
8How to Integrate Data fromMultiple Biological
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8.1 Overview

The human brain is a massively parallel learning machine that contains multiple
highly complex structurally and functionally overlapping subsystems, with pro-
cesses occurring at different temporal and spatial scales, and interacting with every
other bodily system through the peripheral nervous system. In order to gain a more
complete understanding of its organization and function, information from various
layers of this complex set of biological processes must be evaluated simultaneously,
in a truly synergistic fashion.

To begin with, collecting such information directly often entails invasive pro-
cedures that are restricted to very narrow patient populations, such as with elec-
trocorticography (ECoG) and deep brain electrodes. However, in order to be also
able to study much broader healthy population baselines, it is necessary to pursue
less invasive routes. Specifically, those enabled by means of indirect measurements
from secondary biological processes such as cerebral blood flow and induced
electromagnetic fields. While noninvasiveness often comes at the cost of blurring
some of the true underlying neurological signals, the greater availability of subjects
enables normative as well as comparative analyses, with far greater statistical power
due to the substantially increased sample sizes. Furthermore, one must also be
mindful of inherent sensor and device limitations dictating the temporal and spatial
resolutions of the data, which ultimately yield only fragments of the measured
processes, adding yet another layer of complexity to the data.

With these in mind, it is sensible to hereon broadly associate the term bio-
logical layer with different imaging modalities, i.e., the signal of some direct
or indirect neurobiological process captured by a device. Common examples of
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such modalities include, but are not limited to, structural, functional, and diffusion
weighted/spectrum magnetic resonance imaging (sMRI, fMRI, and DWI/DSI,
respectively), electro- and magneto-encephalography (E/MEG), functional near-
infrared spectroscopy (fNIRS), x-rays, computerized tomography (CT), positron
emission tomography (PET), single-photon emission CT (SPECT), intracranial
electrodes, genetic material information such as DNA microarrays, single nucleotide
polymorphism and DNA methylation, as well as metabolomic and microbiome
derivatives, etc. Demographic and behavioral information on individuals and popu-
lations of interest are also going to be considered modalities for the purposes of this
chapter.

Under this broad definition, we will focus on the integration of biological layers
by means of direct joint analysis of all modalities available. Joint analyses are those
which simultaneously utilize data from all modalities in a synergistic way and, thus,
can be categorized as data fusion approaches. A key requirement for these kinds of
analyses is that the information contained in each modality have been collected
on the same subject so that the data are naturally linked. For the same reason,
whenever feasible, simultaneous measurements are also preferred over (and likely
more informative than) measures from different sessions since that entails a stronger
link between modalities.

The goal of integrating multiple biological layers is to identify the neurobio-
logical processes underlying the measurements recorded in the data in order to
understand their function, structure, and interaction. Ideally, we want to make
predictions about these processes and be able to explain their causal mechanisms.
Each biological layer is itself only a part of the underlying process. For example,
blood flow picked up by fMRI and electrical activity of neurons registered by EEG
are parts of the same process of neural activity. Only together—plus many other
additional pieces of information, such as neural connectivity routes—they provide
a complete picture of the underlying mechanism. Available imaging modalities
provide a (partial) glimpse on many of the individual processes within a functioning
brain. When any of them are used, we are dealing not only with the partial
nature of the biological layers but also with the fact that each of the layers is
measured with uncertainty that is different for each imaging modality. Fortunately,
the uncertainty introduced by the employed imaging modality is often different
for each biological layer and, optimistically, can cancel if the imaging modalities
are properly combined. The difference in uncertainties is illustrated by MEG
and fMRI, where the former has arguably greater spatial, while the latter has
greater temporal uncertainty relative to the underlying process of neural activity.
Given the insufficient nature of each modality, the only way we can build a
complete understanding of the brain is by combining these complementary sources.
Together, the limited views from each modality allow us to peer into the underlying
biostructure. In summary, scientific discovery with data fusion should proceed in
cycles: measuring different physical processes at various biological and temporal
scales, synthesizing that information using specific methods, understanding the
underlying processes identified, and repeating with the gained insights.
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In the following sections, we will discuss two principled approaches to fusion
of multimodal imaging data. The first is blind source separation (BSS), which
deals directly with the problem of identifying underlying sources utilizing statistical
(un)correlation and (in)dependence within and across modalities. The second is
deep learning, focusing on multimodal architectures for classification, embedding,
and segmentation.

8.2 Blind Source SeparationMethods

Blind source separation (BSS) deals with the general problem of blindly recovering
hidden source signals y from a dataset x, i.e., without any knowledge of the function
f nor the parameters θ which generate x = f (y, θ). It can be organized into
subproblems according to the number of datasets contained in x and the presence
of subsets of y grouped as multidimensional sources within any single dataset. The
following taxonomy arranges BSS subproblems by increasing complexity:

SDU In the single-dataset unidimensional (SDU) subproblem, x consists of a
single dataset whose sources are not grouped. This is the seminal and most
studied area of BSS, including classical problems such as independent com-
ponent analysis (ICA) (Comon 1994; Bell and Sejnowski 1995; Hyvärinen
and Erkki 1997) and second-order blind identification (SOBI) (Belouchrani
et al. 1993; Yeredor 2000).

MDU In the multidataset unidimensional (MDU) subproblem, x consists of one
or more datasets and, while no sources are grouped within any dataset,
multidimensional sources containing a single source from each dataset
may occur. Examples in this area include canonical correlation analysis
(CCA) (Hotelling 1936), partial least squares (PLS) (Wold 1966), and
independent vector analysis (IVA) (Adalı et al. 2014; Kim et al. 2006).

SDM In the single-dataset multidimensional (SDM) subproblem, x consists of a
single dataset with one or more multidimensional sources. Examples include
multidimensional ICA (MICA) (Cardoso 1998; Lahat et al. 2012) and
independent subspace analysis (ISA) (Hyvärinen and Köster 2006; Szabó
et al. 2012).

MDM In the general multidataset multidimensional (MDM) problem, x contains
one or more datasets, each with one or more multidimensional sources
that may group further with single or multidimensional sources from the
remaining datasets. Examples include multidataset ISA (MISA) (Silva et al.
2014a,b) and joint ISA (JISA) (Lahat and Jutten 2015).

These definitions support a natural hierarchy in which subproblems are contained
within one another, with SDU problems being a special case of MDU, SDM, and
MDM problems, and MDU and SDM problems being special cases of MDM.

The “blind” property of BSS makes it particularly powerful and attractive in
the absence of a precise model of the measured system and with data confounded
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by noise of unknown or variable characteristics. These are marked signatures of
multimodal fusion applications exploring the extreme complexities of the human
brain, with largely heterogeneous noise characteristics and artifacts occurring across
data types. This is a clear indicator that BSS is ripe for application in multimodal
fusion of human brain data, as we will illustrate in the following sections. To begin
with, we present the mathematical notation for the general MDM problem, followed
by an example of an application of ICA to fusion of brain MRI and EEG features.
We then briefly review other more advanced applications of BSS to multimodal
fusion of brain imaging data before moving on to deep learning methods.

8.2.1 General MDM Problem Statement

Given N observations of M ≥ 1 datasets (or modalities), identify an unobservable

latent source random vector (r.v.) y = [
yT1 · · · yTM

]T
, ym = [y1 · · · yCm ]T , that

relates to the observed r.v. x = [
xT1 · · · xTM

]T
, xm = [x1 · · · xVm ]T , via a mixture

function f (y, θ), where θ are the function parameters. Both y and the transformation
represented by f (y, θ) have to be learned blindly, i.e., without explicit knowledge
of either of them. In order to make this problem tractable, a few assumptions are
required:

1. the number of latent sources Cm in each dataset is known by the experimenter;
2. f (y, θ) = Ay, i.e., a linear transformation, with θ = A;
3. A is a V̄ × C̄ block diagonal matrix with M blocks, representing a separable

layout structure such that xm = Amym, m = 1 . . .M , where C̄ = ∑M
m=1 Cm,

V̄ = ∑M
m=1 Vm, and each block Am is Vm × Cm;

4. some of the latent sources in y are statistically related to each other and this
dependence is undirected (non-causal), occurring both within or across datasets;

5. related sources establish subspaces (or source groups) yk , k = 1 . . . K , with
both K and the specific subspace compositions known by the experimenter and
prescribed in an assignment matrix Pk .

Under these assumptions, recovering the sources y amounts to finding a linear
transformation W of the observed datasets via the unmixing function y = Wx.
This is accurate when W = A−, the pseudo-inverse of A, which implies W is also
block diagonal, thus satisfying ym = Wmxm. Source subspaces are then estimated
as yk = PkWx. In the following, unless noted otherwise, the m-th Vm × N data
matrix is denoted as Xm, containing N observations of xm along its columns; X
denotes a V̄ × N matrix concatenating all Xm. Figure 8.1 illustrates this model,
starting with its special cases.
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Fig. 8.1 Side-by-side illustration of the generative and decompositional system representations
of linear BSS problems. Each of M datasets (or modalities) is represented by a matrix Xm, with
the same number of observations N along the columns. A column of Xm is represented by xm
(likewise for Ym and ym). The generative system representation describes how each modality is
generated from a set of underlying sources, in this case by a linear transformation of the source
matrix Ym through Am, the mixing matrix. In the general case, both Am and Ym are unique
to each modality. Associations across modalities are represented by subspaces (K), which are
collections of statistically dependent sources. This dependence is indicated by coloring sources
with the same color. The linearity of the generative system implies linearity of the decompositional
system. The decompositional representation indicates how source estimation occurs, namely by
decomposing modalities into their underlying sources via a linear transformation of each modality
Xm through Wm, the unmixing matrix. In this representation, each Vm-dimensional column xm is
linearly transformed into a Cm-dimensional vector ym, whose elements (the individual sources)
are then composed with other sources into subspaces, according to an assignment matrix P and
non-linearity h (·) ensuing from the choice of activation and objective functions
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8.2.2 Case Study: Multimodal Fusion with Joint ICA

Here we illustrate a case study of blind source separation applied to multimodal
fusion of brain imaging data. Specifically, we focus on joint ICA (jICA) (Calhoun
and Adalı 2009), a very attractive model because of its simplicity as an MDU-
type model cleverly designed to operate like an SDU-type model. Like ICA, it
seeks statistically independent yk such that the joint probability density function
(pdf) of all sources, p(y), factors as the product of its marginal subspaces: p(y) =∏K

k=1 p(yk). Its hallmark assumption, however, is that the same mixing matrix
A generates all modalities. It also assumes none of the multimodal sources are
statistically related, i.e., p(yk) = ∏M

m=1 p(ymk), ∀k, and that the pdf p(·) is the
same for all sources and modalities. This is equivalent to constraining the block-
diagonal structure in the MDU subproblem to Am = A, ∀m. However, rather than
choosing an M-dimensional joint pdf for yk , jICA combines corresponding sources
ymk of yk into a single one-dimensional pdf p(yi), where i is the source number and
i = k, which conveniently permits an SDU-type solution utilizing any off-the-shelf
ICA algorithm after simple side-by-side concatenation of the data matrices from
each modality. This also eliminates the requirement that the number of observations
N be the same (and corresponding) for all modalities, so N1 may differ from N2,
yielding N = N1 +N2 and V = V1 = V2 = number of subjects after concatenation.
Thorough simulation studies (Silva et al. 2014c) have shown that jICA is fairly
robust to violation of the independence across modalities and same pdf assumptions
but not so with violation of the same mixing matrix A assumption, which resulted
in poorer performance.

Three seminal works have utilized joint ICA for multimodal fusion in brain
imaging as a means to draw upon each modality’s strengths and provide new
information about the brain not offered by either modality alone. Firstly, fusion
of multitask fMRI features (Calhoun et al. 2006b) promoted the direct use of
data modeled at the subject level in a “unified analytic framework” for joint
examination of multitask fMRI activations, leading to interesting, new findings
that were missed by traditional analyses. Blood oxygen level dependent (BOLD)
fMRI scans from 15 healthy control subjects and 15 outpatients with chronic
schizophrenia matched for age, gender, and task difficulty were collected during two
separate tasks: an auditory “oddball” task (AOD) and a Sternberg working memory
task (SB). For every subject, regressors were created by modeling correct responses
to task-specific stimuli as delta functions convolved with a canonical hemodynamic
response function (HRF). These regressors plus their temporal derivatives and an
intercept were included in a general linear model (GLM) of multiple regression fit
to every voxel timeseries. The resulting AOD target-versus-standard contrast and
SB recognition (or recall) contrast against baseline from each subject (averaged
over all levels of difficulty) were corrected for amplitude bias due to spatially
varying latencies using derivative boost and then arranged into matrices X1 and
X2 (AOD and SB features, respectively). Both matrices were normalized to have
the same average sum-of-squares before concatenation, followed by (joint) PCA
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data reduction and ICA, using the extended Infomax algorithm to adaptively allow
some flexibility on the combined source pdfs p(yi) and, thus, mitigate potential
side effects of violations to the same pdf assumption. Finally, rather than testing
thousands of voxels, two-sample t-tests on each column of the shared subject
expression profiles A were conducted to identify sources with significant group
differences in coupling (regarded as a relative measure of the degree of group-
level functional connectivity difference). For the identified source (Fig. 8.2), the
joint probability of the multitask data p(x1(n1), x2(n2)) was assessed by means
of subject-specific joint histograms, where nm were the voxel indexes for modality
m sorted from largest to smallest by their source values ymn over all n = 1, . . . , N ,
on voxels surviving an arbitrary |Z| > 3.5 threshold.

Secondly, fusion of fMRI and sMRI features (Calhoun et al. 2006a) enabled a
direct study of the interactions and associations between changes in fMRI activation
and changes in brain structure contained in sMRI data. Utilizing probabilistic
segmentation (soft classification) maps of gray matter (GM) concentration derived
from T1-weighted sMRI images and the AOD target-versus-standard contrast from
the same subjects described above, feature matrices X1 and X2 were created,
respectively. The sign of alternating voxels was flipped in GM maps to yield zero-
mean maps for each subject (this step was undone after jICA estimation and before
histogram computation and visualizations). Before concatenation of X1 and X2,
both matrices were normalized to have the same average sum-of-squares. Joint
PCA data reduction and ICA followed, using the extended Infomax algorithm to
adaptively allow some flexibility on the combined source pdfs p(yi) and, thus,
mitigate potential side effects of violations to the same pdf assumption. Like in the
multitask case, two-sample t-tests on each column of the shared subject expression
profiles A were conducted to identify sources with significant group differences
and, for the identified source (Fig. 8.3), the joint probability of the multimodal data
p(x1(n1), x2(n2)) was assessed by means of subject-specific joint histograms.

Lastly, fusion of EEG and fMRI features (Calhoun et al. 2006c) from 23
healthy control subjects enabled an attempt to resolve neuronal source activity
with both high temporal and spatial resolution without needing to directly solve
hard, untractable inverse problems. Event related potentials (ERP) were generated
by time-locked averaging target epochs of the EEG signals from the midline
central electrode (Cz) 200ms before to 1200ms after each target stimulus in an
auditory “oddball” task. Also, t-statistic maps were obtained from fitting a GLM
of regression to every voxel timeseries of a BOLD fMRI scan during the same
oddball task, for a target-versus-standard contrast. Both features (ERPs (X1) and
t-statistic maps (X2)) were computed on the same subjects for both modalities,
with ERPs being interpolated to a number of ERP timepoints (N1) that matched
the number of fMRI voxels (N2). Joint estimation of the ERP temporal sources (Y1)
and t-map spatial sources (Y2) was carried out with jICA. High temporal and spatial
resolution “snapshots” were then estimated by combining the multimodal sources,
first as rows of FN1×N2 = ∣

∣Y�
1

∣
∣ Y2 (an fMRI movie at high temporal resolution—

Fig. 8.4), then as rows of EN2×N1 = ∣∣Y�
2

∣∣ Y1 (a set of voxel-specific ERPs at
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Fig. 8.2 Joint patterns of multitask group differences in schizophrenia. Top panel: Coupled joint
source (network of co-varying maximally spatially independent maps) with significant difference
in mixing coefficients between healthy controls and schizophrenic patients. Schizophrenia patients
demonstrated lower mixing coefficient values A (the ICA loadings), which was interpreted as
decreased functional connectivity in the joint network, particularly in temporal lobe, cerebellum,
thalamus, basal ganglia, and lateral frontal regions, consistent with the cognitive dysmetria and
frontotemporal disconnection models. Lower panel: (a) Subject-specific joint histograms: the
correlation between the two tasks was significantly higher in patients than in controls, suggesting
they activated “more similarly” on both tasks than controls; (b) Difference of group average
histograms; (c,d) Marginal histograms: more AOD task voxels were active in controls and the SB
task showed heavier tails in patients. Overall, the authors concluded that “patients are activating
less, but also activating with a less-unique set of regions for these very different tasks.” This
suggested “both a global attenuation of activity as well as a breakdown of specialized wiring
between cognitive domains.” Copyright (2005) Wiley. Used with permission from V. D. Calhoun,
A method for multitask fMRI data fusion applied to schizophrenia, Human Brain Mapping, John
Wiley and Sons
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Fig. 8.3 Joint patterns of structural and functional group differences in schizophrenia. A joint
multimodal independent source (not shown) with significant difference in mixing coefficients
between patients and controls (higher for controls than for patients). Healthy controls showed
mostly higher AOD activation in bilateral temporal lobe structures and cerebellum, associated with
lower GM concentrations in bilateral frontal and parietal, as well as right temporal regions (not
shown). A hypothesis of GM regions serving as “a morphological substrate for changes in AOD
functional connectivity in schizophrenia” was suggested based on the coupling of those modalities
via their shared mixing coefficients. The figure illustrates the t-values of a voxel-wise two-sample
t-test for controls vs. patients of the data (X1 and X2) within the source regions surviving a
|Z| > 3.5 threshold: (a) group differences in the AOD data over regions detected in the AOD part
of the joint source (no outline) and GM part of the joint source (outlined in white), showing “more
AOD activation in controls than patients.” (b) group differences in the GM data over regions
detected in the AOD part of the joint source (no outline) and GM part of the joint source (outlined
in white), showing “GM values are increased in controls” over the AOD-detected regions, and
decreased over the GM-detected regions (more so on the left than on the right). Orange: controls
> patients; blue: the opposite. Copyright (2005) Wiley. Used with permission from V. D. Calhoun,
Method for Multimodal Analysis of Independent Source Differences in Schizophrenia: Combining
Gray Matter Structural and Auditory Oddball Functional Data, Human Brain Mapping, John
Wiley and Sons

high spatial resolution—not shown), where | · | is the element-wise absolute value
function. Overall, the results provide compelling evidence of the utility of such
descriptive representation of the spatiotemporal dynamics of the auditory oddball
target detection response, allowing the visualization, in humans, of the involved
neural systems including participatory deep brain structures.

In summary, these results corroborate with previous evidence that methods
combining the strengths of both techniques may reveal unique information and
provide new insights into human brain function.
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Fig. 8.4 Spatiotemporal dynamics of the auditory oddball target response. The N1 peak for the
ERP data corresponded to primary and secondary auditory regions of the temporal lobe, and
motor planning regions, as was expected following the initial auditory stimulus and the ensuing
preparatory motor activity for the button press. Similarly, the N2 peak showed correspondence
with extensive temporal lobe areas, including heteromodal association cortex, with motor planning,
primary motor, and cerebellar regions also present, consistent with regions typically involved in
the execution of the motor response. The P3a peak corresponded with additional temporal lobe
regions, somatosensory cortex, and brain stem activity, consistent with what would be expected. In
particular, the reported association of brain stem activity was evidence supportive of a previously
hypothesized role for the locus coeruleus norepinephrine (LC-NE) system in generating the P3.
This led to the conclusion that jICA can “reveal electrical sources which may not be readily visible
to scalp ERPs and expose brain regions that have participatory roles in source activity but may not
themselves be generators of the detected electrical signal.” The image shows positive (orange) and
negative (blue) Z values. Reprinted from NeuroImage, Vol 30 (1), V. D. Calhoun et al., Neuronal
chronometry of target detection: Fusion of hemodynamic and event-related potential data, Pages
544–553, Copyright (2006), with permission from Elsevier

8.2.3 Advanced Blind Source Separation

The vast majority of approaches for multimodal analysis with BSS are rooted on
MDU models. Their key strength is in the ability to not only utilize uncorrelation (or
independence) between hidden sources for separation, like separate SDU models for
each modality would do, but also leverage the correlation (or dependence) among
corresponding multimodal sources to help steer the estimation procedure, auto-
matically identifying linked sources. This increases the overall source separation
power by leveraging information in one modality to improve estimation in the other
modalities and vice-versa. In the following, we briefly review a number of MDU
models and their applications to brain data analysis. The reader is encouraged to
explore a recent review (Silva et al. 2016) which outlines further details on the
models discussed below.
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When (un)correlation, i.e., linear (in)dependence, is the sole mechanism for
identification and separation of the sources, the models are categorized as second-
order statistics (SOS) models. Classical algorithms such as CCA (Hotelling 1936)
and PLS (Wold 1966), as well as more recent models such as multiset CCA
(mCCA) (Kettenring 1971) and second-order IVA (IVA-G) (Anderson et al. 2010,
2012; Adalı et al. 2014) fall under this category. CCA maximizes the correlation
between related source pairs yk=i = [y1i , y2i]� within the same subspace k, where
y1i = W1ix1 and y2i = W2ix2 for i = 1 . . . C sources, and Wmi is the i-th
row of Wm, while PLS maximizes their covariance instead. Some extensions of
these approaches have focused on expanding these notions beyond just 2 datasets
(or modalities), like multi-set CCA (mCCA) (Correa et al. 2009), as well as
leveraging higher-order statistics (HOS) to exploit source independence rather than
uncorrelation, as in higher-order IVA (Anderson et al. 2013).

CCA’s closed form solution for M = 2 datasets was utilized by Correa et al.
(2008) to identify highly correlated subject expression profiles across fMRI+ERP
and fMRI+sMRI datasets (with N = number of subjects). For three modalities,
mCCA based on sum of squared correlations (SSQCOR) was utilized for 3-way
fusion of fMRI+ERP+sMRI (Correa et al. 2009), also seeking correlated subject
expression profiles. In the case of fusion of simultaneous (concurrent) fMRI+EEG,
efforts have been made to identify correlated temporal profiles (N = time points)
using mCCA across modalities and subjects (one downsampled, HRF-convolved
single-trial ERP dataset and one fMRI dataset per subject: M = 2 × number of
subjects) (Correa et al. 2010). In all cases above, the mixing matrix was estimated
as Am = XY−

m, motivated by least squares projection. A CCA-type analysis was
also pursued in source power comodulation (SPoC) (Dähne et al. 2014a), seeking
associations between windowed variance profiles (neuronal oscillations from EEG)
in y1 and a single known fixed reference source (behaviorally relevant parameters)
y21 (considered to be already unmixed). Extensions of this method include canonical
SPoC (cSPoC) (Dähne et al. 2014b), which pursued CCA between “envelope”
transformations (instantaneous amplitudes) of ym, where xm were rest EEG data
from the same subject filtered at different frequency bands, and multimodal
SPoC (mSPoC) (Dähne et al. 2013), which pursued CCA between simultaneously
measured EEG (or MEG) temporal sources y1 and temporally filtered windowed
variance profiles of fNIRS (or fMRI) temporal sources y2. The key differences
between CCA and SPoC-type approaches are that y1 and y2 can have different
number of observations and at least one set of sources undergoes a non-linear trans-
formation. Another recent variant of CCA for multimodal fusion in neuroimaging is
structured and sparse CCA (ssCCA) (Mohammadi-Nejad et al. 2017). This approach
also identifies highly correlated subject expression profiles from multimodal data
but imposes non-negativity, sparsity, and neighboring structure constraints on each
row of Wm. These constraints are expected to improve the interpretability of the
resulting features directly from Wm (i.e., with no estimation of Am). The approach
was utilized for fusion of eigenvector centrality maps of rest fMRI and T1-weighted
sMRI from 34 Alzheimer’s disease (AD) and 42 elderly healthy controls from the



146 R. F. Silva and S. M. Plis

Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, identifying two sets
of multimodal regions highly associated to the disease label.

For PLS, Chen et al. (2009) utilized PLS regression to analyze GM concentration
images from sMRI and 18F-fluorodeoxyglucose (FDG) PET in two ways: (1)
defining X1 as the GM maps from N subjects, X2 as the FDG maps from the same N
subjects, and utilizing the (multivariate) PLS2 deflation strategy (Silva et al. 2016) to
predict the FDG maps from the GM maps; and (2) defining X1 = [X�

FDG,X�
GM ]�,

i.e., the (V1 + V2) × N spatial concatenation of FDG and GM maps, and X2
as the 1 × N age group label (younger or older), using (univariate) PLS1 for
deflation (Silva et al. 2016), deflating only X2 (but not X1, for the sake of better
interpretability). The latter approach is akin to jICA in the sense that the joint spatial
features “share” similar expression levels over subjects, although here data reduction
occurs at the feature dimension (Vm) instead of the subject dimension (N ). The
same approach was recently used with 3 modalities on mild cognitive impairment
(MCI) patients, some of which had converted to Alzheimer’s disease (AD) and some
who had not (Wang et al. 2016). A similar study on a larger population is also
available (Lorenzi et al. 2016).

In the case of modalities whose data can be arranged into multidimensional
arrays, it is possible to utilize multilinear algebra to extend PLS into multi-way1

PLS (N-PLS). This was utilized to fuse simultaneous EEG and fMRI recordings
of subjects resting with eyes closed (Martínez-Montes et al. 2004). The data was
organized into a 3-way tensor X1 with the V1 × N × D EEG data and a matrix (2-
way tensor) X2 with the V2 ×N fMRI data, where N was the number of timepoints
(and corresponding EEG ‘segments’), V1 was the number of frequencies in the EEG
spectrum of each EEG segment, V2 was the number of fMRI voxels, and D was
the number of EEG electrode channels. For the EEG data, the frequencies of each
electrode were convolved with the HRF over the time dimension to yield temporal
“envelopes” of the EEG signal that were comparable to the fMRI timeseries.
The model used for the EEG tensor was equivalent to X1,d = A1diag(bd)Y1,
d = 1, . . . , D, where diag(bd) is a diagonal matrix with bd in the diagonal, i.e.,
the same decomposition A1Y1 was estimated in every EEG channel except for a set
of scaling values bd specific to each channel, which can be interpreted as a model of
shared (i.e., same) sources Y1 with electrode-specific mixing A1,d = A1diag(bd).
The covariance between the temporal EEG envelope sources Y1 and fMRI time
course sources Y2 was then maximized, utilizing an extension of the PLS2 deflation
strategy, which accommodates tensors, to predict the fMRI timeseries X2 from the
EEG envelope sources Y1. This procedure yielded an fMRI map (a column of A2)
whose time course (row of Y2) covaried highly with an EEG envelope (row of
Y1) corresponding to an alpha band spectrum (column of A1) and a topographical
map described by the electrode-specific scalars bd . This topographical map was

1While here “multi-way” refers to the order of a tensor (i.e., the number of data dimensions), the
term multi-way has also been used in the literature to refer to the number of modalities being fused.
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also studied using current source localization to identify the generators of the “EEG
alpha rhythm”.

For IVA, in comparison to mCCA, there are two key differences: (1) W is not
constrained to have orthogonal rows,2 and (2) HOS can be utilized to identify the
sources. Together, these differences allow IVA to generalize mCCA, attaining more
compact representations in A (Adalı et al. 2015) and leveraging HOS dependence
between linked sources for improved separation.3 Moreover, in a comparison with
jICA, Adalı et al. (2015) noted that although IVA is more flexible when the subject
expression profiles differ across a subset of the datasets (i.e., when the “same
mixing matrix” assumption of jICA is violated), in very small N (number of
subjects) regimes HOS estimation is unreliable and, thus, infeasible. Therefore,
IVA-G was utilized instead, since it relies exclusively on SOS, just like mCCA.
In the study, a GLM contrast map from fMRI, a GM concentration map from
sMRI, and an ERP timeseries from EEG were obtained from 22 healthy controls
and 14 schizophrenic patients (N = 36 subjects) performing an AOD task. Results
from single and pairwise combinations of modalities were compared against the
three-modality case. The study concluded that, for this particularly small dataset,
“jICA provides a more desirable solution” using a flexible density matching ICA
algorithm, a result likely driven by the drastically larger number of observations in
the jICA model versus that of IVA for this study.

Another class of data fusion algorithms is based on two-step approaches that
pursue BSS of either A or Y separately, after fitting an initial BSS model on
X. Two models that stand out in this class are “spatial” CCA+jICA (Sui et al.
2010) and mCCA+jICA (Sui et al. 2011). Spatial CCA+jICA uses CCA to initially
identify correlated sources YCCA

1 = WCCA
1 X1 and YCCA

2 = WCCA
2 X2 in the usual

way. However, within each modality, these CCA sources are just uncorrelated, and
their separation is not guaranteed if the underlying source (canonical) correlations
are equal or very similar (Sui et al. 2010). Thus, jICA on the concatenated
source matrices YCCA

1 and YCCA
2 is utilized to further identify joint independent

sources YjICA
1 = WjICAYCCA

1 and YjICA
2 = WjICAYCCA

2 , where WjICA is shared
across modalities. The final mixing matrix of the spatial CCA+jICA model is
then estimated as Am = (

WjICAWCCA
m

)−
. This model was utilized on multitask

fMRI contrast maps derived from subject-level GLM (see Sect. 8.2.2), with V =
subjects and N = feature dimensionality (here, voxels), resulting in interpretable
multitask independent sources with similar (i.e. highly correlated) spatial map
configurations (Sui et al. 2010). To note, such property should also be attainable with
IVA directly applied to Xm and is worth of further investigation. The mCCA+jICA
approach (Sui et al. 2011), on the other hand, utilizes mCCA to initially iden-
tify highly correlated subject expression profiles (rather than features) across m

2IVA-G is identical to mCCA with the GENVAR cost, except it also allows non-orthogonal W.
3The IVA cost is a sum of M separate ICAs (one per dataset) with an additional term to
increase/retain the mutual information between corresponding sources across datasets.
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modalities, Y�
CCA,m = XmW�

CCA,m, where Xm is V × Nm (number of subjects (V )
by feature dimensionality (Nm)). Notice the multiplication from the right of Xm and
the matrix transposes resulting from V being treated as the observations. Thus, the
mCCA V × Nm mixing matrices constitute the features estimated by least squares
as A�

CCA,m = (Y�
CCA,m)

−Xm. Joint ICA is then performed on the concatenated

mixing matrices A�
CCA,m (along the feature dimension Nm) to identify joint sources

YjICA,m = WjICAA�
CCA,m, where the V × V matrix WjICA is shared across

modalities. The final mixing matrix of the mCCA+jICA model is then estimated
as Am = Y�

CCA,mW−1
jICA. This model was used by Sui et al. (2011) to perform

fusion of GLM-derived fMRI contrast maps and DWI fractional anisotropy (FA)
maps from each subject, yielding good separation across 62 healthy control (HC),
54 schizophrenic (SZ), and 48 bipolar (BP) disorder subjects, as indicated by pair-
wise two-sample t-tests of the group mixing coefficients in each column of each Am.
Source maps for each group and modality were obtained by back-reconstruction,
partitioning Am into three blocks, Ag,m, g ∈ {HC,SZ,BP}, one from each group
respectively, and computing Yg,m = (Ag,m)

−Xg,m. In a 3-way study, Sui et al.
(2013) explored this approach to study group differences between 116 healthy
controls and 97 schizophrenic patients, fusing GLM-derived contrast maps for the
tapping condition of a block-design auditory sensorimotor task, together with FA
maps and GM concentration maps from each subject. Finally, a very large study by
Miller et al. (2016) on V = 5,034 subjects from the UK Biobank cohort defined X1
as a collection of N1 = 2,501 image-derived phenotype (IDP) variables (individual
measures of brain structure from T1-, T2-, and susceptibility-weighted sMRI, brain
activity from task and rest fMRI, and local tissue microstructure from diffusion
MRI), and X2 as a collection of N2 = 1,100 non-imaging phenotype (non-IDP)
variables extracted from the UK Biobank database (grouped into 11 categories) on
the same subjects. In this study, the subject expression profiles were combined into
a single shared profile, Y�

CCA = Y�
CCA,1 + Y�

CCA,2, which was used to estimate the

modality-specific CCA mixing matrices, i.e., the features4 A�
CCA,m = (Y�

CCA)
−Xm.

Moreover, rather than estimating mixing matrices with the form above, a final
shared mixing matrix of the mCCA+jICA model is estimated as A = Y�

CCAAjICA,

where AjICA =
[
A�

CCA,1,A�
CCA,2

]
·
[
YjICA,1,YjICA,2

]−
([ · , · ] indicates matrix

concatenation).5

4The MATLAB code used for this study (available at http://www.fmrib.ox.ac.uk/ukbiobank/
nnpaper/ukb_NN.m) actually implements this step as

[
ACCA,1,ACCA,2

] = F (Ryx), where F(·) =
atanh(·) is the element-wise Fisher transform of the C × (N1 + N2) cross-correlation matrix

Ryx = diag
(
YCCAY�

CCA

)− 1
2 (YCCAX)diag

(
X�X

)− 1
2 between yCCA and x�, diag(B) is a diagonal

matrix containing only the diagonal elements of B, and X = [X1,X2] is a matrix concatenation.
Equivalence to the form indicated in the main text is claimed but not proven.
5Note that the implementation of mCCA+jICA in that work utilized simple matrix transpose
instead of the pseudo-inverses indicted above, possibly presuming that the columns of Y�

CCA and

rows of
[
YjICA,1,YjICA,2

]
are orthonormal due to uncorrelation and independence, respectively.

http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/ukb_NN.m
http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/ukb_NN.m
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Finally, approaches such as Parallel ICA (Liu et al. 2007) make up a unique class
of BSS methods that seek to attain multiple goals simultaneously in an adaptive
fashion. Specifically, rather than pursuing a decomposition into two sequential steps
like with mCCA+jICA, Parallel ICA carries out separate ICA decompositions of
each modality (i.e., in “parallel”) while simultaneously identifying and reinforcing
associations (in the form of correlations) among specific rows/columns of Am, Ym,
or both, depending on how the modalities are treated/organized (i.e., if one or
more of the datasets is transposed or not). The most widely used implementation
simultaneously optimizes for maximal independence among sources ym for each
modality, treating the columns of Ym as observations (like multiple separate SDU
models), and maximal correlation among corresponding mixing coefficients ak =
[a1k, a2k, . . . , aMk]� over modalities, treating the rows of Am as observations (like
an MDU model, but operating on pair-wise correlations individually rather than as
a cohesive correlation matrix). These are typically competing objectives, leading
to a trade-off between them (Vergara et al. 2014). Parallel ICA has been widely
used in imaging genetics, offering a direct approach to identify neuroimaging
endophenotypes related to various mental illnesses by fusing modalities such as
fMRI and SNP (Liu et al. 2009), sMRI and SNP (Meda et al. 2012), as well as
fMRI, sMRI, and SNP in a 3-way analysis (Vergara et al. 2014). It has also found
use in fusion of resting-state networks (RSN) and behavioral measures (Meier et al.
2012).

While BSS has proven to be very fruitful for multimodal fusion thus far, it
has mostly been focused on MDU methods. Much stands to be gained from
subspaces that span multiple sources within a single dataset in terms of both
improved representation power of complex features and, especially, subject-specific
characterizations. Such MDM approaches are poised to move multimodal fusion
analyses much further and address some of the current challenges and limitations of
the area. Indeed, MDM models can be seen as two-layer-deep multimodal networks
with fixed connections at the second layer. Thus, one interpretation of MDM models
is that they have the ability to recover certain non-linear mixtures of the sources.
Given the nature of complex systems such as the brain, sources are highly likely to
be non-linearly mixed, which also serves as motivation to the deep learning methods
described in Sect. 8.3.

8.2.4 Further Reading

For a unifying BSS modeling framework and discourse on the connections between
various additional BSS methods applied to multimodal and unimodal brain imaging
data, see Silva et al. (2016).

For a general review on multimodal fusion for brain imaging data, see Calhoun
and Sui (2016).

For an overview of methods, challenges, and prospects of multimodal fusion
beyond the scope of brain imaging, see Lahat et al. (2015).
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For a broader discussion of methods beyond BSS and their application to
multimodal brain imaging integration, see Biessmann et al. (2011).

For a clear, generalized description of tensor analysis and fusion as coupled
matrix-tensor factorization methods, see Karahan et al. (2015).

For a comprehensive and mathematically oriented account of SDU models, see
the Handbook of BSS (Comon and Jutten 2010).

Finally, the less experienced reader interested in a smooth introduction to the
preprocessing strategies leading into ICA (and beyond) are recommended to check
out the excellent ICA book from Hyvärinen et al. (2002). Those readers might also
enjoy the numerous insights contained in the chapter about methods grounded on
information theory (including ICA) by Haykin (2008).

8.3 Deep LearningMethods

In the previous section we presented blind source separation approaches in the
context of multimodal fusion, particularly those based on MDU models, which
may be construed as items of a more general area of unsupervised learning.
Naturally, the models considered thus far utilize only a single level of linear
transformation of sources (for generation) or data (for decomposition). However, if
deeper chains of linear transformations are considered, each followed by a nonlinear
activation function of its outputs (Goodfellow et al. 2016), much more powerful
and flexible models can be obtained, naturally allowing compositions of multiple
modalities, all while resorting to just simple stochastic gradient descent (SGD) for
optimization (Goodfellow et al. 2016, Section 8.3.1). While these deeper models
are able to approximate arbitrarily complex nonlinearities in the data, simple SOS
or HOS does not suffice to attain the typical “blind” property that is characteristic
of linear BSS (Comon and Jutten 2010, Chapter 14). Thus, for the purposes of
this section, we forfeit this property in favor of supervised deep models, which, in
neuroimaging, constitute the majority of successful deep learning results obtained
from real multimodal brain imaging data.

Feedforward Neural Networks, or multilayer perceptrons (MLPs), are a classic
model for function approximation, such as for classifiers, where y = G(x) maps
an input data sample x to output labels y. The mapping G(·) can be approximated
by an L-layer network g (x,Φ) = gL(gL−1(· · · (g1(x)))) with parameters Φ. Each
function gl is defined as a linear model Wlgl−1 + bl , with weights Wl and bias bl ,
followed by nonlinear functions h (the activation functions), such that:

gl = h(Wlgl−1 + bl), (8.1)

where g0 = x, and Φ = {Wl , bl ; l = 1 . . . L}.
In the case of the increasingly popular convolutional neural networks (CNNs),

instead of a matrix multiplication Wlx, convolution with some kernel Wl is utilized
at each layer:
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gl = h(Wl ∗ gl−1 + bl). (8.2)

In this case, it is common to also define gl at certain layers as other opera-
tions such as pooling, for example “max pooling” (Zhou and Chellappa 1988),
normalization, for example batch normalization (Ioffe and Szegedy 2015), or
dropout (Srivastava et al. 2014).

CNNs have multiple advantages (Goodfellow et al. 2016) over MLPs when the
input data contains local correlations. CNNs exploit that with their local and, as
such, sparse connections. If in MLPs we are connecting every input with every
output, here we are applying a kernel to only a small region of input defined
by the kernel size. Yet, in deeper layers, neurons are still indirectly connected to
larger regions of the input. The size of the region a neuron connects to within its
input layer is determined by the size of its receptive field, which depends on the
CNN’s hyperparameters and architecture. Overall, local connectivity reduces the
number of parameters, computational complexity and memory requirements. All
that is achieved via parameter-tying, i.e., when the same parameters are (re)used for
multiple locations of the input. Furthermore, convolving the same parameter kernel
with the input yields translation invariance property of images.

When the CNN is used as a classifier, in which use it has arguably revived
increased interest to neural networks and started the ongoing deep learning rev-
olution (Krizhevsky et al. 2012), then the convolutional layers are followed by a
few feed forward layers with the softmax prediction at the end. However, for some
applications, such as segmentation, it is preferable to stay within convolution layers
only and in this case the network is called fully convolutional (Long et al. 2015)

Both CNN types are shown in Fig. 8.5 and in the following sections we will give
a short overview of the use of these models.

Fig. 8.5 Convolutional and fully convolutional neural networks. When used for classification
tasks, CNNs typically feed directly into fully connected (FC) layers before classification. In
segmentation tasks, however, fully convolutional networks can better retain the spatial structure
of the data
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8.3.1 Multimodal Classification

Feed forward neural networks are powerful classifiers that can achieve superior
accuracy when trained on representative data. Their flexible and extensible archi-
tecture can be adjusted to handle cases that arise in practice. Ulloa et al. (2018)
have built a multimodal classifier which combines structural and functional data to
predict schizophrenia from brain imaging data (see Fig. 8.6). However, typical brain
imaging datasets are comprised of fairly small numbers of subjects. To overcome
the large data size requirements for training deep models, synthetic data generation
approaches based on SDU models such as ICA have been proposed for augmenting
these small datasets (Castro et al. 2015; Ulloa et al. 2015). Expanding on this idea,
Ulloa et al. (2018) proposed to augment the training sets of datasets originating
from different modalities. The augmentation process involves training a spatial
ICA model for each modality (N = number of voxels) to learn both mixings Am

and sources Ym. Then, using only the labels of the training set, multidimensional
sampling generates multiple new instances of mixing matrices Ar

m similar to Am.
These are then combined with the ICA estimated sources Ym to generate new
synthetic examples of labeled data Xr

m.
Initially, deep MLPs were trained separately for each modality utilizing only the

synthetic data Xr
m. The weights Wl from each MLP were then utilized to initialize

the modality-specific weights of the final multimodal MLP, as indicated in Fig. 8.6.
The multimodal MLP was then trained only on real data to classify disease labels
using cross-validation. The resulting trained network was then evaluated on the test
set in a 10-fold cross validation procedure yielding significantly improved results
over other state of the art models, including the same MLP, that were either trained
on a single modality or without using synthetic data (see Table 8.1).

Fig. 8.6 Multimodal classifier. A multimodal MLP is one in which the deeper layers of the
unimodal networks are combined (concatenated) together and treated as one. Here, the unimodal
networks were trained on synthetic data separately. The weights learned on each modality
separately using synthetic data were utilized to initialize the weights of the combined multimodal
network, which was then trained using only real data
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Table 8.1 Average and standard deviation of the area under the ROC curve (AUC) of an 8-fold
cross validation experiment for various classifiers and the proposed methodologies

sMRI fMRI sMRI + fMRI
Classifier
Method

Average
AUC

Standard
deviation

Average
AUC

Standard
deviation

Average
AUC

Standard
deviation

Online learning and synthetic data

MLP with MVN 0.65 0.05 0.82 0.06 0.85 0.05
MLP with rejection 0.74 0.07 0.83 0.05 0.84 0.05

Raw data

MLP 0.65 0.09 0.82 0.10 0.80 0.08

Naive Bayes 0.62 0.10 0.71 0.11 0.61 0.07

Logistic Regression 0.69 0.12 0.82 0.07 0.81 0.08

RBF SVM 0.53 0.05 0.82 0.08 0.58 0.15

Linear SVM 0.68 0.09 0.82 0.06 0.80 0.15

LDA 0.73 0.10 0.79 0.09 0.79 0.11

Random Forest 0.65 0.06 0.64 0.05 0.67 0.08

Nearest Neighbors 0.58 0.07 0.68 0.08 0.61 0.12

Decision Tree 0.56 0.11 0.54 0.10 0.53 0.13

8.3.2 Representation Learning for Semantic Embedding

The predictive advantages of multilayered models such as feed forward neural
networks come from the powerful representations of the data that they automatically
obtain at training. What that means is that the network learns a mapping of input
data to the output layer vector space, where the input data samples are easily
separable, thus encoding regularities in the data that are not easy to specify upfront.
These output layer embeddings can be visualized if the multidimensional vectors
are “projected” to a 2D space. Simple linear projections usually do not work well
for this purpose, but nonlinear embedding methods such as t-distributed stochastic
neighbor embedding (tSNE) (Maaten and Hinton 2008) do.

To obtain an embedding of a set of MRI images one first trains a deep model
either for prediction or reconstruction. The obtained model is then used to produce
activations at the output layer (or the one prior), which are subsequently represented
as points on a 2D plane. Importantly, these points can later be assigned pseudo-
color according to any property of interest. Plis et al. (2014) was one of the first
to produce individual subject embeddings for MRI data. A deep 3-layer model
trained to predict patients from healthy controls, possessing just that information,
also learned to segregate disease severity of the patients as shown by the yellow-red
spectrum in Fig. 8.7b.

The same approach has been applied to data from the Bipolar-Schizophrenia
Network on Intermediate Phenotypes consortium (B-SNIP, http://www.b-snip.org/).
The network was trained to predict three diseases from the spectrum (schizophrenia,
the most severe, bipolar, and schizo-affective disorders) from healthy controls. After
training, this network was used to produce embeddings for the data of subjects from

http://www.b-snip.org/
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Fig. 8.7 Embedding deep network representations for healthy controls, patients with a spectrum
of mental disorders and their unaffected siblings (a); for healthy controls and Huntington disease
(HD) patients (b). Panel (a) also demonstrates sensitivity of embeddings to the network depth,
where with depth the embedding becomes more interpretable. In panel (b), note the emergence of
severity spectrum for HD patients despite unavailability of that information to the deep learning
algorithm

its training set as well as the unaffected relatives that were previously unseen (shown
in Fig. 8.7a). To further illustrate the value of depth in these models, Fig. 8.7a shows
embeddings obtained from models of smaller depth: 1 and 2. These do not show
such clear segregation spectrum.

8.3.3 Multimodal Tissue Segmentation

The problem of brain tissue segmentation is fundamental to almost any research
study on the brain as gray matter volumes and thicknesses are potentially strong
biomarkers for a number of disorders. In order to compute these, one needs to
first segment the MRI images into various tissue types. Traditionally, a lengthy and
computationally heavy process performed in multiple packages and usually relying
on multiple sub-stages including skull stripping to rid anything but the brain. Simple
gray, white matter and CSF segmentation is widespread enough to be interesting.
It can sometimes be completed using simple techniques based on pixel intensity
property. However, a much more valuable and yet much harder segmentation is into
functional atlases, where each cortical and subcortical region is delineated according
to their function relative to some atlas. The problem is challenging as it requires
regions to be outlined not just based on voxel intensities alone but also on the relative
location of the region within the brain.

Fedorov et al. (2017a) have successfully used a fully convolutional network of a
specific kind (dilated convolutional kernels) to quickly (under 3 min, compared to
more than 10 h state-of-the-art FreeSurfer (Dale et al. 1999)) partition an MRI in
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Fig. 8.8 Accelerating conventional approaches to tissue segmentation. Segmentation results pro-
duced by FreeSurfer on a single-subject image (center) after 10h of intense processing, using a
trained CNN with dilated convolutional kernels (center-right) after 3 min, and using both T1 and
T2 contrasts (right). T1 and T2 images included for reference (left and center-left, respectively)

the subject space into tissue types (Fedorov et al. 2017b) and functional regions.
What is important for us here is that they have found significant improvements
in segmentation accuracy when using multimodal input: not just T1 but also
T2 contrast images (see Fig. 8.8). Deep learning models provide very simple
mechanisms to use multimodal data without any additional difficulties. Another
powerful feature for segmentation models comes from the fact that the learning
signal can be produced at each predicted voxel, thus producing significant amounts
of training data and reducing sample requirements for training. Çiçek et al. (2016)
used just a handful of MRIs to produce a solid model.

8.4 Closing Remarks

Multimodal fusion is indeed a key element for discovery, understanding, and
prediction in neuroimaging and mental health. Blind source separation and deep
learning approaches have both demonstrated evidence of their ability to recover rel-
evant information from multimodal data in multiple settings. The results presented
here support the utility of multimodal approaches for brain imaging data analysis
and suggest continued development of these methods, combined with increasingly
large datasets, can yield strong, predictive features for both research and clinical
settings. In particular, we highlight the current development of MDM approaches for
identifying non-trivial hidden subspace structures, as well as deep architectures for
unraveling the complex relationships between function and structure in the human
brain. The combination of these two strategies holds great promise towards a unified
approach for studying both healthy and disease conditions.
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