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Abstract. Solidity is the most popular programming language for writ-
ing smart contracts on the Ethereum platform. Given that smart con-
tracts often manage large amounts of valuable digital assets, considerable
interest has arisen in formal verification of Solidity code. Designing verifi-
cation tools requires good understanding of language semantics. Acquir-
ing such an understanding in case of Solidity is difficult as the language
lacks even an informal specification.

In this work, we evaluate the feasibility of formalization of Solidity
and propose a formalization of a small subset of Solidity that contains
its core data model and some unique features, such as function modifiers.
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1 Introduction

Ethereum is a blockchain-based platform that provides a globally-consistent vir-
tual general-purpose computer, called the Ethereum Virtual Machine. The pro-
grams to be executed on the EVM, called smart contracts, are provided in a
stack-based machine language, which has a corresponding assembly language.
But most smart contracts are written in higher-level languages. The most pop-
ular language of those is called Solidity. Given that Ethereum smart contracts
often manage assets worth millions of US dollars, bugs in their design may lead
to enormous harm. Since there is so little margin for error, considerable interest
has arisen in formal verification of Solidity code.

To design accurate verification tools, one needs to know precisely what Solid-
ity is. Superficially, Solidity seems to be a simple language that should be easy
to understand for anyone familiar with mainstream programming languages of
the C family, as it was designed with similarity to JavaScript in mind. However,
after reading the freely available documentation while investigating the possi-
bility of creating such a tool, we realized that we do not really understand the
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language well. In the pursuit of providing high-level features, while maintaining
the abstractions efficiently implementable for the Ethereum Virtual Machine,
the creators of the language ended up with a language that has a very different
type system and data model, and numerous unusual features. To improve our
understanding of Solidity, we needed a precise specification.

Although much work has gone into formalizing and verifying the Ethereum
Virtual Machine bytecode [1,7–9,12], there appears to be a paucity of studies
on Solidity. A previous work on the topic by Bhargavan et al. [5] does not give
explicit semantics. As such, we set out to create a new formalization. Since
even an informal specification of the Solidity language does not exist, we had to
design the semantics by studying the official documentation, doing experiments,
and analysis of Solidity compiler sources. To enable establishing trust in the
specification, we implemented it in an executable form in Coq, in a way such that
it is possible to extract a working interpreter of the language. In the future, this
will enable testing the semantics and comparing it with the real implementation.

Semantics for the complete Solidity language will be rather complex due to
the multitude of features the language provides. In this paper:

– We give an overview of Solidity and highlight some surprising and, in our
opinion, poorly documented features of the language, like modifiers and the
data model (Sect. 2). We consider providing an accurate description of these
language features to be a necessary step towards creating sound and complete
verification tools for Solidity.

– We describe the dynamic semantics of several core Solidity constructs for-
mally. Our semantics is given in an executable form in Coq, however here, it
is described in conventional metanotation (Sect. 3). Our semantics omit many
features we consider inessential to enabling deductive verification of contract
state invariants. For example, we do not model transaction fees. Since provid-
ing insufficient funds for a transaction fee simply causes the whole transaction
to abort without affecting the contract state.

2 Overview of Solidity

Solidity was originally designed as a JavaScript-like, but typed, programming
language for the Ethereum platform. The language is structured into contract
definitions, function and modifier definitions, statements, and expressions. A
Solidity source unit is composed of contract definitions. Figure 1 presents the
abstract syntax of the described fragment of Solidity.

2.1 Contracts and Messages

At source level, contracts appear similar to classes in object-oriented languages.
They can contain declarations of state variables (analogous to class fields), defini-
tions of functions (method), modifiers, constructors, and structs (record type),
they support encapsulation (visibility attributes), and can even inherit from
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Fig. 1. Abstract syntax of our core Solidity.

multiple other contracts. All the defined entities reside in a single namespace.
Functions can be statically overloaded. For resolving the visibility of inherited
identifiers the creators of Solidity opted for the widely used C3 linearization
algorithm [4].

To enable deployment on the Ethereum platform, the contract functions are
compiled into EVM bytecode and a piece of code called function selector is
added, which serves as an entry point into the contract code. The resulting
EVM program is put in a contract account on the Ethereum network, which,
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in addition to storing code, also holds a certain amount of virtual currency.
From that point on, other Ethereum accounts may trigger execution of contract
functions or currency transfers by sending messages to the contract account.
Whenever someone sends a message to the contract account, the contract code
starts executing at the function selector. The selector decodes the message and
jumps into an appropriate contract function (method). Solidity supports custom
handling of messages that do not specify a concrete function to call, by the way
of specifying fallback functions.

Functions return values using return variables. Their names can be either
explicitly specified by the programmer, or it may be unique identifiers generated
during the typechecking phase.

The declarations of local variables, in addition to type names and variable
names can have a storage location. Local variables of simple scalar types, i.e.
machine integers and Ethereum network addresses, do not need, or allow, this
annotation. They always reside on the EVM stack. However, in addition to those
simple types, we can declare pointers to compound types, such as structs and
arrays. Objects of these types can reside in two locations: memory and storage.
These are described in more detail in following subsections.

State Variables. State variables can store storage objects. Storage objects
can be either scalars (machine integers, addresses, booleans), arrays of stor-
age objects (either fixed-size or resizable), structs (records of storage objects) or
mappings. Mappings are a sort of hash tables that are able to map certain hash-
able types to storage objects. However unlike typical hash tables, they do not
store the keys alongside the values and do not implement any collision resolution
mechanism. Instead, a key hashing scheme based on a collision resistant crypto-
graphic hash function is used to derive an address where the value is stored [19]
in the large 256-bit virtual address space of EVM storage. This lack of collision
resolution complicates formal reasoning about operations on mappings, so we
decided to treat this aspect as an implementation detail and abstract it away
in our formalization, i.e. treat mappings as formal mappings, with no hashing
involved.

The state variables reside in persistent storage of a given account, i.e. they
are a part of the global state of the Ethereum network.

Note that the storage, as viewed from Solidity, does not behave like a tradi-
tional automatically managed heap of objects linked by pointers. Instead, storage
objects are treated as values. As a result, assigning directly to a state variable
causes deep copying, as demonstrated in Fig. 2. Notably though, this does not
work for mappings, as they cannot be copied. Still, structs with a field of map-
ping type can be copied, though the problematic field in the destination object
is simply left alone, preserving the old values.

That said, pointers to non-scalar storage objects can be taken and stored in
local variables. An important thing to notice is that storage objects have auto-
matic lifetimes, tied to reachability from a state variable. For example, calling
the function foo of the following contract in Fig. 3 results in an error.
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Fig. 2. Direct storage assignment example.

Fig. 3. An example demonstrating storage data structure lifetime.

Modifiers. A unique feature of Solidity are the function modifiers, a function-
ality somewhat similar to Python decorators. They are often used to add pre-
condition checks to contract functions. The modifiers assigned to a function are
executed before entering the actual function body. The modifier hands over the
control flow to the next modifier or the function body when so-called placeholder
statement is encountered ( ;).

address owner;

modifier my_modifier(address a) {

if (a != owner) { throw; }

_; // enter the function body

}

function foo() my_modifier(msg.sender) returns (uint) {

uint a; a += 1;

return a;

}

The official Solidity documentation does not go into much detail on the semantics
of modifiers. It only gives examples of the very simplest cases. For example,
consider code in Fig. 4.

Multiple things are not obvious about the behavior of the function foo() and
are not described by the documentation:
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Fig. 4. Example of confusing modifier code

– Are function’s local variable values preserved when it is entered multiple times
from modifiers? Our experiments indicate that they are;

– Are modifier’s local variable values preserved when it is entered multiple times
from other modifiers? In this case it seems that they are not;

– When are arguments passed to modifiers evaluated? They are evaluated anew
each time the modifier is entered.

Struct Definitions. A struct definition in Solidity consists of a list of pairs
of type names and field names. The definition can be used to instantiate both
memory and storage objects, and the storage location of the object is propagated
to fields. This means e.g. that pointers to storage objects cannot be stored in
memory structs.

2.2 Type Names

The internal type system of the Solidity compiler is richer than the syntax sug-
gests, as it tracks additional type attributes, like storage location for composite
types. As a result, we have to differentiate type names from the actual types.
The actual type of the declared entity depends on the context of the declaration
and annotations provided by the programmer. This may be directly observed in
error messages produced by the compiler. For example, a local variable declared
as uint[] storage a has type uint[] storage pointer, while a storage vari-
ables declared as uint[] b has type uint[] storage ref.
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2.3 Statements

We consider a limited set of simple control structures, such as if/then/else, while
loops. Additional features such as for and do/while loops are left out, as their
semantics are not particularly unusual.

One novel construct found in Solidity is the placeholder statement ;. It may
appear only in function modifiers, where it denotes the point of entry into the
next modifier or the function body.

The return statements interrupt the control flow and jump out of the func-
tion body. Providing an explicit value to the return statement causes it to have
the side effect of assigning to the return variable. The control flow returns either
to the caller or to a function modifier if one is used. The modifier may then
reenter the function body. In that case all values of local variables, including
return variables, are preserved.

2.4 Expressions

The annotation cname in state variable access and assignment statements of our
abstract language denotes the contract (class) where the referenced variable is
defined. It is not a part of Solidity’s concrete syntax and is inferred by the type
checker.

Function calls in Solidity can be of several types: internal, external, delegate,
and calls to certain builtin functions. Internal function calls are simply jumps
in the code of the current account. External calls cause a message to be sent
over the Ethereum network, executing code on another account. Delegate calls
exist to provide a functionality akin to shared libraries. That is, they allow code
from another account to directly operate on the storage of calling account. The
semantics of external and delegate calls are notorious source of bugs in contracts
[2], notably the DAO [6] and Parity multi-sig contract [16] incidents. Since the
code executed by outgoing external function calls may not be available, or not
written in Solidity, we decided to specify the behavior of such calls only in terms
of axioms that effectively state that arbitrary changes to the network state could
be made. This is not very helpful for verification purposes, however a provision
could be made for preservation of certain global invariants.

The semantics of this keyword in Solidity is quite unusual. In Solidity this is
the address of the current account in the Ethereum network, which the contract
can use to send an Ethereum message to itself. Directly accessing state variables
using this is not possible, and though accessor functions are generated for public
state variables, calling them incurs the cost of a message call. These phenomena
are demonstrated by Fig. 5.

An especially unusual corner case is using this in constructors. The con-
structors execute before this account is actually able to receive and decode
messages in the Ethereum network, which means that dispatching calls on this
in a constructor, as in Fig. 6, causes a runtime error.

The order of evaluation of sub-expression in Solidity is explicitly left unspec-
ified. Since this is tangential to the concepts we want to explore in this paper,
we assume for simplicity a deterministic order.
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Fig. 5. this cannot be used to access state variables directly.

Fig. 6. this incorrectly used in a constructor.

Interestingly, the Solidity language has no constants of machine integer types.
Instead, all numeric constants in the source are treated by the compiler as arbi-
trary precision rational numbers. At the typechecking stage, the constants are
folded, and the results are converted to machine integers of type appropriate to
the source context. However, since this step can be done entirely statically, we
do not model this in our semantics.

2.5 Memory Objects in Solidity

As mentioned before, Solidity programs have access to auxiliary volatile memory.
The view of memory as provided by Solidity is that of a mapping of pointers
to memory objects. Memory objects can be either arrays or structs, which can
contain scalars or pointers to other memory objects.

Note that there are no mappings in memory. Also, unlike in the case of
storage, memory objects cannot be contained in other memory objects as values.
Importantly, this means that a single struct declaration in Solidity can have two
very different concrete representations.

Fig. 7. An example struct declaration.

For example, when the struct definition in Fig. 7 is instantiated in memory,
we get an object that contains a single field a that is a pointer to a memory
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array. An attempt to access m results in a type error. On the other hand, a state
variable of type S, contains an object that has two fields, one of them being a
storage array object (not a pointer), and the other a mapping.

Somewhat confusingly though, whenever a local variable of memory pointer
type is defined, it is automatically initialized to point to a newly allocated mem-
ory object of given type and this initialization is recursive, i.e. all nested pointers
in the object are initialized the same way. In fact, Solidity does not allow the
programmer to explicitly allocate memory objects other than dynamically sized
arrays, nor it provides any facility to free allocated objects or otherwise reclaim
allocated memory. Thus, the code in Fig. 8, unlike the similar code in Fig. 2, does
not result in an error being raised.

Fig. 8. Memory allocation.

3 Formalization

Our formalization of Solidity focuses on dynamic semantics and it is written as
an interpreter in Coq, in monadic functional big-step semantics style described
by Owens et al. [15], however in this paper it is presented in a more conventional
notation. Describing the semantics of the full Solidity language, including its type
system, is too big to fit in a workshop paper. In order to make our presentation
feasible, we focus here only on a subset of Solidity that captures the following
features:

– contracts with storage,
– memory,
– inheritance,
– modifiers.

We omit other features, such as function overloading, visibility specifiers, rational
constant types, integers of sizes less than 256 bits, packed byte array types,
libraries, events, and most of Solidity’s global built-in functions and variables. We
assume all functions are callable both internally and externally. These features
were left out, as they are either laborious to implement or not very interesting
from the point of view of dynamic semantics. We have aimed for the formalization
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to be as abstract as possible, for example by not exposing the EVM data model,
to make reasoning about programs simpler.

The Ethereum Network. The main effect of executing smart contract code
is altering the state of the Ethereum network. From the point of view of our
formalization, the Ethereum network σ is a partial mapping of addresses to
accounts.

An account is a triple 〈b, p, s〉 of balance b (the amount of currency the
account holds), the contract program p, and storage s. The contract program p
can be thought of as a pair 〈c, cdefs〉 of contract name and a list of definitions
of the account contract, as well as all its parents in the inheritance hierarchy.
To model the object-oriented nature of Solidity contracts, we abstract from the
low-level EVM view of the account storage as a mapping of machine words to
machine words, and instead we consider it to be analogous to a field table in Jinja
[14]. Therefore, a storage s is a partial mapping from pairs (var, cname) to stor-
age objects so, where var is the name of the variable and cname is the identifier
of the contract (class) where the variable was defined. Both those components
are needed, since inheritance may lead to a single contract containing more than
one variable of the same name. Storage objects can be thought of as trees con-
taining values in their leaves and with mappings, arrays or structs as their nodes:
so ::= Smapping (m), where m ∈ v → so

| Sarray (a, typ, l), a ∈ Z → option(so), l ∈ Z

| Sstruct (s), s ∈ ident → option(so)
| Sval (v)

This is similar to the model of C++ objects proposed by Ramananandro et al.
[17]. Solidity mappings are total, initially mapping all keys to default objects of
declared value type. Arrays contain, aside from partial mappings from indices
to storage objects, length, and type information to allow bounds checking and
initializing objects in new cells when resizing.

The contract execution is done as a part of a transaction which can be
triggered by messages sent to the network. Two kinds of messages are cur-
rently of interest to us: creation messages, which are used to create new con-
tract accounts in the network, and normal call messages. We do not attempt
to formalize the Solidity ABI specification. Instead, for our purposes, cre-
ation messages are quadruples 〈as, v, p, vs〉 and normal messages are quintuples
〈as, ar, v, funname, vs〉, where as and ar are the network addresses of the sender
and recipient accounts, the value v that holds the amount of currency sent, p is
contract code, funname is a name of a function to call, and vs is a list of values,
which are the arguments to the constructor or the called function.

Memory. Memory m can be thought of as a mapping loc → mo from a
set of locations to memory objects. Memory objects can be either arrays
or structs that store values, including pointers to other memory objects:
mo ::= Marray(a), a ∈ Z → option(v)

| Mstruct(s), s ∈ ident → option(v)
Since memory arrays are not resizable, unlike storage arrays, they do not

need to carry type information. Storage references in memory are disallowed by
the type system. We use mempty to denote an empty memory.
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Values. Values range over 256-bit machine integers, Booleans, storage
references, memory pointers, and internal or external function pointers.
v ::= Vbool (b), b ∈ {true|false} booleans

| Vint (n), n ∈ Z, 0 ≤ n < 2256 machine integers
| Vaddr (a), a ∈ Z, 0 ≤ n < 2160 addresses
| Vsref (sref ) storage references
| Vmptr (loc) memory pointers
| Vifptr (funname, cname) internal function pointers
| Vefptr (a, n, funname) external function pointers

sref ::= SRmapping val(sref , v)
| SRarray cell(sref , i), i ∈ Z
| SRsfield(sref , funname)
| SRvar(var , cname)

Storage references are paths to (sub)objects in the storage of the current
account. This accurately models the reachability and lifetimes of storage objects.
Memory pointers, on the other hand, are simply locations. Internal function
pointers contain a function name and the identifier of the contract where it is
defined. External function pointers contain an address of an external account,
value (i.e. the amount of currency to send along with the call), as well as a
function name.

Lvalues. Lvalues are entities that designate an assignable location in one
of the available storage locations. Lvalues may either point to locals, stor-
age objects, cells in memory arrays, fields in memory structs, or tuples.
lv ::= LVlocal (var) local variable

| LVstorage (sref ) storage reference
| LVmem arr cell (loc, i), i ∈ Z memory array cell
| LVmem sfield (loc, fname) memory struct field
| LVtuple (lv∗) tuple

Most of these are self-explanatory. Tuple lvalues are a syntactic construct
mostly used to retrieve multiple return values from a function. They are produced
by tuple expressions appearing in an lvalue context. Tuple values do not exist,
so they cannot be assigned to variables or passed as parameters.

3.1 Big Step Semantics

State. State μ is a tuple 〈a,m, σ, lf , lm〉 of the address a of the current account,
memory m, network σ, function local store lf , and modifier local store lm. To
accurately model the semantics of Solidity function modifiers, we introduce two
stores for local variables: a function local store and a modifier local store. These
stores are partial mappings from identifiers to values. A function store is used to
hold local variables of the currently executing function, while a modifier store is
used to hold local variables of currently executing modifier, if any. We use lempty

to denote an empty store.
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Evaluation. The evaluation judgments are of the following forms:
� msg , σ ⇒ σ′ transactions

p, q, f � stmt , μ ⇒ out , μ′ statements
p � e, μ ⇒ out , μ′ expressions
p � e, μ ⇐ out , μ′ expressions in lvalue position

The entry point to our semantics is the transaction judgment. A transaction
judgment relates a message msg and a network state σ to a new network state
σ′. The judgments for statements, expressions, and lvalues relate corresponding
syntactic elements to the outcomes of their execution in the given state μ. The
symbol q denotes the modifier stack, while f is the function being executed.
The modifier stack stores pairs 〈fm, e∗〉 of function modifiers that are yet to
be executed and lists of their unevaluated arguments (i.e. expressions). The
top of the stack contains the modifier that is entered when the next placeholder
statement is encountered. The return variables are used to store the return values
of the currently executing function.

The rules for expressions and statements may produce one of the following
outcomes:

out ::= OK(v) | OK(lv) | OK(vs) | Return | Fail
The OK outcome means normal termination. A successful termination may yield
a value v, lvalue lv, or a list of values vs. The OK notation is “overloaded” respec-
tively. Return is used to interrupt control flow and jump out of the function body
upon encountering a return statement. The Fail outcome is used to propagate
exceptions, which cannot be caught and always cause the transaction to fail. In
Solidity execution may fail for several reasons, like performing invalid storage
accesses or transaction fees exceeding allowances, however we are currently not
interested in tracing the causes of these failures.

Space constraints make it impossible to exhaustively list all the rules of our
core language, so we give only a few examples of rules we consider interesting.

Account Creation. First things first, we give a rule describing contract account
creation. Whenever someone wants to deploy a new contract on the Ethereum
network, they have to send a creation message containing contract code. This
results in a new account being created and the contract’s constructor being run.

msg = 〈as, v, p, vs〉
σ1(a) = None σ2 = σ1[a → 〈v, pempty ,mkstorage(p)〉]

μ = 〈a, mempty , σ2,mklocals(c, vs), lempty〉
run constructors(p, μ) = μ′ μ′ = 〈. . . , σ3, . . .〉 σ4 = σ3[a → 〈. . . , p, . . .〉]

� msg , σ1 ⇒ ε, σ4

Here, the account with address as (the sender) sends a creation message into the
network, with the aim of deploying the contract p. The rule for handling creation
messages generates a fresh network address a. Under this address, a new account
with empty contract code, denoted by pempty , is stored, resulting in a modified
network σ′. The mkstorage(p) function creates a new storage, with all storage
variables in p set to default values. Similarly, mklocals(c, vs) creates a new local
variable store with the arguments of c mapped to vs and locals initialized to
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default values. Then, constructors of the contract and its superclasses are run
according to reverse MRO (the C3 algorithm [4]), i.e. from the most basic to the
most derived. Only when all these steps execute successfully, the contract code
is actually stored1 in the network σ4. The result of the transaction is an empty
list of values ε and the network σ4. Note that executing constructors does not
require special handling of internal virtual function calls. Our experiments show
that functions called are always those of the most derived contract, even if its
constructor has not yet finished executing.

Handling Normal Messages. Once we have a contract account on the network, we
may execute its functions. This is done by sending messages with the appropriate
value of the recipient field, as captured by the following rule:

msg = 〈as, a, v, fn, vs〉 σ1(a) = 〈b, p, s〉 MRO(fn, p) = c
lookup(p, fn, c) = f

μ1 = 〈a, mempty, σ1[a → 〈b + v, p, s〉],mklocals(f, vs), lempty〉
p,modifiers(f, p), retvars(f) � ;, μ1 ⇒ OK(ε), μ2 μ2 = 〈. . . , σ2, l

f
2 , . . .〉

rvs = [lf2 (retvar1(f)), . . . , lf2 (retvarn(f))]

� msg , σ1 ⇒ rvs, σ2

where the function retvars simply extracts the return variables of a given func-
tion, while modifiers looks up modifier definitions and builds the modifier stack.
Here, the sender as tries to trigger the execution of a function2 called fn. This rule
basically performs the role of the function selector. MRO(funname, p) returns
the identifier of the contract where according to the method resolution order
the function should be looked up. The lookup function retrieves the function
definition. Then we set the modifier stack to contain all the called function’s
modifiers and reuse the rule for the placeholder statement to actually start
executing the first function modifier, or otherwise enter the function body.
After the execution of the function terminates, the values of its return vari-
ables retvar1(f), . . . , retvarn(f) are extracted and returned. Note that we are
assuming any function can receive currency, but in Solidity only those declared
as payable can do that.

Internal Function Calls. The internal call of a function given as a pointer is
similar, however not messages are involved:

p � e1, μ1 ⇒ OK(Vifptr(fn, c)), μ2 p � e2∗, μ2[⇒]OK(vs), μ3

lookup(p, fn, c) = f μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉

μ4 = 〈a, m3, σ3, mklocals(f, vs∗), lempty〉
p,modifiers(f, p), f � ; , μ4 ⇒ OK(ε), μ5

μ5 = 〈. . . , lf4 , . . .〉 rvs = [lf4 (retvar1(f)), . . . , lf4 (retvarn(f))]

p � e1(e2∗), μ1 ⇒ OK(rvs), μ5

1 Readers acquainted with the internals of Solidity might notice that, unlike the real
thing, we do store the constructor code in the network. However, after the account
is created, the constructors become inaccessible anyway.

2 For simplicity function overloading is not taken into account here. To make it work,
Solidity ABI uses hashes of the function signature, instead of just names and this is
a mechanism that we do implement in Coq.
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where [⇒] means extension of evaluation to lists of expressions.

External Function Calls. External calls are specified in terms of an external call
axiom:

p � e1, μ1 ⇒ OK(Vefptr(a, v, fn)), μ2 p � e2∗, μ2[⇒]OK(vs), μ3

μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉

external call(σ3, a, v, fn) = v′, σ4 μ4 = 〈a, m3, σ4, l
f
3 , lm3 〉

p � e1(e2∗), μ1 ⇒ OK(v′), μ4

An external call may arbitrarily change the state of the network, including the
invoking account. This is a important source of security issues [6], as well as a
problem for verification, since we lose any knowledge about the state we had
up to this point. However this is not a new problem, as it has long been known
in the context of verification of object-oriented programs [3,10,11,13]. Several
methodologies for reasoning about invariants across such calls have been pro-
posed. Perhaps the simplest one is visible-state semantics, which would involve
enforcing the invariants at all external call sites [11].

Modifiers and the Placeholder Statement. Next we give the semantics of the
placeholder statement and function modifier execution. This rule may be trig-
gered either as a part of the function call rules above, or when a placeholder
statement is encountered inside a modifier. Once we are there, one of two possi-
bilities may arise. The first one is that we have no more modifiers to execute, so
we set the modifier local store to empty and enter the function body. This case
is described by the following judgment:

μ = 〈a, m, σ, lf , lm〉 μ′ = 〈a, m, σ, lf , lempty〉
p, ε, f � body(f), μ′ ⇒ o, μ′′ o �= Fail

p, ε, f � ;, μ ⇒ OK(ε), μ′′

where the function body extracts the body of a given function. The second pos-
sibility is that we still have modifiers to execute:

μ1 = 〈a, m1, σ1, l
f
1 , lm1 〉 μ2 = 〈a, m1, σ1, l

f
1 , lempty〉

p � e∗, μ2[⇒]OK(vs), μ3 μ3 = 〈a, m3, σ3, l
f
3 , lempty〉

μ4 = 〈a, m3, σ3, l
f
3 ,mklocals(fm, vs)〉

p, q′, f � body(fm), μ4 ⇒ o, μ5 o �= Fail

p, 〈fm, e∗〉 :: q, rv � ;, μ1 ⇒ OK(ε), μ5

where 〈fm, e∗〉 :: q is a notation for list pattern matching. We evaluate the argu-
ments, create a new modifier local store and fill it with default values of the next
modifier’s local variables, pop the next modifier off the modifier stack and enter
its body.

Having a separate store for function and modifier locals allows us to ensure
that if the actual function body is entered more than once, the values of func-
tion’s local variables are preserved, in accordance with the observed behavior
produced by the Solidity compiler.
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Return Statement. The return statement is simple, but still interesting because
of the return variable mechanism and its interaction with modifiers. The rule
assigns values to the return variables and interrupts the control flow by using
the Return outcome.

p � e∗, μ[⇒]OK(vs), μ′ μ′ = 〈. . . , lf , . . .〉
μ′′ = 〈. . . , lf [retvar1(f) → vs1, . . . , retvar(f) → vsn], . . .〉

p, q, f � return e∗; , μ ⇒ Return, μ′′

Local Variables. Local variable scoping follows Solidity versions prior to 0.5.0,
i.e. there is a single scope for the entire function body. The lvalue rule for local
variable is very simple:

p � var , μ ⇐ OK(LVlocal(var)), μ

There are two rules for dereferencing locals, one for modifiers, and one for
functions:

p � e, μ ⇐ OK(LVlocal(var)), μ s = 〈a, m, σ, lf , lm〉 lm(var) = Some(v)

p � e, μ ⇒ OK(v), μ

p � e, μ ⇐ OK(LVlocal(var)), μ s = 〈a, m, σ, lf , lm〉
lm(var) = None lf (var) = Some(v)

p � e, μ ⇒ OK(v), μ

Local variables are first looked up in the modifier store and then, if this fails, in
the function store. This could cause functions locals to be shadowed by modifier
locals, but we ensure that this is not the case by setting the modifier store
to empty when entering a function body. This trick allows us to forgo adding
information about whether our current expression is evaluated within a function
or modifier body. The possibility of accessing function locals from modifiers
should be ruled out during the typechecking phase.

State Variables and Storage. Now we show the rules dealing with state variables
and storage objects. The lvalue rules are straightforward:

p � var{cname}, μ ⇐ OK(LVstorage(SRvar(var , cname))), μ

p � e, μ ⇒ OK(Vsptr(sr)), μ′

p � e.fname, μ ⇐ OK(LVstorage(SRstruct field(sr , fname))), μ′

Analogous rules exist for element access of arrays or mappings.
The rules for dereferencing storage objects are as follows:

p � e, μ ⇐ OK(LVstorage(sr)), μ μ = 〈. . . , s, . . .〉 s(sr) = Some(Sval(v))

p � e, μ ⇒ OK(v), μ
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p � e, μ ⇐ OK(LVstorage(sr)), μ μ = 〈. . . , s, . . .〉 s(sr) �= Some(Sval( ))

p � e, μ ⇒ OK(Vsref(sr)), μ

When the storage reference points to an Sval, the value it contains is returned.
Otherwise a pointer is returned.

Assigning to a storage location in Solidity is quite complicated. Consider the
rule for assigning from another storage location:

p � e1, μ1 ⇐ OK(LVstorage(sr1)), μ2 p � e2, μ2 ⇒ OK(Vsrefsr2), μ3

μ3 = 〈a, m3, σ3, l
f
3 , lm3 〉 σ3(a) = 〈b, p, s〉

s(sr1) = Some(so1) s(sr2) = Some(so2) copy over(so1, so2) = Some(so3)

s′ = s[sr1 → so3] μ4 = 〈a, m3, σ3[a → 〈b, p, s′, lf3 , lm3 〉]〉
p � e1 = e2, μ ⇒ OK(storage dereference(sr1, s′)), μ4

As mentioned before, assigning a storage object to a storage location causes
deep copying into that location. Intuitively, it should be sufficient to replace the
storage object so1 pointed to by sr1 with so2. Sadly, the inability to copy contents
of mappings introduces an ugly corner case: when copying so2 object over so1,
the contents of mappings reachable from so1 are preserved. That behavior is
modeled by the function copy over .

3.2 Current State of the Coq Development

As mentioned, we have written down our semantics in an executable form in
Coq. This way, it can be combined with code that parses and typechecks Solid-
ity to enable execution of basic contract code. Currently, a very rudimentary
test environment has been implemented that enables running simple contract
functions, such as the examples given in Sect. 2, except those involving external
calls.

Solidity is quite a large language and a significant amount of work is still
to be done claim any completeness or run real-world contracts. In particular,
our typechecker is written in a mostly ad-hoc manner in Ocaml, still largely
incomplete and limited to features necessary for execution, such as resolving
state variable names and expression types. Other features of the type system,
such as visibility and mutability specifiers are ignored. Solidity provides a number
of syntactic sugar constructs, such as named arguments, that we left out. We
still do not support the full range of available types and builtin functions. For
example, support for small integer types, strings, and packed byte arrays is
incomplete. Libraries (accounts containing reusable code), an another widely
used feature yet to be formalized, are an significant omission, especially since
their semantics can also be a source of serious problems [16]. Some features, like
inline assembly, are incompatible with our high-level modeling and cannot be
implemented.

Once we implement enough of the language, to establish trust in the speci-
fication, we plan to test the semantics against the Solidity compiler test suite.
The way we plan to do this, is by implementing a mock Ethereum client with an
RPC API that accepts Solidity code instead of EVM bytecode and modifying
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the Solidity test suite to work with it. The work on this infrastructure has been
started, but it is not yet fully functional.

4 Related Work

Bhargavan et al. [5] provided a verification framework for a subset of Solidity by
the way of shallow embedding in F*, a programming language aimed at program
verification. However they have not provided explicit semantics, and we could
not reproduce the data model of Solidity from the descriptions thereof.

Much work has been put into formally specifying the semantics of the
Ethereum Virtual Machine. Hirai [9] defined EVM semantics in Lem, a lan-
guage that can be compiled into specifications for several theorem provers, and
then used it to prove safety properties of smart contracts. His formalization was
extended with a program logic by Amani et al. [1]. Hildenbrandt et al. [8] defined
complete executable EVM semantics in the K Framework, which passed the ref-
erence test suite for EVM implementations. Luu et al. have created Oyente [12],
a static analysis tool for EVM bytecode. For that purpose, they have developed
a simplified semantics of a fragment of EVM. Grishchenko et al. [7] present
complete small-step semantics of EVM bytecode, formalized in F*.

Sergey et al. [18] describe Scilla, an intermediate-level programming lan-
guage for smart contracts that aims to provide clear operational semantics. They
restrict the computation model to communicating automata and mandate exter-
nal calls to occur at the end of a transaction. This makes the language more
amenable to formal verification techniques.

5 Conclusions and Future Work

We have presented a formalization of what we consider to be the core of Solidity,
in the form of big-step semantics. We have focused on high-level modeling of the
data model and semantics of internal function calls with function modifiers. We
have written down our semantics in an executable form in Coq.

Many features used in real contracts still remain to be formalized. In the near
future we plan to specify semantics of a larger subset of Solidity. To establish
trust in the specification, the executable semantics could then be tested against
the official Solidity compiler test suite. Additionally, a coming release of Solidity
(0.5.0) is planned to bring many changes to the language, like C99-like block
scoping for local variables, and our semantics has to be adapted accordingly.

Verification of realistic contracts is still a somewhat distant goal. We do
not consider raw operational semantics to be a practical tool for verification of
contracts, for example due to axiomatization of external calls. Ultimately, our
aim with this work is to provide a foundation for verification frameworks for
smart contracts written in Solidity.
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