn

2 School of Electrical and Information Engineering, The University of Sydney,
Sydney, Australia

dong.yuan@sydney.edu.au
3 Dareway Software Co., Ltd., Jinan 250101, China

Abstract. Recently, more and more users outsource their job executions
to service clouds. To reduce the costs and risks, many service providers
purchase on-demand instances from IaaS clouds to provide services elas-
tically. For maximizing social welfare, service providers need effective
approaches to optimally purchase IaaS instances and schedule parallel
jobs which have soft deadline, according to the valuations reported by
users. In order to address the challenges such as NP-hardness and pos-
sible misreports of users, we design an auction-style randomized mech-
anism for the instance purchasing as well as job scheduling and pricing
problem in service clouds. This mechanism can achieve an approximately
optimal social welfare while scheduling jobs in a way without preemption.
Many critical properties can be guaranteed simultaneously by our mecha-
nism, including truthfulness in expectation, computational efficiency and
individual rationality. Both the theoretical analysis and the extensive
simulations based on synthetic data and real-world job traces validate
the effectiveness of our mechanism on social welfare maximization.

Keywords: Service cloud · Auction mechanism · Scheduling · Pricing

1 Introduction

Considering cost-saving, expertise and management, more and more users
begin to outsource their job executions to professional service providers, which
promotes a new type of cloud offerings–service clouds. A service cloud operates
a set of resources to provide professional services to users. Taking a rendering
service cloud [2] as an example, it supplies rendering job execution services which
accept rendering jobs from users and execute computation to produce pictures
or videos as service results. For service providers, the cost of setting up, main-
taining and operating data centers is generally high. Besides, the number of user
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 651–659, 2018.
https://doi.org/10.1007/978-3-030-03596-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_47&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_47

652 B. Zheng et al.

arrivals and their demands for services are uncertain. In this situation, service
providers can reduce their costs and risk by purchasing on-demand instances
(pay per unit instance per unit time) from IaaS clouds such as Amazon [1].

Job, Valuations On-demand
IaaS Instances

Instance FeePayment

submit
charge

purchase

Users

.

.

.

schedule

 jobs different
instances

Service Provider IaaS Clouds

charge

Fig. 1. A working scenario of service clouds.

For service clouds, this paper targets the goal of maximizing the social wel-
fare (i.e., the total utility of all individuals in the system, including the service
provider and all users). Figure 1 shows the working scenario of a service cloud.
Users are generally job-oriented with soft deadline constraints, which means they
only care about the completion time of their jobs and have different valuations
for different completion time. To achieve the optimal social welfare, the service
provider purchases instances and schedules jobs according to the valuations of
users. Thus users are required to report the valuations they are willing to pay to
the service provider when submitting jobs. The service provider then purchases
on-demand instances from IaaS clouds, schedules users’ jobs on these instances
to produce service results and charges users corresponding payments. During
this process, service providers should make decisions on IaaS instance purchas-
ing as well as scheduling and pricing problems simultaneously. This is because
the instance purchasing and scheduling schemes affect each other and ultimately
influence the social welfare together.

The above decision-making process for arbitrary types of jobs in a service
cloud is often a multifaceted puzzle, and thus is sometimes intractable. In this
work we focus on pleasingly parallel jobs. They have flexible degree of parallelism
and can be divided into an arbitrary but reasonable number of identical tasks
to be executed in parallel on different instances, while no extra effort is needed.
Thus different scheduling schemes of a job can result in different completion
time. This type of job accounts for a large proportion in cloud market [7].

For optimally purchasing IaaS instances and scheduling parallel jobs with the
goal of social welfare maximization, users’ private valuations for their jobs are
needed. Since users are rational and may increase their utilities by misreport-
ing, well-designed auction mechanisms are needed to extract users’ real valua-
tions and make efficient decisions for service providers. However, there are many
challenges when designing proper auction mechanisms. First, achieving optimal
social welfare is NP-hard, even considering the parallel job scheduling problem
only. Second, soft deadline constraints increase the difficulty of decision-making

A Truthful Mechanism for Optimally Purchasing IaaS Instances 653

and truthfulness. Finally, the challenge further escalates when our mechanism
makes decisions on instance purchasing and scheduling problems simultaneously.

In this paper, we propose a randomized auction mechanism for optimally pur-
chasing IaaS instances and scheduling parallel jobs in service clouds. The main
building blocks of this mechanism include an instance purchasing algorithm, a
scheduling algorithm and a pricing algorithm. Our proposed randomized mech-
anism can achieve an approximately optimal social welfare and guarantee truth-
fulness in expectation, by which users will report their valuations truthfully. This
mechanism is computationally efficient and individually rational, which means it
has polynomial-time complexity and makes the utilities of all users non-negative.
It can also schedule jobs while guaranteeing the non-preemption of tasks (i.e., an
ongoing task cannot be interrupted before its completion). Through theoretical
analysis and extensive simulations based on both synthetic and real data, we
show that our mechanism can approximately maximize the social welfare.

The rest of the paper is organized as follows. Section 2 introduces the related
works and Sect. 3 formulates the optimal instance purchasing and parallel job
scheduling problem in service clouds as an integer programming. In Sect. 4, we
propose a randomized mechanism. We then verify its performance through sim-
ulations in Sect. 5. Finally, we state concluding remarks in Sect. 6.

2 Related Work

Using mechanism design to schedule jobs has also been investigated in previ-
ous studies. Chen et al. [4] design a copula-based generic randomized truthful
mechanism for scheduling on two unrelated machines. The goals of these works
are all makespan minimization and neither of them considers the pricing prob-
lem of jobs. Varakantham et al. [8] consider the strategic variant of resource
constrained project scheduling problems. They provide practical truthful mech-
anisms in which agents report their durations and costs of tasks as bids.

The mechanisms mentioned above assume that cloud providers or schedulers
have their own resources, while in our problem service providers prefer to pur-
chase resources from IaaS clouds. Because of the uncertainty of user demands,
service providers should decide the instance purchasing scheme according to real-
time situations to achieve a higher social welfare, rather than purchasing a fixed
number of instances. Thus an instance purchasing algorithm is also needed.

Many works have been done for resource purchasing problem. In [11], Wang
et al. propose two practical online algorithms that dynamically combine on-
demand and reserved instances without any knowledge of the future. This work
considers the resource purchasing problem from the perspective of end users,
while in our problem the instance purchasers are also service providers who will
provide services to end users. Zhao et al. [12] develop two resource purchasing
models with the goal of minimizing purchase cost while meeting all the service
demands. However, when providing services to users with the aim of social wel-
fare maximization, service providers need to provide services to users selectively.

Based on these discussions, our main contribution lies in that we propose
a randomized auction mechanism for optimally purchasing IaaS instances and

654 B. Zheng et al.

scheduling parallel jobs in service clouds. In this mechanism, with the aim of
social welfare maximization, instance purchasing as well as job scheduling and
pricing schemes are determined simultaneously.

3 System Model

3.1 Fundamental Notations

Since the whole time axis is infinite and the users arrive constantly, we propose
that the service provider makes decisions on instance purchasing, scheduling and
pricing problems through round by round auctions with regular time intervals,
which means the time intervals are of the same duration. At the start of each
interval, the service provider purchases instances from IaaS clouds and processes
all the job requests arrived so far. These jobs will either be completed in the
next interval, or be rejected. The rejected jobs need to be re-submitted.

We assume that there are m types of on-demand instances which a ser-
vice provider can purchase from an IaaS cloud platform, denoted by M =
{1, 2, . . . ,m}. The purchase price of instance j is pricej , which is fixed and set
by IaaS providers. The number of units of instance j which are purchased by the
service provider is rj . In each interval, the time axis is divided into T discrete
slots, denoted by T = {1, 2, . . . , T}. There are total n users whose requests will
be processed in an interval, denoted by U = {1, 2, . . . , n}. We assume that each
user has a parallel job to execute and jobs are scheduled according to time slots.
The runtime of a job on different instance types is varied, depending on the
performance of the instances. We use li,j to denote the estimated runtime of job
i on instance j, i.e., the number of time slots needed to complete job i on one
unit of instance j. This information can be obtained via historical data collected
from previous execution records. The problem of estimating jobs’ runtime is a
complex issue that has been extensively researched ([9] et al.) and falls beyond
the scope of this paper.

Considering the practical situations of job execution, we use threshold ki

to limit the degree of parallelism, i.e., the number of tasks that job i can be
divided into. The valuations of user i are denoted by vi. Specially ve

i means
user i is willing to pay ve

i if its job is completed at time slot e. Let bi and be
i

represent corresponding bids reported by users, which may be different from vi

and ve
i . Since jobs are scheduled according to time slots, each job has T possible

completion time. Thus each user can submit at most T bids to represent discrete
deadline options. Let pi denote the payment charged to user i, which is calculated
by the service provider. Let binary variable xe

i indicate whether job i is fully
completed at time slot e. Then the utility ui of user i is:

ui =
{∑

e∈T ve
i x

e
i − pi if job i is fully completed

0 otherwise

A Truthful Mechanism for Optimally Purchasing IaaS Instances 655

3.2 Problem Formulation

We now formulate the optimal IaaS instance purchasing and parallel job schedul-
ing problem in service clouds. Let ye

i,j(t) represent the number of units of instance
j assigned to job i at time slot t, when job i will be completed at time slot e.
Under the assumption of bi =vi, the problem can be formulated in more formal
and mathematical terms:

max
∑
i∈U

∑
e∈T

be
i x

e
i −

∑
j∈M

pricej · rj (IP)

s.t.
∑
t≤e

∑
j∈M

ye
i,j(t) · 1

li,j
= xe

i ∀ i ∈ U , e ∈ T (1)

∑
e∈T

xe
i ≤ 1 ∀ i ∈ U (2)

∑
i∈U

∑
e∈T

ye
i,j(t) ≤ rj ∀ t ∈ T , j ∈ M (3)

∑
t≤e

∑
j∈M

ye
i,j(t) ≤ ki ∀ i ∈ U , e ∈ T (4)

ye
i,j(t) ∈ Z ∀ i ∈ U , e ∈ T , j ∈ M, t ≤ e (5)

xe
i ∈ {0, 1} ∀ i ∈ U , e ∈ T (6)

rj ∈ Z ∀ j ∈ M (7)

Constraint (5) means a unit of instance can only run one job per time slot for
guaranteeing the non-preemption of tasks. Constraint (6) means partial com-
pletion of a job is not allowed. Besides, since in practice IaaS clouds only sell
integer units of instances to users, Constraint (7) is needed.

By solving (IP) we can get the optimal instance purchasing and job schedul-
ing schemes. However, finding the exact solution of (IP) is NP-hard. Besides, to
satisfy the assumption of bi = vi, the truthful reports of users should be guaran-
teed. Considering these challenges, we design a randomized auction mechanism.

4 A Randomized Auction Mechanism

The main process of the mechanism is as follows.

– Formulate the optimal IaaS instance purchasing and parallel job scheduling
problem in service clouds as an integer programming (IP), and relax its integer
constraints to get corresponding linear programming (LP).

– Calculate the optimal fractional solution r∗ and x∗ (as well as corresponding
y) by solving the linear programming (LP). This fractional solution is actually
an infeasible scheme.

– Transform the optimal fractional r∗ by rounding it up to the nearest integer,
and purchase instances from IaaS clouds according to it.

656 B. Zheng et al.

– Decompose x∗ into a series of feasible integer scheduling schemes, through
a coloring decomposition algorithm. Select one feasible integer solution ran-
domly and schedule jobs on the purchased instances according to it.

– If user i’s job can be completed, calculate the payment pi = VU\i−(V ∗U\i).

Here pi is the marginal harm caused by the participation of i to other users.
VU\i is the optimal social welfare without i’s participation. V ∗

U\i is the social
welfare caused by x∗ minus the corresponding valuation of i.

The coloring decomposition algorithm consists of two main steps. The first
step is constructing a color set I. Let ae

i denote a full allocation, meaning if we
schedule job i according to ae

i , job i can be fully completed at time slot e. Let
ae

i,j(t) = ye
i,j(t)/xe

i . Then we round fractional ae
i,j(t) up to the nearest integer.

Assume that xe
i = q

N +z, where q,N ∈N and 0≤z ≤ 1
N . N is a parameter which

can be set by the service provider. Let:

xe
i =

{
q+1
N with probability N · z
q
N otherwise

For each user i, we add N ·xe
i copies of ae

i into I. The second step is dividing the
allocations in I into many independent groups, with the following rules: (i) No
two allocations in the same group belong to the same job. (ii) No two allocations
in the same group conflict with time and the capacity constraint.

Theorem 1. The proposed randomized mechanism can achieve an approxi-
mately optimal expected social welfare in polynomial-time.

The theoretical lower bound of the expected social welfare is OPT∗
α −∑

j pricej (
1
α +α−1

α Cmax), where α=(1+ Cmax

Cmin−k)(1+nT
N). Here Cmax , Cmin and k

represent the maximum, minimum units of instances and the maximum threshold
of jobs respectively, i.e., Cmax = maxj mj , Cmin = minj mj , and k = maxi ki.

Theorem 2. The proposed randomized mechanism is truthful in expectation.

For each user, reporting its true valuations always maximizes its expected
utility, regardless of the bids reported by other users.

Theorem 3. The proposed randomized mechanism is individually rational.

The utility of each user is non-negative, which means the payment a user
should pay will not exceed its valuation. This property guarantees the voluntary
participation of users.

5 Performance Evaluation

5.1 Simulation Setup

We evaluate the performance of our randomized mechanism through both syn-
thetic and real data, by comparing with the optimal fractional result calculated
by the fractional VCG mechanism [5,6,10]. The optimal fractional result is infea-
sible in practice and thus it only works as a benchmark for comparison.

A Truthful Mechanism for Optimally Purchasing IaaS Instances 657

We assume that there are m = 5 types of instances purchased by the service
provider from IaaS clouds. We assume that the time interval of auctions is set
to 1 h and the time axis of a round auction is divided into T = 6 time slots
with 10 min per slot. The price is set according to Amazon EC2 on-demand
instances. The bids of users equal jobs’ runtime timing corresponding instance
price, and then timing a value randomly picked in the range [0.8, 1.2] to reflect
the preferences of users. The bids of a user are monotonically non-decreasing
with completion time e. The parameter N which is used in the decomposition
algorithm is set to 5000. Besides, considering the randomized nature, for each
experiment we randomly select 100 integer scheduling schemes rather than only
one to compute the average result.

5.2 EXP1: Influence of Different Runtime Distributions

We investigate the generated social welfare with different runtime distributions.
Normal (20, 5) means the runtime is drawn from a normal distribution with mean
20 and standard deviation 5. Uniform (15, 25) means the runtime is drawn from
a uniform distribution bounded by 15 and 25. Constant 20 means the runtime
is always 20. The number of users n varies from 60 to 150, adding 10 to each
experiment. The threshold ki is drawn from [5, 30].

60 80 100 120 140 160

2000

4000

6000

8000

10000

12000

14000

So
ci

al
 W

el
fa

re

Normal (20, 5)

Optimal Fractional Result
Theoretical Lower Bound
Randomized Mechanism

60 80 100 120 140 160

Number of Users

Uniform (15, 25)

60 80 100 120 140 160

Constant 20,

Fig. 2. Social welfare of our randomized mechanism compared with the optimal frac-
tional result and theoretical lower bound, with three runtime distributions. (Color
figure online)

In Fig. 2, the optimal fractional result (green curve) is the largest. The actual
social welfare (blue point) has randomness and is always better than the theoret-
ical lower bound (red curve) calculated by Theorem1. We can see that the three
figures corresponding to three different runtime distributions are much similar,
which means the performance of our mechanism does not change significantly
under different runtime distributions. This result can enable our mechanism to
be more widely used.

658 B. Zheng et al.

5.3 EXP2: Performance of Varying the Number of Users

In this simulation, we study the performance of our mechanism when the number
of users is varying, using Google cluster-usage data [3]. We vary the number of
users n from 10 to 100, adding 10 to each experiment.

10 20 30 40 50 60 70 80 90 100

Number of Users

0

2

4

6

8

10

12

14

So
ci

al
 W

el
fa

re

×104

Optimal Fractional Result
Randomized Mechanism

(a) Social Welfare

10 20 30 40 50 60 70 80 90 100

Number of Users

0

0.5

1

1.5

2

T
ot

al
 P

ay
m

en
t

×104

Optimal Fractional Result
Randomized Mechanism

(b) Total Payment

Fig. 3. Social welfare and total payment of our randomized mechanism compared with
the optimal fractional result, when the number of users is varying.

From Fig. 3 we can see that as the number of users increases, the optimal
fractional and actual social welfare as well as the total payment increase almost
linearly. This is because when simultaneously considering the instance purchas-
ing and job scheduling problems, our mechanism will purchase more instances
if satisfying more users’ demands increases the social welfare. This is different
from the situation where service providers operate data centers themselves or
purchase fixed resources. This simulation shows that under real-world data our
randomized mechanism can approximately maximize the social welfare.

6 Conclusions

In this paper, we propose a randomized auction mechanism which approxi-
mately maximizes the social welfare for optimally purchasing IaaS instances
and scheduling parallel jobs in service clouds. This mechanism is truthful in
expectation, computationally efficient, individually rational and can guarantee
the non-preemption of jobs. The theoretical analysis and extensive simulations
validate the efficiency of our mechanism.

Acknowledgements. The authors would like to acknowledge the support pro-
vided by the National Key Research and Development Program of China
(2017YFA0700601, 2018YFB1003800), the Key Research and Development Pro-
gram of Shandong Province (2017CXGC0605, 2017CXGC0604, 2018GGX101019,
2016GGX106001, 2016GGX101008, 2016ZDJS01A09), the Natural Science Foundation
of Shandong Province for Major Basic Research Projects (No. ZR2017ZB0419), the
Young Scholars Program of Shandong University, and the TaiShan Industrial Experts
Program of Shandong Province (tscy20150305).

A Truthful Mechanism for Optimally Purchasing IaaS Instances 659

References

1. Amazon EC2. https://aws.amazon.com/ec2/. Accessed 10 June 2018
2. Fox Renderfarm. http://www.foxrenderfarm.com/. Accessed 10 June 2018
3. Google cluster data. https://github.com/google/cluster-data/. Accessed 10 June

2018
4. Chen, X., et al.: Copula-based randomized mechanisms for truthful scheduling on

two unrelated machines. Theory Comput. Syst. 57(3), 753–781 (2015)
5. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11(1), 17–33 (1971)
6. Groves, T.: Incentives in teams. Econometrica 41(4), 617–631 (1973)
7. Gunarathne, T., et al.: Cloud computing paradigms for pleasingly parallel biomed-

ical applications. In: Proceedings of 19th HPDC, pp. 460–469 (2010)
8. Varakantham, P., et al.: Mechanism design for strategic project scheduling. In:

Proceedings of 26th IJCAI, pp. 4433–4439 (2017)
9. Verboven, S., et al.: Runtime prediction based grid scheduling of parameter sweep

jobs. J. Internet Technol. 11(1), 47–54 (2010)
10. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.

Finance 16(1), 8–37 (1961)
11. Wang, W., et al.: Optimal online multi-instance acquisition in iaas clouds. IEEE

Trans. Parallel Distrib. Syst. 26(12), 3407–3419 (2015)
12. Zhao, H., et al.: Optimal resource rental planning for elastic applications in cloud

market. In: Proceedings of 26th IPDPS, pp. 808–819 (2012)

https://aws.amazon.com/ec2/
http://www.foxrenderfarm.com/
https://github.com/google/cluster-data/

Convenience-Based Periodic Composition
of IoT Services

Bing Huang(B), Athman Bouguettaya, and Azadeh Ghari Neiat

School of Information Technologies, The University of Sydney, Sydney, Australia
{bing.huang,athman.bouguettaya,azadeh.gharineiat}@sydney.edu.au

Abstract. We propose a novel service mining framework to personal-
ize services in an IoT based smart home. We describe a new technique
based on the concept of convenience to discover periodic composite IoT
services to suit the smart home occupant’s convenience needs. The key
features of convenience is the ability to model the spatio-temporal aspects
as occupants move in time and space within the smart home. We propose
a novel framework for the transient composition of spatio-temporal IoT
service. We design two strategies to prune non-promising compositions.
Specifically, a significance model is proposed to prune insignificant com-
posite IoT services. We describe a spatio-temporal proximity technique
to prune loosely correlated composite IoT services. A periodic compos-
ite IoT service model is proposed to model the regularity of composite
IoT services occurring at a certain location in a given time interval. The
experimental results on real datasets show the efficiency and effectiveness
of our proposed approach.

Keywords: IoT service · Periodic composite IoT services
Convenience

1 Introduction

The Internet is evolving from interconnecting computers to interconnecting
things [1]. The Internet of Things (IoT) paradigm enables physical devices to
connect and exchange information. IoT devices allow objects to be sensed or con-
trolled remotely through the Internet [1]. The key challenge is that IoT devices
are highly heterogeneous in terms of supporting infrastructure ranging from net-
working to programming abstraction [7]. Service-oriented Computing (SOC) is
a promising solution for abstracting things on the Internet as services by hiding
the complex and diverse supporting infrastructure [8]. This abstraction can shift
the focus from dealing with technical details to how services are to be used [6].
We refer services for Internet of Things as IoT services. Daily life things such as
a light is connected to the Internet and is represented as a light service.

An application domain for IoT is the smart home. A smart home can be
considered as any regular home which has been augmented with various types
of IoT services [15]. The purpose of a smart home is to make residents’ life more
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 660–678, 2018.
https://doi.org/10.1007/978-3-030-03596-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_48&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_48

Convenience-Based Periodic Composition of IoT Services 661

convenient and efficient [17]. Current research mainly focus on basic capabilities
such as communication, computing, sensing and so on, which are indeed funda-
mental research topics [3]. However, these basic capabilities are not enough for
IoT services. They should have more advanced intelligence i.e., the capability
of understanding the physical world. To empower such high-level intelligence
in smart homes, a key task is to discover periodic composition of IoT services
which can represent periodic human activities. Periodic composite IoT services
can be loosely defined as the composite IoT services’ repeating occurrence at cer-
tain locations with regular time intervals. For example, a resident may have the
habit of taking shower around 10 pm. It is of paramount importance to discover
periodic composite IoT services. Periodic composition of IoT services can pro-
vide an insightful and concise explanation of IoT service usage patterns. These
patterns can be used to design intelligent control of IoT services in smart homes
to reduce residents’ interactions with IoT services. Reducing those interactions
provides more convenience for residents. Such periodic composite IoT services
are also useful for human activity prediction. If an IoT service usage fails to
follow its regular periodic composition, it could be a signal of abnormality.

Fig. 1. Examples of periodic composite IoT services

It is challenging to provide convenience by discovering periodic composite
IoT services from IoT service usage history (i.e., IoT service event sequence).
For example, Fig. 1 shows the IoT service usage history (on the left). We can see
that it is difficult to extract periodic composite IoT services (on the right). We
identify three key challenges.

• The set of IoT services are not known, which may be used collectively to
fulfill a daily task. These IoT services are spatio-temporally correlated. We
refer such set of IoT services as composite IoT services.

• There are many opportunities of establishing spatio-temporal relationships
among IoT services, leading to an explosive number of possible composite
IoT services. Many of these composite IoT services may be insignificant and
loosely correlated. As a result, there is a need to prune insignificant and
loosely correlated composite IoT services.

662 B. Huang et al.

• The associated time interval and location for the periodic composite IoT
services are not known. The composite IoT service may not occur exactly at
the same time in a particular location. Therefore, there is a need to estimate
the associated time interval and location.

In this paper, we focus on providing convenience by discovering periodic compos-
ite IoT services. At the first stage, we focus on discovering composite IoT services.
Then, we employ significance and proximity strategies to prune insignificant
and loosely correlated composite IoT services. At the third stage, we estimate
associated time interval and location for the candidates generated in the second
stage. Lastly, we measure how much convenience can be obtained by applying
discovered periodic composite IoT services. The key contributions are as follows:
(1) A new IoT service model and a composite IoT service model are proposed
based on spatio-temporal features. (2) A significance model is proposed to prune
insignificant composite IoT services. We also propose a proximity model in terms
of spatial-proximity and temporal-proximity to filter out loosely correlated com-
posite IoT services, (3) A periodic composite IoT service model is proposed to
represent the regularity of composite IoT services occurring at a certain location
in a time interval, (4) A convenience model is proposed to measure the benefits
of applying periodic composite IoT services, and (5) A novel algorithm PCMiner
(i.e., Periodic Composite IoT service Miner) is designed to discover periodic
composite IoT services from event sequences.

The rest of the paper is organized as follows. Section 2 formally defines key
concepts. Section 3 details the proposed algorithm PCMiner. Section 4 shows the
experimental results. Section 5 surveys the related work. Section 6 conclude the
paper and highlights some future work.

Fig. 2. (a) An example of a composite IoT service; (b) Time interval relations

Motivating Scenario

We use the smart home as our motivating scenario. Sarah lives alone in a smart
home. We assume everything such as lights, TV, oven, window, and floors are

Convenience-Based Periodic Composition of IoT Services 663

connected to the Internet and represented as IoT services. This smart home aims
to improve Sarah’s life convenience. Intuitively, convenience can be interpreted
as a smart home system which is aware of a resident’s potential needs by under-
standing physical environment or situations and respond proactively at the right
time and in the right place. This reduces a resident’s interactions with IoT ser-
vices. Let us imagine an interesting convenient life scenario in Sarah’s home. In a
weekday morning, the clock wakes Sarah up at 8 am. Then the lamp is turned on
automatically. Sarah gets up and prepares stuff for taking a shower. Meanwhile,
the heater in the bathroom starts to heat. When Sarah steps into the bathroom,
it is already warm. While Sarah is taking shower, the music player is playing
her favorite music. At the same time, the kettle in the kitchen starts to work
and the coffee maker starts to make a cup of Mocha coffee. After Sarah finishes
showering and grooming, she goes to the kitchen to prepare for breakfast. When
she is enjoying the breakfast and coffee, the TV is turned on automatically and
displays her favorite sport news. After finishing the breakfast, Sarah goes to
work. The TV and all the lights are turned off automatically.

A fundamental task to provide convenience is to augment IoT services with
capabilities of understanding the periodic usage of composite IoT services. Let
us consider Sarah performs daily activities by interacting with IoT services.
These interactions are recorded as IoT service event sequences shown in Fig. 3.
For example, <E+E−, (60, 75)> denotes the music player is playing music from
time 60 to time 75 and E+ (resp.E−) denotes a turn on (resp. turn off) the music
player event. There exist spatio-temporal relationships among IoT services. For
example, in Day 1, the relationships between the music player service (i.e., E)
and the shower service (i.e., F) shows that Sarah listens to music while taking a
shower. In this regard, a collection of spatio-temporally correlated IoT services
may represent an activity. We refer to such set of IoT services as composite IoT
services. An example of a composite IoT service is shown in Fig. 2(a).

There are many ways of establishing spatio-temporal relationships among
IoT services. According to Allen’s temporal logic in Fig. 2(b), there are 57 ways
of generating composite IoT services in Day 1 by a brute force approach (i.e.,
C2

6 + C3
6 + C4

6 + C5
6 + C6

6 = 57). Many of them may be insignificant and loosely
correlated. Therefore, we design the significance and proximity strategies to filter
out these insignificant and loosely correlated composite IoT services.

The proximate and significant composite IoT services can represent the res-
ident’s daily activities. The residents usually performs his/her daily activities
periodically in terms of time and location. For example, the resident usually
goes to bed during 11pm to 12pm and wakes up during 8am to 9am. We refer
such repeating composite IoT services at certain location with regular time inter-
vals as periodic composite IoT services. The periodic composite IoT services can
be serve as a knowledge basis for providing convenience. A convenience model
is introduced to quantify how much benefits of applying periodic composite IoT
services. In this paper, we focus on providing convenience by discovering periodic
composite IoT services.

664 B. Huang et al.

Fig. 3. An example of service event sequences

2 System Model

We first introduce the notion of IoT services and composite IoT services based on
spatio-temporal features [25]. Then, a significance model and a proximity model
are proposed to prune non-promising composite IoT services. We introduce the
notion of periodic composite IoT service to model the occurrence regularity of
composite IoT services. Lastly, we provide a convenience model to quantify how
much benefits of applying periodic composite IoT services.

2.1 IoT Service Model

Definition 1: IoT Service. An IoT service Si is a tuple Si = <si, Fi, IS,
FS>, where:

• si is a unique service identifier.
• Fi is a set of functions that are offered by Si.
• IS (Initial State) is a tuple <s+i , sti, sli>, where

– s+i is a symbol of IS.
– sti is a start-time of Si.
– sli = <xs, ys> is a start location of Si, where <xs, ys> is a GPS point.

• FS (Final State) is a tuple <s−
i , eti, eli>, where

– s−
i is a symbol of FS.

– eti is an end-time of Si.
– eli = <xe, ye> is an end location of Si, where <xe, ye> is a GPS point.

Convenience-Based Periodic Composition of IoT Services 665

We focus on the spatio-temporal features in the remainder of this
paper. Thus, the representation of an IoT service Si is simplified as
<(s+i , sti, sli), (s−

i , eti, eli)>. For example, a light service is represented as
<(light+, 7pm, (1, 2)), (light−, 9pm, (1, 2))> which is described as lighting from
7pm to 9pm in the bedroom where (1, 2) is the GPS point in the bedroom and
7pm (resp. 9pm) is the start time (resp. end time).

2.2 Composite IoT Service Model

One IoT service may not accomplish a daily activity. Multiple IoT services may
be composed to fulfill an activity [13]. These IoT services may be used collectively
based on time and location correlations to accomplish a certain daily activity. We
refer such spatio-temporally correlated IoT services as composite IoT services.

Definition 2: Composite IoT Service. A composite IoT service CS is a
collection of IoT services that occur frequently in a particular spatio-temporal
relationships. A composite IoT service is denoted by a tuple CS = <S, sup(S)>
where

• S = {<(s+1 , st1, sl1), (s−
1 , et1, el1)>, ..., <(s+n , stn, sln), (s−

n , etn, eln)>} repre-
sents n component IoT services where <(s+i , sti, sli), (s−

i , eti, eli)> is a com-
ponent IoT service Si as defined in Definition 1 and sti ≤ sti+1 and sti ≤ eti.
An example of a composite IoT service is shown in Fig. 2(a). By ordering
all elements s∗

i (* can be + or −) in S in a non-decreasing order based
on its associated time information sti(or eti), we can transform S into

the following representation S = <Seq, T, L> =

⎧
⎪⎨

⎪⎩

α1 ... αi ... α2n

t1 ... ti ... t2n

l1 ... li ... l2n

⎫
⎪⎬

⎪⎭
,

where Seq = {α1...αi...α2n} is a symbol sequence and αi = s∗
j (* can be

+ or −), T = {t1...ti...t2n} is the time information and ti ≤ ti+1, and
L = {l1...li...l2n} is the location information. For example, the composite
IoT service in Fig. 2(a) can be represented as⎧
⎪⎨

⎪⎩

s+2 s+1 s+3 s−
1 s−

3 s−
2

48 50 58 65 70 75
l2 l1 l3 l1 l3 l2

⎫
⎪⎬

⎪⎭
(i.e., l1 = (1, 2), l2 = (2, 4), l3 = (3, 5))

• sup(S) is the support for S. The support sup is the total number of occurrence
in a database S = <Seq, T, L> and S′ = <Seq′, T ′, L′> be two composite
IoT services. S is referred to as a sub-composite IoT service of S′ , denoted as
S � S′, if Seq = {α1...αi...α2n} is a subsequence of Seq′ = {α′

1...α
′
i...α

′
2m},

denoted as Seq � Seq′ with n ≤ m. Seq � Seq′ is satisfied if there exist
integers 1 ≤ k1 ≤ k2...kn ≤ k2m such that α1 ⊆ α′

k1
, α2 ⊆ α′

k2
, . . . , αn ⊆ α′

kn
.

Given an IoT service event sequence DB, the tuple (sid, S′) (i.e., sid is a
sequence ID and S′ is the composite IoT service) is said to contain a sub-
composite IoT service S if S � S′. The support sup of S in DB, denoted

666 B. Huang et al.

as sup(S) is the number of tuples containing S. sup(S) can be formalized as
follows.

sup(S) = |{(sid, S) ∈ DB|S � S′}| (1)

2.3 Significance and Proximity Model for Composite IoT Services

There are many possibilities of establishing spatio-temporal relationships among
IoT services, leading to an explosive generation of composite IoT services. Many
of the composite IoT services are insignificant and loosely correlated. Thus,
there is a need to filter out these non-promising composite IoT services. We
explore this problem from two aspects. On the one hand, those composite IoT
services that occur frequently are more likely to be significant that those occur
less frequently. Thus, we propose a significance model to quantify how much
significance these composite IoT services are from the statistic aspect. On the
other hand, the IoT services that occur proximately in terms of time and location
are more likely to be correlated. For example, from the spatial perspective, the
relationship between the TV and the light in the same dining room may reveal
a high correlation between these two IoT services. However, the co-occurrence
of using TV in the dining room and using the light in the bedroom may merely
be a coincidence. From the temporal perspective, using the TV and the light
in the evening reveal that there may exist a high correlation between the two
IoT services during that time. However, using the TV in the evening and using
the light in the morning may not have any correlation. In this regard, we use
proximity to characterizes correlation strength among component IoT services
in terms of spatial-proximity and temporal-proximity. By spatial-proximity, it
characterizes the location correlation strength among component IoT services.
By temporal-proximity, it characterizes the temporal correlation strength among
component IoT services. The proximity model is adapted from the approach for
measuring spatio-temporal interval data distance [11].

Definition 3: Significance. Significance is used for evaluating statistic impor-
tance of CS. Given a composite IoT service CS = <S, sup>, its significance is
formalized as:

significance(S) =

√
expect(S)

sup(S) − expect(S)
(2)

where expect(S) is the expected number of occurrence in a DB. To estimate
expect(S), we adapt the statics model proposed in [14] by considering IoT ser-
vices’ various usage frequency across different regions in smart homes [16]. In
practice, IoT services’ usage frequency may vary across different regions in smart
homes. For example, if a resident spends most of his/her time in their living room
during the day and only goes to their bedroom for sleeping, then IoT services in
the living room will be used more frequently than those in the bedroom. Thus,
composite IoT services for sleeping may be ignored when searching for frequent
composite IoT services.

Convenience-Based Periodic Composition of IoT Services 667

Given a composite IoT service CS whose symbol sequence is Seq =
{s∗

1...s
∗
i ...s

∗
m}, suppose that Seq is a possible outcome drawn from the sym-

bol set A = {a1...ai...an} with P (ai) following Bernoulli distribution such that∑n
i=1 P (ai) = 1. Given a DB and a region set R = {r1, ..., rk}, DBri

records
IoT service event sequences occurring at region ri. Num(ai)DBri

is the num-
ber of the event ai occurrence in database DBri

. P (ai) can be estimated by
Num(ai)DBri∑

aj∈A Num(aj)DBri

. Therefore, the occurrence probability P (S) and expect(S)

can be formalized as follows.

P (S) =
∏

∀s+
i ∈Seq

P (s∗
i) (3)

expect(S) = P (S) · |DBri
| (4)

where |DBri
| is number of IoT service events in region ri. Note that we only

count P (s∗
i) once because each s∗

i has two points (i.e., s+i and s−
i).

Definition 4: Proximity. Given a composite IoT service CS = <S, sup>

where S is in the form S = <Seq, T, L> =

⎧
⎪⎨

⎪⎩

α1 ... αi ... α2n

t1 ... ti ... t2n

l1 ... li ... l2n

⎫
⎪⎬

⎪⎭
, its prox-

imity function is defined as follows.

U = w1 · spatial proximity + w2 · temporal proximity (5)

where wi(i = 1, 2) is a weight such that wi ∈ [0, 1] and w1 + w2 = 1. The
spatial proximity and temporal proximity are formalized as follows.

• Spatial proximity : The spatial proximity measures the average location prox-
imity of all composite IoT service instances. The spatial proximity for a
composite IoT service instance is first formalized in Eq. (6). Then the average
spatial proximity for the composite IoT service is formalized in Eq. (7).

Spa =
n∑

i=1

1
|xi − xi+1| + |yi − yi+1| (6)

spatial proximity =

∑sup
j=1 Spaj

sup
(7)

where n is the total number of component IoT services, li = <xi, yi> and
li+1 = <xi+1, yi+1> are two locations for two consecutive component IoT
services, and sup is the support for the composite IoT service. For example,
for the composite IoT service in Fig. 2(a), its spatial proximity score is Spa =

1
|l2−l1| + 1

|l1−l3| = 1
|2−1|+|4−2| + 1

|1−3|+|2−5| = 0.53. In this paper, we use
Manhattan distance proposed in [12] to measure the proximity because it is
computing efficient.

668 B. Huang et al.

• Temporal proximity : The temporal proximity measures the average temporal
proximity of all composite IoT service instances. We adapt the technique of
evaluating the distance between time-interval based data in [11]. For each
component IoT service instance Si = {(s+i , sti, sli), (s−

i , eti, eli)}, we utilize a
function fi with respect to t to map the temporal aspect of Si. fi is formalized
as follows.

fi(t) =

{
1, t ∈ [sti, eti]
0, otherwise

(8)

Then we have a set of functions {f1, f2, ...fn} corresponding to the composite
IoT service instance. The temporal proximity for the composite IoT service
instance is calculated by Eq. (9). The average temporal proximity is calculated
by Eq. (10).

Temp =

∫ t2n

t1

∑n
i=1 fi(t) dt

(t2n − t1) · n
(9)

temporal proximity =

∑sup
j=1 Tempj

sup
(10)

where t1 and t2n are the first and the last time information of CS,
respectively, and n is the number of component IoT services. For exam-
ple, the temporal proximity score of the composite IoT service {<stove,
[18:00, 19:00]>, <washing machine, [18:40, 19:20]>} can be calculated as
(18:40−18:00)+(19:00−18:40)·2+(19:20−19:00)

(19:20−18:00)·2 = 0.625. This composite IoT service
can be interpreted as when the resident is cooking, he/she is also doing laun-
dry. Another composite IoT service is {<stove, [18:00, 19:00]>, <fan, [18:00,
19:00]>} and its temporal proximity score is 1. Thus the latter composite IoT
service is considered to be more temporally proximate than the former.

2.4 Periodic Composite IoT Service Model

In this section, we introduce the novel notion of periodic composite IoT service
to model the regularity of repeating composite IoT services.

Definition 5: Periodic composite IoT service. A periodic composite IoT
service PC is defined as the repeating composite IoT services at certain locations
with regular time intervals. It is denoted by a tuple PC = <CS, T, L, P> where

• CS is a composite IoT service.
• T = <Ts, Te> is a representative time interval associated with CS, where

Ts and Te are the start time and end time of CS, respectively. Sup-
pose all start time and end time of CS in DB constitutes the set τ =
{<st1, et1>,<st2, et2>...<stm, etm>}. We need to find the representative
time interval <Ts, Te> which minimizes the dissimilarity between the instance
<sti, eti>. We define the dissimilarity dis between two time intervals.

dis = |Ts − sti| + |Te − eti| (11)

Convenience-Based Periodic Composition of IoT Services 669

Thus, the total dissimilarity between <Ts, Te> and τ can be defined by
Eq. (12).

Dis(T, τ) =
m∑

i=1

|Ts − sti| + |Te − eti| (12)

To minimize Dis(T, τ), Eq. (12) can be transformed into two known min-
imization problems, that is, find Ts and Te to minimize

∑m
i=1 |Ts − sti|

and
∑m

i=1 |Te − eti|, respectively. Ts is the median of the start time set
{st1, st2...stm} and Te is the median of the end time set {et1, et2...etm}. The
proof can be found in [19].

• L is the region location of CS such as the bedroom and the bathroom.
• P is the probability of CS occurring around time interval T at location L.

Suppose the time information of a CS instance is <stj , etj>. The CS is said
to occur around time interval T if their dissimilarity dis is no more than a
tolerance threshold ζ, that is, |Ts − stj | + |Te − etj | ≤ ζ. P can be formalized
as follows.

P =
Num

TNum
(13)

where Num is the number of CS occurrence around time interval T at location
L. TNum is the total number of CS occurrence in the database.

2.5 Convenience Model

The discovered periodic composite IoT services can be served as knowledge basis
for building an intelligent system to provide convenience for the residents. By
convenience, it is interpreted as the benefits of applying periodic composite IoT
services via reducing residents’ interactions with IoT services. The convenience
can be quantified as follows.

Definition 6: Convenience. Given an IoT service event sequence {<(a+
1 , st1,

sl1), (a−
1 , et1, el1)> . . . <(a+

n , stn, sln), (a−
n , stn, sln)>} during the time period

[st1, etn], suppose this sequence is initialized from a set of periodic composite
services { PC1, PC2 . . . PCm}. According to the representative time informa-
tion of the PCm, we can roughly estimate the next PCm+1 occurrence. The IoT
service events involved in PCm+1 is { b1, b2...bm }. Suppose the actual event
set occurs next is { c1, c2 . . . ck }. Therefore, the amount of convenience can be
quantified by Eq. (14).

convenience =
|{b1, b2...bm} ∩ {c1, c2...ck}|

|{c1, c2...ck}| (14)

where |{c1, c2...ck}| is the number of events and |{b1, b2...bm} ∩ {c1, c2...ck}| is
the number of correctly estimated events.

670 B. Huang et al.

3 Discovering Periodic Composite IoT Service Approach

We develop the algorithm PCMiner to efficiently discover periodic composite
IoT services from IoT service event sequences. Algorithm 1 shows the details of
PCMiner. The algorithm consists of four phases. The mining process starts with
dividing the search space. Then PCMiner searches all composite IoT services in a
determined space. Third, PCMiner applies the significance and proximity strate-
gies to remove non-promising composite IoT services. Finally, PCMiner collects
time information and location information for candidates generated in the third
phase. Based on these information, time period and location corresponding to
the candidates are estimated which leads to generating a set of periodic compos-
ite IoT services. For the sake of consistency with the terms from data analysis
techniques, we use event patterns to refer to composite IoT services occurring
in service event sequences. We use the running example in Fig. 3 to illustrate the
process of PCMiner shown in Fig. 4.

Fig. 4. The Process of PCMiner

Phase I: Dividing Search Space. The layout of a smart home consists of multiple
regions such as a bedroom and a kitchen. Each IoT service event is associated
with a region. For example, turn on the lamp event occurs in the bedroom. Given
a region set r = {r1, r2...rn}, we divide the database DB into multiple smaller
databases DBri

. Each DBri
records IoT service event sequences occurring in

Convenience-Based Periodic Composition of IoT Services 671

the region ri. In later phases, the discovering process performs on each sub-
databases. For the purpose of illustrating PCMiner, we assume all IoT service
event sequences in the running example shown in Fig. 3 are from the same region
and constitute a sub-database.

Phase II: Searching Event Patterns. PCMiner employs a divide-and-conquer,
pattern-growth principle from Prefixspan [23] as follows: event sequence
databases are recursively projected into a set of smaller projected databases based
on the current event patterns. Event patterns are then grown by searching the
smaller projected databases.

Definition 7: Projected database. Let p be an event pattern in a database
DB. The p-projected database, denoted as DB|p, is the collection of suffixes of
event sequences in DB with regard to the prefix p.

The searching process consists of three sub-phases. PCMiner first finds the
set of 1-length event patterns. Then, PCMiner constructs projected databases
for each 1-length event pattern generated in the phase one. Third, the event
patterns are grown by searching their corresponding projected databases. Each
of these sub-phases is detailed as follows.
1. Find the set of 1-length event patterns L1. Given a database as shown in
Fig. 3, PCMiner first scans the database to count the number of each event
pairs and discards those events whose support is less than the minimum support
threshold. If the minsup threshold is 2, all discovered 1-length event patterns
whose support is not less than 2 constitute the 1-length event pattern set L1.
For example, in Fig. 4, (A+A−): 3 denotes the event pattern and its associated
support count.
2. Construct projected databases for each 1-length event pattern. Let L1 =
{α1

1, α
1
2...α

1
n} be the set of 1-length event patterns. For each α1

i , a correspond-
ing projected database DB|α1

i
is created. DB|α1

i
is a collection of suffix event

sequences with regard to the prefix α1
i .

3. k-length event pattern α is grown to the (k+ 1)-length event pattern α′ through
searching the projected database DB|α corresponding to α (k ≥ 1). For a prefix
α, PCMiner scans its projected database DB|α once to find the set of local
frequent event pairs {e1, e2 . . . en} and discards infrequent ones. Note that since
event pairs are counted, these single events in the projected database will not be
counted again. Frequent event pairs ei are appended to the prefix α, generating
the new frequent event pattern α′ with the length increased by 1. Therefore, the
set of (k + 1)-length event patterns prefixed with α are generated.

We illustrate the process of finding event patterns prefixed with (A+A−). By
scanning the (A+A−) projected database DB|(A+A−), its local frequent event
pairs are (B+B−: 3), (C+C−: 3), (E+E−: 2), and (F+F−: 3). Thus, the set
of all 2-length event patterns L2 prefixed with (A+A−) are found, and they
are: (A+A−B+B−: 3), (A+A−C+C−: 3), (A+A−E+E−: 2), and (A+A−F+F−:
3). Recursively, all 2-length event patterns are used to find 3-length event
patterns by constructing and searching their projected databases. By project-
ing (A+A−B+B−), we find frequent event pairs from its projected database

672 B. Huang et al.

which are (C+C−: 3), (E+E−: 2), and (F+F−: 3). By appending these fre-
quent event pairs to the prefix (A+A−B+B−), we have 3-length event patterns
(A+A−B+C+C−B−: 3), (A+A−B+B−E+E−: 2), and (A+A−B+B−F+F−: 3).
Similarly, we find (A+A−C+C−E+E−: 2) and (A+A−C+C−F+F−: 3) prefixed
with (A+A−C+C−), and (A+A−E+F+F−E−: 2) prefixed with (A+A−E+E−).
We find L4 and L5 in the same approach.

Phase III: Calculate Significance and Proximity for Event Patterns. For each
event pattern generated in phase II, we collect the time information and
location information from the event sequences. Based on these informa-
tion, we calculate the statistic significance for each event pattern by Def-
inition 3. We also discard insignificant ones if its significance is less than
the significance threshold minsig. Given proximity threshold minpro, we
calculate average proximity for each event pattern by Definition 4 and fil-
ter out those patterns whose proximity are less than minpro. For the run-
ning example, if the weight for spatial proximity and temporal proximity
is set to be 0 and 1, respectively, the proximity of all 2-length event
patterns are Prox(A+A−B+B−) = 0.418, Prox(A+A−C+C−) = 0.358,
Prox(A+A−E+E−) = 0.098, Prox(A+A−F+F−) = 0.082, Prox(B+C+C−

B−) = 0.906, Prox(B+B−E+E−) = 0.224, Prox(B+B−F+F−) = 0.215, Prox
(C+C−E+E−) = 0.209, Prox(C+C−F+F−) = 0.199, Prox(E+F+F−E−) =
0.879. If the minpro is set to be 0.3, event patterns whose proximity is less than
0.3 are filtered out. The ultimate outcomes of our example are <E+F+F−E−>
and <A+A−B+C+C−B−> and their respective proximity are 0.879 and 0.494.

Phase IV: Generating Periodic Event Patterns. After performing phase III, we
obtain significant and proximate event patterns. Based on the time and loca-
tion information collected in phase III, the algorithm estimates the time period,
location, and probability for each event pattern by Definition 5. The outcomes
of this phase is a set of event patterns associated with time intervals, location,
and a probability (i.e., periodic composite IoT services).

4 Experimental Results

We systematically evaluate the approach proposed in this paper. The language
used is Java and the experiments are performed on a 1.6 GHz AMD processor
and 2 GB RAM under Windows 7. We evaluate the proposed approach using
three real datasets, namely, Data1, Data2, Data3. Specifically, Data1 and Data2
are from CASAS datasets, which are collected in smart home environment [18].
For location information, we refer to the layout of sensors attached on objects
for grouping objects into corresponding locations. Data1 and Data2 are in the
format of <date, time stamp, sensor ID, on/off> (e.g., <2008-02-27, 12:46:37,
M13, OFF >). Data3 is collected from a single apartment for two weeks [10].
The Data3 are in the format of <id, start time, end time, location> (e.g., <light,

Convenience-Based Periodic Composition of IoT Services 673

Algorithm 1. PCMiner algorithm
Input: A spatio-temporal database (DB), region set r = {r1, r2...rn}, support threshold (minsup),

significance threshold (minsig), proximity threshold (minpro), weight of the spatial proximity
(w1), and weight of the temporal proximity (w2).

Output: A set of event patterns, a set of periodic event patterns.

Procedure Divide Search Space (DB, r)
1: transform DB into |r| numbers of sub-databases based on r;
2: return DBri

;

Procedure Search Event Pattern (DBri
, minsup)

3: L1 = find 1-length pattern(DBri
, minsup);

4: Prefixspan(α, l, DBri
|α)//α is an event pattern, l is the length of α (l ≥ 1), DBri

|α is the
α-projected database.

5: Scan DBri
|α once, find the set of local frequent events {e1,e2...en};

6: for each frequent event ei do
7: α′ = α+ei; //append ei to α to form the new event pattern α′ .
8: for each α′ do
9: add α′ to the event pattern set patternset;
10: construct α′-projected database DBri

|α′ , and call Prefixspan (α′, l + 1, DBri
|α′);

11: return patternset;

Procedure Compute Significance Proximity (patternset, minsig, minpro, w1, w2);
12: for each pattern α in patternset do
13: computeSignificance(α, minsig); // Calculate significance for each pattern by Definition 3 and

discard those patterns whose significance are less than minsig.
14: computeProximity (α, w1, w2, minpro);// Calculate proximity for each pattern by Definition

4 and discard those patterns whose proximity are less than minpro.
15: return patternset′;

Procedure Generate Periodic Event Patterns (patternset′, DBri
);

16: for each pattern α in patternset′ do
17: find associated time and location information from DBri

;

18: estimate the time interval T , location L, and probability P for α by Definition 5;
19: return <α, T, L, P>;

7:00, 8:00, bedroom>). In addition, all datasets are annotated with correspond-
ing daily activities. There are 5 and 8 activities in Data1 and Data2, respec-
tively. For Data3, 23 activities are recorded and annotated. We conduct four
sets of experiments. The first set is to evaluate the performance and scalabil-
ity of PCMiner. The second set is to evaluate the effectiveness of the pruning
strategies (i.e., significance and proximity). The third set is to evaluate the appli-
cability of the proposed approach by showing the discovered periodic composite
IoT services from real datasets. The fourth set is to measure the convenience by
applying the discovered periodic composite IoT services.

The first set of experiments is conducted on a dataset which is a combination
of three datasets i.e., Data1, Data2, and Data3. We vary the support threshold
sup from 4% to 10%. Figure 5(a) shows the execution time of PCMiner decreases
by increasing the support threshold. Figure 5(b) illustrates that the number of
discovered event patterns decreases by increasing the support.

In the second set of experiments, we assess the effectiveness of significance
and proximity in pruning non-promising event patterns. Similar to our previ-
ous experiment, we use the combined dataset. We set the significance to be
0.01. We test the effectiveness of significance in reducing insignificant IoT ser-
vice event patterns while varying different support threshold. Figure 6(a) depicts

674 B. Huang et al.

Fig. 5. Performance and scalability of PCMiner

the number of discovered patterns and significant patterns at different support
threshold. The results show that the significance strategy performs effectively
in pruning insignificant event patterns, which is an expected results. For exam-
ple, the significance strategy can prune event patterns from 2954 to 1108 at the
5% support threshold. In addition, we test the effectiveness of proximity strat-
egy in filtering out loosely correlated event patterns. Since the GPS point of each
service in not available in the datasets, we set the weight of spatial proximity to
be 0 and the weight of temporal proximity to be 1. We set the proximity to be
0.39. Figure 6(b) illustrates the number of discovered event patterns and prox-
imate event patterns at different support threshold. The results show that the
proximity strategy is effective. For example, the proximity strategy can prune
loosely correlated event patterns from 2954 to 1705 at the 5% support threshold.
These are expected results because the significance and proximity strategies
enable PCMiner to filter out non-promising event patterns in each iteration and
the search scope is shrunk for the next iteration.

Fig. 6. Effectiveness of significance and proximity strategies

Convenience-Based Periodic Composition of IoT Services 675

We perform the third set of experiments on Data3 to evaluate the applicabil-
ity of our proposed approach. Table 1 shows the primary discovered composite
IoT services. Some of the composite IoT services are indeed difficult to be dis-
covered because they are less frequent. For example, the “lawn work” and “going
out for entertainment” compositions occur only once during two weeks. Next,
we check the discovered periodic compositions. Ideally, we want to associate one
time interval with a composition. However, we discover that some IoT service
compositions may associate multiple time intervals. For example, the “taking
medication” service composition occurs in the morning and in the evening. This
is a very practical issue. In this experiment, we group the discovered composition
instances using a preliminary technique, that is, two time intervals are grouped
together if they overlap. The tolerance threshold ζ is set to be 2 h. We can see
from Table 1 that the resident performs some activities regularly. For example,
one of the striking periodic activities is the “preparing breakfast”. There is 75%
chance that he/she will “prepare breakfast” during 5:16 and 6:51.

We conduct the fourth set of experiments on Data3 to measure how much
convenience can be obtained by applying the discovered results in Table 1. We
showcase some preliminary results. For example, based on the representative
time, the “preparing breakfast” is likely to be followed by “watching TV” and
“watching TV” is likely to be followed by “going out for shopping”. Given the
“preparing breakfast” activity on 4/22/2003, we can obtain 50% convenience.

Table 1. Primary discovered periodic composite IoT services from Data3

Periodic composite IoT servicesRepresentative time intervals, location, probability

Taking medication (1:54–2:00, in the kitchen, 0.5), (19:23–19:38, in the kitchen, 0.29)

Preparing breakfast (5:45–6:20, in the kitchen, 0.75)

Preparing lunch (11:15–12:05, in the kitchen, 0.64)

Preparing dinner (18:15–18:48, in the kitchen, 0.5)

Going out for shopping (7:52–8:05, in the hallway, 0.67)

Watching TV (7:00–7:23, in the living room, 0.27), (14:27–15:22, in the living room, 0.33)

5 Related Work

A Web service mining framework is proposed to discover interesting composite
services from available services [4]. This framework models Web services using
ontologies and an efficient algorithm is proposed to discover composite services.
In [24], a graphic model is proposed to represent the dependency among ser-
vices. A general service mining framework is proposed based on an ontology
service model [5]. Service relationships are established via ontology attributes.
A Correlation Degree method is presented to evaluate the correlation strength
among services. Most of existing work consider service relationships based on
their input/output correlations, pre/post condition correlations etc. However,
in the context of IoT, spatio-temporal relationships among IoT services are

676 B. Huang et al.

implicit and subtle. In [12], an efficient algorithm CoPMiner is developed to
mine the temporal relationships among appliances in the smart home environ-
ment. The key idea of CoPMiner is to transform interval-based event sequences
into endpoint based sequences. It also reformulates the problem of discovering
temporal patterns among appliances as discovering frequent patterns from end-
point sequences. Location information regarding appliances is utilized to filter
out insignificant temporal patterns. However, temporal distance is not consid-
ered in [12], which may result in undesirable frequent temporal patterns. In [9],
an efficient algorithm IEMiner is proposed to discover temporal patterns for
classification. In [2], a novel graph-based approach is proposed to capture the
subtle relationships among things based on things’ usage time, location, and
users’ social network information. The Random Walk with Restart method is
applied to discover things relationships.

There are many research on human activity discovery. In [16], an efficient
algorithm COM is proposed to discover human activity pattens from sensor
event data. These patterns are used to build a HMM model for recognizing
human activities. In [20], a probabilistic and Markov chain approach is pro-
posed to discover complex human activity patterns. These patterns associated
with context information are used to recognize activities. A general framework
is proposed to address the problem of complex activity prediction by mining
temporal sequence patterns from video [21]. A probabilistic suffix tree model is
introduced to model activities. There have been little research into the human
activity recognition which considers the periodic feature. For example, [22] dis-
covers periodic activities from trajectory data such as staying in the office during
daytime and staying at home in the evening.

6 Conclusion and Future Work

We addressed the problem of discovering periodic composite IoT services to
provide personalized convenience to residents. An IoT service model and a com-
posite IoT service model are proposed in terms of spatio-temporal aspects. The
experimental results show our proposed significance and proximity strategies are
effective in pruning non-promising composite IoT services. The periodic compos-
ite IoT service model is introduced and is applied to provide convenience. We
introduce a new algorithm PCMiner to discover periodic composite IoT services.
Future work includes improving the performance of PCMiner. Furthermore, we
will apply the discovered periodic composite IoT services to build an intelligent
system for providing convenience.

Acknowledgment. This research was partly made possible by NPRP 9-224-1-049
grant from the Qatar National Research Fund (a member of The Qatar Foundation)
and DP160100149 and LE180100158 grants from Australian Research Council. The
statements made herein are solely the responsibility of the authors.

Convenience-Based Periodic Composition of IoT Services 677

References

1. Atzori, L., Iera, A.: The Internet of Things: a survey. J. Comput. Netw. 54(15),
2787–2805 (2010)

2. Yao, L.: Unveiling correlations via mining human-thing interactions in the web of
things. ACM Trans. Intell. Syst. Technol. 8(5), 62 (2017)

3. Miorandi, D.: Internet of Things: vision, applications and research challenges. Ad
Hoc Netw. 10(7), 1497–1516 (2012)

4. Zheng, G., Bouguettaya, A.: Service mining on the web. IEEE Trans. Serv. Com-
put. 2(1), 65–78 (2009)

5. Huang, B., Bouguettaya, A., Dong, H., Chen, L.: Service mining for Internet of
Things. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS,
vol. 9936, pp. 566–574. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46295-0 36

6. Ghari Neiat, A., Bouguettaya, A.: Crowdsourcing of Sensor Cloud Services, pp.
1–116. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91536-4

7. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the IoT: a middleware perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 3–17. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46295-0 1

8. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60, 64–72 (2017)

9. Patel, D., Hsu, W.: Mining relationships among interval-based events for classifi-
cation. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 393–404. ACM (2008)

10. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple
and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS,
vol. 3001, pp. 158–175. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24646-6 10

11. Shao, W., Bouguettaya, A.: Clustering big spatiotemporal-interval data. IEEE
Trans. Big Data 2, 190–203 (2016)

12. Chen, Y.-C., Chen, C.-C., Peng, W.-C., Lee, W.-C.: Mining correlation patterns
among appliances in smart home environment. In: Tseng, V.S., Ho, T.B., Zhou,
Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS (LNAI), vol. 8444, pp.
222–233. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06605-9 19

13. Bouguettaya, A., et al.: End-to-end service support for mashups. IEEE Trans. Serv.
Comput. 3, 250–263 (2010)

14. Chen, Y.-C.: Significant correlation pattern mining in smart homes. ACM Trans.
Intell. Syst. Technol. (TIST) 6(3), 35 (2015)

15. Wu, Q.: Cognitive internet of things: a new paradigm beyond connection. IEEE
Internet of Things J. 1, 129–143 (2014)

16. Rashidi, P., Cook, D.J.: COM: a method for mining and monitoring human activ-
ity patterns in home-based health monitoring systems. ACM Trans. Intell. Syst.
Technol. (TIST) 4(4), 64 (2013)

17. Meyer, S.: A survey of research on context-aware homes. In: Proceedings of the
ACSW, pp. 159–168 (2003)

18. Singla, G., Cook, D.J.: Tracking activities in complex settings using smart envi-
ronment technologies. Int. J. Biosci. Psychiatry Technol. (IJBSPT) 1(1), 25 (2009)

19. De Souza, R.M.C.R., De Carvalho, F.A.T.: Clustering of interval data based on
cityblock distances. Pattern Recognit. Lett. 25(3), 353–365 (2004)

https://doi.org/10.1007/978-3-319-46295-0_36
https://doi.org/10.1007/978-3-319-46295-0_36
https://doi.org/10.1007/978-3-319-91536-4
https://doi.org/10.1007/978-3-319-46295-0_1
https://doi.org/10.1007/978-3-540-24646-6_10
https://doi.org/10.1007/978-3-540-24646-6_10
https://doi.org/10.1007/978-3-319-06605-9_19

678 B. Huang et al.

20. Saguna, S., Zaslavsky, A.: Complex activity recognition using context-driven activ-
ity theory and activity signatures. ACM Trans. Comput.-Hum. Interact. (TOCHI)
20(6), 32 (2013)

21. Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1644–1657 (2014)

22. Li, Z.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1099–1108(2010)

23. Pei, J.: Mining sequential patterns by pattern-growth: the prefixspan approach.
IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

24. Huang, F., Smidts, C.: Causal mechanism graph – a new notation for capturing
cause-effect knowledge in software dependability. Reliab. Eng. Syst. Saf. 158, 196–
212 (2017)

25. Neiat, A.G.: Crowdsourced coverage as a service: two-level composition of sensor
cloud services. IEEE Trans. Knowl. Data Eng. 29, 1384–1397 (2017)

CrowdMashup: Recommending
Crowdsourcing Teams for Mashup

Development

Faisal Binzagr and Brahim Medjahed(B)

Department of Computer and Information Science,
University of Michigan - Dearborn, Dearborn, USA

{faisalb,brahim}@umich.edu

Abstract. Mashups involve the collaboration of multiple developers to
build Web applications out of pre-existing APIs. A large body of research
focused on recommending APIs for mashups. However, very few contri-
butions looked at recommending developers. In this paper, we propose
CrowdMashup, a crowdsourcing approach for mashup teams recommen-
dation. We analyze online developer communities and API directories
to infer developers’ interests in APIs through natural language process-
ing. We predict missing interest values using the alternating least square
method for collaborative filtering. We also model interactions (comments
and replies) among developers as a weighted undirected graph and intro-
duce a sociometric to identify socially related developers. We propose an
algorithm, based on the concept of cliques in graph theory, that combines
developers’ skills and sociometric to recommend efficient and balanced
teams. We describe a prototype implementation and conduct extensive
experiments on real-world data and APIs to evaluate our approach.

Keywords: Mashup · Crowdsourcing · Team recommendation
Sociometric · Skills

1 Introduction

The past decade has witnessed an increasing interest in mashup development [4].
For instance, the popular programmableWeb1 API directory currently includes
about 8,000 mashups. Mashups are Web applications that aggregate pre-existing
APIs (or services) to create valuable services with added functionality [27].
Mashup development generally involves several APIs requiring a variety of tech-
nological skills such as REST, SOAP, JSON, XML, and security. This often
calls for the collaboration of multiple developers to reduce the overall mashup
cost (e.g., development time). A large body of research focused on recommending
APIs for mashups [13]. However, very few contributions looked at recommending

1 https://programmableweb.com.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 679–693, 2018.
https://doi.org/10.1007/978-3-030-03596-9_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_49&domain=pdf
https://programmableweb.com
https://doi.org/10.1007/978-3-030-03596-9_49

680 F. Binzagr and B. Medjahed

developers to be part of mashup development teams. With the substantial num-
ber of available APIs and programmers, finding skilled mashup developers is not
straightforward. For instance, programmableWeb lists more than 19,000 APIs.
The StackOverflow2 and GitHub3 developer community platforms report esti-
mated 9 and 27 millions subscribers, respectively. Besides, the software industry
has recently seen a new trend where crowdsourcing companies (e.g., Topcoder4)
sell services to corporate, mid-size, and small-business clients, and pay commu-
nity members (i.e., developers) for their work. These companies also organize
open tournaments and programming challenges in which programmers are orga-
nized in teams to compete against each other. Therefore, it is important to form
balanced teams with skilled developers.

Crowdsourcing is a powerful sourcing model to perform a broad range of hard
tasks by splitting the work between workers [22]. It has been used in software
development to perform vital activities such as implementation, design, coding,
or testing [24]. Selecting appropriate developers should be performed carefully
to improve productivity [20]. In the context of mashups, two factors contribute
to successful developer recommendation. First, mashups involve various APIs
that require a large array of skills. A recent study shows that the interest of
project members toward specific tasks leads to better outcomes [15]. Hence, it
is vital to pick developers that possess the right skills, demonstrate significant
interest in the mashup, and have a good reputation among their peers. Second,
it is necessary to form teams with members that can get along with each other.
Studies have confirmed that strong social relationships among members increase
team performance [10]. Most interactions among mashup and API developers
take place via online communities such as StackOverflow and GitHub. Positive
discussions between developers, through questions and answers, tend to increase
their social ability and productivity.

In this paper, we propose CrowdMashup, a crowdsourcing-based approach for
recommending teams of developers for mashups. We analyze StackOverflow and
programmableWeb to generate teams that best statisfy mashup requirements. To
the best of our knowledge, this is the first work to address recommendation in
mashups from developer’s perspective. The main contributions of the paper are
summarized below:

– We use natural language processing [17] to assign interest scores to develop-
ers in using APIs. As developers may omit to comment on certain APIs, we
predict missing scores using the alternating least square method for collabo-
rative filtering [21]. We combine the computed interest scores and reputation
values of developers in the community to quantify their skills.

– We define a sociometric to assess social relationships among developers in the
community. Sociometry is a quantitative method in psychology for measuring
social relationships [26]. We model interactions (comments and replies) among

2 https://stackoverflow.com.
3 https://github.com.
4 https://topcoder.com.

https://stackoverflow.com
https://github.com
https://topcoder.com

CrowdMashup: Recommending Crowdsourcing Teams 681

developers as a weighted undirected graph. The weight of each edge represents
the number of interactions between developers modeled as nodes.

– We propose an algorithm to generate teams from mashup queries. The query is
a specification of the mashup requirements. We adopt the concept of cliques
from graph theory to identify strongly related developers [5]. A clique is a
subset of vertices from the sociometric graph where every two distinct vertices
are adjacent. We compare the skills of the developers in the clique along
with their sociometric scores to recommend top-t teams. We also describe a
prototype implementation and conduct experiments on real-world data and
APIs to evaluate our algorithm.

The rest of this paper is organized as follows. We propose the CrowdMashup
approach in Sect. 2. We describe the implementation and performance study in
Sect. 3. In Sect. 4, we overview related work. We conclude in Sect. 5.

2 The CrowdMashup Approach

The CrowdMashup architecture (Fig. 1) is composed of two major components:
Analysis of the Developer Community (ADC) and Crowdsourcing Team Gener-
ation (CTG).

Fig. 1. CrowdMashup architecture

ADC runs offline, i.e., independently of any request to create mashup devel-
opment teams. It analyzes the StackOverflow community to calculate and pre-
dict the interest of developers in adopting and using APIs. Nowadays developer
communities become a troubleshooting manual, where many developers share
experiences, issues, and solutions [18]. For instance, StackOverflow has more
than 16 million questions and 24 million answers in 2018. The LinkedIn API uses

682 F. Binzagr and B. Medjahed

StackOverflow as a reference, at their official page, to support programmers in
technical issues. Developer communities also showcase the level of affinity among
developers. Many programmers may end up collaborating in projects as a result
of their interactions in online communities [10].

CTG runs online at the reception of a mashup query from the mashup admin-
istrator. It returns efficient teams that best satisfy the mashup query require-
ments. The mashup administrator is a user or entity looking for teams of devel-
opers to collaborate on a mashup. Topcoder is an example of potential mashup
administrator. It offers software development services to third party clients, con-
tracting individual community programmers to work on specific tasks. It also
holds design competition, thus offering design services to clients.

2.1 Analysis of the Developer Community (ADC)

ADC analyzes StackOverflow to generate three data structures (Fig. 1): inter-
ests table (UI), reputation table (ÛR) and sociometric graph (SG).

User Interests Table (UI) - The initial step before analyzing the developer
community is to prepare the list of APIs used in that community. To that end, we
crawled all APIs from programmableWeb and extracted the name and primary
category of each service using the Scrapy framework5. Since StackOverflow has
about 66 millions comments (questions and answers), we focused on the ones
that are related to APIs. We filtered StackOverflow comments using the API
names retrieved from programmableWeb.

The next step is to analyze developers’ comments and assign scores of inter-
est in using APIs. For that purpose, we applied sentiment analysis to get the
interest score UI(ui) for each user ui. We parsed comments using Stanford NLP6

parser, which utilizes recursive neural networks (tree-structured models) for sen-
timent analysis [17]. For example, the comment “... Google Visualization API
has several ways to do each task so it’s important to know what you have already
done and we could start there...” returns a positive interest value about Google
Visualization API. An example of negative interest about Google Maps API
is: “I simply have no experience with the Google Maps API ...”.

Since certain APIs are not discussed by some developers, we ended-up with
missing interest scores (Fig. 2). To solve this problem, we utilized the Alternating
Least Squares (ALS) collaborative filtering technique [21]. In ALS, developers
and their scores are described by a small set of latent factors used to predict
the missing interest scores for all developers. Accordingly, we completed interest
scores for all developers and APIs as shown in Fig. 2. If an API is listed on
programmableWeb but unknown (i.e., not discussed) on StackOverflow, then
ALS cannot complete the missing interest scores for this API. To deal with this
issue, we average the interest scores of ui for all APIs on StackOverflow that
have the same category as the unknown API. Then, we assign the average score

5 https://scrapy.org/.
6 https://nlp.stanford.edu/.

https://scrapy.org/
https://nlp.stanford.edu/

CrowdMashup: Recommending Crowdsourcing Teams 683

as ui’s interest score for this API. If no API with similar category is commented
by ui, we average ui’s interest scores for all APIs discussed by ui (Fig. 2).

Fig. 2. Interests table

User Reputation Table (ÛR) - StackOverflow has a reputation system which
provides the level of expertise UR(ui) for each user ui. Since the extracted rep-
utation has highly distributed values, we applied the z-score normalization to
write reputation values into a standardized structure. The following formula
shows the final reputation ÛR for ui, where μ and σ represent the mean and
standard deviation of all reputation values, respectively:

ÛR(ui) =
UR(ui) − μ

σ

Sociometric Graph (SG) - Another major aspect in teams formation is the
social ability, or sociometry, among developers [26]. The idea is to make sure
that members of the same team can actually work together. Studies showed that
social relationships among members of the same team have a positive impact on
improving the team productivity [3]. In our approach, we use interactions among
developers via questions and replies in StackOverflow as a mean to estimate
their social relationships. Developers that engage in more conversations with
each other in online communities have more chances to successfully collaborate.

Fig. 3. Sociometric graph

We scanned the history of interactions among developers in StackOverflow
regardless if the questions/replies are related to APIs or not. Then, we modeled
those interactions as an undirected weighted graph, called sociometric graph

684 F. Binzagr and B. Medjahed

(SG). Each node in the graph represents a user (Fig. 3a). An edge (ui, uj) states
an existing interaction (question or reply) between users ui and uj . Developers
may interact at various levels, from few questions/replies to thousands. To cap-
ture this aspect, we label each edge (ui, uj) with a weight We(ui, uj) that gives
the number of interactions between users ui and uj :

We(ui, uj) = # interactions between (ui, uj)

2.2 Mashup Query Specification

Mashup administrators interact with CrowdMashup through mashup queries. A
mashup query Q defines the mashup requirements through a tuple Q = (t,m,A)
where:

– t: is the number of required teams.
– m: is the number of members within each team.
– A: is a list of APIs that compose the mashup.

Each element in the list A is defined as <APIID, APIw>. APIID is an ID
that uniquely identifies the API. APIw is the weight (in the range 0 to 1) of
the API. It represents the level of importance of the corresponding API in the
mashup. For instance, a location-based mashup (e.g., transportation) may rely
on a mapping API; the mapping API should be given a significant weight value
to make sure the most skilled developers are recommended for this API. A small
APIw implies that the API may not be mastered by all teams members; a big
APIw indicates that the API should be mastered by most teams members.

Example 1. Assume we want to build 5 teams of 3 developers for a mashup
that composes GoogleMaps (with ID 1 and weight 0.6), Foursquare (with ID 4
and weight 0.4) and Last.fm (with ID 5 and weight 0.1). The mashup query is
specified by t = 5, m = 3, and A = [<1, 0.6>,<3, 0.4>,<5, 0.1>].

Mashup administrators may not want to limit mashups to specific APIs by
providing the list of API categories instead of APIs. For instance, they may
refer to “Social” as a required category instead of Facebook or Twitter. In this
case, we automatically fetch all APIs that belong to the categories listed by the
administrator from programmableWeb and replace each category by the match-
ing APIs.

Example 2. Assume we want to build 5 teams of 3 developers for a mashup that
composes APIs from the Mapping and Social categories with 0.6 and 0.4 weights,
respectively. Assume that APIs with IDs 1, 30, and 47 belong to Mapping and
APIs with IDs 3, 17, and 22 relate to Social. The query is specified by t = 5, m = 3,
and A = [<1, 0.6>,<30, 0.6>,<47, 0.6>,<3, 0.4>,<17, 0.4>,<22, 0.4>].

CrowdMashup: Recommending Crowdsourcing Teams 685

2.3 Crowdsourcing Team Generation (CTG)

CTG generates teams that best satisfy the mashup query requirements. It uses
as input the sociometric graph SG as well as interests and reputation tables,
UI and ÛR. Before describing the CTG algorithm, we introduce the metrics to
calculate the performance of a team based on SG, UI , and ÛR.

We evaluate the skills of each user (i.e., developer) ui in the community based
on ui’s reputation and interest in each APIj ∈ A specified in the mashup. The
user’s interest in APIj is multiplied by APIjw to take into account the weight
(i.e., importance) assigned by the administrator to each API:

Userskills(ui) = ÛR(ui) ∗
∑

APIj∈A

UI(ui, APIj) ∗ APIjw (1)

Based on the skills of each user ui given in formula (1), we define the skills
of a team T composed of m members as the sum of the skills of all members:

Teamskills(T) =
∑

ui∈T

Userskills(ui) (2)

Using the sociometric graph SG, we also introduce the sociometric score
of T to quantify the level of collaboration between members. The sociometric
score Teamsociometric(T) of T accumulates the weights of all edges that connect
members in T and divide it by the number m of team members:

Teamsociometric(T) =

∑
ui∈T,uj∈T,(ui,uj)∈SG We(ui, uj)

m
(3)

From formulas (1) and (2), we define the overall performance of T by sum-
ming the skills and sociometric of the team:

TeamPerformance(T) = Teamskills(T) + Teamsociometric(T) (4)

The CTG algorithm (Algorithm 1) identifies strongly connected members
in the sociometric graph SG using the concept of cliques in graph theory. A
clique C is a subset of vertices of an undirected graph such that every two dis-
tinct vertices in C are adjacent [5]. We use the Bron Kerbosch algorithm [5]
to return cliques in the AllCliques list (line 3). Another important data struc-
ture is SharedCliques (lines 1 and 16). Each element SC in this list contains
common vertices between cliques as well as the remaining vertices (called poten-
tial vertices) in the cliques. For example, Fig. 3b depicts two adjacent cliques
C1 ={u1, u3, u4} and C2 ={u2, u3, u4}. The common and potential vertices are
defined by SC.common={u3, u4} and SC.potential={u1, u2}, respectively. Due
to space limitation, we omit the algorithm for the GetSharedCliques() function.

CTG uses AllCliques and SharedCliques to recommend the top-t (t is the
number of required teams). Each element in the returned TeamsList is composed
of the team’s members and performance of the team as defined in formula (4).
The algorithm first looks for cliques of size m (i.e., cliques with required number

686 F. Binzagr and B. Medjahed

of members). If more teams still need to be generated (TeamsList.size()<t),
then CTG explores the shared cliques.

Algorithm 1. Crowdsourcing Team Generation (CTG)

Input : ÛR Table, UI Table, Sociometric Graph SG, Mashup Query Q
Output: TeamsList (recommended teams)

1 SharedCliques ← null;
2 TeamsList ← null;
3 AllCliques ← BronKerboschAlgorithm(SG);
4 foreach C ∈ AllCliques do
5 if (C.size() == m) then
6 T = All users from C;
7 Calculate PerformanceTeam(T) of team T;
8 TeamsList.add(T, Performance(T));
9 AllCliques = AllCliques − C;

10 end
11 end
12 if (TeamsList.size() >= t) then
13 TeamsList ← sort(); //By team performance
14 Return Top-t teams from TeamsList;
15 end
16 SharedCliques = GetSharedCliques(AllCliques);
17 foreach SC ∈ SharedCliques do
18 if (SC.common.size() >= m) then
19 T = Top users from SC.common; // By skills or sociometric
20 Calculate PerformanceTeam(T) of team T;
21 TeamsList.add(T, Performance(T));
22 SharedCliques = SharedCliques − SC;
23 end
24 end
25 if (TeamsList.size() >= t) then
26 TeamsList ← sort(); //By team performance
27 Return Top-t teams from TeamsList;
28 end
29 foreach SC ∈ SharedCliques do
30 if (SC.common.size() < m) then
31 T = Users from SC.common + remaining top from SC.potential;

// By skills or sociometric
32 Calculate PerformanceTeam(T) of team T;
33 TeamsList.add(T, Performance(T));
34 SharedCliques = SharedCliques − SC;
35 end
36 end
37 TeamsList ← sort(); //By team performance
38 Return Top-t teams from TeamsList;

CrowdMashup: Recommending Crowdsourcing Teams 687

We identify the following three cases during team recommendation:

Case 1: Cliques have m members (lines 4–15) - CTG first parses cliques with
the exact number of members. If the size of a clique C is m, then all members
of C are used to form a team. We calculate the performance of T , insert T and
its performance to TeamsList, and remove C from AllCliques. If TeamsList
reaches the desired number t of teams (lines 12–15), TeamList is sorted based
on performance and the top-t teams are returned, hence ending the algorithm.
Otherwise, we process shared cliques (Case 2).

Case 2: Shared cliques have al least m members (lines 16–28) - CTG
processes shared cliques that have enough members in their common vertices.
It picks the top-m members from common vertices using one of two selection
options (line 19). (i) CTG by Skills: m members with the highest skills are
selected; and (ii) CTG by sociometric: m members with the highest sociometric
scores are selected. The corresponding teams are inserted into TeamsList as
described in Case 1; the shared cliques used to build the teams are removed from
SharedCliques. If TeamsList reaches the desired number t of teams (lines 25–
28), TeamList is sorted based on performance and the top-t teams are returned,
hence ending the algorithm. Otherwise, we proceed to Case 3.

Case 3: Shared cliques have less than m members (lines 29–38) - CTG
handles the shared cliques that do not have enough members in their common
vertices. It picks the remaining members from the potential vertices in the shared
cliques. The remaining members are selected using CTG by Skills or CTG by
Sociometric as described in Case 2 (line 31). Teams along with their calculated
performance are added to TeamsList and the top-t teams are returned.

3 Implementation and Performance

In this section, we describe the CrowdMashup prototype implementation. Then,
we evaluate the performance of our approach using real-world data and APIs.

3.1 CrowdMashup Prototype

We implemented a CrowdMashup prototype in Java. We used Google BigQuery7

to retrieve comments about APIs from StackOverflow. We collected 8,617 com-
ments related to 583 APIs. We used the Jgrapgt library8 to handle graphs
and identify cliques. We utilized Stanford Natural Language Processing
library to calculate developers’ attitude (interest) toward APIs. We used Apache
Spark’s scalable machine learning (MLlib) library9 to deal with missing
developers’ interest values.
7 https://cloud.google.com/bigquery/public-data/stackoverflow.
8 http://jgrapht.org/.
9 https://spark.apache.org/.

https://cloud.google.com/bigquery/public-data/stackoverflow
http://jgrapht.org/
https://spark.apache.org/

688 F. Binzagr and B. Medjahed

Fig. 4. The CrowdMashup user interface

Figure 4 shows CrowdMashup’s graphical interface. Mashup administrators
specify their queries through the Mashup Query pane (top left). They assign
the number of required teams and members in each team. Administrators enter
either a list of specific APIs or generic API categories along with their weights.
They also pick the algorithm to be used to generate teams: (1) Skills Only:
members are selected based on skills only. (2) Sociometric Only: members are
selected based on sociometric only. (3) CTG-Skills: uses both skills and socio-
metric but gives priority to skills in dealing with shared cliques (lines 19 and
31 in Algorithm 1). (4) CTG-Sociometric: uses both skills and sociometric but
gives priority to sociometric in dealing with shared cliques (lines 19 and 31 in
Algorithm 1). The generated teams are shown in the Recommended Teams pane
(bottom left). The pane shows each recommended team as a list of developer
IDs. It also displays the calculated performance of each team and orders the
generated teams based on their performance. The Team Analysis pane (right)
displays the two metrics for team recommendation: sociometric sub-graph and
team performances illustrated in a bar graph to visualize the performance of
different teams. The time to generate teams is also shown in this pane.

3.2 Experiments

The aim of the experiments is to assess the ability of CTG to select teams with
the best performance. We ran our experiments on a 64-bit Windows 10 environ-
ment, in a machine equipped with an Intel i7-7700HQ and 16 GB RAM. We mea-
sured the performance of the generated teams using three non-CTG algorithms:
Random (members are randomly selected), Skills Only, Sociometric Only; and
two CTG algorithms: CTG-Skills and CTG-Sociometric. We ran all experiments
on real-world data and APIs from StackOverflow and programmableWeb.

CrowdMashup: Recommending Crowdsourcing Teams 689

Fig. 5. Single query team performance for non-CTG (random, skills only, sociometric
only) and CTG (CTG-skills, CTG-sociometric) Algorithms

Figure 5 compares the five algorithms using the same mashup query to gen-
erate four teams with seven members per team. First, we compare CTG vs.
non-CTG algorithm in terms of team performance. CTG algorithms perform bet-
ter than non-CTG algorithms due to combining sociometric and skills. Besides,
CTG-Skills generates better teams than CTG-Sociometric. This is because ver-
tices that are outside cliques are unlikely to return high sociometric values.
Then, we compare the distribution of the performance of the four teams rec-
ommended by each algorithm. Figure 5 shows that team performance decreases
steadily from the first to the last team in both CTG algorithms. Hence, CTG
shows more balanced teams than non-CTG algorithms. For instance, there is
significant difference (more than double) between the performance of the first
and second teams in the Sociometric-Only algorithm.

Fig. 6. Multiple queries team performance for different team sizes

We also conduct experiments to explore how forming teams with various
sizes is handled by CTG. We randomly generated queries with sizes 5, 10, 15,

690 F. Binzagr and B. Medjahed

20, 25, and 30. We had 5 queries for each time size (for total of 30). As shown
in Fig. 6, CTG algorithms always show better team performances than the non-
CTG algorithms regardless of the team size. This is because non-CTG algorithms
ignore sociometric, skills, or both (in the case of random). Overall, generating
teams with bigger sizes (more than 10 members) leads to lower performance,
as it is harder to find a large number of developers with the right skills and
social relationships. Studies have shown that 3–7 developer teams are key to
successful software projects (3–5 person teams would be the best)10. Hence, this
makes CTG a suitable technique for team recommendation. For large team sizes
(e.g., 25), CTG-Skills shows better team performance than CTG-Sociometric as
finding cliques or shared cliques with larger sizes becomes challenging. For teams
of size 2–5, CTG-Skills and CTG-Sociometric are comparable, and they largely
outperform the three other algorithms: Random, Skills Only, and Sociometric
Only. In teams of size 6–10, CTG-Sociometric shows better team than CTG-
Skills as finding cliques or shared cliques with size 10 is still possible and improves
the overall team performance.

4 Related Work

The growth and popularity of crowdsourcing has led to significant research on
forming teams to facilitate collaborative software development [7]. Part of this
research has focused on team structure, while other contributions focused on the
complexity of the algorithm and economic factors for team building. [9] shows
that network structure between members has a vital effect on team formation. It
uses four different network structures to model team formation and compares the
performance of each structure. [6] takes advantage of social network information
and uses hierarchical structures (e.g., using “report to”) between team members.
[16] defines a self-organized team formation technique by allowing members to
rate each other and use other information such as demographics (e.g., age, gen-
der). [8] proposes a framework that recommends teams based on the skills and
connection among members. It uses co-authorship in DBLP and clustering algo-
rithms to find expert teams (sub-graph). [22] employs a dynamic programming
technique in crowdsourcing based on the prior familiarity of members to gener-
ate target teams. It considers the availability (response time) of the members to
find most familiar alternative members. [26] defines heuristic algorithms based
on notions such as weak and strong ties in social networks. It utilizes two metrics
to find social connection from an undirected weighted graph.

Several techniques dealt with the issue of improving the efficiency of the team
formation process. [28] proposes a genetic algorithm with the goal of finding the
best groups that can meet the defined tasks based on members availability, skills,
and price. [11] introduces an approach for forming teams with specific skills from
a vast professional community using network communication costs to optimize
team formation. It calculates communication costs by using minimum spanning
tree and the largest shortest path from the graph. [2] describes a greedy approach
10 http://www.qsm.com/process improvement 01.html.

http://www.qsm.com/process_improvement_01.html

CrowdMashup: Recommending Crowdsourcing Teams 691

for better performance considering team size and workload such as the number
of tasks allocated to each member.

[20] and [14] propose a team formation technique based on pricing to find
cost effective teams. [12] studies task coordination cost in crowdsourcing teams.
It aims to facilitate self-coordination and communication among teams by dis-
tributing and synchronizing the project tasks. [10] introduces a technique for
forming multiple teams to maximize the global efficiency of the teams considering
skills, availability, sociometric (relationship), and allowed time (part-full time)
members. [25] proposes a negotiation-based team formation technique where the
deal to join the team is used as a formation factor. [15] investigates how person-
ality affects team performance by applying the DISC (dominance, inducement,
submission, compliance) personality test. [23] discusses team elasticity in soft-
ware development such as the skills, experiences, response time and reliability
of the workers. [1] proposes a data leak-aware system in crowdsourcing team by
applying clustering algorithms that detect social interactions between members
to avoid data leakage. [19] conducts a statistical analysis to investigate how to
extract influence factors from successful teams.

CrowdMashup differs from existing approaches in multiples ways. First, to
the best of our knowledge, this paper is the first to look at team recommenda-
tion for mashups. Second, we define a two-level approach to analyze developer
communities. At the individual developer’s level, we infer developer’s interests
in APIs through natural language processing and collaborative filtering. At the
community level, we consider social relationships among developers as an impor-
tant factor to recommend team members. We model interactions among devel-
opers as a weighted undirected graph and find cliques to identify strongly related
developers. Note that our approach is different from the one introduced in [26]
where members of the same team are selected from different cliques to ensure the
impartiality of the execution result of a task. We use cliques to recommend teams
composed of (socially) strongly connected members to improve productivity.

5 Conclusion

We propose the CrowdMashup approach to recommend teams for mashup devel-
opment. The first CrowdMashup phase analyzes the StackOverflow developer
community to infer developers’ skills in using APIs. It also models the ability
of developers to collaborate with each other via a sociometric graph. The sec-
ond phase recommends crowdsourcing teams that best satisfy the requirements
of a mashup query. We introduce a team recommendation algorithm that com-
bines developers’ skills and sociometric. We provide a prototype implementation
and conduct experiments on real-world data and APIs from StackOverflow and
programmableWeb to evaluate our approach. Experiments show promising results
in generating efficient and balanced teams for mashup development.

692 F. Binzagr and B. Medjahed

References

1. Amor, I.B., Benbernou, S., Ouziri, M., Malik, Z., Medjahed, B.: Discovering best
teams for data leak-aware crowdsourcing in social networks. ACM Trans. Web
(TWEB) 10(1), 2 (2016)

2. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Power
in unity: forming teams in large-scale community systems. In: Proceedings of the
19th ACM International Conference on Information and Knowledge Management,
pp. 599–608 (2010)

3. Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online
team formation in social networks. In: Proceedings of the 21st International Con-
ference on World Wide Web, pp. 839–848 (2012)

4. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017)

5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.
Commun. ACM 16(9), 575–577 (1973)

6. Ding, C., Xia, F., Gopalakrishnan, G., Qian, W., Zhou, A.: Teamgen: an interactive
team formation system based on professional social network. In: Proceedings of the
26th International Conference on World Wide Web Companion, pp. 195–199 (2017)

7. Doan, A.H., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54(4), 86–96 (2011)

8. Farhadi, F., Hoseini, E., Hashemi, S., Hamzeh, A.: Teamfinder: a co-clustering
based framework for finding an effective team of experts in social networks. In: 12th
IEEE International Conference on Data Mining Workshops, ICDM Workshops,
Brussels, Belgium, 10 December, pp. 107–114 (2012)

9. Gaston, M., Simmons, J., DesJardins, M.: Adapting network structure for efficient
team formation. In: Proceedings of the AAAI 2004 Fall Symposium On Artificial
Multi-agent Learning (2004)

10. Gutiérrez, J.H., Astudillo, C.A., Ballesteros-Pérez, P., Mora-Melià, D., Candia-
Véjar, A.: The multiple team formation problem using sociometry. Comput. Oper.
Res. 75, 150–162 (2016)

11. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 28 June – 1 July, pp. 467–476 (2009)

12. Lee, S.W., Chen, Y., Klugman, N., Gouravajhala, S.R., Chen, A., Lasecki, W.S.:
Exploring coordination models for ad hoc programming teams. In: Proceedings of
the 2017 CHI Conference Extended Abstracts on Human Factors in Computing
Systems, pp. 2738–2745 (2017)

13. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), 1–41 (2016)

14. Liu, Q., Luo, T., Tang, R., Bressan, S.: An efficient and truthful pricing mecha-
nism for team formation in crowdsourcing markets. In: 2015 IEEE International
Conference on Communications (ICC), pp. 567–572 (2015)

15. Lykourentzou, I., Antoniou, A., Naudet, Y., Dow, S.P.: Personality matters: bal-
ancing for personality types leads to better outcomes for crowd teams. In: Pro-
ceedings of the 19th ACM Conference on Computer-Supported Cooperative Work
and Social Computing, pp. 260–273 (2016)

16. Lykourentzou, I., Wang, S., Kraut, R.E., Dow, S.P.: Team dating: a self-organized
team formation strategy for collaborative crowdsourcing. In: Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Sys-
tems, pp. 1243–1249 (2016)

CrowdMashup: Recommending Crowdsourcing Teams 693

17. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The
stanford coreNLP natural language processing toolkit. In: Proceedings of 52nd
Annual Meeting of the Association for Computational Linguistics: System Demon-
strations, pp. 55–60 (2014)

18. Nasehi, S.M., Sillito, J., Maurer, F., Burns, C.: What makes a good code example?
A study of programming q&a in stackoverflow. In: 2012 28th IEEE International
Conference on Software Maintenance (ICSM), pp. 25–34 (2012)

19. Pobiedina, N., Neidhardt, J., Calatrava Moreno, M.D.C., Werthner, H.: Ranking
factors of team success. In: Proceedings of the 22nd International Conference on
World Wide Web, pp. 1185–1194 (2013)

20. Rokicki, M., Zerr, S., Siersdorfer, S.: Groupsourcing: team competition designs
for crowdsourcing. In: Proceedings of the 24th International Conference on World
Wide Web, pp. 906–915 (2015)

21. Ryza, S., Laserson, U., Owen, S., Wills, J.: Advanced Analytics with Spark: Pat-
terns for Learning from Data at Scale (2017)

22. Salehi, N., McCabe, A., Valentine, M., Bernstein, M.: Huddler: convening sta-
ble and familiar crowd teams despite unpredictable availability. arXiv preprint
arXiv:1610.08216 (2016)

23. Saremi, R.L., Yang, Y., Ruhe, G., Messinger, D.: Leveraging crowdsourcing for
team elasticity: an empirical evaluation at topcoder. In: 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Prac-
tice Track (ICSE-SEIP), pp. 103–112 (2017)

24. Stol, K.-J., Fitzgerald, B.: Researching crowdsourcing software development: per-
spectives and concerns. In: Proceedings of the 1st International Workshop on
CrowdSourcing in Software Engineering, pp. 7–10 (2014)

25. Wang, W., Jiang, J., An, B., Jiang, Y., Chen, B.: Toward efficient team formation
for crowdsourcing in noncooperative social networks. IEEE Trans. Cybern. 47(12),
4208–4222 (2017)

26. Yin, X., et al.: Social connection aware team formation for participatory tasks.
IEEE Access 6, 20309–20319 (2018)

27. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Comput. 12(5), 44–52 (2008)

28. Yue, T., Ali, S., Wang, S.: An evolutionary and automated virtual team making
approach for crowdsourcing platforms. In: Li, W., Huhns, M.N., Tsai, W.-T., Wu,
W. (eds.) Crowdsourcing. PI, pp. 113–130. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-47011-4 7

http://arxiv.org/abs/1610.08216
https://doi.org/10.1007/978-3-662-47011-4_7
https://doi.org/10.1007/978-3-662-47011-4_7

A Variation Aware Composition Model
for Dynamic Web Service Environments

Soumi Chattopadhyay1 and Ansuman Banerjee2(B)

1 Indian Institute of Information Technology, Guwahati, Guwahati, India
2 Indian Statistical Institute, Kolkata, Kolkata, India

ansuman@isical.ac.in

Abstract. Contemporary approaches for automated web service com-
position mostly deal with static web services. The underlying assumption
here is that the web services participating in resolving a query are static
and thereby, their functional and non-functional parameters change very
infrequently or do not change at all. However, in reality, this assump-
tion does not hold. New services are added to the repository, existing
unpopular services are removed from the repository, service interfaces
change due to changes in the specification. Classical service composition
approaches therefore fall short to handle the dynamic behavior of a web
service during composition. In this paper, we present a stochastic model
of the web service composition problem to capture the dynamic behavior
of web services from the functional perspective. We present experimental
results on the ICEBE-2005 benchmarks to show the effectiveness of our
proposed methods.

1 Introduction

The quest for efficient methods for automated web service composition [15,21,
22,27] that can meet business needs and deliver guaranteed performance has
drawn a significant research attention since long. A significant body of early
work in this direction considered composition of static service repositories and
proposed a number of composition solutions [14,16,25]. The underlying theory
assumes that the functional parameters of a web service remain unchanged [9,19]
or change rarely. However, in reality, this is often not a valid assumption. Service
repositories have grown to exhibit significant dynamic characteristics today. A
large number of new services are added to the service repository, while unpopular
services are removed from the service repository. Due to continuous change in
user requirements, the interface of a web service is often modified and thereby, the
functional and non-functional parameters of a service may change. The dynamic
characteristics over non-functional parameters have been studied in [3,23,26].
The authors in [12] conducted an 11 week-long survey of Web services on the
Internet, collected from seekda.com, webservicelist.com, and xmethods.net to
show the dynamic nature of the web services. It is evident from their experiments
that the number of web services and their inputs, outputs fluctuate considerably.

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 694–713, 2018.
https://doi.org/10.1007/978-3-030-03596-9_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_50&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_50

A Variation Aware Composition Model 695

Classical web service composition approaches that deal with static web services,
may not fit well in this scenario and in most of the cases, these methods may
end up producing a solution that may not be available at the time of execution.
This is the main motivation behind our work.

In [10,13], the authors proposed dynamic service binding during composition.
Uncertainty events in service composition are dealt with in [2,18]. In [12,17],
the authors considered dynamic service composition and proposed an algorithm
based on a variation of the Dijkstra’s shortest path [7] algorithm. The authors
in [26] identified a set of backup services, and using these backup services, the
authors tried to improve the reliability of the composition solution. In this work,
however, authors did not consider the dynamism of the functional parameters
of a service (except, one characteristics, i.e., a service may be unavailable). This
is the main focus in our paper. In [11], an adaptation approach for web service
composition has been proposed. This paper measured the changed information
values, which is potentially introduced when a service is updated in a business
process and demonstrated how this adaptation takes place for different workflow
patterns. However, most of the above proposals are able to handle the situation
when the service workflow (a specific order of execution) is known. In reality,
some times a query is specified in terms of input and output parameters. In such
cases, the workflow is not known beforehand and therefore, these methods fail
to handle it.

In this work, we propose automated web service composition approaches that
can capture the dynamic behavior of a service from the functional perspective
in the situation when the workflow is unknown. To make composition more
realistic in dynamic environments, we assign a probability value with each service
and its functional parameters and demonstrate how composition can be done in
this situation. The inherent scalability limitation of optimization formulations
renders them infeasible for large problem dimensions in real time. Therefore, in
our final proposal, we propose a heuristic method that can generate a solution in
a reasonable time limit. In summary, this paper has the following contributions:

– We model the dynamic behavior of a service.
– We propose an optimal and a heuristic approaches to handle this modeling.
– We perform an extensive experiment of our proposed methods on syntheti-

cally generated datasets and benchmark datasets to show the effectiveness of
our proposal.

2 Background and Problem Formulation

A web service is a software component that takes a set of inputs, performs a
specific task and produces a set of outputs. In classical web service composition,
we are given:

– A set of web services S = {S1,S2, . . . ,Sn}.
– For each Si ∈ S, a set of inputs S(ip)

i and outputs S(op)
i .

696 S. Chattopadhyay and A. Banerjee

– A query Q, expressed in terms of a set of provided inputs Q(ip) and a set of
desired outputs Q(op).

The objective of the classical web service composition problem is to serve a
query by providing a solution, in terms of a set of services with a specific exe-
cution order, so that the functional dependencies [4] are preserved. However,
the dynamic characteristics of the services, as discussed in Sect. 1, are mostly
missing in the classical setting. In this paper, we augment the above composition
problem with the following features to incorporate a dynamic setting.

– Feature-1: A service in the service repository may or may not be available
for execution, when the composition is done at query time.

– Feature-2: The interface of a service may change, and thereby, the functional
parameters of a service (i.e., input-output parameters) may change at query
time.

The above features capture the dynamic aspects in functional behavior of a
service. In other words, these allow us to capture the possible differences in
functional parameters that may occur at query time, with respect to the original
service description provided in the repository. We begin by describing the details
of the model for dynamics.

3 Modeling Architecture

We now present the modeling of dynamic behavior of functional parameters of
a service.

3.1 Modeling of Functional Characteristics

In order to model the dynamic characteristics of the functional behavior of a
service, we assign a probability value with each service and its functional param-
eters, as shown below.

– Each service Si ∈ S is available in the repository at query time with proba-
bility pi, i.e.,

P (Si is available) = pi (1)

– An output ioj ∈ S(op)
i is produced by Si at query time with probability βi,j ,

i.e.,
P (ioj is produced by Si | Si is executed) = βi,j (2)

It may be noted that Eq. 1 models Event-1, i.e., the probability of a service being
available in the repository. Equation 2 models Event-2, which is a conditional
probability that captures the probability of producing an output ioj by Si, given
that Si is executed (denoted by the classical|operator) [20].

As already discussed earlier, once a query comes into a system, a dependency
graph [4] or planning graph [5] is constructed based on the input-output depen-
dency relationship. However, the conventional dependency graph or planning

A Variation Aware Composition Model 697

graph does not capture the dynamic characteristics of the services. Therefore,
instead of constructing the dependency graph or planning graph, we propose to
build a dependency network. The dependency network, which is also constructed
based on service input-output dependency, is a variant of the classical depen-
dency graph and also a variant of the planning graph. In the next subsection,
we demonstrate the modeling of the dynamic behavior through our proposed
dependency network.

3.2 The Dependency Network for Service Composition

Our proposed dependency network G = (VS ∪ Vio, E) is a variant of the classical
AND-OR graph [8] consisting of two types of nodes: AND nodes (VS) correspond-
ing to the services and OR nodes (Vio) corresponding to the inputs/outputs of
services. Since a node is associated with either a service or an input/output, the
node is required to be activated in the network. Initially, the nodes correspond-
ing to the query inputs are activated in the dependency network. Once a node
is activated, its corresponding output links are available in the network. As the
network is traversed, more nodes are activated depending on the availability of
the links. Depending on the activation criteria, we now formally define AND and
OR nodes.

Definition 1 [OR Node]: A node ui ∈ Vio is called an OR node, if it is acti-
vated on availability of one of its input links. �

Definition 2 [AND Node]: A node vi ∈ VS is called an AND node, if the
node is activated on availability of all its input links. �

Throughout this paper, we represent an AND node using vi and OR node using
ui. We now discuss the properties of G.

– G is a layered network.
– Each layer of G consists of either a set of OR nodes or a set of AND nodes.
– The OR layer (i.e., the layer consisting of only OR nodes) and the AND layer

(i.e., the layer consisting of only AND nodes) alternate in G.
– No links exist between nodes in the same layer. Links are available only

between AND layer to OR layer/OR layer to AND layer.

To capture the dynamic characteristics of services, the dependency network has
some additional features, as below.

– A probability value is assigned to each node and link of the dependency
network.

– Each AND node is activated with probability pi on availability of all its input
links.

– Once an AND node vi is activated, an output link (vi, uj) is available with
probability βi,j , where uj is an OR node.

698 S. Chattopadhyay and A. Banerjee

Example 1. Consider the service repository shown in Table 1. The first column of
Table 1 shows the service name. Columns 2 and 3 represent the set of inputs and
the outputs of the service. Column 4 represents the probability of generating
an output ioj by a service Si given that Si is executed (as shown in Eq. 2).
Finally, Column 5 represents the probability of availability of the service in the
repository (as shown in Eq. 1).

Table 1. Definition of services

Service Inputs Outputs Probability of
output production

Available
Probability

S1 io1 io4 β1,4 p1

io5 β1,5

S2 io2 io6 β2,6 p2

S3 io3 io7 β3,7 p3

S4 io4 io8 β4,8 p4

io9 β4,9

S5 io5, io6, io7 io9 β5,9 p5

io10 β5,10

io11 β5,11

S6 io8 io12 β6,12 p6

S7 io9 io13 β7,13 p7

S8 io10 io12 β8,12 p8

S9 io11 io13 β9,13 p9

Fig. 1. Dependency Network corresponding to Q

Consider a query Q with inputs {io1, io2, io3} and outputs {io12, io13}. The
dependency network G constructed based on the query is shown in Fig. 1. Each
AND node (as represented by a circle in the figure) from VS = {v1, v2, . . . , v9}
represents a service, whereas, each OR node (as represented by a square box in

A Variation Aware Composition Model 699

the figure) from Vio = {u1, u2, . . . , u13} represents an input/output. Nodes in the
first OR layer do not have any input link and thereby, these nodes are activated
by default. It may be noted that each AND node is annotated with a probability
value, representing the probability of the service corresponding to the AND node
being available in the service repository. Further, each link from an AND node vi
to an OR node uj is also annotated with a probability value βi,j , that represents
the probability that the service Si corresponding to vi generates the output ioj
corresponding to uj with probability βi,j , given that Si is activated or executed.
In order to make the dependency network uniform, we annotate each OR node
and each link from an OR node to an AND node with probability value 1. It may
be noted, unlike a service, an input/output is not controlled externally by the
service provider. Therefore, the availability of an input/output is a certain event,
though its activation depends on the query inputs or a service that produces it
as its output. Hence, assigning the probability value 1 to each OR node and each
link from an OR node to an AND node do not have any impact on constructing
the solution. �

We now discuss some properties of the dependency network.

– Each AND node vi corresponds to a service Si. A probability pi (i.e.,
P (Si is available)) is assigned to vi, denoting vi is available with probabil-
ity pi. Av(vi) denotes that the service corresponding to vi is available.

P (Av(vi)) = pi (3)

– Each OR node ui corresponds to an input / output. A probability 1 is assigned
to ui. Since a probability value is assigned to each AND node, to maintain
uniformity, we assign a probability 1 to each OR node.

∀ui ∈ Vio, P (Av(ui)) = 1 (4)

– If an AND node vi is activated, this implies the corresponding service Si is
also activated. Si produces an output ioj with probability βi,j . Consider uj be
the corresponding OR node of ioj . Hence, βi,j is assigned as the probability
of having a link (vi, uj) available in G, given that vi is activated.

P (Av(vi, uj) | Ac(vi)) = βi,j (5)

Ac(vi) denotes vi is activated.
– To maintain uniformity, we assign a probability 1 to each link from an OR

node to an AND node in G.

∀(ui, vj) ∈ E,P (Av(ui, vj) | Ac(ui)) = 1 (6)

– A link in G is activated, if the source node of the link is activated and the
source node generates the link.

P (Ac(ui, vj)) = P (Ac(ui) ∩ Av(ui, vj))
= P (Ac(ui)).P (Av(ui, vj)|Ac(ui))

(7)

700 S. Chattopadhyay and A. Banerjee

P (Ac(vi, uj)) = P (Ac(vi) ∩ Av(vi, uj))
= P (Ac(vi)).P (Av(vi, uj)|Ac(vi))

(8)

This follows from the definition of conditional probability P (A|B) = P (A∩B)
P (B) ,

where ∩ denotes the intersection operator.
– An AND node vi is activated, if all its input links are activated and vi is

available.
P (Ac(vi)) = P (

⋂

uj∈Vio

&(uj ,vi)∈E

Ac(uj , vi)) . P (Av(vi)) (9)

– An OR node ui is activated, if any of its input links is activated and ui is
available, represented as a union over the corresponding inputs.

P (Ac(ui)) = P (
⋃

vj∈VS

&(vj ,ui)∈E

Ac(vj , ui)) . P (Av(ui)) (10)

where
⋃

denotes the union operator.

3.3 Dependency Network Construction

We now present the details of the procedure of dependency network construction.
We start with the query inputs and identify the set of services that can be directly
or eventually (i.e., with the outputs of the services that are directly or eventually
activated by the query inputs) activated by the query inputs. We construct an
AND node corresponding to each service and an OR node corresponding to each
input/output. The network links are constructed depending on the set of inputs
and outputs of a service.

Once the network is constructed, we add two dummy nodes vs and ve to
the network to represent the start and the end nodes of the network. vs does
not have any input link, however, a set of links is created from vs to the nodes
corresponding to the query inputs. Similarly, ve does not have any output link,
hence a set of links is created from the nodes corresponding to the query outputs
to ve. While constructing the dependency network, we start with the query
inputs. Therefore, each node is connected to vs through some path. However,
it is not necessary that each path of the network starting from vs ends at ve.
Therefore, we traverse the dependency network backward and identify the set of
nodes belonging to the paths from ve to vs and finally, we remove the remaining
set of nodes, which do not belong to any path from vs to ve, since these nodes do
not take any part in resolving the query. It may be noted that vs in the network
is available and activated with probability 1, whereas, ve has to be available with
probability 1 for the query to be fulfilled.

P (Av(vs)) = P (Ac(vs)) = 1;P (Av(ve)) = 1 (11)

It may also be noted further that if ve is activated with probability pe, this
implies we obtain the query outputs with probability pe.

A Variation Aware Composition Model 701

Layering the Dependency Network. Once the dependency network is con-
structed, the network is divided into multiple layers. This step is required for
constructing a solution to a query. A node vi ∈ VS in G belongs to a layer L, if
the following condition is satisfied: for all uj ∈ Vio, such that (uj , vi) is a link in
G, uj belongs to a layer L′, where L′ < L. Similarly, a node ui ∈ Vio in G belongs
to a layer L, if for all vj ∈ VS , such that (vj , ui) is a link in G, vj belongs to a
layer L′, where L′ < L. The first layer of the network contains only vs. A layer
of the network is mathematically defined as:

VL =

⎧
⎪⎨

⎪⎩

{vs}, L = 0
{ui ∈ Vio|∀vj ∈ VS , (vj , ui) ∈ E, vj ∈ VL′ , L′ < L}, L is odd
{vi ∈ VS |∀uj ∈ Vio, (uj , vi) ∈ E, uj ∈ VL′ , L′ < L}, L is even

(12)

In order to ensure that the input-output edge relationship does not span across
multiple layers, we add some dummy nodes in the network. In other words, if a
link does not connect two nodes between two consecutive layers, we add a set of
dummy nodes in the network. Consider a link (ui, vj) ∈ E, such that ui belongs
to a layer L and vj belongs to a layer L′ and (L′ − L) > 1. In this case, we do
the following:

– ∀Lk, such that L < Lk < L′, we add a dummy node wLk
in layer Lk. If Lk is

even, wLk
is an OR node. Otherwise, wLk

is an AND node.
– We add the following set of links in the network: {(ui, w(L+1)), (w(L+1),

w(L+2)), . . . , (w(L′−1), vj)}.
– ∀wLk

∈ {w(L+1), w(L+2), . . . , w(L′−1)}, we assign P (Av(wLk
)) = 1. This

essentially means, the dummy nodes are always available with probability 1.
This is required to ensure that the probability of generating a solution from
the dependency network is not affected due to the insertion of the dummy
nodes.

– ∀(x, y) ∈ {(ui, w(L+1)), (w(L+1), w(L+2)), . . . , (w(L′−1), vj)}, we assign
P (Av((x, y))|Ac(x)) = 1. This condition implies, once a dummy node is acti-
vated, it generates all its outputs with probability 1.

4 Dynamic Service Composition

It may be noted that the dependency network of a query contains all possi-
ble solutions to the query. The probability of generating a solution to a query
from the dependency network is maximized, if the entire dependency network is
returned as a solution to the query. However, in this case, the solution becomes
inefficient in terms of its cost and quality, since the solution contains a set of
redundant services (i.e., services without which the solution construction is pos-
sible). Therefore, here our objective is to minimize the number of services. In
addition to the classical web service composition problem, we have the following
constraint: the desired solution has to be obtained with a probability greater
than or equal to αsolution, (0 ≤ αsolution ≤ 1), where αsolution is provided by the
user.

702 S. Chattopadhyay and A. Banerjee

5 Solution Generation

We now discuss the procedure for generating a solution to a query from the
dependency network. It may be noted that each solution to a query is a subnet-
work of the dependency network. However, the converse is not true, i.e., each
subnetwork of the dependency network is not a solution to the query. This is
mainly because of the following reason. Each AND node of the dependency net-
work is associated with a service and a service is activated only when all its
inputs are available. Therefore, an AND node requires all its input links to be
available. However, each OR node is associated with an input/output, which is
available if a service produces it or it is a part of the query inputs. Therefore,
only one link is sufficient to activate an OR node. Hence, a solution subnetwork
requires (a) each AND node, belonging to it, to have the same number of incom-
ing links as in the dependency network and (b) each OR node, belonging to it,
to have at least one incoming link. Therefore, for ease of analysis, to find the
optimal solution satisfying all the constraints, we transform the dependency net-
work to a hyper dependency network, where each path of the hyper dependency
network provides a solution to the query. We now define a few terms related to
the hyper dependency network.

Definition 3 [Hyper Node]: A node containing multiple homogeneous nodes
(i.e., either AND nodes or OR nodes) of a dependency network is called a hyper
node. �

A hyper node consisting of multiple OR nodes of a dependency network is an
OR hyper node. Similarly, a hyper node consisting of multiple AND nodes of a
dependency network is an AND hyper node.

Definition 4 [Hyper Edge]: An edge containing multiple edges of a depen-
dency network is called a hyper edge. �

Definition 5 [Hyper Dependency Network HG = (HVS ∪ HVio,HE)]: A
dependency network consisting of hyper nodes and hyper edges is called a hyper
dependency network. �

We now present the construction of the hyper dependency network HG = (HVS∪
HVio,HE) from a dependency network G. We start with ve of G. We then identify
the set of nodes that are responsible for activating ve and construct a hyper node
consisting of this set. Once we have an OR hyper node hu ∈ HVio, we construct
all possible combinations of AND nodes that are responsible for activating each
OR node corresponding to hu and for each combination, we construct an AND
hyper node. In the process of constructing an AND hyper node hv, we keep track
of all the edges that have been considered during this construction and create a
hyper edge (hv, hu) consisting of the set of edges.

Example 2. Consider the dependency network G as shown in Fig. 2(a).
Figure 2(b) shows the hyper dependency network HG corresponding to G. Con-
sider an OR hyper node hu9 consisting of u12 and u13. The set of edges that

A Variation Aware Composition Model 703

can activate u12 is {(v6, u12), (v8, u12)}, while the set of edges that can acti-
vate u13 is {(v7, u13), (v9, u13)}. Therefore, four combinations are possible to
activate hu9, i.e., {(v6, u12), (v7, u13)}, {(v6, u12), (v9, u13)}, {(v8, u12), (v7, u13)}
and {(v8, u12) , (v9, u13)}. Considering these combinations, we have four AND
hyper nodes hv6 : {v6, v7}, hv7 : {v6, v9}, hv8 : {v8, v7} and hv9 : {v8, v9}
and four hyper edges he21 : {(v6, u12), (v7, u13)}, he22 : {(v6, u12), (v9, u13)},
he23 : {(v8, u12), (v7, u13)} and he24 : {(v8, u12), (v9, u13)}. �

Once we have an AND hyper node hv ∈ HVS , we construct the set of OR nodes
that can activate each AND node corresponding to hv and construct an OR
hyper node hu consisting of this set. We then construct an hyper edge (hu, hv)
in a similar manner as discussed above.

Example 3. Consider an AND hyper node hv6 consisting of v6 and v7. The set of
edges that can activate v6 is {(u8, v6)}, while the set of edges that can activate
v7 is {(u9, v7)}. Therefore, the hyper dependency network contains an OR hyper
node hu5 : {u8, u9} and a hyper edge he17 : {(u8, v6), (u9, v7)}. �

Note that an AND hyper node has always inDegree (i.e., the number of incoming
links) 1, an OR hyper node may have inDegree more than 1. We now define two
more terms.

Definition 6 [Solution Dependency Network (SDN)]: A subnetwork SDN
G′ = (V ′

S ∪ V ′
io, E

′) of the dependency network G = (VS ∪ Vio, E) is a connected
network, such that the following conditions hold:

– V ′
S ⊆ VS, V ′

io ⊆ Vio, E′ ⊆ E and vs, ve ∈ V ′
S.

– Each node and link in G′ belongs to at least one path from vs to ve in G′.
– ∀ui ∈ V ′

io, 1 ≤ inDegree(G′, ui) ≤ inDegree(G, ui).
– ∀vi ∈ V ′

S, inDegree(G′, vi) = inDegree(G, vi).
– The probability assignments for each node and link in G′ are same as in G.
where inDegree(G, vi) denotes the inDegree [7] of vi in G. �

It may be noted that the SDN is a subnetwork of the dependency network.
Therefore, while the dependency network constructed based on a query consists
of all solutions to the query, the SDN of the dependency network consists of only
a subset of solutions. We now define the notion of a unique solution dependency
network representing a unique solution to a query, where a unique solution refers
to a solution, in which each service is dependent only on one service for a specific
input.

Definition 7 [Unique Solution Dependency Network (USDN)]: An
USDN G′ = (V ′

S ∪ V ′
io, E

′) of a dependency network G = (VS ∪ Vio, E) is a
SDN of G, such that, ∀ui ∈ V ′

io, inDegree(G′, ui) = 1. �

It may be noted that each path of the hyper dependency network is an USDN.

704 S. Chattopadhyay and A. Banerjee

Fig. 2. (a) Dependency network (b) Hyper dependency network (c) An USDN (Color
figure online)

Example 4. Figure 2(c) shows an USDN corresponding to the dependency net-
work shown in Fig. 2(a), which is generated from a path of the hyper dependency
network as shown in Fig. 2(b). In the figure, the path is shown by a red dashed
line. �

It may be noted that being a SDN, an USDN constitutes a solution to a
query. We now prove the following lemma.

Lemma 1. An USDN contains a single solution to a query. �

Proof. In order to prove the above lemma, it is sufficient to prove that if a
node is removed from an USDN, no solution is produced from the USDN. We
prove this by contradiction. We first assume that a solution can be produced by
removing a node from the USDN. We first consider the case where a solution can
be produced by removing an OR node ui ∈ V ′

io from the USDN. Since ui belongs
to at least one path from vs to ve, thereby, after removal of ui, the path from ui

to ve becomes invalid. We now consider the OR node uj ∈ V ′
io belonging to the

A Variation Aware Composition Model 705

path from ui to ve, such that (uj , ve) ∈ E′. Being part of the USDN, uj has a
single input and thereby, uj becomes inactivated, as the entire path from ui to
ve becomes invalid. Therefore, the link (uj , ve) also becomes inactivated. Hence,
ve becomes inactivated. As a result, no solution to the query is produced, which
contradicts our assumption. Using a similar argument, it can be proved that no
solution can be produced by removing an AND node from the USDN.

It is evident from the above lemma that a solution to a query consists of at least
one USDN. Though a single USDN is enough to generate a solution with a certain
probability, however, multiple USDNs in a solution to a query are required just
to increase the probability of generating a solution. The following lemma helps
to compute the probability of the solution characterized by a USDN.

Lemma 2. In an USDN G′ of a dependency network G,
P (Ac(ve)) =

∏

vi∈V ′
S

P (Av(vi)).
∏

(vi,uj)∈E′
P (Av(vi, uj)|Ac(vi)).

i.e., P (Ac(ve)) is equal to the product of the probabilities of all nodes and links
belonging to any path from vs to ve. �

The proof of this lemma is omitted from this text due to space limitation. If
a SDN G′ of a dependency network G consists of m USDNs G1,G2,Gm, the
activation probability of ve of the SDN can be expressed as:

P (AcG′
(ve)) = P (

m⋃

i=1

AcGi(ve)) (13)

It may be noted that each Gi is an USDN of G′, for i = 1, 2, . . . ,m and

AcGi(ve) denotes the activation event of ve of Gi. P (
m⋃
i=1

AcGi(ve)) can be com-

puted using principle of inclusion and exclusion [6]. The end node ve of a SDN
G′ can be activated through any of the USDNs belonging to the SDN. There-
fore, the activation event of ve in a SDN can be expressed as the union of the
activation events of ve for each USDN corresponding to G′.

The Principle of inclusion and exclusion is stated as below.
P (A1 ∪A2 ∪ . . .∪An) =

∑
i P (Ai)−∑

i,j P (Ai ∩Aj)+
∑

i,j,k P (Ai ∩Aj ∩Ak)− . . .

where each Ai, for i = 1, 2, . . . , n, represents an event of a random experiment.
In case of two USDN networks, the above expression can be applied as:

P (AcG1(ve) ∪ AcG2(ve)) = P (AcG1(ve)) + P (AcG1(ve)) − P (AcG1(ve) ∩ AcG1(ve))

P (AcG1(ve) ∩ AcG1(ve)) = P (AcG1(ve)). P (AcG2(ve)|AcG1(ve))

P (AcG2(ve)|AcG1(ve)) is computed by multiplying all the link and node proba-
bilities of the SDN containing G1 and G2.

We now demonstrate the algorithm for generating a solution to a query from
the dependency network. The first step of our algorithm is to generate the hyper
dependency network HG from a given dependency network G. Once we have

706 S. Chattopadhyay and A. Banerjee

a hyper dependency network, we construct an USDN from each path of the
hyper dependency network. To construct an USDN from a path of the hyper
dependency network, we split each hyper node and hyper edge into the set of
nodes and edges of the dependency network. Consider G∗ be the set of all possible
USDNs constructed from G. We compute the activation probability of ve for each
USDN as stated in Lemma 2. We then construct the power set ℘G∗

of G∗. It may
be noted, each set belonging to ℘G∗

, which is a subset of G∗, forms a SDN of
G. Since our objective is to minimize the number of services in a solution, we
next construct a list of SDNs sorted in ascending order based on the number of
AND nodes without considering the dummy nodes in that network. Finally, we
consider the SDNs one by one from the sorted list and compute the activation
probability of ve of each SDN as stated in Eq. 13. For any SDN, if the activation
probability of ve is greater than or equal to αsolution, we return the SDN. If
no such SDN G′ of G exists for which P (AcG′

(ve)) ≥ αsolution, this implies the
query cannot be answered with probability αsolution.

Here, we have demonstrated an optimal algorithm for service composition for
a dynamic environment. Though the optimal algorithm is able to generate the
optimal solution satisfying all the constraints, however, it suffers from scalability
issues for large problem dimensions in real time. This is mainly because of the
following two expensive operations.

1. Generation of the hyper dependency network from a dependency network,
while constructing the AND hyper layer, we construct all possible AND hyper
nodes for each OR hyper node. This step combinatorially explodes.

2. Computation of the power set of the set of USDNs.

In the next section, we, therefore, propose a suboptimal algorithm that can
produce a solution faster than the optimal one. However, it compromises on
solution quality.

6 A Heuristic Algorithm

In this section, we propose a suboptimal solution using a variant of the classical
memory bounded A* algorithm [24]. Here, our objective is to find a SDN of a
dependency network constructed in response to a query without constructing the
entire hyper dependency network. Given the dependency network G constructed
in response to a query, our objective is to generate a solution path of the hyper
dependency network HG corresponding to G, such that, all constraints are sat-
isfied as much as possible. To do so, we first associate a level with the nodes of
the dependency network as follows:

Level(vs) = 0;
Level(vi) =Level (predecessor of vi) + 1;

(14)

We now present the detailed algorithm. The state space of the A* algorithm is
2|VS |, where VS is the set of AND nodes in the dependency network. A state is a

A Variation Aware Composition Model 707

collection of one or multiple nodes. The initial state of our algorithm is the state
consisting of only ve and the goal state is the state consisting of vs. Depending
on the node type, a state is classified into two categories: AND state and OR
state. The state consisting of a set of AND nodes is called an AND state and
the state consisting of a set of OR nodes is called an OR state.

We now discuss the operator of our algorithm. To be precise, the opera-
tor of this algorithm indicates how we generate one state from another state.
Once we encounter a state, we construct its neighboring state set. Here, we con-
struct maximum n number of neighbor states, where n is a given parameter.
The parameter n is used to bound the number of nodes we explore in this algo-
rithm. If we encounter an AND state, only one neighboring OR state is possible.
However, if we encounter an OR state, the number of possible neighbor states is

equal to
k∏

i=1

(2ni − 1), where we assume that an OR state consists of k number

of OR nodes and each OR node has ni number of input links, for i = 1, 2, . . . , k.
Although, one incoming link is sufficient to activate an OR node belonging to an
OR state, we may need multiple incoming links for an OR node to increase its
activation probability. Therefore, the number of ways we can choose more than
one incoming link from the set of incoming links of an OR node is 2ni −1, where
ni is the number of incoming links of the OR node. The expression refers to
the cardinality of the power set of the set of predecessor AND nodes associated
with an OR node excluding the empty set. Therefore, the number of ways we

can choose more than one link for each OR node is equal to
k∏

i=1

(2ni − 1), which

refers to the cardinality of the Cartesian product of the power set of the set of
AND nodes associated with each OR node excluding the empty set.

Example 5. We now illustrate the neighboring state construction methodol-
ogy on the dependency network shown in Fig. 2(a). The initial state s1 is an
AND state consisting of ve. The only possible neighbor of s1 is an OR state
s2 consisting of {u12, u13}. The incoming links for u12 are (v6, u12), (v8, u12)
and the incoming links for u13 are (v7, u13), (v9, u13). The number of possi-
ble AND states is therefore, (22 − 1) ∗ (22 − 1) = 9. The set of neighbor-
ing AND states is computed as follows. The power set of {v6, v8} exclud-
ing the empty set is: ℘1 = {{v6}, {v8}, {v6, v8}}. The power set of {v7, v9}
excluding the empty set is: ℘2 = {{v7}, {v9}, {v7, v9}}. Cartesian Prod-
uct of ℘1 × ℘2 = {{v6, v7}, {v7, v8}, {v6, v7, v8}, {v6, v9}, {v8, v9}, {v6, v8, v9},
{v6, v7, v9}, {v7, v8, v9}, {v6, v7, v8, v9}}. �

We now discuss the cost function for each state. The cost function f(s) in each
state s is calculated as f(s) = g(s) + h(s), where, g(s) is the number of AND
nodes without considering the dummy nodes and h(s) is the heuristic function,
which denotes how far the current AND state is from the goal state and defined
as:

h(s) = Level(vi); vi ∈ s and s is an AND state
= 0; s is an OR state

(15)

708 S. Chattopadhyay and A. Banerjee

Finally, we discuss about constraint validation. We validate the constraint on the
cumulative set. The cumulative set consists of the set of nodes from the initial
state to the current state. If multiple incoming links of an OR node are considered
in a solution, we choose the maximum probability value among all the assigned
probability values corresponding to all incoming links of the OR node that has
been considered, in order to compute the activation probability of the OR node.
However, the actual activation probability of the OR node is more than the
computed value. This happens because of the following reason. We first consider
an OR node ui belonging to the cumulative set having two incoming links e1
and e2. We further consider two events: (i) ui is activated through e1 and (ii)
ui is activated through e2. We need to compute the probability of the following
event : ui is activated through either e1 or e2. Since these two events are not
independent, we cannot simply multiply the probability value of the individual
events. On the other side, we cannot compute the actual probability value, since
in this approach, we traverse the dependency network in the backward direction.
Therefore, at the moment of computation, we cannot compute the probability of
the availability of e1 and e2. Hence, the actual probability of generating a solution
is more than the probability value computed by the heuristic algorithm. We use
the following equation to represent the constraint.

∏

vi∈
cumulative set

P (Av(vi)) ×
∏

(vi,uj)∈
cumulative set

MaxviP (Av(vi, uj) | Ac(vi)) ≥ α(solution);

(16)
If any state violates any of the above constraints, we ignore the path through
which the node is reached and in that case, we do not update the cost value of
that node. If no state is found due to constraint violation, we choose a state that
has the minimal violation. The final solution is obtained from the set of states
from the initial state to the goal state having minimal cost. Since less number
of hyper nodes are explored in this method, this method is expected to be faster
than the optimal algorithm, however, it compromises on solution quality, since
the entire solution space is not explored due to the memory bound parameter.

7 Experimental Results

We implemented our proposed algorithms in Java (version 1.7.0 95, 32 bit). All
experiments were performed on an Ubuntu (version 14.04 LTS, 32 bit, kernel
3.13.0-77-generic) Linux system on a 2.53 GHz machine with 4 GB DDR3 RAM.
The algorithms were evaluated against a synthetically generated dataset and the
eight public repositories of the 2005 ICEBE Web Service Challenge (WSC) [1].
To the best of our knowledge, this work is the first of its kind. Hence, we provide
comparative experimental results between the two approaches proposed in this
paper, the optimal one and the heuristic.

A Variation Aware Composition Model 709

Fig. 3. Service description

7.1 Dataset Description

We now present a brief description of our in-house dataset as shown in Fig. 3.
We considered 19 different service categories. Each service category performs
a specific operation/task. Under each category, there are 2 or 3 different sub
categories. Each sub category is selected based on input-output parameters.
The services under a specific sub category have identical set of inputs and out-
puts. We used an in-house web crawler and the open travel alliance1 dataset
to get the number of services for some service categories (e.g., searchFlight,
bookFlight, searchHotel, bookHotel, forecastWeather, bookAirportTransport,
bookLocalTransport, searchRestaurant etc.). Consider a query Q with inputs
{FromAirport, ToAirport, DepartureDate, ReturnDate, No.ofPersons, Class,
FlightPreferenceCriteria, Credential, ArrivalDate, CheckOutDate, No. ofRooms,
City, Budget, HotelPreferenceCriteria, VisitingPreferenceCriteria, Cuisine} and
desired output {FlightTicket, HotelBookingConfirmation, AirportCabBooking-
Confirmation, CityCabBookingConfirmations, WeatherForecastReport, Restau-
rantName, PhoneNumber}. The total number of services involved in resolving

1 http://www.opentravel.org/.

http://www.opentravel.org/

710 S. Chattopadhyay and A. Banerjee

the query was 73. Later, we randomly generated the number of services corre-
sponding to each service category to analyze the performance of our algorithms.
We used normal distribution with mean 0 and standard deviation 1 to generate
the probability of the services being available in the repository and to generate
the probability of producing each output by each service.

Table 2. Comparison of composition time for Case 1

n # Services Optimal(ms) Heuristic(ms) Constraint violation

3 73 19478 186 -
3 78 24378 9756 -
3 85 112789 201 8%
3 113 158793 339674 11%
3 220 time out 18576 17%
3 280 time out 32856 12%
3 370 time out 7745879 31%

2 280 time out 71 18%
4 280 time out 87342 11%
8 280 time out 197568 8%
12 280 time out 33658734 7%
15 280 time out time out -

We now compare the performance of the optimal algorithm with respect to
the heuristic algorithm. We set αsolution = 0.7. We experimented with a few
different values of n for the heuristic method. We divided our experiment into
two categories.

Case 1: Comparison on Our Dataset: We compare the optimal algorithm
with the heuristic algorithm on our synthetically generated dataset. Table 2
shows a comparison between the performances of the optimal and the heuristic
algorithms. It is evident from the table, the heuristic algorithm is significantly
faster than the optimal algorithm. Columns 3 and 4 of Table 2 show the average
composition time for both the optimal and the heuristic algorithms. Column 5
of Table 2 shows the performance degradation (which is measured as the per-
centage of constraint violation) of the heuristic algorithm. The first 7 rows of
Table 2 above the horizontal line, show the comparison between the computation
time and the constraint violation with increase in the number of services. The
remaining rows (marked in a different shade) in Table 2 present the compari-
son between the computation time and the constraint violation with increase
in the value of n. In 9 cases, the heuristic algorithm violates the constraint as
evident from the table. However, in 7 cases, the heuristic algorithm is able to
produce a solution, but the optimal algorithm is unable to produce any result.
Furthermore, it is also evident from the table that as the value of n increases,
the constraint degradation decreases and computation time increases.

Case 2: Comparison on the ICEBE-2005 Dataset: We compare the opti-
mal algorithm with the heuristic algorithm on the ICEBE-2005 dataset. The

A Variation Aware Composition Model 711

Table 3. Comparison of composition time for Case 2

Data set # Services Optimal time (ms) Heuristic time (ms) Constraint violation

Out composition 143 198765 7151 5%

Composition 1-20-4 2156 Time out 13869 8%

Composition 1-20-16 2156 Time out 34865 3%

Composition 1-20-32 2156 Time out 89625 2%

Composition 1-50-4 2656 Time out 1368 11%

Composition 1-50-16 2656 Time out 24596 17%

Composition 1-50-32 2656 Time out 14982 2%

Composition 1-100-4 4156 Time out 6619 7%

Composition 1-100-16 4156 Time out 348169 6%

Composition 1-100-32 4156 Time out 187964 18%

Composition 2-20-4 3356 Time out 2497645 21%

Composition 2-20-16 6712 Time out 32876 24%

Composition 2-20-32 3356 Time out 99164925 36%

Composition 2-50-4 5356 Time out 14785 11%

Composition 2-50-16 5356 Time out 5986732 9%

Composition 2-50-32 5356 Time out 6785297 23%

Composition 2-100-4 8356 Time out 7413921 8%

Composition 2-100-16 8356 Time out 3257691 53%

Composition 2-100-32 8356 Time out 913645889 31%

dataset contains 19 service repositories. Corresponding to the first service repos-
itory (Out Composition), there are 4 queries. For the remaining service reposito-
ries, there are 11 queries. Table 3 shows a comparison between the performances
of the optimal and the heuristic algorithms when executed with n as 3. Column
2 of Table 3 shows the number of services in the ICEBE-2005 dataset. Columns
3 and 4 of Table 3 show the average composition time for both the optimal and
the heuristic algorithms. It is evident from the table, the heuristic algorithm
is significantly faster than the optimal algorithm. Column 5 of Table 3 shows
the performance degradation of the heuristic algorithm. Though the heuristic
algorithm violates the constraints, however, in most of the cases the optimal
algorithm fails to generate a solution, whereas the heuristic algorithm is able to
produce a solution. It is evident from our experiments that the heuristic algo-
rithm is more efficient in terms of computation time.

8 Conclusion and Future Directions

This paper presents a dynamic variation aware service composition algorithm
from the functional perspectives. As future work, we are currently working on
extending our proposal to develop more sophisticated techniques for complex
dependency service networks. Also we are looking at the scenario when new
services are added in the repository or new outputs are available in the system.
We believe that our work will open up a lot of new research directions in the
general paradigm of composition for dynamic environments.

712 S. Chattopadhyay and A. Banerjee

References

1. Home page of the web services challenge at the IEEE conference on e-business
engineering ICEBE (2005). http://www.comp.hkbu.edu.hk/simctr/wschallenge/

2. Alfrez, G.H., Pelechano, V.: Facing uncertainty in web service compositions. In:
ICWS, pp. 219–226 (2013)

3. Chattopadhyay, S., Banerjee, A.: QSCAS: QoS aware web service composition
algorithms with stochastic parameters. In: ICWS, pp. 388–395 (2016)

4. Chattopadhyay, S., et al.: A scalable and approximate mechanism for web service
composition. In: ICWS, pp. 9–16 (2015)

5. Chen, M., Yan, Y.: QoS-aware service composition over graphplan through graph
reachability. In: SCC, pp. 544–551. IEEE (2014)

6. Cohen, D.I.: Basic techniques of combinatorial theory. Technical report (1978)
7. Cormen, T.H.: Introduction to Algorithms. MIT Press, Cambridge (2009)
8. Dechter, R., Mateescu, R.: Mixtures of deterministic-probabilistic networks and

their and/or search space. In: UAI, pp. 120–129. AUAI Press (2004)
9. El Hadad, J., et al.: Tqos: transactional and qos-aware selection algorithm for

automatic web service composition. IEEE TSC 3(1), 73–85 (2010)
10. Feng, Y., et al.: Dynamic service composition with service-dependent QoS

attributes. In: ICWS, pp. 10–17 (2013)
11. He, Q., Yan, J., Jin, H., Yang, Y.: Adaptation of web service composition based

on workflow patterns. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC
2008. LNCS, vol. 5364, pp. 22–37. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89652-4 6

12. Jiang, W., et al.: Continuous query for QoS-aware automatic service composition.
In: ICWS, pp. 50–57 (2012)

13. Kazhamiakin, R., et al.: Data-flow requirements for dynamic service composition.
In: ICWS, pp. 243–250 (2013)

14. Klein, A., Ishikawa, F., Honiden, S.: Efficient heuristic approach with improved
time complexity for QoS-aware service composition. In: ICWS, pp. 436–443 (2011).
https://doi.org/10.1109/ICWS.2011.60

15. Kona, S., Bansal, A., Gupta, G.: Automatic composition of semanticweb services.
In: ICWS, pp. 150–158 (2007). https://doi.org/10.1109/ICWS.2007.52

16. Li, Y., Lin, C.: QoS-aware service composition for workflow-based data-intensive
applications. In: ICWS, pp. 452–459 (2011). https://doi.org/10.1109/ICWS.2011.
18

17. Lv, C., Jiang, W., Hu, S., Wang, J., Lu, G., Liu, Z.: Efficient dynamic evolution of
service composition. In: TSC (2017). https://doi.org/10.1109/TSC.2015.2466544

18. Mostafa, A., Zhang, M.: Multi-objective service composition in uncertain environ-
ments. In: TSC (2015). https://doi.org/10.1109/TSC.2015.2443785

19. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and
large-scale service networks. IEEE TSC 1(1), 15–32 (2008)

20. Papoulis, A.: Probability, Random Variables, and Stochastic Processes. McGraw
Hill, New York (1984)

21. Rao, J., Su, X.: A survey of automated web service composition methods. In:
Cardoso, J., Sheth, A. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 5

22. Rodriguez-Mier, P., et al.: Automatic web service composition with a heuristic-
based search algorithm. In: ICWS, pp. 81–88 (2011). https://doi.org/10.1109/
ICWS.2011.89

http://www.comp.hkbu.edu.hk/simctr/wschallenge/
https://doi.org/10.1007/978-3-540-89652-4_6
https://doi.org/10.1007/978-3-540-89652-4_6
https://doi.org/10.1109/ICWS.2011.60
https://doi.org/10.1109/ICWS.2007.52
https://doi.org/10.1109/ICWS.2011.18
https://doi.org/10.1109/ICWS.2011.18
https://doi.org/10.1109/TSC.2015.2466544
https://doi.org/10.1109/TSC.2015.2443785
https://doi.org/10.1007/978-3-540-30581-1_5
https://doi.org/10.1109/ICWS.2011.89
https://doi.org/10.1109/ICWS.2011.89

A Variation Aware Composition Model 713

23. Rosario, S., Benveniste, A., Haar, S., Jard, C.: Probabilistic QoS and soft contracts
for transaction-based web services orchestrations. TSC 1(4), 187–200 (2008)

24. Russell, S.J.: Efficient memory-bounded search methods. In: ECAI, vol. 92, pp.
1–5 (1992)

25. Sepulveda, C., et al.: QoS aware descriptions for restful service composition: secu-
rity domain. WWW 18(4), 767–794 (2015). https://doi.org/10.1007/s11280-014-
0278-0

26. Wagner, F., Klöpper, B., Ishikawa, F., Honiden, S.: Towards robust service com-
positions in the context of functionally diverse services. In: Proceedings of the 21st
international conference on World Wide Web, pp. 969–978. ACM (2012)

27. Zeng, L., et al.: Quality driven web services composition. In: WWW, pp. 411–421
(2003)

https://doi.org/10.1007/s11280-014-0278-0
https://doi.org/10.1007/s11280-014-0278-0

A Model-Driven Framework for Automated
Generation and Verification of Cloud Solutions

from Requirements

Hamid R. Motahari Nezhad1, Taiga Nakamura1, Adi Sosnovich2,
Peifeng Yin1, and Karen Yorav2(&)

1 IBM Almaden Research Center, San Jose, CA, USA
motahari.hamid@gmail.com, {taiga,peifengy}@us.ibm.com

2 2IBM Haifa Research Lab, Haifa, Israel
{adisos,yorav}@il.ibm.com

Abstract. Cloud computing projects require the design of a so-called Cloud
Solution, which is an architectural blueprint for a particular cloud environment.
A cloud solution defines the hosting infrastructure (servers, VMs, etc.), software
stack, and services such as network, backup, disaster recovery, management,
etc. The design of a cloud solution needs to consider existing client environ-
ments and future environment’s requirements, and at the same time comply with
the cloud provider’s portfolio and limitations. As such, the design of enterprise
cloud solutions is a very complex and challenging problem. In this paper, we
present a novel framework for provider-side cloud solution design based on
model-driven and formal methods that facilitates the job of automated solution
generation, starting from client requirements and resulting in a complete and
correct cloud solution. We present a set of novel methods and a tool, called
COOL, which implements the method and is used in production in a large Cloud
service provider.

Keywords: Model-driven engineering � Enterprise cloud � Cloud applications
engineering

1 Introduction

Over the last decade, the rate of adoption of cloud computing in the enterprise has
accelerated significantly. Commonly, enterprises buy infrastructure and managed ser-
vices from a cloud provider. These services may include migrating all existing appli-
cations from the enterprise’s own data centers to cloud and managing the infrastructure
and applications for them [1]. The first step in an enterprise cloud migration project is
understanding and specifying the client requirements for compute and infrastructure,
network, storage, middleware, databases, software, and application stack. There could

H. R. Motahari Nezhad—The work was done while Hamid was with the IBM Almaden Research
Center.

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 714–721, 2018.
https://doi.org/10.1007/978-3-030-03596-9_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_51&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_51&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_51

also be non-functional requirements such as service level, disaster recovery, resiliency,
backup, installation, monitoring, and management of the entire stack. The next step is
considering different cloud offerings with various capabilities and price points to come
up with the design of a so-called cloud solution. A cloud solution consists of the
architecture of the proposed solution, and a bill of material of all elements and services.
Cloud solution design is a very challenging problem due to the complexity and inter-
dependency of the requirements, and the sheer number and complexity of options.

In this paper, we investigate the problem of automatic cloud solution design for
enterprise from the point of view of a cloud service provider. The goal is to assist cloud
sales architects in producing technical solution proposals that fit the client’s require-
ments, and at the same time comply with the design specification supported by the
service provider’s offerings. We make the following novel contributions:

• We present an end-to-end model-driven cloud solution design framework, from
client requirements to deployable cloud solutions.

• The model-driven method takes advantage of a formal modeling backend and a
constraint satisfaction engine, which drive various functionalities.

• We have implemented the proposed methods in a tool called ClOud sOlution design
tooL (a.k.a COOL), which showcases the viability of the methods, and it is in use
by hundreds of technical cloud solution designers in a large cloud service provider.

An early version of COOL was demonstrated in [2]. Since then we have extended the
framework with new methods for model-driven requirements management, solution
checking, automated UI generation, and guided solutioning. This paper is the first that
describes the techniques behind the demo presented in [2].

The paper is structured as follows: Sect. 2 reviews related work, Sect. 3 gives an
overview of the model-driven framework, Sect. 4 describes models and model man-
agement, Sect. 5 describes the framework in detail, and Sect. 6 concludes.

2 Related Work

We review related work in two related categories: cloud solution modeling, and soft-
ware engineering methods in support of cloud applications.

There exist various languages and format for specifying the architecture of cloud
applications and their deployment: TOSCA [3], CloudML [4], OCCI [5], MAP [6].
We, on the other hand, address the complementary open space of cloud solution design.

Software engineering methods for cloud application development, management and
deployment have been studied [7]. Also, practitioners have investigated patterns and
conceptual models for provisioning and scaling of cloud applications [8]. There has
also been research discussing strategies for migrating legacy applications to the cloud
[9, 10]. Most of these methods either offer abstractions for an architect to manually
create the migration plan, or offer methods for migrating existing applications to cloud
environments. COOL offers a comprehensive and automated model-driven method for
transformation and verification checking of AS-IS and To-BE cloud applications.

A Model-Driven Framework for Automated Generation and Verification 715

2.1 Model-Driven Design Tooling

COOL’s process is driven by a set of models for cloud offerings. The model is con-
sulted to determine the correctness of a solution relative to the offering constraints. In
[11], a CSP (constraint satisfaction) model is used for systems engineering design, and
a CSP solver [12] to verify correctness. COOL’s model-driven approach applies the
same methods to a different domain. COOL also enhances the model technology with
the ability to analyze conflicts, functions for locating offending values in the solution,
and the ability to use the model for non-verification tasks (e.g. solution generation).

3 COOL Solution Design Framework: An Overview

COOL’s solution design framework is created for cloud solution architects designing
business-level solutions from resources of cloud service providers. What makes COOL
unique is that it is a model-driven tool, i.e. it relies on models to drive the solutioning
process. COOL uses two types of models. The offering model is a static model that
defines what components are available and what is a legal configuration. A Configu-
ration (or solution) is a dynamic model of a specific cloud design. Thus, the offering
model defines the space of legal configurations (which are instances of the model).

Figure 1 shows COOL’s work flow. We briefly describe the flow here (Sect. 5
elaborates on the major steps).

First, Requirements are gathered through the business requirements form and IT
requirements spreadsheet, which is a structured spreadsheet designed for that offering.
This collects existing infrastructure and workloads to be migrated to the cloud, or
requirements for a new cloud project. Alternatively, the requirements may be captured
directly in the tool’s UI. The Requirement Analysis function identifies requests that
cannot be met by the cloud provider and makes suggestions for alternatives. Next,
Solution Generation automatically creates a draft solution. It creates a solution object
from the requirements object using the offering model for correctness, and incorpo-
rating domain knowledge regarding best-practices and performance considerations.
Next, the user moves to the solution view, where the configuration may be fine-tuned.
The solution object is continuously validated against the entire set of offering con-
straints, after every change performed by the user. Any violation is flagged to the user
in two ways: a descriptive message is displayed, and the solution properties responsible
for the violation are flagged in red. In addition, the tool implements what we call
Guided Solutioning. For each unassigned field the UI offers a drop-down box of values
to choose from, containing only values that are consistent with the choices made so far.
For example, if the user chooses a value in the ‘OS’ field then the ‘Storage Type’ is
instantly updated with only those storage types that are supported with the chosen OS.
The offering model includes both error and warning constraints, where a violation of an
error constraint renders the solution invalid, whereas a violation of a warning constraint
is displayed but does not prohibit conclusion of the solutioning process. Output
Generation is enabled only when all error constraints are satisfied. COOL produces
outputs for both pricing and deployment, in formats consumable by down-stream tools.

716 H. R. Motahari Nezhad et al.

4 Cloud Solutions: A Model-Centric Design

In this section, we give a detailed explanation of how a cloud offering is modeled, and
how offering models are managed in a model-driven design tool.

4.1 Cloud Offering Models

COOL keeps a model for each offering, capturing all aspects of a cloud configuration
using a data model and a set of constraints. The Data Model captures the cloud
components that are being offered and the information to be gathered for each com-
ponent. This includes all aspects of the offering, from infrastructure, platform and
software components, to services and more. Each component, is modeled as a type (or
class) that contains properties. These properties can be of various atomic types, cus-
tomized enumerated types, or of a user-defined type resulting in a hierarchical design.
For example, a VM type may contain a CPU property of type CPU. Properties are
annotated with information controlling how they display in the UI (e.g. whether it can
be edited).

The Constraints capture relationships between data items, limiting values to the
sub-space supported by the cloud vendor. For example, a constraint may describe what
level of availability can be guaranteed on each supported OS. There are two types of
constraints: expressions and tables. Expressions constrain data model properties using a
simple language for Boolean Predicates. Table constraints describe Boolean predicates
over properties, with the columns corresponding to predicate parameters and the rows
corresponding to legal combinations of values, using sets and wild cards for general-
ization. A legal configuration must match exactly one row in the table.

An offering model contains two aspects: Requirements and Solution, each descri-
bed by a data model and a set of constraints. The Requirements Model is designed to
capture what clients may ask for and is therefore a rather loose model, allowing
anything that can occur in the real world (whether or not supported by the offering).
The Solution Model represents a cloud configuration that is to be solutioned, and
therefore is much more detailed and restricts the configuration to what is supported by
the offering.

Fig. 1. Cloud solution design flow

A Model-Driven Framework for Automated Generation and Verification 717

4.2 Model Management

Figure 2 depicts COOL’s framework for defining and managing the (static) cloud
offering model. The offering model is kept in a human-readable form and is created and
maintained by expert cloud offering staff. The model automation component creates the
internal model structures that are used by COOL at runtime.

The machine-readable offering model includes two semantically equivalent repre-
sentations. The back-end and UI use the JSON format, whereas the CSP solver [12]
uses a CSP format to do validation. The model automation ensures that all aspects of
the offering model are defined in one place, eliminating the need to maintain multiple
copies, which is both labor intensive as well as error-prone. Also, translating from a
single source into multiple formats guarantees that all parts of the tool are using
semantically equivalent models. Finally, it allows us to manage the model in a human-
friendly format while enabling the code to use an efficient internal representation.

5 Model-Driven Framework: From Requirements to Solution

5.1 Casting Solution Design as a Constraint Satisfaction Problem

COOL casts the problem of verifying a cloud solution as a CSP formula, and utilizes a
specialized CSP solver [13]. We briefly explain how a CSP solver works and how a
cloud offering model is formalized as a CSP formula. We also describe how CSP is
exploited by COOL for validation and auto-population of cloud solutions.

A CSP solver receives a formula over a set of variables and determines whether
there exists a satisfying assignment for this formula. The solver performs Arc Con-
sistency [12], which is an algorithm that prunes variable domains by propagating them
through constraints, until it has a minimal consistent set. That is, the reduced domain of
each variable is such that if we assign any value from that domain there exists an
extension of that partial assignment to a satisfying assignment. This reduction algo-
rithm is employed by the solver before starting the search for a satisfying assignment. It
does not produce a satisfying assignment, but it can identify when the formula is
unsatisfiable1. In this case, we can ask the solver to produce an unsat-core, which is a
subset of constraints that are still unsatisfiable, while removing any constraint will
result in a satisfiable instance. CSP solvers accept formulas in a very low-level lan-
guage. We use an IBM tool called PRB [13], which wraps the underlying solver with a
rich language for CSP. A PRB model consists of hierarchical type definitions, variable
definitions, and constraints. Constraints can be either hard or soft. A hard constraint
must be satisfied for the problem to be satisfiable. A soft constraint will be used to
influence variable values as long as it is satisfied and will be ignored if it contradicts
with hard constraints. COOL invokes PRB in arc-consistency-only mode, so that given
a model instance, and if it is satisfiable, we get back a reduction of the variable domains
that satisfies all hard constraints and as many soft constraints as possible. If the model

1 In theory, it is possible for arc-consistency not to identify unsatisfiability [12]. However, this happens
in a very particular situation, which cannot occur in COOL’s models.

718 H. R. Motahari Nezhad et al.

instance is unsatisfiable PRB will generate the unsat core. Hard constraints are used to
model “error constraints”, and soft constraints are used to model “warning constraints”
as well as to assign default values. The offering model is static, as is the CSP version of
it. At runtime, COOL uses PRB in order to verify that the configuration that the user
created is legal. Upon each invocation of validation, a PRB file describing the particular
configuration is created and concatenate to the static offering model, and PRB is
invoked.

5.2 Model-Driven UI

COOL is implemented as a web application. The UI renders the JSON object of a
requirement or solution based on the data model. The solution editor recognizes the
basic property types and enforces what values can be entered. Furthermore, as prop-
erties are populated, the validator determines fewer valid choices and the UI updates
accordingly. All UI behaviors are completely driven by the model, so that when the
model definition is updated, the UI automatically reflects the changes with no code
changes required.

5.3 Requirements Analysis

Sometimes, there is a gap between user requirements and the offering. For example, the
user may request an OS that the offering does not support, or the user may ask for an
invalid configuration of a VM. The requirements model does not include constraints on
what the offering supports, because its purpose is to document what the client asked
for. When Requirement Analysis is invoked it highlights requests that cannot be met
and provides suitable replacements if necessary.

Requirements analysis is composed of a collection of scripts, each of which
implements a particular analysis and defines how the check should be conducted as
well as the actions that should be taken when a violation is found. The analysis scripts
consult with the offering model to discern valid configurations supported by the
offering, which means that when the offering changes the analysis scripts are auto-
matically updated and require no modification.

Each analysis script consists of a series of “rules”. Rules are independent of each
other and are responsible for a subset of the analysis. Each rule defines an analysis
location and an analysis action. The analysis first navigates to the specified location in
the requirements object where the rule should be applied and performs a check based
on the offering model constraints. If the check fails, the analysis applies the specified
actions. For instance, one rule is to check the combination of OS and DB types. This
analysis will navigate to each required VM and find the installed DB servers, to obtain

Fig. 2. COOL’s framework for model automation

A Model-Driven Framework for Automated Generation and Verification 719

OS and DB type values. The rule verifies these against the supported combinations of
OS and DB, as specified in the offering model. If an invalid combination is found, the
rule’s actions are invoked – in this case to highlight the violation and provide a list of
legal OS/DB pairs for users to migrate to.

5.4 Solution Generation Through Model Transformation

Given a valid requirements object, Solution Generation generates a draft of the solu-
tion. This functionality driven by instructions for best practices, as defined by offering
experts. Offering model constraints are consulted so that the generated solution is a
valid and efficient configuration. The process involves scanning the JSON object of the
requirements and applying transformation rules to each element, which in turn generate
a JSON object for the corresponding solution object.

5.5 Solution Analysis and Validation

The validator runs PRB on the combined offering and configuration models and asks it
to perform arc consistency. If the instance is satisfiable then the result specifies a legal
sub-domain for each variable. These domains are written back and rendered in the UI.
If the domain of a particular variable contains multiple legal values then these values
will populate the drop-down menu in the UI for that property. If there is only a single
legal value the tool will set that value as a system-defined value, and display it.

If the instance is found to be unsatisfiable the solver will produce a set of con-
straints that are violated. The offering model associates an explanation string with each
constraint, so that when a constraint is violated this explanation is displayed for the user
in the UI. In addition, the solver identifies the set of variables involved in the conflict,
and these are marked in the solution view.

5.6 Post Processing and Output Generation

There are several operations that are invoked when the solution is complete, and the
user wishes to generate the full pricing document and the deployment document. The
most interesting example is the adaptation of the solution for High Availability (HA).
The manner in which HA is achieved is defined by the offering team and depends on
specific implementation details of the cloud stack. To avoid users having to understand
the intricacies of building HA solutions, COOL asks the users to specify the level of
availability, and the tool adds the necessary infrastructure and services automatically.

COOL supports outputs for pricing and deployment. The pricing output lists all
elements of the solution that incur a fee, in a format compatible with a downstream
pricing tool. The deployment output is a BOM, detailing everything that is to be
deployed.

720 H. R. Motahari Nezhad et al.

6 Conclusion and Future Work

We have introduced an end-to-end model-driven framework for design of verifiable
cloud, implemented in the COOL tool. COOL has been successfully deployed in a
large cloud service provider for designing large cloud solutions for enterprise clients. It
has shown to significantly reduce the time to produce the solution, enable standard-
ization of the solutioning practice by different cloud architects, and reduce errors and
omissions in the cloud solutions designed. As for future work, we plan to construct an
eco-system around the tool via publishing APIs for both upstream and downstream
applications.

Acknowledgement. We would like to acknowledge and thank all colleagues that have been part
of the project at various times, including Scott Trent, Takayuki Kushida, and Uma Subramanian.

References

1. Linthicum, D.: The case for managed service providers in your cloud strategy. http://www.
infoworld.com/article/2923441/cloud-computing/the-case-for-managed-service-providers-
in-your-cloud-strategy.html. Accessed January 2018

2. Motahari Nezhad, H.R., et al.: COOL: a model-driven and automated system for guided and
verifiable cloud solution design. In: Drira, K., et al. (eds.) ICSOC 2016. LNCS, vol. 10380,
pp. 194–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68136-8_23

3. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng, Q., Daniel,
F. (eds.) Advanced Web Services. Springer, New York (2014). https://doi.org/10.1007/978-
1-4614-7535-4_22

4. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
IEEE CLOUD 2013, pp. 887–894. IEEE Press (2013)

5. Merle, P., Barais, O., Parpaillon, J., Plouzeau, N., Tata, S.: A precise metamodel for open
cloud computing interface. In: IEEE CLOUD 2015, pp. 852–859. IEEE Press (2015)

6. Microsoft Assessment and Planning (MAP) Toolkit for Windows Azure Platform. https://
technet.microsoft.com/en-us/solutionaccelerators/gg581074.aspx

7. Grundy, J., Kaefer, G., Keong, J., Liu, A.: Software engineering for the cloud. IEEE Softw.
29(2), 26–29 (2012)

8. Duan, Q.: Cloud service performance evaluation: status, challenges, and opportunities – a
survey from the system modeling perspective. Digit. Commun. Netw. 3(2), 101–111 (2017)

9. Zhao, J.-F., Zhou, J.-T.: Strategies and methods for cloud migration. Int. J. Autom. Comput.
11(2), 143–152 (2014)

10. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Trans. Cloud Comput. 1(2), 1 (2013)

11. Boni, O., et al.: Applying constraint programming to incorporate engineering methodologies
into the design process of complex systems. In: 24th Conference on Innovative Applications
of Artificial Intelligence, Toronto, Canada (2014)

12. Dechter, R.: Constraint Processing, Morgan Kaufmann Series in Artificial Intelligence.
Elsevier, Amsterdam (2003)

13. Bilgory, E., Bin, E., Ziv, A.: Solving constraint satisfaction problems containing vectors of
unknown size. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 55–70. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66158-2_4

A Model-Driven Framework for Automated Generation and Verification 721

http://www.infoworld.com/article/2923441/cloud-computing/the-case-for-managed-service-providers-in-your-cloud-strategy.html
http://www.infoworld.com/article/2923441/cloud-computing/the-case-for-managed-service-providers-in-your-cloud-strategy.html
http://www.infoworld.com/article/2923441/cloud-computing/the-case-for-managed-service-providers-in-your-cloud-strategy.html
http://dx.doi.org/10.1007/978-3-319-68136-8_23
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
http://dx.doi.org/10.1007/978-1-4614-7535-4_22
https://technet.microsoft.com/en-us/solutionaccelerators/gg581074.aspx
https://technet.microsoft.com/en-us/solutionaccelerators/gg581074.aspx
http://dx.doi.org/10.1007/978-3-319-66158-2_4

Service Applications

Healthcare Application Migration
in Compliant Hybrid Clouds

Anca Sailer1, Bo Yang2(&), Siddharth Jain1,
Angel E. Tomala-Reyes1, Manu Singh3, and Anirudh Ramnath4

1 IBM Watson Health, IBM, New York, USA
{ancas,aetomala}@us.ibm.com, Sid.Jain@ibm.com

2 IBM Research – China, IBM, Beijing, China
yangbbo@cn.ibm.com

3 Amazon Video, Amazon, Seattle, USA
mmnsin@amazon.com

4 Uber Freight, Uber Technologies, San Francisco, USA
ani@uber.com

Abstract. Key challenges in managing healthcare applications lie in the area of
compliance of the deployment environments and the usage of hybrid clouds.
Our approach, as reported in this paper, utilizes two innovative concepts:
compliance conformance validation and environment reconstruction supported
by a Platform as a Service (PaaS) environment performing healthcare applica-
tion automated migrations in hybrid clouds. We show how the migration process
is conducted with dynamic reconstruction of the application dependencies on the
PaaS services. For system administrators, this approach can lead to significant
time savings on migrations to compliant environments. Implementation details
and experimental results are presented to validate our methodology.

Keywords: Healthcare � Platform as a Service � Migration � Hybrid cloud

1 Introduction

Modern healthcare application developers make effective use of Platform as a Service
(PaaS) development techniques which provide services that speed-up the development,
building and deployment of online applications. However, native PaaS environments
may be insufficient for applications with special requirements for deployment on a third
party environment. For example, native PaaS environments may not support compliant
handling of end-user sensitive data which requires special security policies as prescribed
by the Health Insurance Portability and Accountability Act (HIPAA) [1]. Another
example is the case of applications that bind sensitive data to local (or in country) data
support. As a further example, the native environment of PaaS may not support the
approval processes associated with healthcare deployment environments upgrades.

To address this issue and to allow developers to continue taking advantage of the
PaaS development convenience while running applications in a compliant environ-
ment, we have developed a migration technology which includes a compliance con-
formance validator and a compliance control point. The compliance conformance

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 725–739, 2018.
https://doi.org/10.1007/978-3-030-03596-9_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_52&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_52

validator analyzes an application’s profile in the source environment while the com-
pliance control points analyze an application’s profile in the target environment. The
migration system also includes a reconstructor that recreates the application’s depen-
dencies in the target environment based on the analysis of the application’s profile. We
show how the migration process is conducted with dynamic reconstruction of the
application dependencies on the PaaS services. For system administrators, this
approach can lead to significant savings in time spent on migration to a compliant
environment. Implementation details and experimental results are presented to validate
our methodology.

The remainder of the paper is organized as follows. In Sect. 2 we provide a brief
overview of the HIPAA compliance context and its Security Rule. Section 3 presents
the existing work related to compliant clouds in the industry and various aspects of the
migration technology. In Sect. 4 we introduce our migration solution architecture and
in Sect. 5 we detail the implementation and experimental results. Section 6 presents the
conclusions of our findings and future work.

2 Background on HIPAA and HL7

The Health Insurance Portability and Accountability Act (HIPAA) [1] has two major
goals: (1) to enable the transfer and storage of electronic Protected Health Information
(e-PHI, called here after simply PHI as we only refer to electronical PHI in this paper)
and (2) to enable the insurance portability from one insurer to another. Thus, HIPAA
fosters the replacement of medical paperwork with standardized electronic medical
records (EMRs) enabling healthcare and insurance providers to reduce cost and to be
more efficient.

2.1 Transfer and Storage of PHI

Storing and transferring PHI electronically raises the question of data loss and exposure
due to theft or systems failure. To address these concerns, IBM Cloud for Health in
particular, as recipients of PHI from our customers, comply with HIPAA by imple-
menting specific controls as defined and published in the HIPAA Security Rule [1].

The HIPAA Security Rule specifies a series of administrative, technical, and
physical security procedures to assure the confidentiality, integrity, and availability of
PHI - healthcare providers use these procedures. In general, the administrative controls
refer to policies and procedures for protection of PHI, the technical controls refer to
technological tools that protect the integrity and availability of resources, while the
physical controls refer to the protections of the environment where the computing
devices are deployed. In this paper we address the technical controls only, as these
controls raised specific challenges for our data services use cases and technology, while
the administrative and physical controls have been inherited from the Health
Cloud HIPAA readiness.

The following HIPAA technical controls are specified by HIPAA Security Rule:

726 A. Sailer et al.

1. Access Control to implement policies and procedures that allow only authorized
persons to access PHI.

2. Person or entity authentication to implement procedures to verify that a person or
entity seeking access to electronic protected health information is the one claimed.

3. Audit Controls to implement hardware, software, and/or procedural mechanisms to
record and examine access and other activity in information systems that contain or
use PHI.

4. Integrity Controls to implement policies and procedures to protect PHI from
improper alteration or destruction.

5. Transmission Control to implement technical security measures that guard against
unauthorized access to PHI that is being transmitted over an electronic network.

The healthcare provider is responsible to adopt the Security Rule and maintain
written records of the required activities for six years.

2.2 Standardization and Portability

Healthcare standards materialize by bills approved by Congress. HIPAA standards
cover both the storage and transmission of PHI (e.g., electronical medical records) as
well as the billing and administrative processes (e.g., claims). The HIPAA adminis-
trative processes, including Eligibility Inquiry and Response, Claims Status Inquiry and
Response, Authorizations and Referrals, Claims, Remittance Advice follow the ASC
X12 [2] as the primary standard for administrative transactions.

The standard for clinical data, including Discharge Summary, Imaging Report,
Admission & Physical, Pathology Report, follows the Health Level 7’s [3] HL7
Clinical Document Architecture (CDA) and Messaging, which together with the
Continuity of Care Document (CCD) and SNOMED CT, LOINC, and RxNorm code
sets are used to standardize vocabularies.

HL7 offers a framework and standards for the distribution and retrieval of EMRs.
These standards describe how PHI is packaged and transferred to support the clinical
practice and the management, delivery and assessment of health services. The latest
HL7 data format standard is the Fast Healthcare Interoperability Resources (FHIR) [4].
FHIR builds on the best practices of HL7’s v2.x, HL7 v3 and CDA standards while
leveraging the latest technology such as RESTful protocol, HTML and Cascading Style
Sheets for user interface integration, a choice of JSON or XML for data representation,
OAuth for authorization and Atom for results. Today, 95% of US healthcare organi-
zations use HL7 V2.x [5].

3 Related Work

Cloud providers, such as Amazon [6], Google [7] and Microsoft [8] have been
upgrading their services to comply with health regulations. Similarly, to IBM, a cus-
tomer organization must first sign a written agreement called the Business Associate
Agreement (BAA) before using IBM’s regulated environments and services. However,
in the case of Amazon, Google and Microsoft, each customer is responsible for their

Healthcare Application Migration in Compliant Hybrid Clouds 727

own compliance mechanisms, policies, and procedures to follow the HIPAA technical
controls while using their Clouds’ HIPAA services. Thus, the customer is expected to
encrypt or deidentify the data and separately store the identifying/encryption key,
monitor all access to the databases to prevent unauthorized and detect security brea-
ches, security incidents or disclosure of PHI, and ensure fault tolerance and backup of
their data. On the other hand, our Health Compliant Cloud services are managed
according to HIPAA and implement the HIPAA Security Rule control points men-
tioned above allowing the customer to focus on their health business. Section 4 will
detail the design of our Health Complaint Cloud services to natively support the
HIPAA regulations.

There is a rich body of literature that addresses the migration of legacy or enterprise
applications to cloud [9–15] and its security and cloud hybrid aspects [12, 16–20].
Because migration to cloud is a major change for a service provider, carefully thought-
out decisions factoring in technical, economical and compliance related aspects [16]
need to be made and executed. Decision models may consider factors affecting
migration in a holistic way and quantify them to provide a formalized decision support
like the system called “InCLOUDer” [21]. In the case where the full migration of
applications is not possible, due to compliance or complex interdependencies, the
decision framework can facilitate only partial migration [16]. A survey on cloud
migration decision making methodologies has been conducted in [13].

Migration to hybrid or federated clouds is another aspect addressed by current
research. This type of migration requires partitioning of the application. The authors in
[17] have proposed a static analysis based on automation guided by the developer’s
annotations in code. From the security and compliance perspective, ideally the appli-
cation or system migrated to a target cloud environment is desired to be at least as
secure and compliant as it was originally in the source environment. An analysis of
cloud migration methodologies has been conducted [19], and from the security per-
spective the authors conclude that there is little research on the migration of the security
and compliance aspects.

Moving to cloud remains a complex endeavor which requires planning and exe-
cution of multiple steps and various vendors such as AWS [22] and Cisco [18] have
published guides for the service providers illustrating the required processes on their
respective platforms.

Our intent in this paper is to contribute to the migration aspects in the context of
HIPAA regulated hybrid cloud with a focus on providing or maintaining compliance.
On an abstract level, some of the concepts used for this migration are similar to the
existing migration technologies. However, our focus on compliance and on the
migration implementation within this context differentiates our approach from the
above solutions. For example, the extraction of the source architecture, generation and
adaptation presented in the CloudMIG approach [12] are comparable to the steps in our
implementation. However, the dependency analysis conducted in our methodology to
recreate the target environment in a health compliant fashion is distinct.

728 A. Sailer et al.

4 System Architecture

4.1 Overall System Architecture

In this section, we introduce the overall architecture of our migration system. Figure 1
shows the constituent components: (i) conformance validator, (ii) imitator, (iii) de-
ployer and (iv) reconstructor.

The conformance validator (see #1 in Fig. 1) analyzes an application profile,
explained hereafter, in the source environment based on validation policies. Our
migration system includes an imitator (see #2 in Fig. 1) to mirror the configuration in
the target environment and to stand up compliant PaaS service instances (see #3 in
Fig. 1) in the target environment when the dependent original PaaS service instance is
non-compliant. This migration system also includes a deployer (see #4 in Fig. 1)
configured to migrate the application with updated dependencies from the source
environment to the target environment. After the target environment was recreated by
the imitator and the application was migrated by the deployer, the reconstructor (see
#5 in Fig. 1) configures the application dependencies in the target environment based
on the above described analysis of the application’s profile in the source environment,
producing an updated environment with reconstructed dependencies.

We will describe now these artifacts in detail.
An application profile describes the application software configuration (e.g., the

hosting PaaS profile) which is stored in the PaaS platform. This profile is utilized by
our system to generate equivalent dependencies for the migrated application in the
target environment. The application software configuration is defined by the environ-
ment variables, the service source, and the application’s source. The environment
variables include application runtime dependencies customized by the application
developer. The service source includes application runtime dependencies such as the
information of the bind to service instances to which the developer subscribed to, e.g. a

Fig. 1. Overall architecture of migration system with compliance validation

Healthcare Application Migration in Compliant Hybrid Clouds 729

database service, and used in the application’s code. The application source comprises
deployment dependencies, examples of which include git repository links, war/zip/tar
file urls, etc.

The conformance validator automatically checks an application’s source code scan
or a dependency validation test against a specification. The conformance validator
retrieves the application’s profile from the PaaS platform. Then, it uses the rules stored
in a rule engine to automatically check conformance requirements against the appli-
cation’s profile (e.g. analyze the PaaS environment source profile for a PaaS applica-
tion). The conformance requirements of the target environment can be fine grained, like
in precise rules for the PaaS development template and deployment guide. Note that
rules checking can be included on the conformance validator or can be provided by a
third party. Examples of rules checking include: the Heuristic 1, Heuristic 2, and
Heuristic 3 provided below. For each item that is found non-compliant, the confor-
mance validator can also provide fix suggestions as illustrated in the examples
Heuristic 4 and Heuristic 5.

The conformance validator is again used after the deployment to check the com-
pliance heuristics in the target environment, as illustrated in Heuristic 6, Heuristic 7,
and Heuristic 8.
Heuristic 1:

If Application Source is
{app_type: NodeJS, source_type: github, source_url: “git://***”}

Then Check
{source code availability on $ source_url}
{source code structure conformance to NodeJS}
{Package.json file is complete}
{App.js file is complete} | {Server.js file is complete}

Heuristic 2:

If Platform Source is
{platform: Bluemix, Environment variables: Set}

Then Check
{source code is developed with Environment variables reference in
VCAP_Services and USER_Defined}

Heuristic 3:

If Service Source is
{DB: cloudantNoSQLDB, Environment variables: Set}

Then Check
{credentials are set in Environment variables}
{access endpoint and credentials are accessible from target environment}
{API version is compliant (manual or programmatic input)}

730 A. Sailer et al.

Heuristic 4:

If Service Source has
{inaccessible access endpoint from target environment}

Then Action
{open change request for firewall/network device configuration}

Heuristic 5:

If Service Source has
{non compliant API version (detected via manual or programmatic input)}

Then Action
{Instantiate compliant offering for service instance}

Heuristic 6:

If Application Target is
{platform: target environment, app_type: NodeJS, source_type: github, sour-
ce_url: “git://***”, HIPAA compliant: True}

Then Check
{SSL/TLS is enabled, reachable via HTTPSONLY andNOT reachable via HTTP}
{local files are encrypted}

Heuristic 7:

If Platform Target is
{platform: target environment, HIPAA compliant: True}

Then Check
{security agents are deployed and enabled}
{audit agents are deployed and enabled}
{backup agents are deployed and enabled}

Heuristic 8:

If Service Target is
{DB: cloudantNoSQLDB, HIPAA compliant: True}

Then Check
{encryption is enabled (manual or programmatic)}
{API version is compliant (manual or programmatic)}
{access endpoint and credentials are valid for target environment}

The HIPAA technical controls described in Sect. 2 have been mapped to tech-
nology requirements as follows:

AccessControl and Person or entity authentication are implemented by authentication
and authorization procedures. Technology like AppScan can provide insights on security
compliance including access being guarded by authentication and authorization.

Audit Controls are implemented by log agents at hardware, software and appli-
cation level (e.g., Heuristic 5).

Healthcare Application Migration in Compliant Hybrid Clouds 731

Integrity and Transmission Controls are implemented by encryption at rest and in
transit and by backup and recovery measures (e.g. Heuristic 4 for encryption in transit,
Heuristic 5 for backup agent and Heuristic 6 for encryption at rest).

For the compliance control points (introduced in Sect. 2) that cannot be validated
programmatically, a GUI is available for a developer to confirm the implementation of
the compliance requirements for each control point.

The imitator’s purpose is to recreate/imitate in the target environment the appli-
cation’s profile artifacts as defined by the source environment variables and dependent
services. The imitator stands up the mapped runtime environment variables and ser-
vices as service instances in the target environment based on the analysis of the
application profile in the source PaaS environment. Note that the service instances in
the target environment, while they are a copy of the service instance in the source
environment, they can be different than the instances used by the source PaaS, e.g. in
the case of non-complaint PaaS services. The imitator also stands up the middleware
stack where the application will be migrated. The image used for the deployment stack
is expected to support the compliance control points presented in Sect. 2. They will be
checked by the compliance validator as exemplified above.

The deployer transfers the application packages to the target environment and
executes its deployment to stand up a migrated application instance.

The reconstructor configures the dependencies of the environment variables and
service instances bindings on the target environment based on the analysis of the
application’s profile in the source PaaS environment. The reconstructor can also be
configured to update the environment’s variables and the service instances’ bindings
with auto mapping based on predefined compliant service access endpoints in the target
environment. For example, when the application is running in PaaS, it calls the
environment variables and the service instances bindings of the PaaS. Once the
migrated application is running in the target environment, the environment’s variables
and service instances’ bindings in the target environment need to be updated so that the
migrated application can make similar calls. Thus, the new service instances initialized
by the imitator must have their configuration (e.g. conformance requirements) setup
and updated in the environment variables. These updated environment variables are
used by the reconstructor to recreate the dependencies for the migrated application in
the target environment. The code of the migrated application does not need to be
changed based on the operations of the reconstructor, we assume that the new
dependent services provide the same APIs and drivers as in the source environment.

Figure 2 shows the process flow of our system migration from a hosting PaaS
environment to a compliant target environment. The process begins with the confor-
mance validator checking the application profile on the source PaaS environment. The
validator automatically checks the application environment, its source code scan and
available dependency validation tests against specification rules (such as source
packages access, proper configuration formatting). The rules are composed of fine
grained predicates suitable for automatic checking based on the specification of the
PaaS development guidance and the application environment definition template, as
illustrated in the heuristics above. For each item that is found in nonconformance, an
automatic fix option is provided.

732 A. Sailer et al.

Based on the profile analysis, the imitator performs a runtime environment setup to
provide the dependent service instances and a stack where the application can be
deployed. A reconstructor can now recreate the dependencies configuration in the target
environment, including the variables and service instances’ bindings. With the
dependencies reconstructed, the environment is now updated and ready for the appli-
cation migration. The deployer of the migration system migrates/deploys the applica-
tion to the updated target environment.

Finally, the conformance compliance validator checks that all required compliance
control points have the implementation tracked and the operational processes approved.

4.2 PaaS Platform Interface Components

A key component to enable the target environment reconstruction is the PaaS platform
interface which is leveraged by the imitator and reconstructor to orchestrate the services
instances creation, configuration and access binding to the application. The PaaS
platform interface includes the components to onboard services in PaaS and make them
available to the application developers. At a high level, there are three main workflows
between the PaaS, service provider, and application consuming the services as follows.

Service Onboarding: This is the process to make services available in PaaS. This
step essentially allows the services to be published in the PaaS catalog where they can
be subscribed to. Service onboarding ensures that all metadata related to the service,

Fig. 2. Migration system process flow

Healthcare Application Migration in Compliant Hybrid Clouds 733

e.g. price plans, service broker url (explained below), is available to the PaaS in the
appropriate format. This step is executed prior to any application creation in PaaS in
order to allow for the application development process find the desired services in the
PaaS catalog and subscribe to them.

Service Provisioning and Binding: This process is responsible for the service
instance creation upon subscription to a services in the PaaS catalog. This process is
also responsible for creating API access credentials (e.g. token or password) to control
the application access to its service instances at the runtime calls. The API access
credentials, which bind an app to its services, are stored in the Access Directory. This
step is executed via the services broker both for the application development and
during the application migration to the target environment for creating the services
instances desired by the original application and expected by the migrated application,
respectively. The provisioning of the application dependent services is initiated (a) for
the application in PaaS by the developer upon subscription to the service in the PaaS
catalog, and (b) for the migrated application by the imitator as part of the migration
automation after the application profile analysis determined the dependent services.
Once the service instances are created and the application migrated, the reconstructor
proceeds with the binding operation by calling the service broker API.

Application Runtime Calls to Services: Applications use their binding credentials
every time they call their services instances. These runtime calls are made via a secure
gateway which validates the credentials and then routes the call to the appropriate
service instance. These calls expect the migration process was completed.

The above workflows come with their corresponding reverse processes workflows
for service off-boarding, service instance deprovision and service instance unbinding
which we will not detail here.

The PaaS components to support the above workflows are the services broker, the
secure gateway and the access directory:

Service Broker: The Service Broker is the entity that manages provisioning and
deprovisioning of service instance resources and establishes the binding relationships
between services and applications making use of the services. The service broker is an
interface to PaaS implemented and operated by the service providers with access to
services metadata maintained is in synch with the services onboarded in the PaaS. The
imitator and reconstructor call the service broker as part of the migration automation
process illustrated in Fig. 2 to perform the runtime environment services instances
provisioning and application dependencies bindings respectively.

Secure Gateway: The Secure Gateway is an interface that acts as an entry channel
between the PaaS and the services running in the services providers cloud. During
runtime, the secure gateway validates against the access directory the credentials
presented by the API calls coming from the applications. In our deployment, we used
IBM Security Gateway DataPower appliance to perform this functionality.

Access Directory: The Access Directory is responsible to store the API access
credentials which are generated during the service instance binding call.

Our migration system has been deployed in our Health Compliant Cloud and in the
following section we detail the options and findings of our experiments.

734 A. Sailer et al.

5 Experimental Results

We used IBM PaaS Cloud as our dev/test environment for an expedite application
prototyping and verification, and our Health Compliant Cloud as the target environ-
ment to migrate our application to for being hosted in a HIPAA health compliant
production environment. IBM Cloud provides PaaS DevOps services which speed-up
the development, building, and deployment of online applications as well as the
updating of their subsequent versions. For deploying hosted applications, we have two
options: installation and migration.

The installation of a new application in the target environment encompasses pri-
marily the following steps:

1. Build the installation package (based on a stable source code);
2. Download installation package to target environment;
3. Run Install/Setup program to install the application;
4. Configure the application according to the user’s customization requirements.

This option to install an application from scratch presents however a few risks when
compared to a migration process, as follows:

• The application installation behavior in the target environment could be different
than in PaaS due to the configuration variations of the deployment in a regulated
environment.

• The files to be installed are scanned following security hardening procedures, and
hence the installation process could potentially introduce new files (e.g., 3rd party
library, configurations, scripts). In the same time, certain programs cannot be
scanned from the binary installation package.

• The network access to potential 3rd party dependent libraries could be blocked due
to security and complaint concerns, resulting in the installation to fail.

In the case of migration, where all deployment artifacts come from a verified appli-
cation instance in the Dev/Test environment, the files and programs deployed for the
application are stable, with no suspicious files to introduce potential risk of exposure,
while the configuration is tuned for optimal performance in this new environment.

Table 1 compares the installation vs. migration of five popular (see the popularity
rank count) Github applications: SVGO [23], Hackathon-Starter [24], WordPress [25],
Smart-crop [26], Hexo [27]. We identified that each installation changed the applica-
tion file set after deployment, which means that the files introduced during installation
might not undergo security scanning as required in a regulated environment.

If we set the firewall to block any unchecked files in the installation procedure, the
installation will fail. To deploy a quality tested application in a regulated environment,
we need to make sure the application can be deployed successfully and that all the files
are compliant with the HIPAA and security requirements.

Based on this evaluation, we choose the migration as the solution to archive
healthcare application deployment in regulated environment. This approach was farther
beneficial towards meeting the mandatory compliance and security requirements
effectively.

Healthcare Application Migration in Compliant Hybrid Clouds 735

Figure 3 illustrates the orchestration of our migration processes. We use Jenkins to
coordinate the resources migration pipeline and UCD (IBM UrbanCode Deploy [15])
to automate the deployment across the two environments. Our implementation in UCD
covers the automation of the main migration steps presented in Sect. 4, i.e., retrieval of
the application profile and artifacts, validation of the conformance, setup of the envi-
ronment, reconstruction of the dependencies, deployment of the application in the
regulated environment and validation of the compliance control points.

Table 1. Experimental results of installation vs. migration of Github applications

Metric Application
SVGO Hackathon-Starter WordPress Smartcrop Hexo

Rank count (k) 8.7 22.1 9.5 10.1 19.8
Installation
Files # (release package) 342 243 9,868 192 362
Files # (after install) 1,217 13,945 82,869 14,728 1,988
Files # (after config) 1,217 13,945 87,990 14,728 9,299
Timecost (sec) 4 55 386 34 9
Migration
Files # (release package) 1,217 13,945 87,990 14,728 9,299
Files # (after migrate) 1,217 13,945 87,990 14,728 9,299
Timecost (sec) 3 10 59 11 5

Fig. 3. Migration process implementation

736 A. Sailer et al.

Thus, we have developed Jenkins jobs to access the application profile and artifacts
on the IBM Cloud, to perform conformance validation on the profile, and store the
analysis result on an intermediate repository in the regulated environment for local
access. The Jenkins job is configured to use a UCD component together with its UCD
application, UCD application process and UCD environment, to deploy the application
targeted for migration. After the profile analysis is uploaded, the Jenkins job will
trigger UCD component to start setup the environment accordingly in view of moving
the application artifacts to the target regulated environment, as illustrated in Fig. 4.

UCD implements the end to end deployment automation. The UCD component
process executes the following steps:

1. Initialization of the VMs. To boost the migration performance, the VMs can be
selected from a preprovisioned pool.

2. Imitator service sets up the service instances the application depends on.
3. Downloading and unpackaging of the application artifacts on the VM.
4. Reconstruction of the relationships between the migrated application and imitated

services instances (e.g., update of the API access endpoint and binding credential
based on the profile, update of the environment variables based on target envi-
ronment setting, update of the routing rules in regulated environment for applica-
tion’s access control.).

5. Validation of the HIPAA control points.

The migrated application with the dependencies configured and validated in the
compliant target environment is ready for runtime operation. UCD can be used for
deploying a test client in the target environment for executing prebuilt integration
validation tests. After the tests pass, the test component is deprovisioned and the
migrated application is ready for public access.

6 Conclusion

Modern healthcare applications present particular challenges in cloud and hybrid cloud
environments. Keeping these applications up-to-date in live cloud environments can be
costly and time consuming. HIPAA compliance, in particular, introduces technical and
security challenges that are an overload to the developers and operators of cloud native
solutions. Our experimentation has shown that through the use of open source tech-
nologies, best of breed automation tools and the PaaS Platform interface we are able to
implement a DevOps methodology that addresses and meets the HIPAA requirements.
Our migration methodology introduces simple yet powerful concepts aiming to effi-
ciently migrate applications or solutions developed in PaaS to fully compliant envi-
ronments. In the follow-up to this work, we will focus on the GxP compliance which

Fig. 4. Migration process build and deployment pipeline

Healthcare Application Migration in Compliant Hybrid Clouds 737

brings an additional regulation overhead to the developers of clinical studies and
medical devices applications.

References

1. The security rule: U.S. Department of Health and Human Services. http://www.hhs.gov/
hipaa/for-professionals/security/index.html

2. X12: American National Standards Institute. www.x12.org
3. Health level seven international: Health Level Seven International. http://www.hl7.org/
4. Welcome to fhir: Health Level Seven International. http://www.hl7.org/fhir/
5. Hl7 version 2 product suite: Health Level Seven International. https://www.hl7.org/

implement/standards/productbrief.cfm?productid=185
6. Hipaa in the cloud. https://aws.amazon.com/health/providers-and-insurers/hipaa/
7. Hipaa compliance and data protection with Google apps. https://static.googleusercontent.

com/media/apps.google.com.br/pt/BR/files/hipaa-implementation-guide.pdf
8. Microsoft Azure trust center. https://azure.microsoft.com/en-us/support/trust-center
9. Wan, Z., Duan, L., Wang, P.: Cloud migration: layer partition and integration. In: 2017 IEEE

International Conference on Edge Computing, EDGE, Honolulu, HI, pp. 150–157 (2017)
10. Kaviani, N., Wohlstadter, E., Lea, R.: J. Internet Serv. Appl. 5, 14 (2014)
11. Leymann, F., Fehling, C., Mietzner, R., Nowak, A., Dustdar, S.: Moving applications to the

cloud: an approach based on application model enrichment. Int. J. Coop. Inf. Syst. 20(03),
307–356 (2011)

12. Frey, S., Hasselbring, W.: Model-based migration of legacy software systems into the cloud:
the CloudMIG approach. In: Proceedings of 12th Workshop on Software-Reengineering of
the GI-SRE, Bad Honnef, Germany, 3–5 May 2010 (2010)

13. Wan, Z., Wang, P.: A survey and taxonomy of cloud migration. In: 2014 International
Conference on Service Sciences, Wuxi, pp. 175–180 (2014)

14. VMware: Migration Strategies for Hybrid Cloud, Version 2.9, January 2018. https://www.
vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-migration-
strategies-hybrid-cloud.pdf

15. IBM UrbanCode Deploy. https://www.ibm.com/us-en/marketplace/application-release-
automation, https://developer.ibm.com/urbancode/products/urbancode-deploy/

16. Juan-Verdejo, A., Baars, H.: Decision support for partially moving applications to the cloud:
the example of business intelligence. In: Proceedings of the 2013 International Workshop on
Hot Topics in Cloud Services, HotTopiCS 2013, pp. 35–42. ACM, New York (2013)

17. Smit, M., Shtern, M., Simmons, B., Litoiu, M.: Partitioning applications for hybrid and
federated clouds. In: Jacobsen, H.-A., (Jenny) Zou, Y., Chen, J. (eds.) Proceedings of the
2012 Conference of the Center for Advanced Studies on Collaborative Research, CASCON
2012, pp. 27–41.IBM Corp., Riverton (2012)

18. Cisco: Planning the migration of Enterprise Applications to the Cloud, Cisco White paper
(2010)

19. Rosado, D.G., Gómez, R., Mellado, D., Fernandez-Medina, E.: Security analysis in the
migration to cloud environments. Future Internet 4(2), 469–487 (2012)

20. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE
Trans. Cloud Comput. 1(2), 142–157 (2013)

738 A. Sailer et al.

http://www.hhs.gov/hipaa/for-professionals/security/index.html
http://www.hhs.gov/hipaa/for-professionals/security/index.html
http://www.x12.org
http://www.hl7.org/
http://www.hl7.org/fhir/
https://www.hl7.org/implement/standards/productbrief.cfm?productid=185
https://www.hl7.org/implement/standards/productbrief.cfm?productid=185
https://aws.amazon.com/health/providers-and-insurers/hipaa/
https://static.googleusercontent.com/media/apps.google.com.br/pt/BR/files/hipaa-implementation-guide.pdf
https://static.googleusercontent.com/media/apps.google.com.br/pt/BR/files/hipaa-implementation-guide.pdf
https://azure.microsoft.com/en-us/support/trust-center
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-migration-strategies-hybrid-cloud.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-migration-strategies-hybrid-cloud.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/vcat/vmware-migration-strategies-hybrid-cloud.pdf
https://www.ibm.com/us-en/marketplace/application-release-automation
https://www.ibm.com/us-en/marketplace/application-release-automation
https://developer.ibm.com/urbancode/products/urbancode-deploy/

21. Juan-Verdejo, A., Zschaler, S., Surajbali, B., Baars, H., Kemper, H.G.: InCLOUDer: a
formalised decision support modelling approach to migrate applications to cloud environ-
ments. In: 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications, Verona, pp. 467–474 (2014)

22. Varia, J.: Migrating your Existing Applications to the AWS Cloud (2010). http://media.
amazonwebservices.com/CloudMigration-main.pdf

23. Project SVGO. https://github.com/svg/svgo.git
24. Project Hackathon-Starter. https://github.com/sahat/hackathon-starter
25. Project WordPress. https://github.com/Automattic/wp-calypso.git
26. Project Smartcrop. https://github.com/jwagner/smartcrop.js.git
27. Project Hexo. https://github.com/hexojs/hexo.git

Healthcare Application Migration in Compliant Hybrid Clouds 739

http://media.amazonwebservices.com/CloudMigration-main.pdf
http://media.amazonwebservices.com/CloudMigration-main.pdf
https://github.com/svg/svgo.git
https://github.com/sahat/hackathon-starter
https://github.com/Automattic/wp-calypso.git
https://github.com/jwagner/smartcrop.js.git
https://github.com/hexojs/hexo.git

DAliM: Machine Learning Based Intelligent
Lucky Money Determination for Large-Scale

E-Commerce Businesses

Min Fu1,2, Chi Man Wong3, Hai Zhu1, Yanjun Huang1,
Yuanping Li1, Xi Zheng2(&), Jia Wu2, Jian Yang2,

and Chi Man Vong3

1 Alibaba Group, Hangzhou, China
{hanhao.fm,marvin.zh,jenny.hyj,

yuanping.lyp}@alibaba-inc.com
2 Department of Computing, Macquarie University, Sydney, Australia

{james.zheng,jia.wu,jian.yang}@mq.edu.au
3 University of Macau, Macau, China
{mb55501,cmvong}@umac.mo

Abstract. E-commerce businesses compete in the market by conducting mar-
keting strategies consisting of four aspects: customers, products, marketplaces
and intermediaries. One of the widely-used marketing strategies, called Lucky
Money, is capable of encouraging customers to buy products from marketplaces.
However, the amount of luck money for each customer is usually randomly
determined or even manually determined and cannot fully achieve the business
objectives. This paper proposes a machine-learning based lucky money deter-
mination approach, called DAliM, for e-commerce businesses to achieve their
desired goals. We implement DAliM for the “Double 11 Global Shopping
Festival 2017” initiated by Alibaba Group and evaluate it using a few hundred
million real customers from all over the world. The experimental results
demonstrate that our method manages to decrease the lucky money spent by
41.71% and increase the final purchase rate by 24.94% compared to the state-of-
the-art baseline.

Keywords: Machine learning � Lucky money � E-commerce � Data mining
Price prediction � Price optimization

1 Introduction

Large-scale worldwide e-commerce businesses, such as Amazon, e-Bay and Alibaba
Group, are always competing for marketing shares, and the number of target customers
attracted by the business to a large extent determines its profits [1, 2]. Hence, the e-
commerce businesses and companies have launched several marketing strategies which
are related to four key aspects: customers, products, marketplaces and intermediaries
[1]. Throughout the four aspects, intermediaries are the most special one because they
are able to build a link between the providers and the customers who buy products at
certain marketplaces [1, 2]. As such, one of the widely-used intermediaries for

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 740–755, 2018.
https://doi.org/10.1007/978-3-030-03596-9_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_53&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_53&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_53

marketing plans is known as “Lucky Money”, which is a certain amount of e-cash
bonus given to the buyers and can be used to offset the original price to be paid by a
customer [3]. In other words, with luck money, customers can buy products at a lower
price. Hence, luck money is becoming increasingly popular among e-commerce
companies and even other companies [4, 5].

The ways of determining the amount of lucky money for each customer used by e-
commerce businesses are usually by assigning a random amount of money to the
customer or by issuing a manually-determined amount of money to the customer [6–9].
However, there are several drawbacks with these existing methods: (1) the random
amount may not be satisfactory to the customer; (2) the issued random amount for each
customer does not fully satisfy the business objectives (e.g. cost optimization and
targeted purchase rate) set by stakeholders; (3) it provides little reason to explain why
the customer is assigned with the money [10]. The use of these methods is because it is
not straightforward to determine the accurate amount of lucky money for each cus-
tomer, in terms of three challenges: (1) the money should be issued on an ongoing
basis; (2) the characteristics of each customer are difficult to be obtained; (3) the budget
for lucky money is quite limited.

In this paper, we propose a novel and intelligent approach, called DAliM, for better
determining lucky money for customers. DAliM is based on historical data analysis and
machine learning techniques. We first analyze hundreds of million real historical data
related to customer, transaction and lucky money usage, and then we rely on machine
learning techniques to train the historical data to obtain a purchase rate prediction
model, which is used for calculating the predicted purchase rate of a particular cus-
tomer with a certain amount of lucky money. Next, we apply a smoothing regression
algorithm to figure out each target customer’s assigned lucky money that can drive the
customer to buy products at the targeted purchase rate set by the stakeholders.
According to our knowledge, it is one of the first kind to apply machine learning for
lucky money determination.

We evaluate the feasibility and validity of DAliM in the “Double 11 Global
Shopping Festival” initiated by Alibaba Group in 2017. In the experiment, we use an
AB-Test strategy by simultaneously launching two sets of lucky money determination
approaches: (1) Alibaba Group’s existing random lucky money based approach; (2) our
newly proposed approach: DAliM. These two approaches are applied on a few hundred
million real target customers of the “2017 Double 11 Global Shopping Festival”. We
make a comparison between these two approaches, and the experimental results show
that DAliM is able to decrease the lucky money spent by around 41% and increase the
final purchase rate by 25% compared to the existing method, while satisfying the
business objectives set by stakeholders.

The research contributions of this paper are: (1) we propose a novel and intelligent
machine learning based approach for determining appropriate lucky money within e-
commerce businesses; (2) we formulate the business objectives and requirements to be
set by e-commerce business stakeholders; (3) we propose a methodology to evaluate
the difference between two lucky money determination approaches, and demonstrate
the applicability of the methodology.

The remainder of this paper is organized as follows: Sect. 2 introduces the back-
ground; Sect. 3 discusses the related work; Sect. 4 illustrates our proposed method of

DAliM: Machine Learning Based Intelligent Lucky Money Determination 741

determining lucky money; Sect. 5 is the experimental evaluation; Sect. 6 provides the
conclusions and our future work.

2 Background

We introduce the fundamentals of lucky money in e-commerce businesses, and discuss
business requirements and objectives for lucky money.

2.1 Lucky Money in E-Commerce Businesses

E-commerce businesses, especially the large-scale ones such as Amazon and Alibaba
Group, choose to use lucky money as one of their preferred marketing strategies, in
order to compete for their marketing share and attract more customers [1, 2]. Lucky
money is a type of e-cash bonus given to the customers by e-commerce corporations or
product providers [3]. With the lucky money, customers can offset the original price
they need to pay when they buy a particular product, which gives them a sense that they
buy the products at a discounted price [3]. Normally, based on various business pur-
poses, there are four types of lucky money: (1) visit-number oriented lucky money
whose purpose is to increase the visiting number of users; (2) advertising oriented
lucky money whose purpose is to publish and advertise a promotion activity;
(3) purchase-rate oriented lucky money which aims at increasing the purchase rate of
customers; (4) new-customer oriented lucky money which targets to attract more new
customers who have never bought products from the e-commerce corporations. For
instance, every year Alibaba Group launches a lucky money strategy called “Torch Red
Packet” during big promotion activities, and launches the “Happy City Red Packet”
lucky money strategy during the “Double 11 Global Shopping Festival” [3]. As for the
“Double 11 Global Shopping Festival”, it achieved a turnover of 18 billion dollars
during 11 November 2016, and 25.5 billion dollars during 11 November 2017, so a
reasonable lucky money strategy plays and will continue to play a significant role in e-
commerce businesses’ promotion activities like “Double 11 Global Shopping Festival”.

2.2 Business Requirements and Objectives for Lucky Money

The above-mentioned four types of lucky money reflect the business requirements and
objectives which are to increase visits, advertise a promotion activity, increase purchase
potential, and attract new customers [11–14]. All of the four objectives are highly
related to increasing the overall profits of e-commerce businesses either by increasing
the number of customers or by increasing the possibility for each customer to buy
products. Moreover, these requirements also aim to give those e-commerce businesses
a larger exposure to the market. In this paper, we are mainly focused on the objective of
increasing the purchase rate.

742 M. Fu et al.

3 Related Work

Machine learning techniques are widely employed to solve many problems in financial
and economic areas, and we discuss a few of them in this section. The lucky money
determination problem addressed in this paper highly resembles several economic
decision problems such as price determination [15–17].

3.1 Share Market Price Prediction Using ANN

The researchers from SUST proposed a price prediction mechanism for share market
based on Artificial Neural Networks (ANN) techniques in 2011 [15]. This proposed
method addressed the challenge with the insignificant relationship between the vari-
ables of the share market chaos system and the share price [15]. The traditional multiple
layer perceptron (MLP) model was applied to the neural network and the back prop-
agation (BP) mechanism was used to calculate and update the weights of the inter-
mediate inputs and outputs [15]. There are several drawbacks with this mechanism:
first, only two hidden layers were constructed in the neural network, and there is no
explanation for it; moreover, there is no comparison between the predicted effect of
using two hidden layers and that of using more hidden layers; second, the variables of
share market used in the neural network only contain the information about the
company’s financial situation and do not consider other useful features such as the
company’s customer size or launch time [15]. In addition, the proposed method was
evaluated using only one company coupled with two sets of input data, which
decreases the validity of the method [15].

3.2 Financial Time Series Forecasting

The researchers from Bond University, Australia found that Artificial Neural Networks
(ANNs) were identified to be the dominant machine learning technique in the area of
predicting financial time series in the stock market [16]. While the other methodology
used for such a prediction was based on evolutionary and optimization based tech-
niques, there is a clear trend to use and enhance established ANN models with new
training algorithms or combine ANNs with emerging technologies into hybrid systems
[16]. However, how the real-world constraints can impact the accuracy of financial time
series forecasting and stock index prediction remains a question, and whether the
investors’ risk-return tradeoff can be improved or not should also be studied [16].

3.3 Crude Oil Price Prediction with ANN-Q

The researchers from the University of Manchester proposed an Artificial Neural
Network-Quantitative (ANN-Q) model based approach for predicting the price of crude
oil in 2010 [17]. This research addressed a big problem with crude oil price prediction:
the price of crude oil is related to a complex set of factors and any change of the factors
may have an exclusive impact on the price, because crude oil is one of the world’ major
commodities with high volatility level [17]. An ANN-Q model was developed based on
a total of 22 key factors that have an impact on the price of crude oil. In order to

DAliM: Machine Learning Based Intelligent Lucky Money Determination 743

develop a better model, the data related to these key factors were further divided into
three categories: large impact class, medium impact class and small impact class [17].
BPNN was used for training the input variables [17]. The simulation results showed
acceptable accuracy of the proposed method since it was still in progress, and the
improved accuracy could be achieved by better tuning the parameters or applying other
machine learning models.

4 Our Proposed Method

Large-scale e-commerce businesses like Alibaba Group have their own business goals
and objectives to fulfil when it comes to determining the lucky money for their cus-
tomers. For example, with a fixed amount of lucky money budget, the corporation may
demand that the max number of customers should receive at least a minimum amount
of lucky money and the final purchase rate of those customers should be optimized or
meet the purchase rate goal set by the stakeholder. Our proposed method is designed to
be able to satisfy these business objectives. However, there are some challenges:
(1) whether a customer will buy products with the given lucky money or not depends
on a complex set of factors, not only on the amount of lucky money; (2) the charac-
teristics of every customer are quite different from each other, and it is difficult to use a
universal way to model different customers; (3) some customers are not sensitive to
lucky money at all, and they would not buy any products no matter how much lucky
money is given to them. As such, we define three research questions: (1) apart from
lucky money amount, what are the other factors and features that impact the overall
purchase rate of customers? (2) how to model the set of factors and features to represent
the data of every customer? (3) how to develop the model that is able to correctly filter
the customers sensitive to lucky money and assign the appropriate amount of lucky
money to these selected customers?

Our proposed method, DAliM, answers all of the three research questions defined.
When applied within Alibaba Group, DAliM is able to fulfil all of the business
objectives set by the stakeholders of Alibaba Group. As far as we know, it is the first
time that such a method is ever proposed. The problem can be defined in the following
way:

Suppose the lucky money budget is C, and the number of customers who receive
lucky money is D, each customer’s lucky money is Qi (1 � i � D), and each
customer’s purchase rate is Pi, then we need to determine Qi based on the following
formula:

Q ¼ argmax
Qi

X
i2D

Pi ð1Þ

Subject to:

X
i2D

QiPi �C ð2Þ

744 M. Fu et al.

Where:

Pi ¼ g Xið Þ; i2D ð3Þ

Where g(.) is the function that represents the machine learning model used for
predicting the purchase rate and Xi denotes the set of customer features, including the
feature of lucky money amount.

4.1 Overview of DAliM

The overview of DAliM is shown in Fig. 1.

The method consists of eight procedures: (1) we obtain the historical data about the
past customers and their usage of the lucky money given to them (i.e. whether they
have used the lucky money to buy products or not); (2) we obtain the target customers
who will attend the promotion activity (i.e. “Double 11 Global Shopping Festival
2017”); (3) we then make categorization for those target customers based on the extent
to which they will participate in the promotion activity, and they are categorized into
four groups: normal customers, watch-only customers, competitor customers and lost
customers; (4) next we use the historical data about customers and lucky money usage
to train the machine learning model that is used for predicting the purchase rate
(probability) of a particular customer; (5) we take samples of the lucky money by
selecting several amounts of money that are within the lucky money range specified by
the stakeholder, and for each customer group we attach each selected sample amount
with all the customers inside that group, to form up a series of customer sets with
different lucky money samples, yet all of the sets share the same set of customers. In
total, there are four customer groups and each group is attached with several lucky
money samples, and the money sample works as one of the data features. (6) With the
obtained purchase rate prediction model and a series of target customer sets with
multiple lucky money samples, we calculate the purchase rate for each customer in
each group with attached sampled lucky money; (7) then relying on the information

Fig. 1. Overview of DAliM.

DAliM: Machine Learning Based Intelligent Lucky Money Determination 745

about each customer’s different purchase rates under different lucky money samples,
we calculate how much lucky money should be given to each customer so that the
customer will buy products at the stakeholder-specified purchase rate, and the calcu-
lated money is the result assigned to that customer. We do this for each of the four
groups. (8) Finally, we verify the predicted lucky money for all the target customers.

4.2 Training Data and Prediction Data

The historical data about the characteristics, natures and lucky money usage of all the
past customers of the promotion activities is used for training the machine learning
model. The data about the characteristics and natures of all the target customers of the
current promotion activity (“Double 11 Global Shopping Festival 2017”) is used as
prediction data.

We obtain the training data from the data generated in last year’s promotion activity,
which is “Double 11 Global Shopping Festival 2016”. There were hundreds of million
items of data generated in 2016’s “Double 11 Global Shopping Festival”, and each data
item included 275 features and 1 label that specified whether the customer made any
purchase or not. These 275 features are all related to the label or the purchase status.
These features could be classified into the following 8 groups: (1) purchase information;
(2) membership information; (3) personal information; (4) shopping cart actions (e.g.,
adding items to the cart); (5) products collection action e.g., adding products into the
favorite store); (6) products visiting action; (7) customer coupon sensitivity; (8) cus-
tomer purchase capacity. These 8 groups are independent of each other.

For the labelling of the historical training data, we use the label 0 to represent a
customer made no purchase and we use label 1 to represent a customer made any
purchase. We obtain the prediction data by analyzing who will be the target customers
of this year’s “Double 11 Global Shopping Festival”. The target customers of the
promotion activity are determined by summarizing those who have made at least one
purchase action or visiting action in the past 3 months prior to this year’s “Double 11
Global Shopping Festival”, because the expert knowledge has indicated that the cus-
tomers being proactive in the past 3 months prior to an upcoming promotion activity
will also be proactive in the upcoming promotion activity, and those who have
accessed the e-commerce platform will also be valuable for the upcoming promotion
activity. The number of such customers is a few hundred million. The lucky money that
should be given to a customer is highly affected by the customer’s proactivity in the
promotion activity [3]. As such, in order to provide a better lucky money determination
mechanism, we differentiate these customers by their proactivity in the promotion
activity and categorize them into the following 4 groups: (1) Normal Customers,
(2) Watch-Only Customers, (3) Competitor Customers and (4) Lost Customers. The
definitions of these 4 groups of prediction data and the percentages of customers in
each group are illustrated in Table 1.

We divide the big prediction dataset into 4 prediction sub-datasets. All the pre-
diction sub-datasets share the same features as the big training dataset, and the per-
centage data inside each prediction sub-dataset will be passed to the trained machine
learning model as its inputs for predicting the purchase probability of each target
customer. We have also checked for the noise inside the prediction dataset and found

746 M. Fu et al.

no noise in it, since the noise was filtered out by the big data storing and processing
engine provided by Alibaba Group.

4.3 Feature Engineering

If we use all of the 275 features in the training dataset for training the machine learning
model, it may take relatively much time. Although all the features are related to the
labelling, not all of them are of the same importance and only a subset of them have
heavier weights and contribute more to the labelling. The remaining features are with
light weights and some can even be negligible. Hence, in order to reduce the model
training time while maintaining the validity of the model, we need to filter the heavily-
weighted features, and thus we apply feature engineering. While feature engineering
also includes feature generation and feature transformation, we are only concerned with
feature filtering, because we argue that the features in use are already complete enough.

Feature filtering can be performed in several ways, such as by expertise, random
sampling or relying on external feature engineering tools, and we determine to perform
the feature engineering by using a combination of three ways: (1) relying on the feature
importance determination library provided by popular SDKs (e.g. Python machine
learning libraries); (2) calculating and ordering the entropy values and Gini indexes of
all the features; (3) relying on the gradient boosting decision tree machine learning
library. A combination of these three steps is more suitable than any single method for
determining feature importance and thus results in a better outcome. For a specific
feature, suppose its importance determined by the first step is denoted as W1, and its
importance determined by the second step is denoted as W2, and its importance
determined by the third step is denoted as W3; we assume these three importance values
are of the same weight since there is no apparent clue to indicate which one is more
accurate than another one; then the final importance of this feature is calculated as
(W1 + W2 + W3)/3. We calculate this importance value for each feature and extract the
top 50 important features. This answers our research question 1. Among the top 50
important features, their weights range from 0.005 (occupation) to 0.35 (lucky money
amount), and they come from all the eight feature groups: 28 of them belong to the
group of purchase information related features, 7 of them belong to the group of

Table 1. Four groups of prediction data.

Group Definition Percentage

Normal
customers

The customers who have made at least 1 purchase during the
past 3 months

90.5%

Watch-only
customers

The customers who only accessed the e-commerce platform
and merely browsed products on the platform without
making any purchase during the past 3 months

4.5%

Competitor
customers

The customers who have bought products only from the
competitors of Alibaba Group during the past 3 months

3.8%

Lost
customers

The customers who haven’t made any purchase or products
browsing during the past 3 months

1.2%

Overall customers: 100%

DAliM: Machine Learning Based Intelligent Lucky Money Determination 747

membership information related features, 5 of them belong to the group of personal
information related features, 2 of them belong to the group of shopping cart actions
related features, 4 of them belong to the group of products collection actions related
features, 2 of them belong to the group of products visiting actions related features, 1 of
them belongs to the group of customer coupon sensitivity, and 1 of them belongs to the
group of customer purchase capacity related features.

4.4 Training Model Selection and Parameter Tuning

We determine to investigate four training model candidates and choose the best one
among them, and they are: Support Vector Machine (SVM), Logistic Regression (LR),
Random Forest (RF) and Gradient Boosting Decision Tree (GBDT). In our pioneer
study, we noticed that GBDT can provide better accuracy, precision and recall than the
other three, and hence we choose GBDT as the training model. In order to confirm the
validity of the selected GBDT training model and its parameters, we further investigate
the GBDT model by using the first half of the historical data as the training dataset and
the second half of the historical data as the prediction dataset, and the results show that
the accuracy is 83.6%, the precision is 0.82 and the recall is 0.77. Although the
accuracy is not very high, considering the huge amount of base data and the limited
lucky money budget, we assume that the data with correctly predicted results is large
enough for assigning lucky money properly. The machine learning model, denoted as
G(F), can be represented as below:

G Fð Þ ¼ g x1; x2; . . .; xnð Þ; n ¼ 50 features countð Þ ð4Þ

Where g(.) is the function that represents the GBDT model used for predicting the
purchase status and xi denotes each feature of any customer inside both the training
dataset and the prediction dataset. This answers the research question 2.

4.5 Data Prediction

We use the result returned by the GBDT model to calculate the purchase rate of each
customer in the prediction dataset. The features of each customer in the prediction
dataset are denoted as Xi, and the GBDT machine learning model can be denoted as g
(Xi), so the purchase rate of the customer, denoted as Pi, is calculated as:

Pi ¼ g Xið Þ; i 2 T ð5Þ

Where T is the count of the target customers inside the prediction dataset.
When we make the prediction, the feature of lucky money amount does not use a

fixed value. Instead, we use a set of sample lucky money amounts for this feature. The
minimum lucky money amount must be in accordance with the requirements of the
stakeholders (e.g. 1 RMB); the maximum amount should also satisfy the business
requirements (e.g. 25 RMB); the average lucky money amount can also be determined
according to the overall lucky money budget and the number of lucky money target
customers. Suppose the minimum lucky money amount is 1, the maximum lucky

748 M. Fu et al.

money amount is 25 and the average lucky money amount is 8, then the lucky money
samples used in DAliM could be 1, 5, 8, 10, 15, 20, 25. The purchase rate values
returned when using all of these lucky money samples can be denoted as P(1), P(5), P
(8), P(10), P(15), P(20) and P(25), respectively.

4.6 Lucky Money Determination

After we obtain each customer’s purchase rate for each sample lucky money amount,
we can determine how much lucky money can hit the intended purchase rate specified
by the stakeholders. We define the stakeholder-specified purchase rate as R and for
each customer we need to find the target lucky money amount, denoted as M, to make
sure R and M can satisfy the following formula:

R� g X 0
i ;M

� �
; i 2 T ð6Þ

Where X0
i denotes the customer’s features excluding the feature of the lucky money

amount and g(.) is the function that represents the GBDT model used for predicting the
purchase rate. Considering the rule that larger amount of lucky money results in a
higher purchase rate, we argue that the final lucky money can be determined by making
and analyzing the regression over the sample lucky money amounts and the corre-
sponding purchase rates. Suppose the lucky money samples are denoted as set S, and
the predicted purchase rates for all the lucky money samples are denoted as set P, we
apply a smoothing regression algorithm to determine each customer’s target lucky
money amount, as shown in the below algorithm. The inputs are the lucky money
samples set S, the purchase rates set P in response to S and the stakeholder-specified
target purchase rate R. This algorithm is able to assign the appropriate money to the
customers sensitive to lucky money, which answers our research question 3.

Algorithm 1: Lucky Money Amount Determination Algorithm
Inputs: the lucky money samples set S, the purchase rates set P,

the stakeholder-specified purchase rate R
Output: the final lucky money amount
1 function DetermineLuckyMoney (S, P, R) {
2 for (i ← 1; i < |S|; i++) {//this is for smoothing the rates
3 if (P[i] < P[i-1]) {
4 P[i] ← P[i-1];}}
5 for (j ← 0; j < |P|; j++) {//this is for regression of the rates
6 if (P[j] >= R) {
7 if (j == 0) {return S[j]; }
8 else if (P[j] == R) {return S[j]; }
9 else if (j > 0) {
10 slope ← (P[j] - P[j - 1]) / (S[j] - S[j - 1]);
11 amount_to_deduct ← (P[j] – R) / slope;
12 lucky_money ← S[j] - amount_to_deduct;
13 return lucky_money; }}}
14 return 0; //if all the rates are smaller than R, return 0
15 }

DAliM: Machine Learning Based Intelligent Lucky Money Determination 749

5 Experimental Evaluation

We have implemented DAliM for the promotion activity called “Double 11 Global
Shopping Festival 2017” initiated by Alibaba Group, as such, our experimental eval-
uation is based on a real-world large scale scenario. In the following subsections, we
describe the experimental environment, illustrate the experimental procedure, analyze
the experimental results and provide some discussion for the experimental results.

5.1 Experimental Environment

The experimental environment is shown in Fig. 2. The historical training data are
stored in Alibaba Group’s big data processing platform (ODPS), which provides dis-
tributed data storage services and big data processing services. This is where we
warehouse all the training data and prediction data. Then, the training data and the
prediction data are passed to the distributed machine learning platform.

The machine learning model is derived based on the training data, and 4 groups of
prediction data will be inputs of the machine model for purchase rates prediction. Next,
we employ our lucky money determination engine to figure out the appropriate lucky
money that can satisfy the stakeholder-specified requirements for each target customer.
Finally, the lucky money will be dispensed to these customers through our lucky
money dispensing engine. Alibaba Group is using a web service-oriented architecture

Fig. 2. Experimental environment

750 M. Fu et al.

for all of the services involved in the experiment, and we make use of these web
services via front-end browsers.

5.2 Experimental Procedure

We run two sets of lucky money dispensing mechanisms simultaneously: the first one
uses our proposed method and the second one uses the random lucky money based
method. By using the random lucky money base method, the customers who should
receive lucky money are randomly selected and the lucky money amounts given to
them are also randomly determined, and the random amounts are within the threshold
set by the stakeholders. The second method meets Alibaba Group’s business standards
and requirements, and hence it is used for comparison with our proposed method. For
each prediction sub-dataset, we divide it into two sets, where the first set uses the old
method and the second set uses our method. As such, these two methods are applied on
two sets of customers for each of the 4 prediction sub-datasets, and these two customer
datasets have the same statistical distribution because we control both of their volumes
to be statistically large enough, though they are different in size. In this way, essentially
we apply the AB testing. The customers whose lucky money is determined by our
method are called the B-group, and the customers whose lucky money is determined by
the existing old method are called the A-group. The experimental procedure is strictly
following the lucky money dispensing and spending workflow executed in the pro-
motion activity of “Double 11 Global Shopping Festival 2017”. Hence, the experi-
mental procedure is as below:

Step 1: determination of the A-group and the B-group of target customers. For each
of the 4 prediction data groups, we randomly select 2% of the customers in the group as
the A-group and select the remaining customers in the group as the B-group. By doing
so, we can make sure that the distribution of the A-group is the same as the distribution
of the B-group, and we can also to a large extent avoid the negative effects that are
brought by the existing old method.

Step 2: making all the target customers receive the pre-arranged lucky money. The
promotion activity takes place on 11 Nov 2017; between 1 Nov 2017 and 7 Nov 2017,
it is the time for dispensing lucky money to customers. During these 7 days, every
customer will receive the lucky money after he/she logins into the e-commerce web
page and clicks on the promotion activity button. The customers in the A-group will
receive the money determined by the existing method while the customers in the B-
group will receive the money determined by our proposed method. However, the
received lucky money is not allowed to be used until 11 Nov 2017 (Double 11).

Step 3: customers purchasing products with the given lucky money. On the day of
11 Nov 2017, all the target customers who have received lucky money will make a
purchase with the given lucky money, and we record the details of all of these
transactions, including whether each customer has made any purchase.

Step 4: obtaining purchase status data of the A-group and the B-group and making
a comparison between them. For each of the 4 groups of prediction data, we compare
the purchase rate of its A-group and that of its B-group.

DAliM: Machine Learning Based Intelligent Lucky Money Determination 751

5.3 Experimental Results

We obtain the experimental results for each of the 4 groups of target customers: normal
customers, watch-only customers, competitor customers and lost customers. Each
group consists of the A-group and the B-group, and for both the A-group and the B-
group, we calculate the actual purchase (denoted as Ra) based on the formula below:

Ra ¼ N
M

� 100% ð7Þ

Where N is the number of those customers who have made any purchase with the
given lucky money, and M is the number of all the customers who have been given
lucky money.

We first show the results for the overall target customers and walk through the
experimental results for the 4 groups of target customers one by one. The experimental
results for the overall customers are shown in Table 2.

We can see that the average lucky money amount for the B-group which uses
DAliM has decreased significantly by 41.71% compared to the average lucky money
amount for the A-group which uses the existing old method, and the actual purchase
rate when using DAliM has increased by 24.94% compared to the actual purchase
when using the existing old method. Hence, DAliM improves on the existing old
method. On the one hand, DAliM is able to save money; on the other hand, DAliM is
able to increase the actual purchase rate.

For the experimental results for the normal customers, we notice that the average
lucky money amount for the B-group which uses DAliM has decreased by 43.56%
compared to the average lucky money amount for the A-group which uses the existing
old method, and the actual purchase rate when using DAliM has increased by 26.4%
compared to the actual purchase rate when using the existing old method. The results
show that normal customers make frequent online purchases regularly, and there is no
need to attract them by giving them a relatively large amount of lucky money.

For the experimental results for the watch-only customers, we notice that the
average lucky money amount for the B-group which uses DAliM has increased by
100.73% compared to the average lucky money amount for the A-group which uses the
existing old method, and the actual purchase rate when using DAliM has increased by
18.4% compared to the actual purchase rate when using the existing old method. The
fact that the average lucky money amount when using DAliM is more than the average

Table 2. Experimental results for overall customers.

Group AB-
group

Lucky money
methods

Decreased average
amount (B over A)

Increased purchase
rate (B over A)

Overall
customers

A-
group

Existing old
method

41.71% 24.94%

B-
group

DAliM

752 M. Fu et al.

amount when using the old method is in accordance with the stakeholder’s expectation,
because a good possible way to drive customers who show interest in buying products
but do not actually buy them to make the purchase is to provide them with more price
discount. Our suggested approach is able to find out this rule and take advantage of it.
Nevertheless, we notice that both methods do not result in a very high purchase rate,
and this is because making watch-only customers buy products is intrinsically a
challenge. Anyhow, DAliM improves on the existing old method.

For the experimental results for the competitor customers, we notice that the
average lucky money amount for the B-group which uses DAliM has increased by
105.03% compared to the average lucky money amount for the A-group which uses the
old method, and the actual purchase rate when using DAliM has increased by 16.0%
compared to the actual purchase rate when using the existing old method. The rela-
tively higher expenditure on lucky money is because a good possible way to drive
customers who only buy products from an e-commerce corporation’s competitor is to
provide them with better price offers, and a relatively large amount of lucky money is
equivalent to a better price offer. Both methods yield relatively low purchase rates
because making the customers who have got accustomed to our e-commerce business’s
competitors switch the loyalty to our e-commerce business is not that straightforward
and requires many other conditions.

For the experimental results for the lost customers, we notice that the average lucky
money amount for the B-group which uses DAliM has increased by 103.91% com-
pared to the average lucky money amount for the A-group which uses the old method,
and the actual purchase rate when using DAliM has increased by 17.5% compared to
the actual purchase rate when using the existing old method. The results show that a
potential way to drive customers who no longer buy products from our e-commerce
business is to provide them with better price offers and more discounts.

5.4 Discussion

The experimental results are in accordance with the business requirements defined by
the business stakeholders. It is requested that the minimum number of customers
receiving lucky money should be reasonable, and the expected number of customers
who will buy products during the promotion activity should be a relatively large
number. So, the overall target purchase rate can be calculated based on this informa-
tion. With the lucky money budget set by the stakeholders, the average lucky money
per customer can be calculated. For the sake of business confidentiality, we do not
show these numbers in this paper. As such, we compute the actual average lucky
money amount per customer resulting from our method and can find that it is within the
stakeholder-defined average amount; the actual purchase rate when using our method is
also larger than the stakeholder-specified target purchase rate. Moreover, with DAliM,
28% more customers have received the lucky money compared to last year’s promotion
activity, which well satisfies the stakeholder-specified requirement about the number of
lucky money target customers.

DAliM: Machine Learning Based Intelligent Lucky Money Determination 753

6 Conclusions and Future Work

E-commerce businesses compete for the market by several ways, one of which is called
the Lucky Money strategy. Lucky money is a type of intermediary that is capable of
encouraging customers to buy products from marketplaces. However, the existing ways
of lucky money determination usually cannot fully satisfy the business objectives and
goals set by the stakeholders, especially for large-scale e-commerce businesses like
Alibaba Group. As such, this paper proposes a lucky money intelligent determination
approach, called DAliM, for e-commerce businesses to achieve their predefined
business objectives such as purchase rates. We design and implement DAliM based on
a set of machine learning based techniques. It is able to issue an appropriate amount of
luck money to each customer to make sure the customers can buy products at the
stakeholder-defined purchase rate. We evaluate DAliM in a real promotion activity
named “Double 11 Global Shopping Festival 2017” initiated by Alibaba Group. A few
hundred million real customers’ data from all over the world have been used for the
evaluation. The experimental results show that our method can decrease the lucky
money spent by 41.71% and increase the final purchase rate by 24.94% on average
compared to the existing old method.

Our future work includes: (1) try applying DAliM on other promotion activities and
research on how to readjust it to cater for these activities; (2) obtain more historical
training data, train a more accurate prediction model and propose a better way of
selecting the target customers of the promotion activity.

Acknowledgement. This research is initiated by Alibaba Group and supported by Macquarie
University and University of Macau. We express our special gratitude to all the organizations.

References

1. Sharma, S.: Internet marketing: the backbone of ecommerce. Int. J. Emerg. Res. Manag.
Technol. 4, 200–202 (2015)

2. Turban, E., King, D., Lee, J.K., Liang, T.P., Turban, D.C.: Electronic Commerce: A
Managerial and Social Networks Perspective. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-58715-8

3. Alibaba Group’s Lucky Money Packet. https://www.alibaba.com/showroom/lucky-money-
packet.html. Accessed 28 Feb 2018

4. Tonnison, W., Tonnison, J.I.: Online E-commerce and networking system with user
requested sponsor advertisements, patent, App/Pub Number: US20090292595A1, 26
November 2009

5. Clemons, E.K., et al.: Impacts of E-commerce and enhanced information endowments on
financial services: a quantitative analysis of transparency, differential pricing, and
disintermediation. J. Financ. Serv. Res. 22(1–2), 73–90 (2002)

6. Yu, L., et al.: Method and system for communication in instant messaging application,
patent, App/Pub Number: US20170178094A1, 22 June 2017

7. Liu, W., He, X., Zhang, P.: Application of red envelopes–new weapon of WeChat payment.
In: 5th International Conference on Education, Management, Information and Medicine
(EMIM 2015) (2015)

754 M. Fu et al.

http://dx.doi.org/10.1007/978-3-319-58715-8
http://dx.doi.org/10.1007/978-3-319-58715-8
https://www.alibaba.com/showroom/lucky-money-packet.html
https://www.alibaba.com/showroom/lucky-money-packet.html

8. Yuan, Y., et al.: Online red packets: a large-scale empirical study of gift giving on WeChat.
Cornell University library arXiv:1712.02926, 8 December 2017

9. Xie, C., Putrevu, J.S.H., Linder, C.: Family, friends, and cultural connectedness: a
comparison between WeChat and Facebook user motivation, experience and NPS among
Chinese people living overseas. In: International Conference on Cross-Cultural Design
(CCD 2017), pp. 369–382, 14 May 2017

10. Alibaba Group’s Buyer Official Forum. http://buyer.alibaba.com/forum. Accessed 28 Feb
2018

11. Chaffey, D.: E-Business & E-Commerce Management Strategy, Implementation and
Practice, 5th edn. Pearson Education Limited, London (2011). ISBN 978-0-273-75201-1

12. Gordijn, J., Akkermans, J.M.: Value-based requirements engineering: exploring innovative
e-commerce ideas. J. Requir. Eng. 8(2), 114–134 (2003)

13. Tsalgatidou, A., Pitoura, E.: Business models and transactions in mobile electronic
commerce: requirements and properties. J. Comput. Netw. 37(2), 221–236 (2001)

14. Huang, Z., Benyoucef, M.: From E-commerce to social commerce: a close look at design
features. J. Electron. Commer. Res. Appl. 12(4), 246–259 (2013)

15. Khan, Z.H., Alin, T.S., Hussain, M.A.: Price prediction of share market using artificial
neural network (ANN). Int. J. Comput. Appl. 22(2), 42–47 (2011)

16. Krollner, B., Vanstone, B., Finnie, G.: Financial time series forecasting with machine
learning techniques: a survey. In: 2010 European Symposium on Artificial Neural Networks:
Computational and Machine Learning, April 2010

17. Abdullah, S.N., Zeng, X.: Machine learning approach for crude oil price prediction with
artificial neural networks-quantitative (ANN-Q) model. In: 2010 International Joint
Conference on Neural Networks (IJCNN 2010), October 2010

DAliM: Machine Learning Based Intelligent Lucky Money Determination 755

http://arxiv.org/abs/1712.02926
http://buyer.alibaba.com/forum

Service-Oriented Approach for Analytics
in Industry 4.0

Philippe Lalanda1(✉) and Denis Morand2(✉)

1 Grenoble University (UGA), 38058 Grenoble, France
philippe.lalanda@imag.fr

2 Schneider Electric, 06510 Carros, France
denis.morand@imag.fr

Abstract. Pervasive computing promotes the integration of smart electronic
devices in our living and working spaces in order to provide new, advanced serv‐
ices. Many technologies and architectural patterns are proposed to develop such
services. The however number of real world applications is still limited. In this
paper, we present a real world deployment related to Industry 4.0. This article
details our technical choices and the benefits of the approach, mostly based on
service-oriented technology. First and foremost, we also point out the specific
requirements and constraints we had to face in this work.

Keywords: Pervasive computing · Service-oriented components · Industry 4.0

1 Introduction

Pervasive computing [1, 2] promotes the integration of smart electronic devices in our
living and working spaces in order to provide new, advanced services. Such devices are
mobile or static, can take multiple forms, and pick up a wide variety of signals in the
environment. They collect contextual information, run local computation, and, in some
cases, directly act upon the environment. This allows the implementation of simple,
reactive services like opening an emergency door when a triggering condition is
detected. Pervasive devices are also enhanced with networking capabilities so that they
can communicate with each other or with more powerful computing elements, located
in close proximity or in the cloud. This is of course necessary to implement complex
services, based on various data sources and requiring significant computing and memory
capacities.

The proliferation of such pervasive devices, coupled with the widespread availability
of the Internet, makes pervasive computing more concrete every day. This new tech‐
nology has profound effects on entire industries. This applies in particular to the manu‐
facturing domain where the notion of Industry 4.0 is gaining increasing attention. The
purpose of this initiative is to bring together new IT technologies and production
processes to enable the emergence of smart, connected manufacturing. The term, coined
in 2011 by a government-funded German project, refers to what could be the fourth
industrial revolution. Industry 4.0 is based on the use of new production techniques, new

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 756–770, 2018.
https://doi.org/10.1007/978-3-030-03596-9_54

https://doi.org/10.1007/978-3-030-03596-9_54
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_54&domain=pdf

materials, and the generalized adoption of digital technologies [3]. In this paper, we
focus on the latter point, which constitutes a tremendous challenge.

Industry 4.0 thus promotes seamless integration between field devices controlling
operations in the plant floor and supervision systems, usually located in IT facilities [4,
5]. Among many benefits, such integration should allow the systematic oversight and
improvement of production activities and resource management. However, a large
number of problems have yet to be fully addressed to realize that vision. In particular,
new software architectures have to be designed and deployed in order to allow gener‐
alized connectivity. These architectures must integrate heterogeneous software compo‐
nents, including middleware, which are kept separate so far and usually built by different
expert teams. This is a significant challenge for most industrial companies, which do
not always have the right skills to do so.

The problem is made worse by the fact that architectural principles are missing today
to successfully and repetitively drive Industry 4.0 developers. Potentially, new services
can use a variety of computing resources distributed along a cloud-to-devices continuum
[6, 7]. Getting the right architecture for a given service, that is making the right decisions
about where to compute and store data is still an open issue. Today, this is essentially
done on a case-by-case basis.

The purpose of this paper is to present an architecture and a service-oriented platform
that have been designed by Schneider Electric to deploy new services supervising water
management stations. Implementing this service required the design of a decentralized
architecture where a number of analytics are run close to devices and longer-term
analytics are run in a partner cloud, as it is usually the case today. Placing computing,
control, and storage functions close to end user devices, that is in the so-called fog layer,
turned out to be necessary in order to deal with stringent requirements related to
performance, cost, security and agility. It led us, however, to build a fog infrastructure
allowing the parallel and effective development of heterogeneous components by
different teams.

The paper is structured as it follows. First, our driving service is presented. This use
case has been entirely implemented and is now fully operational. In this section, we
point out the specific requirements and constraints related to an effective industrial
deployment. Section 3 presents and justifies the global architecture that has been devel‐
oped. This architecture relies on the notion of smart gateway running in the fog layer.
We show that the use of such gateway comes with some significant benefits but also
brings important constraints. Section 4 focuses on the smart gateway and presents its
architecture. Implementation is detailed in Sect. 5. Related work is presented in Sect. 6
and the paper is concluded by Sect. 7.

2 Running Example

This paper focuses on the supervision of Schneider Electric pumping stations, which are
facilities for moving fluids from one place to another. Pumping stations are usually part
of more global infrastructures managing water in large, populated areas. This manage‐
ment consists of all main activities inherent to water treatment including supply, transfer

Service-Oriented Approach for Analytics in Industry 4.0 757

under gravity, drainage, sewage, etc. We focus in this paper on a network of stations
located around Paris (see Fig. 1). The infrastructure includes around 10 pumping
stations, many lifting stations and a major water treatment station.

Fig. 1. Water management infrastructure near Paris.

Pumping stations have to maintain consistent water pressure and water flow in order
to keep the global infrastructure in good working order. This is a complex process
requiring close monitoring and continuous adjustment of a number of configuration
parameters (for pumps, drives, PLCs, etc.). In particular, it is essential to avoid cavita‐
tion, which is the formation of vapor cavities in the water within the pump. Cavitation
can be destructive, entailing significant costs and serious disruptions of operation.

In most installations, control and supervision are achieved by specific drives. Local
technicians routinely visit installations to inspect and audit processes through dedicated
interfaces. This approach suffers from many limitations. First, technicians are not always
on site, which delays maintenance operations. Also, they are not always able to intervene
for lack of knowledge about specific devices or lack of information and documentation
about the overall installation. Optimization in that context is difficult, if not impossible,
to achieve. Advanced analysis is often conducted offline, during post-incident reviews
by experts. In our case, experts are located in Boston, USA.

As illustrated by Fig. 2, we connected field devices to the cloud in order to integrate
local and remote supervision [5]. The goal was to bring operational data to supervising
headquarters and, conversely, to push down information to local technicians in case of
a problem. When abnormal situations are detected, alerts and related data are sent to
experts on their smartphone. Experts then diagnose the technical problem and send
instructions to technicians on site. Instructions come with all the useful information to
fix a problem, including data, images or schemas.

758 P. Lalanda and D. Morand

Fig. 2. Use case description.

In this solution, most software complexity is absorbed by the cloud infrastructure.
Data collected in the plant floor is moved to the cloud and stored in centralized data
centers. Powerful servers, deployed on demand, are then used to run analytics. Gateways
in the pumping stations are very simple: their role is to collect data from field devices,
possibly do some pruning to remove faulty data, and send up relevant data up to the
cloud.

This architectural approach actually makes sense and has been already adopted by
Industry 4.0. Analytics are based on large volumes of data that must be stored and
accessed rapidly, and require significant computing power. Obviously, cloud infrastruc‐
tures provide the necessary facilities to do so. They are known to offer great benefits in
terms of computing power, elasticity, flexibility, pay-per-use facilities and security.
Another reason relates to administration simplicity. Cloud providers are in charge of the
management and control of the cloud infrastructure. Manufacturers and service
providers can then focus on their own code, generally through virtualized gateways.
Most of the time, this is easy and fast. In contrast, managing business code running on
field gateways is more complicated and time demanding. A third major reason relates
to evolution. It is clearly much easier to implement cloud-to-cloud integration in order
to connect new devices instead of gateway-based integration. This is especially true
when integrating devices using new field buses or lacking appropriate APIs.

It turned out however that this approach has some limitations [8, 9]. First, some
services are time-critical and cannot be executed in the cloud due to unpredictable delays
or insufficient bandwidth. Security is also seriously challenging current architectures.
First, users are not comfortable with the idea of sensitive data being stored in clouds
they don’t trust. Also, the way cloud-based services are run raises some issues. Cloud
solutions for security rely on perimeter-based protection. If the perimeter is endangered,
the common countermeasure is to take the system offline. This causes service disruption
in all the facilities managed by the corrupted cloud, which is not acceptable for clients.

Finally, in economical and ecological terms, it does not appear opportune to transport
and store big amount of data in clouds without a well thought out plan. Storage and
communication can be very expensive. Also, to take a broader vision, clouds are big

Service-Oriented Approach for Analytics in Industry 4.0 759

energy consumers that should not be used to store irrelevant data or data that could be
kept near devices.

3 Global Architecture and Requirements

We have designed an architecture where computing and storage functions are distributed
more effectively between cloud and fog. Simply put, time-stamped data is collected,
stored, and analyzed near the supervised processes, while synthetized, less critical data
is sent to the cloud for more advanced and time-consuming analysis. The fog infra‐
structure is materialized by smart gateways integrated in the water management stations.
Connection between cloud and gateways is based on secure MQTT.

This architecture (see Fig. 3) is based on the complementarity of fog and cloud
solutions. Clearly, some analytics are more naturally executed in the fog while others
in the cloud. Determining the right distribution is actually a key issue that we had to
tackle in our project. If correctly designed, such architecture allows overcoming many
limitations of the existing solutions relying on computing in the cloud and on end-user
devices. Precisely, this architecture is:

• More efficient. The gateway proximity to physical processes enhances the supervi‐
sion service performance. Time-sensitive problems are identified sooner. They are
reported to experts and then to technicians with smaller latency. This reduces the
risks of the system being taken offline.

• Cheaper. Costs are drastically reduced because a significant portion of data is now
kept in the plant floor. Only relevant, synthetized data are transmitted to the cloud
and billed by the telecom operators. It also reduces the need for Internet bandwidth.
Finally, costs related to the use of commercial cloud services, like storage or
processing, are lowered due to data reduction.

• More agile. Analytics run at the gateway level are fully administered and controlled
by industrials (Schneider Electric here). They can be more flexible and responsive to
client needs. They can update, remove or add services to meet new demands or
changing running conditions. It is more complicated to do so in cloud facilities where
vendors cannot easily provide custom-made functions.

• More secure. The gateway serves as the aggregation and control points for data. It
can be decided to keep sensitive data in the gateway or to perform encryption if they
have to be sent to a cloud.

760 P. Lalanda and D. Morand

Fig. 3. Edge and cloud analytics.

Smart gateways constitute a critical component of the proposed architecture.
However, their implementation turned out to be very challenging for industrials since
they have to meet a number of stringent requirements. Let us review hereafter some
important ones. First, gateways must provide multiple network connectivity. They must
communicate with different devices using heterogeneous field buses, like KNX or
Modbus for instance. Communication protocols also vary according to installations. In
addition, gateways have to provide a sustainable solution to meet the challenges of future
extensions. Control devices are likely to change overtime: pumping stations for instance
are expected to run for several decades and are actually in constant evolution. Finally,
gateways must integrate standard Internet protocols. This is needed to send data to the
clouds over the Internet, but also to be accessible by various web browsers for supervi‐
sion. The latter point becomes crucial since gateways now contain data and analytics
that are not available elsewhere. It is necessary for technicians or experts to get synoptic
views of the current situation, both of the supervised processes and the gateways status.

Second, gateways must exhibit a good level of performance. In the current installa‐
tions, gateways typically have to collect, process and store hundreds items of data per
second. Clearly, these figures can only increase given the industrials’ growing appetite
for added-value device-based services. In addition to that, our gateways must frequently
run analytics implementing often-greedy algorithms. For instance, complex analytics
may have to be triggered every minute. Finally, gateways must be available to provide
real-time information about their status, collected data and analytics results. Imple‐
menting all these functions, while meeting the related requirements, is very challenging.
For instance, process data cannot be missed because analytics are running. This requires
high computation capacities and appropriate software design.

Third, gateways must provide facilities to store data locally (typically, thousands of
items may have to be stored). Those facilities must provide fast access to time-sensitive
data, preferably based on standard request languages. For instance, analytics require
data belonging to a given temporal window or coming from a given set of devices.

Fourth, gateways must be highly available. In our case, pumping stations must be
supervised 24 h a day, 7 days a week. Maintenance activities, including deployment,
must be carefully planned in order to minimize service interruption. This has a great

Service-Oriented Approach for Analytics in Industry 4.0 761

impact on the gateway internal structure, especially if autonomic solutions have to be
used [10].

Fifth, gateways must support the dynamic integration of software components.
Components deal with analytics, mediation operations (for alignment for instance),
communication, etc. They are usually developed by different teams with different paces
regarding development, deployment and maintenance.

Finally, installation cost is also a major requirement. Integrating smart gateways in
existing stations should not require new skills. The approach of most industrialists is
indeed to acquire and install gradually new devices in order to transform existing
processes. Also, by no means, control functions should be impacted by the additional
services.

4 Gateway

Platform
Executing services (applications) at the gateway level is complex. This is due to the
dynamic, heterogeneous and stochastic nature of the pervasive environments and further
complicated by the fact that resources in a gateway are limited and must be managed
explicitly. We believe that streamlining the production of fog-level services requires
developers and system administrators to be equipped with software engineering tools.
A common approach is to introduce an execution platform, or middleware, providing a
development model and a set of technical services, also called non-functional services.
Making a distinction between the execution platform and the hosted services lowers
complexity in terms of code, debug, configuration, administration operations, etc.

We have defined a pervasive platform based on the service paradigm and designed
for the fog level [11]. It allows the production of context-aware applications that can be
autonomically adapted at runtime. To do so, it provides a service-oriented development
model and a set of facilities to communicate with heterogeneous devices, capture and
store contextual information, and allow dynamic deployment of applications and compo‐
nents. More precisely, our platform is entirely built on top of the iPOJO service-oriented
component model [12], which in its turn is based on the OSGi framework [13], as illus‐
trated by Fig. 4. In contrast to most component models, iPOJO does not define explicit
architectures. It specifies components capabilities and needs in terms of services, and
leaves bindings resolutions to the execution framework. Bindings are very flexible and
can be changed dynamically. Architectures are then built at runtime depending on the
components available in a local registry and their properties. Components can be
deployed anytime, using Java’s dynamic features (on demand class loading, multiple
class loaders, typing verification before loading etc.). Dependencies are resolved by the
execution platform when components are instantiated. Bindings are set and constantly
re-evaluated by the execution platform. Precisely, every time a service used in a depend‐
ency specification changes, the dependency is re-computed.

762 P. Lalanda and D. Morand

Fig. 4. Pervasive platform.

The data management module (Fig. 4) is about context. Contextual information
covers many different aspects including physical quantities in the environment, meas‐
ures about the supervised, available devices, and status of the supporting computing
infrastructure itself. Collecting such information and keeping it up to date has proved
to be particularly complex. By nature, context is heterogeneous, dynamic and stochastic.
In most cases, it is necessary to integrate disparate devices, applications and network
protocols in order to get the needed information. In the manufacturing industry, protocols
are numerous and depend very much on automation solution providers. Our data
management module is made of a dynamic set of iPOJO components and a database. It
is dynamic in order to reflect the changing nature of the execution environment but also
to deal with applications evolving needs. IPOJO components are used to collect infor‐
mation and to build higher-level information. Important information is kept in the data‐
base.

Finally, the communication module gives access to services and data provided by
devices in the environment, and to the Cloud. This manager supports an open set of
protocols, including Zwave, Zigbee, X10, UPnP, DPWS and Bluetooth, and generates
proxy services [14]. Whenever a device disappears or a remote service becomes
unreachable, the manager detects the disruption and removes the proxy. The set of
managed protocols can be extended at runtime by adding a protocol manager, using
generic deployment facilities. The device access manager is also in charge of monitoring
concurrent invocations. Most of the protocols do not support concurrent accesses. To
enforce integrity, read and write accesses are made sequential.

Application
On top of this platform, we have built our application to deal with the water management
use case. The architecture of this application is partly presented in Fig. 5. This view
highlights three major modules, each of them made of several iPOJO components.
Modules are:

Service-Oriented Approach for Analytics in Industry 4.0 763

Fig. 5. Gateway software architecture.

• A mediation module [15, 16] that is responsible for collecting, filtering, aggregating,
transforming, storing, selecting and sending data up to the cloud.

• A database that is optimized for handling time-sensitive data. It is used to store
process data, device data and analytics data, including intermediary results. It is
connected to a dashboard delivering synoptic views.

• An analytics module that contains an extensible set of analysis components, all
connected to the database. The purpose of analytics is to closely follow the evolution
of the supervised processes and related devices. In our case, analytics are used to
detect cavitation, bad water flows, excessive pressures, etc.

The nominal behavior is rather straightforward. Field data are collected, processed
and stored in the database. Different analytics are triggered on a regular basis to check
the proper functioning of the supervised processes and related devices. To do so,
analytics use data kept in the database through a variety of queries and store results,
intermediary and final, in the database. If an issue is detected, a message is sent to the
experts through Google Cloud Messaging. Finally, analytics results and some synthe‐
tized information are sent up to the cloud, after more mediation operations.

The mediation part is implemented as a chain of lightweight service-oriented compo‐
nents called mediators. Each mediator implements a simple mediation operation and is
structured into three elements dealing with synchronization, processing and routing.
Mediators are connected via bindings, describing a connection between an output port
and an input port. Specifically, mediators are built in Java on top of Cilia [17], a frame‐
work entirely based on iPOJO. Cilia is an autonomic integration framework designed
to meet the requirements of cyber physical systems. It offers a set of abstractions to
support design, deployment and update of integration solutions. Specific mediators,
called adapters, implement communication protocols and handle the dynamicity of
resources. The modularity of the mediation solution brings flexibility. It is relatively
straightforward to adapt the mediation chain, and the mediators, to specific field config‐
urations. Specific mediators, called adapters, implement communication protocols and
handle the dynamicity of resources.

The database is a central element of the gateway architecture. In addition to data
collected on the plant floor, it stores all the data generated by the analytics, including
intermediary results. In our architecture, the database can be seen as a shared blackboard.
Indeed, it represents the only means of communication between the main components

764 P. Lalanda and D. Morand

of the gateway, that is the analytics, the in and out mediation parts, and the dashboard.
All these components only have indirect interactions through the database and do not
know each other. This architectural pattern provides a number of benefits, including the
following:

• It allows parallel developments of architecture components since coupling is well
defined. This is very important in our projects, which are generally subject to time
and budget constraints.

• It allows components to be updated at different paces because, once again, of the
weak coupling between components and database.

• It is vary adapted to AI-based systems where control flow of analytics is hard to
formalize and, in addition, may vary according to stations.

• It is also robust in the sense that faulty components do not block the gateway. The
gateway can be rebooted in extreme cases while important items are saved in the
database.

5 Implementation

Platform
The gateway takes the form of an industrial box that is easily pluggable in existing
stations, in particular with Modbus. As said previously, safe, easy and cost-effective
upgrades are especially important in the manufacturing industry that has to deal with a
huge number of plants in operations. Specifically, the gateway is based on Schneider
Electric Magelis G5U, a highly configurable and robust hardware using an Intel X86
processor (1.3 GHz) with 16 Gigabytes of data storage (CF Card) and a memory of
2 Gigabytes (RAM). It is equipped with several network interfaces, including Ethernet
and the most common fieldbuses. It is named IIotBox (Table 1).

Table 1. Gateway footprint.

Modules Footprint (kilobytes)
OSGi 483
OSGi bundles (JSON, WS server) 4449
iPOJO 399
Cilia core 165
Cilia runtime 459

The database implementation is based on Influx DB that ranked first in our lab
experiments in terms of storage and retrieval times. This database is very efficient to
store unstructured IoT-based data, indexed by time. It also provides very fast access
through an SQL-like language with built-in time-centric functions for querying data
structures composed of measurements, which is exactly what is needed by the analytics.
Let us note that the database is also accessed by a dashboard component, which purpose
is to provide immediate information to local or remote technicians. This dashboard
makes use of web server integrated in the Magelis box.

Service-Oriented Approach for Analytics in Industry 4.0 765

Application
Figure 6 presents the detailed architecture implementing our use case. It is based on
three analytics and a number of mediation components to align, store and transfer data.
Precisely, we use OPC/UA and Modbus to collect data from the field. We also use
MQTT, a lightweight messaging protocol optimized for IoT applications, for the cloud
connection. Precisely, in the use case presented in this paper, we have implemented the
following mediators:

Fig. 6. Software architecture for our use case.

• OPC/UA adapter. This adapter collects data characterizing the supervised processes.
Depending on the operational situation, different data sets can be collected, at various
periodicities.

• Modbus adapter. This adapter connects to control devices and HMI and gets infor‐
mation about their running status.

• Filtering and aggregation. This mediator filters out incorrect data (out of pre-defined
limits) and aggregate related items.

• Alignment and storage. This mediator transforms data into a common format used
by the analytics. Then, it writes resulting items in the database. It is based on a node.js
open source library.

• Collect and route. This mediator reads data in the time series database. Alarms are
routed to the Google adapter while regular data are sent to the MQTT adapter.
Frequencies are different.

• MQTT adapter. This adapter connects to a MQTT client in order to establish a secure
and reliable connection to the cloud.

Google adapter. This adapter connects to Google Cloud Messaging. This mobile
service allows developers to send notification data or information to Android-based
smartphones.

766 P. Lalanda and D. Morand

Depending on the station characteristics, between 500 and 1000 measures are
collected every second. A similar number of item is also written in the time series data‐
base every second. This range is conservative: we made sure that the architecture could
support ten times more data. The amount of data sent to the cloud is way smaller. Around
50 synthetized data are sent every month to the cloud. This allowed us to meet the goal
of significantly reducing communication costs.

In order to meet the performance requirements (see Sect. 2), we had to rewrite the
analytics. Indeed, the algorithms initially used in the cloud were too time-consuming
due to bad modularity. We had then to design small-grained algorithms in order to meet
the time-related requirements of the gateway (that cannot be preempted too long to run
“long” analytics). We ended up with three modular analytics characterized by different
time frames and communicating through the database, like in pure blackboard-based
problem solving. Each one has its own logic and can operate independently. Precisely:

• The first one is triggered every 10 s to check operational conditions and provide
synthetized information about the process (stored in the database).

• The second one is run every day. As input, it takes results of the first analytics and
also stores its results in the database.

• The third one is activated once a month and uses intermediately results provided by
the previous calculations. Its outputs are also kept in the database for future use by
the out mediation.

If an issue is detected, a message is sent to the experts through Google Cloud
Messaging. Finally, analytics results and some synthetized information are sent up to
the cloud, after more mediation operations.

6 Discussion and Related Work

As said, Industry 4.0 builds on generalized connectivity. However, its purpose is not to
replace existing PLCs (Programmable Logic Controllers) with new Internet-based tech‐
nology but rather to provide additional added-value services. In the industry, today, these
services mainly rely on cloud solutions. Plant floor gateways can be seen as network
bridges. Their main purpose is indeed to collect data, perform simple mediation opera‐
tions and send the great majority of the gathered data to a cloud. In some cases, they run
simple scenario to coordinate devices actions. They may also be used to implement
actions on devices decided at the cloud level. This is more and more the case, for
instance, in the domain of smart homes.

In order to be largely used to implement Industry 4.0 services, gateways need to get
smarter. Several such platforms have thus been proposed in the pervasive community
to ease application production. Early projects such as Gaia [19] or AURA [19] aim at
providing an infrastructure for applications to integrate devices and modeling environ‐
mental and user context. Gaia provides a context model based on file-system like
resources. However, it lacks tools for helping application development. AURA on the
other hand provides an execution model based on user tasks. Application services are
executed automatically depending on user’s activity.

Service-Oriented Approach for Analytics in Industry 4.0 767

After this initial work, many platforms have been developed on top of the OSGi
framework, which promotes the development of modular and dynamic applications.
Indeed, Pervasive platforms are usually based on the principles of service-oriented
computing where loosely coupled services enable the creation of flexible dynamic
applications. An application is built from several services that can be distributed on
different devices. Extensions were needed to simplify the OSGi development model and
to deal with pervasive specific features like context modeling. For instance, GatorTech
[20] extends the OSGi framework with context representation and heterogeneous device
access services. It also provides touch points required to build autonomic behavior.
SOCAM [21] is another platform based on OSGi. It uses ontologies to model the context
and effectively simplifies the development of context-aware applications. Other plat‐
forms introduced autonomic features. For instance, AMUSE [22] and ACCORD [23]
propose specific component models to build autonomic applications. MUSIC project
[24] provides a service-oriented execution platform and a design studio for developing
context-aware mobile applications. It contains a context model and repository that stores
historical context data. This repository can be queried for deciding on application adap‐
tations.

Similarly, PCOM proposes a component based on the BASE middleware [25]. BASE
offers a service-oriented model that abstracts from concrete interoperability protocols
and shifts the synchronization and interaction pattern into the middleware requiring only
a one-way message service. BASE allows adapting to changes in connectivity by
switching protocols on the fly. Adaptation of the application is only supported by
signaling (un)availability of services. In order to support the programmer, the compo‐
nent system PCOM supports automatic adaptation of applications.

A different approach is employed by Cascadas [26] project, which aims at building
pervasive systems by independent, self-organizing autonomic components. Each
component has access to the knowledge repository that organizes and distributes context
information. Context information about the pervasive environment is fed to the reposi‐
tory and passes through aggregators that can infer relationships and more knowledge.
The project also includes runtime models for verifying execution of components. The
resulting system in principle continuously re-organizes and optimizes itself. However,
in such an approach, application development may suffer from the unpredictable nature
of the system.

7 Conclusion

In this paper, we have presented a real world pervasive application, which purpose is to
supervise water management stations and to trigger alarms when something goes wrong.
We particularly focused on the architecture that effectively distributes computing and
storage functions between cloud and fog. It includes a major component referred to as
smart gateway. Its purpose is to collect, process, store data and to run modular analytics.
The gateway also sends analytics results and synthetized data to the cloud through a
secure connection and a reliable message-oriented middleware. The proposed solution
meets a set of thorny requirements. Some of them are specific to Industry 4.0, like the

768 P. Lalanda and D. Morand

need to limit communication costs in the absence of cheap Internet connection. Others,
like those related to latency, security, performance, or availability, are shared by most
pervasive applications.

The gateway development turned out to be quite challenging. It must host a variety
of components that are developed by different teams with different programming. In
order to smooth up this process, it was important to reduce coupling between compo‐
nents in order to allow parallel developments and independent deployments. Dynamism
is brought by service-orientation that allows application development through late
composition of independent software components.

Two directions are currently explored to improve the current solution. First, deploy‐
ment has to be more automated [27]. Infrastructure as code is very promising, but must
be extended with variability and constraint support. These additions would reflect envi‐
ronment disparities and dynamism. Also, we believe that components administration
interfaces must be improved to better deal with starting or stopping phases.

References

1. Weiser, M.: The computer for the 21st century. In: Human-Computer Interaction, pp. 933–
940. Morgan Kaufmann Publishers Inc. (1995). http://www.ubiq.com/hypertext/weiser/
calmtech/calmtech.htm

2. Satyanarayanan, M.: Fundamental challenges in mobile computing. In: Proceedings of the
Fifteenth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–7. ACM,
New York (1996)

3. Acatech (ed.): Recommendations for implementing the strategic initiative INDUSTRIE 4.0.
Final report of the Industrie 4.0 Working Group (2013)

4. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for Industry 4.0-based
manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

5. Lalanda, P., Morand, D., Chollet, S.: Autonomic mediation middleware for smart
manufacturing. IEEE Internet Comput. 21, 32–39 (2017)

6. Chiang, M.: Fog and IoT: an overview of research opportunities. IEEE IoT J. 3(6), 854–864
(2016)

7. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE IoT
J. 3(5), 637–646 (2016)

8. Lee, C.K.M., Zhang, S.Z.: Development of an industrial internet of things suite for smart
factory towards re-industrialization in Hong Kong. In: Advanced Manufacturing and
Automation (IWAMA) (2016)

9. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on internet of things from industrial
market perspective. IEEE Access 2, 1660–1679 (2014)

10. Lalanda, P., McCann, J.A., Diaconescu, A.: Autonomic Computing – Principles, Design and
Implementation. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4471-5007-7

11. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and directions. In:
Proceedings of the Fourth International Conference on Web Information Systems
Engineering, Los Alamitos, CA, USA, pp. 3–12, December 2003

12. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an extensible service oriented component
framework. In: IEEE International Conference on Services Computing, SCC 2007, pp. 474–
481. IEEE (2007)

13. Pauls, K., McCulloch, S., Savage, D., Hall, R.S.: OSGi in action. Manning (2011)

Service-Oriented Approach for Analytics in Industry 4.0 769

http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm
http://www.ubiq.com/hypertext/weiser/calmtech/calmtech.htm
http://dx.doi.org/10.1007/978-1-4471-5007-7

14. Bardin, J., Lalanda, P., Escoffier, C.: Towards an automatic integration of heterogeneous
services and devices. In: IEEE APSCC, pp. 171–178. IEEE Computer Society (2010)

15. Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25(3),
38–49 (1992)

16. Wiederhold, G., Genesereth, M.: The conceptual basis for mediation services. IEEE Expert
12(5), 38–47 (1997)

17. Lalanda, P., Escoffier, C., Hamon, C.: Cilia: an autonomic service bus for pervasive
environments. In: IEEE SCC, pp. 488–495 (2014)

18. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia:
a middleware platform for active spaces. ACM SIGMOBILE Mob. Comput. Commun. Rev.
6(4), 65–67 (2002)

19. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: toward distraction-free
pervasive computing. IEEE Pervasive Comput. 1(2), 22–31 (2002)

20. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The Gator Tech
Smart House: a programmable pervasive space. Computer 38(3), 50–60 (2005)

21. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based infrastructure for context-aware
applications. IEEE Pervasive Comput. 3(4), 66–74 (2004)

22. Lupu, E., et al.: AMUSE: autonomic management of ubiquitous e-health systems. Concurr.
Comput.: Pract. Exp. 20(3), 277–295 (2008)

23. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for autonomic
applications. In: Autonomic Computing (2004)

24. Rouvoy, R., et al.: MUSIC: middleware support for self-adaptation in ubiquitous and service-
oriented environments. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 164–182.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9_9

25. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - a component system for
pervasive computing. In: Proceedings of International Conference on Pervasive Computing
and Communications, pp. 67–76. IEEE (2004)

26. Baresi, L., Fernando, A.D., Manzalini, A., Zambonelli, F.: The CASCADAS framework for
autonomic communications. In: Vasilakos, A., Parashar, M., Karnouskos, S., Pedrycz, W.
(eds.) Autonomic Communications, pp. 147–168. Springer, Berlin (2012). https://doi.org/
10.1007/978-0-387-09753-4_6

27. Günalp, O., Escoffier, C., Lalanda, P.: Rondo: a tool suite for continuous deployment in
dynamic environments. In: IEEE International Conference on Service-oriented computing
(SCC), pp. 720–727 (2015)

770 P. Lalanda and D. Morand

http://dx.doi.org/10.1007/978-3-642-02161-9_9
http://dx.doi.org/10.1007/978-0-387-09753-4_6
http://dx.doi.org/10.1007/978-0-387-09753-4_6

eTOUR: A Two-Layer Framework for
Tour Recommendation with Super-POIs

Chunwei Wang, Yuanning Gao, Xiaofeng Gao(B), Bin Yao, and Guihai Chen

Shanghai Key Laboratory of Scalable Computing and Systems,
Department of Computer Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, China
{weiwei0224,gyuanning}@sjtu.edu.cn, {gao-xf,yaobin}@cs.sjtu.edu.cn,

gchen@nju.edu.cn

Abstract. Tour recommendation is popular nowadays for providing the
best-fit route plans to tourists. Existing applications only focus on the
sequences design of Points of Interest (POIs) while ignore the detailed
information in large-scale POIs. To further satisfy tourists’ demands, we
propose Embedded Tour (eTOUR), a two-layer framework that takes
these large-scale POIs, which we call Super-POIs, into account. The
framework is first divided into Outer Model and Inner Model and then
combined by an Embedded GRASP-VNS Algorithm based on an embed-
ding strategy. For Outer Model, we apply Greedy Randomized Adaptive
Search Procedure (GRASP) for route construction and Variable Neigh-
borhood Search (VNS) for local search. During the outer route construc-
tion process, Super-POI is first treated as a “meta node” and in the late
period, inner route is revised dynamically to adapt to the outer route
where DFS-based Tree Search with Pruning is applied. Furthermore, we
consider a special case in the Super-POI and modify the solution of Chi-
nese Postman Problem to reduce the complexity. Finally, experiments
based on real datasets demonstrate the effectiveness of our proposal.

Keywords: Tourist Trip Design Problem · Points of Interest
Chinese Postman Problem · Combinatorial optimization

1 Introduction

Tour planning is a challenging task for tourists. They need to gather massive
information and design routes under realistic constraints. Nowadays tour recom-
mendation aims to offer tour plan advice for tourists. Current studies usually
focus on data analysis on POIs’ attributes mined from social networks [3,4].
Then, Tourist Trip Design Problem (TTDP) [2] is proposed to design the route.
In these works, each POI is treated just as a vertice, where detailed information
is ignored and the scenery during the tour is rarely considered.

However, with higher demand in tour planning, new challenges are brought
to current recommendations. POIs have different covering areas and it seems no

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 771–778, 2018.
https://doi.org/10.1007/978-3-030-03596-9_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_55&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_55

772 C. Wang et al.

longer appropriate to treat all the POIs, whatever a small restaurant or a huge
scenic park, as equal. It would be ambiguous to recommend a one-day tour in
Shanghai, China as shown Fig. 1(a) because what tourists actually prefer is a
detailed route in the Bund rather than just reaching it. Hence, sightseeing routes
inside the large-scale POIs, which we call them “Super-POIs” in this paper, are
required to consider and we go through a toy example to illustrate it.

(a) The Bund in Shanghai (b) Yellowstone Park

Fig. 1. Inner route examples

Example 1: John is going on a long vacation in America and one of the POIs
recommended is the Yellowstone Park. However, he would get disappointed if a
rough tour was offered only telling him to visit it. With five entrances existing,
the Yellowstone Park has a complicated road network and plenty of interesting
spots inside it. Under this circumstance, John would be forced to select the
entrances, interesting spots and scenic routes by himself. In contrary, if a detailed
tour plan is given as noted in Fig. 1(b), John would go on this travel happily.

The above example shows the significance of inner route consideration
in Super-POIs. Hence, we propose a two-layer framework, Embedded Tour
(eTOUR) to better satisfy tourists’ demands. We first divide it into Outer Model
and Inner Model, considering the visiting sequence of POIs as well as inner routes
inside the Super-POIs respectively. Then, to combine these two models, we com-
pare three strategies. Firstly, simply splitting a Super-POI into several ones and
merging them into the Outer Graph, as shown in Fig. 2(a), is unsuitable. Some-
times only a few Inner-POIs are selected in tour plans, resulting in a non-full
content trip inside the Super-POI. Another strategy in Fig. 2(b) is first to obtain
several “good” routes in each Super-POIs and then derives trips including choos-
ing the best inner routes. However, in this case, each Super-POI is required to
calculate the inner top k routes initially. Moreover, both two strategies will lead
to a size growth in Outer Graph. Differently, in Fig. 2(c), Super-POI is first
treated as a “meta-node” during the insertion-based route construction and in
the late period, inner route is revised dynamically to adapt to the outer route.
This is because two models are dependent with each other. In addition, only

eTOUR: A Two-Layer Framework for Tour Recommendation 773

selected Super-POIs are supposed to be considered. Hence, we choose the third
strategy.

(a) Node-Splitting Strategy (b) Route-Choosing Strategy (c) eTOUR Strategy

Mined Top k Inner Route
Selected Inner Route

Outer POI
Start and Terminal Initial Inner Route

Revised Inner Route
Super-POI

Centre of Super-POI Interesting spot

Fig. 2. Combination strategies

To achieve this strategy, an Embedded GRASP-VNS Algorithm is correspond-
ingly introduced. Moreover, two methods are developed for Inner Model. Finally,
experiments based on real datasets demonstrate the effectiveness of our proposal.
In the rest of this paper, related work is discussed in Sect. 2. Section 3 describes
the framework and Sects. 4, 5 present the algorithms. Section 6 discusses the
experiments while conclusions are drawn in Sect. 7.

2 Related Work

Tour Recommendation: Framework of current tour recommendations con-
tains two sections, i.e. offline and online section. Offline focuses on the acquire-
ments of POI information and users’ profiles based on photos and contexts shared
on the social networks [6,7]. With the attributes of POIs, online section is to
select POIs and design routes. A “filter-first, tour-second” framework was pro-
posed in [3]. With pre-selected mandatory POIs, collaborative filtering is applied
to identify a subset of optional POIs. Then, trip design is solved via an Iterated
Tabu Search algorithm. [1] proposed a global k-means clustering algorithm and
POIs are replaced by clusters to decrease the complexity.

Tourist Trip Design Problem: The basic model of TTDP is Orienteering
Problem (OP). Its extensions are developed in a various way, taking more real-
istic constraints into account such as Team OP and OPTW [2]. Among kinds of
extensions, TOPTW is the suitable basic problem in tour planning. Vansteen-
wegen et al. proposed an iterated local search heuristic in [10], which consists of
an insertion and a shake step. MC-TOP-MTW [8], taking multi-constraints and
multiple time windows into account, is achieved by GRASP and ILS, while in
[5] Lin et al. proposed a simulated annealing (SA) algorithm for it.

3 A Two-Layer Framework for Tour Recommendation

The eTOUR framework is shown in Fig. 3. We divide our model into Outer
Model and Inner Model, which respectively recommends outer routes and inner
routes inside the large-scale POIs.

774 C. Wang et al.

POI Database

User Database

User's Query

Inner Model

Outer Model
Merge

OFFLINE

Modeling

Modified Chinese
Postman Solu on

Embedded GRASP-VNS

ONLINE

Outer Solution

Inner Solution

Recommendation

N

1

DFS-based Tree Search

Fig. 3. eTOUR framework overview

Definition 1 (Outer-POI). Point of Interest that tourists may choose. For
each Outer-POI V O

i , it has several properties: visit duration dOi , popularity
PopOi , budget cost bOi , time windows TWO

i = [Openi, Closei] and category CO
i .

Outer Model aims at the design of POIs’ visiting sequences. Super-POI is
a special kind of Outer-POI with a large area covered. We treat each POI as a
vertice and convert an Outer Graph GO = (V O, EO). Note that the transport
time tij between each pair of vertices are known by offline section. To recom-
mend a trip plan for user, the profit of each Outer-POI is first predicted. The
profit reflects user’s likelihood to visit the POI and is often measured by the
combination of POI’s popularity and user’s preference. Then, with user’s query
for the trip includes the start and terminal POI, maximum time budget and cost
budget, the route planning is referred to Team Orienteering Problem with Time
Windows (TOPTW) [10]. Its goal is to obtain a route that maximizes the total
collected profits which represents user’s satisfaction to the route plan.

Definition 2 (Inner-POI). Important spots inside the Super-POI. It has two
types namely interesting spots and entrances or exports. Interesting spot in Super-
POI V O

i has properties: visit duration dij, popularity Popij, profit pij and category
Ci

j while the visit durations and profits of entrances or exports are set to zero.

Definition 3 (Scenic-Path). Beautiful path between Inner-POIs V i
j and V i

k ,
which has properties: travel duration tijk, popularity and category.

Inner Model focuses on the inner route design in the Super-POI. Similarly,
the profits of both Inner-POI pij and Scenic-Path sijk are first calculated. In this
problem, the goal is to obtain an optimal route that maximizes the collected
profits both in vertices and edges under the constraints of maximal time T i

max

and entrance selection. Note that vertices can be reached more than once but
the profit and duration time are only collected at the first reach.

4 An Embedded GRASP-VNS Algorithm

An Embedded GRASP-VNS Algorithm in Algorithm1 is proposed to combine
the Inner and Outer Model. As for Outer Model, there are two steps, i.e., route

eTOUR: A Two-Layer Framework for Tour Recommendation 775

construction and local search. The route construction is usually insertion-based,
which means that route is constructed by inserting the most suitable vertice
one by one until no feasible vertice exists. After this, local search is applied to
escape from a local optimal solution. During the construction of Outer Model,
Super-POIs are first viewed as “meta-nodes” and they can be inserted as the
common POI does. In late period, the inner routes of the selected Super-POIs
are considered and revised intermittently to adapt to the constructing routes.

GRASP: Insertion-Based Construction. Greedy Randomized Adaptive
Search Procedure is often applied for construction [3]. At each insertion iter-
ation, promising vertices are picked into a Candidate List according to Eq. (1)
and then randomly select one to insert, which guarantees the route to be greed-
ily and randomly combined. Here, the conception of slack is detailed discussed
in [10].

Ratioi =
p2i

Slacki
avg

; Slacki
avg =

∑
V O
j ∈R Slacki

j

n
(n = |V O

j | ∈ Route) (1)

To determine when to adjust the inner route, we define two criterions in
Eq. (2). Tightness is measured by the average slackness of the route R while
Neighbor Uncertainty signifies the proportion of wait time in Super-POI’s neigh-
bors among the total wait time, denoting the change possibility of its neighbors.

Tightness =
Slackavg

TO
max

≤ α; Neighbor Uncertainty =
Wi + Wlatter(i)

∑
j Wj

≤ β (2)

VNS: Local Search. Four neighborhood structures [9] are applied, (1) 2-Opt:
remove and replace two arcs in a sub-route. (2) Replace: remove one vertice
and replace it with an unvisited one. (3) 2-Opt*: remove and replace two arcs
between two sub-routes in a solution. (4) Insert: insert one available vertice.

5 Solution of Inner Model

5.1 DFS-Based Tree Search with Pruning

Due to the small size of Inner Graph, DFS-based Tree Search is applied for
exact solutions and several pruning methods are proposed. The DFS-Based tree
search systematically constructs path begin with the starting node. Current
node will deeper search for its connected nodes as childnodes and backtrack to
its parentnode if the time constraint breaks or the pruning rule meets.

Rule 1. Due to the multi-allowed reach at each node, blindly searching back and
forth between two or several nodes or rounding in cycle is only time consuming
with no profit collected, which could be skipped.

Rule 2. Further search can stop if the left time in current searching path less
than the Quick-Out Time. Quick-Out Time is defined as the least transport
time from present node to the terminal nodes regardless of node visit and is
apparently the shortest path to the terminal node, which can be easily derived
by Dijkstra Algorithm in O(|V i|log|V i| + |Ei|).

776 C. Wang et al.

Algorithm 1: Embedded GRASP-VNS
1 while RouteNumber ≤ MaxNumber do
2 repeat
3 Select the top K highest ratio node → Candidate List;
4 CurrentNode ← RandomlyChoose(Candidate List);
5 Insert(CurrentNode);
6 foreach Super-POI inserted in Route do
7 if Revision Condition meets then revise inner route;

8 until no feasible insertion available;
9 RouteSet ← Route;

10 repeat
11 foreach Route in RouteSet do
12 Local Search: 2-Opt; Replace; 2-Opt*; Insert;
13 Revise inner route with probability pr;

14 Perturbation;

15 until no further improved solution;
16 output BestRoute;

5.2 Modified Chinese Postman Solution

Here, we discuss a special case of Inner Model. Under many circumstances,
Super-POIs usually have one entrance and the routes traveled by users are sim-
ilar. To simplify this condition, we define a Key Sub-Graph Hi ⊆ Gi, which is
a connected graph with one entrance and assumed to be mandatorily visited.
Moreover, rest of the interesting spots and edges in Gi is set to be optional.

To traverse the Key Sub-Graph Hi, the Chinese Postman Problem (CPP)
is referred. In our problem, a modified method of CPP is developed. The fun-
damental method to solve CPP is to convert the graph into an Euler Graph
by adding the least-weighted edges. These edges are derived by calculating the
minimum weighted matching of the graph constructed by Singular Points and
their pairwise shortest paths. Note that Singular Points refer to the vertice V
that d(V) = 2k − 1, k ∈ N ∗. The only step we have modified is to derive the
shortest path from Graph Gi rather than the Key Sub-Graph Hi. This is moti-
vated by adding a possible lower-weighted edge between two Singular Points and
making the optional paths promising to be added. The algorithm can be solved
in polynomial time with O(|V i|2log|V i| + |V i||Ei| + |V i|3 + |Ei|2).

6 Experiments and Results

Tourism Real Dataset. we crawled POIs information on Baidu Map1, which
includes 82 POIs in Beijing and 50 POIs in Hangzhou. Among these POIs,
there are five Super-POIs in Beijing dataset and three in Hangzhou dataset.
1 http://lbsyun.baidu.com/.

http://lbsyun.baidu.com/

eTOUR: A Two-Layer Framework for Tour Recommendation 777

The attributes of POIs, such as time windows, cost, visit duration location and
popularity, can be obtained from crawler data. Besides, we only consider POIs’
popularity for profit value while ignoring the user preference discussed in Sect. 3,
which will not influence the demonstration of our strategy and algorithm.

The experiments are tested on a Intel Core i5 server with 3.20 GHZ processor
and 8 GB RAM. The programs are coded in Python.

Strategy for Combination of Inner and Outer Model. Here we make
comparisons between Node-splitting, Route-choosing and eTOUR Strategy as
discussed in Fig. 2. As is shown in Fig. 4, eTOUR Strategy has an apparent
advantage over two other strategies on CPU time and is slightly superior in
profit, especially when the graph scales out. This is for the reason that the inner
route in eTOUR Strategy is calculated during the outer route construction,
meanwhile, the outer route will be slightly adjusted according to the latest inner
route, which contributes to be closer to the optimum value. In addition, with only
selected Super-POIs required to be considered, the time cost is reduced markedly.
Moreover, Fig. 4(a) and (c) show that Node-splitting Strategy costs less CPU
time than Route-choosing Strategy while the latter gains slightly better profit
value. This is because Route-choosing strategy selects more valuable routes, yet
it costs much more CPU time.

Performance Under Different Solutions of Inner Model. As shown in
Fig. 5(a) and (b), Modified Chinese Postman method is a little inferior to DFS-
based Tree Search method in both the average profit value and the best profit

Beijing Hangzhou
0

500

1000

1500

A
ve

ra
ge

 P
ro

fit

Node-spliting
Route-choosing
eTOUR

(a) AvgProfit

Beijing Hangzhou
0

500

1000

1500

B
es

t P
ro

fit

Node-spliting
Route-choosing
eTOUR

(b) BestProfit

Beijing Hangzhou
0

5

10

15

C
PU

 T
im

e(
s)

Node-spliting
Route-choosing
eTOUR

(c) CPU Time

Fig. 4. Strategy comparison for combination of two models

Beijing Hangzhouo
0

500

1000

1500

A
ve

ra
ge

 P
ro

fit

Modified Chinese Postman
DFS-based Tree Search

(a) AvgProfit

Beijing Hangzhouo
0

500

1000

1500

B
es

t P
ro

fit

Modified Chinese Postman
DFS-based Tree Search

(b) BestProfit

Beijing Hangzhouo
0

1

2

3

4

5

C
PU

 T
im

e(
s)

Modified Chinese Postman
DFS-based Tree Search

(c) CPU Time

Fig. 5. Performance under different solutions of Inner Model

778 C. Wang et al.

value. However, as is depicted in Fig. 5(c), DFS-based Tree Search method costs
much more CPU time than Modified Chinese Postman method due to the reason
that the latter owns the polynomial complexity.

7 Conclusion

In this paper, we introduce eTOUR, a novel two-layer framework for tour rec-
ommendation, taking Super-POIs into account. We believe that the framework
can absorb interest of the current recommendations and the application of CPP
for a special case may inspire the further data mining of Interesting Patterns.

Acknowledgements. This work is supported by the program of International S&T
Cooperation (2016YFE0100300), the China 973 project (2014CB340303), the National
Natural Science Foundation of China (Grant number 61472252, 61672353), the Shang-
hai Science and Technology Fund (Grant number 17510740 200), and CCF-Tencent
Open Research Fund (RAGR20170114).

References

1. Alghamdi, H., Zhu, S., El Saddik, A.: E-tourism: mobile dynamic trip planner. In:
IEEE International Symposium on Multimedia (ISM), pp. 185–188 (2016)

2. Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G.: A survey on algo-
rithmic approaches for solving tourist trip design problems. J. Heuristics 20(3),
291–328 (2014)

3. Kotiloglu, S., Lappas, T., Pelechrinis, K., Repoussis, P.: Personalized multi-period
tour recommendations. Tour. Manag. 62, 76–88 (2017)

4. Lim, K.H., Chan, J., Leckie, C., Karunasekera, S.: Personalized tour recommenda-
tion based on user interests and points of interest visit durations. In: International
Joint Conferences on Artificial Intelligence (IJCAI), pp. 1778–1784 (2015)

5. Lin, S.W., Vincent, F.Y.: A simulated annealing heuristic for the multiconstraint
team orienteering problem with multiple time windows. Appl. Soft Comput. 37,
632–642 (2015)

6. Lu, X., Wang, C., Yang, J.M., Pang, Y., Zhang, L.: Photo2Trip: generating travel
routes from geo-tagged photos for trip planning. In: ACM International Conference
on Multimedia (ACM MM), pp. 143–152 (2010)

7. Majid, A., Chen, L., Mirza, H.T., Hussain, I., Chen, G.: A system for mining
interesting tourist locations and travel sequences from public geo-tagged photos.
Data Knowl. Eng. 95, 66–86 (2015)

8. Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: The
multiconstraint team orienteering problem with multiple time windows. Transp.
Sci. 47(1), 53–63 (2013)

9. Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-
period orienteering problem with multiple time windows. Comput. Oper. Res.
37(2), 351–367 (2010)

10. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated
local search for the team orienteering problem with time windows. Comput. Oper.
Res. 36(12), 3281–3290 (2009)

Service Management

Hierarchical Recursive Resource Sharing
for Containerized Applications

Young Jin Kim1, Young Choon Lee2, Hyuck Han3, and Sooyong Kang1(B)

1 Department of Computer Science, Hanyang University, Seoul, Korea
{play1490,sykang}@hanyang.ac.kr

2 Department of Computing, Macquarie University, Sydney, Australia
young.lee@mq.edu.au

3 Department of Computer Science, Dongduk Women’s University, Seoul, Korea
hhyuck96@dongduk.ac.kr

Abstract. Applications are increasingly containerized using techniques,
such as LXC and Docker. Scientific workflow applications are no excep-
tion. In this paper, we address the problem of resource contention
between concurrently running containerized scientific workflows. To this
end, we design and implement Hierarchical Recursive Resource Sharing
(HRRS), which structures multiple concurrent containers in a hierar-
chy that automatically and dynamically regulates their resource con-
sumption based on their level/tier in the hierarchy. The hierarchy is
recursively updated as the top-tier container completes its execution
with the second-tier container becoming the top-tier container inher-
iting the resource consumption priority. We have evaluated the perfor-
mance of HRRS using multiple large-scale scientific workflows container-
ized by Docker. The experimental results show the significant reduction
of resource contention as evident in performance improvement of 49%,
160% and 18% compared with sequential execution, concurrent execu-
tion with fair resource share and execution with submission interval,
respectively.

Keywords: Resource sharing · Containers
Containerized scientific workflows

1 Introduction

First, it was virtual machines (VMs). Advances in x86 VM techniques, such as
VMware [2] and Xen [4] have revolutionized the way computing resources are
used, with many promises of cloud computing including elasticity and scalability.
Now, it is lightweight containers, such as LXC [1] and Docker [9] containers. The
co-location of these containers is also actively sought for resource efficiency. This
results in the well-known performance isolation issue, as in VM consolidation,
due to resource contention between co-located containers.

Like many other applications, scientific workflows have been increasingly
containerized for efficient management and better performance. However, due
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 781–796, 2018.
https://doi.org/10.1007/978-3-030-03596-9_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_56&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_56

782 Y. J. Kim et al.

to their large-scale nature with high resource demands, the realization of such
advantages is difficult to achieve when resource efficiency/utilization needs to
be explicitly taken into account. In particular, scientific workflows often deal
with large amounts of data leading to their inherent resource consumption pat-
tern of “read I/O - CPU - write I/O” showing resource consumption peaks and
valleys (see Fig. 1(b)). While the concurrent execution of scientific workflows
can increase resource utilization particularly exploiting those load valleys, the
excessive resource contention during resource consumption peaks negates such a
utilization benefit resulting in significant performance degradation.

In this paper, we address the problem of resource contention between con-
currently running containerized scientific workflows. Scientists often run multiple
instances of a particular workflow (or workflow ensemble) for the extensive scien-
tific analysis with different data sets. For example, with the Montage astronom-
ical image mosaic engine [13] (Fig. 1), a set of small image mosaics are needed to
produce a large image mosaic; the Galactic Plane workflow ensemble [8] consists
of 17 workflows, each of which contains 900 sub-workflows. Clearly, there is a
dilemma between resource utilization and performance.

Motivated by the fact that scientific workflows are resource-intensive appli-
cations in both CPU and I/O showing a certain resource consumption pattern
with several execution phases (see Fig. 1(b)), we propose to concurrently run
multiple instances of a containerized scientific workflow application on a single,
large physical machine, with their resource consumption alternating for efficient
resource use (or simply resource efficiency). Note that we have chosen to use a
single, large physical machine to avoid excessive communication between tasks of
a particular workflow. To this end, we develop Hierarchical Recursive Resource
Sharing (HRRS) as a novel resource sharing technique. HRRS enables multiple
containers to be tiered in a hierarchical fashion, for the dynamic and automatic
regulation of their resource consumption. In particular, the hierarchy dictates
the resource consumption priority. The hierarchy is recursively updated as the
top-tier container completes its execution with the second-tier container becom-
ing the top-tier container inheriting the resource consumption priority.

We implement HRRS using Docker containers and demonstrate its efficacy
with multiple large Montage workflows, each of which deals with over 8.5K tasks
and approximately 35GB of data footprint. The performance gain of HRRS by
reducing resource contention has been presented in comparison with sequen-
tial execution, concurrent execution with fair resource share and execution with
submission interval. The first two execution modes are two extreme ways of exe-
cution whereas the last one is a compromise by running containers (Montage
workflows) with a certain time interval ‘profiled’ before, i.e., 260 s for the Mon-
tage workflow used in this study. Our experimental results show that HRRS
outperforms these three modes by 49%, 160% and 18% on average and up to
72%, 411% and 50%, respectively.

We choose an astronomical image mosaic engine, Montage [13] (Fig. 1) as
a representative example of scientific workflows due to the following reasons:
(1) there are several execution phases showing peaks and valleys of resource

Hierarchical Recursive Resource Sharing for Containerized Applications 783

Peak 1

Valley 1

Peak 2

Valley 2

(a) Workflow structure represented by a directed acyclic graph (DAG). Nodes represent tasks and
edges represent precedence/(data) dependencies.

(b) Resource consumption patterns. Top one shows CPU resource consumption pattern. Bottom
one shows I/O resource consumption pattern. Corresponding tasks of load peaks and valleys are
shown in Figure 1(a).

Fig. 1. Montage workflows.

consumption, (2) scientists in astronomy do have the need to execute multiple
instances of a Montage workflow, (3) Montage workflows are both compute-
intensive and data-intensive, and (4) the Montage source code and data is avail-
able to the general public (i.e., open source1). However, HRRS is not limited
to Montage or scientific workflows. In fact, it can be applied to any applica-
tions that show load peaks and valleys and that have the need for concurrent
execution.

1 The source code and documentation are available at https://github.com/Caltech-
IPAC/Montage.

https://github.com/Caltech-IPAC/Montage
https://github.com/Caltech-IPAC/Montage

784 Y. J. Kim et al.

The rest of this paper is organized as follows. Section 1 presents HRRS.
Section 3 details the implementation of HRRS. Section 4 presents experimental
results. We discuss related work in Sect. 5 followed by our conclusion in Sect. 6.

Fig. 2. HRRS conceptual diagram. Whichever resources remaining after use of the
upper tiers are passed down (i.e., hierarchy) until either a particular resource is satu-
rated or no more tiers to use the remaining resources; this takes place dynamically and
automatically once HRRS structures containers in a hierarchy. In this figure, the I/O
resource is saturated with the first two tiers. If the 3rd tier (more precisely, the appli-
cation running in the 3rd tier) requires I/O resource, it cannot proceed its execution
although there is some spare CPU resource. The spare CPU resource is then returned
to the root (OS).

2 Hierarchical Recursive Resource Sharing

To achieve the minimal resource contention with concurrent execution of multiple
applications/containers, HRRS arranges containers in a hierarchical structure
(tiers, see Fig. 2). HRRS allocates resources (CPU and I/O) maximally to the
container in the top tier (or simply the top-tier container) and minimally to
containers in the rest of tiers. In this way, the top-tier container is privileged
to use as much resources as it requires ensuring performance isolation. In the

Hierarchical Recursive Resource Sharing for Containerized Applications 785

meantime, the second-tier container with the minimal resource allocation is able
to use whatever amounts of resources left from the top tier due to load peaks and
valleys. Although all tiers from the second tier have the same resource allocation
weights (minimally allocated amounts of resources), the container hierarchy with
dynamic resource allocation and resource weight inheritance makes their resource
allocation weights relative. In particular, for a given tier, if its upper tier(s) leaves
some unused resources, the current lower tier has privilege to use as much as
it requires, as if it is the top tier, despite its minimal resource allocation. Also,
this dynamic resource allocation takes place recursively as the top-tier container
completes its execution making the second-tier become the top-tier inheriting
resource allocation weights.

2.1 Dynamic Resource Allocation

In order to exploit resource consumption patterns of applications, resources need
to be dynamically allocated. We ensure such dynamic resource allocation to be
hierarchical and recursive. In particular, containers in the resource allocation
hierarchy use resources as much as possible from top to bottom until remaining
resources are not sufficient for a particular tier. The identification of resource
demands for different tiers is shown in the following. Note that CPU and I/O
resources are collectively dealt with.

The resource allocation of HRRS is divided into two cases, the maximal
allocation to the top tier and the minimal allocation to the remaining lower
tiers. The CPU resource allocation of the top tier is calculated as follows:

CPU1 = min(CPUmax,DemandCPU1) (1)

where DemandCPU1 is the amount of CPU demanded by the top tier container
W1. Equation 1 ensures the allocation of the minimum between the demanded
amount of CPU resource and the maximum amount of CPU resource which can
be provided by the system. After the resources are allocated to W1, the amount
of CPU resources available to the next tier is CPUmax −CPU1. Therefore, the
maximum amount of CPU available to the container Wn located in the n-th tier
is expressed as:

CPUmaxn
= CPUmax −

n−1∑

k=1

CPUk (2)

Then, the resources that can be allocated to Wn are calculated as follows.

CPUn = min(CPUmaxn
,DemandCPUn

) (3)

If the overall resource allocation is dictated by controlling only CPU
resources, there might be a serious performance issue when concurrently exe-
cuting (workflow) containers enter a peak I/O usage period. In particular, in
case that the upper tier does not use 100% of the CPU, and yet, I/O is fully sat-
urated, if we allocate resources only considering CPU resources, there is a chance
that some remaining CPU resources are allocated to one or more lower tiers. Such

786 Y. J. Kim et al.

CPU resource allocation incurs some side effect that the container located in the
lower tier requests I/O resources using its allocated CPU resources. In order to
resolve this side effect, I/O resources are also explicitly taken into account by
HRRS’ dynamic resource allocation. In case of block I/O, the resources are taken
from the upper tier according to the hierarchical structure. Therefore, resources
can be allocated in the same manner as the CPU. Similar to Eq. 3, the block
I/O resource that can be assigned to Wn can be expressed as follows.

IOn = min(IOmaxn
,DemandIOn

) (4)

Then, the system resource Resourcen that can be allocated to Wn is expressed
as follows.

Resourcen = <CPUn, IOn> (5)

2.2 Recursive Weight Inheritance

When the top-tier container is terminated while other containers in the hierarchy
are still running, the container in the second tier automatically becomes the top
tier. HRRS enables the very next tier (to the terminating top tier) to “inherit”
resource allocation weights. In fact, the actual weight values of the new top-
tier remain as before. However, as the position of this tier is at the top of the
hierarchy, its weights become relative maximum. Specifically, in any tier of the
hierarchy, there is only one container and thus, its resource allocation weights
are relative maximum. Such inheritance takes place recursively. Note that if the
priority corresponding to the top tier is not inherited to the next lower tier by
the very nature of the HRRS’ hierarchical structure, the remaining containers
work the same way as fair resource share in which all running containers are
competing with each other.

3 Implementation

In this section, we detail the prototype implementation of HRRS for container-
ized scientific workflows. We use Docker [9] to containerize Montage scientific
workflows. The actual execution of such workflow is dealt with by our workflow
execution engine (DEWE v22 [15]). In particular, for each workflow we create a
Docker container based on the Docker image file for DEWE v2 with a respective
Montage workflow application and data.

We use a Linux kernel feature of cgroups[23] for resource control. In par-
ticular, CPU and block I/O resources are controlled with cpu.share and
blkio.weight that enable to allocate proportional CPU time and I/O band-
width to the (control) groups, respectively. cgroups is also well integrated with
Docker.

2 The source code and tutorial of DEWE v2 are available from https://github.com/
qyjohn/DEWE.v2.

https://github.com/qyjohn/DEWE.v2
https://github.com/qyjohn/DEWE.v2

Hierarchical Recursive Resource Sharing for Containerized Applications 787

The hierarchy of tiers in HRRS is constructed by setting each Docker con-
tainer (tier) its corresponding priority in the hierarchy. Since a set of containers
are created for running multiple instances of a particular Montage workflow, the
hierarchy is constructed in the order of their creation, i.e., time stamps. The
actual hierarchy is constructed using the --cgroups-parent option of Docker,
which determines the location of cgroups directory. The parent of the first con-
tainer is the root directory of cgroups and parents of the following containers are
dictated by the hierarchy using cgroups-parent. For example, for the first tier
container (container 1) and the second tier container (container 2),their val-
ues of --cgroups-parent are /root cgroup/ and /root cgroup/container 1,
respectively.

The sharing values (resource allocation weights) for occupying the resources,
such as cpu.share and blkio.weight can be inherited from the upper tier to
lower tier. In particular, we set (relative) sharing values of CPU and I/O to 1024
and 1000, respectively, for the top tier and 2 and 10, respectively, for the rest
of tiers. These extreme values ensure the top tier takes the resources as much
as it needs and the sharing values keep on being allocated to the bottom tier
recursively; and, this works exactly the same way of Eqs. 3 and 4.

4 Experiments

In this section, we present our evaluation results in comparison with three exe-
cution modes. The results are presented in three respects: CPU utilization, read
I/O throughput and write I/O throughput.

4.1 Experimental Setup

We have used Montage astronomical image mosaic engine. In particular, 6.0
degree Montage workflow is used. A 6.0 degree Montage workflow consists of
8,586 tasks, 1,444 input files with a total size of 4.0 GB, and 22,850 intermediate
files with a total size of 35 GB. We conducted our experiments on a 32-core Intel
Xeon (E5-2650 v2) machine with 128 GB of RAM and 1 TB of 7200 RPM HDD.
Docker version 17.12.0-ce is used in the Linux kernel version of 4.4.0-83 generic.
We run one application per container; hence, hereafter we use application and
container interchangeably. The numbers of containers used in our experiments
are 2, 4, 6 and 8.

The execution modes compared with HRRS are as follows.

– Sequential: containers run one at a time.
– Fair (resource share): all containers run simultaneously using default resource

schedulers of Linux (Completely Fair Scheduler or CFS for CPU and Com-
pletely Fair Queuing or CFQ for I/O).

– Interval [15]: containers are run in a certain time interval (i.e., 260 s in this
study) identified through the prior profiling, i.e., the elapsed time between
the beginning of first load peak and its end.

788 Y. J. Kim et al.

Fig. 3. Execution time and resource usage with respect to different numbers of 6.0
degree Montage workflows. I/O Wait in (b) represents the waiting time for the response
from I/O devices.

4.2 Results

We first present the comparison of overall performance between four different
execution modes including our own HRRS (Fig. 3). Results are shown in terms
of execution time (Fig. 3(a)) and CPU utilization including I/O wait (Fig. 3(b)),
respectively. Detailed experimental results for 4, 6 and 8 containers are then
presented (Figs. 5, 6, 7, 8, 9 and 10). Note that due to space limit, we show
condensed figures in 3D for I/O resource consumption of 4 and 6 containers.
Besides, we have left out detailed results for 2 containers due to insignificance.

4.3 Overall Performance

The effect of different execution modes is primarily reflected on the (total) exe-
cution time of given workflows. The execution times of Sequential can be seen

Hierarchical Recursive Resource Sharing for Containerized Applications 789

as a baseline. The performance of Fair is worst when the number of containers
becomes more than two as concurrent containers compete for the same resource
at the same (or very similar) time. Such resource contention becomes exces-
sive when running 8 containers concurrently as shown in Fig. 3(a); that is, the
execution time is nearly three times longer than that of even Sequential.

Interval and HRRS apparently mitigate the resource contention by alternat-
ing load peaks and valleys. While HRRS constantly shows shortest execution
times, Interval only gives shorter execution times over Sequential and Fair for
up to 6 containers. This performance difference is due to the nature of resource
sharing, i.e., static and dynamic for Interval and HRRS, respectively. In par-
ticular, the worse performance with 8 concurrent containers in Interval is due
to primarily accumulated resource contention. When running multiple contain-
ers (even of the same application), unless the periods of load peaks and valleys
are identical and the sum of resource consumption of peaks and valleys is less
than the maximum available resources, a certain degree of resource contention
is unavoidable. As can be seen in resource consumption pattern of Montage in
Fig. 1(b), peaks and valleys cannot be perfectly alternated resulting in some
delay; and, such delay accumulates. As a result, the interval profiled is no longer
effective.

In the meantime, HRRS minimizes such delay accumulation by its prior-
ity hierarchy. The resource consumption–at any given point in time–between
containers is dynamically and automatically ensured not to exceed the maxi-
mum available resources in terms of both CPU and I/O. This can be noticed by
average CPU consumption in Fig. 3(b). In particular, the higher average CPU
consumption of Fair and Interval indicates more resource contention. Note that
the reduced performance gap between sequential execution and HRRS with 8
concurrent containers is due to lack of memory. In particular, HRRS at any given
time deals with several containers exceeding the memory available. As a result,
lower tiers use swap space of disk; and, this adds execution time overheads. This
issue can be resolved by vertical scaling.

Fig. 4. CPU usage patterns (excluding I/O wait) of four 6.0 degree Montage workflow
w.r.t. different execution modes.

790 Y. J. Kim et al.

Fig. 5. Resource usage patterns of four 6.0 degree Montage workflow w.r.t. different
execution modes.

4.4 Results for 4 Containers

Figures 4 and 5 show the resource consumption patterns of execution of four
containers. When the number of containers is 4, the performance of Fair is worse
than that of sequential with 5,412 s and 4,472 s, respectively. Looking at the aver-
age resource utilization, in the case of Fair, although the total CPU utilization
rises to approximately 74%, the actual CPU utilization except I/O wait reduced
to 8.4%. This means less CPU utilization to actually handle tasks, but more
CPU resources are used to wait for I/O because of a large number of concur-
rent I/O requests. On the other hand, in the case of Interval and HRRS, 2,600
and 2,568 s are recorded, respectively. Total CPU usage increased about twice as
much as that of running two containers. The actual CPU utilization rates except
I/O wait, were 12.77% and 14.26%, respectively.

The accumulated delay phenomenon of Interval appears between the third
container and the fourth container (Fig. 4(b)). In particular, the resource con-
sumption of third and forth containers conflicts each other during the period of
mProjectPP and mDiff. However, in the case with four containers, the conflicted
period is very short and only two containers were overlapped in nearly the end of
the entire execution. The accumulation of such contention does not significantly
affect the overall performance of Interval. Thus, HRRS (Fig. 4(c)) and Interval
(Fig. 4(b)) show similar performance when four containers are running, as shown
in Fig. 3(a).

Fig. 6. CPU usage patterns (excluding I/O wait) of six 6.0 degree Montage workflow
w.r.t. different execution modes.

Hierarchical Recursive Resource Sharing for Containerized Applications 791

Fig. 7. Resource usage patterns of six 6.0 degree Montage workflows w.r.t. different
execution modes.

Figure 5(a) describes read I/O patterns. Both Interval and HRRS can be
seen that read I/O operations occurred in the period of mBackground∼mJPEG
(see Fig. 1) as in the case of Fair. In Sequential execution mode, since the read
operations during mBackground∼mJPEG are processed in memory, the actual I/O
does not occur. However, when four containers simultaneously run, the read
operations request the actual I/O to the I/O devices because of insufficient
memory. In the case of Fair, all containers are processing the workflow of the
same phase trying to occupy memory at the same time. In the cases of Interval
and HRRS, the memory occupancy time of each container is different. Therefore,
operating system has more time to deal with managing memory resulting in much
less I/O operations than Fair.

Fig. 8. Resource usage patterns of eight 6.0 degree Montage workflows using Fair share.

Fig. 9. Resource usage patterns of eight 6.0 degree Montage workflows using Interval.

792 Y. J. Kim et al.

Fig. 10. Resource usage patterns of eight 6.0 degree Montage workflows using HRRS.

4.5 Results for 6 Containers

In the case with six containers, the I/O contention problem of Interval becomes
more apparent. The total CPU utilization of Interval is increased by 20%, but
the actual CPU utilization was 2.5% lower than the case of 4 containers. This
means that the proportion of I/O wait has increased. Figure 6 shows the CPU
usage pattern of different execution modes. In the case of Interval, the first four
containers work relatively well as seen in previous experiments, but from the
fifth container, the interval is far less effective. Figures 7(a) and 7(b) show I/O
contention dramatically increases with Interval as containers’ execution phases
coincide from fourth container and onward (wk 4, wk 5 and wk 6). In particular,
execution phases of different containers are gradually not well alternating making
resource consumption patterns similar to those of Fair at some point, resulting
in performance degradation.

Such an issue is not observed with HRRS. Although the actual CPU usage
was reduced by 1%, the overall CPU utilization was increased by 7%. This
means that the proportion of I/O wait did not increase significantly compared to
other execution modes. HRRS has no significant difference in resource utilization
pattern between the six containers. HRRS ensures the top tier consumes as
much as resources and passes only those left to lower tiers. As a result, resource
contention is constantly avoided. This not only contributes to good performance
but also increases the actual CPU utilization.

4.6 Results for 8 Containers

Figures 8, 9 and 10 show resource usage patterns of eight containers using Fair,
Interval and HRRS, respectively. As the number of containers increases, CPU
resource usage of Fair and Interval emerge to a similar pattern, i.e., CPU resource
usage patterns of the last four containers. In the meantime, HRRS manages
resources based on the hierarchy regardless of the number of containers. In par-
ticular, since resources remaining from the upper tiers are allocated to the lower
tiers, containers in the lower tiers can acquire resources in the valley phase of
the upper tiers, so even if the number of containers is increased to 8, resource
contention is much avoided.

Hierarchical Recursive Resource Sharing for Containerized Applications 793

5 Related Work

Efficient resource management has been studied for different purposes and appli-
cations including containerized scientific workflows [7,11,14,15,17,19,21,22,24].
Two key objectives in these studies are maximizing resource utilization and min-
imizing resource contention.

5.1 Resource Sharing for Maximization of Utilization

A majority of previous works on resource management in the cloud environment
focus on how to fairly allocate the certain resources to a VM in the hypervisor
or scheduler level [7,14]. The authors in [7] studied proportional sharing through
the absolute assurance to guarantee the fairness of CPU usage in the Database-
as-a-Service system. This technique works well for CPU sharing but it does
not solve problems such as I/O contention. The authors in [14] developed a
framework to apply priority to I/O for scheduling, and the authors in [22] studied
problems arising when using high performance storage devices such as SSD.
A high-performance storage device has multiple channels, but since the Linux
I/O scheduler has a single queue, fairness is not guaranteed when I/O requests
are made in various applications. To solve this problem, the authors in [22]
implemented a virtual multi-channel. These previous works focus primarily on
single resource type remaining resource contention with multiple resources types
in our study still a challenge.

On the other hand, the work in [11] identified the need for resource allo-
cation and allowed users to share resources fairly through the share value. The
authors in [17] proposed the resource allocation technique that provides the mini-
mum resources in order to satisfy SLA (service level agreement) calculated based
on resource monitoring in the multi-tenant situation. However, when users use
the same resource simultaneously, the above resource sharing techniques share
resources according to the max-min fairness method, so the resource contentions
occur in the workflow ensemble executions which the resource usage patterns of
jobs are the same.

5.2 Resource Shaping for Minimization of Contention

Resource consumption shaping was proposed as an extension to network-traffic
shaping for data center utilization [12]. In our previous work [19], we studied
resource shaping at local task/core level and proposed a technique called Local
Resource Shaper (LRS). This technique simply uses two tiers, active tier and
passive tier for shaping CPU consumption for MapReduce jobs.

There were attempts to maximize resource utilization by profiling jobs in
advance to find the resources bottleneck [21] and Cake [24] uses a two-level
scheduling scheme to dynamically adjusts the level of concurrency based on
measured resource contention (device latency). In order to fully utilize one type
of resource, they tend to face the underutilization of other resources.

794 Y. J. Kim et al.

5.3 Workflow Scheduling

Scientific workflow applications have been increasingly deployed and executed
in clouds to take advantage of resource abundance and cost efficiency [3,5,6,
18,20]. More recently, scientific workflows have also been containerized using
Linux containers, particularly for more efficient application management [10,25].
As these applications spawn a large number of precedence-constrained tasks,
their scheduling faces several challenges in clouds, such as optimizing resource
provisioning and minimizing costs of their execution. In [15], we studied the large-
scale execution of multiple scientific workflows. We showed that running multiple
workflows with a certain time interval helps reduce resource contention. However,
not only the profiling of workload is a prerequisite to find the “right” interval, but
also the interval can become inadequate as the number of applications increases.
In this paper, we have eliminated the need for interval; instead, we have studied
the method of recursively allocating resources from upper tiers to lower tiers
through hierarchical structure.

The authors in [16] showed that the total execution time of scientific applica-
tions can vary depending on the resource consumption patterns of the co-running
applications in three types of computing platforms, supercomputers, grids and
clouds. The use of resource consumption patterns in [16] is similar to our app-
roach of using peak and valley load periods. However, this work focuses on
performance by co-scheduling tasks of applications matching different capacities
of resources of three computing platforms.

6 Conclusion

In this paper, we have presented a new resource sharing technique, called HRRS
for containerized scientific workflow applications. These applications are becom-
ing increasingly large in terms of the number of tasks and resources requirements
of CPU and I/O. The scale of the execution of such applications becomes even
larger with the need for running multiple instances of them. The optimization of
resource utilization plays a crucial role. However, we identified the maximization
of resource utilization by simply consolidating workloads/containers often makes
a detrimental impact on performance due to excessive resource contention. Our
HRRS technique significantly overcomes such resource contention by structuring
multiple containers in a hierarchy with recursive resource weight inheritance. In
particular, HRRS enables multiple containers to dynamically use resources (both
CPU and I/O) by alternating load peaks and valleys. We have demonstrated
that the automation of such alternating without fine control of resource usage
is possible for containerized applications of Montage astronomy workflows. Our
experimental results confirmed this claim with HRRS’ performance improvement
sourced from the reduction of resource contention.

Acknowledgement. This work was supported by the ICT R&D program of MSIP/I-
ITP (12221-14-1005, Software Platform for ICT Equipment). Dr. Young Choon Lee’s
work was supported by the AWS Cloud Credits for Research program.

Hierarchical Recursive Resource Sharing for Containerized Applications 795

References

1. Linux Containers (LXC). https://linuxcontainers.org/. Accessed 2 July 2018
2. VMware. https://www.vmware.com/. Accessed 25 July 2018
3. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow

scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Syst. 29(1), 158–169 (2013)

4. Barham, P., et al.: Xen and the art of virtualization. In: Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles (SOSP), pp. 164–177
(2003)

5. Chen, W., Lee, Y.C., Fekete, A., Zomaya, A.Y.: Adaptive multiple-workflow
scheduling with task rearrangement. J. Supercomput. 71(4), 1297–1317 (2015)

6. Chopra, N., Singh, S.: Deadline and cost based workflow scheduling in hybrid cloud.
In: 2013 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pp. 840–846 (2013)

7. Das, S., Narasayya, V.R., Li, F., Syamala, M.: CPU sharing techniques for per-
formance isolation in multi-tenant relational database-as-a-service. Proc. VLDB
Endow. 7(1), 37–48 (2013)

8. Deelman, E., Juve, G., Malawski, M., Nabrzyski, J.: Hosted science: managing
computational workflows in the cloud. Parallel Process. Lett. 23(02) (2013)

9. Docker Inc.: Docker Container, https://www.docker.com/. Accessed 25 July 2018
10. Gerlach, W., Tang, W., Wilke, A., Olson, D., Meyer, F.: Container orchestration

for scientific workflows, pp. 377–378 (2015)
11. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-

inant resource fairness: fair allocation of multiple resource types. In: NSDI, vol. 11,
p. 24 (2011)

12. Hamilton, J.: Internet-scale service efficiency. In: LADIS (2008). Keynote talk
13. Jacob, J.C., Katz, D.S., Berriman, G.B., Good, J., Laity, A.C., Deelman, E.,

Kesselman, C., Singh, G., Su, M.H., Prince, T.A., Williams, R.: Montage: a grid
portal and software toolkit for science-grade astronomical image mosaicking. Int.
J. Comput. Sci. Eng. 4(2), 73–87 (2009)

14. Jain, N., Lakshmi, J.: PriDyn: enabling differentiated I/O services in cloud using
dynamic priorities. IEEE Trans. Serv. Comput. 8(2), 212–224 (2015)

15. Jiang, Q., Lee, Y.C., Zomaya, A.Y.: Executing large scale scientific workflow ensem-
bles in public clouds. In: 2015 44th International Conference on Parallel Processing
(ICPP), pp. 520–529 (2015)

16. Kim, S., Hwang, E., Yoo, T.K., Kim, J.S., Hwang, S., Choi, Y.R.: Platform and
co-runner affinities for many-task applications in distributed computing platforms.
In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 667–676 (2015)

17. Krebs, R., Spinner, S., Ahmed, N., Kounev, S.: Resource usage control in multi-
tenant applications. In: 2014 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pp. 122–131 (2014)

18. Lin, C., Lu, S.: Scheduling scientific workflows elastically for cloud computing.
In: 2011 IEEE 4th International Conference on Cloud Computing (CLOUD), pp.
746–747, July 2011

19. Lu, P., Lee, Y.C., Gramoli, V., Leslie, L.M., Zomaya, A.Y.: Local resource shaper
for mapreduce. In: 2014 IEEE 6th International Conference on Cloud Computing
Technology and Science (CloudCom), pp. 483–490 (2014)

https://linuxcontainers.org/
https://www.vmware.com/
https://www.docker.com/

796 Y. J. Kim et al.

20. Maciej, M.: Cost-and deadline-constrained provisioning for scientific workflow
ensembles in IaaS clouds. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE Computer Soci-
ety Press

21. Polo, J., et al.: Resource-aware adaptive scheduling for mapreduce clusters. In:
ACM/IFIP/USENIX Proceedings of the 12th ACM/IFIP/USENIX International
Conference on Middleware (Middleware), pp. 187–207 (2011)

22. Tan, H., Li, C., He, Z., Li, K., Hwang, K.: VMCD: a virtual multi-channel disk I/O
scheduling method for virtual machines. IEEE Trans. Serv. Comput. 9(6), 982–995
(2016)

23. Heo, T.: cgroups-v2. https://www.kernel.org/doc/Documentation/cgroup-v2.txt.
Accessed 25 July 2018

24. Wang, A., Venkataraman, S., Alspaugh, S., Katz, R., Stoica, I.: Cake: enabling
high-level SLOs on shared storage systems. In: ACM International Symposium on
Cloud Computing (SoCC) (2012)

25. Zheng, C., Thain, D.: Integrating containers into workflows: a case study using
makeflow, work queue, and docker. In: Proceedings of the 8th International Work-
shop on Virtualization Technologies in Distributed Computing, VTDC@HPDC
2015, Portland, Oregon, USA, 15 June 2015, pp. 31–38 (2015)

https://www.kernel.org/doc/Documentation/cgroup-v2.txt

A Fuzzy-Based Auto-scaler for Web
Applications in Cloud Computing

Environments

Bingfeng Liu1, Rajkumar Buyya1, and Adel Nadjaran Toosi2(B)

1 School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

bingfengl@student.unimelb.edu.au, rbuyya@unimelb.edu.au
2 Faculty of Information Technology, Monash University, Melbourne, Australia

adel.n.toosi@monash.edu

Abstract. Cloud computing provided the elasticity for its users allow-
ing them to add or remove virtual machines depending on the load
of their web applications. However, there is still no ideal auto-scaler
which is both easy to use and sufficiently accurate to make web applica-
tions resilient under the dynamic load. The threshold-based auto-scaling
approaches are among the most popular reactive auto-scaling strate-
gies due to their high learnability and usability. However, the static
threshold would become undesirable once the workload becomes highly
dynamic and unpredictable. In this paper, we propose a novel fuzzy logic
based approach that automatically and adaptively adjusts thresholds
and cluster size for a web application. The proposed auto-scaler aims
at reducing resource consumption without violation of Service Level
Agreement (SLA). The performance evaluation is conducted with the
real-life Wikipedia traces in the Amazon Web Services cloud platform.
Experimental results demonstrate that our reactive auto-scaler efficiently
reduces cloud resources usage and minimizes the SLA violations.

1 Introduction

The pay-as-you-go, elasticity, and on-demand nature of cloud resources are
among the main features exhorting web service providers to host their appli-
cation in clouds nowadays. Cloud users can rapidly launch Virtual Machines
(VMs) for a particular time frame and only pay for their usage. In other words,
they do not need to spend a significant amount of time and money to buy the
actual hardware and pay maintenance fees [2,5]. Since the rate of web applica-
tion requests varies with time, it is often hard to determine the right amount of
needed cloud resources [13]. Manually watching the load of the web-application
is both tedious and resource-wasting led to the birth of auto-scaling. An auto-
scaler automatically removes or adds the right amount of resources to optimize
the performance and cost of the web-application.

The auto-scaling methods fall into two main categories: reactive and proactive
approaches [16,22]. The reactive approaches check if certain metrics (e.g., CPU
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 797–811, 2018.
https://doi.org/10.1007/978-3-030-03596-9_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_57&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_57

798 B. Liu et al.

utilization) exceed a threshold and provision VMs to meet the demand. The
reactive methods only use recently observed metrics to understand the current
state of the cluster and plan scaling decisions. The proactive approaches involve
modeling and predicting the load of the web application based on the patterns of
the historical data using machine learning techniques [16,22]. However, proactive
approaches are difficult to tune and often do not perform well for highly dynamic
unforeseen workloads. The proactive methods need to continuously update their
model to capture changes in the load patterns to predict future where the growth
of the model complexity might become the burden of cluster resources.

Due to the simplicity and the adequate performance, most companies and
organizations still prefer to use reactive approaches [16,22]. In line with this
view, we also focus on more commonly accepted reactive approaches in this
paper. However, the problem of reactive approach is that the threshold does not
change according to dynamic workloads and cluster state. Therefore, the näıve
static threshold-based approaches often have oscillation problem where the auto-
scaler frequently keeps changing the number of VMs back and forth to adjust the
cluster size [22]. In this paper, we propose a reactive auto-scaling approach that
aims at building dynamic thresholds to overcome these issues. Our approach
dynamically adjusts thresholds based on the current cluster size and load.

To this end, the fuzzy logic looks very intuitive to use and unlike machine
learning, it does not need historical data and long training time to build the
model. One can set up fuzzy linguistic rules with metrics that are critical to
satisfying the Service Level Agreement (SLA). For example, a rule can be as
simple as “IF cpu load IS low THEN cluster size IS small”. Two fuzzy engines are
proposed in this paper. The first one uses request response time and cluster size
to output the appropriate upper threshold value for the auto-scaler. If the current
response time exceeds the dynamic upper threshold, then the second fuzzy engine
with cluster size and CPU load as inputs comes into play to determine the cluster
size avoiding the violation of the response time constraint required by the SLA.

The evaluation of the proposed auto-scaler is performed via a Wikijector
agent [3] replaying the real-life requests from Wikipedia traces to stress the clus-
ter and monitoring how auto-scaler adjusts the cluster size to handle this stress.
The performance of the proposed approach is compared to both the Amazon Web
Services (AWS)’s auto-scaler and its emulated version. The results demonstrate
that the proposed auto-scaler significantly reduces cost and SLA violations.

2 Background

Cloud providers like AWS offer built-in auto-scaling services to their users for
dynamic auto-scaling of resources used by applications [17]. AWS offers its auto-
scaling service via auto-scaling group and uses Cloud Watch to monitor user-
defined metrics [18]. The user can set alarms on metrics to trigger scaling policies
once they are over certain thresholds. The AWS auto-scaler similar to many other
approaches uses static thresholds and static steps for adding or removing VMs.

Most of the auto-scalers (including our proposed method) adopts Monitoring,
Analyzing, Planning and Execution (MAPE) loop to adjust the size of the cluster

A Fuzzy-Based Auto-scaler for Web Applications 799

to fulfill the SLA requirement [12,16]. Monitoring is not only necessary for the
decision making of the auto-scaler but also important for evaluating and improv-
ing its performance by logging all the relevant metrics data for offline analysis.
In this work, Ganglia [14] is used for the monitoring purpose. The Analyzing
phase is for making the gathered metrics meaningful and to pass them as the
inputs to the auto-scaler to trigger the scaling policies at the right time. The
Planning phase is a challenging phase in MAPE loop – there is no commonly
agreed way to know how many VMs are needed to avoid over-provisioning or
under-provisioning. The final step which is called Execution is responsible to
perform the actual scaling-in or scaling-out processes according to the decision
of the new cluster size made in the Planning phase via the cloud provider’s APIs.

3 Related Work

There are many reactive auto-scaling approaches proposed in the literature. Lim
et al. [11] focused on using the averaged CPU utilization of VMs to determine
the number of VMs needed to be removed or added. They use a pair of thresh-
old boundaries to make a range but not just a single limit, and then varied the
lower bound of the thresholds to make sure the auto-scaler does not switch the
number of VMs back immediately after changing the values of the thresholds.
Hasan et al. [8] proposed a novel static threshold technique to prevent the oscilla-
tion problem for a short period of fluctuating load. The authors first choose static
upper and lower bound and then select extra sub-upper and sub-lower bound in
between. If the current metrics exceed any of the thresholds for a specific pre-set
duration, the system starts a scaling-out or scaling-in the cluster.

The oscillation problem is a common issue in auto-scaling, and many solutions
have been proposed to address it in the literature. The oscillation problem occurs
when request load changes slightly and triggers the scaling-out process to add
a new VM into the cluster. However, the newly added VM causes a load drop,
and the new cluster size becomes too powerful for the current load which in
turn triggers a scale-in process in a short period. Unlike [8,11], our proposed
auto-scaler adaptively updates the upper-threshold based on the cluster size.
The main idea is that a larger cluster has more tolerance to small changes in the
load and upper threshold is set to a higher value.

Frey et al. [7] developed a fuzzy logic auto-scaler to improve Quality of Service
(QoS). The result of the fuzzy auto-scaler shows the technique is effective in
reducing the response time. Their method uses inputs such as ‘high prediction’
(request load) and the ‘slope of the response time’. The high prediction input
helps the cluster perform scaling earlier and the slope of response time helps to
add multiple VMs to reduce the response time. The high prediction input in [7] is
formed based on the knowledge of the application’s history load pattern whereas
the proposed auto-scaler does not assume a priori knowledge of the application.

Lama et al. [10] proposed an adaptive fuzzy system using machine learning
without offline learning. The neural network dynamically generates fuzzy rules,
membership functions and input parameters with online learning algorithms.

800 B. Liu et al.

Contrary to our approach that focuses on adapting thresholds, they focus on
constructing the fuzzy control structure and adapting control parameters using
online learning approaches. In their approach, fuzzy engine has to adapt itself
to changes in the load that takes time and could seriously affect the small web
applications that are growing popularity [16,22]. Jamshidi et al. [9] also devel-
oped an adaptive Fuzzy logic based auto-scaler with Fuzzy Q-learning method
to modify the fuzzy rules at run time so that defining fuzzy rules are not longer
a manual process. Arabnejad et al. [1] enhanced the output (actions) of the
fuzzy controllers with reinforcement learning. The reinforcement learning uses
the current state of the system, and randomly tries out different actions to set
the actions of the fuzzy controllers. It takes a random approach to explore all the
possible actions until the model cannot improve the overall performance. Müller
et al. [15] built a governance platform to satisfy multiple users’ QoS requirements
where users are routed to different provisioning levels depends on their SLAs.

Kubernetes is a cluster manager for containerized applications (e.g. applica-
tions run in docker). Kubernetes currently (at the time of writing this paper) sup-
ports horizontal auto-scaling for pods, a group of containers deployed together
on the same host. The auto-scaling algorithm is used to keep CPU utilization
at a target level. The algorithm determines the number of pods by dividing the
sum of CPU utilization in the pods by the target CPU utilization. In cloud
environment, users provision cloud resource in form of of VMs. Thus, our work
focuses on auto-scaling of VMs. However, our method can be used along with
container cluster management for the management of web application micro ser-
vices. Baresi et al. [4] enhanced their framework to be able to deploy multi-tier
applications with Docker containers. The framework performs resource manage-
ment with control theory to satisfy SLA (response time) and use cloud resources
(CPU cores) effectively.

In web applications, the correlation of CPU utilization and response time
might not be strong. The trigger should be driven by the response time since
it is possible that the SLA is well satisfied while the CPU utilization triggers
unnecessary scaling. The service-time-related metrics of the application are bet-
ter than the metrics which only show the state of the VMs [16]. This is also why
[7,8,10,11] tend to use response time to benchmark their auto-scaler.

Contrary to our approach, most of the auto-scaling studies only focus on
the Analysis part of the MAPE loop; they do not mention much about the
planning phase and how many VMs should be added or removed if the threshold
is triggered (including [7,8,10,11]). The time taken to start new VM is usually
around several minutes [12], so näıvely launching a single VM once at a time
might not be feasible to solve the under-provisioning issue [16].

4 Fuzzy Auto-scaler

In this section, we propose our fuzzy logic-based approach for auto-scaling of
web applications. First, we identify inputs and metrics that are relevant to the
auto-scaling. Then, we discuss the importance of dynamically adapting the upper
threshold. Finally, we propose our algorithm to set the right size for the cluster.

A Fuzzy-Based Auto-scaler for Web Applications 801

Table 1. Request details for Fig. 1

Request Url Response body size (Byte) Request type

1 index.php?action=raw& title=Cliff Clavin 6867 Text

2 index.php/Main Page 13397 Text

3 index.php/Bufotenin 30930 Text

4 index.php/List of dog breeds 65521 Text

5 skins/common/ajax.js?99 5320 Javascrpit

4.1 Input Selection

The most important aim of autoscaling is to maintain the response time below a
certain level to provide a satisfactory experience to users. Therefore, the use of
the response time as an input to the auto-scaler is highly desired. The response
time alone does not provide us information regarding how many more VMs are
needed to avoid SLA violations. The näıve approach is to launch a small static
number of VMs to see if the response time is lowered to the desired range.
However, the time of booting up and configuring the newly launched VMs is
often too long that would lead to SLA violation. The long booting time of VMs
forces the auto-scaler to make the best decision with a minimal number of trials.

CPU utilization can be used to determine the cluster size. However, the
problem with CPU utilization is that it does not reflect the actual overall load
of the VMs accurately. For example, consider a web-application like Mediawiki,
which is I/O intensive rather than CPU intensive. The use of CPU is low during
the I/O processes hence a delusion of the low CPU utilization happens, while
the load of the VM would be high. In addition, the maximum CPU utilization
of a single core VM only goes up to 100%, so it is hardly useful to determine
how many more VMs are needed.

Service rate, the rate at which requests are processed, also sounds relevant
to determine the cluster size. The tools like ‘Jmeter’1 or ‘Ab’2 can be used to
flood the VMs to profile the maximum number of requests that can be processed
by a VM. This number can be used to set up the optimal number of required
VMs. However, the service rate is highly dependent on the complexity of the
request’s response body. Table 1 shows a group of 5 Mediawiki requests with
various response body sizes and request types. Figure 1 shows that the larger
response body size (Table 1), the smaller service rate (Request 1 to 4). However,
the size of the response body is not the only factor which could affect the service
rate. The request 5 has similar response body size to request 1 but the maximum
number of processed requests per second is much higher. The reason is that
Request 5 is a JavaScript file, so it needs lower computations and I/O operations
to produce the response and hence has lower complexity than request 1. It is
hard to define the complexity of the request since the content of the page varies
greatly. Therefore, the use of service rate to determine the cluster size is not
effective if the request received by the VM has a huge difference to the requests
used for profiling.
1 http://jmeter.apache.org/.
2 https://httpd.apache.org/docs/2.4/programs/ab.html.

http://jmeter.apache.org/
https://httpd.apache.org/docs/2.4/programs/ab.html

802 B. Liu et al.

Fig. 1. Jmeter load test with different requests

4.1.1 Metrics Correlations with Response Time
We conduct a load test to see how the changes in the metrics are correlated.
Wikijector is used to send requests from Wikipedia trace files to the load bal-
ancer instance. We apply a simple scaling out rule that only adds one new VM
each time the response time is over the static upper threshold. According to the
test, Table 2 shows Pearson and Spearman Rho correlation value of each metric
to request response time. Results demonstrate that the CPU load has the high-
est Pearson and Spearman Rho correlation value to the response time. Thus it
could be a potentially useful metric for determining the cluster size. While CPU
utilization reflects the CPU usage, the CPU load metric can give us the actual
demand of the computer’s resources (not only CPU). Unlike CPU utilization,
CPU load can go beyond 100%. The analogy between CPU utilization and load
is the high way traffic. CPU utilization is how often the freeway has cars running
on it, whereas CPU load is how many cars are both running on and waiting to
enter the freeway [21].

Table 2. Metrics correlations with response time (P-value represents the significance
of the correlation)

Metric Pearson value p-value Spearman value p-value

CPU load last minute 0.42 0.00 0.92 0.00

CPU System 0.11 0.12 0.80 0.00

CPU User 0.08 0.30 0.80 0.00

CPU IO Wait 0.26 0.00 −0.08 0.25

Memory cached −0.24 0.00 −0.25 0.00

Number of request per second −0.28 0.00 0.27 0.00

4.2 Dynamic Upper Threshold

The main idea behind the fuzzy rules for the dynamic upper threshold is that
when the cluster size is large (e.g. 100 web-servers running), then a moderate
change of the load will only fluctuate the response time in a small amount so the

A Fuzzy-Based Auto-scaler for Web Applications 803

fuzzy engine should output a higher upper threshold of response time. Whereas,
when there is only one running instance, the cluster is very likely to violate the
SLA (large fluctuation) with even a small amount of request load increase. In
this case, the threshold should be more sensitive (lower). Therefore, the inputs
of the fuzzy engine are chosen as the current normalized response time, a ratio
to the maximum allowed response time in SLA, and the normalized cluster size,
a ratio to the maximum cluster size.

4.3 Dynamic Cluster Size

In an ideal situation, a fully utilized single CPU core VM has CPU load at 100%,
and all CPU load beyond 100% means the VM is overloaded. Note that, 100%
CPU load only means that the VM is fully loaded, but it can still provide a
decent response time. In a single core computer like t2.micro, the 100% of the
CPU load indicates that the computational resource is fully utilized and if the
value is 200%, it indicates that we need one more instance to handle the load.

The scaling-in approach used in the proposed auto-scaler is conservative but
dynamic. We scan through all launched VMs and stop all the VMs which have
CPU load below a certain threshold (e.g., 50%) instead of pre-defining the num-
ber of VMs to scale-in. Since, a single type of instance is used in our approach,
thus the total CPU load of the cluster not overloading VMs is calculated by:

TotalCPULoadNotOverloading = MaxNo.ofInstance × 100% (1)

The cluster stress value is the ratio of the average CPU overload value (CPU load
beyond 100%) to the summation of the CPU load of a cluster without overloads
(equal and below 100% CPU load) and is calculated as:

ClusterStress =
AverageCPUoverload

TotalCPULoadNotOverloading
(2)

For example, if we have 2 VMs and they have CPU load of 150% and 200%
respectively, the average CPU overload value will be (150+200)/2 - 100% =
75%. If we only allow a maximum of 5 VMs in the cluster, then we will have
total CPU load without overloading VMs of 500% (5 * 100%). Therefore, the
cluster stress is equal to 75/500 = 0.15. The cluster stress represents how huge
the average CPU overload is with respect to the total CPU load that the cluster
can accommodate without overloading VMs.

For scaling out, we use the cluster stress value and the normalized current
cluster size as inputs to the fuzzy engine. We use these inputs to calculate the
needed number of VMs. Since the user’s budget is often limited, a maximum
number of VMs is set for the cluster. The output of the fuzzy engine, NewClus-
terPower, is the ratio of the cluster size to the maximum value. Based on this
ratio, the new number of VMs is calculated as:

�NewClusterPower × MaxNumberOfV irtualMachines� (3)

804 B. Liu et al.

The correlation between CPU load metric and response time is not 100%, so
the average CPU overload value cannot be fully trusted to perform scaling out.
Therefore, the output of the cluster size fuzzy engine for scaling out should
consider the current cluster size. The fuzzy engine acts conservatively by adding
less number of VMs determined from the average CPU overload value when the
cluster size is small and also when the cluster size is near the maximum.

4.4 The Proposed Auto-scaling Algorithm

Algorithm 1 shows the overview of how adaptive response time threshold and
dynamic cluster size work together to perform auto-scaling. Two fuzzy engines
are developed: upperThresholdFuzzy and clusterSizeFuzzy. Both of them use the
Mamdani fuzzy inference system and the defuzzification method of the centroid
of the area to produce the crisp output value. All the membership functions for
mapping input values (all of them are from 0 to 1) to fuzzy sets are Gaussian
membership functions as shown in Fig. 2. Sample fuzzy rules used in our fuzzy
engines are specified in Tables 3 and 4.

The algorithm first gathers the current average response time (RTime), CPU
Loads (curLoad) and the cluster size (CSize) from the load balancer instance
(Line 3). After gathering all metrics needed, the current response time and the
current cluster size are used by the upperThresholdFuzzy engine to set the upper-
threshold (Line 4). If the current response time breaches the adaptive upper
threshold twice consecutively (Lines 5 and 6), the clusterSizeFuzzy engine is
called (Line 7) to determine the new cluster size. For each scaling out or in,

Fig. 2. Fuzzy engines for setting upper-threshold and adding new virtual machines

A Fuzzy-Based Auto-scaler for Web Applications 805

Table 3. Partial add virtual machines
fuzzy rules

ClusterPower ClusterStress NewClusterPower

VeryLow VeryLow VeryLow

VeryLow Low Low

Low VeryHigh Moderate

Moderate Moderate High

High High VeryHigh

VeryHigh VeryHigh VeryHigh

Table 4. Partial upper threshold fuzzy
rules

ClusterPower ResponseTime UpperThreshold

VeryLow VeryLow VeryHigh

VeryLow Low VeryLow

Low Moderate Low

Moderate VeryHigh VeryLow

High High High

VeryHigh VeryHigh High

the warmUpTime is set to a certain value (e.g., 30 s) which means we do not
allow any scaling policies to be executed in this period. The reason for setting
warmUpTime is that the newly launched VM normally has an unstable metrics
due to the operating system’s bootstrapping and all the configurations for the
applications. For scaling in, we loop through each running VM and check if their
CPU load is under idleLoad value, e.g. 50% (Line 17) and if the same VM CPU
load is under idleLoad twice consecutively (Line 19), it will be stopped and the
warmUpTime is reset. The scaling in/out loop is executed periodically, e.g. every
5 s (Line 27), that is because checking the metrics too frequently adds pressure
to VMs, and often many metrics do not have high-resolution updates.

Algorithm 1. Fuzzy Auto-scaler
Require: idleLoad, checkTime, consecutiveOverThreshold, warmUpTime
1: procedure StartScaling
2: while true do
3: RTime, CSize, curLoad ← AllLaunchedInstances.getStats()
4: upperThreshold ← upperThresholdFuzzy(RTime, CSize)
5: if RTime > upperThreshold then
6: if consecutiveOverThreshold == true and warmUpTime <= 0 then
7: newClusterSize ← clusterSizeFuzzy(curLoad,CSize)
8: scalingUp(newClusterSize)
9: Set warmUpTime
10: consecutiveOverThreshold ← false
11: else
12: consecutiveOverThreshold ← true
13: else
14: consecutiveOverThreshold ← false

15: if warmUpTime <= 0 then
16: for Instance in AllLaunchedInstances do
17: if Instance.load < idleLoad then
18: Instance.consecutiveBelowThreshold+ = 1
19: if consecutiveBelowThreshold == 2 then
20: Instance.stop()
21: Set warmUpTime

22: if warmUpTime! = 0 then
23: setConsecutiveBelowThresholdToZero(AllLaunchedInstances)

24: else
25: setConsecutiveBelowThresholdToZero(AllLaunchedInstances)

26: sleep(checkTime)
27: warmUpTime− = checkTime

806 B. Liu et al.

5 System Prototype

The instances used in this system are all t2.micro since it offers the free-tier
policy (no costs of using VMs) and also keeps the system homogeneous, which
lowers the system overheads for evaluating the fuzzy auto-scaler (Fig. 3).

The HAproxy instance (load balancer instance) receives all the HTTP
requests from the users first; then it evenly distributes them to each Mediawiki-
server instance. The HAproxy instance also hosts the master node of the Ganglia
monitoring system which is used to gather all the instances’ current perfor-
mance metrics (e.g. CPU load). Since all the requests go through the HAproxy
instance first, the HTTP request related metrics like request response time
could be retrieved from the HAproxy. The fuzzy auto-scaler communicates to
the HAproxy instance to gather metrics of all the AWS t2.micro instances and
processes them locally to decide on whether to perform scaling process and
to determine the suitable size of the current Mediawiki-server cluster needed
to satisfy the SLA. The orchestration of the Mediawiki web-application cluster
is controlled by the fuzzy auto-scaler instance which uses Python Boto3 (AWS
SDK for Python [19]) library to manipulate the AWS cloud resources. The Fuzzy
auto-scaler instance starts or stops VMs based on the metrics retrieved from the
HAproxy instance. The automation process of configuring different instances are
done with Ansible [6] tool which is also executed in a Fuzzy auto-scaler instance.

Fig. 3. System architecture diagram

6 Performance Evaluation

6.1 Experimental Setup

Each experiment is carried out for 30 min and is repeated for three times. We
report the best result obtained by each auto-scaler. The AWS t2.micro instances
used for the experiments have only 30 CPU credits with 1 point per minute for
the full power CPU usage. Once the CPU credits are exhausted the VM will
be restricted to a baseline (10% CPU utilization) [20]. The trace files used in

A Fuzzy-Based Auto-scaler for Web Applications 807

the experiments to evaluate the auto-scaler are all produced from the Wikipedia
workload trace file. The ‘shape’ of the original trace is preserved while the time
dimension is scaled down to 30 min.

The AWS emulated auto-scaler is a copied version of the AWS auto-scaling
policy which uses Ganglia instead of AWS CloudWatch for monitoring. The
reason for adding it is that the AWS native auto-scaler does not offer fine grain
control and monitoring data for validating scaling policies.

In experiments, we have a maximum limit of 10 t2.micro instances, and
the desired response time is set to 200ms for the SLA. For the AWS native
and emulated auto-scalers, the upper threshold is 100 ms (static), and the fuzzy
auto-scaler uses the adaptive upper-threshold from the fuzzy engine. Since AWS
native auto-scaler cannot read individual VM’s metric to stop a VM, we set
a lower threshold of 70% CPU load (average of all launched VMs) for both
AWS native and emulated auto-scalers, while the fuzzy auto-scaler has a lower
threshold of 50% for each VM. We also deliberately use a cluster size of two VMs
at the beginning of the experiment to show the differences of each auto-scalers.
Thus, there will be many SLA violations at the beginning.

(a) Two full day trace of
Wikipedia

(b) The one day trace of
Wikipedia

Fig. 4. The trace files used in the experiments, both of them are 30 min long

6.2 Experimental Results

The trace file used in experiments (Fig. 4a) is extracted from the two day
Wikipedia trace and is scaled down into 30 min. Figure 5 shows the CDF (Cumu-
lative Distribution Function) of the average response time below 200ms for all
auto-scalers. The fuzzy auto-scaler preforms about 8.94% better than the AWS
emulated auto-scaler (adding one VM each scaling out) and 16.28% better than
the AWS native auto-scaler. The cost of each auto-scaler can be calculated from
the area under the step-curve in ‘Number of Instance vs Time’ scatter graph.
The cost of the AWS native one is the lowest since it often under-provisions
resources. The cost of the fuzzy auto-scaler is similar to the AWS emulated
auto-scaler, but the fuzzy auto-scaler provides better results in terms of keeping
the response time under 200 ms.

The number of instances versus time scatter graphs show that the fuzzy auto-
scaler performs a lower number of scaling out actions to reach the desired cluster
size, whereas AWS native auto-scaler and emulated auto-scaler with adding one

808 B. Liu et al.

Fig. 5. Resource usage and average response time for different auto-scalers

VM require more time to do the same. The amazon emulated auto-scaler with
adding two VMs options is the fastest in this regards. However, it causes the
unnecessary cost to provide the same performance. Therefore, adding multiple
VMs during the scaling-out is very important to process the web request load.
However, the lack of prediction ability of the fuzzy auto-scaler leads in several
trials to gradually reach the desired cluster size. The initial cluster size is small,
so it can quickly get flooded with requests and metrics raise up to the maxi-
mum. Hence using metric values is not reliable to determine the actual request
load. Thus, the method of measuring the current request load needs further
investigations.

Table 5 shows results summary. Compared to AWS native auto-scaler, AWS
emulated auto-scalers with adding one and two VM(s) each scaling out and fuzzy
auto-scaler generate 7.88%, 28.43% and 17.17% higher cost respectively. How-
ever, with 1% increase in SLA satisfaction, the fuzzy auto-scaler only requires
1.05% (17.17/16.28) increase in cost while AWS emulated auto-sacalers with
adding one and two VM(s) each scaling out need 1.17% (7.88/6.74) and 1.46%
(28.43/19.53) increase in cloud resource usage respectively. The fuzzy auto-scaler
use resources more efficiently to provide better SLA satisfaction. The AWS native
auto-scaler and AWS emulated auto-scaler adding one VM each scaling out have
overall lower cost than fuzzy auto-scaler. However, they cause more SLA viola-
tions by under-provisioning resources.

A Fuzzy-Based Auto-scaler for Web Applications 809

Table 5. Experimental results summary

Auto-scaler % of requests with response

time under 200ms

(Improvement to AWS

native)

The area under the graph or

cost (Improvement to AWS

native)

Fuzzy auto scaler 87.97 (16.28%) 12781.00 (17.17%)

AWS emulated (adding 1 VM) 80.75 (6.74%) 11768.00 (7.88%)

AWS emulated (adding 2 VMs) 90.43 (19.53%) 14009.50 (28.43%)

AWS native 75.65 (0%) 10908.00 (0%)

6.3 Dynamic Scaling-Out Evaluation

Figure 5 shows the downside of using a static number to perform scaling out.
The AWS emulated auto-scaler (adding 2 VMs each scaling out) reached the
maximum number of 10 VMs whereas in the same experiment only the maximum
of 9 VMs used by fuzzy auto-scaler without violating the upper threshold. This
happens due to the lack of ability to dynamically adjusting the added number of
VMs in the cluster size. Even though AWS emulated auto-scaler (adding 2 VMs
each scaling out) has a better result of not violating the SLA (90.43%), but it
also uses the resource less efficiently compared to the fuzzy auto-scaler in order
to reach this result. With respect to the AWS native auto-scaler, AWS emulated
auto-scaler (adding 2 VMs each scaling out) needs 1.46% more resources to
achieve 1% increase of the response time under 200 ms while fuzzy auto-scaler
only needs 1.05%.

Fig. 6. The adaptive upper threshold experiment result

6.4 Adaptive Upper-Threshold Evaluation

In order to evaluate the impact of an adaptive upper threshold, we use Ama-
zon emulated Auto-scaler with and without the adaptive upper threshold fuzzy
engine. The static threshold is set to 100 ms for the one without the fuzzy engine.
The change in the request rate of the trace shown in Fig. 4a is considerably quick

810 B. Liu et al.

which decreases the chance of observation of adaptive upper-threshold benefits.
Thus, a 30 min version of the one day trace file is made (Fig. 4b).

As shown in Fig. 6, the adaptive upper threshold keeps the cluster at the size
of 7 longer than non-adaptive threshold AWS emulated auto-scaler that leads to
0.33% cost saving. The percentage of response time under 200 ms is close in this
case while AWS emulated with adaptive threshold has 91.74%, and the non-
adaptive upper threshold one has 90.14% which shows 1.78% improvement.
Due to the restriction of the experiment time, the cost saving is not clearly
observable, but we expect that the dynamic adaptive upper threshold utilizes
cloud resources more efficiently in a long run since small load fluctuation is
typical in a long-running web application.

It is worth mentioning that the load prediction can enhance the number of
trials to reach the desired number of virtual machines quicker when encountering
the seasonal loads. The experiment results also shows that the response time is
decreased while adding more Mediawiki instances so that in our experiments the
single MySql database instance in not a bottleneck for the Mediawiki cluster
performance.

7 Conclusions and Future Work

In summary, a dynamic upper-threshold auto-scaler for the web application is
proposed in this paper. We designed and presented two fuzzy engines to dynam-
ically adjust upper threshold and cluster size respectively. The fuzzy logic app-
roach increases the percentage of the service rate within the SLA target by
16.28% in comparison to AWS native auto-scaler. The experimental results sug-
gest that threshold and the added number of VMs should be dynamically selected
since the static values are not always right choices for all cluster sizes.

The creation of the optimal auto-scaler is far from trivial. In the future,
we will explore techniques to determine the best candidate VMs for scaling-in.
Scaling-in is riskier than scaling-out, as over-provisioning only costs money, but
under-provisioning means losing customers. The auto-scaling of session-based
web applications, where users have sticky sessions needs more attention since
it requires session migration. It will be interesting to perform a more in-depth
investigation of the correlation between proposed metrics which allows us to
design more efficient auto-scalers. In the future, we will also try to implement
different auto-scaling methods and benchmark them against our fuzzy auto-
scaler with different workloads.

References

1. Arabnejad, H., et al.: A comparison of reinforcement learning techniques for fuzzy
cloud auto-scaling. In: Proceedings of 2017 17th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGRID), pp. 64–73. IEEE (2017)

2. Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010)

A Fuzzy-Based Auto-scaler for Web Applications 811

3. van Baaren, E.-J.: Wikibench: a distributed, Wikipedia based web application
benchmark. Master’s thesis, VU University Amsterdam (2009)

4. Baresi, L., et al.: A discrete-time feedback controller for containerized cloud appli-
cations. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pp. 217–228. ACM (2016)

5. Buyya, R., et al.: Cloud computing and emerging IT platforms: vision, hype, and
reality for delivering computing as the 5th utility. Future Gener. Comput. Syst.
25(6), 599–616 (2009)

6. DeHaan, M.: Ansible (2018). https://www.ansible.com/. Accessed 28 Feb 2018
7. Frey, S., et al.: Cloud QoS scaling by fuzzy logic. In: Proceedings of 2014 IEEE

International Conference on Cloud Engineering (IC2E), pp. 343–348. IEEE (2014)
8. Hasan, M.Z., et al.: Integrated and autonomic cloud resource scaling. In: Proceed-

ings of 2012 IEEE Network Operations and Management Symposium (NOMS).
IEEE. 2012, pp. 1327–1334

9. Jamshidi, P., Pahl, C., Mendonça, N.C.: Managing uncertainty in autonomic cloud
elasticity controllers. IEEE Cloud Comput. 3, 50–60 (2016)

10. Lama, P., Zhou, X.: Autonomic provisioning with self-adaptive neural fuzzy control
for end-to-end delay guarantee. In: Proceedings of 2010 IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 151–160. IEEE (2010)

11. Lim, H.C., Babu, S., Chase, J.S.: Automated control for elastic storage. In: Pro-
ceedings of the 7th International Conference on Autonomic Computing, pp. 1–10.
ACM (2010)

12. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

13. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.: Autoscaling techniques for
elastic applications in cloud environments. Technical report EHU-KAT-IK-09-12.
Department of Computer Architecture and Technology, University of Basque Coun-
try (2012)

14. Massie, M., et al.: Monitoring with Ganglia: Tracking Dynamic Host and Applica-
tion Metrics at Scale. O’Reilly Media, Inc., Sebastopol (2012)

15. Müller, C., et al.: An elasticity-aware governance platform for cloud service delivery.
In: Proceedings of 2016 IEEE International Conference on Services Computing
(SCC), pp. 74–81. IEEE (2016)

16. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a
taxonomy and survey. ACM Comput. Surv. 51(4), 73:1–73:33 (2018)

17. Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing Services
(2018). https://aws.amazon.com/. Accessed 28 Feb 2018

18. Amazon Web Services. AWS Auto Scaling (2018). https://aws.amazon.com/
autoscaling/. Accessed 28 Feb 2018

19. Amazon Web Services. AWS SDK for Python (Boto3) (2018). https://aws.amazon.
com/sdk-for-python/. Accessed 28 Feb 2018

20. AmazonWeb Services. CPU Credits and Baseline Performance (2018). https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-credits-baseline-concepts.
html. Accessed 28 Feb 2018

21. Walker, R.: Examining load average. Linux J. 2006(152), 5 (2006)
22. Yazdanov, L.: Towards auto-scaling in the cloud: online resource allocation tech-

niques. Ph.D. thesis. Dissertation, Technische Universität Dresden, Dresden (2016)

https://www.ansible.com/
https://aws.amazon.com/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-credits-baseline-concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/t2-credits-baseline-concepts.html

Runtime Monitoring in Continuous
Deployment by Differencing Execution

Behavior Model

Monika Gupta1(B), Atri Mandal3, Gargi Dasgupta3, and Alexander Serebrenik2

1 IBM Research, New Delhi, India
gupmonik@in.ibm.com

2 Eindhoven University of Technology, Eindhoven, The Netherlands
a.serebrenik@tue.nl

3 IBM Research, Bengaluru, India
{atri.mandal,gaargidasgupta}@in.ibm.com

Abstract. Continuous deployment techniques support rapid deploy-
ment of new software versions. Usually a new version is deployed on
a limited scale, its behavior is monitored and compared against the pre-
viously deployed version and either the deployment of the new version is
broadened, or one reverts to the previous version. The existing monitor-
ing approaches, however, do not capture the differences in the execution
behavior between the new and the previously deployed versions.

We propose an approach to automatically discover execution behavior
models for the deployed and the new version using the execution logs.
Differences between the two models are identified and enriched such that
spurious differences, e.g., due to logging statement modifications, are mit-
igated. The remaining differences are visualized as cohesive diff regions
within the discovered behavior model, allowing one to effectively analyze
them for, e.g., anomaly detection and release decision making.

To evaluate the proposed approach, we conducted case study on
Nutch, an open source application, and an industrial application. We
discovered the execution behavior models for the two versions of appli-
cations and identified the diff regions between them. By analyzing the
regions, we detected bugs introduced in the new versions of these appli-
cations. The bugs have been reported and later fixed by the developers,
thus, confirming the effectiveness of our approach.

Keywords: Continuous deployment · DevOps · Execution logs
Runtime flow graph · Release decision · Visualization

1 Introduction

Increasing speed of the changing priorities of customers causes many companies
to adopt continuous deployment [1,8,15,23]. A continuous deployment model is
crucial for service delivery business as it ensures that software services are always

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 812–827, 2018.
https://doi.org/10.1007/978-3-030-03596-9_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_58&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_58

Runtime Monitoring in Continuous Deployment 813

in a releasable state, and changes are incremental. To ensure high quality release
in continuous deployment, the upcoming release is staged in production envi-
ronment using such strategies as blue-green deployment [13], dark launches [9],
canary release [13,26] and shadow testing [23], and its performance is monitored
[3,13] to quickly identify whether it is misbehaving [23,26].

Vast amount of data is logged during the execution of the new and previously
deployed software versions. Existing monitoring systems keep track of suspicious
events in logs (e.g., errors, warning messages, stack traces) and raise alerts.
However, such systems do not leverage the unstructured data captured in the
execution logs to efficiently derive and compare the dynamic behavior of the new
and the previously deployed versions in a holistic manner.

In this work, we present a novel approach to automatically detect discrep-
ancies in the fast evolving applications adopting continuous deployment. This is
achieved by identifying the differences in the behavior model of the previously
deployed and new version, derived by mining the execution logs.

Fig. 1. Differences between the execution behavior models of two versions of Nutch.
Vertices added in the new version are encircled twice, added edges–bold, deleted vertices
and edges–dashed. The analysis of differences allowed us to discover a bug that we
reported as NUTCH-2345. The bug was fixed by the Nutch developers.

814 M. Gupta et al.

2 Motivating Example: A Bug in Nutch

As part of an issue [NUTCH-1934]1 the class Fetcher counting ca. 1600 lines of
code is refactored to improve modularity. We took the version before and after
refactoring to identify differences between the two versions. We used Nutch to
crawl a set of URLs thus generating the execution logs for both the versions. We
map the generated execution logs to templates derived from the Nutch source
code using string matching. A subset of log lines was not mapped to any source
code template (that is, from third party library) and clustered using a combina-
tion of approximate and weighted edit distance clustering. Execution behavior
model is discovered automatically for each of the versions using the respective
templatized execution logs. Each vertex in the model corresponds to a unique
template. Using our automated approach, many diff regions are detected between
the two discovered models.

Figure 1 presents one of the diff regions, i.e., deletion of a set of vertices
T1103–T1109 (represented as dashed) from class Fetcher.java and addition of
new vertices EXT0–EXT5 (double circled) from apparently third party library
(prefixed with EXT). We manually investigated this diff region and found that
the code fragment corresponding to templates T1103–T1109 has been moved
from Fetcher.java to FetchItemQueue.java2. Inspecting FetchItemQueue.java we
found that FetchItemQueues is used as logger instead of FetchItemQueue. Con-
sequently, the log messages from FetchItemQueue had a wrong class name, and
thus were not mapped to the corresponding source code logging statement and
treated as log statements from third party library (EXT0–EXT5).

This issue was introduced in Nutch 1.11 and fixed after we reported it3 in
Nutch 1.13. Using our approach, the issue would have been detected in the
version 1.11 itself. This highlights the potential of our approach for discovering
anomalies by analyzing automatically identified diff regions.

3 Proposed Approach

The proposed approach takes executions logs and source code for the deployed
and new version as starting points. Since our approach is targeted towards con-
tinuous deployment, access to both these artifacts can be assumed. The approach
leverages execution logs without instrumenting the code because instrumentation
overhead is not possible in a fast evolving production software [31]. Neverthe-
less, execution paths are successfully captured from the existing logs because in
practice, sufficient logging is done to facilitate runtime monitoring [6,16].

Our approach consists of three broad phases: template mining that maps
each line in execution logs to a unique template (Sect. 3.1), execution behavior
model mining that derives execution behavior models from the templatized logs
and refines the model using multimodal approach (Sect. 3.2), and analysis of
1 https://issues.apache.org/jira/browse/NUTCH-1934.
2 http://svn.apache.org/viewvc?view=revision&revision=1678281.
3 https://issues.apache.org/jira/browse/NUTCH-2345.

https://issues.apache.org/jira/browse/NUTCH-1934
http://svn.apache.org/viewvc?view=revision&revision=1678281
https://issues.apache.org/jira/browse/NUTCH-2345

Runtime Monitoring in Continuous Deployment 815

Fig. 2. Given the source code (1) templates are extracted (2), and log lines are mapped
to them (3). Log lines from external libraries are clustered to create new templates (4).

the model differences to identify the differences between the execution behavior
models and classify them into cohesive diff regions (Sect. 3.3).

3.1 Template Mining

A template is an abstraction of a logging statement in the source code consisting
of a fixed part and variable part (denoting parameters) [2,18]. Due to presence of
parameters templates often manifest themselves as different log messages. Thus,
identifying the templates from the execution log messages has inherent challenges
[20]. If no source code is available, templates can be inferred by clustering log
messages [20,27]. However, often log messages from different logging statements
are clustered together, resulting in inaccurate templates. Since we have access
to source code, we extract templates using regular expressions (cf. Fig. 2).

Derive Templates from the Source Code: In this step the print statements
are identified from the source code along with the class name and severity level
(e.g., INFO, WARN and DEBUG) [6]. We search for the logging statements in
the source code using regular expressions with some enhancements to identify
ternary print statements and ignore commented logging statements in the source
code. As shown in Fig. 2, logging statement is parsed and represented as a regular
expression which is then assigned a unique template id. Class name and severity
level are also stored as additional information to disambiguate templates which
have identical invariant pattern but appear in different classes of the code.

While the complete source code is used to extract templates for the deployed
source code version, to extract the templates for the new version we only analyze
the diff between the two source code revisions as indeed, continuous deployment
encourages incremental changes. Not only is the extraction more efficient, this
also ensures that the unchanged templates between the two versions are rep-
resented by the same template ID. The main shortcoming of diff is that if a
logging statement is modified, it is represented in the diff as a combination of
addition and deletion, that will be interpreted as addition of a new template and
deletion of the old template. Thus, two execution behavior models will appear

816 M. Gupta et al.

different for the templates which are actually the same. Since modification of
logging statement is frequent [6,16], we address this shortcoming using a novel
multimodal approach for template merging and model refinement (Sect. 3.2).

Templatize Log Messages: In this step, template id is assigned to each log
line appearing in the execution logs, by matching with templates obtained from
the previous step. To reduce the search space for the match, class name and
severity level (if included as part of the log messages) are used as additional
matching parameters (cf. Fig. 2). While regular expression matching can find
the matching template, log lines matching multiple templates, templates with
no fixed part and log lines generated by the third party libraries require special
treatment. If a log line matches more than one template it is mapped to the
most specific template, i.e., the template with the largest fixed part. If there is
one logging statement in a class without constant part then all the unmapped
log lines from that class with same logging level are mapped to it4. Finally, log
lines from external sources such as third party libraries for which we do not
have access to source code cannot be templatized as explained above. These
log lines are clustered using a combination of approximate clustering [20] and
weighted edit distance similarity [10]. Each cluster generated after the refinement
is represented as a template and is assigned a unique template ID. Thereafter,
non-templatized log lines are matched with the templates derived from clustering
step such that all the log lines are assigned a unique template id.

3.2 Mining Execution Behavior Model Using Multimodal Approach

Execution Behavior Model (EBM) is a graphical representation of the templa-
tized execution logs capturing the relationship between the templates. Each ver-
tex in the model corresponds to a unique template and the edges represent the
flow relationship between the templates. Since template represents a logging
statement from the code, EBM captures a subset of possible code flows.

Accuracy of identified diff regions directly depends on the accuracy of the
EBM mining which in turn depends on the accuracy of the template mining.
As discussed in Sect. 3.1, the execution logs are templatized with high preci-
sion using source code. However, for log lines being generated from third party
libraries we had to resort to the clustering based technique which has inherent
limitations. This limits the template mining accuracy and consequently the accu-
racy of EBM mining. This is even more apparent in the new version because only
a limited amount of logs is available, which is a hindrance to accurate mining [20].
Further, inconsistency in the templates because of the modified log statements
in source code being recorded as new templates leads to many spurious differ-
ences between the compared models thus, making the diff analysis practically
less effective. To overcome this problem, we propose an iterative EBM refinement

4 The case with multiple such statements is very rare and hence does not affect our
approach.

Runtime Monitoring in Continuous Deployment 817

Fig. 3. Iterative multimodal execution behavior model refinement

strategy using multimodal signals that is, text and vicinity (i.e. predecessors and
successors in EBM) of the template.

Iterative Execution Behavior Model Refinement: We derive execution
behavior model for the deployed, EBMd and the new version, EBMn using corre-
sponding templatized execution logs. We compare EBMd and EBMn to identify
the vertices which are present in EBMn but not in EBMd (that is, �Tadd) and
vice-versa, i.e. �Tdel. It is possible that the vertex from �Tadd set is actually
same as the vertex from set �Tdel but captured as different template as discussed
above. We identify and resolve such cases using proposed multimodal approach
thus, reducing the spurious diff and making the comparison more effective.

One of the multimodal signals that we use is textual similarity between the
templates from �Tdel and �Tadd. If there are m templates in �Tdel and n tem-
plates in �Tadd then similarity is calculated between m × n pairs. The pairs with
textual similarity above a threshold are captured as potential merge candidates.
We do not merge the templates simply based on text similarity because there can
be two textually similar templates corresponding to different logging statements
in the code. Hence, to improve the precision, we evaluate the similarity for one
more modality, i.e., vicinity similarity, where vicinity is the set of predecessors
and successors. If the vicinity similarity is above a threshold, the templates are
marked as identical. Thresholds for textual similarity and vicinity similarity can
be selected based on grid search and fine tuned to project requirements [20].

We continue the process iteratively with each step leading to a more refined
EBMn. With every iteration some of the vertices are marked as identical which
in turn can change the value of vicinity similarity for other candidate pairs. We
stop the iterations when no more candidate pairs can be merged and the EBMn

output of subsequent steps no longer changes.

Example 1. Consider the EBMs shown in Fig. 3. By comparing EBMd and EBMn,
we observe that �Tdel = {T2, T3, T4} and �Tadd = {T ′

2, T
′
3, T

′
4}. We calculate

text similarity for all the nine pairs and find the potentially similar candidate
set, C = {(T2, T

′
2), (T3, T

′
3), (T4, T

′
4)}. Vicinity similarity is checked for all the

candidates and in first iteration vicinity similarity is above the threshold only

818 M. Gupta et al.

for one pair, (T2, T
′
2) which is marked as identical and removed from C. In

the next iteration, the remaining pairs from C are analyzed for the vicinity
similarity which is found to be greater than the threshold for (T4, T

′
4), which is

again marked as identical and removed from C. Only one pair, (T3, T
′
3) is not

marked as same because its vicinity similarity is below threshold even though
the textual similarity is high. Consequently, diff set after EBMn refinement is
reduced to �Tadd = {T ′

3} and �Tdel = {T3}.

3.3 Analyzing Differences Between Execution Behavior Models

Since EBMs are graphs identifying the differences between them can be seen
as the graph isomorphism problem [14], known to be in NP. However, since we
ensure the consistency in the template ID across the two models, the compar-
ison of two models is simplified. The refined models are compared to identify
the following differences: sets of vertices, �diffv and edges, �diffe which are
added/deleted, as well as the set of vertices for which the relative frequency of
outgoing transitions has changed �diffdist in EBMn when compared to EBMd.
For efficient follow-up analysis, we group the identified differences into cohesive
regions such that the related differences are investigated as single unit.

Example 2. Deletion of T1103–T1109 and the corresponding edges, and addition
of EXT0–EXT5 and the corresponding edges in Fig. 1 are grouped together.

Vertex Anchored Region: Intuitively, we would like to find the maximum
point from which the difference in execution behaviors is observed and the min-
imum point up to which there are differences in the execution behavior. For the
differences with same maximum point, it is highly likely that they are caused
due to modification in same code, and, thus, should be investigated as a single
unit.

A vertex, vi is randomly selected from �diffv as a seed to detect the region.
We back traverse the graph till an unchanged ancestor (that is, vertex common
between the two models) is detected along all the paths to vi. All the vertices
and edges along the path (including unchanged ancestor) are marked as part
of the region. For all marked vertices, all the outgoing branches are traversed
and marked till an unchanged child vertex (that is, vertex common between the
two models) is detected. Unchanged child vertex is not included in the region
because the boundary of region is defined till the last difference in the included
path. Effectively, a region covering a set of vertices and edges is identified. The
process repeats as long as there remain unmarked vertices in �diffv. At the end
of this step, all vertices from �diffv and some edges from �diffe are marked as
part of some region. We call these regions as vertex anchored regions.

Example 3. Consider Fig. 4 where �diffv = {T0, T2, T3, T4, T6, T7, T8, T10} and
�diffe = {(T0, T11), (T1, T0), (T1, T4), (T1, T3), (T1, T2), (T1, T6), (T4, T5), (T3, T5),
(T2, T5), (T11, T6), (T6, T7), (T7, T11), (T10, T11), (T10, T9), (T9, T10), (T9, T8), (T8, T9),

Runtime Monitoring in Continuous Deployment 819

Fig. 4. There are two vertex anchored region (different shades of yellow) and one edge
between the unchanged vertices (blue). Blue pointers correspond to backtracking, and
green pointers depict forward tracking. (Color figure online)

(T8, T11), (T5, T1)}. We choose T7 as the first seed and back traverse its incom-
ing path (blue pointers) up to maximum unchanged vertices, i.e., {T1, T11},
marking vertices {T7, T6, T1, T11} and edges {(T7, T6), (T6, T1), (T6, T11)}. Next,
the outgoing branches are traversed (green pointers) till unchanged vertex is
detected and the corresponding vertices are marked. As a result, the light yel-
low region is created consisting of Vr1 = {T0, T2, T3, T4, T6, T7} and Er1 =
{(T0, T11), (T1, T0), (T1, T4), (T1, T3), (T1, T2), (T1, T6), (T4, T5), (T3, T5), (T2, T5),
(T11, T6), (T6, T7), (T7, T11), (T5, T1)} from diffv and diffe respectively. For
the next iteration we choose T8 as a seed from the set of uncov-
ered vertices in diffv and repeat the process to identify another
region. The second region becomes Vr2 = {T8, T9, T10} and Er2 =
{(T10, T11), (T10, T9), (T9, T10), (T9, T8), (T8, T9), (T8, T11)}. Hence, all the ver-
tices from diffv and a subset of diffe are grouped in one of the cohesive regions.

Edge Anchored Region: Not all edges from �diffe belong to one of the vertex
anchored regions. These are mainly the edges added/deleted between unchanged
vertices and should be analyzed separately. We refer to each of these edges along
with its vertices as an edge anchored region.

Example 4. After detecting the vertex anchored regions in Fig. 4 only one edge
in �diffe is unmarked. The only edge anchored region is hence Vr3 = {T1, T5}
and Er3 = {(T5, T1)}.

Distribution Anchored Region: Apart from the above two cases of structural
changes (addition or deletion of vertex or edge) in execution behavior model, we
investigate the vertices common in both the versions of the model to detect

820 M. Gupta et al.

the deviations in changes in the relative frequency of outgoing transitions. To
capture the distribution change, for a given vertex v and its outgoing transitions
common between the two models we compute |fd(i)−fn(i)|

fd(i)
, where fd(i) (fn(i))

is a relative frequency of transition i in EBMd (EBMn) among the outgoing
transitions of v common between the two models. If the metric value is above
threshold for at least one transition from the vertex v, it is marked as distribution
anchored region. Threshold needs to be decided manually based on the project
requirements such that minor changes are discounted (that is, not considered as
part of the differences) and major changes are marked in the differences.

4 Evaluation: Open Source and Proprietary Applications

We evaluated our approach on two different applications: (i) Nutch5, an open
source web crawler, and (ii) an industrial log analytics application. We have
already shown some initial results on the Nutch project in Sect. 2 and discuss
the other findings here. Also all the artifacts such as execution logs, templatized
logs, execution behavior model and diff files are made publicly available for
reproducibility of the results6. Details of the industrial application cannot be
divulged for confidentiality reasons. We selected these applications primarily
because of the availability of the source code and historical data on bugs and
the corresponding fixes, as well as frequently occurring incremental changes in
these applications. Execution logs for these projects were not available so we use
a custom load-generator to generate logs for different source code versions.

Table 1. Properties for the two versions of Nutch application

Attribute Nutch

Ver 1 Ver 2

Classes 415 420

Total LOC 67658 67891

Logging statements in src 1098 1097

Total lines in execution log (approx) 94137 125695

Total [Info, Debug] 19K,73K 26K,98K

Total [Error, Warn] 408,178 354,604

Vertices in model 106 104

Edges in model 328 310

5 http://nutch.apache.org/.
6 https://github.com/Mining-multiple-repos-data/Nutch-results.

http://nutch.apache.org/
https://github.com/Mining-multiple-repos-data/Nutch-results

Runtime Monitoring in Continuous Deployment 821

4.1 Experimental Results for Nutch

Two Nutch versions were used: (i) before the commit for [NUTCH-1934], hence-
forth called version 1 (deployed/prod version) and (ii) after the commit for
[NUTCH-1934], henceforth called version 2 (new version). This commit is con-
sidered a major change as a big class, Fetcher.java (ca. 1600 lines of code)
is refactored into six classes. Table 1 presents details for two Nutch versions.
We derive the templates from the source code for version 1, henceforth called
templatesv1. To derive the templates for version 2, templatesv2, 46 templates
are deleted, and 47 templates are added to templatesv1 in accordance with the
code diff (here, git-diff) between the two code versions. We generate the exe-
cution logs for both the versions by crawling same URLs (that is, mimic prod)
and observe that number of loglines generated for version 1 are less than that
for version 2 (cf. Table 1). The execution logs for version 1 and version 2 are
templatized using templatesv1 and templatesv2, respectively. Around 12% log
lines are not templatized, and hence are clustered. 80 clusters are obtained. The
clusters are further refined and grouped using weighted edit distance reducing
their number to 26. Non-templatized log lines are matched with the templates
generated after clustering and every line in the execution log is templatized for
both the versions. We discover the execution behavior model (EBM) for both
the versions, EBM1 and EBM2 and refine them using multimodal approach.

The behavior model shows that there are 53 added and 47 deleted vertices in
EBM2 as compared to EBM1. For every pair of the added and deleted vertices,
text similarity is calculated from the source code. The text similarity is found to
be above a threshold (here, 0.8) for 36 out of 2491 pairs and the corresponding
vicinity is compared in EBM1 and EBM2. Vicinity similarity is also found to
be above a threshold (that is, 0.5) for all the 36 candidate pairs. Thus, these
vertices are marked to be the same templates across the two EBMs. For better
understanding, diff refinements file is made publicly available at the link (See
footnote 6). As a result, all the templates which are captured as new template
because of refactoring got mapped to the corresponding old templates reducing
the number of differences significantly. Refined EBM2 is compared with EBM1 to
identify and analyze the differences. The final refined model with diffs is made
publicly available (See footnote 5).

We observe several differences which are grouped as cohesive regions using
approach discussed in Sect. 3.3.

We identified one region which is explained in Sect. 2. In the additional region
we observe (i) deletion of vertex corresponding to template “Using queue mode :
byHost” (though present in source code of both the versions), and (ii) signifi-
cant change in distribution of a vertex T1135 such that the edge T1135 → T1131
traversed only twice in EBM1 has been traversed 601 times in EBM2. Both obser-
vations are related to FetcherThread.java which is investigated manually and a
bug is identified in the way URLs are redirected. Instead of following the cor-
rect redirect link, the code was following the same link over and over again.
After the maximum number of retries is exceeded further processing of the URL
stopped with the message T1131 (“- redirect count exceeded *”), thus, increas-
ing frequency of this edge traversal. This bug has already been reported as

822 M. Gupta et al.

NUTCH-21247 and attributed to patch commit we are analyzing. This validates
the findings of our approach and highlights its usefulness. Therefore, using our
approach we not only detect differences but also provide the context to derive
actionable insights.

4.2 Experimental Results for the Industrial Application

The EBM generated automatically by our code is shown in Fig. 5 with annota-
tions. Grey denotes the part which is common in EBMd and EBMn, dashed is
the part which is present only in EBMd but not in EBMn, and bold edges/double
encircled correspond to the part which is present in EBMn but not in EBMd. We
selected two code revisions (referred to as v1 and v2) of the project such that it
captures different kinds of code changes possible in software development cycle.

Fig. 5. Annotated execution behavior model highlighting the regions of diff for internal
analytics application. Grey part is common in EBMd and EBMn, dashed is the part
which is present only in EBMd but not in EBMn, and bold edges/double encircled are
present in EBMn but not in EBMd

7 https://issues.apache.org/jira/browse/NUTCH-2124.

https://issues.apache.org/jira/browse/NUTCH-2124

Runtime Monitoring in Continuous Deployment 823

As shown in the Fig. 5, our approach detected six different regions of change
between the two revisions, which we explain below.

Region 1: T58 template is present in both the source code versions but is not
observed in EBMn. Manual inspection of the code and commit history reveals
that this is actually a bug caused due to faulty regular expression match and
hence one conditional statement is skipped completely.

Region 2: A shift in distribution between edges (EXT0, T1) and (EXT0, T2)
that is, increase in transition to T1 by factor of 8. Manual inspection reveals that
the cause of this anomaly is a wrong Boolean condition check, which caused the
distribution to be flipped between two conditional statements.

Region 3: Many new nodes appeared in EBMn because a new Java class is added
(identified in manual investigation) which gets invoked in the new version, i.e.,
this is an evolutionary design change. Addition of T0 however is not exactly
related to this change. It is from the class that invokes the new feature but was
added in Region 3 alongside the new class because of its close proximity.

Region 4: It has only one change viz. the addition of edge T50 → T78 and an
accompanying decrease in the frequency of T76 → T78. Manual investigation
highlights that T78 corresponds to a new exception check added in the class
containing T50 thus whatever is not caught at T50 level is caught at T76.

Region 5: Main change is addition of node T40 and disappearance of nodes
T44 and T45. Both T44 and T45 are exception nodes which exist in both code
revisions while T40 is a new node. On manual inspection, it is revealed that this
change is actually a result of bug fix that is, for ArrayOutOfBounds exception.
This validates that the bug fix is working as intended.

Region 6: Two new nodes appeared in EBMn and investigation of revision history
reveals that a new function was added with two prints which is invoked just after
T51 in the code thus, an evolutionary change.

To summarize, our approach has successfully detected all seven regions of
code change between the two code revisions. It coalesced two of the regions (in
Region 3) but this does not affect the usability of our approach as these regions
are in close proximity. Manual investigation of diff regions in EBM highlights
regression bugs as well as validates the evolutionary changes.

5 Discussion

Based on the project requirements, the information from the proposed approach
can be leveraged in different ways to help improve the continuous deployment
process. It provides additional insights (not to replace the existing practices) for
some of the use cases as discussed below:

824 M. Gupta et al.

– Go/No-go during Release Decision Making: Most software companies have
the concept of a go/no-go meeting before a production release where product,
development and operations managers get together to decide whether to go
ahead with the release of newer version or not. Our approach provides a way
to visualize differences between the code versions in a graphical way thus
being easily consumable for decision-making.

– Update Test Suite to Cover Modified Execution Flows: The proposed app-
roach identifies region of differences between two execution behavior models
thus, merit for comprehensive review. Regression testing can be performed for
the diff regions instead of testing the whole application thus making regression
testing leaner and at the same time more reliable and effective.

– Optimal Test Suite Coverage: By looking at discovered execution flow graphs,
it is possible to identify the code paths which are frequently taken during run-
time, and tests can be designed intelligently. Hence ensure that more frequent
paths are tested rigorously using sophisticated techniques.

The approach assumes the presence of an identifier (i.e. thread ID) to capture
the trace for an execution. Since thread ID is often present in the execution logs
[32], it is fair to make this assumption. When the identifier for an execution is
not present, execution behavior model can be mined using other techniques [20].

To keep our approach language independent and light weight, we do not use
static analysis techniques [19]. Also static analysis will not capture the complete
reality of execution behavior which gets influenced by prod configuration.

We mine the differences between the execution behavior models of two ver-
sions. However, we do not associate the differences with the change type such
as bug fixing or feature addition. This kind of classification will not only help in
quick resolution of bugs but will also act as an additional check to see if all the
release items have been properly taken care before signing off on deployment.

6 Threats to Validity

Threats to Construct Validity: It focuses on the relation between the theory
behind the experiment and the observation [29]. Performance of the approach
depends on the pervasiveness of logging hence, if less logging statements then
it may not be possible to derive useful inferences. However, given that logs are
primary source for problem diagnosis, sufficient logging statements are written
in the software [6].

Threats to External Validity: External validity is concerned with the gener-
alizability of the results to other settings [29]. We conducted experiments on
one open source and one proprietary project to illustrate the effectiveness of the
approach. However, both are Java based projects using Log4j library for logging
thus, very similar in terms of logging practice. While the approach does not make
any project specific assumptions, it is possible that the performance can vary
for different project characteristics. Accuracy of multimodal approach depends
on the thresholds and thus can vary across projects.

Runtime Monitoring in Continuous Deployment 825

7 Related Work

Execution logs have been extensively studied in such contexts as anomaly detec-
tion [4,20], identification of software components [24], component behavior dis-
covery [17], process mining [28], behavioral differencing [12], failure diagnosis
[25], fault localization [30], invariant inference [5], and performance diagnosis
[10,26]. In this section, we focus on automatic analysis of execution logs.

Goldstein et al. [12] analyze system logs, automatically infer Finite State
Automata, and compare the inferred behavior to the expected behavior. How-
ever, they work on system logs with predefined states while we identify these
states (templates) first. Moreover, they present the differences as independent
units whereas we group them together rendering the representation more usable.

Cheng et al. [7] propose to extract the most discriminative subgraphs which
contrast the program flow of correct and faulty execution. Fu et al. [10] derive a
Finite State Automata to model the execution path of the system and learn it to
detect anomalies in new log sequences. However, these are supervised approaches
assuming the presence of ground truth for correct and faulty executions to learn
a model. Nandi et al. [20] detect anomalies by mining the execution logs in dis-
tributed environment however, anomalies are detected within the same version,
no differencing between the flow graphs of two versions.

Tarvo et al. [26] automatically compare the quality of the canary version with
the deployed version using a set of performance metrics such as CPU utilization
and logged errors however, do not detect the differences in execution flow which
is crucial for finding discrepancies. A set of techniques compare multiple versions
of an application. Ramanathan et al. [22] consider program execution in terms
of memory reads and writes and detect the tests whose execution behavior is
influenced by these changes. Ghanavati et al. [11] compare the behavior of two
software versions under the same unit and integration tests. If a test fails in
the new version, a set of suspicious code change is reported. This approach
works best when comprehensive test suites are available which is not the case in
considered Agile environment.

Beyond the specifics of the execution log analysis, our work can be positioned
in the context of continuous deployment. Continuous deployment can be seen
as an extension of continuous integration [33] and the following step on “the
stairway to heaven”, the typical evolution path for companies [21].

8 Conclusion and Future Work

We have presented an approach to efficiently highlight the differences in the exe-
cution behavior caused due to incremental changes in fast evolving applications.
We automatically discover execution behavior model using multimodal approach
for the deployed and the new version by mining the execution logs. The models
are compared to automatically identify the differences which are presented as
cohesive diff regions. Since we have used a graphical representation, we not only
identify diff regions but also the context to facilitate in-depth analysis.

826 M. Gupta et al.

Our preliminary evaluation on the open source project Nutch and internal
log analytics application illustrates the effectiveness of the approach. Using our
approach, we were able to detect multiple bugs introduced in new version for
both the applications. Following the analysis, we found that some of the detected
bugs were already reported in their issue tracking system therefore, we reported
the remaining ones which were later fixed by the developers.

As part of future work, we plan to evaluate the approach on several other
applications. Also we plan to automatically classify identified diff regions as
anomaly and drill down to the root cause commit(s) using revision history.

References

1. Adams, B., McIntosh, S.: Modern release engineering in a nutshell-why researchers
should care. In: SANER, pp. 78–90 (2016)

2. Arnoldus, J., van den Brand, M.G.J., Serebrenik, A., Brunekreef, J.: Code Gener-
ation with Templates. Atlantis Press, Amsterdam (2012)

3. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Boston (2015)

4. Bertero, C., Roy, M., Sauvanaud, C., Trédan, G.: Experience report: log mining
using natural language processing and application to anomaly detection. In: ISSRE,
pp. 351–360 (2017)

5. Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., Ernst, M.D.: Leveraging
existing instrumentation to automatically infer invariant-constrained models. In:
ESEC/FSE, pp. 267–277. ACM (2011)

6. Chen, B., Jiang, Z.M.J.: Characterizing logging practices in java-based open source
software projects–a replication study in apache software foundation. EMSE 22(1),
330–374 (2016)

7. Cheng, H., Lo, D., Zhou, Y., Wang, X., Yan, X.: Identifying bug signatures using
discriminative graph mining. In: ISSTA, pp. 141–152. ACM (2009)

8. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
technical and social challenges along the way. IST 57, 21–31 (2015)

9. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
facebook. IEEE Internet Comput. 17(4), 8–17 (2013)

10. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed
systems through unstructured log analysis. In: ICDM, pp. 149–158 (2009)

11. Ghanavati, M., Andrzejak, A., Dong, Z.: Scalable isolation of failure-inducing
changes via version comparison. In: ISSRE Workshops, pp. 150–156 (2013)

12. Goldstein, M., Raz, D., Segall, I.: Experience report: log-based behavioral differ-
encing. In: ISSRE, pp. 282–293 (2017)

13. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, London (2010)

14. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: ICSE
Workshop on Comparison and Versioning of Software Models, pp. 1–6 (2009)

15. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The highways and country roads to continuous deployment. IEEE
Softw. 32(2), 64–72 (2015)

16. Li, S., Niu, X., Jia, Z., Wang, J., He, H., Wang, T.: Logtracker: learning log revision
behaviors proactively from software evolution history. In: ICPC (2018)

Runtime Monitoring in Continuous Deployment 827

17. Liu, C., van Dongen, B.F., Assy, N., van der Aalst, W.M.P.: Component behavior
discovery from software execution data. In: ICPC (2018)

18. Messaoudi, S., Panichella, A., Bianculli, D., Briand, L., Sasnauskas, R.: A search-
based approach for accurate identification of log message formats. In: ICPC (2018)

19. Muske, T., Serebrenik, A.: Survey of approaches for handling static analysis alarms.
In: SCAM, pp. 157–166 (2016)

20. Nandi, A., Mandal, A., Atreja, S., Dasgupta, G.B., Bhattacharya, S.: Anomaly
detection using program control flow graph mining from execution logs. In: KDD,
pp. 215–224 (2016)

21. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven” -
a mulitiple-case study exploring barriers in the transition from agile develop-
ment towards continuous deployment of software. In: Software Engineering and
Advanced Applications, pp. 392–399 (2012)

22. Ramanathan, M.K., Grama, A., Jagannathan, S.: Sieve: a tool for automatically
detecting variations across program versions. In: ASE, pp. 241–252 (2006)

23. Savor, T., Douglas, M., Gentili, M., Williams, L., Beck, K., Stumm, M.: Continuous
deployment at Facebook and OANDA. In: ICSE Companion, pp. 21–30 (2016)

24. Shatnawi, A., Shatnawi, H., Aymen Saied, M., Al Shara, Z., Sahraoui, H., Seriai,
A.: Identifying software components from object-oriented APIs based on dynamic
analysis. In: ICPC (2018)

25. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: SALSA: analyzing logs
as StAte machines. In: USENIX Workshop on Analysis of System Logs, pp. 1–8
(2008)

26. Tarvo, A., Sweeney, P.F., Mitchell, N., Rajan, V., Arnold, M., Baldini, I.:
CanaryAdvisor: a statistical-based tool for canary testing. In: ISSTA, pp. 418–
422. ACM (2015)

27. Vaarandi, R., Pihelgas, M.: Logcluster–a data clustering and pattern mining algo-
rithm for event logs. In: Network and Service Management, pp. 1–7. IEEE (2015)

28. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: Petri Nets, pp. 368–387 (2008)

29. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

30. Wong, W.E., Debroy, V., Golden, R., Xu, X., Thuraisingham, B.: Effective software
fault localization using an RBF neural network. IEEE Trans. Reliab. 61(1), 149–
169 (2012)

31. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: SherLog: error
diagnosis by connecting clues from run-time logs. In: ACM SIGARCH Computer
Architecture News, vol. 38, pp. 143–154 (2010)

32. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnos-
ability via log enhancement. ACM Trans. Comput. Syst. (TOCS) 30(1), 4:1–4:28
(2012)

33. Zhao, Y., Serebrenik, A., Zhou, Y., Filkov, V., Vasilescu, B.: The impact of contin-
uous integration on other software development practices: a large-scale empirical
study. In: ASE, pp. 60–71 (2017)

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Leveraging Computational Reuse
for Cost- and QoS-Efficient Task

Scheduling in Clouds

Chavit Denninnart1(B), Mohsen Amini Salehi1(B), Adel Nadjaran Toosi2(B),
and Xiangbo Li3(B)

1 School of Computing and Informatics, University of Louisiana at Lafayette,
Lafayette, LA, USA

{cxd9974,amini}@louisiana.edu
2 Faculty of Information Technology, Monash University, Melbourne, VIC, Australia

adel.n.toosi@monash.edu
3 Brightcove Inc., Scottsdale, AZ, USA

xli@brightcove.com

Abstract. Cloud-based computing systems could get oversubscribed
due to budget constraints of cloud users which causes violation of Qual-
ity of Experience (QoE) metrics such as tasks’ deadlines. We investigate
an approach to achieve robustness against uncertain task arrival and
oversubscription through smart reuse of computation while similar tasks
are waiting for execution. Our motivation in this study is a cloud-based
video streaming engine that processes video streaming tasks in an on-
demand manner. We propose a mechanism to identify various types of
“mergeable” tasks and determine when it is appropriate to aggregate
tasks without affecting QoS of other tasks. Experiment shows that our
mechanism can improve robustness of the system and also saves the over-
all time of using cloud services by more than 14%.

Keywords: Task aggregation · Oversubscription · Cloud computing
Video stream processing · Task scheduling

1 Introduction

With Cloud and Edge Computing gaining more popularity as the back-end plat-
form of many applications, the need for efficient use of these platforms is of
paramount importance for individual users and businesses. A common practice
to efficiently utilize cloud resources is to use a central queue of arriving tasks
with a scheduler that allocates these tasks to a scalable pool of worker Virtual
Machines (VMs). The tasks often have individual deadlines that failure to meet
them compromises the Quality of Experience (QoE) expected by the end-users.

Although cloud providers supply virtually unlimited resources, users gen-
erally have budget constraints, thus, cannot lavishly acquire cloud resources
(VMs) [2]. Such limitation raises the oversubscription problem, particularly,
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 828–836, 2018.
https://doi.org/10.1007/978-3-030-03596-9_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_59&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_59

Leveraging Computational Reuse 829

when there is a surge in the tasks arriving to the system. An oversubscribed
system is defined as a system that is overwhelmed with arriving tasks to the
extent that there is no way to meet the deadlines of all the tasks, thus, violating
end-users’ QoE.

A large body of research has been dedicated to alleviate the oversubscription
problem. The approaches undertaken in these research works follow two main
lines of thinking; First, allocation-based approaches that try to minimize the
impact of oversubscription through efficient mapping (scheduling) of the tasks
to the resources. Second, approaches based on computational reuse that avoid
or alleviates the oversubscription through efficient caching of the computational
results.

Although both of the aforementioned approaches are effective, they are lim-
ited in certain ways. The allocation-based approaches cannot entirely resolve
the oversubscription because there is no such a solution according to the above-
mentioned definition. In addition, many of the approaches are based on complex
scheduling algorithms that impose extra overhead to the already oversubscribed
system. The approaches based on computational reuse are also limited because
they can only reuse the computations for tasks that are identical to the ones
already completed and cached. In other words, if two tasks share part of their
computation, it cannot be captured by current caching techniques.

In this research, we propose a mechanism based on computational reuse that
aims at alleviating oversubscription by aggregating identical and similar tasks in
the scheduling queue. Our mechanism makes the scheduling queue less busy and
potentially lighten up the overhead of the scheduling process. It complements the
existing scheduling-based and caching-based approaches but is not a replacement
for them.

We define mergeable tasks as those tasks that are either identical or sharing
part of their operation with other tasks. We need a mechanism to, first, detect
different types of mergeable tasks and, second, eliminate the detected mergeable
tasks from the scheduling queue without causing further deadline violations in
the system.

Our motivational case study in this research is a video streaming engine that
needs to process videos (e.g., downsizing resolution or bit-rate) in the cloud
before streaming them to viewers [1]. In this system, it is likely that viewers
request same videos to be streamed, hence, creating similar tasks in the system
especially when the system is oversubscribed. For example, two viewers who use
similar display devices may request to stream the same video with the same
or different specifications. The former case creates identical tasks in the system
whereas the latter one creates similar tasks.

In this research, we develop an Admission Control component that is able
to detect different levels of similarity between tasks. The system is aware of the
tasks’ deadlines and performs merging without introducing additional deadline
violations. The task aggregation also results in efficient utilization of resources
and enable more tasks to meet their deadlines. Therefore, both viewers and
system providers can be benefited from the proposed mechanism. In summary,

830 C. Denninnart et al.

the key contributions of this research are as follows: (A) Proposing an efficient
way of identifying potentially mergeable tasks; (B) Determining appropriateness
and potential side-effects of merging tasks; (C) Analyzing the performance of
the task aggregation mechanism on the viewers’ QoE and time of deploying cloud
resources (VMs).

Although we develop this mechanism in the context of video streaming, the
idea of task aggregation and research findings of this work are valid for other
domains.

2 Background for Merge-Aware Admission Control

While storing multiple versions of the same video to serve different types of
display devices is a conventional practice, Cloud-based Video Streaming Engine
(CVSE) [6] enables on-demand (i.e., lazy) processing of video streams, particu-
larly for rarely accessed video streams [3].

...

VMs

Batch Queue

Merge-Aware
Admission

Control

Scheduler

Merged Task Time
EstimatorArriving Task

Fig. 1. Overview of Merge-Aware Admission Control
for CVSE system

In the CVSE architec-
ture, each task is a GOP
(Group Of Picture) of the
requested video stream. A
GOP task request (here-
after, called task) includes
the operation required along
with the corresponding
parameters bound to that
request. Admission Con-
trol component, as shown in Fig. 1, sends the task to the batch queue (aka
scheduling queue) where the task waits to be assigned by the scheduling pol-
icy [4] to one of multiple VMs’ queues. Most of the scheduling policies are reliant
on the Time Estimator component that is aware of the expected execution time
of each task type (e.g., different transcoding operations) on the cloud VMs [5].
Tasks get executed on the assigned VM and streamed to the viewer (More details
about CVSE is in [5,6]).

In this paper, we develop our task aggregation mechanism inside Admission
Control component of CVSE. For an arriving task, Admission Control recognizes
if it is mergeable with the ones exist in the batch queue or local queues of the
VMs. Then, the Admission Control decides the feasibility of merging (i.e., if
merging causes deadline violation for other tasks).

3 Task Similarity Detection

3.1 Categories of Mergeable Tasks

Mergeability of two given tasks can be explained based on the amount of com-
putation the two tasks share. In particular, mergeability of two or more tasks
can be achieved in the following levels:

Leveraging Computational Reuse 831

(A) Task-level: This is when more than one instance of the same task exists in
the scheduling queue. Therefore, this level is also known as Identical tasks
and can achieve maximum computational reusability. As these tasks are
identical, merging them consumes the same resources required for only one
task, hence, reducing both cost and processing delay.

(B) Operation-level: This is when two or more tasks perform the same operation
on the same data but with different configurations. In this level of merging,
the two tasks can share part of their processing.

(C) Data-level: This is when two or more tasks perform different operations on
the same data. This level of merging achieves the minimum reusability by
saving only the time and processing overhead of loading data.

It is noteworthy that the aforementioned reusability levels are generic and
can be further categorized depending on the context.

3.2 Detecting Similar Tasks

In this section, we provide a method to detect similar tasks. Although our solu-
tion carry out task aggregation using Admission Control component. We would
like to note that, it is theoretically possible to carry out task merging in the
scheduling queue, i.e., after the task admission. In this case, to find merge-
able tasks, we need to scan the entire queue and perform a pair-wise matching
between the queued tasks. Practically, this approach is not efficient, because
each time the queue is scanned, it imposes a significant number of redundant
comparisons. Hence, we choose to perform task merging upon task arrival using
the Admission Control component of the system.

Assuming there are n tasks in the queue, for each arriving task, a näıve
mergeable task detection method has the overhead of performing n comparisons
to find the mergeable tasks. To reduce the overhead, we propose a method that
functions based on the hashing techniques. The general idea of the proposed
method is to generate a hash key from the arriving task request signature (e.g.,
GOP id, processing type, and their parameters). Then, the Admission Control
finds mergeable tasks by searching for a matching key in the hash table of tasks
exist in the scheduling queue.

The explained method can detect task-level mergeability. We need to expand
it to detect operation- and data-level of task mergeabilities. To maximize the
computational reusability, an arriving task is first verified against task-level
mergeability. If there is no match in the task-level, then the method proceeds
with checking the next levels of mergeability, namely operation-level and data-
level, respectively. To achieve the multiple levels of mergeability, we create three
hash-tables—each covers one level of mergeability. The hash-keys in each level are
constructed from the tasks’ characteristics that are relevant in deciding merge-
ability at that level. For instance, in video streaming case study, keys in the
hash-table that verifies task-level mergeability are constructed from GOP id,

832 C. Denninnart et al.

processing type, and their parameters. While, keys in the hash-table that ver-
ifies operation-level mergeability are constructed from GOP id and processing
type. Similarly, keys in the hash-table of data-level mergeability are constructed
from GOP id.

Upon arrival of task j:

(1) if j merges with existing task i on Task-level similarity:
– No update on hash-table is required

(2) if j merges with existing task i on Operation- or Data-level similarity:
– Add an entry to each hash-table with hash-keys of task j and point them to

merged task i+ j
(3) if j matches with existing task i but the system chooses not to merge them:

– Add an entry to each hash-table with hash-keys of task j and point them to task j
(4) if j does not match with any of the existing tasks:

– Hash-keys of task j are added to the respective hash-tables

Upon task j completing execution (i.e., dequeuing task j):

– Remove all entries pointing to task j from hash-tables

Fig. 2. The procedure to update hash-tables upon arrival or completion of tasks

Each entry of the hash-tables includes a hash-key and a pointer to the cor-
responding task. Entries of the three hash-tables must be updated upon a task
arrival and execution. The only exception is Task-level merging, which does not
require updating the hash-tables. Figure 2 shows the procedure for updating the
hash-tables for a given task j.

When the system merges task j with existing task i, the merged task, denoted
as i + j, is essentially the object of task i that is augmented with request infor-
mation (e.g., processing parameters) of task j. In this case, as shown in Step
(2) of this procedure, the system only adds an entry to each hash-table with
hash-key of task j pointing to merged task i+j as existing key for task i already
pointed to task i + j. When task j is mergeable with existing task i, but the
system decides to add task j to the batch queue without merging. In this case,
task j has a higher likelihood of merging with other arriving tasks. The reason
is that task i has not merged with task j and it does not merge with other
arriving tasks. Hence, as shown in Step (3) of the procedure, the matching entry
pointing to task i is redirected and points to task j. It is worth noting that if the
arriving task does not match with any of the existing tasks, as shown in Step
(4), its hash-keys must be generated and added to the respective hash-tables.
Also, when a task completes its execution, its corresponding entries are removed
from the hash-tables.

Leveraging Computational Reuse 833

4 Identifying Merging Appropriateness

Imagine an arriving task merges into an existing task in the queue. If such merg-
ing is not a Task-level similarity, the execution time of merged task is increased
compared to a task before merging. The increased execution time delays the exe-
cution of other tasks waiting behind in the queue which could result in deadline
violations. Therefore it is critical to assess the impact of merging tasks before
performing the merge.

Impact of merging can be assess based on additional deadline misses of tasks
following merged tasks when merging occurred against without. Impact of merg-
ing assessor create virtual copies of scheduling queue in two scenarios: with merg-
ing occurred and without. It simulates the scheduling and estimates completion
time of each task, then compares to its deadline. Merging is only carried out if
it does not cause additional deadline violations than it would normally happen
if the tasks are not merged.

The estimated completion time of task i on a given machine m, denoted as
Cm

i and formally shown in Eq. 1, is calculated as the sum of the four following
factors: (A) current time, denoted τ ; (B) estimated remaining time to complete
the currently executing task on machine m, denoted emr ; (C) sum of the estimated
execution times of N tasks pending in machine queue m, ahead of task i. This
is calculated as

∑N
p=1(μp + 2·σp); (D) estimated execution time of task i.

Cm
i = τ + emr +

N∑

p=1

(μp + 2·σp) + (μi + 2·σi) (1)

5 Performance Evaluation

5.1 Experimental Setup

We implemented a prototype of CVSE with task aggregation mechanism
equipped. It is designed to operate in different modes, namely real streaming
mode and emulation mode that is used for testing purposes [6]. In this study, to
examine various workloads, we used CVSE in the emulation mode. We evaluated
the proposed mechanism using eight homogeneous VMs modeled after Amazon
GPU (g2.2xlarge) VM.

The video repository we used for evaluation includes multiple replicas of a set
of benchmark videos. Videos in the benchmarking set are diverse both in terms
of the content types and length. The length of the videos in the benchmark
varies in the range of [10, 600] seconds splitting into 10-110 Group Of Picture
(GOP) segments. The benchmark videos are publicly available for reproducibility
purposes at https://goo.gl/TE5iJ5. For each GOP of the benchmark videos, we
obtained their processing times by executing each processing operation 30 times
on Amazon GPU VM. The processing operations we benchmarked are: reducing
resolution, changing codec, adjusting bit rate, and changing frame rate.

https://goo.gl/TE5iJ5

834 C. Denninnart et al.

To evaluate the system under various workload intensities, we generate [2000,
3000] GOP processing tasks within a fixed time interval. We collect the dead-
line miss-rate (DMR) and makespan (i.e., execution time to finish all tasks) of
completing all tasks. We conducted each experiment 30 times, each time with
random task arrival time and order. Mean and 95% confidence interval of the
results are reported. We examined three queuing policies, namely FCFS (First-
Come-First-Serve), EDF (Earliest Deadline First), and MU (Max Urgency). For
each queuing policy, we studied no task merging versus task merging. In the
experiments, all tasks must be completed, even if they miss their deadline.

5.2 Impact of Task Aggregation

Fig. 3. Comparing the total time to com-
plete tasks (i.e., makespan) under varying
number of arriving GOP tasks (horizontal
axes) in two scenarios: without task merg-
ing, and with task merging.

Evaluating Makespan: In the first
experiment, our goal is to see the
impact of task merging on makespan.
In fact, makespan implies the time
cloud resources are deployed, which
implies the cost incurred to execute
all the tasks. We examine the system
under various subscription levels (from
2000 to 3200 GOPs) arriving within
the same time interval. As we can see
in Fig. 3, our proposed merging mecha-
nism saves between 4.40% and 14.33%
in makespan. Execution time saving is
more pronounced when the system is
more oversubscribed. It is worth noting that makespan does not vary under
different scheduling policies.

Evaluating Deadline Miss Rate (DMR): In this experiment, our goal is to evalu-
ate viewers’ QoE. For that purpose, we measure the deadline miss rate resulted
from no merging versus merging tasks under various oversubscribed levels and
with different scheduling policies. As shown in Fig. 4, we observe that task aggre-
gation significantly reduces deadline miss rate in all scheduling policies. We can
see that the improvement in deadline miss rate of FCFS is less than EDF and
MU scheduling policies. This is because FCFS by nature causes a larger average
waiting time and does not schedule tasks by considering their deadline. There-
fore, task merging mechanism performance, when combined with FCFS, is lower
than other scheduling polices.

Comparing the results shown in Fig. 3 with those in Fig. 4 reveals that the
difference in deadline miss rate is more dramatic than the makespan time. This
is due to the fact that even small reduction in task completion time can cause
the merged tasks meet their deadlines instead of missing that. We can conclude
that the impact of task aggregation mechanism on viewers’ QoE can become
more remarkable when it is combined with efficient scheduling policies.

Leveraging Computational Reuse 835

(a) DMR under FCFS Queue (b) DMR under EDF Queue (c) DMR under MU Queue

Fig. 4. Comparing the deadline miss-rate (DMR) under varying number of GOP tasks
(horizontal axes) in two scenarios: without task merging, and with task merging. Sub-
figures (a), (b), and (c) show the DMR under FCFS, EDF, and MU queuing polices.

6 Related Works

Software-based computational reuse has been extensively researched and used.
However, not many systems can merge and reuse tasks before tasks are actually
executed and many of them tie very closely to one specific application. Below
are some notable works in this area.

Popa et al. [8] presented modules to identify identical and similar tasks to
cache partial results and reuse them on incremental computation specifically
on Dryad platform context. They proposed two solutions: One solution auto-
matically caches computational results. Another solution merges tasks based on
programmer’s defined merge function. Their first solution is a caching system
while their second solution is similar to our work, but more specific to Dryad
platform which does not have deadline and QoE to consider.

Paulo and Pereira et al. [7] developed a system to perform deduplication
of high throughput data using Bloomfilters. Bloomfilters, while fast, have
chances of giving false positive hash checking. Therefore they achieve lower over-
head data duplicate detection than hash table approach we use, at the price of
compromised accuracy.

7 Conclusion and Future Works

In this paper, we improve efficiency of the system in oversubscribed condition
by merging arriving tasks with other (exact or similar) tasks. We dealt with
two challenges: First, how to identify identical and similar tasks in an efficient
manner? Second, how to perform merging without violating the deadline of other
tasks in the system? To address the first challenge, we identified three main
levels of similarity that tasks can be merged. Then, we developed a method to
detect different levels of task similarity within a constant time complexity. To
address the second challenge, we developed a method that determines impact
of merging and only perform merge operations if other tasks’ deadline are not
affected. Experimental results demonstrate that the proposed system can reduce
the overall execution time of tasks by more than 14%, hence, cloud VMs can

836 C. Denninnart et al.

be deployed for a shorter time. This benefit comes with improving QoE of the
users. Although we implemented this system in the context of video streaming,
the concept can be applied to other domains as long as we can define similarity
levels in those domains. In the future, we plan to extend this work by exploring
the impact of marginally compromising QoE, in favor of a remarkable cost-saving
on the cloud resources.

Acknowledgments. This research was supported by the Louisiana Board of Regents
under grant number LEQSF(2016-19)-RD-A-25.

References

1. Ahmad, I., Wei, X., Sun, Y., Zhang, Y.-Q.: Video transcoding: an overview of various
techniques and research issues. IEEE Trans. Multimed. 7(5), 793–804 (2005)

2. Bi, J., et al.: Application-aware dynamic fine-grained resource provisioning in a vir-
tualized cloud data center. IEEE Trans. Autom. Sci. Eng. 14(2), 1172–1184 (2017)

3. Darwich, M., Beyazit, E., Salehi, M.A., Bayoumi, M.: Cost efficient repository man-
agement for cloud-based on-demand video streaming. In: Proceedings of the 5th
IEEE International Conference on Mobile Cloud Computing, Services, and Engi-
neering, pp. 39–44, April 2017

4. Hosseini, M., Salehi, M.A., Gottumukkala, R.: Enabling interactive video stream
prioritization for public safety monitoring through effective batch scheduling. In:
Proceedings of the 19th IEEE International Conference on High Performance Com-
puting and Communications, HPCC 2017, December 2017

5. Li, X., Salehi, M.A., Bayoumi, M., Buyya, R.: CVSS: a cost-efficient and QoS-
aware video streaming using cloud services. In: Proceedings of the 16th IEEE/ACM
International Conference on Cluster Cloud and Grid Computing, CCGrid 2016, pp.
106–115, May 2016

6. Li, X., Salehi, M.A., Bayoumi, M., Tzeng, N.-F., Buyya, R.: Cost-efficient and
robust on-demand video stream transcoding using heterogeneous cloud services.
IEEE Trans. Parallel Distrib. Syst. (TPDS) 29(3), 556–571 (2018)

7. Paulo, J., Pereira, J.: Distributed exact deduplication for primary storage infras-
tructures. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp.
52–66. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43352-2 5

8. Popa, L., Budiu, M., Yu, Y., Isard, M.: DryadInc: reusing work in large-scale com-
putations. In: Proceedings of 1st USENIX workshop on Hot Topics in Cloud Com-
puting, HotCloud 2009, June 2009

https://doi.org/10.1007/978-3-662-43352-2_5

QKnober: A Knob-Based
Fairness-Efficiency Scheduler for Cloud

Computing with QoS Guarantees

Shanjiang Tang1(B), Ce Yu1(B), Chao Sun1, Jian Xiao1, and Yinglong Li2

1 School of Computer Science and Technology, Tianjin University, Tianjin, China
{tashj,yuce,sch,xiaojian}@tju.edu.cn

2 School of Computer Science and Technology, Zhejiang University of Technology,
Hangzhou, China

liyinglong@ruc.edu.cn

Abstract. Fairness and efficiency are generally two important metrics
for users in modern cloud computing. Due to the heterogeneous resource
demands of CPU and memory for users’ tasks, it cannot achieve the strict
100% fairness and the maximum efficiency at the same time. Quantita-
tively showing the fairness degradation/loss becomes essentially impor-
tant in the design of any fairness-efficiency tradeoff scheduler. Existing
fairness-efficiency schedulers (e.g., Tetris) can balance such a tradeoff
elastically by relaxing fairness constraint for improved efficiency using
the knob. However, their approaches are insensitive to the fairness degra-
dation under different knobs, which makes several drawbacks. First, it
cannot quantitatively tell how much relaxed fairness can be guaranteed
(i.e., QoS of fairness guarantee) given a knob value. Second, it fails to
meet several essential properties such as sharing incentive. To address
these issues, we propose a new fairness-efficiency scheduler, QKnober, to
balance the fairness and efficiency elastically and flexibly using a tunable
fairness knob. QKnober is a fairness-sensitive scheduler that can maxi-
mize the system efficiency while guaranteeing the θ-soft fairness by mod-
eling the whole allocation as a combination of fairness-purpose allocation
and efficiency-purpose allocation. Moreover, QKnober satisfies fairness
properties of sharing incentive, envy-freeness and pareto efficiency given
a proper knob. We have implemented QKnober in YARN and evaluated
it using real experiments. The results show that QKnober can achieve
good performance and fairness.

1 Introduction

In the current era of ‘big data’, it has become typical to take existing large-
scale data computing frameworks such as MapReduce [8] and Spark [26] for
big data analytics in a cloud system consisting of many machines [16]. At any
time, there are many users running their data-parallel applications on the cloud.
Typically, users’ submitted jobs often contain many tasks and their tasks tend
to have heterogeneous resource requirements towards different resource types
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 837–853, 2018.
https://doi.org/10.1007/978-3-030-03596-9_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_60&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_60

838 S. Tang et al.

(e.g., CPU and memory). For example, tasks of machine learning applications
are CPU-intensive [10], whereas hash join and sort tasks of database queries are
memory-intensive [6].

Fairness and efficiency are generally two critical metrics for both users
and resource providers in cloud computing [12]. Being aware of heterogeneous
resource demands of users’ tasks, there is a need to consider multi-resource fair-
ness that takes multiple resource types into account. By leveraging the game-
theoretic definition, a robust multi-resource fair allocation is the one in which

– all users in the shared system should perform no worse than that under an
exclusively non-sharing partition of the system. (Sharing incentive)

– no user envies the allocations of any other users. (Envy freeness)
– no user can increase its resource allocation with harming at least one other

user. (Pareto efficiency)

Dominant Resource Fairness (DRF) is one of the most well-known multi-
resource fair allocation policies [9] with the above three game-theoretic proper-
ties. It introduces the concept of dominant resource, referred to as the resource
that is heavily used by a user. The fairness is achieved by equalizing the share
of each user’s dominant resource. Although there have since been a number of
extensions [13,23], they draw little attention to the influence on system effi-
ciency. Recent studies have shown that there is a tradeoff between fairness and
efficiency in multi-resource allocation [10,11,22]. Guaranteeing the strict 100%
fairness across users would produce inefficient resource allocations. Conversely,
seeking for high system efficiency is often at the cost of compromised fairness.
DRF and its extensions tend to over constrain the system for high fairness guar-
antee, resulting in resource allocations with low system efficiency.

Many existing fairness-efficiency schedulers seek to relax fairness (i.e.,
allowing some degree of unfairness) for efficiency improvement by employing
knob-based heuristic algorithms [7,10,17,24]. Quantifying the fairness degrada-
tion/loss is essentially important for users in order to properly configure the
knob value. Tetris [10] is the state-of-the-art knob-based tradeoff scheduler that
allows users to balance fairness and efficiency flexibly by tuning the fairness knob
in cloud computing. However, due to its insensitiveness of fairness degradation
under different knobs, there are some shortcomings (see Sect. 3): (1). it cannot
quantitatively show users how much relaxed fairness can be guaranteed given
a fairness knob (i.e., QoS of fairness guarantee); (2). it fails to satisfy several
fairness properties such as sharing incentive.

In this paper, we develop a new fairness-efficiency scheduler, QKnober, to
allow users to balance fairness and efficiency flexibly with a knob factor ρ ∈
[0, 1]. Unlike the previous schedulers [7,10,24], QKnober is a fairness-sensitive
scheduler that works on the relaxed fairness (i.e., soft fairness in Sect. 4.1), which
refers to the maximum difference between the normalized shares of any two users.
It is achieved by modeling the multi-resource allocation as a combination of
fairness-purpose allocation and efficiency-purpose allocation (Sect. 4.1). Given
a knob ρ, QKnober first performs the fairness-purpose allocation for the QoS of

QKnober: A Knob-Based Fairness-Efficiency Scheduler 839

θ-soft fairness guarantee (see Theorem 1 in Sect. 4.1) and then does the efficiency-
purpose allocation for maximizing the system efficiency. We show that with a
proper knob configuration, QKnober can ensure that each user in the shared
system can get at least the amount of resources as that under the exclusively non-
sharing partition of the system. It also can guarantee that every user prefers to its
own allocation and no user envies the allocations of any other users. Furthermore,
QKnober keeps that the system is fully utilized by ensuring that no user can get
more resource allocation without decreasing the allocation of at least one user.

We have implemented QKnober in YARN [20]. We evaluated QKnober with
testbed workloads in a Amazon EC2 cluster consisting of 60 nodes. Our results
show that QKnober strikes a flexible balance between fairness and efficiency.
There can be up to 57% performance improvement as we decrease the knob
factor from one to zero for QKnober. Moreover, it outperforms its alternatives
DRF and Tetris by 31.2% and 4.5% on average, respectively. Finally, we show
that the scheduling overhead of QKnober is minor (< 0.42 ms).

2 Desirable Allocation Properties

From the economic point of view, a good fair allocation policy in cloud com-
puting system should provide the following essential game theoretic properties,
including sharing incentive, envy-freeness, and pareto efficiency [9].

Sharing Incentive (SI): Resource sharing is an essential and effective app-
roach to improve the system utilization and efficiency [15]. A good allocation
policy should satisfy sharing incentive (SI) such that each user in the system
performs at least as good as it would be under a statically equal split of the
resources of the computing system. Otherwise, users would be more likely to
divide the computing system equally and exclusively use their own partitions
without sharing. Thus, to enable resource sharing possible and sustainable, it is
a must requirement to satisfy sharing incentive [18].

Formally, let Ui = 〈ui,1, . . . , ui,m〉 be the resource allocation vector for user
i. Let Ni(Ui) denote the number of tasks scheduled for user i under the resource
allocation vector Ui. An allocation policy is sharing incentive if it satisfies the
following condition for each user i ∈ [1, n],

Ni(Ui) � Ni(Ui), (1)

where Ui = 〈ui,1, . . . , ui,m〉 represents the resource allocation vector for user i
under the exclusively non-sharing partition of the computing system.

Envy-Freeness (EF): An allocation is envy-freeness (EF) if no user envies the
allocation of other users associated with a desire to receive that same allocation.
That is, every user prefers its own allocation to that of any other user. To provide
EF, there is a need to ensure that every user cannot have more tasks scheduled
by switching its allocation with any other user.

840 S. Tang et al.

Given the resource allocation vector Ui for user i, an allocation policy satisfies
EF if

Ni(Ui) � Ni(Uj), (2)

for any two users i, j ∈ [1, n].

Pareto Efficiency (PE): PE is another critical property that should be sat-
isfied by a fair resource allocation policy [19]. It is essential for high resource
utilization and efficiency. An allocation policy is PE if it is not possible for a
user to get more tasks scheduled without decreasing the number of running tasks
of at least one other user.

Let U = 〈U1, . . . ,Un〉 be the resulting allocation for all users produced by
a fair allocation policy. The allocation U is PE if it does not exist any feasible
allocation Ŭ satisfying the following two conditions at the same time, i.e., (1).
∀i ∈ [1, n], Ni(Ui) � Ni(Ŭi); (2). ∃j ∈ [1, n], Nj(Uj) < Nj(Ŭj).

3 Background and Motivation

In this section, we motivate our work by reviewing and analyzing the limitations
of existing schedulers.

Fairness vs. System Efficiency. In multi-resource allocation, the fairness
and system utilization/efficiency highly depend on the workload characteristic
and allocation ratio of the resource. If the users with memory-intensive work-
loads have small allocation ratio, it may result in low utilization for the mem-
ory resource due to insufficient requests. Similar case does also hold for other
resources (e.g., CPU). On the contrary, maintaining high resource utilization for
all resources often generate the allocations in a manner that starves some users,
resulting in unfairness problem for users in the allocation. We next demonstrate
these problems using examples of Dominant Resource Fairness (DRF) [9], which
is a popular multi-resource allocation policy with many attractive merits (e.g.,
sharing incentive, envy-freeness and pareto-efficiency).

Example 1. Consider a computing system consisting of 200 CPUs and 1000GB
memory in total. It is shared by two users A and B equally with the task require-
ment of 〈1 CPU, 6GB 〉 for A and 〈 1 CPU, 2GB 〉 for B, respectively.

The dominant resource for user A is memory because each task of A consumes
1/200 of the total CPUs and 6/1000 of the total memory, while the dominant
resource for B is CPU. DRF achieves the fairness by equalizing the dominant
resource shares (i.e., 546/1000 = 109/200) for A and B, with the resulting
allocation illustrated in Fig. 1(a). The memory utilization is only (546+218)

1000 ≈
76%. This is because DRF does not consider resource efficiency when making
allocation decision. It only focuses on achieving the fairness among users, but
does not deal with the impact of such adjustments on the system efficiency.

In fact, both CPU and memory resources in Example 1 can be fully utilized
if the scheduler allocates 〈150 CPUs, 900 GB〉 to A and 〈50 CPUs, 100 GB〉 to

QKnober: A Knob-Based Fairness-Efficiency Scheduler 841

Fig. 1. Allocation results with different policies for Example 1. The memory utilization
is only 76% for DRF, whereas we can achieve 100% utilization for CPU and memory
with pure efficiency policy.

B, as illustrated in Fig. 1(b). However, the dominant resource shares of A and
B are no longer the same (i.e., 900

1000 > 50
200), being unfair for B. It implies that

there tends to be a tradeoff between fairness and system efficiency in resource
allocation.

Flaws of the State-of-the-Art Tradeoff Scheduler for Cloud Comput-
ing. To balance the tradeoff between fairness and efficiency elastically and flexi-
bly, many fairness-efficiency schedulers [10,17,22,24] take knob-based heuristics,
which is promised as an effective approach in multi-resource allocation [10].
Wang et al. [22,24] studied the fairness-efficiency tradeoff in networking system
by considering network packet processing and data transfer flow across differ-
ent machines. EMRF [17] is a fairness-efficiency tradeoff scheduler for Coupled
CPU-GPU architectures. In contrast, for cloud computing, Tetris [10] is the
state-of-the-art knob-based scheduler. Specifically, in each resource allocation,
it first sorts all tasks according to the DRF. Then, it searches the best task for
efficiency among the runnable tasks belonging to the first (1 − f) tasks in the
sorted list, where f ∈ [0, 1] is a knob provided by users in advance. It computes
the alignment score, defined as the weighted dot product between the vector
of machine’s available resources and the task’s peak resource demand, to the
machine for each task, and the best task is picked with the largest alignment
score. However, there are several flaws for Tetris as follows:

First, although Tetris allows users to relax fairness for efficiency improvement
by tuning the fairness knob, it is insensitive to fairness degradation for different
knobs during the allocation. Particularly, it cannot quantitatively show users
how much relaxed fairness (i.e., soft fairness in Sect. 4.1) can be guaranteed
(i.e., QoS of fairness guarantee) given a knob configuration. To explain it, let’s
revisit Example 1 by assuming that at each allocation, there are 500 tasks for
A and B, respectively. We can see that the task (share: 〈 1

200 , 6
1000 〉) of A is

more beneficial to the system utilization than that (share: 〈 1
200 , 2

1000 〉) of B
according to the resource type difference of their tasks (A : | 1

200 − 6
1000 | = 1

1000 ,

842 S. Tang et al.

Fig. 2. The resulting allocation with Tetris for Example 1 when the knob f satisfies 0 �
f < 0.5. In this case, different value of knobs does not work for fairness improvement,
indicating that Tetris is insensitive to fairness under different knobs.

B : | 1
200 − 2

1000 | = 3
1000). At each allocation, Tetris first sorts all 1000 tasks

of A and B according to DRF policy. Then, it tries to pick up a task from
the first (1 − f) tasks in the sorted list that is most beneficial to the system
utilization. When 0 � f < 0.5, the task range that Tetris can choose at the
second stage is 500 < (1 − f) ∗ 1000 � 1000. In this case, Tetris always picks
up preferred tasks from A rather than B until it cannot fulfilled, resulting in
allocation as shown in Fig. 2. It shows that the knob of Tetris does not work
for fairness improvement when 0 � f < 0.5, i.e., Tetris is insensitive to fairness
degradation under different knobs, implying that it cannot tell users how much
relaxed fairness can be guaranteed under a knob setting. However, in practice,
the QoS guarantee of different levels of fairness is very important for users under
different knobs configurations.

Second, Tetris violates the sharing incentive property (See definition in
Sect. 2). Let’s take Example 1 as a counterexample to demonstrate it. Provided
that f = 0, Tetris is purely for system efficiency optimization by picking the
best task for efficiency among all tasks every time, resulting in the allocation
as illustrated in Fig. 1(b). We can see that, B receives less resources (i.e., fewer
tasks scheduled) in the sharing system than that (i.e., 〈100 CPUs, 200 GB〉)
of exclusively using its partition of the system without sharing, violating the
sharing incentive property.

Motivated by these, we seek to explore a new fairness-efficiency allocation
policy that guarantees the soft fairness and satisfies all the desirable properties
listed in Sect. 2.

4 Allocation Model and Scheduling Policy

In this section, we model the multi-resource allocation in cloud computing based
on DRF, and propose a proposed fairness-efficiency scheduling policy called
QKnober.

QKnober: A Knob-Based Fairness-Efficiency Scheduler 843

4.1 Multi-resource Allocation Model

1) Basic Setting. We start by defining some terms used in our model. Suppose
that the computing system consists of m resource types (e.g., CPU, memory,
disk) with the capacity of R = 〈r1, . . . , rm〉 shared by n users, where ri denotes
the total amount of resource i. For each user i, let wi denote its share weight in
the shared computing system and Di = 〈di,1, . . . , di,m〉 be its resource demand
vector, where di,j denotes the amount of resource j required by a task of user i.
We assume that each user has an infinite number of tasks to be scheduled, and
all its tasks are divisible and with the same resource demand. We later discuss
how these assumptions can be relaxed for practical usage in Sect. 5.

Given the allocation matrix U = 〈U1, . . . ,Un〉 for all users, it is a feasible
allocation if it satisfies that,

n∑

i=1

ui,k � rk, ∀k ∈ [1,m], (3)

The maximum number of tasks Ni(Ui) (possible fractional) that user i can
schedule under the resource allocation vector Ui is,

Ni(Ui) = min
1�k�m

{ui,k/di,k}, (4)

2) Allocation Model . An efficient resource allocation should never let a user
get more resources than it actually needs in the computing system. We call such
an allocation non-wasteful. Formally, an allocation Ui is non-wasteful if and only
if it satisfies the following condition:

Ui = Ni(Ui) · Di, (5)

It is worthy mentioning that we can always convert an allocation to the non-
wasteful allocation by transferring the redundant/unused resources of each user
to other potential users without decreasing the number of tasks scheduled for
that user. Without loss of generality, in the following discussions, we limit our
focus on the non-wasteful allocation.

Scheduling tasks to the computing system is analogous to the multi-
dimensional knapsack problem [5] by viewing the computing system as a knap-
sack and each task as a knapsack item. The weight of an item (or task) from user
i is Di. In this work, since we are interested in the efficiency of resource alloca-
tion, the value of an item (or task) is the sum of the amount of different typed
resources it required (normalized to the system capacity), i.e.,

∑m
k=1 di,k/rk. Let

εi(Ui) be the efficiency (i.e., knapsack cost value) of a feasible resource allocation
Ui contributed by user i in the system. According to the knapsack problem, we
have

εi(Ui) = Ni(Ui) ·
m∑

k=1

di,k/rk, (6)

844 S. Tang et al.

for a single user i. Then the efficiency ε(U) of a feasible allocation U for all users
in the system can be calculated as

ε(U) =
n∑

i=1

εi(Ui) =
n∑

i=1

{Ni(Ui) ·
m∑

k=1

di,k/rk}. (7)

Let si denote the share of dominant resource for user i in the computing system.
According to Formula (5), we have

si = max
1�k�m

ui,k/rk = Ni(Ui) · max
1�k�m

di,k/rk. (8)

Formula (8) indicates that there is a proportional relationship between a user’s
dominant resource share and the number of tasks scheduled. The Domi-
nant Resource Fairness (DRF) achieves the fairness by guaranteeing that the
(weighted) shares of dominant resource across users are the same, i.e.,

s1
w1

=
s2
w2

= . . . =
sn

wn
. (9)

Let smax
i and Ni(Umax

i) represent the maximum share of dominant resource
and the corresponding number of tasks scheduled for user i under the DRF
allocation. The DRF allocation can be viewed as progressive filling when all tasks
are divisible [9]. The allocation terminates when at least one typed resource is
fulfilled. In that case, we are unable to increase each user’s dominant resource.
That is, the dominant resource share and the corresponding number of tasks
scheduled are maximized for each user under DRF. It thus holds,

max
1�k�m

{
n∑

i=1

ui,k

rk
} = max

1�k�m
{

n∑

i=1

Ni(Ui) · di,k

rk
} = 1. (10)

By computing Ni(Ui) with Formulas (8), (9) and (10), we can derive Ni(Umax
i)

as follows:

Ni(Umax
i) = wi/(max

1�k�m
{di,k

rk
} · max

1�k�m
{ 1
rk

·
n∑

j=1

wj · dj,k

max1�k′�m{d
j,k

′
r

k
′ }

}).

According to Formula (8), we can get smax
i as

smax
i = wi/ max

1�k�m
{ 1
rk

·
n∑

j=1

wj · dj,k

max1�k′�m{d
j,k

′
r

k
′ }

}. (11)

4.2 QKnober

Recall that the model in Sect. 4.1 is a strict 100% fairness allocation model.
By altering the model slightly, we can develop a knob-based fairness-efficiency

QKnober: A Knob-Based Fairness-Efficiency Scheduler 845

scheduler, QKnober, to allows users to balance fairness and system efficiency
flexibly using a fairness knob.

The basic idea is as follows. Instead of strictly seeking for 100% fairness
as DRF does, we can compromise fairness for increased allocation efficiency by
tolerating some degree of fairness loss. Particularly, we classify the fairness into
two types: hard fairness and soft fairness. The hard fairness refers to that the
allocation shares of all users should be the same (i.e., Formula (9) should be
guaranteed). In contrast, the soft fairness tolerates some degree (measured by
θ) of unfairness across users. Formally, we define θ-soft fairness by changing
Formula (9) as follows:

| si

wi
− sj

wj
| � θ,∀i, j ∈ [1, n]. (12)

Typically, DRF focuses on the hard fairness across users, limiting the alloca-
tion efficiency improvement. In contrast, QKnober, as a fairness-efficiency trade-
off scheduling policy, is interested in the soft fairness, which can leave some room
for efficiency improvement. In the following, we describe our design of QKnober
policy.

1) QKnober Design. The fairness-efficiency tradeoff allocation can be
considered as an integration of two stages allocations: fairness-purpose allo-
cation (i.e., purely for fairness optimization) and efficiency-purpose allocation
(i.e., purely for efficiency optimization). For QKnober, it first does the fairness-
purpose allocation with DRF to achieve the soft fairness guarantee. Next it turns
to the efficiency-purpose allocation for efficiency maximization. Particularly, it
offers users a knob ρ ∈ [0, 1] to control and balance the two stages allocations
flexibly. Let s̄i and s

′
i be the dominant resource shares of the resulting alloca-

tion for user i in the stage of fairness-purpose allocation and efficiency-purpose
allocation, respectively. By combining the allocations of two stages, we get the
final dominant resource share si for each user i as follows:

si = s̄i + s
′
i. (13)

Fairness-purpose Allocation. In the stage of fairness-purpose allocation,
instead of guaranteeing the hard (dominant resource) fairness of smax

i for each
user i, QKnober seeks to guarantee the soft fairness of smax

i ·ρ (i.e., s̄i = smax
i ·ρ).

According to Formula (13), we have

si = smax
i · ρ + s

′
i. (14)

It leaves R
′
= 〈r′

1, . . . , r
′
m〉 idle resources for efficiency-purpose allocation, where

r
′
i = ri − ∑n

j=1

smax
j ·ρ·dj,i

max1�k�m dj,k/rk

according to Formula (8). The small value of ρ

favors the efficiency optimization. In contrast, the large value of ρ can make the
fairness-purpose allocation dominant, benefiting more for fairness optimization.
Typically, QKnober reduces to DRF when ρ = 1.

846 S. Tang et al.

Theorem 1. QKnober is a θ-soft fairness policy where

θ = max
1�i�n

{ max1�k�n di,k/rk

wi · max1�k�m{ di,k

rk−∑n
j=1

smax
j

·ρ·dj,k

max
1�k

′ �m
d

j,k
′
/r

k
′

}
}.

The proof of Theorem1 can be found in Appendix A of Technique Report [14].

Efficiency-purpose Allocation. Theorem 1 shows that the fairness-purpose alloca-
tion of QKnober can guarantee θ-soft fairness across users. In the second stage,
we perform the efficiency-purpose allocation with the remaining idle resource
vector R

′
so that its overall efficiency is maximized.

Formally, our work is to search a feasible allocation U
′
such that Formula (7)

is maximized. Particularly, for any two users i and j with the same normal-
ized task demands (i.e., Di

|Di| = Dj

|Dj |), exchanging resources between them has
no impact on efficiency but could affect fairness. In order for better fairness,
we still keep Formula (9) holding for any two users satisfying Di

|Di| = Dj

|Dj | by
adding Formula (19). We can model the efficiency-purpose allocation as a linear
programming optimization problem as follows:

Maximize ε(U
′
) =

n∑

i=1

{Ni(U
′
i) ·

m∑

k=1

di,k/rk}. (15)

subject to:

s
′
i/wi = s

′
j/wj . (Di/|Di| = Dj/|Dj |,∀i, j ∈ [1, n]). (16)

and
n∑

i=1

{di,k · Ni(U
′
i)} � rk −

n∑

j=1

smax
j · ρ · dj,k

max1�k′�m dj,k′ /r
k

′
. (17)

for ∀k ∈ [1,m]. By resolving the linear program, the optimal (maximum) value of
ε(U

′
) can be obtained. Finally, the total system efficiency ε(U) can be computed

by combining the allocation efficiencies in the two allocation phases.
To summarize, we have shown that QKnober is a knob-based fairness-

efficiency scheduling policy that can maximize the system efficiency while guar-
anteeing the θ-soft fairness with the provided knob ρ. Particularly, different
configurations of the fairness knob ρ can result in different soft fairness guaran-
tees for QKnober (i..e, QKnober is sensitive to the fairness degradation under
different knobs).

2) Properties Analysis of QKnober. We give an analysis of the three essen-
tial properties defined in Sect. 2 for QKnober.

Theorem 2. (Sharing Incentive): The QKnober allocation policy is sharing
incentive when

ρ � (max
1�k�m

{ 1
rk

·
n∑

j=1

wj · dj,k

max1�k′�m{d
j,k

′
r

k
′ }

})/
n∑

j=1

wj .

QKnober: A Knob-Based Fairness-Efficiency Scheduler 847

The proof of Theorem 2 can be found in Appendix B of Technique Report [14].
By properly configuring the knob ρ according to Theorem 2, QKnober can

guarantee that each user can schedule at least as the number of tasks as that
under exclusively using its own partition of the system resources with no shar-
ing. Next, we show that QKnober is envy-freeness, namely, no user envies the
allocation results of any other users under its allocation.

Theorem 3. (Envy Freeness): Every user under the QKnober allocation
prefers its own allocation to others.

The proof of Theorem 3 can be found in Appendix C of Technique Report [14].
We next show that QKnober produces an efficient allocation under which no

user can increase its allocation without decreasing that of other users.

Theorem 4. (Pareto Efficiency): The QKnober allocation policy is pareto
efficient.

The proof of Theorem 4 is given in Appendix D of Technique Report [14].

5 Implementation of QKnober

In our former discussions of QKnober policy, there are several key assumptions
that may not be the case in a real-world computing system. For practical applica-
tion of QKnober, we need to relax these assumptions by considering complicated
and challenging factors for real applications and computing system. In the fol-
lowing, we highlight these challenges and then give our solutions to address them
in YARN. Detailed implementation of QKnober can be found in Appendix E of
Technique Report [14].

C1:Online Users with a Finite Number of Tasks. In the previous discus-
sions, it has assumed that there are an infinite number of tasks for each user at
any time. However, in practice, the tasks of users are arriving over time, implying
that the number of tasks per user is generally finite at a time.

Iterative QKnober Approach. We can address this problem through a small
modification on QKnober as follows. First, we classify all users into two kinds:
active users (i.e., with pending tasks) and inactive users (i.e., with no pend-
ing tasks). The system maintains the list of active users, where an inactive user
becomes active whenever there arrives a pending task of it. The system performs
QKnober allocation iteratively. In each allocation round, the system uses pro-
gressive filling approach to allocates resources to active users based on QKnober
until one of them has all its pending tasks scheduled. After that, the active user
becomes inactive and will not be considered in the following allocation. The
system then starts a new allocation round and repeats the above allocation pro-
cedure until there is no active user or no sufficient idle resources that can be
allocated.

C2:Heterogeneous and Indivisible Tasks. In QKnober allocation model, we
have assumed that tasks are divisible and all the tasks of a user are homogeneous

848 S. Tang et al.

in their resource demands. However, in the real world, it may not be the case.
First, the tasks demands of a user are most likely to be diverse (e.g., different
demands between map and reduce tasks of a user’s MapReduce job). Second,
fractional tasks are often not supported and accepted by existing systems (e.g.,
MapReduce, Spark).

In QKnober, whether to perform fairness-purpose allocation or to do efficient-
purpose allocation is determined by the maximum dominant resource share smax

i

and knob factor ρ (See Sect. 4.1). When the demands of all the tasks of a user
are homogeneous, the maximum dominant resource share is fixed and can be
estimated by Formula (11) for each user. However, in the heterogeneous case, it
varies dynamically with the running and new arriving tasks. Moreover, estimat-
ing the maximum dominant resource share in such case is NP-hard.

Fitness-based Approximation Approach. We propose a heuristic approach based
on the First-Fit algorithm [4] as follows. The algorithm first estimates the current
average resource demand of tasks based on its running and pending tasks for
each user. Then, it computes the maximum dominant resource share for each
user by using its current average resource demand of tasks with Formula (11).
However, in practice, there could be a large number of pending tasks at runtime.
It indicates that picking all pending tasks might not reflect the current average
resource demand of a user. To address it, we instead only consider a certain
number of tasks that just fill the remaining idle space of the cloud system. We
achieve and update it for current average resource demand by using the First-Fit
algorithm dynamically. That is, we count the pending tasks in the queue order
until the cloud system can be filled. Then the current average resource demand
can be estimated based on the running tasks and those counted pending tasks.

C3:Heterogeneous and Distributed Computing System. The QKnober
allocation model assumes the computing system as a single super-server, which
however may not always be the case. A real-world computing system (e.g.,
Google production cluster, Amazon EC2) generally consists of many hetero-
geneous servers with different resource capacities connected via a high-speed
network. In this case, scheduling tasks efficiently to the computing system is
analogous to the NP-hard multi-dimensional knapsack problem [5] mentioned
above.

Affinity-based Task Scheduling Approach. We develop a heuristic approach for
efficiency-purpose allocation by defining affinity of a task relative to the system.
That is, when there are some idle resources on a server, we first filter out the set
of pending tasks that can be accommodated by that server. We then compute
the affinity score for each of these tasks, as the dot product between the task’s
resource demand and the vector of that server’s idle resources. The one with the
highest affinity score among all these pending tasks is chosen for scheduling.

QKnober: A Knob-Based Fairness-Efficiency Scheduler 849

6 Experimental Evaluation

6.1 Experimental Setup

Hadoop Cluster. We have implemented QKnober in the version of YARN-
2.4.0. We deploy the YARN framework in an Amazon EC2 cluster consisting
of 60 Amazon EC2 t2.medium instances each with 2 virtual cores and 4 GB
memory. We configure 1 instance as master, and the remaining 59 instances as
slaves, each of which is configured with <2 virtual cores, 4 GB>.

Workloads. We run four data-parallel workloads: (1) Facebook Workload: It is
based on the distribution of jobs sizes and inter-arrival time at Facebook provided
by Zaharia et. al. [25]. The workload consists of 100 jobs. It is a mix of large
number of small-sized jobs (1 ∼ 15 tasks) and small number of large-sized jobs
(e.g., 800 tasks1); (2) Purdue Workload: Seven benchmarks (e.g., WordCount,
TeraSort, Grep, InvertedIndex, HistogramMovices, Sequence-Count, Self-join)
are randomly chosen from Purdue MapReduce Benchmarks Suite [3], with 100G
wikipedia data [2] as input data; (3) Spark Workload: It is a combination of
six algorithms (e.g., PageRank, GaussianMixture, BinaryClassification, Kmeans
and Alternating Least Squares (ALS)) using provided example benchmarks; (4)
TPC-H Workload: To emulate continuous analytic query, such as analysis of
users’ behavior logs, we ran TPC-H benchmark queries on Hive [1]. 120 GB data
are generated with provided data tools.

6.2 Testbed Experimental Results

This section first evaluates the fairness and efficiency of QKnober under different
knob values. Then, we compare the performance of QKnober with its alternatives
DRF and Tetris. Finally, the overhead evaluation of our QKnober system can
be found in Appendix F of Technique Report [14].

Fairness vs. Efficiency We show in Sect. 4.2 that QKnober is an elastic knob-
based tradeoff allocation policy that allows users to balance the fairness and
efficiency flexibly. In this section, we evaluate the impact of different knob values
on the fairness and efficiency with the mix of four workloads experimentally.
Suppose that there are four users A,B,C,D with the weighted shares of 1 :
2 : 3 : 4, each running Facebook, Purdue, Spark and TPC-H workloads on the
YARN cluster, respectively. With QKnober policy, we can then maximize the
system efficiency while guaranteeing the soft fairness. We define a term called
soft fairness degree to quantify the soft fairness based on Formula (12). The
smaller soft fairness degree indicates the better fairness, and vice versa.

Figure 3 presents the experimental results for QKnober policy under different
knob configurations. We compute speedup based on the case when the knob is
1.0. The larger value indicates the better performance. It can be observed that

1
We reduce the size of the largest jobs in [25] to have the workload fit our cluster size.

850 S. Tang et al.

Fig. 3. The system efficiency and soft fairness for QKnober under different knobs,
where the speedup is computed over the case of knob ρ = 1.

there is a strong tradeoff between fairness and efficiency. When the knob is
small, it benefits the system efficiency but harms the fairness. In contrast, when
we increase the knob value, the fairness can become better at the cost of system
efficiency. It means that users can make their own tradeoff preference over the
fairness and efficiency by tuning the knob value.

Fig. 4. The comparison results of performance and resource utilization for Static Par-
titioning (i.e., non-sharing case), DRF, Tetris and QKnober under different knob con-
figurations, where the speedup is computed over that of Static Partitioning.

Performance Evaluation. Figure 4(a) gives the performance results for Static
Partitioning, DRF, Tetris and QKnober under different knob configurations,
where the speedup is computed over that of Static Partitioning. Particularly, we
implement the static partitioning policy by dividing the whole cluster resources
(e.g., CPU and memory) into four isolated portions for four workloads according
to their weights mentioned in Sect. 6.2, and let them run exclusively without
sharing. We have the following observations:

QKnober: A Knob-Based Fairness-Efficiency Scheduler 851

First, resource sharing (e.g., DRF, Tetris and QKnober) performs better
than non-sharing (e.g., Static Partitioning). For fairness-only policy DRF, there
is about 10% performance improvement over Static Partitioning. In contrast,
for fairness-efficiency policies like Tetris and QKnober, the improvement can be
up to 57% as we decrease the knob factor ρ from 1.0 to 0.0. The performance gain
is mainly due to the resource preemption of unused resources from overloaded
users in the sharing case, making the resource utilization higher than the non-
sharing case. As illustrated in Fig. 4(b), the resource utilizations for sharing
policies (e.g., DRF, Tetris, QKnober) are higher than that of static partitioning.
For example, the average cpu utilizations for DRF, Tetris and QKnober are
55%, 57% and 59%, respectively, higher than the static partitioning of 46%.

Second, QKnober outperforms other baseline allocation policies DRF and
Tetris in all knob configurations. Particularly, the reason why QKnober is
better than DRF even when the knob is 1.0 is due to its efficient affinity-
based task placement in reducing the fragmentation of machines in multi-
resource allocation, whereas DRF policy does not have such a concern and sim-
ply views all machines as a single super machine. Moreover, both Tetris and
QKnober are knob-based fairness-efficiency allocation policies. The reason why
QKnober performs better than Tetris is due to their different approaches in
the efficiency-purpose allocation. Tetris takes heuristic bin packing approach,
whereas QKnober adopts the optimal linear programming method. It makes
QKnober achieve a higher resource utilization than Tetris as shown in Fig. 4(b).

7 Related Work

There is a general tradeoff between fairness and efficiency in multi-resource allo-
cation, which has been studied by a lot of research works. Joe-Wong et al. [11]
proposed a unifying mathematical framework to capture the tradeoff between
fairness and efficiency, which are specified by two parameters for a given multi-
resource allocation problem. Their work is just a theoretically analytic study and
cannot be practically used to real systems such as Hadoop directly. In contrast,
our proposed knob-based policy QKnober is practical. We have implemented it
in Hadoop that allows users to balance the fairness-efficiency tradeoff flexibly by
tuning the knob in the range of [0, 1]. Wang et al. [22,24] and Danna et al. [7]
studied the fairness-efficiency tradeoff for packet processing consuming both
CPU and link bandwidth by proposing a GPS-like fluid model. Tang et al. [17]
considered Coupled CPU-GPU architecture by proposing a fairness-efficiency
scheduler called EMRF through extending DRF. Wang et al. [21] proposed a
bottleneck-aware allocation policy to balance fairness and efficiency for users in
multi-tiered storage consisting of SSD and HDD. In contrast, we consider the job
scheduling in cloud computing. Tetris [10] is the most closely related work to our
work. It is a fairness-efficiency scheduler for cloud computing that balances the
performance and fairness by leveraging alignment heuristics to efficiently pack
tasks with heterogeneous resource demands to servers. However, it cannot pro-
vide us a soft fairness guarantee given a knob setting due to its unawareness of

852 S. Tang et al.

fairness degradation (Sect. 3) during its fairness-efficiency scheduling. Moreover,
it doesn’t satisfy sharing incentive property. In comparison, our proposed knob-
based policy QKnober is fairness-sensitive, which maximizes the efficiency while
guaranteeing the θ-soft fairness under a knob configuration (See Theorem1).
Additionally, it satisfies sharing incentive, envy freeness and pareto efficiency
properties with a proper knob configuration.

8 Conclusion

This work studies the tradeoff between fairness and efficiency for users in a
shared computing system. Quantifying the fairness degradation/loss is essen-
tial for users to better understand the tradeoff. We show that the knob-based
approach is a promising solution to achieving the flexible and elastic trade-
off balance for users. However, existing knob-based fairness-efficiency schedulers
are not aware of fairness degradation during its fairness-efficiency allocation,
which either fail to guarantee the QoS of δ-fairness or violate desired proper-
ties in Sect. 2. To address it, we develop a new knob-based fairness-efficiency
policy called QKnober. It is a fairness sensitive scheduler that allows users to
balance the fairness and efficiency with a knob while guaranteeing δ-soft fairness.
Typically, we provably show that it meets several desirable properties including
sharing incentive, envy freeness and pareto efficiency with a proper knob setting.
Finally, we implement QKnober in YARN and our real experiments show that
it achieves promised initial results.

Acknowledgement. This work is sponsored by the National Natural Science Foun-
dation of China (61602336, 61772544, U1731125) and Tianjin Natural Science Foun-
dation (18JCZDJC30800).

References

1. Apache TPC-H benchmark on hive. https://issues.apache.org/jira/browse/HIVE-
600

2. Puma datasets. http://web.ics.purdue.edu/fahmad/datasets.htm
3. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.N.: PUMA: Purdue mapre-

duce benchmarks suite. ECE technical reports (2012)
4. Brent, R.P.: Efficient implementation of the first-fit strategy for dynamic storage

allocation. ACM Trans. Program. Lang. Syst. 11(3), 388–403 (1989)
5. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack

problem. J. Heuristics 4(1), 63–86 (1998)
6. Dageville, B., Zait, M.: SQL memory management in Oracle9i. In: VLDB 2002,

pp. 962–973. VLDB Endowment (2002)
7. Danna, E., Mandal, S., Singh, A.: A practical algorithm for balancing the max-min

fairness and throughput objectives in traffic engineering. In: INFOCOM 2012, pp.
846–854 (2012)

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

https://issues.apache.org/jira/browse/HIVE-600
https://issues.apache.org/jira/browse/HIVE-600
http://web.ics.purdue.edu/fahmad/datasets.htm

QKnober: A Knob-Based Fairness-Efficiency Scheduler 853

9. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dom-
inant resource fairness: fair allocation of multiple resource types. In: NSDI 2011,
Berkeley, CA, USA, pp. 323–336. USENIX Association (2011)

10. Grandl, R., Ananthanarayanan, G., Kandula, S., Rao, S., Akella, A.: Multi-resource
packing for cluster schedulers. In: SIGCOMM 2014, pp. 455–466. ACM (2014)

11. Joe-Wong, C., Sen, S., Lan, T., Chiang, M.: Multiresource allocation: fairness-
efficiency tradeoffs in a unifying framework. IEEE/ACM Trans. Netw. 21(6), 1785–
1798 (2013)

12. Niu, Z., Tang, S., He, B.: An adaptive efficiency-fairness meta-scheduler for data-
intensive computing. IEEE Trans. Serv. Comput., p. 1 (2017)

13. Parkes, D.C., Procaccia, A.D., Shah, N.: Beyond dominant resource fairness: exten-
sions, limitations, and indivisibilities. ACM Trans. Econ. Comput. 3(1), 3:1–3:22
(2015)

14. Tang, S., Yu, C., Sun, C., Xiao, J., Li, Y.: QKnober: a knob-based fairness-
efficiency scheduler for cloud computing with QoS guarantees. Technical report
(2018). http://cs.tju.edu.cn/faculty/tangshanjiang/tr/QKnoberTR.pdf

15. Tang, S., Lee, B.S., He, B.: Fair resource allocation for data-intensive computing
in the cloud. IEEE Trans. Serv. Comput. 11(1), 20–33 (2018)

16. Tang, S., Niu, Z., He, B., Lee, B.S., Yu, C.: Long-term multi-resource fairness
for pay-as-you use computing systems. IEEE Trans. Parallel Distrib. Syst. 29(5),
1147–1160 (2018)

17. Tang, S., He, B.S., Zhang, S., Niu, Z.: Elastic multi-resource fairness: balancing
fairness and efficiency in coupled CPU-GPU architectures. In: SC 2016, Piscataway,
NJ, USA, pp. 75:1–75:12. IEEE Press (2016)

18. Tang, S., Lee, B.S., He, B., Liu, H.: Long-term resource fairness: towards economic
fairness on pay-as-you-use computing systems. In: ICS 2014, New York, NY, USA,
pp. 251–260. ACM (2014)

19. Varian, H.R.: Equity, envy, and efficiency. J. Econ. Theory 9(1), 63–91 (1974)
20. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S.: Apache hadoop YARN:

yet another resource negotiator. In: SOCC 2013, New York, NY, USA, pp. 5:1–5:16.
ACM (2013)

21. Wang, H., Varman, P.: Balancing fairness and efficiency in tiered storage systems
with bottleneck-aware allocation. In: FAST 2014, Berkeley, CA, USA, pp. 229–242.
USENIX Association (2014)

22. Wang, W., Feng, C., Li, B., Liang, B.: On the fairness-efficiency tradeoff for packet
processing with multiple resources. In: CoNEXT 2014, New York, NY, USA, pp.
235–248. ACM (2014)

23. Wang, W., Li, B., Liang, B.: Dominant resource fairness in cloud computing sys-
tems with heterogeneous servers. In: 2014 Proceedings IEEE INFOCOM, pp. 583–
591, April 2014

24. Wang, W., Ma, S., Li, B., Li, B.: Coflex: navigating the fairness-efficiency tradeoff
for coflow scheduling. In: INFOCOM 2017

25. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: EuroSys 2010, New York, NY, USA, pp. 265–278. ACM (2010)

26. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Hot Cloud 2010, vol. 10, p. 10 (2010)

http://cs.tju.edu.cn/faculty/tangshanjiang/tr/QKnoberTR.pdf

Energy-Efficient and Quality of Experience-
Aware Resource Provisioning for Massively
Multiplayer Online Games in the Cloud

Yongqiang Gao(&), Lin Wang, Zhulong Xie, Wenhui Guo,
and Jiantao Zhou

Inner Mongolia University, Hohhot, China
csgyq@outlook.com, csimuwl@outlook.com,

csxzl@outlook.com, csgwh@outlook.com,

cszjt@outlook.com

Abstract. Massively Multiplayer Online Games (MMOGs) routinely have
millions of registered players and hundreds of thousands of active concurrent
gamers. To guarantee quality of experience (QoE) to a highly variable number
of concurrent players, MMOG infrastructure have converted nowadays into
cloud computing paradigm. Many leading MMOG companies have begun to
build increasing numbers of energy hungry data centers for running the MMOG
services requested by the players. A main challenge for MMOG service pro-
viders is to find the best tradeoff between two contradictory aims: improving the
QoE and reducing energy costs. In this paper, we propose a dynamic resource
provisioning scheme for large-scale MMOG services implemented on top of
cloud infrastructures which takes advantage of both virtual machine resizing and
server consolidation to achieve energy efficiency and desired QoE require-
ments. Our experimental results indicate that, compared to an over-provisioning
of infrastructural resources, our resource provisioning scheme can achieve up to
54.5% energy savings while providing the just-good-enough QoE to gamers
under rapidly changing workloads.

Keywords: Cloud computing � MMOG � Dynamic resource provisioning

1 Introduction

Nowadays, Massively Multiplayer Online Games (MMOGs) has attracted a lot of
attention from both academia and industry. A recent report [1] states that the number of
MMOG players have grown to 20 million worldwide persons in 2010. A MMOG is a
seamless virtual world where millions of world-wide participants play roles and interact
with their surroundings via avatars, which are virtual roles. There are several types of
MMOGs, including MMORPG (Massively Multiplayer online role-playing games,
e.g., World of Warcraft), MMOFPS (Massively Multiplayer Online First Person
Shooter, e.g., Firefall), MMORTS (Massively Multiplayer Online Real Time Strategy,
e.g., Boom Beach) and so on.

Online Gaming used to be implemented as a client-server architecture, where a central
game server is responsible to handle commands from players and returns state updates

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 854–869, 2018.
https://doi.org/10.1007/978-3-030-03596-9_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_61&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_61&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_61

about the game session to its connected clients. In order to provide good quality of
experience to players, MMOG providers used to overly provision game servers in order to
complywith the delay aware constraint. However, the static resource provisioning method
would lead to resource waste during slower gaming times and increase MMOG providers’
total operational costs. To address this problem, MMOG operators have changed the
system architecture from client/server to cloud computing. In MMOG clouds, games are
stored and run on remote cloud servers. After receiving a player request, the MMOG
cloud platform will allocated a virtual machine (VM) to run the player’s requests.

A main challenge for MMOG service providers is to find the best tradeoff between
two contradictory aims: improving the quality of experience (QoE) and reducing the cost
of energy consumption by MMOG infrastructures. On the one hand, they need to offer
sufficient number of high-performance servers that enable high quality of experiences
that lead to player satisfaction and loyalty. On the other hand, they have to reduce energy
consumption as much as possible in order to reduce the total cost of ownership and
increases the return on investment of cloud infrastructures. For example, leadingMMOG
companies operate over 10,000 servers and cost over $50 million per year [2].

In this paper, we propose a dynamic resource provisioning scheme that is able to
automatically manage physical resources of a MMOG cloud infrastructure in such a
way to minimize the energy cost of MMOG service providers while achieving just-
good-enough QoE for game players. More specifically, the primary contributions of
this paper are as follows:

• We consider the problem of dynamic resource provisioning from the perspective of
MMOG operators with their own datacenter, and aim at cutting down the energy
cost of MMOG operators, by combines the global resource allocation among
physical servers with the QoE-driven dynamic resource distribution at physical
server level.

• We formulate the problem into a constrained optimization problem and utilize the
genetic algorithm to solve the problem. Our proposed optimization model considers
multiple types of resources, including CPU, memory and network bandwidth, and
the power consumption incurred due to migrating virtual machines.

• We conduct extensive experiments using real-world data to evaluate the effec-
tiveness of our resource provisioning policy. Our experimental results show that,
compared with other alternatives, our resource provisioning policy can save at least
9.8% of energy consumption, while providing even better QoE for game players.

The rest of this paper is structured as follows. The related works are summarized in
Sect. 2. In Sect. 3, the system model is introduced. Our proposed genetic algorithm is
presented in Sect. 4. In Sect. 5, the experimental evaluations and results are discussed.
Finally, conclusions are made and future work is discussed in the last section.

2 Related Work

In recent years, extensive efforts have been put into the research of enhancing the
performance of cloud gaming systems. Wang et al. [3] presented a load assignment
solution for cloud-based distributed interactive applications in order to minimize the

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 855

inter-action delay among clients. Choy et al. [4] proposed a hybrid edge-cloud archi-
tecture for reducing the processing delay on the server side. Chen et al. [5] developed a
heuristic algorithm to solve the inter-player delay optimization problem that aims at
minimizing this inter-player delay, while preserving good-enough absolute response
delay experienced by players. These studies are different from our work because they
focus solely on improving the performance of cloud gaming systems and thus cannot
provide energy savings.

There is a huge body of work on how to provide a tradeoff between monetary costs
and the user QoE for hosting cloud gaming in public clouds. Wang ea al. [6] proposed
two practical online algorithms, one deterministic and another randomized, that
dynamically combine the two instance to serve time-varying demands at minimum
cost. Nae ea al. [7] proposed a service-level-agreement aware cost-effective model for
hosting and operating MMOGs based on cloud-computing principles. Basiri et al. [8]
addressed the resource provisioning problem for cloud gaming to minimize the oper-
ational costs of the cloud gaming while guaranteeing the QoE for users. In contrast to
our approach, these approaches are not designed for the private cloud environment.
That is, they have acquired resources (virtual machines) from public clouds to serve as
rendering and game servers.

Some server provisioning issues for cloud gaming providers with their own data-
center have been studied recently. Wu et al. [9] presented an online control algorithm to
perform intelligent request dispatching and server provisioning. The objective of their
work is to reduce the provisioning cost of cloud gaming service providers while still
ensuring the user QoE requirements. Hong et al. [10] studied the VM placement
problems for maximizing the total net profit for service providers while maintaining
just-good-enough gaming QoE, Lee et al. [11] proposed a zone-based server consol-
idation solution for MMORPGs, which exploits the unique spatial locality property of
gamers’ interactions, to reduce hardware investment and energy consumption while
maintaining user-perceived service quality. In contrast, our scheme focuses on CPU,
memory and network resources, and combines the global resource allocation among
physical servers with the QoE-driven dynamic resource distribution at physical server
level in order to guarantee the QoE for game players while minimizing power
consumption.

3 Problem Formulation

3.1 System Overview

We consider a large-scale cloud infrastructure to support MMOG. A virtualized
computing environment is assumed, where there are multiple MMOGs hosted in VMs.
The MMOG clouds use two techniques to partition a virtual game world for paral-
lelizing: zoning and replication. Zoning partitions the game world into adjacent areas to
be handled independently by separate VMs. Replication copies the game area onto
different VMs when the game area has a large number of avatars interacting with each
other. The avatars served by a VM are called active entities. The avatars which are
active in the other VMs are called shadow entities. The state of active entities and

856 Y. Gao et al.

shadow entities are periodically synchronized across VMs. Multiple VMs can run on
the same physical machine (PM).

The architecture of our resource provisioning scheme is shown in Fig. 1(a). The
Historical Database module is employed to collect history data of game players and
send collected data to the Load Predictor. Next, the Load Predictor module uses neural
network to predict the number of players in the next control period by history data. The
Energy Optimizer module is then updated using the predicted number of players hosted
by each VM and a new instance of the optimization problem is constructed. The
reconfiguration module utilizes a capacity model to estimate the resource needs of
VMs and implements a genetic algorithm to solve the new optimization problem
instance, generating a new resource provisioning scheme (i.e. how much
resource is allocated to each VM, which servers must be active and which VMs can be
placed on which server). The above optimization process is periodically performed.

3.2 Load Prediction

The number of players hosted by a game area (VM) can change over time. It is difficult
to determine the number of players by analytical means, therefore we employ a neural
network prediction model to predict the number of players in the near future. Figure 1
(b) illustrates the architecture of our load predictor. The load predictor has two hidden
layers and one output layer. We input the number of players from time slot 1 to time
slot 20 and predict the number of players at time slot 21. The hidden layers has 10
neurons. Each layer’s neuron performs calculations based on the following equations
[12]:

kj ¼ g1
X20

i¼1
xiwi;j þ bj

� �
8j 2 1; 2; . . .; 10f g ð1Þ

x21 ¼ g2
X10

i¼1
kiw0

i þ b0
� �

ð2Þ

g1 yð Þ ¼ 1
1þ e�y

ð3Þ

Resource Provisioning
Engine

Historical
Database

Load Predictor

Energy
Optimizer

Reconfiguration

VM1

VM3

Hypervisor

PM PM PM

Replication

Active entity

Shadow entity

Data Center

Game World

Input Layer

1

2

20

1

2

10

1

Hidden Layer Output Layer

x1

x21
3

x2

x3

x20

VM2

VM4

(a) our resource provisioning scheme (b) neural network predictor

Zoning

Fig. 1. The architecture of our resource provisioning scheme and neural network predictor

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 857

g2 yð Þ ¼ y ð4Þ

where wi;j and w0
i are the connection weights between hidden layer and output layer,

g1 yð Þ and g2 yð Þ are is the activation function, and bj and b0 are biases in the hidden
layer and the output layer, respectively. In addition, xi(i = 1, 2, …, 20) and ki are an
input of the load predictor and the output layer, respectively. x21 is an output. The
Levenberg-Marquardt algorithm is employed for the network training and the neural
network predictor is trained only once in an offline fashion.

3.3 Delay Model

Interaction delay is the most critical user-perceived QoE metric for the MMOG cloud.
We define the interaction delay as the lag between the time the client sends a player’s
command to the VM and the time the corresponding game frame is displayed to the
player. Interaction delay mainly consists of network delay, processing delay and
playout delay. Network delay is essentially the network round-trip time, which can be
measured by tools such as Ping. Processing delay represents the time required by VM
to receive and process a player’s command, and to encode and packetize the corre-
sponding game frame for the client. As for playout delay, it is the time for the client to
receive, decode, and display the encoded frame. Because playout delay is usually
constant and occur at the client side, we do not consider it in our model for the sake of
brevity. Finally, we define the interaction delay IDi;j of a game player i connected to a
VM j as the sum of processing delay PDi;j and network delay NDi;j, which can be
represented as below

IDi;j ¼ NDi;j þPDi;j ð5Þ

NDi;j ¼ Dplayer�VM
i;j þDVM�player

i;j þ 2Dpropagation
i;j ð6Þ

Dpropagation
i;j ¼ Si;j=Rl ð7Þ

Dplayer�VM
i;j ¼ Li=R

ul
i ð8Þ

DVM�player
i;j ¼ Lj=R

dl
i ð9Þ

In these expressions, Rul
i and Rdl

i are the uplink and downlink data rate of player i, Si;j is

the distance between user i and VM j, Rl is the speed of light, Dplayer�VM
i;j is the

transmission delay for player’s data sent to VM, and DVM�player
i;j is the transmission

delay for VM’s data sent to the player. Dpropagation
i;j represents propagation delay

between player i and VM j. Li is the player’s data-packet length, which is transmitted to
VM, and Lj is the VM’s data-packet length, which is transmitted to player.

In order to mathematically express the processing delay, each VM is modeled as a
G/G/1 queuing system to deal with an arbitrary arrival distribution and service time
distribution. The queuing discipline is assumed to be first-comefirst-serve (FCFS).

858 Y. Gao et al.

According to the queuing foundations, the average processing time of requests served
at VM j can be calculated using the following equation

PDi;j ¼
kj � d21 þ d22

� �
2 � lj � lj � kj

� � ð10Þ

where kj is players arrival rates and lj is the average service time. d21 and d22 are the
variance of service time and the variance of inter-arrival time, respectively.

3.4 VM Capacity Model

We propose in this subsection an analytical model for VM capacity in MMOG clouds.
Our model considers three main types of resources used by VMs: CPU, memory, and
network bandwidth.

Previous work [13] shows that CPU capacity is approximately proportional to its
throughput. Thus, the CPU capacity RCPU

j of VM j can be modeled as:

RCPU
j ¼ e � tj ð11Þ

where e is an experimentally determined model parameter and tj ¼ 1=lj represents
CPU throughput.

Inspired by the linear capacity model in [14], we can define the memory capacity
Rmem
j for a VM j as follow

Rmem
j ¼

X vjj j
i¼1

AEi � mcs þBEj � mes þmgame þmworld ð12Þ

where vj is the set of VMs serving in the same game area as VM j, AEi is the number of
the avatars for VM i, BEj is the number of the non-player characters for VM j, mcs is the
amount of memory needed to store the state of one avatar, mes is the amount of memory
needed to store the state of an non-player character, mgame is the amount of memory
needed to run the actual game engine with no game world loaded and mworld is the
amount of memory used for the game world being played.

Each VM has an incoming and outgoing network bandwidth capacity. As in [14],
we define the outgoing network bandwidth capacity Rout

j as follows

Rout
j ¼ AEj � dout þ vj

�� ��� 1
� � � AEj þBEj

� � � dupdt
Ts

ð13Þ

where dout represents the amount of data sent to a client, dupdt is the amount of data
exchanged between VMs for updating a single entity state and Ts is the control time
period.

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 859

Similarly, the incoming network bandwidth capacity Rin
j for a VM j is defined as

[14]

Rin
j ¼ AEj � din þ

P vjj j
i¼1;i 6¼j AEi þBEið Þ � dupdt

Ts
ð14Þ

where din is the amount of data received from a client.

3.5 Power Model

The processor is one of the largest power consumers in today’s servers. Recent study
has shown that the server power consumption can be accurately described by a linear
relationship between the power consumption and CPU utilization [15]. In order to save
energy, servers are switched off when they are idle. Because today’s server use very
little power when in power-off mode, we neglect the power consumption during power-
off mode. Finally, the server power consumption Pi can be modeled as

Pi ¼ ðPmax
i � Pmin

i Þ � UCPU
i þPmin

i UCPU
i [0

0 otherwise

�
ð15Þ

where UCPU
i is CPU utilization of server i, Pmin

i and Pmax
i are the average power

consumption when the server i is idle and fully utilized, respectively.
Similar to previous work [16], we also consider the power consumption costs

incurred when moving VMs. The power consumptionMPs;i
j of migrating a VM j from a

server s to a server i can be expressed as follows:

MPs;i
j ¼ vs;i � Rmem

j þ zs;i ð16Þ

where vs;i and are zs;i experimentally determined model parameters.

3.6 Optimization Model

Suppose that we are given N VMs i 2 NV that are to be placed on M physical servers
j 2 NP. Let CNj be the number of players connected to VM j, IDth be max tolerable
interaction delay of players, RCT

i ;RmT
i ;RoT

i , and RiT
i are the resource threshold of CPU,

memory, outgoing and incoming network bandwidth associated with each server
respectively. The decision variable xi;j indicates if VM i is assigned to physical server
j. Let pj be an index of the server hosing VM j in the previous control time period and
xi;j be the values of the variables xi;j in the previous control time period. With the
models defined above, we formulate the power optimization problem as:

min
XM

i¼1
Pi þ

XM

i¼1

XN

j¼1
MPpj;i

j �max 0; xi;j � xi;j
� �h ih i

ð17Þ

860 Y. Gao et al.

s:t:
XN

j¼1
xi;j � RCPU

j �RCT
i 8i 2 NP ð18Þ

XN

j¼1
xi;j � Rmem

j �RmT
i 8i 2 NP ð19Þ

XN

j¼1
xi;j � Rout

j �RoT
i 8i 2 NP ð20Þ

XN

j¼1
xi;j � Rin

j �RiT
i 8i 2 NP ð21Þ

XM

i¼1
xi;j ¼ 1 8j 2 NV ð22Þ

IDp;j � IDth 8j 2 NV ; 8p 2 CNj ð23Þ

xi;j 2 0; 1f g 8i 2 NP; 8j 2 NV ð24Þ

The objective function in Eq. (17) minimizes the power consumed by the MMOG
cloud. Equations (18), (19), (20) and (21) impose CPU, memory, outgoing and
incoming network bandwidth constraints on each sever, respectively. Equation (22)
ensures that each VM is assigned to only one of the servers. Equation (23) ensures the
QoE requirement. Equation (24) defines the domain of the variables of the problem.

4 Genetic Algorithm Design and Analysis

Due to the NP-Hard nature of the optimization problem described above, it is not
possible to develop an algorithm to find the best solutions in practically acceptable
times. This section will show how to apply a genetic algorithm to efficiently search for
good solutions in large solution spaces. The proposed genetic algorithm is mainly
related to the following elements: (1) chromosome encoding; (2) crossover; (3) muta-
tion; (4) fitness function; (5) selection strategy. Specific implementation of these ele-
ments results in distinct genetic algorithms with varying degrees of success.

4.1 Chromosome Encoding

A chromosome in the proposed genetic algorithm is composed of an N-by-M matrix.
The columns of the matrix correspond to the different physical machines (PMs) and the
rows correspond to the different VMs. The elements of the matrix represent genes. The
value of a gene is 0 or 1, representing if a VM is assigned to a physical machine.
Figure 2(a) shows an example VM placement and its corresponding chromosome.

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 861

4.2 Crossover

Crossover is a genetic operator that aims to combine the better characteristics among
the preferred chromosomes. At present, various crossover methods have been devel-
oped for particular problems to provide effective implementation of genetic algorithms.

The proposed genetic algorithm adopts a single-point crossover operator, which is
described in Fig. 2(c). The two parent chromosomes swap a row of genes randomly
selected with each other, so that produce new chromosomes.

4.3 Mutation

The mutation operator is similar to hill-climbing method, where a small change is made
to a current solution in order to explore its neighborhood solution in the search space.
The idea behind mutation is to introduce some extra genetic variability into the pop-
ulation. In our work, the mutation operator firstly randomly selects a gene in the
chromosome and then inverts the value of the chosen gene. Finally, the value of other
genes in the same row is either 0 or 1 satisfying the condition that the sum of the value
of all genes in the row is equal to 1. Figure 2(b) shows how the mutation operator
operates.

4.4 Fitness Function

The role of the fitness function is to numerically measure the performance of the
chromosome. For real-world applications of genetic algorithms, choosing the fitness
function is the most important step. In this paper, the fitness f(x) of an individual x in
the population of the proposed genetic algorithm is designed in Eq. (25) below:

f xð Þ ¼ Emin=E xð Þ if x is fesible
Emin=E xð Þþ1 otherwise

�
ð25Þ

Where E represents the objective function, E(x) is the power consumption of the current
solution x and Emin represents the power consumption of the best solution in the

PM1 PM2 PM3

VM1

VM2

VM3

1 0

0 1

0 1

0

0

0

PM1 PM2 PM3

VM1

VM2

VM3

VM4

VM5

VM6

VM7

VM8

PM1

VM1 VM2 VM4

PM2

VM3 VM5

PM3

VM6 VM7 VM8

encoding

1 0 0

1 0 0

0 1 0

1 0 0

0 1 0

0 0 1

0 0 1

0 0 1

crossover

PM1 PM2 PM3

VM1

VM2

VM3

0 0

1 0

0 0

1

0

1

PM1 PM2 PM3

VM1

VM2

VM3

0 0

1 0

0 1

1

0

0

PM1 PM2 PM3

VM1

VM2

VM3

1 0

0 0

0 1

0

1

0

(a) Chromosome encoding (b) Mutation operator (c) Crossover operator

mutation

PM1 PM2 PM3

VM1

VM2

VM3

1 0

0 0

0

1

0 10

PM1 PM2 PM3

VM1

VM2

VM3

1 0

0 0

0

1

0 01

Fig. 2. Chromosome encoding, crossover and mutation operators for our genetic algorithm

862 Y. Gao et al.

previous population. The fitness function penalizes an infeasible solution, and make
sure that the fitness value of any feasible solution is more than that of any infeasible
solution and that the less power consumption and the greater the fitness value is.

4.5 Selection Strategy

The selection strategy copes with which of the chromosomes in the current population
will be used to reproduce child in hopes that offspring will have even higher fitness. We
employ rank-based roulette wheel selection as a selection mechanism. Rank-based
selection strategies firstly sort individuals in the population according to their fitness
and then computes selection probabilities according to their ranks rather than fitness
values. Let NS be the number of solutions in each population in genetic algorithm.
Then the selection probability, P(x) for individual x is define as:

P xð Þ ¼ R xð ÞPNS
i¼1 R xð Þ ð26Þ

In Eq. (26), R xð Þ represents the rank of individual x and can be scaled linearly using
the following formula [17]

R xð Þ ¼ 2� SPþ 2� SP� 1ð Þ � L xð Þ � 1ð Þ
NS� 1ð Þ

� 	
ð27Þ

Where SP is the selective pressure and limited to the range [1, 2]. L(x) represents the
position of individual x in the sorted population.

4.6 The Description of the Proposed Genetic Algorithm

Based on the above definitions, the proposed genetic algorithm can be summarized in
the following steps.

1. Randomly generate an initial population of NS chromosomes.
2. Select NS/2 pairs of chromosomes from a current population according to the

selection strategy.
3. Apply the crossover operators to each of the selected pairs in Step 2 to generate NS

chromosomes with a predefined crossover probability CP.
4. Apply the mutation operators to each of the generated NS chromosomes with a

predefined mutation probability MP.
5. Randomly remove one chromosome from the current population and add the best

chromosome in the previous population to the current one.
6. If the maximum number MI of iterations is reached, stop this algorithm. Otherwise,

return to Step 2.

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 863

5 Performance Evaluation

5.1 Experimental Environment

Based on open source software and commodity hardware, we have implemented a
MMOG cloud that has 6 physical servers of two different types, including 3 IBM Flex
System x220 servers, 3 IBM Flex System x440 servers. Their parameters are listed in
Table 1. All the physical servers are connected through a 10 Gigabit Ethernet network.
We adopt Xen Server as the virtualization software on physical servers and utilize
OpenStack to create and manage VMs. There are 62 VMs running on 6 physical
servers in the MMOG cloud. These VMs are divided into three finer categories: a proxy
server for dispatching requests and a monitor server as well as 60 game servers. Xen’s
credit scheduler, Xen’s balloon driver and weight-based proportional sharing [18] are
used to dynamically adjust the allocation of CPU, memory and network resources
needed by VMs, respectively. The proxy server and monitor server are both equipped
with single Intel Xeon E5-4620 2.2 GHz core and 2 GB RAM. Network bandwidth
between the proxy server and the player’s computer is 100 Mbps, while network
bandwidth between the proxy server and game servers is 10 Gbps.

We employ the Ganglia Monitoring System [19] to monitor and collect the
information of the MMOG cloud. Therefore, Ganglia Monitoring Daemon is installed
on each game server to monitor its status, and Ganglia Meta Daemon is installed on the
monitor server to collect the monitoring information. We select the BZFlag MMOFPS
[20] and the Stendhal MMORPG [21] as the example applications for the evaluation of
the proposed resource provisioning strategy. The BZFlag MMOFPS is deployed on 35
VMs and the Stendhal MMORPG is deployed on 25 VMs. We utilize the API pro-
vided by the KBEngine [22] game engine to implement an account generator that is
responsible for creating a large number of players for the experimental game, and a
proxy player machine that is responsible for generating the action requests and auto-
matically sending them on behalf of the players to the game server. In addition, players
can move across game maps dynamically. The power consumption of the cloud
infrastructures is measured with a WattsUp Pro power meter, which has an accuracy of
±1% of the measured value.

The workloads used in our experiments are generated based on the web traces from
World of Warcraft (WoW) website [23]. We choose two kinds of 284-min traffic
pattern from the traces and then scaled them to the range of the number of players that

Table 1. Specification of two types of server used in our testbed

Type Processor Memory Boot
time(s)

Pmax
i (W) Pmin

i (W)

1 Two octa-core Intel Xeon E5-2420
1.9 GHz processors

16 GB 102 196 91

2 Two octa-core Intel Xeon E5-4620
2.2 GHz processors

32 GB 90 261 102

864 Y. Gao et al.

our experimental setup can handle. Figure 3 shows these scaled workloads and the data
are sampled every 2 min. The setting values for various parameters in the genetic
algorithm have a direct effect on the algorithm performance. Appropriate parameter
values were determined on the basis of preliminary computational experiments. The
final parameter settings were determined to be NS = 50, CP = 0.5, MP = 0.9 and
MI = 100.

We choose a control interval Ts of two minutes. The number of control periods is
142. Every two minutes, our resource provisioning scheme controls VM resizing and
the number of servers running in active and power-off modes according to system
workload. When reconfiguring the MMOG cloud, the overhead of the physical server
boot time must be considered since it greatly affects the performance during boot time.
In this work, we use the double control periods (DCP) model proposed by Zheng et al.
[24] to compensate the overhead. One control period is responsible for adjusting the
number of active physical servers, and the other control period helps to switch on the
additional servers in advance. Finally, in order to reduce the total migration time of all
migrated VMs, we utilize simultaneous migrations to shorten the total migration time
of all migrated VMs, that is, the MMOG cloud can perform multiple VM migrations
simultaneously on different servers as long as these servers are not busy with other VM
migrations.

5.2 Prediction Model Validation

In this section, we compare the neural network prediction against the well-known
ARMA model. To evaluate the accuracy of the prediction models, we define two
metrics, the mean absolute percentage error (MAPE) and the coefficient of determi-
nation R2

� �
, which is calculated as follows:

MAPE ¼ 1
n

Xn

i¼1

ci � bci
ci

����
���� ð28Þ

R2 ¼ 1�
Pn

i¼1 ci � bcið Þ2Pn
i¼1 ci � bcð Þ2 ð29Þ

where n is the total number of samples, ci and bci are the real value and the model-
predicted value, and �c is the sample mean of ci. We run our neural network predictor

Fig. 3. Workload traces for two MMOG applications

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 865

and the ARMA predictor on MATLAB and use the traffic pattern for the Stend-
hal MMORPG as the input data of two predictors. The predicted results are shown in
Fig. 4 and Table 2. The result shows that our neural network predictor is significantly
better than the ARMA model and further validates the effectiveness of the proposed
neural network predictor.

5.3 Evaluating Effectiveness

To evaluate the effectiveness of our resource management scheme, we compared the
power consumption and performance for our policy and for two other policies
including a Linux performance policy, and a power and delay aware placement policy
(QDH). The performance policy is a standard Linux baseline policy that sets the CPU
speed to the highest available frequency all the time. The performance policy provides
no VM consolidation and reproduces the behavior of a typical MMOG cloud.
The QDH policy utilizes a heuristic proposed by Hong et al. [10] to dynamically
consolidate VMs in order to minimize power consumption while maintaining just-
good-enough gaming QoE. We conduct a set of experiments using two MMOG
applications deployed in 60 VMs. The VM placement for the performance policy is
statically configured such that interaction delay targets can be met under the peak
workload. The interaction delay target for two MMOG applications are set to 0.1 s and
0.2 s, respectively.

The interaction delay results for three schemes are shown in Fig. 5(a) and (b). The
horizontal straight line represents the interaction delay targets. As expected, the per-
formance scheme meets desired QoE targets at any time. In comparison, our policy and
QDH policy maintain substantially interaction delay below a predefined threshold.
However, compared to the QDH policy, our approach is able to provide better assur-
ance of interaction delay targets in the face of dynamically changing workloads. The
reason is that we develop more comprehensive system models which take account of
three types of resources and heterogeneous server types. The better performance of our

Fig. 4. Workload prediction using ARMA model and neural network model

Table 2. Predictive accuracy of the ARMA predictor and the neural network predictor.

Prediction method MAPE R2

ARMA predictor 0.0893 0.9539
Neural network predictor 0.0583 0.9771

866 Y. Gao et al.

policy compared to the QDH policy is also confirmed by a smaller value of QoE
degradation shown in Table 3. The QoE degradation is defined as a ratio of the number
of players missing their interaction delay targets to the total number of players served
over the experiment.

Figure 5(c) and Table 3 show the power consumption and the energy consumption
during a 284-min period for three policies, respectively. As can be seen from Table 3,
the energy consumption reduction from our policy to the performance policy is about
54.5%. This is because, in the case of low loads, VMs are consolidated using live
migration, hence a smaller number of the physical servers are running while other
servers are turned off, thus gives us significant energy saving. Comparing our policy
with the QDH policy, the results indicate an energy reduction of about 9.8%. This
small difference is mainly obtained by finding better solution for VM placement
problem.

In summary, compared to the performance scheme, our policy provides significant
energy savings with sacrificing a little performance. Compared to the QDH policy, our
policy provides better performance and saves more energy.

5.4 Evaluating Scalability

The last set of experiments is used to examine whether the proposed resource provi-
sioning is scalable for large size of the MMOG cloud with thousands of VMs. The

Fig. 5. The results of effectiveness and scalability evaluation

Table 3. Comparison of three resource provisioning policies

Approach Energy consumption QoE degradation

Performance policy 4.4564 kWh 0%
QDH policy 2.2464 kWh 5.63%
Our policy 2.0249 kWh 3.17%

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 867

scalability of our resource provisioning scheme is determined by the computational
complexity of the genetic algorithm for VM placement problem. Since the consoli-
dation ratio, which is defined as the average number of VMs hosted per server, is an
important factor which affects the time to solve the VM placement problem, we con-
sidered three type of consolidation ratio for this experiment: 2:1, 4:1 and 6:1. The
execution time of the genetic algorithm was measured on a 3.8 GHz Intel Core i7
machine. Figure 5(d) shows the computation time curve for three consolidation ratio.
From the figure we can see that the execution time of the genetic algorithm increases as
the consolidation ratio decreases. It is because that, when the consolidation ratio
decreases, the number of physical servers accommodating VMs rises up, making the
placement problem harder. In addition, we can see that the genetic algorithm takes less
than 10 min to solve the difficult placement problem of up to 6000 VMs. Therefore, our
resource provisioning scheme can be suitable for large-scale MMOG clouds.

6 Conclusion

In this paper, we formulate the problem of dynamic resource provisioning from the
perspective of cloud gaming providers with their own datacenter into a constrained
optimization problem and utilize the genetic algorithm to solve the problem. Our
experimental results show that, compared with other alternatives, our resource provi-
sioning policy provides significant energy savings while achieving just-good-enough
QoE for gamers. As continuity of this work, we propose to use the social structure of
the players in online games to predict the number of players.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grant No. 61662052, Inner Mongolia Science and Technology
Innovation Team of Cloud Computing and Software Engineering and Inner Mongolia
Application Technology Research and Development Funding Project.

References

1. Wu, J.: The world of MMORPG: a tale of two regions. Strategy analytics report (2010)
2. Song, S., Ryu, K.D., Da Silva, D.: Blue Eyes: scalable and reliable system management for

cloud computing. In: IEEE International Symposium on Parallel & Distributed Processing,
pp. 1–8. IEEE (2009)

3. Wang, H., Shea, R., Ma, X., Wang, F., Liu, J.: On design and performance of cloud-based
distributed interactive applications. In: 22nd International Conference on Network Protocols,
pp. 37–46. IEEE (2014)

4. Choy, S., Wong, B., Simon, G., Rosenberg, C.: A hybrid edge-cloud architecture for
reducing on-demand gaming latency. Multimed. Syst. 20(5), 503–519 (2014)

5. Chen, Y., Liu, J., Cui, Y.: Inter-player delay optimization in multiplayer cloud gaming. In:
9th International Conference on Cloud Computing, pp. 702–709. IEEE (2016)

6. Wang, W., Li, B., Liang, B.: To reserve or not to reserve: optimal online multi-instance
acquisition in IaaS clouds. In: 10th International Conference on Autonomic Computing,
pp. 13–22. USENIX (2013)

868 Y. Gao et al.

7. Nae, V., Prodan, R., Iosup, A.: SLA-based operations of massively multiplayer online games
in clouds. Multimed. Syst. 20(5), 521–544 (2014)

8. Basiri, M., Rasoolzadegan, A.: Delay-aware resource provisioning for cost-efficient cloud
gaming. IEEE Trans. Circ. Syst. Video Technol. 28(4), 972–983 (2018)

9. Wu, D., Xue, Z., He, J.: iCloudAccess: cost-effective streaming of video games from the
cloud with low latency. IEEE Trans. Circ. Syst. Video Technol. 24(8), 1405–1416 (2014)

10. Hong, H.J., Chen, D.Y., Huang, C.Y., Chen, K.T., Hsu, C.H.: Placing virtual machines to
optimize cloud gaming experience. IEEE Trans. Cloud Comput. 3(1), 42–53 (2015)

11. Lee, Y.T., Chen, K.T.: Is server consolidation beneficial to MMORPG? A case study of
World of Warcraft. In: 3rd International Conference on Cloud Computing, pp. 435–442.
IEEE, July 2010

12. Azoff, E.M.: Neural Network Time Series Forecasting of Financial Markets. Wiley,
Hoboken (1994)

13. Subramanian, C., Vasan, A., Sivasubramaniam, A.: Reducing data center power with server
consolidation: approximation and evaluation. In: International Conference on High
Performance Computing, pp. 1–10. IEEE (2010)

14. Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multiplayer
online games. IEEE Trans. Parallel Distrib. Syst. 22(3), 380–395 (2011)

15. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system power
models. In: Workshop on Power Aware Computing and Systems, pp. 1–5. USENIX (2008)

16. Sharifi, M., Salimi, H., Najafzadeh, M.: Power-efficient distributed scheduling of virtual
machines using workload-aware consolidation techniques. J. Supercomput. 61(1), 46–66
(2012)

17. Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selection strategies
in solving TSP. In: World Congress on Engineering, pp. 1134–1139. IAENG (2011)

18. Hong, C.H., Lee, K., Park, H., Yoo, C.: ANCS: achieving QoS through dynamic allocation
of network resources in virtualized clouds. Sci. Program. 2016, 1–10 (2016)

19. Ganglia Monitor System. http://ganglia.sourceforge.net/. Accessed 06 June 2018
20. BZFlag. https://www.bzflag.org/. Accessed 06 June 2018
21. Stendhal. https://stendhalgame.org/ Accessed 06 June 2018
22. KBengine. https://github.com/kbengine/kbengine. Accessed 06 June 2018
23. World of Warcraft. http://www.worldofwarcraft.com/. Accessed 06 June 2018
24. Zheng, X., Cai, Y.: Optimal server provisioning and frequency adjustment in server clusters.

In: International Conference on Parallel Processing Workshops, pp. 504–511. IEEE (2010)

Energy-Efficient and QoE-Aware Resource Provisioning for MMOGs in the Cloud 869

http://ganglia.sourceforge.net/
https://www.bzflag.org/
https://stendhalgame.org/
https://github.com/kbengine/kbengine
http://www.worldofwarcraft.com/

A Cost-Effective Deadline-Constrained
Scheduling Strategy for a

Hyperparameter Optimization Workflow
for Machine Learning Algorithms

Yan Yao, Jian Cao(B), and Zitai Ma

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

{yaoyan,cao-jian}@sjtu.edu.cn, mazitai@outlook.com

Abstract. As a method of data analysis that automates analytical
model building, machine learning is becoming increasingly popular. In
most machine learning algorithms, hyperparameter optimization or tun-
ing is a necessary step. Unfortunately, the process of hyperparameter
optimization is usually computationally expensive and time-consuming.
Currently, machine learning is becoming a service so that cost and time
should be considered when a machine learning service is provided. In this
paper, we propose a scheduling approach to satisfy two contradictory tar-
gets, i.e., cost and time, when models corresponding to multiple settings
of hyperparameters need to be tried. In this approach, the execution
time of the model with specific settings of the hyperparameters can be
predicted first. Then we generate an optimized workflow instance model,
which consists of multiple parallel branches and each branch sequentially
executes multiple models on a server. Based on the number partitioning
algorithm, the branches are organized in such a way that they have a
similar execution time and can be completed almost at the same time.
Through experiments on different machine learning algorithms, it demon-
strated that this approach meets the deadline and reduce the cost at the
same time.

Keywords: Machine learning
Hyperparameter optimization workflow · Resource scheduling

1 Introduction

Big data analytics is an emerging technology, providing better insights from
huge and heterogeneous data. Within the field of data analytics, supervised
machine learning algorithms need a significant amount of time to be trained and
evaluated on the data set while unsupervised machine learning algorithms need
time to execute on the data set. Regardless as to whether they are supervised
or unsupervised algorithms, most involve a set of configuration variables (a.k.a.
hyperparameters) that must be configured prior to training and (or) execution.
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 870–878, 2018.
https://doi.org/10.1007/978-3-030-03596-9_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_62&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_62

A Cost-Effective Deadline-Constrained Scheduling Strategy 871

Settings for the hyperparameters do not only affect the performance of the
training process, but more importantly, the quality (e.g. prediction accuracy) of
the machine learning algorithms. Unfortunately, tuning hyperparameters is usu-
ally computationally expensive and time-consuming. Currently, machine learn-
ing is becoming a service and the need to speed up hyperparameter optimization
while the cost can also be reduced is crucial.

One way by which to organize the hyperparameter optimization process is
sequential execution, i.e., multiple models defined by different settings of hyper-
parameters are executed sequentially on a server. Obviously, this approach is
very time-consuming and time usually increases exponentially with the number
of hyperparameters (seen Fig. 1(a)). Another option is parallel execution. As
the multiple models to be evaluated are independent of each other, the process
of hyperparameter optimization can take advantage of the distributed comput-
ing platform (e.g., cloud computing) so that the overall execution time can be
reduced. An extreme configuration is each model is assigned to a server for exe-
cution which leads to the shortest overall execution time. However, this will incur
a heavy cost in terms of computational resources (Fig. 1(b)).

Fig. 1. Sequential, completely parallel and our optimized workflow instance model

In this paper, we propose a workflow scheduling approach for hyperparameter
optimization with the objective of minimizing computational resources while
meeting the deadline constraint at the same time. Central to this approach is an
algorithm to generate an optimized workflow instance model, considering the fact
that with different settings of the hyperparameters’ values the execution time of
corresponding machine learning models is very different. Thus, multiple models
with a short execution time can share the same server while a server will be

872 Y. Yao et al.

allocated to those models that need a long execution time exclusively, as shown
in Fig. 1(c). This arrangement can save computational resources and also ensure
the deadline is met. For this idea to work, we need to address two problems. One
is given the hyperparameter settings, we need to predict the execution time of its
corresponding machine learning model. The second problem is how to organize
the execution of these models into different parallel branches of the workflow
instance in a cost effective way while the deadline requirements are met.

Therefore, the main contributions of this paper are two-fold as follows:

– Execution time prediction for machine learning models under different hyper-
paramenter settings: In order to predict the execution time of machine learn-
ing models under different settings, we propose a regression-based approach
which is based on the time complexity analysis of this model.

– Generate an optimized workflow instance model for hyperparamater optimiza-
tion: We transform this problem into a number partitioning problem [7]. After
an initial workflow instance model is created, it will be restructured based on
deadline constraints using a multi-way number partitioning algorithm.

The rest of the paper is organized as follows. Section 2 summarizes the related
work on hyperparameter optimization and the number partitioning problem.
Section 3 formulates the scheduling problem which minimizes the execution cost
with given deadline constraint. How to generate the workflow instance model
for hyperparameter optimization is discussed in Sect. 4. Section 5 presents the
experiment results on three machine learning models. Finally, conclusions are
drawn in Sect. 6.

2 Related Work

Hyperparameter Optimization in Machine Learning. Many algorithms
have been used for hyperparameters search, including grid search [1], random
search [2], Bayesian optimization [9] and the swarm optimization algorithm [4]. It
can be very time-consuming when working with a large number of hyperparam-
eters. The focus of our paper is not a hyperparameter search strategy but trying
to optimize the execution process after multiple settings have been decided by a
dedicated search strategy.

Number Partitioning Problem. In this paper, we transform scheduling for
hyperparameter optimization workflow as a number partitioning problem, which
is one of the simplest yet NP-complete problems in combinational optimization
[7]. A variety of methods have been proposed for number partitioning, such as
heuristic-based methods (e.g., greedy heuristic, breadth first search, Karmarkar-
Karp heuristic (a.k.a KK heuristics)), metaheuristic-based methods (e.g., tabu
search, simulated annealing) and so on. The best polynomial time heuristics
known to date is the differencing method of the KK heuristics [6].

A Cost-Effective Deadline-Constrained Scheduling Strategy 873

Workflow Scheduling. Workflow scheduling is the problem of mapping inter-
dependent tasks to a set of suitable resources. Since task scheduling is a well-
known NP-complete problem [5], many heuristic methods have been proposed
for a general workflow model [8]. Our study is on how to schedule a workflow
model with a special structure, i.e., it has multiple homogenous machine learning
tasks of different execution time.

3 Problem Formulation

The framework of our hyperparameter optimization workflow scheduling is illus-
trated in Fig. 2. Given a machine learning algorithm having n hyperparameters,
hyperparameter tuning algorithms will give a set of alternative settings. Suppose
there is g settings having execution time ti(1 ≤ i ≤ g). Assume the deadline for
the hyperparameter optimization process is D. Our target is to schedule the
hyperparameter optimization process in the way that can minimize the compu-
tational resources needed under the deadline constraint.

Fig. 2. Hyperparameter optimization workflow scheduling process

As these g alternative models can be executed independently of each other,
the execution of each model can be viewed as a parallel task (a parallel branch
in the workflow instance model). We want to reduce the branch number from g
to κ by concatenating them and minimize the longest execution time of these κ
branches at the same time. This problem can be viewed as a number partitioning
problem, which is defined as:

Given a set T = {t1, t2, ..., tg} and an integer D, a solution can be found to
divide T into κ subsets T = {T1, T2, ..., Tκ}, with sum(Ti) < D,(1 ≤ i ≤ κ). This
solution should minimize the largest sum(Ti), (1 ≤ i ≤ κ). The requirement for
all κ subsets is that:

∀i, sum(Ti) ≤ D, 1 ≤ i ≤ κ (1)
∀i,j , Ti ∩ Tj = ∅ (2)

T1 ∪ T2 ∪ · · · ∪ Tκ = T (3)

By applying the method to solve the number partitioning problem, we can
ensure each branch of the hyperparameter optimization workflow model has a

874 Y. Yao et al.

similar total execution time. Then each branch can be assigned to a server with
the same configuration. Therefore, the computational cost of the hyperparameter
optimization workflow can be measured by a metrics defined as Cost = κ ·
max1≤i≤κsum(Ti). Since the upper bound of Ti is D, the upper bound of Cost
is κ · D. We now discuss how to solve this problem and the details of our
algorithm are given in the next section.

4 The Scheduling Strategy for the Hyperparameter
Optimization Workflow

Step.1: Parallelizing the Process of Hyperparameter Optimization. The first step
is to generate an initial hyperparameter optimization workflow instance model,
in which the execution of a model corresponding to a setting of hyperparamters
is a task. As these tasks can be executed independently of each other, therefore,
in this initial workflow instance model, a parallel branch is created for each task.
The total number of tasks (parallel branches) is g = |Λ| and the branch set is
B = {b1, b2, ..., bg}.

Step.2: Machine Learning Model Execution Time Prediction. The second step
is to predict the execution time of g tasks (T = t1, t2, ..., tg). There is a linear
relationship between the execution time and the expression of its hyperparam-
eters (Eq. (4)) on a platform, which can be learned by a linear fitting process
from historical execution data on the same platform.

Talg = αC + β (4)

Step.3: Workflow Instance Model Restructuring Now, we apply the number par-
titioning algorithm to restructure the original workflow instance model. For
convenience sake, D and T are both divided by their greatest common divi-
sor to obtain the new relative deadline D′ and relative model execution time set
T ′ = {t′1, t

′
2, ..., t

′
g}. What we want to do is combine the tasks of model execution

in T ′ into κ groups, and each group of tasks can be completed one by one before
D′.

As presented in Algorithm 1, an initial value � sum(T ′)
D′ � for κ0 is input to the

algorithm (line 5). Then a Multi-way Karmarkar-Karp algorithm is applied to
restructure the model. If the largest subset sum in the solution is larger than D′,
this means that the current model cannot meet the user’s deadline constraint.
Then, we increase an instance to a resource pool, and κ plus one, the solution
is regenerated. This process is repeated until a valid solution is found.

4.1 Complexity Analysis

The algorithm involves the following steps:

1. Initial Workflow Instance Model Generation. In this step, the time complexity
is O(g), where g is the quantity of the parallel branches after instantiation.

A Cost-Effective Deadline-Constrained Scheduling Strategy 875

2. Time Prediction for the Task. This step also needs O(g) time. The estimated
time is calculated by the linear equation. Each calculation can be done in
O(1) time.

3. Workflow Instance Model Restructuring. This step needs O(g) for the heuris-
tic algorithm to reduce one tuple in every iteration. In total, there are g
tuples and then the model is improved with the different instance number k
cost O(g)|̇κ|.

Overall, this algorithm can give an approximate solution in O(g) time.

Algorithm 1. Workflow Instance Model Restructuring Algorithm
Require: T ′: Set of relative time,D′: relative deadline
Ensure: δ: the difference between the maximum and the minimum sum of subset Scheduling plan:

the initial solution
1: terminate ← false
2: if D′ < maxti∈T ′ ti then

3: return error:no suitable plan
4: end if

5: κ ← sum(T ′)
D′ + 1

6: Scheduling plan ← ∅
7: δ ← ∞
8: while terminate! = true do
9: temp δ, temp plan ←MWKK(T ′, κ)
10: temp max ← maxsubset∈tempplan sum(subset)

11: if temp max > D′ then
12: κ ← κ + 1
13: else
14: terminate ← true
15: initial plan ← temp plan
16: δ ← temp δ
17: end if
18: end while
19: return δ, Scheduling plan

5 Experiments

In order to prove the effectiveness of our proposed approach for a hyperparameter
search, we take three machine learning algorithms, i.e., kNN [3], k -means [10]
and CNN [11], as examples in our experiments. Without loss of generality, a
server configuration with a CPU Intel core i5-6500 and memory of 8G is used
in this experiment. In real applications, the server is selected based on the total
budget and deadline.

5.1 Compared Strategies

We use three strategies as baselines:

1. Basic Scheduling (BS) Strategy: This is based on the initial hyperparameter
optimization workflow instance model, i.e., each model corresponding to a
setting is allocated to a branch, which is assigned to a separate server.

876 Y. Yao et al.

2. Greedy Algorithm (GA)-based Strategy: In this strategy, the execution time
of models corresponding to the different settings of hyperparameters are first
sorted in descending order. Then, the elements are taken from the sorted list,
and are placed into the subset with the smallest sum of elements.

3. Karmarkar-Karp Algorithm (KK)-based Strategy: Here we use a multi-way
Karmarkar-Karp algorithm to restructure the workflow instance model.

5.2 Experiment Results

After deadline D is assigned to the hyperparameter setting list L, the scheduling
strategies generate the concrete workflow instance model. The model contains
κ parallel branches and the task list of the ith parallel is Si (1 ≤ i ≤ κ). The
relative deadline of the first three test cases is set to sum(P ′)/3, and the others
are set to sum(P ′)/4, where sum(P ′) is the sum of all the relative execution
time of tasks.

Table 1. Relative cost with different scheduling strategies

Case ID Algoritms BS GA KK OPT

κ Cost κ Cost κ Cost Cost

1 k-NN 20 20 4 20 4 20 20

2 k-NN 30 30 4 32 4 32 30

3 k-means 10 2000 4 1132 4 1132 1042

4 k-means 15 3090 5 1860 5 1835 1782

5 k-means 20 4160 6 3024 6 2844 2803

6 k-means 25 5200 6 2646 6 2622 2580

7 k-means 30 6240 7 3192 7 3115 3070

8 CNN 10 4350 5 2790 5 2790 2604

9 CNN 20 8980 6 5256 6 5180 4922

10 CNN 30 13350 7 8015 7 7888 7667

Table 1 shows the experiment results. The optimal solution (OPT) assumes
that the total time can be divided into branches equally. However, most of time
we can not divide these equally since we have a series of inseparable tasks.
Therefore, the last column of Table 1 represent the upper bounds. Figure 3(a)
shows the number of branches generated by three algorithms. Algorithms with
restructuring strategies (GA,KK) are much less than full parallel (BS), leading
to lower cost. Figure 3(b) shows that how close of the cost of GA and KK
algorithms to the cost of optimal solution. We find the KK algorithm is better
than BS and GA. Moreover, it is very close to the optimal solution in the last
column of Table 1.

A Cost-Effective Deadline-Constrained Scheduling Strategy 877

Fig. 3. Result comparision

6 Conclusions

In this paper, we described how to generate the hyperparameter optimization
workflow model to ensure the cost under deadline constraints when multiple set-
tings are specified. Specifically, we can predict the execution time of each machine
learning algorithm according to its hyperparameter values based on computa-
tion complexity analysis. Then a number partitioning algorithm is adopted to
arrange the parallel branches in the workflow model. Moreover, we introduced a
heuristic method to solve this problem and conducted experiments with different
models.

Through the experiments, we can see that our model has stronger stability
in different workflow models and reduce much more cost than BS, KK, GA and
the other strategies. This demonstrates that our model has the advantage of
reducing cost while ensuring that deadline requirements can be met.

Acknowledgments. This work is partially supported by National Key Research
and Development Plan (No. 2018YFB1003800), China National Science Foundation
(Granted Number 61472253, 61772334), and Cross Research Fund of Biomedical Engi-
neering of Shanghai Jiaotong University (YG2015MS61).

References

1. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B.: Algorithms for hyper-parameter
optimization, vol. 24, pp. 2546–2554 (2011)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(1), 281–305 (2012)

3. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967)

4. Guo, X.C., Yang, J., Wu, C., Wang, C.Y., Liang, Y.: A novel LS-SVMs hyper-
parameter selection based on particle swarm optimization. Neurocomputing 71,
3211–3215 (2008)

5. Hartmanis, J.: Computers and intractability: a guide to the theory of NP-
completeness (Michael R. Garey and David S. Johnson). Siam Rev. 24(1), 90–91
(1982)

878 Y. Yao et al.

6. Karmarker, N., Karp, R.M.: The differencing method of set partitioning. Technical
report. UCB/CSD-83-113, EECS Department, University of California, Berkeley
(1983). http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html

7. Moffitt, M.: Search strategies for optimal multi-way number partitioning, pp. 623–
629, August 2013

8. Rodriguez, M.A., Buyya, R.: A taxonomy and survey on scheduling algorithms
for scientific workflows in IaaS cloud computing environments. Concurr. Comput.:
Pract. Exp. 29(8) (2017). https://doi.org/10.1002/cpe.4041

9. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Neural Information Processing Systems, pp. 2951–2959
(2012)

10. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37
(2007)

11. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1983/6353.html
https://doi.org/10.1002/cpe.4041
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Transparently Capturing Execution Path
of Service/Job Request Processing

Yong Yang1(✉), Long Wang2, Jing Gu1, and Ying Li1,3(✉)

1 School of Software and Microelectronics, Peking University, Beijing, China
{yang.yong,gu.jing,li.ying}@pku.edu.cn

2 IBM Watson, Cambridge, USA
wanglo@us.ibm.com

3 National Engineering Center of Software Engineering, Peking University, Beijing, China

Abstract. Distributed platforms are widely deployed to provide services in
various trades. With the increasing scale and complexity of these distributed
platforms, it is becoming more and more challenging to understand and diagnose
a service request’s processing in a distributed platform, as even one simple service
request may traverse numerous heterogeneous components across multiple hosts.
Thus, it is highly demanded to capture the complete end-to-end execution path
of service requests among all involved components accurately. This paper
presents REPTrace, a generic methodology for capturing the complete request
execution path (REP) in a transparent fashion. We propose principles for identi‐
fying causal relationships among events for a comprehensive list of execution
scenarios, and stitch all events to generate complete request execution paths based
on library/system calls tracing and network labelling. The experiments on
different distributed platforms with different workloads show that REPTrace
transparently captures the accurate request execution path with reasonable latency
and negligible network overhead.

Keywords: End-to-end tracing · Service request · Distributed system
Request execution path

1 Introduction

Computing workloads are increasingly being placed onto distributed platforms like
cloud environments such as OpenStack and SoftLayer and job-processing environments
such as Spark and Hadoop. Such distributed platforms are composed of numerous serv‐
ices and components in multiple levels, and support many applications on top of the
platforms. These services, components and applications may have been developed by
different teams or vendors using different programming languages. This situation brings
about difficulty in understanding and diagnosing the processing of service requests and
job requests, because the processing of a single service request or job request typically
traverses a number of components across a set of machines.

In these platforms, traditional ways to monitor and trace a single program within a
machine, e.g. strace, a debugging tool in Unix-like systems, are insufficient, because

© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 879–887, 2018.
https://doi.org/10.1007/978-3-030-03596-9_63

https://doi.org/10.1007/978-3-030-03596-9_63
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_63&domain=pdf

they are unable to reveal what all the components do to process the service/job request,
and hence they provide quite limited insights for developers and administrators to
understand and diagnose a distributed platform. It is highly demanded by platform
providers, e.g. Amazon, IBM who provide cloud platforms, and service providers, e.g.
owners of those services registered onto service marketplace, (and certain service users/
job submitters), to capture the complete end-to-end execution path of the service/job
request processing among all involved components for individual requests. Ideally, with
this complete request execution path available, we would be able to obtain a holistic
view of the behavior of the distributed platforms during processing an individual service/
job with in-depth details. This holistic view of the behavior with in-depth details can
boost the understanding and diagnosis of service/job request processing, especially when
source code of the distributed platforms is unavailable.

A Request Execution Path (REP as acronym) is defined as the complete path of
processing a specific service/job request. Specifically, the REP (1) covers all of the
executions of the given distributed platform’s components in processing a specific
request, including all of the instruction executions that participate in processing the
particular request within those components’ processes and threads, as well as the
communications among these processes and threads during the processing; (2) identifies
all these executions, and links them together according to the accurate causal relation‐
ships among them to form an integral unseparated view of the distributed platform’s
processing of this request. In this paper, we try to capture the REP without source code
availability.

A number of technologies in current literature try to tackle a similar problem (end-
to-end tracing), such as Google’s Dapper [3], Twitter’s Zipkin [9], and Facebook’s
Canopy [1]. They require source code availability and instrumentation into the source
code, or require expertise knowledge of specific middleware, or only deal with vendors’
custom libraries. Specifically, Stardust [8] requires manual modification of the distrib‐
uted storage system. Pinpoint [5], Dapper [3], Pivot [2], Magpie [6] and Canopy [1] deal
with specific middleware or vendor custom libraries only. HTrace [10] requires instru‐
mentation to the system to enable tracing. Certain hardware and application support is
demanded for X-trace [7] to work. vPath [4] made a thrust to provide a generic solution
of tracing distributed systems/applications by monitoring thread and network activities.
But vPath assumes certain communication styles and thread patterns, which do not hold
in many modern distributed systems.

In this paper, we propose Request Execution Path Trace (REPTrace), a generic
methodology that captures complete execution paths of service/job request processing
of distributed platforms in a transparent way. By “transparency”, we mean the REP is
captured, for different distributed platforms without source code availability or code
instrumentation. REPTrace intercepts runtime events at the system level (either within
a physical machine, VM, or container), such as common library calls or system calls
(intercepting library calls does not require root privilege, though intercepting OS system
calls requires), and constructs the request execution path by identifying the causal rela‐
tionships for four categories of events: thread events, process events, network commu‐
nications events and control flow execution events. Principles and algorithms are
proposed for identifying the causal relationships among the events (within the same

880 Y. Yang et al.

category or across categories). Then REPTrace stitches all the events of one request’s
processing together using the identified causal relationships, and produces the complete
request execution path. No source code or instrumentation to the distributed applica‐
tions/platforms is required. No specific communication styles or thread patterns are
assumed. Instead, we i) perform comprehensive analysis of execution scenarios when
distributed systems process service requests and ii) leverage system-level tracing of
library/system calls and labelling of network messages, to make our solution generic for
distributed applications/platforms.

In summary, this paper makes the following contributions:

• We analyze execution scenarios during request processing and identify event causal
relationships in all the execution scenarios. This comprehensive analysis is the basis
for REPTrace.

• We propose REPTrace, a generic methodology for complete execution path capturing
without source code availability, and implement REPTrace on Linux systems. Based
on the comprehensive analysis, no specific communication styles or thread patterns
are assumed in REPTrace. As far as we know, there is no prior art of tracing that tries
to address the comprehensive communication/execution scenarios as we handle.

• We evaluate REPTrace with extensive experiments on different distributed plat‐
forms. The experiments show that REPTrace captures more complete request execu‐
tion paths and handles more comprehensive scenarios than prior art (REPTrace
generates only one path for one request’s processing, while vPath generates more
than one hundred path fragments as it does not handle many execution scenarios).

2 Overview of Request Execution Path

In this section, we first conduct a comprehensive analysis of the execution scenarios
during the request processing, and then define the granularity of REP and corresponding
event categories. Based on the granularity and event categories, we describe the REP
representation. In the end, we describe the high-level principles to identify causal rela‐
tionships among events.

2.1 Analysis of Execution Scenarios

The following execution scenarios may be involved during the request processing. This
is a comprehensive list of scenarios we encountered when implementing and applying
tracing tools to real-world distributed platforms, which we believe covers most, if not
all, of the common execution scenarios in request execution path.

(a) Sequential execution of instructions within a thread, according to the control flow
order;

(b) The current thread creates another thread and passes the handling of the request to
the new thread. The current thread may stop processing (e.g. sleep), or continue
processing this request;

Transparently Capturing Execution Path of Service/Job Request Processing 881

(c) The current process forks a process, and passes the handling of the request to the
new process; The current process may stop or continue processing this request;

(d) The current process/thread sends a message to another process/thread, which may
be on the same machine or a different machine. Then the latter process/thread begins
the processing of the request. Network communication and other similar mecha‐
nisms, like pipe, are covered in this scenario; The current process/thread may stop
or continue processing this request;

(e) The current process/thread synchronizes the processing of request with another
existing process/thread using certain IPC (Inter-Process Communication) mecha‐
nism such as process wait, thread join, signal, lock/unlock, semaphore, etc.;

(f) The current process/thread saves the request (or its intermediate state) in a message
queue. Then a different process/thread picks up the request (or the intermediate
state) from the message queue and begins processing;

(g) The current process/thread passes the handling of the request to another existing
process/thread using shared memory, shared variables, or mapped device.

The scenarios a ~ e are about the execution of requests according to manipulations
or interactions of system control objects, i.e. thread, process, signal, etc. The scenarios
f and g are about transitions of request processing according to values of certain memory
locations (or program variables). The scenarios a ~ e are control dependencies of request
execution path and the scenarios f ~ g are data dependencies of request execution path.

2.2 Event Category

Granularity of REP. We select a mixture of a subset of system calls and a subset of
library calls as the granularity of REP. The selected library/system calls are widely used
and associated with the manipulations of thread/process and network communication.
As a result of our granularity selection, the following four categories of events are dealt
with in our current REPTrace design and implementation. In this paper, an event refers
to the system/library call activity, which is intercepted and emitted by REPTrace.

Thread Event Category (TE). Events in this category denote the manipulations asso‐
ciated with thread objects as well as interactions between threads. These events include:
library calls of thread creation, thread termination, thread joining.

Process Event Category (PE). Events in this category denote the manipulations asso‐
ciated with process objects as well as interactions between processes. These events
include: library calls of process fork, process exec, process wait and their variants.

Network Communication Event Category (NCE). Events in this category denote the
manipulations associated with network communications. These events can be classified
into two types, network message sending and network message receiving, which are
respectively referred as send and recv hereafter.

Control Flow Execution Event Category (CFEE). One event of this category denotes
a thread’s continuous instruction execution segment without other categories of events

882 Y. Yang et al.

above. These execution segments are formed as the result of other categories’ events
splitting the program execution. This category of events is defined to only help people
consider/understand the request processing as a complete path of defined events.

2.3 Causal Relationship Identification

Here we describe the principles of how the causal relationships among events are
identified for the enumerated execution scenarios above. We classify all the causal
relationships into two categories: inter-node causal relationship and intra-node
causal relationship. Inter-node causal relationship covers only scenario d. Intra-node
relationship covers the rest of all the scenarios.

Here we use CFEE event type in following rules to strictly define the causal rela‐
tionship identification; this event type stitches all events together so that the entire
request processing is a complete path of events. After the entire REP is formed, the
events of the CFEE type are deleted (i.e., the parent event of a CFEE event e becomes
the parent of e’s child events) from the final representation of the causal relationship to
facilitate presentation and processing.

i. Scenario a consists of a sequence of events within the same thread. An event (event
A) that is immediately before the next event (event B) along the execution sequence
is event B’s parent.

ii. Scenario b involves a thread creation. Suppose thread A invokes pthread_create()
to create another thread B. Then the CFEE event immediately before
pthread_create() is the parent of the pthread_create() event, which is the parent of
the thread B’s starting CFEE event.

iii. Scenario c involves a process creation. The causal relationship identification
between involved events is similar to the identification algorithm for Scenario b.

iv. Scenario d involves a network communication operation, or a send-recv pair. For
a send event, we identify the corresponding recv event by inserting a unique ID
(called DATA_ID) into the front of each transmitted message, and then extract this
ID from the received message of the recv event. The send and recv events with the
same DATA ID have the causal relationship with the send event being the parent
of the recv event. In this scenario, we consider the send event as the only parent of
the recv event, discarding the parent event for recv from Scenario a.

v. Scenario e involves system-level IPC mechanisms such as process wait, thread join,
signal, etc. For each of these mechanisms we define its specific causality identifi‐
cation method. For example, waitpid() blocks the calling process A (the current
process) and waits for the specified process B to terminate or change state (stopped
or resumed or signals). Then process A’s execution CFEE event immediately after
the waitpid() in the control flow order is the child of the last CFEE event of process
B before B’s termination or state change and the waitpid() event. In this way, one
event has two parent events. Similarly, specific identifications of event causal rela‐
tionships associated with thread join, signals, lock/unlock and other IPC mecha‐
nisms are defined correspondingly based on their semantics in manipulating execu‐
tion behavior.

Transparently Capturing Execution Path of Service/Job Request Processing 883

vi. Scenario f and scenario g involve data dependencies. Generic accurate analysis
of data dependencies along individual traces transparently is a difficult problem to
tackle. This paper mainly addresses the construction of request execution path using
control dependencies rather than data dependencies, as handling data dependencies
is a radically different topic than handling control dependencies. So we do not
address all data dependencies in these scenarios, but only identify those data
dependency causal relationships in which data writing and reading events can be
correlated by specific IDs like Job ID of Hadoop, message ID or session ID.

After identifying all the causal relationships of events belonging to a request, we
represent the request execution path as a graph, specifically a directed acyclic graph
(DAG), in which each vertex refers to an event and each edge refers to a causal rela‐
tionship between two events. Figure 1 (a) shows an example of a request execution path.

Fig. 1. (a) An example of a request execution path (b) system architecture of REPTrace

3 System Design

REPTrace consists of a REPAgent (and an optional Local Generator) on each host of
the traced distributed system, as well as a Central Generator (see Fig. 1 (b)).

REPAgent intercepts library/system calls of the host, and emits trace events to the
Central Generator. A trace event maps to an intercepted library/system call event. The
Central Generator collects these trace events and runs the causal relationship identifi‐
cation in an asynchronous mode (so the impact to the request processing is minimized).

884 Y. Yang et al.

Then Central Generator stores the complete REP of every request in the repository. If
further performance impact minimization is required, an optional Local Generator can
buffer REPAgent’s events to avoid network latency and overhead incurred by the
communication to the Central Generator. Note that TCP message fragmentation needs
to be handled before the causal identification is performed in the Central Generator. Due
to page limitation, here we do not discuss details of these components.

4 Experiment and Evaluation

Experimental Setup. We implement REPTrace on Linux distributions. The source
code and the full list of intercepted library/system calls can be found on the project
website [11]. The experiments were conducted on Hadoop (a combination of Yarn,
MapReduce and HDFS), Spark, a Tensorflow-based application and Angel (Tencent’s
open source large-scale machine learning system).

Overhead Study. The latency and network traffic overhead incurred by REPTrace on
different systems with different workloads are measured in our experiments. The exper‐
imental results show 4.5% latency and 1.8% network traffic overhead by average. Due
to the page limitation, we do not present details of the overhead measurement here.

Completeness of the Generated Request Execution Path. Asingle job of WordCount
application was executed on Hadoop with a 500 M input file and REPTrace captured
the trace events during the job execution. The generated request execution path is to be
used for purposes of understanding and diagnosing the processing of service requests
and job requests. So, the generated REP must be complete (i.e. all causal relationships
of all the events along the request execution are identified and stitched properly in the
result path) and correct (i.e. the identified relationships between events reflect the real
causal relationships of them along the request execution).

REPTrace produces 72853 trace events for a single job’s processing in our experi‐
ment. The processing of a single job request is a holistic session. So, all events in this
session should be linked into a single execution path if the generated REP is complete
(those events associated with heartbeat during the job execution are also regarded as
part of the session, as they are integral part of the Hadoop system).

REPTrace stitches the 72853 trace events into one request execution path. As
comparison, the prior state-of-the-art solution, vPath, produces 28908 trace events and
links these events into more than one hundred execution path fragments, because vPath
does not cover all types of events in execution and its assumption of threading patterns
does not hold for most execution scenarios in Hadoop (we got the source code of vPath
from the vPath author and used it as our baseline when evaluating the completeness),
such as the widely used Hadoop RPC (Remote Procedure Call) mechanism.

Correctness of the Generated Request Execution Path. We performed thorough
manual inspection of the REP generated in the experiment and consulted the relevant
source code carefully. We did not find any error in those inspected causal relationships

Transparently Capturing Execution Path of Service/Job Request Processing 885

of the result execution path, i.e. all inspected ones reflect the real causal relationships
as expected and as specified in Sect. 2.3.

The REPTrace has been applied for anomaly detection and system understanding.
Due to the page limitation, we do not present details of leveraging the generated REP
for anomaly detection or system understanding here. These contents are available per
request.

5 Conclusion

In this paper, we propose REPTrace, a generic end-to-end tracing methodology, which
is able to automatically generate the complete execution path of service/job requests for
a variety of distributed platforms in a transparent way. We analyzed the possible request
execution scenarios in distributed platforms and corresponding causal relationships, and
illustrated how REPTrace captures the accurate causal relationships in these scenarios.
We conducted experiments to evaluate the correctness and completeness of the request
execution path produced by REPTrace, and compared the results with the existing state-
of-the-art solution. Experiments show that REPTrace produces correct execution path
which is much more complete than prior art (i.e. we cover much more execution
scenarios), with small performance overhead (4.5% latency and 1.8% network traffic
overhead).

REPTrace has the limitation of failing to handle general data-dependency causal
relationship when specific IDs like job ID, message ID, request ID, are unavailable.
Handling this limitation is one of our future work. Moreover, we have applied the
generated REP for anomaly detection and system understanding, which is not presented
here due to page constraints.

References

1. Kaldor, J., Mace, J., Bejda, M., et al.: Canopy: an end-to-end performance tracing and analysis
system. In: ACM Symposium on Operating Systems Principles (2017)

2. Mace, J., Roelke, R., Fonseca, R.: Pivot tracing: dynamic causal monitoring for distributed
systems. In: Proceedings of the 25th Symposium on Operating Systems Principles, ACM, pp.
378–393 (2015)

3. Sigelman, B.H., Barroso, L.A., Burrows, M., et al.: Dapper, a large-scale distributed systems
tracing infrastructure Technical report, Google, Inc., (2010)

4. Tak, B.C., Tang, C., Zhang, C., et al.: VPath: precise discovery of request processing paths
from black-box observations of thread and network activities. In: USENIX Annual Technical
Conference (2009)

5. Chen, M.Y., Kiciman, E., Fratkin, E., et al.: Pinpoint: problem determination in large,
dynamic internet services. In: 2002 Proceedings International Conference on IEEE
Dependable Systems and Networks, 2002 DSN, pp. 595–604 (2002)

6. Barham, P., Isaacs, R., Mortier, R., et al.: Magpie: online modelling and performance-aware
systems. In: HotOS, pp. 85–90 (2003)

886 Y. Yang et al.

7. Fonseca, R., Porter, G., Katz R.H, et al.: X-trace: a pervasive network tracing framework. In:
Proceedings of the 4th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, p. 20 (2007)

8. Thereska, E., Salmon, B., Strunk, J., et al.: Stardust: tracking activity in a distributed storage
system. In: ACM SIGMETRICS Performance Evaluation Review, ACM, vol. 34, no. 1, pp.
3–14 (2006)

9. Zipkin. https://zipkin.io/
10. HTrace. http://htrace.incubator.apache.org/
11. REPTrace. https://github.com/kliosvseyy/REPTrace

Transparently Capturing Execution Path of Service/Job Request Processing 887

https://zipkin.io/
http://htrace.incubator.apache.org/
https://github.com/kliosvseyy/REPTrace

Author Index

Aamir, Tooba 352
Abdellatif, Manel 634
Abdelrazek, Mohamed 230
Adeleye, Olayinka 603
Afrin, Mahbuba 295
Agarwal, Shivali 332
Aggarwal, Pooja 489
Alkhabbas, Fahed 279
Amini Salehi, Mohsen 828
Astigarraga, Tara 111

Bakhtiyari, Kaveh 146
Banerjee, Ansuman 694
Barros, Alistair 37
Ben Said, Ahmed 463
Benatallah, Boualem 373
Bentahar, Jamal 146
Binzagr, Faisal 679
Bouguettaya, Athman 342, 352, 463, 660
Boyer, Fabienne 21
Bucchiarone, Antonio 279
Buyya, Rajkumar 797

Cabrera, Christian 304, 618
Cai, Xinchen 264
Cao, Jian 870
Capezzuto, Giuseppe 181
Cervantes, Abel Armas 181
Charoy, François 198
Chattopadhyay, Soumi 694
Chen, Chuan 505
Chen, Feifei 230
Chen, Guihai 317, 363, 771
Chen, Junliang 532
Chen, Liang 388, 404, 592
Chen, Lu 592
Chen, Pengfei 3
Chen, Shiping 421
Chen, Xiaoyan 111
Chen, Yaoliang 111
Chung, Lawrence 576
Clarke, Siobhán 304, 618
Cui, Lizhen 515

da Silva Veith, Alexandre 215
Dam, Hoa Khanh 524
Dasgupta, Gargi B. 100
Dasgupta, Gargi 489, 812
Davidsson, Paul 279
De Alwis, Adambarage Anuruddha

Chathuranga 37
de Assunção, Marcos Dias 215
de Palma, Noel 21
De Sanctis, Martina 279
Dechu, Sampath 100, 165
Deng, Yu 489
Denninnart, Chavit 828
Dong, Hai 352
Dong, Manqing 373
Dou, Wanchun 421

Elboussaidi, Ghizlane 634
Erradi, Abdelkarim 463
Etchevers, Xavier 21

Fan, Jiahao 317
Feng, Yinglan 388
Fidge, Colin 37
Fu, Min 740

Gan, Yanglan 430
Gantayat, Neelamadhav 100
Gao, Xiaofeng 317, 363, 771
Gao, Yongqiang 854
Gao, Yuanning 771
Gharia Neiat, Azadeh 463
Ghose, Aditya 524
Grundy, John 230
Gu, Jing 879
Gu, Jingxiao 111
Guéhéneuc, Yann-Gaël 634
Guo, Wenhui 854
Gupta, Abhirut 489
Gupta, Monika 812

Han, Bo 90, 532
Han, Hyuck 781

Han, Jun 543
Han, Yanbo 255, 603
He, Qiang 230
He, Wei 515
Hecht, Geoffrey 634
Hill, Tom 576
Hosking, John 230
Hu, Hao 264
Huang, Bing 660
Huang, Chaoran 373
Huang, Yanjun 740
Hull, Richard 111

Jacobsen, Hans-Arno 532
Jain, Siddharth 725
Jia, Jingting 543
Jiang, Ming 430
Jiang, Yun 515
Jiao, Limei 111
Jin, Jiong 246, 295
Johng, Haan 576

Kang, Sooyong 781
Khani, Maryam 129
Kim, Doohwan 576
Kim, Young Jin 781
Kuang, Hongyu 264

Lai, Phu 230
Lakhdari, Abdallah 342
Lalanda, Philippe 756
Lee, Seungwon 446
Lee, Tsengdar J. 446
Lee, Young Choon 781
Lefèvre, Laurent 215
Li, Meng 543
Li, Qianmu 421
Li, Runyuan 532
Li, Xiangbo 828
Li, Xiaohong 255
Li, Xiulin 560
Li, Ying 879
Li, Yinglong 837
Li, Yuanping 740
Li, Yuliang 111
Lin, Jinjin 3
Lin, Li 478
Lin, Wenmin 421
Lin, Xiaola 404

Liu, Bingfeng 797
Liu, Chen 255
Liu, Chenlin 363
Liu, Jin 90
Liu, Shijun 560, 651
Liu, Xiao 90
Liu, Yang 404
Lü, Jian 264
Lübke, Daniel 73
Luo, Haoyu 90
Luo, Xiaohui 57

Ma, Zitai 870
Maggi, Fabrizio Maria 181
Mahindru, Ruchi 489
Malhotra, Nikhil 332
Mandal, Atri 332, 812
Mani, Senthil 100, 165
Marconi, Annapaola 279
Marrella, Andrea 181
Maurya, Chandresh 165
Medjahed, Brahim 679
Meng, Shunmei 421
Meng, Xiangxu 560
Mili, Hafedh 634
Moha, Naouel 634
Mohapatra, Prateeti 489
Morand, Denis 756
Motahari Nezhad, Hamid R. 714

Nadjaran Toosi, Adel 797
Nakamura, Taiga 714
Neiat, Azadeh Ghari 342, 660
Nemani, Ramakrishna 446
Niu, Sen 430
Novotny, Petr 111

Orgun, Mehmet A. 129
Otrok, Hadi 146

Palade, Andrei 304, 618
Pan, Li 560, 651
Pang, Shengye 430
Paradkar, Amit 489
Pautasso, Cesare 73
Polyvyanyy, Artem 37
Ponnalagu, Karthikeyan 524
Pourreza, Maryam 446
Privat, Jean 634

890 Author Index

Qi, Lianyong 421

Rahman, Ashfaqur 295
Ramnath, Anirudh 725
Ray, Anupama 332
Ren, Fengyuan 57
Rosinosky, Guillaume 198
Rosu, Daniela 489

Sailer, Anca 725
Sankaran, Anush 100
Serebrenik, Alexander 812
Shatnawi, Anas 634
Shi, Yuliang 560, 651
Shi, Yulong 532
Singh, Manu 725
Song, Wei 264
Sosnovich, Adi 714
Spalazzese, Romina 279
Sridhara, Giriprasad 100, 332
Stocker, Mirko 73
Sun, Chang-ai 543
Sun, Chao 837

Taghavi, Mona 146
Tang, Shanjiang 837
Tao, Shu 489
Tao, Xinxiu 21
Tater, Tarun 165
Tomala-Reyes, Angel E. 725
Toosi, Adel Nadjaran 828

Vong, Chi Man 740

Wan, Jian 592
Wang, Chunwei 771
Wang, Huaqing 478
Wang, Jianmin 478
Wang, Lin 854
Wang, Long 879
Wang, Lu 651
Wang, Xianzhi 373
Wang, Yan 129
Wei, Mengxi 532
Wen, Lijie 478
White, Gary 304, 618
Wong, Chi Man 740
Wu, Fan 363

Wu, Hao 430
Wu, Jia 740
Wu, Jiajing 505

Xiao, Jian 837
Xie, Fenfang 388, 404
Xie, Zhulong 854
Xu, Xiaolong 421
Xu, Yueshen 592

Yang, Bo 725
Yang, Jian 740
Yang, Qian 515
Yang, Yong 879
Yang, Yun 90, 230, 246
Yao, Bin 771
Yao, Lina 373
Yao, Yan 870
Ye, Fanghua 505
Ye, Yongjian 404
Yin, Peifeng 714
Yin, Yuyu 592
Yongchareon, Sira 603
Yorav, Karen 714
Youcef, Samir 198
Yu, Ce 837
Yu, Jian 603
Yu, Shui 421
Yuan, Dong 651

Zdun, Uwe 73
Zhang, Jia 446
Zhang, Jie 505
Zhang, Shuai 373
Zhang, Tiehua 246
Zhang, Tong 57
Zhang, Yang 532
Zhang, Zhongmei 255
Zheng, Angyu 388
Zheng, Bingbing 651
Zheng, Xi 740
Zheng, Zibin 3, 388, 404, 505
Zhou, Jiantao 854
Zhou, Xinbo 317
Zhu, Feng 129
Zhu, Hai 740
Zimmermann, Olaf 73
Zou, Guobing 430

Author Index 891

	Preface
	Organization
	Abstract of Keynotes
	Engineering the Smart Fabric of IoT, Services, and Systems
	Distributed Trust: How Data-Driven Applications, AI and Blockchain is Impacting Service Oriented Computing
	Deep Insight of End to End E-Commerce Business Management
	Contents
	Microservices
	Microscope: Pinpoint Performance Issues with Causal Graphs in Micro-service Environments
	1 Introduction
	2 System Overview and Formulation
	3 System Design
	3.1 Data Collection
	3.2 Service Causality Graph Building
	3.3 Cause Inference

	4 Experimental Evaluation
	4.1 Effectiveness Evaluation
	4.2 Comparisons
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	References

	Architecture-Based Automated Updates of Distributed Microservices
	1 Introduction
	2 Background
	2.1 Microservice Patterns
	2.2 Dynamic Update of Microservice Applications

	3 Architectural Model
	4 Strategy-Driven Updates
	5 Update Robustness
	6 Evaluation
	6.1 Ease of Programming Strategies
	6.2 Ease of Updating Microservices
	6.3 Protecting SLA Properties: Real-Life Application Usecase

	7 Conclusion
	References

	Function-Splitting Heuristics for Discovery of Microservices in Enterprise Systems
	1 Introduction
	2 Structural and Behavioural Properties of Enterprise and Microservice Systems
	3 Automated Microservice Discovery
	3.1 Discovery Process
	3.2 Microservice Discovery Algorithms

	4 Implementation and Validation
	5 Related Work
	6 Conclusion
	References
	Services and Processes
	High Performance Userspace Networking for Containerized Microservices
	1 Introduction
	2 Background
	2.1 Existing Approaches
	2.2 Kernel Inefficiency

	3 System Design and Implementation
	3.1 DockPipe
	3.2 DockDaemon
	3.3 APIs

	4 Evaluation
	4.1 Throughput and Latency
	4.2 Bandwidth Isolation
	4.3 Multi-container
	4.4 Application

	5 Conclusion
	References

	Guiding Architectural Decision Making on Quality Aspects in Microservice APIs
	1 Introduction
	2 Related Work
	3 Research Method
	4 Reusable ADD Model for API Quality
	5 Preliminary Estimation of Uncertainty Reduction
	6 Discussion and Threats to Validity
	7 Conclusions
	References

	Adaptive Temporal Verification and Violation Handling for Time-Constrained Business Cloud Workflows
	Abstract
	1 Introduction
	2 Preliminary
	3 Adaptive Temporal Verification and Violation Handling
	3.1 Adaptive Temporal Checkpoint Selection Strategy
	3.2 Temporal Violation Handling Strategy

	4 Evaluation
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion and Future Work
	Acknowledgement
	References

	Towards Creating Business Process Models from Images
	1 Introduction
	2 Approach (System Architecture and Implementation)
	2.1 Identifying Business Process Model Images
	2.2 Contour Detection
	2.3 Identifying Different BPMN Shapes
	2.4 Text Extraction from Shapes
	2.5 Sequence Flow Detection (Edge Detection)
	2.6 Generating Output

	3 Evaluation
	3.1 Evaluation with Generated Data
	3.2 Evaluation with Client Data
	3.3 Threats to Validity

	4 Related Work
	5 Conclusion
	References

	Service Trust and Security
	Empowering Business-Level Blockchain Users with a Rules Framework for Smart Contracts
	1 Introduction
	2 Framework Overview and Illustrations
	2.1 Illustration of Rules in Billing Use Case
	2.2 Discussion

	3 Implementation of Rules Framework
	4 Implications of Execution on Hyperledger
	4.1 Fabric Architecture Overview and Transaction Processing Flow
	4.2 Eliminating Non-determinism from Smart Contracts
	4.3 Blockchain Phantom Reads
	4.4 Worldstate Indexes

	5 Related Work
	6 Conclusions
	References

	Context-Aware Trustworthy Service Evaluation in Social Internet of Things
	1 Introduction
	1.1 Background and Problem
	1.2 Contributions

	2 Literature Review
	2.1 Trust Models in Online Social Networks (OSNs)
	2.2 Trust Models in Internet of Things (IoT)
	2.3 Trust Models in Social Internet of Things (SIoT)

	3 Problem Statement and Metrics of Contextual Trust
	3.1 Problem Statement
	3.2 The Contexts of Trust in SIoT Environments
	3.3 The Metrics of Contextual Trust Evaluation

	4 Mutual Context-Aware Trustworthy Service Evaluation (MCTSE) Model
	4.1 Overview of the MCTSE Model
	4.2 Assessing Trust in SIoT Environments by MCTSE Model

	5 Experiments
	5.1 Simulation Settings and Performance Comparison in SIoT Environments
	5.2 Experiment 1: Effectiveness of Trustworthy Service Evaluation
	5.3 Experiment 2: Effectiveness in Resiliency Against Attacks

	6 Conclusion
	References

	Cloudchain: A Blockchain-Based Coopetition Differential Game Model for Cloud Computing
	1 Introduction
	2 Related Work
	3 Cloudchain Architecture
	4 Cloudchain Members' Revenue Optimization
	4.1 Cloud Provider as a Requester
	4.2 Cloud Provider as a Supplier

	5 Implementation, Simulation and Discussion
	6 Conclusion
	References

	Business Services and Processes
	Prediction of Invoice Payment Status in Account Payable Business Process
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Preprocessing
	3.2 Feature Extraction
	3.3 Classifiers Used

	4 Empirical Evaluation
	4.1 Metrics
	4.2 Training
	4.3 Results

	5 Extended Feature Set
	5.1 Experimental Testbed and Settings
	5.2 Results

	6 Discussion and Conclusion
	References

	Explaining Non-compliance of Business Process Models Through Automated Planning
	1 Introduction
	2 Running Example
	3 Background
	3.1 BPMN and Petri Nets
	3.2 Declarative Temporal Rules and Finite State Automata
	3.3 Automated Planning

	4 The Approach
	5 Compliance Checking as Planning
	5.1 A NFA Manipulations Technique for Compliance Checking
	5.2 Encoding in PDDL

	6 Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	A Genetic Algorithm for Cost-Aware Business Processes Execution in the Cloud
	1 Introduction
	2 A Migration Strategy Based Model
	2.1 Context and Constraints
	2.2 Allocation with an Iterative Heuristic and Time Series Segmentation
	2.3 An Efficient Model for Migration Strategies
	2.4 Cost Optimization via Genetic Algorithms

	3 Experimentation
	3.1 Results
	3.2 The Splitting Strategy
	3.3 Results for Solver and Iterative Heuristic

	4 Related Work
	5 Conclusion
	References

	Edge + IoT Services
	Latency-Aware Placement of Data Stream Analytics on Edge Computing
	1 Introduction
	2 System Model and Problem
	2.1 System and Application Models
	2.2 Operator Placement Problem

	3 Application Placement Strategies
	3.1 Finding Application Patterns
	3.2 Operator Placement Strategies

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Evaluation

	5 Related Work
	6 Conclusions and Future Work
	References

	Optimal Edge User Allocation in Edge Computing with Variable Sized Vector Bin Packing
	1 Introduction
	2 Motivating Example
	3 Background
	4 Our Approach
	4.1 Definitions
	4.2 EUA Model

	5 Experimental Evaluation
	5.1 Baseline Approaches
	5.2 Experiment Settings
	5.3 Experimental Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	RA-FSD: A Rate-Adaptive Fog Service Delivery Platform
	1 Introduction
	2 Architecture of RA-FSD Platform
	3 Analytic Framework and Optimization Problem
	4 Service Rate-Adaptive Algorithm and Implementation
	5 Performance Evaluation on a Case Study
	6 Conclusion and Future Work
	References

	A Service-Based Declarative Approach for Capturing Events from Multiple Sensor Streams
	Abstract
	1 Introduction
	2 Scenario
	3 The Declarative Service-Based Approach
	3.1 The Proactive Data Service Model
	3.2 The Setting of Declarative Rules
	3.3 The Event Capturing Based on Lag-Correlation Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 Experiment Result and Analysis

	5 Related Work
	6 Conclusion
	Acknowledgement
	References

	Response Time Aware Operator Placement for Complex Event Processing in Edge Computing
	1 Introduction
	2 Related Work
	3 Models and Problem Formulation
	3.1 CEP Model
	3.2 Edge Computing Model
	3.3 Response Time
	3.4 Operator Placement Problem in Edge Computing

	4 Algorithm
	4.1 Response Time Aware Operator Placement Algorithm
	4.2 Time Complexity

	5 Evaluation
	5.1 Reference Algorithms
	5.2 Simulation Environment
	5.3 Simulation Results
	5.4 Threats to Validity

	6 Conclusions
	References

	Enacting Emergent Configurations in the IoT Through Domain Objects
	1 Introduction
	2 Background on the Domain Object Model
	3 The IoT-FED Approach
	3.1 The IoT-FED Process
	3.2 An Architecture Realizing IoT-FED
	3.3 A Guideline About IoT-FED

	4 The AL-office Scenario and AL Prototype Running on IoT-FED
	4.1 The Realized AL-office Scenario
	4.2 Running the AL Prototype on IoT-FED

	5 Validation
	6 Lessons Learned
	7 Related Work
	8 Conclusion and Future Work
	References

	Energy-Delay Co-optimization of Resource Allocation for Robotic Services in Cloudlet Infrastructure
	1 Introduction
	2 Related Work
	3 Framework for Cloudlet Based Multi-robot System
	4 Proposed Energy-Delay Optimized Resource Allocation
	4.1 Multi-objective Optimization Problem Formulation
	4.2 Energy-Delay Co-optimization Using Multi-objective Evolutionary Algorithm

	5 Simulation Results and Discussion
	5.1 Simulation Environment
	5.2 Simulation Scenarios and Result Analysis

	6 Conclusion and Future Directions
	References

	Services in IoT: A Service Planning Model Based on Consumer Feedback
	1 Introduction
	2 Related Work
	3 Composition of Services in IoT Environments
	4 Evaluation
	4.1 Results

	5 Conclusions
	References

	Social and Interactive Services
	Crowdsourcing Task Scheduling in Mobile Social Networks
	1 Introduction
	2 Related Work
	3 System Model
	4 Cost Minimized Scheduling
	4.1 Problem Formulation
	4.2 Offline Task Scheduling
	4.3 Online Task Scheduling

	5 Time Minimized Scheduing
	5.1 Problem Formulation
	5.2 Offline Task Scheduling
	5.3 Online Task Scheduling

	6 Evaluation
	6.1 Algorithms in Comparison
	6.2 Simulation Results

	7 Conclusion
	References

	Cognitive System to Achieve Human-Level Accuracy in Automated Assignment of Helpdesk Email Tickets
	1 Introduction
	2 Related Work
	3 System Overview
	4 Assignment Engine Components
	4.1 Preparation of Training Data
	4.2 Classification Models
	4.3 Rule Engine
	4.4 Email Ticket Dispatcher

	5 Experimental Results
	5.1 Accuracy and Training Time
	5.2 Human Accuracy vs. Assignment Engine Accuracy
	5.3 Observations

	6 Conclusion and Future Work
	References

	Crowdsourcing Energy as a Service
	1 Introduction
	2 System Model and Problem Formulation
	3 Temporal Crowdsourced Energy Service Composition Approach
	3.1 Crowdsourced Energy Service Selection
	3.2 Temporal Composition Algorithm

	4 Experiment Results
	5 Conclusion
	References

	Social-Sensor Composition for Scene Analysis
	1 Introduction
	2 Motivation Scenario
	3 Model for Social-Sensor Cloud Service
	3.1 Model for an Atomic Social-Sensor Cloud Service
	3.2 Functional Model of an Atomic Social-Sensor Cloud Service

	4 Social-Sensor Cloud Service Composability
	4.1 Model for Social-Sensor Cloud Service Relevance
	4.2 Model for Social-Sensor Cloud Service Composability

	5 Social-Sensor Cloud Service Composition Approach
	5.1 Social-Sensor Cloud Service Selection
	5.2 Social-Sensor Cloud Service Composability Assessment
	5.3 Social-Sensor Cloud Service Composition

	6 Experiment and Evaluation
	6.1 Evaluation

	7 Conclusion
	References

	QITA: Quality Inference Based Task Assignment in Mobile Crowdsensing
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Quality Inference
	5 Quality Bounded Minimum Cost Task Assignment
	5.1 QTA: An Approximation Algorithm for QTAR
	5.2 Algorithm Analysis

	6 Experiments
	6.1 Quality Inference Simulation Experiments
	6.2 Task Assignment Experiments

	7 Conclusion
	References

	Recommendation
	Expert Recommendation via Tensor Factorization with Regularizing Hierarchical Topical Relationships
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Relationship Tree Modelling
	3.2 Proposed Model

	4 Experiments and Evaluation
	4.1 Dataset and Experiment Settings
	4.2 Results Analysis and Evaluation

	5 Conclusion
	References

	Software Service Recommendation Base on Collaborative Filtering Neural Network Model
	1 Introduction
	2 Framework Overview
	3 Recommendation Model
	3.1 Input Layer
	3.2 Embedding Layer
	3.3 Interaction Layer
	3.4 Output Layer
	3.5 Model Training

	4 Experiment
	4.1 Dataset Description
	4.2 Evaluation and Metrics
	4.3 Comparing Methods
	4.4 Experimental Results

	5 Related Work
	6 Conclusion and Future Work
	References

	A Weighted Meta-graph Based Approach for Mobile Application Recommendation on Heterogeneous Information Networks
	1 Introduction
	2 Weighted Meta-graph Based Mobile App Recommendation
	2.1 Basic Concepts
	2.2 Meta-graph Based Similarity
	2.3 Meta-graph Based Latent Features
	2.4 WMGRec Model

	3 Empirical Study
	3.1 Dataset Description
	3.2 Evaluation Metrics
	3.3 Performance Comparison
	3.4 Study on Parameter Impacts

	4 Related Work
	5 Conclusion
	References

	Temporal-Sparsity Aware Service Recommendation Method via Hybrid Collaborative Filtering Techniques
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Temporal-Sparsity Aware Service Recommendation Method
	3.1 Time Slot Aggregation
	3.2 Similarity Calculation and Similarity Prediction
	3.3 Rating Prediction

	4 Experiment
	4.1 Experimental Setup
	4.2 Experimental Result

	5 Related Work
	6 Conclusion
	Acknowledgment
	References

	QoS-Aware Web Service Recommendation with Reinforced Collaborative Filtering
	1 Introduction
	2 Related Work
	3 Reinforced Collaborative Filtering for QoS Prediction
	3.1 Problem Formulation
	3.2 The Framework of Our Approach
	3.3 User-Based Reinforced Collaborative Filtering
	3.4 Service-Based Reinforced Collaborative Filtering

	4 Experiments
	4.1 Experimental Setup and Dataset
	4.2 Competing Methods
	4.3 Experimental Results on Accuracy of QoS Prediction
	4.4 Impact of Parameter Tuning

	5 Conclusion
	References

	Unit of Work Supporting Generative Scientific Workflow Recommendation
	1 Introduction
	2 Related Work
	3 UoW-Driven Workflow Recommendation Framework
	3.1 UoW Network Construction
	3.2 Search Query Analysis
	3.3 Basic UoW Extraction and Recommendation

	4 UoW Recommendation As-You-Go
	5 Experiments and Analysis
	5.1 Experimental Setup
	5.2 Evaluation Metrics
	5.3 Experimental Results and Analysis

	6 Conclusions
	References

	Mobile Crowdsourced Sensors Selection for Journey Services
	1 Introduction
	2 Related Work
	3 System Model
	4 Mobile Crowdsourced Sensors Selection Algorithm
	4.1 Spatio-Temporal Crowdsourced Sensors Clustering Algorithm
	4.2 The Homogeneity Score

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Discussion of Evaluation Results

	6 Conclusion
	References

	RLRecommender: A Representation-Learning-Based Recommendation Method for Business Process Modeling
	1 Introduction
	2 The Representation-Learning-Based Method
	2.1 Preprocessing
	2.2 Training a Representation Learning Model
	2.3 Recommending

	3 Experimental Evaluation
	3.1 Datasets and Experiment Settings
	3.2 Evaluation Based on Large Complex Real-Life Dataset
	3.3 Evaluation Based on Small Real-Life Dataset

	4 Conclusion and Future Work
	References

	Service Analytics
	Domain Knowledge Driven Key Term Extraction for IT Services
	1 Introduction
	2 Motivating Example
	2.1 Knowledge Graph Creation
	2.2 Example on Term Extraction

	3 Domain Knowledge Driven Term Extraction
	3.1 Select Candidate Generic Key Terms
	3.2 Filter by Document Relevance
	3.3 Filter Based on Domain Glossaries
	3.4 Filter Based on Domain Knowledge Annotations

	4 Evaluation
	4.1 Data
	4.2 Evaluation Metrics
	4.3 Results and Discussions

	5 Related Work
	6 Conclusion and Future Work
	References

	An Adaptive Semi-local Algorithm for Node Ranking in Large Complex Networks
	1 Introduction
	2 Basic Concepts
	3 The Adaptive Semi-local Algorithm
	4 Experiments
	4.1 Experimental Settings
	4.2 Results on Synthetic Networks
	4.3 Results on Real-World Networks

	5 Conclusion
	References

	User Location Prediction in Mobile Crowdsourcing Services
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Location Prediction Based on the Mining of Movement Rules
	4.1 Generate Regions
	4.2 Mining Workers' Movement Patterns
	4.3 Generate Movement Rules
	4.4 Predict Workers' Regions

	5 Experiment
	5.1 Experimental Design
	5.2 Experimental Result
	5.3 Experimental Evaluation

	6 Conclusion
	References

	Leveraging Regression Algorithms for Process Performance Predictions
	1 Introduction
	2 Motivating Example
	3 Identifying Process Context, Goals and Process State
	4 Empirical Evaluation
	5 Conclusion
	References

	Using Machine Learning to Provide Differentiated Services in SDN-like Publish/Subscribe Systems for IoT
	1 Introduction
	2 Preliminaries
	3 SDN-like Pub/Sub System Architecture
	4 Queuing Delay Prediction Using XGBoost
	5 Two-Layer Queue Management Mechanism Based on User Requirements
	6 Performance Evaluation
	7 Conclusion
	References

	Quality of Service
	Constraint-Based Model-Driven Testing of Web Services for Behavior Conformance
	1 Introduction
	2 Approach Overview
	3 Constraints and Their Formal Description
	3.1 Types of Behavior Constraints
	3.2 Formal Description of Constraints

	4 Constraint-Based Model-Driven Testing of Web Services
	4.1 Constraint-Based Behavior Model Generation
	4.2 Test Sequence Generation
	4.3 Test Case Generation
	4.4 Test Execution

	5 Evaluation
	5.1 Research Questions
	5.2 Subject Programs
	5.3 Result and Analysis

	6 Related Work
	6.1 Extensions to WSDL
	6.2 Model-Driven Testing of Web Services

	7 Conclusion
	References

	QoS Optimization of Service Clouds Serving Pleasingly Parallel Jobs
	1 Introduction
	2 Differentiated DOP Policy
	3 Analytical Model Formulation
	3.1 Multi-station Model for Queuei
	3.2 Calculating the Performance Metrics for a Service Cloud

	4 The Proposed Performance Metric
	5 Experimental Evaluation
	5.1 Simulation Methodology and Parameter Settings
	5.2 Effect of Resource Allocation on Performance
	5.3 Effect of DOP on Performance

	6 Related Work
	7 Conclusions and Future Work
	References

	Estimating the Performance of Cloud-Based Systems Using Benchmarking and Simulation in a Complementary Manner
	1 Introduction
	2 Related Work
	3 Our Framework for a Complementary Approach
	3.1 Step 1: Identifying Estimation Ontology
	3.2 Step 2: Capturing Benchmark Ontology and Defining Mapping Rules
	3.3 Step 3: Capturing Simulation Ontology and Defining Mapping Rules
	3.4 Step 4: Constructing Simulations and Measuring Reliability
	3.5 Step 5: Deriving Cloud System Architecture and Experimenting on Cloud
	3.6 A Prototype Tool for Capturing Ontologies, Defining Mapping Rules, and Running Simulations

	4 Experiment
	4.1 Benchmark Data
	4.2 Simulation Experiments

	5 Observations and Discussion
	6 Conclusion
	References

	Two-Phase Web Service QoS Prediction with Restricted Boltzmann Machine
	Abstract
	1 Introduction
	2 Related Work
	3 The Whole Framework
	4 The Proposed Prediction Approach
	4.1 The First-Phase Prediction
	4.2 The Second-Phase Prediction

	5 Experiment and Evaluation
	5.1 Evaluation Metric and Parameter Setting
	5.2 Performance Comparison
	5.3 Sensitivity Analysis of Parameters

	6 Conclusions
	Acknowledgments
	References

	Service Engineering
	Constructing and Evaluating an Evolving Web-API Network for Service Discovery
	1 Introduction
	2 Background and Related Work
	3 Analysis and Results
	3.1 Data Acquisition and Processing
	3.2 Affiliation Network of Web-APIs and Mashups
	3.3 Web-API Nodes Degree Distribution
	3.4 Measuring Preferential Attachment

	4 Constructing an Evolving Web-API Network
	4.1 Limitation of the Projection-Based Approach
	4.2 Network Model and Construction Strategy
	4.3 Topological Properties of the Web-API Network
	4.4 Applying Web-API Network in Service Discovery

	5 Conclusion and Future Work
	References

	Stigmergic Service Composition and Adaptation in Mobile Environments
	1 Introduction
	2 Problem Description
	3 QoS Optimisation Mechanism
	4 Adaptation Procedure
	5 Implementation and Evaluation
	5.1 Performance Metrics
	5.2 Evaluated Algorithms
	5.3 Test Case Generation
	5.4 Environment Setup

	6 Results
	6.1 Size of Dominated Space
	6.2 Utility
	6.3 Overhead

	7 Related Work
	8 Conclusion and Future Work
	References

	State of the Practice in Service Identification for SOA Migration in Industry
	1 Introduction
	2 Related Work
	3 Study Design
	4 Analysis of the Results of the Online Survey
	5 Interview Sessions
	5.1 Migration Strategies
	5.2 Directions of SI
	5.3 Threats to Validity

	6 Discussions
	7 Conclusion and Recommendations
	References

	A Truthful Mechanism for Optimally Purchasing IaaS Instances and Scheduling Parallel Jobs in Service Clouds
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Fundamental Notations
	3.2 Problem Formulation

	4 A Randomized Auction Mechanism
	5 Performance Evaluation
	5.1 Simulation Setup
	5.2 EXP1: Influence of Different Runtime Distributions
	5.3 EXP2: Performance of Varying the Number of Users

	6 Conclusions
	References

	Convenience-Based Periodic Composition of IoT Services
	1 Introduction
	2 System Model
	2.1 IoT Service Model
	2.2 Composite IoT Service Model
	2.3 Significance and Proximity Model for Composite IoT Services
	2.4 Periodic Composite IoT Service Model
	2.5 Convenience Model

	3 Discovering Periodic Composite IoT Service Approach
	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

	CrowdMashup: Recommending Crowdsourcing Teams for Mashup Development
	1 Introduction
	2 The CrowdMashup Approach
	2.1 Analysis of the Developer Community (ADC)
	2.2 Mashup Query Specification
	2.3 Crowdsourcing Team Generation (CTG)

	3 Implementation and Performance
	3.1 CrowdMashup Prototype
	3.2 Experiments

	4 Related Work
	5 Conclusion
	References

	A Variation Aware Composition Model for Dynamic Web Service Environments
	1 Introduction
	2 Background and Problem Formulation
	3 Modeling Architecture
	3.1 Modeling of Functional Characteristics
	3.2 The Dependency Network for Service Composition
	3.3 Dependency Network Construction

	4 Dynamic Service Composition
	5 Solution Generation
	6 A Heuristic Algorithm
	7 Experimental Results
	7.1 Dataset Description

	8 Conclusion and Future Directions
	References

	A Model-Driven Framework for Automated Generation and Verification of Cloud Solutions from Requirements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Model-Driven Design Tooling

	3 COOL Solution Design Framework: An Overview
	4 Cloud Solutions: A Model-Centric Design
	4.1 Cloud Offering Models
	4.2 Model Management

	5 Model-Driven Framework: From Requirements to Solution
	5.1 Casting Solution Design as a Constraint Satisfaction Problem
	5.2 Model-Driven UI
	5.3 Requirements Analysis
	5.4 Solution Generation Through Model Transformation
	5.5 Solution Analysis and Validation
	5.6 Post Processing and Output Generation

	6 Conclusion and Future Work
	Acknowledgement
	References

	Service Applications
	Healthcare Application Migration in Compliant Hybrid Clouds
	Abstract
	1 Introduction
	2 Background on HIPAA and HL7
	2.1 Transfer and Storage of PHI
	2.2 Standardization and Portability

	3 Related Work
	4 System Architecture
	4.1 Overall System Architecture
	4.2 PaaS Platform Interface Components

	5 Experimental Results
	6 Conclusion
	References

	DAliM: Machine Learning Based Intelligent Lucky Money Determination for Large-Scale E-Commerce Businesses
	Abstract
	1 Introduction
	2 Background
	2.1 Lucky Money in E-Commerce Businesses
	2.2 Business Requirements and Objectives for Lucky Money

	3 Related Work
	3.1 Share Market Price Prediction Using ANN
	3.2 Financial Time Series Forecasting
	3.3 Crude Oil Price Prediction with ANN-Q

	4 Our Proposed Method
	4.1 Overview of DAliM
	4.2 Training Data and Prediction Data
	4.3 Feature Engineering
	4.4 Training Model Selection and Parameter Tuning
	4.5 Data Prediction
	4.6 Lucky Money Determination

	5 Experimental Evaluation
	5.1 Experimental Environment
	5.2 Experimental Procedure
	5.3 Experimental Results
	5.4 Discussion

	6 Conclusions and Future Work
	Acknowledgement
	References

	Service-Oriented Approach for Analytics in Industry 4.0
	Abstract
	1 Introduction
	2 Running Example
	3 Global Architecture and Requirements
	4 Gateway
	5 Implementation
	6 Discussion and Related Work
	7 Conclusion
	References

	eTOUR: A Two-Layer Framework for Tour Recommendation with Super-POIs
	1 Introduction
	2 Related Work
	3 A Two-Layer Framework for Tour Recommendation
	4 An Embedded GRASP-VNS Algorithm
	5 Solution of Inner Model
	5.1 DFS-Based Tree Search with Pruning
	5.2 Modified Chinese Postman Solution

	6 Experiments and Results
	7 Conclusion
	References

	Service Management
	Hierarchical Recursive Resource Sharing for Containerized Applications
	1 Introduction
	2 Hierarchical Recursive Resource Sharing
	2.1 Dynamic Resource Allocation
	2.2 Recursive Weight Inheritance

	3 Implementation
	4 Experiments
	4.1 Experimental Setup
	4.2 Results
	4.3 Overall Performance
	4.4 Results for 4 Containers
	4.5 Results for 6 Containers
	4.6 Results for 8 Containers

	5 Related Work
	5.1 Resource Sharing for Maximization of Utilization
	5.2 Resource Shaping for Minimization of Contention
	5.3 Workflow Scheduling

	6 Conclusion
	References

	A Fuzzy-Based Auto-scaler for Web Applications in Cloud Computing Environments
	1 Introduction
	2 Background
	3 Related Work
	4 Fuzzy Auto-scaler
	4.1 Input Selection
	4.2 Dynamic Upper Threshold
	4.3 Dynamic Cluster Size
	4.4 The Proposed Auto-scaling Algorithm

	5 System Prototype
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Experimental Results
	6.3 Dynamic Scaling-Out Evaluation
	6.4 Adaptive Upper-Threshold Evaluation

	7 Conclusions and Future Work
	References

	Runtime Monitoring in Continuous Deployment by Differencing Execution Behavior Model
	1 Introduction
	2 Motivating Example: A Bug in Nutch
	3 Proposed Approach
	3.1 Template Mining
	3.2 Mining Execution Behavior Model Using Multimodal Approach
	3.3 Analyzing Differences Between Execution Behavior Models

	4 Evaluation: Open Source and Proprietary Applications
	4.1 Experimental Results for Nutch
	4.2 Experimental Results for the Industrial Application

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion and Future Work
	References

	Leveraging Computational Reuse for Cost- and QoS-Efficient Task Scheduling in Clouds
	1 Introduction
	2 Background for Merge-Aware Admission Control
	3 Task Similarity Detection
	3.1 Categories of Mergeable Tasks
	3.2 Detecting Similar Tasks

	4 Identifying Merging Appropriateness
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Impact of Task Aggregation

	6 Related Works
	7 Conclusion and Future Works
	References

	QKnober: A Knob-Based Fairness-Efficiency Scheduler for Cloud Computing with QoS Guarantees
	1 Introduction
	2 Desirable Allocation Properties
	3 Background and Motivation
	4 Allocation Model and Scheduling Policy
	4.1 Multi-resource Allocation Model
	4.2 QKnober

	5 Implementation of QKnober
	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Testbed Experimental Results

	7 Related Work
	8 Conclusion
	References

	Energy-Efficient and Quality of Experience-Aware Resource Provisioning for Massively Multiplayer Online Games in the Cloud
	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 System Overview
	3.2 Load Prediction
	3.3 Delay Model
	3.4 VM Capacity Model
	3.5 Power Model
	3.6 Optimization Model

	4 Genetic Algorithm Design and Analysis
	4.1 Chromosome Encoding
	4.2 Crossover
	4.3 Mutation
	4.4 Fitness Function
	4.5 Selection Strategy
	4.6 The Description of the Proposed Genetic Algorithm

	5 Performance Evaluation
	5.1 Experimental Environment
	5.2 Prediction Model Validation
	5.3 Evaluating Effectiveness
	5.4 Evaluating Scalability

	6 Conclusion
	References

	A Cost-Effective Deadline-Constrained Scheduling Strategy for a Hyperparameter Optimization Workflow for Machine Learning Algorithms
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 The Scheduling Strategy for the Hyperparameter Optimization Workflow
	4.1 Complexity Analysis

	5 Experiments
	5.1 Compared Strategies
	5.2 Experiment Results

	6 Conclusions
	References

	Transparently Capturing Execution Path of Service/Job Request Processing
	Abstract
	1 Introduction
	2 Overview of Request Execution Path
	2.1 Analysis of Execution Scenarios
	2.2 Event Category
	2.3 Causal Relationship Identification

	3 System Design
	4 Experiment and Evaluation
	5 Conclusion
	References

	Author Index

