
Chapter 2
Students’ Development of Measures

Christian Büscher

Abstract Knowledge is situated, and so are learning processes. Although contextual
knowledge has always played an important role in statistics education research, there
exists a need for a theoretical framework for describing students’ development of
statistical concepts. A conceptualization of measure is introduced that links concept
development to the development of measures, which consists of the three mathema-
tizing activities of structuring phenomena, formalizing communication, and creating
evidence. In a qualitative study in the framework of topic-specific design research,
learners’ development of measures is reconstructed on a micro level. The analy-
sis reveals impact of the context of a teaching-learning arrangement for students’
situated concept development.

Keywords Concept development · Design research · Situativity of knowledge
Statistical measures · Statistical reasoning

2.1 Introduction: Concept Development as a Focus
for Research

In recent years, the ability to draw Informal Statistical Inferences (ISI) (Makar and
Rubin 2009) has become a focal point of statistics education research (see the ESM
special issue on sampling, Ben-Zvi et al. 2015). ISI emphasizes the use of statistical
concepts in drawing ‘probabilistic generalizations from data’ (Makar and Rubin
2009, p. 85) and in making claims about unknown phenomena. In order to describe
the type of reasoning used in drawing ISI, Makar et al. (2011) propose a framework
of Informal Inferential Reasoning (IIR) . This framework reveals the complexity of
IIR; the components include knowledge of statistical concepts as well as contextual
knowledge and general norms, habits, and patterns of action (Makar et al. 2011).
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Learning to draw ISI is thus conceptualized by the development of IIR, placing
strong emphasis on the use of statistical concepts in complex activity.

Learners howeverwill first need to develop the statistical concepts to be used in IIR
through activity in teaching-learning arrangements that are designed to facilitate such
concept development. A key assumption of the research related to this study follows
the ideas of Freudenthal (1991) that learners can develop formal, general concepts
out of their informal, singular activity, when their learning processes are carefully
guided. The framework of IIR gives only limited guidance for such a design, detailing
the goal, but not the path, of concept development. A language is required that can be
used to describe learners’ situated understandings, the individual concepts guiding
their actions, the relation of these concepts to formal statistical concepts, and the
complex interplay with elements of the design of a teaching-learning arrangement.

Whereas similar studies have focused on the concepts of distribution (Lehrer and
Schauble 2004) and shape (Gravemeijer 2007), this study focuses on the concept of
measure. Since data-based evidence plays a major role in ISI and IIR and measures
are a common form of such evidence, this focus could provide not only insights into
concept development but also make connections to the development of IIR.

2.2 Theoretical Background

2.2.1 The Situativity of Knowledge

A long-standing perspective in cognitive psychology concerns the situativity of
knowledge (Greeno 1998). A conceptualization of measure that takes learning pro-
cesses into consideration needs to pay attention to the fact that knowledge emerges
from situations. Vergnaud (1990, 1996) proposes a theory of conceptual fields as
an epistemological framework. To Vergnaud, the perception of situations and the
understanding of mathematical concepts stand in a dialectic relationship: “cognition
is first of all conceptualization, and conceptualization is specific to the domain of
phenomena” (Vergnaud 1996, p. 224). In this way, mathematical knowledge emerges
through actions in situations. This knowledge is not to be understood as consisting
of situation-independent abstractions but rather as an operational invariant across
different situations.

The twomost important types of operational invariants are concepts-in-action and
theorems-in-action. Concepts-in-action are “categories (objects, properties, relation-
ships, transformations, processes etc.) that enable the subject to cut the real world into
distinct elements and aspects, and pick up the most adequate selection of informa-
tion according to the situation and scheme involved” (Vergnaud 1996, p. 225). Thus,
they organize what students focus on and in this case how they structure phenomena
unknown to them. Theorems-in-action are defined as “propositions that [are] held to
be true by the individual subject for a certain range of situation variables” (Vergnaud
1996, p. 225). They are intricately connected to the learners’ concepts-in-action:



2 Students’ Development of Measures 29

theorems-in-action give meaning to concepts-in-action, which in turn give content
to the theorems-in-action.

Aconceptualizationofmeasure that takes into account the situativity of knowledge
thus will need to provide a clear focus on the use of measures in situations. The
median is a measure of center, but this does not explain its use in terms of operational
invariants.

2.2.2 Functions of Measures

Although measures are a prominent concept in statistics and statistics education,
few explicit definitions or conceptualizations exist that explain this construct. At
least three different functions of measures can be identified based on literature: (a)
structuring phenomena, (b) formalizing communication, and (c) creating evidence.

Structuring phenomena. Bakker and Gravemeijer (2004) distinguish between data
(the individual values) and distribution (a conceptual entity). Two perspectives on
data and distribution emerge: The ‘upward perspective’ consists in seeing data as a
means to calculate measures (median, range, …) of aspects of a distribution (center,
spread, …). The ‘downward perspective’ consists of looking at the data from the
standpoint of distribution, with aspects of center and spread as organizing structures
already in mind.

In this way, measures function as lenses that allow access to distributional proper-
ties. This resonates with the idea of an ‘aggregate view’ on data (Konold et al. 2015):
perceiving data as a conceptual unit with its own emergent properties, which can be
accessed through the use of measures. In data investigation, measures thus impose
distributional properties on phenomena, creating structure in previously unstructured
phenomena.

Formalizing communication. Structuring phenomena alone does not conclude sta-
tistical investigation; findings must also be communicated to a wider audience.
Through their standardized procedures of calculation, measures can provide such
a means of communication. They create intersubjectivity, allowing for communica-
tion about phenomena across distance and time (Porter 1995; Fischer 1988).

Creating evidence. One of the characterizing features of ISI given by Makar and
Rubin (2009) is the use of data as evidence. Whereas they do not explicitly relate this
role of evidence to measures, it is possible to think of the form of this evidence as
consisting ofmeasures. Abelson (1995) states that the discipline of statistics supports
principled arguments that aim at changing beliefs and which therefore need to be
convincing to others. Simple unspecified reference to data would not serve this goal
of convincingness. Instead, specific aspects have to be ‘singled out’ that explicate
what exactly is convincing in the data. This is a role played by measures.
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2.2.3 A Conceptualization of Measure

Although the list of functions of measures presented above possibly is not complete,
it illustrates some common facets of the use of measures on which each function
places different emphasis, in different terms, with varying grades of explicitness.

Measures are grounded in data. Although this facet on its own is not terribly sur-
prising, the role of measures becomes clearer when related to another facet: measures
describe phenomena. They bridge the gap between data and phenomenon. A phe-
nomenon behind some data can be accessed through the use of measures that operate
on that data. This can lead to new insights into the phenomenon and is a prerequisite
for communication about that phenomenon.Measures however can never capture the
full phenomenon but provide discrete descriptions. They separate phenomena into
relevant and irrelevant parts, highlighting only very specific aspects of phenomena.
This is the reason why they can provide convincing principled arguments and give
new, but also possibly incomplete, insights into phenomena.

From these considerations, this study draws a conceptualization for the concept
of measure: a measure is a data-based description of one aspect of a phenomenon.
This definition builds on a broad understanding of the term ‘phenomenon’. ‘Aspect
of a phenomenon’ can refer to any part of a phenomenon that is held to be relevant for
a specific question in a specific situation. An example could be the daily ice growth
used by climate scientists as a measure of the volatility of the melting process of Arc-
tic sea ice (Fig. 2.1). Another aspect of the same phenomenon could be the general
well-being of the Arctic ice sheet, addressed through themeasure of monthly average
extent (Fetterer et al. 2002). While these aspects are phenomenon-specific, measures
can also refer to more general aspects like the central tendency. A distinction can
be drawn between general measures that focus on general aspects of phenomena

Fig. 2.1 The relations between phenomenon, data, measures, and aspects of phenomena
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(center, spread, …) and situative measures that focus on phenomenon-specific sit-
uative aspects. General measures consist of all measures commonly referred to in
formal statistics, whereas situative measures address phenomenon-specific aspects
such as the melting process of Arctic sea ice. The meaning of situative measures
is often situation-specific, whereas general measures provide situation-independent
tools for structuring phenomena. This does not mean that the use of general mea-
sures is strictly situation-independent: general measures can also be used to address
phenomenon-specific aspects.

2.2.4 The Development of Measures

Whereas statisticians are able to use general measures such as the median to address
the center of arbitrary phenomena, the situated nature of knowledge implies that
learners will have to resort to phenomenon-specific situative measures when starting
out in their learning trajectory. This puts the learners into an inconvenient position.
They will need to structure phenomena by identifying aspects, while simultaneously
finding situative measures to address just these aspects. Learners need to develop
their measures. During their learning process, learners will need to answer ques-
tions corresponding to a measures’ functions of structuring phenomena, formalizing
communication, and creating evidence.

As emphasized by Vergnaud (1996), a theory of learning needs to give a promi-
nent place to learners’ activities. In order to illustrate how formal ideas can emerge
from informal activity, the functions of measures are now (in reference to Freuden-
thal 1991) interpreted as mathematizing activities carried out by the learners while
developing measures. When engaging in the mathematizing activity of structuring
phenomena, learners make sense of a situation through their concepts-in-action.
Their contextual knowledge of the phenomenon plays an important part, as they have
not yet developed general measures for structuring phenomena. The mathematizing
activity of formalizing communication focuses on ameasure’s formal characteristics,
such as definition, calculation, and rules of application. In the beginning of learn-
ing processes, visual identification (i.e. ‘just seeing’) would be an adequate way of
finding an situative measure. However, such visual identification could hardly pro-
vide intersubjectivity; finding standard procedures of calculation instead could be
an act of formalizing communication. During the mathematizing activity of creating
evidence, learners decide the actual aspects and measures to be chosen for argumen-
tation. Again, contextual knowledge can play an important part for clarifying which
aspects are relevant for which questions regarding the phenomenon and thus, which
line of argumentation should be supported by what evidence.

Through the investigation of different phenomena, operational invariants over
different situations can emerge, making the use of situative measures less
phenomenon-dependent. In this framework, learning takes the form of develop-
ing situative measures into general measures through mathematizing activity across
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different situations: broadening the aspects of phenomena addressed by measures,
explicating formal characteristics, and supporting argumentation through evidence.

2.2.5 Research Questions

The starting point for this study was the need for a conceptualization of measure
that allows for the design of a teaching-learning arrangement that draws on learn-
ers’ situated understandings and can lead to the development of statistical concepts.
Such a teaching-learning arrangement needs to elicit the mathematizing activities of
structuring phenomena, formalizing communication, and creating evidence. Since
the role of those activities was based on theoretical observations, it remains unclear
how actual learning processes are constituted in these activities and how a teaching-
learning arrangement can support them. Although all three mathematizing activities
play a part in the development of measures, this study limits itself by focusing on
the activities of structuring phenomena and formalizing communication in order to
provide a more in-depth view of the learning processes. The empirical part of this
study thus follows the following research questions:

(RQ1) How can design elements of a teaching-learning arrangement elicit and sup-
port the mathematizing activities?

(RQ2) How do learners’ situative measures develop through the mathematizing
activities of structuring phenomena and formalizing communication?

2.3 Research Design

2.3.1 Topic-Specific Didactical Design Research
as Framework

Design research as methodological frame

The presented study is part of a larger project in the framework of topic-specific
didactical design research (Prediger et al. 2012). This framework simultaneously
aims at twodifferent but strongly interconnected goals: empirically grounded theories
on the nature of topic-specific learning processes and learning goals (i.e. what and
how to learn), and design principles and concrete teaching-learning arrangements for
learning this topic (i.e. with what to learn). This is achieved by a focus on learning
processes (Prediger et al. 2015). Special attention is given to the careful specification
and structuring of the learning content as well as to developing content-specific local
theories of teaching and learning (Hußmann and Prediger 2016).

Research is structured into iterative cycles consisting of four different working
areas (see Fig. 2.2). In a first working area, the learning content is specified and struc-
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Fig. 2.2 The cycle of topic-specific didactical design research (Prediger et al. 2012; translated in
Prediger and Zwetzschler 2013, p. 411)

tured, identifying central insights into the content that learners need to achieve and
structuring them into possible learning pathways. This can be based on epistemolog-
ical considerations such as a didactical phenomenology (Freudenthal 1983) as well
as on empirical insights into possible learning obstacles and students’ conceptions.
The secondworking area consists of designing a teaching-learning arrangement to be
used in the thirdworking area, conducting design experiments (Cobb et al. 2003). The
learning processes initiated in the design experiments are then analyzed and serve as
a basis in developing local theories about these teaching and learning processes. A
main strength of the framework of didactical design research is the interconnected-
ness of these working areas: in the next cycle, the local theories developed can inform
the re-specification and re-structuring of the learning content. This re-structuring in
turn influences the design principles enacted in the teaching-learning arrangement
and thus, the initiated learning processes. Through this process, theory and design
get successively more refined in each cycle.

2.3.1.1 Participants and Data Collection

This study reports on findings of the third cycle of design experiments of the on-
going design research project (for other results see Büscher 2017, 2018; Büscher and
Schnell 2017; Schnell and Büscher 2015). The design experiment series in the third
cycle took place in laboratory settings with five pairs of students in a German middle
school (ages 12–14). Each pair took part in a series of two consecutive design experi-
ment sessions of 45min each. The participating students were chosen by their teacher
as performing well or average in mathematics, which includes statistics education in
German curricula. At the time of the experiments, the students had very little expe-
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rience with statistics besides learning simple measures such as the arithmetic mean
and median a year before in grade 6. They were familiar with frequency distribu-
tions but only on a rather superficial level (e.g. reading out information on maximum
and minimum), without comparing them strategically. They were not familiar with
stacked dot plots or measures of spread.

All experiments were completely videotaped (altogether 450 min of video in
the third cycle). Here, the case of two pairs of students is presented, selected due
to the richness of their communication and mathematizing activities. Their design
experiment sessions were fully transcribed.

2.3.1.2 Data Analysis

The qualitative data analysis aims not at solely assigning students’ utterances to
the general statistical concepts but instead at capturing the individual emergent,
situative concepts. In order to capture the richness and heterogeneity of the students’
individual reasoning, this study chose a category-developing approach (cf. Mayring
2000) using open and interpretative approaches (cf. Corbin and Strauss 1990) for
identifying individual concepts-in-action and theorems-in-action (Vergnaud 1996)
based on the students’ utterances and gestures. This methodological foundation of
the analytical framework by Vergnaud’s constructs allow the data analysts to capture
the situativity of knowledge and learning. The identified individual concepts-in-
action and theorems-in-action on measures are not necessarily in line with general
statistics concepts but rather mirror their own situative structure of phenomena. In
the analysis, concepts-in-action are symbolized by ||…|| and theorems-in-action by
<…>.

2.3.2 Design Principles

During the five design experiment cycles, several design principles were imple-
mented and iteratively refined that played a role in initiating concept development.
Three design principles play an important part in this study (for a complete overview
see Büscher 2018); each of the design principles focused on eliciting a different
mathematizing activity.

Investigating realistic phenomena. A teaching-learning arrangement focusing on
the development of measures needs to elicit the mathematizing activity of structuring
phenomena. Since most students do not yet have access to phenomenon-independent
measures to structure arbitrary unknown phenomena, the choice of the phenomenon
to be investigated has to be carefully considered. This study uses phenomena such as
variability in the weather that are close enough to students’ reality so that they can
informally and intuitively structure the phenomenon.
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Scaffolding the use of measures in argumentation. Previous cycles of the project
showed how students did use situative and occasionally even general measures when
comparing distributions.Whereas there was a lot of potential in this, their uses stayed
elusive: students lacked the language to specify the addressed aspects and formal
characteristics of their situative measures—they struggled to formalize their com-
munication. This led to an insecure use of measures, so that they sometimes simply
had already forgotten their train of thoughtswhen prompted by the researcher or other
students. This raised the need to scaffold the use of measures by explicating their
use in giving arguments about phenomena. This design principle was implemented
through the use of so-called report sheets (see below)

Contrasting measures. Central to the measure-focused approach of this study is the
insight that different measures for the same distribution can result in different views
on the situation by emphasizing different aspects. Thus, engaging in the activity of
creating evidence can mean to contrast and evaluate different measures with respect
to (a) their usefulness regarding specific investigations, (b) their correspondence to
learners’ experienced reality, (c) their applicability in different situations, or (d) their
advantages or disadvantages in argumentation. This design principle was realized by
contrasting different report-sheets (see below).

2.3.3 Task Design

The design of the two sessions of the design experiments consisted of two different
tasks, the Antarctic weather task (Session I) and the Arctic sea ice task (Session II).
Each task was structured into different phases, with progressions between phases
initiated by the researcher when certain requirements were met.

The Antarctic weather task

The goal of this task was to introduce the students to the idea of measures and the
design elements central to the whole design experiment. The task was structured into
three phases.

Phase I.1. The students were given dot plots of temperature distribution at the Nor-
wegianAntarctic research stationTroll forskningsstasjon (Fig. 2.3, data slightlymod-
ified from Stroeve and Shuman 2004) and introduced to the setting of the task: as
consultants to researchers planning a trip next year, they were charged with giving
a report of the temperature conditions. Since the students were unfamiliar with dot
plots, special attention was given tomake sure that students understood the diagrams.
The data were presented to the students on a tablet with a screen overlay software to
allow for drawing visualizations of their situative measures directly onto the screen.
Tinkerplots2.0 (Konold and Miller 2011) was used to create the diagrams, without
giving the students access to interactive functionalities of the software. When suffi-
cient understanding of the diagrams was achieved and the students had given some
informal predictions for next year, the task progressed to Phase I.2.
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Fig. 2.3 Distributions of the Antarctic weather task (translated from German)

Fig. 2.4 Empty report sheet
(translated from German)

Phase I.2. In this phase, the students were introduced to the central design element
of the design experiments, the report sheets (Fig. 2.4). These report sheets served as
a scaffold for argumentation with measures, combining a graphical representation
with measures and a brief inference about the phenomenon of Antarctic weather. The
students were asked to fill out a report sheet to be used as a report for the researchers.
The measures employed were given to themwithout explanation, so that they needed
to find their individual interpretation of minimum, maximum, and typical. Typical
here served as an situative measure for a yet unspecified situative aspect, which could
be interpreted by the students as incorporating some aspect of variability (similar to
Konold et al. 2002) Since formal characteristics and the meanings of the measures
were left unspecified, this task aimed at eliciting the mathematizing activities of
structuring phenomena and formalizing communication.

Phase I.3. After the students had created their own report sheet, they were given
fictitious students’ filled-in report sheets (Fig. 2.5). These report sheet differed in
their interpretations of the measures employed and thus focused on different aspects
of the phenomenon. The students were asked to evaluate these report sheets and to
possibly adapt their own report sheet.
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Fig. 2.5 Fictitious students’ filled-in report sheets (translated from German)

Fig. 2.6 Distribution of sea ice extent in Session II (translated from German)

The Arctic sea ice task

Phase II.1. The Arctic sea ice task followed a similar progression as the Antarctic
weather task. This time the students were put into the roles of researchers of climate
changes. Students were given distributions of monthly lowest Arctic sea ice extent
for the years 1982, 1992, and 2012 (Fig. 2.6; data slightly modified from Fetterer
et al. 2002) and were asked to give a report whether, and how much, the ice area
had changed. This phase again aimed at ensuring the students’ understanding of the
diagram and the context. They were not yet asked to create a report sheet.

Phase II.2. Following the introduction of the setting, the students again received
filled-in report sheets (Fig. 2.7). These report sheets now allowed for arbitrary mea-
sures and again presented different formalizations ofmeasures and abstractions of the
phenomenon. This time the different measures lead to radically different perceptions
of the phenomenon of Arctic sea ice, with report sheets proclaiming either no change
or radical change inArctic sea ice (Fig. 2.7).Discussion revolved aroundwhich report
sheet was right, and what a researcher would need focus on when reporting on Arctic
sea ice, thus eliciting the mathematizing activity of creating evidence.

Phase II.3. Following the discussion, the students were again asked to create their
own report sheet. Whereas the students were free to choose their measures for the
report sheet, the students were expected to adapt elements of the filled-in report
sheets for their own report sheet. This initiated further mathematizing activities, as
the students were asked to justify their choice of measures.
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Fig. 2.7 Filled-in report sheets for Session II (translated from German)

2.4 Empirical Results

This study identifies students’ mathematizing activities to investigate their devel-
oping measures. The first part of this section follows the learning processes of two
students, Maria and Natalie, through both sessions of the design experiment. Due
to the rapid changes of the roles in the students’ interaction, the transcript has been
partially cleaned up to increase readability. The analysis focuses on their use of the
situative measure of Typical (reference to the situative measure Typical indicated by
capital-T), from its unspecified beginning in Session I to its more formalized version
at the end of Session II. During the design experiment, the students get increasingly
precise in addressing different aspects of phenomena and in structuring the phe-
nomenon. This is then briefly contrasted with the processes of another pair, Quanna
and Rebecca, focusing on Session II and highlighting similarities and differences in
the two pairs’ use of Typical.

2.4.1 The Case of Maria and Natalie

Session I: The Antarctic weather task

The first snapshot starts with Phase I.1 of the Antarctic weather task. After giving
some informal predictions of the weather, Maria (M) and Natalie (N) try to explicate
their view on the data to the researcher (I).

1 M We are pondering what the relationship, like, how to…
2 N Yes, because we want to know what changes in each year. And we said that

there [points to 2003] it came apart.

[…]

8 M Yes, I think it [points to 2004] is somehow similar to that [points to 2002],
but that one [points to 2003] is different.

9 N Like here [points to 2004, around −12 °C] are, like, like the most dots, and
here [points to 2002, −12 °C] are almost none. And there [points to 2002,
−8 °C] are the most and here [points to 2004, −8 °C] are almost none.
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Fig. 2.8 Maria and Natalie’s use of measures (Part 1)

Fig. 2.9 Maria and Natalie’s use of measures (Part 2)

This excerpt serves as an illustration of the starting point in the students’ reasoning.
The students are trying to characterize the differences observed in the distributions. In
order to do this, they structure the phenomenon by identifying two aspects: the ||most
common temperatures|| (where “the most” temperatures lie, #9), and the ||variability
of temperatures|| (how they “came apart”, #2). Whereas the students are able to use
modal clumps as a way to address the ||most common temperatures||, they seem to
lack ways of addressing the ||variability of temperatures|| (Fig. 2.8).

A few minutes later, the students find a way to better address the difference
between the distributions.

21 M Well, we first should look at how many degrees it has risen or fallen. Gen-
erally. In two years.

[…]

27 N You mean average, like…
28 M The average, and then we look at how the average changed in two years.

By identifying the aspect of a ||general temperature|| (“Generally”, #21), the
students are able to re-structure the phenomenon to reduce the complexity of the
temperatures. For this aspect, they appear to already know an adequate general mea-
sure: the ||average||. To the students, <the average addresses the general temperature
of a distribution>. This ||general temperature|| does not necessarily correspond to
the ||most common temperatures|| addressed earlier. In this way, the phenomenon
gains additional structure (Fig. 2.9).

The design experiment progresses through Phase I.2, in which the students create
their own report sheet (Fig. 2.10). The analysis picks up at beginning of Phase I.3,
with the students comparing the different interpretations of Typical in the filled-in
report sheets.
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Translations: 
“Report sheet: temperatures at Troll 
Forskningsstasjon”
Skizze – Sketch
Typisch – Typical
Zusammenfassung – Summary
Temperaturen - Temperatures
(The black graph was drawn first, labeled a mistake, 
and immediately replaced by the red graph. Typical 
was first assigned as -15, then during Phase I.3 
changed to ‘-19 to -15’.)

Fig. 2.10 Maria and Natalie’s first report sheet

Fig. 2.11 Maria and Natalie’s use of measures (Part 3)

Comparing the different interpretations of Typical,Maria andNatalie are intrigued
by the possibility to use an interval to formalize Typical. This consideration leads
them to reflect on their use of the average.

41 N But the average temperature isn’t really typical, is it?
42 M What, typical? Of course the average temperature is the typical.

[…]

46 M Well, no. Typical is more like where the most… no…
47 M The average temperature isn’t the typical after all. Because it’s only the

general, the whole. The typical would be for example for this [2004] here
[points to −14 on the 2004 dot plot].

48 N Typical I think simply is what is the most or the most common.

The students differentiate between average and Typical to address different
aspects: The ||general temperature|| is addressed by the general measure ||average||
(“the general, the whole”, #47), and the ||most common temperatures|| addressed by
situative measure ||Typical|| (“the most common”, #48). At this point it is not yet
clear if the situative measure Typical consists of a number or an interval—it is still in
need of formalization. However, introduction of this situative measure seems to have
allowed the students to reconnect to the aspect of ||most common temperatures|| (first
expressed in #9) that got swept aside by the more formalized average (Fig. 2.11).

Some minutes later, Natalie summarizes her view on the relation between Typical
and average.
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61 N Average is pretty imprecise, because it doesn’t say anything about a single
day. Andwith Typical, I’d say, that it’s a span between two numbers, because
that way you can better overlook how it is most of the time.

In the end of Session I, the measures Typical and average address two different
aspects of the phenomenon of Antarctic weather. Whereas the average addresses the
general temperature, Typical describes the most common temperatures. The average
can be used to compare distributions, whereas Typical gives an insight into a range
of ‘normal’ or ‘expected’ temperatures, to which any single day can be compared.
Central to this distinction was the formalization of Typical as an interval.

Session II: The Arctic sea ice task

Most of Session II revolved around the question how to further formalize Typical,
and how to distinguish it from the average. This excerpt starts in the middle of Phase
II.2, and takes place over a period of eight minutes. In the preceding minutes, the
students had used the average to propose a general decline in Arctic sea ice.

1 I Last time we talked about Typical, and here Typical is also drawn in. Do you
think that’s helpful, or not?

2 M Typical, wait a second, there [report sheet 3, 1982] Typical is 14 right? Huh,
but why is 13 Typical here [report sheet 3, 2012]?

3 N Huh, Typical can’t be 13, because Typical actually is a range, isn’t it?

[…]

6 I What would you say what one should choose?
7 N I would definitely say a range, because that just tells you more. Because you

can’t say that it’s 11 degrees typical.

Maria and Natalie are irritated by the same report sheets showing different values
for the measure ||Typical|| (#2). This leads them to question whether Typical should
be formalized as a number or an interval (“range”, #3).

In Session I, the students opted for the interval. Natalie draws on this knowledge,
postulating that<Typical cannot be a number, because numbers do not describe Typ-
ical temperatures> (“you can’t say that it’s 11 degrees typical”, #7). In this way,
she uses the situative aspect of ||most common temperatures|| from Session I to for-
malize the situative measure Typical in another phenomenon as an interval. Because
this transfer of phenomena happens frequently throughout the session (see below),
it could be seen as the emergence of operational invariants across situations, rather
than a simple mistake in wording.

Some moments later, after they have again considered the average, the students
compare the two measures.
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Fig. 2.12 Maria and Natalie’s use of measures (Part 4)

21 I And if you would create such a report sheet, would the average suffice?
22 N No.Well I think the average is important, isn’t it? But a range, what’s typical,

that just tells you more about single days than if you take the average.
23 N Because if the average is like 12, then one day could be 18 degrees, or

−10 degrees or something. And the average better tells you what generally
happened, and I think a range better tells you what happened generally.

24 N Because if the average was 8 degrees, but it also happened to get to 18
degrees or−10 degrees, then the range would rather be from 5 degrees to –
I don’t know.

Natalie distinguishes between two aspects: what “generally happened”, and what
“happened generally” (#23). These are two different (yet unnamed) aspects, because
the distinction serves as an explanation of the distinction between average and Typ-
ical (sometimes referred to by Natalie as “range”, #23). Natalie seems to lack the
vocabulary to clearly differentiate between the two aspects. In her explanation how-
ever she again seems to draw on an aspect of the previous session: the ||variability
of temperatures||, as she states that <a high variability of temperatures can be seen
in the Typical range>(temperatures from 18 to −10 would somehow be reflected in
the “range”, #24), whereas <the average is not impacted by the variability of temper-
atures>(the average would stay at 8 degrees, #24). Again, the formalization of the
measure Typical progresses by drawing on the structuring of another phenomenon
(Fig. 2.12).

Following this exchange, after some minutes, the students return to the problem
of finding the Typical interval.

41 N I don’t know how to calculate Typical. I think you start from the average,
and then looks at the lowest and highest temperatures, and from that you
take a middle value. Like between the average, and…

42 M And the lowest and the highest… we are talking about temperatures the
whole time, but those aren’t temperatures.

43 N Yes but if we took temperatures, then you take the average and the coldest
and then again take the average.

[…]

48 N And then the average from the average is the Typical. Between this average
and that.
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Fig. 2.13 Maria and Natalie’s development of Typical

With the aspects addressed by the two measures now firmly separated, the stu-
dents find a way to calculate their Typical interval: Taking the average of the whole
distribution (“start from the average, #41), splitting the distribution into two halves
at this point (“look at the lowest and highest temperatures, #41), calculating the
average for each of those halves (“again take the average, #43), and then taking the
interval between those two averages (“between this average and that”, #48). This
shows a highly formalized use of the average: the ||general temperature|| addressed
by the measure ||average|| seems to also apply to only halves of distributions. This
excerpt is the first time one of the students becomes aware of their substitution of
the phenomenon of Arctic sea ice with Antarctic temperatures (#42). The casualness
of Natalie’s dismissal of this fact (“yes but if we took temperatures”, #43) how-
ever seems to suggest that the operational invariants of Typical in the end seems to
encompass both situations, temperatures and sea ice.

Summary. During Session I,Maria andNatalie structure the phenomenon ofAntarc-
tic temperatures into ||most common temperatures||, ||general temperature||, and
||variability of temperatures||. They also determine formal characteristics of the
measure Typical by formalizing it as an interval, in contrast to the average. This
distinction is transferred to another phenomenon in Session II, but not without prob-
lems: again, the characteristic of Typical as an interval must be justified. In the end,
the students even arrive at a way of finding the Typical interval that is similar to that
of finding the interquartile range. During the whole learning process, the situative
measure of Typical develops in interrelated mathematizing activities of structuring
phenomena and formalizing communication. Figure 2.13 provides an overview on
this development.

2.4.2 The Case of Quanna and Rebecca

The following empirical snapshot follows the students Quanna (Q) and Rebecca (R)
in Session II of the design experiment. The excerpts stem from a conversation of
about 15 min. The snapshot starts in Phase II.3 with the students filling out their own
report sheet (shown in Fig. 2.14, but not completed until turn #40) after they have
discussed the filled-in report sheets.
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Translations: 
Steckbrief: - Report sheet:
Skizze – Sketch
Typ. – Typical
Zusammenfassung – Summary: “The difference 
between the years 2012 and 1982 is about 2 km²”
Temperaturen - Temperatures
(Typical in 1982 was later changed from 13.5 to 13)

Fig. 2.14 Quanna and Rebecca’s report sheet

Fig. 2.15 Quanna and Rebecca’s use of measures (Part 1)

1 Q [while filling out own report sheet] And Typical…
2 R Typical […] it could be, like, the middle or something?
3 R I would say the middle and a bit higher.

Although they could have referred to other measures, ||Typical|| is the main mea-
sure organizing their view on the phenomenon. Without paying attention on the
aspects to be addressed, the students are formalizing ||Typical|| as located in the
||middle|| of the distribution: <Typical is located a bit higher than the middle>(#3)
(Fig. 2.15).

Some minutes later, the students are about to write their summary for the report
sheet.

20 Q Okay, now the summary.
21 R The numbers got [points to own report sheet] – look – more ice melted

away.
22 Q [shakes head] the difference is – is around 2.5.
23 R Always?
24 Q Yes, right here [points to own report sheet] of Typical.

Rebecca seems to have difficulties with combining the phenomenon (the melting
ice) with the task of giving a short data-backed summary. At this point, Quanna is
able to utilize their measure of Typical. In the meantime, the students had decided
that <Typical is a number>, which they intuitively identified for the distributions
of 1982 and 2012 as 11 and 13.5. These numbers show a difference of 2.5, which
can now be used in their summary to report on the Arctic sea ice decline: <Typical
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Fig. 2.16 Quanna and Rebecca’s use of measures (Part 2)

Fig. 2.17 Quanna and Rebecca’s development of Typical

can be used to address the state of Arctic sea ice>(the melting ice, #21, addressed
through the difference of Typical, #22). However, it remains unspecifiedwhat exactly
is meant by this aspect of a general ||state of Arctic sea ice|| (Fig. 2.16).

The characteristics of Typical still being unclear, the researcher challenges them
to explain their use of Typical.

40 I I see you decided to use only one number for Typical, in contrast to this
report sheet, where they used an area [points to filled-in report sheet]. Is
that better or worse, what do you think?

41 R Well Typical is more of a single…
42 Q [simultaneously] more of an area…
43 R Now we disagree. […] Typical is more of a small area, or you could say a

number. Like here, from 10 to 12. […] If the area is over 100, it may be over
10. […] But never more than the half.

The claim <Typical is a number>becomes disputed, as ||number|| and ||area||
both are possible characteristics of Typical, as evidenced by the filled-in report sheet
in Fig. 2.17. This initiates further processes of formalization, resulting in more pro-
nounced formal characteristics of Typical. Whereas there still is no full definition,
there are criteria for its correct form: <Typical is an area that at most covers half the
data>(“never more than the half”, #43) and <Typical can be signified by a number,
if the area is small>(“small area, or you could say a number”, #43).

Some minutes later in the discussion, Rebecca tackles the question whether one
is allowed to omit data points that could be seen as exceptions when creating report
sheets.



46 C. Büscher

61 R Well, you can do that, but it depends. You have to make sure it fits. If you do
it like here [points to own report sheet] you should not consider the isolated
cases […] because then it gets imprecise. But if the Typical area was the
same on both sides, I think you can do that.

Whereas there still is no full definition of Typical, another situative aspect has
been added that is addressed by Typical. Typical not only functions as a description
of a general ||state of Arctic sea ice||, but also addresses ||rule and exceptions|| of the
Arctic ice: <If the Typical area of two distributions is the same, one can use Typical
to address exceptions>. In this way, the formalization of Typical as an interval in
the middle of the distribution has allowed for addressing a previously unstructured
aspect of the phenomenon.

Summary. Throughout this episode, the students expand the aspects addressed
through Typical as well as the situative measures’ formal characteristics. In the
end, they use Typical to address a wide range of aspects that could also be addressed
through general statistical measures (Fig. 2.17). The differentiation of aspects of phe-
nomena and the growing explicitness in formal characteristics of Typical took place
in interlocking mathematizing activities of structuring phenomena and formalizing
communication: after Typical has become sufficiently formalized, it could be used
to structure the phenomenon of Arctic sea ice into ||rule and exceptions||.

2.5 Conclusion

This study started out from the need for a conceptualization of learners’ situated
understandings and the development of statistical concepts through their activities in
learning processes. The concept of measure was introduced, distinguishing between
general and situative measures: measures that address phenomenon-specific aspects
without necessarily showing explicit formal characteristics. Learning took place dur-
ing the development of learners’ situative measures through the three mathematizing
activities of structuring phenomena, formalizing communication, and creating evi-
dence. An empirical study was then used to illustrate (a) how learning processes can
be understood through this conceptualization of measure and (b) how the design of
a teaching-learning arrangement can influence these learning processes.

2.5.1 The Development of Measures

The analysis shows the students to be fully engaged in the mathematizing activities,
which presented themselves as being intricately connected. Structuring phenomena
into aspects provided the reason for formalizing the measures, and additional formal
characteristics found for measures initiated further structuring of the phenomenon.
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The more the students formalized their measure, the more situations were included
in the operational invariants of the measure.

The interpretative approach to the analysis revealed the phenomenon-specificity
of the students’ measures. Maria and Natalie did not use the general measure of
the average to address a general aspect of center, but an situative aspect of general
temperature. This was then contrasted with the situative measure Typical, which was
used to address a range of expected temperatures. Using Typical to structure the
new phenomenon of Arctic sea ice took explicit reference back to the phenomenon
of Antarctic temperatures. In this way, the students’ knowledge of the structure
of phenomena influenced their development of measures. They did not simply use
measures to make sense of phenomena, but knowledge of situation and measure
emerged at the same time.

One strategy that emerged for Maria and Natalie was the comparison of measures
with differing degrees of formalization. Because the students knew the formal char-
acteristics and aspects addressed by the general measure average, they could use it
to develop the situative measure Typical. The average could even be employed in
the calculation of Typical, leading to a measure that addressed aspects that could not
adequately be addressed previously.

One idea postulated in the framework was the possibility of development of sit-
uative into general measures. Although the learning processes investigated in this
study ended before the development of general measures, the findings suggest that
this would indeed be possible. Both pairs of students ended with an situative measure
Typical that resembled the general measure of the interquartile range. Quanna and
Rebecca used Typical to describe an area in the middle of the distribution, consisting
of no more than half the data points, indicating the location of the densest area, parti-
tioning the distribution into rule and exception. Maria and Natalie calculated Typical
by finding multiple averages, which would have resulted in the interquartile range
had the average been substituted by the median. In their combination of average and
Typical, Maria and Natalie manage to coordinate different measures, showing the
possibility of creating understanding even for conceptually rich representations such
as boxplots (cf. Bakker et al. 2004).

2.5.2 Supporting Mathematizing Activities

Central to the design of the teaching-learning arrangement was the choice of phe-
nomenon to be investigated. Theoretical considerations led to the design principle
of choosing realistic phenomena to be investigated. The choice of Antarctic weather
and Arctic sea ice proved to be a fruitful one: in the case of Maria and Natalie,
the students could identify aspects of phenomena regarding the natural variability
and central tendency of weather. Through identification of operational invariants
across the phenomena, the corresponding measures could then be broadened to also
structure the phenomenon of Arctic sea ice.
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Another design principle was the scaffolding of the use of measures in argumen-
tation through the report sheets. This provided the students with different situative
measures both pairs could appropriate for their individual reasoning. Since these
measures were provided without explanation, and with different formal character-
istics, the students needed to choose and commit to certain characteristics. In this
way, this design principle of contrasting models led to the activity of formalizing
communication.

2.5.3 Limitations and Outlook

With the study limited by its own situativity in the design of the teaching-learning
arrangement and number of students analyzed, careful consideration has to be given
to the generalizability of the results. The investigated development of measures has
to be understood in the context of the design: the mathematizing activities were
influenced by design elements, students, and the researcher. Any change in these
factors could result in very different learning processes.

Yet the nature of this study was that of an existence proof of concept development
and an illustration of a theoretical concept revealing a richness within the students’
learning processes. Aiming for ecological validity (Prediger et al. 2015), this richness
observed with only two pairs of students calls for analysis of additional pairs. Some
results already indicate a wealth of strategies and conceptions, alongwith similarities
in the development of measures (Büscher 2017, 2018; Büscher and Schnell 2017).

The analysis also showed the importance of the phenomenon not only as a moti-
vating factor, but as integral to concept development itself. Further research could
also be broadened to include other phenomena to be investigated. Since the learning
processes was bound to the phenomena, a task design that focuses on other phenom-
ena than weather and ice could provide other starting points for the development of
measures.
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