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Foreword

Big Data Is Watching You

These are exciting times in the history of psychiatry for a number of reasons. First
and foremost, with mapping of the brain and functioning of various parts, it is
getting closer to our understanding of cognitions and emotions. Both researchers and
clinicians are beginning to understand the role of genome and psychopharmacoge-
nomics is beginning to guide prescription patterns of psychiatric diseases. Trials
are under way to indicate which of our patients are fast metabolisers and which
are slow metabolisers so that targeted doses of medication can be used in gaining
the optimum effect. At one level, psychiatry has always been personalised because
the patients sitting in front of us even with similar symptoms have very different
responses to therapeutic interactions. Who will respond to which treatment needs
big data. With an increase in the use of social media, personal apps for managing
some distress and symptoms, the importance of data and information cannot be
underestimated. One of the earliest interventions in psychiatry was psychoanalysis
analysing the individual to make sense of their experiences and development. The
practice of psychiatry has moved on from analysis by human beings to analysis of
data by machines which has its advantages and disadvantages.

Various authors in this volume remind us that human beings have always been
interested in big data. Data is collected on individuals from birth to death. Some
countries have major data sets on each citizen creating thousands of variables which
can enable us to make sense of individual experiences in the context of larger social
structures be they health or social care.

Predictive psychiatry is an exciting new field where using large data sets may
allow us to predict responses and outcomes. Machines such as smartphones and
computers are an integral part of human functioning and human lives. Designed
algorithms tell us that if we liked a particular book or song, we are likely to prefer
book B or song B. These algorithms can be helpful. In the recent WPA-Lancet
Psychiatry Commission on the Future of Psychiatry (Bhugra et al. 2017), one of the
recommendations was that psychiatrists need to be up-to-date in the evolving digital
world bearing in mind the potential risks of commercialised unproven treatments
and interventions. However, as long as wider collaboration between stakeholders is
maintained, it should be possible to reap the rewards of digital psychiatry, and this
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vi Foreword

volume provides an excellent example of that. Widely used digital tools and their
ability to collect huge data sets or deliver services related to mental and physical
health are only now beginning to be realised. The reality of digital psychiatry is
certainly not without its challenges, and authors in this volume tackle these head-
on.

In clinical psychiatry, there has been a long tradition of analysing history and the
patient in the context of their development, and at one level, it appears frightening
and scary that machines can do this for our decisions be they clinical or nonclinical.
In the past 2 decades, computers, smartphones, and social media algorithms have
both enriched our lives and also produced a feeling of concern as to where this might
lead. These interactions are based on algorithms which are also used in clinical
decision-making relying on evidence based more so in some medical specialities
rather than others. Digital psychiatry can contribute a tremendous amount of support
to clinicians especially when patients and their doctors live miles apart. There are
already innovative practices using e-mental health and tele-mental health practices
in many parts of the world.

The access to new technologies may well vary across countries, but with an
increased use of smartphones around the world means that levels of physical activ-
ities, pulse rates and blood pressure can be easily measured and monitored. New
technologies may enable mental health and physical health to be integrated more
readily than has been the case so far. As is clear from contributions to this unique
and excellent volume, the data sets generated from the use of machines such as
smartphones and laptops can help us make sense of wellbeing of individuals. Thus,
close collaboration between data scientists and psychiatrists as well as other mental
health professionals is critical to help develop algorithms for future understanding
of personalised clinical practice. This volume offers a unique viewpoint and insight
on the journey in scientific development of psychiatry.

Big data on the one hand comprises of velocity, volume, and variety which are
readily visible in our use of smartphones. As several authors in this volume remind
us, the data can be stored, and yet rapid access to billions of data sets with capacity
increases on a daily basis. As is strongly emphasised in this volume, big data for
psychiatry is unlike any other. Data related to investigations including brain scans
and other neuroimaging studies can also contribute to big data. Big data can also
help collect large sets of phenotypes to facilitate our understanding of biological
causes of mental illnesses and enable suitable personalised interventions. These data
sets can facilitate development of individualised nosology of psychiatric disorders
perhaps moving away from one-size-fits-all phenomenology.

Of course, there are critical issues related to confidentiality, probity, and security
in data collection and data management of clinical matters. On the other hand,
patients do not fit into tight categories of the machine-generated algorithms. Such
information should be seen as supplementary sources of information, e.g. ascertain-
ing physical activities and not only information while reaching a clinical diagnosis
or planning therapeutic interventions. However, it is also important that clinicians
are taught and trained how to use these resources properly and appropriately.
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The editors and authors in this splendid volume are to be congratulated for their
vision and pioneering spirit which hopefully will lead to better, individualised, and
focused care of patients with psychiatric problems.
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Preface

This book was written to address the emerging need to deal with the explosion
of information available about individual behaviours and choices. Importantly, we
believe that there are still untapped opportunities to transform such information into
intelligence that would enable personalised care in mental health.

Our unprecedented ability to gain knowledge about each individual will be
paramount in allowing us to implement personalised care in mental health. Ground-
breaking discoveries and changes at the population level will involve data integra-
tion enabling a person-centred approach. Big data tools will be needed to assess
the phenome, genome, and exposome of patients. That will include data from
imaging, insurance, pharmacy, social media, as well as -omics data (genomics,
proteomics, and metabolomics). Briefly, big data are characterised by high volume,
high velocity, and variety. We believe therefore that attention has to shift to new
analytical tools from the field of machine learning and artificial intelligence that
will be critical for anyone practicing medicine, psychiatry, and behavioural sciences
in the twenty-first century.

Integration of data from multiple levels can be translated into clinical practice by
both the generation of homogeneous groups of patients and the use of calculators to
accurately predict outcomes at an individual level. That will facilitate important
clinical decisions. An inventive approach to big data analytics in mental health
will be needed to translate data from large and complex datasets into the care
of consumers. That will transform predictions and information into a greater
understanding of risk assessment and better mental health care.

Personalised interventions will be the outcome of the development of this field.
Innovative methods for risk assessment will allow the development of personalised
interventions at the level of prevention, treatment, and rehabilitation. A creative
approach to big data analytics in mental health will be crucial in promoting,
generating, and testing new interventions for mental health problems. Big data
analytics will be at the core of the next level of innovation in mental health care.
Thus, our vision for the future is a world in which mental health professionals will
have the tools to deal with multilevel information that will provide patients and
caregivers with the intelligence needed to enable better care.

This book will benefit clinicians, practitioners, and scientists in the fields of
psychiatry, psychology, and behavioural sciences and ultimately patients with
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x Preface

mental illness. We also intend to reach graduate and undergraduate students in
these fields. Our main aims are (1) to empower researchers with a different way
to conceptualise studies in mental health by using big data analytics approaches;
(2) to provide clinicians with a broad perspective about how clinical decisions
such as treatment options, preventive strategies, and prognosis orientations will be
transformed by big data approaches; (3) to provide a unique opportunity to showcase
innovative solutions tackling complex problems in mental health using big data and
machine learning; and (4) to discuss challenges in terms of what data could be used
without jeopardising individual privacy and freedom.

This volume has a total of nine chapters, which are structured as follows:
Chapter 1 introduces the concepts of big data and machine learning and also
provides a historical perspective of how big data analytics meet health sciences.
Chapter 2 explores the challenges and limitations of machine learning—the most
important technique to analyse big data. Chapter 3 provides a clinical perspective
on big data in mental health. Chapters 4 and 5 present the state of art of tools
to predict treatment response and suicide, respectively. Chapter 6 explores the
emerging shifts in neuroimaging data analysis, while Chapter 7 discusses methods,
such as unsupervised machine learning, for deconstructing diagnosis in mental
health. Chapter 8 describes how to integrate data from multiple biological layers
to build multimodal signatures. Lastly, Chapter 9 addresses ethics in the era of big
data.

Contributors of this book are true leaders of this emerging field and are fostering a
revolution from the existing evidence medicine and traditional average group-level
studies to the current personalised care scenario. In this new paradigm, large and
complex datasets will be digested into calculators and predictive tools. These will
provide clinicians with real-time intelligence that will guide personalised care in
mental health.

Porto Alegre, RS, Brazil Ives Cavalcante Passos
Houston, TX, USA Benson Mwangi
Hamilton, ON, Canada Flávio Kapczinski
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1Big Data andMachine LearningMeet
the Health Sciences

Ives Cavalcante Passos, Pedro Ballester, Jairo Vinícius Pinto,
Benson Mwangi, and Flávio Kapczinski

Humanity was built upon large amounts of data recorded in many forms. From
birth, the human being is flooded with information from multiple sources. Early
in life these sources emanated from our bodies and from the small environment that
surrounded us. Through our sensory nervous system we gathered information from
the world around us and stored this in our brains. Over the next years of our lives, we
learned to interpret other forms of information and more complex data. Without this
process of interpretation and storage of large amounts of information, the brain and
our humanity could not become fully developed. So, it can be sensibly concluded
that human history is the story of learning and interpreting information, and storing
and using this information to modify our environment, to solve problems and to
improve our lives.
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2 I. C. Passos et al.

Big data is a broad term used to denote volumes of large and complex measure-
ments, as well as the velocity at which data is created. Another crucial characteristic
of big data is the variety of levels at which data is created, from the molecular level,
including genomics, proteomics and metabolomics, to clinical, sociodemographic,
administrative, environmental, and even social media information (Passos et al.
2016). It could be said that we are living the “big data era”; however, humanity has
always been surrounded by variable amounts of information. So, what differentiates
current times from the past? Nowadays, we can collect and store large amounts of
data that cannot be interpreted by humans without using powerful computational
techniques. Big data therefore also reflects the core of a new world that has emerged
quickly, a world with various types of technologies related to data storage, data
processing and its use, and the potential to improve our society in many positive
ways (Klous and Wielaard 2016).

The search of patterns in the data to enable relevant conclusions is an important
part of big data. A range of techniques in computer algorithms used to identify
patterns of interaction among variables has been developed over the last few decades
and grouped under the name of machine learning, also known as pattern recognition,
to interpret and make data-driven decisions using big datasets. Machine learning
comes from the artificial intelligence field and uses mathematical functions to give
computer systems the ability to “learn” from experiences and make predictions on
data, without being explicitly programmed (Mitchell and Tom 1997). The engineer
Arthur Samuel developed one of the first programs based on machine learning
techniques in 1956. He wanted to create a computer that could beat him at checkers
and had the computer playing against itself thousands of times in order to learn.
The Samuel Checkers-playing Program was one of the world’s first successful self-
learning programs, and as such is a very early demonstration of the fundamental
concept of machine learning—Samuel actually coined the term “machine learning”
in 1959. In 1962, his program was able to beat Robert Nealey, a Connecticut state
champion of checkers, in an historic event.

By 1997, however, when a computer called Deep Blue defeated Garry Kasparov,
the world chess champion, for the first time, machine learning methods were
somewhat forgotten. At that time, traditional methods, usually called Good Old-
Fashioned Artificial Intelligence (GOFAI), were paving the way for artificial
intelligence advances. GOFAI limitations and its need for human expertise on
modelling problems were soon discovered, and, to this date, GOFAI methods are
still unable to beat humans at more complex games. This has brought machine
learning back to the core of artificial intelligence research. Its application for board
games culminated in 2017, when AlphaGO Zero, a self-taught machine powered by
a novel field of machine learning called Deep Learning, beat the world champion
of Go, an ancient Chinese board game (Silver et al. 2017). Go is claimed to be
one of the world’s most complex games due to its combinatorial explosion at every
move. In that scenario, the machine was able to learn Go only by playing with itself
numerous times and identifying which moves led to a higher win rate.

Nowadays, the use of machine learning has greatly increased and goes far beyond
the gaming tables. A number of activities in our daily routines are facilitated
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by these techniques. Perhaps machine learning’s first big success in commercial
use was Google, a search engine that uses these techniques to organize world
information. Similarly, machine learning is used by Facebook to suggest friends and
by Netflix to suggest movies and TV shows. Another interesting invention that takes
advantage of machine learning is predictive policing, named as one of the 50 best
inventions of 2011 (TIME 2011). This breakthrough refers to the use of machine
learning techniques in law enforcement to identify potential criminal activity. In the
United States, police departments in Arizona, California, Illinois, South Carolina,
Tennessee, and Washington have implemented the practice of predictive policing.
The aim is to develop models for predicting crimes, offenders, and victims of crime,
and guide utilization of scarce policing resources.

How do computers or machines actually learn? Generally, machines receive
data from a certain sensor following an unknown distribution and fit mathematical
functions that best explain the data. Noteworthy are some algorithms that allow the
modelling of any function, called universal function approximators, thus removing
the need for humans to try different equations or distributions (as is common
in traditional statistical analysis). The process of fitting, mostly called training,
is usually performed in three different ways, which diverge mainly on whether
and how an expected outcome variable is presented. In the first scenario, called
unsupervised learning, the machine usually aims at finding the best way to group
data by similarity with no additional knowledge about the task (Bishop 2006).
In supervised learning, machines receive data with the outcome. The function is
then modelled to best predict the outcome based on the predictors (Bishop 2006).
Those two paradigms are frequently mixed, defining what is called semi-supervised
learning, a paradigm that leverages knowledge from a task using examples both
with and without annotated outcome. Lastly, reinforcement learning is a training
paradigm analogous to animal training. There is no fixed outcome variable; here the
machine, called an agent because of its ability to interact with the environment, is
“rewarded” or “punished” every time it performs the task appropriately, with the aim
of maximizing the total reward received (Sutton and Barto 1998). Reinforcement
learning mirrors the well-known principle of operant conditioning in psychology
where a behavior is modified through positive reinforcements or rewards and pun-
ishments. Supervised and unsupervised learning are the most frequent paradigms in
the health sciences literature.

How is a study with machine learning designed? For complex questions, such
as those faced in mental health and behavior sciences, big datasets are generally
needed. In supervised learning, the algorithm analyzes a “training” dataset drawn
from the original dataset to establish candidate models able to distinguish individual
subjects across levels of a specific outcome (Fig. 1.1). Model tuning and feature
reductions routines could be implemented to improve model performance (fully
discussed in Chap. 2). The best model is then applied to a new dataset, and its
performance can be measured in this new scenario. As a result, the algorithm can
predict the probability of an outcome at an individual level. This prediction may be,
for example, the likelihood of a Netflix client liking a movie or the probability of a
patient developing heart disease. In Chap. 7 we address how unsupervised learning
studies are implemented.

http://dx.doi.org/10.1007/978-3-030-03553-2_2
http://dx.doi.org/10.1007/978-3-030-03553-2_7
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Fig. 1.1 A standard machine learning training protocol. The outcome and test data may be neither
available nor applicable to the desired task

Big data analytics with the use of machine learning techniques are gaining trac-
tion in health sciences and might provide predictive models for both clinical practice
and public health systems. Chapter 3 will provide a complete clinical perspective of
how big data and machine learning techniques will help to improve care in mental
disorders. However, before exploring their impact on mental health care, we will
offer a concise historical overview of some important events in health sciences
through the lens of epidemiology. Mervyn Susser and Ezra Susser wrote about
three eras in epidemiology covering the period following the Industrial Revolution
(Susser and Susser 1996). Each era introduced new ways of thinking about the
causes of illnesses in the face of particular problems, such as the cholera outbreak
in London or the increasing rates of chronic noncommunicable diseases after World
War II. More importantly, each era and its problems challenged researchers to find
and to develop new analytical methods to find causes and improve health. This
knowledge is important to understand why big data and machine learning have
recently become promising methods to define, predict, and treat illnesses, and how
they can transform the way we conceptualize care in medicine. As Mervyn Susser
and Ezra Susser stated in their work “to look forward, we do well to look backward
for guidance.”

1.1 Eras of Epidemiology: Paradigms and Analytical Approach

The miasma theory was the prevailing paradigm to explain the etiopathogenesis of
diseases such as cholera in the nineteenth century. It stated that the etiology of some
diseases was related to a noxious vapor that arose from decaying organic matter such
as sewage. In 1854, John Snow challenged this theory during a cholera outbreak
in Soho, London. By talking to victims or their families, he detected the source
of the outbreak in London as the public water pump located at Broad Street (now
Broadwick Street). His studies of the pattern of the disease established that cholera

http://dx.doi.org/10.1007/978-3-030-03553-2_3


1 Big Data and Machine Learning Meet the Health Sciences 5

Fig. 1.2 John Snow’s dot map showed the association between cases of cholera and proximity to
the Broad Street pump

was transmitted by the water supply, and convinced the local authorities to disable
the water pump. John Snow later utilized a dot map to depicits the cluster of cholera
cases close to the pump (Fig. 1.2). It is regarded as one of the founding events in the
science of epidemiology and he is renowned for being one of the fathers of modern
epidemiology.

John Snow’s work and actions have been commonly credited for ending the
cholera outbreak. It is noteworthy that he discovered that a profitable water supply
was the primary mode of cholera transmission well before the discovery of the vibrio
cholera bacterium by collecting data and interpreting its pattern in the Soho area.
This event illustrates the sanitary era, which was marked by the sanitary statistics
collected as evidence at the societal level and related to overall morbidity and
mortality data. This analytical approach guided the interventions for cleaner urban
water supplies and sewage systems. The following excerpt illustrates John Snow’s
methods in his search for a cause of the cholera outbreak (Snow 1854, pp. 321–322).

I requested permission, therefore, to take a list at the General Register Office of the
deaths from cholera registered during the week ending September 2, in the sub-districts
of Golden-square, Berwick-street, and St. Ann’s, Soho. Eighty-nine deaths from cholera
were registered during the week, in the three sub-districts. Of these, only six occurred in
the four first days of the week, four occurred on Thursday, the 31st ult., and the remaining
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seventy-nine on Friday and Saturday. I considered, therefore, that the outbreak commenced
on the Thursday; and I made an inquiry, in detail, respecting the eighty-three deaths
registered as having taken place during the last three days of the week. On proceeding to the
spot, I found that nearly all the deaths had taken place within a short distance of the pump.
There were only ten deaths in houses situated decidedly nearer to another street pump. In
five of these cases the families of the deceased persons informed me that they always sent
to the pump in Broad-street, as they preferred the water to that of the pumps which were
nearer. In three other cases the deceased were children who went to school near the pump
in Broad-street. Two of them were known to drink the water, and the parents of the third
think it probable that it did so. The other two deaths, beyond the district which this pump
supplies, represent only the amount of mortality from cholera that was occurring before the
eruption took place. With regard to the deaths occurring in the locality belonging to the
pump, there were 61 instances in which I was informed that the deceased persons used to
drink the pump water from Broad-street, either constantly or occasionally. In six instances
I could get no information, owing to the death or departure of every one connected with
the deceased individuals; and in six cases I was informed that the deceased persons did not
drink the pump water before their illness.

The result of this inquiry, then, is, that there has been no particular outbreak or
prevalence of cholera in this part of London except among the persons who were in the
habit of drinking the water of the above-mentioned pump-well.

In 1883, Robert Koch finally isolated the comma bacillus in pure culture and
explained its mode of transmission, solving an enigma that had lasted for centuries
(Lippi and Gotuzzo 2014). This discovery and the works of Louis Pasteur and Jakob
Henle opened up new avenues of innovation and brought health sciences into the
infectious disease era at the turn of the century. The research and epidemiology in
medicine therefore underwent a dramatic paradigm shift fostered by the new science
of microbiology, which had produced definitive evidence of a causative relationship
between microbes and human disease. Instead of focusing on societal-level causes
and sanitary statistics, methods in this era included the development of bacteriology
laboratories, culture from disease sites, and microbe isolation. The goal was to
detect the “sufficient” and “necessary” cause of a disease. These concepts were
embodied in the famous Henle-Koch postulates for establishing an infectious agent
as a cause of disease. The postulates require that the causative agent be absent in
individuals without the disease and present in all individuals with the disease. This
progress in the field of microbiology also advanced the fields of drug interventions
and vaccinations. For instance, the discovery of the spirochete that causes syphilis
was followed by the development of Salvarsan 606, the first drug agent against an
infectious disease, so named because it took 606 experiments to find the effective
compound (Susser 2006).

After World War II, noncommunicable chronic diseases, such as cardiovascular
diseases, cancer, chronic respiratory diseases, and diabetes, were increasing at an
alarming rate while infectious diseases were declining in developed countries. In
this context, the singular notion of necessary and sufficient causes was replaced by
the concept of risk factors, that is, a combination of factors from multiple biological
levels causes the disease, and each factor increases the probability of disease in
an individual (Susser 2006). In this sense, we assume that diseases are produced
by multiple interacting causes and that the same disease may be caused through



1 Big Data and Machine Learning Meet the Health Sciences 7

different, sometimes unknown, pathways. Therefore, methods for identifying risk
factors, such as case–control and cohort designs, were developed. This was the risk
factor era, which began after World War II and persists to this day. At the dawn
of this era, mental disorders were counted among the important chronic diseases
to be investigated. One of the earliest and most influential works was Lee Robin’s
investigation of the relationship between childhood behavior problems and adult
antisocial behavior by following up children after a period of 30 years (Robins
1966). We can also highlight the studies conducted by Avalom Caspi, which formed
the pillars of the gene–environment model. Caspi and colleagues showed that a
functional polymorphism in the gene encoding the enzyme monoamine oxidase A
(MAO-A) moderated the effect of maltreatment. Children who suffered abuse and
who presented a genotype that conferred low levels of MAO-A expression were
more likely to develop antisocial problems while those who exhibited high levels
of this enzyme were less likely to demonstrate antisocial behavior (Caspi et al.
2002). However, the causal chain of chronic diseases, including mental disorders,
is much more complex than the linear gene–environment interactions. This field
needs powerful multivariate techniques that are able to model complex interactions,
commonly nonlinear associations, among factors from multiple biological levels in
order to not only define and treat these chronic diseases but also to predict them and
to orient their prognosis—which is why big data and machine learning techniques
meet health science.

Each prior era focused on a specific biological level; however, multilevel
thinkers are now in evidence. Compared with traditional statistical methods that
provide primarily average group-level results, machine learning algorithms allow
predictions and stratification of clinical outcomes at the level of an individual
subject. Machine learning can also yield better relationship estimations between
multivariate data. By theoretically being able to model any function, machines
can find complex nonlinear patterns relating predictors to their expected outcome
(Obermeyer and Emanuel 2016). Traditional statistical analysis, however, usually
fails to find models with nonlinearities and even in some more optimistic scenarios,
still cannot cope with high-degree polynomial patterns.

Nowadays, all major psychiatric disorders have been studied with machine
learning techniques, including schizophrenia, bipolar disorder, major depressive
disorder, post-traumatic stress disorder, attention deficit hyperactivity disorder, and
substance use disorders. Moreover, the studies have included analysis of different
biological levels as predictors, including socio-demographics and clinical variables
(Kessler et al. 2014), peripheral biomarkers (Pinto et al. 2017), neuroimaging
(Mwangi et al. 2016; Wu et al. 2017; Librenza-Garcia et al. 2017; Sartori et al.
2018), and neuropsychological tests (Wu et al. 2016). Despite their innovative
approach, some of these studies included only small sample sizes, had cross-section
designs, were still pilot studies, and lacked external validation. Chapter 2 will
explore these limitations further and discuss the obstacles that are faced.

http://dx.doi.org/10.1007/978-3-030-03553-2_2
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1.2 The Dawn of the Intelligent Therapeutic Interventions

Chapter 4 will provide a synthesis of studies that used big data and machine learning
techniques to select treatment intervention. Therein, we will conceptualize how big
data and machine learning may help evidence-based medicine toward personalized
care.

Prediction of treatment response at an individual patient level remains an elusive
goal for some chronic illnesses, including mental disorders. For instance, selecting
an antipsychotic medication for schizophrenia remains a trial-and-error process,
with no specific biomarkers to lend decision support. Randomized clinical trials
and meta-analyses, the pillars of evidence-based medicine, have helped us to iden-
tify effective treatments for specific disorders by leveraging traditional statistical
methods (Evidence-Based Medicine Working Group 1992). Traditional statistical
methods as mentioned above primarily provide average group-level results within a
population. On the one hand, this approach allows us to make broad generalizations
about a specific population in regard to a specific drug. On the other hand, it fails
to detect nuances related to an individual subject, and significant results may not
represent a real benefit for some (Greenhalgh et al. 2014). Indeed, subjects included
in clinical trials frequently do not reflect patients from real-world clinical scenarios.
In the latter, patients have different multimorbidity profiles, severity of symptoms,
degree of functional impairment, and even cultural backgrounds compared to the
former—and all these factors may play a role in treatment response. Consequently,
big data and machine learning guided intervention trials may help evidence-based
medicine by using these nuances to make predictions of treatment response (and side
effects) at an individual level. It is important to note that both clinical practitioners
and machine learning algorithms seek to accumulate knowledge from previous
patients and translate it to each new patient’s case.

Several studies have attempted to find a single biomarker that can predict those
patients who are likely to respond to a specific medication but results have not
been consistently replicated. Several features or predictors ranging from genetics,
molecular or neuroanatomical levels, to population, demographic and social levels
may be associated with better outcomes of one treatment as opposed to another.
Markedly, they may have little predictive value on their own but, when combined,
they lead to improved predictive utility. For instance, Chekroud and colleagues built
a multimodal machine learning tool composed of clinical and demographic data to
predict treatment response to antidepressants (Chekroud et al. 2016). This tool was
subsequently validated using an external sample. Additionally, Cao and colleagues
reported a clinical tool able to predict response to risperidone treatment in first-
episode drug-naive schizophrenia patients with a balanced accuracy of 82.5% (Cao
et al. 2018) by using powerful machine learning techniques to analyze multivariate
data from resting-state functional magnetic resonance imaging (fMRI). Models like
these can be displayed as a user-friendly calculator, and incorporated into clinical
workflows including electronic medical records. In the case where the calculator
predicts that a patient is unlikely to respond to a specific medication, the clinician

http://dx.doi.org/10.1007/978-3-030-03553-2_4
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can consider alternative medications and the patients will not endure prolonged
periods of “trial-and-error” in search of the right treatment and the burden associated
with this process. Additionally, another unexplored outcome is the prediction of side
effects, such as hyperprolactinemia in patients taking risperidone, which could also
assist in treatment selection.

A focus on individuals, rather than group-level averages, by using big data and
machine learning models that could leverage each person’s unique biological profile
to improve selection of treatment, may bring personalized care to psychiatry. This
is important since over the past decade the field has not developed more efficient
drugs to treat schizophrenia, for instance. A network meta-analysis published in
2013 showed that the new antipsychotic drugs at that time, such as asenapine,
iloperidone, and lurasidone, had the worst efficacy in treating psychosis (Leucht
et al. 2013). However, there are some obstacles to be overcome before models like
those published by Chekroud and Cao are translated into actual clinical applications:
(1) the cost related to some methods, such as fMRI, is still prohibitive; and (2) it is
unclear at this stage whether the proposed models are broadly representative.

1.3 Devices and Patient Empowerment

Another interesting angle to the impact of big data and machine learning on health
science is the way in which data is collected and stored. The development of devices
to assess data (sometimes real-time streaming data throughout a patient’s daily
activities), to analyze the data, and to give clinical insights not only for clinicians but
also for patients, will also redefine care in health sciences. During World War II, the
English mathematician Alan Turing studied cryptoanalysis to crack the intercepted
German Enigma code, which was a crucial step in enabling the Allies to defeat the
Nazis. The theory behind the machine that would break the Enigma code dates back
to 1936, and Alan Turing’s seminal paper (Turing 1937). Alongside building the
first computational model, Alan Turing questioned whether those machines could
1 day actually think, and proposed that machines should be expected to compete
with humans in intellectual tasks in years to come (Turing 1950). Alan Turing is
considered to be the father of computer science and artificial intelligence.

Much like Turing’s prediction, machines are competing with, and in some cases
surpassing, human being’s abilities in intellectual tasks. A successful example of the
use of devices based on machine learning techniques comes from ophthalmology
(Ting et al. 2017). In 2018, The U.S. Food and Drug Administration (FDA)
approved the first medical device that uses machine learning techniques to detect
diabetic retinopathy. The director of the Division of Ophthalmic, and Ear, Nose and
Throat Devices at the FDA’s Center for Devices and Radiological Health, Malvina
Eydelman, said “Early detection of retinopathy is an important part of managing
care for the millions of people with diabetes, yet many patients with diabetes are
not adequately screened for diabetic retinopathy since about 50 percent of them do
not see their eye doctor on a yearly basis. Today’s decision permits the marketing of
a novel artificial intelligence technology that can be used in a primary care doctor’s
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office. The FDA will continue to facilitate the availability of safe and effective
digital health devices that may improve patient access to needed health care,” (FDA
2018). The device is called IDx-DR and analyzes images of the eye taken with a
retinal camera called the Topcon NW400. It therefore provides a screening decision
without the need for a clinician to also interpret the image. The IDx-DR is the first
of probably many other AI-powered tools to be approved by the FDA.

Many researchers have pointed to the smartphone as a great instrument to
empower patients to manage their own health on a daily basis (Topol 2015; Insel
2017). In his book The Patient Will See You Now, Eric Topol even compared the
smartphone invention to the introduction of mechanical movable type printing by
Johannes Gutenberg in 1440. Gutenberg’s press started the Printing Revolution and
is regarded as a milestone of the second millennium. Before Gutenberg’s invention
only the highly affluent, nobility, and priests had access to manuscripts and could
read. Smartphones may have the same impact since they can help provide patients
with insights about their own health. There is much more computing power in a
smartphone than in the building-sized computers from Turing’s time. This paradigm
shift can potentially lead the world to an era where knowledge is not just in the
minds of trained experts, but rather in the hands of any ordinary person holding
a smartphone or a similar general purpose device. As regards people’s access to
technology, the trends look positive. The number of smartphones in the world
continues to grow, and is estimated to reach over six billion devices in circulation
by the year 2020 (Kharpal 2017). Other devices are sure to play an important role,
such as the smartwatch, sales of which, according to CCS Insight, should rise by
20% every year for the next 5 years (Lamkin 2018), thus becoming a possible key
player in health tech initiatives. People who the health system cannot reach would
most certainly benefit from a cheap, secure and fast approach to obtaining clinical
insights. This puts patients first and democratizes health.

Smartphone devices will also enable information to be gathered and processed
in real time providing us with digital phenotypes, which could potentially help us
understand illnesses, including mental disorders, and to proactively treat patients
(Insel 2017). Variations in symptoms or cognition are common between medical
appointments in patients with mental disorders. However, when a patient or a
caregiver is asked about symptoms during a clinical appointment, he or she tends to
rely on the current symptoms and extrapolate this perspective to the whole period
between the two appointments (Insel 2017). It is impossible for a professional to
constantly assess a patient’s condition in order to obtain better measures because of
the costs involved, both in logistic and financial terms. Computers, however, have no
such problem, in fact there is potential for the development of continuous real-time
monitoring, while the clinician will have access to this information in graph format
on his or her computer. Moreover, this is a time where everything is connected. We
are increasingly purchasing products that are constantly listening to us and logging
our every move. The Internet of Things has made it possible for us to connect
devices that would otherwise be offline. From microwave to smoke detectors, every
device in our house is, or could potentially be, gathering and logging our actions
(Klous and Wielaard 2016). Through ubiquitous and pervasive computing, we are
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Fig. 1.3 The impact of big data coupled with advanced machine learning techniques may change
the traditional doctor–patient relationship. (A) Traditional clinician–patient relationship: patients
provide clinicians with the information that they need to diagnose and treat based on the judgment
of the latter. (B) Clinical calculators: software-based clinical decision support systems built
from machine-learning-based studies further improve the clinicians confidence in diagnosis and
treatment. (C) Towards precise health care, curators may have access to data from the patient
collected by multiple sensors and exams. The curators than proceed in creating a more friendly
view of the data alongside predictive models that can assess diagnosis and prognosis of multiple
conditions. Curators, in essence, are scientists and engineers with predictive modelling, health
sciences, big data and analytic skills. (D) The patient owns all data, providing the control on sharing
and how to proceed on its usage. (E) Patient self-assessment: Curated data and predictive models
allow patients to receive clinical insights directly related to his/her diagnosis or prognosis and seek
clinical evaluation if necessary. This shifts the passive role of the most interested in treatment, the
patient, to an active role

also able to collect data without the patient realizing it; a good example is wearable
technology, such as smartwatches, that can monitor a heart rate throughout the
whole day. Putting aside for a moment the obvious security issues, these gadgets
have great potential to assist clinical practice (Duffy et al. 2017). The information
gathered between episodes could help us to understand better an individual patient’s
trends on multiple measures and personal idiosyncrasies. From the amount of time a
patient spends on his or her smartphone to how s/he interacts with his or her personal
assistant and social media, all could become digital biomarkers, which can be used
by a clinician to assess a patient’s behavior through predictive modelling. This kind
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of measurement paves the way for patients’ empowerment. This would not remove
the clinician from a patient’s treatment, but rather would enable the patient to follow
their health more closely and leave more complex decision making to the clinician.
We believe that the traditional clinician–patient relationship will change with the
introduction of big data and machine learning models. Figure 1.3 depicts how we
see this development.

All these paradigm changes, ranging from individualized treatment to the
collection and usage of data for patient self-assessment and clinical assistance, do
not mean much if they are not put into practice. For that reason, we must change
the way we observe predictive models and their impact to a more pragmatic point
of view. In the next chapters, we will see how, from a clinical perspective, big data
and machine learning will affect clinicians, addressing specifically mental health.
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2Major Challenges and Limitations of Big Data
Analytics

Bo Cao and Jim Reilly

Mental disorders have been considered as the top burden among global health
problems, contributing about 32.4% years lived with disability (YLDs) and a cost
of 2.5 trillion US dollars including both the direct and indirect costs (Vigo et al.
2016; Whiteford et al. 2013; Trautmann et al. 2016). The economic cost from
mental disorders is expected to double by 2030. Because mental disorders usually
appear early in the life, they may become a life-time burden for the patients and
the caregivers. With the increasing number of patients in mental disorders and a
growing aging population, the life burden and economic cost of mental disorders
will be more than those of cardiovascular disease, common infections and cancer.
However, unlike other physical diseases, we still highly rely on symptoms and do
not have objective markers to make diagnosis of mental disorders. Once patients
are diagnosed with mental disorders, we respond with a trial-and-error procedure
to treat them. We seem to lack a good way to know the best treatment for a patient
in advance and to provide optimal personalized treatment. These two major issues
are pressing grand challenges to psychiatrists and researchers in the field of mental
disorders.

The emerging field of “big data” in psychiatry opens a promising path to precise
diagnosis and treatment of mental disorders. Over years of debating and hard work,
researchers have come to an agreement that mental disorders are complicated and
one disorder is probably not caused by a single change in the genes or neurons.
However, by using high-dimensional data, such as genome-wide transcription and
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brain images, and integrating information from different modalities, we may be able
to development methods of precise diagnosis and treatment prediction of mental
disorders. Because the dimension of the data available is so high, a large number
of observations are required correspondingly to develop and validate any model or
method based on the data, which lead to a big volume of data with high dimensions
and high instances. With the help of big data, it becomes possible to implement
technics like data mining and machine learning to establish data-driven diagnoses
and treatment strategies of mental disorders. Along with the opportunities brought
by the big data in psychiatry are some unprecedented challenges.

In this chapter, we will name some challenges we are facing in the field of big
data analytics in psychiatry. We hope to address and overcome these challenges with
the joint force of researchers in related fields and alleviate the burden of mental
disorders.

2.1 Challenges in Data Standardization

The data and knowledge shared should be scalable, expandable, transferrable and
sustainable. This means that by increasing the volume of the data, we should
achieve better performance of methods developed on the data and higher confidence
of the outcomes, and we should be able the transfer the methods developed on
one population to other populations and on the current generation to the future
generations. One of the major challenges of big data analytics in psychiatry is that
data collected globally is not always combinable due to the lack of standardization
across regional centers and hospitals. Standardization can be considered as common
features or measurements shared between datasets in the raw format in a strict
sense. The measurements, or what data to collect, are usually determined upon an
agreement across clinicians and researchers from different regions and disciplines.
Standardization can also be considered as major shared information between
datasets in a general sense. Even though the datasets may look different, the
same features could be extracted after preprocessing. Lack of standardization is
usually due to a disagreement among data collection parties, and makes it difficult
to generalize the analysis based on one dataset to other datasets, or transfer the
knowledge learned by the machine from one to another.

The first level of lack of standardization is from the diagnosis criteria. Although
many researchers aim to move away from symptom-based diagnosis and achieve an
objective diagnosis system based on biological markers, we still need to reply on the
current diagnosis system to establish research samples. However, discrepancies in
major diagnosis criteria across the world still exist. For example, bipolar disorder in
children and adolescents is still diagnosed differently in Europe and U.S., resulting a
much lower prevalence of bipolar disorder in Europe than U.S. (Soutullo and Chang
2005), and it is a debating topic whether bipolar disorder progresses or has severity
stages (Berk et al. 2007; Passos et al. 2016; Cao et al. 2016; Kapczinski et al. 2016).
Discrepancies of this kind will make it difficult to integrate data from different
regions, as the data from patients with a certain label in one region may actually
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represent different populations in another region. It may also make it difficult the
apply models developed with data from one region to those from another region,
when these regions have different diagnosis criteria.

The changes of major diagnosis criteria over the years may also expose chal-
lenges in the consistency of the methods developed with data based on these
criteria. For example, the data collected from patients with autism spectrum disorder
(ASD) based on the fifth edition of Diagnostic and Statistical Manual of Mental
Disorders (DSM; DSM-5) may include patients that were labeled as another
disorder according to the fourth edition of DSM (DSM-IV). Patients that were
considered to have obsessive-compulsive disorder (OCD) or posttraumatic stress
disorder (PTSD) according to DSM-5 might share the same biological signatures
of patients with anxiety disorders diagnosed according to DSM-IV (American
Psychiatric Association 2013a, b). These changes of criteria are sometimes due
to disagreement among the clinicians and researchers, but with good intention to
provide better mental health services and to reflect recent progress in the research
in mental disorders. The changes of criteria will be always a challenge for big data
analytics in psychiatry, as it will be hard to keep tracks of findings based on different
versions of the criteria. However, as more data are generated, shared and utilized,
we believe that the criteria based on the biological markers will eventually emerge
and converge with the criteria based on symptoms.

The second level of lack of standardization is from the different variables or
modalities collected from regional data. Researchers have already realized the
value of multi-modality data in psychiatry, which usually provide a more thorough
understanding of mental disorder mechanisms and a better performance of compu-
tational models in making classifications and predictions of diagnosis and treatment
responses compare to data of single modality. However, it is not always possible to
collect all the crucial modalities. For example, magnetic resonance imaging (MRI)
can provide non-invasive measurement of brain structure and functions in-vivo, and
is a powerful tool for psychiatric research especially when combined with genetic
measurements (Stein et al. 2011). However, a MRI scanner is luxury equipment
for many hospitals in the developing countries, and many research projects may
have to drop the MRI component due to the shortage of financial support even
when the patient resource is sufficient. Some scanning procedures may require
dedicated expertise, such as MR spectroscopy, advanced diffusion tensor imaging
and scanning very young children or patients under states involving excessive head
movements (Cao et al. 2017a), which may also become challenges for hospitals and
research centers without corresponding supports.

Different variables, assessments and outcome indicators may also be used in
electronic health records (EHR) and health information (HI) across regions and
nations. It is quite common that even with the same diagnosis criteria, clinicians
and health service providers from different regions or countries may have different
interpretations of the criteria and different ways to record cases. They may also
add their own insight or adapt a general procedure to meet the need of local
populations. All these variations of recording the patient information may lead to
various measurements that are unique to certain data collection, which will cause
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difficulty when a method developed on one dataset is being transferred or applied
to another dataset. The EHR and HI are emerging technology in mental health,
and each country is still trying to implement them efficiently according to its own
medical, privacy, political and financial environments. However, it is important for
researchers and policy makers to realize the necessity to facilitate a communicable
and compatible health record system for the future global effort in mental health
research.

The third level of lack of standardization is from varies of protocols in data
collection. Although some datasets shared the same variables, they may show
quite significant difference in the same variables due to different protocols of
data collections, storage and preprocessing. For example, in a large multi-center
neuroimaging dataset, the study site is one of the most significant contributors to
the variance even in some of the basic measurements like cortical and subcortical
region volumes (Panta et al. 2016). The effect of the study sites may be attributed
to several sources, such as different brands of scanners, scanning sequences and
parameters, preprocessing pipelines and even different instructions for the patients.
Since it is not possible to use the same scanner and technicians to perform all the
data collection, one strategy could be using common phantoms across study sites
and follow the protocol in a well-established large-sample study, such as the human
connectome project (http://www.humanconnectomeproject.org). Another strategy is
to include a well-represented sample of healthy subjects that serves as the reference
when the measurements of current dataset are compared to other public datasets
(Cao et al. 2017b). The difference in the measurements between the healthy subjects
in different datasets could be used to calibrate the corresponding measurements
for all the subjects including patients and healthy subjects, so that different patient
populations from different datasets can be compared directly (Fig. 2.1).

Another challenge in data standardization is the fast evolving technics in biology,
imaging and computational analysis. We are in such a fast pace in the development
of new technologies in biology and the ways that we can measure the genes,
neurons, brain anatomy, networks and functions are evolving every day. New
standard measurements that were not possible or affordable are being introduced
more frequently than ever. Thus, it is a great challenge for us to think ahead when
new data collection is planned. It is also important to keep updating and correcting
knowledge derived from data collected previously. A result no matter how intuitive
at the time of publication could be found less accurate when a new method is
developed. For example, the segmentation of hippocampal subfields were found
to be less accurate in an older version of method compared to the new version
(Andreasen et al. 2011; Cao et al. 2017c, 2018), and findings using the previous
version of method need to be updated and interpreted with caution (Van Leemput
et al. 2009; Haukvik et al. 2015). For another example, researchers have generally
believed that there is no lymphatic system in our brain, until very recently some
study confirmed that our brain actually has a lymphatic system to circulate immune
cells and wastes using advanced MRI imaging technics (Absinta et al. 2017). This
will not only change the textbooks about the lymphatic system, but will also bring

http://www.humanconnectomeproject.org
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Fig. 2.1 Effect from study sites in a large sample multi-center neuroimaging study. Adapted from
Panta et al. (2016)

new possible measurements about brain immunometabolism in mental disorders
involving altered immune activities like neural or glial inflammation.

Although it is convenient to have the exact same measurements in datasets
collected across regions for the purpose of implementing many machine learning
algorithms and analyses, the advance of computational algorithms may provide
more tolerance of less standardized data. Traditional methods, such as support
vector machines (SVM) and regularized linear regressions have made substantial
progress in big data analytics in psychiatry. However, they may require relatively
strict standardization across the datasets when a model using them needs to be
generalized and transferred from one dataset to another dataset. New progress
in deep learning networks may relieve some of the restrictions in the variables
collected in different datasets because methods like deep learning may involve
an integrated feature learning process that does not need the raw data to be in
the exact form from different datasets (Rajkomar et al. 2018). New computational
algorithms may help to automatically “standardize” features from different variables
in different datasets, and make it easy to transfer models across datasets.

The challenges due to lack of standardization could be partly overcome with good
strategic planning and collaboration between developed and developing regions.
The data and methods shared in the research community have made substantial
contribution to the progress of mental disorder research and brain research in
general. A transparent ecology to share the lessons learned during the data collection
and sharing, and an open environment to facilitate the agreement on the variables
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and protocols in patient evaluation and data collection will advance the progress in
big data analytics in psychiatry.

2.2 Challenges in Machine Learning in Psychiatry

2.2.1 Overview of Machine Learning in Psychiatry

The machine learning (ML) paradigm is the new frontier in brain health research.
The brain is far too complicated an organism to enable modeling by classical
means, a process which would typically involve the use of mathematical and
physical constructs or laws to predict brain behaviour in some way. However, our
understanding of the brain is currently at such an underdeveloped state that we as
humans know of no encompassing set of physical and mathematical laws that can
adequately describe brain behaviour over a wide range of circumstances. In fact,
the concept of humans trying to understand their own brains is a conundrum, well
expressed by Emerson Pugh in the early 1930s: “If the human brain were so simple
that we could understand it, we would be so simple that we couldn’t.”

Fortunately however, the machine learning paradigm allows us to circumvent this
difficulty, at least in part. Machine learning can be used to construct a rudimentary
model that can predict behaviour of a complex system in a limited sense. The
machine learning model compares measurements describing a system under test
with previous measurements of similar systems whose behaviour has been observed
and is therefore known. Because the machine learning method can then predict
behavior of the complex system, it in essence constructs a rudimentary model of
the system itself.

We now give a simple example of how a machine learning model can be
developed that could train a “Man from Mars” to distinguish whether a particular
human specimen is male or female. In this problem, there are two classes; male
and female. We must first have available a set of N humans and their corresponding
male/female class labels. Since the Man from Mars has very little prior knowledge
about distinguishing male humans from female humans, he assembles a large group
of measurements (features) from each human sample. This list of features (referred
to as the candidate features) are only his guesses of which measurements might be
discriminative between the classes. Let us say the candidate features he chooses in
this case are hair length, number of teeth, skin colour, voice pitch, and weight. These
candidate features are fed into a feature selection algorithm (to be described later)
that identifies only those features which are discriminative between the classes. We
observe that skin colour, number of teeth, and to some extent weight, have little
bearing in determining gender. So the feature selection algorithm selects hair length
and voice pitch from the list of candidate features. (We prefer only two features so
we can plot in 2 dimensions). We can interpret these features as axes in a Cartesian
coordinate space (called the feature space), and then plot the corresponding hair
length and voice pitch values for each of our N human samples as a point in this
feature space, as shown in Fig. 2.2. We see that the points representing the male
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Fig. 2.2 Feature space for the “Man from Mars” example

and female samples tend to cluster into two distinct regions in the sample space—
females in the upper right, and males in the lower left.

We then design a classifier, which in this simple case is a straight line that
separates the two classes as cleanly as possible. Now that our Man from Mars has his
rudimentary model constructed, he can determine the gender of a previously unseen
human by measuring their hair length and voice pitch and plot the corresponding
point in the feature space. The gender is determined by which side of the line the
point falls on.

Let the number of selected features be M. The M features collected from each
of the available N humans may be assembled into N vectors xn,n = 1, . . . ,N, each
of which is of dimension (M × 1). Let us denote the corresponding (binary) class
label for each human (sample) as yn. Then the set (xn, yn),n = 1, . . . ,N is called the
training set.

Our Man may wish to determine the accuracy of his rudimentary machine
learning model. He may accomplish this using a validation procedure, which is
an essential part of the machine learning process.

In Fig. 2.2 we see that some samples from each class fall on the wrong side
of the boundary. This is because in this case there are some men with long hair
and high voices and women with short hair and low voices. Misclassification is
unavoidable in most machine learning problems; however we wish to minimize this
effect by choosing the best possible combination of features and the best possible
classification rule.
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Thus we see there are three major components of a machine learning modelling
process; these are feature selection, classification and validation. We discuss each
of these components more thoroughly in the sequel, with a view to how each of the
respective algorithms behave in applications related to psychiatry and neuroscience.

2.2.2 Feature Selection, Classification, and Validation Algorithms

2.2.2.1 The Feature Selection Process
In typical applications in psychiatry and neuroscience, and in many medical applica-
tions in general, the number of candidate features tends to be large but the number of
available training samples is few. This scenario is difficult for the machine learning
paradigm, since according to Bellman’s “curse of dimensionality”(Bellman and
Dreyfus 1962), the number of training samples required to maintain classification
performance at a specified level grows exponentially with the number of features
used by the classifier. So to maintain satisfactory levels of classification accuracy,
especially in the presence of few training samples, we require the number of features
adopted by the machine learning model to be as small as possible. As we have seen
previously, this is accomplished using a feature selection process.

Feature selection methods, in the general sense, identify features which have a
high level of statistical dependency with the class label. This means the values of
selected features change significantly with class. Another interpretation of feature
selection is in the data compression, or dimensionality reduction context. That
is, a feature selection process identifies features which preserve the underlying
characteristics of the data with as high fidelity as possible using as few features
as possible.

One of the issues worthy of consideration in feature selection is that it is
necessary to examine the relevance of groups of features rather than just features
individually. An example is shown in Fig. 2.3 where it is seen that each feature
individually is not discriminative; however, when considered jointly the two classes
separate cleanly. Thus, an ideal feature selection algorithm must examine all
possible combinations of all available N candidate features for relevance. This is
a problem with combinatorial complexity and so is computationally intractable.
We must therefore resort to a suboptimal approach for selecting features if we
are to circumvent these computational difficulties. In practice, all practical feature
selection approaches are suboptimal in some sense.

Feature selection is an intensively studied topic and accordingly there are a very
large number of feature selection algorithms available in the literature. An extensive
list of modern feature selection methods is provided in Armanfard et al. (2017). A
feature selection method that has proven to be very effective in applications related
to brain research is the minimum redundancy maximum relevance (mRMR) method
(Peng et al. 2005). The mRMR method uses mutual information as a measure of
statistical dependency. It is an iterative greedy approach where in each iteration a
single feature is chosen which has the maximum mutual information with the class
labels (relevance) but minimum mutual information (redundancy) with the set of
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Fig. 2.3 A feature space in 2 dimensions, where neither feature is discriminative on its own, yet
jointly they are highly discriminative

features chosen in previous iterations. C code for the mRMR method is available on
line at http://home.penglab.com/p_publication.html.

Often in feature selection problems, the scale of the candidate features can
vary over many orders of magnitude. This extensive range of values can pose
difficulties for the feature selection and classification algorithms. This issue may
be conveniently resolved by normalizing the values of each feature using e.g. their
z-score. That is, all values xmn of the mth feature are replaced with the value
x′
mn = xmn−um

σm
, n = 1, . . . , N , where μm and σm are the mean and standard

deviation respectively of the mth feature evaluated over the N available samples
from the training set.

2.2.2.2 The Classification Process
The features are selected so that the samples from each class in the training set
separate (i.e. cluster) as well as possible into two (in the binary case) distinct regions
in the feature space, each region corresponding to a class. In a typical machine
learning scenario, the two classes seldom separate cleanly; there is usually some
overlap between the clusters representing each of the classes. The classifier may
be described as a mathematical rule that maps a prescribed (i.e. test) point in the
feature space into a class, in some optimal fashion that minimizes the occurrence

http://home.penglab.com/p_publication.html
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of a classification error. That is, the classifier determines the most likely cluster that
a test point belongs to. Note that points which fall into an overlap region between
clusters may not classify correctly.

There are many types of classifier. The support vector machine (SVM) (Haykin
2009; Hastie et al. 2009) is a well-established classification method that has been
shown to behave well in psychiatric applications, with a built in SVM function
available in later versions of Matlab and Tensor Flow. The basic version of the SVM
classifier formulates a hyperplane that separates the two classes so that the margin
is maximized. The margin is the distance from the closest points in each class to the
hyperplane. These closest points are referred to as support vectors; hence the name
of the classifier.

Classification is a very mature topic and consequently there are many types of
classification methods, in addition to the SVM, that are available in the literature.
Examples include K Nearest Neighbor (KNN), the Linear Discriminant Analyzer
(LDA), the naïve Bayes classifier, decision trees, etc. These are all described
in Hastie et al. (2009). There is also the well-known multi-layer perceptron as
described in Rumelhart (1986) and Haykin (2009).

Decision trees are specifically useful in the present context since they form the
basis of more sophisticated classifiers which we discuss later in this section. There
are several tree-based training methods that are discussed in Hastie et al. (2009)
and Bishop (2006). A characteristic of the decision tree is that it produces unbiased
outputs with high variance; hence, they are not useful as is for classification.

Classifiers, as well as many feature selection algorithms, usually have at least one
associated parameter whose value must be tuned to produce optimal classification
performance in a given scenario. For example, the SVM classifier incorporates a
user-defined parameter that controls the tradeoff between increasing the margin size
and ensuring that the training sample feature vectors xn lie on the correct side of the
margin. Another example is the parameter K (number of nearest neighbours) in the
KNN classifier. Details on how to select a suitable value for these parameters are
described in Sect. 13.2.2.3.

Classification in the Nonlinearly Separable Case: In Figs. 2.2 and 2.3, we have
shown simple cases where the class clusters separate linearly. While this is the
easiest case to deal with from the theoretical perspective, in practice the boundaries
between the classes are seldom linear, as shown in the example on the left in Fig.
2.4. In this case, it can be seen that if a linear boundary is used to separate the feature
space on the left, significant classification error will result.

Fortunately, under certain conditions, various forms of classifier like the SVM
can be easily adopted to the nonlinear boundary case using the so-called kernel trick
e.g., Bishop (2006). The kernel trick is applicable if the only numerical operations
performed by the classifier are inner products. The kernel trick in effect maps the
original data in the original Cartesian space through a nonlinear transformation �

into a higher-dimensional space where ideally, the data separate linearly, as shown
on the right in Fig. 2.4. The interesting feature of the kernel trick however is that
the nonlinear transformation is not performed explicitly. Instead, it may be induced
simply by replacing each inner product operation of the form xTz involved in the
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Fig. 2.4 Transformation of a nonlinear feature space (left) in to a linear separable space (right)

implementation of the classifier algorithm with a kernel function k(x, z),where x and
z are feature vectors in the present case.

Kernel functions can be interpreted as similarity measures; the larger the value
of the function, the more similar are the vector arguments x and z. They must obey
the property that its associated Gram matrix be positive definite. Examples of valid
kernel functions are the Gaussian kernel k (x, z) = exp

(−γ ||x − z||22
)
,where γ is

a real-valued user-defined parameter, and the polynomial kernel k(x, z) = (xTz+c)d,
where c and d are also real-valued user-defined parameters. The respective param-
eters are adjusted so that the boundary in the transformed space is as linear as
possible. More details on all aspects of the kernelization process are available in
Müller et al. (2001) and Bishop (2006).

Machine Learning Methods Specifically Recommended for Use in Brain Research
The first such approach which has proven useful in brain studies is the mRMR
feature selection scheme in conjunction with an SVM classifier (Khodayari-
Rostamabad et al. 2010, 2013; Ravan et al. 2011, 2012; Colic et al. 2017). For
example, in Khodayari-Rostamabad et al. (2013) this approach was used to predict
response of patients with major depressive disorder to treatment with an SSRI.

Adaboost Another approach uses boosting (Bishop 2006) where the idea is to
aggregate many “weak” classifiers (learners) into one that is very “strong”. The
Adaboost algorithm (Schapire 2003) is a well-known example of such a method.
This method uses multiple instances of weak learners. For training, each weak
classifier weighs each sample of the training set differently, with more weight being
placed on the samples which the classifiers get wrong. The Adaboost algorithm
combines the feature selection and classification roles and typically uses decision
trees as the weak learner. It forms its final output decision on a majority vote
amongst the weak learners. The Adaboost algorithm has the desirable property that,
provided the individual weak learners give better than chance accuracy, then the
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probability of error of the aggregate classifier decays exponentially as the number
of learners increases (Schapire 2003).

Random Forest An additional (related) concept is bagging, which is short form for
“aggregate bootstrapping”. A widely used classification algorithm in this respect is
the random forest (RF) classifier (Hastie et al. 2009; Breiman and Spector 1992).
Like Adaboost, the RF classifier uses a multiplicity of decision trees, and again
the final output decision is based on a majority vote over the individual decision
trees. Unlike Adaboost, the input to each decision tree for training is a resampled
(with replacement) version of the complete training set, and the feature inputs at
each node are also randomly chosen. The RF classifier has the advantage that,
unlike the other forms of classifier we have discussed so far, it is insensitive to the
overfitting phenomenon, to be discussed later. It too combines the feature selection
and classification processes. The RF classifier has been successfully used e.g. in
detecting onset of epileptic ictal periods (Colic et al. 2017).

The Localized Feature Selection Method (LFS) Conventional forms of feature
selection methods are global; i.e., they assign a single set of features that attempts
to characterize the entire sample (i.e. training sample) space. In contrast, the LFS
method (Armanfard et al. 2016a, 2017) allows the choice of selected features to
vary across the sample space, thus adapting to variations such as nonlinearities,
discontinuities or nonstationarities that may appear across different regions of
the sample space. Each training sample is treated as a representative point for
its surrounding region and as such is assigned its own distinct set of features.
These (local) feature sets are determined by solving a straightforward optimization
procedure in the form of a linear program. The LFS method, unlike deep learning
methods, is therefore very easy to train. The LFS method is well suited to the
“data poor” case where the number of candidate features far exceeds the number
of available training samples, and is also immune to the overfitting problem (to be
discussed). The LFS method has proven to be successful in predicting emergence in
coma patients (Armanfard et al. 2016b).

There are also deep learning methods (Le Roux and Bengio 2008) that are
currently a very active area of research. In particular, autoencoders (Le 2015)
have the desirable characteristic of being able to automatically generate features
directly from the data. Deep learning methods have been very successful in many
applications; however, generally they require large, noise-free training sets. In many
applications in psychiatry and related fields training data is very hard to come by,
and so deep learning methods have not proven very successful for the applications
at hand. It is for this reason they are not considered further in this chapter.

2.2.2.3 Validation andMeasurement of Performance
Validation is a very important component of the machine learning model. It is used
in conjunction with the available training set to determine classification accuracy
of a proposed machine learning implementation. It is also instrumental in tuning
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the parameters that are associated with the feature identification, classification or
kernelization procedures.

Before we discuss validation per se, we consider two different forms of error
associated with the machine learning model. These are training error and general-
ization error. Training error is the classification error using the training set itself.
An example is shown in Fig. 2.2. In this case, because of the overlap between the
classes in the training set, we see that a linear boundary (as determined e.g. by
an SVM) cannot separate the two classes without error. Generalization error on
the other hand arises if a new sample which is not contained in the training set is
incorrectly classified. The validation process estimates the generalization error of
the respective machine learning model based on the training error.

The usual form of validation is cross-validation, where the available training set
is split into two parts—the larger which is referred to as a training set, and the
other the test set. The machine learning model is built using only the data in the
training set. The performance of the resulting model is then evaluated by feeding
the test set samples into the classifier and comparing the classification results with
the corresponding labels provided by the test set.

The most common method is k-fold cross validation. Here the entire training
set is partitioned into k contiguous groups, with each group containing the integer
closest to N/k samples. The procedure iterates k times, where in each iteration one
group is held out for testing and the remaining groups are used for training. Each
group is left out once. The fold error is the average error rate over the samples in
the group, and the overall error rate is the average of the group error. Leave-one-out
cross validation (LOOCV) is a form of k-fold cross validation, except there are k = N
folds (i.e. there is only one sample in each test group). LOOCV works well in the
small N case, but often is computationally expensive because the entire modelling
process must be repeated N times. The method can be susceptible to high variance
in the generalization error estimate. A third form of validation is bootstrapping. It is
similar to k-fold cross validation except that in each fold the training and test groups
are chosen randomly with replacement.

As discussed in Hastie et al. (2009), the cross-validation estimate of the
generalization error is subject to both bias and variance. Bias happens because the
number of training samples available in each fold may be inadequate to train the
underlying model accurately. This results in the cross-validation procedure over-
estimating the generalization error. There is also a variance associated with the
cross-validation estimate, since it is obtained by averaging over a finite number of
samples. As k decreases, the variance increases but the bias decreases. Breiman
and Spector (1992) and Kohavi (1995) suggest that a value of k = 5 or 10 gives a
reasonable compromise between these two counter-acting effects.

A cross validation procedure can also be used to tune the parameters of
the machine learning model. For example, if we are using a k-fold process for
performance evaluation, the data in the training set in each fold is subjected to a
second, inner cross-validation loop. In each fold of the inner loop, the data is again
split into a “tuning” set and a test set. The inner loop is repeated several times using
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different values of the parameter, and the value giving the best performance is then
selected for that fold of the outer loop.

A very important consideration in cross validation is that the training and test sets
be kept completely separate. If a data sample is included in the training set and then
afterwards is again used for testing, then performance is biased upwards, because
the machine learning model has been specifically trained to avoid errors over all
samples in the training data.

As an example of the machine learning process in psychiatry applications, we
now briefly describe a study (Khodayari-Rostamabad et al. 2013) which used
machine learning to predict response to SSRI treatment for major depressive disor-
der, based on analysis of the EEG. The training set consisted of EEG measurements
from 22 patients who were diagnosed with MDD and whose response to the
treatment was recorded after several months of treatment. The set of candidate
features consisted of power spectral density measurements at many frequency values
from all electrodes, and spectral coherence values from all pairs of electrodes over
the same set of frequency values. The study used 20 electrodes and 50 frequency
values, which resulted in over 10,000 candidate features. The mRMR feature
selection algorithm was used to reduce this set down to 10 or fewer features which
have the most relevance with the recorded response to the treatment. An SVM
classifier was used and the estimated correct classification rate was approximately
85%. This study therefore provides a good indication that machine learning methods
can adequately predict response using EEG analysis.

2.2.3 Further Considerations in the Development of a Machine
LearningModel

2.2.3.1 The Over/Underfitting Problem
Consider the situation shown in Fig. 2.2 where a linear boundary does not cleanly
separate the training samples into their respective classes. The temptation in this
case may be to build a classifier that that can generate a more flexible boundary
that works its way around the misfit points and so places the misplaced samples
on the correct side of the boundary. This increased flexibility can be achieved by
introducing additional parameters into the classifier model. In this case, the classifier
can be trained so that the training error reduces to zero. Let us assume that the
underlying true but unknown boundary corresponding to the physical process that
generates the data is in fact linear. Then new data points placed where the flexible
boundary has been diverted may not classify properly, and so the generalization
error degrades in this case. This phenomenon is called overfitting and is a result of
the machine learning model over-adapting to the training set (i.e. the boundary is
allowed to become too “wiggly”).

Another form of overfitting occurs when the dimension of the feature space
becomes too large in proportion to the number of training samples. For example,
in the linearly separable case, an n-dimensional hyperplane can always separate any
arbitrary class configuration of n + 1 data points. So as the number of features
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increases, the classifier has more freedom to fit the training data, which implies
the training error decreases, but at the cost of increased generalization error. It
is fortunate that a properly executed cross-validation procedure will detect the
presence of overfitting.

Underfitting occurs when the model is not flexible enough to fit the data. This
could happen for example when the number of selected features is too small to
adequately separate the training set. An example of the underfitting problem is as
follows. Suppose we have a data set which separates cleanly with three features. In
this case a classifier algorithm such as SVM would specify a boundary plane in the
corresponding 3 dimensional space to separate the classes. Suppose now that we
discarded one of the features used only two of the three features. Then all the data
would be projected onto the remaining 2 dimensional plane and the two classes may
overlap with each other, thus reducing performance.

If the number of features is too large, we have overfitting, and if too small,
we have underfitting. So how to choose a good value? One valid method is to
repetitively train a machine learning model for an increasing number of features
(starting e.g. at 1) and test each model using a cross-validation procedure. We
should see the error decrease initially as the number of features increases, because
underfitting becomes less of an issue. But then as the number increases further, the
error will bottom out to a plateau, and then begin to increase, due to overfitting. The
best number of features to use may be taken as that corresponding to the minimum
error.

2.2.3.2 Missing Data
In many applications, particularly in medicine, the feature vector associated with a
specific data sample may not contain all the values or measurements of the specified
selected features. When data is collected during studies, missing data may result
from patient incompliance, patient drop-out, measurements being too inconvenient
or expensive to acquire, etc. The problem is that many machine learning algorithms
will not execute properly when some data from the feature vectors are missing. Thus
some value for the missing features must be supplied in order for the algorithm to
run properly on a computer. The problem is that an improperly substituted value for
a missing value may adversely impact the accuracy of the machine learning model.
So what value do we supply that will minimize this impact?”

There are many approaches available to address this question. One is simply to
delete any incomplete samples. However, in doing so, we are throwing away useful
data, and so this is an undesirable option. Other approaches therefore attempt to
estimate suitable values for the missing features, based on the available remaining
data. The process of filling in missing data is generally referred to as imputation.
There are many forms of imputation, many of which are well discussed in García-
Laencina et al. (2010). The basic idea behind imputation is that the statistical
dependencies that may exist between the different feature values in a training sample
are exploited to estimate the missing value. The difficulty with this approach is that
in some cases, e.g., the mRMR method, the features are specifically selected so
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that the statistical dependencies between feature values is minimized. Thus in some
cases imputation is an ineffective method.

In cases where there is significant correlation between feature values in a
data sample, we can use ordinary regression to impute the missing data. Another
approach is to use more sophisticated model-building statistical methods such as
the EM algorithm. Yet another approach is to use a second-level machine learning
approach to estimate the missing data in the primary problem. These methods are
all discussed well in García-Laencina et al. (2010).

Perhaps the most sensible approach to handle the missing data case is to use
feature selection and classification methods that can be adapted to tolerate missing
data. Two such methods are the random forest (RF) and the localized feature
selection (LFS) approach. When some features in the training set are missing, the
training procedure for both algorithms is easily modified to accommodate this case.
However, when testing data contains missing values, both models may have to be
partially re-trained so that missing features in the test data are excluded. This can
be expensive from the computational perspective, but the data imputation process
involves a significant computational cost as well. At this point it is not known how
the performance of the RF or LFS approaches to handling missing data compare to
that of imputation methods. However, in the case where there is little statistical
dependency between the selected feature values, the LFS and RF methods will
almost surely perform better than methods using imputation.

2.2.3.3 Imbalanced Data
The data imbalance problem occurs when the training set consists of many more
samples of one class than another. These are referred to as the majority vs. minority
classes, respectively. For example, if a research study involves testing the human
population at large for psychiatric illness, we are likely to find far more healthy
subjects than ill patients. Thus the training set becomes imbalanced. Imbalanced
data sets become a problem in the machine learning context, since the model is
hindered in learning the distributive properties of the minority class. For example,
in a case where the split between the majority vs. minority classes in the training set
is 90% vs. 10%, the model need only output a majority class decision in all cases
and overall, it would be correct 90% of the time. However, in this case the minority
class would be misclassified 100% of the time. As a further example, studies (Woods
et al. 1993) have been performed where machine learning was used to detect cancer
from a mammography data set. The data set contained a 40:1 imbalance in favour
of the noncancerous class. The results showed accuracy rates of close to 100% for
the noncancerous case, and only approximately 10% for the cancerous class. Thus a
large proportion of cancerous cases would be incorrectly classified as noncancerous.
This case has more severe consequences than incorrectly diagnosing a noncancerous
patient. This example illustrates that in the imbalanced data case, it is necessary to
consider more refined performance metrics, such as receiver operating characteristic
(ROC) curves and others that can weigh errors from the different classes in different
degrees (He and Garcia 2009).
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The negative consequences of the imbalanced data case become more severe
when the class distributions in the feature space become more complex. This could
happen e.g., if the distribution of one or both of the classes devolves into multiple
clusters, or a single cluster of complex shape, instead of the ideal case where each
class is represented by a single well-defined cluster. The situation is particularly
severe in the high-dimensional case with few training data, since then there are not
enough samples for the model to learn the characteristics of the minority class.

There are effective methods that have been developed to mitigate the imbalanced
data problem. One such method that has shown a great deal of success in many
applications is the synthetic minority oversampling technique (SMOTE) (Chawla et
al. 2002). It balances the dataset by sampling (generating) synthetic minority class
samples, and discarding some majority class samples, if necessary. The synthetic
minority class samples are generated by selecting a specific minority class training
sample at random. Artificial samples are generated by placing a new sample on
a straight line between the minority sample under consideration and one of its K
nearest neighbours of the same class. This sampling process can be repeated many
times to generate as many synthetic minority class samples as desired. This method
preserves the characteristics of the minority class data and has been demonstrated
to work well in many situations. There are several variations on the basic method,
as discussed in He and Garcia (2009). The SMOTE algorithm is included in the
Tensorflow package.

The SMOTE method and its variants use sampling techniques to augment
minority class samples. Another approach at handling the imbalanced data case
are cost-sensitive methods, which effectively place more weight on minority class
errors than on majority class errors during the training process. In many cases this
can be achieved simply by trading off an increase in majority class error for an
improvement in minority class performance. The Adaboost and LFS algorithms in
particular are easily adapted to incorporate this tradeoff. In the Adaboost case, it
is only necessary to modify the formulation of the distribution function over the
training samples; with LFS, the tradeoff can be implemented simply by varying the
parameter γ (Armanfard et al. 2016a, 2017). The literature on this topic is extensive;
there is an abundant reference list in He and Garcia (2009).

2.3 Challenges fromData to Knowledge

Traditional ways of research in psychiatry tend to be reductionism and hypothesis
driven, which is proved to be effective to investigate single-factor mechanism at the
group-level. This approach is still the golden standard when it comes to establish
the causality between a factor and the outcome, because we usually could only
manipulate one or limited number of factors in experimental or clinical setups.
When many factors, including genetic, physiological and behavioral factors, and
their interactions need to be considered at the same time, it is usually not efficient,
if not impossible, to use the reductionism approach to investigate one by one of
the many possible factor combinations (Williams and Auwerx 2015). The new
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big data approach could take into account all the factors without many priori
assumptions, which will lead to effective outcome prediction at the individual level
and new hypotheses that have been ignored previously. This approach will provide
translational applications in personalized psychiatry, as the knowledge or algorithms
learned from existing data could be applied on new cases. It will also provide
insights of important factors and their links in mental disorders, which can then
be investigated using a hypothesis-driven approach. Thus, the traditional approach
and the novel big data approach are complementary to each other in future research
of mental disorders.

It is still crucial to transform the complex data with understandable representation
in low dimensions in many cases, because we can visualize the data in 2D and 3D
dimensions, static or changing over time. Visualization will help us to see high-
dimensional data in an intuitive space. It will show data distributions for certain
measurements and overlay measurements onto each other to show their interactions,
which will help to understand the mechanisms underlying different measurements,
identify the outliers and unusual cases, discover major variance contributors, select
subsets of data for post-hoc analysis and so on. Although most of these tasks could
also be done with proper mathematical tools directly applied at the high-dimensional
data, it is challenging to make sense of the data when the dimension of the data is
high and data involve multiple modalities. Moreover, visualization in low dimension
is helpful for researchers to demonstrate certain concepts and convey the knowledge
to the audience without professional data science training, such as some clinicians
and patients. For example, a visualization method called t-distributed stochastic
neighbor embedding (t-SNE) can help researchers see a large sample of high-
dimensional multi-modal brain imaging data (Panta et al. 2016). We can easily see
the reliable difference between images from 1.5 and 3 T scanners, and there seems
to be no apparent difference in the scanning time. These observations may provide
further confidence for us to combine existing images scanned at varied time of the
day or to plan new scans without much concern of scanning time, while make us
to be cautious about data that have been scanned or are going to be scanned with
different magnetic field intensities. Big data visualization is still an emerging field
and psychiatry will benefit from the development of it, yet it is also a challenging
field with respect to the number of factors that need to be considered in mental
health.

Big data in psychiatry armed with advanced machine learning and artificial
intelligence technics will become one of the strongest tools in the research of mental
disorders. However, as an interdisciplinary field, the collaboration between experts
in psychiatry, neuroscience, psychology, computer science, mathematicians, and
software engineers is not replaceable by the novel methods of big data analytics. The
value of big data will not be appreciated by the public until it is converted to massive
knowledge of mechanisms of mental disorders or translational tools that can guide
the diagnosis and treatment of mental disorders. It is only when the interdisciplinary
experts make joint forces together that the big data in psychiatry can reach its full
potential to become beneficial knowledge and the corresponding challenges that we
have discussed can be overcome (Fig. 2.5).
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Fig. 2.5 t-SNE plots color coded by (a) scanner type (b) scan acquisition time (c) gender, and (d)
studies. Adapted from Panta et al. (2016)
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3AClinical Perspective on Big Data
in Mental Health

John Torous, Nikan Namiri, and Matcheri Keshavan

While the word analysis holds special meaning in psychiatry from a psychodynamic
therapy perspective, our lives are also constantly being analyzed by machines.
Whether we realize it or not, computers have been fully integrated into our lives
and devices, ranging from the smartphone we use for phone calls, the cars we use to
drive, and the internet we use to communicate across. All of these computers contain
algorithms that seek to analyze and understand our behaviors or intentions: the
smartphone to remind of appointments and recommend navigation routes, the car to
automatically brake if a child jumps in the road, the search engine to offer website
links to answer a question. The same algorithms that make today’s computers useful
are not only restricted to increasing efficiency, ease, and comfort. They can also be,
and already are, used to study, predict, and improve mental health. In this chapter we
explore the rapidly expanding field of digital psychiatry with a focus on the synergy
between data and algorithms that hold the potential to transform the mental health
field.

As discussed in other chapters, the accessibility of new technologies, like
smartphones, and access to the data they generate have paved new roads for
innovation and discovery in many fields. Among them, mental health has received
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some of the most prominent advances. Consider for a moment the vast amount
of information a smartphone can provide relevant to behavior and mental health.
Geolocation data can provide objective measures of exercise and activities, phone
call and text message logs measurement of social engagement, voice samples clues
to mood, error rates in typing a window into cognition and mental state, and so on.
There is so much data generated from smartphones alone that there is a need for
collaboration with data science fields in order to help make sense of these myriads.
Understanding this collaboration and work, along with the intersection of psychiatry
and data science, offers an exciting window into the new world of big data.

To understand this new world of data and algorithm, it is first necessary to lay
a groundwork in the concepts of big data and machine learning. While these two
terms are often used broadly and their exact definitions are beyond the scope of
this chapter—understanding their meaning in the context of clinical psychiatry is an
important first step.

Big data is characterized by three principles: velocity, volume, and variety,
together known as the three V’s of big data. Smartphones utilized for mental health
offer an example of high velocity data, as data streams such as geolocation, keyboard
strokes, and phone call logs are constantly flowing through from devices and into
computers where the data can be stored. Smartphones in mental health are also a
paradigm for high volume data, as smartphones can provide a constant data stream
from features, such as accelerometer and CPU, which provide millions of data
points in a matter hours. In addition to the velocity and volume, smartphones are
an example of the variety in big data. Consider the wide range of data types a
smartphone can collect that is relevant to mental health, ranging from geolocation
to weather data, call and text logs to light sensors, voice data to keyboard strokes,
and more. Thus, when considering the velocity, volume, and variety of smartphone
data for mental health, it is easy to see why this big data is unlike most other data
streams currently utilized in clinical psychiatry.

An issue arising from the mass quantities of big data is creating effective means
of analyzing and drawing accurate conclusions from the data, which is precisely
where machine learning comes in. Other primary issues include the ethics, patient
perspective, security, and appropriate clinical utilization of this data, which are
covered in the upcoming sections, as well as later chapters.

The analysis of these big datasets and further extrapolation into feasible appli-
cation is the crux of machine learning. Machine learning enables physicians and
researchers alike to analyze patient data using methods novel to the clinic. The
nature of big data means that we need computers to assist in finding meaning or
patterns in the data. This does not mean that a psychiatrist allows the computer
to make clinical judgments, but rather that he/she allows the computer to suggest
potentially useful information garnered from a sea of big data from, for example,
a patient’s smartphone. Perhaps the machine learning algorithm noted a pattern
that when the patient does not leave the home or exercise, mood worsens. This
is information the psychiatrist can now use to inquire more and start a discussion
with the patient. To find these patterns in the data, the machine accesses mass
amounts of data points and organizes them using statistical learning methods.
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Statistical learning in machine learning consists of three major subsets: supervised,
unsupervised, and semi-supervised learning.

Supervised learning requires a predetermined learning algorithm for the machine,
which includes two essential parts: features and outcomes. The features (i.e. time
spent at home), which are the predictors of the outcome (i.e. severity of depressive
symptoms), are given to the machine as variables for it to then construct models for
the most predictive outcomes.

Unsupervised learning, the second method, is similar to supervised learning
in the sense that the machine is tasked with categorizing patients based on data.
However, unsupervised learning does not possess programmed predictors; instead,
the machine sifts through datasets in order to find its own parameters from which
to then group patients. This process, known as clustering, requires the machine
to perform dimensionality reduction, by which unlikely predictors are eliminated
while the remaining ones are used to form relationships with patient outcomes. For
example, no one may have programmed the computer to find a relationship between
outgoing text messages and manic episodes through supervised learning, but in
unsupervised learning the computer is able identify this unseen relationship. Of
course many of these new relationships may not be useful in the clinic, as discussed
later in this chapter. The psychiatrist must be wary that statistical significance is not
the same as clinical significance.

The third and final type is semi-supervised learning, which combines the methods
of supervised and unsupervised learning. In semi-supervised learning, only a small
subset of the patients have a known outcome, and the rest of the patients are used to
corroborate or change the initial relationship.

However, the brief above descriptions of machine learning and big data makes
one critical assumption. In Desjardins the clinical world there is always missing or
messy data. A patient may not recall how he reacted to a medication, may forget
the name of his prior prescriber, is unsure if he was ever diagnosed with bipolar
disorder, and so on. Likewise, big data itself is not perfect and often is messy and
rife with missingness. Perhaps the geolocation sensor on the phone was not perfectly
calibrated, turned off to save battery, or there was a mistake in the app recording that
data. Thus prior to inputting into the machine, data may undergo cleaning, a process
that removes subjects, or at least part of their data, from the dataset if their data is
too messy or has too much missing. While superficially harmless, removing subjects
from datasets has the potential to skew analysis, particularly if the removed subjects
or data points are from the same group. Consider the simple example of patients with
depression turning off their smartphone because they may not want to be contacted
by others. This simple turning of an on/off switch means that no data is gathered
and much is missing, when these data points could have provided valuable insight
into the patient’s symptoms.

As an alternative to cleaning messy data, missing data may be filled in through
approximation using classical statistics, or statistical learning methods. The general
linear regression model (GLM) is the simplest of statistical learning methods.
GLM utilizes regression models to develop correlation coefficients between features
and outcomes; however, this leads to the issue of overfitting in the case of



40 J. Torous et al.

high-dimensional datasets. Overfitting occurs when modeling of specific parameters
fit too closely with a given dataset. Using a larger sample size combats this
overfitting, by minimizing the effects of outliers and data that may be merely noise.
Although increasing the volume of data will eliminate overfitting, the problem still
lingers in high-dimensional research studies, in which the number of parameters is
far greater than the number of observations.

Other techniques include elastic net models, a further extension of GLM, which
use a large set of features to predict outcomes. Elastic nets will then filter through
and select only the highest correlated predictors to incorporate into the final model.
This is a manifestation of data reduction: the elimination of particular parameters in
order to provide a highly correlated, accurate, and simplistic model for big datasets.
Naïve-Bayes and Classification and Regression Trees (CART) are two additional
methods of statistical learning. Naïve-Bayes is essentially an application of Bayes’
Theorem, in that it classifies the likelihood of an event based on the value of one
known variable. This variable is assumed to be independent of other parameters.
CART, on the other hand, maps complex relationships between variables using
a methodology similar to a flowchart. Data is first split up into categories, each
represented as a leaf on the flowchart. The leaves are then connected to outcomes as
well as other leaves, depending on the leaf’s predictive capabilities.

Mental health research can produce significantly more powerful results when
datasets from multiple sources are compiled into one and analyzed as a sin-
gle dataset. Such analyses require large computational power, but are feasible,
as demonstrated by several recent analysis into adolescent alcohol misuse for
predicting current and future patterns (Whelan et al. 2014). In this study, an
elastic net model was utilized to select for only the most impactful predictors of
adolescent overconsumption. The resulting parameters included life experiences,
neurobiological nuances, and overall personality of the adolescent. Moreover, the
model provided regression values for each predictor, and based on these values, the
model was able to remain accurate after application to a new data set. This dataset
of new adolescents served to test the model, while the initial set of adolescents
were used to first train and create the model. Typically, a dataset of K samples is
subdivided, and all but one sample (K-1) is used to properly train and configure the
model. Once the model is developed, the last sample is used for a test run, which
hopefully results in a low prediction error. This process is repeated K times, each
time resulting in a new set of K-1 subgroups for model training, while leaving the
final subgroup for testing. This process is referred to as K-fold cross validation, and
is widely utilized, including by studies presented later in this chapter.

3.1 Examples of Machine Learning Today in Psychiatry:
Medication Selection

Despite tremendous recent increases in psychiatric knowledge of psychopharmacol-
ogy, in today’s world, finding the right medication for a patient can still be a process
of trial and error. It can be hard to know a priori which patients will respond well
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to an antidepressant, and which may find the side effects too hard to bear or may
simply not have an adequate response. While clinical experience is crucial in these
decisions, machine learning offers both the patient and psychiatrist new information
that may augment medication selection.

Matching the right antidepressant medication to the right patient is not trivial.
Considering even a simplified definition of depression—meeting five of nine
symptoms listed in the DSM-5 for 2 weeks—there are, in mathematical terms,
nine choose five combinations of presenting symptoms, which is a total of 126.
Biological evidence also suggests that there are subtypes of depression and that
different types of depression respond better to certain medications than others.
Machine learning can cluster patient symptoms into predictive subsets, from which
psychiatrists can then prescribe the optimal prescriptions, targeted for a specific
symptom within the patient’s general depression.

The following examples (Chekroud et al. 2016, 2017) offers a model based
on complete and prior collected data in the Sequenced Treatment Alternatives
to Relieve Depression (STAR*D) trial, meaning the challenges of missingness
and messiness are not addressed. This study used machine learning to create
models to help identify whether a patient will benefit from a particular medication
based entirely on the patient’s unique background and clinical symptoms. Data
from STAR*D (1949 usable patients) was used to construct a 25-predictor model
to accurately estimate patient remission from the antidepressant citalopram, a
serotonin reuptake inhibitor.

The three most predictive factors of non-remission were baseline depression
severity (0.07793), restlessness during the last 7 days (0.06929), and lowered energy
level over the last 7 days (0.05893). The most predictive characteristics for remission
were having a job (−0.06946), years of education (−0.04712), and loss of insight
of the depressive symptoms (−0.04625). The model was internally validated using
the STAR*D dataset, resulting in an accuracy of 64.4%, higher in comparison
to most predictive clinical models. The model was taken one step further and
tried for validation on an external dataset, Combining Medications to Enhance
Depression Outcomes (COMED). The COMED patient data was divided into three
groups: escitalopram plus placebo, escitalopram plus buproprion, and venlafaxine
plus mirtazapine. The predictive accuracy for each group was 59.6%, 59.7%, and
51.4%, respectively. Although the latter treatment group did not create statistically
significant results (p = 0.53), the other two groups were significant, suggesting this
model as promising for predicting medications that would best serve a patient.

The point of such a model is not to replace a psychiatrist, but rather to offer a new
tool that may be useful in informed decision making regarding medication selection.
Of course before any model can become widely adopted for clinical use, it also must
be validated in real world conditions with real world data—which is often messy
and missing to some degree. Such research efforts are currently underway and will
continue to refine the field’s knowledge about matching the right medication to the
right patient. Chapter 4 will further discuss this topic.

http://dx.doi.org/10.1007/978-3-030-03553-2_4
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3.2 Examples of Machine Learning Today in Psychiatry:
Suicide Prediction

In the United States, suicide rates have risen to a 30 year high, tragically making
suicide one of the top ten causes of death among those aged 10–64 (Curtin et al.
2016). Despite suicide awareness and outreach, this represents a 24% increase since
1999 (Tavernise 2016), and serves as an urgent call to action. While universal
screening for suicide is a goal, it is not yet the standard, as implementation serves
as the chief barrier. Patients and healthcare providers alike need a simple, yet
effective means of quickly identifying risk factors for potential suicidal patients
during preliminary evaluations. The grave disparity among research advances and
current suicide rates has opened the door for machines learning and big data.

There is an urgent need for new tools to assist in predicting and preventing
suicide. As alluded to above, while many area of health such as cancer and
infectious diseases have experienced remarkable decreases in mortality rate as well
as diagnostic and preventative advancements, suicide rates have increased. Current
models to predict suicide risk have only little to moderate predictive utility, deeming
previous suicidal attempts as the most common risk factor. Yet the fact that 60% of
suicides are performed by those who have never made prior attempts reveals the
weakness of these current models (Christensen et al. 2016).

New data and algorithms offer the potential to improve suicide prevention by
extending monitoring beyond the clinic, with the ability to even respond to that data
in real time. Interfacing with social media also provides machines a mechanism for
identifying those at risk in real-time. In November 2017, Facebook announced it
will be using artificial intelligence to monitor user’s feeds in an attempt to predict
who may be at risk (Zuckerberg 2017). While Facebook has not yet revealed what
data they utilize and what algorithms they use, social media is becoming an active
area of machine learning and mental health research. Other social media platforms
are important targets as well for machine learning efforts. Machines can detect
tweets and the changes within them that raise flags for suicide. However, further data
mining must be performed in order to better characterize profiles of those at risk,
and may soon include facial and voice characteristics as markers. By combining
big data analysis by machines with individually gathered data streams, short-term
risk factors can be quantified and identified almost immediately to provide needed
support.

Medical records themselves also provide a source of data for machine learning
techniques to offer new information relevant to suicide prevention. A case in
point is a study from Montpellier University Hospital, where the records of
1009 hospitalized suicide attempters were analyzed in terms of several clinically-
relevant parameters, including impulsiveness, mental disorders, and childhood
trauma (Lopez-Castroman et al. 2016). This data was used for a hierarchical
ascendant classification to create three homogeneous phenotypic clusters. The
first cluster, labeled impulse ambivalent (n = 604), contained patients who were
characterized by relatively non-lethal means of attempts and planning. The second
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cluster, well-planned (n = 365), had carefully planned attempts, more alcohol or
drug abuse prior to the attempt, and had patients who employed more precautions
to avoid interruptions. The third group, called frequent (n = 40), was the smallest,
and included patients with more total attempts, being more serious and violent, and
childhood abuse.

There were significant differences between each cluster for all analyzed variables
(p < 0.001). Of the three clusters, clusters 1 and 2 were the most similar in terms
of patient phenotype, so multivariate analysis with CART was performed on these
two clusters. Cluster 3, on the other hand, was relatively distinct, possessing a
female majority and a prevalent number of tobacco smokers, 90.0% and 80.6% of
the cluster, respectively. This cluster was also prevalent in patients with anorexia
nervosa (91.7%) and anxiety disorder (23.5%). Clustering is important as it offers
clinically relevant and actionable insights that can be used to help clinicians identify
those at high risk today. As more research continues, these models will continue to
improve.

Clustering is not the only machine learning method useful for suicide prediction.
Research groups across the world are actively investigating new data streams as
well as new methods. For example, one group explored a neural network model
for risk assessment of emergency room patients. The researchers created a software
screening tool that 91% of patients found easy to complete, taking an average of
0:56 min, compared to nearly 8 min for a psychiatrist’s brief evaluation (Desjardins
et al. 2016). In preliminary testing, the neural network model was very accurate in
predicting these new datasets, displaying a 91% accuracy in predicting psychiatrist’s
risk assessment and 89% for assessment of psychiatric intervention. This model
provides the initial steps towards emulating the gold standard in evaluating suicide
risk, but like all results, this model will need to be re-produced and run with new
data to demonstrate its true clinical potential.

Related to suicide, non-suicidal self-injury (NSSI), most common among chil-
dren and young adults, is deliberate self-injuring without suicidal intentions. The
typical lifetime prevalence of NSSI in young adults and children is 13.9–21.4%, and
the most common manifestation of NSSI is cutting (Plener et al. 2016). The internet
is the most frequently used means by which NSSI health information is obtained.
This information is sought not only by those who self-injure, but also the individuals
who seek ways to help those who self-injure (i.e. parents and caregivers).

A recent study looked at the quality of the web resources for non-suicidal self-
injury and highlighted the need for both mental health professionals and internet
consumers to be cautious with what they read (Lewis et al. 2014). Researchers
from the University of Guelph in Ontario, Canada searched 92 terms related to
NSSI that resulted in 1000 Google hits or more. The first page of hits from these
terms were evaluated, and the quality of health information on each website was
evaluated using established guidelines from the Health On Net (HON) Foundation.
They found that each of 340 healthcare websites contained an average of 1.44 ± 1.18
(mean ± SD) myths about NSSI. The most prominent myths were associating NSSI
with a mental disorder (49.3%), abuse (40%), or that women are more likely to self-
injure (37%). The mean quality of healthcare information in terms of HON criteria
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was 3.49 ± 1.40, while only one website received a perfect score of 7. Moreover,
very few of these websites were credible, as only 9.6% were endorsed by health (i.e.
hospitals) and/or academic institutes.

These results are concerning for not only patients but also machine learning
efforts. Without proper collaborations between psychiatry and data science fields, it
is easy to see how incorrect information could easily be accessed and programmed
into machine learning algorithms. The advantage of machine learning tools is they
can be delivered at scale to the population, but this is likewise their weakness, as
incorrect or harmful information can be similarly scaled as well. Chapter 5 will
further discuss this topic.

3.3 Examples of Machine Learning Today in Psychiatry:
Symptom/OutcomeMonitoring

Machine learning methods can do more than predict risk of self-harm or suicide;
they can also help guide treatment decisions such as identifying the right medication
for the right patient. For example, one third of patients suffering from Major Depres-
sive Disorder (MDD) do not react adequately to treatment. Much effort has been
put into characterizing treatment-resistant depression (TRD), defined as an inability
to achieve at least 50% reduction in depression (McIntyre 2014). To investigate
the potential of machine learning methods, 480 patients with TRD were studied
to identify predictors for ineffective treatments (Kautzky et al. 2017). This patient
cohort was taken from the Group for the Study of Resistant Depression (GSRD), a
multinational European research consortium. A machine learning model was created
using 48 predictors from clinical (change of sleep, suicidality), sociodemographic,
and psychosocial (marital status, education) patient aspects. A Random Forest
algorithm was used for model development, and results demonstrated that using
all 48 predictors resulted in an accuracy of 73.7% for resistance and 85.0% for
remission. However, single predictors resulted in an odds ratio of only 1.5; even the
strongest single predictor, time between first and last depressive episodes, resulted in
merely 56% and 60% accuracy for resistance and remission, respectively. Likewise,
clinical predictions made by psychiatrists for treatment resistance are not dictated
by a single parameter, but rather by considering many factors of the patient. The
clinical line of thinking is reflected by this machine, in that more parameters create
a better diagnosis, and may help optimize treatments in the clinic.

Machines do not need to rely solely on previously collected data, as they
have demonstrated the ability to learn and make accurate predictions from real-
time data. Ecological momentary assessment (EMA) is an important tool used by
healthcare professionals to evaluate the mental state of patients throughout their
daily activities. However, EMA has typically been administered through self-report
questionnaires, leading to response bias and subjectivity. In this era of increasingly
ubiquitous smartphones, EMA can be easily conducted via phone-based sensors
and surveys, which are becoming more prevalent in psychiatry research. With their

http://dx.doi.org/10.1007/978-3-030-03553-2_5
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myriad of sensors, such as GPS, accelerometer, and ambient light, smartphones
can provide real-time information about patient environment. The social logs of
smartphones, such as call/text logs and social media profiles, also offer clues about
social interactions and communication patterns (Torous et al. 2016).

A study by Asselbergs et al. offered new insights into mental health by
demonstrating the potential of real-time phone data when combined with machine
learning methods (Asselbergs et al. 2016). A mobile phone app was implemented
on 27 Dutch university students to monitor their moods through proxies of social
activity, physical activity, and general phone activity. The data was used for
predictive modeling, including personalized predictive models for each participant
based on individual data from their previous days. A regression algorithm selected
and weighed variables into subsets to predict self-monitored mood. The eMate
mobile app prompted subjects to evaluate their mood at five set points per day.
Two-dimensional and one-dimensional mood evaluations were used, the latter of
which simply asked the subject to rate his/her mood on a 10-point scale. The two-
dimensional scale, however, used two levels of valence: positive and negative affect.

The unobtrusive, real-time data aspect for the study was collected using iYouVU,
a faceless mobile app founded on Funf open-sensing framework. This app collects
pre-determined sensor data and app logs, which are then sent over Wi-Fi to a central
server. Daily averages of EMA, both one and two-dimensional, were averaged and
scaled to each subject. The unobtrusive data included total number of times screen
was turned on/off, and call and SMS text message frequency to top five contacts.

The personalized mood prediction machines for each student were created using
forward stepwise regression (FSR), in which relevant variables for predicting mood
are selected sequentially as more data is accumulated. To maximize predictive
variables while avoiding overfitting, only eight variables (the number of data
points (42) divided by 5) were used in each student’s model. The first FSR was
stepAIC procedure, which selects variables based on Akaike information criteria
(Akaike 1974). The second FSR method was stepCV procedure, by which variables
are selected based on their ability to lower cross-validated mean square error
between the phone-collected scores and cross-validated predicted scores. Thus a
variable is added to the model unless it increases the mean squared error. The
cross validation was performed using leave-one-out cross validation (LOOCV) by
predicting residual sum of squares for every model run. The predictive performance
of both FSR variants was evaluated using LOOCV, comparing the observed mood
rating through the mobile phone with that predicted by the personalized FSR
models. The result were relatively underwhelming, as the proportion of correct
predictions was 55–76% lower compared to two previously published naive models.
This result demonstrates that machine learning methods are not always better than
simple baseline models.

However, sometimes machine learning does produce results that are not seen
with simpler models or clinical observations alone. A case in point is a study
involving speech data and schizophrenia (Bedi et al. 2015). Disorganized speech is
often an early sign of prodromal schizophrenia, and a novel study analyzed speech
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data with machine learning in order to accurately predict schizophrenia conversion
among youths with prodromal symptoms. Utilizing latent semantic analysis (LSA),
an algorithm that utilizes multiple dimensions of associative analysis of semantic
speech structure, researchers studied speech data for over 2.5 years in those at risk
for becoming schizophrenic. LSA assumes that the meaning of a word is based on
its relation to every other word in the language; words that recur together many
times in a transcript can then be indexed in terms of their semantic similarity. A
machine learning algorithm was trained using the semantic vectors generated from
LSA from those who developed psychosis (CHR+) and those who did not (CHR-)
upon follow-up. The machine used a cross-validated classifier, analogous to K-
fold cross validation, to learn the speech features which differentiated CHR+ from
CHR- participants. Results demonstrated 100% accuracy in predicting psychosis for
each participant within the sample used to generate the machine. Not surprisingly,
this perfect result is significantly greater than the predictive capability of clinical
classifiers from the SIPS/SOPS evaluation (79%). However, the machine was not
externally validated on a new dataset different from the initial one used for model
fabrication. The true predictive capability of the model is likely lower than the
apparent perfect accuracy. Although, automated analysis clearly demonstrates the
potential to outperform standard clinical ratings for predicting clinical onset, as
machines can provide insight on minute semantic difference that the latter cannot
sense.

3.4 Next Step and the Future of Machine Learning
in Psychiatry

3.4.1 Outsource Simple Tasks toMachines

While machine learning will not replace psychiatrists, it can help make their work
more efficient. Machines have the ability to fully automate generic tasks within
psychiatry, such as symptom severity screening. At the time of this writing, The
National Health Service in the United Kingdom is assessing an artificial intelligence
app, developed by the company Babylon, on nearly 1.2 million users in London,
England (Burgess 2017). Rather than have citizens call the non-emergency health
service phone line, which is typically understaffed and run by non-medically trained
individuals, the app provides a promising alternative through a virtual physician
evaluation. This app possesses a database of symptoms which is utilized by the app’s
chatbot to help patients instantly find out the urgency of their health issues. When
presented with a serious case, as assessed by the machine, the chatbot connects
patients directly to a physician. The app has demonstrated the ability to assess
patient illness in a more accurate manner than phone line operators, while also
saving government resources.
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3.4.2 Population Level Risk Stratification and NewDisease Models

Machine learning methods can also help psychiatry with population level risk
prediction. Mental health disorders are typically predicted with machines using
single time point cross-sectional variables, most often clinical aspects from initial
evaluations. These machines may be compromised by their inability to account
for the dynamic nature of symptoms. Thus, predictive modeling can benefit by
assessing the micro-level (momentarily/daily) and macro-level (monthly/yearly)
dynamic factors that impact the course of psychiatric illnesses (Nelson et al. 2017).

The same models can also offer new ways to conceptualize disease. Dynamic
Systems Theory proposes that complex systems consist of sub-systems that are
interconnected and highly correlative, while other sub-systems possess diverse
aspects that are only loosely related. Distinguishing the sub-systems that are
correlative has provided a means for researchers to accurately model aspects of
mental illness, one of which is through the EMA. As previously mentioned, this
assessment evaluates an individual’s mood at many points in a day to detect
shifts from baseline. Such micro-level assessment lends to correlations between
depressive symptoms and subtle changes in emotional state. On the other hand,
recording macro-level changes is done through joint modeling of event outcomes
and time-dependent predictors.

These complex systems are also the crux of Network Theory. By using Network
Theory, we assume mental disorders are a result of complex relationships between
the biological, psychological, and social aspect of our lives. Each system is triggered
by the other, resulting in an overall system that is characterized by positive feedback,
forming a type of loop, whereby the body may be stuck in a continuous cycle of
particular symptoms. These symptoms can sometimes be malicious, which can then
be classified as states of mental disorder. Similarly, Instability Mechanisms convey
that mental disorders are the result of amplifying minor health issues by feedback
loops in the body. What initially seems like a commonplace affect, such as disliking
of cramped rooms, can exacerbate into claustrophobia for some individuals if the
body is continuously running the loops.

3.4.3 Better Use of Medical Records Data

Machine learning can help not only in better characterizing psychiatric illness,
but also in improving the delivery of psychiatric care. Though clinical assessment
remains the paradigm for patients seeking diagnosis, there is increasing interest
in using retrospective patient records as big datasets. Retrospective data has
gained popularity due to its ability to simplify and standardize medicine for more
precise results. Electronic health records (EHRs) provide a means of retrospectively
phenotyping patients, and correlating their characteristics, whether demographic
or diagnostic, to treatment outcomes. But using EHR data can be difficult and
combining EHR data across multiple clinics and health systems is a serious
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challenge due to lack of interoperability. The green button movement seeks to make
it easier to operationalize EHR data and utilize it in novel ways, such as to learn
how a particular patient may respond to treatment compared to others with a similar
presentation (Longhurst et al. 2014). This process of screening EHRs was used to
change the conventional policy for setting alarm alert limits, which is typically
age-based. Lucile Packard Children’s Hospital of Stanford operationalized 1000
of EHRs to create a novel distribution of alarm limits for children, based on their
heart rate distribution rather than age. This nascent implementation of personalized
database data has helped provide more accurate care tailored for each of the pediatric
patients.

Physicians have also begun to take initiative in promoting collaboration between
researchers in the digital health field through secure sharing of health records and
data. Dr. Ashish Atreja, Chief Technology Officer at Icahn School of Medicine at
Mount Sinai, has facilitated digital health data sharing among physicians through the
digital platform NODE Health (Comstock 2017). This initiative allows for secure
sharing of clinical data in efforts of providing a wide range of researchers with
patient data that would otherwise be unattainable for them. The researchers who
take part in NODE Health are able to foster multi-site projects, rather than conduct
costly duplicate studies, because the data is readily available for sharing.

3.5 What are the Next Steps to Realize that Future

3.5.1 A Need for High Quality Data

Despite the early successes and continued promises of machine learning methods
for mental health, there is also need for caution. One area regards bias that may
inadvertently be scaled up by these methods if the wrong types of data are used
to build models. For example, collecting and processing information through social
media poses a challenge, as the information is highly skewed by search methods.
There have been few studies that address search filters, combinations of keywords
and search rules, in their entirety. In a similar vein, very few research groups provide
the proportion of usable data that is collected by their filters. Bias in search filters
can skew data, which precludes generalizable results. The proportion of quality data
that results from search filters must be objectified and characterized in relation to a
standard benchmark. Such a benchmark has been aimed to be created by a recent
study, which aimed to provide standards for retrieval precision and recall (Kim et al.
2016)

Twitter, for example, is one of the most prevalent social media platforms used to
gather data, largely in part due to its high volume. When obtaining data from Twitter,
researchers must be aware of colloquial slang, abbreviated words (due to the limit
on characters per Tweet), and use of hashtags. Experts in the field of study should
be utilized for assistance in filter selection. Signal to noise ratio is also imperative
and keywords with a low ratio should be excluded. This threshold ratio depends
on the study, but one benchmark to discard tweets is those that result in less than
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ten tweets in a month or return less than 30% of relevant tweets. The search rules
can use Boolean operators, such as AND, NOT, OR, as well as data pre-processing
techniques like n-grams and proximity operators.

3.5.2 A Need for Good and (New) Study Design

New tools like machine learning may also require new clinical study designs to make
the most efficient use of the resulting data. Ensuring that studies are designed to
have not only appropriate controls but also appropriate training and testing datasets
must be considered when seeking to utilize supervised machine learning methods.
When aiming to utilize unstructured methods, it is useful to consider how data may
cluster and whether the outcome metric is suitable. Close partnerships with data
scientists are critical to ensure that statistical methods are employed correctly and
that spurious correlations or findings are avoided (Ioannidis 2016). Health studies
can also learn from the software paradigm of agile development, in that iterative and
rapid studies may prove of more value to single long studies that are committed to
one particular technology or method. This concept, sometimes referred to as Agile
Science, offers an early roadmap of a new way to envision and execute clinical
studies (Hekler et al. 2016)

3.5.3 A Need to Realize and Plan for Unintended Consequence

Though machine learning demonstrates the ability to improve the medical field
through means such as increased predictive accuracy, there are also unintended
side effects. When novel technologies are introduced to healthcare, some aspects
of medicine can suffer. One major concern is the over reliance on machine
learning to detect symptoms and proposed treatments for patients. This can lead
to deskilling, decline in performance when a task becomes automated, which can
result in drastic deficits if the technology is removed. Mammogram readers, for
example, experienced a 14% decrease in sensing diagnostic markers on images with
computer-aided detection (Cabitza et al. 2017).

It is also difficult to fully program machines to consider the clinical parameters
that may be only detectable by a holistic, human evaluation. The human experience
can sense psychological, social, and relational issues, aspects which must then be
quantitatively programmed into data that is interpretable by a machine. Evidently,
the problem lies in coding these subtle characteristics that only the human senses
are conditioned to perceive. This also encompasses fundamental guidelines of
healthcare, which can be overlooked in machines because they are merely taught to
recognize patterns in data. For example, a risk prediction machine was created for
14,199 patients with pneumonia, and the machine found that those with both asthma
and pneumonia had a lower mortality risk than patients solely with pneumonia
(Cabitza et al. 2017). Clinicians were surprised that asthma could be a protective
agent, and began questioning the legitimacy of the machine. However, the clinicians
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could not find a problem with the machine, as it had merely done its job as it had
been programmed to do. The issue lied in the coded parameters and data. Patients
with both asthma and pneumonia were assigned to intensive care units, which
resulted in a 50% reduction in mortality risk than patients with solely pneumonia,
who were typically not admitted to intensive care. Contextual factors such as the
difference in hospital unit are crucial for accurate modeling, though are difficult to
recognize and then accurately encode into machines.

3.6 Conclusion

The future is bright for machine learning in mental health. In recent years,
researchers have published numerous studies showing the potential of these methods
for predicting suicide, matching patients to the right medicine, increasing efficiency
of care, and even monitoring patients outside of the hospital with smartphones
and sensors. However, it is worth noting that much of this research has yet to
be reproduced or deployed at scale in healthcare systems. Given the nascence of
machine learning applied towards mental health, compounded by the challenge of
quantifying human behavior, it is not surprising that the field is still exploring its
role and potential. But given the direct errors as well as unintended consequences,
a cautious approach is warranted. Nonetheless, as the diverse methods and applica-
tions of this chapter underscores, the field is rapidly progressing and we expect the
impact and role of machine learning in mental health to only continue to grow.
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4Big Data Guided Interventions: Predicting
Treatment Response

Alexander Kautzky, Rupert Lanzenberger, and Siegfried Kasper

4.1 Introduction

While big data and advanced statistics have been on the rise all across science
and start to slowly ingress everyday life, they have just in recent years found
their way into neuropsychiatric research (Passos et al. 2016). The exponentially
increasing amounts of both, data generation and availability, have paved the way
for the advance of data driven analytical approaches, labeled by the term statistical
learning. Psychiatry may especially stand to benefit from these trends as a lack of
biomarkers for almost all of the major disorders as well as corresponding treatment
options has troubled psychiatrists for almost half a century. Despite endeavors to
determine clinical, genetic, epigenetic as well as imaging risk factors or treatment
moderators, progress on defining clinically relevant predictors for treatment of
psychiatric disorders on the individual level has so far been marginal.

Thereby, affective disorders and the most common major depressive disorder
(MDD) may be particularly afflicted with these issues. While increasing prevalence
rates due to social developments or tightened awareness have been reported for
MDD for years, our knowledge concerning the biological scaffoldings of the
disorder is still shaky. In fact, most of the research on MDD has traditionally adopted
a binary approach, comparing single clinical, sociodemographic or genetic features
in MDD patients to controls or between different treatment outcome phenotypes.
Even though a plethora of studies have carved out convincing evidence for many
predictors of MDD or treatment outcome, their actual diagnostic and predictive
worth for an individual patient has been underwhelming. Therefore, implemen-
tation of multivariate models, usually adopting so-called advanced statistics with
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supervised or unsupervised learning capacity, has been advised by almost all recent
reviews on the topic (Perlis 2016; Cohen and Derubeis 2018).

MDD has been a primary target of machine learning approaches within the last
10 years and the etiological, diagnostic and clinical pitfalls of the disorder make
it a suitable target to reconsider advances and shortcomings of statistics and big
data in psychiatry. In the following chapter, supervised and unsupervised learning
techniques aimed to predict treatment outcome for antidepressants in MDD will be
discussed, exemplary for big data guided interventions in psychiatry.

MDD ranks among the most frequent diseases worldwide, showing a lifetime
prevalence of about 20%. Between 3% and 3.8% of global disability adjusted life
years in 2010 were caused by MDD, making it the fourth leading cause of estimated
global disease burden (WHO 2001). The goal of precision medicine in MDD, allow-
ing prediction of treatment outcome on the individual patient level, may require
optimization of the various predictors already at hand rather than searching for a
new biomarker. The urgency of this ambition may best be understood considering
that 30–60% of MDD patients do not show sufficient symptom remission after the
first antidepressant agent was administered. An estimated 15% remain significantly
ill even after multiple treatment algorithms, thus considered to be affected by
treatment resistant depression (TRD) (Thase 2008). All treatment approaches are
time consuming and consequently about a fifth of patients are still severely disabled
by their disease 2 years after treatment initiation. Consequently, the identification of
risk factors and reliable predictors for treatment outcome has become a medical but
also socioeconomic issue.

4.2 Depressive Subtypes: Unsupervised Learning Techniques
in MDD

MDD may be the clinically most diversely presented neuropsychiatric disorder.
The diagnostic requirements for MDD according to ICD-10 and DSM V allow
high heterogeneity and several competing symptom severity scores like Hamilton
depression rating scale (HAM-D), Montgomery-Åsberg depression rating scale
(MADRS), Quick inventory of depressive symptomatology (QIDS) or Becks
depression inventory (BDI) are in clinical use, often applied concurrently. There
are over 50 different symptoms referenced by the most popular depression rating
scales and several hundred unique combinations of depressive symptoms all lead
to the same diagnosis. Oftentimes obverse symptoms like appetite and sleep de- or
increase lead to similar total scores. Accordingly, recent literature has emphasized
the lack of reproducibility between different rating scores for MDD (Fried et al.
2016; Fried 2017). Along these lines, heterogeneity within MDD has been proposed
and definition of subgroups of patients with distinct features may facilitate better
treatment algorithms.

The idea of depressive sub-types is by no means new and traditionally melan-
cholic and atypical depression have been highlighted in research. DSM V just
recently adopted the anxious subtype of depression. Conventional approaches
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usually define different subtypes first and compare these by means of different
variables and treatment effects. For example, in a large German multicenter study
comprising over 1000 MDD patients, melancholic subtypes showed a higher rate
of early symptom improvement under antidepressant (AD) treatment while anxious
and atypical MDD showed worse treatment outcome (Musil et al. 2018). On the
other hand, another large European multicenter study showed worse treatment
outcome for melancholic depression (Souery et al. 2007). While these studies have
produced interesting results, the inconsistence of the findings and small effect sizes
for the respective subtypes rendered the prognostic value for treatment outcome
insufficient (Arnow et al. 2015).

Advanced statistics allow a different approach to this dilemma by unsupervised
learning techniques as k-means, hierarchical clustering or latent class analysis
(LCA). Thereby, subtypes are not predefined by clinical observations but recognized
in a data-driven way. An exhaustive review of data driven subtypes in MDD
from 2012 showed on one hand a lack of such studies, and on the other hand
the failure to reproduce stable data-driven subtypes in multiple samples up to
that point (Van Loo et al. 2012). Investigations were hindered by several factors,
including insufficient or divergent information regarding MDD symptoms captured
by the severity rating scores, differences in baseline severity and treatment effects.
Based on these findings, the conventional approach of defining subtypes just by
depressive symptoms was mostly abandoned for a broader scope featuring also sex,
comorbidities and other clinical data.

Based on these earlier studies, in the last years unsupervised machine learning
produced some seminal results in MDD. Van Loo et al. could demonstrate that
specific symptom clusters rather than total severity scores were predictive of long
term treatment outcome in MDD (Van Loo et al. 2014). Exploiting the large database
of the WHO Surveys, including over 8000 respondents to AD treatment, they
defined a cluster by the k-means algorithm featuring high degree of suicidality,
anxiety symptoms as irritability and panic, and early disease onset that was
predictive of longer hospitalization, chronic MDD as well as higher disability and
severity. The high-risk cluster thereby comprised up to 70% of adverse outcome.
Comparing the k-means clustering results to generalized linear model (GLM)
results, they could also demonstrate the advantages of stratification by symptom
clusters rather than conventional multivariate models. A follow-up analysis also
implemented comorbidities and could increase the prognostic value of the clusters,
predominantly driven by anxiety disorders (Wardenaar et al. 2014).

In concordance with these findings, another study using the Netherlands Mental
Health Survey with over 1300 MDD patients registered highlighted four clusters
defined by severity and comorbid anxiety that showed distinctive clinical character-
istics and treatment outcome, including use of mental health services and long-term
disability (Ten Have et al. 2016).

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) sample
was also screened for data-driven MDD subtypes with machine learning techniques.
Ulbricht et al. surfaced four clusters within baseline data of over 2000 MDD
patients receiving Citalopram, defined by severity, insomnia and increased appetite
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(Ulbricht et al. 2015). Thereby, clinical and outcome characteristics varied between
clusters and sex differences were suggested. Women were significantly more likely
to be within the increased appetite cluster but showed slightly better response rates
than men within the same cluster. Interestingly, in follow-up analyses focusing
on cluster transition after 12 weeks of treatment, they could show divergent
trajectories for men and women (Ulbricht et al. 2016, 2018). While male MDD
patients were clustered according to severity and psychomotor agitation or slowing,
female patients were clustered by severity and appetite change. Severely depressed
patients were naturally less likely to achieve symptom resolution, but interestingly,
predominantly psychomotor agitation for men and decreased appetite for women
defined the least likelihood for remission.

The studies described above have surfaced a spectrum of data-driven subtypes
based either on diagnostic symptoms alone or a broader range of clinical and
sociodemographic predictors. There are few communalities, except for clustering
according to baseline severity and comorbidities as anxiety disorders or symptoms,
and none of these sub-types were reliably reproduced in other data sets than those
in which they were generated. Their actual predictive power remains therefore
undetermined. Considering the differences in data registration, e.g. inclusion criteria
and consequently baseline severity, applied diagnostic and severity assessment
tools or outcome measures, a final answer to the existence and characterization of
depressive subtypes will probably not even be provided by advanced statistics in the
near future.

However, while data-driven studies are still lacking concision, they have also
shown consistency in their results. Some predictors as anxiety symptoms showed
high agreement within all analyses and consequently, the idea of trans-diagnostic,
symptom-based subtypes beyond MDD got traction in the last years. Based on
the often overlapping symptoms of affective disorders, Grisanzio et al. studied
data deriving from the Brain Research and Integrative Neuroscience Network
Foundation including approximately 200 patients with either MDD, panic disorder
or posttraumatic stress disorder as well as 200 healthy controls. Applying hierar-
chical clustering to this data set revealed six clusters defined by tension, anxious
arousal, general anxiety, anhedonia, melancholia and normative mood (Grisanzio
et al. 2018). Despite the rather small sample size, clusters spanned over all three
diagnoses and could be replicated in an independent sample collected by the
same group at Stanford University. Following the idea of big data, the group also
implemented multimodal predictors as electroencephalography-recorded β power
and functional capacity scores that provide further classification.

Interestingly, also another study in a large cohort of 73,000 subjects, deemed
representative for the general adult population of the northern Netherlands, could
demonstrate clusters of depression and anxiety symptoms independently of diag-
nosis of affective disorders (Wanders et al. 2016). Thereby, especially a cluster
of clinically relevant symptoms showed significant overlap and was related to
disability.

In summary, most data-driven studies on definition of depressive subtypes did
not support the conventional classification of anxious, atypical and melancholic



4 Big Data Guided Interventions: Predicting Treatment Response 57

depression. Findings advocate a role of anxious symptoms that may impact subtypes
in a transdiagnostic fashion and even characterizes subclinical populations. These
results endorse the use of extensive, quantitative and translational symptom assess-
ment as proposed by research domain criteria (RDoC) and neuroscience-based
nomenclature (NbN). While unsupervised data-driven approaches have already
brought neuropsychiatric research one step closer to the goal of precision medicine,
their future success will be dependent on

(a) the precision of the applied diagnostics and symptom assessment tools, prefer-
ably using rescaleable quantitative scores rather than binary questions, and
overcoming flaws like the same coding for opposite effects (e.g. weight gain
or decrease, hypo- or hypersomnia)

(b) interoperability of data sets to allow consequent validation
(c) implementation of multimodal data, including clinical, sociodemographic,

genetic, epigenetic and imaging data and
(d) refinement of statistical techniques, probably combining unsupervised learning

with other machine learning tools.

Some of the studies described above already used a combination of unsupervised
and supervised machine learning for variable selection for clustering. This design
was also chosen by a study within the data pool of the “Group for the Study
of Resistant Depression” (GSRD), applying RandomForest (RF) for interaction-
based variable selection and subsequently k-means clustering to surface subgroups
of patients with distinct response trajectories to AD (Kautzky et al. 2015). At
its time, this was the first study to combine genetic and clinical parameters for
prediction of treatment outcome in TRD, aimed at risk stratification for patients
receiving antidepressant therapy by identification of parsimonious signatures of
variables. RF identified four out of 20 genetic and clinical predictors selected based
on earlier single factor association studies to be most informative. These were
SNPs within HTR2A, BDNF, and PPP3CC genes and melancholic depression. k-
means clustering further characterized a risk phenotype based on these predictors,
indicating higher chances of responding to therapy in a subgroup of patients without
melancholic depression and carrying homozygotes of the T allele of rs6313 of
the HTR2A gene, of the G allele of rs6265 of the BDNF gene as well as of the
rs7430 polymorphism of the PPP3CC gene. This signature increased the odds to
respond to antidepressant therapy 4-times compared to patients without this specific
combination. The opposite signature might be associated with TRD, however, still
be irrelevant for the clinical routine as none of the patients comprised in that
sample featured this combination. Still, melancholic patients lacking the putatively
protecting homozygote G alleles of rs6265 and rs7430 as well as homozygote T
alleles of rs6313 showed an increased rate of treatment resistance of 83% compared
to 66% in the whole sample (Table 4.1).

However, the main goal of statistical learning algorithms has traditionally been
prediction of treatment outcome on individual patient level.
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4.3 Prediction of Treatment Outcome

While simple classification tools like logistic regression have long been staples in
psychiatric research, they produced overall disappointing and sometimes conflicting
results even in big data sets (Carvalho et al. 2014). This might be owed to the
heterogeneous and complex symptomatology of the phenotype TRD that represents
a decisive clinical but also methodological challenge. A major obstacle is the lack
of a generally accepted definition for TRD despite extensive discussions about
criteria and staging systems since the first scientific description by Heimann and
colleagues back in 1974 (Thase 2008). Thus, several TRD definitions are currently
coexisting, deviating in dosage, duration as well as number of AD trials required for
treatment resistance. In addition, outcome criteria like the severity scores applied
or thresholds used for response and resistance vary widely between studies. Thus,
even the most embracing definition of TRD, characterized by a score indicating
severe affection on a recognized symptom severity scale after application of at
least one AD treatment algorithm of adequate dosage and duration, may show
differences between studies and data sets, making comparability difficult. According
to most definitions, however, at least two failed AD trials must be applied to reach
TRD, allowing even more room for variation. For some staging systems, classes of
AD treatments are considered hierarchically, requiring selective serotonin reuptake
inhibitors (SSRIs), tricyclic antidepressants (TCA), monoaminoxidase A (MAO)
inhibitors and electro-convulsive therapy (ECT) for different stages of treatment
resistance respectively (Dold and Kasper 2016; Schosser et al. 2012).

4.3.1 Big Data: Sociodemographic, Clinical and Genetic Predictors

Considering the small effect sizes expected for single predictors for TRD, mostly
multicentered, multinational research groups have contributed to the definition of
reliable sociodemographic, clinical and genetic markers of treatment outcome.
Prominent examples would be the European research consortium GSRD or the
US-American STAR*D trial (Sinyor et al. 2010; Schosser et al. 2012). The largest
study in TRD at its time, conducted by Souery et al. (2007), could link comorbid
panic disorder and social phobia, comorbid personality disorder, suicidal risk, high
symptom severity, melancholic features, more than one previous hospitalization,
recurrent major depressive episodes (MDE), non-response to the first administered
AD and age of onset before turning 19 to TRD (Souery et al. 2007). Other studies
could replicate these findings and also associated long duration and high severity of
the current MDE, outpatient status, high suicidal risk, MDD in first or second degree
relatives, longer hospitalization over lifetime, comorbid panic disorder, melancholic
and psychotic features and the occurrence of adverse effects during the treatment
with TRD (Balestri et al. 2016). Considering sociodemographic predictors, a higher
risk of TRD in patients with a demanding, high occupational level was shown as
well as for unemployed patients and those with low educational degree (Mandelli
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et al. 2016). Somatic comorbidities have sometimes been studied to no definite
conclusion.

In addition to those psychosocial and clinical predictors, there is evidence for the
fundamental importance of genetics in MDD. Twin studies proved a high heritability
of about 40%, but the contribution of a specific genetic variant to the etiology of
MDD and outcome of AD treatment is still speculated upon and may explain less
than 0.05% of heritability (Sullivan et al. 2000). On the other hand, an estimated
variance in treatment outcome of 42% explained by all common variants together
has been implied (Tansey et al. 2013). Hence, a plethora of interacting SNPs and
epigenetic mechanisms can be expected to shape the pathophysiology of MDD
rather than distinct polymorphic variations (Gratten et al. 2014). Over the last
decade, several candidate-gene as well as genome wide association studies (GWAS)
have been conducted in MDD with regards to treatment outcome. Investigations
performed by the GSRD and other groups associated SNPs from several candidate
genes involved with the serotonergic system with TRD, among them COMT,
CREB1, BDNF, 5HTR1A and 5HTR2A, GRIK4, GNB3 and PPP3CC (Schosser et
al. 2012; Perlis et al. 2009, 2010). An abundance of candidate gene studies was
performed, resulting in a synopsis of hardly comprehensible findings and lack of
replication. Negative and inconsistent results may be owed to insufficient statistical
power or disregard of epigenetic effects as methylation or gene-gene interactions.
To address the first problem and to enable an unconcealed look at the genetics
of MDD, several GWAS have been presented since 2010. Usually requiring far
superior numbers than candidate gene approaches, multi-site research consortia like
STAR*D, GSRD, the international SSRI Pharmacogenomics Consortium (ISPC),
Genome-Based Therapeutic Drugs for Depression (GENDEP), combining medi-
cations to enhance depression outcomes (COMED) or Antidepressant Medication
Pharmacogenomics Study (PGRN-AMPS) with sometimes several dozen thousands
of MDD cases paved the way for GWAS in depression. First negative results
for genome-wide associations with MDD were followed up in increasingly big
cohorts and different stratification tactics, e.g. by gender, age or MDD subgroups,
to compensate higher heterogeneity in MDD compared to other neuropsychiatric
disorders like schizophrenia. Nevertheless, GWAS data on AD response, especially
addressing specific ADs, is still limited and collected in distinctively smaller
samples, mostly comprising a few hundred to thousand patients. So far, GWAS
did not yield clinically relevant findings for predicting treatment outcome in MDD
(Biernacka et al. 2015; Jung et al. 2017; Tansey et al. 2012). While an earlier study
of the GENDEP project presented an association of rs2500535 within the uronyl 2-
sulphotransferase gene with Nortriptyline response, most studies reported negative
results on the genome wide level (Uher et al. 2010). For example, a study performed
for examination of genetic contributors to duloxetine response in 391 MDD patients
failed to produce any genome wide associations for drug response (Maciukiewicz et
al. 2017).

As a putative remedy to small single marker effects, polygenic risk scores
(PGS), adding up single marker effects identified in GWAS and validating them
in independent samples to get a hold of their predictive quality, were introduced and
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anticipated to expedite new drug targets and precision medicine (Breen et al. 2016).
Indeed, PGS could successfully be applied to some disorders as schizophrenia
(Vassos et al. 2017). However, PGS underperformed in prediction of treatment
outcome in MDD. A large study exploiting the GENDEP and STAR*D datasets
could not find PGS predictive for AD response in over 2000 patients, however,
lead to the conclusion that genetic risk for a disorder may not overlap with that
for unfavorable treatment outcome (Garcia-Gonzalez et al. 2017). Interestingly, a
recent study in the ISPC and PGRN-AMPS data sets predicting treatment response
with consideration of personality traits yielded more positive results, with some
associations within genes linked to CRHR1 and YEATS4, which had previously been
implicated in AD treatment outcome (Amare et al. 2018). The failure of GWAS and
PGS may thereby be owed to the simple statistics, rather broadening conventional
single factor analyses without fully capturing epistasis as well as psychosocial and
clinical interaction effects. Consequently, big genetic data sets collected for GWAS
were handled with advanced statistics to enable clinically relevant prediction for
treatment outcome.

4.3.2 Supervised Learning Techniques in MDD: Towards Precision
Medicine

Single factor approaches using conventional statistics consistently highlighted the
involvement of clinical as well as genetic factors in TRD. Nevertheless, considered
individually none of these predictors prove sufficient for detecting individuals at risk
of resisting AD treatment (Gratten et al. 2014). Accordingly, recent reviews, e.g.
by the think-tank of the Collegium Internationale Neuro-Psychopharmacologicum,
have suggested focusing on a combination of predictors for diagnosis and treatment
outcome of psychiatric disorders (Scarr et al. 2015). Just in recent years such
models seem increasingly viable due to international efforts on data availability
and intrusion of advanced statistics in psychiatry (Chen et al. 2011; Kennedy
et al. 2012).

In the last decade more advanced statistical learning algorithms like regularized
regression (elastic net, LASSO), support vector machines (SVM) or (RF) have
been introduced as strategies for prediction of treatment outcome. Nevertheless,
guidelines for selecting the most effective out of the already extensive repertoire
of AD agents and strategies for subgroups or individual patients have not yet been
established.

4.3.2.1 Supervised Learning Techniques in MDD: Clinical Predictors
Early adaptions of machine learning in prediction of treatment outcome were
constrained by insufficient observation counts and fulfilled an exploratory role,
showing advantages over conventional multivariate models without breakthrough
and far from clinical application. For example, Serretti et al. compared logistic
regression to neuronal network learning algorithms, yielding an accuracy of around
0.6 for treatment response to fluvoxamine in both, conventional and advanced
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statistical models (Serretti et al. 2007). However, several predictors neglected by
the generalized linear model were considered by the machine learning approach,
indicating better registration of interaction-based effects. Another study in a large
cohort of over 1000 naturalistic MDD cases conducted by Riedel et al. again applied
logistic regression, reaching a marginally better accuracy with six clinical predic-
tors. Baseline severity scores, suicidality and psychotic features were consistently
highlighted as the most important predictors in these studies, however, sometimes
different directions were reported (Riedel et al. 2011). The authors also implemented
regression tress, providing singular tree based hierarchical pathways, but still no
significant improvement for prediction on a clinical level could be achieved.

The first somewhat successful endeavor of supervised learning techniques in
predicting antidepressant treatment outcome was undergone by Perlis et al. (2013).
Based solely on self-report questionnaire items, the authors presented a simple
classification model featuring 15 selected variables that consistently reached an
accuracy around 0.7 across training, test and validation sets comprised of STAR*D
patients. A mixture of clinical predictors as QIDS self-rating items, including
insomnia, energy and total score, as well as number of episodes and psychotic
features, psychosociodemographic variables as gender, ethnicity and education,
comorbidities as PTSD, and items hinting at environment interactions like trauma,
showed the best discriminative properties. All these variables showed rather small
odds ratios, hovering between 0.7 and 1.4, when considered separately. Intriguingly,
in this study logistic regression proved on par accuracy but better stability compared
to more sophisticated approaches as SVM, RF or Bayesian models. This might be
owed to the wrapper-based selection algorithms preimposed on the training data, as
variable selection based on importance for classification results is a main advantage
of machine learning techniques as RF.

The selected predictors in these studies may not be surprising as they mostly
agree with single factor results. The most significant risk factor in Perlis et al.
turned out to be baseline QIDS total score, proving again that more severe cases
are doing worse in treatment, even though a few studies suggested a more complex
picture (Riedel et al. 2011). However, for the first time a ready-made prediction
algorithm for an individual patient, possibly refinable for clinical use, was presented.
Similar approaches were undergone within the GSRD data pool. A machine learning
prediction model in using RF both for variable selection and classification of TRD
and remission yielded again an accuracy above 0.7, indicating clinical significance
(Kautzky et al. 2017a). This analysis was focused on sociodemographic and
clinical predictors and, similar to Perlis et al., roughly 50 variables were included.
Contrary to the earlier study, here the full set of 48 available predictors resulted
in the maximum accuracy of 0.73 for resistance and 0.85 for remission, while
a reduced set of the 15 most important predictors selected by RF importance
measurement resulted in an accuracy of 0.62 for resistance and 0.78 for remission.
Considerable limitations were the cross-sectional nature of the study and the lack
of an independent validation set. Treatment outcome was determined only by a
threshold on a single HAM-D score. Cross-validation was performed only in the
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training set for variable selection and a single cast on an internal test set split off the
data for model generation was used for validation.

On the other hand, these results were followed up with a comparable endeavor
in a new sample of 552 patients (Kautzky et al. 2017b). Similar prediction results
were achieved, reaching an accuracy of 0.75 and a positive and negative predictive
value of 0.80 and 0.68, respectively. Again, a strained set of 15 easily predictors that
could be extracted within 10 min of clinical interview was tested and still yielded
an accuracy above 0.7. However, due to some design differences between the two
samples, including treatment outcome phenotypes TRD and response determined
by change in MADRS scores over treatment and exact variable characterization as
well as exclusion criteria, no cross-sample validation was performed.

Taken together, no definite conclusion on the most effective variable selection
and prediction algorithms can be drawn yet. Nevertheless, these studies affirmed
that combinations of predictors are clearly superior to single factors and some
variables have consistently been highlighted as more informative. Furthermore,
anticipation of failed treatment response would allow for a tighter protocol with
earlier application of augmentation therapies or ECT. Nevertheless, none of these
studies approached the sought-after rationale for selecting the appropriate out of
apparently equal AD options beyond consideration of side effects (Bauer et al.
2015).

DeRubeis et al. tried to answer that question with a generalized linear model for
prediction of HAM-D after either psychotherapy or antidepressant drugs in a sample
of roughly 250 patients (Derubeis et al. 2014). They predicted two hypothetical
HAM-D outcome values based on baseline HAM-D, predefined clinical variables
and a dummy treatment variable and compared these to actual outcome scores of
the longitudinal study data. However, the results were rather unsatisfactory. The
standard error was around 7 points in HAM-D and the mean differences of predicted
HAM-D between treatment arms surprisingly low, only making a meaningful
clinical difference (assumed at a threshold of 3 points in HAM-D score) in 60%
of the observations within the sample.

Thriving on the auspices of the earlier studies, Iniesta et al. first presented a
prediction model based roughly 800 patients and clinical variables that generated
and compared prediction models for specific AD drugs, in that case Escitalopram
and Nortriptyline (Iniesta et al. 2016). In a computationally exhaustive design with
elastic net regression in a cross-validation and permutation testing approach, they
refined a set of demographic and clinical predictors out of 125 variables within the
categories demographic data, baseline severity, depression subtypes, symptoms, and
dimensions, stressful life events and medication history, to be most discriminative
for treatment outcome. The yield was an area under the curve (AUC) of 0.72 for
remission in the escitalopram set. These results are comparable to Perlis et al.
and overall show agreement with some earlier single factor results concerning the
selected variables. However, the crucial finding of this work was that different sets
of predictors were superior for Escitalopram and Nortriptyline, respectively. The
accuracy decreased decisively for the whole data set to reach beyond chance level
classification for cross-drug prediction. Overall, depressed mood, reduced interest,
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decreased activity, indecisiveness, pessimism and anxiety were the most prominent
predictors for symptom improvement, while body mass index, appetite, interest-
activity symptom dimension and anxious-somatizing depression subtype were most
informative for predicting remission.

The predictors contributing most to the respective models computed in the
described studies showed some variation that can partly be explained by design
differences. For example, age of first administration of an AD and the respective
response as well as baseline depression rating scale showed the strongest impact
on classification results in some studies but could not be implemented in others
(Kautzky et al. 2017a, b). Comorbidities PTSD and social phobia showed relevance
in some studies but were underrepresented in others. On the other hand, predictors
corresponding to symptom severity, suicidality and recurrent MDD were associated
to treatment outcome in almost all relevant studies.

Interestingly, the strongest results in the GSRD studies were obtained when
using all available features, 47 and 48 sociodemographic and clinical variables,
respectively (Kautzky et al. 2017a, b). Still, the predictive power was condensed
within the most informative variables and RF may be more robust to overfitting
than other machine learning techniques as elastic net regression, which may explain
the different conclusion drawn by Perlis et al. and Iniesta et al., that careful selection
of variables increases classification performance (Iniesta et al. 2016; Perlis 2013).
Most of the roughly 50 clinical predictors, featured with some level of variation in all
three of the respective studies, contributed little to the outcome and did reflect earlier
single factor effects. However, the latter was also true for some of the high scoring
predictors, indicating that interaction-based analyses produce divergent results from
conventional statistics.

Similarly, some limitations are shared among these studies. Even though high
reliability of machine learning algorithms as RF or regularized regression was
suggested for data bases with sufficiently large observation counts, the actual
relevance of a model can only be validated in an external data set. Although overall
conformable prediction quality across these studies and mostly commendable
management of training and test samples via cross-validation add liability to the
results, none of these earlier studies implemented independent validation sets. Also,
hardly any of these studies featured a full nested cross-validation design for feature
selection and tuning of parameters. Hence, it is impossible to rule out false positive
findings that have only value in the confinements of the samples they were derived
from.

An expedient validation of the prediction models across big data sets like GSRD,
STAR*D or GENDEP may be hindered by different definitions of treatment out-
come phenotypes and parameter recording. For example, different characterization
of treatment response phenotypes by introducing a baseline severity score and
switching from MADRS to HAM-D in the younger sample impedes comparative
analyses across the two independent GSRD data sets.

Furthermore, only few data sets provide longitudinal clinical evaluation. With
some notable exceptions like STAR*D, for many studies only cutoffs for dosage
and duration of AD treatment were standardized and patients were receiving
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the full range of AD agents as well as augmentation with mood stabilizers and
antipsychotics, sometimes even ECT. For example, the majority of patients enrolled
in the GSRD studies were receiving more than one AD. Only more stringent
protocols like Iniesta et al. adopted in their approach allow clear stratification by
antidepressant agent without fragmentation in subgroups too small for meaningful
interpretation (Iniesta et al. 2016) (Table 4.2).

4.3.2.2 Multimodal Data: Combining Clinical, Genetic and Imaging
Predictors

As described above substantial progress in prediction of treatment response could
be achieved with clinical and sociodemographic predictors, but overall prediction
performance was still underwhelming. Only few studies were able to implement
data from imaging techniques and genetic findings in a multimodal approach true to
the idea of big data. First advances described above made clear that confinement to
a set of few candidate predictors will not lead to the desired prediction performance
(Kautzky et al. 2015).

The first study to incorporate genome wide genetic data into a machine learning
model was conducted by Maciukiewicz et al. (2018). They applied a commend-
able nested cross-validation design with inner loops for regularized regression
for variable selection and hyperparameter tuning for SVM, and outer loops for
model validation. However, the predictive power was underwhelming with an
accuracy of below 0.6. Still, different genetic markers were identified as most
informative compared to conventional GWAS conducted by the same group earlier
(Maciukiewicz et al. 2017).

More promising results were produced by a follow up study by Iniesta et al.
Genome wide genetic variants were added to sociodemographic and clinical
variables to enhance the prediction quality of their earlier model (Iniesta et al.
2018). Compared to their first approach, a smaller portion of little over 400 patients
was available for model generation and validation. Comparing again predictors for
Nortriptyline and Escitalopram, different signatures of 20 variables were surfaced
for each respective AD. Interestingly, mostly genetic predictors were selected by a
stern variable selection algorithm and again, different results to single association
results yielded in a GWAS analysis in the same sample were observed.

Concerning imaging biomarkers, earlier studies successfully deployed electroen-
cephalography (EEG) to predict remission after AD treatment with various drugs
(Caudill et al. 2015; Hunter et al. 2011). The term AD treatment response index
was labelled, accounting for changes in EEG signal after one week of treatment.
Considering the substantially longer average time for treatment response, this
prediction may be useful despite its obvious flaw, being based on markers that can
only be assessed after treatment was initiated.

With the advance of imaging techniques as magnet resonance imaging (MRI) and
positron emission tomography (PET) in psychiatry, prediction of treatment outcome
based on structural and functional neuroanatomical patterns showed obvious appeal.
However, acquisition of such data is still distinctively more resource intensive than
clinical or genetic data. As a consequence, data sets for imaging-based prediction
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of AD response were exponentially smaller, usually consisting of a few dozen
observations. Along these lines, none of the respective studies featured independent
validation and stratification for specific antidepressants could not be performed
yet. Earlier studies all featured SVM after feature reduction and leave-one-out
cross-validation and reported accuracies ranging from approximately 0.7 to 0.8
(Marquand et al. 2008; Liu et al. 2012; Costafreda et al. 2009; Nouretdinov et
al. 2011). Keeping in mind the low observation count and lack of validations sets,
the reported accuracies rivaling or surpassing those of large studies on clinical and
genetic predictors suggest potential, but also caution.

Two more recent studies flavored MRI imaging data with clinical parameters.
Patel et al. reported high accuracy of almost 0.9 in predicting treatment outcome
to various AD in late life depression in 33 patients (Patel et al. 2015). Interestingly,
clinical predictors did not seem to improve prediction quality for treatment response
but only for classification of patients versus controls. Only diffusion tensor imaging
(DTI) and functional connectivity MRI markers were comprised in the optimal
among several hand-picked feature sets for an alternating decision tree model, that
outperformed several other algorithms including SVM and regularized regression.
The second study featured the largest data set among MRI prediction studies for
treatment outcome so far with roughly 120 observations (Schmaal et al. 2015).
Three outcome phenotypes simplified here as remission, response and chronic
MDD were characterized based on 2-year follow up data and classification with a
technique similar to SVM and leave-one-out cross-validation. No automated feature
selection algorithm was used but different combinations of clinical, functional and
structural MRI data were compared. Only classification of remission versus chronic
MDD trajectories was successful with over 0.7 accuracy featuring only emotional
faces functional MRI data (Table 4.3).

Up to this point, no study has combined imaging, genetic and clinical data in
a single statistical model. Epigenetic effects as methylation, which bear potential
to disentangle inconsistencies reported for most candidate and GWAS studies
on genetic predictors, have been completely neglected so far. Incorporation of
these different data modalities may be key to the future success of prediction of
antidepressant treatment outcome.

4.3.2.3 Combining Supervised and Unsupervised Learning: Dealing
with Heterogeneity

The studies discussed earlier show that identification of multimodal predictors for
specific therapeutic agents instead of general predictors for TRD will be necessary
to advance machine learning prediction to the clinical routine. To deal with the
exuberant amount of heterogeneity in MDD, probably combinations of different
statistical learning approaches will have to be deployed in increasingly large datasets
that can deal with stratification by various subgroups and treatment trajectories.
An elaborate example of combined usage of unsupervised and supervised machine
learning is the project published by Chekroud et al. in 2016–2017 (Chekroud
et al. 2016, 2017). Exploiting the large data mines of STAR*D, CO-MED and
a set of trials on duloxetine, they first established a prediction model based on
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variable selection with regularized regression and gradient boosting machine that
showed modest accuracy around 0.6. Intriguingly, again different feature selection
and performance were reported for specific ADs, here Escitalopram compared to
Mirtazapine and Venlafaxine. In a subsequent study, they could allocate baseline
symptoms of two different severity scales HAM-D and QIDS to three clusters
based on over 4600 observations. Contrary two other clustering approaches, they
did not strive for identification of subtypes but applied hierarchical clustering of
baseline score items to generate a set of more practical outcome measures that
might better capture differences between AD. While earlier clustering and factor
analyses suggested 3–5 symptom clusters with some consistency, they reflected
neither data driven nor clinically based subtypes of MDD and were not featured for
prediction of treatment outcome before (Shafer 2006). Ceckroud et al. suggested
three clusters labelled as “sleep”, “atypical” and “core emotional” and looked at
conventional regression as well as machine learning prediction models in each
cluster separately. Unsurprisingly, baseline scores of the respective clusters were the
strongest predictor in each model, however, some predictors like sex for “atypical”
or baseline total score for “core emotional” showed strong contribution only to
specific clusters. Most importantly, different trajectories for ADs were reported for
each cluster with clinically relevant variation of symptom improvement. Prediction
accuracy increased after refinement by unsupervised learning compared to their first
report. These findings contrast underwhelming results in extensive studies referenc-
ing the whole symptom severity score for treatment outcome that did find hardly
any indications for preferences for specific ADs (Cipriani et al. 2018). Overall,
more than 7000 cases from three independent multicenter projects add cogency
to these results while exemplifying the high standards for precision medicine on
the drug- and patient-specific level. Nevertheless, the prediction performance was
still insufficient for practical application, even with a handy link allowing real time
assessment of patients based on 25 clinical parameters provided by the authors.

4.4 Summary and Outlook

In summary, prediction models for TRD, response and remission consistently
reached accuracies around 0.70 in MDD. While everyday clinical application
requires higher predictive performance with accuracies beyond 0.8 and balanced
sensitivity and specificity, these models were clearly superior to expert predictions
and could further be refined by multimodal data from epigenetics or imaging tools
as EEG or MRI. Easily obtainable sociodemographic and clinical predictors that
can be explored within minutes at any referral center could already substantially
facilitate the prospective assessment of treatment outcome and most recent results
suggested even further stratification by combining genetic and clinical predictors.
The lack of extern validation, being the putatively most relevant concern to machine
learning models so far, may be overcome by the trends of open-use algorithms and
shared data sets.
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Validation Set

Internal Loop
k-fold (e.g. here, 5) CV

training set split into
test and training sets

Tuning of
Hyperparameters
(e.g., cost for SVM, 
mtry for RF)

Feature Selection
LR, RR, ANOVA, RF, etc.

Best model of internal loop 
for prediction in the
validation set

Optimal:
best model in the
whole data set for

validation in an external data set

External 
Data Set

External Loop
k-fold (e.g. here, 5) CV, splitting in training and validation set

Nested Cross Validation Design

Unsupervised
Learning

Definition of Data-driven

1) Subgroupes of Patients

2) Symptom Clusters 
for Treatment Outcome

k-means, LCA, HC, etc.

Supervised
Learning multiple repeats

Fig. 4.1 Optimal modelling for advanced statistics for prediction of treatment outcome in major
depressive disorder (MDD). First, stratification of patient subgroups may be performed with
clustering or latent class analyses. Alternatively to conventional binary outcome measures or total
score reduction, data-driven definitions of outcome measures may be computed with clustering.
For prediction of treatment outcome, a nested cross-validation loop is recommended. The inner
loop deals with hyperparameter tuning and feature selection while the outer loop is for model
validation. Averages of accuracies retained over the outer loops should be reported, preferably after
several repeats of the whole nested cross-validation. Permutation testing should be applied to test
for significance. For optimal model validation, an external independent data set is necessary. LCA
latent class analysis, HC hierarchical clustering, RF RandomForest, RR regularized regression, LR
logistic regression, SVM support vector machines, CV cross-validation

Still, there is “no free lunch” in model generation for big data and advanced
statistics in neuropsychiatry. Currently, different more and less conventional or
advanced statistical learning algorithms are on par in prediction performance,
including generalized linear models, regularized regression, neuronal networks,
SVM and RF. As it seems unlikely that a specific algorithm will outclass the
others across the board, thoughtful selection based on the data set at hand as well
as comparative application will be required. To best adjust to heterogeneity and
looseness in definition of symptoms and outcomes in MDD, a combination of
unsupervised and supervised learning techniques may be the best choice. On the
other hand, when depending only on data driven approaches, generalizability may be
questionable and validation even more essential. As more and increasingly intricate
models are required for capturing multiple outcome dimensions and stratification
for different ADs or patients’ subgroups at the same time, rigorous handling
of quality measures like accurate variable selection, nested cross-validation or
permutation testing will be key. To facilitate the implementation of these criteria,
more generalizable symptom, severity and outcome definitions possibly beyond
boundaries of ICD or DSM diagnoses, e.g. by adopting NbN and RDoC criteria,
may be necessary.
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Intriguingly, no studies have been conducted that implement machine learning
models in a prospective way. Several ready-use models based on large data sets
have been made public and a multi-step approach would be viable to test machine
learning algorithms based on a first phase of data collection. Adopting AD trials
based on prediction results at baseline could clearly demonstrate the clinical benefit
of advanced statistics. The general information if a patient is likely to respond
to AD agents would already allow for a faster administration of augmentation
therapies or more invasive measures as ECT. Specific trajectories for ADs could
facilitate choices for the first AD to be administered. Considering the existing
models based on thousands of patients show accuracies already surpassing the
threshold of clinical relevance, such studies could be planned even at these early
stages of precision medicine in psychiatry. For a schematic depiction of an ideal
study applying advanced statistics for prediction of treatment outcome please see
Fig. 4.1.

Summarizing the findings of all relevant investigations for the most chatoyant
disorder MDD, we believe that the scope to demonstrate the advantages of advanced
statistics in neuropsychiatric research was met as the progression of results within
the last years allows optimism for the goal of precision medicine on an individual
patient level in mental health.
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This chapter reviews the long history of using electronic medical records and other
types of big data to predict suicide. Although a number of the most recent of these
studies used machine learning (ML) methods, these studies were all suboptimal both
in the features used as predictors and in the analytic approaches used to develop
the prediction models. We review these limitations and describe opportunities for
making improvements in future applications. We also review the controversy among
clinical experts about using structured suicide risk assessment tools (be they based
on ML or older prediction methods) versus in-depth clinical evaluations of needs for
treatment planning. Rather than seeing them as competitors, we propose integrating
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these different approaches to capitalize on their complementary strengths. We also
emphasize the distinction between two types of ML analyses: those aimed at
predicting which patients are at highest suicide risk, and those aimed at predicting
the treatment options that will be best for individual patients. We explain why both
are needed to optimize the value of big data ML methods in addressing the suicide
problem.

5.1 Introduction

Suicide is the 17th leading cause of death in the world (approximately 800,000
suicides per year) and the second leading cause of death among 15–29 year olds
(World Health Organization [WHO] 2018a). The actual number of suicides is likely
to be higher, as some suicides are misclassified as accidental deaths (Katz et al.
2016). Psychological autopsy studies find that up to 90% of people who died by
suicide in Western countries met criteria for a mental disorder (Joiner et al. 2017).
In addition, up to 90% of suicide decedents in Western countries came into contact
with the healthcare system in the year before death, up to two-thirds had a mental
health treatment contact during that year, up to 30% had a psychiatric hospitalization
or emergency department visit for a psychiatric problem during that year, and up to
one-third were in mental health treatment in the month before death (Ahmedani
et al. 2014; Luoma et al. 2002; Pearson et al. 2009; Schaffer et al. 2016). This
high level of contact with the healthcare system represents a major opportunity to
improve detection of suicide risk in health care settings and target interventions that
substantially reduce suicides (Berman and Silverman 2014).

The value of systematically quantifying suicide risk has been debated for
over 60 years. In 1954, Rosen argued that the low incidence of suicide poses a
substantial barrier, “for in the attempt to predict suicide or any other infrequent
event, a large number of false positives are obtained,” which means that “such
an index would have no practical value, for it would be impossible to treat as
potential suicides the prodigious number of false positives” and treating only those
at highest risk as potential suicides would miss the majority of true positives.
Murphy (1972) countered that the practicality of suicide risk prediction depends
on “what is considered appropriate treatment for persons at increased risk of
suicide.” This debate has continued since these early commentaries at the same
time that empirical research has been carried out to improve prediction models and
address the problems of false positives and false negatives. Recent studies have used
machine learning (ML) methods to develop these models. We begin our review
of the literature with a consideration of earlier studies on risk factors for suicide
among hospital inpatients and other high-risk patients. We then discuss the ongoing
controversy about using structured suicide risk assessment tools. We then review
recent studies that used ML methods to predict suicide risk. Finally, we close with
recommendations for future studies.
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5.2 Earlier Multivariate Analyses Predicting Suicide Among
Inpatients

Due to the rarity and short duration of most psychiatric hospitalizations, the
proportion of all suicides that occurs among psychiatric inpatients is estimated to
be no more than about 5% (Madsen et al. 2017). However, conditional suicide risk
among psychiatric inpatients is nonetheless high, especially during the times they
are out on temporary leave, with a recent meta-analysis estimating this rate to be
147/100,000 inpatient-years (Walsh et al. 2015) compared to a global population-
wide age-standardized suicide rate of 10.7/100,000 person-years (WHO 2018b).
Another recent meta-analysis reviewed the 17 studies published between 1998 and
2016 that carried out multivariate analyses of clinical risk factors to predict inpatient
suicides (Large et al. 2017a). These studies all used either a cohort design or a
retrospective case-control design and focused on predictors extracted from medical
records, although one research group also obtained data from a retrospective
questionnaire sent to treating psychiatrists. A total of 191,944 inpatients were
included in these pooled studies, 1718 (0.9%) of whom died by suicide while
hospitalized. The mean number of predictors considered in the studies was 78.6
(14–272 range) and the mean number in the final models was 6.1.

The methods used in developing these models likely resulted in over-fitting, as
in the majority of cases univariate logistic regression analysis was used to select a
subset of predictors for subsequent multivariate logistic analysis and a liberal p value
was often used in selecting predictors for multivariate analysis. The multivariate
analysis typically used backward stepwise selection to arrive at a parsimonious final
model. No cross-validation was used to adjust for over-fitting. Recursive partitioning
was used in a few studies to search for interactions, but again with no cross-
validation, and the analyses otherwise assumed additivity. The focus of all the
studies was on identifying “high-risk” patients by defining a threshold, typically on
the individual-level predicted probability scale based on the final model, although in
some cases the threshold was based on a count of dichotomously-scored predictors
with positive values. We were unable to discover a principled basis for selecting
thresholds in any of these studies even after a careful review of the original reports,
such as to maximize sensitivity (SN; the proportion of suicides that occurred among
patients classified as being above the risk threshold) for a fixed specificity (SP; the
proportion of patients not dying by suicide that were classified correctly as being
below the risk threshold), to equalize SN and SP, to equalize the number of false
positives and the number of false negatives, or to equalize the number of false
positives and r times the number of false negatives (where r = the pre-specified
relative importance of false positives versus false negatives).

Although the great variety of predictors and thresholds used in these studies
makes it impossible to draw firm conclusions about prediction accuracy, the authors
of the meta-analysis used a random-effects model to generate a meta-analytic ROC
curve across studies. SN was estimated to be about 0.70 when SP was set at 0.80
and about 0.50 when SP was set at 0.90. Given the relatively short duration of most
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hospitalizations, positive predictive value (PPV; the incidence of suicide among
patients classified as high-risk) was only about 0.004, but this was roughly 10 times
as high as the suicide rate among patients classified below the threshold. The authors
of the meta-analysis concluded from these results that risk assessment based on
multivariate prediction models “is not useful as a basis of clinical decisions.” Two
observations were made to support this conclusion: first, that the low PPV meant
that special interventions for high-risk patients would “subject many patients, who
will never suicide, to excessive intrusion or coercion”; and second, that the low SN
meant that patients classified as being low-risk account for a substantial proportion
of inpatient suicides.

This rejection of standardized suicide risk prediction tools is consistent with
the recommendations made in a number of other recent systematic reviews, meta-
analyses, and commentaries (Bolton 2015; Bolton et al. 2015; Carter et al. 2017;
Chan et al. 2016; Katz et al. 2017; Larkin et al. 2014; Mulder et al. 2016; Owens
and Kelley 2017; Quinlivan et al. 2016; Runeson et al. 2017). This might seem
to be inconsistent with clinical practice guidelines that call for mental health
professionals always to make suicide risk evaluations of psychiatric inpatients and
patients presenting with psychiatric crises in emergency departments (Bernert et al.
2014; Silverman et al. 2015). However, these guidelines typically advise against
using structured risk prediction tools for this purpose and instead recommend
that clinicians “initiate a therapeutic relationship” to make “an integrated and
comprehensive psychosocial assessment” of needs and risks (National Institute for
Health and Care Excellence [NICE] 2011; O’Connor et al. 2013). The notion here
is that the low SN of structured suicide risk tools requires clinicians to consider all
inpatients and patients in psychiatric crisis to be at risk of suicide and to focus on
treatment needs rather than attempt to distinguish levels of risk.

5.3 Earlier Multivariate Analyses Predicting Suicide Among
Other High-Risk Patients

Other empirical studies have been carried out for many years to predict suicide
and attempted suicide in two other partly-overlapping high-risk patient popula-
tions: psychiatric inpatients after hospital discharge, and patients presenting to
emergency departments after nonfatal suicide attempts (whether or not they were
subsequently hospitalized). The pooled suicide rate within the first 3 months after
psychiatric hospital discharge was estimated in a recent meta-analysis of these
studies to be 1132/100,000 person-years, with successively lower cumulative rates
in studies that followed patients 3–12 months (654/100,000 person-years), 1–5 years
(494/100,000 person-years), 6–10 years (366/100,000 person-years), and more than
10 years (277/100,000 person-years) (Chung et al. 2017), although none of the
individual studies that followed patients over long time periods estimated changes
in conditional risk over shorter time periods. Another recent meta-analysis that
focused on suicide after self-harm (whether or not the patient was hospitalized)
estimated a pooled suicide incidence within 1 year of the index self-harm episode
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of 1600/100,000, with higher estimates of cumulative incidence in studies that
followed patients 2 years (2100/100,000), 5 years (3900/100,000), and 10 years
(4200/100,000) (Carroll et al. 2014).

As detailed in several recent systematic reviews and meta-analyses (Bolton et
al. 2015; Carter et al. 2017; Chan et al. 2016; Katz et al. 2017; Larkin et al. 2014;
Quinlivan et al. 2016; Runeson et al. 2017), these studies were usually based on
designs similar to the studies reviewed above on inpatient suicides: that is, either
cohort or retrospective case-control designs, with predictors extracted from clinical
records, although some studies also used patient self-report scales as predictors. The
follow-up periods varied widely (6 months to 5 years). Some studies used survival
analysis to study predictors over variable time periods, but no systematic effort was
made in these studies to investigate change in relative importance of predictors by
length of follow-up. The absence of the latter focus is a weakness because suicide
risk is known to be highest shortly after clinical contact and there have been calls
for increased focus on prediction during high-risk periods (Glenn and Nock 2014;
Olfson et al. 2014). It was rare for risk factor analyses in these or other studies
to focus on the relatively short 30-day risk window of most interest to clinicians
(Franklin et al. 2017).

Some studies evaluating suicide risk prediction tools in high-risk populations
were based on single scales, such as self-report scales of hopelessness (Beck and
Steer 1988), depression (Beck et al. 1996), overall psychopathological severity
(Lindqvist et al. 2007), suicide intent (Beck et al. 1974), and attitudes toward
suicide (Koldsland et al. 2012). Other studies used multivariate prediction equations
to develop composite suicide risk tools. The latter studies typically began with a
predictor set, often extracted from clinical records and sometimes also including
various patient self-report and clinician rating scales, used preliminary univariate
analyses to select a reduced subset of significant predictors, and then formed a
composite from these predictors. Trial and error cross-tabulations (e.g., Kreitman
and Foster 1991) and considerations of content validity (e.g., Patterson et al. 1983)
were used to construct most of the earlier tools of this sort. Logistic regression
analysis or survival analysis were used to construct most of the more recently-
developed empirically-derived suicide prediction tools. The predictors in some of
these tools consisted entirely of socio-demographic and clinical data extracted from
electronic medical records (e.g., Spittal et al. 2014), but others also included some
of the patient-reported scales described above (e.g., Bilen et al. 2013; Randall et
al. 2013). A few recently-developed empirically-derived tools were constructed
using recursive partitioning (Cooper et al. 2006; Steeg et al. 2012; Steinberg
and Phillip 1997). As in the inpatient suicide studies, single high-risk thresholds
were typically specified without clear evidence of a principled basis for threshold
selection, resulting in a wide range in the proportion of patients classified as being
high risk. Even though the tools developed in these studies often significantly
predicted subsequent suicide, reviews and meta-analyses consistently concluded,
as in the inpatient studies, that operating characteristics (i.e., SN, SP, PPV) were not
sufficiently strong to justify using any of these tools as a basis for clinical decision-
making.
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5.4 Reconsidering the Rationale for Rejecting Standardized
Suicide Prediction Tools

As noted above, critics of standardized suicide risk prediction tools emphasize
the fact that these tools have relatively low PPV and SN, leading clinicians to
draw “false reassurance” when they use these tools in treatment planning, patients
incorrectly classified as high-risk to experience needless intrusion or coercion,
and patients incorrectly classified as low-risk to be denied the treatment they
need. Critics also argue that patients perceive standardized risk prediction tools
as superficial and that this perception interferes with establishing the kind of
therapeutic alliance needed to carry out a more in-depth clinical risk assessment
(Large et al. 2017b; Mulder et al. 2016; Owens and Kelley 2017). Qualitative studies
debriefing UK patients who were administered standardized scales are said to be
consistent with the latter concern (Hunter et al. 2013; Owens et al. 2016; Palmer et
al. 2007; Taylor et al. 2009).

Arguments can be made against each of these criticisms. With regard to low
PPV: Even though it is true that patients incorrectly classified as high-risk would
experience additional burden by being treated if they were at high risk, a balance
needs to be struck between increased intrusion-coercion for, say, 250 patients
(1/0.004; the number of false positives for every true positive when PPV = 0.004,
as in the Large et al. meta-analysis cited above) incorrectly classified as high-
risk and saving one life. It is not at all obvious that a formal cost-benefit analysis
would conclude that the cost-benefit ratio is >1.0 in such a case. In addition, recent
studies have found that up to one-third of patients who do not die by suicide but are
classified as high-risk are also at high risk of other experiences in the same spectrum,
such as deaths classified as accidental or undetermined, nonfatal suicide attempts,
serious nonfatal injuries classified as accidental, and psychiatric hospitalizations
(Kessler et al. 2015; McCarthy et al. 2015). The potential to reduce incidence of
these outcomes would increase the cost-effectiveness of interventions.

With regard to low SN: The suicide risk models reviewed above all searched
for high-risk thresholds (i.e., thresholds to maximize SN for a given SP). There is
no way to know from such analyses if a useful threshold could be specified for
low-risk patients (i.e., a threshold to maximize SP for SN close to 1.0). Reanalysis,
which would have to use the original data in each study, might find that a substantial
proportion of patients could be isolated that had such a vanishingly small suicide
risk that they could be spared the burden of further evaluation. Indeed, as elaborated
below, we believe that this search for a practical low-risk threshold should be the
main focus of a first-stage in a multi-stage ML analysis of suicide risk.

With regard to the claim that patients perceive structured suicide risk assessments
as superficial: This claim implies that use of clinical suicide risk evaluations instead
of standardized suicide risk prediction tools leads to increased detection of suicidal-
ity. However, we are aware of no experimental evaluation of this hypothesis. We do
know, though, that one study found that clinicians asked to predict the likelihood
that patients they are evaluating for suicide risk in at Emergency Departments (ED)
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will make a suicide attempt over the next 6 months were no better than chance in
their predictions (Nock et al. 2010). This suggests that detailed clinical evaluations
might not be as helpful in this regard as implied by critics of standardized risk
assessments. A recent systematic review is broadly consistent with this view in
finding that clinical risk evaluations are not strong predictors of subsequent suicidal
behaviors (Woodford et al. 2017).

In addition, there is evidence that in some cases a structured suicide risk assess-
ment yields better predictions than a clinical evaluation. In an early study on the use
of computerized screening for suicide risk, patients in a crisis intervention clinic
were asked to complete a computerized assessment of suicidality and then asked
whether they would have preferred to have given this information directly to a doctor
or to the computer (Greist et al. 1973). The majority of patients said they preferred to
provide the information to the computer. A subsequent study building on this finding
used a series of computerized self-report questions to assess hospitalized patients
who had been admitted because of suicide attempts and then had a psychiatrist
carry out an independent face-to-face evaluation blinded to patient reports on the
computerized assessment (Levine et al. 1989). Retrospective comparisons showed
that patients who subsequently engaged in suicidal behaviors were more likely to
admit sensitive symptoms to the computer than to the psychiatrist. This finding is
consistent with a good deal of experimental research showing that the likelihood
of reporting embarrassing or stigmatizing thoughts and behaviors increases when
respondents are randomized to more confidential modes of reporting (Brown et
al. 2013; Gnambs and Kaspar 2015). Based on the above results, a computerized
version of the self-report Columbia Suicide Severity Rating Scale (CSSRS; Posner
et al. 2011) was developed and administered to 6760 patients with psychiatric
disorders and 2077 patients with physical disorders who participated in 33 different
prospective clinical research studies (Greist et al. 2014). The vast majority (89.9%)
of subsequent suicidal behaviors were predicted accurately by the CSSRS.

These results are important given that detailed clinical suicide risk evaluations
are carried out only with slightly more than half of all psychiatric inpatients and ED
patients in psychiatric crises even when official policies call for these evaluations to
be carried out (Cooper et al. 2013). Furthermore, structured suicide risk assessment
tools continue to be widely used even when clinical practice guidelines explicitly
suggest that they not be used (Quinlivan et al. 2014). Why? One possibility is that the
time-consuming nature of detailed clinical suicide risk evaluations leads them to be
used only selectively. Gold-standard clinical evaluations of this sort are very time-
consuming, often requiring multiple sessions (Rudd 2014) to assess needs (e.g.,
mental and physical health problems, life difficulties, reasons for recent self-harm
and for possible future self-harm, and needs for diverse interventions) and risks
(e.g., the nature of the patient’s suicidal thinking and behaviors, predispositions
to suicide, previous suicide attempts, hopelessness, impulsivity/self-control, suicide
warning signs for imminent risk, and protective factors).

How is the decision made to carry out these detailed evaluations with some
patients but not others? We are aware of no discussion of this question in the
literature. One possibility worth considering is that standardized suicide prediction
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tools might be useful in helping clinicians make this decision. Not enough research
has been focused on this possibility to know how helpful existing tools could be in
this respect, but, as noted below, the small amount of existing evidence suggests that
this might be a fruitful direction for future research. The goal would be to define a
low-risk (not high-risk) threshold for patients who would not be subjected to a more
in-depth clinical risk evaluation because of the low proportion of actual suicides
that occurs among such patients. If a ML-based decision support tool based on a
structured assessment battery could be developed of this sort, one that yielded a
meaningful SP for a SN near 1.0, it would almost certainly improve substantially
on whatever current decision rules clinicians are using in deciding which patients to
evaluate and which not.

It is clear from the results of recent prospective studies that any such assessment
battery would have to go beyond patient self-reports of suicidality. These studies
have shown that a substantial proportion of the patients who went on to die by
suicide shortly after making healthcare visits denied being suicidal during those
visits when asked explicitly about suicidality (Louzon et al. 2016; Simon et al.
2013). However, a number of novel structured self-report suicide risk assessment
tools developed recently have been shown to have higher predictive validity
than previously-developed tools and to be predictive among patients who deny
being suicidal. These new tools include: performance-based neurocognitive tests
of suicide-related implicit cognitions (Nock et al. 2010); self-reports of suicide-
related beliefs (Bryan et al. 2014) and volitional factors such as fearlessness of
death, impulsivity, and exposure to past suicidal behaviors (Dhingra et al. 2015);
and tools based on linguistic and acoustic features extracted from tape-recorded
responses to open-ended questions that do not ask about suicidality (Pestian et
al. 2017). It is also worthwhile remembering that previously-developed structured
suicide prediction tools measure many of the same dimensions that guidelines call
for including in detailed clinical suicide risk evaluations and that these structured
tools have been shown to be significant predictors of subsequent suicidal behaviors
even though they are not sufficiently strong predictors when considered one at a
time to guide clinical decision-making (Bolton et al. 2015; Carter et al. 2017). It is
plausible to think that a comprehensive computerized battery that includes all these
measures along with the detailed EMR data used in the recent ML prediction models
reviewed below would be able to define a low-risk segment of the patient population
that had a sufficiently low predicted risk of suicide not to receive a subsequent in-
depth clinical evaluation.

Although we are aware of no attempt to develop a comprehensive structured
predictor battery of this sort, encouraging results have been found in studies
that administered a small number of structured suicide risk tools and found that
prediction accuracy is improved significantly by combining them rather than
considering them one at a time (Randall et al. 2013; Stefansson et al. 2015). It would
not be difficult to expand this line of investigation with existing data. For example,
Quinlivan et al. (2017) administered seven commonly-used structured suicide risk
assessment tools to a sample of patients who were referred to liaison psychiatry
following suicide attempts and followed those patients for 6 months to evaluate
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the predictive validity of each tool for repeat suicide attempts or suicide deaths.
Four of the eight tools had statistically significant odds-ratios (ORs = 3.9–8.7). Yet
the researchers nonetheless concluded that “risk scales on their own have little role
in the management of suicidal behavior” (Reutfors et al. 2010). This conclusion
was drawn even though no attempt was made to combine the significant scales into
a multivariate composite that might have had better prediction accuracy than the
individual scales considered one at a time. This negative conclusion is also curious
in that the same researchers noted that defining a low-risk threshold might be useful
by stating that “(t)he use of risk scales is dependent on clinical context. For example,
clinicians may prefer scales with high sensitivity for screening or ruling out a risk
of a condition, or scales high in specificity for later stages of assessment or ruling in
patients for treatment.” Yet the thresholds used in their analysis were for the most
part high-risk thresholds, making it impossible to draw any conclusions about the
value of the tools reviewed in defining a low-risk patient subgroup.

5.5 Machine Learning Analyses Predicting Suicide Among
High-Risk Patients

A number of recent studies have extended the approaches taken in the high-risk
multivariate predictor studies reviewed above by using ML methods instead of
logistic regression. Results show that ML methods have a great deal of promise
in predicting suicide even though all the studies carried out so far have limitations
that we review later in the chapter. These studies focused on suicides among
psychiatric inpatients in the 12 months after hospital discharge (Kessler et al. 2015),
suicides among psychiatric outpatients in the 12 months after visits (Kessler et al.
2017b), and suicide attempts in the 12 months after receiving a formal suicide risk
assessment among patients in a psychiatric hospital or ED who were deemed to
be at sufficiently high risk to receive such an assessment (Tran et al. 2014). The
sample sizes ranged from a low of 68 post-hospitalization suicides among 53,760
hospitalized patients (Kessler et al. 2015) to a high of 1562 serious suicide attempts
among 7399 patients who received suicide risk assessments (Tran et al. 2014).

All these studies used electronic medical record (EMR) data as predictors,
defined a clear retrospective data capture time period for feature aggregation (2–
5 years before baseline), allowed for strength of associations to vary by length
of retrospective time period and time-since-baseline, used a multi-step process of
feature transformation and pruning based on cross-validation in a training sample
followed by evaluation in a separate validation sample, and used standard over-
sampling or up-weighting of cases (He and Garcia 2009) in the training sample
to deal with the problem of extreme class imbalance. Two of the studies used
preliminary bootstrap recursive partitioning to search for interactions, and all the
studies used some form of penalized logistic regression (either lasso or elastic
net) to estimate the final model. All of the studies evaluated model performance
by examining SN and PPV at predefined levels of SN and focused on high-risk
prediction. One of the studies compared the prediction accuracy of the ML model
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with that of a structured suicide risk assessment and found that prediction based on
the former was substantially better than prediction based on the latter (Tran et al.
2014).

Several of the studies suggested that their results had clinical implications. One
found that more than 50% of the suicides in the year after psychiatric hospitalization
among US Army personnel occurred among the 5% of inpatients classified by
ML at the time of hospital discharge as being at highest suicide risk (Kessler et
al. 2015). Although PPV was only 3.8%, more than one-third of these highest-
risk patients experienced at least one other extreme negative outcome, such as
death judged to be accidental or unclassifiable, serious nonfatal injury, attempted
suicide, or repeat psychiatric hospitalization, leading the authors to suggest that
it might be cost-effective to target patients defined by the ML classifier as being
highest-risk for the type of intensive post-hospital case management program that
is recommended but not mandated by the US Department of Defense (VA Office
of Inspector General 2007). Another US Army study found that an ML model was
able to isolate a small number of soldiers (about 500 out of an Army of 500,000)
that accounted for a very high proportion of all suicides in the five-week high-
risk period after index psychiatric outpatient visits (1047.1/100,000 person-years),
leading to a recommendation to target these highest-risk outpatients to receive one
of the evidence-based psychotherapies that have been developed specifically to treat
suicidality (Jobes et al. 2015).

5.6 Machine Learning Analyses Predicting Suicide in Total
Patient Populations

Other ML studies have attempted to predict future suicides or suicide attempts
among all patients in a healthcare system (Barak-Corren et al. 2017; Ben-Ari
and Hammond 2015; Choi et al. 2018; Kessler et al. 2017a; Walsh et al. 2017).
Samples in these studies were typically quite large. Barak-Corren et al. (2017), for
example, developed a ML model to predict future suicide attempts (n = 20,246) in
a commercial health system based on an analysis of 1.7 M patients followed for up
to 15 years (9.0 M person-years). Kessler et al. (2017a) developed a ML model to
predict suicide deaths among patients in the US Veterans Affairs health system, the
Veterans Health Administration (VHA), in 2009–2011 using a person-month data
array that included information at the month before death for all 6360 VHA suicide
decedents and a 1% time-matched person-month probability sample of 2,112,008
VHA service users alive at the end of an index control month over those years. This
analysis built on an earlier proof-of-concept model (McCarthy et al. 2015).

As with the high-risk studies reviewed in the previous subsection, the total-
population studies used structured EMR data as predictors. One also used natural
language processing (NLP) methods to define features based on information
extracted from clinical notes (Ben-Ari and Hammond 2015). All studies defined
a clear retrospective data capture time period for feature aggregation (2–5 years),
and most, but not all, cases allowed for strength of associations to vary by length
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of retrospective time frame and time-since-baseline. They all defined a clear risk
time horizon (between 30 days and 15 years). They all used a multi-step process of
feature transformation and pruning based on cross-validation in a training sample
followed by testing in a separate validation sample. Most of the studies used
over-sampling or up-weighting of cases in the training sample to deal with the
problem of extreme class imbalance. Although analyses were consistently based
on a single algorithm (artificial neural networks, naïve Bayes, penalized regression,
random forests), some studies compared results across different classifiers before
selecting a best one defined in terms of mean-squared error (e.g., adaptive splines,
Bayesian additive regression trees, generalized boosting, support vector machines).
Most, but not all, studies evaluated model performance by examining SN and
PPV at predefined levels of SN, and all studies focused on high-risk assessment
aimed at targeting preventive interventions rather than on low-risk assessment
aimed at limiting the number of patients who would receive more in-depth clinical
evaluations.

For the most part, lift (i.e., incidence of the outcome among patients classified
as high-risk versus in the total patient population) was relatively high at the upper
ends of the prediction scales in these studies, with SN at a fixed SP of 0.95 equal
to 0.28 in the VHA suicide study (Kessler et al. 2017a) and in the range 0.28–0.50
(Barak-Corren et al. 2017; Ben-Ari and Hammond 2015) in the studies predicting
suicide attempts. PPV, of course, was quite low at these thresholds due to the rarity
of the outcomes. Despite the models not focusing on low-risk prediction, the 25% of
patients with the lowest predicted risk in a number of these studies (Barak-Corren et
al. 2017; Ben-Ari and Hammond 2015) accounted for very low (3–7%) proportions
of suicidal outcomes.

5.7 Other Machine Learning Studies Aimed at Predicting
Suicidality

Another group of ML studies attempted to predict either current or past patient
self-reported suicidality from information obtained in administrative records and/or
patient self-report scales (e.g., Barros et al. 2017; Hettige et al. 2017; Ilgen et al.
2009; Jordan et al. 2018; Oh et al. 2017; Passos et al. 2016). The rationale for these
efforts was that model predictions might help unobtrusively to detect “unseen” cases
of suicidality when applied in other samples. A related series of studies applied
ML methods to complex feature sets made up of various biomarkers in order to
predict current self-reported suicidality, using such predictors as immune markers
(Dickerson et al. 2017) and altered fMRI neural signatures in response to life-
and death-related words (Just et al. 2017). Other related studies used text analysis
to extract predictive information from clinical notes (McCoy et al. 2016; Poulin
et al. 2014) or new technologies, such as smartphones and wearable sensors that
might allow passive monitoring of suicidality (Braithwaite et al. 2016; Cook et al.
2016). Samples in all these studies were small because of the high expense of the
biomarkers and/or new technologies. The analyses typically used only a single ML
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classifier rather than an ensemble, although some studies compared results across
different classifiers. Relatively simple feature selection methods were used in most
of these applications. Little was said in most of them about the methods used
for hyper-parameter tuning or dealing with the problem of class imbalance. Most
applications used internal cross-validation but did not divide their small samples into
separate training and validation sets. Practical prediction accuracy (i.e., estimates
of SN or PPV for fixed high values of SN) was seldom emphasized, although
overall prediction strength (AUC) was typically moderate, suggesting that these
methods would be most useful if combined with administrative data to create a rich
multivariate feature set.

5.8 Future Directions in UsingML for Suicide Risk Prediction

Although the studies reviewed above suggest that ML methods have considerable
promise in predicting suicide, the field has as yet not fully realized that promise. A
number of changes would likely improve prediction accuracy and clinical value.
First, as illustrated in the last section, the feature sets used in the ML analyses
of suicide carried out until now could be expanded beyond the structured EMR
data that have so far been the mainstay of these analyses. In addition to the
methods described in the last section, information on residential zip code could
be used to extract small area geocode data from public sources on a number
of important predictors of suicide such as local unemployment rates (Nordt et
al. 2015) and neighborhood social capital (Holtkamp and Weaver 2018). Data
from commercial search engines could be used to obtain more detailed socio-
demographic information than the information on age, sex, and marital status
typically available in EMRs and to extract information from public records on
individual-level legal, financial, and criminal justice experiences that predict suicide
(e.g., Accurint 2018).

Second, prediction accuracy could be improved by using ensemble ML meth-
ods combining individual-level predictions across algorithms. The Super Learner
ensemble method, for example, has been shown to yield considerably higher levels
of prediction accuracy than the best-performing algorithm in the ensemble (Polley
et al. 2016). Automated machine learning (AutoML; Feurer et al. 2015; Olson et
al. 2017) is also making it increasingly possible to refine feature transformation-
pruning, algorithm selection, and hyperparameter tuning (Urbanowicz et al. 2017).
AutoML can also be used to address the extreme imbalance problem by auto-
matically implementing toolkits to evaluate the relative effectiveness of different
imbalance correction methods (e.g., Chawla 2010).

Third, greater consideration is needed of the clinical value of different outcome
time horizons in light of the fact that several studies have shown that optimal model
features and coefficients differ depending on time horizon. In the ideal case, the time
horizon would be chosen in light of the intervention the model is being designed
to guide. This does not always occur. For example, the ML analysis described
earlier predicting suicide among users of the VHA system was designed to facilitate
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VHA implementation of their Recovery Engagement And Coordination for Health-
Veterans Enhanced Treatment (REACH VET) program (VA Office of Public and
Intergovernmental Affairs 2017) among highest-risk VHA users. However, the ML
model had a 30-day time horizon even though it often takes more than 30 days to
make initial contact with the targeted Veteran and the program continues for at least
90 days. This raises the question whether the REACH VET ML model should have
had a longer (e.g., 180-day) time horizon and, if so, the extent to which different
Veterans would have been selected for intervention if this had been done.

Fourth, ML modeling efforts need to be better coordinated with the clinical
interventions they are designed to support in ways other than time horizon. Most
notably, ML model development up to now has focused on high-risk prediction
even though a good argument could be made that models based on the feature sets
considered up to now are likely to be more useful in low-risk prediction. If that
is the case, then, as suggested earlier in the chapter, a first-stage ML model based
on structured predictors could be used to help select which patients should receive
more intensive clinical suicide risk evaluations.

Fifth, more work needs to be done to determine the extent to which high-risk
predictions based on ML models could be improved by adding information from
subsequently-administered structured and/or clinical risk evaluations. Tran et al.
(2014) had an opportunity to do something along these lines by virtue of the fact
that their sample consisted exclusively of patients who had been the subjects of
in-depth clinical suicide risk assessments, but the authors focused instead on the
extent to which predictions based on ML outperformed predictions based on clinical
evaluations rather than seeing how much overall prediction improved by combining
the two sets of predictors.

5.9 Machine LearningModels for Clinical Decision Support
in Treatment Planning

We noted above that critics of structured suicide risk prediction tools argue that
all psychiatric inpatients and ED patients should be considered at risk of suicide
and should receive in-depth clinical evaluations rather than structured suicide risk
assessments. But this raises the question how the information about needs should be
applied to formulate a treatment plan. A number of special types of psychotherapy
exist for patients at high suicide risk (e.g., Jobes et al. 2017; Linehan et al. 2015;
Rudd et al. 2015) that have been shown to improve on usual care in reducing
suicidal behavior (Jobes et al. 2015). However, these interventions are more labor-
intensive than usual care and require special clinical training, making it important
to have some principled basis for knowing which patients need these interventions.
The same could be said for the decision to offer combined pharmacotherapy and
psychotherapy (versus only one), which is known to be of value for some but not all
patients (Kessler 2018), and the use of ketamine as a pharmacologic treatment for
patients at imminent suicide risk (Wilkinson and Sanacora 2016). How do clinicians
make decisions about what suicidal patients need after carrying out in-depth suicide
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needs assessments? Critics of structured suicide risk prediction tools are silent on
this question.

ML has the potential to provide clinical decision support in making these
decisions, but in doing so it needs to be recognized that the patients at highest
suicide risk are not necessarily the patients most likely to be helped by available
interventions. This means that different ML modeling strategies need to be used to
predict differential treatment response than to predict differential risk. Speaking in
general terms, the models for differential treatment response can be thought of as
evaluating interactions between prescriptive predictors of treatment response (i.e.,
predictors of greater response to some types of treatment than others) and treatment
type, ideally evaluated in controlled treatment effectiveness trials that have real-
world validity (Cohen and DeRubeis 2018). A difficulty arises, though, when the
number of prescriptive predictors is large and/or when the functional forms of the
interactions are complex, in which case conventional estimation methods break
down. ML methods can be used in these cases (VanderWeele et al. 2018). ML
methods can be applied even when treatment is not randomly assigned by using
double-robust estimation methods (Vermeulen and Vansteelandt 2015), so long as
either strong predictors exist of nonrandom treatment assignment or if, as in the case
of suicide, loss to follow-up outcome assessment is low (Luedtke and van der Laan
2016).

To illustrate the potential value of this approach, consider the VHA’s REACH
VET initiative. This initiative was implemented in 2016 based on the results of
an ML model that used 2008–2011 data. A separate prescriptive ML model to
evaluate differential response to the REACH VET intervention could be estimated
by predicting suicide deaths among high-risk VHA patients in the 12 months after
selection by the initial ML intervention targeting model in 2014 (2 years before
the intervention was initiated, which means that none of these high-risk patients
received the intervention) and in 2016 (the year the intervention was initiated, when
all the high-risk patients were “randomized” to the intervention). An expanded
set of features that included not only structured EMR data, but also NLP data
extracted from clinical notes, geocode data linked to zip codes, and individual-
level public records data extracted from commercial sources, could be used as
predictors in the analysis. Difference-in-difference before-after comparison analysis
could be used by combining patients above the intervention threshold with an equal
or greater number of patients just slightly below the threshold in order to adjust for
possible time trends. To the extent that prescriptive ML analysis shows that some
high-risk VHA patients do not profit from the current REACH VET intervention,
more intensive interventions could be targeted to patients with this profile in
future implementations. It might even be possible to use a group-randomized (by
treatment center) design (Treweek and Zwarenstein 2009) to assign the high-risk
VHA patients predicted not to be helped by the current REACH VET intervention
to different high-intensity evidence-based interventions designed specifically to
treat suicidal patients, such as Dialectical Behavior Therapy, Cognitive Therapy for
Suicide Prevention, or Collaborative Assessment and Management of Suicidality.
This design would allow a more refined prescriptive ML analysis subsequently to be
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carried out to create a clinical decision support tool that helped clinicians implement
precision treatment planning for high-risk VHA patients.

5.10 Conclusions

Improvements are needed in both the big data and the ML methods used to analyze
these data if the full potential of ML is to be realized in addressing the suicide
problem. It is likely that the prediction accuracy of the ML models reviewed
here could be improved, perhaps substantially so, at low cost by more nuanced
EMR feature transformation and by expanding the features to include information
extracted from clinical notes using NLP and, in the US, from public data sources
using zip code links (small area geocode data) and from commercially aggregated
individual-level public records. Even better prediction is likely in health plans that
routinely screen patients with self-reports of various sort (e.g., periodic completion
of a self-report depression scale; Louzon et al. 2016; Simon et al. 2013). The ML
analysis methods used in existing suicide prediction studies could also be improved
substantially by using recently-developed ensemble and AutoML methods that
optimize feature transformation-pruning, hyperparameter tuning, and adjustments
for extreme imbalance in the outcome. Further work is needed to determine sample
sizes at which such ML approaches are effective, especially for outcomes as rare as
suicide.

We have no way of knowing how much suicide prediction accuracy would
be improved by implementing all these feature expansions and ML analysis
improvements, but it is almost certain that prediction accuracy would be insufficient
to allow treatment planning to be based on such a model. Rather than use this
fact, as critics have, to reject structured suicide risk assessment out of hand, it
makes much more sense to see this phase of ML analysis as a useful first step in
a multi-step process of need and risk evaluation. It is not inconceivable that SP
in such an improved total-population first-stage ML model would be very close to
1.0 below a threshold that included a substantial proportion of patients. If so, it
might be practical to ask all patients above that low-risk threshold to complete a
structured self-report suicide risk assessment that included the full range of scales
and performance-based neurocognitive tests that have been found to predict suicidal
behavior in previous studies. A second-stage ML analysis in that subsample could
then be carried out that used the predictors from the prior total-population analysis
and the self-report measures obtained in the structured risk assessment to target the
subset of patients who would receive an in-depth clinical suicide risk evaluation.
The information in the self-report battery could be used as a starting point for
this evaluation in the service of developing a treatment plan. A third-stage ML
clinical decision support model based on input from all three predictor sets (i.e.,
the EMR data and other passive data available in the total-population, the structured
patient self-report data available in the subsamples defined by the first ML model,
and the clinical data collected in the smaller subgroup targeted by the second
ML model) could then be developed to provide clinical decision support for this
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treatment planning. Part of the treatment process might then involve the use of
new technologies supported by additional ML analyses, such as pharmacogenomics
screening to select optimal medications (El-Mallakh et al. 2016) and use of new
technologies to monitor ongoing treatment response as well as imminent suicide risk
(Vahabzadeh et al. 2016). This kind of nested use of successively more refined ML
models in which structured data are combined with clinical evaluations is likely to
hold the key to maximizing the value of big data ML analysis in improving detection
and treatment of suicidal patients.

References

Accurint (2018) http://www.accurint.com. Accessed 20 Feb 2018
Ahmedani BK, Simon GE, Stewart C, Beck A, Waitzfelder BE, Rossom R et al (2014) Health care

contacts in the year before suicide death. J Gen Intern Med 29(6):870–877. https://doi.org/10.
1007/s11606-014-2767-3

Barak-Corren Y, Castro VM, Javitt S, Hoffnagle AG, Dai Y, Perlis RH et al (2017) Predicting
suicidal behavior from longitudinal electronic health records. Am J Psychiatry 174(2):154–162.
https://doi.org/10.1176/appi.ajp.2016.16010077

Barros J, Morales S, Echávarri O, García A, Ortega J, Asahi T et al (2017) Suicide detection in
Chile: proposing a predictive model for suicide risk in a clinical sample of patients with mood
disorders. Rev Bras Psiquiatr 39:1–11

Beck AT, Steer RA (1988) BHS, Beck Hopelessness Scale: manual. Psychological Corporation,
San Antonio

Beck AT, Schuyler D, Herman I (1974) Development of suicidal intent scales. In: Beck AT, Lettieri
DJ, HLP R, National Institute of Mental Health, Center for Studies of Suicide Prevention,
University of Pennsylvania Department of Psychiatry (eds) The prediction of suicide. Charles
Press, Bowie, pp 45–56

Beck AT, Steer RA, Brown G (1996) Manual for the Beck Depression Inventory-II. Psychological
Corporation, San Antonio

Ben-Ari A, Hammond K (2015) Text mining the EMR for modeling and predicting suicidal
behavior among US veterans of the 1991 Persian gulf war. In: Paper presented at the 2015
48th Hawaii international conference on system sciences, 5–8 Jan 2015, pp 3168–3175. https://
doi.org/10.1109/hicss.2015.382

Berman AL, Silverman MM (2014) Suicide risk assessment and risk formulation part II: suicide
risk formulation and the determination of levels of risk. Suicide Life Threat Behav 44(4):432–
443. https://doi.org/10.1111/sltb.12067

Bernert RA, Hom MA, Roberts LW (2014) A review of multidisciplinary clinical practice
guidelines in suicide prevention: toward an emerging standard in suicide risk assessment and
management, training and practice. Acad Psychiatry 38(5):585–592. https://doi.org/10.1007/
s40596-014-0180-1

Bilen K, Ponzer S, Ottosson C, Castren M, Pettersson H (2013) Deliberate self-harm patients in
the emergency department: who will repeat and who will not? Validation and development of
clinical decision rules. Emerg Med J 30(8):650–656. https://doi.org/10.1136/emermed-2012-
201235

Bolton JM (2015) Suicide risk assessment in the emergency department: out of the darkness.
Depress Anxiety 32(2):73–75. https://doi.org/10.1002/da.22320

Bolton JM, Gunnell D, Turecki G (2015) Suicide risk assessment and intervention in people with
mental illness. BMJ 351:h4978

http://www.accurint.com
http://dx.doi.org/10.1007/s11606-014-2767-3
http://dx.doi.org/10.1007/s11606-014-2767-3
http://dx.doi.org/10.1176/appi.ajp.2016.16010077
http://dx.doi.org/10.1109/hicss.2015.382
http://dx.doi.org/10.1109/hicss.2015.382
http://dx.doi.org/10.1111/sltb.12067
http://dx.doi.org/10.1007/s40596-014-0180-1
http://dx.doi.org/10.1007/s40596-014-0180-1
http://dx.doi.org/10.1136/emermed-2012-201235
http://dx.doi.org/10.1136/emermed-2012-201235
http://dx.doi.org/10.1002/da.22320


5 The Role of Big Data Analytics in Predicting Suicide 93

Braithwaite SR, Giraud-Carrier C, West J, Barnes MD, Hanson CL (2016) Validating machine
learning algorithms for twitter data against established measures of suicidality. JMIR Ment
Health 3(2):e21. https://doi.org/10.2196/mental.4822

Brown JL, Swartzendruber A, DiClemente RJ (2013) Application of audio computer-assisted self-
interviews to collect self-reported health data: an overview. Caries Res 47(Suppl 1):40–45.
https://doi.org/10.1159/000351827

Bryan CJ, Rudd DM, Wertenberger E, Etienne N, Ray-Sannerud BN, Morrow CE et al (2014)
Improving the detection and prediction of suicidal behavior among military personnel by
measuring suicidal beliefs: an evaluation of the suicide cognitions scale. J Affect Disord 159:15–
22. https://doi.org/10.1016/j.jad.2014.02.021

Carroll R, Metcalfe C, Gunnell D (2014) Hospital presenting self-harm and risk of fatal and non-
fatal repetition: systematic review and meta-analysis. PLoS One 9(2):e89944. https://doi.org/
10.1371/journal.pone.0089944

Carter G, Milner A, McGill K, Pirkis J, Kapur N, Spittal MJ (2017) Predicting suicidal behaviours
using clinical instruments: systematic review and meta-analysis of positive predictive values for
risk scales. Br J Psychiatry 210(6):387–395. https://doi.org/10.1192/bjp.bp.116.182717

Chawla N (2010) Data mining for imbalanced datasets: an overview. In: Maimon O, Rokach L
(eds) Data mining and knowledge discovery handbook, 2nd edn. Springer, Berlin, pp 875–886

Chan MK, Bhatti H, Meader N, Stockton S, Evans J, O’Connor RC et al (2016) Predicting
suicide following self-harm: systematic review of risk factors and risk scales. Br J Psychiatry
209(4):277–283. https://doi.org/10.1192/bjp.bp.115.170050

Choi SB, Lee W, Yoon JH, Won JU, Kim DW (2018) Ten-year prediction of suicide death using
Cox regression and machine learning in a nationwide retrospective cohort study in South Korea.
J Affect Disord 231:8–14. https://doi.org/10.1016/j.jad.2018.01.019

Chung DT, Ryan CJ, Hadzi-Pavlovic D, Singh SP, Stanton C, Large MM (2017) Suicide rates after
discharge from psychiatric facilities: a systematic review and meta-analysis. JAMA Psychiat
74(7):694–702. https://doi.org/10.1001/jamapsychiatry.2017.1044

Cohen ZD, DeRubeis RJ (2018) Treatment selection in depression. Annu Rev Clin Psychol. https://
doi.org/10.1146/annurev-clinpsy-050817-084746

Cook BL, Progovac AM, Chen P, Mullin B, Hou S, Baca-Garcia E (2016) Novel use of natural
language processing (NLP) to predict suicidal ideation and psychiatric symptoms in a text-based
mental health intervention in Madrid. Comput Math Methods Med 2016:8708434. https://doi.
org/10.1155/2016/8708434

Cooper J, Kapur N, Dunning J, Guthrie E, Appleby L, Mackway-Jones K (2006) A clinical tool
for assessing risk after self-harm. Ann Emerg Med 48(4):459–466. https://doi.org/10.1016/j.
annemergmed.2006.07.944

Cooper J, Steeg S, Bennewith O, Lowe M, Gunnell D, House A et al (2013) Are hospital services
for self-harm getting better? An observational study examining management, service provision
and temporal trends in England. BMJ Open 3(11):e003444. https://doi.org/10.1136/bmjopen-
2013-003444

Dhingra K, Boduszek D, O’Connor RC (2015) Differentiating suicide attempters from suicide
ideators using the integrated motivational-volitional model of suicidal behaviour. J Affect
Disord 186:211–218. https://doi.org/10.1016/j.jad.2015.07.007

Dickerson F, Adamos M, Katsafanas E, Khushalani S, Origoni A, Savage C et al (2017) The
association between immune markers and recent suicide attempts in patients with serious mental
illness: a pilot study. Psychiatry Res 255:8–12. https://doi.org/10.1016/j.psychres.2017.05.005

El-Mallakh RS, Roberts RJ, El-Mallakh PL, Findlay LJ, Reynolds KK (2016) Pharmacogenomics
in psychiatric practice. Clin Lab Med 36(3):507–523. https://doi.org/10.1016/j.cll.2016.05.001

Feurer M, Klein A, Eggensperger K, Springenberg JT, Blum M, Hutter F (2015) Efficient and
robust automated machine learning. Paper presented at the proceedings of the 28th International
Conference on Neural Information Processing Systems - volume 2, Montreal, Canada, 2015

Franklin JC, Ribeiro JD, Fox KR, Bentley KH, Kleiman EM, Huang X et al (2017) Risk factors
for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull
143(2):187–232. https://doi.org/10.1037/bul0000084

http://dx.doi.org/10.2196/mental.4822
http://dx.doi.org/10.1159/000351827
http://dx.doi.org/10.1016/j.jad.2014.02.021
http://dx.doi.org/10.1371/journal.pone.0089944
http://dx.doi.org/10.1371/journal.pone.0089944
http://dx.doi.org/10.1192/bjp.bp.116.182717
http://dx.doi.org/10.1192/bjp.bp.115.170050
http://dx.doi.org/10.1016/j.jad.2018.01.019
http://dx.doi.org/10.1001/jamapsychiatry.2017.1044
http://dx.doi.org/10.1146/annurev-clinpsy-050817-084746
http://dx.doi.org/10.1146/annurev-clinpsy-050817-084746
http://dx.doi.org/10.1155/2016/8708434
http://dx.doi.org/10.1155/2016/8708434
http://dx.doi.org/10.1016/j.annemergmed.2006.07.944
http://dx.doi.org/10.1016/j.annemergmed.2006.07.944
http://dx.doi.org/10.1136/bmjopen-2013-003444
http://dx.doi.org/10.1136/bmjopen-2013-003444
http://dx.doi.org/10.1016/j.jad.2015.07.007
http://dx.doi.org/10.1016/j.psychres.2017.05.005
http://dx.doi.org/10.1016/j.cll.2016.05.001
http://dx.doi.org/10.1037/bul0000084


94 R. C. Kessler et al.

Glenn CR, Nock MK (2014) Improving the short-term prediction of suicidal behavior. Am J Prev
Med 47(3 Suppl 2):S176–S180. https://doi.org/10.1016/j.amepre.2014.06.004

Gnambs T, Kaspar K (2015) Disclosure of sensitive behaviors across self-administered survey
modes: a meta-analysis. Behav Res Methods 47(4):1237–1259. https://doi.org/10.3758/s13428-
014-0533-4

Greist JH, Gustafson DH, Stauss FF, Rowse GL, Laughren TP, Chiles JA (1973) A computer
interview for suicide-risk prediction. Am J Psychiatry 130(12):1327–1332. https://doi.org/10.
1176/ajp.130.12.1327

Greist JH, Mundt JC, Gwaltney CJ, Jefferson JW, Posner K (2014) Predictive value of baseline
electronic Columbia-Suicide Severity Rating Scale (eC-SSRS) assessments for identifying risk
of prospective reports of suicidal behavior during research participation. Innov Clin Neurosci
11(9–10):23–31

He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–
1284. https://doi.org/10.1109/tkde.2008.239

Hettige NC, Nguyen TB, Yuan C, Rajakulendran T, Baddour J, Bhagwat N et al (2017) Classifica-
tion of suicide attempters in schizophrenia using sociocultural and clinical features: a machine
learning approach. Gen Hosp Psychiatry 47:20–28. https://doi.org/10.1016/j.genhosppsych.
2017.03.001

Holtkamp CR, Weaver RC (2018) Quantifying the relationship between social capital and
economic conditions in Appalachia. Appl Geogr 90:175–186. https://doi.org/10.1016/j.apgeog.
2017.12.010

Hunter C, Chantler K, Kapur N, Cooper J (2013) Service user perspectives on psychosocial
assessment following self-harm and its impact on further help-seeking: a qualitative study. J
Affect Disord 145(3):315–323. https://doi.org/10.1016/j.jad.2012.08.009

Ilgen MA, Downing K, Zivin K, Hoggatt KJ, Kim HM, Ganoczy D et al (2009) Exploratory
data mining analysis identifying subgroups of patients with depression who are at high risk
for suicide. J Clin Psychiatry 70(11):1495–1500. https://doi.org/10.4088/JCP.08m04795

Jobes DA, Au JS, Siegelman A (2015) Psychological approaches to suicide treatment and
prevention. Curr Treat Options Psychiatry 2(4):363–370. https://doi.org/10.1007/s40501-015-
0064-3

Jobes DA, Comtois KA, Gutierrez PM, Brenner LA, Huh D, Chalker SA et al (2017) A
randomized controlled trial of the collaborative assessment and management of suicidality
versus enhanced care as usual with suicidal soldiers. Psychiatry 80(4):339–356. https://doi.org/
10.1080/00332747.2017.1354607

Joiner TE Jr, Buchman-Schmitt JM, Chu C (2017) Do undiagnosed suicide decedents have
symptoms of a mental disorder? J Clin Psychol 73(12):1744–1752. https://doi.org/10.1002/jclp.
22498

Jordan P, Shedden-Mora MC, Lowe B (2018) Predicting suicidal ideation in primary care: an
approach to identify easily assessable key variables. Gen Hosp Psychiatry 51:106–111. https://
doi.org/10.1016/j.genhosppsych.2018.02.002

Just MA, Pan L, Cherkassky VL, McMakin D, Cha C, Nock MK et al (2017) Machine learning
of neural representations of suicide and emotion concepts identifies suicidal youth. Nat Hum
Behav 1:911–919. https://doi.org/10.1038/s41562-017-0234-y

Katz C, Bolton J, Sareen J (2016) The prevalence rates of suicide are likely underestimated
worldwide: why it matters. Soc Psychiatry Psychiatr Epidemiol 51(1):125–127. https://doi.org/
10.1007/s00127-015-1158-3

Katz C, Randall JR, Sareen J, Chateau D, Walld R, Leslie WD et al (2017) Predicting suicide with
the SAD PERSONS scale. Depress Anxiety 34(9):809–816. https://doi.org/10.1002/da.22632

Kessler RC (2018) The potential of predictive analytics to provide clinical decision support in
depression treatment planning. Curr Opin Psychiatry 31(1):32–39. https://doi.org/10.1097/yco.
0000000000000377

Kessler RC, Warner CH, Ivany C, Petukhova MV, Rose S, Bromet EJ et al (2015) Predicting
suicides after psychiatric hospitalization in US Army soldiers: the Army Study to Assess Risk

http://dx.doi.org/10.1016/j.amepre.2014.06.004
http://dx.doi.org/10.3758/s13428-014-0533-4
http://dx.doi.org/10.3758/s13428-014-0533-4
http://dx.doi.org/10.1176/ajp.130.12.1327
http://dx.doi.org/10.1176/ajp.130.12.1327
http://dx.doi.org/10.1109/tkde.2008.239
http://dx.doi.org/10.1016/j.genhosppsych.2017.03.001
http://dx.doi.org/10.1016/j.genhosppsych.2017.03.001
http://dx.doi.org/10.1016/j.apgeog.2017.12.010
http://dx.doi.org/10.1016/j.apgeog.2017.12.010
http://dx.doi.org/10.1016/j.jad.2012.08.009
http://dx.doi.org/10.4088/JCP.08m04795
http://dx.doi.org/10.1007/s40501-015-0064-3
http://dx.doi.org/10.1007/s40501-015-0064-3
http://dx.doi.org/10.1080/00332747.2017.1354607
http://dx.doi.org/10.1080/00332747.2017.1354607
http://dx.doi.org/10.1002/jclp.22498
http://dx.doi.org/10.1002/jclp.22498
http://dx.doi.org/10.1016/j.genhosppsych.2018.02.002
http://dx.doi.org/10.1016/j.genhosppsych.2018.02.002
http://dx.doi.org/10.1038/s41562-017-0234-y
http://dx.doi.org/10.1007/s00127-015-1158-3
http://dx.doi.org/10.1007/s00127-015-1158-3
http://dx.doi.org/10.1002/da.22632
http://dx.doi.org/10.1097/yco.0000000000000377
http://dx.doi.org/10.1097/yco.0000000000000377


5 The Role of Big Data Analytics in Predicting Suicide 95

and Resilience in Servicemembers (Army STARRS). JAMA Psychiat 72(1):49–57. https://doi.
org/10.1001/jamapsychiatry.2014.1754

Kessler RC, Hwang I, Hoffmire CA, McCarthy JF, Petukhova MV, Rosellini AJ et al (2017a)
Developing a practical suicide risk prediction model for targeting high-risk patients in the
veterans health administration. Int J Methods Psychiatr Res 26(3). https://doi.org/10.1002/mpr.
1575

Kessler RC, Stein MB, Petukhova MV, Bliese P, Bossarte RM, Bromet EJ et al (2017b) Predicting
suicides after outpatient mental health visits in the Army Study to Assess Risk and Resilience
in Servicemembers (Army STARRS). Mol Psychiatry 22(4):544–551. https://doi.org/10.1038/
mp.2016.110

Koldsland BO, Mehlum L, Mellesdal LS, Walby FA, Diep LM (2012) The suicide assessment
scale: psychometric properties of a Norwegian language version. BMC Res Notes 5:417. https://
doi.org/10.1186/1756-0500-5-417

Kreitman N, Foster J (1991) The construction and selection of predictive scales, with special
reference to parasuicide. Br J Psychiatry 159:185–192

Large M, Myles N, Myles H, Corderoy A, Weiser M, Davidson M et al (2017a) Suicide risk
assessment among psychiatric inpatients: a systematic review and meta-analysis of high-risk
categories. Psychol Med 48(7):1119–1127. https://doi.org/10.1017/s0033291717002537

Large MM, Ryan CJ, Carter G, Kapur N (2017b) Can we usefully stratify patients according to
suicide risk? BMJ 359:j4627

Larkin C, Di Blasi Z, Arensman E (2014) Risk factors for repetition of self-harm: a systematic
review of prospective hospital-based studies. PLoS One 9(1):e84282. https://doi.org/10.1371/
journal.pone.0084282

Levine S, Ancill RJ, Roberts AP (1989) Assessment of suicide risk by computer-delivered self-
rating questionnaire: preliminary findings. Acta Psychiatr Scand 80(3):216–220

Lindqvist D, Nimeus A, Traskman-Bendz L (2007) Suicidal intent and psychiatric symptoms
among inpatient suicide attempters. Nord J Psychiatry 61(1):27–32. https://doi.org/10.1080/
08039480601122064

Linehan MM, Korslund KE, Harned MS, Gallop RJ, Lungu A, Neacsiu AD et al (2015) Dialectical
behavior therapy for high suicide risk in individuals with borderline personality disorder: a
randomized clinical trial and component analysis. JAMA Psychiat 72(5):475–482. https://doi.
org/10.1001/jamapsychiatry.2014.3039

Louzon SA, Bossarte R, McCarthy JF, Katz IR (2016) Does suicidal ideation as measured by the
PHQ-9 predict suicide among VA patients? Psychiatr Serv 67(5):517–522. https://doi.org/10.
1176/appi.ps.201500149

Luedtke AR, van der Laan MJ (2016) Optimal individualized treatments in resource-limited
settings. Int J Biostat 12(1):283–303. https://doi.org/10.1515/ijb-2015-0007

Luoma JB, Martin CE, Pearson JL (2002) Contact with mental health and primary care providers
before suicide: a review of the evidence. Am J Psychiatry 159(6):909–916. https://doi.org/10.
1176/appi.ajp.159.6.909

Madsen T, Erlangsen A, Nordentoft M (2017) Risk estimates and risk factors related to psychiatric
inpatient suicide-an overview. Int J Environ Res Public Health 14(3). https://doi.org/10.3390/
ijerph14030253

McCarthy JF, Bossarte R, Katz IR, Thompson C, Kemp J, Hannemann C et al (2015) Predictive
modeling and concentration of the risk of suicide: implications for preventive interventions in
the US Department of Veterans Affairs. Am J Pub Health 105(9):1935–1942. https://doi.org/10.
2105/AJPH.2015.302737

McCoy TH Jr, Castro VM, Roberson AM, Snapper LA, Perlis RH (2016) Improving prediction
of suicide and accidental death after discharge from general hospitals with natural language
processing. JAMA Psychiatry 73(10):1064–1071. https://doi.org/10.1001/jamapsychiatry.2016.
2172

Mulder R, Newton-Howes G, Coid JW (2016) The futility of risk prediction in psychiatry. Br J
Psychiatry 209(4):271–272. https://doi.org/10.1192/bjp.bp.116.184960

Murphy GE (1972) Clinical identification of suicidal risk. Arch Gen Psychiatry 27:356–359

http://dx.doi.org/10.1001/jamapsychiatry.2014.1754
http://dx.doi.org/10.1001/jamapsychiatry.2014.1754
http://dx.doi.org/10.1002/mpr.1575
http://dx.doi.org/10.1002/mpr.1575
http://dx.doi.org/10.1038/mp.2016.110
http://dx.doi.org/10.1038/mp.2016.110
http://dx.doi.org/10.1186/1756-0500-5-417
http://dx.doi.org/10.1186/1756-0500-5-417
http://dx.doi.org/10.1017/s0033291717002537
http://dx.doi.org/10.1371/journal.pone.0084282
http://dx.doi.org/10.1371/journal.pone.0084282
http://dx.doi.org/10.1080/08039480601122064
http://dx.doi.org/10.1080/08039480601122064
http://dx.doi.org/10.1001/jamapsychiatry.2014.3039
http://dx.doi.org/10.1001/jamapsychiatry.2014.3039
http://dx.doi.org/10.1176/appi.ps.201500149
http://dx.doi.org/10.1176/appi.ps.201500149
http://dx.doi.org/10.1515/ijb-2015-0007
http://dx.doi.org/10.1176/appi.ajp.159.6.909
http://dx.doi.org/10.1176/appi.ajp.159.6.909
http://dx.doi.org/10.3390/ijerph14030253
http://dx.doi.org/10.3390/ijerph14030253
http://dx.doi.org/10.2105/AJPH.2015.302737
http://dx.doi.org/10.2105/AJPH.2015.302737
http://dx.doi.org/10.1001/jamapsychiatry.2016.2172
http://dx.doi.org/10.1001/jamapsychiatry.2016.2172
http://dx.doi.org/10.1192/bjp.bp.116.184960


96 R. C. Kessler et al.

National Institute for Health and Care Excellence (NICE) (2011) Self-harm in over 8s: long-term
management. //www.nice.org.uk/guidance/cg133. Accessed 5 Jan 2018

Nock MK, Park JM, Finn CT, Deliberto TL, Dour HJ, Banaji MR (2010) Measuring the suicidal
mind: implicit cognition predicts suicidal behavior. Psychol Sci 21(4):511–517. https://doi.org/
10.1177/0956797610364762

Nordt C, Warnke I, Seifritz E, Kawohl W (2015) Modelling suicide and unemployment: a
longitudinal analysis covering 63 countries, 2000-11. Lancet Psychiatry 2(3):239–245. https://
doi.org/10.1016/s2215-0366(14)00118-7

O’Connor E, Gaynes BN, Burda BU, Soh C, Whitlock EP (2013) Screening for and treatment
of suicide risk relevant to primary care: a systematic review for the U.S. Preventive Services
Task Force. Ann Intern Med 158(10):741–754. https://doi.org/10.7326/0003-4819-158-10-
201305210-00642

Oh J, Yun K, Hwang JH, Chae JH (2017) Classification of suicide attempts through a machine
learning algorithm based on multiple systemic psychiatric scales. Front Psych 8:192. https://
doi.org/10.3389/fpsyt.2017.00192

Olfson M, Marcus SC, Bridge JA (2014) Focusing suicide prevention on periods of high risk.
JAMA 311(11):1107–1108. https://doi.org/10.1001/jama.2014.501

Olson RS, Sipper M, La Cava W, Tartarone S, Vitale S, Fu W et al. (2017) A system for accessible
artificial intelligence. arXiv.org. arXiv:1705.00594v2

Owens D, Kelley R (2017) Predictive properties of risk assessment instruments following self-
harm. Br J Psychiatry 210(6):384–386. https://doi.org/10.1192/bjp.bp.116.196253

Owens C, Hansford L, Sharkey S, Ford T (2016) Needs and fears of young people presenting
at accident and emergency department following an act of self-harm: secondary analysis of
qualitative data. Br J Psychiatry 208(3):286–291. https://doi.org/10.1192/bjp.bp.113.141242

Palmer L, Blackwell H, Strevens P (2007) Service users’ experience of emergency services follow-
ing self harm: a national survey of 509 patients. College Centre for Quality Improvement, Royal
College of Psychiatrists. https://www.rcpsych.ac.uk/pdf/National%20SU%20Survey%20Final
%20Self%20Harm%20Project.pdf. Accessed 20 Feb 2018

Passos IC, Mwangi B, Cao B, Hamilton JE, Wu MJ, Zhang XY et al (2016) Identifying a clinical
signature of suicidality among patients with mood disorders: a pilot study using a machine
learning approach. J Affect Disord 193:109–116. https://doi.org/10.1016/j.jad.2015.12.066

Patterson WM, Dohn HH, Bird J, Patterson GA (1983) Evaluation of suicidal patients: the SAD
PERSONS scale. Psychosomatics 24(4):343–345, 348–349. https://doi.org/10.1016/s0033-
3182(83)73213-5

Pearson A, Saini P, Da Cruz D, Miles C, While D, Swinson N et al (2009) Primary care contact
prior to suicide in individuals with mental illness. Br J Gen Pract 59(568):825–832. https://doi.
org/10.3399/bjgp09X472881

Pestian JP, Sorter M, Connolly B, Cohen KB, McCullumsmith C, Gee JT et al (2017) A
machine learning approach to identifying the thought markers of suicidal subjects: a prospective
multicenter trial. Suicide Life Threat Behav 47(1):112–121. https://doi.org/10.1111/sltb.12312

Polley E, LeDell E, van der Laan M (2016) SuperLearner: Super learner prediction [computer
program]. R package version 2.0–21: The Comprehensive R Archive Network

Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA et al (2011) The
Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from
three multisite studies with adolescents and adults. Am J Psychiatry 168(12):1266–1277. https://
doi.org/10.1176/appi.ajp.2011.10111704

Poulin C, Shiner B, Thompson P, Vepstas L, Young-Xu Y, Goertzel B et al (2014) Predicting the
risk of suicide by analyzing the text of clinical notes. PLoS One 9(1):e85733. https://doi.org/10.
1371/journal.pone.0085733

Quinlivan L, Cooper J, Steeg S, Davies L, Hawton K, Gunnell D et al (2014) Scales for
predicting risk following self-harm: an observational study in 32 hospitals in England. BMJ
Open 4(5):e004732. https://doi.org/10.1136/bmjopen-2013-004732

//www.nice.org.uk/guidance/cg133
http://dx.doi.org/10.1177/0956797610364762
http://dx.doi.org/10.1177/0956797610364762
http://dx.doi.org/10.1016/s2215-0366(14)00118-7
http://dx.doi.org/10.1016/s2215-0366(14)00118-7
http://dx.doi.org/10.7326/0003-4819-158-10-201305210-00642
http://dx.doi.org/10.7326/0003-4819-158-10-201305210-00642
http://dx.doi.org/10.3389/fpsyt.2017.00192
http://dx.doi.org/10.3389/fpsyt.2017.00192
http://dx.doi.org/10.1001/jama.2014.501
http://arxiv.org
http://dx.doi.org/10.1192/bjp.bp.116.196253
http://dx.doi.org/10.1192/bjp.bp.113.141242
https://www.rcpsych.ac.uk/pdf/National%20SU%20Survey%20Final%20Self%20Harm%20Project.pdf
https://www.rcpsych.ac.uk/pdf/National%20SU%20Survey%20Final%20Self%20Harm%20Project.pdf
http://dx.doi.org/10.1016/j.jad.2015.12.066
http://dx.doi.org/10.1016/s0033-3182(83)73213-5
http://dx.doi.org/10.1016/s0033-3182(83)73213-5
http://dx.doi.org/10.3399/bjgp09X472881
http://dx.doi.org/10.3399/bjgp09X472881
http://dx.doi.org/10.1111/sltb.12312
http://dx.doi.org/10.1176/appi.ajp.2011.10111704
http://dx.doi.org/10.1176/appi.ajp.2011.10111704
http://dx.doi.org/10.1371/journal.pone.0085733
http://dx.doi.org/10.1371/journal.pone.0085733
http://dx.doi.org/10.1136/bmjopen-2013-004732


5 The Role of Big Data Analytics in Predicting Suicide 97

Quinlivan L, Cooper J, Davies L, Hawton K, Gunnell D, Kapur N (2016) Which are the most
useful scales for predicting repeat self-harm? A systematic review evaluating risk scales using
measures of diagnostic accuracy. BMJ Open 6(2):e009297. https://doi.org/10.1136/bmjopen-
2015-009297

Quinlivan L, Cooper J, Meehan D, Longson D, Potokar J, Hulme T et al (2017) Predictive accuracy
of risk scales following self-harm: multicentre, prospective cohort study. Br J Psychiatry
210(6):429–436. https://doi.org/10.1192/bjp.bp.116.189993

Randall JR, Rowe BH, Dong KA, Nock MK, Colman I (2013) Assessment of self-harm risk using
implicit thoughts. Psychol Assess 25(3):714–721. https://doi.org/10.1037/a0032391

Reutfors J, Brandt L, Ekbom A, Isacsson G, Sparen P, Osby U (2010) Suicide and hospitalization
for mental disorders in Sweden: a population-based case-control study. J Psychiatr Res
44(12):741–747. https://doi.org/10.1016/j.jpsychires.2010.02.003

Rosen A (1954) Detection of suicidal patients: an example of some limitations in the prediction of
infrequent events. J Consult Psychol 18(6):397–403

Rudd MD (2014) Core competencies, warning signs, and a framework for suicide risk assessment
in clinical practice. In: Nock MK (ed) The Oxford handbook of suicide and self-injury, 1st edn.
Oxford University Press, Cary, pp 323–336. https://doi.org/10.1093/oxfordhb/9780195388565.
013.0018

Rudd MD, Bryan CJ, Wertenberger EG, Peterson AL, Young-McCaughan S, Mintz J et al
(2015) Brief cognitive-behavioral therapy effects on post-treatment suicide attempts in a
military sample: results of a randomized clinical trial with 2-year follow-up. Am J Psychiatry
172(5):441–449. https://doi.org/10.1176/appi.ajp.2014.14070843

Runeson B, Odeberg J, Pettersson A, Edbom T, Jildevik Adamsson I, Waern M (2017) Instruments
for the assessment of suicide risk: a systematic review evaluating the certainty of the evidence.
PLoS One 12(7):e0180292. https://doi.org/10.1371/journal.pone.0180292

Schaffer A, Sinyor M, Kurdyak P, Vigod S, Sareen J, Reis C et al (2016) Population-based analysis
of health care contacts among suicide decedents: identifying opportunities for more targeted
suicide prevention strategies. World Psychiatry 15(2):135–145. https://doi.org/10.1002/wps.
20321

Silverman JJ, Galanter M, Jackson-Triche M, Jacobs DG, Lomax JW, Riba MB et al (2015) The
American Psychiatric Association practice guidelines for the psychiatric evaluation of adults.
Am J Psychiatry 172(8):798–802. https://doi.org/10.1176/appi.ajp.2015.1720501

Simon GE, Rutter CM, Peterson D, Oliver M, Whiteside U, Operskalski B et al (2013) Does
response on the PHQ-9 Depression Questionnaire predict subsequent suicide attempt or suicide
death? Psychiatr Serv 64(12):1195–1202. https://doi.org/10.1176/appi.ps.201200587

Spittal MJ, Pirkis J, Miller M, Carter G, Studdert DM (2014) The Repeated Episodes of Self-Harm
(RESH) score: a tool for predicting risk of future episodes of self-harm by hospital patients. J
Affect Disord 161:36–42. https://doi.org/10.1016/j.jad.2014.02.032

Steeg S, Kapur N, Webb R, Applegate E, Stewart SL, Hawton K et al (2012) The development
of a population-level clinical screening tool for self-harm repetition and suicide: the ReACT
self-harm rule. Psychol Med 42(11):2383–2394. https://doi.org/10.1017/s0033291712000347

Stefansson J, Nordstrom P, Runeson B, Asberg M, Jokinen J (2015) Combining the Suicide
Intent Scale and the Karolinska Interactive Violence Scale in suicide risk assessments. BMC
Psychiatry 15:226. https://doi.org/10.1186/s12888-015-0607-6

Steinberg D, Phillip C (1997) CART – classification and regresstion trees. Salford Systems, San
Diego

Taylor TL, Hawton K, Fortune S, Kapur N (2009) Attitudes towards clinical services among people
who self-harm: systematic review. Br J Psychiatry 194(2):104–110. https://doi.org/10.1192/bjp.
bp.107.046425

Tran T, Luo W, Phung D, Harvey R, Berk M, Kennedy RL et al (2014) Risk stratification using data
from electronic medical records better predicts suicide risks than clinician assessments. BMC
Psychiatry 14:76. https://doi.org/10.1186/1471-244x-14-76

Treweek S, Zwarenstein M (2009) Making trials matter: pragmatic and explanatory trials and the
problem of applicability. Trials 10:37. https://doi.org/10.1186/1745-6215-10-37

http://dx.doi.org/10.1136/bmjopen-2015-009297
http://dx.doi.org/10.1136/bmjopen-2015-009297
http://dx.doi.org/10.1192/bjp.bp.116.189993
http://dx.doi.org/10.1037/a0032391
http://dx.doi.org/10.1016/j.jpsychires.2010.02.003
http://dx.doi.org/10.1093/oxfordhb/9780195388565.013.0018
http://dx.doi.org/10.1093/oxfordhb/9780195388565.013.0018
http://dx.doi.org/10.1176/appi.ajp.2014.14070843
http://dx.doi.org/10.1371/journal.pone.0180292
http://dx.doi.org/10.1002/wps.20321
http://dx.doi.org/10.1002/wps.20321
http://dx.doi.org/10.1176/appi.ajp.2015.1720501
http://dx.doi.org/10.1176/appi.ps.201200587
http://dx.doi.org/10.1016/j.jad.2014.02.032
http://dx.doi.org/10.1017/s0033291712000347
http://dx.doi.org/10.1186/s12888-015-0607-6
http://dx.doi.org/10.1192/bjp.bp.107.046425
http://dx.doi.org/10.1192/bjp.bp.107.046425
http://dx.doi.org/10.1186/1471-244x-14-76
http://dx.doi.org/10.1186/1745-6215-10-37


98 R. C. Kessler et al.

Urbanowicz RJ, Meeker M, Lacava W, Olson RS, Moore JH (2017) Relief based feature selection:
introduction and review. arXiv.org. arXiv:1711.08421

VA Office of Inspector General (2007) Health care inspection: impementing VHA’s mental health
strategic plan initiatives for suicide prevention. https://www.va.gov/oig/54/reports/VAOIG-06-
03706-126.pdf

VA Office of Public and Intergovernmental Affairs (2017) VA REACH VET initiative helps save
veterans lives: program signals when more help is needed for at-risk veterans. U.S. Department
of Veterans Affairs. https://www.va.gov/opa/pressrel/pressrelease.cfm?id=2878. Accessed 12
May 2017

Vahabzadeh A, Sahin N, Kalali A (2016) Digital suicide prevention: can technology become a
game-changer? Innov Clin Neurosci 13(5–6):16–20

VanderWeele TJ, Leudtke AR, van der Laan MJ, Kessler RC (2018) Selecting optimal subgroups
for treatment using many covariates. arXiv.org. arXiv:1802.09642

Vermeulen K, Vansteelandt S (2015) Bias-reduced doubly robust estimation. J Am Stat Assoc
110(511):1024–1036. https://doi.org/10.1080/01621459.2014.958155

Walsh G, Sara G, Ryan CJ, Large M (2015) Meta-analysis of suicide rates among psychiatric
in-patients. Acta Psychiatr Scand 131(3):174–184. https://doi.org/10.1111/acps.12383

Walsh CG, Ribeiro JD, Franklin JC (2017) Predicting risk of suicide attempts over time through
machine learning. Clin Psychol Sci 5(3):457–469. https://doi.org/10.1177/2167702617691560

Wilkinson ST, Sanacora G (2016) Ketamine: a potential rapid-acting antisuicidal agent? Depress
Anxiety 33(8):711–717. https://doi.org/10.1002/da.22498

Woodford R, Spittal MJ, Milner A, McGill K, Kapur N, Pirkis J et al (2017) Accuracy of clinician
predictions of future self-harm: a systematic review and meta-analysis of predictive studies.
Suicide Life Threat Behav. https://doi.org/10.1111/sltb.12395

World Health Organization (WHO) (2018a) Mental health: suicide data. http://www.who.int/
mental_health/prevention/suicide/suicideprevent/en/. Accessed 20 Feb 2018

World Health Organization (WHO) (2018b) Age-standardized suicide rates (per 100 000 popu-
lation), 2015. Global Health Observatory (GHO) data. http://www.who.int/gho/mental_health/
suicide_rates/en/. Accessed 03 Mar 2018

http://arxiv.org
https://www.va.gov/oig/54/reports/VAOIG-06-03706-126.pdf
https://www.va.gov/oig/54/reports/VAOIG-06-03706-126.pdf
https://www.va.gov/opa/pressrel/pressrelease.cfm?id=2878
http://arxiv.org
http://dx.doi.org/10.1080/01621459.2014.958155
http://dx.doi.org/10.1111/acps.12383
http://dx.doi.org/10.1177/2167702617691560
http://dx.doi.org/10.1002/da.22498
http://dx.doi.org/10.1111/sltb.12395
http://www.who.int/mental_health/prevention/suicide/suicideprevent/en/
http://www.who.int/mental_health/prevention/suicide/suicideprevent/en/
http://www.who.int/gho/mental_health/suicide_rates/en/
http://www.who.int/gho/mental_health/suicide_rates/en/


6Emerging Shifts in Neuroimaging Data
Analysis in the Era of “Big Data”

Danilo Bzdok, Marc-Andre Schulz, and Martin Lindquist

Advances in positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI) have revolutionized our understanding of human cognition
and its neurobiological basis. However, a modern imaging setup often costs several
million dollars and requires highly trained technicians to conduct data acquisition.
Brain-imaging studies are typically laborious in logistics and data management,
and require costly-to-maintain infrastructure. The often small numbers of scanned
participants per study have precluded the deployment of and potential benefits
from advanced statistical methods in neuroimaging that tend to require more data
(Bzdok and Yeo 2017; Efron and Hastie 2016). In this chapter we discuss how the
increased information granularity of burgeoning neuroimaging data repositories—in
both number of participants and measured variables per participant—will motivate
and require new statistical approaches in everyday data analysis. We put particular
emphasis on the implications for the future of precision psychiatry, where brain-
imaging has the potential to improve diagnosis, risk detection, and treatment choice
by clinical-endpoint prediction in single patients. We argue that the statistical
properties of approaches tailored for the data-rich setting promise improved clinical
translation of empirically justified single-patient prediction in a fast, cost-effective,
and pragmatic manner.
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6.1 Blessing and Curse of Increasing Information Content
in Neuroimaging

The notion of “big data” in modern neuroimaging arises in two related, yet
importantly different ways. On the one hand, the number of observed variables per
participant, called “feature dimensionality” (p) and, on the other hand, the available
“sample size” (n) of scanned participants. In traditional experimental studies in
psychology, neuroscience, and medicine the number of observed variables has rarely
exceeded the number of participants. Concretely, many common neuropsychologi-
cal questionnaires and medical assessments capture <30 items—few in comparison
to the often hundreds of participants in clinical trials. This so-called “long-data”
setting (participants n > variables p) is the realm of classical statistics. Around
the turn of the century, the development of whole-genome sequencing and brain-
imaging led to biology and medicine entering the high-dimensional, or “wide-data”,
setting (variables p >> participants n; Efron 2012; Efron and Hastie 2016). For
example, in genetics, the feature dimensionality from the ∼3 billion base pairs or the
>100,000 single nucleotide polymorphisms summarizing the human genome vastly
exceeds the size of typically collected participant cohorts.

The brain sciences have recently been argued to be the most data-rich among
all medical specialties (Nature Editorial 2016). A single brain scan with high-
resolution MRI can easily exceed 100,000 variables that collectively describe brain
morphology or a type of neural activity. However, over the last 20 years, the sample
size in a typical brain-imaging study has rarely exceeded 50–100 participants. We
argue that important statistical consequences arise from the divergence of the “n-p
ratio” (the relation between the number of participants and the number of variables
per observation) in the classical and high-dimensional settings.

High-resolution MRI increases the potential for new neurobiological findings,
but the increased information detail in the brain recordings also exacerbates the
dangers of the so-called “curse of dimensionality” (Bellman 1957; Friedman et
al. 2001). Humans are accustomed to operating in the physical world and our
geometric perception is fine-tuned to 3-dimensional environments. Human intuition
regarding geometric properties, such as volume or distance, tends to struggle and
eventually go awry in high-dimensional spaces. Mathematically, an increase in
feature dimensionality (imagine going from a line to a square to a cube) leads to an
exponential increase in the input-data space, and the available data points become
increasingly sparse so that even the volumetric brain scans of monozygotic twins
may look dissimilar in high dimensions. In brain-imaging, an increase in resolution
(such as more voxels or more scans per time) will offer more detailed information,
but the higher information granularity will also make the relevant neurobiological
structure more difficult to identify. With respect to the brain data themselves, this
volume increase entails that, with each (uncorrelated) new variable, investigators
would potentially need to scan exponentially more participants to populate the
input variable space at the same density (Bishop 2006). With respect to machine
learning algorithms applied to brain data, it means that with more input variables
per participant, a pattern-recognition algorithm will increasingly struggle to find
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interesting statistical relations that exist in the data. The considerable increase in
data abundance and complexity will put many classical statistical methods at risk of
being deemed obsolete, and replaced by modeling approaches better tailored to the
new data reality in imaging neuroscience.

6.2 Recent Trends for Data Collection and Collaboration
Across Laboratories

The acquisition of brain-imaging data at scale is a challenging undertaking due to a
variety of technical, logistic, and legal factors. These hurdles range from the need for
time-effective and harmonized measurement protocols, to the participants’ informed
consent for sharing their data. New brain-imaging projects have tackled many of
these challenges and aim to provide general-purpose datasets to the neuroscientific
and psychiatric research community. Here, we give an overview of the current state
of “big-data” brain-imaging, and illustrate important ramifications for data-analysis
practices due to the increasing data accumulation.

Three data initiatives stand out in the brain-imaging landscape (Smith and
Nichols 2018): The Human Connectome Project (HCP), the UK Biobank (UKBB)
Imaging Study, and the Enhancing NeuroImaging Genetics through Meta-Analysis
(ENIGMA) Consortium. The HCP, launched 2009, was one of the earliest attempts
to create a rich reference dataset for the brain-imaging community. As the name
suggests, an important goal of the HCP initiative was to promote insight into
functional connectivity architecture by providing extensive multimodal data on a
large number of healthy participants. The HCP consortium recently completed
multi-modal measurements of over 1200 healthy adults (aged 22–35), including
300 twin pairs. For each participant, the project gathered structural, functional, and
diffusion MRI, genotyping data, as well as a large variety (>400) of demographic,
behavioral, and lifestyle indicators. With genetic profiling and extensive phenotyp-
ing with several thousand descriptors, UKBB is even more comprehensive. This
data collection initiative set out in 2006 to gather genetic and environmental (e.g.,
nutrition, lifestyle, medications) data from 500,000 volunteers, and is currently the
world’s largest biomedical dataset. UKBB recruited adults between the ages of
40 and 69. The participants will be followed for >25 years, including repeated
measurements and access to their electronic health records. In 2014 UKBB launched
its brain-imaging extension, aiming to gather structural, functional, diffusion, and
susceptibility-weighted MRI of 100,000 participants by 2022 (Miller et al. 2016).
Yet another ambitious attempt to create a large-scale neuroimaging dataset is the
ENIGMA consortium, launched in 2009. Compared to UKBB and HCP, ENIGMA
takes a different approach by centrally coordinating research projects and providing
each participating group with analysis pipelines and quality control protocols. The
software is run independently by each acquisition site and the ensuing results are
combined into integrative summary analyses, possibly across different imaging
modalities (i.e. structural, functional, or diffusion MRI). Because of this, the
sample size can be on the order of several thousand participants depending on the
availability of brain-scans directly relevant for a particular research question.
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In sum, we portrayed three contemporary data-aggregation projects, which have
substantially different research agendas. While UKBB is above all a medical dataset
and was designed for large-scale population epidemiology, the ambition of HCP lies
in functional and anatomical connectivity in healthy subjects, whereas ENIGMA
has an important emphasis on genetic profiling in combination with brain scanning.
Many more comparable datasets are in the making and should, within the next
decade, multiply the amount of brain imaging data available for research.

Compared to many traditional MRI experiments consisting of only a few dozen
participants, large-scale projects such as HCP and UKBB have unprecedented
strengths and pave the way for new neuroscientific insights. A key aspect is the
study design. Most imaging studies have a retrospective or cross-sectional nature in
that the investigators first decide what they are looking for (e.g., a certain disease
diagnosis or behavioral facet), and then recruit participants that fulfill the inclusion
criteria. The phenotype of interest has already been identified, and the study is in
some sense looking into the past. In contrast, UKBB is a prospective epidemiolog-
ical study. A broad sample of the population is included in the expectation that a
relevant set of the participants will experience a variety of health-relevant events
at some point in the future. For example, among the 100,000 participants to be
brain-scanned, ∼1800 are expected to develop Alzheimer’s disease by 2022, ∼8000
will develop diabetes, ∼1800 will have experienced a stroke, and ∼1200 will be
affected by Parkinson’s disease (Sudlow et al. 2015). Once these medical conditions
have developed, data will be available to the investigators consisting of information
before, and on the path to, disease onset. This potentially unprecedented wealth
of longitudinal information can be leveraged to identify early disease markers and
new risk factors; perhaps even chart hypotheses that might not have occurred to
researchers when designing a retrospective study. As most diseases only develop
in a small percentage of the population, sampling a large number of participants
is necessary for prospective studies to gain traction. Such future-oriented data
aggregation designs have great potential for early disease detection and trans-
diagnostic stratification in mental health.

Despite much enthusiasm, the creation, curation, and collaboration of extensive
brain-imaging datasets also raise a series of technical challenges (Arbabshirani
et al. 2017; Bzdok and Meyer-Lindenberg 2018; Woo et al. 2017). Inter-scanner
differences and the need for quality control at scale come into play. Effective
data collection is complicated by the fact that brain-imaging is highly sensitive
to differences in scanner type and configuration. For example, scanner-specific
differences in the measured longitudinal changes in regional gray matter volume
emerge even for identical scanner models (Takao et al. 2013). Multi-site data
collection projects should take into consideration that these inter-scanner differences
can confound statistical analysis (Focke et al. 2011). Reducing the heterogeneity of
the acquired data is either costly (i.e., requires multiple identical setups), or reduces
collection efficiency (i.e., single-scanner bottleneck). Different existing projects
make different trade-offs between collection efficiency and incurred inter-scanner
effects. ENIGMA prioritizes collection efficiency by working in parallel on a variety
of different types of scanners. To minimize confounding influences due to inter-
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scanner effects, UKBB uses identical scanner hardware at the different acquisition
sites, while the HCP has relied on a single scanner for the entirety of their data
acquisition.

Moreover, common quality control procedures that are usually performed by
hand can become infeasible. Undetected technical artifacts, movement artifacts, or
human error in applying the measurement protocol can distort statistical analysis.
In traditional small- to medium-scale studies, even in HCP, it was still possible to
perform quality control manually. A researcher or technician could visually inspect
the data for each participant and scanning modality to check for errors and artifacts.
The sheer amount of brain data that is generated in large-scale brain-imaging
projects makes the manual approach to quality control overly time-consuming.
UKBB has conceived and implemented automated quality control procedures
(Alfaro-Almagro et al. 2018). This approach uses pattern-learning algorithms to
model the data distribution and automatically identify artifacts and measurement
errors. UKBB, HCP, and ENIGMA have invested in elaborate automated processing
pipelines and protocols to detect and correct errors and guarantee standardized data.

6.3 Anticipating Upcoming Shifts in Statistical Practice

Once successfully collected and controlled for quality, massive brain-imaging
datasets allow for more ambitious statistical analyses than standard studies con-
sisting of only a few dozen participants. Recently, more advanced statistical and
computational approaches have emerged to address new research goals, such as
the search for neuroimaging biomarkers and hidden brain phenotypes that are
demonstrated to be useful at the single-subject level. We will discuss in detail four
key directions in which the increased amount of data in brain-imaging is likely to
usher in changes to everyday statistical data-analysis practice. We anticipate, first,
a trend for parametric methods to be complemented by flexible non-parametric
methods that allow for more detailed models of the brain. Second, a trend for
discriminative methods to be complemented by more applications of generative
models that aim to uncover the mechanisms for how the observed data arose. Third,
a tendency for frequentist and Bayesian approaches to be combined for data analysis
solutions that are both computationally cheap and holistic in interpretation. Fourth,
out-of-sample generalization will become an increasingly attractive alternative to
classical null-hypothesis hypothesis testing. Below, we discuss each direction in
turn. We will also describe how “big-data” innovations can potentially aid in the
analysis at the single-subject level, providing a mechanism for precision psychiatry.

An important benefit of large-scale data collection is that it allows for more
expressive models for describing phenomena in the brain—models that can capture
higher-order non-linear interactions in the data and are able to represent more subtle
aspects about the brain (i.e., increased model expressiveness). There are two ways in
which this can happen. First, increased participant sample sizes make it possible to
extract details and nuances from the data distribution that would be indistinguishable
from random fluctuations in small studies. Second, more data points allow for a
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higher number of parameters to be reliably estimated, allowing for more expressive
models that can instantiate more complicated neural phenomena (i.e., models that
can reproduce potentially extremely complex statistical relationships; Devroye et al.
1996; Bickel and Doksum 2007).

Classical statistical methods, such as t-test, analysis of variance (ANOVA), and
linear regression, used for example in the widely distributed statistical parametric
mapping (SPM) software package, do not exhibit the properties necessary for
representing increasingly complicated brain properties with an increasing number
of participants. Classical methods attempt to model data with a fixed, limited
number of parameters, and usually make rigid assumptions about the underlying
structure of the brain measurements. For example, the t-test and ANOVA usually
assume Gaussianity regardless of the underlying data distribution observed in the
MRI brain scans. After accumulating enough participants to detect a statistically
significant effect, additional data may yield little additional insights. In fact,
classical methods may frequently underfit the data in more complex data settings
with many input variables. The use of a fixed number of parameters qualifies these
methods as parametric. In contrast, non-parametric approaches (Fig. 6.1) typically
make weaker assumptions about the underlying structure of the acquired brain data.
Here the number of parameters can flexibly adapt with the number of participants,
and is potentially infinite. Data from more participants allow for more nuanced
quantitative brain representations, based on less rigid statistical models.

Fig. 6.1 Parametric vs. non-parametric approaches. Non-parametric methods (with a number of
parameters that scales with increasing data availability) are more flexible than parametric methods
(with a fixed number of parameters). We illustrate this distinction for the case of predicting a target
variable Y based on two input variables X1 and X2. The parametric method of linear regression (left)
always estimates three parameters defining the plane that best explains variation in the data. The
number of parameters is independent of the number of data points and independent of the shape
in which the data points are distributed—the end result is always a plane. In contrast, the non-
parametric k-nearest-neighbor algorithm (middle and right) can adapt to a more complex shape by
increasing the number of parameters in step with the number of available data points. With ample
amount of available data points (right, k = 9), the shape of the regression surface turns from a
coarse step function (middle, k = 1) into a smooth approximation of the data distribution (right).
Non-parametric methods adapt their number of parameters in step with the number of data points
and can thus reproduce more complex shapes and distributions. Reproduced from James et al.
(2013)
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An example of a non-parametric method is the k-nearest neighbor algorithm
(Fig. 6.1). A sample (e.g., a T1 image of a healthy or schizophrenic participant)
is classified by the class membership (disease status) of the majority of its closest
data points in the dataset (the other participants). As the number of samples increase,
more details of the data distribution (e.g., individual brain anatomy) can be captured
leading to a more refined quantitative representation of the brain phenomenon under
study. Other popular examples of non-parametric methods are decision trees (and
tree-based methods such as random forests) and kernel support vector machines. In
both approaches the number of model parameters scales naturally with the number
of participants. Extensive biomedical datasets are ideal for using non-parametric
methods to capture previously unobserved neurobiological properties that might be
ignored when using parametric methods alone.

An example of the application of non-parametric methods in brain-imaging is
the investigation by Gennatas et al. (2017) on how gray-matter changes with age
in a large neurodevelopmental dataset (Pennsylvania Neurodevelopmental Cohort,
1189 participants aged 8 to 23). A parametric approach would have been to use
an instance of the (parametric) generalized linear model (GLM) to relate MRI
gray-matter measures to age, that is to estimate coefficients for the variables
(gray-matter measures) that best predict the target (age). Instead, Gennatas and
colleagues used a non-parametric extension of the GLM called “generalized additive
models” (GAM; Hastie and Tibshirani 1990). Instead of fitting a coefficient for each
input variable, GAMs estimate an adaptive functional form linking each individual
variable with the respective output variable. With more data points (participants), the
identified arbitrarily complex input-output functions could more accurately reflect
the interaction between gray matter voxels and overall participant age. The GAM is
thus able to describe and exploit highly non-linear statistical relationships to which
the GLM would be blind1. Integrating the non-linear relationships between regional
gray-matter volumes and age increased the goodness of fit of the model, leading
to less noisy parameter estimates and therefore to enhanced understanding of gray-
matter changes in individual brain regions across the lifespan.

As a second important distinction, statistical models can be used to address
a research goal directly—discriminative models—or additionally learn intrinsic
structure from the data at hand—generative models (Fig. 6.2). As an analogy,
assume somebody wants to distinguish between speech from Japanese and Chinese
speakers. A generative model would first try to learn the grammar, vocabulary, and
phonology of both languages. Only then would the model address the classification-
goal of disambiguating whether a certain speaker is Japanese or Chinese based on
an explicit internal representation of what each of the two languages looks like. A
discriminative model, on the other hand, would use any aspect of the speech, such
as the intonation or the frequency of certain phoneme combinations, to somewhat
blindly distinguish the speaker groups—even if no deeper understanding is obtained

1The only way for the GLM to describe non-linear interactions is to anticipate the particular effect
and introduce the corresponding higher-order terms explicitly into GLM model from the beginning.

https://paperpile.com/c/P5MWqG/d7PF/?prefix=GAM%3B
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Fig. 6.2 Generative vs. discriminative approaches. Patients (black) and controls (red) both
undergo the same biomedical evaluation. The result of the test is indicated on the x-axis, the
likelihood that a participant of either class will receive a particular result is indicated on the y-axis
(left). There exist two statistical approaches to predict if a given participant is patient or control
based on the test result. A discriminative model (right) estimates a decision boundary (vertical line)
that optimally separates the patients from the controls. Apart from the decision boundary, no other
information is extracted from the data. A generative model (left) estimates the full probability
distributions of both the patient and control group. The probability distributions are then used
to determine whether a given participant is more likely to be patient or control. The generative
model also captures information about the data distribution that does not directly help to distinguish
patients from controls (e.g., information about the far ends of the probability distributions or about
the density bump at x = −1). This “unnecessary” information can reveal important biological
insights: In this case, the density bump at x = −1 could indicate that the patient group is in fact
composed of two different groups with distinct symptom profiles. Inspired by Murphy (2012)

about the speech’s content and structure. In a large number of application domains
in empirical research, discriminative models have dominated statistical analysis. In
the example of distinguishing2 a healthy group from a schizophrenic patient group,
discriminative models (e.g., logistic regression, support vector machines) learn a
decision boundary between the participants from each group (think of a dividing line
between categories, e.g., healthy vs. diseased)—or, more formally, they estimate
the posterior probability3 P(y|x), without extracting an explicit representation of
each class to be distinguished. In contrast, generative models (e.g., naive Bayes
classifier) estimate the joint distribution P(x,y)—or, more informally, generative

2The classification setting serves as an illustration only. Discriminative methods exist indepen-
dently of the classification—regression divide. For example, the clustering algorithm k-means is
discriminative in the sense that it finds decision boundaries between clusters, although it attempts
neither classification nor regression.
3P(y|x) is the so-called conditional (in the Bayesian terminology the “posterior”) probability: The
probability of an event y (e.g., the patient is diseased) under the condition that another event x
(e.g., a certain brain anatomy measured by MRI) has already occurred. P(x,y) is the so called joint
probability: The probability of x and y occurring together.
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methods model the process by which the data was generated (Jebara 2012; Bishop
and Lasserre 2007). The class posterior distributions P(y|x) can then be derived
using Bayes’ rule.

Importantly, generative models have the intrinsic ability to produce new, artificial
data samples. This ability to create never-observed data that is characteristic for one
of the classes has an appealing advantage. Sampling from the generative model and
visually inspecting the generated samples can provide direct insights into the inner
workings of the brain phenomenon under study. In a model of the brain, where one
model parameter is hypothesized to represent age, varying this parameter would
allow the investigator to see a brain aging before their eyes—providing insight into
age-related brain changes. However, a natural caveat is that the results will only
be as good as the underlying model. If the model does not accurately depict the
phenomena in question, the output of a generative model will be similarly flawed.

As a consequence, generative models are usually easier to interpret than most
discriminative models because the modeled internal representation of what the data
“looks like” (i.e., the conditional variation between input variables, output variables,
and possible hidden variables) has been noted to capture biologically meaningful
structure in previous brain-imaging studies. Furthermore, many generative models
work by adaptively modeling hidden states of a system, or by finding a compact set
of hidden factors that describe the dynamics of the system at hand. This process is
often called latent factor discovery (Goodfellow et al. 2016, Chap. 13). A compact
set of latent factors is usually easier to interpret than potentially high-dimensional
brain-imaging input data (Fig. 6.3). A simple example of such a latent factor based
generative model is the commonly used independent component analysis (ICA).
ICA reduces the data to a manageable number of hidden directions of variation. As
a generative model, ICA is able to produce never observed, artificial data samples
based on the extracted latent factors. Such sources of variation underlying the
observations can be easily interpreted (e.g., by plotting which brain areas associated
with which latent factor) and can uncover previously unknown information about
the brain in both health and disease. Given enough samples of resting-state fMRI
time series, ICA is able to both find hidden multivariate patterns that together
explain the variation in the data (e.g., the default mode network) and generate new
artificial brain images from the derived factors. The combined statistical goal of
generative methods to model hidden states of the brain phenomena and minimize
an optimization criterion at hand (e.g., prediction performance) is usually more
challenging than the statistical goal of discriminative models to simply find a
decision boundary between classes. This explains why generative models tend
to require brain data from more participants and why they are now becoming
increasingly attractive with large-scale datasets.

A common generative model in brain-imaging is dynamic causal modeling
(DCM) invented by Friston et al. (2003). The goal of DCM is to estimate directed
“effective connectivity”, that is, the functional influence that one brain region exerts
on another brain region. DCM explicitly estimates interactions between neuronal
populations in the context of a biophysical model of the hemodynamic response.
This characteristic makes DCM a generative model with neurobiological plausibility
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Fig. 6.3 Latent factor model in action. Dynamic causal modeling is a brain-imaging analysis
technique that can be used to model the functional connectivity in the brain. DCM uses fMRI
activity data to estimate the degree of connectedness between predefined brain regions. The DCM
model parameters can be seen as a different perspective on the same data: Each participant has
different fMRI activity and thus different estimated DCM model parameters. Here, whole-brain
fMRI data do not lend themselves to distinguish patients from controls. The figure on the left
shows how patients and controls are distributed in the space spanned by three voxels (“voxel-
based feature space”). The DCM parameters capture more meaningful biological concepts than
individual voxels, and patients and controls become separable. The figure on the right shows how
participants form clusters of patients and controls when viewed in the space spanned by three DCM
connectivity parameters (“generative score space”). Reproduced from Brodersen et al. (2011)

that is able to synthesize plausible hemodynamic activation patterns from hidden
neural activity in brain regions. In addition to various human fMRI studies, the
plausibility of DCM has been directly evidenced in rats by successfully relating
intracerebral EEG recordings to rat fMRI (David et al. 2008).

It should be noted that not every generative model is based on latent factor
discovery, and not every latent factor model qualifies as a generative model. Some
generative approaches work by transforming random input vectors (e.g., generative
adversarial networks) or autoregressive models (e.g., pixelRNN, waveNet) and do
not lend themselves to easy introspection of the underlying statistical relationships
by the investigator. An example of a non-generative latent factor model is classical
canonical correlation analysis4 (CCA). This exploratory method is similar to princi-
pal component analysis in that it reduces the data to orthogonal principal vectors, but
instead of maximizing explained variance, CCA maximizes the correlation between
two (lower-dimensional) latent factors of two data “views”, for example, brain-
imaging on the one hand and behavioral performance scores on the other hand.
CCA thus identifies aspects of brain-imaging data and behavioral data that exhibit
maximal linear correspondence with each other.

4Although there exists a generative probabilistic variant of CCA, the widely used classical CCA is
not inherently generative.
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For instance, Wang et al. (2018) used canonical correlation analysis to provide
some of the first evidence for distinct neurobiological underpinnings of different
subjective experiences of mind-wandering. Such stimulus-independent cognitive
processes are associated, amongst others, with executive performance and creativity
indicators. To provide evidence that mind-wandering is not a homogeneous psy-
chological construct, but instead comprises a range of cognitive architectures and
functions, the authors employed CCA with resting-state fMRI data as one view and
self-reported experience, cognitive performance, and psychological well-being data
as the other view. The CCA revealed latent factors that simultaneously described
individual variation in self-reported experience and connectivity in the default mode
network, as well as factors uniquely related to aspects of cognition, such as executive
control and creativity. These findings, enabled by the unique modeling capabilities
of CCA, provided evidence that distinct brain dimensions collectively contribute to
different cognitive aspects underlying the mind-wandering experience.

Traditionally, perhaps the most important distinction in statistics in general and
in neuroimaging in particular has been between frequentist and Bayesian models
(Freedman 1995). To illustrate, let us consider the example of medical research. A
Bayesian researcher would happily introduce prior knowledge from past research
and experience into her statistical inferences to guide further upcoming research.
These a-priori assumptions placed on the model parameters in combination with
Bayes’ rule yield full probability distributions, that is, a point estimate and detailed
information on the uncertainty that comes with, for example, the effectiveness of the
proposed treatment. The frequentist medical researcher, on the other hand, would
shy away from the subjectivity of making a-priori assumptions before studying
the data. She obtains an estimate without detailed uncertainty information—for
the treatment effectiveness that hold with fewer assumptions about the underly-
ing data-generating process. Intuitively, Bayesian statistics is a good choice for
several research questions being asked using neuroimaging techniques. Commonly
accepted knowledge of brain anatomy and physiology can for instance be used as a
basis to come up with a-priori assumptions that guide the model fitting process. In
the example of DCM, interactions between neuronal populations are modeled not
just based on the experimental data, but instead the modeling process is couched in
probabilistic a-priori knowledge concerning hemodynamic parameters, anatomical
regions, and more.

In contrast to many approaches to full Bayesian inference, performing statistical
data analysis using a frequentist approach is usually computationally cheaper
(Bishop and Lasserre 2007; Jordan 2011; Yang et al. 2016). The “model evidence”
term in Bayes’ formula is typically the source of the much increased computational
load in the Bayesian setting. It is an integral over all possible values of all relevant
parameters (which are often much more numerous than the feature dimensionality
of the actual quantitative observations in the brain) that usually cannot be directly
solved, and even reaching approximate solutions is computationally challenging
in many cases. A common tool for these approximations, the family of Markov
chain Monte Carlo (MCMC) methods, is an iterative algorithm that is not easily
parallelizable. These hurdles become even more severe in domains such as brain-
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imaging, where an arms race for increasingly finer spatial and temporal resolution
is constantly pushing the feature dimensionality of the brain scans. One potential
solution to the computational expense of Bayesian inference in many applications
to extensive brain data is the integration of Bayesian and frequentist modeling
paradigms. An example of such a hybrid approach is variational inference—
a widespread modeling solution to approximate complicated Bayesian integrals
(Jordan et al. 1999). Another hybrid approach that has been shown effective is
shrinkage, a statistical estimation method in which individual observations “borrow
strength” from a larger group of observations (Bzdok et al. 2017; Varoquaux et al.
2010; Mejia et al. 2015). Shrinkage is implicit in Bayesian inference, penalized
likelihood inference, and multi-level models and is directly related to the empirical
Bayes estimators commonly used in neuroimaging (Friston et al. 2002; Friston and
Penny 2003).

A combined Bayesian-frequentist approach was also applied by Brodersen et
al. (2011) in the aim of computational psychiatry. Faced with the challenge of
classifying a small number of participants into healthy and diseased groups based
on the high-dimensional input data from all voxel activities in the whole fMRI
time series, they introduced classification via “generative embeddings”. These
investigators used Bayesian, generative dynamic causal modeling to compute
effective-connectivity models for each participant. The DCM model parameters
were then used as a low-dimensional effective summary of the high-dimensional
voxel data (Fig. 6.3). This dimensionality reduction via domain knowledge (i.e.,
priors on brain anatomy and physiology in the DCM) mitigated the curse of
dimensionality and, in a subsequent step of the modeling approach, allowed for
the data to be classified by a frequentist support vector machine, thereby combining
the strengths of both Bayesian and frequentist inference.

Finally, in mainstream statistics as routinely applied in medicine, psychology,
and brain-imaging, new knowledge is typically derived from data by means of null-
hypothesis testing, that is testing whether or not an observation is too extreme to
be plausible under the null-hypothesis of no effect (Fisher and Mackenzie 1923;
Neyman and Pearson 1933). In a drug trial, the null-hypothesis would be that the
new drug is no more effective than a current standard treatment. A measured effec-
tiveness that defies explanation as a random fluctuation in the experiment would lead
the investigator to discard the null-hypothesis and establish the superiority of the
new drug. An overarching theme of classical statistics in the twentieth century was
to optimally exploit small sample sizes using low-dimensional parametric models
(Efron and Hastie 2016).

The recent advent of large-scale data collection has had two important conse-
quences. First, caveats emerge for hypothesis testing in ever more high-dimensional
neuroimaging data. The “multiple comparisons” problem becomes increasingly
challenging to address in the wide-data scenario (Miller 1981; Efron 2012). The
traditional approach in the brain-imaging community is called “mass univariate”
analysis and performs separate statistical tests for each brain location. When many
null-hypothesis tests are being carried out in concert, an increasing number of false
positive findings will plague the data analysis and subsequent interpretation. Many
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commonly used methods to explicitly account for the number of false positives, such
as Bonferroni’s method for family-wise error correction, work by increasing the
threshold for statistical significance in a conservative fashion, which substantially
increases the number of participants whose brain data are necessary to reject a given
null-hypothesis.

On the other hand, if the number of variables is small (e.g., after reducing whole-
brain data to a lower-dimension using independent component analysis) but the
number of participants happens to be much larger, even very small, practically
irrelevant statistical effects will sooner or later become significant (Berkson 1938).
For instance, brain-behavior correlations of r ≈ 0.1 were consistently found to be
statistically significant when considering a sample of n = 5000 participants even
after correction for multiple comparisons (Miller et al. 2016). This and similar
examples illustrate that, in the era of “big-data” neuroimaging, hypothesis testing
may more and more often struggle to distinguish between statistical and practical
significance. In sum, the traditional null-hypothesis testing frameworks may have to
tackle new difficulties in analysis settings with a lot of input variables (“wide-data”
or n << p setting) and when brain data from a large human population are considered
(“long-data” or n > p setting).

At the same time, the rise of national, continental, and intercontinental brain-
data collections are making the statistical goal of prediction increasingly attractive.
Modern machine-learning approaches have a focus on predicting disease status,
behavior, even treatment response of single individuals. The process of deriving new
knowledge based on a sample of participants takes a different form in the predictive
analysis setting. Instead of looking within the sample of participants at the properties
of the estimated parameters, the focus is on accurate statements about new,
previously unseen participants—and evaluating the out-of-sample generalization
(Vapnik 1998; Valiant 1984). In practice, the participants are split into two groups: a
“training set” that is used to fit the model or classifier, and a separate “test set” that
is used to evaluate prediction performance. If the prediction succeeds on the test
set, we can empirically establish that the model captures useful biological structure
and, more importantly, that a meaningful connection between (potentially many)
input variables (e.g., fMRI brain scans) and a target variable (e.g., disease status)
exists. Usually, the random split into train- and test-set is performed repeatedly in a
procedure that is called cross-validation.

By quantifying the prediction success in new individuals (i.e., out-of-sample
estimates) many machine learning approaches naturally adopt a prospective view-
point and can directly yield a notion of clinical relevance. In contrast, classical
approaches based on null-hypothesis testing often take a retrospective flavor as
they usually revolve around finding statistical effects in the dataset at hand (so-
called in-sample estimates) based on prespecified modeling assumptions, typically
without explicitly evaluating some fitted models on unseen or future data points.
Hence, ubiquitous techniques for out-of-sample generalization in machine learning
are likely candidates for enabling a future of personalized psychiatry. This is because
predictive models can be applied to and obtain answers from a single patient.
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Two properties are shared between the discussed upcoming trends in data-
analysis in the brain-imaging community. On the one hand, the anticipated shifts
in statistical practice are expected to enable more complex (e.g., increased model
expressiveness) and also more interpretable statistical models (e.g., more generative
models) of the brain, based on high-dimensional neuroimaging data. On the other
hand, many of these modeling approaches tend to work better with larger participant
sample sizes and may be well prepared to handle rich high-dimensional input data.
With the advent of the new data reality in the brain-imaging community, such “data-
hungry” methods become increasingly feasible and necessary.

6.4 Clinical Endpoint Prediction in Single Psychiatric Patients
Based on Brain-Imaging

In this last section, we place the trends of large-scale data collection and ensuing
changes in statistical practice in the context of current mental health research. We
give examples of how large-scale neuroimaging datasets can enable new research
approaches and use a recent paper by Drysdale et al. (2017) to illustrate how
parametric structure-discovery methods, latent factor models, and out-of-sample
prediction all can be integrated in this type of research agenda.

The traditional approach to mental health research consists of identifying
symptoms that frequently occur together and using these clinical manifestations to
define disease-specific symptom combinations based on expert opinion. Clusters of
symptoms are assumed to define coherent disease entities. These disease definitions
are then used to find diagnostic biomarkers (e.g., by searching for neural correlates)
or to predict treatment response. While this approach has worked well in many
areas of medicine (consider, for example, the glomerular filtration rate to identify
kidney disease) the same success has not yet materialized in psychiatry. Brain-
based quantitative markers for predicting treatment response at the single-subject
level, even to reliably distinguish between disease subtypes or healthy and diseased
participants, remain elusive in mental health (Insel and Cuthbert 2015). Large-scale
brain-imaging allows for flipping this approach on its head. Instead of clustering
individuals into groups by clinical symptoms and then looking for neurophys-
iological correlates, we can cluster based on quantitative brain measurements
directly (letting the brain data “speak for themselves”) and then look at symptom
measurements and clinical endpoints only after identifying clusters of shared brain
dysfunction. As this alternative strategy underlies the ambition to directly model the
biological basis of the disease and is less vulnerable to subjective and overlapping
symptoms, it may be more likely to yield a reliable foundation for diagnosis and
treatment.

Depression is one of many cases in psychiatry where recent evidence emphasizes
unclear correspondence between diagnostic labels used in clinical practice and their
neurobiological substrates as elucidated in neuroscientific research. Drysdale and
colleagues employ functional neuroimaging to identify depression subtypes in brain
biology (Fig. 6.4). In a large-scale study (n = 1188) they identified patterns of
functional connectivity in resting-state fMRI that were associated with symptoms
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Fig. 6.4 Example of modern brain-imaging-based subject stratification. Neural activity time
series measured by fMRI were extracted from regions of interest (a) and correlated with each other
to yield “functional connectivity features” (b). Canonical correlation analysis was then used to find
a small set of linear combinations of functional connectivity features that are maximally correlated
with self-reported symptoms of depression (c, d). Thus, the number of variables per participant was
reduced by two preparation steps: First from whole-brain maps to region-wise activity measures,
then from functional connectivity features to even fewer components of variation obtained from
CCA. This dimensionality reduction of high-resolution imaging data allowed identifying clusters
of participants (e, f) which are predictive of distinct symptom-profiles and response to transcranial
magnetic stimulation treatment. Reproduced from Drysdale (2017)
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of depression and used these to identify four neurobiologically distinct subtypes of
depression (“biotypes”). Based on these alternative group distinction for depressed
patients they were then able to predict whether or not a patient would respond to
transcranial magnetic stimulation (TMS)—a therapy in which a pulsing magnetic
field is used to induce inhibitory or excitatory electric current into parts of the
brain. The analysis approach in this study consisted of three steps: First, the authors
built a latent factor model connecting fMRI and depression symptoms via CCA.
Second, they used parametric, discriminative clustering to identify subtypes based
on the previously derived latent factors. Third, they used support vector machines
as a discriminative classifier to achieve out-of-sample predictions for the depression
subtype based on fMRI data.

To better illustrate how the statistical methods tie into the quest for depression
biomarkers we will cover the analysis pipeline more comprehensively. After
preprocessing (the cortex and subcortical structures were parcellated into 258
regions of interest), resting-state fMRI time series were extracted for each region
and correlated against each other. The resulting correlation coefficients (functional
connectivity features) for each patient represented the left-hand side of the variable
set for a canonical correlation analysis. The right-hand side of the variable set
was given by the corresponding Hamilton Depression Rating Scale results for each
patient. The CCA then returned hidden dimensions of variation—sets of distinct
functional connectivity patterns correlated with distinct combinations of clinical
symptoms. The number of latent factors was much smaller than the number of
original regions, making the latent modeling results easier to analyze and interpret.
The latent variability components were then used for clustering via the parametric
k-means algorithm. This procedure used the similarity in functional connectivity to
partition participants into k group such that each participant belonged to the cluster
with the smallest mean distance. A split into four clusters appeared to provide useful
partitioning solutions for defining maximally dissimilar patient subtypes.

Each of these subtypes (i.e., clusters derived from the latent factors) was shown
to be correlated both with distinct patterns of abnormal functional connectivity as
well as distinct clinical-symptom profiles. All four subtypes also featured shared
functional connectivity patterns that corresponded to “core” symptoms that were
present in all patients diagnosed with depression. The individual subtype predicted
whether or not a given patient would respond to transcranial magnetic stimulation
therapy. Support vector machines were trained to directly predict a patient’s brain-
derived subtype based on their functional connectivity information.

The steps of the analysis pipeline (latent factor model, clustering, prediction)
were conducted on a training data set consisting of only two-thirds of the patients,
in order to be able to test how well the discovered brain-behavior effect is likely
to generalize to previously “untouched” data (the remaining one-third). That is, the
built support vector machines prediction models were validated on the previously
held-out test set and achieved accuracy rates of approximately 90% in predicting
the biological subtype of individual patients—and thereby their individual response
to TMS treatment. This study is one of the first proofs of concept that data-derived
brain phenotypes of psychiatric disorders can provide useful biological categories
that enable improved treatment choices on a single-subject basis.
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Fig. 6.5 Single-subject prediction of brain disorders using neuroimaging. A survey by Arbab-
shirani et al. (2017) shows strong growth in the number of brain-scanning studies that attempt to
automatically classify brain disorders based on neuroimaging data (a). Structural MRI is so far the
most frequently used input data for the purpose of classification (b). The number of participants is
still relatively small (<200) for most imaging-based classification studies (c, d). Based on selected
brain-imaging modalities and feature variables, different studies report diverging classification
performances (e). Reproduced from Arbabshirani et al. (2017)

Over the last years, there has been a rising number of investigations into
single-subject prediction of brain disorders in neuroimaging. Arbabshirani et al.
(2017) recently provided a survey (Fig. 6.5) of ∼200 recent studies. Based on
their broad field analysis, structural and resting-state MRI are the brain-imaging
modalities that are currently favored for predicting brain disorders, and most
important brain disorders have been studied for single-subject prediction. Likely
because of its severity and prevalence, mild cognitive impairment and Alzheimer’s
disease (MCD/AD) is the disorder that has most often been tried to predict based on
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MRI data. The average prediction accuracy across studies was ∼86% for MCD/AD
and thereby yielded the comparatively best prediction accuracy among common
brain disorders. Autism spectrum disorder yielded similar accuracies (∼85%),
followed by major depressive disorder and schizophrenia (∼81%), and attention
deficit disorder (∼77%). Models in these studies were trained on relatively few
participants (mean 186, median 88). Virtually all of these investigations had to
restrict themselves to a correspondingly small number of features, usually derived
by averaging brain regions via a brain atlas, or other biologically inspired manually
crafted features. The reported average participant numbers were still an order of
magnitude away from the projected number of (e.g., Alzheimer’s) patients in the
prospective UKBB study, leading us to anticipate further improvements in predictive
accuracy and potential clinical applicability in diagnosis and prognosis of brain
disorders as these data become available.

An intensified approach to psychiatric research based on brain-derived mark-
ers has several advantages over the traditional symptom-based research stream.
Neuroimaging biomarkers can more directly allow gaining traction on neurophys-
iological aberrations underlying psychopathology. Identified brain-derived markers
often enable reliable brain-based stratification of individual participants, which
should offer a promising basis to improve clinical practice in diagnosis, prognosis,
and treatment selection. Potential for more complete detection and exploitation
of the pathophysiological mechanisms underlying brain disorders may fuel the
development of new and superior treatment strategies. These anticipated advances
may likely turn out to be a direct result of large-scale neuroimaging data collection
combined with the use of data-hungry computational methods.

6.5 Conclusions

The soaring cost of psychiatric disease prompts a global urgency for finding new
solutions (Bloom et al. 2012; Gustavsson et al. 2011). We believe that whether
or not personalized medicine can be realized in psychiatry is largely a statistical
question at its heart. For many decades, the group has served as the working unit of
psychiatric research. Facilitated and intensified acquisition of always more detailed
and diverse information on psychiatric patients is now bringing another working
unit within reach—the single patient. Rather than pre-assuming disease categories
and formally verifying prespecified neurobiological hypotheses, an increasingly
attractive alternative goal is to let the data speak for themselves. As a consequence
of the new data reality and changing research questions, some long trusted statistical
methods may no longer be the best tool at our disposal.

The statistical properties of learning-algorithm approaches tailored for the
data-rich setting promise clinical translation of empirically justified single-patient
prediction in a fast, cost-effective, and pragmatic manner. Patient-level predictive
analytics might also help psychiatry to move from strong reliance on symptom
phenomenology to catch up with the biology-centered decision making in other
branches of medicine. Machine learning tools offer an ideal data-guided framework
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to uncover, foster, and leverage inter-individual variation in behavior, brain, and
genetics. The fact that the currently embraced mechanistic explanations for psychi-
atric disorders range from molecular histone-tail methylation in the cell nucleus to
urbanization trends in society as a whole highlights human-independent learning
algorithms as an underexploited avenue for the automatic identification of disease-
specific neurobiological features that can predict clinical outcomes. Ultimately, the
human intelligence alone may be insufficient to decipher how mental disorders arise
at the complex interplay between each individual’s unique genetic endowment and
world experience.
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7Phenomapping: Methods andMeasures for
Deconstructing Diagnosis in Psychiatry

Andre F. Marquand, Thomas Wolfers, and Richard Dinga

In most areas of medicine, the advent of biological tests to measure disease state
has revolutionised diagnosis and treatment allocation. However, this is not the case
in psychiatry, which is now virtually the last area of medicine where diseases
are still diagnosed based on symptoms and biological tests to assist treatment
allocation remain to be developed (Kapur et al. 2012). This is especially problematic
because psychiatric disorders are all extremely heterogeneous, both in terms of
their clinical presentation (which we refer to as ‘clinical heterogeneity’), in terms
of their underlying biological causes (‘biological heterogeneity’) and in terms
of environmental factors (‘environmental heterogeneity’). Even though diagnostic
criteria have been periodically revised over the years, these sources of heterogeneity
remain a substantial barrier to better understanding the causative mechanisms of
psychiatric disorders and to developing optimal treatments. Indeed, there have been
virtually no new therapeutic targets in psychiatry for decades.
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The overwhelmingly dominant paradigm in psychiatric research has been the
case-control approach, which assumes that patient and control groups each form
a distinct entity and completely ignores heterogeneity within cohorts. It has long
been recognized that we must look beyond simple case-control comparisons to
be able to deconstruct the heterogeneous phenotype of psychiatric disorders and,
correspondingly, there have been many attempts to find data-driven reclassifications
or stratifications of psychiatric disorders (Marquand et al. 2016b; Schnack 2018).
The dominant approach has been to train unsupervised machine learning algorithms
on the basis of symptoms or psychometric variables aiming to find data-driven
subtypes of patients. Like the case-control approach, this assumes that patient
cohorts can be cleanly partitioned into distinct subtypes. However, despite more
than 40 years of effort, this approach has not converged upon a reproducible
and clinically useful set of subtypes for any psychiatric disorder (Marquand et
al. 2016b). Frustration with this lack of progress has led to several large-scale
initiatives that aim to use many different biological and behavioural measures to
finally bring the era of ‘precision medicine’ to psychiatry (Insel and Cuthbert 2015).
The most prominent of these are the Research Domain Criteria (RDoC) initiative
proposed by the National Institute of Mental Health in the USA (Insel et al. 2010)
and the European Roadmap for Mental Health Research (ROAMER) (Schumann
et al. 2014). The central feature of these initiatives is to move away from using
only symptoms for disease classifications and instead to integrate biological and
behavioural measures from different levels of analysis (e.g. genes, cells and circuits)
and across different domains of functioning (e.g. positive affect, social processing).
Although the short-term focus of RDoC and ROAMER is principally on research,
the clear implication is that the current nosological classifications will eventually
need to be revised. The way this is most popularly envisaged to occur is that
by integrating across domains of functioning and across different biological and
behavioural levels, psychiatric cohorts will be cleanly separable into subtypes that
simultaneously cut across current diagnostic classifications and relate more closely
to underlying brain systems (Insel and Cuthbert 2015). At the time of writing, it is
eight years since RDoC was officially released, and it is fair to say that RDoC and
similar initiatives have, to date, also provided only a modest yield. Whilst RDoC has
driven substantial basic research,1 there are still few successful attempts to stratify
psychiatric disorders on the basis of biological systems and none that are close to
challenging the current diagnostic criteria in clinical practice.

In view of the considerations above, in this chapter we will review the literature
aiming to employ biological measures to stratify the phenotype of psychiatric
disorders. First, we will briefly review the biological measures that useful for
stratifying patient cohorts. Second, we give a brief conceptual overview of the
different methodological approaches that have been employed for this purpose.
Third, we will provide a focused review of studies that have used biological
measures to derive stratification, in line with RDoC and ROAMER. Finally, we will

1See e.g. https://www.nimh.nih.gov/research-priorities/rdoc/nimh-rdoc-publications.shtml.

https://www.nimh.nih.gov/research-priorities/rdoc/nimh-rdoc-publications.shtml
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identify difficulties to finding reproducible and clinically meaningful stratifications
and suggest new directions for the field. We will argue that a fixation on simple case-
control type differences between well-defined subgroups has been a major limiting
factor in finding reproducible and clinically meaningful stratifications.

7.1 Measuring Biology in Big Data Cohorts

In recent years clinical neuroscience has undergone a tectonic shift away from
small, boutique studies towards big data cohorts. This entails an enormous increase
both in the number of different measures of biology and behavior that are acquired
and also in the size of the cohorts from which they are derived. For example, in
genetics, large international consortia and data sharing initiatives have emerged that
are providing increasing numbers of genome-wide significant hits for psychiatric
disorders (e.g. Ripke et al. 2014). However, the effect size of all individual
genetic variants discovered to date are small and even aggregation of many effects
through polygenic risk scores only explains a tiny fraction of the variance in the
phenotype of psychiatric disorders (e.g. Milaneschi et al. 2015). This means that
genetic measures are probably better suited to profiling and validating prospective
stratifications rather than deriving the stratifications themselves. At the same time,
advances in brain imaging techniques now make it possible to measure many
aspects of brain structure, function and connectivity non-invasively and in vivo.
There are also now many large population-based studies that acquire a range of
neuroimaging, behavioural and clinical measurements from large cohorts (e.g. the
UK Biobank study (Miller et al. 2016) and the Human Connectome Project (Van
Essen et al. 2013)). Together, this makes neuroimaging the most widely used—and
arguably most promising—method for deriving biologically based stratifications of
psychiatric disorders. However, many other measures also provide promising and
potentially complimentary information for this purpose; for example, blood-based
biomarkers (Lamers et al. 2013), continuous behavior monitoring from smartphones
and wearable sensors (Torous et al. 2017) or electronic monitoring of continuous
speech patterns (Bedi et al. 2015) but at the present time, these remain relatively
unexplored for the purposes of stratification. Of course, different measures can
also be combined via multi-modal data fusion (e.g. Wolfers et al. 2017), at the
expense of increasing the complexity of the analytical pipeline. Consequently, the
time has never been better for the application of machine learning based methods
for data-driven stratification of psychiatric disorders on the basis of biological
readouts. However, the advent of big data for clinical neuroscience brings particular
analytical challenges. These include difficulties in scaling off-the-shelf approaches
to high dimensional problems (Kriegel et al. 2009) and developing methods to
capture clinically relevant variation across large cohorts of participants whilst
separating that variation from nuisance variation (e.g. due to artefacts or site effects).
Meaningful stratification of psychiatric disorders is therefore heavily dependent on
the underlying analytical methodology.
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7.2 Overview of Analytical Approaches for Stratification

The overwhelming majority of applications of machine learning methods to big
data psychiatry have been supervised in the sense that they are provided with
labels and the learning process consists of estimating a mapping between inputs
(e.g. biomarkers) and outputs (e.g. diagnostic labels). There are many different
approaches for supervised learning, including support vector machines (Boser
et al. 1992), penalized linear models (Hastie et al. 2009) Bayesian approaches
(Rasmussen and Williams 2006) and deep learning (LeCun et al. 2015). Whilst
these differ with regard to the underlying model assumptions, associated estimation
procedures and the accuracy with which they can predict the target labels, the
fundamental idea behind all these approaches is the same in that the algorithm seeks
to maximize the accuracy of predicting the label of new data points (Fig. 7.1a). In
psychiatry, supervised learning has been widely used both for predicting diagnosis
(Wolfers et al. 2015) and quantitative psychometric variables (e.g. Mwangi et al.
2012) on the basis of neuroimaging biomarkers.

The supervised approach is reasonable if the labels are known in advance and
are both accurate and reliable. However, in psychiatry labelling errors are probably
relatively common (e.g. due to clinical or biological heterogeneity in addition to
misdiagnosis or comorbidity). With this in mind and since the aim of stratification
is to understand variation within the disease group (i.e. independently from the
diagnostic labels), supervised learning is not widely used for stratifying disease
groups. One exception is supervised learning methods that include mechanisms for
correcting errors in the labels (e.g. Young et al. 2013), which may be useful to
identify atypical samples.

In contrast, in unsupervised learning, the machine learning algorithm is not
provided with target values and learns to find structure in the data by applying
heuristics encoded in each algorithm to the data. There are many types of unsuper-
vised learning algorithm, including clustering, matrix factorization methods, latent
variable models and anomaly detection methods (Hastie et al. 2009). Unsupervised
learning approaches are often suitable for exploratory data analysis and are, on the
face of it, well suited to stratifying the phenotype of psychiatric disorders and are
widely used for this purpose (Marquand et al. 2016b; Schnack 2018).

7.3 Clustering

Clustering algorithms are probably the most widely used unsupervised approach in
general and are certainly the most widely used methods for stratifying psychiatric
disorders. The central idea is that an algorithm is trained to partition a set of data
points (i.e. subjects) into different clusters on the basis of some measurements (e.g.
derived from neuroimaging data), such that the samples in each cluster are more
similar in some sense to one another than to those in the other clusters (Fig. 7.1b).
This entails defining a measure of similarity or distance between data points (e.g.
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Fig. 7.1 Schematic overview of different approaches to parsing heterogeneity in psychiatric
disorders on the basis of biological data. (a) Supervised learning approaches regard the patient and
control groups as distinct entities, and thereby ignore heterogeneity within the data. (b) Clustering
algorithms aim to partition one or both of the groups into discrete clusters. Here a Gaussian
mixture model was estimated to partition the patient group into three clusters. Shown are the
ellipsoids corresponding to one standard deviation from the cluster centers. (c) A hybrid method
that combines clustering and distribution matching (Dong et al. 2016). Here the method estimates
a set of three transformations that match the distribution of the control group to the distribution
of the patient group. (d) A latent variable model that models symptoms as arising from a set of
three latent disease processes (e.g. Zhang et al. 2016). The data are represented according to a set
of latent variables (of which only two are shown as axes). Each datapoint from the patient group
is colored according to the proportion of each latent process it expresses via red, blue or green
hue. The loadings for three hypothetical data points are shown. (e) Outlier detection method that
estimates a decision boundary enclosing the control group, aiming to detect patients as outliers
(Mourao-Miranda et al. 2011). (f) Normative modelling approaches aim to estimate a normative
distribution over a reference cohort such that the abnormality of each individual participant can be
quantified via extreme value statistics. The extreme value abnormality score for one datapoint is
shown in the inlay along with a fit extreme value distribution. Note that the normative distribution
is defined with respect to a set of mappings between biology and behavior, analogous to ‘growth
charts’ in somatic medicine (Marquand et al. 2016a). See text for further details
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Euclidean distance or correlation) and the desired number of clusters. In the present
work, we largely gloss over the differences between different clustering algorithms
(e.g. K-means clustering, finite mixture modelling and graph-based clustering) and
label these approaches simply as ‘clustering’. We refer the interested reader to our
previous work for more detail, where we provide a detailed introduction to some
common clustering algorithms along with methodological considerations relating
to their implementation (Marquand et al. 2016b).

7.4 Studies Subtyping Psychiatric Disorders on the Basis
of Biology (‘Biotyping’)

As noted above, most applications to stratify psychiatric disorders on the basis of
biology are based on the application of off-the-shelf clustering techniques, where
the derived clusters are sometimes referred to as ‘biotypes’ (e.g. Clementz et al.
2016; Drysdale et al. 2017). One thing immediately apparent from a survey of the
literature is a paucity of studies that report stratifications derived from biological
measures, especially relative to the proliferation of applications of clustering
algorithms to psychometric data (Marquand et al. 2016b). This is perhaps surprising
given the strong motivation provided by the tight integration of research funding
with initiatives such as RDoC and ROAMER (Insel et al. 2010; Schumann et al.
2014). One reason for this may be that biological data are often complex and
high-dimensional with many different axes of variance. Clustering is a notoriously
difficult problem in high dimensions (Kriegel et al. 2009) because many axes of
variance may be artefactual or irrelevant and different axes may be important for
different clusters within the same clustering solution. As a result, most applications
reviewed here employ extreme dimensionality reduction, often training clustering
algorithms on as few as two dimensions or alternatively use parameters from other
models as features for clustering.

One of the earliest efforts to derive biotypes for stratifying psychiatric disorders
was provided by Brodersen et al. (2014) who stratified a cohort of schizophrenia
patients using Bayesian mixture model on the basis of parameters derived from a
model of working memory estimated from functional magnetic resonance imaging
(fMRI) data. This yielded three patient subgroups which differed in terms of
symptom severity. Another study used structural connectivity measures derived
from diffusion tensor imaging to stratify patients with first episode schizophrenia
(Sun et al. 2015). This study reported two subtypes, which differed in terms of their
profile of white matter abnormalities and symptom profile.

In a prominent study by Clementz et al. (2016), the authors derived a set of
three biotypes from large cohort of patients with psychosis spectrum disorders using
a broad panel of biomarkers, including neuropsychological, saccadic control and
electroencephalography measures. These subtypes cut across classical diagnostic
boundaries and had distinctive patterns of grey-matter reductions in a graded fashion
such that one of the biotypes had patterns of reduction intermediate between the
other two, a pattern also evident in relatives of the probands. Brain structural
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differences were further explored in a follow-up study (Ivleva et al. 2017), but
since these analyses were performed on the same cohort, this cannot be considered
a replication.

Another prominent study reported finding four biotypes of depression on the
basis of mappings between resting state fMRI connectivity measures and symptoms
derived from a multi-site cohort (Drysdale et al. 2017). These biotypes again crossed
classical diagnostic boundaries and had differential characteristics with regard to
symptoms and fMRI connectivity. The authors of this study performed limited
validation of these subtypes on additional data samples and also demonstrated
that the derived subtypes predicted treatment response (trans-cranial magnetic
stimulation).

Finally, two studies from the same group have aimed to stratify attention-deficit
hyperactivity disorder (ADHD) using functional connectivity measures derived
from on fMRI (Gates et al. 2014; Costa Dias et al. 2015). These reported different
numbers of clusters (3 and 5, respectively), and characterized the different subtypes
in terms of their connectivity profiles although in the case of (Costa Dias et al.
2015), these were also related to symptom severity. As noted by the authors of these
studies, this highlights that there are always multiple ways to partition cohorts using
clustering algorithms, even based on the same data. These alternative solutions may
be equally valid, for example when assessed according to different metrics (see
below for further discussion).

7.5 Alternatives to Biotyping

There are multiple alternative analytical approaches for stratifying psychiatric
disorders including hybrid methods that combine supervised learning with clus-
tering (Varol et al. 2017), hybrid methods that combine distribution matching and
clustering (Dong et al. 2016), methods that model the emergence of symptoms in
individual subjects as deriving from a linear combination of latent disease factors
(Ruiz et al. 2014; Zhang et al. 2016), outlier or anomaly detection methods (Mourao-
Miranda et al. 2011) and normative modelling techniques that aim to chart variation
in population cohorts and place each individual subject within the population range
(Marquand et al. 2016a).

For example, the method proposed in (Dong et al. 2016) is a hybrid of clustering
and distribution matching. This method was explicitly designed for structural brain
imaging data and tackles heterogeneity within the patient cohort by training an
algorithm that estimates a discrete set of transformations that warp the distribution
of control participants to match the patient distribution (Fig. 7.1c). The intuition is
that each of the different transformations encodes a different biotype. The method
also provides a posterior probability measure quantifying the certainty with which
each datapoint belongs to each biotype or, in other words, it provides a ‘soft’
clustering of the data. This was used to stratify a cohort of schizophrenia patients
on the basis of structural MRI data (Honnorat et al. 2018), yielding three subtypes
with different patterns of volumetric difference relative to control subjects.
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Another alternative approach is based on the assumption that each individual
expresses a set of latent disease factors to varying degrees, which together comprise
an individualized symptom profile (Ruiz et al. 2014; Zhang et al. 2016). Such
methods can be seen as relaxing the requirement that each subject belongs to
a single cluster or subtype (Fig. 7.1d). A particularly promising approach along
this line is topic modelling, which describes a collection of natural language
processing techniques that aim to find a set of topics that occur frequently in
a collection of documents such that each document is assumed to relate to
multiple topics. For example, in (Zhang et al. 2016) the authors applied a common
topic modelling technique—latent Dirichlet allocation (LDA; Blei et al. 2003)—to
stratify Alzheimer’s disease patients on the basis of structural MRI. In contrast to
clustering approaches, LDA models disease in each individual patient (analogous to
a ‘document’) as emerging from a pre-specified number of latent disease processes
(‘topics’), which are expressed to different degrees in different patients. Typically,
LDA is framed as a probabilistic model, which can readily yield quantities of
interest such as the probability that a given individual expresses a particular latent
disease factor. In, the study by Zhang and colleagues (Zhang et al. 2016), the
authors discovered three hierarchical latent disease factors characterized by different
patterns of atrophy and different trajectories of cognitive decline.

In contrast, anomaly or outlier detection methods aim to estimate a predictive
function or decision boundary that characterizes the support of the distribution
of a healthy class. The intuition then is that ‘abnormal’ samples can be detected
as outliers (Fig. 7.2e). Probably the most common approach in neuroimaging is
the one-class support vector machine (OC-SVM; Sato et al. 2012). For example,
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Fig. 7.2 Clustering algorithms can impose artificial categorical structure on underlying continu-
ous variation. (a) Clustering solution from a study stratifying depression on the basis of symptoms
and brain functional connectivity data (reproduced with permission from Drysdale et al. 2017).
Each axis describes subject level loadings from canonical correlation analysis. Different colors
represent different clusters and gray clusters are ambiguous data points that were excluded from
the analysis when computing the distinctiveness of each cluster. (b) The same data with the cluster
labels removed. It is clear that the evidence for clusters in the data is equivocal. The data could be
equally well—and probably better—explained using a continuous model along two dimensions
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Mourao-Miranda et al. (2011) applied this approach to fMRI data derived acquired
while healthy participants and patients with depression were performing an affective
processing task. The algorithm detected patients as outliers such that the degree
of abnormality detected correlated with depression symptoms. The OC-SVM can
be applied to relatively high dimensional problems, but only provides a decision
boundary. In other words, it does not characterize the distribution statistically, nor
provide estimates of variation within the distribution. For this, density estimation
techniques (Hastie et al. 2009) could theoretically be applied, but these are largely
limited to low dimensional problems.

Normative modelling (Marquand et al. 2016a; Fig. 7.2f) is an emerging statistical
technique that approaches the stratification problem from a different perspective.
Under this framework, a statistical model is estimated to chart centiles of variation in
clinical cohorts such that each individual patient can be placed within the population
distribution. This is analogous to the use of growth charts in somatic medicine to
map child development (e.g. in terms of height or weight) as a function of age. At the
heart of normative modelling is the estimation of mappings between psychometric
variables and a quantitative biological readout that provide estimates of variation
across the population. A straightforward example of such a mapping would be
between chronological age and brain structure to form a ‘brain growth chart’, which
is useful because most psychiatric disorders are rooted in an underlying trajectory
of brain development (Insel 2014). However, the method is agnostic to the type
of measures that are employed and it can be used to chart variation along any
biological-behavioural axis. For example, in (Marquand et al. 2016a) a normative
model of reward processing was estimated linking behavioural measures of delay
discounting with reward-related brain activity. A second key ingredient in normative
modelling is the use of extreme value statistics (Beirlant et al. 2004) to perform
statistical inference over the aspects of the pattern that are most abnormal. The
intuition behind this is that the method focusses on the most extreme differences
from the expected pattern, following the notion that those differences are those most
likely to be implicated in disease. In contrast, most of the more prevalent statistical
techniques (e.g. t-statistics and analyses of variance) focus on central tendency,
which is useful to detect mean differences between groups of participants but has
limited ability to provide inferences about either individual participants, or about the
aspects of the pattern that are most abnormal. The third key ingredient in normative
modelling is the choice of the reference cohort. The most straightforward choice is
to select only healthy participants such that deviations from the normative model can
be interpreted as deviations from a healthy pattern. However, a different reference
cohort could also be chosen, which includes subjects with different diagnoses as
well as healthy subjects. If the prevalence of the different disorders within such a
cohort matches the population prevalence, then such a cohort provides an accurate
reflection of how abnormalities can be interpreted with respect to the population at
large, which is often of interest in an epidemiological context.

Normative modelling has several distinguishing characteristics that set it apart
from other methods. First, it provides statistical measures of deviation from a
healthy pattern for each individual subject, in other words, providing personalized
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statistical predictions or ‘fingerprints’ that are at the heart of precision medicine
(Insel and Cuthbert 2015; Kapur et al. 2012; Mirnezami et al. 2012). Second,
normative modelling is completely agnostic to the diagnostic labels, which means
they can be included as predictor variables to explain variance in the reference
cohort. This is important because we must not overlook the discriminative power
of diagnosis in many cases (Weinberger and Goldberg 2014). Third, normative
modelling does not require that subjects share similar or overlapping patterns of
abnormality and does not assume that the clinical cohort can be cleanly partitioned
into subgroups although clustering algorithms can of course be trained on the
deviations derived from normative models. This means it is useful to understand
the variance structure in clinical cohorts where there are no clearly defined
subtypes (e.g. where pathology may be better described as following a spectrum of
functioning). In line with these considerations, some early application of normative
modelling in schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder
and autism spectrum disorders on the basis of structural MRI (Wolfers et al. 2018
https://www.ncbi.nlm.nih.gov/pubmed/30304337, https://www.biorxiv.org/content/
early/2018/11/27/477596) are showing that group-level difference—or in other
words differences in the ‘average patient’—are only the ‘tip of the iceberg’. Instead,
most of the variation in psychiatric disorders is highly individualized and at the
highest level of resolution (e.g. in terms of whole-brain voxel-level patterns of
structural differences) does not provide compelling evidence for the existence of
clusters.

7.6 Outlook and Challenges

There is a pervasive assumption that the optimal way to parse heterogeneity in
psychiatric disorders is to partition the phenotype into subtypes. This assumption
is effectively a recapitulation of the case-control approach and remains an implicit
element of initiatives such as RDoC and ROAMER (Insel et al. 2010). Indeed, a
criticism that has been leveled at RDoC is that it is in effect simply a new way to
perform subtyping (Weinberger and Goldberg 2014). The subtyping approach has
been successful in many other areas of medicine; for example, it has revolutionized
oncology (Kalia 2015). However, we argue that it may not be optimal for psychiatric
disorders. In psychiatry, few symptoms are unique to a single disorder and there
are hundreds of genetic polymorphisms associated with most psychiatric disorders,
all having small effect sizes and converging on similar symptoms (e.g. Betancur
2011; Ripke et al. 2014). Therefore, we argue that it may be unreasonable to expect
cleanly separable subtypes for most disorders and alternative conceptual models
may be more appropriate. One possibility is a ‘watershed’ model, which likens the
pathophysiological process to a river system where many causative factors of small
effect (e.g. genetic polymorphisms or environmental factors) begin as ‘tributaries’
and aggregate as they flow ‘downstream’ finding full expression in the syndromic
expression of the disorder, akin to a river delta (Cannon 2016). Importantly, the

https://www.ncbi.nlm.nih.gov/pubmed/30304337
https://www.biorxiv.org/content/early/2018/11/27/477596
https://www.biorxiv.org/content/early/2018/11/27/477596
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watershed model does not necessarily imply that subtypes will be evident in the
data.

We have reviewed elsewhere the extensive literature aiming to partition psychi-
atric disorders on the basis of symptoms and psychometric variables, where we
noted that this approach has still not converged on a consistent set of subtypes
despite considerable effort (Marquand et al. 2016b). Here, we have focused on
attempts to find biological subtypes or biotypes of psychiatric disorders. Whilst the
studies we have reviewed suggest that this may be possible, none of these have
been completely replicated at the present time and the degree of external validation
of the derived subtypes is modest. More importantly, it is important to recognize
that all the biotyping studies we have reviewed employed clustering algorithms,
which always yield a result. In other words, they will return a specified set of
clusters, regardless of whether the data support clusters. In general, there is no
universal metric to determine the ‘optimal’ number of clusters or to adjudicate
between different clustering algorithms for a given dataset, and as a consequence
a proliferation of various metrics have been proposed (Marquand et al. 2016b).
Unlike supervised learning, where there is a clear measure of model quality (i.e. the
accuracy with which new samples can be predicted), unsupervised learning models
can be compared in many different ways (e.g. cluster separability, reproducibility
or external validation accuracy) and it is usually not clear which is ‘optimal’.
Therefore, the final decision as to the ‘best’ clustering solution or algorithm
often remains largely a matter of taste (Hastie et al. 2009). Moreover, most
assessment metrics routinely used in practice are relative in the sense that they
compare prospective clustering solutions with one another, but do not test the ‘null’
hypothesis that there are in fact clusters in the data. Various methods have been
proposed that can be used to test whether clusters are ‘really there’ (Liu et al. 2008)
and to compare the suitability of continuous, categorical and hybrid models for the
data at hand (see Miettunen et al. 2016 for an overview). However, these approaches
are currently underutilised for this purpose in psychiatry.

In line with this, it has been suggested that the biotypes reported by Clementz
et al. (2016) may be better explained by a continuous dimensional represen-
tation relative to categorical subytpes (Barch 2017). We suggest here that the
depression biotypes presented by Drysdale et al. (2017) may also reflect an
imposed discretization of underlying continuous variation see Dinga et al. 2018
for further details https://www.biorxiv.org/content/early/2018/09/14/416321. In this
study, biotypes were derived by training a clustering algorithm on two orthogonal
mappings between brain connectivity and symptoms based on continuous subject
loadings derived from canonical correlation analysis (Fig. 7.2a). Following cluster
estimation, the authors increased the distinctiveness of their clusters by excluding
ambiguous samples. Without this post-processing step, it becomes apparent that the
evidence for the existence of clusters is equivocal in that the variation in the data
could equally well be explained with two continuous axes (Fig. 7.2b). We emphasize
that this does not imply that the findings reported are not biologically or clinically
relevant, rather that the use of clustering algorithm imposes a categorical structure
on the data that may not be optimal.

https://www.biorxiv.org/content/early/2018/09/14/416321
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We reviewed several alternative methods to stratify psychiatric disorders. Whilst
many of them are based on the same rationale as clustering approaches in that the
phenotype can be split in to biotypes (Varol et al. 2017; Dong et al. 2016), these
have features that ameliorate some of the problems inherent in applying ‘off the
shelf’ algorithms to biometric data. For example, a common feature of many of
these approaches (e.g. Marquand et al. 2016a; Varol et al. 2017; Dong et al. 2016) is
that they break the symmetry inherent in the case-control and clustering approaches
in the sense that they regard the disease cohort differently to the healthy cohort.
This can be advantageous for stratifying psychiatric disorders because it allows the
algorithm to focus on the manner in which patients deviate from a healthy pattern.
It is especially beneficial in contexts where the clustering is performed on the basis
of potentially high dimensional biological data because it means the clustering
algorithm is less likely to detect nuisance variation that is of greater magnitude than
disease-related effects (e.g. due to age or site).

Amongst the various methodological approaches we have reviewed, only a few
methods are agnostic to the presence or absence of subtypes in the data (Miettunen
et al. 2016; Marquand et al. 2016a; Mourao-Miranda et al. 2011; Zhang et al. 2016).
Normative modeling is one promising example and whilst normative modelling
can be used to derive features useful for clustering, its principal aim is to derive
statistical estimates of deviation for each individual subject so that each subject can
be compared to the normative or reference pattern. Another advantage of normative
modelling is that it aims to estimate a supervised mapping and can therefore focus
on the particular axes of variation (for example, the variation associated with a
particular cognitive domain). Clearly, the development of alternative methods for
stratifying the psychiatric phenotype are urgently needed.

As we briefly noted above, a major challenge for all methods is adequately and
automatically dealing with artefacts in clinical datasets. There are many known
sources of nuisance variance that are known to influence biological data and
it is often the case that nuisance variation can be orders of magnitude greater
than clinically relevant variation. This is particularly problematic because most
stratification is performed in an unsupervised manner. A well-known example is
head motion, which is widely acknowledged as a substantial challenge in fMRI
studies (Van Dijk et al. 2012), and it is often the case that (in expectation) clinical
groups move either more (e.g. ADHD) or less (e.g. depression) than healthy partic-
ipants. These problems are compounded in large data cohorts, where data are often
derived from multiple study sites, following different protocols. Moreover, nuisance
variation often overlaps with clinically-relevant variation because important clinical
or demographic variables are often not matched across study sites. Therefore finding
techniques to deal with this optimally is a substantial ongoing challenge (Rao et al.
2017). One notable method that tackles this problem explicitly is the approach
proposed by (Dong et al. 2016), which allows covariates such as age and sex to
be specified so that the transformations estimated by the method take those into
account.
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7.7 Conclusions

In this chapter, we have reviewed literature aiming to use biological measures and
big data cohorts to stratify psychiatric disorders. Whilst progress has clearly been
made, there are major challenges for the field to overcome if we are to bring psychi-
atry closer towards precision medicine. We have argued that a widespread fixation
on finding case-control type differences by partitioning the psychiatric phenotype
into sharply defined clusters has impeded progress. Whilst successful in other
areas of medicine, we argue that the complex multifactorial causes of psychiatric
disorders combined with considerable overlap of symptoms across disorders mean
that the biotyping approach may not be optimal in psychiatry. Currently only a few
theoretical models have been proposed that do not assume the existence of clusters
in the data (e.g. the ‘watershed’ model of Cannon 2016) and few analysis methods
have been proposed that can fractionate psychiatric phenotypes without imposing
clusters on the data. Alternative approaches are therefore urgently needed. Finally,
we note that replication remains a major challenge for all methods. In line with
the larger literature aiming to stratify psychiatric disorders (Marquand et al. 2016b;
Schnack 2018), the studies reviewed here have—at best—performed a modicum of
external validation, usually on the same cohort. At the time of writing, none of the
studies we have reviewed in this chapter have been fully replicated to the degree that
includes all steps in the analysis. This therefore remains an urgent priority.
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8How to Integrate Data fromMultiple Biological
Layers in Mental Health?

Rogers F. Silva and Sergey M. Plis

8.1 Overview

The human brain is a massively parallel learning machine that contains multiple
highly complex structurally and functionally overlapping subsystems, with pro-
cesses occurring at different temporal and spatial scales, and interacting with every
other bodily system through the peripheral nervous system. In order to gain a more
complete understanding of its organization and function, information from various
layers of this complex set of biological processes must be evaluated simultaneously,
in a truly synergistic fashion.

To begin with, collecting such information directly often entails invasive pro-
cedures that are restricted to very narrow patient populations, such as with elec-
trocorticography (ECoG) and deep brain electrodes. However, in order to be also
able to study much broader healthy population baselines, it is necessary to pursue
less invasive routes. Specifically, those enabled by means of indirect measurements
from secondary biological processes such as cerebral blood flow and induced
electromagnetic fields. While noninvasiveness often comes at the cost of blurring
some of the true underlying neurological signals, the greater availability of subjects
enables normative as well as comparative analyses, with far greater statistical power
due to the substantially increased sample sizes. Furthermore, one must also be
mindful of inherent sensor and device limitations dictating the temporal and spatial
resolutions of the data, which ultimately yield only fragments of the measured
processes, adding yet another layer of complexity to the data.

With these in mind, it is sensible to hereon broadly associate the term bio-
logical layer with different imaging modalities, i.e., the signal of some direct
or indirect neurobiological process captured by a device. Common examples of
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such modalities include, but are not limited to, structural, functional, and diffusion
weighted/spectrum magnetic resonance imaging (sMRI, fMRI, and DWI/DSI,
respectively), electro- and magneto-encephalography (E/MEG), functional near-
infrared spectroscopy (fNIRS), x-rays, computerized tomography (CT), positron
emission tomography (PET), single-photon emission CT (SPECT), intracranial
electrodes, genetic material information such as DNA microarrays, single nucleotide
polymorphism and DNA methylation, as well as metabolomic and microbiome
derivatives, etc. Demographic and behavioral information on individuals and popu-
lations of interest are also going to be considered modalities for the purposes of this
chapter.

Under this broad definition, we will focus on the integration of biological layers
by means of direct joint analysis of all modalities available. Joint analyses are those
which simultaneously utilize data from all modalities in a synergistic way and, thus,
can be categorized as data fusion approaches. A key requirement for these kinds of
analyses is that the information contained in each modality have been collected
on the same subject so that the data are naturally linked. For the same reason,
whenever feasible, simultaneous measurements are also preferred over (and likely
more informative than) measures from different sessions since that entails a stronger
link between modalities.

The goal of integrating multiple biological layers is to identify the neurobio-
logical processes underlying the measurements recorded in the data in order to
understand their function, structure, and interaction. Ideally, we want to make
predictions about these processes and be able to explain their causal mechanisms.
Each biological layer is itself only a part of the underlying process. For example,
blood flow picked up by fMRI and electrical activity of neurons registered by EEG
are parts of the same process of neural activity. Only together—plus many other
additional pieces of information, such as neural connectivity routes—they provide
a complete picture of the underlying mechanism. Available imaging modalities
provide a (partial) glimpse on many of the individual processes within a functioning
brain. When any of them are used, we are dealing not only with the partial
nature of the biological layers but also with the fact that each of the layers is
measured with uncertainty that is different for each imaging modality. Fortunately,
the uncertainty introduced by the employed imaging modality is often different
for each biological layer and, optimistically, can cancel if the imaging modalities
are properly combined. The difference in uncertainties is illustrated by MEG
and fMRI, where the former has arguably greater spatial, while the latter has
greater temporal uncertainty relative to the underlying process of neural activity.
Given the insufficient nature of each modality, the only way we can build a
complete understanding of the brain is by combining these complementary sources.
Together, the limited views from each modality allow us to peer into the underlying
biostructure. In summary, scientific discovery with data fusion should proceed in
cycles: measuring different physical processes at various biological and temporal
scales, synthesizing that information using specific methods, understanding the
underlying processes identified, and repeating with the gained insights.
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In the following sections, we will discuss two principled approaches to fusion
of multimodal imaging data. The first is blind source separation (BSS), which
deals directly with the problem of identifying underlying sources utilizing statistical
(un)correlation and (in)dependence within and across modalities. The second is
deep learning, focusing on multimodal architectures for classification, embedding,
and segmentation.

8.2 Blind Source SeparationMethods

Blind source separation (BSS) deals with the general problem of blindly recovering
hidden source signals y from a dataset x, i.e., without any knowledge of the function
f nor the parameters θ which generate x = f (y, θ). It can be organized into
subproblems according to the number of datasets contained in x and the presence
of subsets of y grouped as multidimensional sources within any single dataset. The
following taxonomy arranges BSS subproblems by increasing complexity:

SDU In the single-dataset unidimensional (SDU) subproblem, x consists of a
single dataset whose sources are not grouped. This is the seminal and most
studied area of BSS, including classical problems such as independent com-
ponent analysis (ICA) (Comon 1994; Bell and Sejnowski 1995; Hyvärinen
and Erkki 1997) and second-order blind identification (SOBI) (Belouchrani
et al. 1993; Yeredor 2000).

MDU In the multidataset unidimensional (MDU) subproblem, x consists of one
or more datasets and, while no sources are grouped within any dataset,
multidimensional sources containing a single source from each dataset
may occur. Examples in this area include canonical correlation analysis
(CCA) (Hotelling 1936), partial least squares (PLS) (Wold 1966), and
independent vector analysis (IVA) (Adalı et al. 2014; Kim et al. 2006).

SDM In the single-dataset multidimensional (SDM) subproblem, x consists of a
single dataset with one or more multidimensional sources. Examples include
multidimensional ICA (MICA) (Cardoso 1998; Lahat et al. 2012) and
independent subspace analysis (ISA) (Hyvärinen and Köster 2006; Szabó
et al. 2012).

MDM In the general multidataset multidimensional (MDM) problem, x contains
one or more datasets, each with one or more multidimensional sources
that may group further with single or multidimensional sources from the
remaining datasets. Examples include multidataset ISA (MISA) (Silva et al.
2014a,b) and joint ISA (JISA) (Lahat and Jutten 2015).

These definitions support a natural hierarchy in which subproblems are contained
within one another, with SDU problems being a special case of MDU, SDM, and
MDM problems, and MDU and SDM problems being special cases of MDM.

The “blind” property of BSS makes it particularly powerful and attractive in
the absence of a precise model of the measured system and with data confounded
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by noise of unknown or variable characteristics. These are marked signatures of
multimodal fusion applications exploring the extreme complexities of the human
brain, with largely heterogeneous noise characteristics and artifacts occurring across
data types. This is a clear indicator that BSS is ripe for application in multimodal
fusion of human brain data, as we will illustrate in the following sections. To begin
with, we present the mathematical notation for the general MDM problem, followed
by an example of an application of ICA to fusion of brain MRI and EEG features.
We then briefly review other more advanced applications of BSS to multimodal
fusion of brain imaging data before moving on to deep learning methods.

8.2.1 General MDM Problem Statement

Given N observations of M ≥ 1 datasets (or modalities), identify an unobservable

latent source random vector (r.v.) y = [
yT

1 · · · yT
M

]T
, ym = [y1 · · · yCm ]T , that

relates to the observed r.v. x = [
xT

1 · · · xT
M

]T
, xm = [x1 · · · xVm ]T , via a mixture

function f (y, θ), where θ are the function parameters. Both y and the transformation
represented by f (y, θ) have to be learned blindly, i.e., without explicit knowledge
of either of them. In order to make this problem tractable, a few assumptions are
required:

1. the number of latent sources Cm in each dataset is known by the experimenter;
2. f (y, θ) = Ay, i.e., a linear transformation, with θ = A;
3. A is a V̄ × C̄ block diagonal matrix with M blocks, representing a separable

layout structure such that xm = Amym, m = 1 . . . M , where C̄ = ∑M
m=1 Cm,

V̄ = ∑M
m=1 Vm, and each block Am is Vm × Cm;

4. some of the latent sources in y are statistically related to each other and this
dependence is undirected (non-causal), occurring both within or across datasets;

5. related sources establish subspaces (or source groups) yk , k = 1 . . . K , with
both K and the specific subspace compositions known by the experimenter and
prescribed in an assignment matrix Pk .

Under these assumptions, recovering the sources y amounts to finding a linear
transformation W of the observed datasets via the unmixing function y = Wx.
This is accurate when W = A−, the pseudo-inverse of A, which implies W is also
block diagonal, thus satisfying ym = Wmxm. Source subspaces are then estimated
as yk = PkWx. In the following, unless noted otherwise, the m-th Vm × N data
matrix is denoted as Xm, containing N observations of xm along its columns; X
denotes a V̄ × N matrix concatenating all Xm. Figure 8.1 illustrates this model,
starting with its special cases.
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Fig. 8.1 Side-by-side illustration of the generative and decompositional system representations
of linear BSS problems. Each of M datasets (or modalities) is represented by a matrix Xm, with
the same number of observations N along the columns. A column of Xm is represented by xm

(likewise for Ym and ym). The generative system representation describes how each modality is
generated from a set of underlying sources, in this case by a linear transformation of the source
matrix Ym through Am, the mixing matrix. In the general case, both Am and Ym are unique
to each modality. Associations across modalities are represented by subspaces (K), which are
collections of statistically dependent sources. This dependence is indicated by coloring sources
with the same color. The linearity of the generative system implies linearity of the decompositional
system. The decompositional representation indicates how source estimation occurs, namely by
decomposing modalities into their underlying sources via a linear transformation of each modality
Xm through Wm, the unmixing matrix. In this representation, each Vm-dimensional column xm is
linearly transformed into a Cm-dimensional vector ym, whose elements (the individual sources)
are then composed with other sources into subspaces, according to an assignment matrix P and
non-linearity h (·) ensuing from the choice of activation and objective functions
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8.2.2 Case Study: Multimodal Fusion with Joint ICA

Here we illustrate a case study of blind source separation applied to multimodal
fusion of brain imaging data. Specifically, we focus on joint ICA (jICA) (Calhoun
and Adalı 2009), a very attractive model because of its simplicity as an MDU-
type model cleverly designed to operate like an SDU-type model. Like ICA, it
seeks statistically independent yk such that the joint probability density function
(pdf) of all sources, p(y), factors as the product of its marginal subspaces: p(y) =∏K

k=1 p(yk). Its hallmark assumption, however, is that the same mixing matrix
A generates all modalities. It also assumes none of the multimodal sources are
statistically related, i.e., p(yk) = ∏M

m=1 p(ymk), ∀k, and that the pdf p(·) is the
same for all sources and modalities. This is equivalent to constraining the block-
diagonal structure in the MDU subproblem to Am = A, ∀m. However, rather than
choosing an M-dimensional joint pdf for yk , jICA combines corresponding sources
ymk of yk into a single one-dimensional pdf p(yi), where i is the source number and
i = k, which conveniently permits an SDU-type solution utilizing any off-the-shelf
ICA algorithm after simple side-by-side concatenation of the data matrices from
each modality. This also eliminates the requirement that the number of observations
N be the same (and corresponding) for all modalities, so N1 may differ from N2,
yielding N = N1 +N2 and V = V1 = V2 = number of subjects after concatenation.
Thorough simulation studies (Silva et al. 2014c) have shown that jICA is fairly
robust to violation of the independence across modalities and same pdf assumptions
but not so with violation of the same mixing matrix A assumption, which resulted
in poorer performance.

Three seminal works have utilized joint ICA for multimodal fusion in brain
imaging as a means to draw upon each modality’s strengths and provide new
information about the brain not offered by either modality alone. Firstly, fusion
of multitask fMRI features (Calhoun et al. 2006b) promoted the direct use of
data modeled at the subject level in a “unified analytic framework” for joint
examination of multitask fMRI activations, leading to interesting, new findings
that were missed by traditional analyses. Blood oxygen level dependent (BOLD)
fMRI scans from 15 healthy control subjects and 15 outpatients with chronic
schizophrenia matched for age, gender, and task difficulty were collected during two
separate tasks: an auditory “oddball” task (AOD) and a Sternberg working memory
task (SB). For every subject, regressors were created by modeling correct responses
to task-specific stimuli as delta functions convolved with a canonical hemodynamic
response function (HRF). These regressors plus their temporal derivatives and an
intercept were included in a general linear model (GLM) of multiple regression fit
to every voxel timeseries. The resulting AOD target-versus-standard contrast and
SB recognition (or recall) contrast against baseline from each subject (averaged
over all levels of difficulty) were corrected for amplitude bias due to spatially
varying latencies using derivative boost and then arranged into matrices X1 and
X2 (AOD and SB features, respectively). Both matrices were normalized to have
the same average sum-of-squares before concatenation, followed by (joint) PCA
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data reduction and ICA, using the extended Infomax algorithm to adaptively allow
some flexibility on the combined source pdfs p(yi) and, thus, mitigate potential
side effects of violations to the same pdf assumption. Finally, rather than testing
thousands of voxels, two-sample t-tests on each column of the shared subject
expression profiles A were conducted to identify sources with significant group
differences in coupling (regarded as a relative measure of the degree of group-
level functional connectivity difference). For the identified source (Fig. 8.2), the
joint probability of the multitask data p(x1(n1), x2(n2)) was assessed by means
of subject-specific joint histograms, where nm were the voxel indexes for modality
m sorted from largest to smallest by their source values ymn over all n = 1, . . . , N ,
on voxels surviving an arbitrary |Z| > 3.5 threshold.

Secondly, fusion of fMRI and sMRI features (Calhoun et al. 2006a) enabled a
direct study of the interactions and associations between changes in fMRI activation
and changes in brain structure contained in sMRI data. Utilizing probabilistic
segmentation (soft classification) maps of gray matter (GM) concentration derived
from T1-weighted sMRI images and the AOD target-versus-standard contrast from
the same subjects described above, feature matrices X1 and X2 were created,
respectively. The sign of alternating voxels was flipped in GM maps to yield zero-
mean maps for each subject (this step was undone after jICA estimation and before
histogram computation and visualizations). Before concatenation of X1 and X2,
both matrices were normalized to have the same average sum-of-squares. Joint
PCA data reduction and ICA followed, using the extended Infomax algorithm to
adaptively allow some flexibility on the combined source pdfs p(yi) and, thus,
mitigate potential side effects of violations to the same pdf assumption. Like in the
multitask case, two-sample t-tests on each column of the shared subject expression
profiles A were conducted to identify sources with significant group differences
and, for the identified source (Fig. 8.3), the joint probability of the multimodal data
p(x1(n1), x2(n2)) was assessed by means of subject-specific joint histograms.

Lastly, fusion of EEG and fMRI features (Calhoun et al. 2006c) from 23
healthy control subjects enabled an attempt to resolve neuronal source activity
with both high temporal and spatial resolution without needing to directly solve
hard, untractable inverse problems. Event related potentials (ERP) were generated
by time-locked averaging target epochs of the EEG signals from the midline
central electrode (Cz) 200ms before to 1200ms after each target stimulus in an
auditory “oddball” task. Also, t-statistic maps were obtained from fitting a GLM
of regression to every voxel timeseries of a BOLD fMRI scan during the same
oddball task, for a target-versus-standard contrast. Both features (ERPs (X1) and
t-statistic maps (X2)) were computed on the same subjects for both modalities,
with ERPs being interpolated to a number of ERP timepoints (N1) that matched
the number of fMRI voxels (N2). Joint estimation of the ERP temporal sources (Y1)
and t-map spatial sources (Y2) was carried out with jICA. High temporal and spatial
resolution “snapshots” were then estimated by combining the multimodal sources,
first as rows of FN1×N2 = ∣

∣Y�
1

∣
∣ Y2 (an fMRI movie at high temporal resolution—

Fig. 8.4), then as rows of EN2×N1 = ∣∣Y�
2

∣∣ Y1 (a set of voxel-specific ERPs at
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Fig. 8.2 Joint patterns of multitask group differences in schizophrenia. Top panel: Coupled joint
source (network of co-varying maximally spatially independent maps) with significant difference
in mixing coefficients between healthy controls and schizophrenic patients. Schizophrenia patients
demonstrated lower mixing coefficient values A (the ICA loadings), which was interpreted as
decreased functional connectivity in the joint network, particularly in temporal lobe, cerebellum,
thalamus, basal ganglia, and lateral frontal regions, consistent with the cognitive dysmetria and
frontotemporal disconnection models. Lower panel: (a) Subject-specific joint histograms: the
correlation between the two tasks was significantly higher in patients than in controls, suggesting
they activated “more similarly” on both tasks than controls; (b) Difference of group average
histograms; (c,d) Marginal histograms: more AOD task voxels were active in controls and the SB
task showed heavier tails in patients. Overall, the authors concluded that “patients are activating
less, but also activating with a less-unique set of regions for these very different tasks.” This
suggested “both a global attenuation of activity as well as a breakdown of specialized wiring
between cognitive domains.” Copyright (2005) Wiley. Used with permission from V. D. Calhoun,
A method for multitask fMRI data fusion applied to schizophrenia, Human Brain Mapping, John
Wiley and Sons
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Fig. 8.3 Joint patterns of structural and functional group differences in schizophrenia. A joint
multimodal independent source (not shown) with significant difference in mixing coefficients
between patients and controls (higher for controls than for patients). Healthy controls showed
mostly higher AOD activation in bilateral temporal lobe structures and cerebellum, associated with
lower GM concentrations in bilateral frontal and parietal, as well as right temporal regions (not
shown). A hypothesis of GM regions serving as “a morphological substrate for changes in AOD
functional connectivity in schizophrenia” was suggested based on the coupling of those modalities
via their shared mixing coefficients. The figure illustrates the t-values of a voxel-wise two-sample
t-test for controls vs. patients of the data (X1 and X2) within the source regions surviving a
|Z| > 3.5 threshold: (a) group differences in the AOD data over regions detected in the AOD part
of the joint source (no outline) and GM part of the joint source (outlined in white), showing “more
AOD activation in controls than patients.” (b) group differences in the GM data over regions
detected in the AOD part of the joint source (no outline) and GM part of the joint source (outlined
in white), showing “GM values are increased in controls” over the AOD-detected regions, and
decreased over the GM-detected regions (more so on the left than on the right). Orange: controls
> patients; blue: the opposite. Copyright (2005) Wiley. Used with permission from V. D. Calhoun,
Method for Multimodal Analysis of Independent Source Differences in Schizophrenia: Combining
Gray Matter Structural and Auditory Oddball Functional Data, Human Brain Mapping, John
Wiley and Sons

high spatial resolution—not shown), where | · | is the element-wise absolute value
function. Overall, the results provide compelling evidence of the utility of such
descriptive representation of the spatiotemporal dynamics of the auditory oddball
target detection response, allowing the visualization, in humans, of the involved
neural systems including participatory deep brain structures.

In summary, these results corroborate with previous evidence that methods
combining the strengths of both techniques may reveal unique information and
provide new insights into human brain function.
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Fig. 8.4 Spatiotemporal dynamics of the auditory oddball target response. The N1 peak for the
ERP data corresponded to primary and secondary auditory regions of the temporal lobe, and
motor planning regions, as was expected following the initial auditory stimulus and the ensuing
preparatory motor activity for the button press. Similarly, the N2 peak showed correspondence
with extensive temporal lobe areas, including heteromodal association cortex, with motor planning,
primary motor, and cerebellar regions also present, consistent with regions typically involved in
the execution of the motor response. The P3a peak corresponded with additional temporal lobe
regions, somatosensory cortex, and brain stem activity, consistent with what would be expected. In
particular, the reported association of brain stem activity was evidence supportive of a previously
hypothesized role for the locus coeruleus norepinephrine (LC-NE) system in generating the P3.
This led to the conclusion that jICA can “reveal electrical sources which may not be readily visible
to scalp ERPs and expose brain regions that have participatory roles in source activity but may not
themselves be generators of the detected electrical signal.” The image shows positive (orange) and
negative (blue) Z values. Reprinted from NeuroImage, Vol 30 (1), V. D. Calhoun et al., Neuronal
chronometry of target detection: Fusion of hemodynamic and event-related potential data, Pages
544–553, Copyright (2006), with permission from Elsevier

8.2.3 Advanced Blind Source Separation

The vast majority of approaches for multimodal analysis with BSS are rooted on
MDU models. Their key strength is in the ability to not only utilize uncorrelation (or
independence) between hidden sources for separation, like separate SDU models for
each modality would do, but also leverage the correlation (or dependence) among
corresponding multimodal sources to help steer the estimation procedure, auto-
matically identifying linked sources. This increases the overall source separation
power by leveraging information in one modality to improve estimation in the other
modalities and vice-versa. In the following, we briefly review a number of MDU
models and their applications to brain data analysis. The reader is encouraged to
explore a recent review (Silva et al. 2016) which outlines further details on the
models discussed below.
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When (un)correlation, i.e., linear (in)dependence, is the sole mechanism for
identification and separation of the sources, the models are categorized as second-
order statistics (SOS) models. Classical algorithms such as CCA (Hotelling 1936)
and PLS (Wold 1966), as well as more recent models such as multiset CCA
(mCCA) (Kettenring 1971) and second-order IVA (IVA-G) (Anderson et al. 2010,
2012; Adalı et al. 2014) fall under this category. CCA maximizes the correlation
between related source pairs yk=i = [y1i , y2i]� within the same subspace k, where
y1i = W1ix1 and y2i = W2ix2 for i = 1 . . . C sources, and Wmi is the i-th
row of Wm, while PLS maximizes their covariance instead. Some extensions of
these approaches have focused on expanding these notions beyond just 2 datasets
(or modalities), like multi-set CCA (mCCA) (Correa et al. 2009), as well as
leveraging higher-order statistics (HOS) to exploit source independence rather than
uncorrelation, as in higher-order IVA (Anderson et al. 2013).

CCA’s closed form solution for M = 2 datasets was utilized by Correa et al.
(2008) to identify highly correlated subject expression profiles across fMRI+ERP
and fMRI+sMRI datasets (with N = number of subjects). For three modalities,
mCCA based on sum of squared correlations (SSQCOR) was utilized for 3-way
fusion of fMRI+ERP+sMRI (Correa et al. 2009), also seeking correlated subject
expression profiles. In the case of fusion of simultaneous (concurrent) fMRI+EEG,
efforts have been made to identify correlated temporal profiles (N = time points)
using mCCA across modalities and subjects (one downsampled, HRF-convolved
single-trial ERP dataset and one fMRI dataset per subject: M = 2 × number of
subjects) (Correa et al. 2010). In all cases above, the mixing matrix was estimated
as Am = XY−

m, motivated by least squares projection. A CCA-type analysis was
also pursued in source power comodulation (SPoC) (Dähne et al. 2014a), seeking
associations between windowed variance profiles (neuronal oscillations from EEG)
in y1 and a single known fixed reference source (behaviorally relevant parameters)
y21 (considered to be already unmixed). Extensions of this method include canonical
SPoC (cSPoC) (Dähne et al. 2014b), which pursued CCA between “envelope”
transformations (instantaneous amplitudes) of ym, where xm were rest EEG data
from the same subject filtered at different frequency bands, and multimodal
SPoC (mSPoC) (Dähne et al. 2013), which pursued CCA between simultaneously
measured EEG (or MEG) temporal sources y1 and temporally filtered windowed
variance profiles of fNIRS (or fMRI) temporal sources y2. The key differences
between CCA and SPoC-type approaches are that y1 and y2 can have different
number of observations and at least one set of sources undergoes a non-linear trans-
formation. Another recent variant of CCA for multimodal fusion in neuroimaging is
structured and sparse CCA (ssCCA) (Mohammadi-Nejad et al. 2017). This approach
also identifies highly correlated subject expression profiles from multimodal data
but imposes non-negativity, sparsity, and neighboring structure constraints on each
row of Wm. These constraints are expected to improve the interpretability of the
resulting features directly from Wm (i.e., with no estimation of Am). The approach
was utilized for fusion of eigenvector centrality maps of rest fMRI and T1-weighted
sMRI from 34 Alzheimer’s disease (AD) and 42 elderly healthy controls from the
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Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, identifying two sets
of multimodal regions highly associated to the disease label.

For PLS, Chen et al. (2009) utilized PLS regression to analyze GM concentration
images from sMRI and 18F-fluorodeoxyglucose (FDG) PET in two ways: (1)
defining X1 as the GM maps from N subjects, X2 as the FDG maps from the same N

subjects, and utilizing the (multivariate) PLS2 deflation strategy (Silva et al. 2016) to
predict the FDG maps from the GM maps; and (2) defining X1 = [X�

FDG, X�
GM ]�,

i.e., the (V1 + V2) × N spatial concatenation of FDG and GM maps, and X2
as the 1 × N age group label (younger or older), using (univariate) PLS1 for
deflation (Silva et al. 2016), deflating only X2 (but not X1, for the sake of better
interpretability). The latter approach is akin to jICA in the sense that the joint spatial
features “share” similar expression levels over subjects, although here data reduction
occurs at the feature dimension (Vm) instead of the subject dimension (N ). The
same approach was recently used with 3 modalities on mild cognitive impairment
(MCI) patients, some of which had converted to Alzheimer’s disease (AD) and some
who had not (Wang et al. 2016). A similar study on a larger population is also
available (Lorenzi et al. 2016).

In the case of modalities whose data can be arranged into multidimensional
arrays, it is possible to utilize multilinear algebra to extend PLS into multi-way1

PLS (N-PLS). This was utilized to fuse simultaneous EEG and fMRI recordings
of subjects resting with eyes closed (Martínez-Montes et al. 2004). The data was
organized into a 3-way tensor X1 with the V1 × N × D EEG data and a matrix (2-
way tensor) X2 with the V2 × N fMRI data, where N was the number of timepoints
(and corresponding EEG ‘segments’), V1 was the number of frequencies in the EEG
spectrum of each EEG segment, V2 was the number of fMRI voxels, and D was
the number of EEG electrode channels. For the EEG data, the frequencies of each
electrode were convolved with the HRF over the time dimension to yield temporal
“envelopes” of the EEG signal that were comparable to the fMRI timeseries.
The model used for the EEG tensor was equivalent to X1,d = A1diag(bd)Y1,
d = 1, . . . , D, where diag(bd) is a diagonal matrix with bd in the diagonal, i.e.,
the same decomposition A1Y1 was estimated in every EEG channel except for a set
of scaling values bd specific to each channel, which can be interpreted as a model of
shared (i.e., same) sources Y1 with electrode-specific mixing A1,d = A1diag(bd).
The covariance between the temporal EEG envelope sources Y1 and fMRI time
course sources Y2 was then maximized, utilizing an extension of the PLS2 deflation
strategy, which accommodates tensors, to predict the fMRI timeseries X2 from the
EEG envelope sources Y1. This procedure yielded an fMRI map (a column of A2)
whose time course (row of Y2) covaried highly with an EEG envelope (row of
Y1) corresponding to an alpha band spectrum (column of A1) and a topographical
map described by the electrode-specific scalars bd . This topographical map was

1While here “multi-way” refers to the order of a tensor (i.e., the number of data dimensions), the
term multi-way has also been used in the literature to refer to the number of modalities being fused.
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also studied using current source localization to identify the generators of the “EEG
alpha rhythm”.

For IVA, in comparison to mCCA, there are two key differences: (1) W is not
constrained to have orthogonal rows,2 and (2) HOS can be utilized to identify the
sources. Together, these differences allow IVA to generalize mCCA, attaining more
compact representations in A (Adalı et al. 2015) and leveraging HOS dependence
between linked sources for improved separation.3 Moreover, in a comparison with
jICA, Adalı et al. (2015) noted that although IVA is more flexible when the subject
expression profiles differ across a subset of the datasets (i.e., when the “same
mixing matrix” assumption of jICA is violated), in very small N (number of
subjects) regimes HOS estimation is unreliable and, thus, infeasible. Therefore,
IVA-G was utilized instead, since it relies exclusively on SOS, just like mCCA.
In the study, a GLM contrast map from fMRI, a GM concentration map from
sMRI, and an ERP timeseries from EEG were obtained from 22 healthy controls
and 14 schizophrenic patients (N = 36 subjects) performing an AOD task. Results
from single and pairwise combinations of modalities were compared against the
three-modality case. The study concluded that, for this particularly small dataset,
“jICA provides a more desirable solution” using a flexible density matching ICA
algorithm, a result likely driven by the drastically larger number of observations in
the jICA model versus that of IVA for this study.

Another class of data fusion algorithms is based on two-step approaches that
pursue BSS of either A or Y separately, after fitting an initial BSS model on
X. Two models that stand out in this class are “spatial” CCA+jICA (Sui et al.
2010) and mCCA+jICA (Sui et al. 2011). Spatial CCA+jICA uses CCA to initially
identify correlated sources YCCA

1 = WCCA
1 X1 and YCCA

2 = WCCA
2 X2 in the usual

way. However, within each modality, these CCA sources are just uncorrelated, and
their separation is not guaranteed if the underlying source (canonical) correlations
are equal or very similar (Sui et al. 2010). Thus, jICA on the concatenated
source matrices YCCA

1 and YCCA
2 is utilized to further identify joint independent

sources YjICA
1 = WjICAYCCA

1 and YjICA
2 = WjICAYCCA

2 , where WjICA is shared
across modalities. The final mixing matrix of the spatial CCA+jICA model is
then estimated as Am = (

WjICAWCCA
m

)−
. This model was utilized on multitask

fMRI contrast maps derived from subject-level GLM (see Sect. 8.2.2), with V =
subjects and N = feature dimensionality (here, voxels), resulting in interpretable
multitask independent sources with similar (i.e. highly correlated) spatial map
configurations (Sui et al. 2010). To note, such property should also be attainable with
IVA directly applied to Xm and is worth of further investigation. The mCCA+jICA
approach (Sui et al. 2011), on the other hand, utilizes mCCA to initially iden-
tify highly correlated subject expression profiles (rather than features) across m

2IVA-G is identical to mCCA with the GENVAR cost, except it also allows non-orthogonal W.
3The IVA cost is a sum of M separate ICAs (one per dataset) with an additional term to
increase/retain the mutual information between corresponding sources across datasets.
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modalities, Y�
CCA,m = XmW�

CCA,m, where Xm is V × Nm (number of subjects (V )
by feature dimensionality (Nm)). Notice the multiplication from the right of Xm and
the matrix transposes resulting from V being treated as the observations. Thus, the
mCCA V × Nm mixing matrices constitute the features estimated by least squares
as A�

CCA,m = (Y�
CCA,m)−Xm. Joint ICA is then performed on the concatenated

mixing matrices A�
CCA,m (along the feature dimension Nm) to identify joint sources

YjICA,m = WjICAA�
CCA,m, where the V × V matrix WjICA is shared across

modalities. The final mixing matrix of the mCCA+jICA model is then estimated
as Am = Y�

CCA,mW−1
jICA. This model was used by Sui et al. (2011) to perform

fusion of GLM-derived fMRI contrast maps and DWI fractional anisotropy (FA)
maps from each subject, yielding good separation across 62 healthy control (HC),
54 schizophrenic (SZ), and 48 bipolar (BP) disorder subjects, as indicated by pair-
wise two-sample t-tests of the group mixing coefficients in each column of each Am.
Source maps for each group and modality were obtained by back-reconstruction,
partitioning Am into three blocks, Ag,m, g ∈ {HC, SZ, BP}, one from each group
respectively, and computing Yg,m = (Ag,m)−Xg,m. In a 3-way study, Sui et al.
(2013) explored this approach to study group differences between 116 healthy
controls and 97 schizophrenic patients, fusing GLM-derived contrast maps for the
tapping condition of a block-design auditory sensorimotor task, together with FA
maps and GM concentration maps from each subject. Finally, a very large study by
Miller et al. (2016) on V = 5,034 subjects from the UK Biobank cohort defined X1
as a collection of N1 = 2,501 image-derived phenotype (IDP) variables (individual
measures of brain structure from T1-, T2-, and susceptibility-weighted sMRI, brain
activity from task and rest fMRI, and local tissue microstructure from diffusion
MRI), and X2 as a collection of N2 = 1,100 non-imaging phenotype (non-IDP)
variables extracted from the UK Biobank database (grouped into 11 categories) on
the same subjects. In this study, the subject expression profiles were combined into
a single shared profile, Y�

CCA = Y�
CCA,1 + Y�

CCA,2, which was used to estimate the

modality-specific CCA mixing matrices, i.e., the features4 A�
CCA,m = (Y�

CCA)−Xm.
Moreover, rather than estimating mixing matrices with the form above, a final
shared mixing matrix of the mCCA+jICA model is estimated as A = Y�

CCAAjICA,

where AjICA =
[
A�

CCA,1, A�
CCA,2

]
·
[
YjICA,1, YjICA,2

]−
([ · , · ] indicates matrix

concatenation).5

4The MATLAB code used for this study (available at http://www.fmrib.ox.ac.uk/ukbiobank/
nnpaper/ukb_NN.m) actually implements this step as

[
ACCA,1, ACCA,2

] = F (Ryx), where F(·) =
atanh(·) is the element-wise Fisher transform of the C × (N1 + N2) cross-correlation matrix

Ryx = diag
(
YCCAY�

CCA

)− 1
2 (YCCAX)diag

(
X�X

)− 1
2 between yCCA and x�, diag(B) is a diagonal

matrix containing only the diagonal elements of B, and X = [X1, X2] is a matrix concatenation.
Equivalence to the form indicated in the main text is claimed but not proven.
5Note that the implementation of mCCA+jICA in that work utilized simple matrix transpose
instead of the pseudo-inverses indicted above, possibly presuming that the columns of Y�

CCA and

rows of
[
YjICA,1, YjICA,2

]
are orthonormal due to uncorrelation and independence, respectively.

http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/ukb_NN.m
http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/ukb_NN.m
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Finally, approaches such as Parallel ICA (Liu et al. 2007) make up a unique class
of BSS methods that seek to attain multiple goals simultaneously in an adaptive
fashion. Specifically, rather than pursuing a decomposition into two sequential steps
like with mCCA+jICA, Parallel ICA carries out separate ICA decompositions of
each modality (i.e., in “parallel”) while simultaneously identifying and reinforcing
associations (in the form of correlations) among specific rows/columns of Am, Ym,
or both, depending on how the modalities are treated/organized (i.e., if one or
more of the datasets is transposed or not). The most widely used implementation
simultaneously optimizes for maximal independence among sources ym for each
modality, treating the columns of Ym as observations (like multiple separate SDU
models), and maximal correlation among corresponding mixing coefficients ak =
[a1k, a2k, . . . , aMk]� over modalities, treating the rows of Am as observations (like
an MDU model, but operating on pair-wise correlations individually rather than as
a cohesive correlation matrix). These are typically competing objectives, leading
to a trade-off between them (Vergara et al. 2014). Parallel ICA has been widely
used in imaging genetics, offering a direct approach to identify neuroimaging
endophenotypes related to various mental illnesses by fusing modalities such as
fMRI and SNP (Liu et al. 2009), sMRI and SNP (Meda et al. 2012), as well as
fMRI, sMRI, and SNP in a 3-way analysis (Vergara et al. 2014). It has also found
use in fusion of resting-state networks (RSN) and behavioral measures (Meier et al.
2012).

While BSS has proven to be very fruitful for multimodal fusion thus far, it
has mostly been focused on MDU methods. Much stands to be gained from
subspaces that span multiple sources within a single dataset in terms of both
improved representation power of complex features and, especially, subject-specific
characterizations. Such MDM approaches are poised to move multimodal fusion
analyses much further and address some of the current challenges and limitations of
the area. Indeed, MDM models can be seen as two-layer-deep multimodal networks
with fixed connections at the second layer. Thus, one interpretation of MDM models
is that they have the ability to recover certain non-linear mixtures of the sources.
Given the nature of complex systems such as the brain, sources are highly likely to
be non-linearly mixed, which also serves as motivation to the deep learning methods
described in Sect. 8.3.

8.2.4 Further Reading

For a unifying BSS modeling framework and discourse on the connections between
various additional BSS methods applied to multimodal and unimodal brain imaging
data, see Silva et al. (2016).

For a general review on multimodal fusion for brain imaging data, see Calhoun
and Sui (2016).

For an overview of methods, challenges, and prospects of multimodal fusion
beyond the scope of brain imaging, see Lahat et al. (2015).



150 R. F. Silva and S. M. Plis

For a broader discussion of methods beyond BSS and their application to
multimodal brain imaging integration, see Biessmann et al. (2011).

For a clear, generalized description of tensor analysis and fusion as coupled
matrix-tensor factorization methods, see Karahan et al. (2015).

For a comprehensive and mathematically oriented account of SDU models, see
the Handbook of BSS (Comon and Jutten 2010).

Finally, the less experienced reader interested in a smooth introduction to the
preprocessing strategies leading into ICA (and beyond) are recommended to check
out the excellent ICA book from Hyvärinen et al. (2002). Those readers might also
enjoy the numerous insights contained in the chapter about methods grounded on
information theory (including ICA) by Haykin (2008).

8.3 Deep LearningMethods

In the previous section we presented blind source separation approaches in the
context of multimodal fusion, particularly those based on MDU models, which
may be construed as items of a more general area of unsupervised learning.
Naturally, the models considered thus far utilize only a single level of linear
transformation of sources (for generation) or data (for decomposition). However, if
deeper chains of linear transformations are considered, each followed by a nonlinear
activation function of its outputs (Goodfellow et al. 2016), much more powerful
and flexible models can be obtained, naturally allowing compositions of multiple
modalities, all while resorting to just simple stochastic gradient descent (SGD) for
optimization (Goodfellow et al. 2016, Section 8.3.1). While these deeper models
are able to approximate arbitrarily complex nonlinearities in the data, simple SOS
or HOS does not suffice to attain the typical “blind” property that is characteristic
of linear BSS (Comon and Jutten 2010, Chapter 14). Thus, for the purposes of
this section, we forfeit this property in favor of supervised deep models, which, in
neuroimaging, constitute the majority of successful deep learning results obtained
from real multimodal brain imaging data.

Feedforward Neural Networks, or multilayer perceptrons (MLPs), are a classic
model for function approximation, such as for classifiers, where y = G(x) maps
an input data sample x to output labels y. The mapping G(·) can be approximated
by an L-layer network g (x,Φ) = gL(gL−1(· · · (g1(x)))) with parameters Φ. Each
function gl is defined as a linear model Wlgl−1 + bl , with weights Wl and bias bl ,
followed by nonlinear functions h (the activation functions), such that:

gl = h(Wlgl−1 + bl), (8.1)

where g0 = x, and Φ = {Wl , bl ; l = 1 . . . L}.
In the case of the increasingly popular convolutional neural networks (CNNs),

instead of a matrix multiplication Wlx, convolution with some kernel Wl is utilized
at each layer:
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gl = h(Wl ∗ gl−1 + bl). (8.2)

In this case, it is common to also define gl at certain layers as other opera-
tions such as pooling, for example “max pooling” (Zhou and Chellappa 1988),
normalization, for example batch normalization (Ioffe and Szegedy 2015), or
dropout (Srivastava et al. 2014).

CNNs have multiple advantages (Goodfellow et al. 2016) over MLPs when the
input data contains local correlations. CNNs exploit that with their local and, as
such, sparse connections. If in MLPs we are connecting every input with every
output, here we are applying a kernel to only a small region of input defined
by the kernel size. Yet, in deeper layers, neurons are still indirectly connected to
larger regions of the input. The size of the region a neuron connects to within its
input layer is determined by the size of its receptive field, which depends on the
CNN’s hyperparameters and architecture. Overall, local connectivity reduces the
number of parameters, computational complexity and memory requirements. All
that is achieved via parameter-tying, i.e., when the same parameters are (re)used for
multiple locations of the input. Furthermore, convolving the same parameter kernel
with the input yields translation invariance property of images.

When the CNN is used as a classifier, in which use it has arguably revived
increased interest to neural networks and started the ongoing deep learning rev-
olution (Krizhevsky et al. 2012), then the convolutional layers are followed by a
few feed forward layers with the softmax prediction at the end. However, for some
applications, such as segmentation, it is preferable to stay within convolution layers
only and in this case the network is called fully convolutional (Long et al. 2015)

Both CNN types are shown in Fig. 8.5 and in the following sections we will give
a short overview of the use of these models.

Fig. 8.5 Convolutional and fully convolutional neural networks. When used for classification
tasks, CNNs typically feed directly into fully connected (FC) layers before classification. In
segmentation tasks, however, fully convolutional networks can better retain the spatial structure
of the data
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8.3.1 Multimodal Classification

Feed forward neural networks are powerful classifiers that can achieve superior
accuracy when trained on representative data. Their flexible and extensible archi-
tecture can be adjusted to handle cases that arise in practice. Ulloa et al. (2018)
have built a multimodal classifier which combines structural and functional data to
predict schizophrenia from brain imaging data (see Fig. 8.6). However, typical brain
imaging datasets are comprised of fairly small numbers of subjects. To overcome
the large data size requirements for training deep models, synthetic data generation
approaches based on SDU models such as ICA have been proposed for augmenting
these small datasets (Castro et al. 2015; Ulloa et al. 2015). Expanding on this idea,
Ulloa et al. (2018) proposed to augment the training sets of datasets originating
from different modalities. The augmentation process involves training a spatial
ICA model for each modality (N = number of voxels) to learn both mixings Am

and sources Ym. Then, using only the labels of the training set, multidimensional
sampling generates multiple new instances of mixing matrices Ar

m similar to Am.
These are then combined with the ICA estimated sources Ym to generate new
synthetic examples of labeled data Xr

m.
Initially, deep MLPs were trained separately for each modality utilizing only the

synthetic data Xr
m. The weights Wl from each MLP were then utilized to initialize

the modality-specific weights of the final multimodal MLP, as indicated in Fig. 8.6.
The multimodal MLP was then trained only on real data to classify disease labels
using cross-validation. The resulting trained network was then evaluated on the test
set in a 10-fold cross validation procedure yielding significantly improved results
over other state of the art models, including the same MLP, that were either trained
on a single modality or without using synthetic data (see Table 8.1).

Fig. 8.6 Multimodal classifier. A multimodal MLP is one in which the deeper layers of the
unimodal networks are combined (concatenated) together and treated as one. Here, the unimodal
networks were trained on synthetic data separately. The weights learned on each modality
separately using synthetic data were utilized to initialize the weights of the combined multimodal
network, which was then trained using only real data
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Table 8.1 Average and standard deviation of the area under the ROC curve (AUC) of an 8-fold
cross validation experiment for various classifiers and the proposed methodologies

sMRI fMRI sMRI + fMRI
Classifier
Method

Average
AUC

Standard
deviation

Average
AUC

Standard
deviation

Average
AUC

Standard
deviation

Online learning and synthetic data

MLP with MVN 0.65 0.05 0.82 0.06 0.85 0.05
MLP with rejection 0.74 0.07 0.83 0.05 0.84 0.05

Raw data

MLP 0.65 0.09 0.82 0.10 0.80 0.08

Naive Bayes 0.62 0.10 0.71 0.11 0.61 0.07

Logistic Regression 0.69 0.12 0.82 0.07 0.81 0.08

RBF SVM 0.53 0.05 0.82 0.08 0.58 0.15

Linear SVM 0.68 0.09 0.82 0.06 0.80 0.15

LDA 0.73 0.10 0.79 0.09 0.79 0.11

Random Forest 0.65 0.06 0.64 0.05 0.67 0.08

Nearest Neighbors 0.58 0.07 0.68 0.08 0.61 0.12

Decision Tree 0.56 0.11 0.54 0.10 0.53 0.13

8.3.2 Representation Learning for Semantic Embedding

The predictive advantages of multilayered models such as feed forward neural
networks come from the powerful representations of the data that they automatically
obtain at training. What that means is that the network learns a mapping of input
data to the output layer vector space, where the input data samples are easily
separable, thus encoding regularities in the data that are not easy to specify upfront.
These output layer embeddings can be visualized if the multidimensional vectors
are “projected” to a 2D space. Simple linear projections usually do not work well
for this purpose, but nonlinear embedding methods such as t-distributed stochastic
neighbor embedding (tSNE) (Maaten and Hinton 2008) do.

To obtain an embedding of a set of MRI images one first trains a deep model
either for prediction or reconstruction. The obtained model is then used to produce
activations at the output layer (or the one prior), which are subsequently represented
as points on a 2D plane. Importantly, these points can later be assigned pseudo-
color according to any property of interest. Plis et al. (2014) was one of the first
to produce individual subject embeddings for MRI data. A deep 3-layer model
trained to predict patients from healthy controls, possessing just that information,
also learned to segregate disease severity of the patients as shown by the yellow-red
spectrum in Fig. 8.7b.

The same approach has been applied to data from the Bipolar-Schizophrenia
Network on Intermediate Phenotypes consortium (B-SNIP, http://www.b-snip.org/).
The network was trained to predict three diseases from the spectrum (schizophrenia,
the most severe, bipolar, and schizo-affective disorders) from healthy controls. After
training, this network was used to produce embeddings for the data of subjects from

http://www.b-snip.org/
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Fig. 8.7 Embedding deep network representations for healthy controls, patients with a spectrum
of mental disorders and their unaffected siblings (a); for healthy controls and Huntington disease
(HD) patients (b). Panel (a) also demonstrates sensitivity of embeddings to the network depth,
where with depth the embedding becomes more interpretable. In panel (b), note the emergence of
severity spectrum for HD patients despite unavailability of that information to the deep learning
algorithm

its training set as well as the unaffected relatives that were previously unseen (shown
in Fig. 8.7a). To further illustrate the value of depth in these models, Fig. 8.7a shows
embeddings obtained from models of smaller depth: 1 and 2. These do not show
such clear segregation spectrum.

8.3.3 Multimodal Tissue Segmentation

The problem of brain tissue segmentation is fundamental to almost any research
study on the brain as gray matter volumes and thicknesses are potentially strong
biomarkers for a number of disorders. In order to compute these, one needs to
first segment the MRI images into various tissue types. Traditionally, a lengthy and
computationally heavy process performed in multiple packages and usually relying
on multiple sub-stages including skull stripping to rid anything but the brain. Simple
gray, white matter and CSF segmentation is widespread enough to be interesting.
It can sometimes be completed using simple techniques based on pixel intensity
property. However, a much more valuable and yet much harder segmentation is into
functional atlases, where each cortical and subcortical region is delineated according
to their function relative to some atlas. The problem is challenging as it requires
regions to be outlined not just based on voxel intensities alone but also on the relative
location of the region within the brain.

Fedorov et al. (2017a) have successfully used a fully convolutional network of a
specific kind (dilated convolutional kernels) to quickly (under 3 min, compared to
more than 10 h state-of-the-art FreeSurfer (Dale et al. 1999)) partition an MRI in
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Fig. 8.8 Accelerating conventional approaches to tissue segmentation. Segmentation results pro-
duced by FreeSurfer on a single-subject image (center) after 10h of intense processing, using a
trained CNN with dilated convolutional kernels (center-right) after 3 min, and using both T1 and
T2 contrasts (right). T1 and T2 images included for reference (left and center-left, respectively)

the subject space into tissue types (Fedorov et al. 2017b) and functional regions.
What is important for us here is that they have found significant improvements
in segmentation accuracy when using multimodal input: not just T1 but also
T2 contrast images (see Fig. 8.8). Deep learning models provide very simple
mechanisms to use multimodal data without any additional difficulties. Another
powerful feature for segmentation models comes from the fact that the learning
signal can be produced at each predicted voxel, thus producing significant amounts
of training data and reducing sample requirements for training. Çiçek et al. (2016)
used just a handful of MRIs to produce a solid model.

8.4 Closing Remarks

Multimodal fusion is indeed a key element for discovery, understanding, and
prediction in neuroimaging and mental health. Blind source separation and deep
learning approaches have both demonstrated evidence of their ability to recover rel-
evant information from multimodal data in multiple settings. The results presented
here support the utility of multimodal approaches for brain imaging data analysis
and suggest continued development of these methods, combined with increasingly
large datasets, can yield strong, predictive features for both research and clinical
settings. In particular, we highlight the current development of MDM approaches for
identifying non-trivial hidden subspace structures, as well as deep architectures for
unraveling the complex relationships between function and structure in the human
brain. The combination of these two strategies holds great promise towards a unified
approach for studying both healthy and disease conditions.
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9.1 Initial Considerations

Technology and its consequences in human behavior and relationships have been
fascinating mankind for centuries. A whole new literary genre was created with
science fiction so that we could imaginatively explore what the future may hold
for our species. Since then, both movies and novels have increasingly focused on
technological advancement, == most often in dystopic scenarios, in which artificial
intelligence creates prejudice and ethical dilemmas through biased handling of
personal and collective data. Despite these catastrophic predictions, technological
progress* has redefined our civilization and our way of life with exponential
advances, to the point that some publications, such as The Economist, declared that
data might be considered for this century what oil was to the last one, conceiving a
whole new economic scenario (Economist 2017). In medicine, and more particularly
in psychiatry, big data analytics represent a new era in which we are shifting from
group-level evidence, as proposed by medicine-based evidence, to individual and
personalized predictions, potentially leading to personalized care (Greenhalgh et al.
2014; Passos et al. 2016). Nevertheless, despite all prospects regarding the growth,
sharing and processing of data, and all the benefits it may represent, this revolution
does not come without risks.
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Although data, per se, is ethically neutral, what one decides to do with it
may not be. Estimates point that in 2018, 50% of business ethics violations may
happen through improper handling of these large data sets and its analysis (Herschel
and Miori 2017). As most revolutions go, we are noticing both the benefits and
the problems related to Big Data as it unfolds, and most of the time, by seeing
its negative consequences and reacting to them rather than acting proactively.*
However there is an optimistic* view of how big data and techniques such as
machine learning may improve health services in all respects. (Barrett et al. 2013;
Angus 2015; Insel and Cuthbert 2015; Huys et al. 2016; Beam and Kohane 2018).
Not only can this* improve hospital and doctor performance, but also an individual’s
quality of life and how patients understand and interact with these disorders (or the
perspective of presenting them in the future). On the other hand, we are unaware of
how big data may negatively impact* these same dimensions or create new types of
inequality.

The present chapter provides a perspective on the ethical issues that may emerge
from big data analytics and how this may challenge us in the coming years. Although
ethics may have many definitions that go than “what is right and what is wrong,”
an ongoing field must adapt to new realities as well as the ethical issues and the
discussion of how to deal with them may have many definitions that go well beyond
“what is right and what is wrong”’* paramount (Davis 2012). In fact, we are already
experiencing the impact of big data for many years now and may see its influence
exponentially increasing in the next years. For this chapter, we chose to divide
the ethical challenges into four sections. First, regarding the data itself and its
handling. Second, the impact that predictive models created with this data may have
for patients. Third, the ethical issues created by these same models to clinicians,
and fourth, the ethical issues involved in research, especially regarding informed
consent.

9.2 Ethical Issues Regarding Data

Data has been created since the beginning of civilization, first in the form of
pictures drawn by our ancestors in caves, then by written registers and, nowadays,
created, stored and processed by a myriad of electronic devices that are continually
registering and creating information (World Economic Forum 2011; Lantz 2015;
Beam and Kohane 2018). What changed recently is the speed at which we create
and store data and the fact that now we have both the methods and the computational
capacity to extract useful insights from this vast amount of information (Lantz
2015). However, from the collecting to the application of this massive flow of data,
some questions arise. Who owns this information, and how can it be used? How
may this constant flow harm individual privacy, or how may a lack of transparency
facilitate a data monopoly, where a minority of individuals may consolidate power
and control? of transparency generate. The legislation is still emerging and many
of these questions remain open to discussion, and we are probably looking at
two opposing risks. First, that data may be poorly handled and create negative
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consequences for individual and society; and second, that the perception of this
threat may lead to disproportional overregulation that could slow down and delay
the positive effects of big data.

9.2.1 Privacy and Anonymity

It is hard to think of any human activity nowadays that does not generate data, given
how connected we are with electronic devices and, in consequence, interconnected
with each other. Our behavior produces a data imprint, which may allow others
to detect our behavioral patterns, and reveal our personal preferences* (Davis
2012; Murdoch and Detsky 2013). Although terms of service from software that
collect personal data usually mention privacy and assure data anonymity, they can
sometimes be vague and superficial in their description. In some cases, one can
analyze this “anonymized data” and through reverse engineering, trace information
back to a singular individual, a process called re-identification (Tene and Polonetsky
2013; Mello et al. 2013; Terry 2014). This precedent is of extreme importance in the
medical setting, as health-related data may contain sensitive information about the
patients, such as sexual orientation, previous history of abortions, suicide attempts
and so on. Moreover, patients are vulnerable because of their expectations regarding
their diagnosis or apprehension towards treatment and prognosis, and the disclosure
of this information may complicate even more how they experience their disorder
or treatment.

It is also essential to determine who should have access to data and for what
purpose. Re-identification or hackings may lead to data leakage and exposure of
sensitive information, but physical and remote access to stored data may also give
an individual opportunity of duplicating a data set and releasing this information
(Culnan and Williams 2009). Those who are granted direct access* to the data
and handle it in their daily work are in a position of power. Companies and
institutions need to establish clear policies to determine who is granted access to
this information, to avoid sensitive data to be inadequately visualized, analyzed and
exposed (Davis 2012).

Given how dynamic Big Data is, it is almost impossible to actively monitor how
private information is being stored and propagated. Agreement terms that indicate
that data will be used to “personalize experience” or “improve performance” may
fail to inform, for example, if that data is being sold or transferred to third parties—
a widespread practice—and for what those third parties may use it. The same
information may have very different uses: one can create models based on social
media information for very different tasks, such as selling a product or predicting
harmful behavior such as suicide attempt. When an individual agrees to share their
data, how exactly and for what these data is used are questions that either remain
unanswered or are answered without the pertinent specificity. In the particular
case of social media, although information is in a public virtual space, people
may be unaware of its multiple uses and the commercial value of what they are
producing. Lastly, there is a risk that anonymized data may be clustered according
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to geographical, ethnic or last sexual orientation, that may lead to discrimination and
stigmatization—in this case, affecting not only the individuals that share their data
but also others in these clusters (Craig and Ludloff 2011; Schadt 2012; Mittelstadt
and Floridi 2016).

9.2.2 Ownership

Since we are unceasingly producing data, which is continuously being stored,
who does this data belong to exactly? It is unthinkable that all this information
can be managed by the individual that generates it across the unending stream
of information that goes from our devices to corporations and governments, and
then back to the individual in the form of actions or products. How much value
can be assigned to a given amount of information, and can a corporation sell a
given individual’s personal data? It is somewhat disturbing that someone might own
people’s personal information, as well as their behavior and preferences, and may
employ these to influence future behavior and preferences. The boundaries here
are also uncertain: which data may be public and which data may remain private?
Which data may lie in between, accessible for purposes of research and innovation
but not entirely public? From the moment a patient enters an emergency room until
its discharge several days later, he generates a variety of data. Should the institution
be free to use all kinds of data, some of them, or none, and whom may have access
to the raw data and the insights extracted from it? It is unarguable how useful this
information is, but there are no universal regulations on the matter. Furthermore,
ownership may be defined not by only possessing the rights to compile and use
with exclusivity the data, but also to the right of analyzing and use it to create new
technologies, generating copyrighted products or patents (Choudhury et al. 2014).

9.2.3 Transparency

Data gathering services should not only be transparent about what they are
collecting and what are the potential uses of the data, but they should state this
in a clear and concise way. A study found that, if one stops to read each term of
agreement in a year, one would waste approximately 76 work days reading them
(McDonald and Cranor 2008). When an individual is sharing his data, it is relevant
to know the ethical principles of the institution in charge of the data gathering, what
they intend to do with the information and what is out of boundaries (Davis 2012;
Liyanage et al. 2014). In recent years, we have seen many cases in which data was
secretly collected and analyzed, and with no purpose known to the users of the
service (van der Sloot 2015). Despite the violation of the individual autonomy, this
course of action may discourage people from sharing their data even in reliable
and transparent platforms, thus limiting the data available for analysis. As already
pointed out, it should be clear if the data set would be shared with third parties, or
sold to them, or even aggregate external sources.
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9.2.4 Identity and Reputation

Technological advancements have altered the way we see ourselves as individuals.
Nowadays, our identity consists of both our offline and online activities, and our
reputation is influenced by our behavior in both these dimensions. Our offline
behavior may impact our online reputation and vice-versa (Davis 2012; Andrejevic
2014). In this sense, the possibility of sensitive data exposure as a result of re-
identification or hacking may have an impact in the offline and online parts of
people’s identity, and therefore harming their reputation. It is not clear how some
platforms deal with sensitive in some cases and how much it is protected. Even if
agencies with highly classified information are hacked, it is worrisome to think how
vulnerable other information may be, such as electronic records or private files. A
breach of privacy, therefore, may lead to irreversible and harmful repercussions in
how we and others perceive ourselves.

9.2.5 Reliability

Beyond the traditional “3 V’s” of Big Data—Variety, Velocity, Volume—IBM
proposed a fourth V, veracity (Zikopoulos et al. 2012). Data is not always reliable—
it could be human error or bias when a person is collecting the data, or perhaps
the use of an uncalibrated device that gives wrong measures, or just the fact that
subjects of interest may opt-out, with loss of relevant information. The analysis of
incomplete, biased or out of context data may lead to incorrect conclusions, and
those conclusions may lead to harmful action or decisions (Bail 2014; Markowetz
et al. 2014). Moreover, data is increasingly becoming collected autonomously, by
sensor devices, and not infrequently, being processed and analyzed independently
of human interference also. The complexity of algorithms used in this analysis—the
so called black box methods—may result in our inability to understand how they
work, which is troublesome when these same algorithms may be used to influence
behavior or make decisions with high impact on one’s treatment and prognosis, for
example (Lantz 2015).

We should avoid models that are biased in nature. For example, when creating
an algorithm to predict suicide attempts, via collecting social media data, users may
not be representative of those who use another platform, or those who, although
have an account, are not active. Although it may be argued that not being active is
also valuable information, this model will fail to identify suicide attempts among
inactive individuals of this network, that may be generating relevant data in another
platform that is relevant to the topic of interest. On the other hand, a universal
model including all internet-related information plus offline use of devices for
the individual may be closer to the aim of predicting suicide—although with
higher costs and astounding complexity. Before applying any algorithm in real life



166 D. Librenza-Garcia

scenarios, we should take these problems into account, to prevent that biased models
with incorrect or incomplete conclusions ended up causing more harm than benefit
(Andrejevic 2014).

9.3 Ethical Issues Regarding Patients

Predictive psychiatry may contribute to improve outcomes and prevent disability or
harm, but it may also produce harm, influencing other spheres beyond individual’s
health. If we can predict that an individual will have a more pernicious illness
course, that would mean he will make more use of health services, and therefore,
may be charged more for a health plan. The prediction, per se, may not be an
issue, but the application may perhaps be. For instance, it may be possible that
unfavourable outcomes of an individual may fuel eugenic policies or even create
social prejudice regarding the subjects with these outcomes.

We should also worry about how devastating a prediction could be. One classic
example is Huntington’s disease, an autosomal dominant disorder that can be
predicted by a simple genetic test. A positive test may tell a patient that he will,
in the next years, experience a progressive and severe loss of its brain functions,
while the subject is still healthy. If an individual is predicted to develop a psychiatric
disorder years before its onset, how many this information influence his quality of
life, or ability to avoid that outcome? How will it influence his relationships with
his peers or change the course of his actions in the scenario where he was not
informed of the outcome? It is possible that the stressful burden of knowing may
incur in speeding the disorder installment or even lead to another disorder, such as
a depressive episode or substance abuse, in the prior years before the onset of the
predicted disorder. A question of the uttermost importance in big data ethics is how
our patients may cope with such predictions about their future, and weigh harm and
benefit of its use. It is different if we develop an intervention to prevent the outcome
and can offer it to an individual. The following clinical cases illustrate some of these
ethical dilemmas.

Case 1
J. is an 18-year old male who decides to enlist and serve in the Army. After
collecting a series of clinical data and undergo neuroimage acquisition and
analysis of serum biomarkers, he is predicted to develop PTSD along with
a mood disorder during his time serving with 98% accuracy. Moreover, the
algorithm also predicted with an accuracy of 92% that he would attempt
suicide in the following year. He still wants to serve the Army even knowing
the risks. However, he is then dismissed against his will.
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Case 2
C. is a 15-year old female whose father has bipolar disorder with a perni-
cious trajectory marked by functional impairment and disability, as well as
metabolic disorders. At the will of her mother, she underwent a test that can
predict with almost 100% accuracy if one will develop a psychiatric disorder
in the future. She is then predicted to develop bipolar disorder with a similar
course of her father in the next ten years. There is no available treatment at
the time to prevent this conversion.

Although big data analytics may have several benefits and a substantial social
impact to prevent outcomes such as PTSD, one may argue that there is no absolute
prediction and that the individual may have the autonomy to choose to serve
the army regardless. However, from a legal perspective, enlist an individual with
high chances of developing a debilitating disorder may incur in health-care related
expenses and pensions. Moreover, if he develops a disorder on the battlefield, it
is possible that his symptoms may jeopardize his safety and that of other soldiers.
There is also a possibility of joining the Army but not be sent to the field—which
may stigmatize J. as being unable for some medical reason to go to combat.

In the second scenario, knowing that C. will most likely develop BD may help
in screening her for the first symptoms of the disorder and allow early intervention
when needed. She may start attending an outpatient clinic before the installment
of the disorder. She will probably need familiar and professionalized support
throughout this prodromal period. Again, there is a chance she will not develop
the disorder cause the prediction is not perfectly accurate, and she may undergo all
this traumatic experience unnecessarily. Also, as she is a minor, should her mother
decide she does not need to know at this point, what course of action should the
psychiatrist take?

What is common to both cases is the uncertainty of the prediction. It is hard
to imagine a 100% accurate application to predict an outcome, at least with our
current state-of-the-art resources. There is always the possibility of that outcome
not happening, and the individual forced to live with the burden of its possibility.
Although most algorithms and models in current studies are still in proof-of-concept
phases so far, it is possible that patients should experience this dilemma in the future.
In this uncharted territory, there is no delimited policy or guidelines on how to
proceed, nor protocols available for follow-up and assessment. Medical guidelines
may have to address the problem of “potential patients,” that do not manifest any
symptoms at the time of the prediction.

9.4 Ethical Issues Regarding Clinician Decision

We can hypothesize at some point in the future, machines may provide diagnoses
with better accuracy than physicians, as some algorithms are already achieving
higher accuracies with machine learning than doctors to diagnose certain conditions
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(Liu et al. 2017). They can also be used to redefine diagnosis by grouping patients
with similar characteristics and integrating different levels of information in such
a convoluted way that the meaning of this categories may be impossible for us to
understand (Insel and Cuthbert 2015; Huys et al. 2016). The positive implications
include predicting treatment response or detecting a disorder* before its onset and
may alert us which patients will experience unfavorable functional or cognitive
outcomes and have a more severe illness course (Passos et al. 2016; Librenza-Garcia
et al. 2017). Predictive models open a door not only to prevention of these outcomes
due to early intervention strategies but also to efforts to avoid conversion to a
disorder. Amidst all these advances, the clinician finds himself as a bridge between
patient and machine, trying to deal with patient expectations and technological
insights.

Technology, however, is still dependent on our input. We have to define a
psychiatric disorder and the outcome for the machine to interpret, and if we do it
wrong, all data and inferences about it would be, in consequence, useless. Machines
could get insight on data that we cannot, but we still need to interpret its findings.
We can data mine for clusters of patients and redefine the way we diagnose, but
given the number of different ways this could go, we should still choose which road
we will take from there. At least in psychiatry, it is unimaginable—for now—to
think that a machine could replace the clinician, given the importance of empathy
and the doctor-patient relationship. The two cases below illustrate some challenges
in clinician decision.

Case 3
A psychiatrist will discharge an inpatient after a month of hospitalization. He
performs a standard battery of exams and gather clinical data and uses a phone
application that can predict suicide attempt in the next three months with high
accuracy. Despite being euthymic and with no suicidal ideation at the time,
the patient is predicted to attempt suicide in this period.

Case 4
After a series of appointments in an outpatient clinic, the psychiatrist eval-
uating F. gives him a diagnosis of major depressive disorder. By gathering
genetic, neuroimaging, clinical and serum biomarkers data, an algorithm
predicts with a high accuracy that the patient has, in fact, bipolar disorder.
The psychiatrist, then, reconsiders his choice of monotherapy with an antide-
pressant.



9 Ethics in the Era of Big Data 169

It is very likely that predictions may impact on clinician decision. If the patient
in case 3 is predicted to attempt suicide, should he stay in inpatient care for a greater
amount of time, or go home with familiar surveillance and regular appointments?
If he lives alone, should he receive domiciliary follow-up as well? If by one side
this prediction may provide better resource assignments for those predicted to
attempt suicide, it can also lead to neglection of those predicted not to undergo this
outcome. Since no model is perfect, some of the high-risk individuals may receive
a regular follow-up, and the clinician may relax and neglect important risk signs,
reassured by the negative prediction. In the case of F., despite the clinical diagnosis,
the psychiatry may be reluctant cause the depressive episode may be only a first
manifestation of bipolar disorder and may be followed by a manic presentation
in the future—in the worst-case scenario, an iatrogenic manic switch triggered by
his choice of treatment. On the other hand, if the prediction is wrong, he may be
depriving the patient of a first line treatment and using an additional and unnecessary
mood stabilizer, with all its known side effects.

9.5 Ethical Issues in Research

Informed consents in psychiatric research are usually developed stating what data
will be collected and to what end. This poses a challenge because one of the
purposes of big data analytics is to extract new knowledge or patterns from that
information, ones that may not be included in the initial aim of a study—especially
if we are dealing with unsupervised models. So, it is a challenge on how to include
the unpredictable in the informed consent. Patients usually consent to participate
in a single study, but big data may be more useful if data is shared, integrated and
reanalyzed between different groups, increasing its complexity but also providing
us with even more useful insights (Ioannidis 2013; Larson 2013; Choudhury et al.
2014). Also, we usually do not state for patients if whatever insight we obtained
from the data may result in any feedback to them. If we create a model to predict
response to antidepressants that have high accuracy and applicability, and it predicts
that a patient in the validate sample will relapse with the medication he is currently
using, will he be informed? Although this sound logical, should we also inform a
patient if the accuracy is relevant, but not applicable?

Another relevant question is how we should handle social media information.
Although it may have been made public, is the individual aware that his information
can be used in a health-related scenario? How should we gather consent in
such a vast universe? (Krotoski 2012; Lomborg and Bechmann 2014). One may
hypothesize that in the future an individual may “opt-in” to data in which he is
willing to share, and for which application*, but for now, each platform, software or
website has a different policy (Prainsack and Buyx 2013). Broader consent policy
may resolve the issue on the end of big data but not of the individual while listing
possible future uses and authorization for each may be more comfortable for the



170 D. Librenza-Garcia

patient but limit newer insights into that data in the future. Reassessment for new
consent can also be one strategy, but it will probably reduce the sample due to
follow-up losses (Currie 2013; Lomborg and Bechmann 2014). Moreover, it would
increase the costs and bureaucracy and slow down or preclude future research.

The fact is, for most of our studies, informed consent was designed to tackle
themes relevant to evidence-based medicine, with predefined questions and a limited
amount of answers expected. From now on, it is necessary to find a way to adapt it
to this new reality, which includes the uncertainty of what the data can reveal and
how it can impact patients afterward.

9.6 Conclusion

In the past, we would not dare to dream how big data would defy our limits and
see far beyond what we can, nor how it could expand the limits of the world by
not only redefining the real world but also creating uncountable virtual ones. It is
undeniable that Big data is pushing us to consider ethical issues and whether they
violate fundamental, civil, social, political or legal rights. On the other hand, big
data analytics will also redefine what we think is possible in the next few years,
with the possibility of devices being even more ingrained in our daily patterns of
behavior, through digital profiling, and artificially intelligent-driven politics. The
aforementioned ethical issues are only the ones we are facing now and in the near
future. New issues may arise in areas that do not even exist at this time, and more
challenges will surface as big data technology continues to evolve and expand its
influence in our lives. There is no telling how much we will advance and how far
the possibilities of this evolution may lead us, and what unforeseen ethical issues
may arise ahead. Whether big data and artificial intelligence will guide us towards
a dystopic or utopic society, it depends on how we will handle these ethical issues
from now on. Technology, like every resource, is primarily neutral and can be used
to cause both benefit and harm.

There is a delicate balance that we shall seek for the sake of an efficient and
human health-care. A lack of policies on how to handle and utilize data may
result in more inequality and create unpredictable harm to society and individuals.
Nevertheless, if society lets itself to be driven by unfounded concerns about these
new technologies, it may overreact and create preemptive obstacles, to the point in
which a restrictive and overregulated policy may prevent not only harm but also
progress and benefits that could improve patient care and change illness’ course.

Some of the values we have today may evolve as new challenges arrive, which
will promote a reformulation of our ethical principles. In this fashion, big data
ethics do not consist of absolute and immutable principles, but, on the opposite, it
is malleable according to the challenges and outcomes not prior anticipated. Some
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scenarios presented in this chapter are already challenging, and there is no telling
what new ones may lie ahead. Nevertheless, besides all potential innovations and
problematic scenarios big data may cause, one fundamental principle of medicine
stated in the Hippocratic Oath still applies: primum non nocere (First, to do no
harm).
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