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Abstract. In this paper, we explore how the modified Dynamic
Weighted Majority (DWM) method of ensemble learning can enhance
time series prediction. DWM approach was originally introduced as a
method to combine predictions of multiple classifiers. In our approach,
we propose its modification to solve the regression problems which are
based on using differing features to further improve the accuracy of the
ensemble. The proposed method is then tested in the domain of energy
consumption forecasting.
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1 Introduction

Time series predictions have indispensable importance for the human society and
they have a great impact on many domains as well as on our everyday human
activities. Predictions are used in many areas like industry, energetics, business,
banking, weather forecasting, research, etc. Especially in energetics, accurate
forecasts of the future values are crucial. Identifying the underlying patterns
in the data is usually not a trivial task. In the last decades, researchers have
introduced several prediction methods (predictors) to solve this problem [8].

Some of the predictors use mathematical and statistical calculations, like
Linear Regression [9], ARIMA models or Exponential Smoothing [19]. Others
are based on Machine learning, e.g. Support Vector Regression, Neural Networks
and Random Forest [6,7].

Each of these predictors can be successful at describing certain types of time
series patterns but may become less accurate over time if the time series contains
changes in concept characteristics known as Concept Drift. To solve this problem
various learning methods such as Bagging [2], Boosting [17], Stacking [20] and
numerous hybrid approaches [7,10,15,21] have been developed.

The strength of ensembles lies in the fact that even if some of its predictors fail
to predict the new pattern correctly, others with ability to predict accurately in
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these changed conditions can compensate the overall prediction error. Therefore,
highly diverse ensembles are effective in lowering the error after a concept drift
occurs [13].

Another benefit of ensemble is the ability to adapt to changes by dynami-
cally combining base members (predictors) according to their recent performance
which increases the overall accuracy of the prediction [3].

Ensemble learning based on Dynamic Weighted Majority strongly employs
dynamic combination of predictors along with predictors reweighting which is
described and discussed in this paper.

This paper is organized as follows. In Sect. 2 we introduce the main concept of
ensemble learning and related terms. In Sect. 3 we present our proposed ensemble
learning model based on modification of Dynamic Weighted Majority method
for time series prediction. In Sect. 4 we present results of experimental evaluation
and our conclusions can be found in Sect. 5.

2 Ensemble Learning

In general, the main principle of ensemble learning is based on a proper com-
bination of results of different base models (predictors or classifiers) that can
create a more accurate result in comparison to the result provided by the best
individual model [12].

Ensemble learning consists of three main subprocesses: ensemble generation,
ensemble pruning and ensemble integration. In ensemble generation, a set of
diverse base prediction models are trained. The required level of diversity of
base models can be achieved by three main approaches - data, parameter and
structural diversity [16].

Ensemble pruning is used to eliminate redundant and high erroneous models
to increase the overall accuracy of final prediction. The pruning can be performed
by various ranking, search or partitioning-based methods [12]. This part of the
ensemble learning is optional.

The last subprocess, ensemble integration, provides combination of results
of prediction models. The combination is usually carried out as a linear com-
bination, where the weights are calculated by numerous approaches e.g. a sim-
ple mean, an inverse value of prediction model performance or more complex
weighted schemes based on optimization algorithms [5,21].

Several types of ensemble based on Outperformance method [1] or Dynamic
Weighted Majority method [10] combine outputs of currently generated pre-
dictors taking into account values of past weights and predictors errors. This
additional information helps ensemble to overcome high fluctuation of weights
in noisy and quickly changing data.

2.1 Dynamic Weighted Majority

As mentioned earlier, Dynamic Weighted Majority (DWM) is an ensemble
method which uses more complex weighted schemes. It was first described by



Improving Time Series Prediction via Modification of DWM 653

Kolter and Maloof in 2003 [10]. It is based on an older Weighted Majority algo-
rithm from Littlestone and Warmuth which gives individual experts (prediction
methods of the ensemble) weights, modifies them according to their performance
and generates final prediction by combining the predictions of the experts with
consideration to their weights [11].

While original Weighted Majority algorithm works with a static set of
experts, the Dynamic Weighted Majority can add or remove a number of experts
based on their performance. Thanks to this added feature, the ensemble can
successfully predict even in a changing environment with occurrence of Concept
Drift [10].

The original algorithm works with a set of experts with corresponding
weights. Each iteration of the algorithm starts by calculating a global predic-
tion of the current ensemble. The global prediction is obtained by combining
predictions of all experts proportionally to their weights. The algorithm obtains
a prediction from each member of the ensemble and adds its weight to the sum
for the corresponding output class. The class with the highest weight is then set
as the global prediction of the ensemble.

If the prediction does not match the sample label, the weights of incorrect
experts are lowered by predefined multiplicative factor from interval (0,1). If a
weight of any expert is lower than a predefined threshold value, then the expert
is removed from the ensemble.

A new expert is trained and added every time the global prediction is incor-
rect. At the end of each iteration, the weights of the experts are normalized to
add up to 1. Otherwise, the resulting prediction would be biased.

2.2 Modification for Regression

The Dynamic Weighted Majority was originally created for classification but
the base idea of keeping a dynamic set of experts is applicable for regression
as well. However, changes must be made in the process of evaluating experts’
performance, modification of their weights and experts’ replacement.

When solving classification problems, evaluating the correctness of the pre-
diction is quite straightforward. On the other hand, a result of regression is a
number from a continuous interval where the accuracy of prediction has to be
measured by certain metrics. That means we cannot easily decrease the weight
of an expert by a constant factor when its result is incorrect.

Subsequently, due to the property of regression problems another step of
the algorithm cannot be directly used - adding a new expert when the global
prediction is incorrect. A possible solution is setting a threshold to specify the
highest acceptable error of a prediction method. But setting the threshold is
very domain-specific and often undesirable. A better solution for general use is a
constant size of the ensemble which means a new expert is added to the ensemble
only in case when another expert has been removed.

In 2016, a paper Prediction of Power Load Demand Using Modified Dynamic
Weighted Majority Method by Radoslav Nemec et al. applied the Dynamic
Weighted Majority on the regression problem of predicting power load demand
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[14]. In this paper, the problem of reducing expert weights was solved by intro-
ducing an error constant . The error constant reduces the weights of experts
who achieve higher error and increases weights of experts with more precise
results. The problem of adding new experts was solved by an constant size of
the ensemble.

3 Proposed Algorithm

In this paper, we propose a general version of Dynamic Weighted Majority for
regression and time series prediction. Out method is based on the modification
for regression, which was mentioned in the previous chapter, but without the
need for error constant -, as it is very dependent on data. After removing this
constant, we can use the error of prediction as a measure to determine how
much we want to reduce the weight of an expert, as opposed to binary choice
of reducing or not reducing the weight by a given constant. We believe this
approach can increase the accuracy of the ensemble.

Algorithm 1. Dynamic Weighted Majority for regression

{Z, y}}L : training data composed of attribute vector and class label
[ : expert weight lowering factor, 0 < 3 > 1

0 : threshold weight value for expert removal

p : period of expert replacement

{e,w};, : set of experts and their weights

A, N €{1,...,c} : global and local predictions

m : size of the expert set in ensemble

€1,...,m : prediction errors

1: em < CreateExpertSet()
2t wi,...m — 1/m

3: fori—1,...,n do

4 A0

5 for j — 1,...,m do

6: \ — Predict(ej, @)
7 gj — MAPE(\y;)
8 A— A+ Xxw;

9: w «— LowerWeights(w, ¢)
10: if i mod p = 0 then

11: for j — 1,...,m do
12: if w; < 6 then
13: e,w «— ReplaceWithNewEzpert()

14: w «— NormalizeW eights(w)
15: output A

The algorithm of the proposed DWM method starts by creating a set of m
different experts with equal weights (lines 1-2). An iteration starts by obtaining
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a prediction of the training sample for all experts. These local predictions are
multiplied by the weight w; of an expert j and added to global prediction A
(lines 3-8). Subsequently, the prediction errors are calculated for each expert
and saved into a vector. The prediction error of each expert is calculated by
Mean Absolute Percentage Error metric (1)

n

MAPE = @Z

n
t=1

A — B

At ’ (1)

where n is the number of samples, A; is the actual value and F; is the predicted
value.

Although, various error metrics can be used [18]. These accuracy values are
transformed into a vector of multiplicators from interval < 3,1 > which is used
to lower the weights of experts proportionally to their performance on the last
sample (line 9).

In our implementation, we achieve this by using the transformation function
(2) which assigns the lowest performing expert a multiplicator of 8 and gradually
increases the multiplicators of other experts up to a theoretical maximum of 1
for perfect prediction:

1
J— _ G Yiosg(1- 452
mult; = (1 100) ( ) (2)

In case the expert replacement is allowed in this iteration (line 10), we check
if any expert has weight lower than the threshold 6 (lines 11-12). If that is the
case, expert is removed from the ensemble and replaced by a different one with
an initial starting weight (line 13). At the end of the iteration, weights of the
experts are normalized so the sum is equal to 1 (line 14).

4 FEvaluation

We evaluated the accuracy of our proposed DWM method on time series data
containing electricity consumption measurements. We predict electricity con-
sumption for the next 24 h and then we move the prediction window to the next
day.

For testing of the proposed ensemble, a process of creating diverse experts is
needed. We fulfill this requirement by creating structurally diverse experts based
on different prediction methods. A pool of experts is created from commonly
used time series prediction methods, namely: Autoregressive Integrated Moving
Average (ARIMA), Random Forest (RF), Feed-forward Neural Network with
a single hidden layer and lagged inputs (NN) and Support Vector Regression
(SVR). Each method is trained on a window of four weeks training data prior to
the prediction date. However, we do not use these methods directly on the time
series data.

Before prediction, the time series is split into seasonal, trend and remainder
component by the Seasonal and Trend decomposition using Loess (STL) [4].
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Each expert in ensemble consists of one seasonal, trend and reminder component,
where each component can be computed by different prediction method. By this
approach we can increase the number of possible experts up to n® where n is the
number of used base prediction methods.

The ensemble starts with a given number of random experts with equal
weights. The weights are modified in each iteration by formula (2) and sub-
sequently if a weight of any expert falls below the threshold 6, then it is replaced
by another expert from currently unincluded experts. In our implementation,
we randomly pick one of the experts included in the ensemble and mutate it by
changing one of its three components to create a new expert.

4.1 Data

The proposed ensemble model was evaluated on two electricity consumption
datasets. Both datasets contain energy measurements from households as well
as from enterprises. The first dataset consists of time series measurements with
60 min period from Toronto region, Canada. The data are collected by the Inde-
pendent Electricity System Operator'. In our experiments, we used the sliding
window approach to perform daily predictions for whole year 2011.

The second dataset consists of time series measurements with 30 min period
from Australian Energy Market Operator?. In the experiment, we used aggre-
gated data from the state Tasmania. Daily predictions were computed on data
from year 20009.

4.2 Results

In our experiments we tested prediction accuracy of the proposed ensemble.
Since the ensemble has several configuration parameters that strongly affects
the prediction outcome, at first we experimentally estimated optimal values for
these parameters. The parameter 8 was set to 0.65, parameter 6 to 0.5 and p
was 1.

The parameter estimation was calculated on one whole year of previous mea-
surements in Toronto (year 2010) and Tasmania (year 2008) datasets. This one-
year period of previous data was also used to eliminate potential prediction error
caused by randomness of initial experts in the ensemble, and to select appro-
priate ones. Another important aspect influencing prediction accuracy of the
ensemble is the number of experts in it.

To put the results of the proposed DWM ensemble with scaled multiplicators
into perspective, we also measured accuracy of the DWM ensemble with constant
weights multiplicators based on the work of Radoslav Nemec et al. [14].

In our first experiment we evaluated the prediction accuracy based on the
number of experts in the ensemble. An error metric MAPE was used to evaluate
the prediction accuracy. Figures1 and 2 show the development of the average

! http://www.ieso.ca/.
2 http://www.aemo.com.au.
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Prediction error on Toronto dataset based on the number of experts

5.5 -
A Type of Ensemble
v\ DWM with scaled multiplicators
S \ --DWM with constant multiplicators
5.0 \
N '
m \
% \
24.5- T
\\ e »__-_»__,/‘\\/—\~/___-»\~/,\\ '/~\'/-/'—4‘\~\‘/<\_/__
40 . . . ] | I’ - | “.- — .”*-77I - . ~ ‘v T"' I— : |
3 5 7 9 1 13 15 17 19 21 23 25 27 29 3]

Number of experts in Ensemble

Fig. 1. Accuracy comparison of DWM ensembles with scaled and constant multipli-
cators based on a number of experts in the ensemble measured on the electricity con-
sumption dataset from Toronto region in Canada.

Prediction error on Tasmania dataset based on the number of experts
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Fig. 2. Development of prediction accuracy of DWM ensembles with scaled and con-
stant multiplicators based on a number of experts in the ensemble evaluated on the
Tasmania dataset.

daily prediction error of tested ensembles based on different number of experts.
The results show that a reasonable number of experts in the ensemble is about 5
to 9. A higher number of experts improves results only slightly and it increases
the computational complexity. The results also show that the proposed DWM
ensemble with scaled multiplicators obtained lower prediction error in compar-
ison to the DWM ensemble with constant weights multiplicators in almost all
tested cases.

The second experiment was designed to show prediction accuracy of the
tested DWM ensembles and 10 best experts. Results displayed in Figs.3 and 4
show average daily prediction error measured on Toronto dataset for time period
from 1.1.2011 to 31.12.2011 and Tasmania dataset from 1.1.2009 to 31.12.2009.
In Toronto dataset, the number of experts in ensemble was set to 25. In case of
Tasmania dataset, we used 21 experts.
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Average daily prediction error measured on Toronto dataset
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Fig. 3. Comparison of prediction error of DWM ensembles and ten best prediction
methods (experts) on Toronto dataset in year 2011 displayed in ascending order.

Average daily prediction error measured on Tasmania dataset
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Fig. 4. Results representing prediction error of tested DWM ensembles and their best
performing member methods (experts) on Tasmania dataset in year 2009 displayed in
ascending order.

As mentioned previously, each expert is composed of seasonal, trend and
reminder component of the time series that is predicted by individual prediction
method and combined to create final prediction for the next day. The name of
an expert consists of abbreviations of used prediction methods. The position of
abbreviation in the expert name represents the seasonal, trend and reminder
component.

According to the results the proposed DWM ensemble with scaled multi-
plicators outperformed DWM ensemble with constant multiplicators as well as
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best expert on both datasets. In Tasmania dataset, several experts obtained even
better prediction results than DWM ensemble with constant multiplicators.

The results also show that the majority of the seasonal, trend and reminder
components of the best predicting experts in both testcases were predicted
mainly by Support Vector Regression and Random Forest.

5 Conclusion

Our proposed modification of Dynamic Weighted Majority with scaling multi-
plicators for regression and time series prediction has proven to be a successful
approach to combine multiple predictors (experts) into an accurate ensemble. It
is especially useful if many predictors with various accuracies are available, as it
is able to identify the best performing predictors and omit the underperforming
ones even in a changing environment.

We also compared our proposed ensemble with another DWM ensemble on
two publicly available electricity consumption datasets. According to the results
our solution outperformed all base prediction methods as well as other tested
ensemble in terms of prediction accuracy.

However, there is still room for improvement. The possible aim of future
research is to find an optimal transformation of forecast errors into multiplicators
of experts’ weights. Replacing the exponential scaling of errors shown above by
other mathematical transformations would undoubtedly impact the precision of
the ensemble and should be explored further. Another direction of future research
could involve optimization of constant values 3 and # used as the parameters of
the ensemble.
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