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Abstract. In the automotive industry, the cars themselves as well as the pro-
duction lines, produce a high amount of data day by day. To get information out
of these data there is a need for high performance data mining tools. One of
these tools is the pattern discovery. This paper addresses the assessment of
different approaches to discover frequent pattern in time series. Our special
requirement is the detection of time warped pattern with variable length. The
comparison includes approaches based on dynamic time warping (DTW), dis-
cretization as well as Keogh’s Matrix Profile. Every approach is exemplarily
implemented in MATLAB and (if necessary) adapted to face our use cases. The
focus of the assessment will be the quality of the results, the runtime and the
effort of parametrization. For evaluation, time series test datasets are generated
with predefined patterns based on random walks. The output patterns, identified
by the different pattern discovery algorithms, are compared with the initial
patterns and evaluated with respect to the Jaccard index. This leads to a quality
score for every algorithm and every parametrization and the possibility to
compare different algorithms as well as approaches.

Keywords: Pattern discovery *+ Motif discovery  Pattern enumeration
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1 Motivation

During the operation of complex mechatronic systems various time-resolved data is
accumulated. The analysis of such time series data provides information on usage,
condition or even misbehavior of the systems or components. Focusing on fault
diagnosis, usually only short error logs are analyzed with regard to a possible abnormal
signal behavior. However, to obtain long-term information on usage, wear-off,
behavior or system’s condition an analysis of the entire data record is required. In this
context, change detection methods are needed to identify slow or abrupt changes in the
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signals or signal groups behavior. In the context of wear-off for systems having
recurring stress patterns, e.g. manufacturing robots, it is advantageous to compare only
such patterns. In our use case, we cannot expect experts to specify suitable patterns and
therefore we need unsupervised methods for automatic definition of such recurring
stress patterns without input of expert knowledge.

2 Introduction

Although there are a lot of different approaches and algorithms for the problem of
(unsupervised) pattern discovery in time series data, the number of useful approaches
limits with the requirements of our special use cases. We need reliable methods to
detect recurring patterns, which are usually time warped and noisy, in datasets with far
more than one million data points at a reasonable runtime. Beyond that we also would
like to detect patterns in multidimensional time series. However, in this paper we limit
our analysis for simplicity to a one dimensional case. Following the conditions
described above we will compare three different approaches. There may be the need of
adaption to fulfill the requirements, e.g. because some approaches aim to discover
motifs', while our goal is the pattern” discovery.

At first there are algorithms based on the principle of dynamic time warping
(DTW). DTW is a distance or similarity measurement for time series with different
length with the possibility to stretch or compress one of the time series to fit the other
one [1]. Beyond that, the DTW can be adjusted and extended to the problem of
discovering patterns. The authors of [2] proposed a DTW-based algorithm called
CrossMatch to identify similar subsequences in different sequences without the need of
sequences. A similar technique is described in [3] where the approach is extended by a
hierarchical clustering algorithm to find patterns.

The second approach is based on the symbolic representation of the time series,
which is interesting in terms of reduction of complexity and therefor also for the
reduction of the runtime. Furthermore these approaches can be more robust against
noise than those based on the DTW. To get a symbolic representation, there are many
methods for time series discretization. The Symbolic Aggregate Approximation
(SAX) [4] algorithm and other symbolic time series methods use intervals with equal
probability. Besides, there is the possibility to use intervals of equal size. The relevance
of symbolic approaches is evidenced by the variety of existing pattern discovery
algorithms from various research fields like bioinformatics or text mining. For example
in bioinformatics the Smith Waterman algorithm is used for sequence alignment, hence
the pattern discovery in DNA sequences [5]. As DTW, Smith Waterman is based on
dynamical programming and is able to find time warped patterns. The Sequitur algo-
rithm, proposed in [6], extracts the hierarchical structure of a symbolic sequence by
replacing recurring phrases with grammatical rules while forming a dictionary of these
rules, which is formally known as grammar induction. Sequitur identifies only identical

Definition “motif”: A motif is a pair of similar subsequence in a time series.

2 Definition “pattern”: A pattern is a group of at least two similar subsequences in a time series.
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patterns and ignores possible similarities in rules/patterns. Furthermore it is not guar-
anteed to find all the patterns in the sequence, because of its replacing procedure.
Pattern enumeration is often referenced to cope with last mentioned problem. To
perform time warped pattern discovery with those algorithms there have been proposed
numerosity reduction techniques, as e.g. employed in [7]. Especially for long
sequences the number of enumerated patterns can increase exponentially. That is why
there is also research in constraint programming techniques like in [8] or [9].

The last approach we want to focus on is the principle of Matrix Profile introduced
by Keogh et al. [10]. Basically, it is a brute force approach to find motifs or patterns of
a fixed length by calculation the distances between every possible query sequences and
every other sequence of the chosen length. Nevertheless it is said to be fast because of
the MASS algorithm (Mueen’s ultra-fast Algorithm for Similarity Search) also proposed
in [10]. As it uses the z-normalized Euclidian distance, i.e. a fixed length, it is not
suitable to find time warped patterns. A possibility to solve this issue is to replace the
Euclidian distance with the DTW. However, this makes it even more computational
expensive and doesn’t solve the problem to be only able to compare sequences of equal
length. Furthermore, because of the z-normalization, it ignores the original values of
the compared sequences. That is why we implemented additionally a version of the
standard Euclidean distance.

In this paper we focus on the comparison of the aforementioned approaches
including necessary adaptions. Our target is an evaluation concerning runtime,
parameterization effort and pattern quality. Therefor we apply the Jaccard Index to
calculate a quality score called overlap, which gives us the opportunity to evaluate and
compare different algorithms as well as approaches.

The following section gives detailed information about the applied algorithms and
our exemplary implementations to fulfill our requirements. Section 4 explains our
approach for the comparison of pattern discovery algorithms. Section 5 evaluates our
results and gives statements to the assessment of the different approaches. The final
section gives a conclusion and an outlook to future research.

3 Approaches for Pattern Discovery

3.1 DTW-Based

The tested implementation is based on the approaches from [2] and [3]. We are using
the scoring function of the CrossMatch algorithm, which is necessary to compute the
matrix equivalent to the DTW algorithm. In the case of CrossMatch the matrix contains
values of similarity in contrast to the DTW which computes a distance matrix. The
scoring function for every cell (i,5) of the similarity matrix v of CrossMatch using the
time series x and y is shown in Eq. (1).

gha — ||xi = yj|| +v(i = 1j— 1)
&by — ||xi = yj|| +v(ij — 1) (1)
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A major difference between the scoring functions of the classic DTW and Cross-
Match is the usage of weighting factors ¢by, ¢b, and ¢by,. It enables us to penalize time
warping, i.e. horizontal or vertical steps in the similarity matrix. While DTW is only
able to calculate a distance between two sequences, CrossMatch enables the detection
of motifs as well. The end of a motif is marked by a local maximum in the similarity
matrix v. Furthermore the CrossMatch algorithm calculates a position matrix, which
contains the starting points of the motifs. For further explanations of DTW see [11] and
CrossMatch see [2].

For the tests that we are going to perform, we limit the weighting factors to
eby = 1, as a reward for similarity, and —1 <eb, = eb;, <0, as a possible penalization
for time warping. Furthermore we need to make an adaption to the CrossMatch scoring
function, see Eq. (2). In order to search for motifs in one and the same time series, we
have to exclude the trivial matches. Therefor we implement an offset region around the
diagonal of the similarity matrix v,gap(i,7). These matrix cells are set to zero by default.
Due to symmetry only half of the matrix has to be calculated. These adaptions also
apply to the position matrix.

o (), [l > offser
Vadapt(lu.]) - { 0, |1 —J‘ < oﬁ‘set (2)

In order to form patterns, additional to the CrossMatch, we extract and cluster the
motifs like in [3]. To extract possible pattern candidates from the matrix, we use a
minimum length and a minimum similarity. Every candidate’s score higher than the
product of min_length and min_similarity is going to be clustered. The clustering
algorithm needs another parameter specifying the sensitivity of the extracted motifs to
be clustered to patterns, which is later referenced to max_similarity_motif. To ensure,
that every subsequence in the time series similar to the pattern is discovered, a rep-
resentative of every pattern is extracted and searched in the whole time series by
recalculating the CrossMatch similarity matrix with the representative query sequence.

3.2 Discretization-Based

Concerning discretization-based approaches for pattern discovery we focus on an
adapted Sequitur algorithm and an algorithm for pattern enumeration. Both are based
on an equal probability discretization technique. However, in contrast to the technique
described in [4], we don’t assume a Gaussian distribution of the data values, which is
necessary in terms of various signal types. We formed a simple algorithm to form
classes of equal count of data points with respect to the constraints uniqueness and
allocation. Uniqueness means that there must not be multiple classes with the same
data value. According to the allocation constraint, every data value has to be allocated
to a class. The algorithms we will describe are only dependent on one parameter, the
number of discretization steps.

Because of the need of time warping we apply an optional numerosity reduction
technique like in [7], which we call symbolic reduction. Therefore every identical
consecutive symbol in the time series is reduced to a unique symbol. Hence in every
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step of the time series is a change in the symbolic value. We will later discuss the
benefit of this technique.

Pattern Enumeration Algorithm

To evaluate the performance of our adapted Sequitur algorithm, we also want to apply a
pattern enumeration algorithm. The algorithm repeatedly scans the whole time series
with different query pattern length by using a matrix representation of the symbolic
time series and a sort algorithm. In Table 1 the pseudocode of the algorithm is shown.

Table 1. Pseudocode for pattern enumeration

1 1 pattern =1

2 empt = false

3 while ~empt

4 1 pattern = 1 pattern + 1

5 ts matrix = form matrix(sts, 1 pattern)

6 [ts_matrix sorted, index] = sort(ts_matrix)

7 [symbolic repr, num, loc] = get symbolic repr(ts matrix sorted)
8 for p = 1l:length(symbolic_repr)

9 if num(p) > 1

10 add to dictionary(symbolic repr(p), location(p))
11 end

12 end

13 if isempty (find(num > 1)

14 empt = true

15 end

16 end

The core of the algorithm is in lines 5 to 7. In line 5 the time series array is
transformed to a matrix of the size (length(sts) - I_pattern) x I_pattern. I_pattern
describes the length of the patterns that are searched in the current iteration of the while
loop. In the function form_matrix the symbolic time series sts gets multiplied I_pattern
times and shifted by a number of entries dependent on the column. This leads to matrix
rows with consecutive time series values. In line 6 the matrix is sorted along the first
dimension, which leads to a matrix where equal row values are located in consecutive
rows. By detecting the differences of the sorted matrix within the function ger_sym-
bolic_repr, the contained symbolic combinations or representations can be extracted.
Furthermore the number and the location of the occurrences can be identified. In the
last step every detected pattern with a count greater than one, is documented in a
dictionary. The dictionary contains every detected pattern and its location.

Adapted Sequitur Algorithm

The Sequitur algorithm is based on two constraints. The first constraint is named
diagram uniqueness, which means that every diagram (a pair of two adjacent symbols)
is allowed to occur only once in the symbolic time series. If a diagram appears more
than once, then a rule has to be formed. Every rule has to fulfill the second constraint,
the rule utility. It says that every rule has to occur at least twice. For detailed infor-
mation about the execution of the Sequitur algorithm see [6].
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Our adaption of the algorithm is shown in Table 2. The first three steps within the
WHILE loop are similar to the pattern enumeration algorithm, except for a fixed matrix
column size of 2. To fulfill both, the diagram uniqueness and the rule utility, the
algorithm adds the diagram that occurs the most to the dictionary and replaces the
diagram in the symbolic time series by a new symbol. It stops when the diagram
uniqueness is fulfilled.

Table 2. Pseudocode for adapted Sequitur

1 empt = false

2 while ~empt

3 ts matrix = form matrix(sts, 2)

4 [ts_matrix sorted, index] = sort(ts_matrix)

5 [symbolic repr, num, loc] = get symbolic repr(ts matrix sorted)
6 if max (num) > 1

7 [v, 1] = max(num);

8 [Dict, numofrule] = addtodict (Dict, symbolic repr (i), loc(i));
9 sts = replace_bynewrule(sts, loc, numofrule) ;

10 else

11 empt = true ;

12 end

13 end

3.3 Matrix Profile

The Matrix Profile introduced by Keogh et al. is an approach able to be executed on
raw time series without any preprocessing. Matrix Profile is based on the calculations
of distance profiles. A distance profile visualizes the distances between a query
sequence and every other possible sequence in a time series (with length(time-
series) >> length(query)) while the query sequence is part of the time series and all the
compared sequences have the same length. Thus the minimum of the distance profile,
excluding the trivial match, is the best match with the query sequence. To extend the
distance profile to a Matrix Profile, a distance profile for every possible query is
calculated. The minima of every distance profile are visualized in the Matrix Profile.
For further details see [10].

To extract motifs of a fixed length we need a maximum distance that is not allowed
to be exceeded between two sequences of a motif. Every data point in the matrix profile
that fulfills this constraint can be seen as the starting point of a motif. The corre-
sponding distance profile gives information about other sequences that are similar to
the motif. Again every data point that falls below the maximum distance leads to a
similar sequence. The motif with its similar sequences can then be called a pattern. To
discover patterns without a fixed query length we have to apply the algorithm multiple
times for every possible query length [10].

Because of the naive structure of the approach, the MASS algorithm was proposed
in [10], which calculates the z-normalized Euclidian distance profile by convolution. In
comparison to the naive approach of calculating the Euclidian distance between the
query and every other sequence, this technique reduces the time complexity for a
distance profile from O(n * m)to O(n * log(n)) with m being the length of the query
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and n the length of the whole time series. However, for time warped pattern discovery
the Euclidian distance is not suitable. An alternative solution is to replace it with DTW,
which theoretically increases the complexity to O(n * m?). For the calculation of a
Matrix Profile we have to calculate approximately n distance profiles, which leads to a
complexity of O(n? * m?). As we want to find patterns without input of a query length
the Matrix Profile has to be calculated multiple times for different query lengths [10].

In a second implementation we tested Matrix Profile with the Euclidean distance
but reduced complexity. It is based on the fact that the distance profiles of the query at
starting point i and the one at starting point i + / have query_length — I identical
Euclidean parts. While calculating the distance profiles in serial, it is possible to keep
these identical parts and calculate with just two additional computation steps (per data
point in the distance profile) the next distance profile.

4 How to Compare Different Approaches/Algorithms?

As we want to compare different approaches to discover patterns, we need a test
standard. One possibility is to use benchmark time series, for example from financial
stock markets or from seismology, which are commonly used to test different time
series exploration tools. However, generalized results regarding every possible kind of
pattern can be obtained only by use of synthetically created time series. Our test data is
composited by predefined patterns, which can be labeled automatically. The advantage
of this approach is the independency of a certain test case. Furthermore we can create
an infinite number of test sequences without the effort of labeling it.

The evaluation is divided in three steps. In the first step the test data is created
automatically from patterns that are generated randomly. In the second step, the pattern
discovery, the predefined patterns are rediscovered using different algorithms and
parameter sets. By using the index information of every predefined and located pattern,
in the third step a quality score for the results is calculated.

Create Time Series Test Data
To find generalized evaluation for different use cases, the test patterns should cover
every possible kind of shape. That is why we chose the random walk as the basis for
every pattern. In our case we use a Gaussian random walk, which changes the distri-
bution of the randomly chosen step size from equal to normal. For the creation of a
primal pattern by a Gaussian random walk the following parameters are also chosen
randomly once: Value of the first data point; number of steps; maximum step size.

After creating different primal patterns, each of them is multiplied and distorted to
form a set of similar members for each of the primal pattern. The number of members
within a pattern is randomly chosen. The distortion is done by adding white Gaussian
noise to the members, given a fixed signal to noise ratio, and by randomly stretching or
compressing the length of the members, given a maximum ratio between the length of
the primal pattern and the distorted member.

To form a sequential time series based on the randomly created patterns and its
members, the members are concatenated in a random order. Note that every member
can only occur once in the time series. To overcome value jumps between the linked
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patterns, we insert a smooth crossing. Start and end indices of every member and every
pattern are saved.

Pattern Validation

Output of the pattern algorithms are indices of starting and ending points of the located
pattern. To evaluate the rediscovered patterns we calculate an overlap comparing these
indices Ij,. with the indices of the predefined pattern I, by using the Jaccard Index:

I re m I()C
overlap(pre,loc) = Jaccard(pre,loc) = ﬁ (3)
pre loc

Hence an overlap score of 0 describes a mismatch and a score of 1 describes a
perfect match between predefined and discovered pattern. Note that the overlap also
decreases from a perfect match if the detected pattern is longer than the predefined. The
calculation is performed for every combination of predefined and detected pattern.
Afterwards a best match for every predefined pattern can be chosen. To express a one-
score quality criterion for the algorithms, we chose the mean overlap value of the best
matches.

Furthermore we perform the whole routine multiple times, to get a reliable statement
for the quality of the algorithms. This gives us also the possibility to make a statement
concerning the variance of the quality. Besides, in every iteration of the routine, the
runtime of the different algorithms is recorded.

5 Experimental Evaluation

After explaining the different approaches for the pattern discovery and the methodol-
ogy of calculating the quality score overlap, we now compare the different approaches.
In our evaluation we created 10 random datasets, ran every algorithm with different
parametrizations, and calculated the overlap. For each algorithm we figure out the
parametrization leading to the best overlap, see Fig. 1. The overlap is plotted for every
approach and for every random dataset. Next to the bars the corresponding runtime of
the pattern discovery algorithm is indicated.

It is evident that the DTW-based approach outperforms every other tested approach
concerning overlap. Discretization-based approaches, in turn, advance greatly con-
cerning the runtime. The algorithm for pattern enumeration provides constantly better
results than the Sequitur algorithm. As expected, the Matrix Profile with the use of the
Euclidean distance is not able to compete with the other approaches because of its
complexity and the inability of time warping. We expect better results when using the
Matrix Profile in combination with DTW instead of the Euclidean distance, though
substantially increasing runtime. As the DTW-based approach outperforms the Matrix
Profile in runtime and overlap, Matrix Profile is not suitable for our use cases. How-
ever, as we calculated an entire Matrix Profile for every possible query length, there is
still optimization potential for reducing the runtime based on early abandoning.
Nonetheless this reduces the runtime, but doesn’t improve the overlap.
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In general all algorithms output a higher count of patterns than the number of
predefined patterns, i.e. 16. While the DTW-based and the adapted Sequitur algorithm
locates a reasonable count, the pattern enumeration algorithm and the Matrix Profile
produce an extremely high amount of patterns (>20.000, >50.000, resp.). This shows
the need of additional postprocessing techniques.
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< 3 |
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Fig. 1. Overview of different approaches concerning overlap and runtime; length of datasets
approximately 50.000 data points; average count of located patterns: DTW ~ 800; Pattern
Enumeration >20.000; adapted Sequitur ~200; Matrix Profile >50.000;

After giving a brief overview of the best case performances, we now have a closer
look at the approaches including the process of parametrization. In Fig. 2 (left) the
performance of Matrix Profile with variation of the maximum allowable distance within
a pattern and with use of Euclidean and z-normalized Euclidean distance is shown. The
Euclidean Matrix Profile is calculated with the runtime reduction technique while the z-
normalized Euclidean Matrix Profile is calculated by the MASS algorithm. As shown
in Fig. 2 the Euclidean Matrix Profile leads to a better overlap for most of the
parametrizations, while requiring less than 10% of the runtime.

In Fig. 2 (right) the performance of the discretization-based approaches are eval-
uated with the variation of the number of discretization steps. Furthermore the benefit
of the symbolic reduction is shown. It can be seen that the symbolic reduction has a
higher impact on the results of the pattern enumeration algorithm than on the results of
the Sequitur algorithm concerning overlap and runtime. However, in both cases the
overlap as well as the runtime gets better with the use of the symbolic reduction, due to
the time warping. Nevertheless, compared to the DTW-based approach, it is a slight
disadvantage because the time warping is not controllable. i.e., after symbolic reduc-
tion, a symbol can represent two or considerably more identical consecutive symbols.
A problem for both algorithms is the dependency of the discretization method, despite
the dependency to only one parameter. Furthermore, we experienced a weakness in
terms of multiple symbolic value toggling because of noise in value regions near the
discretization boarders. This effect could be mitigated by applying a frequency filter as
a preprocessing step.

Figure 1 shows the best case results of the approaches concerning the overlap. For
the DTW-based approach, for acceptable runtimes we chose a compromise between
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I Sequitur
Patter Enumeration
Sequitur (symbolic reduction)

0.7 -/ I Matrix Profile (Euclidian Distance)
[EERIMatrix Profile (z-normalized Euclidian Distance)

B Pattern Enumeration (symbolic reduction)

mean overlap

max distance discretization steps.

Fig. 2. Left: results (overlap and runtime) of Matrix Profile with variation of the maximum
distance; Right: results (mean overlap and mean runtime of all datasets) of the discretization
approach (Sequitur, Pattern Enumeration) with and without symbolic reduction and with
variation of the discretization steps
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Fig. 3. Results of DTW-based algorithm (10 random datasets), for every costwarp parameter
value a separate plot; top: mean overlap of random datasets with different parameters; bottom:
mean runtime in minutes

acceptable runtime and high overlap. This tradeoff is shown in Fig. 3. With values of
max_similarity_motif > 0.9, the runtime increases dramatically. This is caused by the
clustering of motifs located by CrossMatch. In case of high values of max_similar-
ity_motif there are only few motifs clustered together to form pattern. This leads to a
high count of patterns, which are then again searched in the whole time series. For
further research it has to be evaluated if this last step of the DTW-based approach can
be reduced or replaced by a powerful clustering of the candidates. It is also noticeable
that the effort of parametrization is high in comparison to the other approaches. At least
three parameters have to be chosen carefully to get the expected results. As shown in
Fig. 3 the highest overlap values result at values of min_similarity = 0.5. We expe-
rienced an increase of the need of RAM in cases of values lower than 0.5, which is not
practical for our use cases.
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For a final validation, for each approach, we applied the best case parameter set to a
real life dataset from a typical use case in the automotive industry. Table 3 shows
exemplary results for each algorithm, which were produced with the formally deter-
mined best case parameters.

Table 3. Exemplary results of a real data set

Approach DTW Matrix Profile Pattern Enum. Sequitur
Parameters | min_similarity = 0.5 max_distance =3 Discr. steps =9 Discr.steps =9
costwarp = 0.4
max_sim_motif=0.8
Runtime 142 min 31 hours 18 seconds 1 second
> pattern 1.041 99.718 46.813 386

Exemplary
e |- A | =

0w W W 20
0 S 10 15 20 %0 W W 0 0 100 150

6 Conclusion and Outlook

In this paper we presented different approaches for pattern discovery in time series
under the requirement of time warping. Furthermore we applied well known algorithms
and adapted them for our purposes. We developed methods for a Jaccard-index-based
comparison of these algorithms as well as for a creation of random time series. The
comparison helped us to identify advantages and weaknesses of the different approa-
ches. In general discretization-based approaches have a high performance concerning
runtime while the DTW-based approaches perform best regarding the quality of the
results. The Matrix Profile can be classified as not suitable for our use cases due to the
inability of time warping. Because of our goal to mine time series with far more than
one million data points our future focus will be on the discretization-based approaches.
Therefor it is interesting to evaluate the influence of further preprocessing steps as well
as the development of new discretization techniques with robustness regarding noise
and the possibility of controllable time warping. Besides the pattern evaluation of
unlabeled data and the extension of the pattern discovery algorithms to multidimen-
sional cases are fields of interest.
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