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Abstract. Binarized Neural Networks (BNN) have recently been pro-
posed as an energy-efficient alternative to more traditional learning net-
works. Here we study the problem of formally verifying BNNs by reducing
it to a corresponding hardware verification problem. The main step in
this reduction is based on factoring computations among neurons within
a hidden layer of the BNN in order to make the BNN verification problem
more scalable in practice. The main contributions of this paper include
results on the NP-hardness and hardness of PTAS approximability of
this essential optimization and factoring step, and we design polynomial-
time search heuristics for generating approximate factoring solutions.
With these techniques we are able to scale the verification problem to
moderately-sized BNNs for embedded devices with thousands of neurons
and inputs.

1 Introduction

Neural networks are used for perception and scene understanding [12,16,20]
and also for control and decision making [4,9,14,23] in autonomous systems.
Implementations of artificial neural networks, however, are very power-intensive
due to complex floating point arithmetics. Binarized Neural Networks (BNNs),
which are based on bit-level arithmetic, have therefore recently been proposed
[6,11] as an attractive alternative to more traditional neural networks for
resource-constrained embedded applications (e.g. based on FPGAs [1]). BNNs
also demonstrate satisfactory performance on a number of standard benchmark
datasets in image recognition including MNIST, CIFAR-10 and SVHN [6].

Here we study the verification problem for BNNs. Given a trained BNN and a
specification of its intended input-output behavior we develop verification proce-
dures for establishing that the given BNN indeed meets its intended specification
for all possible inputs. For solving the verification problem of BNNs, we build
on well-known methods from the hardware verification domain (Sect. 4). How-
ever, even with efficient neuron-to-circuit encoding we were not able to verify
BNNs with thousands of inputs and hidden nodes as encountered in some of our
embedded systems case studies.
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Table 1. An example of computing the output
of a BNN neuron, using bipolar domain (up) and
using 0/1 boolean variables (down).
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Fig. 1. Computation inside a neu-
ron of a BNN, under bipolar
domain ±1.

It turns out that one critical ingredient for efficient BNN verification is to
factor computations among neurons in the same layer, which is possible due to
the binary weights of inter-neuron connections in BNNs. Notice, however, that
these factorings techniques are not directly applicable to floating-point based
neural networks [5,7,10,15,19]. The key theorem regarding the hardness of find-
ing optimal factoring as well as the hardness of inapproximability (Sect. 4.2)
leads to the design of polynomial time search heuristics for generating factor-
ings. These factorings substantially increase the scalability of formal verification
via SAT solving (Sect. 5) to moderately-sized BNNs for embedded applications
with thousands of neurons and inputs.

2 Related Work

There has been a flurry of recent results on formal verification of neural net-
works (e.g. [5,7,10,15,19]). These approaches usually target the formal verifi-
cation of floating-point arithmetic neural networks (FPA-NNs). Huang et al.
propose an (incomplete) search-based technique based on satisfiability modulo
theories (SMT) solvers [8]. For FPA-NNs with ReLU activation functions, Katz
et al. propose a modification of the Simplex algorithm which prefers fixing of
binary variables [10]. This verification approach has been demonstrated on the
verification of a collision avoidance system for UAVs. In our own previous work
on neural network verification we establish maximum resilience bounds for FPA-
NNs based on reductions to mixed-integer linear programming (MILP) problems
[5]. The feasibility of this approach has been demonstrated, for example, by ver-
ifying a motion predictor in a highway overtaking scenario. The work of Ehlers
[7] is based on sound abstractions, and approximates non-linear behavior in
the activation functions. Scalability is the overarching challenge for these for-
mal approaches to the verification of FPA-NNs. Case studies and experiments
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reported in the literature are usually restricted to the verification of FPA-NNs
with a couple of hundred neurons.

Around the time (Oct 9th, 2017) we first release of our work regarding formal
verification of BNNs, Narodytska et al have also worked on the same problem
[17]. Their work focuses on efficient encoding within a single neuron, while we
focus on computational savings among neurons within the same layer. One can
view our result and their results being complementary.

3 Preliminaries

Let B be the set of bipolar binaries ±1, where +1 is interpreted as “true” and
−1 as “false”. A Binarized Neural Network (BNN) [6,11] consists of a sequence
of layers labeled from l = 0, 1, . . . , L, where 0 is the index of the input layer, L is
the output layer, and all other layers are so-called hidden layers. Superscripts (l)

are used to index layer l-specific variables. Elements of both inputs and outputs
vectors of a BNN are of bipolar domain B.

Layers l are comprised of nodes n
(l)
i (so-called neurons), for i = 0, 1, . . . , d(l),

where d(l) is the dimension of the layer l. By convention, n
(l)
0 is a bias node and

has constant bipolar output +1. Nodes n
(l−1)
j of layer l − 1 can be connected

with nodes n
(l)
i in layer l by a directed edge of weight w

(l)
ji ∈ B. A layer is fully

connected if every node (apart from the bias node) in the layer is connected to all
neurons in the previous layer. Let w(l)

i denote the array of all weights associated
with neuron n

(l)
i . Notice that we consider all weights in a network to have fixed

bipolar values.
Given an input to the network, computations are applied successively from

neurons in layer 1 to L for generating outputs. Figure 1 illustrates the computa-
tions of a neuron in bipolar domain. Overall, the activation function is applied
to the intermediately computed weighted sum. It outputs +1 if the weighted
sum is greater or equal to 0; otherwise, output −1. For the output layer, the
activation function is omitted. For l = 1, . . . , L let x

(l)
i denote the output value

of node n
(l)
i and x(l) ∈ B

|d(l)|+1 denotes the array of all outputs from layer l,
including the constant bias node; x(0) refers to the input layer.

For a given BNN and a relation φrisk specifying the undesired property
between the bipolar input and output domains of the given BNN, the BNN
safety verification problem asks if there exists an input a to the BNN such that
the risk property φrisk(a, b) holds, where b is the output of the BNN for input a.

It turns out that safety verification of BNN is no simpler than safety ver-
ification of floating point neural networks with ReLU activation function [10].
Nevertheless, compared to floating point neural networks, the simplicity of bina-
rized weights allows an efficient translation into SAT problems, as can be seen
in later sections.

Theorem 1. The problem of BNN safety verification is NP-complete.
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Proof. Given a BNN and a relation φrisk specifying the undesired property
between the bipolar input and output domains of the given BNN, the BNN
safety verification problem asks if there exists an input a to the BNN such that
the risk property φrisk(a, b) holds, where b is the output of the BNN for input a.

(NP) Given an input, compute the output and check if φrisk(a, b) holds can
easily be done in time linear to the size of BNN and size of the property formula.

(NP-hardness) The NP-hardness proof is via a reduction from 3SAT to BNN
safety verification. Consider variables x1, . . . , xm, clauses c1, . . . , cd where for
each clause cj , it has three literals lj1 , lj2 , lj3 . We build a single layer BNN with
inputs to be x0 = +1 (constant for bias), x1, . . . , xm, xm+1 (from CNF variables),
connected to d neurons.

For neuron n1
j , its weights and connection to previous layers is decided by

clause cj .

– If lj1 is a positive literal xi, then in BNN create a link from xi to neuron n1
j

with weight −1. If lj1 is a negative literal xi, then in BNN create a link from
xi to neuron n1

j with weight +1. Proceed analogously for lj2 and lj3 .
– Add an edge from xm+1 to n1

j with weight −1.
– Add an edge with weight -1 from x0 to n1

j as bias term.

For example, consider the CNF having variables x1, . . . , x6, then the trans-
lation of the clause (x3 ∨ ¬x5 ∨ x6) will create in BNN the weighted sum com-
putation (−x3 + x5 − x6) − x7 − 1.

Assume that x7 is constant +1, then if there exists any assignment to make
the clause (x3 ∨¬x5 ∨x6) true, then by interpreting the true assignment in CNF
to be +1 in the BNN input and false assignment in CNF to be −1 in the BNN
input, the weighted sum is at most −1, i.e., the output of the neuron is −1. Only
when x3 = false, x5 = true and x6 = false (i.e., the assignment makes the clause
false), then the weighed sum is +1, thereby setting output of the neuron to be
+1.

Following the above exemplary observation, it is easy to derive that 3SAT
formula is satisfiable iff in the generated BNN, there exists an input such that
the risk property φrisk := (xm+1 = +1 → (

∧n
i=1 x

(1)
i = −1)) holds. It is done by

interpreting the 3SAT variable assignment xi := true in CNF to be assignment
+1 for input xi in the BNN, while interpreting xi := false in 3SAT to be −1 for
input xi in the BNN. ��

4 Verification of BNNs via Hardware Verification

The BNN verification problem is encoded by means of a combinational miter [3],
which is a hardware circuit with only one Boolean output and the output should
always be 0. The main step of this encoding is to replace the bipolar domain
operation in the definition of BNNs with corresponding operations in the 0/1
Boolean domain.
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We recall the encoding of the update function of an individual neuron of
a BNN in bipolar domain (Eq. 1) by means of operations in the 0/1 Boolean
domain [6,11]: (1) perform a bitwise XNOR (⊕) operation, (2) count the number
of 1s, and (3) check if the sum is greater than or equal to the half of the number of
inputs being connected. Table 1 illustrates the concept by providing the detailed
computation for a neuron connected to five predecessor nodes. Therefore, the
update function of a BNN neuron (in the fully connected layer) in the Boolean
domain is as follows.

x
(l)
i = geq⌈ |d(l−1)|+1

2

⌉(count1(w(l)
i ⊕x(l−1))), (1)

where count1 simply counts the number of 1s in an array of Boolean variables,
and geq⌈ |d(l−1)|+1

2

⌉(x) is 1 if x ≥ ⌈ |d(l−1)|+1
2

⌉
, and 0 otherwise. Notice that the

value
⌈ |d(l−1)|+1

2

⌉
is constant for a given BNN. Here we omit details, but spec-

ifications in the bipolar domain can also be easily re-encoded in the Boolean
domain.

4.1 From BNN to Hardware Verification

We are now ready for stating the basic decision procedure for solving BNN ver-
ification problems. This procedure first constructs a combinational miter for a
BNN verification problem, followed by an encoding of the combinational miter
into a corresponding propositional SAT problem. Here we rely on standard trans-
formation techniques as implemented in logic synthesis tools such as ABC [3] or
Yosys [24] for constructing SAT problems from miters. The decision procedure
takes as input a BNN network description, an input-output specification φrisk

and can be summarized by the following workflow:

1. Transform all neurons of the given BNN into neuron-modules. All neuron-
modules have identical structure, but only differ based on the associated
weights and biases of the corresponding neurons.

2. Create a BNN-module by wiring the neuron-modules realizing the topological
structure of the given BNN.

3. Create a property-module for the property φrisk. Connect the inputs of this
module with all the inputs and all the outputs of the BNN-module. The
output of this module is true if the property is satisfied and false otherwise.

4. The combination of the BNN-module and the property-module is the miter.
5. Transform the miter into a propositional SAT formula.
6. Solve the SAT formula. If it is unsatisfiable then the BNN is safe w.r.t. φrisk;

if it is satisfiable then the BNN exhibits the risky behavior being specified in
φrisk.

4.2 Counting Optimization

The goal of the counting optimization is to speed up SAT-solving times by
reusing redundant counting units in the circuit and, thus, reducing redundancies



284 C.-H. Cheng et al.

1
1

1

1

1

1

1

0
0

0

0
0
0
0

0

0
0

n
(l)
1

XNOR ⊕

count1 geq3

n
(l)
2

count1 geq3

n
(l)
3

count1 geq3

0

XNOR ⊕

XNOR ⊕

n
(l−1)
0

n
(l−1)
1

n
(l−1)
2

n
(l−1)
3

n
(l−1)
4

n
(l−1)
5

Fig. 2. One possible factoring
to avoid redundant counting.

V1 V2

1

2

3

5

6

7

8

(b)

n
(l)
1

n
(l)
2

n
(l)
3

n
(l)
δ

n
(l−1)
5

n
(l−1)
6

n
(l−1)
7

n
(l−1)
8

n
(l)
δ

XNOR ⊕

count1 geq

1

1

n
(l)
1

XNOR ⊕

count1 geq1
1

n
(l)
2

XNOR ⊕

count1 geq

1

n
(l)
3

XNOR ⊕

count1 geq

1

1

1

1

1

1

(c)(a)
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toring (c).

in the SAT formula. This method involves the identification and factoring of
redundant counting units, illustrated in Fig. 2, which highlights one possible
factoring. The main idea is to exploit similarities among the weight vectors
of neurons in the same layer, because the counting over a portion of the weight
vector has the same result for all neurons that share it. The circuit size is reduced
by using the factored counting unit in multiple neuron-modules. We define a
factoring as follows:

Definition 1 (factoring and saving). Consider the l-th layer of a BNN where
l > 0. A factoring f = (I, J) is a pair of two sets, where I ⊆ {1, . . . , d(l)},
J ⊆ {1, . . . , d(l−1)}, such that |I| > 1, and for all i1, i2 ∈ I, for all j ∈ J ,
we have w

(l)
ji1

= w
(l)
ji2

. Given a factoring f = (I, J), define its saving sav(f) be
(|I| − 1) · |J |.
Definition 2 (non-overlapping factorings). Two factorings f1 = (I1, J1) and
f2 = (I2, J2) are non-overlapping when the following condition folds: if (i1, j1) ∈
f1 and (i2, j2) ∈ f2, then either i1 
= i2 or j1 
= j2. In other words, weights
associated with f1 and f2 do not overlap.

Definition 3 (k-factoring optimization problem). The k-factoring optimization
problem searches for a set F of size k factorings {f1, . . . , fk}, such that any two
factorings are non-overlapping, and the total saving sav(f1) + · · · + sav(fk) is
maximum.

For the example in Fig. 2, there are two non-overlapping factorings f1 =
({1, 2}, {0, 2}) and f2 = ({2, 3}, {1, 3, 4, 5}). {f1, f2} is also an optimal solution
for the 2-factoring optimization problem, with the total saving being (2 − 1) ·
2+ (2− 1) · 4 = 6. Even finding one factoring f1 which has the overall maximum
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saving sav(f1), is computationally hard. This NP-hardness result is established
by a reduction from the NP-complete problem of finding maximum edge biclique
in bipartite graphs [18].

Theorem 2 (Hardness of factoring optimization). The k-factoring optimization
problem, even when k = 1, is NP-hard.

Proof. The proof proceeds by a polynomial reduction from the problem of finding
maximum edge biclique in bipartite graphs(MEB) [18]1. Given a bipartite graph
G, this reduction is defined as follows.

1. For v1α, the α-th element of V1, create a neuron n
(l)
α .

2. Create an additional neuron n
(l)
δ

3. For v2β , the β-th element of V2, create a neuron n
(l−1)
β .

– Create weight w
(l)
βδ = 1.

– If (v1α, v2β) ∈ E, then create w
(l)
βα = 1.

This construction can clearly be performed in polynomial time. Figure 3 illus-
trates the construction process. It is not difficult to observe that G has a maxi-
mum edge size κ biclique {A;B} iff the neural network at layer l has a factoring
(I, J) whose saving equals (|I| − 1) · |J | = κ. The gray area in Fig. 3-a shows the
structure of maximum edge biclique {{2, 3}; {6, 8}}. For Fig. 3-c, the saving is
(|{n(l)

δ , n
(l)
2 , n

(l)
3 }| − 1) · 2 = 4, which is the same as the edge size of the biclique.

��
Furthermore, even having an approximation algorithm for the k-factoring

optimization problem is hard - there is no polynomial time approximation scheme
(PTAS), unless NP-complete problems can be solved in randomized subexponen-
tial time. The proof follows an intuition that building a PTAS for 1-factoring
can be used to build a PTAS for finding maximum complete bipartite subgraph
which also has known inapproximability results [2].

Theorem 3. Let ε > 0 be an arbitrarily small constant. If there is a PTAS
for the k-factoring optimization problem, even when k = 1, then there is a
(probabilistic) algorithm that decides whether a given SAT instance of size n
is satisfiable in time 2nε

.

Proof. We will prove the Theorem by showing that a PTAS for the k-factoring
optimization problem can be used to manufacture a PTAS for MEB. Then the
result follows from the inapproximability of MEB assuming the exponential time
hypothesis [2].

1 Let G = (V1, V2, E) be a bipartite graph with vertex set V1 � V2 and edge set E
connecting vertices in V1 to vertices in V2. A pair of two disjoint subsets A ⊂ V1

and B ⊂ V2 is called a biclique if (a, b) ∈ E for all a ∈ A and b ∈ B. Thus, the
edges {(a, b)} form a complete bipartite subgraph of G. A biclique {A;B} clearly
has |A| · |B| edges.
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Assume that A is a ρ-approximation algorithm [2] for the k-factoring opti-
mization problem. We formulate the following algorithm B:
Input: MEB instance M (a bipartite graph G = (V,E))
Output: a biclique in G

1. perform reduction of proof of Theorem2 to obtain k-factoring instance F :=
reduce(M)

2. factoring (I, J) := A(F )
3. return (I \ {n

(l)
δ }, J)

Remark: step 3 is a small abuse of notation. It should return the original vertices
corresponding to these neurons.

Now we prove that B is a ρ-approximation algorithm for MEB: Note that by
our reduction two corresponding MEB and k-factoring instances M and F have
the same optimal value, i.e., Opt(M) = Opt(F ).

In step 3 the algorithm returns (I \ {n
(l)
δ }, J). This is valid since we can

assume w.l.o.g. that I returned by A contains n
(l)
δ . This neuron is connected to

all neurons from the previous layer by construction, so it can be added to any
factoring. The following relation holds for the number of edges in the biclique
returned by B:

‖I \ {n
(l)
δ }‖ · ‖J‖ = (‖I‖ − 1) · ‖J‖ (2a)

≥ ρ · Opt(F ) (2b)
= ρ · Opt(M) (2c)

The inequality in step (2b) holds by the assumption that A is a ρ-
approximation algorithm for k-factoring and (2c) follows from the construction
of our reduction. Equations (2) and the result of [2] imply Theorem 2. ��
As finding an optimal factoring is computationally hard, we present a polynomial
time heuristic algorithm (Algorithm 1) that finds factoring possibilities among
neurons in layer l. The main function searches for an unused pair of neuron i and
input j (line 3 and 5), considers a certain set of factorings determined by the
subroutine getFactoring (line 6) where weight w

(l)
ji is guaranteed to be used (as

input parameter i, j), picks the factoring with greatest sav() (line 7) and then
adds the factoring greedily and updates the set used (line 8).

The subroutine getFactoring() (lines 10–14) computes a factoring (I, J)
guaranteeing that weight w

(l)
ji is used. It starts by creating a set I, where each

element Ij′ ∈ I is a set containing the indices of neurons whose j′-th weight
matches the j′-th weight in neuron i (the condition (w(l)

j′i′ = w
(l)
j′i) in line 11). In

the example in Fig. 4a, the computation generates Fig. 4b where I3 = {1, 2, 3}
as w

(l)
31 = w

(l)
32 = w

(l)
33 = 0. The intersection performed on line 12 guarantees

that the set Ij′ is always a subset of Ij – as weight wji should be included, Ij

already defines the maximum set of neurons where factoring can happen. E.g.,
I3 changes from {1, 2, 3} to {1, 2} in Fig. 4c.
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Algorithm 1. Finding factoring possibilities for BNN.
Data: BNN network description (cf Sect. 3)
Result: Set F of factorings, where any two factorings of F are non-overlapping.

1 function main():
2 let used := ∅ and F := ∅;

3 foreach neuron n
(l)
i do

4 let fopti := empty factoring;

5 foreach weight w
(l)
ji where (i, j) �∈ used do

6 fij = getFactoring(i, j, used);

7 if sav(fij) > sav(fopt
i ) then fopt

i := fij ;

8 used := used ∪ {(i, j) | (i, j) ∈ fopt
i }; F := F ∪ {fopt

i };

9 return F ;

10 function getFactoring(i, j, used):
11 build I := {I0, ..., Id(l−1)} where Ij′ :=

{i′ ∈ {0, ..., d(l)} ∣
∣ w

(l)

j′i′ = w
(l)

j′i ∧ (i′, j′) �∈ used};

12 foreach Im ∈ I do Im := Im
⋂

Ij ;
13 build J := {J0, . . . , Jj′ , . . . , Jd(l−1)} where Jj′ :=

{j′′ ∈ {0, ..., d(l−1)} ∣
∣ Ij′ ⊆ Ij′′};

14 return (I, J) := (Ij∗ , Jj∗) where Ij∗ ∈ I, Jj∗ ∈ J, and
(|Ij∗ | − 1) · |Jj∗ | = maxj′∈{0,...,d(l−1)} (|I ′

j | − 1) · |J ′
j | ;
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after
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Fig. 4. Executing getFactoring(1, 0, ∅), meaning that we consider a factoring which
includes the top-left corner of (a). The returned factoring is highlighted in thick lines.

The algorithm then builds a set J of all the candidates for J . Each element
Jj′ contains all the inputs j′′ that would benefit from Ij′ being the final result
I. Based on the observation mentioned above, Jj′ can be built through superset
computation between elements of I (line 13, Fig. 4d). After we build I and J,
finally line 14 finds a pair of (Ij∗ , Jj∗) where Ij∗ ∈ I, Jj∗ ∈ J with the maximum
saving (|I∗

j |−1)·|J∗
j |. The maximum saving as produced in Fig. 4 equals (|{1, 2}|−

1) · |{0, 2, 3}| = 3.
There are only polynomial operations in this algorithm such as nested for

loops, superset checking and intersection which makes the heuristic algorithm
polynomial. When one encounters a huge number of neurons and long weight
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vectors, we further partition neurons and weights into smaller regions as input to
Algorithm 1. By doing so, we find factoring possibilities for each weight segment
of a neuron and the algorithm can be executed in parallel.

5 Evaluation and Outlook

We have created a verification tool, which first reads a BNN description based on
the Intel Nervana Neon framework2, generates a combinational miter in Verilog
and calls Yosys [24] and ABC [3] for generating a CNF formula. No further opti-
mization commands (e.g., refactor) are executed inside ABC to create smaller
CNFs. Finally, Cryptominisat5 [21] is used for solving SAT queries. The exper-
iments are conducted in a Ubuntu 16.04 Google Cloud VM equipped with 18
cores and 250 GB RAM, with Cryptominisat5 running with 16 threads. We
use two different datasets, namely the MNIST dataset for digit recognition [13]
and the German traffic sign dataset [22]. We binarize the gray scale data to ±1
before actual training. For the traffic sign dataset, every pixel is quantized to 3
Boolean variables.

Table 2 summarizes the result of verification in terms of SAT solving time,
with a timeout set to 90 min. The properties that we use here are characteristics
of a BNN given by numerical constraints over outputs, such as “simultaneously
classify an image as a priority road sign and as a stop sign with high confi-
dence” (which clearly demonstrates a risk behavior). It turns out that factoring
techniques are essential to enable better scalability, as it halves the verification
times in most cases and enables us to solve some instances where the plain app-
roach ran out of memory or timed out. However, we also observe that solvers
like Cryptominisat5 might get trapped in some very hard-to-prove properties.
Regarding the instance in Table 2 where the result is unknown, we suspect that

Table 2. Verification results for each instance and comparing the execution times
of the plain hardware verification approach and the optimized version using counting
optimizations.
ID # inputs # neurons

hidden

layer

Properties being investigated SAT/UNSAT SAT solving

time (normal)

SAT solving

time

(factored)

MNIST 1 784 3 × 100 out1 ≥ 18 ∧ out2 ≥ 18 (≥ 18%) SAT 2m 16.336 s 0m53.545 s

MNIST 1 784 3 × 100 out1 ≥ 30 ∧ out2 ≥ 30 (≥ 30%) SAT 2m 20.318 s 0m 56.538 s

MNIST 1 784 3 × 100 out1 ≥ 60 ∧ out2 ≥ 60 (≥ 60%) SAT timeout 10m 50.157 s

MNIST 1 784 3 × 100 out1 ≥ 90 ∧ out2 ≥ 90 (≥ 90%) UNSAT 2m 4.746 s 1m 0.419 s

Traffic 2 2352 3 × 500 out1 ≥ 90 ∧ out2 ≥ 90 (≥ 18%) SAT 10m 27.960 s 4m 9.363 s

Traffic 2 2352 3 × 500 out1 ≥ 150 ∧ out2 ≥ 150 (≥ 30%) SAT 10m 46.648 s 4m 51.507 s

Traffic 2 2352 3 × 500 out1 ≥ 200 ∧ out2 ≥ 200 (≥ 40%) SAT 10m 48.422 s 4m 19.296 s

Traffic 2 2352 3 × 500 out1 ≥ 300 ∧ out2 ≥ 300 (≥ 60%) unknown timeout timeout

Traffic 2 2352 3 × 500 out1 ≥ 475 ∧ out2 ≥ 475 (≥ 95%) UNSAT 31m 24.842 s 41m 9.407 s

Traffic 3 2352 3 × 1000 out1 ≥ 120 ∧ out2 ≥ 120 (≥ 12%) SAT out-of-memory 9m 40.77 s

Traffic 3 2352 3 × 1000 out1 ≥ 180 ∧ out2 ≥ 180 (≥ 18%) SAT out-of-memory 9m 43.70 s

Traffic 3 2352 3 × 1000 out1 ≥ 300 ∧ out2 ≥ 300 (≥ 30%) SAT out-of-memory 9m 28.40 s

Traffic 3 2352 3 × 1000 out1 ≥ 400 ∧ out2 ≥ 400 (≥ 40%) SAT out-of-memory 9m 34.95 s

2 https://github.com/NervanaSystems/neon/tree/master/examples/binary.

https://github.com/NervanaSystems/neon/tree/master/examples/binary
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the simultaneous confidence value of 60% for the two classes out1 and out2, is
close to the value where the property flips from satisfiable to unsatisfiable. This
makes SAT solving on such cases extremely difficult for solvers as the instances
are close to the “border” between SAT and UNSAT instances.

In the future, we plan to directly synthesize propositional clauses without the
support of third party tools such as Yosys in order to avoid extraneous trans-
formations and repetitive work in the synthesis workflow. Similar optimizations
of the current verification tool chain should result in substantial performance
improvements.
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