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Abstract Terrain data pose modeling challenges due to their high inherent
redundancy and difficulty of identifying features at different levels of detail. We pro-
pose a multiresolution analysis framework based on a graph-based wavelet construc-
tion. Our approach produces a sequence of intermediate resolution approximations
of the terrain model. The details pertaining to each resolution reveal scale-specific
features. Using a guiding heuristic, the proposed wavelet construction also conserves
salient features. Furthermore, the proposed framework allows both geometric and
attribute vertex information and can be used for modeling tasks sharing the same
characteristics and constraints with terrain modeling. In particular, our graph-based
wavelet framework is an option for multiresolution filtering and feature classification
or clustering.

1 Introduction

The particular problematics of terrain modeling span a broad range of quantitative
and qualitative analysis tasks. Such tasks include, but are not limited to geometric
representation, geomorphological feature identification and analysis, vegetation cov-
erage analysis and extraction. The continuous advancements of 3D sensor scanning
technologies and the increasing popularity of civil aerial drones further facilitate
gathering high density point cloud terrain representations.

In this chapter, we describe an approach for multiresolution analysis of
multivariate terrain data, which is also suitable for other data organized in
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similar structures. In general, the framework we propose can be easily adapted for
performing multiresolution analysis on triangulated point clouds, meshes or graphs.
Any of these data structures may describe an irregular domain where a multivari-
ate signal is discretized. The samples are then concentrated in the vertices of these
structures.

Given these aspects, the approach we will further describe capitalizes on recently
developed methods for graph signal processing. More specifically, we explore a
wavelet-based graph multiresolution construction that has a reduced approximation
error and is computationally efficient. The graph wavelet interpretation facilitates
tasks involving vertex frequency analysis or multiresolution filtering and clustering.

1.1 Terrain Data Representation

Typically, the geometric information describing terrain fragments is encoded in a
digital elevation model (DEM) [36]. A triangulated irregular network (TIN) is a
further specialization of a DEM where both point and primitive (triangle) sampling
are allowed to be irregular, reducing the highly redundant information in flat regions.
De Floriani and Magillo [13] provide the following definition:

A terrain can be mathematically modeled as a function z = f (x, y) mapping a point (x, y)
in a domain D in the plane to its elevation value f (x, y). In practice, the value of function
f is known on a finite set S of points within D. A DEM provides an estimated value for
function f at any point (x, y) of the domain, based on the values at the points of S. A DEM
consists of a subdivision of the domain into cells and of a piece-wise interpolating function
defined on such cells. A TIN is a DEM in which the domain subdivision is a triangular mesh,
i.e., a set T of triangles such that:

1. the set of vertices of T is S

2. the interiors of any two triangles of T do not intersect

3. if the boundaries of two triangles intersect, then the intersection is either a common
vertex, or a common edge.

We can easily conclude that the TIN definition is practically identical to that of a
triangular mesh as generally understood in the field of Computer Graphics.

1.2 Challenges of Terrain Modeling From Raw Point Data

LiDAR data are usually dense and the information richness can pose a problem on
its own since there is no intrinsic manner of reducing geometric or other attribute
redundancy. However, model simplification is a well studied problem for which
established solutions have been proposed in the field of Computer Graphics. Among
the computationally efficient approaches, we mention incremental thinning, where
geometric primitives are simply removed by following a local quality-based simpli-
fication criterion. For TIN models, Demaret et al. [14] have proposed an efficient
coarsification algorithm via incremental point removal.
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Suarez and Plaza [34] have introduced a coarsening algorithm applicable to
right-triangulated irregular networks. Their method is especially efficient given that
both the underlying geometry and triangle primitive connectivity is easier to control
than in the case of general irregular networks as each vertex has a maximum of 8
directly connected neighbors. The actual coarsening is then achieved through edge
midpoint split operations, which are also invertible.

Another problem posed by raw point clouds is that there is no immediate and
accurate information concerning the ground or vegetation class of constituent points.
While ground return information can help define a subset of soil-level points, the over-
all point cloud usually contains more ground-level information, as well as potentially
unclassified data points. Evans and Hudak [15] have designed amultiscale curvature
classification algorithm in order to filter and classify points present in raw LiDAR
collections.

Silva et al. [2] examine four different algorithms for classifying ground from
hovering points in point cloud terrain data sets. Among the algorithms discussed
in their work, the progressive triangulated irregular network, implemented in the
LAStools package [20], was proven to possess good performance characteristics
(low RMSE and increased ground classification accuracy with respect to the ground
truth).

1.3 Existing Solutions

Given that terrainmodeling tasks pose similar problems to those encountered in point
cloud, mesh or graph data processing, we will briefly review some of the milestone
achievements from these areas.

Incremental Simplification of Point Clouds and Meshes

Historically, solutions to feature redundancy have been addressed separately from
multiresolution analysis. The most common solution to this problem is incremental
simplification. Modeling of terrain data is also possible with either point cloud or
mesh simplification methods.

For point clouds, notable contributions are given in the work of Pauly et al. [29]
where three simplification method categories are detailed: clustering, iterative sim-
plification and particle simulation.

In the case of triangular or polygonal meshes, the additional information also
facilitates the creation of reversible, continuous level-of-detail representations and
mesh morphing. Schroeder et al. [32] were among the first authors to discuss trian-
gular mesh simplification in a step-by-step manner known as decimation. Almost
all decimation-based methods require the existence of a decimation criterion and
can be summarized in two steps that are repeated until the target density is reached:
(i) evaluate decimation criterion (usually a cost function estimating the impact of
removing a set of primitives) and (ii) remove a primitive and re-triangulate the local
geometry.
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To address changes in the mesh connectivity resulting from primitive removal,
Ronfard et al. [31] proposed a reversible operation called edge collapse. One of the
most effective heuristic criteria for guiding these operations is the quadric error
metric (QEM) formulation of Garland and Heckbert [17].

Wavelet Multiresolution Methods

Successful initiatives for adapting established Signal Processing methods for point
cloud, mesh and graph analysis have been recorded.

To briefly summarizes notable adaptations of wavelet-like transforms on point
clouds we mention the following works. Chen et al. [5] have introduced an SVD-
based construction of so-called geometric wavelet point cloud analysis. Earlier, Choi
et al. [6] applied a straightforward implementation of Swelden’s lifting scheme [35]
for denoising point sampled manifolds of low intrinsic dimension.

Among the first wavelet mesh multiresolution analysis methods is that of Louns-
bery [26]. Using a subdivision operator on triangular meshes, Lounsbery intro-
duced an analog of the refinement equation for functions defined on mesh structures
instead on the real line. With the introduction of Swelden’s lifting scheme [35], other
approaches using this technique were developed. One example is the critically sam-
pled design for irregular meshes described by Bertram [3]. His method is similar
to that of Guskov et al. [18], where a geometry-based subdivision operator defines
wavelet synthesis.

After meshwavelet constructions, algorithms specifically design for more generic
graph data were also introduced. We mention the method of Coifman et al. [12],
which uses a diffusion operator to build a wavelet transform in the graph frequency
domain.Hammond et al. [19] further proposed amethod that, instead of diagonalizing
the graph Laplacian matrix, a costly process for large graphs, uses approximations
based on Chebyshev polynomials. In the graph spatial domain we mention Jansen’s
approach [21, 22], also adopted and extended byWagner et al. [37], and byMartinez
and Ortega [27].

Wavelet Multiresolution for Terrain Modeling

Among the first solutions specifically designed with terrain modeling in mind is the
wavelet triangular irregular networks framework of Wu and Amaratunga [24]. This
method is essentially a lifting scheme adaptation using an inverse subdivision pre-
diction filter and resampling in the xy plane. The importance of wavelet coefficients,
byproducts of multiresolution analysis, was emphasized by Beyer [4]. The author
demonstrated that both terrain gradient and curvature information can be derived
from these wavelet detail vectors. Kalbermatten’s et al. [25] work further explores
applications of wavelet transform in identifying multiscale geomorphological and
geological features.
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2 Terrain Modeling Using Graph-Based Wavelet
Multiresolution Analysis

We now address the question of how a wavelet multiresolution framework can be
defined for terrain models. From a signal processing perspective, DEMs are similar
to images, which are simply two-dimensional signals defined over regular domains.
When modeling data from LiDAR sources, TIN structures are better options because
they allow for adaptive sampling in areas with high geometric redundancy. Building
wavelets on these irregular domains would enable the analysis of terrain characteris-
tics at different levels of resolution, which, in turn, can be perceived as information
pertaining to a certain frequency band.

Our goal is threefold. First, we aim to expand previous methods and achieve mul-
tiresolution representation of multivariate terrain sets (having both geometric and
attribute coordinates for each point). Second, by adopting a spatial domain graph
lifting scheme construction, we maintain a balance between computational com-
plexity and the range of potential practical applications of the method. Third, we
wish to explore the semantic interpretation of detail vectors, leading to a correlation
between vertices and levels of resolution. This interpretationwould allow ourmethod
to be applicable to vertex frequency analysis tasks.

Both the construction and results presented in the following sections of this chapter
have been partially described in our previous works [7, 9].

2.1 Classic Wavelet Analysis and Synthesis

Before detailing our wavelet multiresolution design for multivariate signals, we
review the fundamental concepts in the one-dimensional case.

Problem Formulation

In general, wavelets are the building blocks of hierarchical function space approxi-
mations, i.e. L2(R) � . . . � Vn � Vn−1 � . . . � V1 � V0 � . . . � {0}, where Vj is a
function space approximation at level j . We are interested in examining the connec-
tions between two consecutive approximations, Vj+1 and Vj . LetΦ j = [

. . . φ j,k . . .
]

be the row vector of basis functions that generate Vj . Then a function f j+1 ∈ Vj+1

cannot be represented by using only the basis functions in Vj , but it can be expressed
as a combination of the basis functions of the Vj+1 space, that is

f j+1 = Φ j+1s j+1, (1)

where s j+1 is an infinite column vector of scaling coefficients. The complementary
basis or wavelet functions, ψ j,k , that generate the orthogonal subspace, correspond
to the lost details Wj . Thus, the direct sum decomposition of the higher-resolution
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approximation, Vj+1 = Vj ⊕ Wj , can be expressed in terms of basis and wavelet
functions as

f j+1 = Φ j+1s j+1 = Φ j s j + Ψ jw j , (2)

whereΨ j = [
. . . ψ j,k . . .

]
andw j is the infinite column vector ofwavelet coefficients.

Both the scaling and wavelet coefficients can be written in terms of internal prod-
ucts between f j+1 and the dual basis functions of their corresponding spaces, i.e.:

s j+1,k =
〈
φ̃ j+1,k, f j+1

〉
, (3)

s j,k =
〈
φ̃ j,k, f j+1

〉
, (4)

w j,k =
〈
ψ̃ j,k, f j+1

〉
, (5)

where φ̃ j,k and ψ̃ j,k denote the k-th scaling and wavelet basis functions at level j .

Second Generation Wavelets

Let x = (xk)k∈Z be an infinite sampled signal.
The first operation involved in the lifting procedure is called a split or parity

assignment. To this effect, the signal is divided into two sets, an even set, corre-
sponding to xe = (x2k)k∈Z and an odd set, corresponding to xo = (x2k+1)k∈Z.

The second operation of the lifting procedure is the prediction step. This implies
approximating the odd samples using the even ones by applying a prediction operator,
P, i.e.

d = xo − Pxe, (6)

obtaining the signal d of approximation errors or detail coefficients.
Usually, the even and odd sample subsets are highly correlated, and, as a direct

consequence, it becomes more efficient to store the signal using the information in
d as it has lower entropy than xo. The prediction phase is equivalent to mapping
(xe, xo) → (xe,d). Since xe is essentially obtained through a naïve downsampling
of the original signal, aliasing occurs and must be appropriately dealt with. This is
performed through a third operation, the update or smoothing phase. Algebraically,
this operation is implemented as

s = xe + Ud, (7)

where s is the smoothed downsampled signal and U is the update operator.
Assembling the three stages of the lifting scheme into a sequence, we obtain the

flow diagram shown in Fig. 1. The flow allows cascading the resulting filter bank by
feeding the even output from one lifting pass to the input of another one, effectively
creating a series of coarser approximations of the original signal.

Another immediate property of the lifting design is the straightforward invertibil-
ity, i.e.
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Fig. 1 The lifting scheme diagram: Splitting (Eq. (10)) is followed by prediction via Eq. (11) and
then by the updating of the low resolution output via Eq. (12)

xe = s − Ud (8)

xo = d + Pxe. (9)

Returning to the function space context, we review the mechanism behind the
lifting scheme. The first operation, the split, when applied to the set of scaling coef-
ficients at level j + 1 produces a vector of scaling coefficients reindexed such that

s j+1 =
[
s j+1,o

s j+1,e

]
, (10)

where the o and e subscripts stand for odd and even coefficients, respectively.
We write the prediction equation as

w j = s j+1,o − P j s j+1,e, (11)

and the update as
s j = s j+1,e + U jw j , (12)

with P j ∈ R
n j+1,o×n j+1,e being a sparse prediction matrix, U j ∈ R

n j+1,e×n j+1,o being
a sparse update matrix and n j+1,o and n j+1,e being the number of odd and even
coefficients, respectively, at level j + 1. The prediction stage simply exploits the
signal redundancy by assuming that the odd coefficients can be estimated as linear
combinations of their spatial neighbors. If only the even coefficients are used to
approximate the functions in Vj+1, then the lost details are compensated for by
redistributing them among these remaining coefficients via the update matrix.

Since Eqs. (3)–(5) hold for any f j+1, we canwrite the predict and update equations
for the duals basis functions:

Ψ̃
ᵀ
j = Φ̃

ᵀ
j+1,o − P j Φ̃

ᵀ
j+1,e, (13)

Φ̃
ᵀ
j = Φ̃

ᵀ
j+1,e + U j Ψ̃

ᵀ
j = (I − U jP j )Φ̃

ᵀ
j+1,e + U j Φ̃

ᵀ
j+1,o. (14)

To derive similar relations between the primal basis functions, we can start by rewrit-
ing Eq. (2) as
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[
Φ j+1,o Φ j+1,e

] [
s j+1,o

s j+1,e

]
= [

Ψ j Φ j
] [

w j

s j

]
, (15)

and, expanding the scaling and wavelet coefficients on the right-hand side using
Eqs. (11) and (12), we arrive to

[
Φ j+1,o Φ j+1,e

] [
s j+1,o

s j+1,e

]
= [

Ψ j Φ j
] [

s j+1,o − P j s j+1,e

(I − U jP j )s j+1,e + U j s j+1,o

]
. (16)

Equation (16) must hold for any combination of the level j + 1 lifting coefficients.
Hence, let s j+1,e = δk , i.e. the Kronecker unit vector at index k, with k ∈ 1 : ne, i.e.
δk,i = 0,∀k �= i and δk,k = 1. Also, let s j+1,o = 0. Evaluating both sides of Eq. (16),
we arrive to

Φ j+1,eδk = −Ψ jP jδk + Φ jδk − Φ jU jP jδk, (17)

or, since this equation holds for any k ∈ 1 : ne, a more direct formulation can be
written as

Φ j+1,e = −Ψ jP j + Φ j − Φ jU jP j . (18)

By setting s j+1,e = 0 and s j+1,o = δk , with k ∈ 1 : no, we find that

Φ j+1,oδk = Ψ jδk + Φ jU jδk, (19)

or
Φ j+1,o = Ψ j + Φ jU j . (20)

Right-multiplying both sides of Eq. (20) by P j and adding the result to Eq. (18) we
obtain:

Φ j = Φ j+1,e + Φ j+1,oP j , (21)

and then
Ψ j = Φ j+1,o(I − P jU j ) − Φ j+1,eU j . (22)

Let ς j = ∫ ∞
−∞ Φ

ᵀ
j (t)dt . Then integrating equation (21) yields:

ς j = ς j+1,e + Pᵀ
j ς j+1,o. (23)

Since the integral of the wavelet functions is zero, integrating equation (22) leads to:

0 = ς j+1,o − Uᵀ
j

(
Pᵀ

j ς j+1,o + ς j+1,e

)
= ς j+1,o − Uᵀ

j ς j . (24)

The column vectors of U j can be retrieved in a one-by-one fashion from Eq. (24). If
u jk is the kth column vector, then
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ς j+1,ok = uᵀ
jk
ς jk . (25)

It is suggested in [21] to choose the minimum norm solution of this equation as it
leads to increased numerical stability, as experimentally shown in [9]. It results that

u jk = ς j+1,ok

ς jk

‖ς jk‖2
. (26)

Wavelet Construction for Multivariate Graph Signals

We examine now the changes necessary to go from the above one-dimensional con-
struction to multivariate signals defined on graphs. In general, we are interested in
analyzing a function F(v) defined at every vertex v of the graph. We regard the ver-
tices as having vector coordinates in R

n . The purpose is to find appropriate scaling
and wavelet function bases that are independent of the multivariate signal itself, but
depend on the graph topology and its edge lengths. Thus, the framework construction
we propose must also accommodate both univariate and multivariate functions by
treating the latter as tuples of scalar-valued functions. Instead of discussing about
time series indices, we now view the graph nodes as means to identify samples
where the information is concentrated. The odd-even split is extended to graph ver-
tices, denoting Vol and Vel the odd and even subsets at level l, respectively. The
notion of parity is irrelevant for graphs, the odd and even denominations serving a
labeling purpose. If vil ∈ Vel denotes a vertex from the approximation set at level l,
we refer to its corresponding scaling vector of coefficients by using the sl,vil notation.
At the highest level of resolution, L , we assimilate the scaling vector to the vertex
coordinates, i.e. sL ,viL

:= vᵀ
iL
. We adopt the same convention for denoting the scaling

functions, i.e. φl,vil
, which are scalar valued. The situation is identical for the detail

components, which correspond to the odd samples, v jl ∈ Vol , at level l. The detail
vector associated with v jl will be denoted by wl,v jl

, while for the wavelet functions
the ψl,v jl

notation will be adopted. Using these conventions, we can express the
equivalent multiresolution decomposition equation for graphs as

F(v) =
∑

l≥0

∑

vo∈Vol

wl,voψl,vo(v) +
∑

ve∈Vel

s0,veφ0,ve(v). (27)

By arranging the scaling and wavelet functions into row vectors, we reproduce
Eqs. (21) and (22), establishing the relationship at consecutive resolution levels
through the means of prediction and update filters, i.e.

Φl,Vel
= Φl+1,Vel+1

+ Φl+1,Vol+1
Pl , (28)

Ψl,Vol+1
= Φl+1,Vol+1

− Φl,Vel
Ul , (29)

where Pl is the |Vol+1 | × |Vel+1 | prediction filter matrix and Ul is the |Vel+1 | × |Vol+1 |
update filter matrix. Using the above filter matrices, a hierarchical decomposition
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of the scaling coefficients associated with the vertices of a mesh or a graph can be
inferred. These vector-valued coefficients contain both the geometric and attribute
coordinates of their corresponding vertices. Let us denote by sl,Vel

the |Vel | × nmatrix
of scaling coefficients at level l associated with the even nodes, Vel , the difference
vectors computation and even node updates can be written as

wl,Vol+1
= sl+1,Vol+1

− Plsl+1,Vel+1
, (30)

sl,Vel
= sl+1,Vel+1

+ Ulwl,Vol+1
. (31)

Equations (30) and (31) describe the analysis stage of critically sampled lifting
scheme. It is straightforward to invert this process. This converse operation, the
synthesis stage, is translated into the following two equations:

sl+1,Vel+1
= sl,Vel

− Ulwl,Vol+1
, (32)

sl+1,Vol+1
= wl,Vol+1

+ Plsl+1,Vel+1
. (33)

Cascading the analysis stages yields a hierarchical wavelet decomposition of the
initial mesh. The method stores the intermediary difference vectors wl,Vol+1

and the
coarsest level scaling coefficients, s0,Ve0

, with l ∈ 0 : L . In order to recover the initial
information, the intermediary filter matrices, Pl and Ul , also need to be stored.

2.2 Graph-Based Lifting Scheme Operations

We now proceed to describing the necessary steps for adapting the lifting scheme
principles to the irregular graph domain. In doing this, we consider a mechanism for
guiding the lazy wavelet partitioning such as salient features loss is reduced during
downsampling. We also aim to develop prediction and update filters that minimize
the approximation error at lower levels of resolution.

Lazy Wavelet Partitioning

Our choice of a heuristic feature preservation mechanism is the generalized quadric
error metric, detailed by Garland and Heckbert [17]. The goal of this metric is to
facilitate computing the squared distances from any point to the support plane of
a triangle. For the remainder of this discussion, we will refer to vertices and their
attributes as elements from theRn vector space, where the first three components are
the geometric coordinates and the remaining n − 3 represent the attribute data.

Let v1, v2, v3 ∈ R
n be column vectors corresponding to the vertices of a triangle

and p ∈ R
n an arbitrary point. The core idea of this approach is to algebraically

express as a matrix, denoted by Q(Δ(v1, v2, v3)), the computation of the squared
distance from p to the support plane of these 3 vertices. It is then easy to compute
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the sum of squared distances from p to the support planes of a triangle family,
(Δi (v1, v2, v3))i=1:N , as

∑

i=1:N
d(p,Δi (v1, v2, v3))2 =

(
p
1

)ᵀ {
∑

i=1:N
Q (Δi (v1, v2, v3))

}(
p
1

)
. (34)

In the original incremental simplification algorithm [17], the set of faces in the one-
ring neighborhood of each vertex is used to compute an associated matrix

Q(v) =
∑

Δk∈N 1
t (v)

Q(Δk), (35)

where N 1
t (v) represents the set of all triangles incident at v.

The advantage of using the matrix notation is manifested when performing edge
collapses and fusing the endpoint vertices. Whenever two vertices, va and vb, are
replacedby anewvertex,w, the local geometric information thatwas characterizedby
the neighborhoods of these vertices is preserved by settingQ(w) ← Q(va) + Q(vb).
This way, although themesh is coarser, the new vertex still retains the local geometric
variability of the initial model. Thus, the history of collapses is added together and
represented as a single quadric matrix.

The matrix terms in Eq. (35) describe quadrics in the sense that all isosurfaces
obtained from varying point p in Eq. (34) are quadrics. The term quadric error metric
is thus justified since these matrices offer a means of estimating an error measure
from an arbitrary position p to a local patch around any vertex v. As described in
[7], this metric also allows for the introduction of a cost function associated to each
vertex:

cost(v) =
(
v
1

)ᵀ
⎛

⎝
∑

vi∈N 1
v (v)

Q(vi )

⎞

⎠
(
v
1

)
, (36)

whereN 1
v (v) denotes the direct neighbors of v, or the one-ring vertex set, as repre-

sented in Fig. 2.
In [7] we introduced an additional saliency measurement attribute and treat the

vertices of the model as points inRn+1. We opt for a discrete bending energy (or thin
plate energy) estimation since it encompasses curvature and area information and it
is also an isometric invariant.

In the continuous case, the bending energy is a well-defined quantity. If the prin-
cipal curvatures can be computed over a surface patch A, then the amount of elastic
potential energy stored in that region can be computed by evaluating the integral

Eb =
∫

A

(
κ2
1 + κ2

2

)
d A, (37)

where κ1 and κ2 are the principal curvature functions defined over the patch A.
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Algorithm 1 Thin plate energy computation
INPUT: the mesh M = (V, E)

OUTPUT: the bending energy of the vertex set, Ebending(V )

for vi ∈ V do
COMPUTE: the Gaussian and mean curvatures of vi , K (vi ) and H(vi )
COMPUTE: f (vi ) = 4H(vi )2 − 2K (vi )

end for
for vi ∈ V do
Ebending(vi ) = 0
for Δ ∈ N 1

f (vi ) do
COMPUTE: Ebending(vi )+ = ∫

Δ
f d A

end for
end for

The evaluation of the discrete Gaussian curvature, denoted as K (v), and of the
mean curvature, denoted as H(v), can be performed as suggested by [28]. Although
such estimates are known to be sensitive to noise, the data typically resulting from
LiDAR sets do not exhibit irregularities that could affect the robustness. Regard-
less of this drawback, a curvature-based energy represents a natural measure for
local geometric saliency over a one-ring neighborhood. In [9, 10] we further discuss
potential alternatives for use on data heavily affected by noise.

To evaluate the discrete version of integral (37), we can use the Gaussian cur-
vature, K , and the mean curvature, H , to compute the sum of squared principal
curvatures as κ2

1 + κ2
2 = 4H 2 − 2K . The discrete counterpart of this integral then

provides an estimate for the discrete bending energy concentrated at each vertex vi
and is computed over its one-ring neighborhood.We evaluate the discretized bending
energy near a vertex vi as

Eb(vi ) =
∑

Δ(vi ,v j ,vk )∈N 1
f (vi )

f (vi ) + f (v j ) + f (vk)
6

· ∥∥(v j − vi ) × (vk − vi )
∥∥ ,

(38)
where f ≡ (κ2

1 + κ2
2 ) and N 1

f (vi ) is the set of all incident triangles, denoted by
Δ(vi , v j , vk), at vi .

We summarize the calculation process of the discrete version of Eq. (37) in Algo-
rithm 1.

To include the computed bending energy in the cost function from Eq. (36), one

can substitute a vertex v with an (n + 1)-dimensional one, v̄ =
(

v
Ebending(v)

)
.

The purpose of computing the per-vertex cost values is to establish an importance-
based ordering of this set. The greedy strategy we employ to label all vertices as
either even or odd is summarized in Algorithm 2. The labeling process is iterative
and marks the vertices intuitively, according to their computed importance. During
each iteration, the vertex having the lowest cost is extracted from the set of unmarked
vertices. Its one-ring neighbors are then colored as even, while the extracted sample
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Fig. 2 The cost of removingvi with respect to its one-ringneighbors. Eachv j ∈ N 1
v (vi ) contributes

the sum of distances from vi to the support planes of each incident face at v j

Algorithm 2 Vertex labeling and remeshing algorithm
INPUT: the mesh Min = (V, Ein)

OUTPUT: an odd-even partitioning, V = Vo ∪ Ve, coarse mesh topology Mout = (Ve, Eout )

COMPUTE: for each v ∈ V , compute Ebending(v) via Algorithm 1
COMPUTE: for each v ∈ V , compute cost(v̄) as defined in (36), where v̄ = (

vᵀ, Ebending(v)
)ᵀ

SORT: V ∗ = sort(V + in) using cost(v̄) as a key
ASSIGN: Ve = ∅, Vo = ∅, Eout = Ein
while V ∗ �= ∅ do
v = arg min

v∈V ∗(cost(v̄))

if can_triangulate(N 1
v (v) \ {v}) then

for vi ∈ N 1
v (v) do

Eout = Eout \ {v, vi }
end for
Eout = Eout ∪ create_edges(N 1

v (v))
Vo = Vo ∪ {v}
Ve = Ve ∪ N 1

v (v)
V ∗ = V ∗ \ ({v} ∪ N 1

v (v)
)

else
Ve = Ve ∪ {v}
V ∗ = V ∗ \ {v}

end if
end while

is marked as odd, as depicted in Fig. 2. The intuition behind the process reflects the
goal of removing less relevant samples, from high redundancy areas.

Analyzing the vertex classification and remeshing performed by Algorithm 2, we
notice the constraint of marking the neighbors of a removed odd node as even. This
is justified by the need to consistently separate the two vertex classes, a practice
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(a) (b) (c)

Fig. 3 Illegal collapse situations where the highlighted faces are involved in a breaching of one
or several criteria of the can_triangulate function from Algorithm 2. In case a, the collapse
“welds” together two faces, back-to-back, introducing an edge common to more than two triangles.
In situation b, the highlighted face is “flipped” since the normal unit vectors before and after the
collapse point in opposite directions. “Cutting a corner” is the operation depicted in situation c,
where the corner vertex is no longer adjacent to at least two edges

also employed by [18]. Another key property of this algorithm is the partial graph
connectivity alteration incurred by the removal of the odd samples. Together with
these nodes, their adjacent edges are also removed. Whether or not the one-ring hole
bounded byN 1

v (v) \ {v} can be triangulated is also a key factor in deciding the label
of v. The can_triangulate(·) function is implemented as a set of geometrical
and topological consistency criteria that must be satisfied by a valid triangulation.
This problem has numerous solutions, one example being the splitting planemethod
of [32] known to produce more regular aspect ratio triangulations. It is possible for
a vertex having the lowest importance score to produce invalid triangulations, and,
in this case, the vertex is marked as even. In our implementation, the triangulation
of the one-ring hole is easily performed using half-edge collapses. A valid edge is
selected from the set of all edges adjacent to the removed odd vertex such that the
quadric error measured using theQ(ve) matrix of its even endpoint is the smallest of
all other collapsible pairs. We refer to a vertex pair to be collapsible if it is connected
through an edge and if by translating the odd vertex over the even one the discrete
manifold property of the mesh is not affected and no newly created triangular face is
flipped with respect to its original normal vector (refer to Fig. 3 for several examples
of illegal collapses). Additionally, to prevent boundary shrinkage, the odd boundary
vertices cannot be translated over interior even ones. Boundary vertices can be part
of a collapse if the edge connecting them is a boundary one as well. We also allow
for merging an interior vertex with a boundary one when the collapse direction is
from the interior towards the border.
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Prediction Filter Construction

The goal of the prediction operation that follows the even-odd splitting is to com-
pute estimates for the odd nodes of the graph from their even neighboring nodes.
Intuitively, if the predicted values are closer to the actual odd samples, it is possible
to recover a faithful representation of the entire graph by storing only a subset of the
initial data. The resulting estimates are usually obtained by applying a low-pass filter
to the even subset, while computing the difference between the estimates and the
actual odd samples resembles the behavior of a high-pass filter. As a graph low-pass
filter, we propose using a discrete Laplacian operator, given its smoothing and aver-
aging effects. In many applications, Laplacian filters are also used for suppressing
local irregularities (both features and noise). Thus, a similar effect could be achieved
by removing the ensuing details.

To understand how the prediction filter weights are computed, we recall the con-
cept of a graph Laplacian operator. For a weighted graph, the Laplacian matrix
is obtained as the difference between the weighted diagonal degree matrix, D =
(di,i ) = ∑

j ωi, j , and the cost matrix, Ω = (ωi, j ), where ωi, j are the weights asso-
ciated with the (vi , v j ) edges. Thus, if L = D − Ω , the random-walk Laplacian
operator is defined as

Lrw = D−1L = I − D−1Ω. (39)

The geometric interpretation for the action this operation has on amesh is a smoothing
effect, also achievable through the use of a generalized umbrella operator. An in-
depth comparative discussion of various Laplacian discretizations is offered by [38].
Concretely, the extraction of the difference vectors wl,Vol+1

from Eq. (30) is similar
to a Laplacian smoothing where the difference between the smoothed vertex and
its actual position is stored for later reference. For a single vertex, vn ∈ Vol+1 , this
equation can be rewritten as

wl,vn = sl+1,vn −
∑

vm∈N 1
v (vn)

pl,vn (vm)sl+1,vm , (40)

where pl,vn (vm) is the prediction weight coefficient at level l associated with vertex
vn and contributed by one of its even, one-ring neighbors, vm . Depending on the
Laplacian discretization, several prediction weight choices are possible. In general,
the prediction weights in Eq. (40) are computed as

pl,vn (vm) = ωn,m∑
vk∈N 1

v (vn) ωn,k
. (41)

One of themore popular Laplacian design choices is the cotangentweightsLaplacian,
computed as described byMeyer et al. [28]. Abdul Rahman et al. [1] recommend this
Laplacian as a prediction filter for the analysis of free-form surfaces with additional
attributes. Although this filter is suitable for smoothing tasks, its weights depend
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strictly on the geometric information and not also on any additional attributes. A
simple alternative for this operator, that introducesmovements in the tangential plane
of a vertex, is the Fujiwara or geometric Laplacian [16], with weights defined as

ωi, j = li, j
−1, (42)

where li, j is the length of the (vi , v j ) edge. This operator is scale dependent and
it preserves the distribution of triangle sizes. The main advantages of this design
are: its dependency on all geometry and range attributes, its smoothing effect being
closer to the cotangent weight formulation than that of the umbrella operator, and the
predicted point being shifted towards its closest neighbors, thus inherently providing
a better approximation.

An alternative to the Laplacian prediction filter is to employ a least squares fitting
of the weights in order to minimize the approximation error. This approach, adopted
in several works [27, 37], proved to be numerically unstable when directly applied to
terrain sets. To overcome this issue, Wagner et al. [37] did not include the boundary
vertices in the downsampling process. In regions where the one-ring neighborhood
does not have a convex (x, y) projection, negative weights can appear. Furthermore,
the large magnitude of the weights may lead to numerical instability during the
subsequent update stage. To counteract these effects, we propose a non-negative
least squares (NNLS) fitting of the weights in Eq. (40), such that the magnitude of
the wl,vn vector is minimized. To achieve a similar Laplacian smoothing effect, the

sum
∑

vm∈N 1
v (vn)

pl,vn (vm) should be equal to 1. This constraint can be directly added to

the NNLS solver. By design, this modification improves the root mean square error
throughout the hierarchical downsampling, as it will be later discussed in the results
section. We note that positive and convex weights allow for the removal of odd
boundary vertices. Nevertheless, computing these weights incurs a computational
penalty, so we only recommend this choice for scenarios where minimizing the
approximation error is crucial.

In terms of storage complexity, the Laplacian matrix is very sparse. As a con-
sequence, the prediction matrix at level l, Pl , is also sparse, each of its rows being
populated with the weights used to predict the same odd vertex, vn , from its even
neighbors.

Update Filter Construction

The heuristically guided lazy wavelet removal of details minimizes feature loss,
but does not propagate detail loss to inferior levels. Wavelet transforms manage
this problem by redistributing the extracted detail among the coarser scales. This
information is effectively contained in the difference vectors. Without compensating
for these losses, the algorithm would mostly resemble incremental simplification.
The update filter of the lifting scheme is responsible for distributing the lost details
among the even vertices in a way that preserves an aggregate signal property such as
signal average. We opt for this choice because it helps maintain both overall shape
and decreases the approximation error, as we will later experimentally observe.
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Because the prediction filter determines the amount of detail loss, the update filter
should express a dependency on the prediction weights. In [27], the authors suggest
the following expression for the update filter vectors:

ul,vu = 0.5
∑

vp,i∈N 1
v (vu)∩Vol+1

pl,vp,i

[
pl,vp,1 , pl,vp,2 , . . . , pl,vp,k

]
, (43)

where vu represents an even vertex, vp,i denotes an odd one-ring neighbor of this
vertex, and pl,vp,i ≡ pl,vp,i (vu) is the predictionweight vu contributed in estimating its
vp,i odd neighbor. By using this design, there is no guarantee the signal average will
be preserved, unless applied to unweighted graphs, hence when using the umbrella
operator Laplacian.

Abdul-Rahman et al. [1] proposed a similar approach where the update filter
construction aims to directly preserve the average value of the one-ring neighborhood
of an odd vertex before and after its removal. Using the same update vector for all
even neighbors, the following equation ensues:

1

N + 1

⎛

⎝wl,vn +
∑

vm∈N 1
v (vn)

(pl,vn (vm) + 1)sl+1,vm

⎞

⎠ = (44)

1

N

∑

vm∈N 1
v (vn)

(sl+1,vm + ul,vm ), (45)

with N = |N 1
v (vn)|, and the update vectors ul,vi = ul,v j = uN 1

v (vn) for any vi , v j ∈
N 1

v (vn). Thus, the uniform update vector is determined as

uN 1
v (vn) = 1

N + 1
wl,vn +

∑

vm∈N 1
v (vn)

Npl,vn (vm) − 1

N (N + 1)
sl+1,vm . (46)

In case the prediction filter weights correspond to the umbrella operator type of
Laplacian, the second term in Eq. (46) vanishes. Generally, this design requires
storing update weights for both difference vectors and even nodes from the previous
level, thus becoming a more memory consuming approach. By aiming to directly
preserve the one-ring average of the scaling coefficients, it becomes more difficult to
find update weights that depend only on the difference vectors. This is due to the fact
that determining such weights implies solving a sparse system involving all scaling
coefficients. In the multivariate scenario, this system becomes overdetermined and
an exact solution may not exist. In this situation, an approximate solution must be
searched for. Overall, this process is more complex than the entire lifting pipeline.

In [9] we also considered the solution proposed by Jansen et al. [22]. In principle,
it also exploits the average preserving requirement. This prerequisite provides a
mathematical constraint that can be expressed in terms of the integrals of the scaling
functions, as described for the one-dimensional context discussion. Let ςl,vu be the
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integral of the scaling function φl,vu (i.e. an element of Φl,Vel+1
corresponding to the

vertex vu ∈ El ). Rewriting Eq. (23), we obtain

ςl,vu = ςl+1,vu +
∑

vk∈N 1
v (vu)∩Vol+1

pl,vk (vu)ςl+1,vk . (47)

The wavelet biorthogonality condition requires for each wavelet function to have
zero integral. In consequence, when integrating equation (29) the left hand side term
vanishes, i.e.,

0 = ςl+1,Vol+1
− Ulςl,Vel

. (48)

Further rewriting Eq. (25) for each predicted vertex, vp ∈ Vol+1 , leads to

ςl+1,vp = uᵀ
l,vp

ςl,N 1
v (vp), (49)

where ul,vp is the vector containing the update weights this vertex contributes with
for each of its one-ring, even vertices. Finding ul,vp requires solving an overde-
termined equation of the form α = uᵀv, where u is the unknown vector. From all
possible solutions, both Jansen et al. [22] andWagner et al. [37] choose the minimum
update norm solution due to its stabilizing effect. This translates into settingu = αv

‖v‖2 .
Finally, Eq. (26), which gives the expression of the update vector of coefficients for
vp, becomes

ul,vp = ςl+1,vp∑
vk∈N 1

v (vp)
ς2
l,vk

ςl,N 1
v (vp). (50)

With these results, the update Eq. (31) of an even scaling coefficient for a vertex vu
is written as

sl,vu = sl+1,vu +
∑

vn∈N 1
v (vu)∩Vol+1

ul,vu (vn)wl,vn . (51)

The choice of the scaling functions does not affect the so far described transform.
Since the initial integrals ςl+1,El+1 need to be computed, one option is to assume a
choice of the scaling functions such that these integrals are all equal to 1.

Given the fact that a terrainmeshhas sparse connectivity, thefiltermatrices are also
sparse. Each oddnode is surrounded by even nodes, ensuring a 25%average reduction
factor for each decimation stage. Asymptotically, almost 80% of the initial edge
density will still be required to store the filter matrices. Nevertheless, the information
is still very sparse and lends itself for specific algebraic manipulations after the
cascaded analysis stages.
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Algorithm 3 Downsampling algorithm
INPUT: a d-dimensional point cloud consisting of vertex-attribute pairs.
OUTPUT: the lowest resolution vertex set, s0,V0 , the chain of prediction and update matrices,
(Pl )l and (Ul )l , and the string of difference vectors, (wl,Vol+1

)l , where l ranges from 0 to the total
number of refinement levels, L .
TRIANGULATE: the input set, VL .
for l := L - 1 downto 0 do
COMPUTE: the removal cost of each vertex using algorithm 1
PARTITION: the vertex set Vl+1 = Vel+1 ∪ Vol+1 using Algorithm 2.
COMPUTE: wl,Vol+1

and sl,Vel from sl+1,Vel+1
using Eqs. (30) and (31)

STORE: Pl , Ul and wl,Vol+1
end for
STORE: s0,V0

2.3 Algorithm Overview

The lifting scheme flow depicted in Fig. 1 is at the core of the iterative downsam-
pling process, illustrated in Fig. 4 and summarized in Algorithm 3. In overview, we
can identify three main stages: the cost computation, the labeling or lazy wavelet
decomposition and the analysis itself. Together, these stages resemble the structure
of a classical filter bank.

This algorithm has O(N log N ) complexity (where N is the total number of
vertices). This higher complexity is due to the nodes being sorted according to their
removal cost. While an O(N ) complexity is achievable, the salient features will not

Fig. 4 An overview of our
hybrid algorithm for
downsampling an input set
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be preserved as faithfully (see Fig. 8). The initial triangulation can be performed only
once, during the pre-processing stage. During the downsampling steps, the one-rings
of the odd vertices can be re-triangulated on the fly, keeping a consistent manifold
connectivity.

The spatial complexity of this method is linear with respect to the size of the input
data set. More precisely, the lowest resolution data and the difference vectors require
the same amount of storage as the initial point cloud. Empirically, the triangulated
meshes will not be far from semi-regular, thus the prediction weights will require
6N scalars in total. For the update weights, sparse structures corresponding to even
vertices being surrounded by 3 odd vertices on average have to be stored. Assuming
a decimation rate of 25%, the spatial requirements for storing the update weights
asymptotically approach 15N .

Quadric Error Matrix Update Procedure

The quadric error metric matrix fusion of collapsed vertex pairs is a property that
we adapt locally, in the odd vertex neighborhood. We achieve this by distributing the
matrix corresponding to an odd sample, Q(vo j+1), among its even neighbors. Thus,
each even matrix is updated by

Q(ve j ) = Q(ve j+1) +
∑

vo j+1∈N 1
v (ve j+1 )∩Vo j+1

ρ j,ve j+1
(vo j+1)Q(vo j+1), (52)

where ρ j,ve j+1
(vo j+1) is the redistribution weight describing the influence of vo j+1 on

its even neighbor, ve j+1 . We propose using the same weights that the prediction filter
relies on estimating the lost information, i.e.,

ρ j,ve j+1
(vo j+1) = p j,vo j+1

(ve j+1)
∑

vu j+1∈N 1
v (vo j+1 )

p j,vo j+1
(vu j+1)

. (53)

This choice is natural since the even vertex that contributes more to the prediction of
an odd neighbor receives a larger fraction of its quadric errormatrix.We justify this to
be a more natural choice given that most prediction weights automatically encode a
node similarity magnitude. Other quadric error matrix redistribution weights choices
and strategies are possible and were analyzed in [7, 8]. Experimentally, the choice of
weights presented through Eq. (53) was determined to achieve, on average, slightly
more accurate approximations than the alternatives presented in [8].

3 Results and Discussion

We assessed the validity and efficiency of ourmethod through a series of experiments
involving three different LiDAR sets. The first model is a scan fragment of the Great
Smoky Mountains (available through the www.opentopography.org/ portal) with a

www.opentopography.org/
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Fig. 5 Smoky Mountains fragment. Top row, left to right: shape and attribute evolution at levels 0,
12 and 24 using the UG filters. Bottom row: comparative charts for the RMSE evolution across 12
analysis sequences

density of approximately 2.23 points per square meter and a size of 280,000 points
(Fig. 5). The second set is larger and much denser at approximately 20 points per
square meter and a count of 9 million (Fig. 6). The third set is larger but less denser,
consisting of 11.5 million points, at a density of 5 points per square meter (Fig. 7).
These larger and denser LiDAR samples were acquired through custom aerial scans
conducted over two regions of theRomanianCarpathians. All terrain samples contain
both geometry (point coordinates) and attribute information (i.e., vegetation type, as
a scalar between 0 and 20, and height above ground, as a scalar between 0 and 30).
All coordinates are translated and scaled to fit within a zero-centered unit bounding
box dividing them by their range width. This way we significantly alleviate the effect
of the diverse scales on the final outcome. However, the attributes could be scaled
differently if one desires to diminish or enhance their contribution.

3.1 Root Mean Squared Error Measurements

As a measure of quality and accuracy, we have chosen the root mean square error
(RMSE). Although other error measuring mechanisms exist, the RMSE or L2 norm
is one of the simplest and most efficient indicators of shape and attribute quality
(see [30] for a more in-depth discussion of the properties and applications of this
error). In our case, the RMSE computation concerns both geometry and attribute
vertex coordinates, except for the artificially added bending energy. Thus, if sl,vi is
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Fig. 6 High-density Carpathian Mountains fragment. Top row, left to right: shape and attribute
evolution at levels 0, 12 and 24 the UG filters. Bottom row: comparative charts for the RMSE
evolution across 12 analysis sequences

Fig. 7 Low-density Carpathian Mountains fragment. Top row, left to right: shape and attribute
evolution at levels 0, 12 and 24 the UG filters. Bottom row: comparative charts for the RMSE
evolution across 12 analysis sequences
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the scaling coefficient at level l of a node vi , and sL ,vi is the corresponding coefficient
in the initial input set, the RMSE is evaluated as

RMSEl =
√∑

vi∈El

‖sL ,vi − sl,vi ‖2. (54)

For the multiresolution representation experiments, we have also considered sev-
eral prediction and update filter designs. In this respect, we labeled the result sets
according to the type of prediction and update filters as follows:

• prediction filters: uniform weights obtained by using the unweighted graph Lapla-
cian (UG), present in the design of Martinez and Ortega [27], the cotangent Lapla-
cian weights (CL), chosen by Abdul-Rahman et al. [1], the Fujiwara or geometric
Laplacian (GL), which is our proposal for a Laplacian design for multivariate
data and a constrained non-negative least squares weights design (abbreviated as
NNLS), which we propose in order to minimize the detail vector norms.

• update filters: the filter design proposed byMartinez and Ortega [27] compensates
for the detail loss incurred by the removal of the odd vertices, but it does not
preserve the graph signal average for weighted graphs, unless all weights are
uniform. On the other hand, the design used in [22, 37], achieves this goal while
minimizing the norm of the update coefficient vectors. To distinguish between the
first option and the minimum norm update weights, we have added the MN suffix
to the prediction filter abbreviation. The third and final design option, proposed in
[1], preserves the local, one-ring mean of the data samples and is abbreviated as
ORMP.

3.2 Feature Selectivity and Robustness to Noise

For a proof of concept, we subjected the Smoky Mountains terrain fragment to a
sequence of 8 analysis steps. The same set was again analyzed using the lazy-wavelet
partitioning strategy employed in [27, 37].Without our proposed feature preservation
heuristic, the lowest resolution representation will lose a bigger fraction of the sharp
features, as depicted in Fig. 8.

Computing the discrete curvatures using the method of [28] is recommended for
meshes with low to no noise. In [9, 10], we have experimentally shown that the
proposed heuristic partitioning of the data points into odd and even categories is
robust to noise.
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Fig. 8 Preservation of
salient features after 8
analysis steps. Top image:
high-density, high-detail
input (1.6M faces), middle
image (160K triangles): the
combined QEM and thin
plate energy cost, bottom
image (158K triangles): the
graph coloring strategy used
in [27, 37]

3.3 Vertex Frequency Analysis Interpretation

Vertex frequency analysis is a more recently developed subfield of Graph Signal
Processing. This subfield discusses solutions for a graph equivalent of time and
frequency domain localized transforms such as the windowed fast Fourier trans-
form, the short-time Fourier transform or the windowed fast wavelet transform.
Shuman et al. [33] described a solution based on a new definition for graph-based
translation operators. Jestrović et al. [23] improved this solution by designing an
O(N 3) implementation, as opposed to the O(N 4) complexity of the original. While
these developments are sound mathematical generalizations (although some of the
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Fig. 9 Kauai Mountain fragment consisting of 79,000 point samples. Represented are level 6, 3
and 1 corresponding to the initial set, the middle resolution and the lowest resolution in a cascade
of 5 analysis passes

translation operator properties on graphs are no longer preserved with respect to the
one-dimensional case), their computational complexity may not lend them useful for
processing very large sets that are common in most applied problems.

Using the wavelet coefficients resulted from a cascade of analysis steps, we can
offer an intuitive interpretation that can partially cover the goal of vertex frequency
analysis. Given the nature of lifting scheme wavelet constructions, it is not directly
possible to discuss spectral features of the signal. However, the detail vectors associ-
ated to the odd samples at each scale offer an intuition in this direction. Typical graph
vertex frequency analysis algorithms employ an adapted form of the windowed fast
Fourier transform or simply restrict the Laplacian eigendecomposition to a neigh-
borhood of a certain size around each vertex. Detail vectors, on the other hand, are
directly associated with a single vertex and a single scale. Thus, the information
encoded in these entities is, by definition, localized in space and frequency domain.
As opposed to classical vertex frequency interpretations, it is not directly possible to
examine more than one spectral component for a specific odd vertex. Nevertheless,
the magnitude of the wavelet coefficients is a direct indicator of the strength of the
local graph signal with respect to the characteristic frequency band of a level of
resolution.

Wepropose an experimentwherewe subject a terrain fragment of theKauaiMoun-
tain in Hawaii (extracted from the www.opentopography.org portal), to a sequence of
five cascading analysis steps (see Fig. 9). The resulting difference vector amplitudes
are then plotted in Fig. 10.

www.opentopography.org
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(a) (b)

Fig. 10 Difference vector magnitude across 5 consecutive analysis passes of the Kauai fragment
Fig. 9. The a subplot reveals the height above ground of the initial terrain points, while the b subplot
containsmarkers indicating the strength (size) and frequency band of the resulting difference vectors
at each of the odd vertices present in the a subplot. The regions in a with abrupt variations register a
high frequency footprint, while similar points clustered together register lower frequency signatures
as well

4 Conclusions

Several conclusions can be drawn by analyzing the results obtained using the dif-
ferent lifting designs. First, by using the update designs that are not guaranteed to
preserve the signal average for general graphs (e.g. [27]), we observe the RMSE
levels have the highest values, regardless of the prediction filter design. As such,
the charts Figs. 5a, 6a and 7a reveal that over a progression of 12 analysis steps, the
uniformweighing prediction design (UG) is, on average, the better choice. While the
geometric Laplacian (GL) and the non-negative least squares weights (NNLS) yield
better quality results, after 6 or 7 decomposition steps they become unstable. The use
of the cotangent Laplacian weights (CL) is not justified either, since this design takes
into account only the geometric structure of the data, regardless of the attribute vari-
ability. Overall, both uniform and cotangent Laplacian weights produce more stable
results, but the uniform design is to be preferred due to its consistently lower RMSE
levels. Next, directly preserving the average of the scale coefficients in a one-ring
neighborhood (ORMP) contributes to both stability and error-minimizing properties
of the analysis sequence for all sets (charts Figs. 5b, 6b and 7b). The best results are,
however, achieved through the use of the minimum norm, mean preserving update
weights (proposed by Jansen et al. [22]). This design ensures the highest stability
while sensibly decreasing the mean square error. More specifically, for all terrain
sets the ORMP design is surpassed by the combined use of Laplacian prediction
weights and the minimum norm update vector coefficients. Both of our proposals,
the geometric Laplacian (GLMN) and the non-negative least squares (NNLSMN)
attain an almost twofold accuracy over the cotangent (CLMN) and uniform weights
Laplacian (UGMN). While the RMSE could be reduced even further by lifting the
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constraints on the least squares prediction filter, as proposed in [27, 37], the scheme
becomes numerically unstable due to overfitting of the prediction weights values
and the prediction of the boundary vertices. While we can fix the boundary vertices
and alleviate the stability issue, our design does not require such vertex selection
constraints to be applied.

The multiresolution experiments conducted with the three samples also confirm
the 25% reduction ratio of the number of vertices after each downsampling step.
More specifically, the average reduction rate attained for the Smoky set (Fig. 5) is
27%, for the high-density Carpathian set (Fig. 6) the average ratio is 28%, and for
the low-density Carpathian set (Fig. 7) this average ratio is 27%.

As immediate applications for this graph-wavelet multiresolution framework, we
suggest filtering [11] and, as experimentally examined in Fig. 10, we also suggest
considering the potential of using the detail vector information to offer an intuitive
classification similar to that of vertex frequency analysis.
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