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Overview

According to the WHO, there are currently over 36 million people living with HIV
globally, but with the successes of the antiretroviral therapy (ART), deaths due to
AIDS have continued to decline, and people living with HIV (PLWH) are now
living a longer and normal life span. However, non-AIDS-associated diseases are
now increasing in PLWH, and cancer has now become a leading cause of morbidity
and mortality. It has been estimated that cancer is responsible for over one-third of
all deaths in HIV-infected individuals. The majority of cancers in AIDS patients are
known to associate with co-infection with known oncogenic viruses such as human
papilloma virus (HPV), Epstein Barr virus (EBV), the Kaposi’s sarcoma associated
herpesvirus (KSHV) or human herpesvirus-8 (HHV-8), as well as hepatitis
B (HBV) and hepatitis (HCV), and more recently the Merkel cell polyoma virus
(MCPyV). With the successes of ART, a number of the AIDS-associated malig-
nancies such as Kaposi’s sarcoma (KS) and some lymphomas have declined in the
developed countries, but the KS disease burden remains high in Africa; the inci-
dence of KS has reported to be as high as prostate cancer in the US. In addition,
several additional non-AIDS defining malignancies (NADM) like anal cancers,
oropharyngeal cancers, Hodgkin lymphomas, hepatocarcinomas, and even lung
cancers are occurring more often in PLWH. Therefore, there is still an urgent need
to have a better understanding of the epidemiology of these cancers, the risk factors
involved, the clinical presentations, the treatment, and their associate viral etio-
logical agents, including the viral gene functions, and their effects on the host in
leading to cellular transformation and oncogenesis.

This book HIV/AIDS-Associated Viral Oncogenesis edited by Meyers represents
a must read material for clinicians, researchers, and students who are interested in
this area. It consists of review chapters authored by leading experts in the field,
covering all the known human oncogenic viruses and malignancies that are asso-
ciated with AIDS and NADM. There are a total of nine comprehensive chapters;
one chapter is on HIV/AIDS malignancies; two chapters on KSHV and KS; one
chapter is on EBV and associated lymphomas. There are three chapters on HPV and
its associating cancers, head and neck squamous cell carcinomas and oral cancers,
the anal cancer, and cervical cancers. There is one chapter on MCPyV and Merkel
cell carcinomas, and one chapter on HBV/HCV and hepatocarcinomas.
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The chapter by Pyring provided a comprehensive review on the current status of
AIDS/HIV associated malignancies and their associating viral etiological agents.
There are two chapters on KSHV and KS. The first is by He et al. The authors
provided a comprehensive review on the molecular biology of KSHV, the regu-
lation of the viral gene expression, the host immune response against the virus
infection, and the mechanisms of cellular transformation and tumorigenesis. The
second KSHV chapter by Dittmer and Damania described the KSHV and its
associate diseases. It also described the prevalence of infection, the molecular
biology of the virus and the disease, and its treatment. The chapter on EBV and
lymphomas by Lang et al provided a comprehensive review of EBV, its molecular
biology and the regulation of viral and cellular gene expression in EBV-associated
lymphomas. It also described the various types of lymphomas associated with EBV
and its association with HIV infection. There are three chapters on the three cancers
associate with HPV. The first chapter is on HPV associate cervical cancer by Du; it
described the biology of HPV and the global burden of cervical cancer, and
co-infection by HIV in women. It also reviewed the risk factors involved, screening
for cervical cancers, and prevention of HPV infection. The second chapter on HPV
is by Hagansee on oral cancer. It described the risks, the prevalence and prevention
of the cancer. It also described the molecular mechanisms that underlie
HPV-mediated oncogenesis to lead to cancer. The third chapter on HPV and anal
cancer is by Wang and Polefsky who reviewed the current literatures on anal
cancers, the virus, the epidemiology, the clinical characteristics, the prevention, as
well as the treatment and outcome of the cancer. The chapter by Caprio on Merkel
cell carcinoma reviewed the clinical disease, its etiological agent and the gene
regulation of the virus and changes in the tumor at the molecular levels. Finally, the
chapter by Hu et al on HBV/HCV liver cancers reviewed the epidemiology of
HBV/HCV and HIV co-infections; also on the possible mechanisms of hepato-
carcinogenesis as well as the management of the cancer. It also discussed the other
hepatitis virus, the HGV.
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Abstract
Malignancies were one of the earliest recognized manifestations that led to the
description of the acquired immune deficiency syndrome (AIDS). The majority
of cancers in AIDS patients are associated with coinfection with oncogenic
viruses, such as Epstein–Barr virus, human herpesvirus 8, and human
papillomavirus, with resulting malignancies occurring secondary to diminished
immune surveillance against viruses and virus-infected tumor cells. Over 50% of
AIDS lymphomas are associated with Epstein–Barr virus (EBV) and/or HHV8
infection. HHV8-associated diseases include Kaposi sarcoma (KS), primary
effusion lymphoma (PEL), and multicentric Castleman disease (MCD). EBV is
associated with several malignancies, including Hodgkin lymphoma (HL) and
non-Hodgkin lymphoma (NHL). Coinfection with HIV and HPV is associated
with an increased risk of various squamous cell carcinomas of epithelial tissues.
HAART has significantly impacted the incidence, management, and prognosis
of AIDS-related malignancies. In addition to changing the natural history of HIV
infection in regard to incidence and survival, HAART has dramatically
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decreased the incidence of certain virally mediated HIV-associated malignancies
such as KS and primary CNS lymphoma. The beneficial effects of HAART on
these tumors are attributed to drug-mediated HIV suppression and immune
reconstitution. However, HAART has had a less favorable impact on EBV- and
HPV-related malignancies. This chapter presents an overview of HIV-associated
malignancies mediated by HHV-8, EBV, and HPV, and reviews the effect of
HAART on the epidemiology, presentation, treatment, and outcomes of these
cancers.

Keywords
Human herpesvirus 8 � Epstein–Barr virus � Human papillomavirus
Human immunodeficiency virus � Kaposi sarcoma � AIDS-associated
lymphoma � Anogenital cancer

1.1 Introduction

Malignancies were one of the earliest recognized manifestations that led to the
description of the acquired immune deficiency syndrome (AIDS). The rising inci-
dence of Kaposi sarcoma in young homosexual men, a rare skin cancer typically
seen in elderly men of Eastern European and Mediterranean descent, was a har-
binger of the AIDS epidemic in the early 1980s. This was followed by sporadic
reports of high-grade B-cell non-Hodgkin’s lymphoma (NHL), primary cerebral
lymphoma, and systemic NHL. By 1985, both Kaposi’s sarcoma and high-grade
B-cell NHL were classified as “AIDS-defining” illnesses by the Centers for Disease
Control (CDC). In subsequent years, the CDC listed invasive cervical cancer as an
AIDS-defining illness, given its poorer prognosis in HIV-positive women. Research
later showed that the majority of cancers in AIDS patients were associated with
coinfection with oncogenic viruses, such as Epstein–Barr virus, human herpesvirus
8, and human papillomavirus, with resulting malignancies occurring secondary to
diminished immune surveillance against viruses and virus-infected tumor cells.

Over 50% of AIDS lymphomas are associated with Epstein–Barr virus
(EBV) and/or HHV8 infection. HHV8-associated diseases include Kaposi sarcoma
(KS), primary effusion lymphoma (PEL), and multicentric Castleman disease
(MCD). EBV is associated with several malignancies, including Hodgkin
lymphoma (HL) and non-Hodgkin lymphoma (NHL). EBV is also implicated in
cases of leiomyosarcoma, cervical, and anal cancer in patients with AIDS.

HAART has significantly impacted the incidence, management, and prognosis
of AIDS-related malignancies. In addition to changing the natural history of HIV
infection in regard to incidence and survival, HAART has dramatically decreased
the incidence of certain virally mediated HIV-associated malignancies such as KS
and primary CNS lymphoma. The beneficial effects of HAART on these tumors are
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attributed to drug-mediated HIV suppression and immune reconstitution. However,
HAART has had a less favorable impact on EBV-related malignancies; NHLs
remain the most common tumors in the HAART era. This chapter presents an
overview of HIV-associated malignancies mediated by HHV-8, EBV, and HPV,
and reviews the effect of HAART on the epidemiology, presentation, treatment, and
outcomes of these cancers.

1.2 Gammaherpesvirus-Associated Malignancies

The human gammaherpesvirus family includes Epstein–Barr virus (EBV) and
human herpesvirus (HHV8), previously known as Kaposi sarcoma-associated
herpesvirus (KSHV). Gammaherpesviruses establish a persistent infection, espe-
cially in lymphoid cells. In the immunocompetent host, the clinical course is usually
asymptomatic. In immunocompromised hosts, such as post-transplant patients on
immunosuppression and HIV-infected patients, both EBV and HHV8 are impli-
cated in the development of a wide range of lymphoproliferative disorders.

A. Human Herpes Virus-8-Related Tumors

HHV8 was first isolated from Kaposi sarcoma lesions in patients with AIDS by
Chang and Moore in 1994 [1], and subsequent studies demonstrated its association
with other lymphoproliferative disorders in this population [ 2, 3]. Human
herpesvirus-8 virus is the etiologic agent of three AIDS-associated malignancies:
Kaposi sarcoma, a plasmablastic variant of multicentric Castleman disease
(HHV8-MCD), and primary effusion lymphoma. Unlike other herpesviruses,
HHV8 is not ubiquitous: while HHV8 is highly prevalent in sub-Saharan Africa
(>50%), it is quite rare in most European countries, Asia, and the United States
(seroprevalence rate <10%) [4, 5]. The prevalence is elevated in men who have sex
with men (MSM) [6–8]. HHV8 is mainly transmitted via saliva [9], and sexual risk
factors are probably a surrogate marker for close physical contact [10, 11].

Five clinical variants have been described: classic, endemic, iatrogenic,
AIDS-associated (epidemic), and non-epidemic KS [12]. Classic KS describes an
indolent cutaneous disease among elderly men of Mediterranean, Eastern European
(Ashkenazi) Jewish, and South American origin. Endemic KS is an aggressive
HIV-unrelated form that is commonly seen in sub-Saharan Africa, and often pre-
sents with visceral involvement. Iatrogenic KS is seen in patients receiving
immunosuppressive drugs, particularly those with solid-organ transplants [13]. KS
was one of the first manifestations of the HIV/AIDS epidemic in the 1980s.
Recently, non-epidemic KS was proposed as a fifth subtype in patients who are at
high risk for HIV, but are HIV seronegative [12].

1 AIDS-Associated Malignancies 3



1. AIDS-Associated KS

The introduction of HAART in the mid-1990s has led to a significant reduction in
the incidence of KS in developed countries. However, KS is still the most common
AIDS-defining malignancy in parts of sub-Saharan Africa where the seropreva-
lences of both HIV and HHV8 are high. AIDS-related KS exhibits a wide spectrum
of clinical presentations. KS is staged using the AIDS clinical trials group modified
staging classification (Table 1.1). The prognosis depends on the stage of KS, the
level of immunosuppression, and the response to anti-HIV therapy. HAART results
in a decrease in the incidence of KS.

KS is a multicentric angioproliferative spindle cell tumor arising from
HHV8-infected lymphatic endothelial cells. While HHV8 is the etiologic agent of
KS, HIV-induced immunosuppression is also an important cofactor in the induction
of this malignancy. Both absolute decreases in CD4+ counts and lack of
HHV8-specific T-cell immunity are associated with KS [14, 15]. In addition, KS is
independently associated with the degree of HIV viremia [16]. Before the wide-
spread use of HAART, patients coinfected with HIV and HHV8 were estimated to
be 400–2000 times more likely to develop KS than those with just HHV8 infection
[17]. The implementation of HAART in the United States and Western Europe
resulted in an initial 80% decrease in the incidence of KS [18]. However, further
decreases after 2000 have been more modest, and KS remains the second most
common tumor arising in HIV-infected persons in the United States, after
non-Hodgkin lymphoma, with a cumulative incidence of approximately 2% in the
HAART era [19].

KS lesions may involve the skin, oral mucosa, lymph nodes, and visceral organs,
especially the pulmonary and gastrointestinal tract. Most patients present with
painless cutaneous lesions, which may have a macular, papular, nodular, or
plaque-like appearance. Lesions can range in color from pink to red or purple and in
size from several millimeters to large confluent areas. Lesions are typically local-
ized in the oral cavity, on the face, and lower extremities, but can involve
almost any site. Visceral disease sometimes occurs in the absence of skin lesions.

Table 1.1 AIDS clinical trials group modified staging classification

TIS
staging of
KS

Good risk (all of the following) Poor risk (any of the following)

Tumor (T) Confined to skin, lymph nodes,
or minimal oral disease

Tumor-associated edema or ulceration,
extensive oral KS, gastrointestinal KS,
KS in other non-nodal viscera

Immune
status (I)

CD4 cell count >150 cells/uL CD4 cell count <150 cells/uL

Systemic
illness (S)

Karnovsky performance
status >70

Karnovsky performance status <70 or
other HIV-related illness

4 R. Vangipuram and S. K. Tyring



Oral lesions may lead to ulceration, dysphagia, and secondary infection. Gas-
trointestinal KS has been described in almost half of patients at the time of initial
diagnosis [20]. Gastrointestinal involvement is often asymptomatic; however,
bleeding, perforation, and obstruction may occur [21]. Pulmonary KS is more
frequent among patients with extensive cutaneous disease and more advanced
immunosuppression, though 15% of patients with pulmonary KS have no muco-
cutaneous lesions at diagnosis [22]. In contrast to KS at other visceral sites, pul-
monary KS is frequently symptomatic, and patients may present with
bronchospasm and/or dyspnea, which may be life-threatening [22].

AIDS-associated KS is staged by the classification developed by the AIDS
Clinical Trials Group (ACTG) Oncology Committee [23]. This classification uti-
lizes three variables: tumor extent (T), immune status (I), and systemic symptoms
(S), which are classified as good risk (0) or poor risk (1). For tumor burden (T),
poor risk (T1) is defined by the presence of extensive cutaneous or oral disease,
tumor-associated edema, ulceration or visceral disease; for immune status, poor risk
(I1) is defined by CD4+ <150 cells/lL; and for systemic illness, poor risk (S1) is
defined by the presence of other opportunistic infections, constitutional symptoms,
or poor performance status. The ACTG staging system was developed and initially
validated in the pre-HAART era. A survival analysis conducted after the intro-
duction of HAART suggested that tumor extent and systemic illness, rather than
CD4+ T-cell count were the most important predictors of survival [24]. It has been
proposed that patients can be classified into two main risk categories: good risk
(T0S0, T1S0, or T0S1) and poor risk (T1S1) [24]. The 3-year survival rate for patients
at stage T1S1 is 53%, compared to the 3-year survival rates with T0S0, T1S0, and
T0S1, which were 88, 80, and 81%, respectively [24].

The introduction of HAART has dramatically improved the overall survival of
patients with KS. The incidence rate of KS declined from 15.2 per 1000
patient-years to 4.9 per 1000 patient-years after the introduction of HAART, with a
relative risk (RR) for KS of 0.32 (99% confidence interval [CI] 0.26–0.4) in the
HAART era compared with the pre-HAART era [25]. Effective control of HIV
viremia with HAART is imperative in patients with AIDS-KS and in patients with
limited KS, is often sufficient [26]. For HAART-naïve patients with early KS (T0),
the administration of HAART alone was associated with disease regression in
several studies [27, 28]. While there is some evidence that HIV protease inhibitors
have specific anti-KS activity [29], most studies indicate that prevention or control
of KS is related to the degree of control of HIV, rather than the specific HAART
regimen utilized [30]. In addition to HAART, a wide variety of treatments appear
able to inhibit KS growth, including antiretrovirals, cytotoxic chemotherapeutic
agents, retinoids, thalidomide, and matrix metalloproteinase inhibitors [28–34].

2. HHV8-Associated Multicentric Castleman Disease

Castleman disease was originally described in 1956 as localized lymph node
hyperplasia resembling a thymoma [35]. It is now understood to be not just a single
disease but rather an uncommon, heterogeneous group of nonclonal
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lymphoproliferative disorders, which have a broad spectrum of clinical expression.
There are generally two clinical variants: either localized to a single lymph node
(unicentric) or with systemic involvement (multicentric). Multicentric Castleman
disease (MCD) presents with generalized lymphadenopathy, multi-organ involve-
ment, systemic symptoms of fever, fatigue, weight loss, and carries the potential for
malignant transformation [36]. HHV8 is the etiologic agent of a plasmablastic form
of MCD that is observed in HIV patients. MCD was first diagnosed in two
homosexual men with AIDS in 1985 [37]. In individuals with AIDS, MCD is
linked with malignant transformation to non-Hodgkin’s lymphoma at 15-fold
higher rate than those without MCD [38]. Unlike KS, HHV8-MCD appears to be
becoming more frequent with the widespread use of HAART [39].

The clinical presentation of HHV8-MCD includes intermittent fevers, night
sweats, fatigue, cachexia, edema, along with lymphadenopathy and/or hep-
atosplenomegaly [40]. Nonspecific respiratory and GI symptoms are common as
well. Common laboratory abnormalities include anemia, cytopenias, hypoalbu-
minemia, hyponatremia, hypergammaglobulinemia, and elevated inflammatory
markers such as C-reactive protein (CRP) [41]. HHV8-MCD symptoms are
mediated by certain cytokines, especially human IL-6, HHV8 vIL-6, and human
IL-10 [41]. vIL-6 is believed to play an important role in pathogenesis of
HHV8-MCD, which may be independent or complementary to that of human IL-6,
through autocrine and paracrine mechanisms of action [42]. HHV8-MCD is diag-
nosed via biopsy, whereby affected lymph nodes demonstrate involuted germinal
centers with hyperplasia of vasculature and expansion of HHV8-infected plas-
mablasts in the mantle zone of the follicles [43].

Patients may have a waxing and waning course with exacerbations and subse-
quent remissions. At times, symptom flares can be severe and fatal. Flares are
typically associated with high HHV8 viral loads [44]. There is no single consensus
definition of HHV8-MCD flare or symptomatic activity; however, the
French ANRS (Agence Nationale de Recherche sur le SIDA Castleman B trial
group) have described criteria to define an attack of HIV MCD, based on fever, a
C-reactive protein greater than 20 mg/L in the absence of any other cause, and 3 of
12 additional clinical findings (Table 1.2) [45]. HHV8-viral load has at times been
used to assess symptomatic patients with HHV8-MCD, although assays vary
between groups, and elevated HHV8 viral load is not specific for HHV8-MCD [46].
CT imaging in patients with HHV8-MCD generally shows diffuse, symmetric
adenopathy, and hepatosplenomegaly [43]. Hemophagocytic syndromes also have
been described [43]. Concomitant KS is present in up to 70% of individuals [43].

There is no standard therapy for HHV8-MCD. HIV-positive patients with
HHV8-MCD generally are treated with concurrent HAART in addition to various
therapies such as immune modulators, chemotherapy, and antiviral agents [47].
Rituximab, an anti-CD20 monoclonal antibody, given alone or in conjunction with
chemotherapy, is thought to confer a beneficial effect by eliminating reactive
B-cells, thus depriving the HHV8-infected plasmablasts of proliferation and sur-
vival signals by breaking virus and cytokine-driven feedback loops with the
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reactive B-cells [48, 49]. However, rituximab is associated with exacerbations of
cutaneous KS [50].

Human IL-6 is important to the pathogenesis of MCD, and the use of mono-
clonal antibodies directed against IL-6 (siltuximab) or its receptor (tocilizumab) has
shown clinical efficacy in HIV-negative HHV8 negative MCD [51–53]. However,
because vIL-6 is antigenically different from human IL-6, a potential role for sil-
tuximab in the treatment of HHV8-MCD remains to be explored. While human
IL-6 is elevated in HHV8-MCD and contributes to symptoms and disease patho-
genesis, given the additional role of vIL-6 and other HHV8 genes, it is unknown
whether antihuman IL-6 therapy alone will be sufficient.

Even though life expectancy in multicentric Castleman disease has improved in
the HAART era, it continues to have a poor prognosis and an increased incidence of
non-Hodgkin lymphoma in the HIV context. Infection, multi-organ failure, Kaposi
sarcoma, non-Hodgkin lymphoma, and progressive multicentric Castleman disease
were the most often reported causes of death [43].

Table 1.2 French ANRS criteria for HIV MCD flare

1. Fever

2. Serum C-reactive protein level >20 mg/L in the absence of any other etiology

3. At least, three of the following symptoms:

– Peripheral lymphadenopathy

– Splenomegaly

– Edema

– Pleural effusion

– Ascites

– Cough

– Nasal obstruction

– Xerostomia

– Rash

– Central nervous system symptoms

– Jaundice

– Autoimmune hemolytic anemia

Table 1.3 Expression of EBV latent genes and association with lymphomas

Latency
pattern

EBNA-1 EBNA-2 EBNA-3 LMP-1 LMP-2 EBER Disease

Type I + − − − − + Burkitt lymphoma,
primary effusion
lymphoma

Type II + − − + + + Hodgkin lymphoma

Type III + + + + + + Primary CNS lymphoma

1 AIDS-Associated Malignancies 7



3. Primary Effusion Lymphoma

PEL is a rare lymphoproliferative disorder, accounting for 1–4% of all
AIDS-related lymphomas, and even fewer cases in the HIV-negative individual. It
was first reported in 1989 by Knowles et al. as a lymphoma syndrome characterized
by malignant effusions in HIV-positive individuals. PEL is divided into classic and
solid variants. Lymphomatous effusions are characteristic of classic PEL. Pleural
involvement is seen in 60–90% of patients, followed by peritoneal (30–60%),
pericardial (up to 30%), joint spaces, and rarely, meninges [54–56]. The solid
variant of PEL presents with tissue-based tumors involving the GI tract, lung,
central nervous system (CNS), skin, and lymph nodes [57]. According to the World
Health Organization (WHO) classification of tumors of hematopoietic and lym-
phoid tissues, the presence of HHV8 is considered an essential criterion for the
diagnosis of PEL, though few cases of HHV8-negative PEL have been described.
PEL is often associated with other HHV8-associated malignancies, such as KS and
HHV8-MCD. Along with HHV8 infection, 70–80% of cases have coexisting EBV
infection and latency I gene expression (90%) [58].

PEL usually presents in HIV-infected young to middle-aged men, with a median
age at diagnosis of 41 years. The male to female ratio is 8:1. Patients are usually
severely immunosuppressed and present with advanced disease (stages III and IV)
at diagnosis. The diagnosis of PEL requires the demonstration of HHV8 in the
neoplastic cells. EBV coinfection can be demonstrated through in situ staining for
EBV-encoded small RNAs. Neoplastic cells have a unique phenotype characterized
by CD45, CD30, CD38, CD138, and MUM1 coexpression [55]. Classic B-cell and
T-cell markers are typically not seen.

There is no standard therapy for PEL and prognosis is poor. Historically, median
survival ranges between 3 and 9 months; 2-year overall survival rates of 33–39%
are reported in studies using CHOP (cyclophosphamide, doxorubicin, vincristine,
and prednisone) or CHOP-like regimens [56]. Bortezomib, a proteasome inhibitor
that induces HHV8-lytic activation, along with lenalidomide, an immunomodula-
tory and antineoplastic agent, is commonly used in combination with chemotherapy
[59]. Other targeted agents that have demonstrated activity in mouse models include
the mTOR inhibitor sirolimus and the anti-CD30 immunotoxin, brentuximab
vedotin [60, 61]. Highly active antiretroviral therapy should be continued or ini-
tiated in patients with HIV infection. Although PEL is a CD20-negative tumor,
advances in understanding the mechanism of HHV8-infection of B-cells, and
clinical overlap with HHV8-MCD support the use of rituximab in the treatment of
PEL, especially in patients with concurrent HHV8-MCD.

B. Epstein–Barr Virus

EBV is the most common persistent virus infection in humans, and approximately
95% of the world´s population has an asymptomatic lifelong carrier status. Acute
infection occurs in the epithelium of the oropharynx and may be asymptomatic or
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cause infectious mononucleosis. In immunocompetent persons, the virus then
generally forms an asymptomatic latent chronic infection primarily in B-cells [62].

EBV encodes several latency-associated genes that are variably expressed during
primary and chronic infection, and which may contribute to oncogenesis. The level
of immunosuppression defines the type of lymphoma that will develop in the HIV+

setting [63]. EBV-associated lymphomas can be classified into 3 different categories
based on latency patterns, which provide insight into disease pathogenesis.
Three EBV latency patterns are recognized (Table 1.3).

Latency 1 tumors generally occur at relatively preserved CD4+ T-cell counts.
The tumor cells express EBV nuclear antigens (EBNA) 1, EBV-encoded RNA
(EBER), and several microRNAs, and are associated with monomorphic DLBCL,
Burkitt lymphoma, and plasmablastic lymphoma [64]. EBNA1 expressed in all
latently infected cells is responsible for the maintenance and replication of the
episomal EBV genome. It can also induce oxidative stress as well as promote
telomere dysfunction [65]. EBNA1 may inhibit c-Myc induced apoptosis, and
thereby contribute to oncogenesis [65].

Latency II is an intermediate pattern with expression of many proteins except for
EBNA2. The expression of latency membrane protein 1 (LMP1) in the absence of
EBNA2 is used to demonstrate latency type II. LMP1 functions as a classic
oncogene and is essential for EBV-induced B-cell transformation in vitro [66].
Classical Hodgkin lymphoma has latency 2 pattern (Table 1.3).

EBV type 3 latency pattern is the most immunogenic and is characterized by the
expression of all six EBV nuclear antigens (EBNA) and all three LMPs. This
latency pattern can be found in individuals with severe immunosuppression and is
typical of EBV-infected immortalized B-cells. The viral proteins are highly
immunogenic and trigger a strong cytotoxic T-cell reaction. The expression of
EBNA2 is important to demonstrate latency type III. Latency 3 tumors occur at the
lowest CD4+ T-cell counts and include primary CNS lymphoma. CD4+ T-cell
immune reconstitution with HAART is most important in the prevention and
treatment of this category of EBV-associated lymphomas.

1. AIDS-Related Lymphomas

AIDS-related lymphoma remains a significant cause of morbidity and mortality in
HIV-infected individuals. The increased risk for lymphoma among HIV-infected
individuals is related to duration and degree of immunosuppression, induction of
cytokines leading to B-cell proliferation, and opportunistic infections with onco-
genic herpesviruses such as EBV and HHV8 [67]. The relative risk of
AIDS-associated malignancies increases as CD4+ T-cell counts decline [68]. Over
80% of all cases are associated with EBV. The HIV-associated lymphoma subtypes,
which are related to EBV infection, include both classic Hodgkin’s lymphoma and
non-Hodgkin’s lymphomas, such as diffuse large B-cell lymphoma, primary central
nervous system lymphoma, Burkitt lymphoma, and plasmablastic lymphoma. EBV
is also associated with rare cases of leiomyosarcoma in children with HIV [69].
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Compared with the types of lymphomas that occur in HIV-negative individuals,
AIDS-associated lymphomas usually comprise the more aggressive histological
subtypes and have a higher incidence of extranodal involvement and an aggressive
clinical course [70]. The incidence of high-grade B-cell non-Hodgkin lymphoma
(NHL) in the pre-HAART was 60–200 times higher in HIV-infected individuals
than in HIV-uninfected persons [ 70]. HAART is associated with a decrease in
incidence of opportunistic infections and AIDS-associated malignancies, including
NHL; nevertheless, the incidence ratio of NHL still remains relatively high in
HIV-infected patients [70–72]. However, the incidence of PCNSL has dramatically
decreased since the introduction of HAART [73]. Although the incidence of
HIV-associated NHLs has significantly decreased after the introduction of HAART,
with the most dramatic decline observed in PCNSL, this decline is less marked than
other HIV-associated morbidities [74]. The overall prevalence of HIV-associated
lymphoma is significantly higher compared to that of the general population and it
continues to be relevant even after the wide availability of HAART.

a. Non-hodgkin Lymphomas

NHL has been considered as an AIDS-defining cancer since 1985 and still
remains one of the major causes of death in HIV-infected patients [75]. Diffuse
large B-cell lymphomas (DLBCL), which include including primary central ner-
vous system lymphoma (PCNSL) and Burkitt lymphoma (BL), constitute 90% of
HIV-related non-Hodgkin lymphomas (NHL) with relative frequencies of 50 and
40%, respectively [76]. After the implementation of HAART, the risk of developing
aggressive B-cell NHL has decreased, while the risk of developing plasmablastic
lymphoma, primary effusion lymphoma (PEL), and classical Hodgkin lymphoma
has increased [18].

i. Diffuse Large B-Cell Lymphoma

HIV‐associated diffuse large B‐cell lymphomas can involve lymph nodes, or
present in virtually any extranodal site. The brain is the most common extranodal
site, with primary CNS lymphomas accounting for 15–30% of HIV‐associated
NHL lymphomas [76]. Other frequently involved extranodal sites in HIV‐infected
patients include the gastrointestinal tract, liver, and bone marrow.

ii. Primary CNS Lymphoma

PCNSL is defined as the involvement of the brain, leptomeninges, eyes or spinal
cord by a lymphoma. It occurs late in the course of HIV disease and is associated
with extremely low CD4 cell counts (<50 cells/µl). HIV+ patients present at a
younger age, worse performance status, higher lactic dehydrogenase (LDH) at
presentation and shorter overall survival compared to HIV− patients [77].
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Clinical presentation includes headaches, focal neurological signs, changes in
mental status, confusion, memory loss, and seizures [78]. Radiography shows
solitary or multiple contrast-enhanced lesions, often with periventricular and central
necrosis, along with prominent mass effect and edema. It is often difficult to dif-
ferentiate cerebral mass lesion from toxoplasmosis as both are seen in advanced
immunodeficiency (CD4 cell counts <50 cells/mm [3]) and present with headaches,
focal neurologic deficits, and similar radiological findings.

All cases of HIV-associated PCL are associated with EBV, which may be
detected by immunohistochemical staining of biopsy tissue or by PCR amplification
of cerebrospinal fluid. Histopathology reveals high-grade, diffuse large B-cell or
immunoblastic non-Hodgkin lymphoma cells. Despite a high response rate of
around 50%, radiotherapy, when used alone, does not provide a substantial survival
benefit in patients with primary CNS lymphoma, with a median overall survival
of 10–18 months and 5-year overall survival of 5% [79]. High-dose
methotrexate-based chemotherapy is recommended for first-line treatment of pri-
mary CNS lymphoma [79]. Chemotherapeutic treatments to be combined with
high-dose methotrexate should be selected from active drugs known to cross the
blood–brain barrier.

iii. Burkitt Lymphoma

BL is a highly aggressive B-cell NHL. BL constitutes 40% of the HIV-related
lymphomas. In contrast to DLBCL, BL tends to occur in patients with relatively
preserved immune function; CD4+ T-cell counts are relatively normal (usu-
ally >200/µl) [80].

Patients typically present with advanced stage disease, B symptoms such as
fever, night sweats, weight loss, and poor performance status. Nodal and extranodal
involvement is common, with lesions frequently seen in the gastrointestinal tract,
bone marrow (BM), or central nervous system (CNS) [81]. Symptoms are related to
either abdominal mass or extensive bone marrow infiltration. Morphologically, BL
in the HIV+ setting demonstrates more variation in cell size and shape with more
plasmacytoid morphology with eccentrically located nuclei and amphophilic
cytoplasm as compared to sporadic cases [81]. The clinical course is rapidly pro-
gressive, with a propensity to involve the CNS. Prognostic factors include CD4+
T-cell count, PS, and bone marrow involvement [82]. HIV-positive patients are
currently treated with the same intensive chemotherapy regimens used for
immunocompetent patients. Survival of BL patients has remained poor in the
HAART era [83].

iv. Plasmablastic Lymphoma

Plasmablastic lymphoma (PBL), a distinct subtype of DLBCL, constitutes
approximately 3% of HIV-related lymphomas [84]. It is considered an
AIDS-defining illness and was first described in 1997 as an HIV-related lymphoma
involving the jaw and oral cavity [85]. Subsequent studies have shown its
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association with other types of immunodeficiency including post-transplant and
iatrogenic, and age-related immunosenescence [86]. HIV-associated PBL has a
predilection for the oral cavity (50%); however, in 45% of the cases there is
extraoral involvement; most commonly the gastrointestinal tract, followed by the
sinonasal cavity, skin, soft tissue, lung, bones, and less frequently lymph nodes
[84]. PBL occurs at all ages, but patients with HIV-related disease are significantly
younger than those with other types of immunosuppression, tend to be male, and
have advanced stage (III/IV) at presentation. The prognosis is generally poor with a
high mortality. Studies have shown poor prognosis regardless of the therapy
received; in many cases, even a complete response to chemotherapy did not sig-
nificantly improve survival, with median time of 6–7 months [87].

b. Hodgkin Lymphoma

HL is the most common non-AIDS-defining cancer [88]. HIV-infected patients
have a fivefold to 25-fold higher chance of developing HL in comparison to the
general population, with HAART therapy having no impact in its incidence [89].
HIV-associated HL has an aggressive clinical presentation with systemic B
symptoms, disseminated extranodal disease, and bone marrow involvement in
roughly 50% of cases [90]. The predominant subtypes of HL in HIV-positive are
the mixed cellularity (MC) and lymphocyte-depleted (LD) individuals, while in the
general population the most common is the nodular sclerosis subtype [88].

The combined use of HAART and chemotherapy has significantly improved the
prognosis of patients with HIV-HL. The post-HAART era is associated with an
improvement in survival which was attributed to virological response to
antiretroviral therapy and a reduction in HIV-associated mortality [91, 92]. Current
recommendations are to treat HIV-infected individuals as aggressively as
HIV-negative patients, along with providing supportive therapy such as
hematopoietic growth factors, and prophylaxis against opportunistic infections.

1.3 Human Papillomavirus-Associated Malignancies

Human papillomavirus (HPV) is the most common sexually transmitted infection
worldwide, with 14 million persons infected annually and a prevalence of 79
million persons worldwide [93]. It is the etiologic agent of cervical cancer and is
related to a subset of cancers of the anus, penis, vagina, and vulva, as well as a
proportion of head and neck squamous cell cancers in the immunocompetent patient
and in individuals with AIDS [94]. Persons with AIDS have an increased risk of
developing these cancers, which is related to the high incidence and persistence of
HPV infections in this population [95]. HPV prevalence in HIV-positive men has
been reported to be as high as 93% [93].
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Human papillomaviruses are small DNA viruses that infect squamous epithelial
tissues. The highest prevalence of HPV is found in the skin (61%), followed by the
mucosal surfaces, including vagina (41.5%), and mouth (30%) [96]. Over 150 types
of HPV have been identified; approximately one-third of these infect the squamous
epithelia of the genital tract and are sexually transmitted. HPV subtypes are divided
into two groups: low-risk, non-oncogenic HPV types which are associated with
anogenital warts, and high-risk oncogenic types which are associated with genital
and oropharyngeal cancers. Approximately, 15 genital HPVs are categorized as
high-risk genotypes and cause most cervical cancers, with over 99% of cervical
lesions containing HPV viral sequences [97]. High-risk HPVs are also associated
with many penile, vulvar, and anal carcinomas, and contribute to over 40% of oral
cancers [98]. High-risk genotypes include 16, 18, 31, 35, 45, 51, 52 and 58
(Table 1.4) [99, 100]. High-risk HPV are more prevalent among HIV-infected
individuals [101].

HPV oncoproteins disrupt multiple cellular signaling pathways to maintain
infected cells in a proliferative state to facilitate viral replication and persistence.
Consequently, mutations in cellular genes accumulate, leading to increased geno-
mic instability, which results in full transformation. The primary viral factors
responsible for altering these pathways and mediating progression to malignancy
are the E5, E6, and E7 proteins [102]. The efficient disruption of p53 and Rb
function by E6 and E7 is crucial for this process [102].

HPV-related tumors in HIV-positive patients tend to occur at a younger age and
at a more advanced stage than in HIV-negative patients [103–105]. In a multivariate
analysis, low CD4+ counts (� 200 cells/µL) were shown to be the strongest
independent predictor of infection with high-risk HPV genotypes and genital warts
[105]. Furthermore, HIV-positive patients with genital warts have greater resistance
to standard treatment and HIV-positive women being treated for CIN are more
likely to relapse, as compared to the general population [106, 107]. Similar to other
sexually transmitted infections, HPV is thought to confer greater susceptibility to
the acquisition of HIV. One randomized control trial of 2168 young men in Kenya
demonstrated that HPV infection was independently associated with HIV acquisi-
tion [108]. A similar study in the US showed comparable results with a 3.5-fold
increased risk of HIV seroconversion in HPV-positive MSM [109]. The impact of
HAART on HPV infection and HPV-associated diseases is not well understood.
HPV-associated malignancies, such as anal carcinoma and invasive cervical cancer,
have remained stable or have even increased [104].

Table 1.4 Classification of oncogenic risk by HPV genotype

Low risk 6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, 89

High risk 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 69, 73, 82
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A. Cervical Cancer

In 1993, the CDC designated squamous cell carcinoma (SCC) of the cervix as an
AIDS-defining cancer, as its incidence is estimated to be five times greater among
female AIDS patients [104]. This is attributed to high-risk sexual behavior which
underlies both HIV and HPV transmission, as well as the fact that HPV increases
the efficiency of HIV sexual acquisition and the impact of immunosuppression on
HPV persistence [110]. HIV is associated with a high frequency of multiple HPV
genotypes, a higher prevalence and persistence of HPV in the cervix, as well as the
higher prevalence of cervical intraepithelial neoplasia (CIN)/squamous intraep-
ithelial lesion (SIL), a higher progression from low-grade SIL (LGSIL) to
high-grade SIL (HGSIL), and a greater likelihood of relapse of CIN II/III after
therapy [111]. The risk for SIL is greatest among women with CD4 counts <200
cells/mm3 [111]. HIV-infected women are more likely than uninfected women to
develop cervical HPV infections, have multiple infecting HPV types, be less likely
to clear HPV, and be more likely to progress through preneoplastic stages to
develop cervical cancer. Studies have shown that HIV is associated with a 27%
increase in cancer-specific mortality among women with cervical cancer [104]. In
most centers, HIV-positive women with invasive cervical cancer are treated using
the same protocols as are used in immunocompetent women, which includes a
combination of surgery, chemotherapy, and radiotherapy [111].

B. HPV-Associated Squamous Cell Cancer of the Anal Cancer

HPV infection is associated with SCC of the anal canal (AC), which is relatively
low in the general population but is substantially elevated in HIV-positive patients,
especially men who have sex with men [110]. HPV16 has a well-documented
association with AC and is found in approximately 70% of AC lesions [103]. Anal
carcinoma has been included in the non-AIDS-defining cancers, which cumula-
tively still represent a leading cause of death among virologically suppressed
individuals with high CD4+ cell counts [103]. The relative risk for developing AC
is 37 times greater among HIV-positive MSM and 10 times greater among renal
transplant recipients than that of the general population [109]. Its incidence con-
tinues to increase despite the introduction of HAART [103]. In addition,
HIV-positivity is associated with higher recurrence rates after treatment and worse
recurrence-free survival [111].

HIV-positive patients should be treated similarly to non-HIV-positive individ-
uals. HPV-associated SCC is treated based on stage. In local and locally advanced
AC, concomitant chemoradiation therapy based on mitomycin C and 5-fluorouracil
(5-FU) is the current best treatment, with metastatic AC, chemotherapy with 5-FU
and cisplatin remains the gold standard [112, 113]. There are no indications for
induction or maintenance therapies in locally advanced tumors. Many novel
strategies such as targeted therapies, vaccination, immunotherapy, and photody-
namic therapy are in clinical trials for the treatment of AC.
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C. Intraepithelial Neoplasia

Persistent infection with oncogenic HPV types has also been associated with
vaginal intraepithelial neoplasia (VIN), penile intraepithelial neoplasia (PIN), and
their progression to invasive squamous cell carcinoma. The incidence of precursor
lesions and their subsequent progression to cancer is markedly higher in
HIV-positive men and women compared with HIV-negative counterparts [113].
HIV-positive women have increased incidence and prevalence of both VIN and
vulvovaginal carcinoma, with VIN occurring 29 times more frequently in
HIV-infected compared to non-HIV-infected women [114]. VIN in immunosup-
pressed patients often presents as multifocal, extensive disease with tendency to
recur after treatment [115]. HIV-positive men have a twofold to threefold increased
risk for penile cancer compared to their HIV-negative counterparts and higher rates
of PIN [116].

D. Squamous Cell Cancers of the Head and Neck

Human papillomavirus has been identified as a causal factor in a subset of head and
neck squamous cell cancers, primarily involving the oropharynx. The incidence of
oropharyngeal cancers has increased over the past several decades, while other head
and neck cancers have decreased. The estimated oral HPV prevalence is 40% in
HIV-positive individuals [117]. Most HPV-associated HNSCC involves the
oropharynx, and a recent large case series of head and neck cancers in HIV-infected
individuals found that 64% of HIV oropharyngeal cases were HPV positive [118].

1.4 Conclusion

Malignancies continue to be a significant cause of morbidity and mortality in
patients with AIDS. The majority of cancers in these patients are associated with
coinfection with oncogenic viruses such as HHV8, EBV, and HPV. For certain
AIDS-defining malignancies such as KS and PCNSL, the impact of HAART has
been dramatic, with significant decreases in incidence and improvement in treat-
ment outcomes. For other malignancies such as AIDS-associated lymphoma and
HPV-associated SCC, HAART appears to have no effect on the natural history of
the malignancy. Because the life expectancy of patients with HIV has increased, the
vulnerability of this population to comorbidities such as cancer has also risen.
While there have been dramatic advances in increasing the longevity and survival
of patients with HIV/AIDS, further research is necessary to continue preventing and
treating malignancies in HIV/AIDS.
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Abstract
Discovered in 1994, Kaposi’s sarcoma-associated herpesvirus (KSHV) has been
associated with four human malignancies including Kaposi’s sarcoma, primary
effusion lymphoma, a subset of multicentric Castleman’s disease, and KSHV
inflammatory cytokine syndrome. These malignancies mostly occur in immuno-
compromised patients including patients with acquired immunodeficiency
syndrome and often cause significant mortality because of the lack of effective
therapies. Significant progresses have been made to understand the molecular
basis of KSHV infection and KSHV-induced oncogenesis in the last two
decades. This chapter provides an update on the recent advancements focusing
on the molecular events of KSHV primary infection, the mechanisms regulating
KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced
tumorigenesis and inflammation, and metabolic reprogramming in KSHV
infection and KSHV-transformed cells.
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2.1 Introduction

Discovered in 1994, KSHV is a human oncogenic gammaherpesvirus [1]. KSHV is
causatively associated with several malignancies, including Kaposi’s sarcoma (KS),
primary effusion lymphoma (PEL), a subset of multicentric Castleman’s disease
(MCD), and KSHV inflammatory cytokine syndrome (KICS), most of which are
commonly found in HIV-1-infected individuals [1–4].

KS is a multifocal mesenchymal neoplasm characterized by neo-angiogenesis,
inflammatory infiltration, and spindle-shaped tumor cells that express mixed cel-
lular markers, including vascular and lymphatic endothelial, mesenchymal, and
hematopoietic precursor cells [5]. Early stage of KS primarily affects mucocuta-
neous tissues but advanced stage of KS is often involved with visceral organs [5].
KS is one of the most common malignancies in AIDS patients. While the advent of
antiretroviral therapy has substantially reduced the incidence of KS in Western
countries, it has stabilized or even rebound in recent years in some populations, and
continues to be the most common cancer in some African regions [6]. Hence, KS
remains to be one of the most important malignancies in AIDS patients causing
significant morbidity and mortality.

PEL is a rare and aggressive non-Hodgkin’s B cell lymphoma clinically char-
acterized by lymphomatous effusions in body cavities usually without tumor masses
[7]. PEL often occurs in advanced AIDS patients with a decreased CD4 T cell count
at diagnosis. Approximately, half of PEL patients have KS or are at risk for
developing KS. PEL is resistant to conventional chemotherapy with a short median
survival of less than 6 months [7].

MCD is a polyclonal B cell lymphoproliferative disorder characterized by
inflammatory symptoms, including fever, cachexia, lymphadenopathy, splenome-
galy, cytopenia, and hypoalbuminemia [8]. MCD in the setting of HIV is typically
associated with KSHV infection and is usually fatal without treatment. Further-
more, there is no established standard of treatment for KSHV-associated MCD [8].

KICS is a newly described severe systemic inflammatory symptom associated
with elevated viral loads and cytokine production [4]. The symptoms of KICS are
similar to MCD but without any pathological evidence of MCD. KICS patients
have poor prognosis, stressing the need for better understanding of its biology [9].

To dissect the biology of KSHV-associated malignancies and discover new
approaches for potential therapy, extensive studies of KSHV from the aspects of
virology to its associated pathogenesis have been done in the last three decades.
Here, we present an update of literature review of KSHV in the following topics:
(1) primary infection, (2) life cycle, (3) immunity, (4) tumorigenesis, (5) inflam-
mation, and (6) metabolism. Because of space constraint, we can’t describe all
studies in detail and cite every reference. However, several excellent reviews have
been published in the last few years and readers are advised to refer to those articles
and the previous edition of this book chapter for additional information [5].
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2.2 KSHV Primary Infection

KSHV has a broad cellular tropism and infects numerous cell types in vivo and
in vitro, including endothelial cells, B cells, monocytes, macrophages, epithelial
cells, keratinocytes, mesenchymal stem cells, and neurons [10–14]. Following
primary infection, KSHV eventually establishes latency in all the cell types
examined so far. While KSHV establishes latent infection without any active lytic
replication in some cell types, it has an early full productive replication phase
shortly after primary infection in others [15, 16]. To better understand the mech-
anism that controls KSHV latency and lytic replication following primary infection,
it is necessary to identify cell types and conditions that support early lytic repli-
cation and the associated cellular pathways.

2.2.1 Attachment, Entry, and Cellular Receptors

KSHV enters the host cell and delivers its genome into the nucleus through a series
of events tightly regulated by diverse viral and host factors [17, 18]. These events
include attachment to the host cell surface, binding to specific entry receptors, and
internalization through fusion of viral envelope with the membrane of intracellular
vesicles following receptor-mediated endocytosis [17, 18].

The attachment of KSHV to the host cell is through interactions between viral
glycoproteins (gB, gH, and gpK8.1) and cell surface molecule heparan sulfate, a
linear polysaccharide ubiquitously expressed at the extracellular matrix [19–22].
Following attachment, KSHV binds to the specific entry receptors, including
integrins, DC-SIGN, xCT, and ephrin type-A receptor 2 (EphA2), and activates a
cascade of signaling pathways to promote receptor-mediated endocytosis [17, 18].

Integrins are a large family of cell adhesion receptors, widely expressed in
various cell types, including endothelial cells and B cells. KSHV was the first
herpesvirus demonstrated to utilize integrins as entry receptors [13]. An integrin
binding RGD motif (arginine–glycine–aspartic acid) of glycoprotein gB mediates
its interactions with integrins a3b1, aVb3, and aVb5 expressed on the surface of
human foreskin fibroblasts (HFF), human dermal microvascular endothelial cells
(DMVEC), human monocytic THP-1 cells, human fibrosarcoma HT1080, Vero
cells, and HEK-293T cells [13, 23–25].

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN) is a C-type lectin expressed by dendritic cells (DCs), macrophage sub-
populations, and activated B lymphocytes. KSHV uses DC-SIGN as a binding and
entry receptor to infect human myeloid DCs, macrophages, and activated B cells [26,
27]. While blocking binding of KSHV to DC-SIGN does not affect virus attachment to
the cells, it inhibits KSHV infection in human monocytic THP-1 cells [23].

Human cysteine/glutamate exchange transporter system xc
− (xCT) is an amino

acid transporter that imports L-cystine and exports L-glutamate across plasma
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membrane [28]. xCT mediates KSHV cell fusion and virion entry [29]. xCT
interacts with a3b1 integrin to form a complex, which triggers downstream sig-
naling cascades essential for viral gene expression during primary infection of
DMVEC [24].

Eph2A, a receptor protein tyrosine kinase (RTK), serves as an entry receptor
through direct interaction with gH/gL glycoprotein complex [12, 30]. Eph2A plays
an important role in regulating macropinocytosis and trafficking of KSHV through
its association with signaling molecules (e.g., FAK, Src, and c-Cbl) in the lipid raft
(LR) regions during primary infection of DMVEC [31]. In contrast, KSHV
infection of HFF induces association of integrins with Eph2A in non-LR regions,
suggesting a crucial role of Eph2A in KSHV entry through clathrin-mediated
endocytosis [32].

2.2.2 Internalization and Intracellular Trafficking

KSHV infects most types of cells through clathrin-mediated endocytosis and
macropinocytosis. Clathrin-mediated endocytosis is an endocytic portal into cells
through which cargos are taken up using clathrin-coated vesicles. KSHV enters
human umbilical vein endothelial cells (HUVEC), HFF, HEK293 cells, and BJAB
cells via clathrin-mediated endocytosis [33–35]. During infection of HUVEC,
KSHV particles are co-localized with early endosome antigen (EEA1) and late
endosome/lysosome marker (LAMP1) [34]. By electron microscopy, KSHV virions
are present in the endocytic vesicles in HFF cells [33], and KSHV entry is sensitive
to inhibitors of clathrin-mediated endocytosis [33, 34].

KSHV utilizes macropinocytosis as the major route to enter DMVEC [36].
Inhibition of membrane blebbing, an important event in macropinocytosis, signif-
icantly blocks KSHV entry [37]. It is identified that ESCRT-0 component Hrs
regulates KSHV entry and ESCRT-I protein Tsg101 plays a role in the trafficking of
virus particles in DMVEC [38, 39].

Studies on other cell types further suggest that KSHV entry is cell
type-dependent. KSHV enters THP-1 via clathrin- and caveolae-mediated endo-
cytosis but not macropinocytosis [23] while KSHV enters primary B lymphocytes
by DC-SIGN-mediated endocytosis [26].

Upon internalization, the intracellular transport of KSHV particles relies on the
cytoskeletons. In HUVEC, KSHV is co-localized with actin filaments during
early infection and induces dynamic actin cytoskeleton rearrangements. Disruption
of actin dynamics significantly inhibits KSHV trafficking [34]. In addition, KSHV
infection modulates microtubule polymerization to promote the trafficking of
viral capsids in HFF [40]. Disruption of microtubule formation or impairing
dynein-directed retrograde microtubule transport strongly reduces KSHV
trafficking [40].
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2.2.3 Regulation of Cellular Signaling Pathways During
Primary Infection

KSHV dysregulates multiple signaling pathways to promote primary infection [18].
Interactions between KSHV and cell surface receptors activate focal adhesion
kinase (FAK) signaling in several cell types [41]. Activated FAK is vital for many
processes including cytoskeleton rearrangement and endocytosis, which facilitate
virus entry [42]. Calcium and integrin binding protein 1 (CIB1), an enhancer of
FAK, ERK1/2, and PAK kinases [43, 44], facilitates Eph2A-related signaling and
regulates KSHV entry and macropinocytosis [45]. c-Cbl, a multifunctional E3
ubiquitin ligase, is induced by KSHV to promote virus entry in endothelial cells
[37, 46, 47]. In addition, KSHV infection induces reactive oxygen species (ROS) to
promote virus entry and subsequent viral gene expression [48].

Primary KSHV infection activates ERK, JNK, p38 MAPK pathways to promote
virus entry, viral gene expression, and productive viral replication [49–51]. KSHV
infection suppresses dual-specificity phosphatase-1 (DUSP1) to activate MAPK
signaling, facilitating viral gene expression, pro-inflammatory factor secretion, and
cell invasiveness [52]. In HUVEC, KSHV activates MSK/CREB1 signaling path-
way in an ERK- and p38-dependent manner to regulate viral lytic replication at the
postentry stage [53]. Endogenous activity of AMPK, which maintains cellular
homeostasis, inhibits KSHV lytic replication [54]. Activation of AMPK activity
decreases while inhibition of AMPK increases KSHV lytic replication during pri-
mary infection of HUVEC [54]. In addition, KSHV infection leads to sustained NF-
ĸB induction, which regulates viral and host cell gene expression and possibly
affects the establishment of latent infection [55]. Nuclear factor erythroid 2-related
factor 2 (Nrf2) is activated by KSHV infection through an ROS-dependent pathway
[56]. Knockdown of Nrf2 decreases early lytic gene expression but increases
latency-associated nuclear antigen (LANA) expression in the infected cells, indi-
cating its crucial role in viral gene expression [56].

2.2.4 Viral Gene Expression During Primary Infection
and the Establishment of Viral Latency

Viral gene expression profiles during KSHV primary infection are heavily depen-
dent on the types of cells infected [57–59]. In cells that support productive KSHV
infection (e.g., HUVEC), the expression of latent transcripts precedes the cascade of
lytic genes [57]. Latent transcripts are sustained at high levels throughout infection.
The lytic transcripts are expressed in the order of immediate early (IE), early (E),
and late (L) transcripts, and reach peaks at around 54 h post infection (hpi). After
54 hpi, the levels of lytic transcripts decline while latent transcripts continue to
increase, leading to the switch from lytic replication to viral latency [57]. In cells
such as CD14+ monocytes, HFF, and DMVEC that support minimal lytic activities
without producing infectious virions during KSHV primary infection, the
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expression of lytic transcripts is weak and transient (within 24 hpi) while latent
transcripts are expressed throughout the infection process [58, 59].

The establishment of latency is an essential step for persistent infection and
induction of KSHV-associated malignancies. One hallmark of KSHV latency is the
global repression of viral lytic genes. During primary infection, the chromatin-free
KSHV genome undergoes biphasic chromatinization with an initial transcription-
ally active euchromatin phase characterized by high levels of the H3K4me3 and
H3K27ac activating histone marks, followed by a heterochromatinization phase
featured by decreased levels of activating histone marks and increased levels of
repressive marks H3K27me3 and H2AK119ub [60–62]. The euchromatin-to-
heterochromatin transition corresponds with the expression switch of viral lytic to
latent genes and depends on the recruitment of polycomb repressive complexes 1
and 2 (PRC1 and PRC2) to lytic promoters by LANA [63].

KSHV triggers DNA damage response (DDR) signaling inducing phosphory-
lation of DDR-associated proteins, ataxia telangiectasia mutated (ATM) and H2AX,
during primary infection of endothelial cells [64]. Inhibition of ATM or H2AX
activation leads to over 80% reduction in the nuclear viral DNA copy number,
indicating an essential role of the DDR proteins for the establishment of KSHV
latency during primary infection [64].

2.3 KSHV Life Cycle

Following an acute phase of infection with or without active lytic replication,
KSHV enters latency, which is essential for the development of KSHV-associated
malignancies [65]. Upon stimulation by specific intracellular and extracellular
signals, latent KSHV is reactivated into lytic replication which culminates in virion
production and cell death [65].

2.3.1 The Latency Locus

The KSHV latency locus encodes LANA, viral homologues of the cellular
FLICE-like inhibitory protein (vFLIP) and cyclin D (vCyclin), Kaposin A, B, and
C, and 12 precursor microRNAs (pre-miRNAs). Transcription of the latent locus
occurs from LANA promoters (LT1 and LT2) and Kaposin promoter. LT1 drives
the expression of LANA, vCyclin, and vFLIP whereas LT2 drives the expression of
vCyclin and vFLIP [66–68]. The LANA promoter is bidirectional and can drive the
expression of upstream lytic genes such as surface glycoprotein vOX2 and viral
G-protein coupling receptor (vGPCR) during reactivation [69]. Of the 12
pre-miRNAs, miR-K1 to -K9 and -K11 form a cluster region located between
vFLIP and Kaposin while miR-K10 and miR-K12 are in the Kaposin coding region
or 3’UTR, respectively [70]. In addition to the latency locus, KSHV encodes
another latent protein viral interferon regulatory factor 3 (vIRF-3) located outside
the latency locus, which is expressed in PEL but not in KS cells [71].
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2.3.2 KSHV Latency and Latent Nuclear Antigen
(LNA) or Latency-Associated Nuclear Antigen (LANA)

LANA (LNA) is a KSHV latent protein discovered as an immunodominant antigen
and has been used for detecting KSHV infection [72–74]. LANA is approximately
1162aa in length with a proline-rich N terminal and repeats regions (CRs) com-
posed of glutamine (Q), glutamic acid (E), and aspartic acid (D) [75]. The CRs can
be further divided into three distinct regions: CR1 (aa 321–429), CR2 (aa 430–768),
and CR3 (aa 769–937), with CR3 containing a leucine zipper domain. CR1 is
involved in immune evasion by inhibiting major histocompatibility complex class I
(MHC-I) peptide presentation in cis [76] while CR2 and CR3 decrease LANA
synthesis and enhance its stability [77]. Although its predicted size is 135 kDa,
LANA is resolved as double bands of 226–234 kDa in SDS-PAGE [72]. The
second band is the result of a 76 aa truncation in the C-terminal region [78]. Besides
the two bands, multiple bands between 150 and 180 kDa are present in
KSHV-infected cells due to noncanonical translation initiation [79].

LANA is a multifunctional protein and its key function is to maintain the cellular
persistence of KSHV episome [65]. During latency, the KSHV genome replicates
once in each cell cycle, and the copy number is stable (40–150 copies/cell in PEL
cells) [80–82]. Without LANA, KSHV is unable to establish and maintain its
episome in mammalian cells [83]. LANA has an essential nuclear localization
signal (NLS) at its N-terminus (aa 24–30) and a second one at the C-terminus, and
is detected in dot-like pattern by immunohistochemistry or immunofluorescence
[73, 74, 84]. The N-terminus also has a chromosome binding site (CBS) (aa 5–13),
which interacts with histones H2A/H2B whereas the C-termini has a DNA binding
and a dimerization domain (DBD), which allows LANA to bind to LANA-binding
sites (LBS) located within KSHV terminal repeat (TR) region [85–88].

LANA interacts with chromatin-associated proteins such as heterochromatin
protein 1a (HP1), KSHV LANA-interacting protein 1 (KLIP1), methyl
CpG-binding protein (MeCP2), bromodomain protein 4 (Brd4), RING3/Brd2,
kinetochores-associated proteins such as centromere protein F (CENP-F), budding
uninhibited by benzimidazoles (Bub-1), and nuclear mitotic apparatus protein
(NuMA) [89–94]. Furthermore, LANA is associated with nucleophosmin (NPM),
and the origin recognition complexes (ORCs) [95]. Some of these interactions are
essential for KSHV genome segregation to daughter cells and repression of KSHV
lytic replication. LANA silences the replication and transcriptional activator
(RTA) promoter and interacts with RTA to inhibit its transactivation function [96].
Deletion or disruption of LANA abolishes the establishment of KSHV latency and
increases the expression of KSHV lytic genes and production of infectious virions
[83, 97]. Hence, LANA is the predominant regulator in maintaining latency by
mediating episome replication, proper segregation to daughter cells, and repressing
KSHV lytic replication program [65]. LANA also contributes to KSHV latency by
promoting host cell proliferation and survival, which will be detailed in a later
section.
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2.3.3 Epigenetic Silencing and Regulation of KSHV Latency

To silence the expression of viral lytic genes, the KSHV genome undergoes epi-
genetic remodeling during latency. The KSHV genome is heavily methylated and
contains histone repressive marks and HDACs [61, 62, 98–102]. To mediate viral
genome replication, LANA binds to the latent origin of replication in the TR, which
also harbor ORC, MCM, CDC6, PARP1, and hyperacetylated histones [100,
103–105]. During latency, the spread of transcription beyond the latent locus is
arrested by H19/Lgf2 insulators recruited to the CTCF-binding site, which also
harbors CTCF, cohesins, RAD21, SMC1 and SMC 3 [106, 107], mediating viral
chromosome conformation, expression of latent genes, and silencing of lytic genes
[108–110]. In addition to LANA, vFLIP and miR-K1 promote KSHV latency by
activating the NF-ĸB pathway [111, 112]. Several KSHV miRNAs inhibit RTA
expression by direct targeting and silencing or indirect activation of cellular path-
ways including Rbl2, DNMTs, NFIB, and IKKɛ [113–117]. These cellular factors
could cause chromatin remodeling of KSHV genome. KSHV miRNAs also target
several other viral genes, which could regulate viral latency [118].

2.3.4 Reactivation of KSHV from Latency

The mechanism of KSHV reactivation is involved with complex interactions of
viral genes, cellular factors, and extracellular signals. During reactivation, the
quiescent state of the KSHV genome is disrupted and undergoes epigenetic
remodeling, resulting in the expression of viral lytic genes and production of
infectious viral particles [119].

2.3.5 Viral Genes Required for Reactivation

KSHV lytic genes can be broadly divided into three classes: IE, E, and L genes. IE
gene expression is not dependent on de novo translation of any proteins, whereas E
and L genes require de novo expression of proteins. Late genes are also dependent
on viral DNA replication. Here, we will discuss several viral lytic genes that are
important for viral lytic replication.

RTA is an IE gene. Expression of RTA is essential and sufficient for KSHV
reactivation [120, 121]. RTA transactivates numerous viral genes, including itself, by
binding to the palindromic RTA-responsive element (RRE) [122–126]. RTA coop-
erates with cellular factors such as Sp1, Oct-1, XBP-1, RBP-Jk, and C/EBPa to
transactivate genes [127–131]. As an E3 ubiquitin ligase, RTA targets numerous
repressors of viral lytic replication for degradation [132–135]. RTA binding to origin
of lytic replication (oriLyts) is required for viral DNA replication [136, 137]. Several
isoforms of RTA, which possess transactivation activities weaker than the canonical
isoform, have been identified but the regulation of their expression as well as their
specific target genes remain unclear [138]. Hence, RTA’s complex functions are not
fully understood despite it is known as the master regulator of KSHV lytic replication.
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mRNA transcript accumulation (MTA) is an E gene required for KSHV reac-
tivation [139, 140]. MTA interacts with RTA to enhance RTA expression [141].
Importantly, MTA mediates viral transcript processing by hijacking splicing and
nuclear export factors such as TREX for efficient viral gene expression, particularly
for intronless viral transcripts [142]. However, MTA’s role in nuclear export is
controversial [143]. MTA interacts with an RNA stem-loop structure termed the
MTA-responsive element (MRE) [144, 145]. Of interest, MTA protects vIL6 from
miRNA-mediated degradation though the exact mechanism remains unknown
[146]. To promote translation, MTA interacts with PYM to shuttle transcripts to the
48S transcription pre-initiation complex [147]. Taken together, MTA enhances viral
gene expression by hijacking cellular RNA processing events and translation.

K-bZip encoded by ORF-K8 is an E gene. K-bZip is a leucine zipper protein
with multiple functions [148]. It interacts with RTA and inhibits RTA transacti-
vation of several viral genes, notably ORF57, ORF-K15, itself, and RTA autoac-
tivation [149]. K-bZIP interacts with HDAC1/2 to silence viral promoters [150] and
this repressive function depends on its SUMO modification of KSHV genome and
heterochromatin histone demethylase JMJD2 [151–154]. K-bZIP supports lytic
DNA replication by overcoming LANA’s repression of the OriLyts [136, 155].
Furthermore, viral protein kinase (vPK/ORF36) co-localizes with K-bZIP at oriLyts
and phosphorylates K-bZIP to prevent its sumoylation, thus reducing its tran-
scription repression activity [156]. Taken together, K-bZIP contributes to viral
DNA replication and repression of lytic genes during lytic replication.

2.3.6 Factors Involved in KSHV Reactivation

KSHV reactivation from latency is accompanied by dynamic chromatin remodeling
[101, 102]. Inhibition of class II HDACs, EZH2, or DNA methylation with small
molecules is sufficient to induce KSHV reactivation [101, 102, 157]. During
reactivation, the KSHV episome gains activating histone marks (H3K4me3, acH3)
and loses repressive histone marks (H3K9me3, H3K27me3, H4K20me3) [157].
This is facilitated by RTA, which recruits CBP/p300 and SWI/SNF to promote
H3K27Ac on lytic promoters [158]. Inhibition of SIRT1, a class III HDAC and
NAD+ sensor, results in expression of lytic genes thus linking epigenetics to the
cellular metabolic state [98, 99]. In fact, high glucose suppresses SIRT1 leading to
KSHV reactivation [159].

KSHV infection often occurs in the context of immunosuppression [160].
How KSHV interacts with other pathogens is poorly understood in vivo but several
in vitro studies have attempted to delineate these events. HIV Tat alone can induce
RTA expression and enhance KSHV entry into endothelial cells [161–163].
Coinfection of PEL cells with EBV favors viral persistence of both viruses [164,
165]. KSHV RTA, EBV ZTA, and EBV LMP1 prevent reactivation of both viruses.
Additionally, HCMV, HSV-1, HSV-2, HHV-6 and HHV-7 can induce KSHV
reactivation [166–171]. Bacterial metabolic products such as LPS, short-chain fatty
acids, and lipoteichoic acid enhance infectivity and reactivation [172–174].
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Hypoxia plays a critical role in reactivation [175]. Binding of HIF-1a to
hypoxia-responsive elements (HRE) in the promoters of KSHV lytic genes
enhances their expression and lytic replication [175–177]. Furthermore, LANA
cooperates with HIF-1a at the HRE to enhance RTA expression [178, 179].
Another hypoxia-inducible gene, XBP-1, binds to the RTA promoter to enhance
reactivation [180, 181]. Cross talk between hypoxia and epigenetics could occur
through KAP1, which is recruited to the KSHV genome through LANA, and
decreased levels of KAP1 during hypoxia enhance lytic gene expression [182, 183].

Moreover, oxidative stress also contributes to KSHV reactivation. In fact, hydrogen
peroxide (H2O2) is necessary and sufficient for inducing KSHV reactivation [184].
Since KS is a highly inflammatory tumor, the abundant infiltrating immune cells and
inflammatory cytokines in KS tumors could secrete or induce H2O2, respectively,
leading to KSHV reactivation [184, 185]. H2O2 activates MAPK leading to phos-
phorylation of ERK1, JNK, p38, and c-Jun, which is sufficient for KSHV reactivation
and this can be reversed by the antioxidant N-acetyl-cysteine (NAC) [184, 185].
Furthermore, ROS induced by anticancer drugs such as cisplatin and arsenic trioxide
reactivate KSHV and cause cell death in PEL cells [185].

Since KSHV utilizes the host machinery for transcription, viral transcripts are
similarly modified with epitranscriptomic marks such as methyl-6-adenosine (m6A)
[186, 187]. Viral transcripts containing m6A enhances transcript degradation by the
m6A binding protein YTHDF2, which recruits the CCR4-NOT complex [188, 189].
It is possible that the host cell utilizes m6A as an antiviral mechanism to limit viral
reactivation [187].

2.4 KSHV and Immunity

While the immune system is dedicated to protecting the host from invading
pathogens such as viruses, KSHV has evolved various strategies to counteract both
the innate and adaptive immune responses, which are essential for viral replication
and persistent infection.

2.4.1 KSHV and Innate Immunity

Several KSHV-encoded proteins interfere with both type I (IFN-/ and IFN-b) and
type II (IFN-c) interferon responses. KSHV was the first virus found to encode viral
homologs of cellular interferon regulatory factors (vIRFs) [190]. Each of the four
vIRFs blocks the IRF-mediated transcription of type I IFN by a distinct mechanism
[190–192]. Moreover, ORF45 and RTA inhibit IRF7-dependent type I IFN
response [193, 194] while K8 inhibits IRF3-mediated IFN-b transcription [195].
ORF-K3 and ORF-K5, which are viral E3 ligases, repress the IFN-c-mediated
JAK/STAT signaling pathway by inducing the degradation of IFN-c [196, 197].

The pattern recognition receptors (PRRs) sense various pathogen-associated
molecular patterns (PAMPs) and trigger the type I IFN signaling and production of
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inflammatory cytokines during pathogen infection. KSHV stimulates TLR3
expression at the early stages of de novo infection; however, the expression of
vIRFs inhibits TLR3-mediated immune responses at later time points [198–200].
RTA, ORF21, and ORF31 inhibit both TLR2 and TLR4 signaling [198, 201]. In
addition to modulating the TLR signaling pathway, KSHV ORF63 blocks the
cellular NOD-like receptor (NLR)-mediated pathway whereas ORF64 inhibits the
activation of retinoic acid-inducible gene-I (RIG-I) [202]. KSHV DNA is sensed by
IFI16 and cGAS-STING pathways leading to the activation of inflammasome [203–
206]. To ensure efficient viral lytic replication, KSHV encodes numerous proteins
including vIRF1, ORF52, and LANA to inhibit the cGAS-STING pathway [203–
205], while KSHV lytic replication leads to the degradation of IFI16 though the
mechanism remains unclear [207].

To facilitate viral evasion of cytotoxic reaction, KSHV induces a Th2-polarized
rather than a Th1-polarized response. Three KSHV-encoded CC-chemokine ligands
(vCCL), the homologs of cellular chemokines, compete with cellular chemokines to
prevent activation of chemokine receptors [192]. KSHV complement control pro-
tein (KCP/ORF4) is a functional homolog of the complement regulatory protein
which inhibits the activation of the complement system [208]. This mechanism is
likely to protect both KSHV-infected cells and free virions from complement-
mediated neutralization during acute viral infection. In contrast, KSHV activates the
alternative complement system by downregulating the complement regulatory
proteins CD55 and CD59 during latency, which is essential for cell survival and
persistent infection [209].

KSHV has evolved strategies to evade the natural killer (NK) cells. ORF-K5
decreases cell surface expression of NK-activating ligands including MICA, MICB,
and AICL as well as the costimulatory molecules ICAM and B7.2 [192, 210].
Similarly, miR-K12-7 targets MICB mRNA [211] while ORF54 decreases the
expression of another NK ligand, NKp44L [212].

2.4.2 KSHV and Adaptive Immunity

Both KS patients and asymptomatic individuals develop T cell responses against
several KSHV lytic and latent proteins [213]. Importantly, reconstitution of the
immune system through antiretroviral therapy can lead to KS tumor regression [214],
suggesting an important role of the KSHV-specific T cell response, particularly the
CD8+ T cell response, in the development of KSHV-associated malignancies [213].
KSHV also induces strong humoral responses as antibodies against various viral
antigens are present in KS and KSHV-infected patients [72–74, 215, 216].

B cell activation and differentiation into antibody-producing plasma cells or
memory B cells are critical aspects of the adaptive immune response. Several
studies suggest that KSHV targets both aspects of the B cell biology to evade the
humoral immune response. ORF-K1 reduces the expression of bone marrow stro-
mal antigen 2 (BST-2), which is constitutively expressed in mature B cells [196],
and downregulates B cell receptor on the cell surface [217] while ORF-K15 blocks
BCR transduction signal, contributing to decreased B cell activation [217].
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Evading the cell-mediated immune response is an important strategy for KSHV
persistent infection. ORF-K3 and -K5 enhance the internalization and lysosomal
degradation of MHC-I molecules through ubiquitination of the cytosolic tails [218–
221]. vIRF1 and vFLIP mediate MHC-I downregulation [222]. LANA evades
immune surveillance by inhibiting MHC class I peptide presentation [76]. KSHV
induces cellular suppressor of cytokine signaling 3 (SOCS3), and together with
vIRF3, interferes with MHC class II antigen presentation to evade KSHV-specific
CD4+ T helper cell immune response [223, 224]. Besides impairing antigen pre-
sentation, KSHV interferes with the function of antigen presenting cells by
inhibiting differentiation of monocytes into dendritic cells [225] and downregu-
lating costimulatory molecules required for efficient activation of CD8+ T cells
[218, 226].

2.5 KSHV and Tumorigenesis

In KS tumors, most of the tumor cells are latently infected by KSHV, suggesting
the importance of latent infection and latent genes in the development of KS tumors
[65]. A small number of tumor cells undergo spontaneous lytic replication in early
stage of tumors, which is essential for the spread and progression of this stage of
tumors. However, there is no lytic cell in late stage of KS tumors [65]. Spontaneous
lytic replication is also present in small number of cells in PEL and MCD [65].
Numerous KSHV latent and lytic genes have been shown to have oncogenic and
tumor-promoting functions [192]. The recent development of a model of
KSHV-induced cellular transformation and tumorigenesis of primary cells has
allowed the delineation of the cellular pathways and viral genes that promote
tumorigenesis in the context of viral infection [14].

2.5.1 Models of KSHV-Induced Cellular Transformation
and Tumorigenesis

The origin of KS tumor cells remains controversial. KSHV infects both vascular
and lymphatic endothelial cells and reprograms them to acquire KS-like cell surface
markers [227, 228]. KSHV efficiently infects primary endothelial cells and pro-
longs their life span but cellular transformation remains elusive [229, 230].
Transfection of mouse bone marrow endothelial-lineage cells with recombinant
KSHV BAC36 genomes results in immortalization of a subset of cells, which
induces tumors in nude mice [231]. However, the exact target cells are unclear and
the efficiency is low. In contrast, KSHV efficiently infects and transforms primary
rat embryonic metanephric mesenchymal precursor (MM) cells [14].
KSHV-transformed MM cells (KMM) lose contact inhibition and form colonies in
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soft agar. KMM cells efficiently induce tumors in nude mice with virological and
pathological features reminiscent of KS [14]. While KSHV can also infect and
transform human mesenchymal stem cells of diverse origins, the efficiency of
cellular transformation is much lower [232]. KSHV infection of rat and human
mesenchymal stem cells reprograms them to acquire KS-like phenotypes including
cell surface markers, and enhances their angiogenic, invasive, and transforming
phenotypes [14, 232, 233].

2.5.2 KSHV Viral Genes and Tumorigenesis

The roles of the KSHV latent genes LANA, vFLIP and vCyclin, and miRNAs in
tumorigenesis have been extensively studied. LANA promotes cell proliferation
and survival by inhibiting tumor suppressor genes p53, p73, pRb, and TGF-b
signaling [234–237], and activating c-Myc, emmprin, and survivin [238–241].
LANA promotes tumorigenesis by upregulating BMP-p-Smad1-Id1 pathway in
KMM cells [242]. LANA upregulates Par3, SNAIL, and MMP9 while downreg-
ulates E-cadherin to promote cell proliferation in B cells [243]. KSHV-encoded
miRNAs and vFLIP activate the NF-ĸB pathway and are essential for
KSHV-induced cellular transformation and tumorigenesis by regulating cell pro-
liferation, survival, homeostasis, and metabolic pathways [244–246]. vCyclin alone
can interact with numerous CDKs to promote cell cycle progression and tumori-
genesis, and antagonizes the senescence/G1 arrest response triggered by NF-jB
hyper-activation [247–250]. In the context of KSHV infection, vCyclin only pro-
motes cellular transformation and tumorigenesis by overriding cell contact inhibi-
tion [251].

Numerous KSHV lytic genes possess cellular transforming and
growth-promoting activities. vIRF1 is the first KSHV oncogene identified [190]. It
targets type I interferons, p53, and TGF–b pathways [190, 252, 253]. vGPCR is
unique in that it is constitutive active without the need of a ligand. It has robust
oncogenic activity [254]. vGPCR transgenic mice develop KS-like lesions [255].
Mechanistically, vGPCR activates Akt and mTOR pathways, and promotes geno-
mic instability through miR-34a [256–258]. Unlike human IL-6, vIL6 only signals
through gp130 to activate several downstream pathways, such as JAK/STAT,
MAPK, and Akt, driving cellular proliferation, inflammation, and apoptosis inhi-
bition [259, 260]. Of interest, vIL6 can induce intracellular signaling and interacts
with splice variant 2 of vitamin K epoxide reductase complex subunit 1 (VKORC1)
to promote PEL cell proliferation and survival [261, 262]. ORF-K1 also possesses
oncogenic activity [263]. It activates Akt and AMPK pathway to promote cell
proliferation and survival [264, 265]. Whether KSHV lytic genes contribute to
KSHV-induced tumorigenesis remains to be tested in the context of viral infection.
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2.5.3 Cellular Genes/Pathways in KSHV-Associated
Malignancies

Extensive studies have identified cellular genes/pathways required for
KSHV-associated malignancies. Transcriptional factors, such as c-Myc and
STAT3, are required for cell survival, and the inhibition of c-Myc and STAT3
induced apoptosis in PEL cells [266, 267]. Epigenetic factors, including class I and
II HDACs, as well as class III HDAC SIRT1 are essential for cell proliferation and
survival in PEL cells, and their inhibitors SAHA and tennovin-6 significantly
induced cell cycle arrest and apoptosis in vitro and in vivo [268–270]. In addition to
the NF-ĸB and BMP-Smad1-Id pathways that are essential for cell proliferation and
cellular transformation [242, 244–246], Akt and mTOR are also essential for cell
proliferation in KS cells [271] while hepatocyte growth factor (HGF)/c-MET
pathway is essential for cell cycle progression and cell survival in PEL cells [272,
273].

2.6 KSHV and Inflammation

2.6.1 Kaposi’s Sarcoma: A Tumor Associated
with Inflammation

Inflammation can have a double role in the development of cancer. Acute inflam-
matory response is considered as a physiological process required for the control of
microbial infections and tumor growth. However, by stimulating cell proliferation
and inhibiting apoptosis, chronic inflammation becomes a pathologic process par-
ticipating in the modifications of the microenvironment, enhancing uncontrolled
tissue regeneration, angiogenesis, and tumorigenesis [274]. It is estimated that more
than 25% of cancers are associated with inflammation [275].

Chronic inflammation, a hallmark of KSHV-associated malignancies, partici-
pates in KS progression through the complex interplay between viral and cellular
factors. By interfering with the intracellular signaling pathways during lytic and
latent phases of infection, KSHV induces an inflammatory neoplastic network in
the tumor microenvironment, which is mainly associated with the abnormal
lympho-endothelial proliferations and the recruitment of activated myeloid and
lymphoid immune cells [276]. Indeed, at the early stage of tumors, the KS
microenvironment has a high level of pro- and anti-inflammatory cytokines (IL-6,
TNF-a, and IL-10, respectively), chemokines (CXCL12, CXCR4, CXCR7),
interferon (IFN-c), as well as growth factors (VEGF) [277–279]. These cytokines
can be released by different cell types including monocytes, endothelial cells, and
KS tumors. During tumor growth, these mediators stimulate resting and
non-proliferative lympho-endothelial cells to enhance inflammation, and therefore
promote angiogenesis [280, 281].
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2.6.2 Latent Viral Factors Involved in Inflammation

LANA upregulates emmprin expression, which induces the secretion of IL-6,
VEGF, and MMPs, and enhances inflammation and angiogenesis [240, 282]. By
stabilizing the Notch effector Hey-1, LANA also represses the expression of Prox-1
to modulate the differentiation of lymphatic endothelial cells [283]. Moreover,
LANA activation of the Notch pathway enhances the invasiveness of KS tumors by
activating PDGFRb [284]. As stated in the previous section, LANA participates in
the suppression of specific T cells immune response by inhibiting MHC-I antigen
presentation through its acidic central repeat domain [285], and by downregulating
MHC-II gene expression on APCs through the interaction with RFX proteins to
inhibit the recruitment of CIITA to the MHC-II promoter [286].

vFLIP activates the classical and alternative NF-ĸB signaling pathways and
participates in the upregulation of pro-inflammatory cytokines [287, 288]. Partic-
ularly, vFLIP promotes tumorigenesis through the induction of COX-2 and its
inflammatory metabolite PGE2 in an NF-jB-dependent manner [287, 289].

Most of the KSHV-encoded miRNAs are expressed during latency and play
significant roles in tumor growth, inflammation, and angiogenesis. Numer-
ous KSHV miRNAs induce inflammation by activating the NF-ĸB pathway [112,
246]. Ectopic expression of the miRNA cluster in endothelial cells induces the
expression of pro-inflammatory and pro-angiogenic cytokines MMP1, MMP13,
and VEGFA [290]. VEGF is important for the recruitment of stem cells and
macrophages at the site of infection, and therefore participates in the inflammatory
microenvironment of KS tumors [291]. By inducing CXCR2 and activating Akt
signaling pathway through targeting GRK2 stimulation, miR-K3 promotes angio-
genesis, migration, and invasion of endothelial cells [292, 293]. The miRNAs
derived from miR-K6, miR-K6-3p, and miR-K6-5p promote cell migration, inva-
sion, and angiogenesis by targeting SH3BGR to activate the STAT3 pathway and
CD8 to activate the c-Met pathway, respectively [294, 295]. miR-K12 promotes
cell survival and proliferation by targeting the angiogenesis inhibitor THBS1 and
SMAD5 to downregulate TGF-b signaling [296, 297].

In the context of inflammation, Kaposin B participates in the lymphatic repro-
gramming of vascular endothelial cells [298]. Kaposin B activates the p38/MK2
pathway leading to the stabilization of targeted gene transcripts including
pro-inflammatory cytokines IL-6 and GM-CSF, as well as the lympho-endothelial
differentiation factor PROX1 [298, 299]. By cooperating with c-Myc, Kaposin B
triggers angiogenesis by mediating the expression of cellular miRNAs in
endothelial cells [300].

In the latent phase, KSHV also expresses vIRF3 (LANA-2) in PEL cells [71].
vIRF3 plays a major role in PEL pathogenesis by promoting viral latency and
inhibiting the host innate responses. By stabilizing HIF-1a, vIRF3 induces its
accumulation and activation in the nucleus contributing to the uncontrolled
expression of VEGF in KSHV-infected cells [301].
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2.6.3 Viral Lytic Genes Involved in Inflammation

ORF-K15, predominantly expressed during the lytic cycle, mediates inflammation
by activating JNK, and NF-ĸB pathways as well as NFAT/AP1 activities [302,
303]. These signaling pathways induce the expression of cytokines and chemokines
such as IL-6, IL-1b, IL-8, CCL20, CXCL3, and COX-2. Depletion of ORF-K15
dramatically impairs KSHV-induced angiogenesis mediated by the recruitment of
PLCɣ1 and the activation of NFAT1-dependant RCAN1 expression in endothelial
cells [304].

As stated earlier, ORF-K1 participates in KSHV-induced tumorigenesis by
performing multiple functions. Among them, ORF-K1 induces the secretion of
VEGF, IL-6, GM-CSF, IL-1b, IL-8, and IL-10 in endothelial cells [305], and
stimulates the expression of MMP-9, a matrix metalloproteinase involved in the
angiogenic switch during tumor progression [306, 307]. In AIDS-related KS,
ORF-K1 can synergize with HIV-1 proteins such as Tat to promote inflammation
by activating NF-ĸB signaling [308] and NEF to promote cellular proliferation,
vascular tube formation, and angiogenesis by regulating the PTEN/AKT/mTOR
pathway [309]. In addition to inhibition of innate and adaptive immune responses,
ORF-K5 enhances angiogenesis by disrupting VE-cadherin/b-catenin signaling,
promoting the remodeling of cellular tight junctions [310]. vIL6 promotes angio-
genesis and hematopoiesis by stimulating the secretion of VEGF [311]. By
inducing several signaling pathways such as PKC, MAPK, mTOR, NF-ĸB, AP1,
HIF-1a, and NFAT, vGPCR mediates the upregulation of pro-inflammatory and
pro-angiogenic mediators (IL-2, IL-4, IL-6, IL-8, TNF-a, and VEGF) [312, 313].
vGPCR activation of NF-ĸB induces the expression of RANTES, IL-8, and
GM-CSF as well as adhesion molecules VCAM-1, ICAM-1 and E-selectin [314].

KSHV encodes three homologues of cellular chemokines: vCCL1, vCCL2, and
vCCL3. These viral chemokines activate their respective G-coupled protein
receptors CCR8, CCR3 and CCR4 expressed on Th2 lymphocytes [315]. These
viral chemokines inhibit T cells immune response by inducing Th2 polarization and
attracting Th2 lymphocytes to the site of infection, and promoting angiogenesis by
inducing the expression of VEGF [316, 317]. Moreover, vCCL2 antagonize CCR1
and CCR5 to inhibit host immune responses of Th1 lymphocytes [318].

2.7 KSHV and Metabolism

During latent infection and cellular transformation, KSHV reprograms cellular
metabolic pathways to provide biosynthetic and bioenergetic precursors to support
the fast anabolic cellular proliferation. During viral lytic replication, KSHV also
reprograms specific metabolic pathways to support the production of infectious
virions.
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2.7.1 KSHV Reprograms Glucose Metabolism

A hallmark of tumorigenesis involves the switch of energy metabolism from
oxidative phosphorylation to aerobic glycolysis. In untransformed telomerase-
immortalized microvascular endothelial cells (TIME cells) and primary dermal
microvascular endothelial cells (DMVECs), KSHV infection increases aerobic
glycolysis by upregulating hexokinase 2 (HK2) and glucose transporter 3 (GLUT3)
[319]. Thus, oxygen consumption and oxidative phosphorylation are decreased, and
lactate production is increased. Inhibition of glycolysis leads to apoptosis in
KSHV-infected TIME cells but not in uninfected cells, demonstrating the critical
role of the aerobic glycolysis on cell survival in untransformed KSHV-infected cells
[319]. A similar study in KSHV-infected primary dermal microvascular lymphatic
endothelial cells (KLEC) also demonstrated increased aerobic glycolysis [320].
Mechanistically, KSHV miRNAs stabilize HIF-1a and inhibit mitochondrial bio-
genesis by downregulating EGLN2 and HSPA9. Moreover, HIF-1a is stabilized in
KSHV-infected telomerase-immortalized HUVEC (TIVE) cells, which results in
the upregulation of glycolytic effector-isoform 2 of pyruvate kinase (PKM2) and
increased aerobic glycolysis [320].

However, KSHV-induced glycolysis does not occur in HFF cells [319], which
implies cell type specificity in KSHV-induced metabolic reprogramming. In con-
trast to untransformed KSHV-infected cells, KSHV-transformed KMM cells have
reduced glucose and oxygen consumption, lactate production, and intracellular ATP
[244]. Mechanistically, vFLIP and the miRNA cluster inhibit the aerobic glycolysis
in KMM cells by downregulating glucose transporters GLUT1 and GLUT3 through
NF-ĸB activation. The decreased glycolytic flux confers a survival advantage to
KMM cells in a nutrient deficient tumor microenvironment [244].

2.7.2 KSHV Reprogramming of Glutamine Metabolism
for Host Cell Proliferation and Survival

Glutamine is required for cancer cell proliferation and survival [321, 322]. KSHV
infection increases both the intracellular glutamine levels and glutamine uptake in
TIME cells. KSHV-infected TIME cells rely on glutamine for their survival and
glutamine deprivation-induced apoptosis in KSHV-infected TIME cells with a
lesser effect on TIME cells [323]. Suppressing glutaminolytic enzymes in the
presence of glutamine causes cell death at the similar levels to those deprived of
glutamine in KSHV-infected TIME cells with little effect on TIME cells. The
sensitivity to the absence of glutamine can be restored by the addition of TCA cycle
intermediates, indicating that in untransformed cells, glutaminolysis is required for
cell survivals by feeding the TCA cycle through anaplerosis [323].

KSHV-transformed KMM cells also rely on glutamine for their proliferation and
transformation. The expression of glutaminolytic enzymes is upregulated in KMM
cells compared to MM cells, and inhibition of any of those enzymes reduces KMM
cell proliferation, implying glutaminolysis is required for KMM cell survival [324].
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Interestingly, the addition of carbon sources, such as TCA intermediates, only
partially rescues the proliferation of KMM cells following glutamine depletion. In
contrast, nonessential amino acid asparagine fully rescues the effects of glutamine
deprivation, indicating that glutamine and asparagine provide not only carbon
source but also nitrogen source [324]. Specifically, glutamine provides the c-
nitrogen for nucleotide synthesis in KSHV-transformed cells. Overall, KSHV
reprograms glutaminolysis to supply the building blocks for synthesizing nucleo-
tides, nonessential amino acids, and TCA cycle intermediates to support
KSHV-infected cell proliferation and transformation [324].

2.7.3 KSHV Infection Induces Lipogenesis

KSHV infection of TIME cells induces lipogenesis with an increase of metabolites
involved in de novo fatty acid synthesis (FAS) and formation of lipid droplets
[325]. Inhibitors of FAS induce a dose-dependent cell death in KSHV-infected
TIME, which can be partially rescued by supplying cells with fatty acid precursors,
indicating FAS is necessary for the survival of untransformed KSHV-infected
TIME cells [325]. A separate study shows that KSHV infection increases peroxi-
somes in TIME cells [326]. A major function of peroxisomes is to break down the
long-chain fatty acids through b-oxidation. Inhibition of enzymes involved in the
peroxisomal b-oxidation leads to increased cell death in KSHV-infected TIME
cells. Together, these observations suggest that KSHV-induced FAS and peroxi-
somal lipid metabolism are required for KSHV-infected TIME cell survival [326].
Additionally, PEL cells also have highly upregulated FAS compared to primary B
cells and are sensitive to FAS inhibitors [327].

2.7.4 KSHV Depends on Glycolysis, Glutaminolysis, and FAS
for Lytic Replication

Reprogramming of metabolic pathways is expected to be important for supporting
KSHV lytic replication. However, there is so far limited work on metabolic
rewiring during KSHV primary infection and reactivation. Inhibitors of glycolysis,
glutaminolysis, and FAS significantly reduce the production of virions in both
endothelial and SLK cells [328]. Inhibition of glycolysis and glutaminolysis sup-
presses KSHV replication by stalling early gene transcription and translation,
respectively [328]. While inhibition of FAS decreases the production of extracel-
lular virions, it does not affect intracellular viral genome levels, suggesting that FAS
is required for virion assembly and maturation [328]. However, some of these
inhibitors are not entirely specific and the mechanisms underlying the support of
viral lytic replication by glycolysis and glutaminolysis remain unclear. Neverthe-
less, these results indicate that different stages of viral lytic replication might require
different metabolites within the host cells.
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2.8 Conclusion and Perspectives

Rapid progresses have been made in the KSHV field in the last decade, providing
insights into the biology of virus and the scientific basis for developing novel
therapeutic approaches for its associated malignancies. KSHV has evolved to hijack
cellular machinery for completing its life cycle, which often results in the dys-
regulation of cellular functions. It is now clear that KSHV-induced uncontrolled
cellular proliferation, cell survival, abnormal immune responses, and reprogrammed
metabolism promote malignant tumor growth, angiogenesis, and inflammation,
which are the hallmarks of KS.

The standard KS chemotherapy with liposomal doxorubicin, daunorubicin, or
taxol is highly toxic and ineffective despite effective antiretroviral therapy in some
cases [329]. Both PEL and MCD also do not any have effective therapy [330].
Therefore, alternative treatments and new therapeutic targets, particularly those
targeting malignant proliferation, angiogenesis, inflammation, and dysregulated
immune responses, are needed for KSHV-associated malignancies. Laboratory
studies have so far identified numerous new targets and agents. These include
sirtuin inhibitors (Tenovin-6 and nicotinamide), HDACs inhibitor, AMPK inhibitor,
mTOR inhibitor Rapamycin (sirolimus), and p53 activator Nutlin-3 [268–270, 331–
335]. Numerous potential therapeutic targets, particularly those targeting
KSHV-specific epigenetics and metabolism, are attractive. Nevertheless, rigorous
clinical trials are required to evaluate the efficacies of the inhibitors before their
extensive usages in the patients. In fact, new drugs bevacizumab and imatinib for
KS, and siltuximab for KSHV-MCD have been examined in clinical trials [336–
338]. Ongoing clinical trials are testing the efficacies of Tocilizumab
(NCT01441063) for MCD, and lenalidomide (NCT01057121) and pomalidomide
(NCT02659930) for KS [339]. Because cellular pathways often interact with one
another, it would be interesting to evaluate the interaction effects of multiple
pathways and inhibitors. For example, while Rapamycin inhibits the mTOR path-
way, it also activates the Akt pathway. Hence, the combination of inhibitors of both
pathways would be predicted to be favorable, which has been demonstrated for both
KS and PEL cells [271, 340].

Since KSHV is not a ubiquitous herpesvirus and immunosuppression is required
for the development of the KSHV-associated malignancies, it would be essential to
develop effective strategies to prevent its person-to-person transmission and man-
age immunosuppression in the affected populations. Development of KSHV vac-
cines should be one of the focuses of future research.
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3.1 Introduction

Approximately, 25 % of all human cancers are etiologically linked to an infectious
agent including viruses and bacteria. These pathogens are usually controlled by the
host immune system. In individuals that are immunodeficient, such as acquired
immunodeficiency syndrome (AIDS) patients or patients receiving immunosup-
pressive therapies following organ transplantation, this checkpoint fails and there is
a significantly higher risk for the development of cancers associated with infectious
agents. It is important to remember, though, that temporal immune deficiency is a
normal physiological process, e.g. during aging and infant development. Viruses
contribute to cancer development either cell autonomously through the activities of
viral oncogenes acting within a cell, or through paracrine mechanisms that mod-
ulate the transformed cell and the tumor microenvironment [27].

Kaposi’s sarcoma (KS) was described in 1872 by Moritz Kaposi, the head of the
Vienna dermatology clinic, as “idiopathisches multiples Pigmentsarkom” a rare
angiosarcoma in elderly men of Mediterranean descent [49]. In the mid-1980s, the
human immunodeficiency virus (HIV) epidemic lead to a significant increase in the
incidence of KS in high-risk populations. Today, over 30 years later, the number of
new HIV infections has declined due to combination Anti Retroviral Therapy
(cART). Yet, because of cART the number of persons living with HIV is increasing
and the mean age of the cohort of HIV-infected persons is also increasing. Many
HIV-positive individuals are now entering the age bracket, in which Moritiz Kaposi
initially described classic KS in the elderly. As a result, KS remains the single most
common neoplasm seen in individuals living with HIV today [88].

Chang and Moore identified KSHV (also known as human herpesvirus 8) in KS
lesions of AIDS patients in 1994 [13] using representational difference analysis.
KSHV has since been found in HIV+ and HIV− negative KS patients as well as in a
number of B-cell hyperplasias and frank lymphomas. Ninety-nine per cent of all KS
lesions, regardless of clinical type or HIV status, contain KSHV viral DNA and
express a least one viral protein, the latency-associated nuclear antigen (LANA), as
well as all viral micro RNAs, thereby linking KS to KSHV infection [27].

3.2 KSHV and the Development of KS

KS is divided into four subtypes delineated by clinical manifestations: classic,
endemic, AIDS-associated, and iatrogenic. Classic KS is a disease of elderly
Mediterranean and Eastern European men, while endemic KS is found in parts of
equatorial Africa such as Uganda, Zambia, Malawi, Kenya, and South Africa in the
elderly as well as in children [59]. KS represents the most common cancer in
countries with high, coincident HIV and KSHV prevalence [45]. In endemic
regions, transmission of KSHV is thought to occur early in childhood [32].
Endemic KS tends to be more aggressive than classic KS of the elderly, and occurs
at almost equal proportions in men and women, the elderly and children [27].
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Widespread HIV infection has given rise to an epidemic of KS. KSHV anti-
bodies prevalent in black South African HIV patients, and KS has become the most
common neoplasm in regions of sub-Saharan Africa that are ravaged by HIV
infection. In the U.S., KSHV antibody prevalence also exceeds 30% in cities with
high HIV burden and in high-risk populations [54]. This is most likely, because
among adults, HIV and KSHV are transmitted by similar routes, though the effi-
ciency of KSHV transmission (or basic reproductive ratio, which is a function of
viral load among other factors) is less that that of acute HIV-1 infection.

In 1981, KS was recognized as a defining pathology for HIV diagnosis but the
introduction of cART has led to a substantial decline of AIDS-related KS in the
United States. The Centers for Disease control (CDC) estimated in 2016 that the
average American had a 1 in 99 chance of being diagnosed with HIV at some point
in his or her life. Even in the cART era, standardized incidence rates for KS are
higher than that of any other AIDS-defining or non-AIDS-defining cancers [61].
This suggests that KS will remain a permanent health problem for years to come.
As HIV-positive men in the U.S. age, it is speculated that the incidence of
AIDS-KS may rise again.

Iatrogenic KS occurs after solid organ transplantation in patients receiving
immunosuppressive therapy [16]. KS comprises an estimated 3% of all tumors
associated with transplantation [63]. Iatrogenic KS is observed in regions of high
KSHV prevalence, such as Southern Italy, Saudi Arabia and Turkey. KSHV may
already be present in the recipient prior to organ transplantation, and may be
acquired during induced immunosuppression after transplantation, or may even be
acquired through the graft itself [5]. The frequency of KS in AIDS patients is
20,000 times higher than in the general population [6] and the frequency of KS in
transplant recipients is 500 times higher than in healthy individuals [91].

In the mid-1980s, incidence rates for KS displayed an exponential increase.
Back then, KS was primarily observed in AIDS patients with a history of men who
had sex with men, but not in individuals who became HIV-infected through blood
transfusion [37]. In AIDS-associated KS, there was a correlation between incidence
rates and the lifetime number of male sexual partners [59]. This established KSHV
as a sexually transmitted agent responsible for the development of this cancer.
Today, more women are becoming infected with HIV and consequently AIDS-KS
is also seen in this group. Interestingly, African KS affects both genders; while
classic (Mediterranean) KS affects predominantly elder men. The reason for the
gender bias in classic KS is unknown. In the U.S., KS incidence rates follow a
bimodal distribution that peaks at ages 30–36 and again at ages >70.

KS lesions are classified as plaque, patched, or nodular. As the KS tumor
clinically advances, the KSHV-infected cells increase in number along with the
endothelial cell population in the lesion. There is evidence for both polyclonality
and monoclonality of the lesions [47, 76]. It is thought that KS likely initiates as a
polyclonal hyperplasia and develops into a clonal neoplasia. Kaposi’s sarcoma not
only affects the skin but can also involve multiple organs such as the liver, lung,
spleen, and gastrointestinal tract. In some forms of KS, only lymphoid and internal
organs are affected. Oral KS in the setting of AIDS is associated with advanced
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disease and visceral development. However, in the setting of cART-controlled HIV
infection, it may occur in isolation and represent limited disease. Edema is common
in KS patients. Aggressive types of KS can lead to foci formation in the visceral
organs and ultimately result in hemorrhage and death.

KSHV viral load in PBMC rise up to 6 months prior to lesion formation [101].
A rise in viral load predicts the imminent appearance of KS [72]. However, sys-
temic viral load in plasma varies widely across KS patients and does not correlate
with the number of skin lesions [44]. Inhibitors of the viral polymerase reduce
overall risk of future KS, but do not lead to regression of established KS lesions.
KSHV is found in circulating B cells as well as monocytes, macrophages,
endothelial cells, and epithelial cells [21, 77, 92]. The presence of the most common
anti-KSHV antibodies, which are directed against the LANA protein, documents
prior exposure but does not allow a prediction of KS development, since in
HIV-positive individuals the median time from seroconversion to disease is seven
years or greater [37, 59].

The KS lesion is highly angiogenic and is comprised of spindle-shaped cells,
slit-like endothelium-lined vasculature and infiltrating blood cells. The spindle cells
appear to arise from lymphatic endothelial cells and form the majority of the
neoplasm [31]. In fact, experimental KSHV infection can reprogram the blood
endothelial gene expression profile into that of the lymphatic endothelium and vice
versa [42, 43, 98, 100], though the profile also shows the presence of mesenchymal
markers including various Notch isoforms [15, 58] consistent with dedifferentiation
into a progenitor stage.

The primary receptor for KSHV infection of endothelial cells is ephrin receptor
tyrosine kinase A2 [41]. Ephrins and their corresponding kinases are differentially
expressed across different cell lineages. Hence, the expression pattern of EphA2
may express the tropism of KSHV. It may also become a target of novel, directed
KS therapy [14, 85]. KS tumor explants lose the virus after serial passage in tissue
culture over time. KSHV-infected endothelial cell preparations in culture generally
also lose the virus over time [40, 55].

3.3 KSHV and the Development of Lymphomas

KSHV is also found in B lymphoproliferative diseases; primary effusion lymphoma
(PEL) and the plasmablastic variant of multicentric Castleman’s disease (MCD). In
fact, the first association of KS and a B-cell lymphoproliferative disorder, MCD,
was reported in a patient who presented with both diseases [81]. Greater than 50%
of KSHV-positive transplant recipients develop lymphoproliferative disease [35].
KSHV is most certainly the causal agent of both MCD and PEL [12, 90]. MCD is a
B-cell lymphoproliferative disorder. Patients usually present with diffuse lym-
phadenopathys. In addition to B cell proliferation, MCD displays vascular prolif-
eration of the germinal centers of the lymph node. There are two forms of MCD:
(i) a plasmablastic variant form that is associated with lymphadenopathy and
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immune dysregulation and (ii) a hyaline vascular form, which presents as a solid
mass. Close to 100% of AIDS-associated MCD is associated with KSHV.
AIDS-associated MCD is usually accompanied by the development of KS in the
affected individual, often in the same lymph node.

MCD is a polyclonal tumor and is highly dependent on cytokines such as human
interleukin 6 (IL-6) (reviewed in [103]). KSHV itself encodes a viral IL-6 that is
also expressed in these lesions [71, 73, 94]. Expression of either human IL-6 or
viral IL-6 in transgenic mice causes B-cell hyperplasia and lymphoma. Viral
antigens can be detected in the immunoblastic B cells in the mantle zone of the
lymph node. The plasmablasts in MCD express monotypic IgM light chains [29]
and MCD patients frequently develop cytopenia, autoimmune disease and other
malignancies such as KS and non-Hodgkin’s lymphoma [1]. Anti-IL-6 or
anti-IL-6R antibodies show efficacy in KSHV-negative Castleman’s disease and
there is every reason to believe that siltuximab or tocilizumab (also known as
atlizumab) will also be active in KSHV-positive, HIV-associated MCD and perhaps
even PEL.

PEL, sometimes referred to as body cavity-based lymphoma (BCBLs), represent
a specific subset of non-Hodgkin’s B-cell lymphoma (NHL) that involve body
cavities (peritoneal, pleural or pericardial cavities) and form a distinct clinico-
pathologic group from other NHL [67]. All PEL are KSHV-positive, and are often
coinfected with EBV as well. These tumors are typically large-cell immunoblastic
or anaplastic large-cell lymphomas that express CD45, but not CD19, carry clonal
immunoglobulin gene rearrangements, and lack mutations in c-myc, bcl-2, ras, and
p53 [1, 67].

PEL display the characteristics of a preterminal stage of B-cell differentiation.
Since PEL have mutations in their immunoglobulin genes, they are thought to arise
from post-germinal center B cells. However, PEL do not express immunoglobulins.
Most PEL express CD138/syndecan-1 antigen, which is normally also expressed by
a subset of plasma cells. Most PEL also express high levels of human IL-6 and IL10.

Although KSHV is linked to PEL and MCD in HIV patients, there are cases of
KSHV-positive lymphomas that do not fit the classic PEL phenotypes. There
appears to be a high incidence of KSHV infection in solid HIV-associated
immunoblastic/plasmablastic non-Hodgkin’s lymphomas that developed in patients
lacking PEL and MCD [22] and yet others have found KSHV associated with solid
lymphomas, which resemble PEL cell morphology but do not present as effusions
[10]. KSHV has also been linked to cases of germinotropic lymphoproliferative
disease (GLD) [28]. This disease also involves plasmablasts but unlike plas-
mablastic lymphomas, the GLD lymphomas contain polyclonal immunoglobulin
receptors. This suggests a model in which KSHV infects an early germinal center B
cell that can still differentiate into multiple lymphoma phenotypes dependent on
secondary mutations to the cellular genome.

Finally, KSHV infection can also lead to KS-immune reconstitution syndrome
(KS-IRIS) [8, 18] and KSHV-inflammatory cytokine syndrome (KICS) [74].
Patients with KICS have high KSHV viral loads and levels of viral IL-6, human
IL-6, human IL-10 as well as C-reactive protein.
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The evidence linking KSHV to KS, PEL, MCD and KICS, is overwhelming and
has been confirmed by multiple laboratories and indepent methods such as the
presence of viral DNA in the lesions, viral protein expression and anti-KSHV
antibodies (directed against LANA/orf73, orf K8.1 and others). KSHV DNA has
also been detected in multiple myeloma, primary pulmonary hypertension,
angiosarcomas, as well as malignant skin tumors in posttransplant patients such as
Bowen’s disease, squamous cell carcinomas, actinic keratosis, and extramammary
Paget’s disease. However, these disease associations were never substantiated and
have largely been discarded [1, 27].

3.4 Prevalence of Viral Infection

Several serology studies have suggested that KSHV infection is widespread in
Africa with 30–60% of people being KSHV-positive, but is uncommon in the
United States and Western Europe with seropositivity ranging from 3 to 10% in the
general population [50]. KSHV seropositivity is considerably higher in high-risk
populations reaching 38% in participants seen at AIDS clinical trials centers [54].
Regions such as Italy, Greece, Turkey, and Saudi Arabia show a higher prevalence
of KSHV at about 4–35% [102], which correlates with correspondingly higher
incidence rates for classical or transplant-associated KS. Transmission routes
include sexual transmission, mother-to-child transmission, but probably all forms
involve salivary transmission [9, 59, 96]. There is no evidence that transmission
rates decline, as most KSHV transmission, similar to other herpesviruses, appears
during episodes of asymptomatic shedding.

3.5 The KSHV Genome

A hallmark of herpesviruses including KSHV is their ability to establish a latent
infection for the lifetime of their host. Pathogenesis caused by these viruses is
usually seen in the context of host immunesuppression. All herpesviruses share a
common evolutionary origin, which is evident from the homology seen among a
substantial number of herpesviral genes (reviewed in [25]). Based on biological
characteristics and genomic organization, herpesviruses are classified into three
subfamilies: alpha, beta, and gamma. The gamma herpesviruses are lymphotropic
and some are capable of undergoing lytic replication in epithelial, endothelial, or
fibroblast cells. The gammaherpesvirinae are grouped into two classes: lym-
phocryptoviruses (gamma-1) and rhadinoviruses (gamma-2). Epstein–Barr virus
(EBV) or human herpesvirus 4 (HHV4) is a lymphocryptovirus while KSHV or
human herpesvirus 8 (HHV8) is a rhadinovirus.
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During latent infection, viral gene expression is highly attenuated and the viral
genome remains stably associated with the cell. In the lytic phase of infection, viral
gene expression and DNA replication ensue, leading to the production of progeny
virions and eventual lysis of the infected cell. The KSHV viral genome is com-
prised of a *140 kb long unique region flanked by multiple terminal repeat
sequences with the total genomic size being *160–170 kb. KSHV encodes for
more than 80 open reading frames (ORFs) that encode for proteins greater than 100
amino acids [83]. The viral genes encoded by KSHV can be divided into three
classes—(i) genes common to all herpesviruses (ii) genes unique to KSHV (these
are generally given a “K” designation followed by the number of the open reading
frame (ORF), and (iii) KSHV encoded genes that are homologous to cellular genes
(these may be unique to KSHV or shared with other herpesviruses), and are likely
to have been usurped from the host genome during the course of evolution. It is
likely that several viral genes contribute to the neoplastic process [19].

While there exist distinct clades of KSHV, most of the variation is concentrated
in a few proteins, such as the extracellular regions of the K1 and K15 proteins,
which are exposed to the host immune system, or in extended repeat regions, where
the genome is inherently unstable, such as in the two origins of replication and the
central protein coding region of LANA. Whole genome sequencing has shown that
all other regions are conserved across strains with just a few single nucleotide
variations inside protein coding regions [70]. At this point, none of the genomic
variation seen within KSHV has been associated with overt clinical or cellular
phenotypes, though specific point mutations in the viral micro RNA precursors lead
to the absence of certain mature miRNAs in PEL or KS lesions.

3.6 Molecular Biology of KSHV-Associated Disease

KSHV gene expression in human KS, PEL and MCD disease has involved the use
of microarrays to profile viral gene expression. Since the KSHV genome is orders
of magnitude smaller than the human genome, it has been feasible to develop whole
genome arrays based upon real-time quantitative RT-PCR for all individual viral
genes and to analyze primary KS biopsy samples and KSHV-infected lymphomas
[24, 33]. Conventional microarray-based viral gene expression in KSHV-infected
lymphomas as well as RNAseq studies has also been performed. These techniques
generate a viral signature for each disease state and offer a chance to classify KS
beyond Moritz Kaposi’s observational diagnosis. High-throughput genomic pro-
filing offers the chance to accelerate our investigations into KSHV-associated
cancers as much as it has benefited research into nonviral cancers. Microarray
analyses of host cell transcription [34, 46, 51] proved that KSHV-positive PEL
differ from other types of B-cell lymphomas. This is consistent with the idea that
KSHV reprograms the tumor cell.
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It has been shown that KSHV infection reprograms endothelial cells. Blood
endothelial cells are reprogrammed toward lympathic endothelium and conversely,
lymphatic endothelium is reprogrammed toward blood endothelium [42, 43, 98,
100]. Several studies have ascertained the host transcription profile in tissue culture
models of KSHV infection [66, 68, 75, 79]. KS has a cellular transcription signature
that is distinct from other cancers and tied to the unique pathology of this disease, as
an angioproliferative, cytokine driven disease. For instance, c-Kit and other growth
factor receptors in microarray studies of KSHV-infected endothelial cells led to a
successful pilot study using the kinase inhibitor gleevec (Imatinib) [52]. Other
studies found response rates of KS to a matrix metalloproteinase inhibitor [23] or
anti-VEGF antibodies such as bevacicumab [95].

Every KS tumor transcribes high levels of the canonical KSHV latency tran-
scripts encoding LANA, vFLIP, vCyclin, the viral micro RNAs, and Kaposin.
These genes are under control of the same promoter and are expressed in every KS
tumor cell [26, 30]. Kaposin is located immediately downstream of these three
genes and in addition to the common promoter can be regulated by a promoter
located between LANA and cyclin [56] and during lytic reactivation yet another,
ORF-proximal promoter [84]. Like LANA, Kaposin too is expressed in every tumor
cell [92] and has been shown to stabilize cellular cytokine mRNAs [62]. In addition
to these latent proteins, many KS tumors as well as PEL engrafts [93, 97] express
an extended set of proteins that were initially classified as lytic viral genes, but in
the context of the tumor may be the result of abortive or incomplete viral reacti-
vation. These include the KSHV interferon regulatory factor (vIRF-1) and
G-coupled receptor (vGPCR) homologs [24] and the K1 constitutive signal protein
[3, 97, 99, 104], as well as K15, a constitutive signaling protein located at opposite
end of K1 [39]. This suggests that a subset of KS phenotypes may be attributable to
these genes and the paracrine mechanisms that they invoke [4, 64, 65]. The vIRF-3,
a duplicated KSHV IRF homolog, is constitutively transcribed in KSHV-infected
PEL [80]. Thus, we speculate that KSHV has to interfere with the host cell’s innate
interferon response in every infected cell regardless of cell lineage or mode of
infection and has thus placed multiple copies of the vIRFs, all of which interfere
with normal interferon signaling, under different control elements, e.g., vIRF-3 is
specific for B cells while vIRF-1 is specific for endothelial cells. Thus, both latent
and select lytic genes can be considered tumor-specific therapy targets for KS.

3.7 Therapies to Treat KS, PEL, and MCD

Treatment modalities for KS include observation, local therapy, or systemic
chemotherapy specifically paclitaxel and anthracyclines, such as doxorubicin/
adriamycin [69], depending on the severity of the disease. Response rates approach
70% depending on comorbidities. KS is know to reapear and to require repeated
treatment; a complete cure is seldom achieved as none of the anti-cancer treatments
erradicate the latent virus. A key development was the demonstration that liposomal
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formulation of the peggylated-anthracyclins were as efficactious as the initial drug,
but had significant fewer side effects. No new theraphies against KS have been
introduced since the liposomal anthracyclines such as liposomal Doxorubicin or
liposomal Daunorubicin. Whether a protein-bound formulation of paclitaxel
(Abraxane) has activity with reduced toxicity is unknown. Interferon alpha was
initially approved to treat KS, but is no longer in use. KS is a highly angiogenic
tumor but clinical trials targeting the angiogenic nature of KS have shown limited
efficacy as single agent [95]. This is expected, since most of these agents, such as
the humanized anti-VEGF antibody bevacicumab are tumorstatic and do not kill the
tumor cell directly.

A clinical trial involving daily doses of Imatinib mesylate (Gleevec), which
targets c-kit and platelet-derived growth factor receptor (PDGFR) signaling,
resulted in clinical and histologic regression of cutaneous KS [52], as did a trial of a
matrix metalloproteinase inhibitor [23]. As more receptor tyrosine kinase (RTK)-
targeting molecules become available, targeting PDGFR, VEGFR, and related
mediators of paracrine tumor promoters, offer promise for KS.

Organ transplants, who developed KS due to immunosuppressive therapy,
benefited from treatment with rapamycin [91]. This observation has been repeated
in multiple settings and switching from cyclosporine A or FK506, which suppress T
cell activation, but not B cell or endothelial cell activation to rapamycin, which
suppresses proliferation in all three cell types, has emerged as the informal standard
of care of iatrogenic KS. Rapamycin/Sirolimus and its derivatives Temsirolimus
and Everolimus are allosteric inhibitors of the mTOR pathway and display both
immunosuppressive and antineoplastic properties. The clinical effect of rapamycin
could be reproduced in animal models [82, 89]. Of note, rapamycin was active
against doxorubicin-resistant PEL. Rapamycin acted via an antiangiogenic mech-
anism ultimately reducing the levels of VEGF and of VEGF receptor on endothelial
cells. Again, as single agent rapamycin was tumorstatic, rather than tumortoxic.
Newer, competitive inhibitors of the mTOR pathway are likely to produce superior
results. Additional inhibitors targeting the active site of PI3K and mTOR have also
proved effective in animal models [2, 7].

A series of clinical trials is exploring the efficacy of “imids”, i.e., thalidomide,
lenalidomide, and pomalidomide in KS that develops in HIV-suppressed indiviu-
dals. These compounds have an as yet ill-defined mechanism of action that affects
the immunesystem as well as potential KS tumor cells directly, through modulating
gene expression [20]. In 2018 Pomalidomide received orphan drug designation for
KS by the FDA of the US.

The risk for KS and virally associated lymphomas increases rapidly as the CD4+
cell counts of HIV-infected individuals diminish [17], and the risk of developing
AIDS-associated cancers is lower for individuals who are less severely immune
suppressed. Since the prevalence of KS in AIDS patients is very high, and HIV
coinfection is thought to be an important factor in the development of KS, attempts
to control KS by improving the immune system of HIV-infected individuals
through cART are recommended. Indeed, the incidence of KS has declined con-
siderably following the introduction of cART therapy and often cART alone will
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lead to KS regression in AIDS patients. However, it is important to note that even in
the face of cART therapy, the likelihood of an HIV-positive individual developing
KS is still 20 times higher than uninfected individuals [17] and that by now
one-fourth of KS develops in individuals who are HIV-suppressed [53].

Current treatments for MCD, PEL, and other AIDS lymphomas include standard
chemotherapy such as CHOP, which contains four drugs; prednisone, vincristine,
cyclophosphamide, and doxorubicin, or EPOCH, which in addition contains
etoposide. These can be given coincidentally with cART [78, 86]. Case reports in
the literature also suggest that Rituximab (rituxan) is effective against PEL.
Rituximab is an anti-CD20 antibody, but because Rituximab targets normal B cells
as well, it can be associated with an increased risk of infection when used in AIDS
patients [48]. Scott et al. have reported on two MCD patients that went into sus-
tained remission with just oral etoposide [86], but a more modern approach would
be neutralizing human IL-6 using anti-IL-6 antibodies or anti-IL-6 receptor anti-
bodies. Whether the concept of neutralizing paracrine factors can also be applied to
viral IL-6 remains to be explored.

Another line of thinking has lead to exploratory studies using anti-herpesviral
drugs that inhibit herpesviral replication such as ganciclovir or AZT [11, 38, 60, 94]
in patients. There are two possible mechanisms of action. First, these inhibitors
suppress viral dissemination and thus the pool of infected cells rather than acting
directly on the tumor. Second, there is the observation that AZT as well as gan-
ciclovir has direct cytotoxicity on the infected cell, and selectivity for infected cells,
as only those cells express the viral kinases that convert these prodrugs into their
active forms. The later can be enhanced by inducing viral reactivation using
histone-deactylase inhibitors such as vorinostat, butyrate, or valproic acid. Cido-
fovir, another herpesvirus polymerase inhibitor, did not show a clinical benefit [57].

cART therapy has resulted in varying degrees of success with respect to decline
in the incidence of non-Hodgkin lymphoma. It is estimated that cART therapy
decreases the incidence of non-Hodgkin lymphoma anywhere in the range of 40–
76%. Moreover, there is emerging evidence that protease inhibitors such as indi-
navir or nelfinavir, which also inhibit matrix metalloproteinase may have direct
anti-KS activity [36] in addition to HAART-associated reconstitution of the
immune system [87]. More information on current trials that are underway to treat
KS, PEL and MCD can be gleaned by visiting the National Cancer Institute
(NCI) website: http://www-dcs.nci.nih.gov/branches/aidstrials/adlist.html.

3.8 Conclusions

As a consequence of cART, the life expectancy of HIV-infected individuals now
equals that of other persons with chronically managed diseases such as diabetis or
heart disease. As these HIV-infected patients continue to age, there will be a cor-
responding increase in the incidence of AIDS-defining, since HIV+ are dispro-
portionally exposed to KSHV, human papilloma virus, and Epstein–Barr Virus,
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as well as cancers not associated with infectious causes. Most of the current ther-
apies with the exception of anti-herpesviral drugs do not take advantage of the
unique viral etiology of KSHV-associated cancers, and anti-herpesviral drugs
themselves are not effective against latent virus. Thus, it will be important to show
that “traditional” anticancer therapies are safe in the context of cART and HIV
infection, and to develop future therapies that directly impact upon, and obliterate,
the function of viral genes.
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Abstract
Herpesvirus-induced disease is one of the most lethal factors which leads to high
mortality in HIV/AIDS patients. EBV, also known as human herpesvirus 4, can
transform naive B cells into immortalized cells in vitro through the regulation of
cell cycle, cell proliferation, and apoptosis. EBV infection is associated with
several lymphoma and epithelial cancers in humans, which occurs at a much
higher rate in immune deficient individuals than in healthy people, demonstrat-
ing that the immune system plays a vital role in inhibiting EBV activities. EBV
latency infection proteins can mimic suppression cytokines or upregulate PD-1
on B cells to repress the cytotoxic T cells response. Many malignancies,
including Hodgkin Lymphoma and non-Hodgkin’s lymphomas occur at a much
higher frequency in EBV positive individuals than in EBV negative people
during the development of HIV infection. Importantly, understanding EBV
pathogenesis at the molecular level will aid the development of novel therapies
for EBV-induced diseases in HIV/AIDS patients.

Keywords
EBV � HIV/AIDS � Oncogenesis � Latent infection � Lymphoma

4.1 Introduction

Epstein–Barr virus (EBV) was discovered and isolated from a Burkitt’s lymphoma
patient in 1964 [41]. It is known as the first tumor virus. EBV has 184 kb DNA
base pairs, encoding 85 open reading frames (ORFs) and non-coding RNAs. There
are two phases during EBV lifecycle, lytic infection producing new viral particles,
and the followed long-term latent infection. EBV infects over 90% of the world’s
population. Typically, the infection is asymptomatic when humans are infected by
EBV before adulthood but it will lead to mononucleosis when people are infected
post-adolescence. EBV establishes extremely successful strategies to evade from
host immune surveillance and contributes to about 0.5–2% of cancer occurrence
[18], and is shown to be associated with Hodgkin Lymphoma (HL), Burkitt’s
Lymphoma (BL), Post-transplant Lymphoproliferative Disease (PTLD), Pri-
mary CNS Lymphoma (PCNSL), Nasopharyngeal Carcinoma (NPC), and gastric
carcinoma (GC) [66].

In vivo, EBV primarily infects naive B cells of the tonsils followed by lytic viral
replication, which spreads to the tonsil epithelial cells [142]. The replication and
spreading process can also be suppressed by the host immune system. In latent
infection, EBV expresses very limited proteins and non-coding RNAs in the
memory B cells. There are now four distinct latency programs in the infected cells,
latency type 0, I, II, and III [140]. They each exhibit a unique protein expression
profile. In latency III, regarded as the first latency program established, following

82 F. Lang et al.



primary infection of resting naive B cells, EBV expresses six EBV nuclear antigens
(EBNAs; EBNA1, EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA-LP), three
membrane proteins (latent membrane protein (LMP); LMP1, LMP2A, and
LMP2B), two viral RNAs (EBERs), and the BamA rightward transcripts (BARTs)
[157]. Viral protein expression pattern in latency III can potently drive B cells into
immortalized cells. Type II latency is characterized by the expression of EBNA1,
LMP1, LMP2, EBERs, and BARTs. In latency type I, only EBNA1, EBERs, and
BARTs are expressed. In latency 0, EBV’s protein expression is totally shut down,
only expressing EBER and BART RNAs [20].

In individuals with competent immune systems, EBV rarely induces severe
diseases but it can lead to severe consequences in people whose immune systems
are compromised. HIV can severely destroy the human immune system and
attenuate the immune suppression of EBV-induced abnormality in infected cells
[107]. Incompetent immune surveillance and response will allow abnormal cell
growth, proliferation, and tumorigenesis. It is frequently found that coinfections of
EBV and HIV exist in malignancies associated with AIDS patients [90]. Frequency
of multiple Epstein–Barr virus infections is changed in HIV-associated
T-cell-immunocompromised individuals [155], which suggests that HIV infection
may be able to modulate the status of EBV infection.

4.2 The Host Pathways Affected by EBV in Oncogenesis

EBV can transform B cells into lymphoblastoid cell lines (LCL) through the reg-
ulation of many pathways of cells including cell cycle, apoptosis, proliferation,
chromatin and immune response repression [158]. Although EBV has the potential
to induce B cell immortalization, not all of the B cells are transformed. A portion of
EBV-infected cells are arrested in G1/S-phase [101]. Recently studies have found
that the DNA damage response and metabolic stress induced by EBV can also be
factors which suppresses B cell immortalization [101, 106]. It is also proposed that
unknown host factors with the potential to suppress the immortalization process
during EBV transformation remain to be discovered. Here, we reviewed several
pathways and factors that affect transformation induced by EBV.

4.2.1 Resistance to Cell Apoptosis

EBV can prevent cell apoptosis through binding to the death receptors at the very
early phase of infection. The best-characterized ligands and corresponding death
receptors during apoptosis are FasL/FasR and TNF-a/TNFR1 pathways [40]. The
death receptors recruit their adaptor proteins including TNF receptor-associated
death domain (TRADD), Fas-associated death domain (FADD), and caspase-8. The
interactions form a complex called death-inducing signaling complex (DISC) [11].
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Following the formation of DISC, executioner caspases are cleaved by caspase 8
and the cell apoptosis program begins.

The expression of p53 in the presence of DNA damage is reduced and survivin
can be induced by EBNA1 [70, 102]. Interestingly, EBNA2 can increase the protein
levels of anti-apoptotic proteins such as Bfl-1, Bcl-xL, Bcl-2, and Mcl-1 [118]. The
cellular proapoptotic BIK/NBK gene is also repressed by EBNA2 at transcription
level to inhibit the proapoptotic program [22]. The Bcl-2 family member BIM1,
which is known as a proapoptotic protein, is suppressed by the viral encoded
essential nuclear antigens EBNA3A and EBNA3C [5]. P53-mediated activities can
also be repressed by EBNA3C [20, 156] and P53 itself can be degraded through
EBNA3C recruitment of the MDM2 E3-ubiquitin ligase [128]. EBNA3C also can
inhibit cell apoptosis through regulation of E2F1, IRF4/8, Pim-1, Aurora kinase B
[9, 10, 65, 127]. EBNA-LP contributes to the anti-apoptosis activities through
interaction with an extensive number of host cell proteins which include PP2A,
HAX-1, HSP70, HSP72, Rb, P53, P14ARF, and Fte1/S3a [11, 49, 60, 69–71, 96].

NF-jB activation is essential for the survival of EBV-transformed B lympho-
cytes [19] and can be activated by LMP1 recruited TNFR-associated factors
(TRAFs) and TNFR-associated death domain protein (TRADD). LMP1 activated
NF-jB can also induce A20 and BCL-2 to promote cell survival [81].
Down-regulation of BCL-2 in the absence of LMP1 and LMP1 induced upregu-
lation of BCL-2 demonstrated that LMP1 can exert its anti-apoptotic function
through BCL-2 [45, 93]. BCL-2 is also regulated by LMP2 which protects EBV
protected cells from proapoptotic signals [117].

4.2.2 Cell Cycle and Proliferation

Proper cell cycle arrest is a safeguard to prevent premature cell division and
uncontrolled proliferation. Cyclins, cyclin-dependent kinases (CDKs), and CDK
inhibitors strictly regulate the cell cycle [46]. c-Myc activation, which is common in
kinds of cancer, can increase the activities of Cyclin D and E2F and repress the
expression of CDK inhibitors (p27Kip1, p21Cip1, and p15Ink4b) [17, 44, 61].
Increased expression of c-Myc can also be induced by EBV proteins, such as
EBNA2 [67], LMP2A [46] and EBNA3C [7]. pRb, the ubiquitin ligase SCFSKP2,
cyclin D1, cyclin A, c-Myc, MDM2, p53, CHK2, E2F1, and E2F6 are all directly
regulated by EBNA3C [78, 79, 128, 139]. These interactions are involved in G1-S
and G2-M transitions. Recently, it is noticed that mitotic checkpoint proteins, such
as BubR1 expression and stability are affected by EBNA3C and these disruptions of
mitotic checkpoints also contribute to cell proliferation [57, 65, 108]. Inactivation
of G1-S, G2-M, and mitotic spindle checkpoints can enhance the propagation of
damaged DNA and provide EBV increased diversity of the genetic context of
progeny cells, which also contributes to oncogenesis.
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4.2.3 Promotion of Cell Metabolism

Disruption of cellular metabolism is a hallmark of cancer [111]. Viruses rely on
host cells for the energy needed during their lifecycle. It is known that viruses are
able to change the profile of host cell metabolism to facilitate assimilation of carbon
into macromolecules for viral and host cell activities during infection [132]. Many
cancers undergo hypoxia, which diminishes the use of ATP by downregulating
Na-K-ATPase [148]. During EBV latent infection, LMP-1 activates the expression
of hexokinase 2 (HK2). Expression of HK2 leads to the induction of glycolysis and
this proves to be necessary for nasopharyngeal carcinoma cell survival [152]. B cell
transformation mediated by EBV, glucose import and surface glucose transporter 1
(GLUT1) levels were increased in hyper-proliferated B cell subsets [101]. How-
ever, how cellular metabolism is regulated by EBV is largely unknown.

4.2.4 Evasion from Immune Surveillance

Innate immunity and adaptive immunity constitute the defense line against patho-
gen infections. Pattern recognition receptors, such as Toll-like receptors (TLRs) and
cytoplasmic foreign DNA and RNA sensors (including IFI16, cGAS, and
RIG-I-like receptors) are important components of innate immunity [72]. Once the
virus establishes primary infection and resides inside cells, adaptive immunity is
needed to detect and clear virus-infected cells. T cells which can recognize virus
expressed peptides through surface HLA molecules do play important roles in the
process of elimination [121].

Although the host immune system can effectively inhibit EBV activities, EBV
survives in the human body by establishing long-term latent infection with limited
gene expression [141]. To survive in host cells, EBV has developed multiple
pathways to suppress, counter and evade the host immune surveillance [28]. There
are several key latent proteins that aid in EBV’s ability to evade immune detection.
The EBNA1 antigen has a weak immunogenicity for MHC I presentation and
interferes with the NF-jB, STAT1, and TGFb pathways [16, 150]. EBNA2 inhibits
IFNb and ISG production through enhancement of STAT3 transcription [4, 105].
LMP1 can inhibit STAT2 activity and IFN production through preventing Tyk2
phosphorylation and induction of an inhibitory IRF7 splice variant [50, 159].
LMP-1 can also reduce TLR9 expression to block pattern recognition through
NF-jB activation [43]. LMP2a can limit IFN-stimulated gene expression by
interfering with signaling between IFNc and IFNa and their receptors [136].

In addition to immune system evasion during latency, EBV can attenuate CD4+
and CD8+ T cell recognition of EBV positive cells through down-regulation of
HLA I and HLA II during its replication. The process is mediated by BNLF2a,
BILF1, and BGLF5 during lytic infection [103]. Viral interleukin-10 (vIL-10), a
homolog of human IL-10, is produced by the EBV gene BCRF1 which stimulates B
cell growth, inhibit antigen presentation, T cell growth and IFN-c production [68].
EBV-infected lymphoma cells highly express inhibitory ligands for the
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PD-1/CTLA-4 receptor, PD-L1 and PD-L2 to suppress EBV-specific T cell
responses. PD-1/CTLA-4 blockade by drugs can effectively reduce the size of
lymphomas induced by EBV [95].

4.2.5 Epigenetic Regulation Due to EBV Infection

Cancer cells and normal cells are largely different in epigenetic states, including
chromatin remodeling, histone acetylation, histone methylation, and DNA methy-
lation [116]. Hyper-methylated CpG islands at promoters, genome-wide
hypomethylated DNA in the gene body, changes in histone modification expres-
sion and distribution are constantly associated with cancer cells [154]. These
abnormal epigenetic profiles lead to aberrant gene expression and contribute to
cancer development. DNA methyltransferase (DNMT), histone deacetylase
(HDAC), and histone methyltransferase activities can also be regulated to modulate
the hypomethylation patterns [124]. Tumor viruses can also manipulate the host
epigenetic machinery and change host cellular genome through DNA methylations
and histone modifications [116]. Emerging data from a number of studies have
suggested that inappropriate epigenetic regulation underlies human tumor
virus-mediated oncogenesis.

EBV influences host epigenetic profiles from different angles and viral-mediated
epigenetic regulations on host chromatin is believed as an essential factor which
contributes to oncogenesis. Hyper-methylated CpG islands are recruited at the
promoters of tumor suppressor genes (TSGs) and result in global transcriptional
repression of TSGs in EBV-infected resting B cells [126]. EBV latent proteins play
essential roles in epigenetic deregulation during B cell lymphomagenesis. A chro-
matin remodeling complex, SWI/SNF, can be recruited by EBNA2, to create an
open chromatin conformation and so induces c-Myc transcription [149]. EBNA3C
can interact with HATs and HDACs including p300, CBP and HDAC1/2 [34, 76].
These interactions suggest a possible role in the regulation of histone acetylation
and chromatin remodeling. Hypermethylation at promoters of tumor suppressor
genes, such as p14ARF, p15INK4a, and p16INK4a are recruited by EBNA3A and
EBNA 3C [2, 3]. MIZ1 and H3K27me3 histone modification can be recruited by
EBNA3A to the promoter of p15INK4a to inhibit its expression [12]. EBNA3A and
3C can also mediate Polycomb repressive complex 2 (PRC2) binding and
H3K27me3 modification to the promoter of tumor suppressor Bim/Bcl2L11 [5,
110]. LMP1 can regulate all three DNA methyltransferase (DNMT) enzymes,
DNMT1, DNMT3A, and DNMT3B in either nasopharyngeal carcinoma (NPC) cell
lines or germinal center B cell-derived malignancies and so influence DNA
methylation of specific genes, such as RARB and CDH13 [86, 135, 145]. LMP2A
is shown to increase expression of DNMT1 and methylation of PTEN gene.
Although people begin to know about how EBV influences host transcription
regulation, much is focused on the interactions between viral factors and the host
epigenetic machinery. Furthermore, genome-wide epigenetic regulation mediated
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by EBV is largely unknown. Therefore, there is a great deal yet to be explored
regarding epigenetic regulation related to EBV infection.

4.3 The Functions of EBV Proteins During Oncogenesis

Viral oncogenes expressed in latent or lytic infection are potent in their ability to
drive B cells proliferation and immortalization in vitro. During EBV primary
infection in B cells, EBV initially enters a transient, lytic phase where lytic genes
are expressed resulting in progeny virus [59, 119]. Within the first 24 h post
infection, EBV also expresses latent genes as indicated by the expression of
EBNA-LP and EBNA22 and establishes latent infection after 4–6 days with
expressions of six EBV nuclear antigens and two membrane proteins [8, 98, 129,
160]. Each of these proteins play an important role in the oncogenic process during
EBV infection (Fig. 4.1 and Table 4.1).

EBNA1 is regarded as a key protein important for replication and mitotic seg-
regation of the viral genome [48] and is the only nuclear protein expressed in
latency type I. Cooperating with viral origin of plasmid replication (oriP), EBNA1
supports viral replication using the host cell replication machinery as well as seg-
regation into daughter cells upon mitosis [36, 48, 88]. Several cellular proteins that
interact with EBNA1 have been identified. These include the cellular origin
recognition complex and other components of the prereplication complex, repli-
cation protein A, and the telomere repeat binding factor 2 (TRF2) [35]. EBNA1 can
also tether the EBV episomes to the cellular chromosomes by interacting with

Fig. 4.1 EBV latent proteins induce hall marks of cancer through regulation of cellular proteins
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cellular protein EBP2 [151]. EBNA1 has roles in cell survival through regulating
cellular gene expression, including upregulation of survivin expression and inhi-
bition of the protein tyrosine phosphatase receptor kappa (PTPRK) [94]. EBNA1
also contributes to tumorigenesis through dysregulation of the host cell genome
stability by inducing RAG1/RAG2 and increasing reactive oxygen species
(ROS) [56, 146].

EBNA1 can promote cell migration through interacting with Nm23-H1 in lym-
phoblastoid cell lines and inhibits its ability to suppress cell migration [104]. Fur-
thermore, loss of EBNA1-specific memory CD4+ and CD8+ T cells were found in
HIV-infected patients progressing to AIDS-related non-Hodgkin lymphoma [115].
This suggests that EBNA1 may be a critical viral encoded antigen that increases the
chance of development of an EBV positive lymphoma in HIV-infected patients.

Table 4.1 The role of viral proteins in regulating host cell activities

Viral
proteins

Function pathways Regulation of host proteins Roles in cell
transformation

EBNA1 Tethers viral genome la host cell
chromosome, viral DNA
replication, transcriptional
activation, immune evasion

Cellular origin recognition
complex, RPA, TRF2, RAG-1,
RAG-2, Nm23-H1, AP-1, p53

Essential

EBNA2 Transcriptional regulation, cell
proliferation and accelerating
cell cycle

RBP-Jk, c-Myc, CDK2, Bcl6,
SKIP

Indispensable

EBNA3A Transcriptional regulation
EBNA2 antagonist and
coactivator

RBP-Jk, CtBP, Chk2, WDR48,
WDR20, and USP46/UP12,
MIZ-1, 20S proteasome,
Chaperones, XAP-2, TCP-1,
AhR, UK/UPRT

Indispensable

EBNA3B Transcriptional regulation RBP-Jk, Cyclin A, 20S
proteasome, WDR48, WDR20,
and USP46/UP12

EBNA3C Transcriptional regulation
chromatin remodeling histone
modification E3 ubiquitin
degradation

RBP-Jk, Nm23-H1, SCFSKP2
ubiquitin ligase, Chk2, p300,
CtBP, DDX20, HDAC1/2,
mSin3A, NCoR, Cyclin A, D1,
E, GSK3b, p53, Mdm2, ING4/5,
E2F1, E2F6, Rb, c-myc,
sumo1/3, MRPS18-2, Aurora
kinase B, IRF4/8, H2AX,
USP46/12, p73

Indispensable

LMP-1 Transcriptional modulation
regulates cell cycle checkpoint
cell survival cytotoxic T
Lymphocyte modulation

NF-jB, JNK, ERK, and
P38 MAPK, PI3-K/AKT, IRF7,
p16, p27, BCL2

Indispensable

LMP-2 Maintenance of latency
Disrupts B cell of latency
receptor signaling

Bcl-xL, Ras/PI3K/Akt pathway Essential
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EBNA2 has essential roles in the process of B cell immortalization and mainly
promotes cell growth through induction of cell proliferation and accelerating cell
cycle. EBNA2 functions as a transcriptional factor with a transactivation domain
and interacts with DNA through other adaptors [74]. EBNA2 also downregulates
c-Myc expression and up-regulates Cyclin D, E [67]. EBNA2-mediated transcrip-
tional modulation is mainly exerted through association with other cellular
DNA-binding proteins including RBP-Jj and PU.1 [91, 112, 161]. EBNA2 con-
tributes to B cell immortalization through constitutive activation of the Notch
signaling pathway [80]. RBP-Jj is a ubiquitous DNA-binding protein which rec-
ognizes the sequence CGTGGGAA [100]. The intracellular region of notch has
been shown to possess transactivation ability when overexpressed in various cell
lines. Binding of notch to the nuclear protein RBP-Jj is dependent on two regions:
the RAM domain located immediately C-terminal to the transmembrane region and
the CDC 10/ankyrin repeats [130]. EBNA2 can bind to RBP-Jj at the same regions
and can replace the binding of intracellular region of notch. Therefore, EBNA2 acts
as a constitutive component of notch-I signaling complex and results in activation
of the notch-I signaling pathway [8]. The ability of EBNA2 to drive B cell
immortalization relies on its ability to antagonize the transcriptional repression
function of RBP-Jj. Interestingly, EBNA2 transactivates the HIV LTR, and this
transactivation is dependent on the NF-jB sites in the HIV LTR [133]. The exact
mechanisms of this transactivation are still not well demonstrated.

EBNA3 family proteins: EBNA3 family proteins are EBV latent proteins that
include EBNA3A, 3B, and 3C. The three EBNA3 genes encoded by EBV are
expressed from adjacent loci in the EBV genome and it is believed that these genes
have evolved from a common ancestral gene to mediate slightly divergent functions
[8]. The amino termini of all three genes have a conserved domain that binds to the
transcriptional corepressor RBP-Jj and enables these proteins to differentially
regulate EBNA2-mediated transcription. The two members of EBNA3 family
EBNA3A and 3C are vital for B cell transformation and lymphomagenesis [14].
Modified EBV containing stop codons demonstrated that EBV loses its ability to
transform naive B cells without EBNA3A and 3C but not EBNA3B [14, 144].
EBNA3 proteins exert transcriptional regulation functions through interacting with
host proteins. For host proteins known to interact with EBNA 3 family proteins,
RBP-JK is the first host protein that was identified as a transcription repressor
whose interaction is essential for lymphoblastoid cell growth [99, 122, 123].
EBNA3A can mediate viral resistance to BCL-2 antagonism and maintain B cell
long-term growth [118]. EBNA3C extensively interacts with host proteins and
regulates host cell activities including transcription regulation, chromatin remod-
eling, histone modification, and E3 ubiquitin degradation (Table 4.1). Interactions
with histone deacetylases, [76] histone acetyltransferases p300, CtBP [138] and
polycomb proteins [2, 109] demonstrate that EBNA3C are involved in chromatin
structure regulation.

EBNA3C mediates dysregulation of E2F1, E2F6, CyclinA, CyclinD, CyclinE,
Tp53, c-Myc, Rb, and p27 [7, 77, 78, 114, 125, 127], so that EBNA3C can
accelerate cell cycle by overcoming the cell cycle checkpoints. EBNA3C can also
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contribute to genome instability by interaction with Aurora kinase B and H2AX
[64, 65], which are hallmarks of cancer.

LMP Family proteins: The LMP family of proteins which include LMP1,
LMP2A, and LMP2B are critical viral genes for B cell transformation [1]. LMP1 is
an essential transmembrane protein with six transmembrane domains, a short
intracellular N-terminus and a relatively long intracellular C-terminus [73]. The
C-terminus of the protein is functionally homologous to a constitutively active
CD40 receptor. It binds to members of the TRAF family and interacts with JAK3
and members of the STAT family [39, 51, 75]. All these interactions contribute to
the uncontrolled proliferation of LMP1 expressing cells [8]. LMP1 can regulate
EBV as well as host cell gene expression [97]. LMP1 mimics CD40 receptor
signaling and is involved in regulating NF-jB, JNK, PI3 K/Akt, and MAPK
pathways to promote cellular proliferation [30, 83, 120, 137]. LMP1 dysregulates
cell cycle checkpoint through inhibition of p16 and p27 [42] and also promotes cell
survival through the BCL2 pathway. Drugs inhibiting JNK1 can strongly decrease
DNp73a, an antagonist of p53 which is induced by LMP1 [1].

LMP2A is a transmembrane protein with 12 transmembrane domains, a short
intracellular C-terminal domain and a relatively long intracellular N-terminal domain
[85, 131]. LMP2B is an amino-terminal truncated form of LMP2A, with transcription
beginning just before the first transmembrane domain [131]. The N-terminus of
LMP2A is homologous to the B cell receptor cytoplasmic domain and contains the
same ITAM motifs [8]. LMP2A inhibits B cell signal transduction by mimicking an
activated B cell receptor (BCR). LMP2A promotes cell survival through
up-regulating Bcl-xL expression and activating the Ras/PI3K/Akt pathway [30].

4.4 HIV-Associated Lymphoma in HIV/AIDS Patients

Lack of competent immune surveillance will lead to severe diseases induced by
EBV. In healthy individuals, the number of EBV-infected cells is restricted by
EBV-specific CD8+ T lymphocytes. Once the host lacks an effective number of T
cells or competent immune response, the growth and proliferation of infected B cells
will be out of control and eventually lead to proliferative disorders. The incidence
risk of some lymphomas (non-Hodgkin lymphoma and central nervous system
lymphoma) in HIV/AIDS patients is several hundred folds higher than in the healthy
individuals [54]. Burkitt’s Lymphoma, Diffuse large B cell lymphoma, Extranodal
marginal zone lymphoma of MALT type, Peripheral T cell lymphoma, and Classical
Hodgkin lymphoma which occur in immunocompromised patients account for 80%
of HIV-associated lymphomas [15]. Although it was reported that HIV can directly
immortalize B cell lines in EBV positive individuals [84], it is more closely accepted
that the main effect of HIV in lymphomagenesis is immunosuppression, compro-
mised immune surveillance and disturbed immune regulation.
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Besides the deficient T cell levels leading to occurrence of lymphoma, we now
realize that the overactivated T cell response and exhausted immune responses are
also related to initiation of B cell lymphomas [55]. This may be because of the
dysfunction of T cells caused by the chronic and continuous activation induced by
HIV replication. Here, we reviewed several EBV-associated diseases occurring in
HIV-infected patients (Table 4.2).

Burkitt Lymphoma (BL): Among the lymphomas, Burkitt’s Lymphoma is a
common symptom in HIV/AIDS patients with 30–40% of the BL-tumors being
EBV positive [66]. BL occurs during HIV infection even with a normal amount of
circulating CD4+ T cell. Burkitt’s Lymphomas are featured with expression of
CD20, CD10, BCL6, BCL2, and Ki67 molecules [26]. Burkitt’s Lymphomas are
highly proliferative and there is a translocation placing the c-Myc gene adjacent to
the region of heavy- or light-chain immunoglobulin loci [134]. Besides the

Table 4.2 Features of EBV-associated aids-associated B cell lymphoma

Lymphoma histology % in HIV EBV
positive
frequency
(%)

Histology feature Expressed
viral
factors

Burkitt lymphoma 55 55 CD20, CD10, BCL6, BCL2,
and Ki67 positive

EBNA-1

Diffuse Large B cell
Lymphoma
(DLBCL)

30 30–90 Centroblastic variant:
CD10+, BCL6+, CD138−,
and MUM1−
Immunoblast variant: CD20
−/+, BCL6−, CD138+,
MUM1/IRF4+, CD45−,
PAX5−

LMP-1

Primary CNS
Lymphoma (PCNSL)

<5 100 CD45ϸ, Pan-B cell markers
ϸ, CD138−. Variable
positivity for CD10 and
BCL6, IRF4/MUM1ϸ. IGH
monoclonal

LMP1

Hodgkin Lymphoma
(HL)

– 100 BCL-6−, syn-1+, CD15+,
CD30+, CD45−

EBER,
LMP1,
LMP2

Plasmablastic
Lymphoma (PBL)

<5 70–80 CD45−, CD20−, Pax5−,
CD79a−/ϸ, CD138ϸ,
CD38ϸ, MUM1/IRF4ϸ,
BLIMP1ϸ, XBP1ϸ, clgG,
IGH monoclonal

EBER

Primary Effusion
Lymphoma (PEL)

<5 90–100 CD45ϸ, Pan-B cell markers
−, CD30ϸ, CD138ϸ, clgM−,
IGH monoclonal

EBER

Post-Transplant
Lymphoproliferative
Disease (PTLD)

– 90–100 CD20+, CD79a+, CD3−,
CD5−

LMP1,
LMP2
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dysregulation of the c-Myc gene, it is common to find point mutations in the gene
body of tumor suppressor gene TP53 [87].

There are several EBV proteins and RNA detected in Burkitt’s lymphoma.
EBNA-1 is expressed in Burkitt’s lymphoma to tether the viral genome to host
chromosome and also contributes to the genetic regulations during Burkitt’s lym-
phoma development [92]. Since EBNA-1 does not induce a potent cytotoxic T cell
response, it provides the EBV positive cells a survival advantage. In addition, cell
cycle is disturbed in Burkitt’s lymphoma because of the tumor suppressor gene
RBL2 inactivation.

Diffuse Large B cell Lymphoma (DLBCL): DLBCL is the most common
lymphoma in HIV-infected patients [26]. There are two subtypes, centroblastic
DLBCL, and immunoblastic DLBCL, featured with different morphology and
phenotype [153]. The probability of these two subtypes occur in HIV/AIDS patients
is almost equivalent. Within 30–40% EBV positive cases, centroblastic DLBCL
occurs accompanied with mild immunosuppression. Centroblastic DLBCL is CD10
+, BCL6+, CD138−, and MUM1− showing a germinal center B cell phenotype
[6, 32]. Immunoblastic DLBCL cells express B cell markers including CD19,
CD20, CD79a, Pax5 and lacks germinal center phenotype [90]. Immunoblas-
tic DLBCL usually occurs under the condition of marked immunosuppression and
about 90% of these cases are EBV positive [28].

LMP-1 plays essential roles in lymphoma pathogenesis and is usually expressed
in DLBCL [28]. LMP1 can strongly downregulate BCL-6 in DLBCL and promotes
cell survival [23, 113]. NF-kB pathway activation induced by loss of the
anti-apoptotic protein A20 contributes to pathogenesis of DLBCL [33]. However,
in the presence of EBV infection, LMP1 can induce the expression of A20 and the
upregulation of A20 prevents cell apoptosis, and thus promote tumorigenesis [52].
The relationship between A20 expression and pathogenesis of DLBCL reflects the
complex regulatory processes which occur during lymphomagenesis under condi-
tions of HIV and EBV coinfection. In addition, the dysregulation and hypermuta-
tions of c-Myc, TP53, Pim1, Pax5, and RhoH/TTF genes occur quite frequently in
HIV-related DLBCL cases [90].

Primary CNS Lymphoma (PCNSL) occurs in the brain, leptomeninges, eyes
or spinal cord, and is also categorized to be one kind of DLBCL [89]. The fre-
quency of PCNSL in normal population is less than 1%, but it is up to 20% of the
total lymphomas occurring in HIV-infected patients who have rather low CD4 T
cell counts, over 1000 times greater than in the non-HIV population [47].

EBV has been found in PCNSL cases at 100% frequency in HIV-infected
individuals and all EBV latent proteins are expressed in PCNSL [15]. Interestingly,
studies have reported that EBV detection combined with CNS lesions can be used
as a kind of diagnosis of PCNSL [62].

Hodgkin Lymphoma (HL): HL is one of the most common lymphoma in HIV
positive patients, with over 10 folds higher risk than the general population [53].
The occurrence of HIV-associated HL often accompany a higher ratio of CD8+ T
cells over CD4+ lymphocytes compared with HIV negative HL. Hodgkin Reed–
Sternberg (HRS) cells in HIV-associated HL represent the typical cells in HL and
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they are featured with BCL-6−, syn-1+, CD15+, CD30+, CD45− phenotype and
thus reflect post-GC B cells [25].

There are high titers of EBV in patients with Hodgkin lymphoma, indicating that
HIV and EBV may cooperate closely with each other to promote development of
HL [24]. Both EBER in situ hybridization and LMP1/2 are positive in
HIV-associated HL [25]. LMP1 and LMP2 play important roles in HL pathogen-
esis. LMP1 up-regulates the expression levels of the multiple function polycomb
protein BMI-1, which plays a role in inhibiting tumor suppressors [38]. LMP1 also
promotes B cell proliferation through mimicking CD40 and activating NF-jB,
PI3K, and JAK/STAT pathways [82, 147]. LMP2 promotes immature BCR neg-
ative B cells survival via mimicking B cell receptor (BCR) signaling and migration
from bone marrow/colonize peripheral lymphoid organs [21].

Plasmablastic Lymphoma (PBL): PBL is related to HIV-associated
lymphoma, post-transplant immunodeficiency and immunosenescence [27]. PBL
constitutes about 3% of lymphomas in HIV positive patients and 70–80% of these
PBL are EBV positive.

PBL cells are positive for plasma cell markers (CD79a, IRF4/MUM1, BLIMP1,
CD38, and CD138) and express low level or have no B cell specific markers, for
example, CD19, CD20, and Pax5 [27]. IRF4/MUM1 and BLIMP1 are more fre-
quently detected than CD38 and CD138 in PBL [90]. CD10 expression may also
accompany c-Myc translocation in some cases. In more than 30% of cases, PBL can
express CD10 while 78% of PBL cases are c-Myc translocated or amplified and
nearly all the cases have overexpressed c-Myc protein levels. Moreover, c-Myc
overexpression is believed to facilitate PBL cell proliferation and survival. The
overexpression of c-Myc is also a result of the mutant PRDM1/Blimp1a protein,
which lacks the functional regulatory domains of the c-Myc gene.

EBV factors may also be involved in the pathogenesis of plasmablastic lym-
phoma. The frequency of c-Myc translocation is found in about 70% of EBV
positive PBL cells versus 40% in EBV negative cases. It is reported that EBER can
be 100% percent positive in PBL cases with HIV infection while they are generally
negative for EBNA2 and LMP-1 [37].

Primary Effusion Lymphoma (PEL): Almost only found in HIV-infected
patients, PEL constitutes less than 5% of all HIV-associated non-Hodgkin lym-
phoma. Although it is believed that KSHV is the determining factor driving
pathogenesis of PEL, EBV coinfection exists in most cases of PEL [102]. PEL cells
lack B cell or T cell lineage phenotype, negative for CD19, CD20, CD79a, and
immunoglobulins [31]. PEL cells frequently express activation or plasmacytic
differentiation-related antigens, including CD30, HLA-DR, EMA, CD38, and
CD138 [13]. The immunoglobulin gene and the non-coding regions in BCL6 gene
are frequently mutated. Genes involved in inflammation, cell adhesion, and inva-
sion are also highly expressed in PEL cells [63] and KSHV factors play essential
roles in the pathogenesis of PEL. LANA-1, v-cyclin, vFLIP, LANA-2, and vIL6
can facilitate cell transformation through promoting proliferative, anti-apoptotic,
pro-inflammatory, and angiogenic effects [29]. The EBV viral RNA factor EBER
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can be detected in most cases of PEL. It demonstrates that EBV is an important
coinfecting factor, but it is not clear about the roles of EBV in pathogenesis of PEL.

Post-Transplant Lymphoproliferative Disease (PTLD): PTLD can occur in
patients with primary immunosuppression, drug-mediated immunosuppression
following transplant to prevent the rejection and HIV infection induced immun-
odeficiency. It is different from HIV-associated lymphoma because PTLD has more
limited disease distribution, normal tumor suppressor gene expression and is neg-
ative for oncogenes.

EBV infection is tightly linked to PTLDs and nearly 100% positive in
PTLD-associated Hodgkin Lymphoma cases. The deficiency of killer T cells in
PTLD patients also contributes to the activation of EBV. Widely expressed EBV
latent proteins promote cell survival and resistance to programmed cell death [143].
LMP1 and LMP2 expressed in PTLD cells can induce neoplastic cell proliferation
through dysregulation of BCR, CD40 and NF-kB regulatory pathways [58].

4.5 Conclusions

Numerous studies have revealed multiple mechanisms involved in EBV and
HIV/AIDS-associated oncogenesis in the last couple of decades. Strategies utilized
in the discovery of viruses provide clinical investigators clues as to the development
of therapies and methodologies to decrease the risk of virus-associated diseases.
New therapies to combat HIV and EBV infections are emerging. Highly active
antiretroviral therapy (HAART) has highly reduced the mortality in the
HIV-infected patients. HDAC inhibitors, which can induce virus reactivation from
latency infected cells, are used as a “shock and kill” strategy and have been proved
an efficient method to decrease HIV and EBV particles in vivo. Crispr-cas9 is also
used to effectively edit target genes and so this could be used to destroy HIV or
EBV which contribute to lymphoma pathogenesis. In the future, combined thera-
peutic approaches, including chemotherapy and biotherapy may be adopted to clear
virus from infected patients and repress virus-induced diseases.
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Abstract
Human papillomavirus (HPV) is the first identified necessary cause of human
cancers and is associated with nearly 100% of all cervical cancers. Compared to
the general female populations, HIV+ women have higher prevalence and
incidence of cervical HPV infections, higher risks of persistent HPV infections
and subsequent cervical intraepithelial lesions, and a higher incidence of cervical
cancer. Although the wide use of combined antiretroviral therapy (cART) has
improved the immune function and the longevity of HIV+ women, the incidence
of cervical cancer in HIV+ women has not declined. For HIV+ women who
follow routine cervical cancer screenings, their incidence of cervical cancer is
comparable to that in HIV-negative women. Thus, adherence to the recom-
mended cervical cancer screening is still critical for HIV+ women to prevent
cervical cancer. Prophylactic HPV vaccines may also benefit HIV+ women, but
prospective studies are needed to determine the effectiveness of HPV
vaccination on reducing cervical cancer incidence in HIV+ women.

5.1 Biology of Human Papillomavirus and HPV-Associated
Cervical Cancer

Human papillomavirus (HPV) is a small, non-enveloped DNA virus that can infect
squamous epithelium of skin and mucous membranes. HPV consists of 8000
base-pair long circular DNA. The viral genome codes six early proteins (E1, E2, and
E4–E7) and two late proteins (L1 and L2). The early proteins E1 and E2 are essential
for viral replication within the infected cells, and E6 and E7 play critical roles in
HPV-related carcinogenesis [1–5]. The late proteins L1 and L2 are major structural
proteins that form the viral capsid. L1 also contains type-specific neutralization
epitopes that can induce host humoral immune responses against HPV infection.
There are more than 150 types of HPV, classified based on differences in L1 genome
sequence, and over 40 HPV types infect the human anogenital tract [6]. HPV life
cycle includes the following major steps (1) infection of stem cells at the basal layer
of the epithelium through microabrasion, (2) maintenance of infection with low viral
replication activities at the basal layer, (3) increased viral replication through E6 and
E7 viral proteins when basal cells are pushed to the superficial layers, (4) the
interaction of E6 and E7 with host cellular proteins (the binding of E6 to p53 and/or
E7 to pRB) that induces cell proliferation, reduces DNA damage repair, and inhibits
apoptosis of the infected cells, (5) viral genomes integration into the host cells and
persistent activities of E6 and E7 that lead to the loss of cell-growth control, genomic
instability, and eventually malignant transformation of host cells [3, 4].

HPV is the first identified necessary cause of human cancers by the International
Agency for Research on Cancer (IARC) that is associated with nearly 5% of all
cancers [7, 8]. As HPV DNA was detected in nearly all cervical cancer cases, a
strong association between the presence of HPV DNA and cervical cancer has been
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reported from multiple case-control studies across different countries (overall
adjusted odds ratio [aOR] = 90 for squamous carcinoma and aOR = 81 for adeno-
and adenosquamous carcinoma) [3]. Bosch et al. summarized the causal relation-
ship between HPV and cervical cancer based on basic science mechanisms and
consistent findings from human research, and Moscicki et al. further provided
updated findings [2, 9]. According to the association (aOR) between the presence of
type-specific HPV DNA and cancer, 12 HPV types (16, 18, 31, 33, 35, 39, 45, 51,
52, 56, 58, 59) are classified as high-risk (or oncogenic) HPV types (HR-HPV) that
are associated with over half a million new cancer cases worldwide, including
cervical, anogenital, and oropharyngeal cancers (Table 5.1); three types (5, 8, and
68) are considered as probable or possible HR-HPV that are associated with cer-
vical cancer or skin cancers, 12 types (26, 30, 34, 53, 66, 67, 69, 70, 73, 82, 85, and
97) might have carcinogenic effects but their roles remain unclear, and 12 types (6,
11, 40, 42, 43, 44, 54, 61, 72, 81, and 89) are classified as low-risk HPV (LR-HPV)
types that have not been found to be related to malignancies [1–3, 5, 8, 10–13].

While the majority of HPV infections are asymptomatic and self-limited, HPV
infection can lead to a wide range of genital diseases, including genital warts,
benign lesions, and invasive cancers. The natural history of cervical HPV infection
has been well studied and comprehensive reviews are readily available [3, 5, 9, 15].
HPV-related cervical carcinogenesis begins with HR-HPV infection of the cervical
epithelium. The majority of infected women (90%) can clear HPV infections within
a few years; however, a small proportion of women with persistent HPV infections
will develop cervical epithelial neoplasia (CIN). CIN includes three grades
depending on the degree of histological abnormalities: CIN1 involves mild dys-
plasia or abnormal cell growth that is confined to one-thirds of the basal epithelium,
and CIN2 or 3 represents moderate or severe dysplasia that spreads to two-thirds or
more of the cervical epithelium. CIN3 sometimes is also referred as cervical car-
cinoma in site and is commonly used in human studies as the disease endpoint of
cervical HPV infection. In cytology, CIN1 corresponds to the low-grade squamous
intraepithelial lesion (LSIL) and CIN2/3 relates to the high-grade squamous
intraepithelial lesion (HSIL). Most CIN1 lesions (*90%) regress but persistent

Table 5.1 Global burden of HPV-associated cancers and the prevalence of HPV DNA positivity
in the tumors (3, 14)

Cancer site Annual number of
new cases

HPV DNA
positivity

Common HPV types detected in
the tumors

Cervix 530,000 99.7% 16,18, 45, 31, 33, 52, 58, 35

Anus 40,000 88–94% 16, 18, 31, 33

Vulva 34,000 60–90% 16, 18, 31, 33

Penis 26,000 60–90% 16, 18, 31, 33

Vagina 15,000 64–91% 16, 18, 31, 33

Oropharynx 96,000 35.6% 16, 18

Oral cavity 200,000 23.5% 16, 18

Larynx 160,000 24% 16, 18
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CIN1 can lead to CIN2/3 lesions. CIN2/3 lesions are less likely to regress (30–70%
for CIN2 and 20–30% for CIN3) compared with CIN1 and nearly 50% of persistent
CIN3 progress to cervical cancer [9]. Because the time frame from CIN2/3 to
cervical cancer is usually decades-long, treatment of CIN2/3 lesions is recom-
mended for preventing cervical cancer [16] (Fig. 5.1).

In addition to viral factors, host risk factors for cervical cancer include parity,
tobacco smoking, oral contraceptive (OC) use, and co-infection with other sexually
transmitted diseases [3, 5]. The association between these risk factors and cervical
cancer, measured by relative risk (RR) or odds ratio (OR), ranges from 1.1 to 3.4 in
the European Prospective Investigation into Cancer and Nutrition (EPIC) study,
which is one of the largest cohort studies in the world with more than 300,000
women recruited from 10 European countries and followed for almost 10 years
[17–19]. However, without the presence of HPV, cervical cancer would not
develop. Thus, these risk factors mainly serve as cervical cancer co-factors that may
promote cancer development in conjunction with HPV infection. The possible
mechanisms of these cancer co-factors include maintenance of the cervical trans-
formation zone that facilitate HPV infection and persistence (high parity),
tobacco-related carcinogens that directly result in genetic damages (smoking),
enhancement of HPV oncogene expression (long-term OC use), inflammatory
responses that cause genetic instability (chlamydia or HSV-2 infection), and
immunosuppression (HIV infection) [3, 20]. Genetic research also suggests that
APOBEC-mediated mutagenesis may be associated with cervical cancer develop-
ment, but the mechanisms need to be further investigated [21].

Worldwide cervical cancer is the fourth most common cancer in women,
accounting for almost 8% of all female cancer cases and 7.5% of all female cancer
deaths [14, 22]. Recently the annual number of new cervical cancer cases has grad-
ually increased, possibly due to population growth. In 2012 there were approximately
530,000 new cases and 266,000 cervical deaths from cervical cancer [22]. The
majority of cervical cancer cases (*86%) and cervical cancer-related deaths occur in
less developed regions, including Eastern, Southern, and Middle Africa, where the
burden of HIV infection is also high [23]. In the U.S. about 34,000 HPV-associated
cancers are diagnosed annually and the direct medical costs for preventing and treating
HPV-related diseases are estimated to be $8 billion every year [24, 25].

Persisted

(10%) (10%) (30-70%) (~70%)
HPV infection HPV persistence CIN1 CIN2 CIN3 Cervical cancer

Cleared Regressed Regressed Regressed
(90%) (90%) (30%-70%) (20-30%)

Fig. 5.1 The natural history of cervical HPV infection
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5.2 Epidemiology of HPV Infection in the General Female
Population

HPV infection is the most common sexually transmitted infection with over 300
million infected women globally [13, 26–28]. Risk factors for acquiring HPV infection
include early sexual debut (� 15 years of age), parity, multiple sexual partners, use of
contraceptives, and smoking [29]. In the pre-HPV vaccine era, worldwide about 10%
of women with normal cervical cytology has an HPV infection [13, 30]. HPV
prevalence also varies by age, with the highest prevalence seen in women younger
than 25 years of age. However, a second-peak of HPV prevalence is observed in
women aged 45 years or older [30]. While the true cumulative incidence of cervical
HPV infection in the general population is difficult to assess because HPV infection is
not a reportable disease, it is estimated that up to 75% of sexually active women will
get an HPV infection during their life time [26, 31]. Longitudinal studies assessing the
incidence of cervical HPV infection among women have reported a 20% or higher
one-year cumulative incidence, depending on the age range of the study populations
and types of HPV infections examined [32–38].

In the U.S. nearly 80 million people are infected with HPV and about 14 million
people acquire new HPV infections each year [28]. Based on the National Health
and Nutrition Examination Survey (NHANES) data, the overall prevalence of
genital HPV infection among U.S. females aged 14–59 years was 42.5% in 2003–
2006 and the prevalence highly varied by age, with the highest prevalence (53.8%)
among 20–24-year-old females and the lowest prevalence among 14–19-year-old
females (32.9%) [39]. Minority women, including non-Hispanic blacks and Mex-
ican Americans, had the higher prevalence of HPV infection (59.2 and 44.2%,
respectively) than non-Hispanic white women (39.2%).

5.3 HPV Infection in HIV+ Women

Compared with HIV-negative women or the general female population, HIV
+ women have higher prevalence and incidence of cervical HPV infection, higher
risks of persistent HPV infection and subsequent cervical intraepithelial lesions, and
a higher incidence of cervical cancer [40–44]. Large national or international
multisite longitudinal cohort studies have been conducted to better understand the
long-term health outcomes, including HPV-associated diseases, in HIV+ people.
Several cohort studies are noteworthy: The North American AIDS Cohort Col-
laboration on Research and Design (NA-ACCORD), which was established in
2006, includes >130,000 HIV+ people from 25 large contributing cohorts
throughout the United States and Canada [45]. Four studies in the NA-ACCORD,
The AIDS Link to the IntraVenous Experience (ALIVE), Multicenter AIDS Cohort
Study (MACS, males only), Polaris HIV Seroconversion Study (Polaris), Veterans
Aging Cohort Study (VACS), and Women’s Interagency HIV Study (WIHS), have
recruited both HIV+ and HIV-negative people. Another similar multisite
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prospective cohort study in the U.S. is The HIV Epidemiology Research Study
(HERS), which also includes both HIV+ women and risk-matched HIV-negative
women to evaluate HIV-related diseases [46]. In Europe, The SWISS HIV Cohort
study (SHCS), The Project for Electronic Clinical-Epidemiologic Follow-up of
HIV-1 Infection and AIDS (PISCIS cohort), The French Hospital Database on HIV
(FHDH-ANRS CO4), and the Study on HIV, cervical Abnormalities and infections
in women in Denmark (SHADE) are long-term cohort studies that include
HPV-related health outcomes in people living with HIV [41, 47–49]. The Man-
agement of Abnormal Cytology in HIV-1 Infected Women (MACH-1) study is an
international collaboration between six European hospital centers and one com-
munity center in Cape Town in South African [50]. There are also numerous
single-center prospective cohorts to investigate the natural history of HPV infection
in HIV+ people.

5.3.1 Prevalence of HPV Infection and HR-HPV Types in HIV
+ Women

High prevalence of cervical HPV infection in HIV+ women have been observed, but
the prevalence varies across studies because of differences in study periods, geo-
graphic areas, or study populations and HPV detection methods [51–64]. An earlier
meta-analysis published by Clifford et al. in 2006 reported that in 3230 HIV
+ women with normal cervical cytology, the overall prevalence of cervical HPV
infection was 36.3% for any HPV type and was 11.9% for multiple HPV infection
(infection with >=2 types) [65]. However, the prevalence sharply increased in HIV
+ women with abnormal cervical cytology. Geographic variation in HPV prevalence
was also observed: the prevalence was highest in South/Central America (57.3%),
followed by Africa (56.6%), and was lowest in North America (31.4%) [65].
Interestingly, there were noticeable differences in HPV-type distributions across
regions: the prevalence of HPV31 and HPV35 were significantly higher in Africa,
HPV39 was more common in Asia, and HPV16 and HPV68 were more prevalence
in South/Central America. Currently most studies utilize sensitive assays, such as
polymerase chain reaction (PCR) or hybrid capture II, to detect the presence of over
30 HPV types. In a recent meta-analysis, Park et al. examined five large,
population-based studies, mainly from the U.S. and Western Europe, published
between 2011 and 2013 to assess the prevalence of cervical HPV infection in HIV
+ women [66]. The results indicated that the summary prevalence of any type(s) of
cervical HPV infection in HIV+ women (64%, 95% confidence interval: 25–95%)
was 20% higher than the prevalence in U.S. females aged 14–59 years (43%). HIV
+ women were also more likely to have HR-HPV infection (summary prevalence of
HR-HPV infection: 46%, 95% CI: 34–58%) than the U.S. females (29%). Various
risk factors associated with cervical HPV infection in HIV+ women have been
reported, but the most consistent risk factors for both any type HPV infection and
HR-HPV infection are low CD4 count (<350), younger age (<30 years), non-white
race, smoking, and high HIV RNA viral load [49, 52, 67–71].
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While the overall type-specific distribution of cervical HPV infection in HIV
+ women with normal cervical cytology are similar to the distribution in the general
population (Fig. 5.2a), [65, 72] HIV+ women are more likely to be infected with
non-16 or non-18 HR-HPV (such as 51, 52, 53, 56, and 58), [73, 74] and the
prevalence of infection with multiple HPV types is also higher in HIV+ women
(14–78%) than in HIV-negative women (7–26%) [49, 52, 75–78]. However,
HPV16 prevalence increases with the severity of cervical lesions: in HIV+ women
with HSIL (Fig. 5.2b) or cervical cancer, HPV16 was the most predominant type
(31.9%), followed by HPV18 (12.9%) and HPV58 (11.8%), suggesting that
HPV16, 18, and 58 are likely to persist over time [65].

5.3.2 Incidence and Persistence of HPV Infection in HIV
+ Women

Prospective cohort studies demonstrate a high cumulative incidence (new detection)
of cervical HPV infection in HIV+ women. Sun et al. initially reported the incidence
rate of any cervical HPV infection was 11 per 100 person-visits in 220 HIV+ women
[49]. Later Ahdieh et al. provided type-specific incidence among 862 HIV+ women
with median 2.5 years of follow-up, indicating a higher incidence rate of LR-HPV
infection (any type: 19.8 per 100 person-years [PY]) than the rate of HR-HPV
infection (any type: 8 per 100 PY) [79]. The incidence rates for HPV16 and 18 were
similar (2.0 per 100 PY). In the WIHS with up to 9 years of follow-up, the cumu-
lative incidence of any HPV infection was 68% at one year in 2543 HIV+ women
[80]. The incidence continued increasing over time and at 8 years 92% of HIV
+ women had experienced a new HPV infection. The trend of cumulative incidence
of HR-HPV infection was similar: the incidence was 40% at one year, but rose to
67% at 8 years. HIV+ women, even those with CD4 count >500 cells/µL, had an
approximately twofold risk of acquiring new HPV infection than HIV-negative
women. [56, 68, 80, 81] Risk factors for incident HPV infection in HIV+ women
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Fig. 5.2 a Comparison of prevalence of top five HPV types in HIV+ women with normal
cervical cytology and in the general female population with normal cervical cytology worldwide.
(30, 65) b Comparison of prevalence of top five HPV types in HIV + women with high-grade
intraepithelial lesions (HSIL) and in the general female population with HSIL. (65)
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include pre-existing HPV infection, younger age (<30 years), inconsistent condom
use, multiple recent sexual partners, smoking, low CD4 count (<200 cells/µL), or
detectable HIV RNA viral load. [56, 68, 79, 80, 82, 83].

As there is no “gold standard” definition of HPV persistence, a persistent HPV
infection has been defined as continuous detection of the same type of HPV DNA for
longer than a certain time period (6 months or 12 months) or repeated HPV DNA
positivity at two or more clinic visits, which are at approximately 4–6-month intervals,
during the study period [49, 59, 78, 79, 83–88]. The persistent rate of cervical HPV
infection may not be comparable across studies, but a higher HPV persistence rate was
observed in HIV+ women. In one of the WIHS cohort studies conducted by Sun et al.
involving 220 HIV+ women and 231 HIV-negative women in New York City, HIV
+ women were significantly more likely to have persistent cervical HPV infections at
follow-up visits than HIV-negative women (24.1 vs. 3.9%), and HPV16-associated
types (16, 31, 33, 35, or 58) were the most common persistent types in both groups
[49]. Similar findings were reported from a large, short-term (approximate 6-month
follow-up) cohort study conducted in Nigeria that 24% of 321 HIV+ women had
persistent cervical HPV infection, while only 10% of 309 HIV-negative women had
persistent cervical HPV infection [78]. However, another short-term (6 months) nat-
ural history study using a convenience sample from the WIHS found a higher cervical
HPV persistence rate in both HIV+ women (65%) and HIV-negative women (32%)
[85]. Because of different definitions for persistent HPV infection, multiple risk factors
for persistent cervical HPV infection in HIV+ women have been reported, but only
low CD4 count (<200 cells/µL) or high HIV RNA viral load was consistently asso-
ciated with HPV persistence [49, 79, 85].

A few studies have reported HPV DNA viral load, assessed by the real-time PCR
assays and expressed as the number of HPV copies/µg of cellular DNA, is associated
with HPV persistence in HIV+ women, but the sample size of HIV+ women with
HPV DNA viral load data is generally small. In the Canadian Women’s HIV Study,
the persistence of HPV16 infection was significantly related to high HPV16 viral
loads: in 20 HIV+ women with HPV16 viral loads � 107 copies/µg cellular DNA,
the average duration of HPV16 infection was 21.3 months, while the duration was
only 13.5 months in 32 HIV+ women with HPV16 viral load <107 copies/µg cel-
lular DNA (p-value = 0.01). Among 15 HIV+ women who had persistent HPV16
infection and developed cervical lesions during the study period, HPV16 viral load
also increased with the severity of the lesions [87].

5.4 Cervical Lesions and Cervical Cancer in HIV+ Women

5.4.1 Prevalence, Incidence and Progression of Cervical
Lesions in HIV+ Women

Abnormal cervical cytologies, mostly atypical squamous cells with undetermined
significance (AS-CUS), are commonly detected (up to 50%) in HIV+ women, but the
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prevalence of high-grade cervical lesion is low (<10%) [51, 52, 54–56, 61, 63, 89, 90].
Compared with HIV-negative women, HIV+ women have an approximately threefold
risk of having an abnormal cervical cytology [91]. In the WIHS with 1661 HIV
+ women and 462 risk-matched HIV-negative women, 16.2% of HIV+ women had
LSIL or worse (LSIL+), while in HIV-negative women the prevalence of LSIL+ was
only 4% [92]. The presence of cervical lesion in HIV+ women is consistently asso-
ciated with HR-HPV, low CD4 counts and high HIV viral loads, indicating the role of
immunosuppression on the progression of HPV infection [91, 93, 94].

HIV+ women are also more likely to develop new cervical lesions or progress to
high-grade lesions. In a recent systematic review based on the data from 15 lon-
gitudinal cohort studies involving 5882 HIV+ women with normal cytology at the
baseline, the incidence rates ranged from 4.9 per 100 person-years (PY) in France to
21.1 per 100 PY in Thailand for any cervical lesion, and 0.4 per 100 PY in the U.S.
to 8.8 per 100 PY in Italy for high-grade cervical lesions (HSIL or CIN2/3), but the
incidence rates of any cervical lesion in HIV-negative women were only 1.1 per
100 PY to 4.7 per 100 PY [43]. The cumulative incidence of cervical lesion was
difficult to estimate from these studies because of different follow-up periods
(from <one year to 8 years), but up to 44% of HIV+ women developed cervical
lesions within five years after the baseline visit. While most of the studies included
in this systematic review recruited mainly HIV+ women younger than 45 years of
age, progression from low-grade (LSIL or CIN1) to high-grade lesions (HSIL or
CIN2/3) also occurred at rates ranging from 1.2 to 26.2 cases per 100 PY. Com-
pared with risk-matched HIV-negative women, HIV+ women had an average of
threefold risk (RR range: 1.5–10) of developing any cervical lesions. HIV+ women
also had an increased risk of progression to high-grade cervical lesions, but because
the progression rates in HIV-negative women were limited and highly varied across
studies (from 0 to 5.7 per 100 PY), the RR of progression of cervical lesions
between HIV+ women and HIV-negative women was not calculated to avoid any
unstable estimation. There were no consistent findings on the effects of CD4 count
or combined antiretroviral therapy (cART) on cervical lesion development, likely
because CD4 count measurement was different across studies and the cART use
was not well assessed. In seven studies with available information on CD4 count
(either baseline CD4 count or nadir CD4 count), while there was a tendency that
low CD4 count (<200 cells/µL) was associated with both incidence and progression
of cervical lesions, only two studies reported significant, moderate associations
[43]. The role of cART use was contradictory, as the association between cART and
the incidence of cervical lesions ranged from 0.3 to 1.8 in five studies. But in the
WHIS assessing the effects of cART adherence, HIV+ women who used cART as
prescribed >=95% of the time had nearly 50% lower risk of having prevalent and
incident cervical HPV infection and also had more rapid clearance of
HR-HPV-positive cervical lesions compared with non-adherent HIV+ women [95].
Another nested case-control study from the SWISS HIV Cohort Study also showed
a nearly 40% protective effect of long-term cART use (>2 years) against CIN2/3
[96]. These studies demonstrate the need to develop more thorough measurement of
CD4 count and cART to better evaluate the natural history of HPV infection in HIV
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+ women in the cART era. In addition to HIV-related factors, infection with
HR-HPV types, especially HPV16 or 18, is also associated with two-four-fold risk
of progression to high-grade cervical lesions [81, 82]. In several small studies with
HPV DNA viral loads data, high HPV viral loads may also be related to the
development of high-grade lesions [87, 97].

5.4.2 Incidence and Risk Factors of Cervical Cancer in HIV
+ Women

In early epidemic of HIV/AIDS, HIV+ women had high morbidity and mortality of
cervical cancer, thus, in 1993 cervical cancer was included as one of AIDS-defining
clinical conditions by the U.S. Centers For Disease Control (CDC) [98]. Prior to the
cART era, nearly one in five of HIV-HPV co-infected women without evidence of
cervical disease developed precancerous cervical lesions within three years of HIV
diagnosis [40]. Worldwide HIV+ women have a greater risk of developing cervical
cancer compared with the general population with a standardized incidence ratio
(SIR) ranging from 2–40 [42]. However with the wide use of cART, the incidence
of cervical cancer in HIV+ women has not declined [99–104]. Findings from a
large international collaborative study even showed a possible increase of cervical
cancer incidence between 1992–1996 (pre-cART) and 1997–1999 (post-cART) in
HIV+ women (rate ratio = 1.87; 99% CI = 0.77–4.56; P-value = 0.07) [105].
The SIR of cervical cancer in HIV+ women remains high (3.3–5.0) and the number
of cervical cancer cases may actually increase because of prolonged life span [106–
111]. This excess risk of cervical cancer in HIV+ women in the cART era is likely
due to the combinations of immunodeficiency, cumulative effect of genetic insta-
bility from long-term HR-HPV infection, and the high prevalence of cervical cancer
co-factors (e.g., smoking) [41, 44, 104, 108–110, 112–123].

Due to the lack of preclinical models of HIV-HPV co-infection, research on
HPV-related cancer risk in HIV+ people is generally based on large longitudinal
cohort studies or through the linkage of HIV/AIDS case reports with the cancer
registry data [40, 41, 44, 48, 108, 112, 116, 117, 124, 125]. Recent data from the
WIHS showed that since the study population was established in 1994-5, only four
cervical cancer cases had occurred in 1807 HIV+ women with a median 12.3 years
of follow-up (incidence rate = 19.5 per 100,000 PY) [111]. Although no cervical
cancer was observed in 488 HIV-negative women, because of the low number of
cervical cancer cases, there was no significant difference in cervical cancer incidence
rate between HIV+ and HIV-negative women (p-value = 0.53). However most
women included in the WIHS had regular Papanicolaou (Pap) tests every 6 months,
the results from the WIHS may not reflect the real-world experience of cervical
cancer incidence in HIV+ women. Using the U.S. AIDS–Cancer Match Registry
Study data, Frisch et al. reported a much higher incidence of cervical cancer during
1978–1996 in AIDS women (85.7 per 100,000 PY), and Chaturvedi et al. later found
a similar incidence (90.4 per 100,000 PY) during 1996–2004 [108].
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Although cervical HPV infection is highly prevalent, only a subset of HIV
+ women has persistent HPV infection and eventually develops cervical cancer [51,
52, 54, 56, 61, 63, 89]. Numerous studies have reported that severe immunodefi-
ciency, represented by low CD4 count (<200 cells/µL) and AIDS diagnosis, are
associated with the development of precancerous cervical lesions (such as CIN2/3)
or cervical cancer [96, 104, 108, 112, 113, 118, 121, 125, 126]. In a large
prospective cohort study (>13,000 women) using data from the NA-ACCORD,
HIV+ women with baseline CD4 counts>200 cells/µL have a two-three-time the
incidence of cervical cancer compared with HIV-women, but for HIV+ women
with CD4 count <200 cells/µL, their cervical cancer incidence was nearly eight
times the incidence in HIV-negative women [125]. While the associations between
low CD4 count or cART use and cervical cancer risk have been extensively
examined, the beneficial effects of high CD4 count and cART on cervical cancer
remain unclear [42, 48, 108]. The inconsistent findings across studies could be due
to the different measurement of CD4 count (nadir CD4 count, baseline CD4 count,
or CD4 count prior to the cancer diagnosis) or the lack of detailed information on
cART use (the timing and the length of cART use or the actual cART regimen).
Because many HIV+ people are living healthier with the cART use, they are less
likely to have CD4 count <200 cells/µL and may never progress to AIDS. Yet as
there is no decrease in the incidence of cervical cancer in the cART era, it appears
that the low CD4 count may not be the sole predictor of cervical cancer risk.

As a cervical cancer co-factor, tobacco-smoking is highly prevalent in HIV
+ people (54% versus 20–23% in US adults) and HIV+ smokers are less likely to
quit smoking than the general population [66, 127]. Various studies from different
countries have reported that smokers have a higher prevalence and incidence of
cervical HPV infection, higher HPV DNA load, and almost two-fold risk of CIN2/3
or cervical cancer compared with non-smokers. [34, 128–131] Preclinical studies
also suggest that tobacco-smoking not only enhances human papillomavirus syn-
thesis, but also likely results in increased exposure of the cervical epithelium to
potentially mutagenic metabolites of tobacco carcinogen [132, 133]. Thus, the
increased risk of cervical cancer in HIV+ women could be due to the synergistic
effects between tobacco carcinogens (such as benzo[a]pyrene) and HPV infection,
regardless of host’s immune status [20, 132].

5.4.3 The Interaction Between HPV and HIV

As HIV primarily targets the CD4 T-lymphocyte and HPV infects epithelial cells, a
direct interaction between HIV and HPV is unlikely, but basic science discoveries
suggest that HIV could indirectly affect HPV life cycle by upregulating the tran-
scription of HPV early genes or enhancing the expression of viral oncoproteins E6
and E7 [134, 135]. The role of HIV in the natural history of HPV infection is
considered through HIV-related immunodeficiency, increased susceptibility of HPV
infection, or possibly reactivation of latent HPV infection [115, 136, 137]. The
strong associations between low CD4 cell count, HPV persistence, and cervical
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cancer observed in human research support that immunosuppression induced by
HIV infection reduces cell-mediated immunity and facilitates HPV pathogenesis
[42, 137, 138]. Additionally high cervical HIV RNA viral load (> 545 copies/mL)
was found to be associated with persistent infection with HR-HPV (OR = 2.84,
p-value = 0.04) in HIV+ women, providing evidence that HIV infection may
influence the natural history of HPV infection [139].

HPV infection also increases the risk of HIV infection in both men and women,
likely due to the similar transmission route through sexual contacts, a possible local
inflammatory response that recruits immune cells susceptible to HIV infection, or
HPV-induced epithelial ruptures that promote HIV entry [138, 140–143]. Results
from a systematic review and meta-analysis conducted by Lissouba et al. in 2013
indicated that individuals with any type(s) HPV infection had nearly two times the
risk of acquiring HIV infection (summary OR = 1.96; 95% CI, 1.55–2.49) [143].
Additionally, the association was statistically significant between HR-HPV infection
and HIV acquisition (summary OR, 1.92; 95% CI, 1.49–2.46), but was borderline
with LR-HPV (summary OR, 1.53; 95% CI, 0.96–2.42). The observed strong
association between HPV infection and HIV acquisition could have great public
health implications for utilizing HPV vaccination as a tool for HIV prevention.

5.5 Prevention of HPV Infection and Cervical Cancer
in HIV+ Women

5.5.1 The Role of CART

Current HIV treatment guidelines recommend that all HIV+ people be offered
cART after HIV diagnosis to reconstitute the immune system and increase CD4 cell
counts [144]. As HIV+ women with low CD4 counts have a greater risk of
developing cervical cancer, initiation of cART at early stage of HIV infection may
help prevent cervical cancer in HIV+ women. However, the effect of cART on the
natural history of cervical HPV infection is controversial. Although the wide use of
cART has dramatically improved the immune function and the longevity of
HIV-infected (HIV+) people, there is no clear benefit of cART in reducing cervical
cancer incidence in HIV+ women [103, 106, 145–148]. A recent study conducted
by Rohner et al. in South Africa showed that without the implementation of cervical
cancer screening program and access to treatment of cervical precancerous lesions,
the incidence of cervical cancer remained high (>500/100,000 person-years) in HIV
+ women who initiated cART [149]. Thus, adherence to recommended cervical
cancer screening is still critical for HIV+ women.

5.5.2 HPV Vaccination

Three prophylactic HPV vaccines (bivalent 16/18 Cervarix®, quadrivalent
16/18/6/11 Gardasil®, and nonavalent 16/18/31/33/45/52/58/6/11 Gardasil®9),
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which are recombinant vaccines based on the L1 virus-like particle technology,
have been approved in many countries and have also been included in the national
immunization program in over 50 countries [150]. Clinical trials data show a high
efficacy of HPV vaccines in protection against cervical HPV infection with
vaccine-covered types (>90%) and CIN1 or worse (>60%) [151–153]. The
real-world observational studies also provide evidence of HPV vaccine effective-
ness on reductions of vaccine types of HPV infection (*90% reduction) and
cervical lesions (*45% reduction for low-grade lesions and *85% reduction for
high-grade lesions) in the general population [154–156].

Currently there are no data on the efficacy of HPV vaccination or the safety and
immunogenicity of nonavalent vaccine in HIV+ people. The safety and immuno-
genicity of the bivalent and quadrivalent vaccines have been evaluated in HIV
+ pre-adolescent girls and boys (aged 7–12) and women up to age 45 years [157–
161]. These studies have demonstrated that HPV vaccines are safe and immunogenic;
the seroconversion rate is greater than 90% for HPV6, 11, and 16 and is also over 75%
for HPV18, even in HIV+ women with CD4 count <200 cells/µl [162]. There-
fore HPV vaccines are advocated as an effective cancer prevention strategy for HIV
+ people [162–166]. However, HPV vaccines are recommended only for adolescents
and young adults up to age 26 years, regardless of HIV status, and the greatest vaccine
effectiveness on reducing cervical abnormalities is observed in younger age groups
[167]. It is not clear if HPV vaccination would benefit HIV+ women and result in a
reduction in cervical cancer as many HIV+ women are beyond the recommended age
range, may have already been infected with HPV, or are more likely to be infected
with non-vaccine-covered HR-HPV types [162, 168]. Additionally, although the
protective titers of HPV antibodies have not been established, the geometric mean
titers (GMT) of HPV antibodies in HIV+ women was only half that of the general
women aged 24–45 years and the GMT is even lower in HIV+ women with low CD4
count [162]. Long-term prospective studies are needed to determine the HPV vaccine
effectiveness on reducing cervical lesions in HIV+ women.

5.5.3 Cervical Cancer Screening in HIV+ Women

Cervical cancer screening guidelines have been well developed for the general
population by the U.S. Preventive Services Task Force (U.S.PSTF), the American
Cancer Society (ACS), the American Society for Colposcopy and Cervical
Pathology (ASCCP), and the American Society for Clinical Pathology (ASCP)
[169, 170]. In 2015, ASCCP and the Society of Gynecologic Oncology (SGO) is-
sued an interim guidance for the use of a human papillomavirus (HPV) test as the
primary screening for cervical cancer, [171] and in 2017, the U.S.PSTF also rec-
ommended FDA-approved HR-HPV testing every 5 years for women aged 30–
65 years as one of the primary cancer screening methods [172]. However, these
guidelines do not address the increased risk of cervical cancer in HIV+ women,
even those with normal Pap test results [173]. The U.S. CDC, the U.S. National
Institutes of Health and the HIV Medicine Association of the Infectious Diseases
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Society of America recommend a shorter time intervals for re-screenings for HIV
+ women [163]. Table 5.2 summarizes the differences between the U.S. PSTF and
the U.S. CDC in cervical cancer screening guidelines. To evaluate which cervical
cancer screening recommendation is appropriate HIV+ women, Robbins et al.

Table 5.2 Comparison of the U.S. PSTF and the U.S. CDC cervical cancer screening guidelines
for general population and for HIV+ women (163, 172)

Population U.S. PSTF for general
population

U.S. CDC for HIV+ women

Pap testing HPV testing Pap testing HPV testing

Women <21 years Not
recommended

Not
recommended

Within 1 year of
the sexual debut
and no later than
21 years old

Not recommended

Women aged 21–
29 years

Pap test alone
every 3 years

Not
recommended

At HIV diagnosis;
Pap test every year;
after 3 consecutive
normal test, Pap
test every 3 years

Not recommended

Women aged 30–
65 years

If Pap test
alone, every 3
yeas

If HR-HPV
test alone,
every 5 years

At HIV diagnosis;
Pap test every year;
after 3 consecutive
normal test, Pap
test every 3 years

Pap-HPV
co-testing at HIV
diagnosis or age
30: if co-test
negative, screen
every 3 years; If
Pap test normal but
HR-HPV+ , repeat
co-testing in 1 year

Women >65 years Not
recommended if
had adequate
screenings or
not at high risk

Not specified Continue screening
as recommended
for
women >=30 years

Continue screening
as recommended
for
women >=30 years

Women who have
had a
hysterectomy

Not
recommended
for women with
removal of the
cervix and not
having a history
of CIN2+ or
cervical cancer

Not specified Not specified Not specified

Women with
abnormal Pap test
or HR-HPV
results

Not specified Pap-HPV co-testing: if either one at
one-year repeat test abnormal, refer to
colposcopy;
ASC-US: if HR-HPV+ , refer to
colposcopy; if HR-HPV is unknown,
rescreen in 6–12 months;
LSIL or worse: refer to colposcopy
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compared the risks of precancerous lesions between US HIV+ women and the
general population based on different screening intervals and management strate-
gies [174]. The study results supported the CDC’s recommendation for the shorter
screening intervals as HIV+ women, especially those with CD4 counts <500 cells/
µL, would have higher risks of developing CIN2 or 3 if they followed the same
intervals that are recommended for the general population. Therefore, tailored
cervical cancer screening strategies should be applied to HIV+ women. In addition,
the U.S. CDC recommends more intensive clinical management of abnormal Pap
test results or positive HPV co-testing results in HIV+ women as progression risk is
high and recurrence of cervical lesions after treatment is also common [163, 175].

In the U.S. since the Pap test was implemented in the 1950s, the incidence of
cervical cancer in the US has decreased by 50% in the past 40 years: in 1975 the
incidence was 14.8 per 100,000 women; and it decreased to 7.4 per 100,000 women
in 2014. A similar reduction is also observed in the mortality of cervical cancer (5.6
deaths per 100,000 in 1975 versus 2.3 per 100,000 in 2014) [176]. While the
incidence of cervical cancer has largely decreased in the general population, the
burden of cervical cancer is still much higher in HIV+ women [44, 149]. The
NA-ACCORD study revealed that the majority (90%) of cervical cancer cases in
HIV+ women were those who did not have a recent Pap test, did not follow-up for a
colposcopy after an abnormal Pap test, or did not receive treatment after detection
of precancerous lesions [125]. For HIV+ women adherent to the cervical cancer
screening program and with normal cervical cytology, their incidences of CIN and
cervical cancer were comparable to HIV-negative women [44]. Nonetheless,
adherence to cervical cancer screening remains a challenge for HIV+ women, even
in high-resource settings. Worldwide less than 50% of HIV+ women undertake
recommended cervical cancer screening and they are almost 30% less likely to have
regular Pap tests compared with the general population. [177, 178] To increase
cervical cancer screening uptake and minimize the number of false negatives in HIV
+ women, HR-HPV-based screening algorithms should be applied [179].
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Abstract
Since their discovery as the etiologic agents of cervical cancer in the mid-1970s,
human papillomaviruses (HPVs) have been linked with a growing number of
epithelial-derived tumors, including head and neck squamous cell carcinomas.
HPV demonstrates a particular predilection for causing tumors of the oropharynx,
with the majority of cases involving infection with high-oncogenic risk HPV-16.
People living with HIV are at increased risk of infection with HPV- and
HPV-related oral complications even with adequate control of their HIV infection
with antiretroviral therapy. In this chapter, we discuss the molecular mechanisms
that underlie HPV-mediated oncogenesis in the oropharynx. We also describe the
progress that has been made in understanding the epidemiology of oral HPV
infection and the determinants of oral HPV-related pathology. Finally, we examine
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what can be done to treat and prevent oral HPV infection, benign lesions, and
cancer, particularly in the context of the HIV-positive patient.

6.1 Introduction

Since their discovery as the etiologic agents of cervical cancer in the mid-1970s,
human papillomaviruses (HPVs) have been linked with a growing number of
epithelial-derived tumors, including head and neck squamous cell carcinomas
(HNSCC, see Table 6.1 for a list of abbreviations). In the head and neck region, the
virus demonstrates a particular predilection for causing tumors of the oropharynx.
The presence of HPV in oropharyngeal tumors has significant implications for the
prognosis of the patient and the treatment regimen indicated. The incidence of
HPV-associated HNSCC is reportedly on the rise in several regions globally,
including the United States, Europe, and Australia. In all regions, the predominant
HPV genotype associated with head and neck tumors is HPV-16. HPV infection,
related oral benign lesions, and HNSCC are all increased in the HIV-seropositive
population. It is not clear that highly active antiretroviral therapy (HAART) is
reducing these rates by improving immune control. HAART may be potentially
adding to the increased rates either directly due to damage to the oral epithelium or
indirectly due to an increase in lifespan of the HIV-infected individual.

In this chapter, we discuss the findings of investigations that have begun to
reveal the molecular mechanisms that underlie HPV-mediated oncogenesis in the
oropharynx. We also describe the progress that has been made in determining the
prevalence of oral HPV infection and the risks associated with acquiring oral HPV
infections. Finally, we examine what can be done to prevent oral HPV infection,
benign lesions, and cancer, particularly in the context of the HIV-positive patient.

6.1.1 Classical HPV-Mediated Oncogenesis

Papillomaviruses are ubiquitous, small DNA viruses that commonly infect squa-
mous epithelium. Over 200 genotypes of human papillomavirus have been
described. The viruses can be classified according to their predilection for infecting
skin or mucosal tissues, with those that preferentially infect the mucosal epithelium
showing little to no mucosal site restriction. Another useful way to classify the
viruses is by their propensity to associate with clinical disease, with “low-risk”
viruses typically causing benign papillomas (warts), “intermediate-risk” viruses
causing rare cases of cancer, and “high-risk” viruses causing the majority of cases
of HPV-positive tumors. Perhaps the most objective way to classify the viruses is
by the relatedness of their genetic sequence. Phylogenetic analysis classifies the
human papillomaviruses into alpha, beta, gamma, mu, and nu subgroups. Within
this classification, the viruses that infect the mucosal epithelium belong to the
alpha-papillomavirus group. The alpha-papillomavirus group contains HPV-16, 18,
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31, 33, and 45, which account for more than 90% of HPV-associated cervical,
vaginal, penile, and anal malignancies. While all of these alpha group viruses
appear capable of establishing oral infections, oropharyngeal cancers appear to
derive predominantly from infection with HPV-16. Other members of the
alpha-papillomavirus group include the anogenital wart-associated genotypes-6 and
-11 and the oral-specific genotypes-7, -13, and -32, all of which are associated with
warts on the mucosal surfaces of the oral cavity.

Individual HPVgenotypes are numbered according to the order inwhich theywere
discovered and subsequently confirmed as a novel virus by genetic sequence. In order
to qualify as a unique HPV genotype, the putative virus must demonstrate a greater
than 10% genetic variation from known HPV genotypes in three specific regions of
the genome: the early genes E6 and E7, and the late gene L1. These regions of the
virus genome were selected based on their importance to clinical disease; the E6 and
E7 genes encode the oncogenic proteins of the virus and the L1 gene encodes the
major capsid protein, which is the primary target of the serological antibody response
to HPV infection and the antigen used in papillomavirus vaccines. This genomic
definition of viral subtypes generally coincides with unique L1-specific serum anti-
body responses, such that serological assays can identify exposure to specific HPV
genotypes. The serum antibody response to the HPV vaccine is similarly
genotype-restricted, and thereforemultiple genotypes are included in current vaccines
to afford broad protection against the most clinically relevant HPV infections.

Papillomaviruses are believed to initiate infection by gaining access to the basal
keratinocyte progenitor cells, either throughmicro-abrasions of the epithelial tissue or
at sites where the epithelial layers are thin, such as the squamo-columnar junction of
the endocervix. After successful infection of the basal keratinocytes, papillo-
maviruses express “early” genes, including the E2, E6, and E7 genes. The E6 protein
interacts with many host cell nuclear proteins, the most important of which is the
tumor suppressor p53. When in complex with p53, the E6 protein facilitates ubiq-
uitination and subsequent proteasome-mediated degradation of p53 [1]. Loss of p53
leads to failed cell cycle checkpoint control, unrestricted cell proliferation, and
resistance to apoptotic stimuli. Similarly, the E7 protein interacts with many host cell
nuclear proteins, the most important of which is the retinoblastoma tumor suppressor
protein, pRb. High-risk HPV E7 protein mediates degradation of pRB [2, 3], which in
turn releases E2F family transcription activators for importation into the nucleus
where they promote cell cycle progression to S-phase [4, 5]. These effects largely
account for the oncogenic potential of papillomaviruses. During a productive papil-
lomavirus infection, however, the function of these proteins is restricted by the
papillomavirus E2 protein. The E2 protein functions as a transcriptional suppressor
and specifically down-modulates the expression of E6 and E7. This allows the virus to
successfully complete its life cycle without excessive damage to the host.

During productive viral infection, papillomaviruses complete their life cycle
with the expression of the late genes L1 and L2 in the upper layers of the kera-
tinized squamous epithelium. Together, the protein products of the L1 and L2 genes
make up the viral capsid. The L1 protein predominates in the assembled capsid and
is the immunodominant antigen of the serum antibody response to papillo-
maviruses. Serological responses to HPV L1 are type-specific with limited
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cross-reactivity between types. Ectopic expression of L1 leads to spontaneous
assembly of empty viral particles. These L1 viral particles are used in papillo-
mavirus vaccines to induce protective HPV type-specific immunity. Papillomavirus
type-specific serum antibody responses correlate with exposure to the corre-
sponding HPV genotype but are poor predictors of HPV-related disease or disease
outcomes.

The vast majority of HPV infections resolve without long-term effects on the
host. During the normal productive HPV infection, the viral genome is maintained
extra-chromosomally as circular viral episomes capable of expressing viral tran-
scripts depending on the differentiation state of the cell. Under conditions that are
poorly understood, however, the viral genome may stably integrate into the host
genome. Integration of the HPV genome is a hallmark of HPV-mediated anogenital
cancers. In cancer cases, the HPV E2 transcriptional suppressor open reading frame
is frequently disrupted, resulting in the loss of E2 expression and unchecked
expression of the viral oncoproteins E6 and E7. The abundance of E6 and E7
effectively immortalize the host cell. The immortalized cell is capable of prolifer-
ation but loses the ability to differentiate, thus limiting L1 and L2 expression.
Although the correlates of immune-mediated clearance of HPV infection are poorly
understood, it is likely that this loss of L1 and L2 expression compromises the
host’s ability to clear the infected cells. Thus, integration of HPV into the host
genome and overexpression of E6 and E7 oncoproteins are the predominant fea-
tures of HPV-mediated anogenital cancers. Several features of oropharyngeal HPV
infection suggest that the virus behaves similarly in this tissue. Notably, the
molecular biology of HPV-associated head and neck tumors has not been studied in
the context of HIV infection; however, it seems highly likely that the molecular
mechanisms of HPV-induced carcinogenesis are no different in patients with HIV
than they are in patients without HIV.

6.1.2 Canonical Cell Signaling Pathways Involved
in HPV-Mediated HNSCC

HPV was first proposed as an etiologic agent of head and neck tumors in the early
1980s. Syrjanen et al. provided circumstantial evidence suggesting the presence of
HPV in oral squamous cell carcinomas based on the identification of
HPV-associated morphological characteristics in tissue adjacent to the tumor tissue
[6]. Detection of high-risk HPV DNA in head and neck tumors followed, revealing
a strong association between HPV infection and oropharyngeal cancers, particularly
those cancers arising from the lingual and palatine tonsils of the oropharynx [7–15].
The tissue of the tonsillar crypts consists of reticulated squamous epithelium
punctuated with gaps in the basement membrane that allow lymphoid derived cell
lineages to traverse from the stroma to the apical surface of the epithelium [16].
This loose network of cells is believed to provide infectious viral particles ready
access to the basal keratinocytes. Studies comparing HPV detection in oropha-
ryngeal cancer cases and matched controls confirmed the association between HPV
and oropharyngeal tumors [17–20]. Further investigation provided strong evidence
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of the involvement of HPV in the genesis of oropharyngeal tumors by demon-
strating HPV integration and expression of high-risk HPV E6 and E7 transcripts in
the tumors [19, 21–27].

HPV-associated head and neck tumors demonstrate molecular signatures that are
distinct from that of HPV-negative head and neck tumors. HPV-negative head and
neck tumors are frequently characterized by genomic mutations in TP53, the gene
encoding the tumor suppressor protein p53. In contrast, HPV-positive head and
neck tumors often contain wild-type TP53 [10, 21, 25–32]. Likewise, the
E7-mediated degradation of pRb in HPV-positive tumors is distinct from the largely
intact pRb protein expression seen in HPV-negative tumors [26–28]. The lack of
somatic mutations in TP53 and the absence of pRB protein in HPV-positive
HNSCC suggest that the HPV E6 and E7 proteins are functionally active in these
tumors, similar to their anogenital counterparts. While HNSCC tumors typically
demonstrate either TP53 mutations or E6/E7 expression but rarely both, HPV DNA
detection and TP53 mutation can coexist [26], suggesting that in some cases the
virus may be a bystander rather than the etiologic agent of the tumor. The frequency
of wild-type TP53/high E6/E7 expression phenotype tumors is greatest for tumors
derived from the oropharynx [26], consistent with the predilection for HPV to
associate with oropharyngeal squamous cell carcinoma (OPSCC).

A significant consequence of E7-mediated loss of pRb expression is the activation
and nuclear translocation of the E2F transcription factor. Activation of E2F tran-
scription results in the induction of the tumor suppressor protein cyclin-dependent
kinase inhibitor 2A gene (CDKN2A) which encodes the p16INK4A protein [33]. In
the presence of intact pRB p16INK4A promotes cell cycle arrest, but in the absence of
pRB p16INK4A disrupts D1:CDK4/6 complexes and promotes cell cycle progression
[34]. In HPV-negative tumors, p16INK4A is frequently silenced due to mutation or
epigenetic modification of the gene [35, 36]. Thus, HPV-positive tumors can gen-
erally be distinguished from HPV-negative tumors based on the detection of
p16INK4A protein [7, 26, 30, 35, 37]. The detection of p16INK4A has also been shown
to have diagnostic utility for distinguishing “true” HPV-associated HNSCC from
bystander HPV infection [38]. Importantly, the reduction in cyclin D1 subsequent to
p16INK4A activity impairs the function of RAD51, a mediator of homologous
recombination-directed DNA damage repair and is thought to contribute to the
radiosensitivity associated with HPV-positive HNSCC tumors [39, 40].

6.1.3 Integration of HPV into the Host Genome in HNSCC

It is generally believed that integration of HPV into the host genome is an essential
step in cervical cancer carcinogenesis. The virus is determined to be integrated if
fusion events containing both viral and host genomic elements can be detected
within the tumor tissue. Integration of HPV into the host genome affects the gene
expression capabilities of the virus. The consequences of integration classically
include disruption of the regulatory E2/E4 region of the genome, which in turn leads
to induction of the viral oncogenes E6 and E7. Integration may also disrupt the E1
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open reading frame (ORF), which may promote DNA damage and growth arrest as
shown in in vitro studies [41]. Integration may facilitate host-viral fusion transcripts
that are more stable than viral transcripts alone [42]. A viral super-enhancer may be
created by integration near regulatory element repeats [42], and integration at sites of
host super-enhancers has been shown to boost E6/E7 expression levels [43]. Likely
each individual integration event is independent and has unique consequences. Viral
breakpoints are not conserved or predictable and can occur anywhere, although one
report noted an increased incidence of viral linearization breakpoint in the E1 ORF
[44]. Studies primarily focused on tumor-derived cell lines or patient-derived cancer
tissues demonstrate that the entire genome is not always present in the integration,
but E6 and E7 are frequently intact and highly expressed at the transcript level [45,
46]. This is likely because tumors and resulting cell lines have selected for this type
of integration event and these findings may not be reflective of all integration events
in vivo. Importantly, while integration may be one event that enhances expression of
the oncogenes E6 and E7, integration does not predict E6/E7 expression level or
HPV viral load in HNSCC [47]. This indicates that integration is not an absolute
requirement to achieve high E6 and E7 expression levels and tumor phenotype. This
observation is supported by studies of HPV-positive head and neck tumors that
failed to reveal fusion events in 30–60% of the tumors [24, 26, 44, 47]. In fact, one
study demonstrated larger tumor size at diagnosis in patients with HPV-positive
HNSCC tumors in which the virus remained episomal (extrachromosomal) com-
pared to patients with integrated HPV [24].

When HPV integration does occur, it is rarely a single integration event; viral–
host fusion events may be detected at multiple sites in the host genome [44]. In tumor
cell lines, HPV integration events are often identified at host genomic fragile sites,
for example, areas of the genome that are prone to amplification, deletion, and
chromosomal translocations or rearrangements [45]. Integration at or near
cancer-related genes is also a common feature of HPV-positive HNSCC-derived cell
lines [48]. In patient-derived tumor tissues, HPV integration tends to occur at
common fragile sites, areas that are highly transcriptionally active, and areas that
contain short sequences of viral–host nucleic acid homology [49–51]. Host genomic
copy number variations often co-localize to sites of HPV integration [50], though it
is not clear whether the integration of HPV facilitates genomic instability and copy
number variation, or if integration of HPV and copy number variation are both
consequences of genomic instability [52]. Integration at sites of “micro-homology”
suggests that viral genome may have been mistaken for host by the DNA repair
machinery during microhomology-mediated end joining repair [49, 51].

Integration of HPV into the host genome may or may not result in phenotypic
consequences to the host. If integration occurs in genes that are epigenetically
silenced, in intergenic regions, or in intron regions, there is unlikely to be any
appreciable change in the cell’s function or phenotype. Likewise, disruption of a
host coding sequence by viral genome sequence may have no functional conse-
quences as long as the second allele remains intact and compensatory expression of
a functional protein is achieved. These types of silent integration events may occur
with relative frequency but go undetected due to their benign effect on the cell. In
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patient-derived HNSCC tissues, integration into an annotated gene occurred 54% of
the time, and 71% of all tumors harbored integrated HPV [44]. Amplification,
enhanced oncogene expression, loss of function of tumor suppressors and loss- or
gain-of-function fusion transcripts are all potential deleterious effects of HPV
integration that can result in cancer phenotypes. For example, integration of HPV
upstream of NR4A2, a transcription factor often activated in cancers [53], led to
250-fold amplification of the downstream region and induction of NR4A2 [44]
(again see Table 6.1 for the definition of abbreviations and putative gene functions).
In another example, HPV integration 150 base pairs upstream of a transloca-
tion junction involving chromosomes 3 and 13 led to the induction of the onco-
genes KLF5, TP63, and TPRG1 [44]. In addition to determining cancer phenotype,
defined integration events may also drive treatment responses, with integration in
intergenic regions correlating with positive treatment outcomes and integration into
or near cancer-related genes predicting recurrence [48]. While the functional con-
sequences of HPV integration can be revealed through modern genomic and phe-
notypic studies, the mechanisms that drive HPV integration are not well
understood.

6.1.4 Epigenetic Regulation of the Host Genome
in HPV-Associated HNSCC: Aberrant DNA Methylation

Recent studies have begun to reveal the complex mechanisms of carcinogenesis in
HPV-associated epithelial neoplasms in molecular detail. These tumors demonstrate
genetic and epigenetic changes that promote tumor phenotypes via many of the
same cell signaling pathways that have been described in a variety of HPV-negative
tumors. By far, the most common epigenetic modification of the human genome is
the addition of a methyl group to the carbon-5 position of cytosine nucleotides,
predominantly those that immediately precede a guanosine nucleotide (CpG din-
ucleotides, or CpG islands). Aberrant methylation and subsequent chromatin
remodeling of promoter regions and first exons of coding genes often results in
silencing of critical genes in HNSCC, for example, the cell cycle/cell fate regulators
CDKN2A and DAPK and the DNA repair genes MGMT and MLH1 [54]. Cases of
HNSCC that test positive for HPV are almost three times more differentially
methylated at CpG loci than HPV-negative cases of HNSCC when comparing
tumor to adjacent normal tissue [55]. In HNSCC-derived cell lines, greater fre-
quency of gene methylation is seen in HPV-positive lines than in HPV-negative
lines [56]. Expression of DNA methyltransferases such as DNMT1 and DNMT3A
may be upregulated in HPV-positive OPSCC [56, 57]. Ectopic expression of
HPV-16 E7 and infection of keratinocytes in vitro confirmed induction of both
DNMT1 and DNMT3A [58]. Anayannis et al. [59] proposed that this effect may be
due to the activity of E7 via release of E2F (subsequent to pRB degradation) that
stimulates DNMT1 transcription [60]. Anayannis et al. also proposed that E6 may
contribute to induction of DNMT1 via release of Sp1 transcription factor from
inactivating complexes with p53 [61]. The E7 protein may interact directly with
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DNMT1 via its zinc finger domain and promote methyltransferase activity (in
in vitro studies) [62]. Expression of DNMT1 is also induced in cervical cancer [63],
supporting the role of the HPV oncoproteins in mediating DNA methylation.
Methylation patterns in OPSCC are sufficiently consistent such that analysis of
methylation of a panel of 22 CpG loci can distinguish HPV-positive tumors from
HPV-negative tumors [57]. Four of these loci are found in the CDKN2A locus,
downstream of the transcription start site of p16. Hypermethylation of this region
correlated with increased expression of p14ARF and p16INK4A proteins [57].

HPV-positive OPSCC has higher levels of gene promoter methylation than
HPV-negative OPSCC [64]. Promoter methylation signatures associated with HPV
infection in OPSCC can be identified and include three cadherins of the polycomb
group target genes [65]. The predicted consequence of this modification is silencing
of cadherin expression, leading to disruption of cell-cell adhesion and dysregulation
of tissue morphogenesis. Other promoters found to be hypermethylated in
HPV-positive HNSCC include cell cycle regulators CCNA1 (cyclin A1) [66] and
TP73 [67]; invasion and metastasis mediators CADM1, CDH13, TIMP3 [67] and
IGSF4 [68]; mediator of WNT signaling SFRP4 [69]; signaling mediator receptors
ESR1 and RARb [64]; decider of cell fate APC [67]; and proapoptotic DAPK [67].
The latter promoter hypermethylation events (ESR1, RARb, APC, and DAPK)
have also been identified frequently in HPV-negative OPSCC, suggesting that
perturbation of these pathways is important for the tumor phenotype in oropha-
ryngeal tissue. These hypermethylated promoters have all been reported in isolated
studies and without empiric data to solidify their mechanistic roles in the tumors.
However, specific gene promoter methylation signatures have been shown to pre-
dict prognosis of HPV-positive OPSCC, for example, ALDH1A2, GATA4, GFR4,
IRX4, and OSR2 [70], suggesting that they may have a mechanistic role in pro-
moting tumor progression. Finally, in addition to promoter methylation, host gene
expression may be regulated via the interactions of HPV E6 and E7 with cellular
p300 and MYC, two major activators of promoter enhancers [71–74].

6.1.5 Epigenetic Regulation of the Host Genome
in HPV-Associated HNSCC: Dysregulation of Gene
Transcription via Host Chromatin Modification

Methylation and acetylation of histones modify the structure of host chromatin and
regulate transcriptional activity of host genes (Fig. 6.1). Histone acetyltransferases
(HATs) produce an open chromatin structure to allow transcription factors and
coactivators to bind and induce transcription; histone deacetylases (HDACs) pro-
mote condensed and inactive chromatin. Histone methyltransferases (HMTs)
methylate H3 and H4 histone tails at arginine and lysine residues. Both acetylation
and methylation are reversible; however, acetylation always results in open chro-
matin whereas methylation can result in either activation or repression depending
on the specific residue that is methylated. Demethylation occurs through the activity
of histone demethylases (HDMs). Therefore, transcriptionally active areas of the
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genome are unmethylated at promoter CpG islands and have loose chromatin
structure to allow transcription factors and regulatory proteins to bind. Loose
chromatin is characterized by acetylation of histones at lysine residues and flanking
nucleosomes that are trimethylated at lysine 4 on histone 3 (designated H3K4me3;
reviewed by Baylin and Jones [75]). Transcriptionally inactive areas generally are
in complex with inhibitory polycomb group complex proteins, for example, EZH2,
a histone-lysine N-methyltransferase, which catalyzes the trimethylation of lysine
27 on histone 3 (H3K27me3), resulting in a repressive phenotype.

Host histone modification has been shown to be mediated by the HPV E7
protein. The E7-mediated activation of histone acetyltransferases and inactivation
of histone deacetylases leads to acetylation of histone tails and chromatin opening
[76]. This is consistent with the functional role of E7 in dysregulating cell cycle
progression and growth, which requires activation of gene transcription. For
instance, the E7-mediated induction of the lysine demethylase KDM6B leads to
removal of repressive H3K27me3 marks from the CDKN2A promoter, allowing
transcriptional activation of the gene locus [77]. Alternatively, the JMJD3
demethylase activates CDKN2A via RAS [78]. The result of these activation events
is the production of p16INK4A, a tumor suppressor protein that is frequently
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Fig. 6.1 Epigenetic modifications associated with HPV-mediated oncogenesis. Degradation of
p53 by HPV E6 and pRB by HPV E7 releases transcription factors such as Sp1 and E2F for
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upregulated in cancer and is an established marker of HPV-associated dysplastic
tissue, as noted above. Conversely, the E7-mediated release of E2F promotes
transcription of the polycomb repressor complex (PRC2) methyltransferase EZH2
in cervical cancer cell lines [79]. In HPV-positive HNSCC, signatures indicative of
EZH2 activity include global elevation of H3K27me3 marker of transcriptional
repression [80] and hypermethylation of the PRC2 promoter in HNSCC cell lines
[56]. Clinically, HDAC inhibitors may be promising adjunctive therapeutics for
HNSCC [81–85] but their role in HPV-positive OPSCC specifically is not known.

6.1.6 Epigenetic Regulation of the Host Genome
in HPV-Associated HNSCC: Dysregulation of MicroRNA
Expression

A third epigenetic mechanism by which HPV may drive host cell tumor phenotypes
is through dysregulation of cellular microRNAs (miRNAs). These small noncoding
RNA molecules regulate protein production by mediating interactions between
translationally suppressive RNA-induced silencing complexes (RISC) and cognate
sequences encoded within the 3-prime untranslated region of mRNA transcripts.
MicroRNA expression signatures can differentiate HPV-positive from
HPV-negative HNSCC [86, 87]. Further, miRNA dysregulation appears to be
similar in HPV-positive HNSCC and cervical cancer, suggesting the involvement of
HPV and likely E6/E7 in the dysregulation of host miRNAs [88]. Common features
between HPV-positive HNSCC and cervical cancer include the induction of
miR-15a and miR-16 and suppression of miR-195 and miR-497 [86]. Several
miRNAs have been reported to be dysregulated in HPV-associated HNSCC by
more than one group, including induction of miR-9 [87, 89, 90], miR-20b [87, 90],
and miR-363 [87, 91] and down-regulation of miR-126, miR-143, miR-145, and
miR-199a/b [87, 91]. In addition to viral-mediated miRNA dysregulation, single
nucleotide polymorphisms in the precursor sequences of miRNAs may increase the
risk of OPSCC by altering their ability to be cleaved into mature, functional
miRNAs. Examples include miR-146, miR-149, miR-196, and miR-499 [92].

The functional consequence of aberrant miRNA expression is complex to unra-
vel, with multiple miRNAs often targeting a single transcript and multiple transcripts
being targeted by a single miRNA; however, some research has shed light into
possible oncogenic mechanisms resulting from miRNA dysregulation. For instance,
the oncogenic miRNA miR-21, which is consistently induced in HPV-positive
OPSCC, targets the tumor suppressors PTEN, TPM1, and Bcl-2 [93]. Expression of
the tumor suppressor PDCD4 is lost in the majority of tonsil-derived tumors and may
be a consequence of translational suppression by miR-21 and miR-499 working in
concert [94]. Induction of miR-363 is purportedly mediated by HPV E6 [95] and
may promote a less-aggressive tumor phenotype via reduction of MYO1B (myosin
1B), a protein that promotes cell migration and invasion in vitro [96].

MicroRNA expression may be an important prognosticator of patient outcomes.
Low levels of let-7d, miR-205 [97], and miR-375 [98] were shown to predict
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prognosis of HNSCC independently of HPV status. Other studies showed miRNA
profiles that may predict prognosis but no consistent prognostic miRNA profile has
emerged, largely due to heterogeneity in populations, variable inclusion of cases
(all HNSCC sites vs. OPSCC only), and inconsistent methodologies [89, 90, 99–
102]. Still, with careful parsing of patient subgroups and application of standardized
techniques, this area shows promise for future clinical utility. Of note, loss of
miR-375 expression is associated with both HPV-positivity of HNSCC and poor
prognosis [98]. The loss of miR-375 was demonstrated to be the result of epigenetic
silencing via E6-mediated induction of DNMT1 in HPV-16-positive cervical cancer
cells [103]. Ectopic expression of miR-375 directly targeted E6/E7 transcripts,
activated p21 and suppressed telomerase activity in HNSCC and cervical cancer
models [104]. An important target of miR-375 is MALAT1, a long noncoding RNA
associated with tumor phenotypes [103]. In the absence of miR-375 MALAT1 is
overexpressed. Ectopic expression of HPV16 E6 in oral keratinocytes led to
increased expression of MALAT1 and this effect was associated with loss of p53
[105]. Conversely, knockdown of E6/E7 expression in cervical cancer cells resulted
in a reduction in MALAT1 expression [106]. The consequences of overexpression
of MALAT1 include invasive and epithelial–mesenchymal transition (EMT) tumor
phenotypes [98, 103, 107] and may explain the association between loss of
miR-375 expression and poor patient prognosis.

6.1.7 Epigenetic Modification of the Viral Genome
in HPV-Mediated HNSCC

Epigenetic modifications may promote oncogenesis not only through changes in host
gene expression but also by changes in viral gene expression. Papillomaviruses do
not encode any proteins with methyltransferase activity, but the HPV genome does
have CpG dinucleotides within conserved palindromic sequences [108]. The viral
genome is often methylated when flanking host DNA is methylated [109]. Even
though this may be a bystander effect, it could still have an impact on viral gene
expression. Late gene regions (at the boundary of L1 and L2) may be methylated in
cervical cancer [110, 111] and HPV-positive HNSCC [65, 112], but HPV-16
LCR/E6/E7 promoter regions are generally unmethylated in HPV-positive HNSCC
[65, 112]. Methylation of the viral long control regions may be a strategy used by the
host to control the virus or by the virus to control viral gene expression. For instance,
demethylation of the HPV-16 LCR in an OPSCC cell line using 5-aza-2′-deox-
ycytidine caused repression of E6/E7 transcript expression followed by cell cycle
arrest at G2/M checkpoint [113], indicating that methylation of the HPV LCR led to
high E6/E7 expression and tumor phenotype. Further, HPV-positive OPSCC with
intact HPV E2 sequences (either episomal virus or integrated concatemers) had
partial to complete methylation of the E2 binding sites 3 and 4 [114]. High methy-
lation at those sites corresponded to high E6/E7 transcript expression and poor
prognosis [114] and may explain cases of OPSCC in which HPV remains episomal
with an intact E2 open reading frame and high E6/E7 expression.
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6.1.8 Noncanonical Cell Signaling Pathways Involved
in HPV-Mediated HNSCC

While the oncoproteins of HPV are thought to play a major role in promoting
sustained cell proliferation, somatic mutations of the host genome may be crucial to
achieving a fully transformed phenotype. A proportion of the somatic mutations
uncovered in HPV-associated HNSCC may be the consequence of off-target
damage to the host genome resulting from a potent host cell response to viral
infection. The class of enzymes known as apolipoprotein B mRNA editing catalytic
polypeptide-like (APOBEC) consists of cytosine deaminases that restrict viral
replication by mutating viral DNA (reviewed by Harris and Dudley [115]). Bys-
tander mutation of host DNA occurs as a consequence of sustained APOBEC
activity, and therefore APOBEC-mediated mutations are common events in virally
induced cancers [116]. These host somatic mutations are marked by
cytosine-to-thymine or guanine point mutations at TpC sites [116]. Infection with
HPV appears to induce APOBEC3A which may improve clearance of virus [117].
Infection with high-risk HPV also induces APOBEC3B via the activity of E6 and
expression of E6 may exacerbate APOBEC mutagenesis [118], with the conse-
quence of increased off-target mutagenesis of host DNA.

The activity of APOBEC can result in C-to-T mutations in two hotspots in the
PIK3CA gene. These mutations cause amino acid changes that result in gain of
function and constitutive activation of the PIK3CA gene product, the p110a cat-
alytic subunit of phosphoinositol 3-kinase (PI3K) [119]. PIK3CA is a component of
the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR) pathway, which is often dysregulated in cancers and is
involved in cell growth, proliferation, differentiation, glucose metabolism, protein
synthesis, and apoptosis [120–123]. PIK3CA is considered to be an oncogene since
activating mutations and duplications of PIK3CA result in unchecked growth,
invasion and metastasis [124]. Mutation of PIK3CA occurs in 22–56% of
HPV-positive HNSCC [50, 125–127]. Hotspots for PIK3CA mutation in
HPV-positive HNSCC include E542K and E545K mutations in the helical domain.
These mutations are a result of C-to-T changes in TCW genomic regions, consistent
with APOBEC induced mutagenesis [119, 128–130]. The proposed mechanism by
which these two amino acid changes evoke constitutive activation of PI3K is via
attenuation of the binding capacity of the negative regulator p85a unit to p110a
[131]. The importance of the role of PIK3CA in HPV-associated carcinogenesis is
further supported by the frequent finding of PIK3CA gene amplification in up to
52% of all HPV-positive HNSCC [50, 125] and PIK3CA mutation in up to 42% of
cervical cancers [126, 132–137]. To date, PIK3CA is the most frequently mutated
gene reported in HPV-positive cancers.

Activation of PI3K signaling is further exacerbated by mutation and subsequent
loss of expression of the tumor suppressor and cell cycle regulator PTEN. The
protein product of PTEN regulates PI3K signaling via dephosphorylation of the
PI3K target PIP3, which in turn interacts with PDK1 to activate AKT signaling.
Somatic mutation of PTEN has been described in HPV-positive HNSCC [50, 125],
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with 24–56% of HPV-positive HNSCC demonstrating both PIK3CA and PTEN
mutations [122, 138]. Remarkably, more than 80% of anal cancers with PIK3CA
mutations also harbored PTEN mutations [122] indicating the importance of the
combined gain of function of PIK3CA and loss of function of PTEN and sustained
activation of the PI3K/AKT/mTOR pathway in HPV-mediated tumorigenesis.
Using murine xenograft model systems, treatment of anal cancer with the mTOR
inhibitor rapamycin resulted in reduced growth [139], suggesting that this pathway
may be a tractable target for adjunctive HPV-associated cancer therapy.

Somatic mutations that promote signaling via PI3K activation and the
RAS/MEK/ERK signaling axis have been identified in multiple receptor tyrosine
kinases in HPV-positive HNSCC. Activating mutations have been described in
FGFR2 and/or FGFR3 kinases in 10–17% of HPV-positive HNSCC [50, 125],
KRAS in 6% [127], and HRAS in 1–12% [125]. Inactivating somatic mutation in
NF1, a negative regulator of the RAS signaling pathway, was seen in up to 14% of
HPV-positive HNSCC [50, 125]. Activation of these signaling pathways promotes
cell cycle progression, proliferation, and survival. Kinase inhibitors may be effec-
tive in defined subsets of patients with these mutations [127], though this remains
under investigation.

In addition to the above receptor tyrosine kinases, the receptor tyrosine kinases
of the epidermal growth factor receptor family, ERBB2/HER2 and ERBB3/HER3,
may also be induced by HPV E6 and E7 expression. Members of the ERBB family
promote cell cycle progression and proliferation and are frequently activated in
solid organ tumors. Expression of HER2 and HER3 and receptor complexes
indicative of signaling activation were shown to be elevated in HPV-positive
tumors [140]. Silencing of E6 and E7 in tumor cell lines mitigated HER3 expres-
sion [141], linking the activity of growth factor receptor tyrosine kinases with HPV
oncogene expression. Clinically this suggests that targeted therapy with Afatinib, an
anti-ErbB family small molecule inhibitor, may be an effective therapeutic
approach. However, recent results from a multicenter Phase-III clinical trial
reporting efficacy of Afatinib in HNSCC patients demonstrated little to no benefit
for patients with HPV-positive tumors [142]. It is possible that better definition of
tumor phenotypes will reveal a subset of patients who will respond favorably to
ERBB family blockers.

Genetic changes in immune response related genes may also facilitate
HPV-associated tumor development. Presentation of antigen in MHC class I mole-
cules (human leukocyte antigens, HLA) facilitate immune clearance of viral infec-
tions. Germline variants in the HLA-A/B genes are associated with HPV-positive
HNSCC risk [143]. Somatic mutations in HLA-A/B genes are also identified in 11%
of HPV-positive HNSCC [127]. Similar findings have been described in cervical
cancer [144, 145]. Activation of receptor signaling on immune cells is often mediated
via NF-jB signal transduction, and constitutive activation of this pathway promotes
cell proliferation and immortalization. Inactivating somatic mutations in two negative
regulators of NF-jB signaling, TRAF3, and CYLD, have been described in
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HPV-positive HNSCC [50, 146]. Interestingly, while TRAF3 deletions (14%) or
truncating somatic mutations (8%) were common in HPV-positive HNSCC [50],
TRAF3 does not appear to be commonly mutated in cervical cancers [132].

In summary, HPV-mediated oncogenesis in the oropharynx is similar to that in
the anogenital regions, with a few key differences. Elevated expression of the viral
oncoproteins E6 and E7 appears to play a critical role in promoting the tumor
phenotype, with less of a reliance on integration of the viral genome into the host
genome than what is typically observed in anogenital tract tumors. Progression of
tumor formation is clearly a multistep process involving changes to the host gen-
ome. Some of these changes, such as epigenetic modification of the host chromatin,
may be reversible; others, such as APOBEC-mediated somatic mutations and
integration-associated disruption of the host genome, are irreversible. Improved
understanding of the specific cell signaling pathways that are frequently altered
during HPV-mediated tumorigenesis continues to reveal opportunities for person-
alized adjunctive therapies to treat patients with HPV-associated HNSCC.

6.2 Genotype Prevalence and Risk Factors for Oral HPV
Infection in the HIV-Seropositive Individual

6.2.1 Oral HPV Infection Is More Common
in HIV-Infected Individuals

The majority of oral HPV infections are asymptomatic, and the development of oral
HPV-associated cancer is a rare event that presumably occurs only after persistent
infection. Therefore, epidemiological studies often examine the risk factors for
asymptomatic detection of oral HPV infection. Only a handful of studies compared
the rates of HPV infection in HIV-positive and HIV-negative individuals. Oral HPV
infection is associated with markers of sexual risk, such as homosexuality,
unprotected oral sex, and a history of previous sexually transmitted disease (STD),
indicating that HPV is likely transmitted to the oral cavity through sexual contact.

Early studies examined relatively small cohorts (n = 1 to 300) comparing
infection in HIV-positive and negative individuals [147–152]. These studies
showed a significant increase in prevalent oral HPV infections of 3–7-fold in
HIV-positive individuals as compared to HIV-negative individuals. Low CD4+ T
cell counts, increased number of oral sex partners and evidence of other STDs
(chlamydia and herpes simplex virus, HSV) were associated with oral HPV
infection in the HIV-positive cohort. Interestingly, other studies have not shown an
association with lower CD4+ T cell counts [152]. Risk factor analysis for oral HPV
infection in a study of HIV-positive individuals from New Orleans noted increases
in Caucasians (57% vs. 24%) and males (68% vs. 25%) [147]. It is of interest that
neither CD4+ T cell count nor HIV viral load correlated with the presence of oral
HPV [147].
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In the U.S., two large cohort studies have examined the prevalence and risk
factors for oral HPV infection in HIV-positive individuals. The Woman’s Intera-
gency HIV Study (WIHS) enrolled 2794 HIV-seropositive women and 972
high-risk HIV seronegative women in two installments (from 1994 to 1995 and
from 2001 to 2002) at clinics in New York City, Boston, Washington D.C., Chi-
cago, Los Angeles, and San Francisco [149]. The Multicenter AIDS Cohort Study
(MACS) recruited 2963 HIV-positive men and 4124 HIV-negative men from
Baltimore, Chicago, Pittsburgh, and Los Angeles since 1987 [153]. These large
cohort studies confirmed the early work showing a significantly higher prevalence
of oral HPV infection (25–40%) in HIV-positive individuals as compared to
HIV-negative subjects (9–25%). The overall risk factors for HPV oral infection
included smoking, lower CD4+ T cell count, and higher lifetime number of sex
partners. Lower CD4+ T cell counts at sampling predicted oral HPV risk better than
nadir CD4+ T cell count. Studies from Europe and Australia, where
HPV-associated oropharyngeal cancer incidence is rising as it is in North America,
also found a 2–3-fold increased prevalence of oral HPV infection in HIV-positive
subjects [154–156]. In these cohorts, an increased reported lifetime number of oral
sex partners were associated with the presence of an oral HPV infection. Finally, a
recent meta-analysis on oral infection in men who have sex with men (MSMs)
substantiated the increase in high-risk HPV infections in HIV-positive men as
compared to similarly risked HIV-negative men [157].

One striking observation in HIV-negative populations is that oral HPV infection
is more common in males, which parallels the increased incidence of HPV-positive
HNSCC predominantly affecting men [151, 152]. This male predominance gener-
ally seems to be found in the HIV-positive population as well, with 20–68% of men
and 20–38% of women testing positive for oral HPV infection [147]. Interestingly,
both subclinical HPV infection and OPSCC appear to be more common in
heterosexual men than in men who have sex with men (MSMs) [153]. Although the
data did not reach statistical significance, this observation was consistent among
three different studies [150, 158, 159]. Whether this observation can be attributed
to differences in sexual behaviors, independency of sexual networks, or gender-
specific differences in transmission efficiency between mucosal sites is not known.
In contrast, a recent large international study found a higher proportion of OPSCC
cases tested positive for HPV in women than in men (see details below), suggesting
that regional environmental or behavioral factors may be more important than de
facto gender in terms of oral HPV acquisition and OPSCC [38]. A study focusing
on a cohort of women who have sex with women would be of interest to better
delineate the role of gender in the risk of oral HPV infection and OPSCC.

6.2.2 Genotypes in Oral HPV Infection in HIV-Infected
Individuals

In addition to defining the rates of oral infection, an important consideration is the
genotype(s) of HPV that are found in the oral cavity. HPV-16 is detected in 95% of
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OPSCC [9, 151] and therefore many studies have determined the rates of asymp-
tomatic HPV-16 oral infection. The other high-risk HPV genotypes included in
screening tests vary greatly among studies. Most studies showed that the prevalence
of HPV-16 varied from 0.6 to 6% in HIV-positive individuals and HPV-16 made up
between 1.4 and 18% of the detectable oral HPV infections [147, 155, 156, 160–
162]. Prevalence of HPV-33 was reportedly between 0.6 and 10% in a few studies
and it accounted for 6–29% of detected oral HPV infections [155, 160–163]. The
prevalence of other high-risk genotypes is more difficult to assess since studies did
not consistently test for the same range of genotypes.

Low-risk HPV genotypes-6 and -11 are classically associated with genital warts
and are expected to be found in the oral cavity since oral sex is believed to facilitate
transmission between mucosal sites. The prevalence of HPV-6 was up to 4% of
HIV-positive individuals and it accounted for up to 9% of oral HPV infections [147,
155, 160–163]. Similarly, the prevalence of HPV-11 was 0.6–6% in the
HIV-infected population and made up 1.4–18% of the oral HPV infections detected
[155, 160, 162]. Other HPV genotypes that were commonly found were HPV-55
and HPV-83, with prevalence similar to HPV-6 and -11 (up to 5% of the subjects
and up to 15% of the detected oral HPV infections) [147, 162]. It is not clear how
often HPV-55 is seen in oral pathology, but its classification as a high-risk HPV
genotype and its relative frequency of detection may warrant further investigation
[147, 161, 163]. The most complete HPV genotyping study published to date
utilized a novel approach to simultaneously detect the common anogenital HPV
genotypes (alpha) as well as the cutaneous beta and gamma genotypes of HPV
[164]. By this more comprehensive approach, 87% of a cohort of 52 HIV-positive
individuals was positive for any genotype of HPV. The oncogenic alpha genotypes
(-16, -18, and others) were found in 23% and the non-oncogenic alpha types in 40%
of the participants, which is comparable to the above studies. Of note, only coin-
fection with hepatitis C was seen as a risk factor for oncogenic oral HPV infections
in this study.

Curiously, genotypes which show a predilection for the oral cavity (HPV-7, -13,
and -32) have rarely been studied. Pursuant to an outbreak of HPV-32-positive oral
warts in HIV-seropositive patients initiating combination antiretroviral therapy,
Cameron and Hagensee found HPV-32 in 9.5% of all HIV subjects examined
(Fig. 6.2) [147] from a cohort enrolled from 2000 to 2004. In a follow-up study in
HIV-positive individuals (2013–2017), the prevalence of oral HPV-32 infection
was only 4.8%, which is a reduction of 49%. The reduction in subclinical detection
of HPV-32 infection coincides with clinical evidence that the prevalence of oral
warts in HIV-positive individuals had declined (M. Hagensee, unpublished obser-
vation). The prevalence of oral HPV-16 did not decline as drastically in the same
time span (from 1.3% to 1.1, 15% reduction), suggesting that the reduction is not
due to general HPV acquisition or clearance.
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6.2.3 Comparison of Oral and Genital HPV Genotype
Prevalence

In studies that compared oral HPV infection to HPV infection of the anogenital tract
in the same individual, oral HPV infection was detected less frequently than
anogenital infection. The most common site of HPV infection in HIV-positive men
was the anus, with 73–97% testing positive, followed by 25–44% testing positive at
the penis and 16–44% testing positive in the oral cavity [155, 163, 165, 166].
High-oncogenic risk HPV genotypes were also found less often in the oral cavity
(11–27% HPV-positive) than the anus (24–86% HPV-positive) or the penis (23–
41% HPV-positive) [155, 163, 165, 167]. A similar trend was observed in women,
with oral HPV prevalence between 20 and 25% and prevalence at the cervix
between 76 and 97% [150, 168, 169]. High-risk HPV genotypes were seen in the
oral cavity in 3–15% of those screened as compared to 58–63% HPV-positive at the
cervix [150, 168, 169]. There was a notable lack of HPV genotype concordance
between the oral cavity and genital tract [155, 168]. It is logical to predict that the
HPV genotypes found in the oral cavity of an individual might better reflect those
detected in his or her recent sex partner. Prospective studies in monogamous
couples would be of interest to examine the kinetics of HPV transmission via
various forms of sexual contact.

6.2.4 Oral HPV Incidence, Persistence, and Resolution

The natural history of HPV infection in the female genital tract has been well
described. Cervical HPV infection is typically cleared naturally without clinical
intervention, but the virus often establishes infection for more than a year before
being cleared. Continued persistence of the virus is essential to malignant
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Fig. 6.2 The HPV genotypes found in the oral cavity of HIV-positive individuals
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transformation and therefore persistent infection puts the host at risk for dysplasia
that can progress to cancer. The natural history of oral HPV infection has been more
challenging to investigate because of the difficulty in pinpointing the exact site of
infection for prospective sampling, the lack of well-defined precancerous pathology
in the oropharynx, and the relatively lower frequency of HPV infection in the oral
cavity. Additionally, there are no consensus definitions for HPV acquisition or
persistence and clearance, and these outcomes are dependent on sampling fre-
quency and duration of prospective follow-up. Despite inconsistencies in study
design and outcome definitions across published prospective studies, a picture of
the natural history of oral HPV infection is beginning to emerge.

Defining HPV incidence as the detection of any new HPV genotype at a
follow-up visit that was not detected at the previous visit or baseline, incidence
ranged between 4.8 and 24 per 100 person-years for any HPV, 3.2–9.0 per 100
person-years for any high-risk HPV, and 0.8–1.2 per 100 person-years for
HPV-16 in HIV infected individuals [153, 157, 170]. The highest incidence rates
were seen for HPV-16 and -18 [171]. Incident detection of HPV was associated
with lower CD4+ T cell count and increased numbers of oral sex partners [153].
When persistence was defined as an HPV genotype seen at baseline and at the next
consecutive visit, 35–75% of infections met the criteria for persistence [153, 155,
157, 170, 172]. Risk factors for increased persistence included male gender,
smoking, lower CD4+ T cell count, increased duration of HIV infection, taking
ART, and increased time on ART [153, 155, 172]. Interestingly, one study showed
increased HPV persistence in those who have had a tonsillectomy [170].

Conversely, 44–83% of HPV infections were considered to have cleared when
clearance was defined as the absence of detection of a HPV genotype seen at
baseline at the subsequent follow-up visit [153, 155, 170, 172]. Sampling error
leads to false-negative HPV tests, which can artificially inflate clearance estimates.
Using the more stringent criteria of two consecutive HPV-negative visits after a
positive test, clearance decreased to 35–53% of infections detected at baseline [153,
157, 166, 171]. Factors associated with clearance included female gender, shorter
duration of HIV infection and no previous history of sexually transmitted infections
[166]. However, increasing number of oral sex partners and the presence of anal
warts may also predict the clearance of an oral HPV infection [171]. Finally,
incident infections detected during prospective follow-up cleared more quickly than
prevalent infections detected at baseline.

Using a different approach, Lam et al. attempted to define a serum immuno-
logical marker that would predict those who would clear an oral HPV infection
[173]. A cohort of 1601 adults (75% with HIV infection) had oral rinse samples
collected and tested for HPV status at 6-month intervals for 4 years. From these, a
multiplex cytokine assay from paired serum samples was performed in those with
incident HPV infection, prevalent infection and no HPV infection (roughly 300 in
each group). Serum TNF-alpha, IL-8, IFN-gamma, IL-10, and IL-2 levels were
most highly elevated in those with prevalent HPV infection and were moderately
elevated in those with incident infection compared to the HPV-negative
group. Higher TNF-alpha levels were seen in those with persistent oral HPV
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infection in both men and women with higher IL-2 levels seen with persistent
infection in men.

6.2.5 Oral Warts in the HIV-Positive Individual—The Benign
Tumors Caused by HPV

Papillomas due to HPV infection can occur on virtually all oral mucosal surfaces
[174]. While the majority of papillomas occur on the labial mucosa, they can
also occur on the buccal mucosa, the tongue, the soft palate, and the gingiva.
While the histopathology of oral warts almost invariably demonstrates poorly dif-
ferentiated, large, vacuolated koilocytic cells, the gross appearance varies greatly.
Often the clinical appearance of lesions is reflective of the specific HPV genotype
causing the lesion. For instance, HPV genotypes 6 and 11 tend to cause soft, sessile,
and cauliflower-like lesions (condyloma accuminatum) in the oral cavity. HPV
genotypes 1, 2, and 7, which are associated with cutaneous warts, cause firm,
sessile, and oral common warts (verruca vulgaris). HPV genotypes 13 and 32,
which have been described exclusively in the oral cavity, are the cause of oral focal
epithelial hyperplasia (FEH), a dysplastic lesion characterized by multiple small,
flat papules generally found on the lower lip. While there is some degree of HPV
genotype-specific clinical presentation, unusual manifestations of oral HPV disease
in the HIV-positive patient frequently occur [174]. Examinations of oral wart
biopsies from HIV-positive individuals prior to the routine use of highly active
antiretroviral therapy (HAART) contain a range of HPV genotypes, including
cutaneous type 2; genital types 6, 11, 16, and 18; and oral type 13 [174]. However,
the most common HPV genotypes identified in HIV-associated oral warts are the
oral-specific HPV type 32 and the cutaneous HPV type 7 [174]. A study by
Cameron and Hagensee examined the genotypes of HPV involved in oral warts in
the HIV-positive individual in the setting of routine use of HAART. The vast
majority of these samples were HPV-32 positive with other HPVs detected being 6,
7, 53, 73, and 84 [147]. Additional studies investigating the HPV genotypes found
in warts and other oral lesions found HPV types 6, 11, 13, and 32 to be the most
prevalent [175]. Cumulatively, pooling the limited data from these studies, HPV-13
and -32 are the most common HPV genotypes seen in oral warts in HIV-positive
individuals (Fig. 6.3) [147, 174, 175].

6.2.6 Treatment and Prognosis of HIV-Associated Oral Warts

The treatment of oral warts in the HIV-positive patient is difficult due to both the
wide distribution of lesions throughout the oral mucosa and the high recurrence rate.
Although these lesions are generally painless, they can become traumatized. They can
mechanically interfere with eating and talking and look unsightly when present
externally on the lips. Treatments utilized include both medical and surgical
modalities, depending upon the site of the wart, the characteristics of the wart, and the
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number of lesions. Surgical techniques include excision, electrosurgery, cryosurgery,
and CO2 laser, whereas medical modalities include podophyllin resin and
interferon-a injections [176]. Treatment with Imiquimod is indicated for cutaneous
and genital warts, but this topical medicine is not approved for use in the oral cavity.

Surgical excision is difficult when multiple warts cover a large area. However,
surgical or electrosurgical debulking of the wart is useful prior to use of topical
agents or the CO2 laser. The use of the CO2 laser has proven problematic because
the dispersal of HPV in the laser plume can lead to nasal warts in either operator or
patient [176]. The use of surgical techniques does not often lead to postoperative
scarring of the intraoral mucosa, but scarring of the lips can occur, leading to
stricture and diminished opening. The use of podophyllin resin (25%) as a topical
agent has proven disappointing [176]. Case reports showed promising results of the
use of interferon-a as a topical and systemic combination with weekly intralesional
injections in addition to twice-weekly subcutaneous injections. Follow-up ranged
from 12 months to three years, with no recurrence of warts at the site of treatment
[177]. Topical 1% Cidofovir gel was reportedly successful in treating a case of
recalcitrant oral warts in a HIV-positive individual [178], but data from controlled
clinical trials are lacking.

Trials focusing on nongenital warts may provide some new treatment options.
Taking oral zinc sulfate 600 mg/day led to resolution of 50% of nongenital (skin)
warts after two months of treatment [179]. In addition, oral isotretinoin was shown
superior to topical isotretinoin in the treatment of nongenital warts [180] with a
69% remission rate. It would be of interest to determine the efficacy of these
medications for the treatment of oral warts.
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Fig. 6.3 The HPV genotypes found in biopsies of oral warts in HIV-positive individuals. Data
combined from three studies [147, 174, 175]. ND, no HPV detected
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6.2.7 Is a Wart a Cancer in Disguise?

Up to one-half of genital warts may harbor concomitant infections with both low-
and high-risk HPV genotypes [181]. The clinical concern is that a lesion that
appears benign may actually have the potential to transform into a malignant lesion.
A published case report indicated that a clinically diagnosed oral wart showed an
epithelial neoplasm upon histological examination of the biopsy [182]. In situ
hybridization demonstrated focal positivity for HPV-16 and -18. This suggests that
high-risk HPV genotypes can masquerade as low-risk genotypes and cause warts in
the oral cavity [182]. It appears, however, that this is a rare occurrence since reports
utilizing sensitive real-time PCR assays and p16 staining have failed to demonstrate
high-risk HPV genotypes in oral wart tissues [181, 183]. Importantly, these studies
did not investigate HIV-infected individuals that are prone to infections with
multiple HPV genotypes and the possibility that warts in this population might
mask concomitant infections with high-risk HPV genotypes.

6.2.8 The Role of HPV Infection in HNSCC in HIV-Positive
and HIV-Negative Individuals

Long associated with cancers and precancerous lesions of the anogenital mucosa,
HPV is also involved in the etiology of a subset of head and neck squamous cell
carcinomas [151, 184]. Over 50% of tumors arising from the lingual and palatine
tonsils (oropharynx) contain HPV DNA with over 90% of this harboring HPV-16.
These tumors arise mostly in upper income, younger (2–5 years) white men than
those that are HPV-negative. This is likely due to sexual exposure (i.e., oral sex)
[151, 184]. These tumors present at an earlier tumor stage but a more advanced
nodal stage with a nonkeratinized basaloid histopathology. Surprisingly, they also
respond better to conventional chemotherapy and radiotherapy [184, 185].

Parameters of HPV infection are highly correlated with the development of
OPSCC. Seropositivity to HPV-16 viral capsid proteins (L1) confers a 32-fold
increased risk of OPSCC [151]. Those with an oral HPV-16 infection as determined
by PCR detection have a 50–200-fold higher likelihood of developing OPSCC
[175, 186]. Since oral HPV infection is more common in HIV-positive individuals,
it is of concern that HNSCC due to HPV will also become more common as this
population ages. Tobacco and alcohol use and abuse are also more common in
HIV-positive individuals and are classic risk factors for HNSCC. It has been
controversial whether these traditional risk factors may also increase the risk of
HPV-related OPSCC with some studies showing that tobacco and alcohol use
increased the risk of HPV-related OPSCC [186] and others indicating that
HPV-associated and substance-associated HNSCC are two distinct diseases [151].
Most studies have shown a male predominance in HNSCC overall and in OPSCC
specifically but many of these did not test the tumors for the presence of HPV. In a
large international study, a large male predominance for OPSCC (83%) was found
and HPV DNA was detected in 25% of these tumors using a sophisticated and
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sensitive assay [38]. In this large cohort, 32% of the tumors in women were
HPV-16-positive as compared to only 19% of the tumors in men [38]. Any
high-risk HPV detection was also higher in women (40%) versus 22% in men. This
observation is provocative but needs to be corroborated in other cohorts. Multiple
studies have shown an increase in HPV-related OPSCC over the past few decades
that are attributed to a birth cohort effect [184]. This could be due to changes in
attitudes regarding sex that occurred in the 1960s and may have led to increased
oral HPV-16 infection via sexual practices. It is tempting to also associate the HIV
epidemic with this increase in HPV-related oral cancers but this has not borne out in
large epidemiological studies likely due to the relatively low prevalence of
HIV/AIDS in the general population.

6.2.9 HPV-Related OPSCC Is More Common
in the HIV-Seropositive Population

HIV-positive individuals are at increased risk for all HPV-associated cancers.
Cervical cancer rates are increased 2.9–5.4-fold in HIV-positive women. Increases
are also seen in anal (7.8� for females, 60� for males) vaginal/vulvar (3.9�) and
penile (5.4–6.9�) cancers [150, 187]. The data for oral cancers is complicated due
to some studies failing to distinguish OPSCC from HNSCC or lacked testing for
HPV. Most studies show that the occurrence of OPSCC in HIV-positive individuals
is increased by 1.6- to 2.6-fold over the HIV-negative population [150, 158, 187–190].
These studies represented individuals from North America, Australia, and Europe
and spanned cohorts from the mid-1990s to the mid-2000s. A few studies showed
even higher rates in the HIV-positive population. An early Swiss cohort study
showed a higher rate of OPSCC at 4.1-fold in HIV-positive individuals as com-
pared to the general population [159] and a recent large cohort from America
showed an increased frequency (3.2-fold) in HIV-positive individuals [191]. In all
these studies, HPV-positive cancers were defined simply by anatomical locations
(oropharynx) and not by testing of biopsy samples for the virus. Furthermore, many
studies matched HIV/AIDS registries with cancer databases to provide this insight
[158, 187, 189, 191].

With the increased life expectancy of the HIV-infected individual due to
HAART, there is a potential risk for the HPV-related oral malignancies to increase
in prevalence over time. Indeed, early studies noted an increase in head and neck
cancer in HIV-positive individuals over time [192]. In more formal analyses, two
studies examined the rates of OPSCC in HIV-positive individuals over time. Both
studies noted an increase of 60–80% in oral cancer prevalence from the mid-1990s
to the mid-2000s in HIV-positive individuals [189, 193]. These cancers tend to
occur at a younger age than in HIV-negative individuals. For example, the age of
diagnosis of tongue cancer was 45.6 years in HIV-positive and 58.9 years in
HIV-negative individuals (p = 0.03) [194]. Immune suppression as indicated by
diminishing peripheral blood CD4+ T cell count does not reliably predict OPSCC
risk [158, 187, 191].
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A few recent studies have examined the role of smoking in the prevalence of
OPSCC in HIV-positive individuals. Chew et al. revealed an OPSCC incidence rate
of 23.2/100,000 among a cohort of U.S. military veterans with HIV [195]. Risk
factors for OPSCC in this cohort were age over 50, CD4+ T cell count less than 200
and relatively poor HIV control. Smoking history was not associated with OPSCC
but a large proportion of this group (84%) smoked. Finally, Silverberg et al.
examined the large Kaiser Permanente cohort of about 20,000 HIV-positive and
210,000 HIV-negative adults [196] and demonstrated a modest increase of OPSCC
(Relative Risk [RR], 1.9) in HIV-positive individuals after adjustment for age,
race/ethnicity, and gender. However, this was no longer statistically significant
(RR, 1.4) after adjusting for smoking, BMI, and alcohol and drug use. In conclu-
sion, HIV-positive people are at increased risk of OPSCC but the exact roles of
HPV, tobacco and alcohol exposure are not well defined.

6.2.10 Examination of the Site of HPV-Related HNSCC
in HIV-Positive Individuals

To help distinguish between smoking, alcohol and HPV infection as risk factors,
Picard et al. examined 40 HIV-positive individuals with HNSCC and performed
immunohistochemistry for p16, in situ hybridization for 12 high-risk HPV geno-
types, and PCR (L1 targeted) for 15 high-risk HPV genotypes [197]. Thirty of the
47 identified patients had tumors in the oropharynx or oral cavity (64%). Twelve of
the 40 tested for HPV were positive with 42% of those with oropharyngeal cancer
testing positive and 33% of those with oral cancer testing positive. HPV-16 was
detected in 50% of the HPV-positive cancers. Median survival was increased in
those with HPV-related tumors (Hazard Ratio 2.9, 0.9–10.1). McLemore et al.
examined 12 HIV-positive patients with oropharynx or oral cavity carcinoma [198].
They found 5/12 positive for HPV by L1 PCR with HPV-16 in 4 out of 5 cases.
A case-control study of 41 HIV-positive HNSCC patients showed 28% being
positive for HPV by L1 PCR. Of the HPV-positive tumors, 50% occurred in the
orophaynx and 50% occurred at other sites, and 7/12 was positive for HPV-16 [46].
In sum, these small studies demonstrated HPV in 33–50% of HNSCC in
HIV-seropositive patients with higher HPV-positive frequency in the oropharynx.
Clearly more studies focused on determining the role of HPV in OPSCC in
HIV-positive individuals need to be undertaken.

6.2.11 Treatment of OPSCC in the HIV-Positive Individual

Many studies have shown that treatment of HPV-related OPSCC has a favorable
outcome [199, 200]. Due to this favorable outcome in HPV-related OPSCC, there
has been a discussion about potentially reducing the amount of radiation used to
treat this condition [201]. There are only a few reports focusing on the success rate
of treating the HIV-positive person with HPV-related OPSCC. A very early pilot
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study showed worse outcomes (death) in 5 of 6 cases of HNSCC in HIV-positive
individuals as compared to 0 of 4 who were HIV-negative [202]. None of these
HIV-positive patients were on ART. Later studies have shown more favorable
results with local control and 5-year survival of 55–80% and in some cases no
difference in outcomes between HIV-positive and HIV-negative individuals [203–
205]. Although a number of clinical trials are focusing on dose reduction for
HPV-related OPSCC, there are none that focus on the HIV-positive person. At this
time, dose reduction for HIV-positive individuals with OPSCC cannot be recom-
mended. Finally, there is no data on screening for recurrence in the HIV-positive
individual to support any deviation from the screening guidelines for the
HIV-negative population.

Although many investigators have examined ways to screen for OPSCC using
HPV diagnostic testing or an oral Pap smear, no test is clinically approved and no
studies have focused on the HIV-positive individual. An interesting approach uti-
lized an bead-based multiplex serological assay for numerous HPV genotypes and
proteins [206]. Antibodies to HPV-16 E1, E2, E6, E7, and L1 proteins were
detected in those with OPSCC. The most robust association was seen with E6 in
which 35% of those with OPSCC had HPV-16 E6 antibodies as compared to 0.6%
of the controls (odds ratio [95% confidence interval], 274 [110-6981]). These
antibodies were not seen in individuals with cancers at other oral sites and in some
cases, these antibodies were detectible 10 years prior to diagnosis. It is not clear
how often this panel of serum antibodies are detected in the general population and
if screening for them would be a cost-effective approach to detect oral or perhaps
any HPV-related cancers. These findings need to be examined in an HIV-positive
population.

6.2.12 The Role of Antiretroviral Therapy on Oral HPV
Infection and Warts

The widespread administration of highly active antiretroviral therapy (HAART) in
the United States has had a profound impact on the incidence of HIV-associated
oral-opportunistic infections (OI) and death from these OIs. A number of studies
from the early 2000s showed a decreased incidence of oral lesions, especially oral
candidiasis (thrush) and oral hairy leukoplakia (OHL) [207–210] as compared to
the cohorts examined in the early to mid-90s. The prevalence of oral candidiasis
generally dropped from 32–43% to 14–19%, OHL from 8% to 4–6%, and necro-
tizing periodontal or gum disease from 4–5% to 2%. Interestingly, regimens con-
taining non-nucleoside reverse transcriptase inhibitors (NNRTIs) may reduce the
risk of OIs to a greater extent than regimens containing protease inhibitors (PIs),
despite similar levels of immune control [208]. This implies that the use of different
ART combinations could have differential effects on oral infection and disease. It is
less clear what impact HAART has had on HPV-related oral lesions and chronic
HPV infection since this has rarely been reported. Contradictory reports have
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shown both positive and negative impact of HAART on the prevalence of oral
warts [207, 209].

In the year 2000, Dr. Janet Leigh, Director of the HIV Dental Clinic at the
Medical Center of Louisiana, New Orleans, reported a striking clinical observation
that the incidence of oral warts in HIV-seropositive individuals had increased
substantially since the introduction of HAART [211]. Shortly thereafter, John and
Deborah Greenspan reported a significant three–four-fold increase in the prevalence
of oral warts in a San Francisco based cohort of HIV-seropositive people during the
decade of the 1990s [207]. The associated risk factors for this paradoxical increase
in oral warts was the use of ART, male gender, and seropositivity for hepatitis B
virus and having more than a one-log drop in HIV viral load in the year prior to
wart diagnosis [207, 212]. Finally, Cameron et al. [147] reported that there was a
sixfold increase in oral HPV detected in those prescribed HAART (71% vs. 28%)
but only in the Caucasian HIV-positive population [147]. There was not a signif-
icant increase in oral HPV detection in African-American members of the cohort
who were prescribed HAART. The study was unable to evaluate patient compliance
with the prescribed regimen, but did report an association between oral HPV
detection and significant drop in HIV viral load, suggesting that those with oral
HPV were taking their medications as prescribed.

These initial studies implied a lack of reduction in HPV oral infection and warts
in those on ART implicating either a lack of restoration of oral immunity against
HPV or some direct augmentation of oral HPV infection due to ART. A few recent
studies add further insight into this paradox. A cross-sectional study from Mexico
City reported a 6.9% prevalence of HPV-related benign oral lesions with most of
these cases diagnosed as either papillomas or multifocal epithelial hyperplasia
[175]. In comparison to a cohort without HPV oral lesions, the patients with lesions
were more likely to be older (over age 40, p = 0.002). In addition, those on ART
for more than 12 months (p < 0.001) were more likely to have an oral HPV-related
lesion, implicating an effect of ART on HPV itself or on the oral epithelium.
Additional insight comes from a study focused on the best time to start ART [213].
Two cohorts of HIV-positive individuals were enrolled, one that started ART
immediately following HIV diagnosis and a second group that delayed the start of
therapy until they experienced a drop in CD4+ T cell count below 200 cells/ml or
acquired an opportunistic infection. The delayed group had an incident rate of oral
lesions of 17% versus 4% in the immediate group (p < 0.01) with increases seen in
oral candidiasis, OHL and herpes simplex virus infections. There was no significant
difference in HPV-related lesions in these cohorts; however, the incidence of oral
warts was increased after ART was initiated in the delayed group as compared to
before starting ART (4.3% vs. 0.97%, p < 0.01). The AIDS Clinical Trial Group
(ACTG) protocol A5272 study set out to determine if oral HPV infection or warts
increased during prospective follow-up after starting ART [161]. This study fol-
lowed 388 HIV-positive individuals as they started ART and collected oral wash
specimens pre-ART and after 16 and 24 weeks of therapy. At baseline, 18% of
participants had at least one HPV genotype present as compared to 24% at the next
follow-up visit. HPV infection at baseline was more likely to persist than to clear.
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Finally, those who acquired a new HPV genotype had a larger increase in CD4+ T
cell count and no significant change in HIV viral load as compared to those who did
not acquire a new HPV infection. There were no changes in the incidence of warts
but the follow-up was only 24 weeks. These studies all point to a potential detri-
mental effect of ART on controlling oral HPV infection with implications for future
rates of HPV-related oral disease.

Studies from the Hagensee laboratory also imply a role of ART in the patho-
genesis of oral wart formation. We performed a retrospective chart review on
21 HIV-positive patients with oral warts seeking dental care at the Medical Center
of Louisiana HIV outpatient clinic (Cameron and Hagensee, unpublished). Inter-
estingly, 13 (62%) patients had started ART in the year prior to wart diagnosis.
There was no clear association with current CD4+ T cell count, nor was there a
clear indication of recent change in CD4+ T cell count with the majority (14, 67%)
having stable CD4+ T cell counts (±100 cells/ml) in the previous year prior to
diagnosis. Strikingly, 76% of these individuals had a four-log drop in HIV viral
load within 6 months prior to wart development despite no observed change in
CD4+ T cell count. Thus, one could hypothesize that wart development is an
unconventional form of immune reconstitution disease following initiation of
antiretroviral therapy for HIV.

To investigate the possibility that HPV-associated oral warts represent an
immune reconstitution syndrome Lilly et al. [214] examined biopsy specimens from
HIV-positive individuals for evidence of immune cell infiltration and activity.
Biopsies of oral lesions were taken along with control biopsies of tissue adjacent to
the lesion. They studied a total of 12 patients with oral warts and found no dif-
ference in a large panel of inflammatory marker mRNA profiles (Th1, Th2, and
inflammatory) as well as quantities of CD3+, CD4+, and CD8+ cells. Thus, con-
sistent with the lack of association with appreciable differences in CD4+ T cell
counts, restoration of immunity in itself does not seem to promote wart formation.
This may imply an interaction of the ART agents and the oral epithelium that
increases HPV oral infection and/or persistence and subsequent lesion develop-
ment. A publication from the Meyers laboratory adds an interesting in vitro cor-
relate of these clinical observations. Danaher et al. noted a marked growth
inhibition of organotypic raft cultures with a number of commonly used protease
inhibitors (PIs) at concentrations that approximated the levels achieved in the oral
cavity [215]. The most profound inhibition of growth was observed with Nelfinavir
followed by Lopinavir and Saquinivir. Indeed, PIs have been proposed as new
cancer chemotherapy drugs due to their profound activity on apoptosis [216, 217].
Thus, toxic effects of PIs on the oral epithelium may promote the development of
HPV-associated lesions.

6.2.13 Antiretroviral Therapy and Risk of OPSCC

As noted above, HPV-associated OPSCC has been well described in the
HIV-negative population with rates that are increasing over the past years [184]. It
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is not clear if the widespread use of ART increases the risk of OPSCC in
HIV-positive individuals. Insight may be found by examining other patient popu-
lations that are immune suppressed. Rates of OPSCC are increased in solid organ
transplant patients 2.2–5.3-fold but the HPV status of these tumors are unknown
[188, 218]. The highest rates of OPSCC are in those undergoing liver transplan-
tation. Interestingly, the reason for liver transplant was mostly alcoholic liver dis-
ease implying interaction of traditional substance use risk factors, immune
suppression and potentially HPV infection in the increased risk of OPSCC.

The study by Powles et al. examined the rates of many non-AIDS defining
cancers in the pre-ART (1983–1995), early ART (1996–2001) and established ART
eras (2002–2007). They found a nonsignificant increase in head and neck cancers in
those classified as on established ART (2.66-fold) as compared to those in the early
ART (1.75-fold) and pre-ART (1.34-fold) eras [219]. A similar study using the
Italian linkage registry also showed a slight increase in head and neck cancers in
the ART period (1997–2002, Standardized Incidence Ratio = 1.8) as compared to
the pre-ART era (prior to 1997, SIR = 1.4) [220]. These studies do not clearly
demonstrate an increase in OPSCC over time in the HIV-positive population;
however, it is clear that these rates are not declining to HIV-negative populations
despite improved immunity. If these cancers were significantly immune-related then
it would be expected that the rates would decline as is seen for Kaposi’s sarcoma.
One explanation is that the lesion(s) started development while immune suppressed
and ART has increased the lifespan of the individual so that these lesions can be
detected (survivor bias). Conversely, the improved immunity may be offset by
toxicity of the ART on the oral epithelium.

6.2.14 Projected Impact of HPV Vaccination for Prevention
of Oropharyngeal Cancer

Primary prevention of oncogenic HPV infection has been made possible through
the advent of the HPV vaccine. The available vaccines are recombinant protein
vaccines formulated with empty virus-like particles (VLPs) consisting of HPV L1
capsid protein. The VLPs induce serum antibody responses resembling the natural
response to HPV infection. This serum antibody response is HPV type-specific with
little to no cross-protection against other HPV genotypes; therefore, multiple HPV
genotypes are included in the vaccine to promote broad-spectrum protection. To
date the most broad-spectrum HPV vaccine available, Gardasil-9 (Merck), provides
protection against seven oncogenic HPV genotypes (HPV-16, -18, -31, -33, -45,
-52, and -58) and the two most common low-risk (wart-associated) genotypes
(HPV-6 and -11). In the U.S., this vaccine is currently approved for both males and
females ages 9–45, with a recommended two-dose vaccine regimen (0, 6–
12 months) for adolescents ages 9–14 and three-dose regimen (0, 2, and 6 months)
for recipients ages 15 and up.

Given the slow development of HPV-associated cancer following the acquisition
of HPV infection, HPV vaccine clinical trials were designed with genotype-specific
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infection and early precancer endpoints as surrogate outcomes for cancer. The
vaccine was found to be safe and highly effective at preventing infection with the
genotypes covered by the vaccine. Likewise, there were no incident diagnoses of
vaccine genotype positive cervical dysplasia among women receiving the vaccine
in large-scale clinical trials [221]. In practice, populations with high rates of vac-
cination reported remarkably rapid declines in genital wart incidence [222], and
vaccine efficacy remains high (96% protection from infection and 100% protection
from cervical intraepithelial neoplasia) up to ten years after the initial dose [223].
These findings support the current projections that the nonavalent HPV vaccine will
prevent up to 90% of HPV-associated cervical cancer, assuming adequate uptake of
the vaccine.

Although empirical evidence is scant, experts believe that the HPV vaccine will
prove to be an effective primary prevention strategy for HPV-associated oropha-
ryngeal cancer. Studies to determine the HPV genotype distribution in OPSCC have
consistently shown a predominance of HPV-16 (80–90% of HPV-positive cases)
followed by HPV-33 (3–10% of HPV-positive cases), with HPV-18 making up an
additional 2–5% of HPV-positive cases [38, 224, 225]. Therefore, assuming that
parenteral vaccination generates sufficient protective immunity in the oral cavity,
the nonavalent vaccine should provide adequate protection to prevent more than
90% of HPV-related OPSCC. The low rates of oral HPV infection, the lack of a
readily identifiable dysplastic precursor lesion in the oropharynx, and the relatively
rare incidence of oropharyngeal cancer (estimated 4.5 cases per 100,000 population
in the U.S. [226]) preclude clinical trials to demonstrate vaccine efficacy for pre-
vention of HPV-associated oropharyngeal cancer. Nevertheless, there is evidence to
support the inference that the vaccine will be effective at preventing
HPV-associated OPSCC. First, antibodies against HPV can be detected in the oral
cavity following HPV infection [227, 228] or HPV vaccination [229, 230]. Second,
vaccination appears to prevent the acquisition of oral HPV infection. In a large
cohort of Costa Rican women, the prevalence of oral HPV-16 and -18 infections
four years after vaccination was 0.03% in those receiving the HPV vaccine com-
pared to 0.5% in those in the control arm of the trial for a HPV vaccine efficacy
estimate of 62.5–99.7% [231]. Similarly, data from the National Health and
Nutrition Examination Survey (NHANES) cohort, including both males and
females, demonstrated an 88% reduction in the prevalence of oral infections with
HPV-6, -11, -16, and -18 in young adults who received at least one dose of the HPV
vaccine [232]. While definitive conclusions from these reports are not possible due
to the low prevalence of oral HPV infection and limited observation periods, the
data thus far favors a positive impact for the vaccine as a primary prevention
strategy for HPV-associated OPSCC.

People living with HIV are likely to derive benefit from the vaccine similar to
the general population. While no published efficacy trials have specifically targeted
HIV-infected populations, phase 1 clinical studies in HIV-seropositive men and
children have demonstrated good safety and immunogenicity of the quadrivalent
HPV vaccine [233, 234]. Importantly, individuals with HIV infection appear cap-
able of generating anti-HPV antibodies in oral fluids [227], suggesting that
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vaccine-mediated protection from OPSCC is feasible in this population. The U.S.
Centers for Disease Control recommends three-dose HPV vaccination for
immunocompromised adolescents and young adults, including those living with
HIV, on the same schedule as recommended for the general population [235].

6.3 Summary

In summary, oral HPV infection is more prevalent in HIV-positive individuals
(13–40%) than in HIV-negative individuals (4–25%). Those with greater lifetime
sexual partners, particularly those reporting a history of oral sex and those with
compromised immunity are the most at risk for oral HPV infection. OPSCC
diagnoses are on the rise in the general population in the U.S., Europe, and Aus-
tralia, and in HIV-infected individuals, restoration of immunity and reduction of
HIV viral load does not appear to reduce the risk of developing OPSCC. Based on
the established natural history of HPV infection at anogenital mucosal sites, it is
believed that chronic HPV infection of the oral epithelium will lead to precancer
and cancerous lesions. Natural history studies are needed to prove this as well as to
establish additional risk factors for HPV-related oral disease development such as
warts or cancer. Partner studies focused on oral HPV acquisition are also needed to
better establish the mode of transmission. The mechanism by which HPV causes
OPSCC also needs further study in order to reveal targeted diagnostic and thera-
peutic opportunities for cancer prevention. In contrast to HPV-associated disease in
the genital tract, HPV-associated head and neck tumors are overwhelmingly
dominated by HPV-16 infection, and they may not require viral integration into the
host chromosome in order to promote tumor formation. Both reversible and irre-
versible genetic and epigenetic changes to the host genome contribute to head and
neck tumor formation. Finally, HPV vaccine implementation needs to be improved
to increase primary prevention of the oral-related HPV diseases.

Table 6.1 List of abbreviations used in this chapter

Abbreviations Definitions

HPV Human papillomavirus

E2 HPV early gene encoding a protein that regulates viral transcription. Also
refers to the protein product of the gene

E6 HPV early gene encoding an oncoprotein that interacts with cellular p53.
Also refers to the protein product of the gene

E7 HPV early gene encoding an oncoprotein that interacts with cellular pRb.
Also refers to the protein product of the gene

(continued)
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Table 6.1 (continued)

Abbreviations Definitions

L1 HPV late gene that encodes the major capsid protein of the virus. Also refers
to the protein product of the gene

L2 HPV late gene that encodes the minor capsid protein of the virus. Also refers
to the protein product of the gene

p53 Tumor suppressor protein that promotes apoptosis

pRb Retinoblastoma protein; tumor suppressor protein that regulates cell cycle

E2F Transcription factor involved in cell cycle progression and proliferation

TP53 Gene encoding the p53 protein

OPSCC Oropharyngeal squamous cell carcinoma, a subset of head and neck cancers

HNSCC Head and neck squamous cell carcinoma

P16INK4A Tumor suppressor encoded by CKN2A. Inhibits cell cycle progression via
inhibition of CDK4 kinase. Biomarker of HPV infection

CDKN2A Cyclin-dependent kinase inhibitor 2A. Gene encodes several transcript
variants, the protein products of which are tumor suppressors that regulate
cell cycle through inhibition of CDK4 kinase

D1 Cyclin D1. Promotes cell cycle progression

CDK4/6 Cyclin-dependent kinase 4, 6. Serine/threonine kinases that promote cell
cycle progression. These kinases phosphorylate and inactivate pRb

RAD51 RAD51 Recombinase. Mediates homologous recombination and DNA
damage repair

ORF Open reading frame, or predicted coding regions of the viral genome

NR4A2 Nuclear receptor subfamily 4 group A member 2. Putative transcription factor
regulating differentiation during neuronal development

KLF5 Kruppel like factor 5. Zinc finger protein that functions as a transcriptional
activator

TP63 Tumor protein p63. Member of p53 transcription factor family

TPRG1 Tumor protein p63 regulated

CpG Cytosine-Guanine dinucleotides that can be methylated at the carbon-5
position of cytosine

DAPK Death-associated protein kinase. Mediates gamma-interferon inducible
apoptosis

MGMT O-6-methylguanine-DNA methyltransferase. DNA repair protein that protects
genome from alkylating agent-induced mutagenesis

MLH1 MutL homolog 1. Component of the DNA mismatch repair machinery

DNMT1 DNA methyltransferase 1. Mediates methylation of genomic CpG
dinucleotides. Involved in maintenance of methylation following DNA
replication

DNMT3A DNA methyltransferase 3 alpha. Responsible for de novo methylation of CpG
dinucleotides

Sp1 Specificity protein 1. Zinc finger transcription factor involved in many cell
processes. Posttranslational modifications determine its function. Can act as
an activator or a repressor

(continued)

6 HPV-Associated Oropharyngeal Cancer in the HIV/AIDS Patient 161



Table 6.1 (continued)

Abbreviations Definitions

P14ARF Tumor suppressor encoded by CKN2A. Inhibits cell cycle progression via
inhibition of CDK4 kinase

CCNA1 Gene that encodes cyclin A1. Coordinates cell division via regulation of
cyclin-dependent kinases. Interacts with Rb family proteins, E2F and p21
family proteins

TP73 Tumor protein p73. Member of p53 transcription factor family. Involved in
cell stress response

CADM1 Cell adhesion molecule 1. Also called IGSF4A. Mediates cell-cell adhesion.
Involved in activating natural killer cell cytotoxicity and interferon-gamma
production by CD8+ T cells

CDH13 Cadherin-13. Appears to protect vascular endothelial cells from oxidative
stress-induced apoptosis

TIMP3 Tissue inhibitor of metalloproteinases 3, TIMP Metallopeptidase inhibitor 3.
Prevent degradation of extracellular matrix via inhibition of matrix
metalloproteinases

IGSF4 See CADM1

WNT Wingless-type MMTV integration site family member. Secreted signaling
protein involved in developmental processes. Promotes
beta-catenin-mediated transcriptional activation

SFRP4 Secreted frizzled-related protein 4. Soluble ligand of WNT family proteins.
Important in bone morphogenesis

ESR1 Estrogen receptor 1. Hormone-responsive receptor that also functions in the
nucleus as a transcription factor

RARb Retinoic acid receptor beta. Steroid-thyroid hormone receptor that binds
retinoic acid. Modulates cell growth

APC Adenomatous polyposis coli tumor suppressor. Inhibitor of WNT signaling

ALDH1A2 Aldehyde dehydrogenase family 1 member A2. Enzyme that catalyzes
synthesis of retinoic acid from precursor retinaldehyde

GATA4 GATA binding protein 4. Zinc finger transcription factor that recognizes
GATA promoter motifs. Important in developmental processes

GFRA4 GDNF family receptor alpha 4. Receptor for persephin. Mediates activation
of RET tyrosine kinase receptor

IRX4 Iroquois homeobox 4. Mediator of cardiac tissue development

OSR2 Odd-skipped related transcription factor 2. Likely involved in developmental
processes

P300 E1A binding protein p300. Transcriptional co-activator protein. Plays a role
in activation of hypoxia response genes

MYC MYC proto-oncogene, BHLH transcription factor. Works in concert with
MAX to initiate gene transcription. Mediates cell growth, apoptosis,
transformation and angiogenesis

HAT Histone acetyltransferase. Catalyzes transfer of acetyl group to lysine residues
on histones to promote open chromatin and transcriptional activity

HDAC Histone deacetylase. Removes acetyl groups from lysine residues of histones
to regulate gene expression

(continued)
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Table 6.1 (continued)

Abbreviations Definitions

HMT Histone methyltransferase. Catalyze transfer of up to three methyl groups to
lysine and arginine residues of histones. Regulates gene expression

HDM Histone demethylase

H3K4me3 Histone 3 Lysine 4 methyl 3. Denotes trimethylation of the fourth lysine on
histone H3. Marker of active transcription

EZH2 Enhancer of zeste 2 polycomb repressive complex subunit 2. In complex with
PRC2, catalyzes the methylation of lysines 9 and 27 on histone 3 to suppress
gene transcription

H3K27me3 Histone 3 Lysine 27 methyl 3. Trimethylation of lysine 27 of histone H3.
Marker of repressed chromatin

JMJD3 Jumonji domain containing 3. Also known as lysine demethylase 6B
(KDM6B). Removes methyl groups from lysine 27 of histone H3, thereby
promoting transcriptional activity

RAS Family of small GTPases that transmit intracellular signals. Promotes cell
growth, differentiation, and survival

PRC2 Polycomb repressive complex 2. Protein involved in transfer of methyl
groups to lysine 27 of histone H3, promoting transcriptional repression.
Responsible for silencing of chromatin during embryonic development

RISC RNA-induced silencing complex. A complex of proteins that suppress
mRNA translation. Specificity is conferred by miRNAs in complex with
RISC

miRNA microRNA. Short noncoding RNA species that suppress translation of
proteins by directing RISC complexes to cognate target nucleotide sequences
on the mRNA transcript 3′ untranslated region

PTEN Phosphatase and tensin homolog. Dephosphorylates phosphoinositide
substrates. Inhibitor of AKT signaling pathway

TPM1 Tropomyosin 1. Actin-binding protein that stabilizes actin filaments.
Functions in muscle contraction

Bcl-2 Apoptosis regulator. Protein located on outer membrane of mitochondria.
Promotes survival of cells, particularly lymphocytes

PDCD4 Programmed cell death 4. Inhibits translation by binding and interfering with
eukaryotic translation initiation factor 4A1

MYO1B Myosin 1B. Motor protein that facilitates cell migration

MALAT1 Metastasis-associated lung adenocarcinoma transcript 1. Long noncoding
RNA that may function as a scaffold for ribonucleoprotein complexes in the
nucleus. Regulates gene transcription and promotes cell migration and
metastasis

EMT Epithelial-mesenchymal transition. Process in which epithelial cells lose
phenotypic properties such as polarity and cell-cell adhesion, and gain
properties that resemble pluripotent mesenchymal stem cells, including
migratory capacity. Functions in wound healing

LCR Long control region; portion of viral genome that contains regulatory
nucleotide sequences

G2/M Cell cycle checkpoint important for repair of DNA damage
(continued)
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Table 6.1 (continued)

Abbreviations Definitions

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha. Gene
encodes catalytic alpha subunit of phosphoinositide-3-kinase (PI3K), p110.
The kinase initiates signaling cascades that promote cell proliferation,
survival, and migration. Activates AKT signaling

AKT AKT serine/threonine kinase. Following activation of AKT by PI3K cascade
AKT phosphorylates a broad array of proteins to promote growth, survival,
migration, and angiogenesis

PI3K Phosphoinositide-3-kinase. Enzyme that phosphorylates the hydroxyl group
at the third position in the inositol ring of phosphatidylinositol. Promotes
signal transduction that results in a number of pro-tumorigenic processes

mTOR Mammalian target of rapamycin. Serine/threonine kinase that phosphorylates
a wide range of proteins involved in pro-tumorigenic processes. Activated by
PI3K/AKT signaling

APOBEC Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like.
Cytidine deaminase. Bind RNA or single-stranded DNA. Converts cytidine to
uridine, thymidine or guanine

TpC Thymidine-Cytidine dinucleotides. Motif recognized by APOBEC cytidine
deaminases

APOBEC3A Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A.
Cytidine deaminase. Plays an antiviral role by editing viral genome
sequences. Active primarily in cytoplasm of monocytes/macrophages

APOBEC3B Apolipoprotein B mRNA editing enzyme catalytic subunit 3B. Cytidine
deaminase. May play an anti-viral role in host defense. Localizes to nucleus
and therefore can cause off-target mutagenesis of host DNA

TCW Thymidine-Cytidine-(Adenosine or Thymidine) nucleotide motif that is
targeted by APOBEC cytidine deaminases

PIP3 Phosphatidylinositol (3,4,5)-trisphosphate. Cell membrane-associated
phospholipid created by phosphorylation of phosphatidylinositol (4,5)-
bisphosphate (PIP2) by PI3K. Mediates AKT signaling

PDK1 Pyruvate dehydrogenase kinase 1. Phosphorylates and deactivates pyruvate
dehydrogenase, a mitochondrial enzyme involved in regulation of
carbohydrate metabolism. Promotes survival during hypoxia and oxidative
stress

MEK MAPK/ERK kinase 1; Mitogen-activated protein kinase kinase 1 (MAP2K1).
Phosphorylates and activates ERK/MAPK

ERK Extracellular signal-regulated kinase, mitogen-activated protein kinase
(MAPK). Part of receptor–ligand-mediated signaling cascade that activates
downstream transcription factors

FGFR2 Fibroblast growth factor receptor 2. Tyrosine-protein kinase and cell surface
receptor that promotes cell signaling via RAS/MEK/ERK or
PI3K/AKT/mTOR pathways

FGFR3 Fibroblast growth receptor 3. Tyrosine-protein kinase and cell surface
receptor that promotes cell signaling via RAS/MEK/ERK or
PI3K/AKT/mTOR pathways
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Abstract
The prevalence of anal human papillomavirus (HPV) infection and anal
high-grade squamous intraepithelial lesion (HSIL) remain high among
HIV-infected individuals on effective antiretroviral therapy (ART). The incidence
of HPV-related anal cancers has continued to increase since the introduction of
ART. Therefore, ART may confer only limited benefit with respect to reducing
the risk of anal HSIL and cancer. Efforts are in progress to define the efficacy of
secondary prevention programs for prevention of anal cancer. In the modern ART
era, anal cancer recurrence and survival outcomes are similar in HIV-infected and
HIV-uninfected patients, but HIV-infected patients may experience more
toxicities. This article reviews the current literature on HPV-associated anal
cancer in the HIV-infected population, including epidemiology, screening,
clinical characteristics, and treatment outcomes.

Keywords
HPV � Anal cancer � HIV � Immunosuppression � Vaccination

7.1 Introduction

Improvements in the care of people living with HIV since the introduction of
antiretroviral therapy (ART) 20 years ago have led to prolonged survival of this
population. For HIV-infected men and women age 20 years who initiated ART
between 2008 and 2010 can expect to live, on average, an additional 40 years or
more and those who started ART and whose CD4 counts exceeded 350 cells/mm3

1 year after ART initiation have an estimated life expectancy approaching that of
the general population [1]. These advances also reflect the availability of increas-
ingly effective antiretroviral agents, more options for the management of patients
developing resistance, fewer drug interactions, better management of opportunistic
infections and chronic diseases, and introduction of HIV screening programs with
initiation of ART immediately upon HIV diagnosis and at higher CD4 levels than
under older guidelines.

There are currently over 1 million people living with HIV/AIDS in the United
States [2]. With decreases in infectious deaths, cancer has become a leading cause
of morbidity and mortality in this patient population [3]. Cancer is now estimated to
be responsible for over one-third of all deaths in HIV-infected individuals [4].
Kaposi sarcoma (KS), certain non-Hodgkin’s lymphomas (NHLs) and cervical
cancer confer the diagnosis of AIDS in an HIV-infected patient, and are referred to
as AIDS-defining malignancies (ADM). Over the years, it has also been recognized
that several additional cancers occur more frequently in HIV-infected patients, such
as lung cancer, hepatocellular carcinoma (HCC), anal cancer, oropharyngeal cancer,
classical Hodgkin lymphoma, and non-melanoma skin cancer [5, 6]. These
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neoplasms in HIV patients are referred to as non-AIDS-defining malignancies
(NADM).

The majority of cancers associated with HIV are linked to co-infection with
oncogenic viruses, with human papillomavirus (HPV) being one of the most
common. HPV is responsible for 100% of cervical cancers and 88% of anal cancers,
with the majority caused by HPV 16 or 18 [7, 8]. The purpose of this article is to
present the most recent information on the epidemiology, treatment, and outcomes
of anal cancer in the modern ART era.

7.2 HPV Infection and HPV-Related Diseases
in HIV-Infected Individuals

The HPV virion contains a double-stranded, circular DNA genome surrounded by a
capsid. HPV initially infects cells of the basal layer of squamous epithelium that has
been exposed due to microabrasions or other forms of breach in the epithelium. The
viral capsid proteins are L1 and L2. The HPV genome is divided into three regions:
early, late, and long control or non-coding (Fig. 7.1). The early region contains the
regulatory proteins, E1 and E2, and the main oncogenic proteins, E6, and E7. The
region also includes the E4 and E5 proteins, with E4 functioning primarily as a
structural protein, and E5 as an accessory oncogenic protein that promotes trans-
formation along with E6 and E7 through reducing turnover of cell surface epi-
dermal growth factor receptor. The oncogenic functions of E6 and E7 are
complementary; E7 inactivates the host retinoblastoma protein and increases the
rate of mutations by enhancing DNA replication. E6 inactivates the host p53 protein
and allows these mutations to accumulate by disrupting DNA repair and cell death
[9]. The E6 and E7 oncoproteins also enhance cellular proliferation, resulting in
increased numbers of infected cells and infectious virions [10].

The anus consists of a mucosa-lined anal canal and a keratinized epithelium-
lined perianal area. The anal canal begins where the rectum enters the puborectalis
sling at the apex of the anal sphincter complex (palpable as the anorectal ring on
digital anorectal examination and approximately 1–2 cm proximal to the dentate
line), and ends where the squamous mucosa blends with the perianal skin, which
roughly coincides with the palpable intersphincteric groove or the outermost
boundary of the internal sphincter muscle. HPV infects basal cells throughout the
anal canal and perianal epithelium, but one of the prime targets of HPV is the anal
epithelial transformation zone (TZ). In the anus, the TZ, extends proximally from
the squamocolumnar junction (SCJ) where the rectal columnar epithelium meets the
squamous epithelium of the anus, to the dentate line distally (Fig. 7.2). The TZ is an
area of active transition from columnar epithelium to squamous epithelium through
the process of squamous metaplasia.

Clinically, mucosal HPVs are classified into low-risk and high-risk types
according to the potential of malignant progression of the lesions they cause [11].
Infections with low-risk HPVs are primarily associated with flat low-grade

7 HPV-Associated Anal Cancer in the HIV/AIDS Patient 185



squamous intraepithelial lesions (LSIL), or genital warts (condyloma acuminata).
HPV-6 and HPV-11 are the most abundant low-risk HPVs and cause more than 90%
of condylomata acuminate [12]. These lesions are at very low risk for malignant
progression and frequently regress spontaneously over time. In rare cases, low-risk
HPV infections can cause slow-growing giant condyloma, also known as Buschke–
Lowenstein tumor. These lesions are highly destructive to adjacent normal tissue
through local spread, and can metastasize [13]. Infections with high-risk HPVs are
associated with carcinoma and premalignant lesions, known as high-grade squamous
intraepithelial lesions (HSIL), in the cervix, anus, vulva, vagina, and oropharynx.

HPV infection is very common in the perianal region and anal canal in both
sexes. The highest anal HPV prevalence (nearly 100%) is found in HIV-infected
men having sex with men (MSM). High-risk HPV types can be detected in the

Fig. 7.1 Human papillomavirus lifecycle and organization of its genome [156]. Basal cells in the
cervical epithelium rest on the basement membrane, which is supported by the dermis. Human
papillomavirus is thought to access the basal cells through microabrasions in the cervical
epithelium. After infection, the early human papillomavirus genes E1, E2, E4, E5, E6, and E7 are
expressed and the viral DNA replicates from episomal DNA. In the upper layers of epithelium (the
midzone and superficial zone) the viral genome is replicated further, and the late genes L1 and L2,
and E4 are expressed. L1 and L2 encapsulate the viral genomes to form progeny virions in the
nucleus. The shed virus can then initiate a new infection. Low-grade intraepithelial lesions support
productive viral replication. An unknown number of high-risk human papillomavirus infections
progress to high-grade anal intraepithelial neoplasias. The progression of untreated lesions to
micro-invasive and invasive cancer is associated with the integration of the human papillomavirus
genome into the host chromosomes (red nuclei), with associated loss or disruption of E2, and
subsequent upregulation of E6 and E7 oncogene expression. LCR = long control region.
Permission: https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=bbdd7703-ca29-4109-bed1-
4bc1990e7ce0
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majority of HIV-positive MSM (73.5; 95% confidence interval [CI]: 63.7–83.0%)
[14]. Multiple HPV genotypes have been associated with HSIL and cancer.
HPV-16 accounts for over 50% of cases of HSIL and anal cancer. Other high-risk
types include 18, 31, 35, 45, 51, 52, and 58 [15]. High-risk HPV are more prevalent
among HIV-infected individuals, which can also contribute to a higher prevalence
of HPV-associated malignancies in this population [16].

HIV-infected women are also at very high risk of anal HPV infection and some
studies show that it is even more common than cervical HPV infection in this
population [17–20]. An early study of HIV-infected and HIV-uninfected women
injection drug users reported that anal HPV infection was twice as frequent as
cervical HPV infection, and that HPV-associated epithelial abnormalities were
associated with lower peripheral blood CD4 cell counts [20]. HIV-infected women
were more likely to have the same HPV genotype in the anus and cervix than
HIV-uninfected women (18 vs. 3%, P < 0.001). This was true for both oncogenic
(9 vs. 2%, P.0.003) and non-oncogenic (12 vs. 1%, P < 0.001) HPV types. In
multivariable analysis of HIV-infected women, CD4 cell count of less than 200 was
the strongest factor associated with concomitant oncogenic (OR.4.2) and

Fig. 7.2 Anatomy of the anal region [157]. The transformation zone, shown in red arrow, extends
from the squamocolumnar junction to the dentate line. Permission: https://s100.copyright.com/
CustomerAdmin/PLF.jsp?ref=3e25e5ed-bc96-46ec-b88d-2b0643f96fad
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non-oncogenic (OR.16.5) HPV infection [18]. Anal intercourse is not required for
anal HPV infection, and may possibly be spread from the cervix to the anus by
wiping after going to the toilet [19]. Likewise, HIV-infected men who have sex
with women have a high prevalence of anal HPV infection [17], potentially
acquired through autoinoculation.

The terminology for HPV-associated squamous lesions of the lower anogenital
tract has a long history marked by confusion caused by the various terminologies
employed by pathologists and clinicians from differing specialties to describe the
same histopathological entity. The Lower Anogenital Squamous Terminology
(LAST) project created a histopathologic nomenclature system that reflects current
knowledge of HPV biology. Current data support the two-tiered system of LSIL
and HSIL [21], which may be further qualified with the appropriate intraepithelial
neoplasia (-IN) terminology for specific location. The biomarker, p16, has the most
robust published literature on its utility to help make morphological diagnoses of
HPV-associated squamous lesions, particularly intermediate lesions such as
intraepithelial neoplasia grade 2 (IN-2) or moderate dysplasia, more objective and
reproducible. Negative or non-block positive staining of IN-2 lesions strongly
favors an interpretation of LSIL or a non-HPV-associated pathology [22]. Therefore
in the anus, LSIL includes condyloma, AIN 1, and p16-negative AIN 2, and these
are not considered to be precancerous. In contrast, anal HSIL includes p16-positive
AIN 2 and AIN 3. HSIL is considered to be the true cancer precursor [21].

Given the high prevalence of anal HPV in HIV-infected men and women, it is
not surprising that anal HSIL is also common in this population. In the Multi-
center AIDS Cohort Study, the prevalence of any abnormal anal cytology was 38,
41, and 47% among HIV-infected MSM with current CD4+ T-cell count � 500,
350–499, and <350 cells/mm3 (P < 0001), respectively [23]. A prospective cohort
study to assess the natural history of anal HPV infection in HIV-infected MSM in
the ART era showed that the incidence of any anal HPV infection and oncogenic
anal HPV infection was 21.3/100 and 13.3/100 person-years, respectively [24].
20% of these men with an incident HPV infection also had more than one new HPV
type detected during follow-up [24]. Low CD4 counts are a risk factor for
HIV-positive individuals developing anal squamous intraepithelial lesions (ASIL).
Palefsky et al. showed that, for HIV-infected men, having CD4 cell counts below
200 cells/mm3 was associated with more than threefold increased incidence of
progression (based on cytology and/or biopsy) of normal or atypical epithelium to
ASIL, or from anal LSIL to a higher grade lesion [25]. HIV-infected MSM on
effective ART for 24 months or more have also been shown to be have less HPV
infection and less anal HSIL, although the reduction in HPV burden is relatively
modest (from 100 to 88%) [26, 27].

Consistent with their high prevalence of anal HPV infection, HIV-infected
women have a high prevalence of ASIL. Even in the era of effective ART, the
prevalence of ASIL has been found to be significantly increased among
HIV-infected women (16%) compared with HIV-uninfected women (4%) [28]. The
Women’s Interagency HIV Study showed a prevalence of 9 and 1% of anal HSIL in
HIV-infected and HIV-uninfected women, respectively [28]. More recent data
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indicate that the prevalence of anal HSIL in HIV-infected women was 28% [29]. In
HIV-infected women, progressive immunodeficiency and higher HIV viral load
also are associated with an increased rate of cervical HPV carriage, cervical HSIL
and cervical cancer [30, 31]. Previously, smaller studies with short follow-up
periods did not show a beneficial impact of ART on high-risk HPV infection [32,
33]. More recently, larger prospective cohorts demonstrated that sustained virologic
suppression by effective ART can decrease the risk of persistent high-risk HPV
infection and lead to more rapid clearance of HPV-related cervical SILs [34–36].

It has been demonstrated that HPV-induced anal HSIL lesions are the direct
precursors of anal cancer. In a retrospective review of 138 HIV-infected MSM
diagnosed with anal cancer during 1997–2011, anal cancer developed at the pre-
viously biopsied site of anal HSIL in 27 men [37]. Sixty six men were diagnosed
with anal cancer at their first clinic visit, and they all had HSIL as well. The
concordance between the location of the HSIL and the cancer could not be
definitively confirmed in 45 men, but most of them had HSIL overlying or
immediately adjacent to their cancer. However, the risk and rates of progression
from HSIL to anal cancer among HIV-infected patients who were not treated for
HSIL are not precisely known. In a recent meta-analysis, Machalek et al. estimated
the progression rate from anal HSIL to anal cancer among HIV-infected men in the
modern ART era to be one in 377 per year in the absence of treatment for precursor
lesions [14]. In a retrospective cohort analysis of HIV-infected patients under care
at the University of California at San Diego Owen Clinic, patients with a baseline
HSIL anal cytology had an estimated 5-year probability of progression to anal
cancer of 1.7% and an estimated annual progression risk of 1 in 263 [38]. This
group of investigators also found a high probability of regression of the anal HSIL
state (27–62%) at 2 years after initial cytology screening using a 3-state Markov
model of clinical pathogenesis [39]. More recently, Dalla Pria et al. reported on the
experience of an HIV-infected MSM cohort in which HRA with intervention for
HSIL was routinely offered [40]. In this HSIL-treated cohort, the estimated rate of
anal cancer from histopathologic diagnosis of anal HSIL ascertained at the first
HRA was 6.1 per 1000 person-years (95% CI: 4.2–7.8); this rate corresponds to per
person per year rate of 1/164. Of note, these estimated rates of progression for anal
HSIL are lower than the risk of progression to cancer for cervical HSIL (approx-
imately 1 in 80 per year) [41]. It appears that on a per-lesion basis, anal HSIL is less
likely to lead to anal cancer than cervical HSIL is to cervical cancer. The reasons for
the lower susceptibility of the anus to malignant transformation compared with the
cervix are unknown, but the hormonal milieu and potentially the different micro-
biomes of the two sites may be involved.
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7.3 Primary Anal Cancer Prevention

Vaccination with the bivalent and quadrivalent HPV (qHPV) vaccine has been
shown to reduce anal infection with HPV 16 and HPV 18 in both males and females
naïve to those types [42, 43]. Clinical trials to determine the efficacy of vaccination
to reduce the incidence of ASIL and penile HPV-associated disease have only been
performed with qHPV vaccine. These studies confirmed that qHPV vaccine could
reduce the risk of genital warts and anal HSIL in males [43]. In one double-blinded
trial, 602 sexually active MSM, age 16–26, were randomized to receive 3 doses of
(qHPV vaccine or placebo and evaluated every 6 months by HRA and HPV testing
over 3 years. There was significant reduction of anal HSIL associated with any type
of HPV (not only those associated with HPV 6, 11, 16 and 18) in those who
received the qHPV vaccine compared with those who received the placebo [43].
Wilkin et al. evaluated 112 HIV+ men (ages 27 or older with no evidence of anal
HSIL) with the three-dose course of qHPV vaccine and found that all of these
HIV+ men seroconverted [44]. Therefore, qHPV vaccine has been demonstrated to
be both immunogenic and safe in HIV-infected men. The efficacy of HPV vacci-
nation in prevention of anal HSIL in HIV-infected MSM is being evaluated in an
ongoing trial [45]. Deshmukh et al. estimated that qHPV vaccination of
HIV-negative MSM age 27 or older treated for anal HSIL would reduce the lifetime
risk of anal cancer by 60.77% at an incremental increase of cost-effectiveness ratios
(ICER) of $87,240 per quality-adjusted life-year [46]. Their modeling suggests that
qHPV vaccination for MSM may decrease their lifetime risk of anal cancer and is a
cost-effective strategy because it decreases lifetime costs and increases
quality-adjusted life expectancy.

In 2015, the 9-valent (9v) HPV vaccine became available, adding HPV types
HPV 31, 33, 45, 52, and 58 to HPV 6, 11 16 and 18 from qHPV. Joura et al.
evaluated the safety and efficacy of the 9v HPV vaccine through a double-blind
international multicenter trial of 14,215 young women randomized to 9v HPV
vaccine or qHPV vaccine. The investigators found that the 9v HPV vaccine pre-
vented infection and disease related to HPV 31, 33, 45, 52, and 58 in a susceptible
population and generated an antibody response to HPV 6, 11, 16, and 18 that was
non-inferior to that generated by the qHPV vaccine [47]. From these data, it is
assumed that the 9v HPV vaccine will provide the same degree of protection as
qHPV vaccine from persistent HPV infections and development of anal HSIL (and
possibly progression to anal cancer) in patients without evidence of prior
vaccine-type HPV infection.

In the long term, HPV vaccination should be an excellent tool for reduction of
anal cancer. Vaccination is currently routinely recommended with the 9v vaccine
for individuals as young as age 9, with a target of 11–12 years of age. Catch-up
vaccination is recommended up to 26 years of age for all women and up to age
21 years for men. However, catch-up vaccination is recommended up to 26 years is
recommended for MSM and HIV-infected/immunocompromised individuals. [48].
The qHPV vaccine induces similar antibody titers in two doses as in three doses if
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the two doses are given 6 months apart in young individuals [49]. In a
meta-analysis of seven controlled trials in 11 countries with direct comparisons
between two-dose and three-dose HPV vaccine schedules, adolescent girls
receiving a two-dose HPV vaccine schedule with a 6-month interval between doses
had non-inferior antibody responses to HPV16 and HPV18 (measured as geometric
mean concentrations or seropositivity) for at least 2 years after the first dose when
compared with post-adolescent women receiving the licensed three-dose schedule
[50]. Based on the results of these trials, the CDC currently recommends that
children under the age of 15 years receive two doses of HPV vaccine instead of
three, whereas the 3-dose regimen is still required for other eligible groups,
including HIV-infected individuals [51]. Most HIV-infected individuals currently at
risk for anal cancer are older than 26 years and do not qualify for HPV vaccination.
Even if the vaccine is made available to them, a high proportion are likely to have
already have been exposed to HPV 16 and 18 [52]. Among those who might benefit
from vaccination, the impact of the vaccine has been reduced by poor uptake.
Uptake of the qHPV vaccine is limited, with only 43% of eligible women and 31%
of eligible men receiving all three doses of the vaccine through 2016. The uptake is
better for two-dose regimens of qHPV vaccine (55% for women, 43.6% for men)
[53]. While herd immunity due to vaccination of females may contribute to pro-
tection against HPV even among those who have not been vaccinated, it is likely to
be very limited among MSM.

There are several reasons for the poor rates of HPV vaccination in the U.S.,
including varying levels of access, fear of HPV vaccine side effects, limited
understanding of the benefits of HPV vaccination, and fear of vaccination in
general. Finally, given the long period of time required for progression from cer-
vical or anal HSIL to invasive cancer, it is expected that it will be decades before
any reduction in cancer incidence is realized.

7.4 Secondary Anal Cancer Prevention

Combined with the fact that most HIV-infected men and women are too old for
vaccination or were exposed to HPV 16 and 18 before vaccination became avail-
able, millions of men and women remain susceptible to HPV 16- and HPV
18-related HSIL and cancer. For these individuals, secondary prevention in the
form of identifying and treating HSIL may be the only option to reduce the risk of
anal cancer. Determination of the efficacy of HSIL treatment to prevent anal cancer
is therefore a current and public health concern for the foreseeable future for this
target population.

Secondary prevention of anal cancer consists of detection and treatment of anal
HSIL. Anal HSIL can be detected by anal cytology, high-resolution anoscopy
(HRA) and/or biopsy. Unlike cervical cancer, United States Preventive Services
Task Force guidelines for anal screening are not yet in place (47). This is largely
because the efficacy of treating anal HSIL in preventing anal cancer in HIV-infected
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men and women is not yet known. The Anal Cancer/HSIL Outcomes Research
(ANCHOR) Study, supported by the National Cancer Institute and Office of AIDS
Research, is an ongoing phase III, randomized, multi-institutional trial to determine
whether treating anal HSIL is effective in reducing the incidence of anal cancer in
HIV-infected men and women [54]. These results from this major trial should lead
to changes in standard-of-care guidelines.

New York State HIV treatment guidelines recommend yearly anal cytology for
certain subgroups of HIV-infected individuals [55]. Other guidelines, such as those
published by the HIV Medicine Association of the Infectious Diseases Society of
America recommend anal cytology screening for anal cancer, but do not specify the
frequency of anal cytologies nor the necessity of HRA for follow-up of abnormal
anal cytology results [56]. In many regions, resources for anal cytology and the
follow-up HRA screening procedures remain limited.

Anal cytology is the test most commonly used to identify individuals who might
benefit from HRA. While national organizations such as US Preventive Health Task
Force or American Cancer Society do not recommend routine anal cancer screening
using anal cytology, we believe that HIV-infected MSM should be considered for
screening. Cost-effectiveness analyses have shown that screening MSM regardless
of HIV status is justifiable [57]. Other at-risk groups that should be considered for
anal cytology include HIV-infected women, HIV-infected men who have sex with
women, women with a history of vulvar or cervical cancer, and organ/marrow
transplant recipients. Women with a history of vulvar or cervical HSIL may also be
considered for screening. Sensitivity of anal cytology is in the range of 50–80%,
with sensitivity being higher in the HIV-infected population [58].

Primary HPV testing and cervical cytology have been recommended for primary
cervical cancer screening of women between 30 and 65 years of age [59]. HPV
testing is also helpful for triage of women with equivocal or low-grade cytologic
abnormalities and prediction of the therapeutic outcome after treatment of cervical
HSIL [60]. In contrast, the role of HPV testing in anal cytologic specimens is less
well-established. Prior studies have shown that molecular tests for the presence of
high-risk HPV have high sensitivity but low specificity for anal HSIL [61–63]. HPV
testing may be more useful in HIV-uninfected MSM for its negative predictive value
[64, 65]. Further research is needed to determine the optimal use of anal HPV testing
in screening algorithms for anal HSIL in different at-risk populations.

Individuals with abnormal anal screening cytology are referred for HRA in
which the anal canal is examined with a colposcope after the application of 5%
acetic acid and/or Lugol’s solution and visible lesions are biopsied for histological
diagnosis (Fig. 7.3). In many clinical centers patients with histologic results of anal
HSIL are recommended for treatment to prevent progression from anal HSIL to
invasive cancer, even as the results of the ANCHOR study are awaited, However,
unlike the treatment of cervical HSIL where the entire SCJ of the cervix is either
ablated or excised, the entire SCJ of the anal canal cannot be surgically treated for
concerns of stricture or other complications. Currently, the most commonly used
treatment is HRA-directed ablation of apparent anal HSIL lesions. Unfortunately,
recurrence rates are very high and frequently additional treatments are needed [66].
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Example of anal HSIL

Example of anal cancer

(a)

(b)

Fig. 7.3 Visualization of Anal HSIL and cancer under high-resolution anoscopy. a Anal HSIL,
shown in red arrow, is aceto-white with coarse mosaic pattern and punctation. b Anal cancer,
shown in red arrow, shows atypical vascular changes. It can be friable and ulcerated. A mass
should be palpable by digital examination. There may be focal tenderness
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7.5 Anal Cancer in HIV-Infected Individuals

The majority of patients with anal cancer present with bleeding, pain or sensation of
a mass [67]. Bleeding from a mass at or just above the anal sphincter may be falsely
attributed to hemorrhoids and may delay the diagnosis. At initial presentation, most
patients have a T1 (tumor 2 cm or smaller) or T2 (tumor more than 2 cm but less
than 5 cm) lesion and fewer than 20% are node-positive [68]. The probability of
nodal spread is directly related to tumor size and location. It is far more common in
cancers that originate in the anal canal than on the perianal skin. Tumor size (T
stage) and nodal status (N stage) are the most significant prognostic factors for
patients with anal cancer (Table 7 1). In a large series of 270 patients, the 5-year
survival by stage was 86% for those with T1-2 disease versus less than 60% for
T3-4 disease, and 76% for those with N0 disease versus 54% for those with
node-positive disease [69].

Anal cancer is a relatively uncommon cancer in the general population. How-
ever, its incidence rate in the US has nearly doubled from the period of 1973–1970
to 1994–2000, and the rate is continuing to rise [70]. According to an analysis of
Surveillance, Epidemiology, and End Results (SEER), the incidence of anal cancer
increased by 2.9% per year during 1992–2001 [71]. In 2017, there are estimated
8200 new cases of anal cancer (2950 in men and 5250 in women) and 1100 deaths
in the US [72].

It is estimated that there are approximately 37 million people worldwide living
with HIV/AIDS as of the end of 2015 [73], including about 1.2 million
HIV-infected individuals in the United States [74]. Approximately 1% of women
and 28% of men with anal cancer are HIV-infected [75]. Prior to the availability of
effective ART, the estimated incidence of anal cancer among HIV-infected MSM
was nearly 60-fold higher than men in the general population [76]. Since the advent
of effective ART, the incidence of malignancies associated with Epstein–Barr virus
and Kaposi sarcoma herpesvirus has decreased in HIV-infected individuals.
However, the incidence of HPV-associated anal cancer has increased. In a study of
34,189 HIV-infected individuals and 114,260 HIV-uninfected individuals from the
North American AIDS Cohort Collaboration on Research and Design
(NA-ACCORD) cohort with follow-up between 1996 and 2007, the unadjusted
anal cancer incidence rates per 100,000 person-years were 30 for HIV-infected
women, 0 for HIV-uninfected women, 131/100,000 for HIV-infected MSM,
46/100,000 for other HIV-infected men, and 2/100,000 for HIV-uninfected men.
Therefore, the incidence of anal cancer in HIV-infected MSM is estimated to be 80
times higher than men in the general population [6]. This increase in incidence of
anal cancer has been shown to be strongly influenced by the HIV epidemic in men
[75]. In particular, the HIV prevalence was as high as 84% in anal cancer cases
occurring in young African-American men [75]. Low CD4 count was also asso-
ciated increased incidence rate of anal cancer [77]. The immunosuppression asso-
ciated with HIV infection reduces the ability to control oncogenic viral processes,
which could explain the higher risk of infection-related cancers.
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Table 7.1 TNM staging for anal cancer

Anal cancer TNM staging AJCC UICC 2017

Primary tumor (T)
T category T criteria
TX Primary tumor not assessed

TO No evidence of primary tumor

Tis High-grade squamous intraepithelial lesion (previously
termed carcinoma in situ, Bowen disease, anal
intraepithelial neoplasia II-III, high-grade anal
intraepithelial neoplasia)

T1 Tumor � 2 cm

T2 Tumor >2 cm but � 5 cm

T3 Tumor >5 cm

T4 Tumor of any size invading adjacent organ(s), such as
the vagina, urethra, or bladder

Regional lymph nodes (N)
N category N criteria
NX Regional lymph nodes cannot be assessed

ND No regional lymph node metastasis

N1 Metastasis in inguinal, mesorectal, internal iliac, or
external iliac nodes

Nla Metastasis in inguinal, mesorectal, or internal iliac
lymph nodes

N1b Metastasis in external iliac lymph nodes

N1c Metastasis in external iliac with any Nla nodes

Distant metastasis (M)
M category M criteria

MO No distant metastasis

Ml Distant metastasis

Prognostic stage groups
When T is… And N is… And M is… Then the stage group is…
Tis NO MO 0

T1 NO MO I

T1 N1 MO IIIA

T2 NO MO IIA

T2 N1 MO IIIA

T3 NO MO IIB

T3 N1 MO IIIC

T4 NO MO nm

T4 N1 MO IIIC

Any T Any N Ml IV

Used with permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The
original and primary source for this information is the AJCC Cancer Staging Manual, Eighth
Edition (2017) published by Springer International Publishing
TNM Tumor, node, metastasis; A American Joint Committee on Cancer; UICC Union for
International Cancer Control
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A recent analysis from the HIV/AIDS Cancer Match Study, a linkage of
population-based state HIV and cancer registries, showed that anal cancer is the
third most common cancer occurring in excess in the HIV-infected population. 83%
of excess cases of anal cancer occurred among HIV-infected MSM, and 71%
among those living five or more years since AIDS onset [15]. As effective ART has
greatly prolonged the life expectancy of those with HIV, the proportion of the
HIV-infected population in older age groups has increased and will likely continue
to increase in the future. A recent publication from NA-ACCORD showed that the
annual trend in the cumulative incidence of anal cancer among HIV-infected adults
(who were mostly men) was significantly increasing (6% per year) compared to it
being stable in HIV-uninfected adults [78]. Yanik et al. used a linkage between data
from cancer registries in the SEER program of the National Cancer Institute and
Medicare claims (SEER-Medicare) to estimate absolute cancer risk among people
age 65 years or alder with an HIV diagnosis and evaluate the association between
HIV and cancer in this age group [79]. They also found that HIV-infected indi-
viduals aged 65 or older had higher incidence of anal cancer compared with
HIV-uninfected elderly persons (adjusted hazard ratio = 34.2) [80]. This highlights
a clear need for cancer prevention in this age group and the importance of
screening.

Several cohort studies reported that immunodeficiency is associated with anal
cancer incidence in HIV-infected individuals. Either nadir CD4 of less than 200
cells/mm3 or longer duration of time with CD4 less than 200 cells/mm3 have been
shown to be related to higher risk of anal cancer [81, 82], but results from studies
evaluating the effect of HIV viral load on incidence of anal cancer have been mixed.
Silverberg et al. [83] found that most recent HIV viral load was not associated with
anal cancer risk. However, they did not evaluate any cumulative markers of HIV
viral load control. Chao et al. performed a retrospective cohort study among male
US veterans diagnosed with HIV and followed between 1985 and 2009 using the
Veterans Affairs Immunologic Case Registry. They found that individuals with
excellent HIV control (between 80 and 100%) during their follow-up time have an
approximately half of the risk of anal after adjusting for the effect of CD4 count.

Protease inhibitors (PIs) selectively bind to the catalytic site of HIV protease,
interfering with HIV replication. Some PIs (e.g., indinavir, saquinavir, ritonavir,
lopinavir, and nelfinavir) at varying concentrations have been shown to be
anti-angiogenic and anti-tumorigenic because of their effects on cell invasion and
matrix metalloproteinases, as well as because of modulation of the activity of cell
proteasome [84, 85]. Nelfinavir also targets the phosphoinositide 3-kinase/AKT
pathway, which is thought to play an important role in the development of cancers
through multiple mechanisms [86]. There are no in vitro data available regarding
the pathways targeted by specific PIs in anal cancer, but anal cancer closely
resembles cervical cancer in several ways. In contrast to some of the other studies, a
study of HIV-infected male US veterans looked specifically at the use of PIs and
their relationship to incidence of anal cancer and showed the contrary. In multi-
variate analysis, increasing percentage time on PIs was associated with an increased
risk of anal cancer [3]. Poor immunologic recovery and virologic control, a history
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of condylomata acuminata, and case registry enrollment in the late combined ART
era were also associated with increased anal cancer risk.

7.6 Treatment and Outcomes of Anal Cancer

Concurrent chemoradiotherapy (CRT) with 5-fluorouracil (5-FU) infusion and
mitomycin (or cisplatin) has been established as the standard-of-care regimen for
non-metastatic anal cancer [87–92]. In ACCORD 03, induction chemotherapy prior
to CRT did not improve response rates, 3-year colostomy-free survival, event-free
survival, local control, or overall survival [93]. The UK ACT II trial included over
900 anal cancer patients randomly assigned to radiotherapy with either
5-FU/mitomycin or 5-FU/cisplatin. Patients in each arm were further randomly
assigned to maintenance therapy with two cycles of 5-FU/cisplatin or no mainte-
nance. At median follow-up of 5.1 years, no differences were found in complete
response rate or progression-free survival [91]. Intensity-modulated radiotherapy
(IMRT) has also been shown to reduce acute toxicities compared with conventional
three-dimensional radiotherapy [94, 95]. Unfortunately, HIV-infected patients were
excluded from these major trials.

When CRT was first applied to HIV-infected patients in the pre-ART era,
reduced doses of radiotherapy and/or chemotherapy were administered due to
concern for increased hematologic and mucosal toxicity secondary to compromised
immunologic status [96, 97]. However, when therapy was applied in standard
doses, increased toxicity, requiring treatment breaks or dose reductions, and poorer
clinical outcome were reported [98, 99]. In five studies that included 53
HIV-infected patients, the incidence of grade 3–4 skin toxicity was 50–78% [96,
98–101]. Pretreatment CD4 count less than 200 was identified as a factor associated
with poorer anal cancer control and increased treatment morbidity in a small ret-
rospective cohort [100].

In the modern ART era, immune restoration with effective suppression of HIV
viral load and elevation in CD4 count could be achieved in most HIV-infected
patients, with improvement in compliance and reduction in treatment-related side
effects. Reports on clinical outcomes of HIV-infected patients with anal cancer
treated with standard therapy have been conflicting. Blazy et al. reported that
high-dose CRT with radiotherapy doses of 60–70 Gy with concurrent 5-FU and
cisplatin is feasible [102]. However, some studies show that HIV-infected patients
had comparable disease control and survival to HIV-negative patients [103–109],
whereas others suggested that HIV-positive patients may do worse in terms of
enhanced treatment-related toxicity and/or an increased risk for local relapse [110–
114]. Wexler et al. reported the local failure rate was only 16% in their cohort, but
44% of patients had T1N0 disease [107], which could reflect the fact that many of
the referring providers are experienced in caring for HIV-infected individuals and
more likely to examine patients for HSIL and anal cancer. Martin et al. reported
their single-center experience with standard 5-FU/mitomycin CRT with long-term
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follow-up. Despite HIV-infected patients having higher nodal stages, the complete
response rates after CRT were higher than 80% in both HIV-infected and
HIV-uninfected patients [108]. In contrast, one of the largest series of anal cancer
patients (total = 107, HIV-infected and HIV-uninfected) showed that HIV-infected
patients had significantly worse overall survival and colostomy-free survival
compared with a similar cohort of HIV-negative patients, despite having similar
treatment approach, patient adherence, and cancer stage [114]. There were also no
differences in radiation-related acute toxicity based on HIV status. There are no
clear explanations for the differences, or lack of differences, in the outcomes of anal
cancer in the HIV-infected versus the HIV-negative population. Almost all of these
reports are limited by small patient numbers and the retrospective nature of the data.

Capecitabine, an established treatment alternative to intravenous 5-FU for
patients with colorectal cancer, has also been tested in patients with locally
advanced anal cancer. Small retrospective comparisons showed capecitabine had
similar 3-year locoregional control rates and overall survival compared with 5-FU
[115], and the capecitabine group had lower rates of grade 4 hematologic toxicity
[116] when combined with mitomycin and radiotherapy. In a small prospective
single-arm phase II study, chemoradiotherapy with capecitabine and mitomycin
yielded a locoregional control of 86% in 6 months (CI 95% 0.72–0.94) and similar
toxicity profile [117]. Despite the limited data, capecitabine has been accepted as an
alternative to 5-FU in treatment of non-metastatic anal cancer.

7.7 Novel Therapies for Anal Cancer

Cetuximab is an epidermal growth factor receptor antibody whose activity depends
on the presence of wild-type k-ras. It is felt to be a promising agent because k-ras
mutations are rare in anal cancer [118]. Cetuximab also prolongs survival when
used in combination with radiation therapy in patients with locally advanced
squamous cell carcinoma of the oropharynx [119, 120], and enhances the activity of
cisplatin in advanced head and neck cancers [121]. The ACCORD 16 anal cancer
trial assessed response rates after CRT with 5-FU, cisplatin, and cetuximab. This
study was prematurely terminated due to unacceptably high rates of serious adverse
events, and 2 of 5 patients who completed planned treatment experienced locore-
gional recurrences [122, 123]. The AIDS Malignancy Consortium (AMC) and
Eastern Cooperative Oncology Group (ECOG) recently completed two trials that
were concurrently conducted to determine the effectiveness of cetuximab plus
chemoradiation (CRT) in patients with HIV infection (AMC045) and without HIV
infection (E3205) [109, 124]. It is important to note that patients with HIV infection
had similar clinical outcomes as those who did not have HIV infection, with about
70% being alive and recurrence-free at 3 years. Treatment tolerance and the overall
side effect profile were also similar in the two populations. However, the locore-
gional failure rate of 20% and grade 4 toxicity rate of 26% indicate the continued
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need for more effective and less toxic treatment in HIV-infected patients with newly
diagnosed anal cancer.

Despite the effectiveness of CRT in primary treatment of anal cancer, the
locoregional failure rate has been reported as 10–30% [125, 126]. There are 10–
20% of anal cancers that present with extrapelvic disease at initial diagnosis [127],
and 25% of cases develop distant metastases [128]. For recurrent or metastatic anal
cancer, treatment options are quite limited. Patients with biopsy-proven local
recurrence of anal cancer can be treated with abdominoperineal resection and
colostomy [125]. A small single-arm study of 19 patients showed cisplatin and
5-FU had a response rate of 66% for metastatic anal cancer [129]. However, no
consensus exists regarding treatment following progression on first-line therapy for
unresectable or metastatic anal cancer.

Given the paucity of treatment options for recurrent or metastatic anal cancer,
effective novel therapies are greatly needed. Immune checkpoint therapy is now a new
pillar of cancer therapy. Many cancers evade immune surveillance and destruction
through upregulation of the immune cell checkpoint molecule programmed death
ligand 1 (PD-L1). Program death-1 (PD-1) is an inhibitory receptor expressed by an
activated CD4+ and CD8+ T cells. When PD-L1 binds its inhibitory receptor PD-1
on the surface of T cells, T-cell activation is downregulated, which in turn reduces the
local anti-tumor immune response [130]. PD-L1 positivity, which had not been pre-
viously defined in anal cancer, was found to be high (74% of screened patients) in one
study [131]. In addition, the PD-1 pathway may mediate pathogen-specific and
cancer-specific CD8+ T-cell dysfunction in chronic HIV infection [132].

Recently, several monoclonal antibodies have been developed that block the
binding of PD-1 to PD-L1. Nivolumab is a humanized monoclonal antibody against
PD-1 that disrupts this interaction and enables T-cell cytotoxicity. It has activity as
a monotherapy in multiple advanced solid cancers, and has been approved by the
Food and Drugs Administration for treatment of head and neck cancer, melanoma,
non-small-cell lung cancer, and renal cell carcinoma [133–136]. Recently Eng et al.
conducted a multicenter phase 2 study of nivolumab for patients with previously
treated metastatic anal cancer [137]. Among the 37 patients who received at least
one dose of nivolumab, 9 (24%) had either complete or partial response with a side
effect profile similar to other trials. In KEYNOTE-028, pembrolizumab had a
response rate of 17% (95% CI, 5–37%) and 10 (42%) had confirmed stable disease,
for a disease control rate of 58% [131]. The Eastern Cooperative Oncology Group
(ECOG) and the American College of Radiology Imaging Network (ACRIN) are
planning a trial (ECOG-ACRIN 2165) to determine if there is benefit for adjuvant
nivolumab after anal cancer patients have completed standard-of-care CRT. There
are also 2 ongoing clinical trials using either nivolumab or pembrolizumab in
HIV-infected patients with advanced solid tumors (NCT 02408861 and NCT
02595866). Assuming that HIV-infected patients maintain adequate CD4+ T-cell
counts under careful clinical observation with an infectious diseases specialist,
HIV-infected patients be considered for participation in future clinical trials with
immune checkpoint inhibitors so that the safety and activity of these drugs can be
studied further in a larger series.

7 HPV-Associated Anal Cancer in the HIV/AIDS Patient 199



7.8 HIV-Related Treatment Issues in Treatment
of Anal Cancer

For HIV-infected patients with cancer, concurrent treatment with ART and
anti-cancer therapy is increasingly common [138]. Extrapolating from treatment
studies of HIV-associated lymphomas, combining ART and chemotherapy is tol-
erable in most cases and is not associated with life-threatening toxic effects, similar
to those observed in patients with cancer without HIV infection [139–141]. In
HIV-infected patients receiving chemotherapy for cancer, most modern ART reg-
imens can be safely implemented to suppress viral replication to undetectable
levels. Less is known about the interaction between ART and new anti-cancer
agents such as immune checkpoint inhibitors. Recent guidelines state that integrase
strand transfer inhibitor (INSTI)-based regimens may be preferred in cancer patients
receiving anti-cancer treatment because of their more favorable drug interaction
profile [142]. Zidovudine is often avoided because it commonly causes nausea,
anemia, and myelosuppression, which can be potentiated by chemotherapy [143].
Tenofovir may lead to renal dysfunction, particularly in patients receiving other
nephrotoxic drugs such as cisplatin. For protease inhibitors (PIs) and
non-nucleoside reverse transcriptase inhibitors (NNRTIs), the potential for drug–
drug interactions is high because these agents are extensively metabolized by and
induce or inhibit the CYP450 system, which mediates the metabolism of more than
half of all drugs that undergo hepatic metabolism [144]. PIs also may act as
radio-sensitizers by inhibiting proteasome function and causing apoptosis [145],
thereby potentially increasing both tumor control and toxicity.

In HIV-infected cancer patients, CD4 count, HIV-1 RNA level, and HAART
adherence should be monitored [142]. A low CD4 count might not necessarily
reflect suboptimal immunologic response to ART because CD4 counts can be
affected by both the malignancies and/or their treatment. Kesselring et al. showed
that in the 6 months prior to diagnosis of NADM in HIV-infected patients, a
significant CD4 decline could be seen [146]. When administered to immunocom-
petent individuals, chemotherapy causes a profound decline in CD4 cell counts and
a more modest fall in CD8 T cells [147], while the natural killer cell population is
relatively spared [148]. The most striking finding from studies in immunocompetent
patients is the protracted amount of time needed for recovery of the CD4 cells. In
people with HIV there is concern that prolonged CD4 suppression induced by
chemotherapy may have a major adverse influence on the course of HIV disease
even when suppression of HIV viremia is maintained with ART. Furthermore,
although both chemotherapy and radiotherapy lead to decline in CD4 cell count, the
effect of radiotherapy on CD4 is more prolonged and significant, whereas
chemotherapy does not influence CD4 cell count recovery [149]. Since the major
source of bone marrow is radiated, the CD4+ T-cell count may fall severely and
may not readily recover to pretreatment values. Scatter of radiation may also affect
the intestinal tract, which is also an important compartment for CD4+ T cells [150,
151]. In a single institution study of 60 HIV-infected patients with anal cancer,

200 C.-C. J. Wang and J. M. Palefsky



those who received CRT with effective HAART had higher pretreatment CD4
compared those who received CRT without HAART. However, median CD4 at
3 months after anal cancer diagnosis was more than 50% lower than their pre-
treatment value, and their median CD4 at 12 months after diagnosis was only 200
cells/mm3 [103].

CRT potentiates the neutropenia associated with HIV/AIDS. For anal cancer
patients who receive pelvic radiation, myelosuppression may be especially severe.
Granulocyte colony-stimulating factors (GCSF) can reduce the effects of
chemotherapy-induced neutropenia, and is often liberally used by oncologists when
treating cancer in HIV-infected patients. The caveat is that GCSF should not be
given concurrently with CRT due to concern for worsening hematologic toxicity
[152]. The immunological deterioration following CRT may have an impact on the
clinical course of the HIV disease and may be associated with an increased risk of
opportunistic infections and diseases. One group reported that 4 patients (11%)
developed opportunistic illnesses such as candida esophagitis during long-term
follow-up of their anal cancer [153]. Therefore, antibiotic prophylaxis should be
implemented to further reduce infectious complications during the treatment of
HIV/AIDS-associated anal cancers based on careful assessment of risk.

The guidelines for prophylaxis against opportunistic infections in patients with
HIV take into account risk and history of exposure, as well as the status of the
immune system, particularly as reflected by the CD4 count, the receipt of and
duration of HAART, and the response to HAART [154]. The guidelines for pre-
venting of infections in patients with cancer are centered on the degree and duration
of neutropenia, a key risk factor for infection [155]. Both the HIV-related and
cancer-related guidelines need to be considered to prevent opportunistic infections
in HIV-infected patients with anal cancer.

7.9 Conclusion

As ART helps HIV-infected individuals live longer but without producing a dis-
cernible effect on HSIL progression, the impact of HPV on this population can only
be expected to increase. HIV-infected patients are often not able to clear HPV
infection, and anal HSIL remains common. Guidelines to establish anal cancer
screening and management programs as standard of care will await the results of
randomized controlled trials of treatment of HSIL to reduce the risk of subsequent
cancer. HIV-infected individuals with anal cancer can receive similar treatment as
HIV-negative individuals and achieve similar outcomes, but they may require more
careful monitoring for toxicities. HIV-infected anal cancer patients should be
included in clinical trials of novel cancer drugs such as immune checkpoint
inhibitors.
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Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, primary neuroendocrine
cancer of the skin. The majority of MCC cases are associated with the recently
discovered Merkel cell polyomavirus (MCPyV), while the remaining are caused
by ultraviolet (UV) light-induced mutations from excessive sunlight exposure.
The risk of developing MCC is much higher in the white population relative to
all other races. Approximately 10% of all patients with MCC have some form of
immunosuppression including HIV-1/AIDS, chronic inflammatory conditions,
solid organ transplantation, or hematological malignancies. The age of onset of
MCC is lower and the mortality is higher in immunosuppressed individuals than
in immune-competent patients. It is plausible that HIV-1/AIDS predisposes to
virus-positive MCC, but it should be noted that HIV-1/AIDS increases the risk
for developing of UV-induced skin cancers such as cutaneous squamous cell
carcinoma and basal cell carcinoma and therefore may also increase the risk for
virus-negative MCC. Surgical management is considered standard of care for
localized Merkel cell carcinoma with current recommendations advising a wide
local excision of the lesion. Most international guidelines support the use of local
adjuvant radiotherapy coupled with tumor staging to improve the frequency of
cure. For advanced, metastatic, and recurrent MCC, checkpoint blockade
inhibitors targeting PD-1 and PD-L1 have shown remarkable activity including
durable long-term. MCC in patients living with HIV-1/AIDS are treated with
similar modalities as HIV-1 uninfected individuals with MCC.

8.1 Introduction

Merkel cell carcinoma (MCC) is a highly aggressive, primary neuroendocrine
cancer of the skin. The majority of MCC cases are associated with the recently
discovered Merkel cell polyomavirus (MCPyV), while the remaining are caused by
ultraviolet (UV)-light-induced mutations from excessive sunlight exposure. Sig-
nificantly, immunosuppression from HIV-1 infection, chronic inflammatory con-
ditions, solid-organ transplantation, and hematological malignancies increase the
risk of developing MCC. Although MCC is 40 times less common than malignant
melanoma, MCC has a dramatically lower survival probability than melanoma,
rendering MCC the most lethal skin cancer. Epidemiologic data indicate that there
are approximately 2500 new MCC cases per year within the USA, and approxi-
mately 1000 of these patients will die from their disease [1]. This high mortality rate
is largely due to the fact that until recently none of the standard therapeutic
interventions were able to improve the overall survival of patients suffering from
the metastatic disease. Since several lines of evidence indicate the outstanding
immunogenicity of MCC, immune modulating treatment strategies are particularly
attractive.
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8.2 Initial Description of Malignancy

MCC was first described by Cyril Toker in 1972 as a trabecular carcinoma of the
skin with carcinoid features [2]. Later, using an electron microscope, Toker
reported the presence of membrane-bound granules containing dense cores within
the tumor cells, a feature common to other tumors of neural crest origin. He also
noted that the neurosecretory granules in MCC tumor cells were similar in
appearance to those found in normal Merkel cells [3]. The name of the cancer was
eventually changed from trabecular carcinoma to Merkel cell carcinoma to reflect
the similarity to normal Merkel cells [4, 5].

Normal Merkel cells are the mechano-receptors for a gentle touch and form
synapses with afferent nerves [6]. Normal Merkel cells are located in the basal layer
of the skin epithelium and in hair follicles. In contrast, nearly all MCC tumors
present in the dermal layer of the skin. Immunohistochemistry (IHC) staining was
recognized to be useful in distinguishing MCC from other neuroendocrine tumors
such as small-cell lung carcinoma (SCLC). In particular, IHC staining for cytok-
eratin 20 (CK20, KRT20) can distinguish MCC from other skin tumors and can
readily detect normal Merkel cells in the basal layer of the skin epidermis and hair
follicle [7]. MCC is also frequently positive for additional neuroendocrine markers
including neuron cell adhesion molecule 1 (NCAM1; CD56), chromogranin A
(CHGA), and synaptophysin (SYP). Staining for TTF-1 (Thyroid Transcription
Factor-1, NKX2-1, and NK2 homeobox 1) is rarely positive in MCC and is used to
distinguish MCC from SCLC [8]. MCC can present as a pure neuroendocrine tumor
or combined neuroendocrine tumors with nonendocrine features such as squamous
cell carcinoma [9].

8.3 MCC and Association with Immunosuppression

While it was recognized that individuals with hematologic malignancies that
developed MCC had a poor prognosis in the early 1990s [10], it was not until 1997
when a direct link between immunosuppression was postulated [11]. At that time, a
correlation was noted between medically induced immunosuppression with aza-
thioprine and cyclosporine and the development and rapid spread of MCC. Early
reports highlighted a prolonged period of immunosuppression prior to MCC
development.

Around this same time, the incidence of new infections and deaths from the
human immunodeficiency virus (HIV-1) were peaking [12]. HIV-1 was noted to be
the primary cause of death for men between the ages of 25 and 44 [12]. Most deaths
were the result of profound T-cell deficiencies resulting in the acquired immune
deficiency syndrome (AIDS), defined by the diagnosis of an opportunistic infection
or an AIDS-defining malignancy. The AIDS-defining malignancies included
Kaposi’s sarcoma, driven by human herpesvirus 8 (HHV-8) also known as Kaposi’s
sarcoma herpesvirus (KSHV), non-Hodgkin lymphoma, often triggered by
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Epstein–Barr virus (EBV), and cervical cancer, resulting from human papillo-
mavirus (HPV). Of note, MCC was never categorized as an AIDS-defining
malignancy likely due to the rarity of the malignancy even in individuals with
profound immunosuppression.

Despite a dramatically shortened life expectancy, HIV-positive individuals were
noted to have MCC as early as 1992 [13]. Using population-based registries of
cancer and AIDS, Eric Engel and colleagues were able to determine the relative risk
of people with AIDS developing Merkel cell carcinoma to be 13.4 [14]. Additional
case reports of HIV-1 associated MCC were described over the next decade [15–
21]. Following the introduction of effective antiviral therapy for HIV, it was noted
that the prognosis of Merkel cell carcinoma was improved with effective treatment
of HIV, suggesting a link with improvement in overall immune function [22].

8.4 Clinical Presentation

An important study assessed the typical presentation of MCC and defined the
AEIOU features: Asymptomatic/lack of tenderness, Expanding rapidly, Immune
suppression, Older than 50 years, and Ultraviolet-exposed site on a person with fair
skin [23]. Most MCC tumors present as asymptomatic pink or red lesion are
thought to be benign despite the rapid growth in the prior 3 months. Perhaps
reflecting an altered immune state, chronic lymphocytic leukemia (CLL) is highly
associated with MCC. This study noted that for several patients with newly diag-
nosed MCC, the immune-suppressed state (AIDS or CLL) was discovered as part of
the MCC workup and recommended that workup for immunosuppression be con-
sidered in patients presenting with MCC [23]. The risk of developing MCC is
increased in patients with chronic inflammatory disorders such as rheumatoid
arthritis or medically induced immunosuppression for solid-organ transplantation
[11, 24–26].

Age is a significant risk factor for MCC with 90% of patients over 50 years of
age (YOA) and nearly half older than 75 YOA [27]. MCC incidence increases with
age, from 0.1 to 1.0 to 9.8 (per 100,000 person-years) between age groups 40 and
44, 60and 64, and 85+ years, respectively [1]. A variety of institutional-based and
national cancer registry studies have reported the age at diagnosis for MCC to be
69 years and higher. A report analyzing 6908 MCC cases in the National Cancer
Database (NCDB), a national tumor registry for the USA, found the median age at
diagnosis was 76 years (range: 20–90 years) [28]. Notably, the age of onset of
MCC is lower and the mortality is higher in immunosuppressed individuals than in
immune-competent patients [29].

Notably, skin pigmentation seems to protect against MCC, as black, Asian and
Hispanic individuals have a considerably lower risk of MCC than white popula-
tions. The risk of developing MCC is much higher in the white population relative
to all other races. A recent survey of SEER data from 1973 to 2006 identified 3870
cases of MCC. Almost 95% of all MCC cases were identified in the white
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population while only 1% in the black population [30]. Additional evidence for the
risk of UV exposure arises from the frequent occurrence of MCC in elderly patients
on the chronically sun-exposed skin, the increased MCC incidence in individuals
treated with UVA photochemotherapy and the observation that many patients with
MCC have a history of other skin cancers associated with sun exposure. A history
of melanoma is also linked with a threefold greater risk of MCC [31]. It should be
noted that despite the very high incidence of HIV-1 infection in sub-Saharan Africa,
there are few if any reports of MCC. While there could be many reasons for the few
reports of MCC, it is possible that dark skin color is highly protective against
UV-induced skin damage and the development of MCC even in the presence of
profound immunosuppression.

While there are limited data on HIV-infected individuals with Merkel cell car-
cinoma, the clinical presentation appears different than that seen with
HIV-uninfected individuals. In limited case series, HIV-infected individuals are
more likely to have Merkel cell carcinomas of non-head and neck skin and to be
younger at the age of diagnosis (46 vs. 69 YOA in HIV-uninfected individuals) [16,
19, 21]. Case reports and case series suggest that Merkel cell carcinoma is more
aggressive in the context of HIV infection, although there are no large databases
that control for HIV viral load, ART, surgical management and chemotherapeutics
[15, 16, 19, 21].

8.5 Isolation of Merkel Cell Polyomavirus

Given the increased risk by immunosuppression for developing MCC, Huichen
Feng and Masahiro Shuda in the laboratory of Yuan Chang and Patrick Moore
began a search for a pathogenic cause for MCC. They performed whole tran-
scriptome sequencing of several MCC tumors and searched for pathogens by first
subtracting all human genes from their analysis. In the remaining sequences, novel
transcripts distantly related to polyomaviruses were detected in an MCC tumor.
Complete sequencing of the viral genome led to the determination that it corre-
sponded to a new human polyomavirus that they called Merkel cell polyomavirus
(MCPyV) [32]. They determined that MCPyV DNA was clonally integrated into
the genome of MCC tumor cells, when they observed an identical Southern blot
integration pattern for a primary tumor and a metastatic tumor involving a lymph
node from the same patient. They detected MCPyV by PCR and Southern blotting
in 8 of 10 tested MCC tumors, indicating that most but not all MCC tumors
contained MCPyV. These results supported the model that MCPyV contributed to
MCC in a manner similar to human papillomavirus (HPV) in cancer [33]. It should
be noted that Chang and Moore had discovered KSHV by discerning differences in
DNA sequences present in AIDS patients and Kaposi’s sarcoma tumor tissue
compared to normal tissue from non-AIDS patients [34].
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When MCPyV was first identified in MCC tumor specimens in 2008, it was only
the fifth human polyomavirus to be identified at that time [32]. Its discovery quickly
led to the realization that although MCPyV was likely to be causal in MCC, it was a
typical polyomavirus, infecting most people at an early age and persisting as a
lifelong infection. Although MCPyV can cause the highly aggressive MCC, it
normally produces a lifelong, asymptomatic, and innocuous infection in most
people. Primary infection with MCPyV does not cause any discernable signs or
symptoms [35]. What has come into sharper focus is that although some of the now
14 human polyomaviruses can cause exceptionally catastrophic diseases in
immunocompromised patients, MCPyV is the only one clearly associated with
cancer [36, 37]. Furthermore, a variety of immunosuppressed conditions including
AIDS can significantly increase the risk of developing MCC.

8.6 Polyomaviruses

The first polyomavirus was discovered in 1953, when an infectious agent was
reported to cause salivary gland cancer in laboratory mice [38]. The cancer-causing
agent was identified as a non-enveloped DNA virus that was named polyomavirus
from the Greek poly (many) and oma (tumor). Polyomaviruses are small,
non-enveloped, and double-stranded DNA viruses. The circular viral genome is
approximately 5200 base pairs and encodes 5–8 viral proteins.

MCPyV is one of the 14 distinct human polyomaviruses species [39, 40].
MCPyV encodes four early genes: Large T antigen (LT); 57kT, an alternatively
spliced form of LT; small T antigen (ST); and ALTO (Alternative LT open reading
frame) [32, 41]. The late region encodes the major viral capsid protein VP1 and the
minor capsid protein VP2 [42].

MCPyV is part of a large group of polyomaviruses, many of which are implicated
in human disease. Of these, MCPyV, BK polyomavirus (BKPyV), and JC poly-
omavirus (JCPyV) are known to have oncogenic potential in cell culture and animal
models. BKPyV was first isolated in 1971 from an immunosuppressed renal trans-
plant recipient [43]. Most adults are seropositive (>80%) for BKPyV after asymp-
tomatic childhood infection, but reactivation with complications can be seen in the
immunosuppressed population, including those with HIV [44, 45]. In healthy hosts,
it is postulated that BKPyV infection occurs via respiratory droplets with infection
occurring in tonsillar tissue and spreading to blood mononuclear cells and then
disseminating to secondary sites, including the kidney, brain, and lymph nodes [46].

BK polyomavirus (BKPyV) can cause polyomavirus-associated nephropathy in
renal transplant recipients and hemorrhagic cystitis in hematopoietic stem cell
transplant recipients treated with immunosuppressive therapy [43]. Kidney trans-
plant recipients are most likely to experience reactivation of BKPyV and may
develop BKPyV-associated nephropathy and subsequent allograft loss [47], while
hematopoietic stem cell transplant recipients more frequently develop
post-engraftment hemorrhagic cystitis with BKPyV reactivation [48].
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While reactivation of BKPyV in renal transplant and hematopoietic stem cell
transplant recipients is well described, reactivation in patients immunosuppressed
from HIV is not well understood [49]. BKPyV has been isolated from the urine,
blood, and cerebrospinal fluid of HIV-infected individuals and varied manifestations
of the disease have been reported, which include hemorrhagic cystitis, renal failure,
encephalitis, retinitis, and pulmonary infection [50–52]. BKPyV viruria is seen in a
large percentage of HIV-infected individuals compared to HIV-negative controls
(57.7% vs. 21.7%) and appears independent of CD4 count or HIV control [51].

JCPyV was also discovered in 1971 after isolation of viral particles from a
patient with Hodgkin’s disease, who developed progressive multifocal leukoen-
cephalopathy (PML), the most common manifestation of JCPyV pathology [53].
Patients with PML often present with progressive, focal neurologic deficits that may
advance to seizures and dementia. Since then, JCPyV has been implicated in
granule cell neuronopathy, encephalitis, meningitis, and nephropathy [54] and
complications of infection are seen in patients on monoclonal antibodies including
natalizumab, efalizumab, and rituximab [55].

Before the introduction of effective antiretroviral therapy (ART) up to 7% of
HIV-infected individuals developed PML, but the incidence has substantially
decreased since 2000; PML is now more frequently associated with immunosup-
pressive therapy for multiple sclerosis [56]. Outcomes remain poor for patients with
PML and HIV infection, with frequent persistence of neurologic deficits and cog-
nitive decline and, while the introduction of effective ART has decreased the
incidence of disease, only about 50% of people with PML and HIV have
improvement in outcomes with ART initiation [57].

Human polyomavirus 6 (HPyV6), HPyV7, and Trichodysplasia
spinulosa-associated polyomavirus (TSPyV) have been detected on the skin of
healthy volunteers [58, 59]. In severely immunocompromised patients, HPyV6 and
HPyV7 can cause pruritic dermatoses characterized by hyperproliferation of
dyskeratotic (with premature or altered differentiation) keratinocytes that result in
brownish skin plaques [60]. TSPyV can cause a hyperkeratotic folliculitis referred
to as Trichodysplasia spinulosa in solid-organ transplant recipients [59, 61].

Polyomavirus replication occurs within the cellular nucleus and is dependent on
LT. LT forms a double hexamer centered on the viral origin of replication. LT
functions to melt and unwind the double-stranded viral DNA and recruit cellular
DNA polymerases and other host factors to replicate the viral DNA. The replicated
viral genome is packaged within the viral capsid comprised of VP1 and VP2. High
levels of virus production lead to the lytic destruction of the host cell.

It is not known what cells normally support MCPyV replication since
MCPyV LT expression has not yet been detected by immunohistochemistry
(IHC) in any normal human tissue. If healthy skin supports MCPyV replication,
then cells within hair follicles infected with TSPyV in the Trichodysplasia spinulosa
syndrome or in keratinocytes with HPyV6 and HPyV7 in dyskeratotic dermatoses
could potentially also support MCPyV replication. Alternatively, a recent report
demonstrated that cultures of human dermal fibroblasts could support MCPyV
replication [62]. It should be noted that papillomavirus infection is dependent on
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breaks in the intact epithelium permitting access of the papillomavirus to the
basement membrane. A similar mechanism has not been described for MCPyV or
any other polyomavirus.

Evidence for persistent infection by a specific polyomavirus is reflected in serum
antibodies against the corresponding polyomavirus coat protein VP1. The poly-
omavirus virion is comprised of 72 pentamers of VP1 together with VP2 on the inner
surface of each VP1 pentamer [63]. When expressed in bacteria or yeast, VP1 will
spontaneously form pentamers or viruslike particles that generate a useful capture
antigen to detect antibodies in serum specific for each human polyomavirus [64, 65].

Based on the VP1 serology assay, it has been inferred that the initial exposure to
MCPyV likely occurs in early childhood because the seroprevalence is lower in
children and higher in adults. An intriguing study from Cameroon examined
serology against the MCPyV VP1 pentamer in 196 children from birth to 5 years of
age (YOA) [66]. Significant titers against MCPyV were detected in newborns but
these titers gradually decreased to undetectable levels by 16 months of age.
Maternal-derived antibodies likely account for the seropositivity in newborns that
gradually declined during the first year of life. The maternally derived antibodies
were likely to be effective in preventing primary infection during infancy. By
18 months of age when the maternal antibodies were no longer present, children
were susceptible to de novo infection and could mount an antibody response of
their own. Beginning at 18 months of age, an increasing fraction of children
became positive until approximately 80% tested positive by 5 YOA [66]. In a
separate cohort from the same study, the strongest correlation of seropositivity was
observed between siblings of similar ages suggesting that siblings likely were
exposed to MCPyV at the same time and by each other. Similar results were
reported from a population study in Australia that investigated the serology of
several cutaneous polyomaviruses including MCPyV, HPyV6, HPyV7, and TSPyV
as well as BKPyV. Children below 6 months displayed seropositivity rates for all
viruses studied comparable to that found in adults with rates decreasing after 6
months of age then starting to increase by 2–3 YOA and continuing to increase with
age [67].

Several additional studies support the increasing risk with age for exposure and
persistent infection by MCPyV and other polyomaviruses. Seroprevalence of 10
human polyomaviruses was assessed from a population-based skin cancer case–
control study conducted in New Hampshire, USA [68]. The overall seropositivity
for MCPyV in this study was 70.4%. Of note, all participants were seropositive for
at least one polyomavirus and the overall study population had evidence for
infection with a mean of 7.3 different polyomaviruses. A study of five poly-
omaviruses conducted in Italy with participants aged 1–100 YOA found that the
seroprevalence for MCPyV rapidly increased with age, from 41.7% in children age
1–4 YOA to 87.6% in 15–19 YOA and remained relatively frequent in adulthood
(79.0–96.2%) [69].

Antibodies to MCPyV LT and ST are usually not present in healthy individuals,
but can be detected in patients with virus-positive MCC. Antibodies to the common
region of MCPyV ST and LT were present in half of the patients with MCC and in
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less than 1% of healthy individuals [70]. Importantly, antibody titers to MCPyV T
antigens decrease upon definitive treatment of the MCC and can be used as a
biomarker to follow disease status [70]. Of note, MCC patients often have higher
titers of antibodies to VP1 than normal healthy individuals [71].

8.7 Virus-Positive and Virus-Negative MCC

MCC can be distinguished by the presence or absence of integrated MCPyV DNA
and viral mRNA and oncoprotein expression. Virus-positive MCC contains inte-
grated copies of the MCPyV DNA. In all cases sequenced to date, the integrated
MCPyV DNA has undergone mutations that truncate LT that render it unable to
replicate viral DNA. Virus-positive MCC expresses the truncated LT and an intact
ST and typically does not express the viral coat proteins VP1 and VP2.
Virus-negative MCC does not contain MCPyV DNA and does not express LT or
ST. In addition, next-generation DNA sequencing studies of MCC tumors have
revealed striking differences in the genomes of virus-positive and virus-negative
MCC. Virus-positive MCC typically contains very few somatic mutations and copy
number alterations. In contrast, virus-negative MCC shows a very high frequency
of DNA mutations that are associated with UV damage with point substitution
mutations of cytosine to thymidine (C > T) that occur in the context of dipyrim-
idines, C[C > T]N and N[C > T]C, typically seen in other sun-exposure-associated
skin cancers such as melanoma, basal cell carcinoma, and squamous cell carcinoma
[72–77]. While lifelong exposure to UV radiation may be required to introduce all
the mutations found in virus-negative tumor DNA, it is less clear why virus-positive
MCC also typically occurs in the elderly. Of note, UV exposure could also play a
part in viral carcinogenesis by causing local immunosuppression [78].

In a study of 282 cases of MCC, where the presence of virus was established by
IHC with two different monoclonal antibodies against the MCPyV Large T antigen
as well as PCR detection of viral DNA, the median age at diagnosis was 71 years
for both virus-negative and virus-positive MCC [79]. Another study used
RNA-fluorescence in situ hybridization (FISH) to detect MCPyV T antigen
expression in MCC. This approach yielded a highly accurate determination of
whether the MCC was a virus-positive or a virus-negative MCC, detecting MCPyV
in 37 of 75 cases (49.3%). They observed that MCC tumors from younger patients
and female patients were twice as likely to be virus-positive compared to older male
patients [80].

The contrasting mutational profile between virus-positive and virus-negative
MCC may provide clues into the oncogenic events necessary to generate the tumor.
An important feature of virus-positive MCC is that the tumor maintains expression
of LT and ST [32]. In all cases reported to date, the truncated LT preserves the
N-terminal J domain and RB-binding (LXCXE) motif but loses the DNA-binding
and helicase domains as well as a C-terminal growth inhibitory domain (Fig. 8.1a)
[81–83]. Some MCC tumors express a truncated LT that also retains the nuclear

8 Merkel Cell Carcinoma in the HIV-1/AIDS Patient 219



localization signal (NLS) in addition to the J domain and LXCXE motif [84, 85].
The truncation of LT is probably required for oncogenesis for several reasons. The
full-length LT is capable of binding to the viral origin of replication, the first step in
replication of the virus that requires the DNA-binding and helicase domains of LT.
When full-length MCPyV LT is expressed in virus-positive MCC cell lines, it binds
to integrated copies of the MCPyV origin of replication and induces in situ
replication of the integrated viral DNA leading to a DNA-damage response [81,
83]. This DNA-damage process likely selects against any tumor that expresses
full-length LT.

Virus-positive MCC tumors also express MCPyV ST. ST shares the N-terminal J
domain with LT and contains a unique region that can bind to protein phosphatase
2A (PP2A) [86] (Fig. 8.1b). MCPyV ST has an additional domain distinct from
PP2A binding known as the LT stabilizing domain or LSD. This unique region of
MCPyV ST is not well conserved in ST from other polyomaviruses. The LSD motif
in ST functions to increase the levels of MCPyV LT and contributes to increased
viral replication at least in part by increasing LT levels [87]. Evidence for a role of
MCPyV ST in MCPyV replication includes its ability to translocate to viral DNA
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Fig. 8.1 a Circular map of MCPyV includes early region genes for LT, ST, and 57 kT and late
region for VP1, VP2, and miRNA. The non-coding control region (NCCR) contains a bidirectional
promoter and the viral origin of replication. Exon 3 of 57 kT is depicted and is in the same reading
frame as LT. ALTO is not depicted. b Linear maps of LT and ST. LT and ST share an N-terminal J
domain. LT contains the LXCXE or RB-binding motif, MCPyV-unique region (MUR)-1 and -2,
nuclear localization signal (NLS), DNA-binding domain (DBD) and helicase domain. In MCC,
mutations in LT result in truncations after the LXCXE or NLS and depicted by slashes. ST
contains a unique region not shared with LT that binds to protein phosphatase 2A (PP2A)
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replication centers within the nucleus in the presence of the viral origin and LT [88].
The LT stabilizing activity may reflect ST’s ability to perturb the function of
FBXW7, a component of the cullin-RING ligase family of ubiquitin ligases. The ST
LSD domain also binds to CDC20 and CDH1, substrate recognition components of
the anaphase-promoting complex [89].

MCPyV ST can increase levels of 4EBP1 phosphorylation that, in turn, pro-
motes increased protein translation [90]. Significantly, the PP2A-binding activity of
MCPyV ST was not required to increase the levels of phospho-4EBP1. MCPyV ST
binding to CDC20 may contribute to increased 4EBP1 phosphorylation [89].
MCPyV ST binds to L-Myc (MYCL), a member of the Myc family of oncogenic
transcription factors, and recruits L-Myc to the Tip60/p400 (KAT5/EP400) chro-
matin remodeling complex [91]. The ST-MYCL-Tip60/p400 complex has potent
transcriptional activation activity that likely contributes to the MCPyV oncogenic
activity [92]. Expression of ST can promote significant changes in gene expression
including induction of pro-glycolytic genes and can induce aerobic glycolysis when
expressed in fibroblasts [92]. Whether the ability of ST to induce a Warburg effect
in cells is linked to the LSD motif, PP2A binding, or 4EBP1 phosphorylation is not
known.

Although its exact molecular functions are not well understood, MCPyV ST has
strong oncogenic activity. For example, ST alone can transform Rat-1 fibroblasts
[90] and increase cell motility [93]. ST can cooperate with truncated LT to transform
human fibroblasts [82]. Combined expression of MCPyV ST with truncated LT in
mice keratinocytes led to hyperplasia, hyperkeratosis, and acanthosis of the skin as
well as papillomas [94]. ST can induce tumor formation when expressed in mice as a
sole transgene [95, 96]. Because of the presence of the integrated MCPyV genome in
virus-positive MCC tumors and the oncogenic activities of ST and LT, MCPyV has
been classified by the World Health Organization-International Agency for Research
on Cancer as probably carcinogenic to humans (Group 2A) [97].

In addition to the expression of MCPyV ST and truncated LT, virus-positive
MCC tumors often contain additional mutations in genes that activate the
phospho-inositol 3 kinase (PI3 K) pathway such as gain-of-function mutations in
PIK3CA or loss-of-function mutations in PTEN and TSC1. Some of these PI3K
mutations are also seen in virus-negative tumors. In contrast, most virus-negative
MCC contain mutations involving numerous tumor suppressor genes and onco-
genes including RB1, TP53, NOTCH, chromatin-modifying enzymes such as
KMT2A, KMT2C, KMT2D, ARID1A, ARID1B, SMARCA4, and KAT6A, as
well as genes involved in DNA-damage pathways including ATM, MSH2,
BRCA1, and BRCA2 [73, 75, 77]. These observations indicate that the MCPyV
viral oncogenes contribute the major oncogenic component to virus-positive MCC.
In contrast, viral-negative MCC contains a large number of mutations in both
oncogenes and tumor suppressor genes.

Despite the significant differences in the tumor mutational burden (TMB) be-
tween virus-positive and virus-negative MCC, there are few phenotypic differences
in the two types of MCC. Based on histopathological features alone, two subtypes
of MCC can be recognized: pure neuroendocrine tumors and combined tumors with
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neuroendocrine and divergent (mainly squamous) differentiation. Most pure tumors
are MCPyV-positive and CK20-positive while combined tumors are uniformly
MCPyV-negative and occasionally CK-20 negative [98, 99]. Virus-negative MCC
can also present at pure neuroendocrine-type MCC.

What percentage of MCC tumors contain integrated MCPyV is not clear although
80% is a reasonable estimate based on several reports. The original study that
identified MCPyV in MCC used Southern blotting with 32P-phosphate labeled viral
probe to confirm MCPyV DNA integration into the tumor genome [32]. Very few, if
any, studies since then have used radiolabeled Southern blotting to detect integrated
viral DNA in tumor DNA. Another approach used in the original study was PCR
amplification of viral DNA from tumor DNA. However, PCR amplification of viral
DNA is not always reliable for several reasons. The viral DNA has undergone
multiple mutations and rearrangements during integration that at a minimum result
in truncation of LT and can reduce primer recognition [81]. In addition, the inte-
grated viral DNA may have undergone amplification that could introduce additional
mutations to the T antigen genes [76]. There may even be some strain differences in
MCPyV common to different parts of the world that could impede detection of
integrated virus by PCR [100]. Another challenge to PCR detection arises since most
studies use DNA isolated from formalin-fixed paraffin-embedded tumor sections that
can result in degradation of DNA. Given the presence of UV-induced DNA damage
in virus-negative MCC and integration of MCPyV DNA in virus-positive MCC, it is
likely that next-generation sequencing of MCC will serve as the most accurate
approach to determine the type of MCC tumor.

While genomic sequencing has revealed that virus-negative MCC has evidence
for a high degree of UV damage, this does not exclude a role for UV exposure in
the development of virus-positive MCC. The relative lack of UV-damaged DNA in
virus-positive MCC indicates that the etiologies are clearly different, suggesting that
the precursor to virus-negative MCC was a recipient of lifelong intense UV
exposure while the virus-positive MCC were not exposed to the same degree or for
as long. However, UV exposure could affect the immune response to virus-negative
and virus-positive MCC etiology. The effect of UV radiation in the pathogenesis of
MCC has been suggested to be more likely a result of immune modulation than
direct effects on DNA itself [101]. It was reported that the early promoter of
MCPyV responds to UV exposure and that levels of ST mRNA increased in UV
exposed skin from a healthy human volunteer [102].

8.8 Does AIDS Increase the Risk of Virus-Positive
or Virus-Negative MCC?

The AIDS-defining cancers of Kaposi’s sarcoma, aggressive B-cell lymphomas,
and invasive cervical cancer are each associated with human DNA tumor viruses.
Similarly, hepatitis B virus (HBV) and hepatitis C virus (HCV) are known to drive
hepatocellular carcinoma, which is hastened in the presence of HIV [103, 104].
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In contrast, Merkel cell carcinoma caused by MCPyV is not considered an
AIDS-defining malignancy. MCPyV DNA loads are significantly higher in
HIV-positive men with poorly controlled HIV infection compared to those with
well-controlled HIV viral loads [105], but the progression of MCPyV is not known
to be directly impacted by the presence of HIV, but rather by the degree of overall
immunosuppression [17]. The average time from HIV diagnosis to the diagnosis of
Merkel cell carcinoma, 9.5 years, is significantly longer than other AIDS-associated
malignancies [105].

Given the association of AIDS-defining malignancies with KHSV, EBV, and
HPV, it is a reasonable assumption that AIDS-associated MCC is MCPyV-positive.
However, there have not been any molecular studies that have directly determined
the virus status in AIDS-associated MCC. Given the association of MCPyV with
MCC and the increased risk of HIV-1/AIDS patients developing MCC, it is
plausible that MCC is virus-positive. However, it is also plausible that AIDS
increases the risk for virus-negative MCC similar to the increased risk for devel-
oping of the non-melanoma skin cancers (NMSC) or keratinocyte carcinomas such
as cutaneous squamous cell carcinoma and basal cell carcinoma [106–109]. Low
CD4 counts and high HIV-1 viral loads have been associated with a twofold
increased risk in squamous cell carcinoma [106]. Until more definitive sequencing
studies of AIDS-associated MCC, it cannot be stated with certainty that HIV-1
infected individuals have an increased risk of developing virus-positive or
virus-negative MCC.

In another example, organ transplant recipients have a lifelong requirement for
immunosuppression and are at increased risk for skin cancers. Skin cancers account
for 40–50% of all posttransplant malignancies with squamous cell carcinoma
(SCC) and basal cell carcinoma (BCC) comprising 90–95% of these skin cancers
plus Kaposi’s sarcoma, malignant melanoma, and MCC [110]. Importantly, some of
the therapeutics used in organ transplantation carry an increased risk for developing
skin cancers. The calcineurin inhibitor, cyclosporine, reduces sensitivity to
UV-induced apoptosis in keratinocytes. Azathioprine can sensitize cells to
UV-induced damage through the incorporation of a metabolite into DNA, which
generates reactive oxygen species upon exposure to UV light [111]. In patients with
rheumatoid arthritis, methotrexate and anti-TNF drugs were associated with an
increased risk of NMSC [112]. The increased risk for skin cancers in organ trans-
plant recipients and rheumatoid arthritis is associated with UV-light-induced
mutagenesis for SCC and BCC. This increased risk may also extend to
virus-negative MCC.

8.9 Therapy of MCC

Surgical management is considered a standard of care for localized Merkel cell
carcinoma with current recommendations advising a wide local excision of the
lesion with 1–2 cm of peripheral and deep margins coupled with a sentinel lymph
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node biopsy given the frequency of metastatic disease at first presentation. Most
international guidelines support the use of local adjuvant radiotherapy coupled with
tumor staging to improve the frequency of cure [27]. For advanced, metastatic and
recurrent MCC, checkpoint blockade inhibitors targeting PD-1 and PD-L1 have
shown remarkable activity including durable long-term responses [113, 114].
Importantly, both virus-negative MCC and virus-positive MCC have shown high
response rates to checkpoint blockade inhibitors. It is likely that the virus-negative
MCC have a high level of neoantigens resulting from the extensive UV-induced
mutational rate similar to that observed in melanoma. The high response rate in
virus-positive MCC may reflect the presence of the viral tumor antigens although
definitive evidence for this model has not been reported.

There are no randomized control trials of Merkel cell carcinoma treatment in the
HIV-infected population. In the absence of data to direct therapy, most
HIV-infected individuals with Merkel cell carcinoma are treated with similar
modalities as HIV-uninfected individuals with Merkel cell carcinoma. These
include a combination surgery, radiation therapy, chemotherapy, and
immunotherapy.

Most clinical trials involving immunotherapy exclude patients with HIV,
immunosuppression, hematological malignancies, and previous organ transplants
including a recent trial in MCC [114]. However, current recommendations for the
treatment of lymphoma and Hodgkin disease in patients with HIV/AIDS mirror
treatment in patients without HIV/AIDS [115, 116]. There have been a few reports
of HIV/AIDS patients being treated with checkpoint blockade inhibitors. Reports of
patients with HIV infections and advanced melanoma were treated with the PD-1
inhibitor pembrolizumab without significant toxicities [117]. In patients living with
HIV/AIDS (PLWHA), non-small-cell lung cancer (NSCLC) is the most common
non-AIDS-related malignancy. For PLWHA with NSCLC treated with the PD-1
inhibitor nivolumab, the HIV-related parameters of viral load and CD4 counts were
not altered [118]. Another study of seven patients with metastatic NSCLC and HIV
infection demonstrated the safety of treatment with PD-1 inhibitors nivolumab or
pembrolizumab. All patients received antiretroviral therapy while on anti-PD-1
treatment and none experienced grade 3 or 4 immune-related adverse events or
immune reconstitution inflammatory syndrome [119].
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Liver diseases that are caused by the hepatitis B virus (HBV) and hepatitis C
virus (HCV), including cirrhosis and hepatocellular carcinoma (HCC), have
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become increasingly important in patients infected with the human immunod-
eficiency virus (HIV) as their life expectancy is getting longer with successful
anti-HIV therapy. Due to their shared transmission routes, dual infection by HIV
and HBV or HIV and HCV, and triple infection by all three viruses are fairly
common and affect millions of people worldwide. Whereas the immunodefi-
ciency caused by HIV enhances the likelihood of HBV and HCV persistence,
hepatotoxicity associated with anti-HIV therapy can worsen the liver diseases
associated with HBV or HCV persistence. Evidence suggests HIV infection
increases the risk of HBV- or HCV-associated HCC risk although the precise
mechanisms of enhanced hepatocarcinogenesis remain to be fully elucidated.
Recent success in curing HCV infection, and the availability of therapeutic
options effective in long-term suppression of both HIV and HBV replication,
bring hope, fortunately, to those who are coinfected but also highlight the need
for judicious selection of antiviral therapies.

Keywords
Hepatitis B virus � Hepatitis C virus � Human immunodeficiency virus
HBV � HCV � HIV � Hepatocellular carcinoma � HCC � Coinfection

9.1 Introduction

Before the advent of highly active antiretroviral therapy (HAART), human
immunodeficiency virus (HIV)-infected patients were most likely to succumb to
opportunistic bacterial or fungal infections, secondary to HIV-induced immune
suppression. As anti-retroviral therapies continue to improve, patients infected with
HIV are living longer and the health problems that are of primary concern to these
patients have been changing, at least for those who have access to HARRT. With
longer survival times, liver diseases including chronic viral hepatitis and hepato-
cellular carcinoma (HCC), have become increasingly important in these patients
[1–5]. In fact, approximately 10–15% of mortalities in HIV-infected patients are
now due to liver diseases. In patients infected with HIV, most liver diseases are due
to chronic viral hepatitis. This is not surprising considering that agents causing viral
hepatitis, like the hepatitis B virus (HBV) and hepatitis C virus (HCV), are trans-
mitted through similar routes to HIV. An additional complication involving the
liver in HIV-infected patients is the concern that many anti-HIV drugs are hepa-
totoxic, which can be further exacerbated by viral hepatitis. Fortunate for the
millions of HIV-infected patients who are also inflicted with viral hepatitis is the
recent development of curative therapies for HCV infection and treatment options
that are effective in suppressing both HIV and HBV infection.
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9.2 Chronic HBV and HCV Infections

Worldwide, there are ca. 325 million people who are chronically infected with either
HBV or HCV, or both [5]. HBV is a small, enveloped DNA virus that belongs to the
Hepadnaviridae family. HBV is unusual for a DNA virus in that replication of its
DNA genome is through reverse transcription of an RNA intermediate [6, 7]. The
small, 3.2 kb HBV DNA genome encodes four open reading frames (ORFs)
(Fig. 9.1), which are translated to make the viral core (C) protein, the main con-
stituent of the viral nucleocapsid; the reverse transcriptase (RT), the enzyme
responsible for DNA replication via reverse transcription; and three envelope gly-
coproteins. In addition, the HBV X (HBx) protein has a number of pleiotropic effects
on viral and cellular gene expression, cell signaling, cell cycle, and apoptosis,
although the significance of these in viral replication or pathogenesis remains
unresolved [8]. The latest development in this regard is the discovery that HBx
triggers the degradation of a host restriction factor that would otherwise suppress
HBV transcription [9]. HBV is transmitted by contact with blood or body fluids of an

Fig. 9.1 HBV genome organization. Solid lines, the partially double stranded, relaxed circular
DNA genome; dotted lines, viral RNA transcripts; solid arrows, encoded proteins. Core, core
protein; S, surface protein, RT, reverse transcriptase; X, X protein. Triangle, the RT protein
covalently linked to the genome; checked box, the e RNA packaging signal; ovals, direct repeat
1 and 2, cis-acting elements involved in reverse transcription
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infected person in the same way as HIV. However, HBV is 50–100 times more
infectious than HIV.

Of the 2 billion people who have been infected with HBV, ca. 257 million have
chronic, lifelong infections [5, 10–14]. In the US alone, there are 1.25–2 million
chronic HBV carriers. In some areas of Asia and Africa, where HBV is endemic,
10–20% of the whole population is chronically infected with HBV (Fig. 9.2). In
these parts of the world, HBV infections are acquired mainly perinatally or early in
childhood, a high percentage (up to 90%) of which become chronic. In contrast,
5–15% of immune-competent adults who acquire HBV infection will become
chronic carriers of the virus. Patients who are chronically infected with HBV are at
high risk of premature death from cirrhosis of the liver and HCC, a highly malignant
liver cancer [15]. The risk of death from HBV-related liver cancer or cirrhosis is
approximately 25% for persons who become chronically infected and are untreated.
Together, these diseases kill approximately one million people each year worldwide.

HCV is an enveloped RNA virus belonging to the Flaviviridae family [16]. Like
other flaviviruses, the 9 kb long, positive-sense, single-stranded RNA genome
(Fig. 9.3) of HCV is translated into a polyprotein, which is proteolytically cleaved
into the viral structural proteins, including a single capsid (C) protein and two
envelope glycoproteins (E1 and E2), and the non-structural proteins required for
viral replication, including two proteases (NS2 and NS3) and the viral
RNA-dependent RNA polymerase (NS5b). Like HBV, HCV is transmitted through
blood and body fluids.

Fig. 9.2 Global prevalence of chronic HBV infection. A map showing the percentage of
population chronically infected with HBV in different regions of the world. From U.S. Center for
disease control and prevention
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HCV frequently causes persistent infection of the liver, although there is no
DNA form in its life cycle or latent stage known [17, 18]. In fact, the chance of
chronic infection with HCV is approximately 55–85% and this varies little with
age, in contrast to HBV infections. An estimated 71 million people worldwide are
chronically infected with HCV (Fig. 9.4) [5]. Approximately 3.9 million (1.8%)
Americans have been infected with HCV, 2.7 millions of whom are chronically
infected. Approximately 5–20% of chronically infected persons develop liver cir-
rhosis over a period of 20–30 years, and HCC develops in 1–5% of persons with
chronic infection.

9.3 Coinfection of HBV or HCV with HIV

Worldwide, ca. 36.7 million people are infected with HIV. Roughly, 1.2 million of
these people live in the US. In Europe and the US, approximately 8–16% of HIV
patients are also chronically infected with HBV [1, 19–22]. Worldwide, the number
of HIV-infected people who are also chronically infected with HBV is estimated at
ca. 2.7 million (Fig. 9.5) [5, 23], with a large proportion of these coming from
HBV-endemic regions of Asia and Africa [20, 24]. The risk of developing chronic
HBV infection is about three- to six-fold higher in HIV-infected patients than in
those who are not infected with HIV, likely due to the fact that HIV-induced
immune suppression can reduce the patient’s ability to clear HBV [25]. Further-
more, HIV-induced immune suppression may also play a role in the reactivation of

Fig. 9.3 HCV genome organization. The positive-sense, single-stranded HCV RNA genome
encodes a long ORF (ca 3000 amino acids). The viral polyprotein is proteolytically cleaved into
the structural proteins, C (capsid), E1 and E2 (envelope glycoprotein 1 and 2), as well as the
nonstructural (NS) proteins, p7, and NS2 to NS5B, by the host (signal peptidase or SP and signal
peptide peptidase or SPP) and viral proteases (NS2 and NS3/4A). The major known function(s) of
the viral proteins are indicated below each protein. The structured 5’ and 3’ non-translated region
(NTR) important for viral replication and translation are marked. polyU/UC and X-tail are
conserved elements in the 3’ NTR important for viral replication. IRES, internal ribosome entry
site important for cap-independent translation (note the lack of a 5’ cap on the viral RNA); AUG
and UGA, the initiation and stop codons for polyprotein translation; VR, variable region; RdRp,
RNA-dependent RNA polymerase
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latent HBV infections, which are thought to be under immune control following
clinical but not virological resolution [26].

The number of HIV-infected people who are chronically infected with HCV
worldwide is approximately 2.3 million [5, 27] (Fig. 9.5). In developed
countries, *25% of HIV patients also have chronic hepatitis C infection [22].

Fig. 9.4 Global prevalence of chronic HCV infection. A map showing the percentage of
population chronically infected with HCV in different regions of the world. From U.S. Center for
disease control and prevention

Fig. 9.5 Incidences of
chronic HBV, HCV, and HIV
coinfections. A Venn diagram
depicting coinfection of HIV
with HBV or HCV, and of
HBV with HCV. Shown are
estimated numbers (in
millions) of patients singly
infected with each virus or
doubly infected
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The number of coinfections varies depending on the route of transmission; for
example, the incidence of HIV/HCV coinfection is higher in populations of
injecting drug users (IUD) than those who were infected by sexual transmission.

9.4 HBV–HCV Dual Infections and Occult HBV Infection

The incidence of HBV–HCV coinfection is not uncommon (Fig. 9.5), as might be
predicted from their shared transmission routes [28, 29]. About 10–20% chronic
HBV-infected patients are also infected with HCV. In addition, occult HBV
infection, defined by the undetectability of HBsAg, the main HBV envelope pro-
tein, in the serum but the presence of antibodies against the viral core antigen
(HBcAg) or HBV DNA, is fairly common [30]. This may be an important factor in
the development of HCC in patients with no serologic evidence of HBV or HCV
infection, and additionally, may play a role in the development of HCC in chron-
ically infected HCV patients [31].

9.5 Hepatotropism and Lymphotropism of HBV and HCV

While there is little dispute that HBV and HCV infect the hepatocytes in the human
liver, it remains controversial as to whether these viruses also infect other cell types,
in particular, lymphoid cells. It has been reported that HBV DNA can be detected in
peripheral blood mononuclear cells (PBMC) and some HBV isolates may, in fact,
be able to infect PBMC [32], although the question of true infection or passive
endocytosis of virus is still being debated. With respect to HCV, there are many
reports of infection of the lymphoid cell, particularly B lymphocytes [33] but the
level of HCV replication seems to be rather low in general and specific detection is
problematic. On the other hand, HIV is lymphotropic and infects only a small
percentage of CD4+ T-cells. Therefore, although the possibility exists that HIV and
HCV or HBV may infect the same cell types, true dual infection of the same cell
seems unlikely.

9.6 Hepatocellular Carcinoma

HCC is the most common primary cancer of the liver, accounting for 60–90% of all
hepatic malignancies [34–37]. It is the 6th most common cancer among men and
the 11th most common cancer in women worldwide. Particularly, in HBV-endemic
regions of sub-Saharan Africa and Eastern Asia, HCC is the most prevalent cancer
and incidences can be as high as 50–150 cases per 100,000 population [38]. In
North America and Western Europe where the HBV infection rate is relatively low,
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HCC incidence is below 10 per 100,000. However, there has been a recent surge of
HCC in the developed world, likely due to the prevalence of HCV infections in
these areas [39–41]. Together, chronic HBV and HCV infections are responsible for
over 80–90% of all HCC on a global scale, and account for 5% of all human cancer
burden [42]. Chronic HBV carriers have been shown to be at a 100- to 233-fold
increased risk for the development of HCC. HBV infection is responsible for the
majority of HCC development in the developing world and accounts for 15–20% of
HCC in the US. In contrast, HCV accounts for the majority of HCC in the
developed world [43]. In addition, as mentioned earlier, coinfection of both HBV
and HCV is also common and can further increase the risk of HCC development.

Despite the clear epidemiological evidence that HBV and HCV are responsible
for the vast majority of HCC, the mechanism of viral hepatocarcinogenesis remains
incompletely understood (Fig. 9.6) [34–36, 44–47]. There are several possible
mechanisms by which liver cancer may develop in patients with chronic viral
hepatitis. The first is by an indirect means: chronic viral infection of the liver
produces a state of persistent inflammation, in which cancer is a nonspecific side
effect of the immune response against the HBV or HCV infection. Thus, HCC may
develop as a result of the continuous damage and regeneration of the liver cells in a
mutagenic inflammatory environment, which ultimately leads to the aberrant acti-
vation of one or more cellular proto-oncogenes or the inactivation of tumor sup-
pressor genes. Evidence is rather strong in support of this nonspecific
carcinogenesis mechanism. It is now clear that chronic inflammation and tissue
damage over a long period, per se, can be carcinogenic, regardless of the initial
trigger events. Thus, not only chronic HBV and HCV infections, but also alcoholic
liver damage and metabolic liver damage as a result of genetic mutations including
a1-antitrypsin deficiency, Wilson’s disease, and hemochromatosis all increase the

Fig. 9.6 Potential mechanisms HBV- and HCV-induced hepatocarcinogenesis and its enhance-
ment by HIV. Solid arrows, likely mechanisms; dotted arrows, uncertain mechanisms; (+),
enhancing effect; (−), inhibitory effect. See text for details
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risk of HCC [37]. Indeed, the majority of HCC, regardless of etiology, arises in the
background of liver cirrhosis resulting from chronic liver damage.

Another potential mechanism of viral hepatocarcinogenesis involves a more
direct role of viral proteins [35, 44, 46, 47]. Thus, although the different causes of
chronic liver damage, as outlined above, can all increase the risk of HCC, chronic
HBV or HCV infections present a much greater risk of liver cancer than other
hepatic inflammatory disorders. In addition, HCC may develop in chronic HBV
infections in the absence of cirrhosis. Although the exact viral proteins and their
carcinogenic mechanism remain to be elucidated, the HBx protein and the HCV
core and NS5A proteins have been reported to have transforming potential in
overexpression systems (Fig. 9.6). As HCC generally only develops after decades
of HBV or HCV infections, it seems unlikely that these viruses encode any bona
fide oncogenes. Caution is, therefore, warranted in the interpretation of these
overexpression studies out of the context of natural viral infection.

A third molecular mechanism of carcinogenesis, available to HBV but not HCV,
is insertional mutagenesis as a result of HBV DNA integration into the host
chromosomes [48–50]. It has been known for decades that HBV DNA does inte-
grate into the host genome during infection although integration is not an obligatory
step in viral replication, in contrast to retroviruses. In fact, most HBV-related HCCs
harbor HBV DNA integration. HBV DNA has been shown to integrate into the host
DNA at multiple sites in a seemingly random fashion, although more recent reports
suggest that there may be some preferred sites of integration [49, 51, 52]. What is
still unclear is the etiological role of DNA integration in HBV carcinogenesis in
humans. Elegant studies using the woodchuck hepatitis virus (WHV), a member of
the mammalian hepadnaviruses closely related to HBV, have convincingly
demonstrated that viral DNA integration, specifically the insertional activation of
the cellular myc proto-oncogenes, plays a critical role in liver cancer development
in chronically WHV-infected woodchucks, virtually all of which develop HCC
[53–55]. Reports of potentially similar insertional activation of cellular oncogenes
in human liver cancer have appeared [49, 51, 56, 57] but its prevalence and true
significance in carcinogenesis remain to be clarified.

9.7 Does HIV Coinfection Increase the Risk of HCC
Associated with HBV or HCV Infection?

Epidemiological evidence suggests that coinfection with HIV may increase the risk
of HCC development in HBV- or HCV-infected patients, although the data do not
seem definitive [19, 28, 58–68]. As mentioned above, HIV coinfection can decrease
the rate of HBV or HCV clearance and increase the risk of chronic HBV or HCV
infection and the risk of reactivation of latent HBV infections (Fig. 9.6) due to
defect in immune-mediated clearance of HBV or HCV [19, 25], including the
suppression of anti-HCV activity of NK cells in HIV-infected patients [69]. For
both HBV- and HCV-infected patients, HIV coinfection seems to accelerate the
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progression of liver diseases, leading to increased risk of cirrhosis and possibly liver
cancer [19, 70, 71]. In HIV-infected patients, HBV infection carries higher risk of
chronicity, higher viral load, lower chance of spontaneous viral clearance, faster
progression to cirrhosis, and appears to cause faster and more frequent progression
to HCC [63, 72–77]. HIV infection alone has also been reported to increase the risk
the HCC, as well as other cancers, presumably as a result of defective immune
surveillance against tumorigenesis [68, 78]. Moreover, triple infection with HIV,
HBV, and HCV is not uncommon and may present an even greater risk of HCC
development than the double infections. No clear data are available in this regard,
as it takes years to decades for HCC to develop in HBV- or HCV-infected patients
and thus long-term follow-ups are necessary to assess any increased cancer risks in
HIV coinfected patients. Before definitive measurements of liver cancer incidences,
surrogate markers are sometimes used to predict HCC development. These surro-
gates include the progression of cirrhosis, which, as mentioned earlier, almost
always precedes the development of HCC, and increased viral load, which may
predict an increased risk of HCC (Fig. 9.6). In the case of HBV, there is strong
evidence now to indicate that HBV viral load is in fact directly correlated with liver
disease progression and the risk of HCC development [79–81], and effective
antiviral treatment to decrease HBV replication has been shown to decrease the risk
of HCC development [82–85]. However, HCV viral load in the blood does not
seem to be correlated directly with liver disease progression [86, 87].

A major hurdle in trying to understand the consequences of HIV coinfection in
the setting of HBV or HCV chronic infections is the lack of cell culture systems or
convenient animal models that can be infected by both HIV and HBV or HCV.
Infection of chimpanzees, which are susceptible to all three viruses, is a possibility,
but these studies would be very costly and take years to conduct, and are no longer
allowed with U.S. government funding. As already alluded to earlier, the chance of
HIV coinfecting the same host cell with either HBV or HCV seems to be remote.
Any effect of HIV infection on HCC risk associated with HBV or HCV would be
unlikely to be exerted at the level of direct virus–virus interactions. Rather, indirect
effects of HIV-mediated immune dysfunction on HBV- or HCV-induced hepato-
carcinogenesis are more likely (Fig. 9.6).

Mechanistically, the increased chance of chronicity of HBV and HCV infections
associated with HIV coinfection, as discussed above, can account for some of the
increase in the risk of HCC, as chronic HBV or HCV infection is clearly associated
with HCC. The increased HBV or HCV load associated with HIV coinfection could
also potentially exacerbate liver damage and thus accelerate disease progression and
ultimately cancer development. In this regard, recent studies suggest that under
conditions of severe immunodeficiency, the normally non-cytopathic HBV can
damage the infected cells directly with uncontrolled high-level replication [88].
Similarly, although HCV is usually considered to be non-cytopathic, HCV repli-
cation or HCV proteins may nevertheless directly induce cellular damage such as
steatosis [89], which also occurs more frequently in HCV–HIV coinfections [90].
The inflammatory response and cytokines induced by HIV infection may worsen
HBV- or HCV-associated liver diseases [77, 91, 92]. In HIV–HCV coinfections,
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the enteropathy induced by HIV leads to microbial translocation from the intestinal
tract to the liver, which is reported to accelerate fibrosis [93] and may thus play a
role in enhancing HCV hepatocarcinogenesis. On the other hand, a decreased
immune response against HBV or HCV, as a result of HIV-induced immune
suppression, might actually reduce liver inflammation and damage [68] and thus,
slows down progression to cirrhosis and cancer (Fig. 9.6).

The increased HBV or HCV load in HIV coinfected patients can, in principle,
also influence cancer progression by increasing the expression of HBV or HCV
proteins that may be more directly involved in cellular dis-regulation and trans-
formation and in the case of HBV, the chance of insertional mutagenesis (Fig. 9.6).
Furthermore, some reports suggest that in the HBV/HIV coinfected patients, certain
HBV variants that are associated with enhanced carcinogenicity may be selected,
which could lead to increased risk of HCC development in these dually infected
patients [94, 95].

Although HIV is not known to infect hepatocytes, HIV proteins may never-
theless still be able to influence the HBV- or HCV-infected cells. For example, the
HIV transactivating protein, Tat, which can be present systemically during HIV
infection, has been reported to enhance the development of liver cancer [96] and
may thus influence the development of HCC in HIV coinfected HBV or HCV
patients.

9.8 Anti-Retroviral-Therapy-Associated Hepatotoxicity

Anti-retroviral-therapy-induced liver toxicity is an additional concern in HIV
coinfected HCV or HBV patients. One of eight patients treated with anti-retroviral
drugs show hepatotoxicity, a situation that is more likely to occur in HBV- or
HCV-infected patients that further exacerbates liver damage accompanying chronic
HBV or HCV infections [1, 19, 76, 97]. Anti-retroviral drugs that have shown
hepatotoxicity include certain nucleoside analogs (HIV RT inhibitors) and HIV
protease inhibitors. A further complication in the treatment of HIV–HBV coinfected
patients is the fact that some nucleoside analogs, such as 3TC (lamivudine), are
active against both the HIV and HBV RT, and can select for drug-resistant mutants
of both viruses. HIV-infected patients are sometimes treated intermittently, in order
to prevent the selection of drug-resistant HIV. However, hepatic flare can result
when a patient is taken off anti-retroviral therapy. This is thought to be due to HBV
viral rebound upon drug withdrawal and can lead to an increase in liver damage and
subsequent progression to cirrhosis and HCC. It is, therefore, important to ensure
that the coinfecting HBV infection continues to be treated while the patient is off
the HIV treatment, e.g., using nucleoside analogs specific for the HBV RT but
inactive against the HIV RT.
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9.9 Management of HIV–HBV and HIV–HCV Coinfection

As alluded to above, a number of nucleoside analog inhibitors of the HIV RT
(NRTIs) proved to be also active against the HBV RT and indeed have been
approved for HBV therapy, including lamivudine, adefovir, and tenofovir [98]. The
less potent of these such as lamivudine and adefovir can lead to the rapid selection of
drug-resistant HBV mutants, rebound of viral replication, and liver disease pro-
gression. Therefore, it is important to select NRTIs that are not only effective against
both HIV and HBV but also have a high barrier to resistance, i.e., tenofovir, as no
combination therapy is available yet for HBV, in contrast to HIV [73, 76, 99–101].
Some studies suggest that tenofovir may be less effective against HBV in the setting
of HBV–HIV coinfection [102], which warrants further studies. As the current
treatment for either HBV or HIV is not curative, long-term (and likely lifelong)
treatment is required to control either viral infection, careful monitoring of viral
resistance as well as drug toxicity is a necessity.

In the case of HCV–HIV coinfection, it is great news that the recently developed
anti-HCV drugs that target different HCV proteins (so-called direct-acting antivirals
or DAAs) and are highly active against HCV mono-infection remain highly active
in HCV–HIV coinfected patients [103–105]. This has raised the hope that effective
antiviral therapy against HCV in the HIV-coinfected patients will alleviate the
HCV-associated liver diseases. Conversely, effective antiviral therapy against HIV
in HIV–HCV coinfected patients can slow liver disease progression induced by
HCV infection [106]. On the other hand, drug–drug interactions between anti-HCV
and anti-HIV drugs leading to adverse effects in the dually infected and treated
patients have been observed and need to be carefully monitored [107, 108].

A concern related to HIV–HBV coinfection is the reported adverse effect of HIV
infection on the efficacy of HBV vaccination. A number of studies have indicated
that HBV vaccine efficacy, which is normally very high (ca. 95% response rate),
can be decreased in HIV-infected patients, especially in those with low CD4 T cell
counts [109–114]. As HBV vaccination is an essential part of the global strategy to
control HBV infection, this apparent detrimental effect of HIV infection on HBV
vaccine efficacy should be closely monitored.

9.10 HGV–HIV Coinfection

An intriguing interaction between HIV and another prevalent human virus, the
hepatitis G virus (HGV or GBV-C), may in fact be beneficial to the host [115–117].
Although initially thought to be one of the viruses that can cause hepatitis (hence
the name HGV), HGV is not known to cause any human disease but is a relatively
common virus that is found worldwide. Like HCV, it is a single-stranded,
positive-sense RNA virus that belongs to the family Flaviviridae. HGV is trans-
mitted through blood and body fluids, similar to HIV, HBV, or HCV. Different
from HCV, HGV primarily infects lymphocytes. Interestingly, in persons
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coinfected with HIV and HGV, HGV appears to confer protection against the
progression to AIDS [118, 119]. This was largely demonstrated before the advent of
HAART but has been shown in the post-HAART era as well. Furthermore, HIV
replication in vitro was shown to be inhibited by coinfection with HGV, suggesting
a mechanism involving direct interaction between the viruses [120]. However, not
all studies on the effect of HGV coinfection have reported favorable results and the
mechanism that provides this putative protection has yet to be elucidated. For the
purposes of this review, HGV does not appear to influence liver disease in HBV or
HCV coinfections.

9.11 Summary

Liver diseases caused by chronic HBV or HCV infection, including cirrhosis and
HCC, have emerged as an increasingly important problem faced by millions of
HIV-infected patients who are coinfected with HBV or HCV. On one hand,
HIV-induced immune suppression enhances the risk of chronic viral hepatitis,
increases HBV or HCV load, and may hasten the progression to cirrhosis and liver
cancer. On the other hand, significant hepatotoxicity is associated with a number of
anti-retroviral drugs, further exacerbating liver damage associated with chronic viral
hepatitis. The elucidation of the multiple virus–virus and virus–host interactions
that underlie viral hepatocarcinogenesis and potential HIV enhancement will be
facilitated greatly by the establishment of appropriate in vitro and in vivo model
systems. As millions of HIV-infected patients in the developing countries are
gaining access to HAART therapy for their HIV infections, endemic HBV and
HCV infections and their associated liver diseases will only become more prob-
lematic on a global scale.

Fortunately, recent progresses in developing tenofovir-based regimens that are
effective against both HIV and HBV infection, and esp. curative therapies for HCV
infection, are improving the prognosis for the HIV coinfected patients. Recent focus
to find a cure for HBV [121] and ongoing efforts to pursue a cure for HIV infection
[122], along with the wider application of the curative HCV therapies, promise to
rid the world of these deadly infections and eliminate the vast majority of HCC, a
highly malignant cancer for which little treatment options are available. On the
other hand, while overall liver-disease-related deaths among HIV–HCV coinfected
patients in some countries may be decreasing due to effective surveillance and
antiviral treatments, there has been no clear reduction overall in liver disease risk
associated with HBV or HCV coinfections in HIV-infected patients and HCC
incidence continues to increase [123–125], possibly reflecting the irreversible
carcinogenic events that have occurred before effective antiviral treatments and
highlighting the need to continue to monitor HCC risks even among the patients
undergoing effective antiviral therapy.
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