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Advances in positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI) have revolutionized our understanding of human cognition
and its neurobiological basis. However, a modern imaging setup often costs several
million dollars and requires highly trained technicians to conduct data acquisition.
Brain-imaging studies are typically laborious in logistics and data management,
and require costly-to-maintain infrastructure. The often small numbers of scanned
participants per study have precluded the deployment of and potential benefits
from advanced statistical methods in neuroimaging that tend to require more data
(Bzdok and Yeo 2017; Efron and Hastie 2016). In this chapter we discuss how the
increased information granularity of burgeoning neuroimaging data repositories—in
both number of participants and measured variables per participant—will motivate
and require new statistical approaches in everyday data analysis. We put particular
emphasis on the implications for the future of precision psychiatry, where brain-
imaging has the potential to improve diagnosis, risk detection, and treatment choice
by clinical-endpoint prediction in single patients. We argue that the statistical
properties of approaches tailored for the data-rich setting promise improved clinical
translation of empirically justified single-patient prediction in a fast, cost-effective,
and pragmatic manner.
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6.1 Blessing and Curse of Increasing Information Content
in Neuroimaging

The notion of “big data” in modern neuroimaging arises in two related, yet
importantly different ways. On the one hand, the number of observed variables per
participant, called “feature dimensionality” (p) and, on the other hand, the available
“sample size” (n) of scanned participants. In traditional experimental studies in
psychology, neuroscience, and medicine the number of observed variables has rarely
exceeded the number of participants. Concretely, many common neuropsychologi-
cal questionnaires and medical assessments capture <30 items—few in comparison
to the often hundreds of participants in clinical trials. This so-called “long-data”
setting (participants n > variables p) is the realm of classical statistics. Around
the turn of the century, the development of whole-genome sequencing and brain-
imaging led to biology and medicine entering the high-dimensional, or “wide-data”,
setting (variables p >> participants n; Efron 2012; Efron and Hastie 2016). For
example, in genetics, the feature dimensionality from the ∼3 billion base pairs or the
>100,000 single nucleotide polymorphisms summarizing the human genome vastly
exceeds the size of typically collected participant cohorts.

The brain sciences have recently been argued to be the most data-rich among
all medical specialties (Nature Editorial 2016). A single brain scan with high-
resolution MRI can easily exceed 100,000 variables that collectively describe brain
morphology or a type of neural activity. However, over the last 20 years, the sample
size in a typical brain-imaging study has rarely exceeded 50–100 participants. We
argue that important statistical consequences arise from the divergence of the “n-p
ratio” (the relation between the number of participants and the number of variables
per observation) in the classical and high-dimensional settings.

High-resolution MRI increases the potential for new neurobiological findings,
but the increased information detail in the brain recordings also exacerbates the
dangers of the so-called “curse of dimensionality” (Bellman 1957; Friedman et
al. 2001). Humans are accustomed to operating in the physical world and our
geometric perception is fine-tuned to 3-dimensional environments. Human intuition
regarding geometric properties, such as volume or distance, tends to struggle and
eventually go awry in high-dimensional spaces. Mathematically, an increase in
feature dimensionality (imagine going from a line to a square to a cube) leads to an
exponential increase in the input-data space, and the available data points become
increasingly sparse so that even the volumetric brain scans of monozygotic twins
may look dissimilar in high dimensions. In brain-imaging, an increase in resolution
(such as more voxels or more scans per time) will offer more detailed information,
but the higher information granularity will also make the relevant neurobiological
structure more difficult to identify. With respect to the brain data themselves, this
volume increase entails that, with each (uncorrelated) new variable, investigators
would potentially need to scan exponentially more participants to populate the
input variable space at the same density (Bishop 2006). With respect to machine
learning algorithms applied to brain data, it means that with more input variables
per participant, a pattern-recognition algorithm will increasingly struggle to find
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interesting statistical relations that exist in the data. The considerable increase in
data abundance and complexity will put many classical statistical methods at risk of
being deemed obsolete, and replaced by modeling approaches better tailored to the
new data reality in imaging neuroscience.

6.2 Recent Trends for Data Collection and Collaboration
Across Laboratories

The acquisition of brain-imaging data at scale is a challenging undertaking due to a
variety of technical, logistic, and legal factors. These hurdles range from the need for
time-effective and harmonized measurement protocols, to the participants’ informed
consent for sharing their data. New brain-imaging projects have tackled many of
these challenges and aim to provide general-purpose datasets to the neuroscientific
and psychiatric research community. Here, we give an overview of the current state
of “big-data” brain-imaging, and illustrate important ramifications for data-analysis
practices due to the increasing data accumulation.

Three data initiatives stand out in the brain-imaging landscape (Smith and
Nichols 2018): The Human Connectome Project (HCP), the UK Biobank (UKBB)
Imaging Study, and the Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA) Consortium. The HCP, launched 2009, was one of the earliest attempts
to create a rich reference dataset for the brain-imaging community. As the name
suggests, an important goal of the HCP initiative was to promote insight into
functional connectivity architecture by providing extensive multimodal data on a
large number of healthy participants. The HCP consortium recently completed
multi-modal measurements of over 1200 healthy adults (aged 22–35), including
300 twin pairs. For each participant, the project gathered structural, functional, and
diffusion MRI, genotyping data, as well as a large variety (>400) of demographic,
behavioral, and lifestyle indicators. With genetic profiling and extensive phenotyp-
ing with several thousand descriptors, UKBB is even more comprehensive. This
data collection initiative set out in 2006 to gather genetic and environmental (e.g.,
nutrition, lifestyle, medications) data from 500,000 volunteers, and is currently the
world’s largest biomedical dataset. UKBB recruited adults between the ages of
40 and 69. The participants will be followed for >25 years, including repeated
measurements and access to their electronic health records. In 2014 UKBB launched
its brain-imaging extension, aiming to gather structural, functional, diffusion, and
susceptibility-weighted MRI of 100,000 participants by 2022 (Miller et al. 2016).
Yet another ambitious attempt to create a large-scale neuroimaging dataset is the
ENIGMA consortium, launched in 2009. Compared to UKBB and HCP, ENIGMA
takes a different approach by centrally coordinating research projects and providing
each participating group with analysis pipelines and quality control protocols. The
software is run independently by each acquisition site and the ensuing results are
combined into integrative summary analyses, possibly across different imaging
modalities (i.e. structural, functional, or diffusion MRI). Because of this, the
sample size can be on the order of several thousand participants depending on the
availability of brain-scans directly relevant for a particular research question.
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In sum, we portrayed three contemporary data-aggregation projects, which have
substantially different research agendas. While UKBB is above all a medical dataset
and was designed for large-scale population epidemiology, the ambition of HCP lies
in functional and anatomical connectivity in healthy subjects, whereas ENIGMA
has an important emphasis on genetic profiling in combination with brain scanning.
Many more comparable datasets are in the making and should, within the next
decade, multiply the amount of brain imaging data available for research.

Compared to many traditional MRI experiments consisting of only a few dozen
participants, large-scale projects such as HCP and UKBB have unprecedented
strengths and pave the way for new neuroscientific insights. A key aspect is the
study design. Most imaging studies have a retrospective or cross-sectional nature in
that the investigators first decide what they are looking for (e.g., a certain disease
diagnosis or behavioral facet), and then recruit participants that fulfill the inclusion
criteria. The phenotype of interest has already been identified, and the study is in
some sense looking into the past. In contrast, UKBB is a prospective epidemiolog-
ical study. A broad sample of the population is included in the expectation that a
relevant set of the participants will experience a variety of health-relevant events
at some point in the future. For example, among the 100,000 participants to be
brain-scanned, ∼1800 are expected to develop Alzheimer’s disease by 2022, ∼8000
will develop diabetes, ∼1800 will have experienced a stroke, and ∼1200 will be
affected by Parkinson’s disease (Sudlow et al. 2015). Once these medical conditions
have developed, data will be available to the investigators consisting of information
before, and on the path to, disease onset. This potentially unprecedented wealth
of longitudinal information can be leveraged to identify early disease markers and
new risk factors; perhaps even chart hypotheses that might not have occurred to
researchers when designing a retrospective study. As most diseases only develop
in a small percentage of the population, sampling a large number of participants
is necessary for prospective studies to gain traction. Such future-oriented data
aggregation designs have great potential for early disease detection and trans-
diagnostic stratification in mental health.

Despite much enthusiasm, the creation, curation, and collaboration of extensive
brain-imaging datasets also raise a series of technical challenges (Arbabshirani
et al. 2017; Bzdok and Meyer-Lindenberg 2018; Woo et al. 2017). Inter-scanner
differences and the need for quality control at scale come into play. Effective
data collection is complicated by the fact that brain-imaging is highly sensitive
to differences in scanner type and configuration. For example, scanner-specific
differences in the measured longitudinal changes in regional gray matter volume
emerge even for identical scanner models (Takao et al. 2013). Multi-site data
collection projects should take into consideration that these inter-scanner differences
can confound statistical analysis (Focke et al. 2011). Reducing the heterogeneity of
the acquired data is either costly (i.e., requires multiple identical setups), or reduces
collection efficiency (i.e., single-scanner bottleneck). Different existing projects
make different trade-offs between collection efficiency and incurred inter-scanner
effects. ENIGMA prioritizes collection efficiency by working in parallel on a variety
of different types of scanners. To minimize confounding influences due to inter-
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scanner effects, UKBB uses identical scanner hardware at the different acquisition
sites, while the HCP has relied on a single scanner for the entirety of their data
acquisition.

Moreover, common quality control procedures that are usually performed by
hand can become infeasible. Undetected technical artifacts, movement artifacts, or
human error in applying the measurement protocol can distort statistical analysis.
In traditional small- to medium-scale studies, even in HCP, it was still possible to
perform quality control manually. A researcher or technician could visually inspect
the data for each participant and scanning modality to check for errors and artifacts.
The sheer amount of brain data that is generated in large-scale brain-imaging
projects makes the manual approach to quality control overly time-consuming.
UKBB has conceived and implemented automated quality control procedures
(Alfaro-Almagro et al. 2018). This approach uses pattern-learning algorithms to
model the data distribution and automatically identify artifacts and measurement
errors. UKBB, HCP, and ENIGMA have invested in elaborate automated processing
pipelines and protocols to detect and correct errors and guarantee standardized data.

6.3 Anticipating Upcoming Shifts in Statistical Practice

Once successfully collected and controlled for quality, massive brain-imaging
datasets allow for more ambitious statistical analyses than standard studies con-
sisting of only a few dozen participants. Recently, more advanced statistical and
computational approaches have emerged to address new research goals, such as
the search for neuroimaging biomarkers and hidden brain phenotypes that are
demonstrated to be useful at the single-subject level. We will discuss in detail four
key directions in which the increased amount of data in brain-imaging is likely to
usher in changes to everyday statistical data-analysis practice. We anticipate, first,
a trend for parametric methods to be complemented by flexible non-parametric
methods that allow for more detailed models of the brain. Second, a trend for
discriminative methods to be complemented by more applications of generative
models that aim to uncover the mechanisms for how the observed data arose. Third,
a tendency for frequentist and Bayesian approaches to be combined for data analysis
solutions that are both computationally cheap and holistic in interpretation. Fourth,
out-of-sample generalization will become an increasingly attractive alternative to
classical null-hypothesis hypothesis testing. Below, we discuss each direction in
turn. We will also describe how “big-data” innovations can potentially aid in the
analysis at the single-subject level, providing a mechanism for precision psychiatry.

An important benefit of large-scale data collection is that it allows for more
expressive models for describing phenomena in the brain—models that can capture
higher-order non-linear interactions in the data and are able to represent more subtle
aspects about the brain (i.e., increased model expressiveness). There are two ways in
which this can happen. First, increased participant sample sizes make it possible to
extract details and nuances from the data distribution that would be indistinguishable
from random fluctuations in small studies. Second, more data points allow for a
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higher number of parameters to be reliably estimated, allowing for more expressive
models that can instantiate more complicated neural phenomena (i.e., models that
can reproduce potentially extremely complex statistical relationships; Devroye et al.
1996; Bickel and Doksum 2007).

Classical statistical methods, such as t-test, analysis of variance (ANOVA), and
linear regression, used for example in the widely distributed statistical parametric
mapping (SPM) software package, do not exhibit the properties necessary for
representing increasingly complicated brain properties with an increasing number
of participants. Classical methods attempt to model data with a fixed, limited
number of parameters, and usually make rigid assumptions about the underlying
structure of the brain measurements. For example, the t-test and ANOVA usually
assume Gaussianity regardless of the underlying data distribution observed in the
MRI brain scans. After accumulating enough participants to detect a statistically
significant effect, additional data may yield little additional insights. In fact,
classical methods may frequently underfit the data in more complex data settings
with many input variables. The use of a fixed number of parameters qualifies these
methods as parametric. In contrast, non-parametric approaches (Fig. 6.1) typically
make weaker assumptions about the underlying structure of the acquired brain data.
Here the number of parameters can flexibly adapt with the number of participants,
and is potentially infinite. Data from more participants allow for more nuanced
quantitative brain representations, based on less rigid statistical models.

Fig. 6.1 Parametric vs. non-parametric approaches. Non-parametric methods (with a number of
parameters that scales with increasing data availability) are more flexible than parametric methods
(with a fixed number of parameters). We illustrate this distinction for the case of predicting a target
variable Y based on two input variables X1 and X2. The parametric method of linear regression (left)
always estimates three parameters defining the plane that best explains variation in the data. The
number of parameters is independent of the number of data points and independent of the shape
in which the data points are distributed—the end result is always a plane. In contrast, the non-
parametric k-nearest-neighbor algorithm (middle and right) can adapt to a more complex shape by
increasing the number of parameters in step with the number of available data points. With ample
amount of available data points (right, k = 9), the shape of the regression surface turns from a
coarse step function (middle, k = 1) into a smooth approximation of the data distribution (right).
Non-parametric methods adapt their number of parameters in step with the number of data points
and can thus reproduce more complex shapes and distributions. Reproduced from James et al.
(2013)
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An example of a non-parametric method is the k-nearest neighbor algorithm
(Fig. 6.1). A sample (e.g., a T1 image of a healthy or schizophrenic participant)
is classified by the class membership (disease status) of the majority of its closest
data points in the dataset (the other participants). As the number of samples increase,
more details of the data distribution (e.g., individual brain anatomy) can be captured
leading to a more refined quantitative representation of the brain phenomenon under
study. Other popular examples of non-parametric methods are decision trees (and
tree-based methods such as random forests) and kernel support vector machines. In
both approaches the number of model parameters scales naturally with the number
of participants. Extensive biomedical datasets are ideal for using non-parametric
methods to capture previously unobserved neurobiological properties that might be
ignored when using parametric methods alone.

An example of the application of non-parametric methods in brain-imaging is
the investigation by Gennatas et al. (2017) on how gray-matter changes with age
in a large neurodevelopmental dataset (Pennsylvania Neurodevelopmental Cohort,
1189 participants aged 8 to 23). A parametric approach would have been to use
an instance of the (parametric) generalized linear model (GLM) to relate MRI
gray-matter measures to age, that is to estimate coefficients for the variables
(gray-matter measures) that best predict the target (age). Instead, Gennatas and
colleagues used a non-parametric extension of the GLM called “generalized additive
models” (GAM; Hastie and Tibshirani 1990). Instead of fitting a coefficient for each
input variable, GAMs estimate an adaptive functional form linking each individual
variable with the respective output variable. With more data points (participants), the
identified arbitrarily complex input-output functions could more accurately reflect
the interaction between gray matter voxels and overall participant age. The GAM is
thus able to describe and exploit highly non-linear statistical relationships to which
the GLM would be blind1. Integrating the non-linear relationships between regional
gray-matter volumes and age increased the goodness of fit of the model, leading
to less noisy parameter estimates and therefore to enhanced understanding of gray-
matter changes in individual brain regions across the lifespan.

As a second important distinction, statistical models can be used to address
a research goal directly—discriminative models—or additionally learn intrinsic
structure from the data at hand—generative models (Fig. 6.2). As an analogy,
assume somebody wants to distinguish between speech from Japanese and Chinese
speakers. A generative model would first try to learn the grammar, vocabulary, and
phonology of both languages. Only then would the model address the classification-
goal of disambiguating whether a certain speaker is Japanese or Chinese based on
an explicit internal representation of what each of the two languages looks like. A
discriminative model, on the other hand, would use any aspect of the speech, such
as the intonation or the frequency of certain phoneme combinations, to somewhat
blindly distinguish the speaker groups—even if no deeper understanding is obtained

1The only way for the GLM to describe non-linear interactions is to anticipate the particular effect
and introduce the corresponding higher-order terms explicitly into GLM model from the beginning.

https://paperpile.com/c/P5MWqG/d7PF/?prefix=GAM%3B
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Fig. 6.2 Generative vs. discriminative approaches. Patients (black) and controls (red) both
undergo the same biomedical evaluation. The result of the test is indicated on the x-axis, the
likelihood that a participant of either class will receive a particular result is indicated on the y-axis
(left). There exist two statistical approaches to predict if a given participant is patient or control
based on the test result. A discriminative model (right) estimates a decision boundary (vertical line)
that optimally separates the patients from the controls. Apart from the decision boundary, no other
information is extracted from the data. A generative model (left) estimates the full probability
distributions of both the patient and control group. The probability distributions are then used
to determine whether a given participant is more likely to be patient or control. The generative
model also captures information about the data distribution that does not directly help to distinguish
patients from controls (e.g., information about the far ends of the probability distributions or about
the density bump at x = −1). This “unnecessary” information can reveal important biological
insights: In this case, the density bump at x = −1 could indicate that the patient group is in fact
composed of two different groups with distinct symptom profiles. Inspired by Murphy (2012)

about the speech’s content and structure. In a large number of application domains
in empirical research, discriminative models have dominated statistical analysis. In
the example of distinguishing2 a healthy group from a schizophrenic patient group,
discriminative models (e.g., logistic regression, support vector machines) learn a
decision boundary between the participants from each group (think of a dividing line
between categories, e.g., healthy vs. diseased)—or, more formally, they estimate
the posterior probability3 P(y|x), without extracting an explicit representation of
each class to be distinguished. In contrast, generative models (e.g., naive Bayes
classifier) estimate the joint distribution P(x,y)—or, more informally, generative

2The classification setting serves as an illustration only. Discriminative methods exist indepen-
dently of the classification—regression divide. For example, the clustering algorithm k-means is
discriminative in the sense that it finds decision boundaries between clusters, although it attempts
neither classification nor regression.
3P(y|x) is the so-called conditional (in the Bayesian terminology the “posterior”) probability: The
probability of an event y (e.g., the patient is diseased) under the condition that another event x
(e.g., a certain brain anatomy measured by MRI) has already occurred. P(x,y) is the so called joint
probability: The probability of x and y occurring together.
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methods model the process by which the data was generated (Jebara 2012; Bishop
and Lasserre 2007). The class posterior distributions P(y|x) can then be derived
using Bayes’ rule.

Importantly, generative models have the intrinsic ability to produce new, artificial
data samples. This ability to create never-observed data that is characteristic for one
of the classes has an appealing advantage. Sampling from the generative model and
visually inspecting the generated samples can provide direct insights into the inner
workings of the brain phenomenon under study. In a model of the brain, where one
model parameter is hypothesized to represent age, varying this parameter would
allow the investigator to see a brain aging before their eyes—providing insight into
age-related brain changes. However, a natural caveat is that the results will only
be as good as the underlying model. If the model does not accurately depict the
phenomena in question, the output of a generative model will be similarly flawed.

As a consequence, generative models are usually easier to interpret than most
discriminative models because the modeled internal representation of what the data
“looks like” (i.e., the conditional variation between input variables, output variables,
and possible hidden variables) has been noted to capture biologically meaningful
structure in previous brain-imaging studies. Furthermore, many generative models
work by adaptively modeling hidden states of a system, or by finding a compact set
of hidden factors that describe the dynamics of the system at hand. This process is
often called latent factor discovery (Goodfellow et al. 2016, Chap. 13). A compact
set of latent factors is usually easier to interpret than potentially high-dimensional
brain-imaging input data (Fig. 6.3). A simple example of such a latent factor based
generative model is the commonly used independent component analysis (ICA).
ICA reduces the data to a manageable number of hidden directions of variation. As
a generative model, ICA is able to produce never observed, artificial data samples
based on the extracted latent factors. Such sources of variation underlying the
observations can be easily interpreted (e.g., by plotting which brain areas associated
with which latent factor) and can uncover previously unknown information about
the brain in both health and disease. Given enough samples of resting-state fMRI
time series, ICA is able to both find hidden multivariate patterns that together
explain the variation in the data (e.g., the default mode network) and generate new
artificial brain images from the derived factors. The combined statistical goal of
generative methods to model hidden states of the brain phenomena and minimize
an optimization criterion at hand (e.g., prediction performance) is usually more
challenging than the statistical goal of discriminative models to simply find a
decision boundary between classes. This explains why generative models tend
to require brain data from more participants and why they are now becoming
increasingly attractive with large-scale datasets.

A common generative model in brain-imaging is dynamic causal modeling
(DCM) invented by Friston et al. (2003). The goal of DCM is to estimate directed
“effective connectivity”, that is, the functional influence that one brain region exerts
on another brain region. DCM explicitly estimates interactions between neuronal
populations in the context of a biophysical model of the hemodynamic response.
This characteristic makes DCM a generative model with neurobiological plausibility
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Fig. 6.3 Latent factor model in action. Dynamic causal modeling is a brain-imaging analysis
technique that can be used to model the functional connectivity in the brain. DCM uses fMRI
activity data to estimate the degree of connectedness between predefined brain regions. The DCM
model parameters can be seen as a different perspective on the same data: Each participant has
different fMRI activity and thus different estimated DCM model parameters. Here, whole-brain
fMRI data do not lend themselves to distinguish patients from controls. The figure on the left
shows how patients and controls are distributed in the space spanned by three voxels (“voxel-
based feature space”). The DCM parameters capture more meaningful biological concepts than
individual voxels, and patients and controls become separable. The figure on the right shows how
participants form clusters of patients and controls when viewed in the space spanned by three DCM
connectivity parameters (“generative score space”). Reproduced from Brodersen et al. (2011)

that is able to synthesize plausible hemodynamic activation patterns from hidden
neural activity in brain regions. In addition to various human fMRI studies, the
plausibility of DCM has been directly evidenced in rats by successfully relating
intracerebral EEG recordings to rat fMRI (David et al. 2008).

It should be noted that not every generative model is based on latent factor
discovery, and not every latent factor model qualifies as a generative model. Some
generative approaches work by transforming random input vectors (e.g., generative
adversarial networks) or autoregressive models (e.g., pixelRNN, waveNet) and do
not lend themselves to easy introspection of the underlying statistical relationships
by the investigator. An example of a non-generative latent factor model is classical
canonical correlation analysis4 (CCA). This exploratory method is similar to princi-
pal component analysis in that it reduces the data to orthogonal principal vectors, but
instead of maximizing explained variance, CCA maximizes the correlation between
two (lower-dimensional) latent factors of two data “views”, for example, brain-
imaging on the one hand and behavioral performance scores on the other hand.
CCA thus identifies aspects of brain-imaging data and behavioral data that exhibit
maximal linear correspondence with each other.

4Although there exists a generative probabilistic variant of CCA, the widely used classical CCA is
not inherently generative.



6 Emerging Shifts in Neuroimaging Data Analysis in the Era of “Big Data” 109

For instance, Wang et al. (2018) used canonical correlation analysis to provide
some of the first evidence for distinct neurobiological underpinnings of different
subjective experiences of mind-wandering. Such stimulus-independent cognitive
processes are associated, amongst others, with executive performance and creativity
indicators. To provide evidence that mind-wandering is not a homogeneous psy-
chological construct, but instead comprises a range of cognitive architectures and
functions, the authors employed CCA with resting-state fMRI data as one view and
self-reported experience, cognitive performance, and psychological well-being data
as the other view. The CCA revealed latent factors that simultaneously described
individual variation in self-reported experience and connectivity in the default mode
network, as well as factors uniquely related to aspects of cognition, such as executive
control and creativity. These findings, enabled by the unique modeling capabilities
of CCA, provided evidence that distinct brain dimensions collectively contribute to
different cognitive aspects underlying the mind-wandering experience.

Traditionally, perhaps the most important distinction in statistics in general and
in neuroimaging in particular has been between frequentist and Bayesian models
(Freedman 1995). To illustrate, let us consider the example of medical research. A
Bayesian researcher would happily introduce prior knowledge from past research
and experience into her statistical inferences to guide further upcoming research.
These a-priori assumptions placed on the model parameters in combination with
Bayes’ rule yield full probability distributions, that is, a point estimate and detailed
information on the uncertainty that comes with, for example, the effectiveness of the
proposed treatment. The frequentist medical researcher, on the other hand, would
shy away from the subjectivity of making a-priori assumptions before studying
the data. She obtains an estimate without detailed uncertainty information—for
the treatment effectiveness that hold with fewer assumptions about the underly-
ing data-generating process. Intuitively, Bayesian statistics is a good choice for
several research questions being asked using neuroimaging techniques. Commonly
accepted knowledge of brain anatomy and physiology can for instance be used as a
basis to come up with a-priori assumptions that guide the model fitting process. In
the example of DCM, interactions between neuronal populations are modeled not
just based on the experimental data, but instead the modeling process is couched in
probabilistic a-priori knowledge concerning hemodynamic parameters, anatomical
regions, and more.

In contrast to many approaches to full Bayesian inference, performing statistical
data analysis using a frequentist approach is usually computationally cheaper
(Bishop and Lasserre 2007; Jordan 2011; Yang et al. 2016). The “model evidence”
term in Bayes’ formula is typically the source of the much increased computational
load in the Bayesian setting. It is an integral over all possible values of all relevant
parameters (which are often much more numerous than the feature dimensionality
of the actual quantitative observations in the brain) that usually cannot be directly
solved, and even reaching approximate solutions is computationally challenging
in many cases. A common tool for these approximations, the family of Markov
chain Monte Carlo (MCMC) methods, is an iterative algorithm that is not easily
parallelizable. These hurdles become even more severe in domains such as brain-
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imaging, where an arms race for increasingly finer spatial and temporal resolution
is constantly pushing the feature dimensionality of the brain scans. One potential
solution to the computational expense of Bayesian inference in many applications
to extensive brain data is the integration of Bayesian and frequentist modeling
paradigms. An example of such a hybrid approach is variational inference—
a widespread modeling solution to approximate complicated Bayesian integrals
(Jordan et al. 1999). Another hybrid approach that has been shown effective is
shrinkage, a statistical estimation method in which individual observations “borrow
strength” from a larger group of observations (Bzdok et al. 2017; Varoquaux et al.
2010; Mejia et al. 2015). Shrinkage is implicit in Bayesian inference, penalized
likelihood inference, and multi-level models and is directly related to the empirical
Bayes estimators commonly used in neuroimaging (Friston et al. 2002; Friston and
Penny 2003).

A combined Bayesian-frequentist approach was also applied by Brodersen et
al. (2011) in the aim of computational psychiatry. Faced with the challenge of
classifying a small number of participants into healthy and diseased groups based
on the high-dimensional input data from all voxel activities in the whole fMRI
time series, they introduced classification via “generative embeddings”. These
investigators used Bayesian, generative dynamic causal modeling to compute
effective-connectivity models for each participant. The DCM model parameters
were then used as a low-dimensional effective summary of the high-dimensional
voxel data (Fig. 6.3). This dimensionality reduction via domain knowledge (i.e.,
priors on brain anatomy and physiology in the DCM) mitigated the curse of
dimensionality and, in a subsequent step of the modeling approach, allowed for
the data to be classified by a frequentist support vector machine, thereby combining
the strengths of both Bayesian and frequentist inference.

Finally, in mainstream statistics as routinely applied in medicine, psychology,
and brain-imaging, new knowledge is typically derived from data by means of null-
hypothesis testing, that is testing whether or not an observation is too extreme to
be plausible under the null-hypothesis of no effect (Fisher and Mackenzie 1923;
Neyman and Pearson 1933). In a drug trial, the null-hypothesis would be that the
new drug is no more effective than a current standard treatment. A measured effec-
tiveness that defies explanation as a random fluctuation in the experiment would lead
the investigator to discard the null-hypothesis and establish the superiority of the
new drug. An overarching theme of classical statistics in the twentieth century was
to optimally exploit small sample sizes using low-dimensional parametric models
(Efron and Hastie 2016).

The recent advent of large-scale data collection has had two important conse-
quences. First, caveats emerge for hypothesis testing in ever more high-dimensional
neuroimaging data. The “multiple comparisons” problem becomes increasingly
challenging to address in the wide-data scenario (Miller 1981; Efron 2012). The
traditional approach in the brain-imaging community is called “mass univariate”
analysis and performs separate statistical tests for each brain location. When many
null-hypothesis tests are being carried out in concert, an increasing number of false
positive findings will plague the data analysis and subsequent interpretation. Many
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commonly used methods to explicitly account for the number of false positives, such
as Bonferroni’s method for family-wise error correction, work by increasing the
threshold for statistical significance in a conservative fashion, which substantially
increases the number of participants whose brain data are necessary to reject a given
null-hypothesis.

On the other hand, if the number of variables is small (e.g., after reducing whole-
brain data to a lower-dimension using independent component analysis) but the
number of participants happens to be much larger, even very small, practically
irrelevant statistical effects will sooner or later become significant (Berkson 1938).
For instance, brain-behavior correlations of r ≈ 0.1 were consistently found to be
statistically significant when considering a sample of n = 5000 participants even
after correction for multiple comparisons (Miller et al. 2016). This and similar
examples illustrate that, in the era of “big-data” neuroimaging, hypothesis testing
may more and more often struggle to distinguish between statistical and practical
significance. In sum, the traditional null-hypothesis testing frameworks may have to
tackle new difficulties in analysis settings with a lot of input variables (“wide-data”
or n << p setting) and when brain data from a large human population are considered
(“long-data” or n > p setting).

At the same time, the rise of national, continental, and intercontinental brain-
data collections are making the statistical goal of prediction increasingly attractive.
Modern machine-learning approaches have a focus on predicting disease status,
behavior, even treatment response of single individuals. The process of deriving new
knowledge based on a sample of participants takes a different form in the predictive
analysis setting. Instead of looking within the sample of participants at the properties
of the estimated parameters, the focus is on accurate statements about new,
previously unseen participants—and evaluating the out-of-sample generalization
(Vapnik 1998; Valiant 1984). In practice, the participants are split into two groups: a
“training set” that is used to fit the model or classifier, and a separate “test set” that
is used to evaluate prediction performance. If the prediction succeeds on the test
set, we can empirically establish that the model captures useful biological structure
and, more importantly, that a meaningful connection between (potentially many)
input variables (e.g., fMRI brain scans) and a target variable (e.g., disease status)
exists. Usually, the random split into train- and test-set is performed repeatedly in a
procedure that is called cross-validation.

By quantifying the prediction success in new individuals (i.e., out-of-sample
estimates) many machine learning approaches naturally adopt a prospective view-
point and can directly yield a notion of clinical relevance. In contrast, classical
approaches based on null-hypothesis testing often take a retrospective flavor as
they usually revolve around finding statistical effects in the dataset at hand (so-
called in-sample estimates) based on prespecified modeling assumptions, typically
without explicitly evaluating some fitted models on unseen or future data points.
Hence, ubiquitous techniques for out-of-sample generalization in machine learning
are likely candidates for enabling a future of personalized psychiatry. This is because
predictive models can be applied to and obtain answers from a single patient.
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Two properties are shared between the discussed upcoming trends in data-
analysis in the brain-imaging community. On the one hand, the anticipated shifts
in statistical practice are expected to enable more complex (e.g., increased model
expressiveness) and also more interpretable statistical models (e.g., more generative
models) of the brain, based on high-dimensional neuroimaging data. On the other
hand, many of these modeling approaches tend to work better with larger participant
sample sizes and may be well prepared to handle rich high-dimensional input data.
With the advent of the new data reality in the brain-imaging community, such “data-
hungry” methods become increasingly feasible and necessary.

6.4 Clinical Endpoint Prediction in Single Psychiatric Patients
Based on Brain-Imaging

In this last section, we place the trends of large-scale data collection and ensuing
changes in statistical practice in the context of current mental health research. We
give examples of how large-scale neuroimaging datasets can enable new research
approaches and use a recent paper by Drysdale et al. (2017) to illustrate how
parametric structure-discovery methods, latent factor models, and out-of-sample
prediction all can be integrated in this type of research agenda.

The traditional approach to mental health research consists of identifying
symptoms that frequently occur together and using these clinical manifestations to
define disease-specific symptom combinations based on expert opinion. Clusters of
symptoms are assumed to define coherent disease entities. These disease definitions
are then used to find diagnostic biomarkers (e.g., by searching for neural correlates)
or to predict treatment response. While this approach has worked well in many
areas of medicine (consider, for example, the glomerular filtration rate to identify
kidney disease) the same success has not yet materialized in psychiatry. Brain-
based quantitative markers for predicting treatment response at the single-subject
level, even to reliably distinguish between disease subtypes or healthy and diseased
participants, remain elusive in mental health (Insel and Cuthbert 2015). Large-scale
brain-imaging allows for flipping this approach on its head. Instead of clustering
individuals into groups by clinical symptoms and then looking for neurophys-
iological correlates, we can cluster based on quantitative brain measurements
directly (letting the brain data “speak for themselves”) and then look at symptom
measurements and clinical endpoints only after identifying clusters of shared brain
dysfunction. As this alternative strategy underlies the ambition to directly model the
biological basis of the disease and is less vulnerable to subjective and overlapping
symptoms, it may be more likely to yield a reliable foundation for diagnosis and
treatment.

Depression is one of many cases in psychiatry where recent evidence emphasizes
unclear correspondence between diagnostic labels used in clinical practice and their
neurobiological substrates as elucidated in neuroscientific research. Drysdale and
colleagues employ functional neuroimaging to identify depression subtypes in brain
biology (Fig. 6.4). In a large-scale study (n = 1188) they identified patterns of
functional connectivity in resting-state fMRI that were associated with symptoms
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Fig. 6.4 Example of modern brain-imaging-based subject stratification. Neural activity time
series measured by fMRI were extracted from regions of interest (a) and correlated with each other
to yield “functional connectivity features” (b). Canonical correlation analysis was then used to find
a small set of linear combinations of functional connectivity features that are maximally correlated
with self-reported symptoms of depression (c, d). Thus, the number of variables per participant was
reduced by two preparation steps: First from whole-brain maps to region-wise activity measures,
then from functional connectivity features to even fewer components of variation obtained from
CCA. This dimensionality reduction of high-resolution imaging data allowed identifying clusters
of participants (e, f) which are predictive of distinct symptom-profiles and response to transcranial
magnetic stimulation treatment. Reproduced from Drysdale (2017)
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of depression and used these to identify four neurobiologically distinct subtypes of
depression (“biotypes”). Based on these alternative group distinction for depressed
patients they were then able to predict whether or not a patient would respond to
transcranial magnetic stimulation (TMS)—a therapy in which a pulsing magnetic
field is used to induce inhibitory or excitatory electric current into parts of the
brain. The analysis approach in this study consisted of three steps: First, the authors
built a latent factor model connecting fMRI and depression symptoms via CCA.
Second, they used parametric, discriminative clustering to identify subtypes based
on the previously derived latent factors. Third, they used support vector machines
as a discriminative classifier to achieve out-of-sample predictions for the depression
subtype based on fMRI data.

To better illustrate how the statistical methods tie into the quest for depression
biomarkers we will cover the analysis pipeline more comprehensively. After
preprocessing (the cortex and subcortical structures were parcellated into 258
regions of interest), resting-state fMRI time series were extracted for each region
and correlated against each other. The resulting correlation coefficients (functional
connectivity features) for each patient represented the left-hand side of the variable
set for a canonical correlation analysis. The right-hand side of the variable set
was given by the corresponding Hamilton Depression Rating Scale results for each
patient. The CCA then returned hidden dimensions of variation—sets of distinct
functional connectivity patterns correlated with distinct combinations of clinical
symptoms. The number of latent factors was much smaller than the number of
original regions, making the latent modeling results easier to analyze and interpret.
The latent variability components were then used for clustering via the parametric
k-means algorithm. This procedure used the similarity in functional connectivity to
partition participants into k group such that each participant belonged to the cluster
with the smallest mean distance. A split into four clusters appeared to provide useful
partitioning solutions for defining maximally dissimilar patient subtypes.

Each of these subtypes (i.e., clusters derived from the latent factors) was shown
to be correlated both with distinct patterns of abnormal functional connectivity as
well as distinct clinical-symptom profiles. All four subtypes also featured shared
functional connectivity patterns that corresponded to “core” symptoms that were
present in all patients diagnosed with depression. The individual subtype predicted
whether or not a given patient would respond to transcranial magnetic stimulation
therapy. Support vector machines were trained to directly predict a patient’s brain-
derived subtype based on their functional connectivity information.

The steps of the analysis pipeline (latent factor model, clustering, prediction)
were conducted on a training data set consisting of only two-thirds of the patients,
in order to be able to test how well the discovered brain-behavior effect is likely
to generalize to previously “untouched” data (the remaining one-third). That is, the
built support vector machines prediction models were validated on the previously
held-out test set and achieved accuracy rates of approximately 90% in predicting
the biological subtype of individual patients—and thereby their individual response
to TMS treatment. This study is one of the first proofs of concept that data-derived
brain phenotypes of psychiatric disorders can provide useful biological categories
that enable improved treatment choices on a single-subject basis.
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Fig. 6.5 Single-subject prediction of brain disorders using neuroimaging. A survey by Arbab-
shirani et al. (2017) shows strong growth in the number of brain-scanning studies that attempt to
automatically classify brain disorders based on neuroimaging data (a). Structural MRI is so far the
most frequently used input data for the purpose of classification (b). The number of participants is
still relatively small (<200) for most imaging-based classification studies (c, d). Based on selected
brain-imaging modalities and feature variables, different studies report diverging classification
performances (e). Reproduced from Arbabshirani et al. (2017)

Over the last years, there has been a rising number of investigations into
single-subject prediction of brain disorders in neuroimaging. Arbabshirani et al.
(2017) recently provided a survey (Fig. 6.5) of ∼200 recent studies. Based on
their broad field analysis, structural and resting-state MRI are the brain-imaging
modalities that are currently favored for predicting brain disorders, and most
important brain disorders have been studied for single-subject prediction. Likely
because of its severity and prevalence, mild cognitive impairment and Alzheimer’s
disease (MCD/AD) is the disorder that has most often been tried to predict based on
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MRI data. The average prediction accuracy across studies was ∼86% for MCD/AD
and thereby yielded the comparatively best prediction accuracy among common
brain disorders. Autism spectrum disorder yielded similar accuracies (∼85%),
followed by major depressive disorder and schizophrenia (∼81%), and attention
deficit disorder (∼77%). Models in these studies were trained on relatively few
participants (mean 186, median 88). Virtually all of these investigations had to
restrict themselves to a correspondingly small number of features, usually derived
by averaging brain regions via a brain atlas, or other biologically inspired manually
crafted features. The reported average participant numbers were still an order of
magnitude away from the projected number of (e.g., Alzheimer’s) patients in the
prospective UKBB study, leading us to anticipate further improvements in predictive
accuracy and potential clinical applicability in diagnosis and prognosis of brain
disorders as these data become available.

An intensified approach to psychiatric research based on brain-derived mark-
ers has several advantages over the traditional symptom-based research stream.
Neuroimaging biomarkers can more directly allow gaining traction on neurophys-
iological aberrations underlying psychopathology. Identified brain-derived markers
often enable reliable brain-based stratification of individual participants, which
should offer a promising basis to improve clinical practice in diagnosis, prognosis,
and treatment selection. Potential for more complete detection and exploitation
of the pathophysiological mechanisms underlying brain disorders may fuel the
development of new and superior treatment strategies. These anticipated advances
may likely turn out to be a direct result of large-scale neuroimaging data collection
combined with the use of data-hungry computational methods.

6.5 Conclusions

The soaring cost of psychiatric disease prompts a global urgency for finding new
solutions (Bloom et al. 2012; Gustavsson et al. 2011). We believe that whether
or not personalized medicine can be realized in psychiatry is largely a statistical
question at its heart. For many decades, the group has served as the working unit of
psychiatric research. Facilitated and intensified acquisition of always more detailed
and diverse information on psychiatric patients is now bringing another working
unit within reach—the single patient. Rather than pre-assuming disease categories
and formally verifying prespecified neurobiological hypotheses, an increasingly
attractive alternative goal is to let the data speak for themselves. As a consequence
of the new data reality and changing research questions, some long trusted statistical
methods may no longer be the best tool at our disposal.

The statistical properties of learning-algorithm approaches tailored for the
data-rich setting promise clinical translation of empirically justified single-patient
prediction in a fast, cost-effective, and pragmatic manner. Patient-level predictive
analytics might also help psychiatry to move from strong reliance on symptom
phenomenology to catch up with the biology-centered decision making in other
branches of medicine. Machine learning tools offer an ideal data-guided framework
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to uncover, foster, and leverage inter-individual variation in behavior, brain, and
genetics. The fact that the currently embraced mechanistic explanations for psychi-
atric disorders range from molecular histone-tail methylation in the cell nucleus to
urbanization trends in society as a whole highlights human-independent learning
algorithms as an underexploited avenue for the automatic identification of disease-
specific neurobiological features that can predict clinical outcomes. Ultimately, the
human intelligence alone may be insufficient to decipher how mental disorders arise
at the complex interplay between each individual’s unique genetic endowment and
world experience.
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