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Abstract. Generating ensembles of classifiers increase the performances in
classification and prediction but on the other hand it increases the storage space
and the prediction time. Selection or simplification methods have been proposed
to reduce space and time while maintaining or improving the performance of
initial ensemble. In this paper we propose a method called EMnGA that uses a
diversity-based entropy measure and a genetic algorithm-based search strategy
to simplify a heterogeneous ensemble of classifiers. The proposed method is
evaluated against its prediction performance and is compared to the initial
ensemble as well as to the selection methods of heterogeneous ensembles in the
literature using a sequential way.
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1 Introduction

The purpose of classification is to learn a target function that links a set of data to a set
of predefined categories (classes). The constructed target functions are also called
classification models.

To address the problem of instability of some classifiers [1, 2], it is asserted that the
use of an ensemble classifiers generally gives better results than the use of a singular
classification model [3–6]. These ensembles can be either homogeneous or heteroge-
neous depending on the nature of the models used. The homogeneous ensembles are
obtained by performing different executions of the same learning algorithm; for
example these ensemble can be obtained by varying the parameters of the learning
algorithm or by manipulating the data (input or output) [2, 7–9]. As for heterogeneous
models, they are obtained by executing different learning algorithms on the same set of
data. These models have different visions of the data which allows obtaining diverse
sets.

Generating a large number of predictors allows exploring the solution space largely,
and by aggregating all the predictions, we recover a predictor that accounts for all this
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exploration. The increase in the number of models can be done without risk of over-
learning [10]. However, a very large number of models require a large storage space
and an important time for the prediction due to the interrogation of all the predictors.

The simplification of ensembles of classifiers, called ensemble selection, reduces
the size of ensembles prior to their integration or combination [11–16]. In this paper,
we use a diversity-based entropy measure combined to a genetic algorithm-based
search strategy to simplify an ensemble of heterogeneous classifiers.

The rest of the paper is organized as follows: In Sect. 2, we present the recent
works in the ensemble selection field and especially those related to heterogeneous
ensembles. Section 3 details the proposed method describing the entropy measure and
search strategy used. In Sect. 4, we give the experimentation results and a comparative
study with heterogeneous ensemble selection method in literature. Finally in Sect. 5,
we conclude and give some future work.

2 Literature Review

Ensemble methods have attracted a growing interest since their appearance. These
methods have been applied in several areas namely, statistics, pattern recognition, and
machine learning. These methods consist of two main phases: a model production
phase and an aggregation or combination phase of these models. In the first phase,
variable performance models are added arbitrarily. The reduced performance models
negatively affect the ensemble performance. An ensemble may contain several similar
models which reduces its diversity.

Several recent works on ensemble selection [3, 17–19] have been developed in the
literature. Dai [20] proposes an improvement of the ensemble selection method of the
same authors. This method uses backtracking in depth, which is perfectly adapted to
systematically seek solutions to combinatorial problems of great magnitude. This
improvement concerns the response time of this method, which has been considerably
improved in this study.

Bhatnagar et al. [21] perform ensemble selection using a performance-based and
diversity-based function that considers the individual performance of classifiers as well
as the diversity between pairs of classifiers. A bottom-up search is performed to
generate the sub ensembles by adding various pairs of classifiers with high
performance.

Simplifying a set of classifiers usually involves reducing the number of trees while
maximizing performance. Based on the approximate ensembles, Guo et al. [22] pro-
pose a new framework for ensemble selection. In this context, the relationship between
attributes in an approximate space is considered a priori as well as their degree of
maximum dependence. This effectively reduces the search space and increases the
diversity of selected sub-ensembles. Finally, to choose the appropriate sub-ensemble,
an evaluation function that balances diversity and precision is used. The proposed
method allows repetitively changing the search space of the relevant sub-ensembles
and selecting the next ensemble from a new search space.

The selection methods were applied for either homogeneous or heterogeneous cases
[16, 23]. The heterogeneous ensembles are developed for sensitive application
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domains. Haque et al. [24] propose a search based on genetic algorithms to find the
optimal combination to form a heterogeneous ensemble from an ensemble of classi-
fiers. For this, they develop an algorithm that uses decimal cross-validation on the
learning ensemble to evaluate the quality of each candidate ensemble. The proposed
method uses a random resampling approach to balance the class distribution and is
particularly used for class imbalance cases.

Pölsterl et al. [25] use a heterogeneous ensemble including survival models with the
purpose of predicting the survival of patients with stage 3 prostate cancer. The results
demonstrate that the constructed ensemble can predict the date of death of patients with
this disease.

Partalas et al. [26] propose a diversity measure and a forward selection search
strategy that considers all the possible cases that may exist when adding a certain model
ht to an ensemble. The measure called FES (Focused Ensemble Selection) considers 4
cases when adding.

FESEval hk , SUBð Þ ¼
X Evalj j

i¼1
a * I yi ¼ hk xið ÞETyi 6¼ Sub xið Þð Þ � b * I yi 6¼ hk xið ÞETyi ¼ Sub xið Þð Þð

þ b * I yi ¼ hk xið ÞETyi ¼ Sub xið Þð Þ � a * I yi 6¼ hk xið ÞETyi 6¼ Sub xið Þð ÞÞ.

Eval: the sample of evaluation or selection;
I yi ¼ hk xið ÞETyi 6¼ Sub xið Þð Þ ¼ 1 if the instance xi is well classified by the model

hk and is not properly classified by the current ensemble Sub and 0 otherwise.
The factors a, b represent respectively the number of models in the Sub ensemble

correctly classifying the instance (xi, yi) and the number of models not properly clas-
sifying the same instance.

3 The EMnGA Method

3.1 Entropy Measure

The key idea in this approach is to generate only trees that have maximum diversity
(they are less correlated with each other). This is based on the principle that the
generalization error of the random forest will be on the wane while diversity among the
trees increases.

Let XV be a sample of individuals with their labels (classes), |ΩV| = n,
XV ¼ v1; . . .; vnf g, and XV ¼ v1; . . .; vnf g. Each individual vj is described by m vari-
ables denoted x1j; . . .; xmj. Let Ci be a classifier of the classifiers ensemble
C1; . . .;Ci; . . .;CTf g represented by a n-dimensional binary vector yi ¼ ðy1i; . . .; yniÞT

such that yji=1 if the classifier Ci classifies the individual vj and 0 otherwise. The
entropy function fE measures the diversity within an ensemble [27]. Given an indi-
vidual xj2 XV , if half of the classifiers T/2 don’t misclassify xj then the other half T-T/2
misclassifies it necessarily and vice versa. We speak in this case of maximum diversity.

We note nc(xj) the number of classifiers of T which correctly classify xj,
nc xj
� � ¼ PT

i¼1 yij. The entropy measure fE is written as:
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fE ¼ 1
n

Xn
j¼1

1
T � T

2

min nc xj
� �

; T � nc xj
� �� �

fE 2 0; 1½ � where 1 indicates a very large diversity and 0 a lack of diversity. Thus,
the goal is to maximize the fE function.

3.2 Genetic Algorithms

Genetic algorithms are a preferred technique for selection because they are inspired by
natural selection. They generate individuals that optimize an evaluation function also
called fitness function.

A genetic algorithm is defined by [28]:

• Individual also called chromosome or sequence represents a potential solution of the
problem. In our case, a solution of the problem corresponds to a binary string of size
T (corresponds to the number of trees composing the forest). A chromosome is
noted ch ¼ ðval1val2. . .valTÞ where vali = 1 if the tree is present in the selected
chromosome and 0 otherwise;

• Population corresponds to all the chromosomes representing all possibilities of 1
and 0 in a binary chain of size T;

• Environment represents the search space |ER| = 2T.
• Fitness function corresponds to the function ffE = fE (fE is the diversity function

defined above). The goal is to maximize the value of ffE.

Calculate the ffE fitness function for chromosome ch1 is equivalent to calculate the
function fE:

fE ¼ 1
n

Xn
j¼1

1
T � T

2

min nc xj
� �

; T � nc xj
� �� �

For instance, if n = 2 = |Ωv|, T = 2 (the classifiers to which correspond the value 1
T1 and T3), x1 and x2 are the individuals of Ωv classified respectively (1 0)

t and (0 1)t by
T1 et T3.

nc(x1) = 1 (the number of trees that correctly classify instances x1).
nc(x2) = 1 (the number of trees that correctly classify instances x2).

fE ¼ 1
2

1
2�2

2
* min 1; 2;�1ð Þþ 1

2�2
2
* min 1; 2;�1ð Þ

� �
¼ 1 and ffE = fE = 1, ffE takes

its minimum equal to 0 when the trees are diverse and its maximum 1 when they
disagree; hence ffE 2 0 1½ �.

We give hereafter the EMnGA algorithm that uses a genetic algorithm-based search
strategy and an entropy-based fitness function. It is described by the following pseudo
code:
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Algorithme AGfE ; 

Input : 
C={C1,…,Ci,…,CT}: a heterogeneous ensemble of classifiers ; 
yi=(y1i,...,yni)T: a classification vector associated with Ci on ΩV ; 
ΩV: a validation or selection sample;
chi: chromosome i of the search space;
ffE(ch,ΩV) : fitness function ; 
Output : 
Ch_sol : solution chromosome;
Begin
Generate a population of bits of size T;
Evolve the population where the fitness of a chromosome chi is calculate by
ffE(chi,ΩV) ; 
ch_sol :=argmaxchi(ffE(chi,ΩV))
End.

4 Experiments and Results

In this section, we describe information about the datasets used to carry out our
experiments. We experienced 8 benchmarks datasets downloaded from the UCI
Repository [29] as depicted in Table 1.

All data sets contain enough data to split them into three samples: a learning sample
XL (40% of the initial sample size), a validation or selection sample (20% of the size of
the initial sample) and the remaining 20% are used for the test.

We adopt a similar approach to that proposed in [26]. We generate, for each dataset,
a heterogeneous ensemble of 200 models (classifiers) containing:

Table 1. Description of datasets

Dataset Size Variables Classes

cmc 1473 9 3
kr-vs-kp 3196 36 2
credit-g 1000 21 2
tic-tac-toe 958 9 2
vehicle 946 18 4
vowel 990 13 11
Hypothyroïde 3772 30 4
segment 2310 20 7
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– 60 Kppv: with 22 values for K ranging from 1 to the size of the training sample.
Three weighting methods are applied: no weighting, inverse weighting and simi-
larity weighting;

– 110 SVM: we use 10 values for the complexity parameter {10−7, 10−6, 10−5, 10−4,
10−3, 10−2, 0.1, 1, 10, 100}, and 10 different kernels (2 polynomials of degree 2 and
3 and, 8 radial with gamma 2 {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2};

– 2 naive bayes: one model is built with the default parameters and another with a
kernel estimate;

– 4 decision trees: two values are used for the confidence factor {0.25, 0.5};
– 24 MLPs with a single hidden layer containing 6 neurons.

For each dataset, the generation of the ensemble (composed of 200 models) is
repeated 10 times and the majority vote is used for the combination of the different
models.

In Table 2, we give the performance results or success rates obtained (calculated on
an average of 10 iterations for each dataset) on the 8 datasets. Comparisons are made
between the Initial ensemble EI, the method EMnGA, and FES [26].

The EMnGA method gives better performance compared to FES on 5 of the 8
datasets, with improvements ranging from 0.5% to 10.92%. FES is doing better than
the proposed method on 3 dataset with improvements of 0.45% for kr-vs-kp and
segment, and 1.27% for tick-to-toe. On average, across all datasets, EMnGA improves
the performance of FES by 3% and the initial ensemble EI by 12% (Table 3).

We note that FES method generate ensembles with reduced sizes in 6 cases among
the 8 with reductions ranging from 0.2 to 2.3. EMnGA reduces the size of the credit-g
and tick-to-toe datasets by 0.1 and 1.8, respectively. On average, on the 8 datasets, FES
allows a reduction of 0.5 compared to EMnGA.

Table 2. Success rates obtained respectively by EI, EMnGA and FES for the 8 datasets

EI EMnGA FES

cmc 47.6% 53.2% 52.7%
kr-vs-kp 95.6% 98.55% 99%
credit-g 70.8% 85.32% 74.4%
tic-tac-toe 63.9% 97.43% 98.7%
vehicle 75.3% 83.02% 81.1%
vowel 90.7% 98.5% 90.3%
Hypothyroïde 91.9% 98.6% 99.3%
segment 97.8% 98.66% 96.9%
Average 74% 86% 83%
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5 Conclusion and Future Work

In this paper we proposed an ensemble selection method using diversity based entropy
measurement combined to a genetic algorithm based strategy search. The proposed
method was compared with the FES method [27] which uses a forward selection course
for heterogeneous ensembles. Based on the comparison made against the criteria of
performance and size of the ensemble generated, we have observed that the EMnGA
method generate larger ensembles in most cases compared to FES due mainly to the
strategy search method used to explores more possibilities but gives better
performance.

In future work, we will compare the measure with other methods in the literature
using other search strategies and will use more datasets in order to formally validate our
results with appropriate statistical tests. We will also experience a measure based on
diversity and performance in order to see the impact of jointly using both criteria.
Finally, we intend to apply the EMnGA method in random forest ensemble
simplification.
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