
2Major Challenges and Limitations of Big Data
Analytics

Bo Cao and Jim Reilly

Mental disorders have been considered as the top burden among global health
problems, contributing about 32.4% years lived with disability (YLDs) and a cost
of 2.5 trillion US dollars including both the direct and indirect costs (Vigo et al.
2016; Whiteford et al. 2013; Trautmann et al. 2016). The economic cost from
mental disorders is expected to double by 2030. Because mental disorders usually
appear early in the life, they may become a life-time burden for the patients and
the caregivers. With the increasing number of patients in mental disorders and a
growing aging population, the life burden and economic cost of mental disorders
will be more than those of cardiovascular disease, common infections and cancer.
However, unlike other physical diseases, we still highly rely on symptoms and do
not have objective markers to make diagnosis of mental disorders. Once patients
are diagnosed with mental disorders, we respond with a trial-and-error procedure
to treat them. We seem to lack a good way to know the best treatment for a patient
in advance and to provide optimal personalized treatment. These two major issues
are pressing grand challenges to psychiatrists and researchers in the field of mental
disorders.

The emerging field of “big data” in psychiatry opens a promising path to precise
diagnosis and treatment of mental disorders. Over years of debating and hard work,
researchers have come to an agreement that mental disorders are complicated and
one disorder is probably not caused by a single change in the genes or neurons.
However, by using high-dimensional data, such as genome-wide transcription and
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brain images, and integrating information from different modalities, we may be able
to development methods of precise diagnosis and treatment prediction of mental
disorders. Because the dimension of the data available is so high, a large number
of observations are required correspondingly to develop and validate any model or
method based on the data, which lead to a big volume of data with high dimensions
and high instances. With the help of big data, it becomes possible to implement
technics like data mining and machine learning to establish data-driven diagnoses
and treatment strategies of mental disorders. Along with the opportunities brought
by the big data in psychiatry are some unprecedented challenges.

In this chapter, we will name some challenges we are facing in the field of big
data analytics in psychiatry. We hope to address and overcome these challenges with
the joint force of researchers in related fields and alleviate the burden of mental
disorders.

2.1 Challenges in Data Standardization

The data and knowledge shared should be scalable, expandable, transferrable and
sustainable. This means that by increasing the volume of the data, we should
achieve better performance of methods developed on the data and higher confidence
of the outcomes, and we should be able the transfer the methods developed on
one population to other populations and on the current generation to the future
generations. One of the major challenges of big data analytics in psychiatry is that
data collected globally is not always combinable due to the lack of standardization
across regional centers and hospitals. Standardization can be considered as common
features or measurements shared between datasets in the raw format in a strict
sense. The measurements, or what data to collect, are usually determined upon an
agreement across clinicians and researchers from different regions and disciplines.
Standardization can also be considered as major shared information between
datasets in a general sense. Even though the datasets may look different, the
same features could be extracted after preprocessing. Lack of standardization is
usually due to a disagreement among data collection parties, and makes it difficult
to generalize the analysis based on one dataset to other datasets, or transfer the
knowledge learned by the machine from one to another.

The first level of lack of standardization is from the diagnosis criteria. Although
many researchers aim to move away from symptom-based diagnosis and achieve an
objective diagnosis system based on biological markers, we still need to reply on the
current diagnosis system to establish research samples. However, discrepancies in
major diagnosis criteria across the world still exist. For example, bipolar disorder in
children and adolescents is still diagnosed differently in Europe and U.S., resulting a
much lower prevalence of bipolar disorder in Europe than U.S. (Soutullo and Chang
2005), and it is a debating topic whether bipolar disorder progresses or has severity
stages (Berk et al. 2007; Passos et al. 2016; Cao et al. 2016; Kapczinski et al. 2016).
Discrepancies of this kind will make it difficult to integrate data from different
regions, as the data from patients with a certain label in one region may actually
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represent different populations in another region. It may also make it difficult the
apply models developed with data from one region to those from another region,
when these regions have different diagnosis criteria.

The changes of major diagnosis criteria over the years may also expose chal-
lenges in the consistency of the methods developed with data based on these
criteria. For example, the data collected from patients with autism spectrum disorder
(ASD) based on the fifth edition of Diagnostic and Statistical Manual of Mental
Disorders (DSM; DSM-5) may include patients that were labeled as another
disorder according to the fourth edition of DSM (DSM-IV). Patients that were
considered to have obsessive-compulsive disorder (OCD) or posttraumatic stress
disorder (PTSD) according to DSM-5 might share the same biological signatures
of patients with anxiety disorders diagnosed according to DSM-IV (American
Psychiatric Association 2013a, b). These changes of criteria are sometimes due
to disagreement among the clinicians and researchers, but with good intention to
provide better mental health services and to reflect recent progress in the research
in mental disorders. The changes of criteria will be always a challenge for big data
analytics in psychiatry, as it will be hard to keep tracks of findings based on different
versions of the criteria. However, as more data are generated, shared and utilized,
we believe that the criteria based on the biological markers will eventually emerge
and converge with the criteria based on symptoms.

The second level of lack of standardization is from the different variables or
modalities collected from regional data. Researchers have already realized the
value of multi-modality data in psychiatry, which usually provide a more thorough
understanding of mental disorder mechanisms and a better performance of compu-
tational models in making classifications and predictions of diagnosis and treatment
responses compare to data of single modality. However, it is not always possible to
collect all the crucial modalities. For example, magnetic resonance imaging (MRI)
can provide non-invasive measurement of brain structure and functions in-vivo, and
is a powerful tool for psychiatric research especially when combined with genetic
measurements (Stein et al. 2011). However, a MRI scanner is luxury equipment
for many hospitals in the developing countries, and many research projects may
have to drop the MRI component due to the shortage of financial support even
when the patient resource is sufficient. Some scanning procedures may require
dedicated expertise, such as MR spectroscopy, advanced diffusion tensor imaging
and scanning very young children or patients under states involving excessive head
movements (Cao et al. 2017a), which may also become challenges for hospitals and
research centers without corresponding supports.

Different variables, assessments and outcome indicators may also be used in
electronic health records (EHR) and health information (HI) across regions and
nations. It is quite common that even with the same diagnosis criteria, clinicians
and health service providers from different regions or countries may have different
interpretations of the criteria and different ways to record cases. They may also
add their own insight or adapt a general procedure to meet the need of local
populations. All these variations of recording the patient information may lead to
various measurements that are unique to certain data collection, which will cause
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difficulty when a method developed on one dataset is being transferred or applied
to another dataset. The EHR and HI are emerging technology in mental health,
and each country is still trying to implement them efficiently according to its own
medical, privacy, political and financial environments. However, it is important for
researchers and policy makers to realize the necessity to facilitate a communicable
and compatible health record system for the future global effort in mental health
research.

The third level of lack of standardization is from varies of protocols in data
collection. Although some datasets shared the same variables, they may show
quite significant difference in the same variables due to different protocols of
data collections, storage and preprocessing. For example, in a large multi-center
neuroimaging dataset, the study site is one of the most significant contributors to
the variance even in some of the basic measurements like cortical and subcortical
region volumes (Panta et al. 2016). The effect of the study sites may be attributed
to several sources, such as different brands of scanners, scanning sequences and
parameters, preprocessing pipelines and even different instructions for the patients.
Since it is not possible to use the same scanner and technicians to perform all the
data collection, one strategy could be using common phantoms across study sites
and follow the protocol in a well-established large-sample study, such as the human
connectome project (http://www.humanconnectomeproject.org). Another strategy is
to include a well-represented sample of healthy subjects that serves as the reference
when the measurements of current dataset are compared to other public datasets
(Cao et al. 2017b). The difference in the measurements between the healthy subjects
in different datasets could be used to calibrate the corresponding measurements
for all the subjects including patients and healthy subjects, so that different patient
populations from different datasets can be compared directly (Fig. 2.1).

Another challenge in data standardization is the fast evolving technics in biology,
imaging and computational analysis. We are in such a fast pace in the development
of new technologies in biology and the ways that we can measure the genes,
neurons, brain anatomy, networks and functions are evolving every day. New
standard measurements that were not possible or affordable are being introduced
more frequently than ever. Thus, it is a great challenge for us to think ahead when
new data collection is planned. It is also important to keep updating and correcting
knowledge derived from data collected previously. A result no matter how intuitive
at the time of publication could be found less accurate when a new method is
developed. For example, the segmentation of hippocampal subfields were found
to be less accurate in an older version of method compared to the new version
(Andreasen et al. 2011; Cao et al. 2017c, 2018), and findings using the previous
version of method need to be updated and interpreted with caution (Van Leemput
et al. 2009; Haukvik et al. 2015). For another example, researchers have generally
believed that there is no lymphatic system in our brain, until very recently some
study confirmed that our brain actually has a lymphatic system to circulate immune
cells and wastes using advanced MRI imaging technics (Absinta et al. 2017). This
will not only change the textbooks about the lymphatic system, but will also bring

http://www.humanconnectomeproject.org
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Fig. 2.1 Effect from study sites in a large sample multi-center neuroimaging study. Adapted from
Panta et al. (2016)

new possible measurements about brain immunometabolism in mental disorders
involving altered immune activities like neural or glial inflammation.

Although it is convenient to have the exact same measurements in datasets
collected across regions for the purpose of implementing many machine learning
algorithms and analyses, the advance of computational algorithms may provide
more tolerance of less standardized data. Traditional methods, such as support
vector machines (SVM) and regularized linear regressions have made substantial
progress in big data analytics in psychiatry. However, they may require relatively
strict standardization across the datasets when a model using them needs to be
generalized and transferred from one dataset to another dataset. New progress
in deep learning networks may relieve some of the restrictions in the variables
collected in different datasets because methods like deep learning may involve
an integrated feature learning process that does not need the raw data to be in
the exact form from different datasets (Rajkomar et al. 2018). New computational
algorithms may help to automatically “standardize” features from different variables
in different datasets, and make it easy to transfer models across datasets.

The challenges due to lack of standardization could be partly overcome with good
strategic planning and collaboration between developed and developing regions.
The data and methods shared in the research community have made substantial
contribution to the progress of mental disorder research and brain research in
general. A transparent ecology to share the lessons learned during the data collection
and sharing, and an open environment to facilitate the agreement on the variables
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and protocols in patient evaluation and data collection will advance the progress in
big data analytics in psychiatry.

2.2 Challenges in Machine Learning in Psychiatry

2.2.1 Overview of Machine Learning in Psychiatry

The machine learning (ML) paradigm is the new frontier in brain health research.
The brain is far too complicated an organism to enable modeling by classical
means, a process which would typically involve the use of mathematical and
physical constructs or laws to predict brain behaviour in some way. However, our
understanding of the brain is currently at such an underdeveloped state that we as
humans know of no encompassing set of physical and mathematical laws that can
adequately describe brain behaviour over a wide range of circumstances. In fact,
the concept of humans trying to understand their own brains is a conundrum, well
expressed by Emerson Pugh in the early 1930s: “If the human brain were so simple
that we could understand it, we would be so simple that we couldn’t.”

Fortunately however, the machine learning paradigm allows us to circumvent this
difficulty, at least in part. Machine learning can be used to construct a rudimentary
model that can predict behaviour of a complex system in a limited sense. The
machine learning model compares measurements describing a system under test
with previous measurements of similar systems whose behaviour has been observed
and is therefore known. Because the machine learning method can then predict
behavior of the complex system, it in essence constructs a rudimentary model of
the system itself.

We now give a simple example of how a machine learning model can be
developed that could train a “Man from Mars” to distinguish whether a particular
human specimen is male or female. In this problem, there are two classes; male
and female. We must first have available a set of N humans and their corresponding
male/female class labels. Since the Man from Mars has very little prior knowledge
about distinguishing male humans from female humans, he assembles a large group
of measurements (features) from each human sample. This list of features (referred
to as the candidate features) are only his guesses of which measurements might be
discriminative between the classes. Let us say the candidate features he chooses in
this case are hair length, number of teeth, skin colour, voice pitch, and weight. These
candidate features are fed into a feature selection algorithm (to be described later)
that identifies only those features which are discriminative between the classes. We
observe that skin colour, number of teeth, and to some extent weight, have little
bearing in determining gender. So the feature selection algorithm selects hair length
and voice pitch from the list of candidate features. (We prefer only two features so
we can plot in 2 dimensions). We can interpret these features as axes in a Cartesian
coordinate space (called the feature space), and then plot the corresponding hair
length and voice pitch values for each of our N human samples as a point in this
feature space, as shown in Fig. 2.2. We see that the points representing the male
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Fig. 2.2 Feature space for the “Man from Mars” example

and female samples tend to cluster into two distinct regions in the sample space—
females in the upper right, and males in the lower left.

We then design a classifier, which in this simple case is a straight line that
separates the two classes as cleanly as possible. Now that our Man from Mars has his
rudimentary model constructed, he can determine the gender of a previously unseen
human by measuring their hair length and voice pitch and plot the corresponding
point in the feature space. The gender is determined by which side of the line the
point falls on.

Let the number of selected features be M. The M features collected from each
of the available N humans may be assembled into N vectors xn,n = 1, . . . ,N, each
of which is of dimension (M × 1). Let us denote the corresponding (binary) class
label for each human (sample) as yn. Then the set (xn, yn),n = 1, . . . ,N is called the
training set.

Our Man may wish to determine the accuracy of his rudimentary machine
learning model. He may accomplish this using a validation procedure, which is
an essential part of the machine learning process.

In Fig. 2.2 we see that some samples from each class fall on the wrong side
of the boundary. This is because in this case there are some men with long hair
and high voices and women with short hair and low voices. Misclassification is
unavoidable in most machine learning problems; however we wish to minimize this
effect by choosing the best possible combination of features and the best possible
classification rule.
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Thus we see there are three major components of a machine learning modelling
process; these are feature selection, classification and validation. We discuss each
of these components more thoroughly in the sequel, with a view to how each of the
respective algorithms behave in applications related to psychiatry and neuroscience.

2.2.2 Feature Selection, Classification, and Validation Algorithms

2.2.2.1 The Feature Selection Process
In typical applications in psychiatry and neuroscience, and in many medical applica-
tions in general, the number of candidate features tends to be large but the number of
available training samples is few. This scenario is difficult for the machine learning
paradigm, since according to Bellman’s “curse of dimensionality”(Bellman and
Dreyfus 1962), the number of training samples required to maintain classification
performance at a specified level grows exponentially with the number of features
used by the classifier. So to maintain satisfactory levels of classification accuracy,
especially in the presence of few training samples, we require the number of features
adopted by the machine learning model to be as small as possible. As we have seen
previously, this is accomplished using a feature selection process.

Feature selection methods, in the general sense, identify features which have a
high level of statistical dependency with the class label. This means the values of
selected features change significantly with class. Another interpretation of feature
selection is in the data compression, or dimensionality reduction context. That
is, a feature selection process identifies features which preserve the underlying
characteristics of the data with as high fidelity as possible using as few features
as possible.

One of the issues worthy of consideration in feature selection is that it is
necessary to examine the relevance of groups of features rather than just features
individually. An example is shown in Fig. 2.3 where it is seen that each feature
individually is not discriminative; however, when considered jointly the two classes
separate cleanly. Thus, an ideal feature selection algorithm must examine all
possible combinations of all available N candidate features for relevance. This is
a problem with combinatorial complexity and so is computationally intractable.
We must therefore resort to a suboptimal approach for selecting features if we
are to circumvent these computational difficulties. In practice, all practical feature
selection approaches are suboptimal in some sense.

Feature selection is an intensively studied topic and accordingly there are a very
large number of feature selection algorithms available in the literature. An extensive
list of modern feature selection methods is provided in Armanfard et al. (2017). A
feature selection method that has proven to be very effective in applications related
to brain research is the minimum redundancy maximum relevance (mRMR) method
(Peng et al. 2005). The mRMR method uses mutual information as a measure of
statistical dependency. It is an iterative greedy approach where in each iteration a
single feature is chosen which has the maximum mutual information with the class
labels (relevance) but minimum mutual information (redundancy) with the set of
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Fig. 2.3 A feature space in 2 dimensions, where neither feature is discriminative on its own, yet
jointly they are highly discriminative

features chosen in previous iterations. C code for the mRMR method is available on
line at http://home.penglab.com/p_publication.html.

Often in feature selection problems, the scale of the candidate features can
vary over many orders of magnitude. This extensive range of values can pose
difficulties for the feature selection and classification algorithms. This issue may
be conveniently resolved by normalizing the values of each feature using e.g. their
z-score. That is, all values xmn of the mth feature are replaced with the value
x′
mn = xmn−um

σm
, n = 1, . . . , N , where μm and σm are the mean and standard

deviation respectively of the mth feature evaluated over the N available samples
from the training set.

2.2.2.2 The Classification Process
The features are selected so that the samples from each class in the training set
separate (i.e. cluster) as well as possible into two (in the binary case) distinct regions
in the feature space, each region corresponding to a class. In a typical machine
learning scenario, the two classes seldom separate cleanly; there is usually some
overlap between the clusters representing each of the classes. The classifier may
be described as a mathematical rule that maps a prescribed (i.e. test) point in the
feature space into a class, in some optimal fashion that minimizes the occurrence

http://home.penglab.com/p_publication.html
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of a classification error. That is, the classifier determines the most likely cluster that
a test point belongs to. Note that points which fall into an overlap region between
clusters may not classify correctly.

There are many types of classifier. The support vector machine (SVM) (Haykin
2009; Hastie et al. 2009) is a well-established classification method that has been
shown to behave well in psychiatric applications, with a built in SVM function
available in later versions of Matlab and Tensor Flow. The basic version of the SVM
classifier formulates a hyperplane that separates the two classes so that the margin
is maximized. The margin is the distance from the closest points in each class to the
hyperplane. These closest points are referred to as support vectors; hence the name
of the classifier.

Classification is a very mature topic and consequently there are many types of
classification methods, in addition to the SVM, that are available in the literature.
Examples include K Nearest Neighbor (KNN), the Linear Discriminant Analyzer
(LDA), the naïve Bayes classifier, decision trees, etc. These are all described
in Hastie et al. (2009). There is also the well-known multi-layer perceptron as
described in Rumelhart (1986) and Haykin (2009).

Decision trees are specifically useful in the present context since they form the
basis of more sophisticated classifiers which we discuss later in this section. There
are several tree-based training methods that are discussed in Hastie et al. (2009)
and Bishop (2006). A characteristic of the decision tree is that it produces unbiased
outputs with high variance; hence, they are not useful as is for classification.

Classifiers, as well as many feature selection algorithms, usually have at least one
associated parameter whose value must be tuned to produce optimal classification
performance in a given scenario. For example, the SVM classifier incorporates a
user-defined parameter that controls the tradeoff between increasing the margin size
and ensuring that the training sample feature vectors xn lie on the correct side of the
margin. Another example is the parameter K (number of nearest neighbours) in the
KNN classifier. Details on how to select a suitable value for these parameters are
described in Sect. 13.2.2.3.

Classification in the Nonlinearly Separable Case: In Figs. 2.2 and 2.3, we have
shown simple cases where the class clusters separate linearly. While this is the
easiest case to deal with from the theoretical perspective, in practice the boundaries
between the classes are seldom linear, as shown in the example on the left in Fig.
2.4. In this case, it can be seen that if a linear boundary is used to separate the feature
space on the left, significant classification error will result.

Fortunately, under certain conditions, various forms of classifier like the SVM
can be easily adopted to the nonlinear boundary case using the so-called kernel trick
e.g., Bishop (2006). The kernel trick is applicable if the only numerical operations
performed by the classifier are inner products. The kernel trick in effect maps the
original data in the original Cartesian space through a nonlinear transformation �

into a higher-dimensional space where ideally, the data separate linearly, as shown
on the right in Fig. 2.4. The interesting feature of the kernel trick however is that
the nonlinear transformation is not performed explicitly. Instead, it may be induced
simply by replacing each inner product operation of the form xTz involved in the
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Fig. 2.4 Transformation of a nonlinear feature space (left) in to a linear separable space (right)

implementation of the classifier algorithm with a kernel function k(x, z),where x and
z are feature vectors in the present case.

Kernel functions can be interpreted as similarity measures; the larger the value
of the function, the more similar are the vector arguments x and z. They must obey
the property that its associated Gram matrix be positive definite. Examples of valid
kernel functions are the Gaussian kernel k (x, z) = exp

(−γ ||x − z||22
)
,where γ is

a real-valued user-defined parameter, and the polynomial kernel k(x, z) = (xTz+c)d,
where c and d are also real-valued user-defined parameters. The respective param-
eters are adjusted so that the boundary in the transformed space is as linear as
possible. More details on all aspects of the kernelization process are available in
Müller et al. (2001) and Bishop (2006).

Machine Learning Methods Specifically Recommended for Use in Brain Research
The first such approach which has proven useful in brain studies is the mRMR
feature selection scheme in conjunction with an SVM classifier (Khodayari-
Rostamabad et al. 2010, 2013; Ravan et al. 2011, 2012; Colic et al. 2017). For
example, in Khodayari-Rostamabad et al. (2013) this approach was used to predict
response of patients with major depressive disorder to treatment with an SSRI.

Adaboost Another approach uses boosting (Bishop 2006) where the idea is to
aggregate many “weak” classifiers (learners) into one that is very “strong”. The
Adaboost algorithm (Schapire 2003) is a well-known example of such a method.
This method uses multiple instances of weak learners. For training, each weak
classifier weighs each sample of the training set differently, with more weight being
placed on the samples which the classifiers get wrong. The Adaboost algorithm
combines the feature selection and classification roles and typically uses decision
trees as the weak learner. It forms its final output decision on a majority vote
amongst the weak learners. The Adaboost algorithm has the desirable property that,
provided the individual weak learners give better than chance accuracy, then the
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probability of error of the aggregate classifier decays exponentially as the number
of learners increases (Schapire 2003).

Random Forest An additional (related) concept is bagging, which is short form for
“aggregate bootstrapping”. A widely used classification algorithm in this respect is
the random forest (RF) classifier (Hastie et al. 2009; Breiman and Spector 1992).
Like Adaboost, the RF classifier uses a multiplicity of decision trees, and again
the final output decision is based on a majority vote over the individual decision
trees. Unlike Adaboost, the input to each decision tree for training is a resampled
(with replacement) version of the complete training set, and the feature inputs at
each node are also randomly chosen. The RF classifier has the advantage that,
unlike the other forms of classifier we have discussed so far, it is insensitive to the
overfitting phenomenon, to be discussed later. It too combines the feature selection
and classification processes. The RF classifier has been successfully used e.g. in
detecting onset of epileptic ictal periods (Colic et al. 2017).

The Localized Feature Selection Method (LFS) Conventional forms of feature
selection methods are global; i.e., they assign a single set of features that attempts
to characterize the entire sample (i.e. training sample) space. In contrast, the LFS
method (Armanfard et al. 2016a, 2017) allows the choice of selected features to
vary across the sample space, thus adapting to variations such as nonlinearities,
discontinuities or nonstationarities that may appear across different regions of
the sample space. Each training sample is treated as a representative point for
its surrounding region and as such is assigned its own distinct set of features.
These (local) feature sets are determined by solving a straightforward optimization
procedure in the form of a linear program. The LFS method, unlike deep learning
methods, is therefore very easy to train. The LFS method is well suited to the
“data poor” case where the number of candidate features far exceeds the number
of available training samples, and is also immune to the overfitting problem (to be
discussed). The LFS method has proven to be successful in predicting emergence in
coma patients (Armanfard et al. 2016b).

There are also deep learning methods (Le Roux and Bengio 2008) that are
currently a very active area of research. In particular, autoencoders (Le 2015)
have the desirable characteristic of being able to automatically generate features
directly from the data. Deep learning methods have been very successful in many
applications; however, generally they require large, noise-free training sets. In many
applications in psychiatry and related fields training data is very hard to come by,
and so deep learning methods have not proven very successful for the applications
at hand. It is for this reason they are not considered further in this chapter.

2.2.2.3 Validation andMeasurement of Performance
Validation is a very important component of the machine learning model. It is used
in conjunction with the available training set to determine classification accuracy
of a proposed machine learning implementation. It is also instrumental in tuning
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the parameters that are associated with the feature identification, classification or
kernelization procedures.

Before we discuss validation per se, we consider two different forms of error
associated with the machine learning model. These are training error and general-
ization error. Training error is the classification error using the training set itself.
An example is shown in Fig. 2.2. In this case, because of the overlap between the
classes in the training set, we see that a linear boundary (as determined e.g. by
an SVM) cannot separate the two classes without error. Generalization error on
the other hand arises if a new sample which is not contained in the training set is
incorrectly classified. The validation process estimates the generalization error of
the respective machine learning model based on the training error.

The usual form of validation is cross-validation, where the available training set
is split into two parts—the larger which is referred to as a training set, and the
other the test set. The machine learning model is built using only the data in the
training set. The performance of the resulting model is then evaluated by feeding
the test set samples into the classifier and comparing the classification results with
the corresponding labels provided by the test set.

The most common method is k-fold cross validation. Here the entire training
set is partitioned into k contiguous groups, with each group containing the integer
closest to N/k samples. The procedure iterates k times, where in each iteration one
group is held out for testing and the remaining groups are used for training. Each
group is left out once. The fold error is the average error rate over the samples in
the group, and the overall error rate is the average of the group error. Leave-one-out
cross validation (LOOCV) is a form of k-fold cross validation, except there are k = N
folds (i.e. there is only one sample in each test group). LOOCV works well in the
small N case, but often is computationally expensive because the entire modelling
process must be repeated N times. The method can be susceptible to high variance
in the generalization error estimate. A third form of validation is bootstrapping. It is
similar to k-fold cross validation except that in each fold the training and test groups
are chosen randomly with replacement.

As discussed in Hastie et al. (2009), the cross-validation estimate of the
generalization error is subject to both bias and variance. Bias happens because the
number of training samples available in each fold may be inadequate to train the
underlying model accurately. This results in the cross-validation procedure over-
estimating the generalization error. There is also a variance associated with the
cross-validation estimate, since it is obtained by averaging over a finite number of
samples. As k decreases, the variance increases but the bias decreases. Breiman
and Spector (1992) and Kohavi (1995) suggest that a value of k = 5 or 10 gives a
reasonable compromise between these two counter-acting effects.

A cross validation procedure can also be used to tune the parameters of
the machine learning model. For example, if we are using a k-fold process for
performance evaluation, the data in the training set in each fold is subjected to a
second, inner cross-validation loop. In each fold of the inner loop, the data is again
split into a “tuning” set and a test set. The inner loop is repeated several times using
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different values of the parameter, and the value giving the best performance is then
selected for that fold of the outer loop.

A very important consideration in cross validation is that the training and test sets
be kept completely separate. If a data sample is included in the training set and then
afterwards is again used for testing, then performance is biased upwards, because
the machine learning model has been specifically trained to avoid errors over all
samples in the training data.

As an example of the machine learning process in psychiatry applications, we
now briefly describe a study (Khodayari-Rostamabad et al. 2013) which used
machine learning to predict response to SSRI treatment for major depressive disor-
der, based on analysis of the EEG. The training set consisted of EEG measurements
from 22 patients who were diagnosed with MDD and whose response to the
treatment was recorded after several months of treatment. The set of candidate
features consisted of power spectral density measurements at many frequency values
from all electrodes, and spectral coherence values from all pairs of electrodes over
the same set of frequency values. The study used 20 electrodes and 50 frequency
values, which resulted in over 10,000 candidate features. The mRMR feature
selection algorithm was used to reduce this set down to 10 or fewer features which
have the most relevance with the recorded response to the treatment. An SVM
classifier was used and the estimated correct classification rate was approximately
85%. This study therefore provides a good indication that machine learning methods
can adequately predict response using EEG analysis.

2.2.3 Further Considerations in the Development of a Machine
LearningModel

2.2.3.1 The Over/Underfitting Problem
Consider the situation shown in Fig. 2.2 where a linear boundary does not cleanly
separate the training samples into their respective classes. The temptation in this
case may be to build a classifier that that can generate a more flexible boundary
that works its way around the misfit points and so places the misplaced samples
on the correct side of the boundary. This increased flexibility can be achieved by
introducing additional parameters into the classifier model. In this case, the classifier
can be trained so that the training error reduces to zero. Let us assume that the
underlying true but unknown boundary corresponding to the physical process that
generates the data is in fact linear. Then new data points placed where the flexible
boundary has been diverted may not classify properly, and so the generalization
error degrades in this case. This phenomenon is called overfitting and is a result of
the machine learning model over-adapting to the training set (i.e. the boundary is
allowed to become too “wiggly”).

Another form of overfitting occurs when the dimension of the feature space
becomes too large in proportion to the number of training samples. For example,
in the linearly separable case, an n-dimensional hyperplane can always separate any
arbitrary class configuration of n + 1 data points. So as the number of features
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increases, the classifier has more freedom to fit the training data, which implies
the training error decreases, but at the cost of increased generalization error. It
is fortunate that a properly executed cross-validation procedure will detect the
presence of overfitting.

Underfitting occurs when the model is not flexible enough to fit the data. This
could happen for example when the number of selected features is too small to
adequately separate the training set. An example of the underfitting problem is as
follows. Suppose we have a data set which separates cleanly with three features. In
this case a classifier algorithm such as SVM would specify a boundary plane in the
corresponding 3 dimensional space to separate the classes. Suppose now that we
discarded one of the features used only two of the three features. Then all the data
would be projected onto the remaining 2 dimensional plane and the two classes may
overlap with each other, thus reducing performance.

If the number of features is too large, we have overfitting, and if too small,
we have underfitting. So how to choose a good value? One valid method is to
repetitively train a machine learning model for an increasing number of features
(starting e.g. at 1) and test each model using a cross-validation procedure. We
should see the error decrease initially as the number of features increases, because
underfitting becomes less of an issue. But then as the number increases further, the
error will bottom out to a plateau, and then begin to increase, due to overfitting. The
best number of features to use may be taken as that corresponding to the minimum
error.

2.2.3.2 Missing Data
In many applications, particularly in medicine, the feature vector associated with a
specific data sample may not contain all the values or measurements of the specified
selected features. When data is collected during studies, missing data may result
from patient incompliance, patient drop-out, measurements being too inconvenient
or expensive to acquire, etc. The problem is that many machine learning algorithms
will not execute properly when some data from the feature vectors are missing. Thus
some value for the missing features must be supplied in order for the algorithm to
run properly on a computer. The problem is that an improperly substituted value for
a missing value may adversely impact the accuracy of the machine learning model.
So what value do we supply that will minimize this impact?”

There are many approaches available to address this question. One is simply to
delete any incomplete samples. However, in doing so, we are throwing away useful
data, and so this is an undesirable option. Other approaches therefore attempt to
estimate suitable values for the missing features, based on the available remaining
data. The process of filling in missing data is generally referred to as imputation.
There are many forms of imputation, many of which are well discussed in García-
Laencina et al. (2010). The basic idea behind imputation is that the statistical
dependencies that may exist between the different feature values in a training sample
are exploited to estimate the missing value. The difficulty with this approach is that
in some cases, e.g., the mRMR method, the features are specifically selected so
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that the statistical dependencies between feature values is minimized. Thus in some
cases imputation is an ineffective method.

In cases where there is significant correlation between feature values in a
data sample, we can use ordinary regression to impute the missing data. Another
approach is to use more sophisticated model-building statistical methods such as
the EM algorithm. Yet another approach is to use a second-level machine learning
approach to estimate the missing data in the primary problem. These methods are
all discussed well in García-Laencina et al. (2010).

Perhaps the most sensible approach to handle the missing data case is to use
feature selection and classification methods that can be adapted to tolerate missing
data. Two such methods are the random forest (RF) and the localized feature
selection (LFS) approach. When some features in the training set are missing, the
training procedure for both algorithms is easily modified to accommodate this case.
However, when testing data contains missing values, both models may have to be
partially re-trained so that missing features in the test data are excluded. This can
be expensive from the computational perspective, but the data imputation process
involves a significant computational cost as well. At this point it is not known how
the performance of the RF or LFS approaches to handling missing data compare to
that of imputation methods. However, in the case where there is little statistical
dependency between the selected feature values, the LFS and RF methods will
almost surely perform better than methods using imputation.

2.2.3.3 Imbalanced Data
The data imbalance problem occurs when the training set consists of many more
samples of one class than another. These are referred to as the majority vs. minority
classes, respectively. For example, if a research study involves testing the human
population at large for psychiatric illness, we are likely to find far more healthy
subjects than ill patients. Thus the training set becomes imbalanced. Imbalanced
data sets become a problem in the machine learning context, since the model is
hindered in learning the distributive properties of the minority class. For example,
in a case where the split between the majority vs. minority classes in the training set
is 90% vs. 10%, the model need only output a majority class decision in all cases
and overall, it would be correct 90% of the time. However, in this case the minority
class would be misclassified 100% of the time. As a further example, studies (Woods
et al. 1993) have been performed where machine learning was used to detect cancer
from a mammography data set. The data set contained a 40:1 imbalance in favour
of the noncancerous class. The results showed accuracy rates of close to 100% for
the noncancerous case, and only approximately 10% for the cancerous class. Thus a
large proportion of cancerous cases would be incorrectly classified as noncancerous.
This case has more severe consequences than incorrectly diagnosing a noncancerous
patient. This example illustrates that in the imbalanced data case, it is necessary to
consider more refined performance metrics, such as receiver operating characteristic
(ROC) curves and others that can weigh errors from the different classes in different
degrees (He and Garcia 2009).
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The negative consequences of the imbalanced data case become more severe
when the class distributions in the feature space become more complex. This could
happen e.g., if the distribution of one or both of the classes devolves into multiple
clusters, or a single cluster of complex shape, instead of the ideal case where each
class is represented by a single well-defined cluster. The situation is particularly
severe in the high-dimensional case with few training data, since then there are not
enough samples for the model to learn the characteristics of the minority class.

There are effective methods that have been developed to mitigate the imbalanced
data problem. One such method that has shown a great deal of success in many
applications is the synthetic minority oversampling technique (SMOTE) (Chawla et
al. 2002). It balances the dataset by sampling (generating) synthetic minority class
samples, and discarding some majority class samples, if necessary. The synthetic
minority class samples are generated by selecting a specific minority class training
sample at random. Artificial samples are generated by placing a new sample on
a straight line between the minority sample under consideration and one of its K
nearest neighbours of the same class. This sampling process can be repeated many
times to generate as many synthetic minority class samples as desired. This method
preserves the characteristics of the minority class data and has been demonstrated
to work well in many situations. There are several variations on the basic method,
as discussed in He and Garcia (2009). The SMOTE algorithm is included in the
Tensorflow package.

The SMOTE method and its variants use sampling techniques to augment
minority class samples. Another approach at handling the imbalanced data case
are cost-sensitive methods, which effectively place more weight on minority class
errors than on majority class errors during the training process. In many cases this
can be achieved simply by trading off an increase in majority class error for an
improvement in minority class performance. The Adaboost and LFS algorithms in
particular are easily adapted to incorporate this tradeoff. In the Adaboost case, it
is only necessary to modify the formulation of the distribution function over the
training samples; with LFS, the tradeoff can be implemented simply by varying the
parameter γ (Armanfard et al. 2016a, 2017). The literature on this topic is extensive;
there is an abundant reference list in He and Garcia (2009).

2.3 Challenges fromData to Knowledge

Traditional ways of research in psychiatry tend to be reductionism and hypothesis
driven, which is proved to be effective to investigate single-factor mechanism at the
group-level. This approach is still the golden standard when it comes to establish
the causality between a factor and the outcome, because we usually could only
manipulate one or limited number of factors in experimental or clinical setups.
When many factors, including genetic, physiological and behavioral factors, and
their interactions need to be considered at the same time, it is usually not efficient,
if not impossible, to use the reductionism approach to investigate one by one of
the many possible factor combinations (Williams and Auwerx 2015). The new
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big data approach could take into account all the factors without many priori
assumptions, which will lead to effective outcome prediction at the individual level
and new hypotheses that have been ignored previously. This approach will provide
translational applications in personalized psychiatry, as the knowledge or algorithms
learned from existing data could be applied on new cases. It will also provide
insights of important factors and their links in mental disorders, which can then
be investigated using a hypothesis-driven approach. Thus, the traditional approach
and the novel big data approach are complementary to each other in future research
of mental disorders.

It is still crucial to transform the complex data with understandable representation
in low dimensions in many cases, because we can visualize the data in 2D and 3D
dimensions, static or changing over time. Visualization will help us to see high-
dimensional data in an intuitive space. It will show data distributions for certain
measurements and overlay measurements onto each other to show their interactions,
which will help to understand the mechanisms underlying different measurements,
identify the outliers and unusual cases, discover major variance contributors, select
subsets of data for post-hoc analysis and so on. Although most of these tasks could
also be done with proper mathematical tools directly applied at the high-dimensional
data, it is challenging to make sense of the data when the dimension of the data is
high and data involve multiple modalities. Moreover, visualization in low dimension
is helpful for researchers to demonstrate certain concepts and convey the knowledge
to the audience without professional data science training, such as some clinicians
and patients. For example, a visualization method called t-distributed stochastic
neighbor embedding (t-SNE) can help researchers see a large sample of high-
dimensional multi-modal brain imaging data (Panta et al. 2016). We can easily see
the reliable difference between images from 1.5 and 3 T scanners, and there seems
to be no apparent difference in the scanning time. These observations may provide
further confidence for us to combine existing images scanned at varied time of the
day or to plan new scans without much concern of scanning time, while make us
to be cautious about data that have been scanned or are going to be scanned with
different magnetic field intensities. Big data visualization is still an emerging field
and psychiatry will benefit from the development of it, yet it is also a challenging
field with respect to the number of factors that need to be considered in mental
health.

Big data in psychiatry armed with advanced machine learning and artificial
intelligence technics will become one of the strongest tools in the research of mental
disorders. However, as an interdisciplinary field, the collaboration between experts
in psychiatry, neuroscience, psychology, computer science, mathematicians, and
software engineers is not replaceable by the novel methods of big data analytics. The
value of big data will not be appreciated by the public until it is converted to massive
knowledge of mechanisms of mental disorders or translational tools that can guide
the diagnosis and treatment of mental disorders. It is only when the interdisciplinary
experts make joint forces together that the big data in psychiatry can reach its full
potential to become beneficial knowledge and the corresponding challenges that we
have discussed can be overcome (Fig. 2.5).
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Fig. 2.5 t-SNE plots color coded by (a) scanner type (b) scan acquisition time (c) gender, and (d)
studies. Adapted from Panta et al. (2016)
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