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In most areas of medicine, the advent of biological tests to measure disease state
has revolutionised diagnosis and treatment allocation. However, this is not the case
in psychiatry, which is now virtually the last area of medicine where diseases
are still diagnosed based on symptoms and biological tests to assist treatment
allocation remain to be developed (Kapur et al. 2012). This is especially problematic
because psychiatric disorders are all extremely heterogeneous, both in terms of
their clinical presentation (which we refer to as ‘clinical heterogeneity’), in terms
of their underlying biological causes (‘biological heterogeneity’) and in terms
of environmental factors (‘environmental heterogeneity’). Even though diagnostic
criteria have been periodically revised over the years, these sources of heterogeneity
remain a substantial barrier to better understanding the causative mechanisms of
psychiatric disorders and to developing optimal treatments. Indeed, there have been
virtually no new therapeutic targets in psychiatry for decades.
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The overwhelmingly dominant paradigm in psychiatric research has been the
case-control approach, which assumes that patient and control groups each form
a distinct entity and completely ignores heterogeneity within cohorts. It has long
been recognized that we must look beyond simple case-control comparisons to
be able to deconstruct the heterogeneous phenotype of psychiatric disorders and,
correspondingly, there have been many attempts to find data-driven reclassifications
or stratifications of psychiatric disorders (Marquand et al. 2016b; Schnack 2018).
The dominant approach has been to train unsupervised machine learning algorithms
on the basis of symptoms or psychometric variables aiming to find data-driven
subtypes of patients. Like the case-control approach, this assumes that patient
cohorts can be cleanly partitioned into distinct subtypes. However, despite more
than 40 years of effort, this approach has not converged upon a reproducible
and clinically useful set of subtypes for any psychiatric disorder (Marquand et
al. 2016b). Frustration with this lack of progress has led to several large-scale
initiatives that aim to use many different biological and behavioural measures to
finally bring the era of ‘precision medicine’ to psychiatry (Insel and Cuthbert 2015).
The most prominent of these are the Research Domain Criteria (RDoC) initiative
proposed by the National Institute of Mental Health in the USA (Insel et al. 2010)
and the European Roadmap for Mental Health Research (ROAMER) (Schumann
et al. 2014). The central feature of these initiatives is to move away from using
only symptoms for disease classifications and instead to integrate biological and
behavioural measures from different levels of analysis (e.g. genes, cells and circuits)
and across different domains of functioning (e.g. positive affect, social processing).
Although the short-term focus of RDoC and ROAMER is principally on research,
the clear implication is that the current nosological classifications will eventually
need to be revised. The way this is most popularly envisaged to occur is that
by integrating across domains of functioning and across different biological and
behavioural levels, psychiatric cohorts will be cleanly separable into subtypes that
simultaneously cut across current diagnostic classifications and relate more closely
to underlying brain systems (Insel and Cuthbert 2015). At the time of writing, it is
eight years since RDoC was officially released, and it is fair to say that RDoC and
similar initiatives have, to date, also provided only a modest yield. Whilst RDoC has
driven substantial basic research,1 there are still few successful attempts to stratify
psychiatric disorders on the basis of biological systems and none that are close to
challenging the current diagnostic criteria in clinical practice.

In view of the considerations above, in this chapter we will review the literature
aiming to employ biological measures to stratify the phenotype of psychiatric
disorders. First, we will briefly review the biological measures that useful for
stratifying patient cohorts. Second, we give a brief conceptual overview of the
different methodological approaches that have been employed for this purpose.
Third, we will provide a focused review of studies that have used biological
measures to derive stratification, in line with RDoC and ROAMER. Finally, we will

1See e.g. https://www.nimh.nih.gov/research-priorities/rdoc/nimh-rdoc-publications.shtml.

https://www.nimh.nih.gov/research-priorities/rdoc/nimh-rdoc-publications.shtml
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identify difficulties to finding reproducible and clinically meaningful stratifications
and suggest new directions for the field. We will argue that a fixation on simple case-
control type differences between well-defined subgroups has been a major limiting
factor in finding reproducible and clinically meaningful stratifications.

7.1 Measuring Biology in Big Data Cohorts

In recent years clinical neuroscience has undergone a tectonic shift away from
small, boutique studies towards big data cohorts. This entails an enormous increase
both in the number of different measures of biology and behavior that are acquired
and also in the size of the cohorts from which they are derived. For example, in
genetics, large international consortia and data sharing initiatives have emerged that
are providing increasing numbers of genome-wide significant hits for psychiatric
disorders (e.g. Ripke et al. 2014). However, the effect size of all individual
genetic variants discovered to date are small and even aggregation of many effects
through polygenic risk scores only explains a tiny fraction of the variance in the
phenotype of psychiatric disorders (e.g. Milaneschi et al. 2015). This means that
genetic measures are probably better suited to profiling and validating prospective
stratifications rather than deriving the stratifications themselves. At the same time,
advances in brain imaging techniques now make it possible to measure many
aspects of brain structure, function and connectivity non-invasively and in vivo.
There are also now many large population-based studies that acquire a range of
neuroimaging, behavioural and clinical measurements from large cohorts (e.g. the
UK Biobank study (Miller et al. 2016) and the Human Connectome Project (Van
Essen et al. 2013)). Together, this makes neuroimaging the most widely used—and
arguably most promising—method for deriving biologically based stratifications of
psychiatric disorders. However, many other measures also provide promising and
potentially complimentary information for this purpose; for example, blood-based
biomarkers (Lamers et al. 2013), continuous behavior monitoring from smartphones
and wearable sensors (Torous et al. 2017) or electronic monitoring of continuous
speech patterns (Bedi et al. 2015) but at the present time, these remain relatively
unexplored for the purposes of stratification. Of course, different measures can
also be combined via multi-modal data fusion (e.g. Wolfers et al. 2017), at the
expense of increasing the complexity of the analytical pipeline. Consequently, the
time has never been better for the application of machine learning based methods
for data-driven stratification of psychiatric disorders on the basis of biological
readouts. However, the advent of big data for clinical neuroscience brings particular
analytical challenges. These include difficulties in scaling off-the-shelf approaches
to high dimensional problems (Kriegel et al. 2009) and developing methods to
capture clinically relevant variation across large cohorts of participants whilst
separating that variation from nuisance variation (e.g. due to artefacts or site effects).
Meaningful stratification of psychiatric disorders is therefore heavily dependent on
the underlying analytical methodology.
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7.2 Overview of Analytical Approaches for Stratification

The overwhelming majority of applications of machine learning methods to big
data psychiatry have been supervised in the sense that they are provided with
labels and the learning process consists of estimating a mapping between inputs
(e.g. biomarkers) and outputs (e.g. diagnostic labels). There are many different
approaches for supervised learning, including support vector machines (Boser
et al. 1992), penalized linear models (Hastie et al. 2009) Bayesian approaches
(Rasmussen and Williams 2006) and deep learning (LeCun et al. 2015). Whilst
these differ with regard to the underlying model assumptions, associated estimation
procedures and the accuracy with which they can predict the target labels, the
fundamental idea behind all these approaches is the same in that the algorithm seeks
to maximize the accuracy of predicting the label of new data points (Fig. 7.1a). In
psychiatry, supervised learning has been widely used both for predicting diagnosis
(Wolfers et al. 2015) and quantitative psychometric variables (e.g. Mwangi et al.
2012) on the basis of neuroimaging biomarkers.

The supervised approach is reasonable if the labels are known in advance and
are both accurate and reliable. However, in psychiatry labelling errors are probably
relatively common (e.g. due to clinical or biological heterogeneity in addition to
misdiagnosis or comorbidity). With this in mind and since the aim of stratification
is to understand variation within the disease group (i.e. independently from the
diagnostic labels), supervised learning is not widely used for stratifying disease
groups. One exception is supervised learning methods that include mechanisms for
correcting errors in the labels (e.g. Young et al. 2013), which may be useful to
identify atypical samples.

In contrast, in unsupervised learning, the machine learning algorithm is not
provided with target values and learns to find structure in the data by applying
heuristics encoded in each algorithm to the data. There are many types of unsuper-
vised learning algorithm, including clustering, matrix factorization methods, latent
variable models and anomaly detection methods (Hastie et al. 2009). Unsupervised
learning approaches are often suitable for exploratory data analysis and are, on the
face of it, well suited to stratifying the phenotype of psychiatric disorders and are
widely used for this purpose (Marquand et al. 2016b; Schnack 2018).

7.3 Clustering

Clustering algorithms are probably the most widely used unsupervised approach in
general and are certainly the most widely used methods for stratifying psychiatric
disorders. The central idea is that an algorithm is trained to partition a set of data
points (i.e. subjects) into different clusters on the basis of some measurements (e.g.
derived from neuroimaging data), such that the samples in each cluster are more
similar in some sense to one another than to those in the other clusters (Fig. 7.1b).
This entails defining a measure of similarity or distance between data points (e.g.
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Fig. 7.1 Schematic overview of different approaches to parsing heterogeneity in psychiatric
disorders on the basis of biological data. (a) Supervised learning approaches regard the patient and
control groups as distinct entities, and thereby ignore heterogeneity within the data. (b) Clustering
algorithms aim to partition one or both of the groups into discrete clusters. Here a Gaussian
mixture model was estimated to partition the patient group into three clusters. Shown are the
ellipsoids corresponding to one standard deviation from the cluster centers. (c) A hybrid method
that combines clustering and distribution matching (Dong et al. 2016). Here the method estimates
a set of three transformations that match the distribution of the control group to the distribution
of the patient group. (d) A latent variable model that models symptoms as arising from a set of
three latent disease processes (e.g. Zhang et al. 2016). The data are represented according to a set
of latent variables (of which only two are shown as axes). Each datapoint from the patient group
is colored according to the proportion of each latent process it expresses via red, blue or green
hue. The loadings for three hypothetical data points are shown. (e) Outlier detection method that
estimates a decision boundary enclosing the control group, aiming to detect patients as outliers
(Mourao-Miranda et al. 2011). (f) Normative modelling approaches aim to estimate a normative
distribution over a reference cohort such that the abnormality of each individual participant can be
quantified via extreme value statistics. The extreme value abnormality score for one datapoint is
shown in the inlay along with a fit extreme value distribution. Note that the normative distribution
is defined with respect to a set of mappings between biology and behavior, analogous to ‘growth
charts’ in somatic medicine (Marquand et al. 2016a). See text for further details
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Euclidean distance or correlation) and the desired number of clusters. In the present
work, we largely gloss over the differences between different clustering algorithms
(e.g. K-means clustering, finite mixture modelling and graph-based clustering) and
label these approaches simply as ‘clustering’. We refer the interested reader to our
previous work for more detail, where we provide a detailed introduction to some
common clustering algorithms along with methodological considerations relating
to their implementation (Marquand et al. 2016b).

7.4 Studies Subtyping Psychiatric Disorders on the Basis
of Biology (‘Biotyping’)

As noted above, most applications to stratify psychiatric disorders on the basis of
biology are based on the application of off-the-shelf clustering techniques, where
the derived clusters are sometimes referred to as ‘biotypes’ (e.g. Clementz et al.
2016; Drysdale et al. 2017). One thing immediately apparent from a survey of the
literature is a paucity of studies that report stratifications derived from biological
measures, especially relative to the proliferation of applications of clustering
algorithms to psychometric data (Marquand et al. 2016b). This is perhaps surprising
given the strong motivation provided by the tight integration of research funding
with initiatives such as RDoC and ROAMER (Insel et al. 2010; Schumann et al.
2014). One reason for this may be that biological data are often complex and
high-dimensional with many different axes of variance. Clustering is a notoriously
difficult problem in high dimensions (Kriegel et al. 2009) because many axes of
variance may be artefactual or irrelevant and different axes may be important for
different clusters within the same clustering solution. As a result, most applications
reviewed here employ extreme dimensionality reduction, often training clustering
algorithms on as few as two dimensions or alternatively use parameters from other
models as features for clustering.

One of the earliest efforts to derive biotypes for stratifying psychiatric disorders
was provided by Brodersen et al. (2014) who stratified a cohort of schizophrenia
patients using Bayesian mixture model on the basis of parameters derived from a
model of working memory estimated from functional magnetic resonance imaging
(fMRI) data. This yielded three patient subgroups which differed in terms of
symptom severity. Another study used structural connectivity measures derived
from diffusion tensor imaging to stratify patients with first episode schizophrenia
(Sun et al. 2015). This study reported two subtypes, which differed in terms of their
profile of white matter abnormalities and symptom profile.

In a prominent study by Clementz et al. (2016), the authors derived a set of
three biotypes from large cohort of patients with psychosis spectrum disorders using
a broad panel of biomarkers, including neuropsychological, saccadic control and
electroencephalography measures. These subtypes cut across classical diagnostic
boundaries and had distinctive patterns of grey-matter reductions in a graded fashion
such that one of the biotypes had patterns of reduction intermediate between the
other two, a pattern also evident in relatives of the probands. Brain structural
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differences were further explored in a follow-up study (Ivleva et al. 2017), but
since these analyses were performed on the same cohort, this cannot be considered
a replication.

Another prominent study reported finding four biotypes of depression on the
basis of mappings between resting state fMRI connectivity measures and symptoms
derived from a multi-site cohort (Drysdale et al. 2017). These biotypes again crossed
classical diagnostic boundaries and had differential characteristics with regard to
symptoms and fMRI connectivity. The authors of this study performed limited
validation of these subtypes on additional data samples and also demonstrated
that the derived subtypes predicted treatment response (trans-cranial magnetic
stimulation).

Finally, two studies from the same group have aimed to stratify attention-deficit
hyperactivity disorder (ADHD) using functional connectivity measures derived
from on fMRI (Gates et al. 2014; Costa Dias et al. 2015). These reported different
numbers of clusters (3 and 5, respectively), and characterized the different subtypes
in terms of their connectivity profiles although in the case of (Costa Dias et al.
2015), these were also related to symptom severity. As noted by the authors of these
studies, this highlights that there are always multiple ways to partition cohorts using
clustering algorithms, even based on the same data. These alternative solutions may
be equally valid, for example when assessed according to different metrics (see
below for further discussion).

7.5 Alternatives to Biotyping

There are multiple alternative analytical approaches for stratifying psychiatric
disorders including hybrid methods that combine supervised learning with clus-
tering (Varol et al. 2017), hybrid methods that combine distribution matching and
clustering (Dong et al. 2016), methods that model the emergence of symptoms in
individual subjects as deriving from a linear combination of latent disease factors
(Ruiz et al. 2014; Zhang et al. 2016), outlier or anomaly detection methods (Mourao-
Miranda et al. 2011) and normative modelling techniques that aim to chart variation
in population cohorts and place each individual subject within the population range
(Marquand et al. 2016a).

For example, the method proposed in (Dong et al. 2016) is a hybrid of clustering
and distribution matching. This method was explicitly designed for structural brain
imaging data and tackles heterogeneity within the patient cohort by training an
algorithm that estimates a discrete set of transformations that warp the distribution
of control participants to match the patient distribution (Fig. 7.1c). The intuition is
that each of the different transformations encodes a different biotype. The method
also provides a posterior probability measure quantifying the certainty with which
each datapoint belongs to each biotype or, in other words, it provides a ‘soft’
clustering of the data. This was used to stratify a cohort of schizophrenia patients
on the basis of structural MRI data (Honnorat et al. 2018), yielding three subtypes
with different patterns of volumetric difference relative to control subjects.
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Another alternative approach is based on the assumption that each individual
expresses a set of latent disease factors to varying degrees, which together comprise
an individualized symptom profile (Ruiz et al. 2014; Zhang et al. 2016). Such
methods can be seen as relaxing the requirement that each subject belongs to
a single cluster or subtype (Fig. 7.1d). A particularly promising approach along
this line is topic modelling, which describes a collection of natural language
processing techniques that aim to find a set of topics that occur frequently in
a collection of documents such that each document is assumed to relate to
multiple topics. For example, in (Zhang et al. 2016) the authors applied a common
topic modelling technique—latent Dirichlet allocation (LDA; Blei et al. 2003)—to
stratify Alzheimer’s disease patients on the basis of structural MRI. In contrast to
clustering approaches, LDA models disease in each individual patient (analogous to
a ‘document’) as emerging from a pre-specified number of latent disease processes
(‘topics’), which are expressed to different degrees in different patients. Typically,
LDA is framed as a probabilistic model, which can readily yield quantities of
interest such as the probability that a given individual expresses a particular latent
disease factor. In, the study by Zhang and colleagues (Zhang et al. 2016), the
authors discovered three hierarchical latent disease factors characterized by different
patterns of atrophy and different trajectories of cognitive decline.

In contrast, anomaly or outlier detection methods aim to estimate a predictive
function or decision boundary that characterizes the support of the distribution
of a healthy class. The intuition then is that ‘abnormal’ samples can be detected
as outliers (Fig. 7.2e). Probably the most common approach in neuroimaging is
the one-class support vector machine (OC-SVM; Sato et al. 2012). For example,
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Fig. 7.2 Clustering algorithms can impose artificial categorical structure on underlying continu-
ous variation. (a) Clustering solution from a study stratifying depression on the basis of symptoms
and brain functional connectivity data (reproduced with permission from Drysdale et al. 2017).
Each axis describes subject level loadings from canonical correlation analysis. Different colors
represent different clusters and gray clusters are ambiguous data points that were excluded from
the analysis when computing the distinctiveness of each cluster. (b) The same data with the cluster
labels removed. It is clear that the evidence for clusters in the data is equivocal. The data could be
equally well—and probably better—explained using a continuous model along two dimensions
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Mourao-Miranda et al. (2011) applied this approach to fMRI data derived acquired
while healthy participants and patients with depression were performing an affective
processing task. The algorithm detected patients as outliers such that the degree
of abnormality detected correlated with depression symptoms. The OC-SVM can
be applied to relatively high dimensional problems, but only provides a decision
boundary. In other words, it does not characterize the distribution statistically, nor
provide estimates of variation within the distribution. For this, density estimation
techniques (Hastie et al. 2009) could theoretically be applied, but these are largely
limited to low dimensional problems.

Normative modelling (Marquand et al. 2016a; Fig. 7.2f) is an emerging statistical
technique that approaches the stratification problem from a different perspective.
Under this framework, a statistical model is estimated to chart centiles of variation in
clinical cohorts such that each individual patient can be placed within the population
distribution. This is analogous to the use of growth charts in somatic medicine to
map child development (e.g. in terms of height or weight) as a function of age. At the
heart of normative modelling is the estimation of mappings between psychometric
variables and a quantitative biological readout that provide estimates of variation
across the population. A straightforward example of such a mapping would be
between chronological age and brain structure to form a ‘brain growth chart’, which
is useful because most psychiatric disorders are rooted in an underlying trajectory
of brain development (Insel 2014). However, the method is agnostic to the type
of measures that are employed and it can be used to chart variation along any
biological-behavioural axis. For example, in (Marquand et al. 2016a) a normative
model of reward processing was estimated linking behavioural measures of delay
discounting with reward-related brain activity. A second key ingredient in normative
modelling is the use of extreme value statistics (Beirlant et al. 2004) to perform
statistical inference over the aspects of the pattern that are most abnormal. The
intuition behind this is that the method focusses on the most extreme differences
from the expected pattern, following the notion that those differences are those most
likely to be implicated in disease. In contrast, most of the more prevalent statistical
techniques (e.g. t-statistics and analyses of variance) focus on central tendency,
which is useful to detect mean differences between groups of participants but has
limited ability to provide inferences about either individual participants, or about the
aspects of the pattern that are most abnormal. The third key ingredient in normative
modelling is the choice of the reference cohort. The most straightforward choice is
to select only healthy participants such that deviations from the normative model can
be interpreted as deviations from a healthy pattern. However, a different reference
cohort could also be chosen, which includes subjects with different diagnoses as
well as healthy subjects. If the prevalence of the different disorders within such a
cohort matches the population prevalence, then such a cohort provides an accurate
reflection of how abnormalities can be interpreted with respect to the population at
large, which is often of interest in an epidemiological context.

Normative modelling has several distinguishing characteristics that set it apart
from other methods. First, it provides statistical measures of deviation from a
healthy pattern for each individual subject, in other words, providing personalized
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statistical predictions or ‘fingerprints’ that are at the heart of precision medicine
(Insel and Cuthbert 2015; Kapur et al. 2012; Mirnezami et al. 2012). Second,
normative modelling is completely agnostic to the diagnostic labels, which means
they can be included as predictor variables to explain variance in the reference
cohort. This is important because we must not overlook the discriminative power
of diagnosis in many cases (Weinberger and Goldberg 2014). Third, normative
modelling does not require that subjects share similar or overlapping patterns of
abnormality and does not assume that the clinical cohort can be cleanly partitioned
into subgroups although clustering algorithms can of course be trained on the
deviations derived from normative models. This means it is useful to understand
the variance structure in clinical cohorts where there are no clearly defined
subtypes (e.g. where pathology may be better described as following a spectrum of
functioning). In line with these considerations, some early application of normative
modelling in schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder
and autism spectrum disorders on the basis of structural MRI (Wolfers et al. 2018
https://www.ncbi.nlm.nih.gov/pubmed/30304337, https://www.biorxiv.org/content/
early/2018/11/27/477596) are showing that group-level difference—or in other
words differences in the ‘average patient’—are only the ‘tip of the iceberg’. Instead,
most of the variation in psychiatric disorders is highly individualized and at the
highest level of resolution (e.g. in terms of whole-brain voxel-level patterns of
structural differences) does not provide compelling evidence for the existence of
clusters.

7.6 Outlook and Challenges

There is a pervasive assumption that the optimal way to parse heterogeneity in
psychiatric disorders is to partition the phenotype into subtypes. This assumption
is effectively a recapitulation of the case-control approach and remains an implicit
element of initiatives such as RDoC and ROAMER (Insel et al. 2010). Indeed, a
criticism that has been leveled at RDoC is that it is in effect simply a new way to
perform subtyping (Weinberger and Goldberg 2014). The subtyping approach has
been successful in many other areas of medicine; for example, it has revolutionized
oncology (Kalia 2015). However, we argue that it may not be optimal for psychiatric
disorders. In psychiatry, few symptoms are unique to a single disorder and there
are hundreds of genetic polymorphisms associated with most psychiatric disorders,
all having small effect sizes and converging on similar symptoms (e.g. Betancur
2011; Ripke et al. 2014). Therefore, we argue that it may be unreasonable to expect
cleanly separable subtypes for most disorders and alternative conceptual models
may be more appropriate. One possibility is a ‘watershed’ model, which likens the
pathophysiological process to a river system where many causative factors of small
effect (e.g. genetic polymorphisms or environmental factors) begin as ‘tributaries’
and aggregate as they flow ‘downstream’ finding full expression in the syndromic
expression of the disorder, akin to a river delta (Cannon 2016). Importantly, the

https://www.ncbi.nlm.nih.gov/pubmed/30304337
https://www.biorxiv.org/content/early/2018/11/27/477596
https://www.biorxiv.org/content/early/2018/11/27/477596
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watershed model does not necessarily imply that subtypes will be evident in the
data.

We have reviewed elsewhere the extensive literature aiming to partition psychi-
atric disorders on the basis of symptoms and psychometric variables, where we
noted that this approach has still not converged on a consistent set of subtypes
despite considerable effort (Marquand et al. 2016b). Here, we have focused on
attempts to find biological subtypes or biotypes of psychiatric disorders. Whilst the
studies we have reviewed suggest that this may be possible, none of these have
been completely replicated at the present time and the degree of external validation
of the derived subtypes is modest. More importantly, it is important to recognize
that all the biotyping studies we have reviewed employed clustering algorithms,
which always yield a result. In other words, they will return a specified set of
clusters, regardless of whether the data support clusters. In general, there is no
universal metric to determine the ‘optimal’ number of clusters or to adjudicate
between different clustering algorithms for a given dataset, and as a consequence
a proliferation of various metrics have been proposed (Marquand et al. 2016b).
Unlike supervised learning, where there is a clear measure of model quality (i.e. the
accuracy with which new samples can be predicted), unsupervised learning models
can be compared in many different ways (e.g. cluster separability, reproducibility
or external validation accuracy) and it is usually not clear which is ‘optimal’.
Therefore, the final decision as to the ‘best’ clustering solution or algorithm
often remains largely a matter of taste (Hastie et al. 2009). Moreover, most
assessment metrics routinely used in practice are relative in the sense that they
compare prospective clustering solutions with one another, but do not test the ‘null’
hypothesis that there are in fact clusters in the data. Various methods have been
proposed that can be used to test whether clusters are ‘really there’ (Liu et al. 2008)
and to compare the suitability of continuous, categorical and hybrid models for the
data at hand (see Miettunen et al. 2016 for an overview). However, these approaches
are currently underutilised for this purpose in psychiatry.

In line with this, it has been suggested that the biotypes reported by Clementz
et al. (2016) may be better explained by a continuous dimensional represen-
tation relative to categorical subytpes (Barch 2017). We suggest here that the
depression biotypes presented by Drysdale et al. (2017) may also reflect an
imposed discretization of underlying continuous variation see Dinga et al. 2018
for further details https://www.biorxiv.org/content/early/2018/09/14/416321. In this
study, biotypes were derived by training a clustering algorithm on two orthogonal
mappings between brain connectivity and symptoms based on continuous subject
loadings derived from canonical correlation analysis (Fig. 7.2a). Following cluster
estimation, the authors increased the distinctiveness of their clusters by excluding
ambiguous samples. Without this post-processing step, it becomes apparent that the
evidence for the existence of clusters is equivocal in that the variation in the data
could equally well be explained with two continuous axes (Fig. 7.2b). We emphasize
that this does not imply that the findings reported are not biologically or clinically
relevant, rather that the use of clustering algorithm imposes a categorical structure
on the data that may not be optimal.

https://www.biorxiv.org/content/early/2018/09/14/416321
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We reviewed several alternative methods to stratify psychiatric disorders. Whilst
many of them are based on the same rationale as clustering approaches in that the
phenotype can be split in to biotypes (Varol et al. 2017; Dong et al. 2016), these
have features that ameliorate some of the problems inherent in applying ‘off the
shelf’ algorithms to biometric data. For example, a common feature of many of
these approaches (e.g. Marquand et al. 2016a; Varol et al. 2017; Dong et al. 2016) is
that they break the symmetry inherent in the case-control and clustering approaches
in the sense that they regard the disease cohort differently to the healthy cohort.
This can be advantageous for stratifying psychiatric disorders because it allows the
algorithm to focus on the manner in which patients deviate from a healthy pattern.
It is especially beneficial in contexts where the clustering is performed on the basis
of potentially high dimensional biological data because it means the clustering
algorithm is less likely to detect nuisance variation that is of greater magnitude than
disease-related effects (e.g. due to age or site).

Amongst the various methodological approaches we have reviewed, only a few
methods are agnostic to the presence or absence of subtypes in the data (Miettunen
et al. 2016; Marquand et al. 2016a; Mourao-Miranda et al. 2011; Zhang et al. 2016).
Normative modeling is one promising example and whilst normative modelling
can be used to derive features useful for clustering, its principal aim is to derive
statistical estimates of deviation for each individual subject so that each subject can
be compared to the normative or reference pattern. Another advantage of normative
modelling is that it aims to estimate a supervised mapping and can therefore focus
on the particular axes of variation (for example, the variation associated with a
particular cognitive domain). Clearly, the development of alternative methods for
stratifying the psychiatric phenotype are urgently needed.

As we briefly noted above, a major challenge for all methods is adequately and
automatically dealing with artefacts in clinical datasets. There are many known
sources of nuisance variance that are known to influence biological data and
it is often the case that nuisance variation can be orders of magnitude greater
than clinically relevant variation. This is particularly problematic because most
stratification is performed in an unsupervised manner. A well-known example is
head motion, which is widely acknowledged as a substantial challenge in fMRI
studies (Van Dijk et al. 2012), and it is often the case that (in expectation) clinical
groups move either more (e.g. ADHD) or less (e.g. depression) than healthy partic-
ipants. These problems are compounded in large data cohorts, where data are often
derived from multiple study sites, following different protocols. Moreover, nuisance
variation often overlaps with clinically-relevant variation because important clinical
or demographic variables are often not matched across study sites. Therefore finding
techniques to deal with this optimally is a substantial ongoing challenge (Rao et al.
2017). One notable method that tackles this problem explicitly is the approach
proposed by (Dong et al. 2016), which allows covariates such as age and sex to
be specified so that the transformations estimated by the method take those into
account.
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7.7 Conclusions

In this chapter, we have reviewed literature aiming to use biological measures and
big data cohorts to stratify psychiatric disorders. Whilst progress has clearly been
made, there are major challenges for the field to overcome if we are to bring psychi-
atry closer towards precision medicine. We have argued that a widespread fixation
on finding case-control type differences by partitioning the psychiatric phenotype
into sharply defined clusters has impeded progress. Whilst successful in other
areas of medicine, we argue that the complex multifactorial causes of psychiatric
disorders combined with considerable overlap of symptoms across disorders mean
that the biotyping approach may not be optimal in psychiatry. Currently only a few
theoretical models have been proposed that do not assume the existence of clusters
in the data (e.g. the ‘watershed’ model of Cannon 2016) and few analysis methods
have been proposed that can fractionate psychiatric phenotypes without imposing
clusters on the data. Alternative approaches are therefore urgently needed. Finally,
we note that replication remains a major challenge for all methods. In line with
the larger literature aiming to stratify psychiatric disorders (Marquand et al. 2016b;
Schnack 2018), the studies reviewed here have—at best—performed a modicum of
external validation, usually on the same cohort. At the time of writing, none of the
studies we have reviewed in this chapter have been fully replicated to the degree that
includes all steps in the analysis. This therefore remains an urgent priority.

References

Barch DM (2017) Biotypes: promise and pitfalls. Biol Psychiatry 82:2–3
Bedi G, Carillo F, Cecchi G, Sezak GF, Sigman M, Mota N, Ribeiro S, Javitt DC, Copelli M,

Corcoran CM (2015) Automated analysis of free speech predicts psychosis onset in high-risk
youths. Schizophrenia 1:15030

Beirlant J, Goegebeur Y, Teugels J, Segers J (2004) Statistics of extremes: theory and applications.
Wiley, Sussex

Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic
and genomic disorders and still counting. Brain Res 1380:42–77

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3:993–1022
Boser B, Guyon I, Vapnik V (1992) A training algorithm for optimal margin classifiers. Proceed-

ings of the fifth annual workshop on computational learning theory, vol 5, pp 144–152
Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, Stephan KE (2014)

Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin 4:98–111
Cannon TD (2016) Deciphering the genetic complexity of schizophrenia. JAMA Psychiat 73:5–6
Clementz BA, Sweeney JA, Hamm JP, Ivleva EI, Ethridge LE, Pearlson GD, Keshavan MS, Tam-

minga CA (2016) Identification of distinct psychosis biotypes using brain-based biomarkers.
Am J Psychiatry 173:373–384

Costa Dias TG, Iyer SP, Carpenter SD, Cary RP, Wilson VB, Mitchell SH, Nigg JT, Fair DA (2015)
Characterizing heterogeneity in children with and without ADHD based on reward system
connectivity. Dev Cogn Neurosci 11:155–174

Dong AY, Honnorat N, Gaonkar B, Davatzikos C (2016) CHIMERA: clustering of heterogeneous
disease effects via distribution matching of imaging patterns. IEEE Trans Med Imaging 35:612–
621



132 A. F. Marquand et al.

Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley
B, Oathes DJ, Etkin A, Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM,
Alexopoulos GS, Fox MD, Pascual-Leone A, Voss HU, Casey BJ, Dubin MJ, Liston C (2017)
Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat
Med 23:28–38

Gates KM, Molenaar PCM, Iyer SP, Nigg JT, Fair DA (2014) Organizing heterogeneous samples
using community detection of GIMME-derived resting state functional networks. PLoS One
9(3):e91322

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning. Springer, New York
Honnorat J, Dong A, Meizenzahl-Lechner E, Koutsoleris N, Davatzikos C (2018) Neuroanatomical

heterogeneity of schizophrenia revealed by semi-supervised machine learning methods. In press
Insel TR (2014) Mental disorders in childhood shifting the focus from behavioral symptoms to

neurodevelopmental trajectories. JAMA 311:1727–1728
Insel TR, Cuthbert BN (2015) Brain disorders? Precisely. Science 348:499–500
Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010)

Research domain criteria (RDoC): toward a new classification framework for research on mental
disorders. Am J Psychiatry 167:748–751

Ivleva EI, Clementz BA, Dutcher AM, Arnold SJM, Jeon-Slaughter H, Aslan S, Witte B, Poudyal
G, Lu H, Meda SA, Pearlson GD, Sweeney JA, Keshavan MS, Tamminga CA (2017) Brain
structure biomarkers in the psychosis biotypes: findings from the bipolar-schizophrenia network
for intermediate phenotypes. Biol Psychiatry 82:26–39

Kalia M (2015) Biomarkers for personalized oncology: recent advances and future challenges.
Metabolism 64:S16–S21

Kapur S, Phillips AG, Insel TR (2012) Why has it taken so long for biological psychiatry to develop
clinical tests and what to do about it? Mol Psychiatry 17:1174–1179

Kriegel H-P, Kroeger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace
clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data
3:1–58

Lamers F, Vogelzangs N, Merikangas KR, De Jonge P, Beekman ATF, Penninx BWJH (2013)
Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in
melancholic versus atypical depression. Mol Psychiatry 18:692–699

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
Liu Y, Hayes DN, Nobel A, Marron JS (2008) Statistical significance of clustering for high-

dimension, low-sample size data. J Am Stat Assoc 103:1281–1293
Marquand AF, Rezek I, Buitelaar J, Beckmann CF (2016a) Understanding heterogeneity in clinical

cohorts using normative models: beyond case-control studies. Biol Psychiatry 80:552–561
Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF (2016b) Beyond lumping and

splitting: a review of computational approaches for stratifying psychiatric disorders. Biol
Psychiatry Cogn Neurosci Neuroimaging 1:433–447

Miettunen J, Nordstrom T, Kaakinen M, Ahmed AO (2016) Latent variable mixture modeling in
psychiatric research—a review and application. Psychol Med 46:457–467

Milaneschi Y, Lamers F, Peyrot WJ, Abdellaoui A, Willemsen G, Hottenga J-J, Jansen R, Mbarek
H, Dehghan A, Lu C, CHARGE Inflammation Working Group, Boomsma DI, Penninx BWHJ
(2015) Polygenic dissection of major depression clinical heterogeneity. In press

Miller KL, Alfaro-Almagro F, Bangerter NK, Thomas DL, Yacoub E, Xu JQ, Bartsch AJ, Jbabdi
S, Sotiropoulos SN, Andersson JLR, Griffanti L, Douaud G, Okell TW, Weale P, Dragonu J,
Garratt S, Hudson S, Collins R, Jenkinson M, Matthews PM, Smith SM (2016) Multimodal
population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci
19:1523–1536

Mirnezami R, Nicholson J, Darzi A (2012) Preparing for precision medicine. N Engl J Med
366:489–491

Mourao-Miranda J, Hardoon DR, Hahn T, Marquand AF, Williams SCR, Shawe-Taylor J,
Brammer M (2011) Patient classification as an outlier detection problem: an application of the
one-class support vector machine. Neuroimage 58:793–804



7 Phenomapping: Methods and Measures for Deconstructing. . . 133

Mwangi B, Matthews K, Steele JD (2012) Prediction of illness severity in patients with major
depression using structural MR brain scans. J Magn Reson Imaging 35:64–71

Rao A, Monteiro JM, Mourao-Miranda J, Alzheimers Dis I (2017) Predictive modelling using
neuroimaging data in the presence of confounds. Neuroimage 150:23–49

Rasmussen CE, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cam-
bridge

Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, Lee P, Bulik-Sullivan B,
Collier DA, Huang H, Pers TH, Agartz I, Agerbo E, Albus M, Alexander M, Amin F, Bacanu
SA, Begemann M, Belliveau RA Jr, Bene J, Bergen SE, Bevilacqua E, Bigdeli TB, Black DW,
Bruggeman R, Buccola NG, Buckner RL, Byerley W, Cahn W, Cai G, Campion D, Cantor
RM, Carr VJ, Carrera N, Catts SV, Chambert KD, Chan RCK, Chen RYL, Chen EYH, Cheng
W, Cheung EFC, Chong SA, Cloninger CR, Cohen D, Cohen N, Cormican P, Craddock N,
Crowley JJ, Curtis D, Davidson M, Davis KL, Degenhardt F, Del Favero J, Demontis D, Dikeos
D, Dinan T, Djurovic S, Donohoe G, Drapeau E, Duan J, Dudbridge F, Durmishi N, Eichhammer
P, Eriksson J, Escott-Price V, Essioux L, Fanous AH, Farrell MS, Frank J, Franke L, Freedman
R, Freimer NB, Friedl M, Friedman JI, Fromer M, Genovese G, Georgieva L, Giegling I, Giusti-
Rodriguez P, Godard S, Goldstein JI, Golimbet V, Gopal S, Gratten J, De Haan L, Hammer C,
Hamshere ML, Hansen M, Hansen T, Haroutunian V, Hartmann AM, Henskens FA, Herms S,
Hirschhorn JN, Hoffmann P, Hofman A, Hollegaard MV, Hougaard DM, Ikeda M, Joa I et al
(2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

Ruiz FJR, Valera I, Blanco C, Perez-Cruz F (2014) Bayesian nonparametric comorbidity analysis
of psychiatric disorders. J Mach Learn Res 15:1215–1247

Sato JR, Rondina JM, Mourao-Miranda J (2012) Measuring abnormal brains: building normative
rules in neuroimaging using one-class support vector machines. Front Neurosci 6:178

Schnack H (2018) Improving individual predictions: machine learning approaches for detecting
and attacking heterogeneity in schizophrenia (and other psychiatric disorders). Schizophr Res.
In press

Schumann G, Binder EB, Holte A, De Kloet ER, Oedegaard KJ, Robbins TW, Walker-Tilley TR,
Bitter I, Brown VJ, Buitelaar J, Ciccocioppo R, Cools R, Escera C, Fleischhacker W, Flor H,
Frith CD, Heinz A, Johnsen E, Kirschbaum C, Klingberg T, Lesch K-P, Lewis S, Maier W, Mann
K, Martinot J-L, Meyer-Lindenberg A, Mueller CP, Mueller WE, Nutt DJ, Persico A, Perugi G,
Pessiglione M, Preuss UW, Roiser JP, Rossini PM, Rybakowski JK, Sandi C, Stephan KE,
Undurraga J, Vieta E, Van Der Wee N, Wykes T, Maria Haro J, Wittchen HU (2014) Stratified
medicine for mental disorders. Eur Neuropsychopharmacol 24:5–50

Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, Huang X, Hu J, Bi F, Li T, Sweeney JA, Gong
Q (2015) Two patterns of white matter abnormalities in medication-naive patients with first-
episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiat
72:678–686

Torous J, Onnela JP, Keshavan M (2017) New dimensions and new tools to realize the potential
of RDoC: digital phenotyping via smartphones and connected devices. Transl Psychiatry
7(3):e1053

Van Dijk KRA, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic
functional connectivity MRI. Neuroimage 59:431–438

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, Consortium WU-MH
(2013) The WU-minn human connectome project: an overview. Neuroimage 80:62–79

Varol E, Sotiras A, Davatzikos C, Alzheimer’s Disease Neuroimaging Initiative (2017) HYDRA:
revealing heterogeneity of imaging and genetic patterns through a multiple max-margin
discriminative analysis framework. Neuroimage 145:346–364

Weinberger DR, Goldberg TE (2014) RDoCs redux. World Psychiatry 13:36–38
Wolfers T, Buitelaar JK, Beckmann C, Franke B, Marquand AF (2015) From estimating activation

locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychi-
atric diagnostics. Neurosci Biobehav Rev. In press



134 A. F. Marquand et al.

Wolfers T, Arenas AL, Onnink AMH, Dammers J, Hoogman M, Zwiers MP, Buitelaar JK,
Franke B, Marquand AF, Beckmann CF (2017) Refinement by integration: aggregated effects
of multimodal imaging markers on adult ADHD. J Psychiatry Neurosci 42:386–394

Young J, Ashburner J, Ourselin S (2013) Wrapper methods to correct mislabelled training data.
3rd international workshop on pattern recognition in neuroimaging. IEEE, Philadelphia

Zhang XM, Mormino EC, Sun NB, Sperling RA, Sabuncu MR, Yeo BT, Alzheimer’s Disease
Neuroimaging Initiative (2016) Bayesian model reveals latent atrophy factors with dissociable
cognitive trajectories in Alzheimer’s disease. Proc Natl Acad Sci U S A 113:E6535–E6544


	7 Phenomapping: Methods and Measures for Deconstructing Diagnosis in Psychiatry
	7.1 Measuring Biology in Big Data Cohorts
	7.2 Overview of Analytical Approaches for Stratification
	7.3 Clustering
	7.4 Studies Subtyping Psychiatric Disorders on the Basis of Biology (`Biotyping')
	7.5 Alternatives to Biotyping
	7.6 Outlook and Challenges
	7.7 Conclusions
	References


