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Abstract
In this book chapter, we review the current knowledge of the biology and
pathogenesis of Kaposi’s sarcomaassociated herpesvirus (KSHV). We describe
the lifecycle of KSHV, the cancers associated with this virus, as well as current
treatment modalities.
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3.1 Introduction

Approximately, 25 % of all human cancers are etiologically linked to an infectious
agent including viruses and bacteria. These pathogens are usually controlled by the
host immune system. In individuals that are immunodeficient, such as acquired
immunodeficiency syndrome (AIDS) patients or patients receiving immunosup-
pressive therapies following organ transplantation, this checkpoint fails and there is
a significantly higher risk for the development of cancers associated with infectious
agents. It is important to remember, though, that temporal immune deficiency is a
normal physiological process, e.g. during aging and infant development. Viruses
contribute to cancer development either cell autonomously through the activities of
viral oncogenes acting within a cell, or through paracrine mechanisms that mod-
ulate the transformed cell and the tumor microenvironment [27].

Kaposi’s sarcoma (KS) was described in 1872 by Moritz Kaposi, the head of the
Vienna dermatology clinic, as “idiopathisches multiples Pigmentsarkom” a rare
angiosarcoma in elderly men of Mediterranean descent [49]. In the mid-1980s, the
human immunodeficiency virus (HIV) epidemic lead to a significant increase in the
incidence of KS in high-risk populations. Today, over 30 years later, the number of
new HIV infections has declined due to combination Anti Retroviral Therapy
(cART). Yet, because of cART the number of persons living with HIV is increasing
and the mean age of the cohort of HIV-infected persons is also increasing. Many
HIV-positive individuals are now entering the age bracket, in which Moritiz Kaposi
initially described classic KS in the elderly. As a result, KS remains the single most
common neoplasm seen in individuals living with HIV today [88].

Chang and Moore identified KSHV (also known as human herpesvirus 8) in KS
lesions of AIDS patients in 1994 [13] using representational difference analysis.
KSHV has since been found in HIV+ and HIV− negative KS patients as well as in a
number of B-cell hyperplasias and frank lymphomas. Ninety-nine per cent of all KS
lesions, regardless of clinical type or HIV status, contain KSHV viral DNA and
express a least one viral protein, the latency-associated nuclear antigen (LANA), as
well as all viral micro RNAs, thereby linking KS to KSHV infection [27].

3.2 KSHV and the Development of KS

KS is divided into four subtypes delineated by clinical manifestations: classic,
endemic, AIDS-associated, and iatrogenic. Classic KS is a disease of elderly
Mediterranean and Eastern European men, while endemic KS is found in parts of
equatorial Africa such as Uganda, Zambia, Malawi, Kenya, and South Africa in the
elderly as well as in children [59]. KS represents the most common cancer in
countries with high, coincident HIV and KSHV prevalence [45]. In endemic
regions, transmission of KSHV is thought to occur early in childhood [32].
Endemic KS tends to be more aggressive than classic KS of the elderly, and occurs
at almost equal proportions in men and women, the elderly and children [27].
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Widespread HIV infection has given rise to an epidemic of KS. KSHV anti-
bodies prevalent in black South African HIV patients, and KS has become the most
common neoplasm in regions of sub-Saharan Africa that are ravaged by HIV
infection. In the U.S., KSHV antibody prevalence also exceeds 30% in cities with
high HIV burden and in high-risk populations [54]. This is most likely, because
among adults, HIV and KSHV are transmitted by similar routes, though the effi-
ciency of KSHV transmission (or basic reproductive ratio, which is a function of
viral load among other factors) is less that that of acute HIV-1 infection.

In 1981, KS was recognized as a defining pathology for HIV diagnosis but the
introduction of cART has led to a substantial decline of AIDS-related KS in the
United States. The Centers for Disease control (CDC) estimated in 2016 that the
average American had a 1 in 99 chance of being diagnosed with HIV at some point
in his or her life. Even in the cART era, standardized incidence rates for KS are
higher than that of any other AIDS-defining or non-AIDS-defining cancers [61].
This suggests that KS will remain a permanent health problem for years to come.
As HIV-positive men in the U.S. age, it is speculated that the incidence of
AIDS-KS may rise again.

Iatrogenic KS occurs after solid organ transplantation in patients receiving
immunosuppressive therapy [16]. KS comprises an estimated 3% of all tumors
associated with transplantation [63]. Iatrogenic KS is observed in regions of high
KSHV prevalence, such as Southern Italy, Saudi Arabia and Turkey. KSHV may
already be present in the recipient prior to organ transplantation, and may be
acquired during induced immunosuppression after transplantation, or may even be
acquired through the graft itself [5]. The frequency of KS in AIDS patients is
20,000 times higher than in the general population [6] and the frequency of KS in
transplant recipients is 500 times higher than in healthy individuals [91].

In the mid-1980s, incidence rates for KS displayed an exponential increase.
Back then, KS was primarily observed in AIDS patients with a history of men who
had sex with men, but not in individuals who became HIV-infected through blood
transfusion [37]. In AIDS-associated KS, there was a correlation between incidence
rates and the lifetime number of male sexual partners [59]. This established KSHV
as a sexually transmitted agent responsible for the development of this cancer.
Today, more women are becoming infected with HIV and consequently AIDS-KS
is also seen in this group. Interestingly, African KS affects both genders; while
classic (Mediterranean) KS affects predominantly elder men. The reason for the
gender bias in classic KS is unknown. In the U.S., KS incidence rates follow a
bimodal distribution that peaks at ages 30–36 and again at ages >70.

KS lesions are classified as plaque, patched, or nodular. As the KS tumor
clinically advances, the KSHV-infected cells increase in number along with the
endothelial cell population in the lesion. There is evidence for both polyclonality
and monoclonality of the lesions [47, 76]. It is thought that KS likely initiates as a
polyclonal hyperplasia and develops into a clonal neoplasia. Kaposi’s sarcoma not
only affects the skin but can also involve multiple organs such as the liver, lung,
spleen, and gastrointestinal tract. In some forms of KS, only lymphoid and internal
organs are affected. Oral KS in the setting of AIDS is associated with advanced

3 Kaposi’s Sarcoma-Associated Herpesvirus (KSHV)-Associated … 65



disease and visceral development. However, in the setting of cART-controlled HIV
infection, it may occur in isolation and represent limited disease. Edema is common
in KS patients. Aggressive types of KS can lead to foci formation in the visceral
organs and ultimately result in hemorrhage and death.

KSHV viral load in PBMC rise up to 6 months prior to lesion formation [101].
A rise in viral load predicts the imminent appearance of KS [72]. However, sys-
temic viral load in plasma varies widely across KS patients and does not correlate
with the number of skin lesions [44]. Inhibitors of the viral polymerase reduce
overall risk of future KS, but do not lead to regression of established KS lesions.
KSHV is found in circulating B cells as well as monocytes, macrophages,
endothelial cells, and epithelial cells [21, 77, 92]. The presence of the most common
anti-KSHV antibodies, which are directed against the LANA protein, documents
prior exposure but does not allow a prediction of KS development, since in
HIV-positive individuals the median time from seroconversion to disease is seven
years or greater [37, 59].

The KS lesion is highly angiogenic and is comprised of spindle-shaped cells,
slit-like endothelium-lined vasculature and infiltrating blood cells. The spindle cells
appear to arise from lymphatic endothelial cells and form the majority of the
neoplasm [31]. In fact, experimental KSHV infection can reprogram the blood
endothelial gene expression profile into that of the lymphatic endothelium and vice
versa [42, 43, 98, 100], though the profile also shows the presence of mesenchymal
markers including various Notch isoforms [15, 58] consistent with dedifferentiation
into a progenitor stage.

The primary receptor for KSHV infection of endothelial cells is ephrin receptor
tyrosine kinase A2 [41]. Ephrins and their corresponding kinases are differentially
expressed across different cell lineages. Hence, the expression pattern of EphA2
may express the tropism of KSHV. It may also become a target of novel, directed
KS therapy [14, 85]. KS tumor explants lose the virus after serial passage in tissue
culture over time. KSHV-infected endothelial cell preparations in culture generally
also lose the virus over time [40, 55].

3.3 KSHV and the Development of Lymphomas

KSHV is also found in B lymphoproliferative diseases; primary effusion lymphoma
(PEL) and the plasmablastic variant of multicentric Castleman’s disease (MCD). In
fact, the first association of KS and a B-cell lymphoproliferative disorder, MCD,
was reported in a patient who presented with both diseases [81]. Greater than 50%
of KSHV-positive transplant recipients develop lymphoproliferative disease [35].
KSHV is most certainly the causal agent of both MCD and PEL [12, 90]. MCD is a
B-cell lymphoproliferative disorder. Patients usually present with diffuse lym-
phadenopathys. In addition to B cell proliferation, MCD displays vascular prolif-
eration of the germinal centers of the lymph node. There are two forms of MCD:
(i) a plasmablastic variant form that is associated with lymphadenopathy and
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immune dysregulation and (ii) a hyaline vascular form, which presents as a solid
mass. Close to 100% of AIDS-associated MCD is associated with KSHV.
AIDS-associated MCD is usually accompanied by the development of KS in the
affected individual, often in the same lymph node.

MCD is a polyclonal tumor and is highly dependent on cytokines such as human
interleukin 6 (IL-6) (reviewed in [103]). KSHV itself encodes a viral IL-6 that is
also expressed in these lesions [71, 73, 94]. Expression of either human IL-6 or
viral IL-6 in transgenic mice causes B-cell hyperplasia and lymphoma. Viral
antigens can be detected in the immunoblastic B cells in the mantle zone of the
lymph node. The plasmablasts in MCD express monotypic IgM light chains [29]
and MCD patients frequently develop cytopenia, autoimmune disease and other
malignancies such as KS and non-Hodgkin’s lymphoma [1]. Anti-IL-6 or
anti-IL-6R antibodies show efficacy in KSHV-negative Castleman’s disease and
there is every reason to believe that siltuximab or tocilizumab (also known as
atlizumab) will also be active in KSHV-positive, HIV-associated MCD and perhaps
even PEL.

PEL, sometimes referred to as body cavity-based lymphoma (BCBLs), represent
a specific subset of non-Hodgkin’s B-cell lymphoma (NHL) that involve body
cavities (peritoneal, pleural or pericardial cavities) and form a distinct clinico-
pathologic group from other NHL [67]. All PEL are KSHV-positive, and are often
coinfected with EBV as well. These tumors are typically large-cell immunoblastic
or anaplastic large-cell lymphomas that express CD45, but not CD19, carry clonal
immunoglobulin gene rearrangements, and lack mutations in c-myc, bcl-2, ras, and
p53 [1, 67].

PEL display the characteristics of a preterminal stage of B-cell differentiation.
Since PEL have mutations in their immunoglobulin genes, they are thought to arise
from post-germinal center B cells. However, PEL do not express immunoglobulins.
Most PEL express CD138/syndecan-1 antigen, which is normally also expressed by
a subset of plasma cells. Most PEL also express high levels of human IL-6 and IL10.

Although KSHV is linked to PEL and MCD in HIV patients, there are cases of
KSHV-positive lymphomas that do not fit the classic PEL phenotypes. There
appears to be a high incidence of KSHV infection in solid HIV-associated
immunoblastic/plasmablastic non-Hodgkin’s lymphomas that developed in patients
lacking PEL and MCD [22] and yet others have found KSHV associated with solid
lymphomas, which resemble PEL cell morphology but do not present as effusions
[10]. KSHV has also been linked to cases of germinotropic lymphoproliferative
disease (GLD) [28]. This disease also involves plasmablasts but unlike plas-
mablastic lymphomas, the GLD lymphomas contain polyclonal immunoglobulin
receptors. This suggests a model in which KSHV infects an early germinal center B
cell that can still differentiate into multiple lymphoma phenotypes dependent on
secondary mutations to the cellular genome.

Finally, KSHV infection can also lead to KS-immune reconstitution syndrome
(KS-IRIS) [8, 18] and KSHV-inflammatory cytokine syndrome (KICS) [74].
Patients with KICS have high KSHV viral loads and levels of viral IL-6, human
IL-6, human IL-10 as well as C-reactive protein.
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The evidence linking KSHV to KS, PEL, MCD and KICS, is overwhelming and
has been confirmed by multiple laboratories and indepent methods such as the
presence of viral DNA in the lesions, viral protein expression and anti-KSHV
antibodies (directed against LANA/orf73, orf K8.1 and others). KSHV DNA has
also been detected in multiple myeloma, primary pulmonary hypertension,
angiosarcomas, as well as malignant skin tumors in posttransplant patients such as
Bowen’s disease, squamous cell carcinomas, actinic keratosis, and extramammary
Paget’s disease. However, these disease associations were never substantiated and
have largely been discarded [1, 27].

3.4 Prevalence of Viral Infection

Several serology studies have suggested that KSHV infection is widespread in
Africa with 30–60% of people being KSHV-positive, but is uncommon in the
United States and Western Europe with seropositivity ranging from 3 to 10% in the
general population [50]. KSHV seropositivity is considerably higher in high-risk
populations reaching 38% in participants seen at AIDS clinical trials centers [54].
Regions such as Italy, Greece, Turkey, and Saudi Arabia show a higher prevalence
of KSHV at about 4–35% [102], which correlates with correspondingly higher
incidence rates for classical or transplant-associated KS. Transmission routes
include sexual transmission, mother-to-child transmission, but probably all forms
involve salivary transmission [9, 59, 96]. There is no evidence that transmission
rates decline, as most KSHV transmission, similar to other herpesviruses, appears
during episodes of asymptomatic shedding.

3.5 The KSHV Genome

A hallmark of herpesviruses including KSHV is their ability to establish a latent
infection for the lifetime of their host. Pathogenesis caused by these viruses is
usually seen in the context of host immunesuppression. All herpesviruses share a
common evolutionary origin, which is evident from the homology seen among a
substantial number of herpesviral genes (reviewed in [25]). Based on biological
characteristics and genomic organization, herpesviruses are classified into three
subfamilies: alpha, beta, and gamma. The gamma herpesviruses are lymphotropic
and some are capable of undergoing lytic replication in epithelial, endothelial, or
fibroblast cells. The gammaherpesvirinae are grouped into two classes: lym-
phocryptoviruses (gamma-1) and rhadinoviruses (gamma-2). Epstein–Barr virus
(EBV) or human herpesvirus 4 (HHV4) is a lymphocryptovirus while KSHV or
human herpesvirus 8 (HHV8) is a rhadinovirus.
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During latent infection, viral gene expression is highly attenuated and the viral
genome remains stably associated with the cell. In the lytic phase of infection, viral
gene expression and DNA replication ensue, leading to the production of progeny
virions and eventual lysis of the infected cell. The KSHV viral genome is com-
prised of a *140 kb long unique region flanked by multiple terminal repeat
sequences with the total genomic size being *160–170 kb. KSHV encodes for
more than 80 open reading frames (ORFs) that encode for proteins greater than 100
amino acids [83]. The viral genes encoded by KSHV can be divided into three
classes—(i) genes common to all herpesviruses (ii) genes unique to KSHV (these
are generally given a “K” designation followed by the number of the open reading
frame (ORF), and (iii) KSHV encoded genes that are homologous to cellular genes
(these may be unique to KSHV or shared with other herpesviruses), and are likely
to have been usurped from the host genome during the course of evolution. It is
likely that several viral genes contribute to the neoplastic process [19].

While there exist distinct clades of KSHV, most of the variation is concentrated
in a few proteins, such as the extracellular regions of the K1 and K15 proteins,
which are exposed to the host immune system, or in extended repeat regions, where
the genome is inherently unstable, such as in the two origins of replication and the
central protein coding region of LANA. Whole genome sequencing has shown that
all other regions are conserved across strains with just a few single nucleotide
variations inside protein coding regions [70]. At this point, none of the genomic
variation seen within KSHV has been associated with overt clinical or cellular
phenotypes, though specific point mutations in the viral micro RNA precursors lead
to the absence of certain mature miRNAs in PEL or KS lesions.

3.6 Molecular Biology of KSHV-Associated Disease

KSHV gene expression in human KS, PEL and MCD disease has involved the use
of microarrays to profile viral gene expression. Since the KSHV genome is orders
of magnitude smaller than the human genome, it has been feasible to develop whole
genome arrays based upon real-time quantitative RT-PCR for all individual viral
genes and to analyze primary KS biopsy samples and KSHV-infected lymphomas
[24, 33]. Conventional microarray-based viral gene expression in KSHV-infected
lymphomas as well as RNAseq studies has also been performed. These techniques
generate a viral signature for each disease state and offer a chance to classify KS
beyond Moritz Kaposi’s observational diagnosis. High-throughput genomic pro-
filing offers the chance to accelerate our investigations into KSHV-associated
cancers as much as it has benefited research into nonviral cancers. Microarray
analyses of host cell transcription [34, 46, 51] proved that KSHV-positive PEL
differ from other types of B-cell lymphomas. This is consistent with the idea that
KSHV reprograms the tumor cell.
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It has been shown that KSHV infection reprograms endothelial cells. Blood
endothelial cells are reprogrammed toward lympathic endothelium and conversely,
lymphatic endothelium is reprogrammed toward blood endothelium [42, 43, 98,
100]. Several studies have ascertained the host transcription profile in tissue culture
models of KSHV infection [66, 68, 75, 79]. KS has a cellular transcription signature
that is distinct from other cancers and tied to the unique pathology of this disease, as
an angioproliferative, cytokine driven disease. For instance, c-Kit and other growth
factor receptors in microarray studies of KSHV-infected endothelial cells led to a
successful pilot study using the kinase inhibitor gleevec (Imatinib) [52]. Other
studies found response rates of KS to a matrix metalloproteinase inhibitor [23] or
anti-VEGF antibodies such as bevacicumab [95].

Every KS tumor transcribes high levels of the canonical KSHV latency tran-
scripts encoding LANA, vFLIP, vCyclin, the viral micro RNAs, and Kaposin.
These genes are under control of the same promoter and are expressed in every KS
tumor cell [26, 30]. Kaposin is located immediately downstream of these three
genes and in addition to the common promoter can be regulated by a promoter
located between LANA and cyclin [56] and during lytic reactivation yet another,
ORF-proximal promoter [84]. Like LANA, Kaposin too is expressed in every tumor
cell [92] and has been shown to stabilize cellular cytokine mRNAs [62]. In addition
to these latent proteins, many KS tumors as well as PEL engrafts [93, 97] express
an extended set of proteins that were initially classified as lytic viral genes, but in
the context of the tumor may be the result of abortive or incomplete viral reacti-
vation. These include the KSHV interferon regulatory factor (vIRF-1) and
G-coupled receptor (vGPCR) homologs [24] and the K1 constitutive signal protein
[3, 97, 99, 104], as well as K15, a constitutive signaling protein located at opposite
end of K1 [39]. This suggests that a subset of KS phenotypes may be attributable to
these genes and the paracrine mechanisms that they invoke [4, 64, 65]. The vIRF-3,
a duplicated KSHV IRF homolog, is constitutively transcribed in KSHV-infected
PEL [80]. Thus, we speculate that KSHV has to interfere with the host cell’s innate
interferon response in every infected cell regardless of cell lineage or mode of
infection and has thus placed multiple copies of the vIRFs, all of which interfere
with normal interferon signaling, under different control elements, e.g., vIRF-3 is
specific for B cells while vIRF-1 is specific for endothelial cells. Thus, both latent
and select lytic genes can be considered tumor-specific therapy targets for KS.

3.7 Therapies to Treat KS, PEL, and MCD

Treatment modalities for KS include observation, local therapy, or systemic
chemotherapy specifically paclitaxel and anthracyclines, such as doxorubicin/
adriamycin [69], depending on the severity of the disease. Response rates approach
70% depending on comorbidities. KS is know to reapear and to require repeated
treatment; a complete cure is seldom achieved as none of the anti-cancer treatments
erradicate the latent virus. A key development was the demonstration that liposomal
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formulation of the peggylated-anthracyclins were as efficactious as the initial drug,
but had significant fewer side effects. No new theraphies against KS have been
introduced since the liposomal anthracyclines such as liposomal Doxorubicin or
liposomal Daunorubicin. Whether a protein-bound formulation of paclitaxel
(Abraxane) has activity with reduced toxicity is unknown. Interferon alpha was
initially approved to treat KS, but is no longer in use. KS is a highly angiogenic
tumor but clinical trials targeting the angiogenic nature of KS have shown limited
efficacy as single agent [95]. This is expected, since most of these agents, such as
the humanized anti-VEGF antibody bevacicumab are tumorstatic and do not kill the
tumor cell directly.

A clinical trial involving daily doses of Imatinib mesylate (Gleevec), which
targets c-kit and platelet-derived growth factor receptor (PDGFR) signaling,
resulted in clinical and histologic regression of cutaneous KS [52], as did a trial of a
matrix metalloproteinase inhibitor [23]. As more receptor tyrosine kinase (RTK)-
targeting molecules become available, targeting PDGFR, VEGFR, and related
mediators of paracrine tumor promoters, offer promise for KS.

Organ transplants, who developed KS due to immunosuppressive therapy,
benefited from treatment with rapamycin [91]. This observation has been repeated
in multiple settings and switching from cyclosporine A or FK506, which suppress T
cell activation, but not B cell or endothelial cell activation to rapamycin, which
suppresses proliferation in all three cell types, has emerged as the informal standard
of care of iatrogenic KS. Rapamycin/Sirolimus and its derivatives Temsirolimus
and Everolimus are allosteric inhibitors of the mTOR pathway and display both
immunosuppressive and antineoplastic properties. The clinical effect of rapamycin
could be reproduced in animal models [82, 89]. Of note, rapamycin was active
against doxorubicin-resistant PEL. Rapamycin acted via an antiangiogenic mech-
anism ultimately reducing the levels of VEGF and of VEGF receptor on endothelial
cells. Again, as single agent rapamycin was tumorstatic, rather than tumortoxic.
Newer, competitive inhibitors of the mTOR pathway are likely to produce superior
results. Additional inhibitors targeting the active site of PI3K and mTOR have also
proved effective in animal models [2, 7].

A series of clinical trials is exploring the efficacy of “imids”, i.e., thalidomide,
lenalidomide, and pomalidomide in KS that develops in HIV-suppressed indiviu-
dals. These compounds have an as yet ill-defined mechanism of action that affects
the immunesystem as well as potential KS tumor cells directly, through modulating
gene expression [20]. In 2018 Pomalidomide received orphan drug designation for
KS by the FDA of the US.

The risk for KS and virally associated lymphomas increases rapidly as the CD4+
cell counts of HIV-infected individuals diminish [17], and the risk of developing
AIDS-associated cancers is lower for individuals who are less severely immune
suppressed. Since the prevalence of KS in AIDS patients is very high, and HIV
coinfection is thought to be an important factor in the development of KS, attempts
to control KS by improving the immune system of HIV-infected individuals
through cART are recommended. Indeed, the incidence of KS has declined con-
siderably following the introduction of cART therapy and often cART alone will
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lead to KS regression in AIDS patients. However, it is important to note that even in
the face of cART therapy, the likelihood of an HIV-positive individual developing
KS is still 20 times higher than uninfected individuals [17] and that by now
one-fourth of KS develops in individuals who are HIV-suppressed [53].

Current treatments for MCD, PEL, and other AIDS lymphomas include standard
chemotherapy such as CHOP, which contains four drugs; prednisone, vincristine,
cyclophosphamide, and doxorubicin, or EPOCH, which in addition contains
etoposide. These can be given coincidentally with cART [78, 86]. Case reports in
the literature also suggest that Rituximab (rituxan) is effective against PEL.
Rituximab is an anti-CD20 antibody, but because Rituximab targets normal B cells
as well, it can be associated with an increased risk of infection when used in AIDS
patients [48]. Scott et al. have reported on two MCD patients that went into sus-
tained remission with just oral etoposide [86], but a more modern approach would
be neutralizing human IL-6 using anti-IL-6 antibodies or anti-IL-6 receptor anti-
bodies. Whether the concept of neutralizing paracrine factors can also be applied to
viral IL-6 remains to be explored.

Another line of thinking has lead to exploratory studies using anti-herpesviral
drugs that inhibit herpesviral replication such as ganciclovir or AZT [11, 38, 60, 94]
in patients. There are two possible mechanisms of action. First, these inhibitors
suppress viral dissemination and thus the pool of infected cells rather than acting
directly on the tumor. Second, there is the observation that AZT as well as gan-
ciclovir has direct cytotoxicity on the infected cell, and selectivity for infected cells,
as only those cells express the viral kinases that convert these prodrugs into their
active forms. The later can be enhanced by inducing viral reactivation using
histone-deactylase inhibitors such as vorinostat, butyrate, or valproic acid. Cido-
fovir, another herpesvirus polymerase inhibitor, did not show a clinical benefit [57].

cART therapy has resulted in varying degrees of success with respect to decline
in the incidence of non-Hodgkin lymphoma. It is estimated that cART therapy
decreases the incidence of non-Hodgkin lymphoma anywhere in the range of 40–
76%. Moreover, there is emerging evidence that protease inhibitors such as indi-
navir or nelfinavir, which also inhibit matrix metalloproteinase may have direct
anti-KS activity [36] in addition to HAART-associated reconstitution of the
immune system [87]. More information on current trials that are underway to treat
KS, PEL and MCD can be gleaned by visiting the National Cancer Institute
(NCI) website: http://www-dcs.nci.nih.gov/branches/aidstrials/adlist.html.

3.8 Conclusions

As a consequence of cART, the life expectancy of HIV-infected individuals now
equals that of other persons with chronically managed diseases such as diabetis or
heart disease. As these HIV-infected patients continue to age, there will be a cor-
responding increase in the incidence of AIDS-defining, since HIV+ are dispro-
portionally exposed to KSHV, human papilloma virus, and Epstein–Barr Virus,
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as well as cancers not associated with infectious causes. Most of the current ther-
apies with the exception of anti-herpesviral drugs do not take advantage of the
unique viral etiology of KSHV-associated cancers, and anti-herpesviral drugs
themselves are not effective against latent virus. Thus, it will be important to show
that “traditional” anticancer therapies are safe in the context of cART and HIV
infection, and to develop future therapies that directly impact upon, and obliterate,
the function of viral genes.
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