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Foreword

How opportune to have available in this one volume chapters highlighting rich
international collaborative research in statistics education to examine the teaching
and learning of statistics. It is especially relevant that much of this current research
focuses on content, pedagogy, and learning at the school level and with teacher
preparation. More often than not in the past and even currently, only the most able
students have been encouraged to study statistics. However, we live in a constantly
changing world that is structured around many different forms of data (traditional
and non-traditional) that impact every individual daily. It is more urgent than ever
that ALL students begin at a young age in school to develop data sense and
statistical thinking. For this to happen, our school-level teachers and teacher edu-
cators must also develop data sense, conceptual understanding, and habits of mind
for reasoning statistically. We need evolving research that investigates and
understands how students and teachers develop statistical reasoning and how to
provide accessibility to all students and teachers. For instance, researchers have
previously dedicated much research to identifying student and teacher miscon-
ceptions. As seen in this volume, the research has now moved to trying different
strategies and inventions that can help address these misconceptions. The hope is
that these potential strategies will be further researched in different contexts and
other countries.

The research presented in this volume also informs and provides credibility to
the writing and evolution of educational policy documents establishing recom-
mendations for optimal teaching and student learning. For example, in 2008, the
American Statistical Association (ASA) document, Pre-K-12 Guidelines for
Assessment and Instruction in Statistics Education (GAISE), utilized international
research to recommend guidelines for teaching statistics at the school level—a
groundbreaking document. This document has influenced national statistics stan-
dards in several countries. Ten years later, the recommendations are still relevant
and essential but with the continual evolution of types of data, availability of data,
technology available for analysis of data—the Pre-K-12 GAISE is being updated
with current research informing the additional skills students need while still
maintaining the spirit of the original document recommendations. In the ASA
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document, The Statistical Education of Teachers (SET), at the time of publication in
2015, few research-based guidelines were in place concerning what teachers need to
know to effectively teach statistics. How exciting to read the chapters in this volume
on the research focused on teacher preparation and teacher understanding
enhancing the recommendations from SET.

Statistical education research is still an emerging vital field of study. This vol-
ume demonstrates that the research is valued worldwide, with collaborative efforts
between different countries. I am grateful to the editors, Gail Burrill and Dani
Ben-Zvi, and to the many authors and researchers, for this copious volume of
imperative research that supports the writing and development of resources to
evaluate student and teacher learning and that supports the professional develop-
ment of teachers.

Athens, GA, USA Christine Franklin
University of Georgia
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Introduction

Statistics is a general intellectual method that applies
wherever data, variation, and chance appear. It is a funda-
mental method because data, variation, and chance are
omnipresent in modern life

(Moore 1998, p. 134).

Background

The digital revolution (e.g., Hilbert and López 2011) of the last few decades coupled
with the more recent data revolution (e.g., Kitchin 2014) has made statistical
thinking and reasoning a necessity in today’s world, a world awash with data that
come in many different forms such as pictures, dynamic images, including inno-
vative and interactive visualizations, and sounds as well as numbers and more
traditional graphs. Analyzing those data is crucial to nearly every aspect of society
including business, industry, social welfare, education, and government. The
explosion of data has led to “big data” and the emerging need for increased attention
to making sense of data as an integral part of many career options (Ben-Zvi 2017).

Being able to provide sound evidence-based arguments and critically evaluate
data-based claims are important skills that all citizens should have. The study of
statistics can provide students with tools, ideas, and dispositions to use in order to
react intelligently to information in the world around them, rather than relying on
subjective and often ill-informed judgments (Ben-Zvi and Makar 2016). To make
this happen, the ability and inclination of learners, teachers, professionals, and
citizens to understand, use, and communicate about statistics and probability need
to be fundamental in educational programs, programs that are informed by research
and evidence from practice that show promise for improving statistical teaching and
learning (Garfield and Ben-Zvi 2007). Much can be learned by integrating results
from such a variety of research and practice in statistics education. Such integration
of theories, empirical evidence, and instructional methods can eventually help
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students to develop their statistical thinking. These ongoing efforts to reform
statistics instruction and content have the potential to both make the learning of
statistics more engaging and prepare a generation of future citizens that deeply
understand the rationale, perspective, and key ideas of statistics.

To that end, this volume is divided into five sections, each dealing with an aspect
of teaching and learning statistics: student understanding, teaching for under-
standing, teachers’ knowledge (preservice and inservice), teachers’ perspectives,
and curriculum.

ICME-13 Topic Study Group 15: Teaching and Learning
of Statistics

This volume is a product of the Thirteenth International Congress on Mathematical
Education (ICME-13) Topic Study Group 15 (TSG-15), Teaching and Learning
Statistics. The members of TSG-15 came from 34 different countries and varied
significantly by experience, background, and seniority. During the Congress, more
than 60 presentations were divided into six themes related to key issues in statistics
education research: core areas in statistics education; technology and the teaching of
statistics; statistics education at the elementary level; statistics education at the
secondary level; statistics education at the tertiary level; teachers’ statistical
knowledge and statistics education of preservice/in-service teachers; and future
directions in statistics education.

The four meetings of TSG-15 were organized to create a sense of community
among all presenters and participants, who shared a common desire and passion to
improve statistics education by focusing on conceptual understanding rather than
rote learning. The chapters in this volume are based on the 18 best papers presented
in the four meetings.

Student Understanding

In Chap. 1, Budgett and Pfannkuch describe a study designed to address the dif-
ficulties students have in understanding conditional probabilities and Bayesian-type
problems. Using a dynamic pachinkogram, a visual representation of the traditional
probability tree, they explored six undergraduate probability students’ reasoning
processes as they interacted with the tool. Initial findings suggested that the ability
to vary the branch widths of the pachinkogram may have the potential to support a
more robust understanding of conditional probability.

In Chap. 2, Büscher invokes a theoretical framework for describing students’
development of statistical concepts. A conceptualization of measure is introduced
that links concept development to the development of measures, which consists
of the three mathematizing activities of structuring phenomena, formalizing
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communication, and creating evidence. An analysis of the results of a qualitative
study in the framework of topic-specific design research reveals some impact of the
context on students’ situated concept development.

Orta and Sánchez explore students’ reasoning concerning variation in Chap. 3.
They analyzed the responses to two problems from a questionnaire administered to
87 ninth-grade students in which the students compared two data distributions and
had to choose one they thought most advantageous for the situation. The authors
propose three levels of reasoning related to how students interpret variation where
decision making in the third level seems to be influenced by risk aversion or
seeking.

In Chap. 4 Aridor and Ben-Zvi focus on understanding how students interpret
and evaluate the relationship between two variables and the role of models in
developing their reasoning. They used an illustrative case study to examine two
students’ emergent aggregate reasoning with covariation as the students explored
the relations between two variables in a small real sample and constructed and
improved a computerized statistical model of the predicted relations in the popu-
lation using the software TinkerPlotsTM.

Teaching for Understanding

In Chap. 5, Manor Braham and Ben-Zvi focus on an “Integrated Modeling
Approach” (IMA) that aspires to assist students to reason with the uncertainty
involved in drawing conclusions from a single sample to a population. The chapter
describes the design principles and insights arising from the implementation of one
activity in the IMA learning trajectory in a case study of two students (age 12, grade
6). Implications for research and practice are also discussed.

The focus in Chap. 6 is on the use of dynamically linked documents based on
TI© Nspire technology to provide students with opportunities to build coherent
mental concept structures by taking meaningful statistical actions, identifying the
consequences, and reflecting on those consequences, with appropriate instructional
guidance. Burrill describes a collection of carefully sequenced documents based on
research about student misconceptions and challenges in learning statistics. Initial
analysis of data from preservice elementary teachers in an introductory statistics
course highlights the students’ progress in using the documents to cope with
variability in a variety of contextual situations.

In Chap. 7, Schindler and Seidouvy present results from a study investigating the
social nature of seventh-grade students’ informal statistical inference (ISI) and
informal inferential reasoning (IIR) in an experiment with paper helicopters. They
describe how students draw inferences when working in a group and how the
student inferences emerge socially with inferentialism used as a background theory.
The results illustrate how students’ informal inferences are socially negotiated in
the group, how students’ perceived norms influence IIR, and what roles statistical
concepts play in students’ IIR.
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The focus in Chap. 8 by Arnold and Pfannkuch is on “good” statistical inves-
tigative questions that allow rich exploration of the data in hand, discovery, and
thinking statistically. The work described in this chapter builds on earlier work
related to the development of criteria for what makes a good statistical investigative
question and a detailed two-way hierarchical classification framework for com-
parative statistical investigative questions that are posed. The authors’ focus is on
the last of four research cycles, in which they explore responses from pre- and
post-tests and discuss the level of comparative statistical investigative questions that
students posed.

Teachers’ Knowledge (Preservice and Inservice)

In Chap. 9, de Vetten, Schoonenboom, Keijzer, and van Oers focus on the
development of informal statistical inference (ISI) skills, not from the perspective
of the students as in Chap. 7 but rather from the perspective of preservice teachers’
reasoning processes about ISI. Three classes of first-year elementary preservice
teachers were asked to generalize from a sample to a population and to predict the
graph of a larger sample during three rounds with increasing sample sizes. The
analysis of the results revealed that most preservice teachers described only the data
and showed limited understanding of how a sample can represent the population.

The focus of Chap. 10 is an exploration of teachers’ statistical knowledge in
relation to the concept of variability. Vermette and Savard asked twelve high school
mathematics teachers to respond to scenarios describing students’ strategies, solu-
tions, and alternative conceptions when presented with a task in which variability
was central to the interpretation. The authors analyzed the teachers’ comprehension
and practices to gain insight into how to teach variability. The study found that
students and high school teachers seem to share the same misconceptions related to
the concept of variability.

Chapter 11 also considers teachers’ understanding of variation. Peters and
Stokes-Levine describe results from a project to design and implement professional
development for middle and high school mathematics teachers to investigate how
dilemma, critical reflection, and rational discourse affect teachers’ understandings
and reasoning about variation. Framed by transformative learning theory, the study
highlights how teachers’ engagement with activities designed to prompt dilemma,
consideration of multiple perspectives through multiple representations and rational
discourse, and examination of premises underlying measures and procedures
broadened the teachers’ perspectives on measures of variation.

Recognizing that many mathematics and science teachers in the USA have not
benefitted from sufficient opportunity to learn statistics in a sense-making manner, in
Chap. 12, Madden describes a study to support the statistical learning trajectory of
in-service teachers. The study explores ways in which a course that blends
face-to-face and virtual learning experiences impacted secondary in-service teachers’
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technological pedagogical statistical knowledge (TPSK). Results suggest the course
positively impacted participants’ TPSK.

Chapter 13 introduces a framework for evaluating statistical reasoning and
software skills when comparing groups. Frischemeier describes an application of
this framework to qualitative data collected during a video study of four pairs of
preservice teachers engaged in comparing distributions of data from different
groups using TinkerPlotsTM. The results were used to evaluate the complex inter-
twined processes of the teachers’ statistical reasoning and the use of software.

Teachers’ Perspectives

In Chap. 14, Henriques and Oliveira investigated the perspectives of 11 mathe-
matics teachers about the potential and the challenges of developing a learning
environment targeting students’ statistical reasoning in a developmental research
project context. Findings show that the middle-grade teachers were able to distin-
guish key aspects that characterized the statistical reasoning in the tasks and ways
the students used the software to explore the tasks, as well as recognizing that, as
teachers, it is necessary to assume a new role that stands in contrast with traditional
teaching practices.

In Chap. 15, Idris and Yang describe a phenomenographic approach to inves-
tigate the attitudes toward statistics of 38 Indonesian preservice teachers in an
introductory college statistics course who were in an English as a Foreign Language
(EFL) program. The authors identified three components of what was valued in
learning statistics and related these to the components from task-value theory:
intrinsic, attainment, and utility.

Statistics Curriculum

In Chap. 16, Pratt, Griffiths, Jennings, and Schmoller describe a project in the UK to
develop a free open online course to offer motivated adults access to statistical
ideas. The authors reflect on the tensions and compromises that emerged during the
design of the course, in particular, the challenge of developing resources that will
support heterogeneous students from unknown backgrounds, who may have
already been failed by the conventional educational system and who will have no
interactive tutor support within the online course.

Chapter 17 focuses on how the statistical component of fifth-grade mathematics
textbooks in Colombia contributes to the development of critical citizenship using a
socio-critical perspective. Zapata-Cardona and Marrugo-Escobar analyzed 261
tasks selected from seven mathematics textbooks. The results show that the con-
texts of the tasks were mostly hypothetical with very few tasks presented in
real contexts. The tasks seemed to serve mainly as platforms to introduce

Introduction xv



measurement calculations and application of statistical procedures, promoting
procedural knowledge over reflective knowledge with little if any connection to a
socio-critical perspective.

Chapter 18 discusses how ideas from critical mathematics education and
statistics education intersect and could be used to transform the types of experiences
that students have with both mathematics and statistics in the school mathematics
curriculum. Weiland describes key ideas from the critical mathematics literature to
provide a background from which to discuss what a critical statistics education
could be. The chapter includes a discussion of some of the major barriers that need
to be considered to make such a vision a reality and possible future directions for
moving toward making a critical statistics education a reality.

Looking Forward: The International Perspective

The remarkable achievements of some countries in improving the teaching and
learning of statistics have not yet arrived in all corners of the globe. Some countries
still lack sufficient instructional resources, statistics curricular materials, effective
professional development of preservice and in-service teachers, and educational
technologies, foundations essential to carry on the reform movement in statistics
education. Citizens in these countries are especially in need of becoming literate
consumers of data, vital for improving their quality of life, monitoring and pro-
moting social justice, economic growth, and the environment. They deserve, like
any citizen of the world, to own the power of data literacy, to be able to add
credibility to their claims and create and critically evaluate data-based evidence.
Progress in the understandings of teaching and learning of statistical reasoning and
thinking and the availability of high-quality technological tools for learning and
teaching statistics should be shared with and by everyone, to help every country,
region, school, and teacher worldwide to integrate and readily capitalize on these
advances.

The studies in this book serve as a contribution in these directions. The chapters
together create an arena for collaboration in synergetic cross-country research and
development projects and nurture and encourage a sense of inclusiveness. It is
essential to empirically test novel theoretical and practical ideas, successful in one
context, in other countries and settings to learn more about their local and global
affordances and constraints.

It is encouraging to see the diversity, creativity, richness, and novelty of the
contributions across continents. It is a sound evidence for the growing numbers of
enthusiastic and able scholars, the success of the statistics education community
worldwide, and the increasing recognition that statistics education is receiving in
the educational world, especially in the mathematics education community. While
some countries are facing the enormous challenge of introducing statistics into the
national curriculum for the first time, others are experimenting and evaluating with
a second or a third wave of curricular reforms that already include strong
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ingredients of data and chance in the school level. We embrace this diversity but
urge all involved to increase international collaboration, sharing, and contribution,
to the mutual benefit of all future citizens of the world.
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Chapter 1
Visualizing Chance: Tackling
Conditional Probability Misconceptions

Stephanie Budgett and Maxine Pfannkuch

Abstract Probabilistic reasoning is essential for operating sensibly and optimally in
the 21st century. However, research suggests that students have many difficulties in
understanding conditional probabilities and that Bayesian-type problems are replete
with misconceptions such as the base rate fallacy and confusion of the inverse. Using
a dynamic pachinkogram, a visual representation of the traditional probability tree,
we explore six undergraduate probability students’ reasoning processes as they inter-
act with this tool. Initial findings suggest that in simulating a screening situation, the
ability to vary the branch widths of the pachinkogram may have the potential to
convey the impact of the base rate. Furthermore, we conjecture that the represen-
tation afforded by the pachinkogram may help to clarify the distinction between
probabilities with inverted conditions.

Keywords Bayesian-type problems · Conditional probability
Dynamic visualizations

1.1 Introduction

Our lives and the environments in which we live are pervaded by random events and
chance phenomena. Events such as earthquakes, the global financial crisis, global
warming and epidemics have resulted in many industries now paying attention to
managing risk. The study of probability is a way of understanding the world from
a non-deterministic perspective. Given the number of disciplines that require the
application of probability concepts and understanding of probabilistic reasoning, the
learning of probability is essential to prepare students for everyday life. Probability
underpins the functioning of a modern economy and environment and, according to
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4 S. Budgett and M. Pfannkuch

Greer and Mukhopadhyay (2005, p. 308), is “a way of thinking [that] is supremely
multidisciplinary.” Within a largely deterministic school curriculum, probability is
the only subject area that exposes students to thinking about chance, learning tomake
decisions under uncertainty, and quantifying uncertainty. It is therefore indisputable
that students need exposure to probabilistic thinking and reasoning. However, the
current approach to teaching probability draws on the tradition of classical mathe-
matical probability and may not be accompanied by a substantial understanding of
the chance phenomena that the mathematics describes (Moore 1997). Often teaching
approaches regress to a list of formulas and routine applications and, as Borovnick
(2011, p. 81) observed, “probability is signified by a peculiar kind of thinking, which
is not preserved in its mathematical conception.” Such an approach renders many
probability ideas inaccessible to most students (Chernoff and Sriraman 2014).

A variety of strategies for improving people’s understanding of conditional prob-
ability have been investigated. Some of these approaches include displaying infor-
mation in frequency format rather than in probability format (e.g. Gigerenzer and
Hoffrage 1995) and providing accompanying static visualizations such as icon arrays
and probability trees (e.g. Brase 2014; Garcia-Retamero and Hoffrage 2013). None
of this research, however, has trialed a dynamic visualization approach. While the
research approaches show improvement in people’s ability to deal with conditional
probability scenarioswith respect to the base rate fallacy and confusion of the inverse,
advances in technology suggest that dynamic visualizations should be considered as
another way to offer learners further insight into conditioning problems. We con-
jecture that if learners can vary input parameters such as the base rate and observe
the resultant outputs, then they will experience and appreciate the effect of the base
rate on the conditional outcomes at a deeper conceptual level. With regard to con-
ditional probability, our research seeks to address a gap in the research knowledge
base through exploring learners’ experiences as they interact with a dynamic prob-
ability tree, the pachinkogram, which visually represents proportions, distributions,
randomness and variation.

The small exploratory study that forms the basis of this chapter has arisen as part
of a larger research project which investigated the potential of exposing introduc-
tory university students to a modelling approach to probability involving learning
strategies focused on dynamic visual imagery. The research question for this chapter
is: How can a dynamic pachinkogram assist some students’ understanding of condi-
tional probability through specifically raising their awareness of the base rate fallacy
and confusion of the inverse?

1.2 Background Literature

An impoverished understanding of probabilistic information can lead to poor
decision-making, with examples identified in fields such as medicine, management,
law and intelligence analysis (Gigerenzer et al. 2007; Hoffrage et al. 2015; Man-
del 2015; Nance and Morris 2005). Within the medical screening and diagnostic
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field, Gigerenzer et al. (1998) document the tragic consequences of misinterpreting
probabilistic reasoning.

Research in the field of cognitive science suggests that humans are innate
Bayesians (Griffiths and Tenenbaum 2006; Pouget et al. 2013). Indeed it has been
shown that infants as young as 12 months of age display Bayesian behavior in that
they can integrate relevant information to form coherent judgments in unfamiliar
situations (Téglás et al. 2011). However, literature within the field of probability
education documents many misconceptions in peoples’ thinking (Kahneman 2011).
In particular, and despite people’s intrinsic Bayesian behavior, Bayesian-type word
problems present difficulties for many (Sirota et al. 2015), with the base rate fal-
lacy and the confusion of the inverse misconception dominating people’s reasoning
(Villejoubert and Mandel 2002). The base rate fallacy arises most commonly when
people neglect base rate information when judging probabilities (Bar-Hillel 1980;
Kahneman and Tversky 1973), but can also arise when people give too much weight
to base rate information (Teigen and Keren 2007). The confusion of the inverse mis-
conception, where a conditional probability is confused with its inverse probability,
has been documented by many and is often attributed to the existence of the base rate
fallacy (Bar-Hillel 1980; Kahneman and Tversky 1973). However, other researchers
have suggested that the base rate fallacy is an artefact of the confusion of the inverse
misconception (Koehler 1996; Wolfe 1995).

Much effort has been directed into researching the pedagogical issues underly-
ing Bayesian-type problems, resulting in several approaches designed to facilitate
understanding. These approaches are now discussed.

1.2.1 Frequency Formats

Gigerenzer and colleagues noted that when probability information is presented as
frequencies rather than in probability format, both experts and non-experts are less
likely to succumb to the base rate fallacy and confusion of the inverse (Gigerenzer
2014). Despite the underlyingmathematics being the same, Gigerenzer and Hoffrage
(1995) demonstrated that when study participants were presented with a Bayesian
problem where information was framed in a probability format, accuracy was 16%,
and when the same information was framed in a frequency format, accuracy was
46%. It appears that, for most people, frequencies are computationally simpler to
deal with than probabilities. Additionally, while base rate information is an integral
component of frequency information, it is a less tangible component of probability
information.

However, the format in which frequencies are presented is important. Although
certain misconceptions may be alleviated when information is presented in
frequency-format, Watson and Callingham (2014) noted that students have difficulty
in employing proportional reasoning when interpreting frequency tables. In particu-
lar, they noted that teachers should “help students be flexible enough in their thinking
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to consider proportions in each direction” (p. 279) highlighting the finding that most
students in their study were unable to co-ordinate information in a 2×2 table.

1.2.2 Visualizations

Rapid advances in technology during the last fewdecades have led to the development
of both static and dynamic visual representations which are now gaining momentum
in the field of mathematics and statistics education. Clark and Paivio (1991) observed
that visual images provide the opportunity for generation of mental images which
can have a positive impact on learning. Furthermore, visual imagery canmake visible
concepts that were previously inaccessible within mathematical symbolic represen-
tations (Arnold et al. 2011; Konold and Kazak 2008; Pfannkuch et al. 2015). Arcavi
(2003, p. 216) observed that cognitive technologies “might develop visual means to
better ‘see’ mathematical concepts and ideas”. Because visualizations can bring to
life properties that often remain intangible, they have the potential to support and
augment students’ probabilistic reasoning. Examples of early visualizations tailored
to the area of probability included blurred or degraded icons to represent varying lev-
els of friendliness or hostility (Finger and Bisantz 2002) and the use of transparency,
hue and opacity to represent uncertainty in weather predictions (Lefevre et al. 2005).

1.2.3 Visualizations for Bayesian-Type Problems

In the last two decades, researchers have investigated the performance of a variety
of visual tools designed to improve people’s assessment of Bayesian-type situations.
Sedlmeier and Gigerenzer (2001) demonstrated that the use of a frequency tree could
improve respondents’ performance in a Bayesian-type task. More recently, Binder
et al. (2015) investigated the effects of information format (probabilities or frequen-
cies) and visualization (none, 2×2 table, tree diagram) on the performance of 259
German school students aged 16–18 years when presented with two Bayesian-type
problems. They found that performancewas optimized in the frequency/visualization
condition, with no evidence of an effect of visualization type (2×2 table vs. tree dia-
gram). Sloman et al. (2003) investigated the use of the Euler diagram as a visual
representation of Bayesian-type probability information and found that 48% of the
25 respondents were able to provide an appropriate solution while Brase (2009)
demonstrated, in three separate experiments, that participants randomized to the
Euler or Venn diagram condition did not perform as well as participants randomized
to an icon array condition. The icon array was developed by a risk communication
specialist to assist those in the medical profession in particular (Paling 2003).

Several studies have demonstrated the effectiveness of the icon array as a
means to visually represent information associated with Bayesian-type problems
(e.g. Brase 2009, 2014; Zikmund-Fisher et al. 2014). Sedlmeier and Gigeren-
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zer (2001), extending the frequency-based framework proposed by Gigerenzer
and Hoffrage (1995), noted that the performance of people’s interpretation of
frequency-based information can be further enhanced by providing accompany-
ing frequency-based static visualizations which have similarities to icon arrays.
This finding was further reinforced in a study by Garcia-Retamero and Hof-
frage (2013) who endorsed the use of visual aids such as frequency grids
as an effective means of communicating quantitative medical information. The
unit square has also been proposed as a visual tool which has the capacity to
make transparent probability information (Bea 1995; Sturm and Eichler 2014).
Indeed, in a study of prospective teachers, the unit square out-performed the tree
diagram in terms of both procedural and conceptual knowledge (Böcherer-Linder
et al. 2016). Additionally, and in light of the difficulties that many students experi-
ence when collating information from a 2×2 table (Watson and Callingham 2014),
recent research has highlighted potential benefits of the eikosogram, a visual repre-
sentation of a 2×2 table of information, in promoting proportional reasoning and
flexibility in thinking (Pfannkuch and Budgett 2016a).

1.2.4 The Role of Technology

Technology’s advances and ubiquitous access have provided an opportunity for stu-
dents to visualize probability, or chance, through the creation of new representational
infrastructure. Therefore it may be possible for students to gain access to previously
inaccessible concepts (Sacristan et al. 2010). Furthermore, according to Shaughnessy
(2007, p. 95), “technological tools are very important for helping students to transi-
tion from those naïve conceptions to richermore powerful understanding of statistical
concepts” . However, technology is not sufficient for conceptual growth. Both the
teacher’s and the student’s articulation of how they make sense of, and explain in
their own words, what they see and understand and thereby create meaning from the
images, is critical (Makar and Confrey 2005). Reflective dialogue between teacher
and students is paramount in developing conceptual reasoning (Bakker 2004).

1.2.5 Previous Related Work

In prior research, we interviewed seven practitioners who used stochastic modelling
and probability in their work. The main purpose of the interviews was to understand
the practitioners’ view on the essential conceptual ideas required for probabilistic
thinking. Together with a synthesis of related literature, we ascertained that random-
ness, distribution, conditioning andmathematicswere the core foundational elements
underpinning probabilistic thinking (Pfannkuch et al. 2016). The practitioners also
identified conditioning and associated ideas as problematic areas for students. This is
not surprising, and aligns with the fact that people have trouble making judgments in
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Bayesian-type situations (Sirota et al. 2015).When asked about possible strategies to
enhance students’ understanding of probability, the key ideas that emerged were to:
incentivize students to engage in understanding the ideas; use visual imagery; allow
students to play around with chance-generating mechanisms; develop strategies to
enable students to link across representations including extracting information from
word problems; and use contexts that students can relate to.

Based on these key ideas, a six-principle framework was used to guide the design
of a prototype dynamic visualization tool and associated task. The principles were to
encourage students to (1) make conjectures, (2) test their conjectures against simu-
lated data, (3) link representations, (4) perceive dynamic visual imagery, (5) relate to
contexts, and (6) interact with chance-generating mechanisms. This framework was
also used to analyze the data. These six principles are based on literature derived from
a number of different sources. Principles (1) and (2) are key strategies which appear
to promote active learning and studentmotivation (e.g. Lane and Peres 2006; Garfield
et al. 2012), while principle (5) is also closely linked with student engagement (e.g.
Neumann et al. 2013). The principle of linking representations was based upon the
versatile thinking framework developed by Thomas (2008). The fourth principle
aligns with recommendations that probability be taught from a modelling perspec-
tive and that simulation plays an important role in linking reality with probability
models (Batanero et al. 2016). However, rather than being black-box abstractions,
visually-based simulations allow students to experience random phenomena as they
develop (Budgett et al. 2013). The final principle, that of having students interact with
chance-generating mechanisms, is in response to Biehler’s (1991) vision of having
“more experiences with software where students can design random devices on the
screen” (p. 189). Whether designing random devices, or modifying existing ones,
students require many experiences across a range of contexts in order to painstak-
ingly build “an abstract understanding of what to look for” (Cobb 2007, p. 339).
The six-principle framework is discussed in more detail in Pfannkuch and Budgett
(2016b).

1.3 Method

The aim of this exploratory study was to explore the potential of a dynamic visualiza-
tion prototype tool and associated task to enhance introductory university students’
understanding of probability. Given the problems people have in judging Bayesian-
type situations, we were particularly interested in manifestations of the common
misconceptions of confusion of the inverse and the base rate fallacy. To encourage
the students to think aloud as they progressed through the task we used a two-person
protocol in which the students discussed their thoughts and proposed actions. The
research method is analogous to a pre-clinical trial in which a proposed intervention
is investigated andmodified in a laboratory setting prior to implementation in humans
(Schoenfeld 2007). Occasionally the two authors would intervene for clarification
purposes, or to progress the students if time became an issue.
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1.3.1 Participants, Data Collection and Analysis

We randomly selected students (n�24) who had successfully completed a first-year
introductory probability paper (n�100) until we had the consent of six students
to participate. Ethics prevented us from conducting the study before or during the
course. The introductory probability paper covered conditional probability using a
traditional teaching approach. A pre- or co-requisite for enrolment into this introduc-
tory probability paper is successful completion of an introductory university general
mathematics course which includes functions, linear equations and matrices, differ-
ential calculus of one and two variables, and integration of one variable. Therefore
the participating students had an adequate grounding in mathematics and could be
expected to copewith thematerial required to learn probability in the traditionalman-
ner. At the time of the study, one student planned to major in statistics, three planned
to include statistics as a component in a double major or a conjoint degree, and two
planned to major in disciplines other than mathematics and statistics but opted to
take one or two statistics papers in their study programme. The pseudonyms of the
pairs of participating students were: Brad and Ailsa, Harry and Hope, and Lorraine
and Xavier. The task took approximately two hours to complete. The students were
asked to think aloud and their dialogue was audio and video-taped. Screen captures,
using Camtasia, recorded the students’ interaction with the software tool. A post-
interview was conducted after completion of the task in which students were asked
to reflect on what they thought they had learned, and to suggest any improvements to
the tool or accompanying task. Recordings made during the task sessions, the task-
dialogue, and the post-interviews were transcribed. The task- dialogue transcription
was qualitatively analyzed using a systematic process (cf. Braun and Clarke 2006) of
(1) familiarizing oneself with the data, (2) searching for initial features in students’
reasoning with regard to their conjectures and the testing of those conjectures against
the simulated data and (3) identifying and reviewing critical and salient reasoning
features that emerged about the base rate fallacy and confusion of the inverse in the
new environment.

1.3.2 The Task and Tool

Students, in pairs, were presented with a task. Conjectures were sought from the stu-
dents prior to introduction to the software tool and visualizations. Many researchers
(e.g. Garfield et al. 2012; Konold and Kazak 2008) have suggested that seeking intu-
itions and conjectures from students helps them to engage with the task, to under-
stand the situation presented, and provides motivation for exploring the problem.
The context for the task is described in Fig. 1.1. The students were asked to read
the information and to provide an intuitive answer to the question posed. The ques-
tion in Fig. 1.1 was designed to address the confusion of the inverse misconception.
Subsequent questions within the task involved the students thinking about the same
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Fig. 1.1 Background information and question

situation, but considering different subgroups of the New Zealand population with
varying diabetes prevalence which was based on real data (Coppell et al. 2013). For
example, the prevalence for the New Zealand population as a whole is 7%. For New
Zealand females aged between 25 and 34 the prevalence of diabetes is 3%, for New
Zealand males aged between 65 and 74 the prevalence is 18.7%, and in Pacific Island
people aged over 75 the prevalence is 56%. The rationale for providing students with
the same problem for different subgroups of theNZpopulationwas to raise awareness
of the base rate fallacy. For some further details of the task, see Appendix.

In accordance with the six-principle framework mentioned previously, the task
was designed around a relatable context within a local setting. The students were first
asked to make conjectures by answering each question intuitively before moving to
the software tool. The software tool incorporated a variety of linked representations
including symbolic representations and static and dynamic visual imagery. Having
provided intuitive answers to questions within the task, the students interacted with
the chance-generatingmechanisms embeddedwithin the software tool and simulated
each scenario, thereby testing their conjectures against simulated data.

The students’ first experience of a pachinkogram1 is shown in Fig. 1.2 (www.
stat.auckland.ac.nz/~vt). Note that the tool contains two additional components, an
eikosogram and a graph, but we asked the students to focus on the pachinkogram to
begin with. Figure 1.3a illustrates the pachinkogram set up to represent the situation
described in Fig. 1.1 and Fig. 1.3b illustrates the pachinkogram set up to represent
the same situation but with a base rate of diabetes of 56% which corresponded
to the diabetes prevalence of Pacific Island people over the age of 75, one of the

1Theword pachinkogramoriginates from the Japanese pachinkomachinewhich resembles a vertical
pinball machine.

http://www.stat.auckland.ac.nz/%7evt
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Fig. 1.2 Pachinkogram with default settings of equal probabilities on each branch (left), default
eikosogram (top right) and empty empirical probability graph (bottom right)

Fig. 1.3 Pachinkogram with a settings corresponding to the situation described in Fig. 1.1 and b
settings corresponding to the situation described in Fig. 1.1 but with a base rate of 56%

subgroups presented to students in a subsequent question within the task. While the
pachinkogram resembles the traditional probability tree, note that the branches of the
pachinkogram are proportional in size to their respective probabilities. Probabilities
on the pachinkogram branches can be changed by sliding the bars on the branches.
Altering the input parameters of the pachinkogram in thisway not only suggests to the
user that the resultant output may change, but there is also a visible transformation in
the appearance of the pachinkogram (e.g. compare Fig. 1.3a, b). For each simulation,
dots corresponding to each member of the sample flow down the pachinkogram
branches dynamically and end up in the ‘buckets’ at the bottom (see Fig. 1.3a, b).

One of the additional components of the tool, the eikosogram (see Fig. 1.2, top
right), displays visual representations of simple, joint and conditional probabilities
for each simulation. There is the facility to flip the condition and to toggle between
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Fig. 1.4 Flipping the condition in the eikosogram (top right square) between a P(+ve |Diabetic)
and b P(Diabetic |+ve)

Diabetic and +ve

(a)

Diabetic and -ve

(b)

Healthy and +ve

(c)

Healthy and -ve

(d)

Fig. 1.5 Visual display of the dynamic linkage between pachinkogram pathways/buckets (left side)
and the eikosogram joint probabilities (top right square)

P(Diabetic |+ve) and P(+ve |Diabetic)2 (see Fig. 1.4). This component is linked
dynamically to the pachinkogram, highlighting the pathways and buckets represent-
ing the elements of a given joint probability (see Fig. 1.5).

The purpose of the task was to explore the students’ reasoning processes when
interacting with simulated data displayed dynamically through a pachinkogram. A
prominent feature of the task was to allow the students to make conjectures prior
to using the tool, and then to test their conjectures with simulations. Of particular
interest was their reaction to altering the pachinkogram parameters when changing

2Note +ve denotes a positive test result. Therefore P(Diabetic |+ve) is the probability of having
diabetes, given that a person has a positive test result and P(+ve |Diabetic) is the probability of
having a positive test result, given that a person is diabetic.



1 Visualizing Chance: Tackling Conditional … 13

the base rate or the accuracy of the screening test (not explored in this paper), and
the resulting effect on their initial conjectures.

1.4 Findings

Because the research question that guided the focus of this chapter is on the base rate
fallacy and confusion of the inverse, and the impact of visualizations on these ideas,
data relating to these issues has been drawn from the two-hour task sessions.

1.4.1 Student Interaction with the Task and Tool

Confusion of the inverse

Three of the six students, Xavier, Ailsa and Brad, appeared to demonstrate the con-
fusion of the inverse misconception, that is they confused P(Diabetic |+ve) with
P(+ve |Diabetic) in their conjecture or intuitive answer to the question posed in
Fig. 1.1, giving answers of around 95%. Only one student, Harry, provided a value
(80%) that was close to the theoretical value of 78%. Hope gave an answer of 7%
which suggested that, at this initial stage, she neglected to consider the fact that a
positive test had been recorded, seeming only to focus on prevalence of diabetes
in the population of interest and thereby demonstrating some level of confusion.
Lorraine’s answer was between 0.1 and 0.2 with the following explanation:

My intuitive answer used to be that the chances were pretty high but then I did stats and so
now my intuitive answer would be that the chances are pretty low

It transpired that Lorraine had seen a similar question in a previous statistics
course which was based on an example from an animation available on the Under-
standing Uncertainty website (Spiegelhalter n.d., https://understandinguncertainty.
org/screening). This example involved screening for a particular attribute where the
test had a reliability of 90% regardless of the presence or absence of the attribute,
that is P(+ve | attribute present) �90% and P(−ve | attribute absent) �90%, and
the theoretical value of P(attribute present |+ve) was 16%. Lorraine’s memory of
this example explained why she answered, incorrectly, that the chances of having
diabetes given a positive test were ‘pretty low’. Lorraine did not seem to have a sense
of the magnitude of the difference between P(Diabetic |+ve) and P(+ve |Diabetic)
with a new base rate and a test which had an accuracy level that depended on an
individual’s attribute status. That is, she did not fully understand the impact of the
base rate and the effect of the reliability of the test.

When the students were asked to modify the pachinkogram default settings in
order to represent the situation presented to them, all of them appeared to gain more
clarity onwhat the questionwas asking them. Even before the screening situationwas

https://understandinguncertainty.org/screening
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simulated, theywere able to identify the characteristics of the ‘people’whowould end
up in the buckets at the bottom of the pachinkogram and to comment on the resulting
distribution. During Ailsa and Brad’s discussion of what they expected to see in the
bucket distribution, Brad noted “I would expect very little in this one. It’s pretty
unlikely [when referring to the bucket representing diabetics who test negative]”,
while Ailsa stated that most of the people would end up in the negative and healthy
bucket. Despite their initial conjectures demonstrating confusion of the inverse, their
expectations for the distribution were in line with the result of the simulation. Xavier,
who also exhibited confusion of the inverse in his original conjecture, mentioned that
he expectedmore people in the leftmost bucket; that is, he expected to seemore people
who were diabetic being classified as diabetic. When Lorraine reminded him that
only 7% of the population had diabetes, he admitted, “I didn’t think about the 7
percent.”

After viewing the simulation, they were asked if the bucket distribution corre-
sponded with their expectations. Harry agreed, and proceeded to describe the char-
acteristics of the people in the buckets stating “Most of the healthy people end up
negative, and there’s a few poor people that got told they have diabetes when they
don’t.” While gesturing to the bucket containing a small number of individuals who
had diabetes but tested negative, Harry continued: “These are the most unlucky peo-
ple because they have diabetes but they got told that they don’t.” He then completed
his observation of the simulation by noting the people with diabetes who were cor-
rectly identified. Having performed one simulation, the students were able to focus
on the buckets representing positive tests, and to note that a sizeable number were in
fact non-diabetics who were incorrectly classified as diabetics. As Xavier noted, “I
can see the visual of how it works”.

The students were then directed to the eikosogram in the top right of the screen
and asked to consider the related probability (see Fig. 1.4a). They were specifically
asked if the probability given on the screen was the answer to the original question
in Fig. 1.1. When prompted to flip the eikosogram (see Fig. 1.4b), Ailsa identified
the combined green and pink areas as representing all of the positive tests which
seemed to allow her to recognise that the original question was asking for a proba-
bility conditional on testing positive, and not for a probability conditional on having
diabetes. The following conversation between Brad andAilsa demonstrates how they
confronted their original misconception of confusion of the inverse and illustrates
how Ailsa seemed to know what colour of buckets to focus on, and to link this to the
same colours on the eikosogram.

Brad: Oh, we thought 95% intuitively
Interviewer: Has that answered the question?
Ailsa: It’s given diabetic that they test positive which is… ah…
Brad: Yeah, oh… that’s the other way around
Ailsa: That is given they are diabetic and test positive, whereas we were

looking at it the other way around.
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Xavier initially thought, incorrectly, that the probability from their simulation
(similar to that in Fig. 1.4a)was the answer to the original question, althoughLorraine
was not convinced.

Interviewer: Is this the answer to question one?
Xavier: Yes, that is the answer to question one.
Lorraine: It is?Wait, wait, wait. I always get these round thewrongway. I always

do it. No, isn’t it the other way round? Isn’t this one [question one]
looking for diabetic given positive?

Xavier: Oh yeah, so [it] will be the opposite.

When Xavier and Lorraine flipped the eikosogram, they noted that the condition-
ing was changed with Xavier commenting, “That’s the correct answer for question
one. Before it was positive given diabetic and now it’s diabetic given positive”.

With three students displaying confusion of the inverse in their initial conjectures,
and two students exhibiting other misconceptions, Harry was the only student who
provided an approximately correct intuitive answer to the question in Fig. 1.1. When
asked if the probability from their simulation (similar to that shown in Fig. 1.4a)
was the answer to the original question, Harry stated: “No, because that is not the
probability that it was positive, it’s the opposite?”. When asked to explain what he
meant by ‘opposite’, he answered: “It should be like given the test was passed, what
is the probability that she had diabetes”.

Five of the six students’ intuitive answers to the question in Fig. 1.1 demon-
strated misunderstanding at some level. Instead of P(Diabetic |+ve), Brad, Ailsa
and Xavier all provided answers close to P(+ve |Diabetic) demonstrating confusion
of the inverse. Hope’s answer was P(Diabetic), suggesting that she failed to take
account of the conditioning while Lorraine, who had seen a similar question before,
provided the (incorrect) answer she recollected from that situation. However, after
interacting with the pachinkogram and making links between the bucket distribution
and the eikosogram, all of the students seemed to gain some clarity as to how and
why P(Diabetic |+ve) and P(+ve |Diabetic) were different.
Base rate fallacy

Although two pairs of students Ailsa and Brad, and Lorraine and Xavier, stated
that the base rate was a necessary piece of information when asked for their intuitive
answers to P(Diabetic |+ve) in a variety of situations, they were not able to articulate
why. Their initial intuitive answers to questions within the task also suggested that
they were unaware of how the base rate might affect their answers. When Hope and
Harry were asked if the base rate was a necessary piece of information in order to
answer some of the task questions, they initially said no. Despite Harry’s ability to
recognise that P(Diabetic |+ve) and P(+ve |Diabetic) were different probabilities,
he was adamant that the base rate was not a required piece of information. However,
having used the tool to answer some more of the questions, Harry and Hope quickly
realised that a change in the base rate of diabetes in a population did have an effect on
the numbers ending up in the buckets at the bottomof the pachinkogram, and hence on
the value of P(Diabetic |+ve). As Hope noted, “That is kind of funny, we said earlier
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that we didn’t think the percentage was actually relevant and now we are wanting to
use it.” In a subsequent section of the task, several seemingly identical questionswere
asked, although each had a different base rate. The following exchange illustrates
Hope’s realisation that an increase in the base rate from 7 to 18% will have an effect
on the results of the simulation:

Interviewer: So have you got some expectation of what you are going to see in the
buckets at the bottom?

Harry: This [pachinkogram] kind of makes it a little bit clearer
Hope: I think we are going to see a similar thing to last time, but we are going

to have more in here [pointing to the leftmost bucket] and less in here
[pointing to rightmost bucket] if that makes sense

Interviewer: Why are you going to have more in that left hand bucket?
Hope: Because you have increased the percentage of people who could have

diabetes, so you are funnelling more down that side.

Hope’s gestures and use of language suggests that it is the width of the pachinko-
gram branches that has provided her with further insight as to the impact of the base
rate.

Similarly, through changing the base rate, all of the students now recognised that
this would have an impact on the width of the branches of the pachinkogram and all
were able to improve on their initial conjectures or intuitive answers. For example,
when Xavier and Lorraine were asked, prior to running a simulation with a new base
rate of 56% (see Fig. 1.3b), what distribution they expected to see in the buckets at
the bottom of the pachinkogram, they responded:

Xavier: There will be more in this one [pointing to the leftmost bucket]
Lorraine: There will be quite a lot in the true positive one [pointing to the leftmost

bucket]. These ones (the leftmost and rightmost buckets) will probably
be relatively the same, I mean they will both be big ones. The other ones,
not so much.

Xavier: But they [leftmost bucket] will be more than that one [rightmost bucket]
because that one is bigger than that one.

Xavier is noting that there are now more diabetics than healthy people in the
population (56% vs. 44%). It is not clear if he is also attending to the fact that the
accuracy of the test depends on diabetes status. However, it appears that the width
of the branches of the pachinkogram is contributing to his prediction.

When Ailsa and Brad altered the slider on the pachinkogram branches to reflect a
new base rate of 56%, prior to running the simulation, Ailsa noted that she expected
“more people correctly diagnosed as diabetic than people who are healthy and
wrongly diagnosed”. Her comment suggested that she now recognised the impact of
the base rate and that in this new situation the majority of the positive tests would
belong to people with diabetes. Although, initially, four of the six students believed
that the base rate was a necessary piece of information that was required to answer
the task questions similar to that shown in Fig. 1.1, none were able to articulate their
reasoning. The remaining pair, Harry and Hope, were convinced that the base rate
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was not required. After manipulating the pachinkogram branches to reflect new sit-
uations with varying base rates, the effect of the base rate appeared to become more
transparent for all students.

1.4.2 Student Reflections on the Task and Tool

In the post-test interview, Lorraine and Xavier commented that they had more of an
appreciation of the concept of conditional probability by being able to see both the
dynamic simulation as the dots flowed through the pachinkogram and the widths of
the pathways affecting the end result. Lorraine stated, “I guess I have more of an
understanding on the probabilities of falling into each category than I did from [prob-
ability course] conditional probability.” Harry and Hope thought that the pachinko-
gram would be a useful tool when introducing conditional probability because, as
Hope suggested, “it would be quite helpful to actually see we are conditioning on
this [points to those testing positive] so we are ignoring the people who are going
down that side and only focussing on these results.” Ailsa and Brad also discussed
their new conditional probability understanding:

Ailsa: It’s a lot easier to see umhow things changewith changing the different
thresholds, changing the diabetic versus healthy and then the success
rates

Brad: Yeah, it’s like one small change can affect a lot of things
Ailsa: So it is a lot easier to understand the difference between which

way around the conditional probability goes. And so how that
relates, where those two numbers come from [P(Diabetic |+ve) and
P(+ve |Diabetic)] and why they are different

Interviewer: It’s a misconception that those two probabilities are the same
Brad: No, they are definitely not the same.

Not only is Ailsa now aware of the importance of the conditioning, but she also
appeared to understand why P(Diabetic |+ve) and P(+ve |Diabetic) were different.
This seems to be related to the visual aspect of the software tool, and in particular
the colour connections that she made between the pachinkogram buckets and the
eikosogram.

Lorraine reflected on her experience in the introductory probability course she
had completed. She recalled being instructed to tackle problems such as the one
described by constructing a 2×2 table of frequency information. However, when
it came to answering a question under exam conditions, she had forgotten how to
construct the table, stating, “I had forgotten how we did it…a whole lot of equations,
one after the other, numbers, numbers, numbers.”

Although Ailsa and Brad decided that the base rate was a necessary piece of
information, they were unable to articulate why this was the case and were initially
unaware of the effect of a change in the base rate. However, reflecting on their
experience with the software tool they remarked on the fact that a change in base
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rate corresponded to a visual difference in the pachinkogram. Brad commented that
“Changing (increasing) the percentage of the population that had diabetes, more
of the little dots would go over to having diabetes, so there is a higher proportion
testing positive and that had diabetes.” Ailsa thought that while a probability tree
might have numerical values alongside the branches, “the buckets down the bottom
being an area is a lot easier to see”, with Brad saying “I like how the things end
up there. It helps.” Harry also indicated that the physical process of adjusting the
pachinkogram branches to represent a given situation helped his reasoning, “Yeah,
even just moving the slider across gives more intuition I think.”

The conversations above, in conjunction with accompanying gestures, illustrate
that these students were attending to the width of the pachinkogram branches and
anticipating the resulting effects. All six students specifically mentioned the visual
aspect of the tool helping their understanding with Lorraine commenting, “A visual,
instead of just one learning tool you’ve got two. Visual might be better for some,
written might be better for some but if you’ve got both then you’re covering both of
those, and both is surely better than just one.”

When compared to probability problems previously encountered by these stu-
dents, the context of the problem seemed to incentivise them. Hope commented:
“I like the background story… I like to know why I am doing it and I am not just
computing random numbers for the sake of computing random numbers. I don’t like
that. So a little bit of background definitely helps me get into it and think about
things.” All of the students could identify with the diabetes screening context, and
were familiar with the notion of varying diabetes prevalence rates according to gen-
der and ethnicity. Although Harry and Hope did not initially think that the base rate
was necessary in order to answer the first question, and Harry noted that he “felt
quite sure about that at the time”, it only took one interaction with the pachinkogram
for them to realise that if the screening test accuracy remained the same, a change in
base rate had to have an effect. In Hope’s words: “The more you do it and the more
you see how things affect it and change it and even just little changes as opposed to
big changes you kind of get better at predicting it. So I kind of have more of a feel for
where the numbers should lie just because I have seen a couple of examples now.”

1.5 Discussion

According to the cognitive theory of multimedia learning (Mayer 2009), advances
in both graphical and information technology have paved the way for researchers
to explore the potential of dynamic visualizations to facilitate access to a variety of
concepts.Designers of such visualizationsmust bemindful of howvisual information
is processed (Ware 2008) andbe aware of the fact that the format of a graphical display
significantly affects how that display is understood (Mayer 2010).

We were interested in exploring the role of a dynamic visualization to support
students’ probabilistic reasoning, with particular focus on Bayesian-type problems.
Furthermore, since we believed that student engagement was an important concept
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for the learning of probability, we designed a task and tool around a relatable context
and incentivized students to make conjectures prior to interacting with technological
tools. The pachinkogram and associated task appeared to assist this small group of
students to recognize the base rate fallacy and confusion of the inverse.

Using the six-principle framework we now discuss briefly how each component
seemed to enhance these students’ probabilistic reasoning. A major feature that we
observed in this study was student engagement. We attribute this to two components:
the contextually relatable medical screening situation embedded within a local set-
ting; and having the students put a stake in the ground through making conjectures
throughout the task. The principles of making and testing conjectures, in conjunc-
tion with providing a relatable context, appeared to incentivize students not only to
engage in the problem, but also to understand why their original conjectures might
have been based on one or more misconceptions. The ability of simulations to assist
students to understand why their initial conjectures might be incorrect has also been
noted in other research (e.g., Konold and Kazak 2008). The visual representation
afforded by the pachinkogram in Fig. 1.3a, b, notably the ability to change the widths
of the branches to reflect the probabilities, seemed to be a powerful way to convey
the impact of the base rate. This seemed to be further facilitated by the linking of
the numerical representations of 7% and 93% with the widths of the pachinkogram
branches (Fig. 1.3a).

We conjecture that the dynamic connections made between the pachinkogram
buckets and the eikosogram (Fig. 1.5), including the colour connections, clarified
the links between the properties of the ‘people’ in the buckets and the respective
simple, joint and conditional probabilities represented in the eikosogram and that the
flip facility (Fig. 1.4) aided the distinction between probabilities with inverted condi-
tions. Furthermore, when simulating the screening situation, the utility of visualizing
‘people’ flowing through the pachinkogram to one of the four buckets at the base
seemed to help in clarifying the probability asked for in the original question and
differentiating it from its inverse (cf. Arcavi 2003). The simulation itself provided a
frequency-type view of the screening situation, with each dot representing a person,
and seemed to help these students clarify the required conditional probabilities, in
line with the findings of Gigerenzer and others (Gigerenzer 2014).

In accordance with recent research (e.g. Garcia-Retamero and Hoffrage 2013),
the visual aspect of the pachinkogram appeared to provide additional support for
student understanding. Additionally, linking the branches and the buckets of the
pachinkogram to symbolic representations promotes a flexibleway of thinkingwhich
appeared to consolidate the students’ understanding. The students’ interaction with
a chance-generating mechanism, that is the pachinkogram, reinforced the notion that
the distribution of the number of people in each of the four buckets would vary from
simulation to simulation, despite none of the pachinkogram parameters changing.

Overall we conjecture that these six students were beginning to develop some
probabilistic intuition, including notions of randomness, conditioning and distribu-
tion which Pfannkuch et al. (2016) identify as core components associated with the
development of probabilistic reasoning.
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The four students who initially stated that the base rate was an essential piece of
information displayed some form of confusion when providing an intuitive answer
for P(Diabetic |+ve). Therefore, although aware of the importance of the base rate,
they exhibited the base rate fallacy by underestimating its effect. This resulted in
three of the students succumbing to the confusion of the inverse misconception by
mixing up P(Diabetic |+ve) and P(+ve |Diabetic). This outcome is line with the
findings of researchers who suggest that the confusion of the inverse misconception
originates from the base rate fallacy (e.g. Bar-Hillel 1980; Kahneman and Tversky
1973). However, Harry’s preliminary belief that the base rate was not required seems
to be in conflict with the fact that he was able to distinguish P(Diabetic |+ve) from
P(+ve |Diabetic) Research has shown that study participants who were trained to
distinguish P(A |B) from P(B |A) were less likely to demonstrate base rate neglect
compared with a control group (Wolfe 1995). One possibility is that Harry was
attending to the base rate of 7%, albeit unconsciously, or the other possibility is that
Harry made a lucky estimate. Lorraine, on the other hand, could distinguish between
the two conditions and believed that the base rate was involved, yet could not give a
reasonable estimate.

Because this exploratory study only involved six students we cannot draw any
conclusions about the link between the confusion of the inverse misconception and
the base rate fallacy. All we can conclude, very tentatively, is that the pachinkogram
seemed to assist these students to understand, at a visual level, why the base rate
affected the bucket distributions, and therefore affected the resulting probabilities.
The use of colour connections and dynamic linking between the buckets and the
eikosogram appeared to help them to distinguish between probabilities with inverted
conditions. Furthermore, the widths of the pachinkogram branches helped them to
recognize why the probabilities with inverted conditions were different. Also, the
participating students had already completed an introductory probability course and
interacted with the task and tools in a semi-structured environment and hence fur-
ther research in different settings and with students of varying ages and abilities is
warranted.

Random events and chance phenomena permeate our lives and environments,
with many of the decisions made by citizens of the 21st century involving some level
of probabilistic reasoning. Often poor judgments occur when people are required to
assess or estimate Bayesian-type probabilities (Sirota et al. 2015), an area replete
with misconceptions (Kahneman 2011). The traditional mathematical approach to
teaching probability has resulted inmany students unable to gain access to fundamen-
tal probability concepts (Chernoff and Sriraman 2014). Using the pachinkogram, the
dynamic visualization tool described in this chapter, may raise awareness of common
misconceptions such as the base rate fallacy and confusion of the inverse (Villejoubert
and Mandel 2002) and instill in students a better understanding of core foundational
elements underpinning probabilistic thinking (Pfannkuch et al. 2016).
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Appendix: Some of the Diabetes Task Questions

Anewhousing development has been built in your neighbourhood. In order to service
the needs of this new community, a new health clinic has opened. As part of the health
clinic’s enrolment procedure, new patients are required to undergo health check-ups
which include, among other things, a series of blood tests. One such test is designed
to measure the amount of glucose in an individual’s blood. This measurement is
recorded after the individual fasts (abstains from eating) for a prescribed period of
time. Fasting bloodglucose levels in excess of 6.5mmol/L are deemed to be indicative
of diabetes. This threshold of 6.5 mmol/L works most of the time with about 94%
of people who have diabetes being correctly classified as diabetics and about 98%
of those not having diabetes being correctly classified as non-diabetics.

The prevalence of diabetes in the NZ population is about 7% (i.e. approximately
7% of the NZ population are estimated to have diabetes).

Graph above adapted from Pfannkuch et al. (2002, p. 28)

Question 1

(a) As part of enrolment in this health clinic, an individual has a fasting blood
test. He/she is told that his/her blood glucose level is higher than 6.5 mmol/L.
What are the chances that he/she has diabetes? Provide an intuitive answer.

(b) Now use the software tool to answer Question 1 (a).
(c) Reflecting on your answer to (b), how does this compare with your answer

to (a)?
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Question 2

(a) As part of his enrolment in this health clinic, a male aged between 65 and 74
has a fasting blood test.3 He is told that his blood glucose level is higher than
6.5 mmol/L. What are the chances that he has diabetes? Provide an intuitive
answer.

(b) Now use the software tool to answer Question 2 (a).
(c) Reflecting on your answer to (b), how does this compare with your answer

to (a)?

Question 3

(a) As part of their enrolment in this health clinic, a person of Pacific ethnicity
and aged over 75 has a fasting blood test. He/she is told that his/her blood
glucose level is higher than 6.5 mmol/L. What are the chances that he/she has
diabetes? Provide an intuitive answer.

(b) Now use the software tool to answer Question 3 (a).
(c) Reflecting on your answer to (b), how does this compare with your answer

to (a)?
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Chapter 2
Students’ Development of Measures

Christian Büscher

Abstract Knowledge is situated, and so are learning processes. Although contextual
knowledge has always played an important role in statistics education research, there
exists a need for a theoretical framework for describing students’ development of
statistical concepts. A conceptualization of measure is introduced that links concept
development to the development of measures, which consists of the three mathema-
tizing activities of structuring phenomena, formalizing communication, and creating
evidence. In a qualitative study in the framework of topic-specific design research,
learners’ development of measures is reconstructed on a micro level. The analy-
sis reveals impact of the context of a teaching-learning arrangement for students’
situated concept development.

Keywords Concept development · Design research · Situativity of knowledge
Statistical measures · Statistical reasoning

2.1 Introduction: Concept Development as a Focus
for Research

In recent years, the ability to draw Informal Statistical Inferences (ISI) (Makar and
Rubin 2009) has become a focal point of statistics education research (see the ESM
special issue on sampling, Ben-Zvi et al. 2015). ISI emphasizes the use of statistical
concepts in drawing ‘probabilistic generalizations from data’ (Makar and Rubin
2009, p. 85) and in making claims about unknown phenomena. In order to describe
the type of reasoning used in drawing ISI, Makar et al. (2011) propose a framework
of Informal Inferential Reasoning (IIR) . This framework reveals the complexity of
IIR; the components include knowledge of statistical concepts as well as contextual
knowledge and general norms, habits, and patterns of action (Makar et al. 2011).
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Learning to draw ISI is thus conceptualized by the development of IIR, placing
strong emphasis on the use of statistical concepts in complex activity.

Learners howeverwill first need to develop the statistical concepts to be used in IIR
through activity in teaching-learning arrangements that are designed to facilitate such
concept development. A key assumption of the research related to this study follows
the ideas of Freudenthal (1991) that learners can develop formal, general concepts
out of their informal, singular activity, when their learning processes are carefully
guided. The framework of IIR gives only limited guidance for such a design, detailing
the goal, but not the path, of concept development. A language is required that can be
used to describe learners’ situated understandings, the individual concepts guiding
their actions, the relation of these concepts to formal statistical concepts, and the
complex interplay with elements of the design of a teaching-learning arrangement.

Whereas similar studies have focused on the concepts of distribution (Lehrer and
Schauble 2004) and shape (Gravemeijer 2007), this study focuses on the concept of
measure. Since data-based evidence plays a major role in ISI and IIR and measures
are a common form of such evidence, this focus could provide not only insights into
concept development but also make connections to the development of IIR.

2.2 Theoretical Background

2.2.1 The Situativity of Knowledge

A long-standing perspective in cognitive psychology concerns the situativity of
knowledge (Greeno 1998). A conceptualization of measure that takes learning pro-
cesses into consideration needs to pay attention to the fact that knowledge emerges
from situations. Vergnaud (1990, 1996) proposes a theory of conceptual fields as
an epistemological framework. To Vergnaud, the perception of situations and the
understanding of mathematical concepts stand in a dialectic relationship: “cognition
is first of all conceptualization, and conceptualization is specific to the domain of
phenomena” (Vergnaud 1996, p. 224). In this way, mathematical knowledge emerges
through actions in situations. This knowledge is not to be understood as consisting
of situation-independent abstractions but rather as an operational invariant across
different situations.

The twomost important types of operational invariants are concepts-in-action and
theorems-in-action. Concepts-in-action are “categories (objects, properties, relation-
ships, transformations, processes etc.) that enable the subject to cut the real world into
distinct elements and aspects, and pick up the most adequate selection of informa-
tion according to the situation and scheme involved” (Vergnaud 1996, p. 225). Thus,
they organize what students focus on and in this case how they structure phenomena
unknown to them. Theorems-in-action are defined as “propositions that [are] held to
be true by the individual subject for a certain range of situation variables” (Vergnaud
1996, p. 225). They are intricately connected to the learners’ concepts-in-action:
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theorems-in-action give meaning to concepts-in-action, which in turn give content
to the theorems-in-action.

Aconceptualizationofmeasure that takes into account the situativity of knowledge
thus will need to provide a clear focus on the use of measures in situations. The
median is a measure of center, but this does not explain its use in terms of operational
invariants.

2.2.2 Functions of Measures

Although measures are a prominent concept in statistics and statistics education,
few explicit definitions or conceptualizations exist that explain this construct. At
least three different functions of measures can be identified based on literature: (a)
structuring phenomena, (b) formalizing communication, and (c) creating evidence.

Structuring phenomena. Bakker and Gravemeijer (2004) distinguish between data
(the individual values) and distribution (a conceptual entity). Two perspectives on
data and distribution emerge: The ‘upward perspective’ consists in seeing data as a
means to calculate measures (median, range, …) of aspects of a distribution (center,
spread, …). The ‘downward perspective’ consists of looking at the data from the
standpoint of distribution, with aspects of center and spread as organizing structures
already in mind.

In this way, measures function as lenses that allow access to distributional proper-
ties. This resonates with the idea of an ‘aggregate view’ on data (Konold et al. 2015):
perceiving data as a conceptual unit with its own emergent properties, which can be
accessed through the use of measures. In data investigation, measures thus impose
distributional properties on phenomena, creating structure in previously unstructured
phenomena.

Formalizing communication. Structuring phenomena alone does not conclude sta-
tistical investigation; findings must also be communicated to a wider audience.
Through their standardized procedures of calculation, measures can provide such
a means of communication. They create intersubjectivity, allowing for communica-
tion about phenomena across distance and time (Porter 1995; Fischer 1988).

Creating evidence. One of the characterizing features of ISI given by Makar and
Rubin (2009) is the use of data as evidence. Whereas they do not explicitly relate this
role of evidence to measures, it is possible to think of the form of this evidence as
consisting ofmeasures. Abelson (1995) states that the discipline of statistics supports
principled arguments that aim at changing beliefs and which therefore need to be
convincing to others. Simple unspecified reference to data would not serve this goal
of convincingness. Instead, specific aspects have to be ‘singled out’ that explicate
what exactly is convincing in the data. This is a role played by measures.
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2.2.3 A Conceptualization of Measure

Although the list of functions of measures presented above possibly is not complete,
it illustrates some common facets of the use of measures on which each function
places different emphasis, in different terms, with varying grades of explicitness.

Measures are grounded in data. Although this facet on its own is not terribly sur-
prising, the role of measures becomes clearer when related to another facet: measures
describe phenomena. They bridge the gap between data and phenomenon. A phe-
nomenon behind some data can be accessed through the use of measures that operate
on that data. This can lead to new insights into the phenomenon and is a prerequisite
for communication about that phenomenon.Measures however can never capture the
full phenomenon but provide discrete descriptions. They separate phenomena into
relevant and irrelevant parts, highlighting only very specific aspects of phenomena.
This is the reason why they can provide convincing principled arguments and give
new, but also possibly incomplete, insights into phenomena.

From these considerations, this study draws a conceptualization for the concept
of measure: a measure is a data-based description of one aspect of a phenomenon.
This definition builds on a broad understanding of the term ‘phenomenon’. ‘Aspect
of a phenomenon’ can refer to any part of a phenomenon that is held to be relevant for
a specific question in a specific situation. An example could be the daily ice growth
used by climate scientists as a measure of the volatility of the melting process of Arc-
tic sea ice (Fig. 2.1). Another aspect of the same phenomenon could be the general
well-being of the Arctic ice sheet, addressed through themeasure of monthly average
extent (Fetterer et al. 2002). While these aspects are phenomenon-specific, measures
can also refer to more general aspects like the central tendency. A distinction can
be drawn between general measures that focus on general aspects of phenomena

Fig. 2.1 The relations between phenomenon, data, measures, and aspects of phenomena
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(center, spread, …) and situative measures that focus on phenomenon-specific sit-
uative aspects. General measures consist of all measures commonly referred to in
formal statistics, whereas situative measures address phenomenon-specific aspects
such as the melting process of Arctic sea ice. The meaning of situative measures
is often situation-specific, whereas general measures provide situation-independent
tools for structuring phenomena. This does not mean that the use of general mea-
sures is strictly situation-independent: general measures can also be used to address
phenomenon-specific aspects.

2.2.4 The Development of Measures

Whereas statisticians are able to use general measures such as the median to address
the center of arbitrary phenomena, the situated nature of knowledge implies that
learners will have to resort to phenomenon-specific situative measures when starting
out in their learning trajectory. This puts the learners into an inconvenient position.
They will need to structure phenomena by identifying aspects, while simultaneously
finding situative measures to address just these aspects. Learners need to develop
their measures. During their learning process, learners will need to answer ques-
tions corresponding to a measures’ functions of structuring phenomena, formalizing
communication, and creating evidence.

As emphasized by Vergnaud (1996), a theory of learning needs to give a promi-
nent place to learners’ activities. In order to illustrate how formal ideas can emerge
from informal activity, the functions of measures are now (in reference to Freuden-
thal 1991) interpreted as mathematizing activities carried out by the learners while
developing measures. When engaging in the mathematizing activity of structuring
phenomena, learners make sense of a situation through their concepts-in-action.
Their contextual knowledge of the phenomenon plays an important part, as they have
not yet developed general measures for structuring phenomena. The mathematizing
activity of formalizing communication focuses on ameasure’s formal characteristics,
such as definition, calculation, and rules of application. In the beginning of learn-
ing processes, visual identification (i.e. ‘just seeing’) would be an adequate way of
finding an situative measure. However, such visual identification could hardly pro-
vide intersubjectivity; finding standard procedures of calculation instead could be
an act of formalizing communication. During the mathematizing activity of creating
evidence, learners decide the actual aspects and measures to be chosen for argumen-
tation. Again, contextual knowledge can play an important part for clarifying which
aspects are relevant for which questions regarding the phenomenon and thus, which
line of argumentation should be supported by what evidence.

Through the investigation of different phenomena, operational invariants over
different situations can emerge, making the use of situative measures less
phenomenon-dependent. In this framework, learning takes the form of develop-
ing situative measures into general measures through mathematizing activity across
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different situations: broadening the aspects of phenomena addressed by measures,
explicating formal characteristics, and supporting argumentation through evidence.

2.2.5 Research Questions

The starting point for this study was the need for a conceptualization of measure
that allows for the design of a teaching-learning arrangement that draws on learn-
ers’ situated understandings and can lead to the development of statistical concepts.
Such a teaching-learning arrangement needs to elicit the mathematizing activities of
structuring phenomena, formalizing communication, and creating evidence. Since
the role of those activities was based on theoretical observations, it remains unclear
how actual learning processes are constituted in these activities and how a teaching-
learning arrangement can support them. Although all three mathematizing activities
play a part in the development of measures, this study limits itself by focusing on
the activities of structuring phenomena and formalizing communication in order to
provide a more in-depth view of the learning processes. The empirical part of this
study thus follows the following research questions:

(RQ1) How can design elements of a teaching-learning arrangement elicit and sup-
port the mathematizing activities?

(RQ2) How do learners’ situative measures develop through the mathematizing
activities of structuring phenomena and formalizing communication?

2.3 Research Design

2.3.1 Topic-Specific Didactical Design Research
as Framework

Design research as methodological frame

The presented study is part of a larger project in the framework of topic-specific
didactical design research (Prediger et al. 2012). This framework simultaneously
aims at twodifferent but strongly interconnected goals: empirically grounded theories
on the nature of topic-specific learning processes and learning goals (i.e. what and
how to learn), and design principles and concrete teaching-learning arrangements for
learning this topic (i.e. with what to learn). This is achieved by a focus on learning
processes (Prediger et al. 2015). Special attention is given to the careful specification
and structuring of the learning content as well as to developing content-specific local
theories of teaching and learning (Hußmann and Prediger 2016).

Research is structured into iterative cycles consisting of four different working
areas (see Fig. 2.2). In a first working area, the learning content is specified and struc-



2 Students’ Development of Measures 33

Fig. 2.2 The cycle of topic-specific didactical design research (Prediger et al. 2012; translated in
Prediger and Zwetzschler 2013, p. 411)

tured, identifying central insights into the content that learners need to achieve and
structuring them into possible learning pathways. This can be based on epistemolog-
ical considerations such as a didactical phenomenology (Freudenthal 1983) as well
as on empirical insights into possible learning obstacles and students’ conceptions.
The secondworking area consists of designing a teaching-learning arrangement to be
used in the thirdworking area, conducting design experiments (Cobb et al. 2003). The
learning processes initiated in the design experiments are then analyzed and serve as
a basis in developing local theories about these teaching and learning processes. A
main strength of the framework of didactical design research is the interconnected-
ness of these working areas: in the next cycle, the local theories developed can inform
the re-specification and re-structuring of the learning content. This re-structuring in
turn influences the design principles enacted in the teaching-learning arrangement
and thus, the initiated learning processes. Through this process, theory and design
get successively more refined in each cycle.

2.3.1.1 Participants and Data Collection

This study reports on findings of the third cycle of design experiments of the on-
going design research project (for other results see Büscher 2017, 2018; Büscher and
Schnell 2017; Schnell and Büscher 2015). The design experiment series in the third
cycle took place in laboratory settings with five pairs of students in a German middle
school (ages 12–14). Each pair took part in a series of two consecutive design experi-
ment sessions of 45min each. The participating students were chosen by their teacher
as performing well or average in mathematics, which includes statistics education in
German curricula. At the time of the experiments, the students had very little expe-
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rience with statistics besides learning simple measures such as the arithmetic mean
and median a year before in grade 6. They were familiar with frequency distribu-
tions but only on a rather superficial level (e.g. reading out information on maximum
and minimum), without comparing them strategically. They were not familiar with
stacked dot plots or measures of spread.

All experiments were completely videotaped (altogether 450 min of video in
the third cycle). Here, the case of two pairs of students is presented, selected due
to the richness of their communication and mathematizing activities. Their design
experiment sessions were fully transcribed.

2.3.1.2 Data Analysis

The qualitative data analysis aims not at solely assigning students’ utterances to
the general statistical concepts but instead at capturing the individual emergent,
situative concepts. In order to capture the richness and heterogeneity of the students’
individual reasoning, this study chose a category-developing approach (cf. Mayring
2000) using open and interpretative approaches (cf. Corbin and Strauss 1990) for
identifying individual concepts-in-action and theorems-in-action (Vergnaud 1996)
based on the students’ utterances and gestures. This methodological foundation of
the analytical framework by Vergnaud’s constructs allow the data analysts to capture
the situativity of knowledge and learning. The identified individual concepts-in-
action and theorems-in-action on measures are not necessarily in line with general
statistics concepts but rather mirror their own situative structure of phenomena. In
the analysis, concepts-in-action are symbolized by ||…|| and theorems-in-action by
<…>.

2.3.2 Design Principles

During the five design experiment cycles, several design principles were imple-
mented and iteratively refined that played a role in initiating concept development.
Three design principles play an important part in this study (for a complete overview
see Büscher 2018); each of the design principles focused on eliciting a different
mathematizing activity.

Investigating realistic phenomena. A teaching-learning arrangement focusing on
the development of measures needs to elicit the mathematizing activity of structuring
phenomena. Since most students do not yet have access to phenomenon-independent
measures to structure arbitrary unknown phenomena, the choice of the phenomenon
to be investigated has to be carefully considered. This study uses phenomena such as
variability in the weather that are close enough to students’ reality so that they can
informally and intuitively structure the phenomenon.
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Scaffolding the use of measures in argumentation. Previous cycles of the project
showed how students did use situative and occasionally even general measures when
comparing distributions.Whereas there was a lot of potential in this, their uses stayed
elusive: students lacked the language to specify the addressed aspects and formal
characteristics of their situative measures—they struggled to formalize their com-
munication. This led to an insecure use of measures, so that they sometimes simply
had already forgotten their train of thoughtswhen prompted by the researcher or other
students. This raised the need to scaffold the use of measures by explicating their
use in giving arguments about phenomena. This design principle was implemented
through the use of so-called report sheets (see below)

Contrasting measures. Central to the measure-focused approach of this study is the
insight that different measures for the same distribution can result in different views
on the situation by emphasizing different aspects. Thus, engaging in the activity of
creating evidence can mean to contrast and evaluate different measures with respect
to (a) their usefulness regarding specific investigations, (b) their correspondence to
learners’ experienced reality, (c) their applicability in different situations, or (d) their
advantages or disadvantages in argumentation. This design principle was realized by
contrasting different report-sheets (see below).

2.3.3 Task Design

The design of the two sessions of the design experiments consisted of two different
tasks, the Antarctic weather task (Session I) and the Arctic sea ice task (Session II).
Each task was structured into different phases, with progressions between phases
initiated by the researcher when certain requirements were met.

The Antarctic weather task

The goal of this task was to introduce the students to the idea of measures and the
design elements central to the whole design experiment. The task was structured into
three phases.

Phase I.1. The students were given dot plots of temperature distribution at the Nor-
wegianAntarctic research stationTroll forskningsstasjon (Fig. 2.3, data slightlymod-
ified from Stroeve and Shuman 2004) and introduced to the setting of the task: as
consultants to researchers planning a trip next year, they were charged with giving
a report of the temperature conditions. Since the students were unfamiliar with dot
plots, special attention was given tomake sure that students understood the diagrams.
The data were presented to the students on a tablet with a screen overlay software to
allow for drawing visualizations of their situative measures directly onto the screen.
Tinkerplots2.0 (Konold and Miller 2011) was used to create the diagrams, without
giving the students access to interactive functionalities of the software. When suffi-
cient understanding of the diagrams was achieved and the students had given some
informal predictions for next year, the task progressed to Phase I.2.
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Fig. 2.3 Distributions of the Antarctic weather task (translated from German)

Fig. 2.4 Empty report sheet
(translated from German)

Phase I.2. In this phase, the students were introduced to the central design element
of the design experiments, the report sheets (Fig. 2.4). These report sheets served as
a scaffold for argumentation with measures, combining a graphical representation
with measures and a brief inference about the phenomenon of Antarctic weather. The
students were asked to fill out a report sheet to be used as a report for the researchers.
The measures employed were given to themwithout explanation, so that they needed
to find their individual interpretation of minimum, maximum, and typical. Typical
here served as an situative measure for a yet unspecified situative aspect, which could
be interpreted by the students as incorporating some aspect of variability (similar to
Konold et al. 2002) Since formal characteristics and the meanings of the measures
were left unspecified, this task aimed at eliciting the mathematizing activities of
structuring phenomena and formalizing communication.

Phase I.3. After the students had created their own report sheet, they were given
fictitious students’ filled-in report sheets (Fig. 2.5). These report sheet differed in
their interpretations of the measures employed and thus focused on different aspects
of the phenomenon. The students were asked to evaluate these report sheets and to
possibly adapt their own report sheet.
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Fig. 2.5 Fictitious students’ filled-in report sheets (translated from German)

Fig. 2.6 Distribution of sea ice extent in Session II (translated from German)

The Arctic sea ice task

Phase II.1. The Arctic sea ice task followed a similar progression as the Antarctic
weather task. This time the students were put into the roles of researchers of climate
changes. Students were given distributions of monthly lowest Arctic sea ice extent
for the years 1982, 1992, and 2012 (Fig. 2.6; data slightly modified from Fetterer
et al. 2002) and were asked to give a report whether, and how much, the ice area
had changed. This phase again aimed at ensuring the students’ understanding of the
diagram and the context. They were not yet asked to create a report sheet.

Phase II.2. Following the introduction of the setting, the students again received
filled-in report sheets (Fig. 2.7). These report sheets now allowed for arbitrary mea-
sures and again presented different formalizations ofmeasures and abstractions of the
phenomenon. This time the different measures lead to radically different perceptions
of the phenomenon of Arctic sea ice, with report sheets proclaiming either no change
or radical change inArctic sea ice (Fig. 2.7).Discussion revolved aroundwhich report
sheet was right, and what a researcher would need focus on when reporting on Arctic
sea ice, thus eliciting the mathematizing activity of creating evidence.

Phase II.3. Following the discussion, the students were again asked to create their
own report sheet. Whereas the students were free to choose their measures for the
report sheet, the students were expected to adapt elements of the filled-in report
sheets for their own report sheet. This initiated further mathematizing activities, as
the students were asked to justify their choice of measures.
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Fig. 2.7 Filled-in report sheets for Session II (translated from German)

2.4 Empirical Results

This study identifies students’ mathematizing activities to investigate their devel-
oping measures. The first part of this section follows the learning processes of two
students, Maria and Natalie, through both sessions of the design experiment. Due
to the rapid changes of the roles in the students’ interaction, the transcript has been
partially cleaned up to increase readability. The analysis focuses on their use of the
situative measure of Typical (reference to the situative measure Typical indicated by
capital-T), from its unspecified beginning in Session I to its more formalized version
at the end of Session II. During the design experiment, the students get increasingly
precise in addressing different aspects of phenomena and in structuring the phe-
nomenon. This is then briefly contrasted with the processes of another pair, Quanna
and Rebecca, focusing on Session II and highlighting similarities and differences in
the two pairs’ use of Typical.

2.4.1 The Case of Maria and Natalie

Session I: The Antarctic weather task

The first snapshot starts with Phase I.1 of the Antarctic weather task. After giving
some informal predictions of the weather, Maria (M) and Natalie (N) try to explicate
their view on the data to the researcher (I).

1 M We are pondering what the relationship, like, how to…
2 N Yes, because we want to know what changes in each year. And we said that

there [points to 2003] it came apart.

[…]

8 M Yes, I think it [points to 2004] is somehow similar to that [points to 2002],
but that one [points to 2003] is different.

9 N Like here [points to 2004, around −12 °C] are, like, like the most dots, and
here [points to 2002, −12 °C] are almost none. And there [points to 2002,
−8 °C] are the most and here [points to 2004, −8 °C] are almost none.
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Fig. 2.8 Maria and Natalie’s use of measures (Part 1)

Fig. 2.9 Maria and Natalie’s use of measures (Part 2)

This excerpt serves as an illustration of the starting point in the students’ reasoning.
The students are trying to characterize the differences observed in the distributions. In
order to do this, they structure the phenomenon by identifying two aspects: the ||most
common temperatures|| (where “the most” temperatures lie, #9), and the ||variability
of temperatures|| (how they “came apart”, #2). Whereas the students are able to use
modal clumps as a way to address the ||most common temperatures||, they seem to
lack ways of addressing the ||variability of temperatures|| (Fig. 2.8).

A few minutes later, the students find a way to better address the difference
between the distributions.

21 M Well, we first should look at how many degrees it has risen or fallen. Gen-
erally. In two years.

[…]

27 N You mean average, like…
28 M The average, and then we look at how the average changed in two years.

By identifying the aspect of a ||general temperature|| (“Generally”, #21), the
students are able to re-structure the phenomenon to reduce the complexity of the
temperatures. For this aspect, they appear to already know an adequate general mea-
sure: the ||average||. To the students, <the average addresses the general temperature
of a distribution>. This ||general temperature|| does not necessarily correspond to
the ||most common temperatures|| addressed earlier. In this way, the phenomenon
gains additional structure (Fig. 2.9).

The design experiment progresses through Phase I.2, in which the students create
their own report sheet (Fig. 2.10). The analysis picks up at beginning of Phase I.3,
with the students comparing the different interpretations of Typical in the filled-in
report sheets.
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Translations: 
“Report sheet: temperatures at Troll 
Forskningsstasjon”
Skizze – Sketch
Typisch – Typical
Zusammenfassung – Summary
Temperaturen - Temperatures
(The black graph was drawn first, labeled a mistake, 
and immediately replaced by the red graph. Typical 
was first assigned as -15, then during Phase I.3 
changed to ‘-19 to -15’.)

Fig. 2.10 Maria and Natalie’s first report sheet

Fig. 2.11 Maria and Natalie’s use of measures (Part 3)

Comparing the different interpretations of Typical,Maria andNatalie are intrigued
by the possibility to use an interval to formalize Typical. This consideration leads
them to reflect on their use of the average.

41 N But the average temperature isn’t really typical, is it?
42 M What, typical? Of course the average temperature is the typical.

[…]

46 M Well, no. Typical is more like where the most… no…
47 M The average temperature isn’t the typical after all. Because it’s only the

general, the whole. The typical would be for example for this [2004] here
[points to −14 on the 2004 dot plot].

48 N Typical I think simply is what is the most or the most common.

The students differentiate between average and Typical to address different
aspects: The ||general temperature|| is addressed by the general measure ||average||
(“the general, the whole”, #47), and the ||most common temperatures|| addressed by
situative measure ||Typical|| (“the most common”, #48). At this point it is not yet
clear if the situative measure Typical consists of a number or an interval—it is still in
need of formalization. However, introduction of this situative measure seems to have
allowed the students to reconnect to the aspect of ||most common temperatures|| (first
expressed in #9) that got swept aside by the more formalized average (Fig. 2.11).

Some minutes later, Natalie summarizes her view on the relation between Typical
and average.
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61 N Average is pretty imprecise, because it doesn’t say anything about a single
day. Andwith Typical, I’d say, that it’s a span between two numbers, because
that way you can better overlook how it is most of the time.

In the end of Session I, the measures Typical and average address two different
aspects of the phenomenon of Antarctic weather. Whereas the average addresses the
general temperature, Typical describes the most common temperatures. The average
can be used to compare distributions, whereas Typical gives an insight into a range
of ‘normal’ or ‘expected’ temperatures, to which any single day can be compared.
Central to this distinction was the formalization of Typical as an interval.

Session II: The Arctic sea ice task

Most of Session II revolved around the question how to further formalize Typical,
and how to distinguish it from the average. This excerpt starts in the middle of Phase
II.2, and takes place over a period of eight minutes. In the preceding minutes, the
students had used the average to propose a general decline in Arctic sea ice.

1 I Last time we talked about Typical, and here Typical is also drawn in. Do you
think that’s helpful, or not?

2 M Typical, wait a second, there [report sheet 3, 1982] Typical is 14 right? Huh,
but why is 13 Typical here [report sheet 3, 2012]?

3 N Huh, Typical can’t be 13, because Typical actually is a range, isn’t it?

[…]

6 I What would you say what one should choose?
7 N I would definitely say a range, because that just tells you more. Because you

can’t say that it’s 11 degrees typical.

Maria and Natalie are irritated by the same report sheets showing different values
for the measure ||Typical|| (#2). This leads them to question whether Typical should
be formalized as a number or an interval (“range”, #3).

In Session I, the students opted for the interval. Natalie draws on this knowledge,
postulating that<Typical cannot be a number, because numbers do not describe Typ-
ical temperatures> (“you can’t say that it’s 11 degrees typical”, #7). In this way,
she uses the situative aspect of ||most common temperatures|| from Session I to for-
malize the situative measure Typical in another phenomenon as an interval. Because
this transfer of phenomena happens frequently throughout the session (see below),
it could be seen as the emergence of operational invariants across situations, rather
than a simple mistake in wording.

Some moments later, after they have again considered the average, the students
compare the two measures.
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Fig. 2.12 Maria and Natalie’s use of measures (Part 4)

21 I And if you would create such a report sheet, would the average suffice?
22 N No.Well I think the average is important, isn’t it? But a range, what’s typical,

that just tells you more about single days than if you take the average.
23 N Because if the average is like 12, then one day could be 18 degrees, or

−10 degrees or something. And the average better tells you what generally
happened, and I think a range better tells you what happened generally.

24 N Because if the average was 8 degrees, but it also happened to get to 18
degrees or−10 degrees, then the range would rather be from 5 degrees to –
I don’t know.

Natalie distinguishes between two aspects: what “generally happened”, and what
“happened generally” (#23). These are two different (yet unnamed) aspects, because
the distinction serves as an explanation of the distinction between average and Typ-
ical (sometimes referred to by Natalie as “range”, #23). Natalie seems to lack the
vocabulary to clearly differentiate between the two aspects. In her explanation how-
ever she again seems to draw on an aspect of the previous session: the ||variability
of temperatures||, as she states that <a high variability of temperatures can be seen
in the Typical range>(temperatures from 18 to −10 would somehow be reflected in
the “range”, #24), whereas <the average is not impacted by the variability of temper-
atures>(the average would stay at 8 degrees, #24). Again, the formalization of the
measure Typical progresses by drawing on the structuring of another phenomenon
(Fig. 2.12).

Following this exchange, after some minutes, the students return to the problem
of finding the Typical interval.

41 N I don’t know how to calculate Typical. I think you start from the average,
and then looks at the lowest and highest temperatures, and from that you
take a middle value. Like between the average, and…

42 M And the lowest and the highest… we are talking about temperatures the
whole time, but those aren’t temperatures.

43 N Yes but if we took temperatures, then you take the average and the coldest
and then again take the average.

[…]

48 N And then the average from the average is the Typical. Between this average
and that.
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Fig. 2.13 Maria and Natalie’s development of Typical

With the aspects addressed by the two measures now firmly separated, the stu-
dents find a way to calculate their Typical interval: Taking the average of the whole
distribution (“start from the average, #41), splitting the distribution into two halves
at this point (“look at the lowest and highest temperatures, #41), calculating the
average for each of those halves (“again take the average, #43), and then taking the
interval between those two averages (“between this average and that”, #48). This
shows a highly formalized use of the average: the ||general temperature|| addressed
by the measure ||average|| seems to also apply to only halves of distributions. This
excerpt is the first time one of the students becomes aware of their substitution of
the phenomenon of Arctic sea ice with Antarctic temperatures (#42). The casualness
of Natalie’s dismissal of this fact (“yes but if we took temperatures”, #43) how-
ever seems to suggest that the operational invariants of Typical in the end seems to
encompass both situations, temperatures and sea ice.

Summary. During Session I,Maria andNatalie structure the phenomenon ofAntarc-
tic temperatures into ||most common temperatures||, ||general temperature||, and
||variability of temperatures||. They also determine formal characteristics of the
measure Typical by formalizing it as an interval, in contrast to the average. This
distinction is transferred to another phenomenon in Session II, but not without prob-
lems: again, the characteristic of Typical as an interval must be justified. In the end,
the students even arrive at a way of finding the Typical interval that is similar to that
of finding the interquartile range. During the whole learning process, the situative
measure of Typical develops in interrelated mathematizing activities of structuring
phenomena and formalizing communication. Figure 2.13 provides an overview on
this development.

2.4.2 The Case of Quanna and Rebecca

The following empirical snapshot follows the students Quanna (Q) and Rebecca (R)
in Session II of the design experiment. The excerpts stem from a conversation of
about 15 min. The snapshot starts in Phase II.3 with the students filling out their own
report sheet (shown in Fig. 2.14, but not completed until turn #40) after they have
discussed the filled-in report sheets.
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Translations: 
Steckbrief: - Report sheet:
Skizze – Sketch
Typ. – Typical
Zusammenfassung – Summary: “The difference 
between the years 2012 and 1982 is about 2 km²”
Temperaturen - Temperatures
(Typical in 1982 was later changed from 13.5 to 13)

Fig. 2.14 Quanna and Rebecca’s report sheet

Fig. 2.15 Quanna and Rebecca’s use of measures (Part 1)

1 Q [while filling out own report sheet] And Typical…
2 R Typical […] it could be, like, the middle or something?
3 R I would say the middle and a bit higher.

Although they could have referred to other measures, ||Typical|| is the main mea-
sure organizing their view on the phenomenon. Without paying attention on the
aspects to be addressed, the students are formalizing ||Typical|| as located in the
||middle|| of the distribution: <Typical is located a bit higher than the middle>(#3)
(Fig. 2.15).

Some minutes later, the students are about to write their summary for the report
sheet.

20 Q Okay, now the summary.
21 R The numbers got [points to own report sheet] – look – more ice melted

away.
22 Q [shakes head] the difference is – is around 2.5.
23 R Always?
24 Q Yes, right here [points to own report sheet] of Typical.

Rebecca seems to have difficulties with combining the phenomenon (the melting
ice) with the task of giving a short data-backed summary. At this point, Quanna is
able to utilize their measure of Typical. In the meantime, the students had decided
that <Typical is a number>, which they intuitively identified for the distributions
of 1982 and 2012 as 11 and 13.5. These numbers show a difference of 2.5, which
can now be used in their summary to report on the Arctic sea ice decline: <Typical
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Fig. 2.16 Quanna and Rebecca’s use of measures (Part 2)

Fig. 2.17 Quanna and Rebecca’s development of Typical

can be used to address the state of Arctic sea ice>(the melting ice, #21, addressed
through the difference of Typical, #22). However, it remains unspecifiedwhat exactly
is meant by this aspect of a general ||state of Arctic sea ice|| (Fig. 2.16).

The characteristics of Typical still being unclear, the researcher challenges them
to explain their use of Typical.

40 I I see you decided to use only one number for Typical, in contrast to this
report sheet, where they used an area [points to filled-in report sheet]. Is
that better or worse, what do you think?

41 R Well Typical is more of a single…
42 Q [simultaneously] more of an area…
43 R Now we disagree. […] Typical is more of a small area, or you could say a

number. Like here, from 10 to 12. […] If the area is over 100, it may be over
10. […] But never more than the half.

The claim <Typical is a number>becomes disputed, as ||number|| and ||area||
both are possible characteristics of Typical, as evidenced by the filled-in report sheet
in Fig. 2.17. This initiates further processes of formalization, resulting in more pro-
nounced formal characteristics of Typical. Whereas there still is no full definition,
there are criteria for its correct form: <Typical is an area that at most covers half the
data>(“never more than the half”, #43) and <Typical can be signified by a number,
if the area is small>(“small area, or you could say a number”, #43).

Some minutes later in the discussion, Rebecca tackles the question whether one
is allowed to omit data points that could be seen as exceptions when creating report
sheets.
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61 R Well, you can do that, but it depends. You have to make sure it fits. If you do
it like here [points to own report sheet] you should not consider the isolated
cases […] because then it gets imprecise. But if the Typical area was the
same on both sides, I think you can do that.

Whereas there still is no full definition of Typical, another situative aspect has
been added that is addressed by Typical. Typical not only functions as a description
of a general ||state of Arctic sea ice||, but also addresses ||rule and exceptions|| of the
Arctic ice: <If the Typical area of two distributions is the same, one can use Typical
to address exceptions>. In this way, the formalization of Typical as an interval in
the middle of the distribution has allowed for addressing a previously unstructured
aspect of the phenomenon.

Summary. Throughout this episode, the students expand the aspects addressed
through Typical as well as the situative measures’ formal characteristics. In the
end, they use Typical to address a wide range of aspects that could also be addressed
through general statistical measures (Fig. 2.17). The differentiation of aspects of phe-
nomena and the growing explicitness in formal characteristics of Typical took place
in interlocking mathematizing activities of structuring phenomena and formalizing
communication: after Typical has become sufficiently formalized, it could be used
to structure the phenomenon of Arctic sea ice into ||rule and exceptions||.

2.5 Conclusion

This study started out from the need for a conceptualization of learners’ situated
understandings and the development of statistical concepts through their activities in
learning processes. The concept of measure was introduced, distinguishing between
general and situative measures: measures that address phenomenon-specific aspects
without necessarily showing explicit formal characteristics. Learning took place dur-
ing the development of learners’ situative measures through the three mathematizing
activities of structuring phenomena, formalizing communication, and creating evi-
dence. An empirical study was then used to illustrate (a) how learning processes can
be understood through this conceptualization of measure and (b) how the design of
a teaching-learning arrangement can influence these learning processes.

2.5.1 The Development of Measures

The analysis shows the students to be fully engaged in the mathematizing activities,
which presented themselves as being intricately connected. Structuring phenomena
into aspects provided the reason for formalizing the measures, and additional formal
characteristics found for measures initiated further structuring of the phenomenon.
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The more the students formalized their measure, the more situations were included
in the operational invariants of the measure.

The interpretative approach to the analysis revealed the phenomenon-specificity
of the students’ measures. Maria and Natalie did not use the general measure of
the average to address a general aspect of center, but an situative aspect of general
temperature. This was then contrasted with the situative measure Typical, which was
used to address a range of expected temperatures. Using Typical to structure the
new phenomenon of Arctic sea ice took explicit reference back to the phenomenon
of Antarctic temperatures. In this way, the students’ knowledge of the structure
of phenomena influenced their development of measures. They did not simply use
measures to make sense of phenomena, but knowledge of situation and measure
emerged at the same time.

One strategy that emerged for Maria and Natalie was the comparison of measures
with differing degrees of formalization. Because the students knew the formal char-
acteristics and aspects addressed by the general measure average, they could use it
to develop the situative measure Typical. The average could even be employed in
the calculation of Typical, leading to a measure that addressed aspects that could not
adequately be addressed previously.

One idea postulated in the framework was the possibility of development of sit-
uative into general measures. Although the learning processes investigated in this
study ended before the development of general measures, the findings suggest that
this would indeed be possible. Both pairs of students ended with an situative measure
Typical that resembled the general measure of the interquartile range. Quanna and
Rebecca used Typical to describe an area in the middle of the distribution, consisting
of no more than half the data points, indicating the location of the densest area, parti-
tioning the distribution into rule and exception. Maria and Natalie calculated Typical
by finding multiple averages, which would have resulted in the interquartile range
had the average been substituted by the median. In their combination of average and
Typical, Maria and Natalie manage to coordinate different measures, showing the
possibility of creating understanding even for conceptually rich representations such
as boxplots (cf. Bakker et al. 2004).

2.5.2 Supporting Mathematizing Activities

Central to the design of the teaching-learning arrangement was the choice of phe-
nomenon to be investigated. Theoretical considerations led to the design principle
of choosing realistic phenomena to be investigated. The choice of Antarctic weather
and Arctic sea ice proved to be a fruitful one: in the case of Maria and Natalie,
the students could identify aspects of phenomena regarding the natural variability
and central tendency of weather. Through identification of operational invariants
across the phenomena, the corresponding measures could then be broadened to also
structure the phenomenon of Arctic sea ice.
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Another design principle was the scaffolding of the use of measures in argumen-
tation through the report sheets. This provided the students with different situative
measures both pairs could appropriate for their individual reasoning. Since these
measures were provided without explanation, and with different formal character-
istics, the students needed to choose and commit to certain characteristics. In this
way, this design principle of contrasting models led to the activity of formalizing
communication.

2.5.3 Limitations and Outlook

With the study limited by its own situativity in the design of the teaching-learning
arrangement and number of students analyzed, careful consideration has to be given
to the generalizability of the results. The investigated development of measures has
to be understood in the context of the design: the mathematizing activities were
influenced by design elements, students, and the researcher. Any change in these
factors could result in very different learning processes.

Yet the nature of this study was that of an existence proof of concept development
and an illustration of a theoretical concept revealing a richness within the students’
learning processes. Aiming for ecological validity (Prediger et al. 2015), this richness
observed with only two pairs of students calls for analysis of additional pairs. Some
results already indicate a wealth of strategies and conceptions, alongwith similarities
in the development of measures (Büscher 2017, 2018; Büscher and Schnell 2017).

The analysis also showed the importance of the phenomenon not only as a moti-
vating factor, but as integral to concept development itself. Further research could
also be broadened to include other phenomena to be investigated. Since the learning
processes was bound to the phenomena, a task design that focuses on other phenom-
ena than weather and ice could provide other starting points for the development of
measures.
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Chapter 3
Students Reasoning About Variation
in Risk Context

José Antonio Orta Amaro and Ernesto A. Sánchez

Abstract This chapter explores students’ reasoning about variation when they com-
pare groups and have to interpret spread in terms of risk. In particular, we analyze
the responses to two problems administered to 87 ninth-grade students. The first
problem consists of losses and winnings in a hypothetical game; the second is about
life expectancy of patients after medical treatments. The problems consist of com-
paring groups of data, and choosing one in which it is more advantageous to bet or
to receive medical treatment. In this research we propose three levels of students’
reasoning when they interpret variation. Decision making in the third level of rea-
soning is influenced by risk. As a conclusion, some characteristics of the problems
and the solutions provided by the students are highlighted.

Keywords Middle school students · Reasoning · Risk · Statistics education
Variation

3.1 Introduction

In this study we analyze the responses provided by middle-school students (ages
14–16) to two elementary problems regarding comparison of data sets. In the problem
design, we sought to promote the consideration of spread in comparing two data
sets by proposing data sets with equal means and in a risk context. The analysis
of the responses consists in identifying and characterizing the students’ reasoning
levels when they face such problems in order to understand how their reasoning
on spread can improve. Spread refers to the statistical variation for data sets and
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is one of the seven fundamental concepts of statistics (Burrill and Biehler 2011).
As Watson (2006, p. 217) indicates, variation is the reason why statistics exists
because it is ubiquitous and therefore, present in data. Garfield and Ben-Zvi (2008)
observed that “Understanding the ideas of spread or variability of data […] is essential
for making statistical inferences” (p. 203). However, perceiving and understanding
variability comprises a wide range of ideas. For instance, there is variability in data,
samples, distributions and comparisons of data sets (Ben-Zvi 2004; Ben-Zvi and
Garfield 2004; Shaughnessy 2007). This work is focused on the role of spread in the
comparison of data sets.

In general, statistics problems comparing data sets involve deciding whether two
or more sets can be considered equivalent or not. One way of doing so is through
the comparison of center, spread and shape (Ciancetta 2007). Nevertheless, talking
about the equivalence of data sets is difficult in basic school problems (Garfield and
Ben-Zvi 2005). Therefore, among the problems used in research are those in which
the subject is presented with two or more data sets and has to identify the one that
has the highest quantity or intensity of the characteristic to be measured (e.g., grades,
money, life expectancy). The statistical procedure to solve this type of tasks is based
on the calculation of the mean of each set and the subsequent comparison of means.
Regardless of its apparent simplicity, finding and reasoned using of this procedure
represents a real difficulty for students in basic levels, who are inclined to other
strategies (some of which are merely visual while others are based on isolated data
from each set) instead of using the mean (Gal et al. 1989; Watson and Moritz 1999).
After the study by Watson and Moritz (1999) there has been an increased interest
to integrate the role of variation in the students’ analysis when they solve problems
about data sets comparison. In this study, we carry on to pose a question with the
same objective, proposing new problems to explore the students’ reasoning.We have
particularly chosen problems in a risk context to evidence the uncertainty that spread
usually uncovers. We then ask: How do students consider data spread in problems
involving comparing data sets in a risk context?

3.2 Background

Gal et al. (1989) studied the intuitions and strategies of elementary-school students
(3rd and 6th grades) when facing tasks of comparing data sets. The tasks were
presented in two contexts: outcomes of frog jumping contests and scores on a school
test. Several taskswere formulated per context and in each of them, two data setswere
presented in a graph similar to those in Fig. 3.1. The studentswere askedwhether both
groups performed well or whether one did it better. Characteristics such as number
of data, shape, center and spread of each couple of data sets were systematically
manipulated to observe their influence on the students’ reasoning. The responses
were divided into three categories: statistical methods, proto-statistical methods, and
other/task-specific methods. Statistical methods included responses in which the sets
were compared through data summaries for each set, particularly when arithmetic
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Fig. 3.1 Two ofGal et al.’s (1989) data sets comparison tasks. The contexts of ‘distances jumped by
frogs’ and ‘class test scores’ were used for problems 1 and 2. For each problem, students compared
groups A and B then decided if the groups did equally well or if one group did better. Taken from
Ciancetta (2007)

means were used. The students whose responses were classified as proto-statistical
ignored relevant characteristics of the data or did not summarize the information
for each set; for example, they only compared modes. Those responses in which
the students only added the data or provided qualitative arguments, as inferring that
the team with the smaller number of frogs was better because they try harder, were
classified as other/task-specific methods.

Watson and Moritz (1999) explored the structure of students’ thinking when they
solve data sets comparison tasks. They adapted the protocol and four tasks byGal et al.
(1989) but only in the score context. In addition, they used the Structure of Observed
Learning Outcomes (SOLO), a neoPiagetian model of cognitive functioning (Biggs
and Collis 1982, 1991), to describe the levels of students’ responses, according to
their structural complexity. The authors considered visual and numerical strategies
and differentiated between “groups of equal size” and “groups of unequal size” to
build a hierarchy of two cycles of UMR (Unistructural-Multistructural-Relational):

U1: A single feature of the graph was used in simple group comparisons.
M1: Multiple-step visual comparisons or numerical calculations were performed

in sequence on absolute values for simple group comparisons.
R1: All available information was integrated for a complete response for simple

group comparisons; appropriate conclusions were restricted to comparisons
with groups of equal size.

U2: A single visual comparison was used appropriately in comparing groups of
unequal sample size.

M2: Multiple-step visual comparisons or numerical calculations were performed
in sequence on a proportional basis to compare groups.
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R2: All available information, from both visual comparison and calculation of
means, was integrated to support a response in comparing groups of unequal
sample size. (Watson and Moritz 1999, p. 158)

The differentiation between problems for data sets with the same size and unequal
size is related to the use of means to compare. Still, students’ consideration of spread
was not involved in building the hierarchy. Three years later, Watson (2001) carried
out another study, exploring the reasoningof studentswhohadbeen interviewed in the
first research (Watson andMoritz 1999) three years before. In this longitudinal study,
besides formulating the research questions of the previous study, Watson posed the
following question: “What evidence is shown that variation displayed in the data sets
is explicitly considered in making decisions about which group did better?” (p. 343).
The students’ responses were clustered into six categories: (1) No acknowledge-
ment of variation. (2) Individual features—single columns [of data]. (3) Individual
features—multiple columns [of data]. (4) Global features—‘more’ [assumed to be
based on visual comparisons]. (5) Global features—multiple features. (6) Global
features—integrated, compared and contrasted. Watson (2002) deepened the same
study using a new method, exploring whether the students’ responses improve when
there is an intervention in which a cognitive conflict in the subjects is created. Each
student was shown a video of an interview with another student whose ideas were
different from those of the student watching the video, in an attempt to make the
student reflect and consider the possibility of changing his or her own conceptions.

Shaughnessy et al. (2004) conducted research to develop and study the conception
of variability in middle and high-school students. The students answered a survey,
and instructional interventions on sample distribution were carried out; finally, a
sub-group of students was interviewed. Particularly, in the second interview, the
researchers used the movie waiting time task shown in Fig. 3.2.

The responses to this task were coded in six categories: Specific Data Points, Con-
text, Centers, Variation, Distribution, and Informal Inferences. Such categories were
not mutually exclusive, so one response could be coded in two or more categories.
When a response was based on the comparison of isolated points of each distribu-
tion, it was coded in Specific Data Points. When it referred to the student’s personal
experiences, it was classified in Context. Those responses using the means or medi-
ans were coded in Centers while those including comparisons of variation relative
quantities (as considering ranges) were coded in Variation. If considerations on cen-
ter and variation were combined, the response was coded in Distribution. Finally, if
the response speculated on the probability of having certain experience in the wait-
ing times at each movie theater and the subject used language including terms as
‘predictable,’ ‘consistent,’ ‘reliable,’ ‘chances’ or ‘luck’, it was coded in Informal
Inferences. As a result, they found that most of the interviewed students considered
both center and variation in their responses. Two-thirds of the interviewees stated
that the two data sets were different from each other despite having the same mean
and median. About 70% of them chose the movie theater with the least variation
(Royal Theater). Nearly a third of the students included personal experiences in the
responses.
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Fig. 3.2 Movie wait time task (Shaughnessy et al. 2004)

Orta and Sánchez (2011) explored how the notions of mean, range and uncertainty
influenced the understanding of the statistical variability among middle-school stu-
dents. The problem with which they collected the information was an adaptation of
the Movie Wait Time Task by Shaughnessy et al. (2004). When student participants
in the study of Orta and Sánchez (2011) were asked which movie theaters they would
choose to watch a film at, and given that the three theaters were at the same distance
from home, most of the justifications were based on personal experiences, without
taking the data into account. The students’ responses included: “it is nearer home”,
“I like those cinemas and I don’t mind watching the trailers they show” and “that
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cinema is more famous”. Although the justifications based on personal experiences
can be reasonable, in this study they were not based on data.

3.3 Conceptual Framework

The statistics education community has distinguished three overlapping areas of
statistics to organize and analyze the objectives, activities and results of statistical
learning: statistical literacy, reasoning, and thinking (Garfield and Ben-Zvi 2008).
This study is located in the area of statistical reasoning. The purpose of the research
on statistical reasoning is to understand how people reason with statistical ideas in
order to propose features to create learning scenarios. When students try to justify
their responses, elements that they think are important to the situation are revealed;
in particular, the data they choose, operations made with these data and knowledge
and beliefs on which they are based, are important in reasoning.

3.3.1 Uncertainty and Decision Making

Statistics is a general method to solve problems in situations where the subject
deals with data, variation and uncertainty (Moore 1990). Particularly, Tal (2001)
proposes that statistical variation that cannot be explained is uncertainty. We ask:
Could considering variation as uncertainty in situations of data set comparison help
in decision making? Before answering, we should observe that the contexts from
which data arise promote the possibility of associating variation with uncertainty to
a greater or lesser degree. For instance, in the context of jumping frogs and scores
from Gal et al.’s research (1989), consider problem 1 of Fig. 3.1. It is not easy to
think about the variation within each data set as an indicator of the uncertainty. In
addition, choosing one or the other option carries no consequences to the person
making the decision. Contrastingly, in the movie waiting time task by Shaughnessy
et al. (2004), choosing themovie theaterwhosewaiting time data have lesser variation
means accepting a lesser uncertainty regarding the start time of the film. Even though
the choice, in this case, has consequences for the person making the decisions, the
students do not mind the uncertainty and can wait for some time at the movie theater
without being affected. They value other characteristicsmore: closeness of theMovie
Theater or comfort of the seats (Orta and Sánchez 2011). To promote the students’
perception of uncertainty and that their consideration will have consequences, it is
convenient to choose a context in which the variability of the data involved is more
directly related to uncertainty. It is also convenient that choosing one or the other
set will have significant consequences. This could be achieved by using situations
involving gaining or losing something valuable to the subject, such as health or
money.
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3.3.2 Tasks in Risk Context

At first glance, the notion of risk is related to an adverse event that may or may
not occur. Aven and Renn (2010) suggest risk is related to an expected value, a
distribution of probability as uncertainty or an event. According to Fischhoff and
Kadvany (2011), risk is present when there are unwanted potential outcomes that
may lead to losses or damages. To make problems involving data set comparison
have consequences the subject considers relevant, a risk context seems promising.
A paradigmatic task in risk context consists in making a decision about two games
where gains and losses are at stake. Consider the following problem:

The gains of realizations of n times the game A and m times the game B are: Game A:
x1, x2 . . . ; xn Game B: y1, y2 . . . ; ym . Which of the two games would you choose to play?

The solution is reached using a flow diagram: (1) Compare x̄ and ȳ, (2) if x̄ �� ȳ,
then choose the game with the greatest mean; (3) if x̄ � ȳ, then there are two
options: (3a) choose any game, or (3b) analyze the dispersion of data in each game
and choose according to risk preferences. Two concepts of the theory of decision
on risk (Kahneman and Tversky1984) characterize risk preferences. Let us say that
a preference is motivated by risk aversion when an option with data that have less
spread over another with data that have greater spread is preferred. The decision
is motivated by risk seeking when the option with data that have greater spread is
chosen. For example, in their study Kahneman and Tversky (1984) proposed the
participants to choose between 50% of probability of winning $1000 and a 50%
chance of not winning anything and the alternative of getting $450 with certainty.
Many subjects made a decision motivated by risk aversion since they prefer the
certain winning, even though the first alternative has a higher expected value.

3.4 Method

3.4.1 Participants

Theparticipantswere 87 students (aged14–16) from twodifferent ninth-grade classes
in a private school in Mexico City (last year of middle school). TheMexican middle-
school students (7th to 9th grade) study data analysis and graphical representations.
They deal with different statistical ideas such as arithmetic mean, range and mean
deviation. In addition, they make, read and interpret graphics like bar graphs or
histograms (SEP 2011). That is why we expected the students to make use of some
of those statistical ideas to explain their answers, and most importantly, to use them
in the context (risk). However, the actual responses of students did not meet our
expectations.
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3.4.2 Questionnaire

Two problems (which are presented below) were designed to explore the students’
reasoning. Both problems in this research were designed by the authors to study
the students’ ideas about variation in situations in which “risk or uncertainty” were
relevant. The authors considered different contributions of the research in the design.
We first used the movie waiting time problem (Shaughnessy et al. 2004) to structure
the problems in the questionnaire. When reading and analyzing the movie waiting
time problem, we observe it deals with data set comparison. In addition, it has
particular characteristics, such as, same number of cases, equal mean and median,
and different spreads and bimodalities in both distributions. Ciancetta (2007, p. 103)
considers that these qualities were included to promote the reasoning of variation
in comparisons. From the structure of this problem (same number of data, equal
mean and median, different spreads), we identified these as adequate situations to
contextualize the problems of this research.

In the design of the gambling problem, we considered the work by Kahneman and
Tversky (1984) inwhich the authors discuss that an analysis of decisionmaking com-
monly differentiates between risk and riskless choices. Their paradigmatic example
of decisions under risk is the acceptability of a game that leads to monetary results
with specific probabilities. In the configuration of this problem, we also considered
the idea by Bateman et al. (2007) regarding the introduction of a “small” loss as part
of the game. This makes the game seem more attractive and promotes the students’
reflection on the situation. Considering the problem of movie waiting time and the
gambling situations as reference, we structured Problem 1 of the questionnaire as
follows.

Problem 1. In a fair, the attendees are invited to participate in one of two games
but not in both. In order to know which game to play, John observes, takes note and
sorts the results of 10 people playing each game. The cash losses (−) or prizes (+)
obtained by the 20 people are shown in the following lists:

Game 1: 15, −21, −4, 50, −2, 11, 13, −25, 16, −4
Game 2: 120, −120, 60, −24, −21, 133, −81, 96, −132, 18

(a) If you could play only one of the two games, which one would you choose?
(b) Why?

To create the problem regarding medical treatments, we considered the situation
proposed in the research of Eraker and Sox (1981) on scenarios for palliative effects
of medication for severe chronic diseases. In this situation, the authors present the
choice between drugs that can extend life for several years. With this scenario and
the structure of the movie waiting time problem, we created Problem 2 of the ques-
tionnaire as shown below.

Problem 2. Consider you must advise a person who suffers from a severe, incurable
and deathly illness, whichmay be treatedwith a drug thatmay extend the patient’s life
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Treatment 1: 5.2, 5.6, 6.5, 6.5, 7.0, 7.0, 7.0, 7.8, 8.7, 9.1

Treatment 2: 6.8, 6.9, 6.9, 7.0, 7.0, 7.0, 7.1, 7.1, 7.2, 7.4

Treatment 3: 6.8, 6.8, 6.9, 7.0, 7.0, 7.1, 7.1, 7.1, 7.2, 7.4

a) Which treatment would you prefer (1, 2 or 3)?

b) Why?

4

3

2

1

0

6 75.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 9

4

3

2

1

0

6 75.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 9

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.1 9.2

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.1 9.2

4

3

2

1

0

6 7 85.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9 9.1 9.2

N
um

be
r 

of
 p

at
ie

nt
s

Treatment 2

Treatment 3

N
um

be
r 

of
 p

at
ie

nt
s

Time in years

N
um

be
r 

of
 p

at
ie

nt
s

Time in years

Treatment 1

Time in years

Fig. 3.3 Histograms of the three treatments

for several years. It is possible to choose between three different treatments. People
show different effects to the medication: while in some cases the drugs have the
desired results, in some others the effects may be more favorable or more adverse.
The following lists show the number of years ten patients in each treatment have
lived after being treated with one of the different options. Each number in the list
corresponds to the time in years a patient has survived with the respective treatment.
The graphs corresponding to the treatments are shown after (Fig. 3.3).

Table 3.1 shows the statistics of the Problems 1 and 2. Many of the characteristics
are the same in both problems.

The general expected solution for each problem is discussed above in the concep-
tual framework. The problems above were solved in 50 min, approximately.



60 J. A. O. Amaro and E. A. Sánchez

Table 3.1 Statistics of Problems 1 and 2

Statistic Problem 1 games Problem 2 treatments

Game 1 Game 2 Treatment 1 Treatment 2 Treatment 3

Mean 4.9 4.9 7.04 7.04 7.04

Std. dev. 21.43 96.83 1.23 0.17 0.18

Range 75 265 3.9 0.6 0.6

Sum 49 49 70.4 70.4 70.4

Min −25 −132 5.2 6.8 6.8

Max 50 133 9.1 7.4 7.4

Count 10 10 10 10 10

3.4.3 Analysis Procedures

To analyze the responses of students, the chosen group for each of them was first
observed; secondly, the responses were categorized in accordance with the strategies
of comparison deduced from their justification. For that purpose, we followed the
suggestions of Birks and Mills (2011) about identifying important words and groups
of words in data for categorizing them and propose levels of reasoning.

The responses were organized to show different levels of the students’ reason-
ing associated with variation. The first shows responses in which variability is not
perceived. In addition, few relevant strategies are included to choose one group or
another. In the second level, strategies can be considered relevant to choosing between
sets of data but ignoring the variability in the data. In the third level, responses show
perception of variability and a relevant strategy to choose between one set and the
other.

3.5 Results

The students’ responses were organized in three reasoning levels, considering the
type of justification or explanation of the decision or preference made.

Level 1 groups the responses with circular or idiosyncratic arguments. The first
are statements that consider there is a greater gain in the chosen game (Problem 1)
or that the treatment allows living longer (Problem 2), but without including data in
the argumentation; the second introduces beliefs or personal experiences.

Level 2 contains responses with justifications that include the explicit considera-
tions of some or all the data in each set. In Problem 1, all the responses at this level
obtain the totals and compare them. In contrast, most of the responses to Problem 2
compare isolated data from each set.

Level 3 is constituted by responses with argumentation combining and comparing
more than 1 datum from each set. In these responses, we perceive the differences
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Table 3.2 Responses to Problems 1 and 2 by reasoning level

Level 1 Level 2 Level 3 No response Total

Problem 1 64 (74%) 9 (10%) 13 (15%) 1 (1%) 87 (100%)

Problem 2 49 (56%) 25 (29%) 13 (15%) 87 (100%)

between the data sets in terms of the risk each game or treatment involves. Decision
making in these cases is influenced by risk aversion or seeking.

Table 3.2 shows a number of responses to the problems in this research that were
categorized in each level.

Below, we show examples of the three levels for each problem solved by the
students.

3.5.1 Problem 1: Levels of Reasoning

Level 1. Circular argumentation. In this level, students made a choice but did not
justify it based on any treatment of the data. At first glance, the data seemed to suggest
that there was more to win or lose (60 responses) in the games. Regardless, they did
not specify this and only provided circular arguments such as “because you winmore
than in 1” (Fig. 3.4). When looking at the data, the students were likely to focus only
on some of them and mentally compared them (attention bias). Some characteristics
in the responses allowed us to deduce that the students compared specific data. For
example: they compared one or two of the greatest data values in a set with one
or two from the other. Some focused on the highest losses in each set while others
paid attention only to the number of data values with positive (or negative) signs and
compared them with the corresponding number of the other set (4 responses).

While in the hierarchy by Watson there are levels that consider numerical and
visual strategies, this are surely motivated by the graphic presentation of the data set
and detected by the researchers thanks to the interviews. In the case of our study,
none of these conditions were presented: the presentation of the data did not include
graphs and we conducted no interviews. Visual strategies are those that arise from
graphical data observation; however, this research did not include them. However,
as stated before, most of the strategies in this level were based on observing, at first

Fig. 3.4 Example of Level 1 response to Problem 1 (“because you win more than in 1”)
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Fig. 3.5 Example of Level 2 response to Problem 1 (“you end up winning the same”)

glance, one or two elements in each set and compared each other. In most of the
cases, we were unable to determine which specific values students observed in each
set because their arguments were circular and there were no interviews afterwards to
clarify them. As for the hierarchy by Shaughnessy et al. (2004), Level 1 is similar to
the “No acknowledgement of variation” level and partially similar to the “Individual
features” level.

Level 2. Data consideration: Totals. In this reasoning level, students summed the
data in each set and compared the totals (nine responses). From this, students usually
argued that it was possible to choose any game because “you end up winning the
same” (Fig. 3.5). This strategy enclosed the origin of the statistical procedure of
combining observations. For the game problem we analyzed here, the totals are
adequate numbers to make the comparison. In addition, we considered all the data
and the results were not evident at first glance, but they demanded a certain treatment.
The fact that both sets had the same number of data did not allow for differentiating
among the students who would perceive the importance of the size of the data sets
(proportionality) from those who would not. In the responses placed in this level data
variability was ignored or not acknowledged, and risk was not detected.

This reasoning level would be included in Watson’s level M1 because it includes
numerical calculations to compare two setswith the same number of data. However, it
is not comparable to any level in the hierarchy proposed by Shaughnessy et al. (2004)
since mean and median are part of the information given in the data presentation of
the problem regarding movie waiting time. Therefore, students did not have to sum
data nor obtain the mean, although the reference to mean would appear in some
students’ considerations.

Level 3. Data combination: Risk. In this reasoning level, we included the
responses that provided characteristics to indicate that students perceived risk. In
general, the strategies reflected in the responses included in this level consist of
simultaneously focusing attention on the relationship between what can be won in
each game (maximums) and what can be lost (minimums). The consideration of
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Fig. 3.6 Example of a Level 3 response to Problem 1 (“because there is a bigger possibility of
winning more, although you also lose more money”)

Fig. 3.7 Example of Level 1 response to Problem 2 (“one can live for more years than with other
treatments”)

choosing game 2 “because there is a bigger possibility of winning more, although
you also lose more money” (Fig. 3.6), led the students to notice that the games were
not equivalent and risk in one or the other differentiates the games. The choice is not
entirely determined by the student’s analysis, but also by their risk preferences. For
example, a student chose game 1 as the most convenient and justified the choice by
stating “Because as game 2, [game 1] has losses, but in a lower number and you don’t
risk that much”. The student’s choice was influenced by risk aversion. Interestingly,
all the responses, with the exception of one, did not mention the equality of the totals
or means of the data sets. This did not affect the analysis that they were equal in
both sets. In the only response that considered both the totals and the spread, the
student chose any game “because you have the same chance of winning or losing;
in one you don’t win or lose much, in the other you win a lot or lose a lot”. In the
characteristics written, we perceive that the student summed and obtained 49 in both
data sets. Despite noticing that one game was riskier than the other, the student did
not prefer any.

3.5.2 Problem 2: Reasoning Levels

Level 1. Circular argumentation. In this level we included the responses in which
a treatment was chosen and the preference was only justified with expressions such
as “one lives longer” (32 responses were coded with this argument), or by stating the
choice “looking at the graph” (five responses) or providing idiosyncratic justifications
(12 responses). In any case, those who said “one can live for more years than with
other treatments” (Fig. 3.7) did not clarify why one would live longer with one
treatment or with the other. Some other responses did not specify which part of
the graph they considered relevant. In the responses coded as idiosyncratic, they
introduced personal beliefs that were not relevant to the problem.



64 J. A. O. Amaro and E. A. Sánchez

Fig. 3.8 Example of Level 2 response to Problem 2 (“because you ensure at least 7 years more of
life”)

In this problem of medical treatments, the graphical representation of the data
promoted the use of visual strategy among the students. However, they did not often
explain what they saw in the graph. This level is similar to the level U1 in Watson’s
hierarchy, with the difference that she obtained the data through interviews, so that
the students could reveal their strategy.

Level 2. Data consideration. In this level we classified the responses inwhich there
was argumentation to favor one treatment based on specific values of each set and
their comparison (23 responses). We also included the responses in which the data
from each set were summed, and the totals were compared (two responses). From
the 23 responses above, eight were based on the observation of the maximums and
the minimums. For example, a student chose treatment 1 “because there is a greater
chance of living for 9 years”. In 15 responses, the modal value was mentioned: a
student chose treatment 2 “because you ensure at least 7 yearsmore of life” (Fig. 3.8),
butwe did not knowhow themodal valuewas used tomake the decision.We supposed
the student combined it with the observation of one or two extremes without stating
so.

Level 3. Data combination: Risk. In this level, we grouped the responses based
on the consideration of two or more data values that allowed students to perceive
variability. In 11 responses, the choice was justified mentioning both the maximum
and the minimum. For example, a student chose treatment 2 “because I will probably
won’t live 9 years more, but I can ensure from 6.8 to 7.4 years.” Two responses
mentioned the mode and some extreme; these students chose treatment 3 because the
modewas higher than in the other two, but they also considered some extreme values.
As an example, a student chose treatment 3 “because in the graphs the minimum
is 6.8 years and the most frequent [period] is 7.1 while in treatment 1, 5.2 is the
minimum and 7 is the most frequent.” In several of these responses, the students
provided characteristics that allowed us to suppose that they perceived risk; for
example; when they stated “because I may not live 9 years more, but I still have from
6.8 to 7.4 for sure” (Fig. 3.9) and chose treatments 2 and 3, avoiding the risk of living
only 5.2 years, as with treatment 1. We can suppose that their choice was influenced
by risk aversion. On the other hand, the responses in which they chose treatment 1,
and that considered that they “can live up to 9 years although [one] could live only
for 5.2 years”, were influenced by risk seeking.
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Fig. 3.9 Example of Level 3 response to Problem 2 (“because I may not live 9 years more, but I
still have from 6.8 to 7.4 for sure”)

3.6 Discussion

It is convenient to make some observations that may be useful to answer the ques-
tion posed at the beginning of this work and clarify the purpose of this research.
Particularly, we will consider some characteristics of the problem and the solutions
provided by the students.

In relationwith the characteristics of the problem,we emphasize that spread can be
significantly interpreted to use it in decision making in risk contexts. In the context
of winning in games, we easily perceive that the game with the highest spread is
riskier because there is more to win, but there is also more to lose. In contrast, in
the context of score problems by Gal et al. (1989) and Watson and Moritz (1999),
it is unclear how the spread of data can allow making a decision on the group that
performs better.

In data set comparison problems, when the sets to compare have the same number
of data and same mean (and median) but have different spreads, it is unclear how
spread is used to make a decision. For instance, Gal’s problem (1989) presents the
data in Fig. 3.10; these data represent the score that students in Groups A and B
obtained in an exam. The question posed is: Which group performed better?

In Group A, a student scored 7, better than any other in Group B; however,
another student obtained a score of 3, which is worse than the score of any other
student in Group B. There are three students in Group A whose score is the mean
while there are five students in Group B in the same condition. Do these observations
have implications that allow deciding which group is better? They apparently do not
clearly help to decide if one group performs better than the other when no other
criteria are added. If the consideration on variation has no implications, then why
should it be done?

Fig. 3.10 One of the problems of Gal et al. (1989) adapted
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We have observed that, when the data context is winning a game or life expectancy
after a medical treatment, several students place themselves in position where they
are benefitted or affected by one decision or the other. They realize that the game or
treatment corresponding to the set with the highest spread offers them the possibility
of winning more or living longer, but also of losing more or living for a shorter time.
On the other hand, the game or treatment with the least spread data set offers them
the least uncertainty. As in Gal’s problem, there is no regulatory outcome to indicate
which the best decision is because such response depends on the risk preference of
the person making the decision. This is an uncertainty pattern frequently present in
daily life: Do we prefer a stable job or business, even if we earn a little or one in
which we earn more but carries greater risk? The concepts of risk aversion or seeking
help us to understand how we decide when facing those options.

The reasoning levels that have been defined are characterized by the presence or
absence of data in the justification as well as their combination. Given that what we
analyze are the students’ written responses not their thoughts, the levels reflect their
ability to write the idea that leads them to make a decision. As mentioned before,
the hierarchy we propose, is different from the ones by Watson and Moritz (1999)
and Shaughnessy et al. (2004) in that they conducted interviews, hence the nature of
their data is different.

In Level 1, the students’ argumentation does not include the data they used tomake
the decision. Most of the students “justify” their decisions using circular arguments,
that is, arguments that only claim what they should prove. This shows that many of
them are not conscious that a key point of argumentation is to evidence of the way
in which data were used to make a decision. They surely saw something in the data
that affected their response, but they did not write that in their response.

In Level 2, the choice and the use of data to reach a conclusion are shown in the
argument. However, either the selection is not the best to make a decision or the use
of data is not the best. In this level we grouped the responses with arguments that do
not consider variation. A number of them sum the data in each set and compare them.
This strategy is partial because it allows the students to perceive the equality of the
means because the sets have the same number of elements, but the students fail to
consider the spread. Others only consider isolated data, as comparing themaximums,
the minimums or the ranges. If they considered more than one of these data, they did
not link them properly; therefore, they did not perceive spread.

Level 3 shows the choice and use of data in the argument to reach a conclusion.
The data are also combined to provide a notion of spread and risk. The students
did not use a measure of spread but coordinated more than one data value, mainly
maximums andminimums, to perceive that the games in situation 1 and the treatments
in situation 2 were different due to the risk they posed. In this way, the measure of
spread they implicitly used was the range and with it they perceived the risk.

In the design of the present study we sought to reveal the students’ reasoning
regarding spread in data set comparison, and we did not try to reveal their reasoning
about and with the notion of center, particularly the arithmetic mean. Regardless,
the total absence of a strategy to calculate the arithmetic mean of each data set
and the comparison between them is remarkable. The closest thing to this strategy is
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calculating the total of each set and comparing them. Clearly, students do not think of
these totals as representatives of each set but as the amount ofmoney or time involved
in them. Although technically, the only missing element is dividing between the total
data to have a comparison based on the means, the conceptual distance between the
idea behind the consideration of the totals and the idea of representative of a data set
is quite large.

3.7 Conclusion, Limitations and Implications

Based on the results obtained in this research, the risk context provides an alternative
with which students engage and in which the words or numbers used by them to solve
the problems are numbers and words in context, a central idea in statistics. When
solving the problems raised, the students associated risk and variability; the latter
was described through the range of the data sets. As part of the analysis, the students
used the sum of all the data available; however, they did not manage to complete
the algorithm for the arithmetic mean. There is a void in the students’ analyses;
they do not use center and dispersion of a data set for making a decision. Research
deriving from this should pose a learning trajectory that guides students to integrate
the notions of center and dispersion. This would enable students to improve their
analysis of data sets or distributions.

The presence of students’ reasoning considering risk shows the convenience of
looking for situations in this context to suggest problems related to dispersion.
Together with other scenarios already used in teaching to promote learning and
consideration of dispersion, the concept of risk might be another source of problem
situations for statistics teaching at mid-school level. Accordingly, a deeper research
might find other risk situations to explore students’ reasoning and promote their
development in the statistics class. Additionally, the reasoning levels students can
reach when facing those problems and situations could be characterized with greater
precision. Additionally, the reasoning levels students can reach when facing those
problems and situations could be characterized with greater precision. The use of
technology is a necessary complement for a more thorough research that allows for
easier calculations and emphasis on conceptual discussions. Furthermore, technol-
ogy provides options for simulations, which could correspond to distributions related
to the game or medical treatment contexts.

The risk models that truly work in society are very complex, even though
gains/losses situations are common in business. Decisions and consequences hardly
derive only from such situations despite the fact that the calculation of probabilities,
centers, and dispersion are frequently part of the analysis. This is a limitation in
developing the option of promoting risk situations in statistics teaching at middle
school. Still, we consider its possibilities have not been sufficiently explored for
statistics teaching at other educational levels.
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Chapter 4
Students’ Aggregate Reasoning
with Covariation

Keren Aridor and Dani Ben-Zvi

Abstract Helping students interpret and evaluate the relations between two vari-
ables is challenging. This chapter examines how students’ aggregate reasoning
with covariation (ARwC) emerged while they modeled a real phenomenon and
drew informal statistical inferences in an inquiry-based learning environment using
TinkerPlotsTM.We focus in this illustrative case study on the emergent ARwC of two
fifth-graders (aged 11) involved in statistical data analysis and modelling activities
and in growing samples investigations. We elucidate four aspects of the students’
articulations of ARwC as they explored the relations between two variables in a
small real sample and constructed and improved a model of the predicted relations
in the population. We finally discuss implications and limitations of the results. This
article contributes to the study of young students’ aggregate reasoning and the role
of models in developing such reasoning.

Keywords Aggregate reasoning · Exploratory data analysis · Growing samples
Informal statistical inference · Reasoning with covariation · Statistical modelling

4.1 Introduction

The purpose of this chapter is to provide an initial scheme for understanding young
students’ emergent articulations of aggregate reasoning with covariation (ARwC) in
the context of informal statistical inference fromgrowingdata samples.Handling data
froman aggregate point of view is a core aspect of statistical reasoning (Hancock et al.
1992). Predicting properties of the aggregate is the essential aspect of data analysis
and statistical inference. To achieve this goal, one should develop a notion of data as
an organizing structure that enables seeing the data as awhole (Bakker andHoffmann
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2005). The development of such aggregate view of data is a key challenge in statistics
education (Bakker et al. 2004). Previous research about students’ reasoning with
covariation specified aspects of ARwC that are essential to judging and interpreting
relations between two variables, such as viewing data as a whole (Moritz 2004).
Nevertheless, young students tend to see data as individual cases (local view) rather
than a global entity (Ben-Zvi and Arcavi 2001), and often focus on a single variable
andnot on the bivariate relationship (Zieffler andGarfield 2009). Statisticalmodelling
contexts can help address these challenges by supporting students’ search for patterns
in data and accounting for variability in these patterns (Pfannkuch and Wild 2004).

To examine how young students’ ARwC can emerge while they make informal
statistical inferences and model an authentic phenomenon using hands-on tools and
TinkerPlotsTM (Konold andMiller 2011), we first elaborate on the notions of informal
statistical inference, covariational and aggregate reasoning. We then highlight rea-
soning with modelling and the “growing samples” pedagogy. In theMethod section,
we describe the Connections project and the fifth grade-learning trajectory to put the
tasks of the project in context. Next, we present the main results of this research by
specifying the four aspects that structure the fifth grade students’ ARwC. We con-
clude with theoretical and pedagogical implications and limitations of the research.

4.2 Literature Review

4.2.1 Informal Statistical Inference (ISI)

Statistical inference moves beyond the data in hand to draw conclusions about
some wider universe, taking into account uncertainty in these conclusions and the
omnipresence of variability (Moore 2004). Informal Statistical Inference (ISI) is a
theoretical and pedagogical approach for developing statistical reasoning, connect-
ing between key statistical ideas and informal aspects of learning statistical inference
(Garfield and Ben-Zvi 2008). ISI is based on generalizing beyond the given data,
expressing uncertainty with a probabilistic language, and using data as evidence for
these generalizations (Makar and Rubin 2009, 2017). The reasoning process lead-
ing to making ISIs is termed Informal Inferential Reasoning (IIR) . IIR refers to
the cognitive activities involved in informally formulating generalizations (e.g., con-
clusions, predictions) about “some wider universe” from random samples, using
various statistical tools, while considering and articulating evidence and uncertainty
(Makar et al. 2011). IIR includes reasoning with several key statistical ideas such as:
sample size, sampling variability, controlling for bias, uncertainty and properties of
data aggregates (Rubin et al. 2006).
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4.2.2 Reasoning with Covariation

This chapter is focused on statistical reasoning with covariation. Statistical covari-
ation relates to the correspondence of variation of two variables that vary along
numerical scales (Moritz 2004). Bivariate relations are characterized by the variabil-
ity of each of the variables; the pattern of a relation, the shape of the relationship
in terms of linearity, clusters and outliers; and the existence, direction and strength
of a trend (Watkins et al. 2004). Reasoning with covariation is defined as the cog-
nitive activities involved in coordinating, explaining and generalizing two varying
quantities while attending to the ways in which they change in relation to each other
(Carlson et al. 2002).

Reasoning with covariation plays an important role in scientific reasoning and
is applied depending on usage, goals and discipline (Schauble 1996). For exam-
ple, covariation can serve as an alternative to the concept of function. A covariation
approach in this context entails being able to move between values of one variable
and coordinating this shift with movement between corresponding values of another
variable. Such an approach plays an important role in students’ understanding, rep-
resenting and interpreting of the rate of change, and its properties in graphs (Carlson
et al. 2002). The approach can also lead to reasoning about the algebraic representa-
tion of a function (Confrey and Smith 1994).

Moritz (2004) identified four levels of verbal and numerical graph interpreta-
tions while analysing bivariate associations: Nonstatistical, single aspect, inadequate
covariation and appropriate covariation. Nonstatistical responses relate to the context
or to a few data points, such as outliers or extreme values, without addressing covari-
ation. Single aspects responses refer to a single data point or to one of the variables
(usually the dependent), with no interpolating. Inadequate Covariation responses
address both variables but either relate to correspondence by comparing two or more
points without generalizing to the whole data or to the population; or, variables are
described without relating to the correspondence or by mentioning it incorrectly.
Appropriate covariation responses refer to both variables and their correspondence
correctly.

Moritz’s hierarchy as well as other studies reflect students’ challenges while rea-
soning with covariation. Students tend to focus on isolated data points rather than
on the global data set and trend; focus on a single variable rather than the bivariate
data; expect a perfect correspondence between variables, without exception in data
(a deterministic approach); consider a relation between variables only if it is posi-
tive (the unidirectional misconception) ; reject negative covariations when they are
contradictory to their prior beliefs; have a hard time distinguishing between arbitrary
and structural covariation (Batanero et al. 1997; Ben-Zvi and Arcavi 2001; Moritz
2004).

Several studies suggest that a meaningful context for reasoning with aggregate
aspects of distribution, such as shape and variability, can support developing reason-
ing with covariation (e.g., Cobb et al. 2003; Konold 2002; Moritz 2004; Zieffler and
Garfield 2009).
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4.2.3 Aggregate Reasoning

Developing statistical reasoning involves flexibly shifting between a local view of
data and a global view of data according to the need and the purpose of the investiga-
tion (Ben-Zvi and Arcavi 2001; Konold et al. 2015). Aggregate reasoning is a global
view of data that attends to aggregate features of data sets and their propensities
(Ben-Zvi and Arcavi 2001; Shaughnessy 2007). When viewing data as an aggregate,
a data set is considered as an entity with emergent properties, which are different
from the properties of the individual cases themselves (Friel 2007). Two important
aggregate properties are the distinction between signal and noise and the recognition
and diagnosis of various types and sources of variability (Rubin et al. 2006).

Aggregate reasoning is discussed in the literature mostly in the context of data
and distribution. The notion of distribution as an organizing conceptual structure is
conceived by aggregate aspects of distribution, such as the general shape, how spread
out the cases are, and where the cases tend to be concentrated within the distribution
(Bakker and Gravemeijer 2004; Konold et al. 2015). Reasoning with bivariate data is
mostly discussedwithout using the terminology of aggregate reasoning. For example,
Ben-Zvi and Arcavi (2001) describe the way students’ previous knowledge and
different types of local observations supported and hindered the development of their
global view of data. In the beginning, they reasoned with the investigated association
as an algebraic pattern, with relation to local data cases and adjacent difference.
However, this focus on pointwise observation eventually supported the development
of the students’ reasoning with the notion of trend while relating to the data as a
whole.

Konold (2002) recognizes the gap between people’s ability to make reasonable
judgments about relations in the real world and their struggle to make judgments
about covariation from representations such as scatterplots and two-by-two contin-
gency tables. Konold suggests that this struggle stems from a difficulty to decode the
ways in which these relationships were displayed (Cobb et al. 2003; Konold 2002).
One goal of the current study is to extend the understanding of aggregate reasoning
to the context of statistical modelling and covariation, which we term ARwC. The
analysis of ARwC will consider various aspects of students’ aggregate reasoning
including reasoning with variability.

4.2.4 Reasoning with Variability

Variability is the aptness or tendency of something to vary or change (Reading and
Shaughnessy 2004). Variability is omnipresent in data, samples and distributions
(Moore 2004). While reasoning with data, students should search for signals in the
variability, as well as for potential sources of such variability (Shaughnessy 2007). A
signal can be considered as the patternswhich have not been discounted as ephemeral.
Such patterns can become evident only in the aggregate. Noise can be considered as
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the unexplained variability around these patterns, if identified (Wild and Pfannkuch
1999).

Reasoningwith variability has both informal and formal aspects, fromunderstand-
ing that data vary, to understanding and interpreting formal measures of variability.
Students seem to reason intuitively with informal aspects of variability, such as the
representativeness of variability by spread and the idea that data vary. However, stu-
dents tend to focus primarily on outliers and have difficulties measuring variability
in a way that depicts thinking of variability as representing spread around the center
(Garfield et al. 2007).

A conceptual understanding of variability includes: (a) developing intuitive ideas
about variability (e.g., repeatedmeasurement on the same characteristic are variable);
(b) the ability to describe and represent variability (e.g., the role of different represen-
tation of a data set in revealing different aspects of variability, the representativeness
of spread measurements); (c) using variability to make comparisons; (d) recognizing
variability in special types of distributions (e.g., the role of the variability of both
variables’ distributions to a bivariate data distribution) ; (e) identifying patterns of
variability in fitting models; (f) using variability to predict random samples or out-
comes; and (g) considering variability as part of statistical thinking (Garfield and
Ben-Zvi 2005). Modelling a phenomenon entails the search for differences and sim-
ilarities in the population, which is an initial step toward reasoning with variability
(Lehrer and Schauble 2012).

4.2.5 Statistical Models and Modelling

Freudenthal (1991) viewedmathematics as a human activity.As such, students should
learn mathematics by “mathematising”: they should find their own levels of math-
ematics and explore the paths leading there with as much guidance as they need.
The process of “mathematising” lasts as long as reality is changing and extending
under various influences, including the influence of mathematics, which is absorbed
by this changing reality. One component of “mathematising” is modelling. As such,
modelling is defined as simplifying or grasping the essentials of a static or dynamic
situation within a rich and dynamic context (Freudenthal 1991). Modelling can be
perceived as interrelating processes in which the role of the model is changing as
thinking progresses. At the first process, a model emerges as a “model of” informal
reasoning and develops into a “model for” more formal reasoning. At the second
process, a new view of a concept emerges along the transition from “model of” to
“model for”. Such view can be perceived as formal in relation to the initial disposi-
tion toward this concept. These two processes are accompanied by a third one—the
shaping of a model as a series of signs that specifies the previous reasoning process
(Gravemeijer 1999).

Models andmodelling are essential components of statistical reasoning and think-
ing (Wild and Pfannkuch 1999). The practice of statistics can be considered as a form
ofmodelling, as the development ofmodels of data, variability and chance are paving
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the way for a statistical investigation (Lehrer and English 2017). The modelling pro-
cess entails an evaluation and improvement of models to include new theoretical
ideas or data based findings (Dvir and Ben-Zvi 2018; Lesh et al. 2002). A statistical
model is an analogy that simplifies a real phenomenon, describes some of the con-
nections and relations among its components, and attends to uncertainty (Wild and
Pfannkuch 1999). Based on the recognition that aggregate reasoning requires sum-
marizing and representing data in multiple ways depending on the nature of the data,
various pedagogical approaches have been developed.With this in mind, a modelling
pedagogical approach can support the emergence of aggregate views of data (Lehrer
and Schauble 2004; Pfannkuch and Wild 2004). In this chapter, we focus on stu-
dents’ emergent ARwC in relation to statistical models that were developed by them
to describe a real phenomenon and predict outcomes for an unknown population.
These models were constructed as part of the Connections learning environment,
which was built on the growing samples and the purpose and utility ideas.

4.2.6 Task Design

The growing samples educational approach is an instructional idea mentioned by
Konold and Pollatsek (2002), worked out by Bakker (2004) and elaborated by others
(e.g., Ben-Zvi et al. 2012). In this approach, students are introduced to increasing
sample sizes that are taken from the same population. For each sample, they pose
a research question, organize and interpret the data, and draw ISIs. Later, they face
“what if” questions that encourage them to make conjectures about same sized sam-
ples, or about a larger sample. In this approach, students are required to search for and
reason with aggregate features of distributions and to identify signals out of noise.
They need to compare their conjectures about the larger samples with insights from
the data, to account for the limitations of their inferences and to confront uncertainty
with regard to their inferences. The growing samples approach can be a useful ped-
agogical tool to support coherent reasoning with key statistical ideas (Bakker 2004;
Ben-Zvi et al. 2012).

Another task design approach used in the Connections project was purpose and
utility. Although everyday contexts can support learning statistics or mathematics,
the strength of meaningful learning environments is in the design for purpose and
utility (Ben-Zvi et al. 2018). The term purpose refers to students’ perceptions. A
purposeful task is a task that has a meaningful outcome (a product or a solution)
for students. Such a purpose might be different from the teacher’s intentions. The
utility of ideas means that the learning process involves construction of meaning for
the ways in which these ideas are useful. Purpose and utility are strongly connected.
Purposeful tasks, encompass opportunities for students to learn to use an idea in
ways that allow them to reason with its utility, by applying it in that purposeful
context (Ainley et al. 2006). With this literature review in mind, we now formulate
the research question of this study.
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4.3 Research Question

In this case study, we focus on two fifth grade students (age 11) who were involved
in modelling activities of bivariate data and drawing ISIs in growing samples inves-
tigations. In this context, we ask: What can be the characteristics of the students’
emergent ARwC?

4.4 Method

4.4.1 The Setting

To address this question we draw on data from the 2015 Connections Project in a fifth
grade Israeli classroom. In this project, a group of researchers and teachers designed
and studied an inquiry-based learning environment to develop statistical reasoning.
The focus of the 2015 Project was aggregate reasoning using modelling activities in
the context of making ISIs. The design of the learning trajectory was guided by three
main approaches: growing samples, statistical modelling, and purpose and utility.
Students investigated samples of increasing size that were drawn from the same
population. The goal of each investigation was to model an authentic phenomenon
within the target population—all fifth graders in Israel. To do that, the students
reasoned with the meaning and utility of statistical concepts, such as data, center,
variability and distributions, using hands-on tools (pen and paper) or TinkerPlotsTM

(Konold andMiller 2011). TinkerPlotsTM is an innovative data analysis, visualization
and modelling tool designed to support students’ (grades four to nine) reasoning
with data.1 TinkerPlotsTM provides a dynamic graph construction tool that allows
students to invent their own elementary graphs and evaluate them (Biehler et al.
2013). Models were constructed using the TinkerPlotsTM Sampler, which can be
used to model probabilistic processes and to generate random data from a model.

The students participated in ten activities (28 lessons, 45 min each) organized in
two main cycles of data investigations of samples (see Table 4.1): (1) their whole
class and grade (2–3 attributes, samples of 25 and 73 cases); and (2) their grade
(18 attributes, samples of 10, 24 and 62 cases). For each sample, students posed a
research question, organized and interpreted the data, and drew ISIs. Theymade con-
jectures about a larger sample to confront uncertainty. Theymodeled their conjecture
about the investigated phenomenon in the target population, first as hands-on and
after a while as TinkerPlotsTM representations. Handouts included questions, such
as, “would your inference apply also to a larger group of students such as the whole
class?” Each lesson of the first nine activities included a whole class introductory dis-
cussion of the investigated topic, data investigation in small groups, and awhole class
synthesis discussion of students’ findings. In the tenth activity students summarized

1www.tinkerplots.com

http://www.tinkerplots.com
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their investigations to present them in a student-parents event and write a final report
about their findings. To build a collaborative culture of inquiry in the classroom,
we encouraged the students to share ideas, products and actions, reflect about the
learning processes and share their insights. The intervention began with a statistics
pre-test and endedwith an identical post-test that focused on reasoningwith data, dis-
tribution, covariation, and informal inference. This learning trajectory preceded and
significantly expanded the instruction according to the national fifth grade statistics
curriculum, which focuses only on mean and median in a procedural manner.

4.4.2 The Participants

We fully documented the learning processes of 12 pairs of students. In this study, we
focus on the development of ARwC of a pair of boys—Orr and Guy. Orr is an aca-
demically successful studentwho has high achievements inmathematics and science.
He has a learning disability, which limits somewhat his ability to express himself
verbally or in writing. Guy’s academic achievements are usually low. The students
were selected due to high motivation, creativity and interest in the investigation.

In the first six activities of the learning trajectory (Table 4.1), Orr and Guy inves-
tigated univariate distributions and associations between categorical and numerical
attributes. During whole class meetings, they discussed statistical ideas, such as
center and representativeness, variability and outliers, comparing groups and covari-
ation, and ways to represent and articulate these ideas. During the seventh to the
ninth activities, the data investigations dealt with the relations between the amount
of push-ups one can make in a row (“Push-ups”), and the 900-m running time in
seconds (“Running”).

4.4.3 Data Collection and Analysis

The students’ investigations were fully videotaped using CamtasiaTM to capture
simultaneously their computer screen, discussions and actions. Data were observed,
transcribed and annotated for further analysis of the students’ ARwC. Data that
were significant to this article were translated from Hebrew to English. Differences
of meanings between Hebrew and English connotations of words were discussed
extensively, to make sure the original intention of the speaker is clear.

The analysis process focused on the students’ ARwC, using interpretative micro-
genetic method (Siegler 2006). We examined the entire cohort of data and narrowed
it down to reasoning aspects that assemble a narrative of the students’ emerging
ARwC. Each reasoning aspect is composed of one or more statements of the par-
ticipants. This process involved many rounds of data analysis sessions and meeting
with expert and novice statistics education peers, in which interpretations were sug-
gested, discussed, refined or refuted. This process involved searching forward and
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Table 4.1 The Connections 2015 actual learning trajectory

Activity synopsis Statistical ideas and
concepts

No. of lessons

The first cycle: several contexts (favorite movie, usage of technology,
favorite snack etc.)

Activity 1: Introduction—modelling and data
analysis of the class (n�25 cases)

4

Ask a question, plan, collect data from the
whole class, model a conjecture about the
target population, analyze and organize
data, present investigations (hands-on)

The investigative cycle, Uncovering children’s
initial concepts of reasoning with data, modelling
and IIR

Activity 2: Data analysis of the class (n = 25
cases)

2

Investigate a data sample from activity 1
(25 cases 2 variables, TinkerPlotsTM) ,
present investigations

How to ask a statistical question, The investigative
cycle, initial reasoning with data, modelling and
IIR

Activity 3: The favorite snack
activity—modelling and data analysis of the
class (n�25 cases)

2

Investigate data sample (25 cases, 3
variables), model a conjecture about the
target population (TinkerPlotsTM),
present investigations

Initial reasoning with data, distribution, comparing
groups, modelling and IIR

Activity 4: The favorite snack
activity—modelling and data analysis of the
grade (n�73 cases)

2

Investigate the same question (activity 3)
on a larger sample (73 cases, 3 variables,
TinkerPlotsTM), model a conjecture about
the target population (hands-on), present
investigations

Initial reasoning with data, distribution, comparing
groups, modelling and IIR

The second cycle: the amazing race activities

Activity 5: Data collecting of the entire fifth
grade

2

Introduction to the activity context, the
electronic questionnaire, measurements
errors, data collection

How to answer a statistical question, Awareness to
the importance of precise data

Activity 6: Modelling and data analysis (n�10
cases)

3

Model a conjecture about the target
population (hands-on), investigate data
sample (10 cases, 18 variables,
TinkerPlotsTM) , refine model, present
investigations

Correlations, Noise in the data as a result of
measurement errors, The meaning of the median,
reasoning with modelling

(continued)
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Table 4.1 (continued)

Activity synopsis Statistical ideas and
concepts

No. of lessons

Activity 7: Modelling and data analysis of the
class (n�24 cases)

2

Investigate the same question (activity 6)
on a larger sample (24 cases, 18 variables,
TinkerPlotsTM), refine the previous
model (hands-on), present investigations

Growing samples, reasoning with data,
distribution, comparing groups, modelling and IIR

Activity 8: Modelling and data analysis of the
grade (n�62 cases)

2

Investigate the same question (activity 7)
on a larger sample (62 cases, 18 variables,
TinkerPlotsTM) , refine the previous
model (hands-on)

Growing samples, reasoning with data,
distribution, comparing groups, modelling and IIR

Activity 9: Modelling of the target population 4

Model the conjecture about the target
population (TinkerPlotsTM Sampler)

Reasoning with data, modelling and IIR

Activity 10: Summarizing 5

Prepare a presentation of the investigation
and the target population final model,
present investigations and models in a
student-parents event, write a final report
with parents

Reasoning with data, modelling and IIR

Total number of 45-min lessons 28

backward over the entire data to find acceptable evidences for the researchers’ local
interpretations and hypotheses (e.g., Ben-Zvi and Arcavi 2001). To strive for “trust-
worthiness” (Creswell 2002), inferences about students’ reasoning were called only
after all data sources (interviews, TinkerPlotsTM files and students’ notes) provided
sufficient evidence, and interpretations from different theoretical perspectives and
by a number of researchers were examined (Triangulation, Schoenfeld 2007).

4.5 Results

In this, we present and explain Orr and Guy’s emergent ARwC while they made
informal inferences and modeled the population. We identify and characterize four
reasoning aspects of the students’ ARwC in their learning progression. The reason-
ing aspects varied according to: (a) the analysis unit the students used to examine
covariation (for example, a single case, a small group of cases, etc.); (b) the way the
students reasoned with signal and noise; and (c) accounted for variability within and
between attributes. These aspects represent the key stages of the students’ reasoning
and helped us to follow the complex process of students’ flow of ideas, hesitations,
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Fig. 4.1 A relationship
between paper planes’
wingspan (cm) and their
flight distance (m)

mistakes and inventions. The generalizability of this suggested categorization needs
to be further studied. Before the description of the four reasoning aspects, we pro-
vide the results of the pre-test analysis, and at the end we provide the results of the
post-test analysis (the pre- and the post-tests were identical).

4.5.1 Initial Aggregate Reasoning with Covariation (Pre-test)

We analyzed relevant questions from Orr and Guy’s pre-tests to reveal the students’
initial perceptions of data and variability. In the first question, the students were
asked to describe the height distribution of all fifth grade students in Israel, Orr and
Guy wrote a single value (145 cm). Later at the same question they were asked to
describe the distribution of students’ heights in a typical fifth grade class (about 30
students). Orr suggested a range (135–160 cm) while Guy suggested specific height
values attached to names of students in his school’s fifth grade. In the third question,
a scatter plot of a relation between a paper plane’s wingspan and its flight distance
was presented (Fig. 4.1). The students were asked what the graph described and what
can they learn about the relation between paper plane’s wingspan and flight distance.
Then, they were asked to find where a paper plane of 14 cm wingspan would arrive.
Guy’s answers were related to only one attribute of the relation. He did not suggest
any additional data case. Orr described the relation using the language: “the more…
the more”. He speculated that a 14 cm wingspan plane would land at the same place
as a plane with the exact same wingspan that already appeared in the graph.

Thus, we learn that the students’ reasoning with data and variability at the begin-
ning was not aggregative. They held a local view of distributions and although Orr
articulated aspects of data aggregation in covariation (“the more… the more”), it
seems that his perception of variability was partially interpolating a value deter-
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Fig. 4.2 Noticing an initial trend line in the class sample (n�24)

ministically. Thus, the students’ responses in the pre-test can be considered “single
aspects” responses (Moritz 2004).

4.5.2 Aspect 1: A Pointwise-Based Covariation Model

In Activity 7, Orr and Guy extended their previous investigation about the running
distribution to study the relations between running and push-ups (a sample of 24).
They struggled with formulating an aggregate research question in the first task
that reflected their contextual knowledge as well as the essence of the relation. Orr
suggested to ask whether push-ups influenced the 900-m run results, while Guy
rejected the idea of dependency and suggested asking: “Do other sports relate to
running?” The students then drew a scatterplot in TinkerPlotsTM and discussed the
relations in the data (Fig. 4.2).

132 Guy We saw that 93 [push-ups, Case 22] also made a good running [time].
133 Int. That a person who did many push-ups…
134 Guy Many push-ups, which is 93, so the [running] result is also good. …
143 Int. Do you see, that the higher the push-ups is …
144 Orr It gives less… The [running] result is lower.
148 Guy Here [Case 5], it [push-ups] went down a little, and the [running] result is

lower; also here [Case 9] the [running] result is lower, and it [push-ups]
went down further more [Case 14] …

149 Orr [Continues] and the [running] result is lower. So let’s draw a line. [They
eventually did not draw this trend line.]

152 Guy And here [Case 1], It [push-ups] is also quite low, and the lowest [worst
running] result.



4 Students’ Aggregate Reasoning with Covariation 83

Fig. 4.3 a The first trend line and the outliers. b The second and “reasonable” trend line

Although the students responded to the researcher’s efforts to encourage them
to articulate an aggregative expression about the bivariate data [143], they looked
mostly locally at the data, starting from an extreme case [Case 22]. They discussed
variability by attending to the attributes’ values of each of the five cases (Fig. 4.2)
[e.g., 134] and to the value change in relation to the previous case [“it went down
a little”, 148]. To provide evidence for covariation, they identified a collection of
four points [Cases 22, 5, 9 and 14]. These points made a pattern—a pointwise-based
covariation line, which they planned to draw but eventually did not [149]. They were
possibly inspired by a previous class discussion about trends. Attention to an outlier
[152], which did not fit their line [Case 1, worst running result], led them to relate
to the noise in the data. We consider their ARwC reasoning at this juncture as a
pointwise-based covariation model.

4.5.3 Aspect 2: An Area-Based Covariation Model

In Activity 8, following the growing samples method, the students studied a larger
sample of the entire fifth grade (47 cases out of 62 cases). They generated a scatter
plot, added the means, medians and a horizontal reference line for the median of the
push-ups (Fig. 4.3a). Guy drew a descending trend line using the TinkerPlotsTM pen
and commented that there were cases not represented by this line [Cases 1 and 56
in Fig. 4.3a]. He drew a new “reasonable” [89] trend line in the middle of the data
cloud, mostly without passing through cases, but rather between them, and added a
vertical reference line of the median running time, which separated the graph into
four quadrants (Fig. 4.3b).

The students explained their findings while describing the relation in each of the
quadrants.

122 Guy The more you approach the height here [at the upper-left quadrant in
Fig. 4.3b]… in the push-ups, themore you progress here, besidesmaybe
these ones [Cases 44 and 49]…When you are in this area [the upper-left
quadrant], it means that he did a lot [a good result] in the running … If
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you are here [Case 22], it means that you do a lot of push-ups and also
a good running result.

123 Orr But if you are here [the lower-right quadrant], it means that you ran …
124 Guy [interrupting] It means that it is quite little push-ups
125 Orr And the result [of the running] is slow.

Orr noticed then that there is another area type in this graph that was created by the
intersection of the twomedian reference lines. Guy drew a circle around it (Fig. 4.4a)
and explained that this area is “the center of all these [cases]. The [trend] line that
connects between all these [cases] is about the center of the entire [fifth] grade. These
are the average [students] of the entire grade” [130]. Later on, the students expanded
their view of the covariation and refined theirmodelwithout any further prompting by
the researcher. They speculated about hypothetical data: “If there was one [kid] here
[upper-right quadrant], hewould not be part of this [attributes relations], since he does
many push-ups and a low [running] result” [Guy, 219]. The students summarized
their informal inference by saying that “the faster a person runs, the more push-ups
he does” [Orr, 134]. When they compared between their class (n�24) and their
grade (n�62) samples, they used their new model (Fig. 4.4a) to construct a new
representation for their class data (Fig. 4.4b) and were surprised by the similarity
between the two samples (Fig. 4.4, b). Although their trend line did not pass through
the intersection of median lines, the implementation of their model led the students
to discover that the medians’ locations are related to the trend line. They concluded
that the medians “show you where the line passes” [Orr, 147].

The students thus reasoned at this juncture with, what we term, an area-based
covariation model. The combination of the trend line, the four quadrants and the area
around the medians’ intersection constructed an area-based model for the main fea-
tures of covariation. This model defined the presence of covariation as a phenomenon
in which data cases are located on either upper-left or lower-right quadrants, spread
around the signal—the trend line, and sometimes vary a lot (e.g., Cases 44 and 49 in
Fig. 4.3b). Outliers were considered as data that appeared on the edges of quadrants.
They reasoned with three aspects of the trend line: (a) the location of the trend line;
(b) the trend line representativeness of the covariation; and (c) the trend line features
(such as, its relation to center measurements). We view the students’ cautious atten-

Fig. 4.4 a The relation between push-ups and running an area-based covariation model (n�62).
b The relation between push-ups and running colored by gender—the class data sample (n�24)
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Fig. 4.5 Orr and Guy’s conjecture about the target population

tion to these aspects as an attempt to summarize covariation in a way that attended
to a large amount of cases and as part of their struggle to view bivariate data aggre-
gately. They reasoned with variability between and within attributes, in relation to
a prototype case of a certain area [122]. Using their area-based covariation model,
they talked about covariation in a rather advanced language: “the more… the more”
[122].

4.5.4 Aspect 3: A Cluster-Based Covariation Model

The next task in Activity 8 was to draw a conjecture about the population of all fifth
graders in Israel (“the target population”) on a piece of paper. The students followed
the researcher’s advice to first describe the push-ups distribution and drew a normal-
shaped distribution. This time, they chose not to duplicate the data representation
from the TinkerPlotsTM real data graph, as they did previously. Rather, they spent
time reasoning with aspects of the distribution, considering the data at hand and their
beliefs. Later on, they drew the covariation between the attributes and explained
their conjectured graph (Fig. 4.5): “[The graph] will be about the same as this one
(Fig. 4.4a). Therewill bemany in themiddle [themedians intersection]. Therewill be
a many here [the upper-left quadrant] and here [the lower-right quadrant]. About the
same amount here and here [upper-left and lower-right quadrants], and here [in the
center] also a lot, more than the two of them [upper-left and lower-right quadrants]”
[Guy, 323].

The students expressed their conjecture about the target population using, what
we term, a cluster-based model of covariation (Fig. 4.5). They related to the whole
data in a way that expressed covariation between the attributes, by presenting the
bivariate data in three clusters with common properties of size and density. They
accounted for the variability in the data by noticing the signal and the noise. The
signal was the pattern of the correlation, its trend and shape, in terms of the three
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Fig. 4.6 A model of the running–push-ups relations in the population

clusters. They related to outliers and cases at the edges of the quadrants as noise.
However, by clustering, they did not relate to the continuity of the aggregate.

4.5.5 Aspect 4: Conditional Distribution Model
of Covariation

In Activity 9, the students constructed a model of their target population conjectures
(Fig. 4.6) using the TinkerPlotsTM Sampler. They first reasoned with the shape and
range of the running distribution and defined it as a symmetric “tower with small
steps.” They then modeled the dependency between the attributes by separating
the running range to two (100–200 and 200–400 s) and explained their choice: “A
champion runner will run [900 meters] in a minute and a half, which is about a
hundred [seconds]. … There is no chance that someone [in our sample] will run in a
minute and a half” [Orr 26]. They added: “If you ran fast, then you also made a lot
of push-ups. If you ran slowly–you made [less push-ups]” [Guy, 37]. The students
thus constructed a model of the relations between the attributes while considering
variability within and between them, and both data and context.

We term these actions and reasoning as a conditional distribution view of covari-
ation, as they described the dependent attribute as two distinct skewed distributions
conditioned on the values of the independent attribute. The students’ analysis unit
in this aspect was the whole data. Signal was described in relation to the analysis
unit and both attributes, while considering continuity in the data. Noise was attended
while reasoning with the range, shape, center and tendency of each distribution.
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4.5.6 Articulations of Aggregate Reasoning with Covariation
(Post-test)

We present briefly the results of the post-test, which was identical to the pre-test, to
evaluate progress in the students’ ARwC. In the first question, both students consid-
ered the center, shape and spread of the investigated phenomenon while drawing a
height distribution of all fifth grade students in Israel. In the third question, Orr wrote
that the graph (Fig. 4.6) described a relationship between planes’ wingspans and their
flight distance in meters. Both students used an aggregative language to describe this
relation as: “the more… the more”. When they speculated about a possible flight
distance value for a certain plane’s wingspan value, Orr interpolated the data case
considering variability. Guy considered the center as well, as he explained: “most of
the planes are there. Therefore, I thought that [the suggested area] was the average”.
According to the post-test analysis, the students reasoned with the distribution as an
aggregate. Moreover, it seems that there was a progress in their ARwC. When they
reasoned with the relation, they described it aggregately and considered aggregate
aspects of the relation, such as variability, center and spread.

To sum up, we identified four reasoning aspects that describe the progression
of the students’ ARwC. In the beginning they described covariation through single
cases only. Next, they reasoned separately about areas in the graph, while consid-
ering carefully a representative signal within the noise. Their conjecture about the
population extended the latter aspect by considering the relations between clusters
in the data. Finally, the students related to the whole data, considering continuity and
variability in it as well.

4.6 Discussion

This research aims to study the characteristics of the emergent ARwC of two fifth
grade students (age11)whowere involved inmodelling activities of bivariate data and
drawing ISIs in growing samples investigations. We address this goal by carefully
analyzing Orr and Guy’s emergent processes of ARwC throughout their learning
progression. In the following sections,wefirst describe the students’ emergentARwC
and the theoretical implications of our analysis. We then elaborate on the role of the
tool and the design approach followed by the research limitations and conclusions.
Our main theoretical and pedagogical lessons from this study are:

1. A suggested four-aspect framework of students’ emergent ARwC in a learn-
ing environment that involves modelling activities and drawing ISIs in growing
samples pedagogy.

2. Reasoning with variability and reasoning with modelling play a role in the devel-
opment of ARwC.



88 K. Aridor and D. Ben-Zvi

3. The growing samples method, the generation and refinement of models, and
the design for purpose and utility are important elements that can support the
emergence of ARwC.

4.6.1 Aggregate Reasoning with Covariation

In this case study, we identified four different aspects of students’ emergent ARwC.
These aspects grew from a “single aspects responses” (Moritz 2004), which we iden-
tified in the pre-test stage. The four reasoning aspects depict the students’ progress
from perceiving covariation as a pointwise-based covariation model, an area-based
covariation model, a cluster-based covariation model, to conditional distribution
model. These reasoning aspects differ by the ways the students attempted to: (1)
define an analysis unit to examine covariation; (2) reason with signal and noise;
(3) account for variability; and (4) communicate about the correlations between the
attributes (discourse about covariation).

The students initially perceived covariation as a pointwise-based covariation
model (Fig. 4.2). The analysis unit was a single case, starting from extreme val-
ues as the most noticeable signal, and following the descending slope of a pointwise
line in selecting additional key cases. Cases that only partly met the defined relation
were considered as noise. They reasoned with both variability between and within
attributes in relation to single cases. Their discourse related to a single case and
the way the attributes behaved with regard to this case. When the students analyzed
the bigger sample, a new reasoning aspect had emerged: an area-based covaria-
tion model (e.g., Fig. 4.4a). The analysis units were four quadrants generated by the
median reference lines and the area around their intersection. The trend line was con-
sidered to be the signal. Cases that were at the edges of the quadrants were considered
as noise and outliers. The students reasoned with variability between attributes and
discussed covariation in relation to the way the attributes varied within a prototype
case of a certain area, considering all cases in the analysis units. When the students
modeled their conjecture about the target population, they extended their previous
reasoning aspect to a cluster-based covariation model. In this aspect, the students
described covariation in three main clusters that have common properties (size and
density): (1) the center—the “average students” in the population; (2) the upper-left
quadrant—the fast runners who do lots of push-ups; and (3) the lower-right quadran-
t—the slow runners, who hardly do any push-ups. The analysis unit in this perception
was the whole data. The signal was the pattern of the correlation, its shape in terms
of clusters and the existence of a trend. Cases at the edge of the quadrants were
considered as noise, and variability was discussed in relation to the analysis unit, by
attending to both attributes. However, they did not consider continuity in the data.
The final reasoning aspect we identified in the students’ ARwC was a conditional
distribution model. In this view, the students described the data as a model of two
attributes, where they described one attribute by its conditional distribution given
the other. The analysis unit in this perception was the data as a whole. Signal was
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Fig. 4.7 The co-emergence process of ARwC, reasoning with modelling and variability

described in relation to the analysis unit and both attributes, while considering conti-
nuity in the data. Noise was attended to while reasoning with the range, shape, center
and tendency of each distribution.

It seems, that the emergent process of ARwC involves a progression in the way
students view data and covariation. They shift from a local pointwise view of data to
an aggregate reasoningwith data. Along this journey, they negotiate their understand-
ings of data, variability, center and models to attend to the whole data. This process
entails the construction of new understandings of the data at hand, the context of the
investigated phenomenon and statistical concepts.

4.6.2 Theoretical Implications

The analysis of this case study distinguished two main processes that seemed to play
a central role in the development of ARwC: Reasoning with variability and reasoning
with modelling (Fig. 4.7).

4.6.2.1 Reasoning with Variability

We identified in this case study a progression in the students’ reasoning in line with
the literature (e.g., Garfield and Ben-Zvi 2008; Garfield et al. 2007; Shaughnessy
2007). The students’ initial reasoning with variability was first expressed at the
pre-test. They hardly attended to variability in data (e.g., represented distribution as
single value and did not relate tomeasurement variability). Later, they related tomore
informal aspects of variability, such as: identifying that one variable varies more than
the other (aspect 2), reasoning with variability with regard to the trend line (aspect 2),
reasoning with variability of both variables to reason with the relationship between



90 K. Aridor and D. Ben-Zvi

the two variables (aspects 3 and 4), reasoning with different representations to view
different aspects of variability (aspect 3) and considering measures of variability and
center as related while reasoning with data (aspects 3 and 4, and post-test).

We view this process as a key component in the emergence of the students’ ARwC.
The pointwise-based covariation model (the first reasoning aspect) emerged from
concentrating on extreme values and an examination of covariation locally. Such a
view toward data restrained the students from reasoning aggregately with data. How-
ever, it drew their attention to outliers that did not exactly fit their pointwise-based
covariation model. This result is in line with Ben-Zvi and Arcavi (2001) concerning
pointwise local view of data and the role of an outlier in developing an aggregate
view. On the second reasoning aspect, the students’ attention to the variability in data
led them to refine the covariation model, i.e., the trend line they drew. We noticed
their growing sensitivity to the need to attend to a larger amount of data cases while
reasoning with covariation. Their attempt to confront this need was the area-based
covariation model. In this model, variability raised the need to justify covariation
and characterize each area in relating to all data cases within the certain area. In the
cluster-based covariation model (aspect 3), the need to represent covariation led the
students to confront variability as they compared clusters in their model and char-
acterized the relations between them. This process extended the analysis unit to the
whole data. At the final reasoning aspect, the need to consider the variability of one
attributes as depending on the other led the students to extend their ARwC. They
considered the whole data, as well as possible interpolations and extrapolations of
data, as they constructed the conditional distribution model. They also reasoned with
the relation between the center of the distribution and its spread and shape.

4.6.2.2 Reasoning with Modelling

We see the developing process of modelling as another important component in the
emergence of ARwC. We assume that each step of a statistical investigation entails
a process of emergence, development, refinement or verification of a model (Wild
and Pfannkuch 1999). In this case study, some of these models were developed to
represent and think or make predictions about the investigated phenomenon (the
pointwise line, aspect 1; the trend line, aspect 2; representations of the students’ con-
jectures, aspects 3 and 4). These modelling processes involved attempts to simplify
the investigated phenomenon and reason aggregately with data (e.g., Pfannkuch and
Wild 2004).

The students’ modelling process also entailed the development of the students’
epistemological model of the ARwC concept, which we term an ARwC model. The
emergence of the ARwC model is in line with Ainley et al. (2000) epistemological
analysis of trend that includes the sub-elements: correlation, linearity, interpolation
and extrapolation. In the context of aggregate reasoning, the students’ search for
meaning of trend included a search for the relationship between two variables and
its representation as a trend. We see this search in the students’ request to refine the
trend to represent more data (aspect 2), and in their discovery of the relationship
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between distributions’ centers and the position of the trend (aspect 2). The area-
based covariation model extended the ARwC model to a structure of reference and
trend lines and a circle. The students used this structure to express and later to
examine and evaluate the existence of covariation in data samples of different sizes.
We assume that the development of this model facilitated and even promoted the
students’ perceptions of ARwC to rely on larger amount of data cases as they reason
with data. We see the change of the utility of the ARwC model as a transition from
a “model of ARwC” to “model for ARwC” (Gravemeijer 1999), as it involved the
emergence of a new view of the ARwC concept.

To sum up, this case study implies that reasoning with variability and reasoning
with modelling can play an important role in the emergence of ARwC. We see this
role as supporting the emergence of ARwC, as well as the growing of understandings
of the concepts of variability and modelling (Fig. 4.7). We suggest that this process
entails reasoning with the data in hand as well as reasoning with the meaning of
statistical ideas (e.g., “model for ARwC”). Further research is needed to study the
nature of the roles these aspects play in the emergence of students’ emergence of
ARwC.

4.6.3 Pedagogical Implications

It seems that the students’ learning progression was supported by the design of
the learning environment (Ben-Zvi et al. 2018): the growing samples method, the
generation and refinement of models and the design for purpose and utility. One of
the advantages of the growing samples method is the students’ focus on predictions,
while viewing these predictions as temporary (see Ben-Zvi et al. 2012). In this case
study, the growing samples method elicited the need to summarize data in a way
that allows the students to examine their inferences within different size data sets.
This requirement brought the need to attend to the signal within the noise. When the
students reasoned with different sized samples, they needed to adapt their inferences
to a larger data sample. This requirement encouraged them to attend to a larger
group of data (e.g., the refinement of the trend line, aspect 2) and later to consider
the whole data and possible population (aspects 3 and 4). We assume that the need
to model the conjecture about the target population provided a reasonable utility to
the data analysis. It also encouraged the students to express their ARwC considering
signal, noise and uncertainty (aspect 3) and later dependency and continuity in data
in relation to the whole data (aspect 4).

The dynamic TinkerPlotsTM affordance to shift easily between representations
helped the students to extend their view and role of the trend line as an aggregate
representative of data as a whole (aspects 2 and 4). The TinkerPlotsTM Sampler
allowed generating and evaluating different representations, in the search for the one
that best expressed the main properties of the investigated concept.
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4.6.4 Limitations

This description is far frombeing a complete description of students’ complex emerg-
ing processes of ARwC. The two students chosen for this research were considered
by their teacher to be both able. This choice was made to enable the collection
and analysis of detailed data about their ARwC during the intervention. Even after
validating the data interpretation, the idiosyncrasy of the phenomena observed in
this research remain questioned. More analysis of students’ ARwC should be done
within the Connections 2015 learning environment, as well as, further research in
other learning environments, to further study students’ ARwC.

4.7 Conclusions

This case study presented a new possible learning progression and reasoning aspects
of students’ ARwC. Students may initially hold local views of covariation. However,
when students face covariation in data in such a multi-faceted learning environment,
they start considering aspects of reasoning with covariation and develop a sense of
the aggregate. Such a reasoning process is involved with handling and confronting
variability in data and creating different types of models to analyze data and give
meanings to the concept of variability (Fig. 4.7). It seems that this new line of research
can advance our ongoing efforts to understand and improve the learning of statistics.
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Chapter 5
Design for Reasoning with Uncertainty

Hana Manor Braham and Dani Ben-Zvi

Abstract The uncertainty involved in drawing conclusions based on a single sample
is at the heart of informal statistical inference.Givenonly the sample evidence, there is
always uncertainty regarding the true state of the situation. An “IntegratedModelling
Approach” (IMA) was developed and implemented to help students understand the
relationship between sample and population in an authentic context. This chapter
focuses on the design of one activity in the IMA learning trajectory that aspires to
assist students to reason with the uncertainty involved in drawing conclusions from a
single sample to a population. It describes design principles and insights arising from
the implementation of the activity with two students (age 12, grade 6). Implications
for research and practice are also discussed.

Keywords Informal statistical inference ·Model and modeling
Sample and population · Statistics education · Uncertainty

5.1 Introduction

Data are everywhere and drawing inferences from data is part of daily life. Every
student must therefore have a sense of the potential in drawing reliable statistical
inferences from samples, appreciate the purpose of such activity, and deal with the
complexities of an uncertain world. However, studies indicate that students can hold
contradictory views regarding the relationships between samples and their population
(Pfannkuch 2008) and respond in a deterministic way while reasoning about data
(Ben-Zvi et al. 2012).

This study is part of theConnections Project (2005–2020)—a longitudinal design-
based research (Cobb et al. 2003) that studies children’s statistical reasoning in an
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inquiry-based and technology-enhanced statistics learning environment for grades
4–9 (Ben-Zvi et al. 2007). The purpose of this chapter is to present the Integrated
Modelling Approach (IMA)—a pedagogic design approach that intends to help stu-
dents understand the relationships between samples and populations. More specifi-
cally, it describes the design principles of a sixth-grade activity in the IMA learning
trajectory and how they contributed to the progression of students’ reasoning with
uncertainty.

This chapter begins by describing the instructional design principles of the Con-
nections statistical reasoning learning environment that forms the basis of the IMA
learning trajectory. We then address the challenge of facilitating young students’
reasoning with uncertainty while they are involved in making informal statistical
inferences (ISI) . We describe how the IMA shaped the design of the experimental
learning trajectory, provide a detailed description of one activity and illustrate its
impact by describing the progression in reasoning with uncertainty of a pair of sixth
grade students. This example shows how the students invented methods to face the
uncertainty involved in making informal inferences from a sample to a population.
Finally, we discuss the challenges in designing activities that foster students’ abili-
ties to envision a process of repeated samples (Shaughnessy 2007; Thompson et al.
2007).

We argue that even relatively young students are able to make sense of complex
ideas that form the basis of ISIs, such as, uncertainty and the relationship between data
and chance. Furthermore, fostering students’ exploration of two types of uncertain-
ties (contextual and statistical uncertainty) and the connections between them may
facilitate students’ understanding of the relationship between a process of repeated
samples and a single sample in the inference process.

5.2 Scientific Background

We start this section by describing the design principles of our approach followed
by the core statistical ideas of this study—uncertainty in informal statistical infer-
ence. Based on these foundations we present the Integrated Modelling Approach for
supporting the reasoning with sample-population relationships.

5.2.1 Design Principles

Current theories of learning suggest that under certain conditions students who
are engaged in carefully designed learning environments may become motivated
to construct knowledge from the learning process (Ben-Zvi et al. 2018; Greeno and
Engeström 2014). Statistics educators and researchers have recommended the imple-
mentation and use of certain statistical learning environments to support the devel-
opment of students’ statistical reasoning. Garfield and Ben-Zvi (2009) pointed out
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several principles of an effective statistical reasoning learning environment (SRLE)
to develop students’ statistical reasoning. For our study, we adopted four of those
principles: Focus on key statistical ideas, use real and motivating data, use inquiry-
based activities to develop students’ statistical reasoning, and integrate the use of
appropriate technological tools.

Focusing on key statistical ideas (such as, distribution, center, variability, uncer-
tainty, and sampling) can stimulate students to encounter them in different contexts
and create various representations that illustrate their interrelationships (Garfield
and Ben-Zvi 2008). Making connections between existing context knowledge and
the results of data analysis can help students develop understanding of key statis-
tical ideas (Wild and Pfannkuch 1999). Using real and motivating data (Edelson
and Reiser 2006) through exploratory data analysis (EDA) activities (Pfannkuch and
Wild 2004) can help students formulate research questions and conjectures about
their explored phenomenon, examine evidence from data in relation to their contex-
tual conjectures, and become critical thinkers in making inferences. Collecting real
and authentic data can make the investigation more relevant for students (Herrington
and Oliver 2000). Using dynamic visual displays as analytical tools with appropriate
technological tools (Garfield et al. 2000) can involve students in the organization,
description, interpretation, representation, analysis and creation of inferences of data
situations (Ben-Zvi and Arcavi 2001; Ben-Zvi 2006).

5.2.2 Uncertainty in Informal Statistical Inference

We first discuss the nature of reasoning with uncertainty in the context of making
informal statistical inferences and then consider the challenge of facilitating students’
reasoning with uncertainty.

5.2.2.1 Reasoning with Uncertainty

“Statistical inference moves beyond the data in hand to draw conclusions about some
wider universe, taking into account that variation is everywhere and that conclusions
are uncertain” (Moore 2007, p. xxviii). Given only sample evidence, the statistician
is always unsure of any assertion he makes about the true state of the situation. The
theory of statistical inference provides ways to assess this uncertainty and calculate
the probability of error.

Students, even at a relatively young age, should have a sense of the power and
purpose in drawing reliable statistical inferences from samples. Given that statistical
inference is challenging for most students (Garfield and Ben-Zvi 2008), Informal
Statistical Inference (ISI) and Informal Inferential Reasoning (IIR) became a recent
focus of research (Pratt and Ainley 2008; Makar et al. 2011). ISI is a data-based
generalization that includes consideration of uncertainty and does not involve for-
mal procedures (Makar and Rubin 2009, 2018). IIR is the reasoning process that
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leads to the formulation of ISIs that includes “the cognitive activities involved in
informally drawing conclusions or making predictions about ‘some wider universe’
from patterns, representations, statistical measures, and statistical models of random
samples, while attending to the strength and limitations of the sampling and the
drawn inferences” (Ben-Zvi et al. 2007, p. 2).

Uncertainty is at the heart of formal and informal statistical inference. To under-
stand the uncertainty involved in taking a sample, one needs to envision a process of
repeated sampling and its relation to the individual sample (Arnold et al. 2018; Sal-
danha and McAllister 2014). However, research suggests that students tend to focus
on individual samples and their statistical summaries instead of the distribution of
sample statistics (Saldanha and Thompson 2002).

5.2.2.2 Facilitating Students’ Reasoning with Uncertainty

Given the importance of IIR, a significant question is how to facilitate young stu-
dents’ reasoning with uncertainty during sampling and making ISIs. The literature
contains examples of two types of settings that have been frequently used to study
IIR: (1) scientific inquiry learning environments in which students create surveys and
are engaged in real world data inquiries to learn about a wider phenomenon (e.g.,
Ben-Zvi 2006; Lehrer and Romberg 1996; Makar et al. 2011; Makar and Rubin
2009; Pfannkuch 2006); (2) probability learning environments in which students are
engaged in manipulating chance devices such as spinners to learn how probability is
used by statisticians in problem solving (e.g., Pratt 2000).

The first setting has considerable potential for students to improve their use of
data as evidence to draw conclusions. When students study topics close to their
world in an authentic and relevant activity, they can gain important insights into
how statistical tools can be used to argue, investigate, and communicate foundational
statistical ideas. These settings can also sensitize students to the uncertainty involved
in drawing conclusions from samples and the limitations of what can be inferred
about the population. However, these settings may lack probabilistic considerations,
which contribute to understanding the uncertainty involved in making inferences
from samples to populations.

The second setting can encourage and support reasoning with uncertainty. When
students manipulate chance devices they can easily build probability models of the
expected distribution and observe simulation data generated by the model. They can
then compare simulation data with empirical data to draw conclusions. This com-
parison strategy introduces students to the logic of statistical inference and the role
of chance variation. Probability settings, however, may lack aspects of an authentic
data exploration and exclude the relevance of the situation.

We suggest that integrating these two settings in making ISIs is important to
further support students’ reasoning with uncertainty during sampling. Therefore,
we developed an Integrated Modelling Approach (IMA) aimed to help students
understand the relationships between sample and population. Before presenting the
IMA, we first present our conceptual framework for reasoning with sampling.
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5.3 An Integrated Modelling Approach for Supporting
Sample Population Relationships

5.3.1 Suggested Conceptual Framework for Reasoning
with Sampling

We developed an initial conceptual framework (Fig. 5.1) that represents reasoning
with sampling during ISIs. According to this framework, reasoning with sampling
is an integration of two types of reasoning: (1) reasoning within samples to infer to
a population; (2) reasoning between repeated samples.

The first type of reasoning, reasoning within sample, is the reasoning involved
when exploring real sample data. This includes, for example, looking for signal and
noise in data, as well as searching for patterns, trends, and relationships between
attributes to learn about real world phenomenon in the population. The second type
of reasoning, reasoning between samples, is the reasoning involved while drawing
repeated collections of samples from the population or from a model of the popula-
tion. This includes, for example, exploration of sampling variability and examination
of the role of sample size on sampling variability. According to this framework, rea-
soning with sampling creates connections and integration between these two types
of reasoning, for example, the relationship between the sampling variability and the
likelihood of a single sample statistic.

Our study design was motivated by the hypothesis that integrating between the
two types of reasoning with sampling may stimulate students to face both contextual
and statistical uncertainty. Contextual uncertainty is the situation in which people
are unsure about their context knowledge. The contextual uncertainty stems from a
conflict between context knowledge and the sample data at hand. Such a conflict may

Fig. 5.1 A framework of reasoning with sampling
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affect confidence about context knowledge and the ability to infer from a sample at
hand.When students infer from a sample to a population their contextual uncertainty
may be expressed by probabilistic language (Makar and Rubin 2009) using phrases
like: “might be”, “it seems” or “sort of” or by suggesting a subjective confidence level.
The subjective confidence level is how certain one feels about inferences in a numeric
level (e.g., a number from 1 to 10 or a percent from 0 to 100), which is not calculated
but based on subjective estimation. Statistical uncertainty is a situation in which
people are unsure about sampling issues such as the behavior of random samples.
The statistical uncertainty can be examined and even quantified. For example, the
behavior of random samples can be examined by observing sampling variability,
and confidence level can be quantified by calculating the probability of getting a
statistic as extreme as or more extreme than a specific result, given a specified null
hypothesis.

5.3.2 The Integrated Modelling Approach (IMA)

Based on these ideas, an Integrated Modelling Approach (IMA) was developed
by us to guide the design and analysis of a learning trajectory aimed at supporting
students’ IIR. It is comprised of data and model worlds to help students learn about
the relationship between sample and population. The data world is designed to foster
reasoningwithin sample, and themodelworld is designed to foster reasoning between
samples (Fig. 5.1).

In the data world, students collect a real sample by a random sampling process
to study a particular phenomenon in the population. In this world, students choose
a research theme, pose questions, select attributes, collect and analyze data, make
informal inferences about a population, and express their level of confidence in the
data. However, they may not account for probabilistic considerations, such as the
chance variability that stems from the random sampling process.

In the model world, students build a model (a probability distribution) for an
explored (hypothetical) population and generate random samples from this model.
They study the model and the random process that produces the outcome from this
model. The details vary from sample to sample due to randomness, but the variability
is controlled. Given a certain distribution of the population, the likelihood of certain
results can be estimated.

In the IMA learning trajectory, students iteratively create connections between
the two worlds by working on the same problem context in both worlds and by using
TinkerPlots (Konold and Miller 2011). TinkerPlots is dynamic interactive statistics
software developed to support young students’ statistical reasoning through investi-
gation of data and statistical concepts. The dynamic nature of this software encour-
ages learners to explore data in different repeated representations while testing var-
ious hypotheses. TinkerPlots includes a “Sampler” , that allows learners to design
and run probability simulations to explore relationships between data and chance, by
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means of one technological tool (Konold and Kazak 2008). For a detailed description
of the IMA approach see Manor Braham and Ben-Zvi (2015).

5.4 Method

5.4.1 The Research Question

This chapter focuses on the design of one activity (The Hidden Model of Social
Networks—HMSN) in the IMA learning trajectory that serves as a scaffold for
bringing the two worlds closer to the students and fosters students’ reasoning with
uncertainty. The focus is on the question: How can reasoning with uncertainty be
promoted in a way that is meaningful for young students while they are making
ISIs? More specifically we ask about the role the HMSN Activity played in the
development of reasoning with uncertainty in students.

5.4.2 Methodology

To address this question, we carried out an illustrative case study of two sixth grade
students. We explored their reasoning with uncertainty while making ISIs under
the design principles of the activity. Data collection included student responses,
gestures (captured using Camtasia), and artifacts (e.g., data representations drawn
by them) , as well as researcher’s observations. All students’ verbalizations were
carefully transcribed. Interpretive micro-analysis (e.g., Meira 1998), a microgenetic
method (Chinn and Sherin 2014), was used to analyze the data. It is a systematic,
qualitative, and detailed analysis of the transcripts, which takes into account verbal,
gestural, and symbolic actions within the situations in which they occurred. The
validation of the data analysis was performed by a small group of statistics edu-
cation researchers (including the co-authors). The researchers discussed, presented,
advanced, or rejected hypotheses, interpretations, and inferences about the reasoning
and articulations of the students. The goal of such an analysis was to explore artic-
ulations of uncertainty by the students. Initial interpretations grounded in data were
reviewed by the researchers and triangulated by a group of expert and novice peers.
During these triangulation meetings, hypotheses that were posed by the researchers
were advanced or rejected, until a consensus was reached. In order to achieve the
necessary “trustworthiness” (Lincoln and Guba 1985), triangulation was achieved
only after multiple sources of data validated a specific result (Schoenfeld 2007).



104 H. M. Braham and D. Ben-Zvi

5.4.3 The Participants

This study involved a pair of boys (grade 6, aged 12), Shon and Yam, in a private
school in northern Israel. The students were selected due to their superior communi-
cation skills that provide a window into their statistical reasoning. They participated
in a Connections unit in fifth grade when they collected and investigated data about
their peers using TinkerPlots. Following the growing samples heuristic (Ben-Zvi
et al. 2012), they were gradually introduced to samples of increasing size to support
their reasoning about ISI and sampling.

5.5 The Hidden Model of Social Networks (Hmsn)

To put the HMSN activity in context, we provide a general description of the entire
learning trajectory as well as the rationale and place of the HMSN activity in the
learning trajectory.

5.5.1 The Entire IMA Learning Trajectory

The learning trajectory1 encompassed eight activities that initially introduced the two
worlds separately. In the data world, the students planned a statistical investigation
where they chose a research theme, posed research and survey questions, formulated
a conjecture, and decided about the sampling method and sample size (Activity 1).
Shon and Yam decided to study the use of technological tools among fourth to ninth
grade students in their school. Both Shon and Yam played a lot of computer games,
and their research choice arose from their desire to convince the school headmas-
ter to authorize playing computer games at school. Shon and Yam suggested that
there were some types of computer games, which they called “wise games,” that can
develop thinking and therefore may potentially have a positive influence on students.
They decided to explore the relationship between two attributes: whether a student
is attentive and whether a favorite type of computer game is “wise.” However, they
suggested a biased sampling method of taking two students from each class in grades
4–9 by asking the teachers to choose one attentive child and one non-attentive child.
Therefore, we added an activity (Activity 2) to explore the meaning of biased sam-
pling versus random sampling. We also used this activity to expose students to the
idea of sampling distribution. The students refined their sampling method, reformu-
lated their conjectures, and implemented a survey in their school (Activity 3). They
explored their real data using TinkerPlots (Activity 4). In the model world, they used
the Sampler in TinkerPlots to build a hypothetical model for the population distribu-

1The actual IMA learning trajectory can be viewed at http://connections.edtech.haifa.ac.il/Research/
theimalt.

http://connections.edtech.haifa.ac.il/Research/theimalt
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tion based on their conjecture. They drew samples from thismodel, compared them to
themodel and their real sample data, and explored sampling distributions (Activity 5).
To encourage them to examine the connections between the worlds, they were asked
“what if” questions on hypothetical real data results while exploring generated ran-
dom samples.

Since students found it difficult to connect between generated random samples
and the real sample, they were given a sixth activity (HMSN Activity 6, which
is the focus of the current study). They were asked to study a hidden TinkerPlots
model, built by other students, and explore random samples drawn from this model.
They then returned to their own investigation and once again explored different
sample sizes drawn from their model to compare between them and decide about the
minimal sample size needed to draw conclusions about the population. According
to their chosen sample size, the students collected more data (Activity 7). Finally,
they simultaneously explored data and models in the two worlds by examining the
real larger sample data in relation to their conclusions in the model world. They used
their estimation of the likelihood to get a specific result given a sample size and a
certain distribution of the population, in their conclusions about the population from
the real larger sample data (Activity 8).

5.5.2 Rationale of the HMSN Activity

The shift from the data world (Activity 4) to the model world (Activity 5) was
challenging for the students. The motivation for the students to move to the model
world was that in the model world they would be able to explore two issues: (a)
the relationship between random sample and population; (b) the minimal sample
size that provides for reliable inferences about the population of interest. While the
students explored random model-generated samples they became confused between
model-generated samples and real samples. It was challenging for the students to
understand what they can gain from exploring the random model-generated samples
and how it can help them in investigating real samples. Therefore, we designed a
scaffolding activity, the HMSN Activity, to provide a practical purpose for students
to study the behavior of many model-generated samples and connect between the
repeated sampling and the inferences that are based on a single sample.

5.5.3 The HMSN Activity

A hidden Sampler is a TinkerPlots software option that locks the Sampler to keep
students from changing any of its settings and to prevent them from revealing the
contents of hidden population devices. In the Hidden Model of Social Networks
(HMSN) Activity, students are asked to use the Sampler in TinkerPlots to draw
many random samples from a hidden Sampler (Fig. 5.2) to make ISIs. The hidden
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Fig. 5.2 The TinkerPlots Sampler hidden model in the HMSN Activity

Sampler contained three interconnected attributes concerning teenager use of social
networks: grade, number of friends in social networks (#FSN), and average time
spent on social networks (minutes per day). The students were asked to draw ISIs
based on growing sample sizes, beginning their exploration with a small sample size
of 10. Each time they wanted to increase the sample size, they had to explain the
rationale.

The rationale for including a hidden population was to make the sample-
population relationship resemble these relationships in real situations in which the
population is unknown. We decided to restrict students to drawing relatively small
samples so they would notice the large sampling variability and explore ways to
reduce it. We thought this small sample restriction would seem reasonable to the
students, since they were aware of the necessity to understand the technical statisti-
cal issue of making inferences based on small samples (Ainley et al. 2015). Those
students were aware from previous activities of the fact that in real situations one
could not collect all data but needed to make inferences on populations from sam-
ples. Unlike real life, in the HMSN Activity, the students were able to draw many
random samples of a chosen size, and gradually increase the sample size to discover
the minimal sample size that can be used for reliable inferences. We hypothesized
that following engagement in the HMSN activity, it would be easier for students to
enter the model world and the required probabilistic reasoning in the fifth activity.

5.6 Key Features of the HMSN Activity

The main goal of the activity was to develop reasoning with uncertainty of students
engaged in sampling during the process of making ISIs. We wanted to motivate
and support students in the development of ways to describe, control, and quantify
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the uncertainty involved in making ISIs from a single random sample. Guided by
the IMA, this activity aimed to support a smooth transition between two types of
reasoning: reasoning within samples that occurs in the data world and reasoning
between repeated samples that occurs in the model world. In this section we explain
the activity design principles and describe the concepts and situationswe hypothesize
may play a central role in students’ reasoning with uncertainty.

5.6.1 Cognitive Conflict Between Data and Context

Most of the theoretical models developed to explain conceptual change (e.g., Strike
and Posner 1985; Chi et al. 1994) emphasize the role of cognitive conflict as essential
component for conceptual change. Cognitive conflict is generated by dissatisfaction
with existing concepts and ideas (Posner et al. 1982). It occurs when a learner can-
not use his existing knowledge to solve a problem or explain a phenomenon and is
therefore motivated to learn new concepts and ideas (Lee and Kwon 2001). In the
learning of statistics, conflicts that take place between former knowledge and cur-
rent understanding of data analysis can give rise to uncertainty about the explored
phenomenon. This can foster and result in new statistical understandings to reduce
uncertainty, for example by looking for more data or considering other intervening
variables.

Our supposition was that creating conflicts between sample data and context
knowledge may motivate students to move from within-sample reasoning (in the
data world) to between-samples reasoning (in the model world). To create conflicts
we reasoned that an exploration of real andmeaningful datawas essential.Wewanted
to ensure that students will easily recognize data that contradicts their experience and
be motivated to explore and explain the contradiction.

Shon and Yam were enthusiastic computer users and therefore deeply interested
in the theme of this Activity. The research theme they chose in Activities 1-4 was
the use and benefit of technological tools among fourth to ninth grade students. The
data was also real for the students since the hidden sampler was built by two other
students in their class. Those other students built the model while keeping in mind
real data that they collected in their school. Therefore, we expected that Shon and
Yam would be interested to explore the hidden model data and be equipped with
knowledge about its context.

We assumed the students would struggle with sample data that did not make sense
in relation to their context knowledge. We hoped that in order to find solutions to
those conflicts and handle the uncertainty in data, students would use the TinkerPlots
option of generatingmore samples or consider increasing the sample size. To increase
the incidence of conflicts between data and context, the students were asked to begin
their explorations with a small sample (size 10). We hoped the students would notice
the “noise” (Konold and Kazak 2008) in the data and be motivated to handle the
uncertainty by repeated sampling and increased sample size.
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5.6.2 Growing Samples

Growing samples is an instructional approach mentioned by Konold and Pollat-
sek (2002), developed by Bakker (2004, 2007) and elaborated by Ben-Zvi (2006).
According to the growing samples method students explore small data sets to infer
about a wider set of data. They are gradually given more data and asked what can
be inferred regarding the bigger sample or the entire population. Therefore, stu-
dents learn about the limitations of what can be inferred by the teacher’s “what-if”
questions. This instructional approach was found fruitful in supporting students’ rea-
soning with key statistical concepts such as distribution, variability, and sampling
(Ben-Zvi et al. 2012).

In the HSMN Activity, students were exposed to increased sample sizes while
expressing considerable uncertainty in small samples due to the limitations of what
can be inferred about the hidden Sampler from these small samples. The rationale
of using the growing samples heuristic was that it focused the students’ attention on
inferences (Bakker 2004) and motivated them to develop key statistical ideas and
concepts that underlie between-samples reasoning, such as the role of sample size in
the confidence level or the connection between sample size and sampling variability.

5.7 Learning Progression of Students

We identified three main thematic and chronological stages in Shon and Yam’s
expressions of uncertainty: examine, control, and quantify uncertainty. During these
stages students gradually refined their way of thinking about uncertainty while learn-
ing to integrate the data and model worlds. Due to conflicts they identified, within
certain sample results, between data and context knowledge, the students invented
these stages (examine, control or quantify) to deal with uncertainty. In this section
we describe each one of those stages detailing the conflict and the methods invented
by the students to tackle their challenges.

5.7.1 Stage I: Examine Uncertainty

5.7.1.1 The First Conflict

Before Shon and Yam drew the first sample (size 10) from the hidden sampler,
their initial conjecture was that older students would have more friends in social
networks. Observing the sample data, the students were puzzled since the data was in
contradiction to their hunch andprior knowledge regarding friends in social networks.
For example, they noticed that a fourth grade student had the highest #FSN and that
a ninth grade student had no #FSN. Shon commented: “something doesn’t make
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Fig. 5.3 The students’ comparison of the MTLs of #FSN over four samples of size 20. A dot
represents a case, a blue triangle represents the mean number of friends in a grade, a line connects
the four means in each sample, and the red line is the MTL of the fourth sample

sense.” Grappling with this contextual uncertainty, the boys added means of #FSN
for every grade to find a signal in the data. In their search for a pattern in the data, they
used TinkerPlots’ drawing tool to connect the means to one another with a “mean
trend line” (MTL).

5.7.1.2 Students Invent the First Method to Compare Between Samples

To motivate Shon and Yam to consider repeated sampling, we asked them: “What
will happen if you drew another sample? Could it help you somehow?” Yam said, in
response: “We can take one more [sample],” and Shon excitedly added: “Yes, yes,
let’s do it [draw from the Sampler] many times.” The students began drawing addi-
tional random samples from the Sampler hidden model. To examine the uncertainty
caused by the sample variability, Shon and Yam invented a “Capture MTLs” method.
They plotted the MTL for each sample they drew (Fig. 5.3), compared their posi-
tion, and noticed the large variability between them. Struggling with this statistical
uncertainty, Yam reflected: “It [the MTL] is very different each time.” The students
consequently asked to increase the sample size from 10 to 20, and Shon stated that,
“a sample size of ten is too small.”

5.7.1.3 Reasoning with Uncertainty for Stage I: Examine Uncertainty

During this stage, the students grappled with two types of uncertainty: the contextual
uncertainty that stems from a conflict between the data and their prior knowledge
as well as statistical uncertainty that stemmed from the large sampling variability
they observed and their inability to control random samples. In order to deal with the
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contextual uncertainty, they added the MTL to find the signal in the data. In order to
deal with the statistical uncertainty, they asked to increase the sample size.

5.7.2 Stage II: Control Uncertainty

5.7.2.1 Second Conflict

The boys used the samemethod, “Capture MTLs”, to examine the variability between
theMTLs of #FSN for samples of size 20. After drawing three random samples from
the Sampler, they noticed the smaller variability between theMTLs in comparison to
samples of size 10.During these explorations of samples (size 20), they referred to the
similarities and differences in location, shape and “peak” (maximal mean) between
the MTLs. They noticed a trend in the #FSN (The number of friends increased from
grade 2 to 7 and decreased from grade 7 to 9). They explained that the reason for
the decrease from grade 7 to 9 is that ninth graders have usually more homework
and exams and therefore have less time to communicate with friends on social net-
works.However, they still expressed their statistical uncertainty andwanted to further
increase the sample size.

A fourth MTL surprised them (the red line in Fig. 5.3) and destabilized their
relative confidence regarding the MTL’s trend (e.g., unlike the previous samples, the
number of friends decreased from grade 2 to 5 in the fourth sample). Yam said, “It
[this fourth sample] is very bad.” Instead of drawing more samples, they asked to
increase the sample size once again. At this point, the researcher tried to motivate
the students to draw more samples by asking: “Do you feel more confident in your
conclusions about certain grades?” In response, the students decided to draw many
samples of size 20 and examine the variability between the means of #FSN within
the grades.

5.7.2.2 Students Invent a Second Method to Compare Between Samples

The students developed a new graphical method, “Capture Means”, to capture the
variability between the means in order to examine whether they could control the
uncertainty in the repeated sampling process. According to their “Capture Means”
method, when the mean result of a particular grade could be captured inside a drawn
circle, they concluded that the variability within that grade was small. They drew
several samples of size 20, and Yam noticed that in grade 6, “It [the mean vari-
ability] is relatively stable because it [the mean] is usually in the area of the circle.
That’s why I say that they [the means over several samples, Fig. 5.4] are relatively
stable.” However, the students noticed that the mean results from the three other
grades could not be captured inside a drawn circle. Therefore, they expressed higher
statistical uncertainty regarding the sample size and the resulting conclusions. Due
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Fig. 5.4 “Stable” and “constantly varying” mean signals over several samples of size 20

Fig. 5.5 The hypothetical MTL of #FSN over several samples size 50

to the outcome of only one circle (i.e., stable mean) over many samples, they asked
to increase the sample size to 50.

Shon and Yam applied their “Capture Means” method on larger samples of size
50, drew a circle for each grade capturing the means of that grade over many samples
(Fig. 5.5). They noticed that, “grade 9 [means] stay in this area [the top blue circle in
Fig. 5.5]. It [grade 4 means] really jump around this spot [Yam drew a circle around
grade 4means].” Encouraged by these results, the boys expressed a higher confidence
level and were satisfied with the sample size. Shon said: “In my opinion, [sample of]
50 will be enough.” Their confidence about the MTL’s stability increased, and they
connected the four circles (Fig. 5.5) saying they were “absolutely certain.”
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5.7.2.3 Reasoning with Uncertainty for Stage II: Control Uncertainty

In the beginning of the second stage, comparing samples (size 20) and observing
smaller variability between MTLs, decreased the students’ statistical uncertainty. A
surprising sample showing an MTL that was incongruous with their former knowl-
edge increased their contextual uncertainty causing them to feel unsure about their
context knowledge. To handle the contextual uncertainty, they decided to invent the
“Capture Means” method and examine whether they could control the means of
#FSN in certain grades. Examining several samples of size 20 with the “Capture
Means” increased their statistical uncertainty regarding conclusions that could be
drawn from random samples of size 20. To deal with the statistical uncertainty, they
increased the sample size to 50 and with the “Capture Means” method decreased
their statistical uncertainty. To examine their conclusions in relation to their for-
mer knowledge, they drew a new MTL. The similarity between the MTL and their
hypothesis decreased their contextual uncertainty.

5.7.3 Stage III: Quantify Uncertainty

5.7.3.1 Third Conflict

During the next meeting, the students’ confidence encouraged them to refine their
hypothetical MTL for samples of size 50. They drew a few random samples but
were surprised that several of them showed a significantly different trend than the
hypothetical trend. They therefore decided to differentiate between two main trends:
“type 0” trend (theMTL of #FSN is increasing between grade 2 to 7 and is decreasing
between grade 7 to 9) and “type 1” trend (the MTL of #FSN is decreasing between
grade 2 to 5, increasing between grade 5 to 7 and increasing between grade 7 to 9).
They complained: “We can’t draw an inference because it is different all the time.”
They tried to deal with the growing uncertainty about the trend by drawing bigger
random samples of size 65 and noticed that there were more samples of “type 0”
than “type 1” trend.

5.7.3.2 Students Invent a Third Method to Compare Between Samples

To quantify their uncertainty about the trend, the boys invent a third method to
compare between samples. They calculated the difference between the numbers of
samples within each trend, and called this difference a “breakpoint.” For example,
if the first and second samples showed “type 0” trend and the third sample showed
“type 1” trend, they said that the breakpoint is one (2-1). They decided that when
this breakpoint equals a certain number, determined in advance, it would point at the
more likely trend. Setting the breakpoint to three, the boys strengthened their previ-
ous assumption and chose “type 0” trend over “type 1” estimating their subjective
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confidence level to be 80%. They explained their high confidence level in “type 0”
trend by referring to the difference between the number of samples with “type 0”
trend to those with “type 1” trend. They even found away to increase their confidence
level in “type 0” trend by setting the breakpoint to five.

Yam: Because we had three times more [cases of “type 0” than “type 1”]. There
are still times it’s like this [“type 1”], but most of the time it’s like this [“type
0”].

Shon: We will wait until it [the breakpoint] will be more than five. Here again…
we’ll wait until it will arrive at five… If there’s one more time [a sample with
“type 0” trend], then I believe 90% [that the trend is of “type 0”].

At this point they generalized the meaning of the breakpoint to be an estimate of
their confidence level; a bigger breakpoint results in a higher confidence level.

5.7.3.3 Reasoning with Uncertainty for Stage III: Quantify Uncertainty

In the third stage the students felt unsure about their context knowledge because they
observed some MTLs that were incongruous with their former knowledge, a fact
that increased their contextual uncertainty. Furthermore, they felt unsure about the
ability to infer from random samples of size 50, a fact that increased their statistical
uncertainty. To deal with the uncertainties, the students increased the sample size to
65 and quantified the sampling variability by calculating the difference between the
number of samples in each trend. However, to express their level of confidence in
their inference, they didn’t make calculations but used a subjective confidence level
of 80%.

5.8 Discussion

The main question of this chapter is: How can reasoning with uncertainty be pro-
moted in a way that is meaningful for young students while they are making ISIs?
In this chapter we presented the IMA and the design principles of one activity in
the IMA learning trajectory. Our analysis illustrated how the students’ reasoning
with uncertainty was refined during their engagement in this activity. In the follow-
ing section we discuss the research conditions and its limitations followed by the
pedagogical and theoretical implications of our analysis regarding the relationship
between: a) one sample and repeated samples, and b) data and chance. We also dis-
cuss our main design challenges to highlight the characteristics of the activity that
cultivated the progress of the students learning.
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5.8.1 Limitations

The purpose of describing the design of a learning trajectory and an analysis such
as the one presented in this chapter is that researchers and teachers could learn
from it and adjust the activities to their circumstances. Therefore, it is important
to provide the conditions and limitations of this research. This chapter is based on
our analysis and experience with only a small number of students who had superior
communication and reasoning skills. Therefore, our findings are only a proof of
principle. More research is needed to determine how this activity in particular and
the IMA in general can be performed with less intervention in a classroom setting.
We are currently conducting another study with sixth grade students in a classroom
setting to test the idiosyncrasy and the generality of the case presented in this chapter.

Researchers and teacherswill also need to consider that our studentswere involved
in EDA activities during the previous year. Throughout that year we exposed them to
ideas of sample size and inferences that can be drawn from a sample. We think that
in the IMA learning trajectory, students’ experience with an exploratory approach
to data is essential for entering the model world and dealing with the complex idea
of uncertainty (Pfannkuch et al. 2012). Reasoning with uncertainty in the context
of informal statistical inference is an ongoing discourse aimed to convince others
regarding inferences that can be made and the level of confidence in making those
inferences. The fact that our students were used to an environment of open and
critical discourse from the previous year prepared them to deepen their reasoning
with uncertainty and inferences this year.

5.8.2 Implications

5.8.2.1 Pedagogical Implications

Our case study demonstrates how reasoning with uncertainty developed through stu-
dents’ iterations between the data and the model worlds. In our analyzed data, the
students’ expressions of contextual and statistical uncertainties shaped their move-
ment between the worlds. The contextual uncertainty, which occurred in the data
world, stemmed from the conflict between the boys’ context knowledge and the data
in relation to a specific sample. For example, when the boys explored a sample size
of 10, Shon doubted that a fourth grade student had the biggest #FSN and thought
that “it is strange.” Such a conflict increased the boys’ uncertainty about the abil-
ity to infer from a sample. The statistical uncertainty, which occurred in the model
world, stemmed from sampling variability. Disconcerted by small sample sizes and
restricted by the activity design, the boys invented graphical methods to examine the
variability between means andMTLs over many samples. These situations increased
the boys’ uncertainty about the ability to infer from a single sample of a certain size.
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In order to understand the uncertainty involved in taking a sample, one needs
to envision a process of repeated sampling and its relation to the individual sample
(Saldanha andMcAllister 2014). The relationship between the individual sample and
repeated samples may emerge during the construction of the relationship between
contextual and statistical uncertainties. Furthermore, articulations of statistical uncer-
tainty may emerge from the need to face and explain the contextual uncertainty and
evolve with repeated sampling. For example, the need to elucidate conflicts between
data and prior knowledge and the ability of the tool (TinkerPlots) to draw repeated
samples assisted students in examining whether the conflicts happened due to chance
and impelled them to face statistical uncertainty.

Distinguishing between the two types of uncertainties may be important from a
pedagogical point of view. As we depict in this study, facing a contextual uncertainty
maymotivate students to examine statistical uncertainty by drawing repeated samples
and observing sampling variability. Therefore, we argue that designing activities that
promote conflicts between data and context knowledge and encouraging students to
consider repeated samplingmay be fruitful in understanding the relationship between
sampling variability and confidence in a single sample.

5.8.2.2 Theoretical Implications

The findings of this study are consistent with the argument that students must be
able to integrate between data and chance in order to understand informal statistical
inference (e.g., Konold and Kazak 2008; Pfannkuch et al. 2018). This is due to the
fact that making ISIs involves connecting probability-based notions of uncertainty
and inferences that are drawn from data (Makar and Rubin 2009, 2018). Although
researchers agree that EDA is an appropriate method for exploring statistics, a crit-
icism of the EDA pedagogical approach towards informal statistical inference is its
data-centric perspective (Prodromou and Pratt 2006) that does not foster students’
appreciation of the power of their inferences as does the model-based perspective
(Horvath and Lehrer 1998; Pfannkuch et al. 2018). This study responds to the chal-
lenge of reconnecting data and chance bi-directionally with an Integrated Modelling
Approach that adds elements of a model-based perspective to the EDA approach. We
suggest that engaging students with iterations between the data and model worlds in
the IMA, as presented in the HMSN Activity Section, may help them integrate ideas
of data and chance.

Figure 5.6 summarizes the students’ iterations between the data andmodel worlds
and between data and chance. Pronounced conflicts between data and context knowl-
edge that were expressed by contextual uncertainty in the data world (the left column
in Fig. 5.6) played an important role in the boys’ motivation to examine chance, as
well as invent and refine their methods of examining, controlling, and quantifying
the statistical uncertainty in the model world (the right column in Fig. 5.6). During
the first stage, exploring sample data that contradicted their previous knowledge in
the data world played an important role in the boys’ motivation to move to the model
world, draw repeated samples, and invent the “Capture MTLs” method to examine
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Fig. 5.6 The students’ reasoning with uncertainty through iterations between the worlds

the statistical uncertainty in sampling variability. By examining sampling variabil-
ity, they actually explored whether the conflicts they observed between context and
data were due to chance. The large sampling variability compelled them to increase
sample size. During the second stage, a surprising sample showing MTL that made
no sense in the data world forced the boys to invent the “Capture Means” method to
control the statistical uncertainty. The quantification of the statistical uncertainty in
the third stage resulted from their contextual uncertainty regarding the hypothetical
MTL.

Shuttling between the worlds, the students were able to make meaningful con-
nections between inferences they can draw about a phenomenon from samples of
a certain size and the idea of repeated samples and sampling variability. Our case
study depicts that, in carefully designed activities that cultivate the idea of repeated
sampling (Shaughnessy 2007; Thompson et al. 2007), even relatively young students
can be exposed to and make some sense of complex ideas behind ISI such as the
relationship between sample size, sampling variability, and confidence level in a
sample of a certain size.

5.8.2.3 Design Implications

One challenge in cultivating reasoning with uncertainty in the context of ISI is how
to motivate students to deal with statistical uncertainty. In other words, how to create
situations in which students see utility (Ainley and Pratt 2010) in drawing many



5 Design for Reasoning with Uncertainty 117

samples to examine uncertainty. Utility of an idea is an understanding what it is
useful for and what power it offers in addressing problems with respect to a ‘project’
inwhich the student is currently engaged.Moving to themodelworld and envisioning
a process of repeated sampling and its relation to the individual sample (Saldanha
andMcAllister 2014) is not easy or natural for the students (Saldanha and Thompson
2002). One reason for that may be that the idea of repeated sampling is too theoretical
for students, and they usually don’t find utility in the action (Ainley et al. 2006).
However, in the HMSN Activity, students found utility in drawing many samples
and used it to increase their informal confidence level in the inference that could
be made from a single sample. Informal confidence level is an estimation of how
certain one feels about informal inferences. It is uttered by a numeric level that is
not calculated but based on a relative number of repeating samples that indicate a
particular result.

We hypothesize that the combination of engaging students with real andmeaning-
ful data that motivates them to deal with contextual uncertainty and the possibility
in TinkerPlots of drawing many random samples of different sizes, assisted students
in comparing between samples.

Although theHMSNActivity included an artificial task and took the students away
from their focus project, they were aware of the statistical idea of sampling and the
need to examine the power it had on estimating the level of confidence in samples in
their ongoing project.We think so since the students were engaged before the HMSN
Activity in inquiry-based activities based on real sample data in both the data and
the model worlds. During those activities they were dealing with the questions: “Can
one trust random samples?” and “What is a sufficient sample size on which one can
make reliable inferences on the population?” So in this context, the artificial task in
the HMSN Activity was connected to their ongoing project. Furthermore, after the
HMSN Activity, the students returned to work on their real data and used what they
learned about sampling and uncertainty to find the minimal sample size on which
they could make reliable inferences about the explored population. We believe that
in such a learning environment, if students find utility in drawing many samples as
a way to face uncertainty, there is a greater chance that they will understand this
concept and also utilize it in other contexts.

A second challenge was in motivating students to invent methods to compare
between samples. We didn’t want to prescribe a comparison solution prior to their
experience. Furthermore, we thought that by inventing methods to explore and com-
pare between samples, students would have the opportunity to struggle with the
rationale of examining many samples and their relationship to a single sample. We
suggest that since these students were used to an exploratory approach to data (EDA)
, it seemed natural for them to look for and invent different methods to compare
between samples. In the previous year and in the first four activities of the IMA
learning trajectory, the students looked for different methods to analyze data in order
to convince their peers about their inferences. The current activity with its use of
TinkerPlots enabled students not only to find methods to analyze sample data but
also to draw many samples and find innovative ways to compare between them.
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Inventing methods to compare between samples has conceptual consequences.
First, observing many samples and deciding how to compare between them can
support the concept of aggregate view (Konold et al. 2015; Aridor and Ben-Zvi
2018). For example, while students invented and examined their MTL method, they
realized the importance of the location and “peaks” of the line, in addition to its
shape. Second, while students are engaged in inventing methods to compare between
samples, they can learn different ways to notice and describe sampling variability
and its relation to sample size.

However, inventing methods to compare between samples invited also meta-
conceptual questions such as: How can we compare between samples? What does it
mean to compare between samples? What is a good method for comparison? What
information is missing in our method? For example, when the boys began to compare
the MTLs they realized that there was a similarity between the shapes of the MTLs,
but there were differences in the MTLs location and “peaks”. Therefore, they looked
for other ways to compare between samples and invented the “Capture Means”
method that helped them focus on the variability of the #FSNmeans locations within
the grades, over many samples.

Although on a small scale, this study sheds light on newways to combine data and
chance, in order to support students’ informal inferential reasoning. Helping students
make connections between data and chance using the IMA pedagogy will inevitably
bring with it new challenges regarding learning to make ISIs and smoothing the
transitions between the data and model worlds. However, these difficulties can be
embraced as essential steps in the development of the reasoning of students who are
engaged in a modern society in which drawing inferences from data becomes part
of everyday life.
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Chapter 6
Building Concept Images
of Fundamental Ideas in Statistics: The
Role of Technology

Gail Burrill

Abstract Having a coherent mental structure for a concept is necessary for students
to make sense of and use the concept in appropriate and meaningful ways. Dynami-
cally linked documents based on TI© Nspire technology can provide students with
opportunities to build suchmental structures by takingmeaningful statistical actions,
identifying the consequences, and reflecting on those consequences, with appropriate
instructional guidance. The collection of carefully sequenced documents is based on
research about student misconceptions and challenges in learning statistics. Initial
analysis of data from preservice elementary teachers in an introductory statistics
course highlights their progress in using the documents to cope with variability in a
variety of contextual situations.

Keywords Concept image · Deviation · Distribution
Interactive dynamic visualization ·Mean · Variability

6.1 Introduction

Educators have suggested that visual images provide an important tool for learning
(e.g. Breen 1997). Dreyfus (1991) argued that the “status of visualization in mathe-
matics education should and can be upgraded from that of a helpful learning aid to
that of a fully recognized tool for learning and proof” (vol. I: p. 33). Presmeg (1994)
suggested that visualizing mathematical concepts is a means to develop understand-
ing. Interactive dynamic technology can be an important factor in helping students
build these images. This view is supported by a number of studies that suggest strate-
gic use of technological tools can help students transfer mental images of concepts to
visual interactive representations that lead to a better and more robust understanding
of the concept (e.g. Artigue 2002; Guin and Trouche 1999). In particular, technol-
ogy plays a central role in teaching and learning statistics, perhaps a greater role
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than for many other disciplines (Chance et al. 2007). A variety of researchers have
investigated the role of technology in the learning of statistics (c.f., Ben-Zvi 2000;
Burrill 2014; Watson and Fitzallen 2016). In many classrooms, however, the use of
technology can too easily focus only on organizing data, graphing and calculating.
The perspective throughout this chapter is that technology, particularly interactive
dynamic technology, can and should be used for more than “doing the work”, a view
supported by the American Statistical Association’s Guidelines for Assessment and
Instruction in Statistics Education (GAISE) that stresses the use of technology for
developing conceptual understanding as well as carrying out analyses (Franklin et al.
2007).

6.2 The Potential of Interactive Dynamic Technology

Content specific learning technologies provide many opportunities for developing
understanding of statistical concepts. Interactive dynamic technology allows stu-
dents to link multiple representations—visual, symbolic, numeric and verbal—and
to connect these representations to support understanding (Sacristan et al. 2010;
Biehler et al. 2013; Burrill 2014). For example, a regression line can be dynamically
linked to a visualization of the residual squares and the numerical sum of the squared
residuals. Such interactive linking, where one object is manipulated and all related
representations are instantly updated, supports investigations into varying assump-
tions and asking “what if” questions that can lead to making and testing conjectures
and result in a better understanding of the concepts involved (Ben-Zvi 2000). Com-
puter simulation activities enable students to experience variability by comparing
random samples, generating simulated distributions of sample statistics, and observ-
ing the effect of sample size on sampling distributions (delMas et al. 1999; Hodgson
1996). The ability to display multiple screens simultaneously allows students to con-
trast different graphs of the same data or notice how changing a data point affects a
distribution. Spreadsheet features provide opportunities for managing large sets of
data, enabling students to investigate subsets of the data for similarities and differ-
ences, for example, sorting a data set according to gender to compare curfews or
spending money. Many misconceptions held by students about statistical concepts
can be confronted using technology in a “predict and-test” strategy, establishing a
cognitive dissonance that can help students change their thinking about a concept
(e.g., Posner et al. 1982). Students can predict what they think they will observe (e.g.,
expected shape of a distribution) and then use the technology to obtain immediate
feedback on their thinking.

From a more fundamental perspective, however, interactive dynamic technology
has the potential to help students create robust concept images of key statistical
ideas, a necessary step in being able to fluently and effectively reason with and
apply those ideas (Oehrtman 2008). A concept image can be described as the total
cognitive structure including the mental pictures and processes associated with a
concept built up in students’ minds through different experiences associated with the
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ideas (Tall and Vinner 1981). Without a coherent mental structure, students are left
to construct an understanding based on ill formed and often misguided connections
and images (Oehrtman 2008). The work of understanding subsequent topics is then
built on isolated understandings specific to each topic (e.g., center as separate from
spread, distribution as a set of individual outcomes, randomness as accidental or
unusual). This makes it difficult for students to see and work with the relationship
among the images needed for deep understanding, for example, to understand the
distinction among the distribution of a population, the distribution of a sample from
that population, and the distribution of a statistic computed from samples from the
population.

A concept definition can be thought of as the words used to specify the concept,
which are typically related in some way to a student’s personal experiences with the
concept. As students engage in new experiences related to the concept, a student’s
concept image changes and evolves into a personal concept definition. For example,
a student’s first image of mean might be “add and divide”—an image of the specific
rule for calculating the mean of a set of data. If the concept image of mean remains
at this level, students will struggle when they are asked to interpret a mean in context
or approximate a mean from the graph of a distribution. The educational goal should
be to provide students with experiences that will help them move to a more formal
understanding of the concept, supported by the development of rich interconnected
concept images/definitions, that is accepted by the community at large (Tall and
Vinner 1981).

Piaget argued that an individual’s conceptual structure is based on the actions or
the coordination of actions on physical or mental objects made by the individual
(Piaget 1970, 1985). Given this stance, instruction beginning with formal definitions
would seem to be contrary to the direction in which abstraction occurs. Oehrtman
(2008) suggests three important features of instructional activities compatible with
Piaget’s theory of abstraction. First, the underlying structure that is the target for
student learning should be reflected in the actions they do. Because these actions
come before conceptual understanding, they should be stated in terms accessible to
students rather than formal definitions, enabling students’ eventual concept images
to build from conceptual structures that make sense to them because of their previous
actions. Second, students’ actions should be repeated and organized with provisions
for feedback and ways to respond to this feedback. And third, students should use
these actions in structurally similar problems in a variety of contexts to develop a
robust abstraction of the concept.

This chapter describes a sequence of applet-like documents, Building Con-
cepts: Statistics and Probability (2016) (BCSP) developed according to an “ac-
tion/consequence principle” aligned with Oehrtman’s features (2008). The materials
were created to exploit the affordances of an interactive dynamic environment in
developing robust conceptual structures for key statistical concepts, designed for
teaching introductory statistical concepts.
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6.3 Building Concepts

6.3.1 An Action/Consequence Principle

To make sense of ideas, it is necessary to have appropriate conceptual structures,
and it is impossible to communicate about concepts without any representations
(Bakker and van Eerde 2014). In his semiotic theory on the use of diagrams as
ways to represent relationships, Peirce describes diagrammatic reasoning as that
which involves constructing a diagram, experimentingwith it, and reflecting upon the
results. He emphasizes that in the experimenting state, “thinking in general terms is
not enough. It is necessary that something should be DONE. In geometry, subsidiary
lines are drawn. In algebra, permissible transformations are made. Thereupon the
faculty of observation is called into play” (CP 4.233—CP refers to Peirce’s collected
papers, volume 4, section 233). Because the learner has done something with the
diagram or representation, he is forced to consider the consequences of the action
from a different perspective than that originally in his mind (Peirce 1932, 1.324).

In Building Concepts, these three steps are embodied in an “action/consequence”
principle, where the learner can “deliberately take a mathematical action, observ-
ing the consequences, and reflecting on the mathematical implications of the con-
sequences” (Mathematics Education of Teachers II 2012, p. 34). In statistics, the
actions might involve grouping data points in a certain way, changing bin widths
in histograms, moving data points, generating random samples from a population,
changing the sample size, or moving a line. The consequences might be different
visual representations of the data, changes in numerical summaries, noting what
remains constant and what changes with the action, or a shift in patterns. By reflect-
ing on the changes they see in response to statistically meaningful actions, students
are engaged in actively processing, applying, and discussing information in a variety
of ways (National Research Council 1999; Michael and Modell 2003) and can begin
to formulate their own concept images and conceptual structures of key statistical
ideas.

From another perspective, the theories of Mezirow (1997), Kolb’s learning cycle
model (1984), and the work of Zull (2002) on brain theory all suggest that people
learn through the mechanism of participating in an immersive mathematics experi-
ence, reflecting on these experiences, and attempting similar strategies on their own.
Mezirow introduced the notion of transformative learning as a change process that
transforms frames of reference for the learner. Key elements in this process are an
“activating event” (Cranton 2002) that contributes to a readiness to change (Tay-
lor 2007). This is followed by critical reflection where the learner works through his
understanding in light of the newexperiences, considering the sources and underlying
premises (Cranton 2002). The third element of this process is reflective discourse
or dialogue in an environment that is accepting of diverse perspectives (Mezirow
2000). The final step is acting on the new perspective, central for the transformation
to occur (Baumgartner 2001). These four elements elaborate on Kolb’s early model
of experiential learning (1984) as a cycle containing four parts: concrete experi-
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Fig. 6.1 Statistics and probability—a coherent progression

ence, reflective observation, abstract conceptualization, and active experimentation;
experimentation leads once again to concrete experience. This cycle, informed by
Oehrtman’s key features, is embodied in the action/consequence principle underlying
the activities in Building Concepts.

6.3.2 Content Framework

The content in the BCSP activities is based on the Common Core State Standards
(CCSS) progressions documents (2011), narratives describing the learning progres-
sion of a topic based on the research on cognitive development and on the logical
structure of mathematics/statistics. Taken as a whole, the activities and correspond-
ing dynamic files cover the key concepts typically in introductory school statistics
(Fig. 6.1). Static pictures or examples contained in the progression document are
made interactive in the activities. In addition, the activities have been designed in
light of the research related to student learning, challenges and misconceptions.

6.3.3 The Activities

The core of the activities are applet-like, dynamic interactive files, not intended to
be used for “doing” statistical procedures but rather to provide a mental structure
for reasoning about statistical concepts that can support the transition to procedu-
ral fluency. When students have a solid conceptual foundation, they can engage
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in statistical thinking, are less susceptible to common errors, less prone to forget-
ting and are able to see connections and build relationships among ideas (NRC
1999).

6.3.3.1 Framing of Tasks

The tasks in each activity focus on using the interactive documents to create experi-
ences that can contribute to the development of a particular statistical concept. They
were constructed following the advice of Black and Wiliam (1998) with respect to
formative assessment: “Tasks have to be justified in terms of the learning aims that
they serve, and they can work well only if opportunities for pupils to communicate
their evolving understanding are built into the planning (p. 143).” Thompson (2002)
argued that the goal of a task is to have students participating in conversations that
foster reflection on some mathematical “thing”. Thus, the majority of tasks in the
activities create opportunities to discuss particular statistical objects or ideas that need
to be understood and to ensure that specific conceptual issues and misconceptions
will arise for students as they engage in discussions.

6.3.3.2 Misconceptions

The tasks in the activities have been designed in light of the research related to student
learning, challenges andmisconceptions (e.g., Zehavi andMann 2003). For example,
a common misconception in statistics relates to boxplots: the longer one of the four
sections in the plot, the more data in that section (Bakker et al. 2005). To build a
mental image of the connection between the data and a boxplot, in the interactive
file a dot plot “morphs” into the boxplot, and students can compare the number of
data values in each section of the boxplot (Fig. 6.2). Moving points in the dot plot
immediately displays the effect on the corresponding boxplot (Fig. 6.3), reinforcing
the fact that medians and quartiles are summary measures based on counting.

The activity Equally Likely Events was designed specifically to address the mis-
conception that every outcome has a 50% chance of occurring (Fischbein et al. 1991).
In this activity, students generate a distribution of the eleven possible sums of the
faces when two dice are tossed and compare the distribution to a distribution of the
outcomes of spinning a spinner divided into eleven equal regions. The visualization
of the distributions as the number of repetitions is increased makes explicit how a
random sample reflects the characteristics of the population. InComparing Distribu-
tions, students explicitly contrast histograms and bar graphs to confront the confusion
they often have distinguishing between the two representations. They consider the
limitations of bar graphs in understanding the story of the typical income, education
and life expectancy in various regions of theworld and compare what is lost or gained
when the data are represented in boxplots, histograms, or dot plots. Students create
histograms with a large amount of variability and with little variability to challenge
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Fig. 6.2 Connecting boxplots to data

Fig. 6.3 Moving a data point

the misconception that variability is defined by the range or by a peak rather than the
spread around the mean (delMas and Liu 2005; Matthews and Clark 2003).
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6.3.3.3 Posing Questions

In addition to making sure that the tasks surface misconceptions and develop under-
standing of “tough to teach/tough to learn” concepts, the questions for each of the
activities were created using the general guidelines below:

1. Activate prerequisite knowledge before it is used; e.g., “Remember the impor-
tance of thinking about shape, center and spread when talking about distributions
of data. Describe the distribution on page 1.3.” (Introduction to Histograms)

2. Point out things to notice so students focus on what is important to observe; e.g.,
“Select Sample. Describe the difference between the points on the number line
at the top left and the point on the number line at the right.” (Sample Means)

3. Ask for justifications and explanations; e.g., “Make a conjecture about which
data set will have the largest mean. Explain why you think your conjecture might
be correct. Use the file to check your thinking.” (Mean as Balance Point)

4. Make connections to earlier tasks or to an immediately previous action taken by
the student (questions should not come out of the blue); e.g., “Return to your
answers for question 2 and see if you want to change them now that you have
looked at the values when they are ordered.” (Median and Interquartile Range)

5. Include both positive and negative examples in developing understanding of
definitions, theorems and rules; e.g., “Which of the following are true? Give an
example from the Ti-Nspired file to support your reasoning. (a) The smallest
and largest values of any distribution are outliers. (b) Not all distributions have
outliers. (c) An outlier will be more than one boxplot width plus half of the width
of the boxplot to the left and right of the box. d) The segments on each side of
the box always extend 1½ IQRs beyond the LQ and the UQ.” (Outliers)

6. Have students consider the advantages/disadvantages of each approach when it
is possible to carry out a task using multiple strategies; e.g., “Which, if any,
of the three estimation methods—educated guess, judgment sample, or random
sample—do you think is more likely to give a sample that is most representative
of the population? Why?” (Random Samples)

7. Be explicit about possible misconceptions: e.g., “Work with a partner to create
two reasonable distributions for the number of pairs of shoes owned by the
students in a class, either by moving or adding points, to get (1) a distribution
with little variability in the number of pairs of shoes owned by most of the
class, and (2) a distribution where there is a lot of variability in the number of
pairs of shoes owned by the class. Choose a bin width that seems best for your
distribution. Describe your distribution (shape, center and spread). Explain why
you think one of your distributions has very little variability and the other has a
lot of variability.” (Introduction to Histograms)

The next section provides several examples of using the dynamic interactive files
to develop concept images related to core statistical ideas. These include distributions,
measures of center and spread, and random behavior including sampling variability.
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Fig. 6.4 Image of
distribution, center and
variability

6.4 Developing Concepts

6.4.1 Distributions

A statistical distribution might be defined as “an arrangement of values of a variable
showing their observed or theoretical frequency of occurrence” (The Free Dictio-
nary). Wild (2006) suggests, however, that “… the notion of “distribution” is, at its
most basic, intuitive level, “the pattern of variation in a variable,” (p. 11) and further
notes that focusing on what a distribution is will not be as productive as focusing on
helping students build a mental image of how data can be distributed. According to
Wild, because distributions are such a fundamental component of statistical reason-
ing the goal should be on how you can reason with distributions and not on how do
you reason about distributions.

A well-documented problem observed by statistics educators is that students tend
to perceive data as a series of individual cases and not as a whole that has character-
istics and properties not observable in any of the individual cases (i.e., Bakker and
Gravemeijer 2004; Ben-Zvi and Arcavi 2001; Hancock et al. 1992). They suggest
that students need to develop a conceptual structure in which data sets are thought
of as aggregates where the concept image of how data can be distributed includes
features related to shape, center and variability around the center (Fig. 6.4).

In the first BCSP activity, Introduction to Data, students investigate numerical
lists and dot plots of the maximum recorded speeds and life spans of different animal
types (Fig. 6.5) with the goal of building a mental image of a distribution of the data.
Students begin by identifying individual animals or data points (How fast is a tiger?).
They are then asked to talk about the distribution as awhole, connectingwords such as
“clumps”, “bumps”, “piles”, “dots are spread out” (Bakker and Gravemeijer 2004;
Cobb et al. 2003) to shapes, eventually building images of distributions that can
be described using language accepted in the statistical community: mound shaped,
symmetric, skewed, uniform. Transitions from language such as “all bunched at one
end” to “skewed” or “the dots are spread out” to “the spread is large” are important
steps in the formation of concepts (Peirce 1998). The interactive files allow students
to notice how changing a data point affects a distribution and to experiment with
removing data points in a distribution to see the effect on the shape (How will the
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Fig. 6.5 Maximum speeds of types of animals

shape change if the maximum speed of the Peregrine falcon is removed from the
distribution? If the speeds for all of the birds are removed?).

Building from the conceptual structures students have formed in this initial work
and mindful of the principle that students should use these actions in structurally
similar problems in a variety of contexts, the concept of distribution is revisited in
other activities, such as those which develop the connection between measures of
center and spread and the shape of a distribution. The technology allows students to
cycle through a variety of data sets, providing opportunities to recognize distributions
when the mean may not represent the largest cluster of data points, and the median
may be a more useful measure of center.

The concept of distribution is revisited again in the context of sampling. The con-
cept structures students have developed for reasoning with distributions are extended
to consider distributions of a sample from a population, where, for example, they
examine the distributions of maximum recorded speeds for a sample of animal types,
the plot on the top in Figs. 6.6, 6.7, and 6.8, and distinguish this from the distribution
of the maximum recorded speeds for all of the animal types, the plot on the bottom
in Figs. 6.6, 6.7, and 6.8. Repeatedly taking samples provides contexts in which the
distribution of sample maximum recorded speeds reflects the population but varies
from sample to sample as do the summary measures (mean ± mean absolute devi-
ation or median and interquartile range) associated with the random samples of the
maximum speeds, reflected by the horizontal bars in Figs. 6.6, 6.7, and 6.8.
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Figs. 6.6–6.8 Populations, samples and sampling variability

6.4.2 Mean and Standard Deviation

Students’ concept images of measures of center and spread seem to be fragile. Mis-
conceptions or superficial understanding of measures of center have been well doc-
umented (Friel 1998; Groth and Bergner 2006; Mokros and Russell 1995; Watson
and Moritz 2000). Students often can perform the computations but cannot apply
or interpret the concepts in different situations and have correspondingly ill formed
notions of variability. In the past many texts introduced the mean andmedian as mea-
sures of center in a single lesson, and several lessons later or in another chapter, if at
all, introduced measures of variability. Treating center and spread together supports
the creation of a mental structure of the notion that measures of spread are connected
to “spread around what”—some value indicating a measure of center (see Fig. 6.4);
deviations are measures of distance from the mean, and the interquartile range (IQR)
is a measure of the distance between the first and third quartiles and thus around
the median. Experiences with these different interpretations of center and variability,
can help students build a mental structure mindful of the need to take both measures
into account when reasoning about variation in a variety of situations (Shaughnessy
et al. 1999) and can help them recognize that either measure alone tells an incomplete
story about the context.
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Fig. 6.9 Mean as leveling

In Building Concepts, median and interquartile range are introduced in one activ-
ity followed by activities related to mean and mean absolute deviation (which is
introduced as a precursor to standard deviation). The literature suggests that typ-
ically students have problems interpreting the mean and applying it appropriately
(e.g., Garfield and Ben-Zvi 2005). To counter this, the activities explicitly develop
the concept of mean as “fair share” in two ways. The activities endeavor to build
mental images of (1) fair share as “leveling off” where students drag dog food bags
from the dogs who have the most bags to dogs with fewer bags (Fig. 6.9) until all of
the dogs have the same number of bags; and (2) fair share as pooling, where all of the
contributors (the dogs) put their bags of dog food into a group (Fig. 6.10), and the
entire group is then divided equally among the total number of contributors (dogs)
(Fig. 6.11). Both approaches contribute to developing images needed for complete
understanding of mean; the first develops an understanding of how to interpret the
mean as a measure of center, and the later leads directly to the procedural algorithm
typically used to compute a mean.

Recognizing the difficulty students have shifting their images of bar graphs as
ways to describe distributions of data to graphs involving quantitative data displayed
on a number line, one file focuses on connecting numerical (16 total bags) and picto-
rial representations to a dot plot, where students observe how the dot plot changes as
the pictorial representations are moved (Fig. 6.12). The fact that all of the dots are in
a vertical line at four when each dog has four bags of dog food lays the groundwork
for considering the mean as a balance point.
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Fig. 6.10 Pooling

Fig. 6.11 Dividing up the pool

Mean As Balance Point is set in the context of soccer tournaments, where the task
is to distribute a given total number of goals in a tournament to achieve amean number
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Fig. 6.12 Connecting representations

of six goals for the nine teams involved (Kader and Mamer 2008). An important part
of the reflection step in the action/consequence principle is for students to describe
what they see in the diagrams (Figs. 6.13 and 6.14) then, with support, learn to
abstract from the picture the notion of deviation, where deviation in itself can have
characteristics (Pierce 1998). The goal of this activity is to give students experience
in describing deviations, resulting in the development of an image for the concept
of deviation as an object itself and to eventually link deviation to the concept of
variability. Students move dots representing the number of goals scored by a soccer
team to “balance” the dots on the number line, given that the mean number of goals
for all of the teams has to be six, and certain constraints must be satisfied (e.g., no
teams scored six goals, two teams scored two goals, one team scored three goals,
and one team scored nine goals). They can notice how changing a data point affects
the distribution of goals and explore how the “deviations” from the mean are related
to whether the segment containing the distribution of goals is balanced.

Students identify a measure to rank different tournaments (distributions) in terms
of “most evenly matched teams” with the assumption that, in a tournament with
perfectly matched teams, every team scores the same number of goals (Fig. 6.15).
This leads to themean absolute deviation as ameasure of spread around themean and
the notion of mean as balance (Fig. 6.16). The development “uncouples” the words
“standard” and “deviation”, giving students the opportunity to build an image of the
word deviation in a simple context before they think about standard deviations.

Associating shapes with measures of center and variability can help students
develop an understanding of what these measures mean graphically and numerically
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Fig. 6.13 Goals in a tournament

Fig. 6.14 Constraints satisfied

(Garfield and Ben-Zvi 2005). Connecting the image of deviation to a mental image
of variation around the mean, students use the technology to make conjectures about
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Fig. 6.15 Evenly matched

Fig. 6.16 Ranking soccer tournaments in terms of the most “evenly balanced” teams

the measures of center and spread for randomly generated distributions of scores and
can instantly check their conjectures (Fig. 6.17). The technology supports students
in continuing to build their mental images by making visible the connections among
numerical, visual and algebraic representations as they interpret data in a table and
relate the data and summary measures to a graph (Figs. 6.18 and 6.19).
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Fig. 6.17 Checking conjectures

Fig. 6.18 Deviations
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Fig. 6.19 Deviations from the mean

6.4.3 Random Behavior

To most people, “random” events in their lives can be those that are surprising, due
to luck or fate, not repeatable or happen just due to “chance” (Batanero 2015). Thus,
the natural language learners bring to developing a concept image of randomness is
often in conflict with the formal concept definition itself. This can seriously impede
the learning of a formal notion of randomness. Students having such a potential
conflict in their concept image may be comfortable with their own interpretations of
randomness and simply regard the formal theory as not realistic and superfluous (Tall
andVinner 1981). Furthermore, students are bothered by the notion of predictingwith
some certainty the behavior of a distribution but being unable to predict a specific
outcome (Konold 1989). Some believe that it is not possible to apply mathematical
methods (statistics) to study random phenomena, because of their unpredictability.
Some also believe they can predict or control the outcomes in a random process
(Langer 1975).

Given the complexity of building concept images that will enable students to con-
front their intuitive notions about a random event and align them with the meaning
used in statistics, the learning experiences in which students engage need to be care-
fully designed. Batanero (2015) recommends one possible sequence. First, students
learn to discriminate certain, possible and impossible events in different contexts,
using the language of chance, and compare an analysis of the structure of an exper-
iment with the frequencies of data collected from repeated experiments to estimate
probability. In a second stage, students should move to the study of materials lacking
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symmetry properties (e.g., spinners with unequal areas, thumbtacks), where they can
only estimate probability from frequencies. The next stage is to investigate real data
available from the media, Internet, government or other sources (e.g., sports, demo-
graphic, or social phenomena). Finally, students simulate simple situations where the
essential features of the situation are modeled by the model used in the simulation
and irrelevant properties are disregarded.

Aligned with this framework, the BCPS activities introduce the notion of proba-
bility using a game where students choose which of two options (i.e., odd, prime) is
more likely to occur in drawing ten cards each with a number from one to 10. They
have opportunities to play the same game several times and to figure out strategies
for winning (the number of successes over the total number of outcomes), giving
them experiences that can lead to the creation of a mental structure for estimating
probabilities when it is possible to list the outcomes. The technology allows students
to simulate the probability using the relative frequencies of a long sequence of draw-
ing cards. The next step is to contrast this situation, where the theoretical outcomes
are clear, to a situation where nothing is known about the probability of an outcome
(getting a blue chip in drawing a chip from a bag with an unknown number of white
and blue chips), using long run relative frequencies to estimate the probability of an
outcome (i.e., blue chip). Students generate many repetitions of the experiment, for-
mulate questions or predictions about the trend in the outcomes, collect and analyze
data to test their conjectures, and justify their conclusions based on these data. This
approach allows students to visualize randomness as a dynamic process in contrast to
a printed copy of a random sequence that seems to lose the essence of what random
means (Johnston-Wilder and Pratt 2007). The typical sequence of results obtained
through repetition lacks a pattern (Fig. 6.20) at the onset. However, “In this apparent
disorder, a multitude of global regularities can be discovered, the most obvious being
the stabilization of the relative frequencies of each possible result” (Batanero 2015)
(see Fig. 6.21).

Students learn that streaks and clusters can appear in a sequence of random out-
comes. Technology can be used to create situations involving a cognitive dissonance
to help students change their ways of thinking about the concept. In the activity
Choosing Random Samples students draw names from a hat to identify four students
out of 28 to hand in their homework on a given day (Fig. 6.22) (supporting Oehrt-
man’s third feature of instructional activities (2008)—experience the concept in a
variety of situations). Students believe that random behavior somehow balances out
in the short run, and once you have been selected you will no longer be called on
(Fischbein and Schnarch 1997; Jones et al. 2007; Konold 1989). Simulation allows
the process to be repeated many times, and students soon recognize that by chance, a
random selection will typically have several students chosen two or even three times
in a five-day week. Simulation in a real context can help students establish a better
understanding of the nature of randomness. This pattern of random behavior, in the
short-term unpredictable but in the long-term stable, is revisited in generating distri-
butions of sample statistics. For random samples selected from a population, students
can observe that medians and means computed from random samples will vary from
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Fig. 6.20 Initial variability

Fig. 6.21 Relative frequency stabilizes

sample to sample and that making informed decisions based on such sample statistics
requires some knowledge of the amount of variation to expect.
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Fig. 6.22 Randomly chosen frequency stabilizes

6.4.4 Sampling Distributions

Students often confuse the three types of distributions related to sampling: distri-
bution of a population, the distribution of a sample from that population, and the
sampling distribution of a sample statistic (Wild 2006). In Samples and Proportions
the notion of distribution is extended from considering the distribution of a popu-
lation itself and the distribution of a sample from that population to a third kind of
distribution, a sampling distribution of statistics calculated from the samples taken
from the population (Fig. 6.23).

Students generate many different simulated sampling distributions for a given
sample size of the proportion of females from a population that is known to be half
female. They discover that each of these distributions seems be mound shaped and
symmetric, centered on the expected value with a consistent range for the number
of females in the sample over repeated simulations. A subtle but critical point for
learners is that a shift from counts to proportions allows comparison of distributions
with different sample sizes and opens up opportunities to think aboutwhat is invariant
and what is not as the sample size changes and why. The mental image here is highly
dependent on noticing that the distinguishing feature is the labeling of the axes.
Students can observe that for a sample of a given size, the simulated distribution of
the number of females in a sample from a population that is 30% female visually
overlaps with the sampling distribution of the number of females in a sample from
a population that is 50% female (Fig. 6.24). This leads informally to the concept of
margin of error.
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Fig. 6.23 Concept images of three related but distinct notions of distribution

Fig. 6.24 Comparing simulated distributions from two populations

The discussion above described several of the 24 different activities, each address-
ing particular concepts typically in an introductory statistics course at the school level
and as outlined in the CCSS progressions for Statistics and Probability (2011). The
files are accompanied by supporting materials that include (1) a description of the
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statistical thinking that underlies the file; (2) a description of the file and how to use
it; (3) possible mathematical objectives for student learning; (4) sample questions for
student investigation; and (5) a set of typical assessment tasks. The activities have
been developed for use on a TI© Nspire platform (iPad app, computer software or
handheld) and can be downloaded at no cost from the Building Concepts website (
https://education.ti.com/en/building-concepts/activities/statistics).

6.5 Implementation

The interactive documents were used in a semester long statistics course for elemen-
tary preservice students. Students had their own computers, and they accessed the
materials using the TI Nspire software, although they did use other statistical soft-
ware packages towards the end of the course. The goals of the course were to enable
students to be literate consumers of statistical data related to education and to give
them tools and strategies for their own teaching. Student learning experiences were
designed with attention to the action/consequence cycle described in Sect. 3.1, an
action or activating event, critical reflection, reflective discourse and taking actions
based on the new perspective. The students typically worked in pairs or groups on
predesigned tasks using the technology to investigate situations, make and test con-
jectures, usually comparing their results with classmates and engaging in student led
discussions on their thinking about the ideas.

6.5.1 Background

The students were sophomores or juniors in the elementary teacher preparation pro-
gram at a largeMidwestern university. They all had selected a mathematics emphasis
for their certification (and had taken calculus, which enabled them to interpret the
point of inflection on a relatively normal distribution as approximately one stan-
dard deviation from the mean); 24 had no prior experience with statistics; three had
taken an Advanced Placement statistics course in high school and two had taken a
university statistics course.

In keeping with the GAISE framework (Franklin et al. 2007) and the focus of
the research, one emphasis in the course was on variability. The next section briefly
describes how the interactive documents and action/consequence cycle played out
with respect to helping students understand the role of variability in statistical rea-
soning.

https://education.ti.com/en/building-concepts/activities/statistics
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6.5.2 Instruction

An “activating event” was an activity or question that engaged students’ curiosity and
lead to an investigation of a statistical concept. In the second week of the course, stu-
dentswere asked:How long did it typically take a student in our class to get to campus
today? Students made conjectures, then lined up across the classroom according to
their times (without talking to make things interesting). The class reflected on the
visual representation they had formed; eventually realizing they needed to regroup
as they had neglected to consider scale and had just ordered themselves. The distri-
bution of their times now had several clusters and one clear outlier at 90 min. The
distribution was reproduced on the board, and the class considered the question: How
would you describe the “typical time”. This led to language like “a center cluster”,
which motivated a discussion of median, interquartile range and how these ideas
would be useful in identifying the typical time to campus. (It turned out to be from 5
to 15min for half of the students with themedian at 8min.) The outlier was described
as surprising.

Cycling through the process, students applied the questions “what is typical”
and “what would be surprising” in a variety of situations and new experiences,
workingwith their classmates in randomly assigned groups on tasks creating different
graphical representations (action/consequence) and considering the variability in
each (reflection). As in the literature, they initially confused variability with range:
“[A has]Most in variability: there aremany observations on pairs of shoes that people
own covering a wide range.” But the majority of students were able to correctly make
statements such as: “In variability the height of the peaks don’t matter. Additionally,
we are only really looking at the center and how the graph looks around it.”

In the application part of the cycle, students began to use the concept of variability
inmeaningfulways. For example, looking at the achievement of fourth grade students
in science, one student wrote, “An interesting thing about scores from 2015, as can
be seen in Fig. 6.2, is that there is an outlier, a state with an average score of 140.
This is interesting because while this score is an outlier in the 2015 data, this is not
an outlier in 2005, in fact it is part of the lower quartile range. This indicates that in
2015 a score that low would be somewhat unusual, because higher scores are being
achieved in science by all of the other states.” They did however continue to struggle
with language: “When comparing the western states’ funding to the eastern state’s
[sec] funding, the eastern states have a larger range in terms of IQR.”

In a similar fashion, activities such as the soccer tournament described abovemoti-
vated the use ofmean±MAD (mean absolute deviation) and eventually the standard
deviation. Students used simulation to establish what is typically the pattern for a
sampling distribution for a given population proportion and sample size. Individually
repeating the process over and over (action) and comparing distributions across the
class (consequence) gave students the opportunity for critical reflection and to rec-
ognize the distribution will always be mound shaped and symmetric with the mean
and median around the expected value and one standard deviation at approximately
the point of inflection if a smooth curve were drawn over the simulated sampling
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distribution. Students noticed the variability in number of successes for a large num-
ber of samples of the same size is typically bounded as they simulated the event
many times; for example, for a population proportion of 0.5 and sample size 100, the
number of successes will rarely be less than 35 or more than 65. “Is it surprising?”
led to the activating question—just what does it mean to be surprising? What if for
the example, an observed outcome was 34. How do we communicate the notion of
surprise at such an observation to other classmates? The discussion and reflection on
how to quantify or find a measure for surprising led to the notion of significance.

6.5.3 Initial Results

An initial analysis of some of the data suggests that students for the most part have
a relatively solid grasp of variability. For example, the variability around student
scores on a state achievement test was given as margins of error (Fig. 6.25). When
asked on the final exam, for which student, A, B, or C was the margin of error most
problematic, 48%were able to correctly identify student B and 28% answered choice
A or C with appropriate reasoning.

Some had the correct answer but incorrect or unclear reasoning; e.g., “This is
because with the margin of error, there are lower possible answers than the other
students that students with that scale score could have obtained.”

In comparing the standard deviations for the length of time males and females
could stand on one foot, 48% of the students associated the standard deviation with
the mean but they continued to struggle with precision of language (“The differ-
ence in standard deviation between males and females indicates that females are
more clustered around the mean.”), while 45% described the variability in general
terms without reference to the mean. When asked what image comes to mind when
you think about variability, 21% of the students connected variability to the spread

Fig. 6.25 Student achievement results
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around the mean or median, 17% gave a general description such as “apartness”,
“differentness”, while 31% gave a measure (MAD, IQR, standard deviation).

In comparing the achievement scores of boys and girls, a response such as the
following was typical: “…we find that 64.4% of the time this could occur just by
chance.We can use this to answer our question and say that grade 5 girls weren’tmore
likely to score below basic than grade 5 boys because our results could have occurred
just by chance. They’re not statistically significant so we can’t say that either gender
is more likely to do worse than the other gender based on these results.”

6.6 Conclusions, Future Directions and Research
Recommendations

The studywas purely observational, with no comparison group or controls for factors
such as prior knowledge (although the class as a whole came with little exposure
to statistics), which limits any conclusions that can be made. Initial results do seem
to suggest the approach has potential for supporting the development of student
understanding of variability in multiple statistical contexts. However, the research
connecting concept images to visualization to dynamic interactive technology is
sparse and a space where much work remains. Some possible questions include:

• What aspects of pedagogy are significant in the use of visualization through
dynamic interactive technology in learning mathematics?

• How can teachers help learners use dynamic interactive technology to make con-
nections between visual and symbolic representations of statistical ideas?

• How might dynamic interactive technology be harnessed to promote statistical
abstraction and generalization?

• How do visual aspects of interactive dynamic technology change the dynamics of
the learning of statistics?

In 1997, Ben-Zvi and Friedlander noted that technology for teaching and learn-
ing has evolved over the years, progressively allowing the work to shift to a higher
cognitive level enabling a focus on planning and anticipating results rather than on
carrying out procedures. Since then technology has provided powerful new ways
to assist students in exploring and thinking about statistical ideas, allowing stu-
dents to focus on interpretation of results and understanding concepts rather than on
computational mechanics. While visualizing mathematical concepts has been con-
sidered important in developing understanding of these concepts, dynamic interac-
tive technology provides opportunities for students to build more robust conceptual
images—to develop video images in their minds as they consider what a concept
means in a given context. The Building Concepts work thus far suggests that inter-
active dynamic technology affords students opportunities to build concept images
of statistical concepts that align with desirable conceptions of those concepts. The
carefully designed action/consequence documents seem to have the potential to be
useful tools in providing studentswith the experiences they need to develop the robust
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concept images of core statistical concepts that will enable them to use statistics as
a way to reason and make decisions in the face of uncertainty.
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Chapter 7
Informal Inferential Reasoning
and the Social: Understanding Students’
Informal Inferences Through
an Inferentialist Epistemology

Maike Schindler and Abdel Seidouvy

Abstract Informal statistical inference and informal inferential reasoning (IIR) are
increasingly gaining significance in statistics education research. What has not suffi-
ciently been dealt with in previous research is the social nature of students’ informal
inferences. This chapter presents results from a study investigating seventh grade
students’ IIR in an experiment with paper helicopters. It focuses on students’ reason-
ing on the best rotor blade length, addressing statistical correlation. We study how
students draw inferences when working in a group; and how their inferences emerge
socially in their IIR. For grasping the reasoning’s social nature and its normativ-
ity, we use inferentialism as background theory. The results illustrate how students’
informal inferences are socially negotiated in the group, how students’ perceived
norms influence IIR, and what roles statistical concepts play in students’ IIR.

Keywords Generalization from data · Inferentialism
Informal inferential reasoning (IIR) · Informal statistical inference (ISI)
Informal statistical reasoning · Norms · Social

7.1 Introduction

Mathematical reasoning is social through and through. (Roth 2016, p. 126)

The influence and the role of data for prediction and decision making (see Bakker
et al. 2009; Watson 2001) makes generalization from data one of the most influential
topics in statistics (Pratt and Ainley 2008). As such, teaching and learning about gen-
eralization and inference become key concerns in statistics education. Generalization
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is crucial to inference and researchers have reported students’ difficulties in making
generalizations (Ben-Zvi andArcavi 2001).Alongside, there has been an increasingly
strong call for statistics education to take into account informal inference (Bakker
and Derry 2011; Dierdorp et al. 2011) because an informal approach to statistical
inference is necessary in the early years when formal inferential ideas and techniques
are beyond young learners’ reach (Meletiou-Mavrotheris and Paparistodemou 2015).
Informal inference takes into account aspects such as students’ prior experiences and
their knowledge of real-life contexts. Such previous statistical knowledge creates an
arena for students’ reasoning in making sense of the data in giving explanations (Gil
and Ben-Zvi 2011).

Thus, theories that bridge exploratory data analysis and formal statistical infer-
ence (ibid.) have come into focus, especially Informal Statistical Inference (ISI) and
Informal Inferential Reasoning (IIR). Research has so far largely focused on portray-
ing ISI and IIR not only as alternative to formal, but also as a tool to shed light on
important aspects of statistical reasoning (e.g., Makar and Rubin 2009, 2018; Zieffler
et al. 2008). Studies focused, for instance, on the role of the context in developing the
reasoning about ISI (Gil and Ben-Zvi 2011; Makar and Ben-Zvi 2011; Pfannkuch
2011). As an example, Gil and Ben-Zvi (2011) showed how a technology-enhanced
learning environment can promote students’ IIR. There is also a considerable number
of scholars attempting to clarify what researchers mean by declaring reasoning as
informal (Makar and Rubin 2009; Rossman 2008; Pfannkuch 2006).

Even though IIR and ISI are increasingly studied in statistics education research,
the question of how students’ informal inferences from data emerge socially has
not sufficiently been addressed. Recent research has predominantly focused on the
centrality of data in the generalization process and in making informal inferences
(Makar and Ben-Zvi 2011; Makar and Rubin 2009). However, we see that students’
generalization from data can hardly be conceived in its entire scope if the social
is disregarded or understood only as a context in which reasoning takes place (e.g.,
Pfannkuch 2011).We share with Roth (2016) the idea that mathematical (here: infor-
mal statistical) reasoning emerges socially and we think that investigating students’
IIR needs analytical approaches that cope with the question of how students’ ISI
emerge in social situations. Such focus can shed light on the social nature of stu-
dents’ generalizations from data and beyond data.

The purpose of this chapter is, thus, to investigate how students’ IIR takes place
in social situations and emerges socially. Seventh grade students’ IIR was under
investigation in students’ groupwork using the philosophical theory of inferentialism
(Brandom1994, 2000). Inferentialismunderstands reasoning as fundamentally social
and normative. The analysis illustrates how IIR emerges socially and is influenced
by norms; it illustrates students’ roles in the course of their reasoning, as well as the
statistical concepts’ roles in this process.
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7.2 Theoretical Background

7.2.1 ISI and IIR

ISI was introduced to capture young learners’ statistical inferences before their intro-
duction to formal statistical techniques such as calculating p-values and confidence
intervals. ISI is supposed to support and assist students to gain deep understanding
of the purpose and utility of data (Ainley et al. 2006) and how data can become
an integral part of contextual meaning making (Makar and Rubin 2009). Therefore,
an important endeavor in statistics education research has been to broaden the con-
cept of inference (Bakker and Derry 2011; Makar and Rubin 2018; Rossman 2008).
However, Pratt and Ailey (2008) have pointed out that what counts as “informal
inference” is not easy to determine: “[W]hat is informal could depend on the nature
of the inferential tasks being studied, on the complexity of the statistical and proba-
bilistic concepts involved, on the educational stage, and on other factors” (p. 3). In
this study, we adopt the view ofBakker andDerry (2011) andBakker et al. (2006) that
broadens the meaning of statistical inference to enclose more informal ways of rea-
soning and to include judgment based on contextual knowledge (Makar et al. 2011).
Briefly speaking, in this study we draw on Makar and Rubin’s (2009) framework
for thinking about ISI, based on a broader reasoning process that takes into account
human judgment of the statistical context. IIR is the reasoning process leading to and
underpinning ISI (Makar et al. 2011). Gil and Ben-Zvi (2011) argue that IIR could
bridge the gap between exploratory data analysis and formal statistical inference.
Following Rubin et al. (2006), IIR can be understood as statistical reasoning that
takes into account several dimensions such as “properties of data aggregates, the
idea of signal and noise, various forms of variability, ideas about [sample] size and
the sampling procedure, representativeness, controlling for bias, and tendency” (Gil
and Ben Zvi 2011, p. 88). In this study, we adopt a working definition proposed by
Zieffler et al. (2008) who describe IIR as “the way in which students use their infor-
mal statistical knowledge to make arguments to support inferences about unknown
populations based on observed samples” (p. 44).

Makar and Rubin (2009) developed the theory about ISI. They identified three
essential key principles: (1) generalization, including predictions, parameter esti-
mates, and conclusions, that extend beyond describing the given data; (2) the use
of data as evidence for those generalizations; and (3) employment of probabilistic
language in describing the generalization, including informal reference to levels of
certainty about the conclusions drawn.

The first key feature, generalization beyond data signifies making inferences
outside the data at hand, outside a given sample. Unlike generalization in mathe-
matics, which tends to be deterministic, generalization in statistics and probability
deals with uncertainty (Burgess 2006; Groth 2013). Put simply, making statements
about a population based on a sample requires taking into account the variation of
and uncertainty within data. Variation and uncertainty do not necessarily facilitate
generalization from sample to population—in fact, variation and uncertainty make
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generalization elusive. Alongside, research has shown that students’ tendency to treat
data as individual values may prevent them from experiencing data as a global entity
about which generalizations can be made (Ben-Zvi and Arcavi 2001).

The second key feature is the use of data (sample) as evidence for generalization.
What is considered as evidence is what can serve as means to support a claim (gener-
alization) in a given context. As such, evidence is contextual. Connecting data to the
context can help students in making sound generalizations (Gil and Ben-Zvi 2011;
Makar and Ben-Zvi 2011; Pfannkuch 2011). Evidence is also social in that it has
to be accepted in a given community. Data as evidence refers to numerical, obser-
vational, descriptive, or even unrecorded evidence (information) that is accepted by
the statistics research community (Makar and Rubin 2009).

The third feature in Makar and Rubin’s characterization of statistical inference is
the use of probabilistic language in describing the generalization. Making a state-
ment about a population based on the sample must deal with uncertainty. In formal
statistical inference, this uncertainty can be quantified using statistical techniques,
for instance in form of a certain percentage in a given confidence interval. In IIR,
uncertainty is expressed in a broader sense, in students’ informal ways describing
with their own words, without formal statistical calculation, using words such as
“maybe”, “it could be”, etc. (Makar et al. 2011).

7.2.2 Reasoning and the Social from an Inferentialist
Perspective

As a background theory, inferentialism determines the theoretical foundations our
study relies on. As Noorloos et al. (2017) have pointed out, inferentialism holds the
potential to overcome some of the philosophical problems of socioconstructivism,
such as the unsatisfactory resolution of the social-individual dichotomy.1

Inferentialism is a semantic theory rooted in pragmatics. It is based on philosoph-
ical ideas offered by for example, Kant, Hegel, Frege, Wittgenstein, and Heidegger
(Brandom 1994, 2000). Inferentialism as background theory provides what Roth
(2016) calls a sociogenetic perspective to students’ reasoning. Inferentialism does
not understand the social as a context for the individual: It rather assumes that rea-
soning is social in the way it exists in students’ discussions (see Schindler et al.
2017).

1A comprehensive description of inferentialism, its differences from constructivism, and its
strengths can be found in Noorloos et al. (2017).



7 Informal Inferential Reasoning and the Social … 157

7.2.2.1 Philosophical Background: Language Games and the Game
of Giving and Asking for Reasons (GoGAR)

Oneof the key ideas that inferentialismdrawson is the concept of languagegame, pro-
vided byWittgenstein (1958) in his lateworks.With this term,Wittgenstein describes
the practice in which participants provide utterances, stating “I shall call the whole,
consisting of language and the actions into which it is woven, the ‘language game’”
(p. 5). The language game is significantly influenced by societal framework condi-
tions, such as authority relations, duties, and responsibilities (Newen and Schrenk
2012). The very nature of the language game is not determined by grammatical
rules, but by the community’s practices and courses of conducts (ibid.). The expres-
sion game refers to the significance of such habits for makingmoves (i.e., utterances)
in the linguistic practice. In turn, the significance of words in the linguistic game can
only be understood when such “rules” of the game (norms, expectations, etc.) are
taken into consideration. Wittgenstein uses the metaphor of chess game to introduce
the concept of language game: “The question ‘What is a word really?’ is analogous to
‘What is a piece in chess?’” (Wittgenstein 1958, p. 47). In turn, describing the pieces
in the chess game via the rules of the chess game, not via their physical properties,
is analogous to describing words via the rules of their use in the linguistic practice,
not via their properties. However, it is not only the rules of the game that determine
the meaning of utterances, but it is also their position in the game. Peregrin (2009)
also uses the metaphor of chess to describe this:

Chess once more: Though the pieces have their ‘position-independent’ roles which reflect
their ‘force’ (the role of the queen makes the queen a much more powerful piece than the
pawn), the significance of pieces for a particular player in a particular position need not
always reflect this: there are (rare) positions in which the knight is more useful than the
queen (p. 167).

The position of an utterance in a discussion can give the utterance significant
power for the ongoing discourse. Brandom (1994, 2000) draws on these ideas when
conceptualizing the game of giving and asking for reason (GoGAR)—a pivotal con-
cept in inferentialism. Brandom (2001) explains that the significance of utterances
relies on the language game, inwhich persons give reasons and ask for reasons. Utter-
ances represent certain moves in the game (taking up a certain position); a game that
consists of giving and asking for reasons. These moves in the language game contain
a commitment to a certain content that can serve both as premise and as a conclusion
in reasoning and inferring (ibid.).

7.2.2.2 Epistemological Considerations Derived from Inferentialism

Students’ reasoning in the GoGAR. We understand students’ discourse in their
statistical inquiry as a GoGAR, in which they make claims, give reasons, ask for
reasons, acknowledge claims and reasons, attribute them to others, undertake them
themselves, or reject them. The term game highlights the significance of certain
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(possibly implicit) rules about how to make moves; about how to bring forward
claims in the statistics classroom, about how, when and whom to ask for reasons, etc.
When generating and manipulating data, students furthermore make actions (e.g.,
creating a diagram, showing it to others, pointing onto the solution they think is
correct).According toBakker et al. (2017), inferentialism treats judgment and actions
democratically without any prior assumption to hierarchy. Accordingly, Brandom
(2000) takes reason (judgement) to be the minimal entity one can take responsibility
for on the cognitive side, and action as a minimal one can take responsibility for on
the practical side. In our inferentialist epistemology, we consider students’ GoGAR
not only to consist of students’ linguistic reasoning, but also of their actions.

Primacy of the social and normativity. As we have pointed out elsewhere with
regard to students’ mathematical reasoning (see Schindler et al. 2017), we assume
students’ statistical reasoning to be primarily social. This is to say that reasoning
emerges socially in the processes of making claims, attributing claims to other per-
sons, acknowledging other persons’ claims, undertaking them oneself, etc. We even
believe students’ reasoning to be social when students are, for instance, working
solely; because it has a social origin and reflects the social situations that it is derived
from as well as perceived norms (about how to draw inferences, how to use words,
etc.). We assume students’ IIR to be social at the same time as it is statistical: Stu-
dents’ IIR takes place in—implicitly or explicitly—social situations: for example, in
the statistics classroom or in out-of-school situations. It reflects the social situations
and the norms embedded in these situations. Brandom (1994) states that the GoGAR
in this sense is implicitly normative: everyone who is involved in the GoGAR judges
about whether or not the moves that the other people make are appropriate or not.
In students’ group work in the statistics classroom, the appropriateness of students’
utterances is considered based on, among others, social, statistical, and mathemat-
ical norms in the statistical classroom (e.g., didactical contracts, rules of behavior,
etc.). When students base their generalizations beyond the data on the mean value as
concept, this may, for example, reflect the perceived norm in the classroom that the
teacher views the mean value as an appropriate reason and important concept. It is
possible that the same students draw on other concepts (such as a diagram, or extreme
value) in other social constellations, for instance, when they work in groups or in
out-of-school situations. In our inferentialist epistemology, we argue that students’
IIR cannot be isolated from these social and normative factors. We rather assume
that students’ IIR is social and—in the above-mentioned sense—normative to the
core.

Meaning of concepts as constituted through their roles in the GoGAR.
Statistical concepts are understood in the roles they play in the language game; in
particular, in students’ reasoning and inferences. Bakker and Derry (2011) claim,
“statistical concepts such as mean, variation, distribution, and sample should be
understood in terms of their role in reasoning, i.e., in terms of the commitments
entailed by their use” (p. 11). We think that the significance of a concept for students
can only be understood if its role in students’ reasoning is taken into consideration.
We focus on how the concept is used in IIR and what significance it has. In our
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inferentialist epistemology, we think that the meaning of concepts consists in the
roles that they play in the GoGAR. Their meaning develops through the evolving
roles.

7.2.2.3 Research Questions

Based on our inferentialist epistemology, we ask the following research questions:
How does students’ IIR and—in consequence—their ISI emerge in the GoGAR in a
social practice? In particular, how do students socially make generalizations beyond
the data, which evidence do they negotiate, and how do they deal with uncertainty?
How is their IIR influenced by perceived norms? What roles do statistical concepts
have in students IIR? In particular, how do students use statistical concepts as reasons
in IIR?

7.3 Method

7.3.1 Design of the Study

7.3.1.1 Preparing for the Empirical Study

Weusedata fromanempirical study carried out in a classwith 20year 7 students (aged
12/13) in a Swedish secondary school. This study incorporated the “helicopter task”
(see Pratt 1995, see below) taken from Swedish in-service teacher developmental
training program called “matematiklyftet,” designed to support in-service teachers.

In preparation for the study, we initiated regular contact with the teacher and
the class and had several electronic conversations with the teacher before the teach-
ing experiment. During these conversations, the teacher was introduced to the task
and the procedures for conducting the teaching experiment, including the students’
envisioned learning trajectory, follow-up questions, etc. The researchers additionally
had two preliminary meetings with the teacher where they visited the class during
mathematics lessons. The teacher, Mrs. Andersson (pseudonym), had worked as an
in-service mathematics teacher for over 20 years. She showed enthusiasm to par-
ticipate in this study. During preliminary interviews, the teacher discussed students’
learning background, their prior experiences in thefield of statistics, the social climate
in the classroom, and the habits in the class of working collaboratively. It appeared
that the class was used to work in groups, but not to conduct experiments themselves.
According to the teacher’s evaluation, the performance level of the students was low
as compared to other mathematics/statistics classes.

The teacher reported that the class was previously introduced to descriptive statis-
tics and graphical representations of data, to the use of diagrams, and methods to
calculate the mean and median. The students were familiar with the use of tablet
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computers across all subjects. However, the class was not used to aggregate aspects
of data such as statistical correlation, sample distribution, or variation.

7.3.1.2 The Mathematical Task and the Aims

In order to support students’ IIR, we chose a task that was based on experimentation
and correlation. In the task, the students were asked to explore paper helicopters; in
particular the flying times dependent on the rotor blade lengths (RBLs) (Ainley et al.
2001; Pratt 1995; see Fig. 7.1).

We used the task in a group work setting in order to encourage students to socially
discuss different aspects in the data. Our aim was to open up for a social and con-
tent related (statistical) GoGAR. We expected the students to deal with uncertainty,
because measuring flying times inevitably invites students to cope with uncertainty
due to measurement errors. Our hypothesis was that claims dealing with uncertainty
would be expressed in probabilistic language beyond data. Generalization (beyond
data) was supposed to be addressed when students state or make claims that indicate
a correlation between the RBL and flying time. In particular, the students’ GoGAR
was expected to address correlation based on concepts such as mean value, mode,
median, or extreme value (see Mokros and Russell 1995). Alongside, we expected
students to make generalization beyond data based on causality (laws of physics),
for instance reasoning based on the air resistance, the quality of the paper used, etc.
Moreover, we anticipated that the students would make statements following a sin-
gle data approach (Moritz 2004), for instance, “You just have to look at the biggest
value. Then you’re done.” We also conjectured difficulties in representing multiple
variables (McClain et al. 2000; Moritz 2000).

Fig. 7.1 The paper helicopter task
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7.3.1.3 The Design of the Empirical Study

The class dealt with the helicopter task in two lessons with one day between. The
focus of the first lesson was to actively engage the students in the data collection. In
the first lesson (not in the focus of this chapter), six groups of students eachmeasured
five flying times with helicopters within a 3 cm span rotor length (6–8; 9–11; 12–14;
see Table 7.1). After the first lesson, the team of researchers collected the data and
put them in a table displaying the data of the whole class (Table 7.1). During the
second lesson, the students received this data table together with the task.

The focus of the second lesson was students’ IIR. The students worked in new
groups (groups 1 & 2 → group A; groups 3 & 4 → group B; groups 5 & 6 → group
C). The last activity in the second lesson was a whole class presentation of students’
answers to the task and gathering questions. The teacher organized this discussion.
The role of the researchers during these two lessons was limited to observation and
video recording.

7.3.2 Data and Data Analysis

We focused on the data of one group (group C, 5 female participants). This group
caught our attention during the first lesson when they focused on data generation.
Each member had a specific assignment and the group had extensive discussions,
which led to rich data for our analysis. During the second lesson, the group was

Table 7.1 Data in the helicopter experiment, gained by the students

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

6 cm 2.50 2.30 2.50 2.30 2.40 1.90 2.59 2.94 2.56 1.83

7 cm 1.8 1.9 2.7 2.2 2.1 2.43 3.13 2.34 2.3 2.85

8 cm 2.6 1.9 2.6 2.5 2 2.97 2.45 2.38 3.04 2.95

9 cm 3.1 2.98 2.9 2.86 3.03 1.64 1.31 1.94 1.85 2.12

10 cm 2.2 2.6 2.43 2.82 2.38 1.65 2.47 2.27 2.18 2.24

11 cm 2.24 2.8 2.9 2.12 2.7 1.34 1.87 1.87 1.3 2.78

12 cm 2.8 2.2 2.56 2.38 3.32 1.35 2.31 1.81 1.73 2.03

13 cm 2.56 2.23 2.46 2.28 1.73 1.68 1.63 1.81 2.38 1.98

14 cm 4 2.98 2.95 3.08 2.08 2.33 1.86 2.16 1.68 2.36

Data gathered by: group 1, group 2, group 3, group 4, group 5, group 6
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engaged in the GoGARwith various languagemoves.We use this group to exemplify
how an inferentialist epistemology can contribute to understanding students’ IIR in
both its statistical and social facets.

The data analysis focuses on the aspects described in Sect. 7.2.2.2. Based on
the analysis of students’ GoGAR (which includes not only oral reasoning but also
students’ actions), we investigate students’ IRR. In particular, we study how IIR
emerges in the social practice, what roles students have in moving the IIR forward,
and what roles statistical concepts have in this process.

7.4 Results

The following scenes took place in the second lesson. In this lesson, the teacher
initially recalled what had happened during the first lesson. Thereafter, she explained
what was planned for the second lesson. The students received a table showing all
the data gathered by the students in the first lesson (Table 7.1).

Phase 1: Bringing the diagram into play. Immediately after receiving the task,
one of the students, Rose (all names are pseudonyms), showed a tablet computer
screen to the other students: It displayed a diagram that she had drawn before this
lesson; based on the data that she had gathered in lesson 1 (Fig. 7.2). This diagram
incorporated the flying times that Rose’s group gathered (group 6, containing also
Katie and Lucy, Table 7.1). The other two girls (Anna andMaria) had attended group
5 and gathered other data (Table 7.1).

In this phase, two aspects were distinctive in the GoGAR: First, the other girls
claimed and insisted that the flying times of the other group must be integrated in the
diagram as well. For instance, Anna insisted, “You have to put in our flying times as
well.” She called the teacher and complained to her, “She kind of put in only her own
values, she did not put in our values.” She seemed to draw on the teacher’s authority

Rose showing diagram to the others Displayed 
diagram 

Diagram (reconstructed)

Fig. 7.2 The students’ initial diagram (part 1)
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in order to make Rose integrate her group’s values. The GoGAR indicated that the
students saw the necessity to have all their data displayed in the diagram. However,
the students did not ask Rose to integrate all the data of the table; they rather asked
her to integrate “their” values; in this case, the flying times for RBLs 12 to 14 (group
5, see Table 7.1). Their reason for focusing only on “their” data—not on all data—did
not become explicit. They possibly misunderstood the task (assuming that they only
had to consider their own values), or they (implicitly) perceived that longer RBLs
go along with longer flying times (correlation) , leading them to only consider the
longest RBLs in the experiment. It could also be the case that their own data became
subjectively very important to them. In a similar vein, Lehrer and Romberg (1996)
and Roth (1996) observed students’ engagement in statistical tasks when given the
opportunity to generate their data themselves (see also Cobb and McClain 2004).

The second distinctive aspect in this phase was Rose’s explanation of the diagram
to the other students. She, for instance, explained that “this is the length [pointing
to y-axis], this is the time (pointing to x-axis), and these are the trials [pointing to
the points in the diagram]”, because the other students (especially Maria and Anna)
initially claimed that they “do not understand” the diagramand asked for clarification.

Even though the students did not make informal statistical inferences yet in this
phase, their GoGARwas important for the following IIR: It layed the foundations for
the diagram’s role in students’ IIR, especially for finding reasons that support their
ISI. In this phase, we can also see that the students had different roles in moving the
GoGAR forward. Rose came up with the diagram that she had prepared in advance
(her actions such as showing the diagram or pointing are crucial). Anna insisted that
her values must be integrated as well (and even used the power of the teacher to make
Rose integrate the data). Moreover, Maria asked several times for an explanation
of the diagram—leading Rose to explain the diagram. The latter gave the other
students in this group the opportunity to understand the diagram better; which in
turn facilitated the use of the diagram in their IIR. At the end of this phase, Rose
started filling the values of group 5 in her diagram.

Phase 2: Informal confidence interval. Directly after the first episode, the students
started to reason with the best RBL:

Turn Speaker Statements
01 Katie We should decide the best rotor blade length.
02 Maria If there had been 15 or 16 then maybe it had gone slower. Slower

than 14.
03 Katie I think that it is 12 and above uhh…It does not go on forever.
04 Anna Not 14 and above, no: 13 and above.
05 Maria I think it is 13 and above and the limit is 16
06 Anna Mhm. Like 13 to 16.
07 Maria Yeah. There, the best rotor blade lengths may be situated.

Katie’s first statement in this episode (Turn 01) leads the students’ GoGAR to
focus on the best RBL. Maria’s subsequent statement (02) reflects that she is not
only taking into account the given data, but extrapolating the data: She makes a
prediction based on the data, speculating about the flying times of helicopters with
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a RBL of 15 or 16 cm. In particular, she claims that the helicopter would possibly
have gone slower if the RBL had been 15 or 16. This indicates that she assumed a
correlation in the kind of “the longer the rotor length, the longer the flying time.”
However, Katie’s statement (03) indicates that she is aware that this correlation “does
not go on forever.” The following moves in the GoGAR (04 to 07) reflect that the
other students acknowledge this claim. They claim that it is “12 and above” (03),
“13 and above” (e.g., 04): With this idea the students presumably want to express an
intuitive confidence interval in the sense that they “have a sense of the reasonable
expected variability around the expected value” (Shaughnessy 2006, p. 87). Maria’s
utterance, “I think it is 13 and above and the limit is 16” (05) sets the lower and upper
boundaries. The question of why the girls seem to be aware that “it does not go on
forever”; and, thus, focus on 15/16 as the best RBL; not on 20, for instance, is dealt
with at the end of the lesson (see below).

In the subsequent group work—which is not presented in a transcript due to space
restrictions—, Anna, Maria, and Katie repeatedly claimed and confirmed that “we
believe in 13 till 16.” Additionally, Maria claimed that it may be “15, something like
that, I think” and went on reasoning, “it feels like we have to have one rotor length
and in that case it is like 15, I think.” The reason for uttering the latter seems to lie in a
perceived norm to determine a single value as the best RBL. It can be, for example, the
formulation of a mathematical task or students’ experiences in the mathematics and
statistics classroom (classroom norms) that made her assume such an expectation.
Maria’s expression of this perceived norm was influential on the ongoing GoGAR:
Katie acknowledged it, stating, “then I think it is 15.” Anna claimed, “but we believe
in 15 then”. Maria summed up their preceding GoGAR stating, “but (…) we believe
in 13 till 16 (…) one of them but if you have to be exact we can say 15.”2

In this phase, it is—from an analytical point of view—difficult to state which
concepts the students drew on that moved the IIR forward. In fact, the question
arises of what students’ reasons may have been for assuming the correlation “the
longer the rotor length, the longer the flying time.” Why did they assume that the
flying time gets longer the longer the rotor blades are? Were they scanning the
numbers and, for instance, focusing on 4 s as extreme value, leading to 14 cm as best
RBL? Have they implicitly drawn inferences from the diagram that Rose showed
them (Fig. 7.2)? At this point, it cannot be verified that the reasons that the students
drew on were statistical ones (such as mean value). Nevertheless, we argue that
the students’ endeavor, in which they drew on physical properties, in which they
seemed to express their uncertainty through an informal confidence interval, drew
generalizations beyond the data and used the data at hand, claimed a correlation,
and mentioned its limits may be regarded as IIR. This reflects the above-mentioned
broadened view on ISI and IIR as proposed by, for example, Gil and Ben-Zvi (2011)
and Makar et al. (2011).

Phase 3: Reasoning based on the diagram. After their discussion on the interval,
Rose showed the completed diagram (Fig. 7.3):

2Please note that (…) indicates a short pause of speech in the student’s utterance.We did not attempt
to quantify the exact length of pauses.
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Diagram as displayed on the tablet Diagram (reconstructed)

Fig. 7.3 The students’ updated diagram (part 2)

Turn Speaker Statements
13 Rose Done! Here! (showing the new diagram to the group after integrat-

ing the new values)
14 Maria What does the yellow stand for? (pointing at the graph on the tablet)

Aha, it is the color.
15 Anna Blue is 13, right?
16 Rose And blue […] blue is 12 and green is 13.
17 Maria Now I can follow you, the blue is … (looking and pointing at the

graph)
18 Rose Yes… Now you can SEE3 which one is the best!
19 Anna It is the yellow one. Cheer yellow!
20 Katie Mhm.
21 Anna Yellow is the best.
22 Maria How sure are we?
23 Katie Pretty sure!

The diagram appeared to play an important role for the students when inferring
that 14 cm is the best RBL; and it was crucial for their IIR. Rose stated, “You can SEE
which one is the best” (18). What the students perceived in the diagram confirmed
what they implicitly had assumed beforehand; and it convinced them. Based on
the diagram, they were “pretty sure” that 14 cm is the best RBL, indicating that the
diagram assisted them to manage their uncertainty in the data. Later on in this lesson,
Rose explained to the teacher and to the other classmates that “it is much easier to see
the difference between the different rotor lengths [in the diagram, authors’ note]. 14
is highest here [pointing at maximum], but kind of low there [pointing at minimum].
This is because if you drop it a little inclined, or we were two different groups and

3Please note that it was Rose‘s emphasis.
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may have dropped it in different ways. 12 is quite low compared to 14. And 13 went
downwards at the end.”

Phase 4: Reasoning based on the mean value. In the subsequent group work, the
students tried to find another way to determine the best RBL (see third question in
Fig. 7.1).

Turn Speaker Statements
24 Katie Did you hear what Rose said?
25 Anna No…
26 Katie Rose, can you quickly explain it?
27 Anna The mean?
28 Rose The mean. Then you know approximately where every-

thing is conglomerating.
29 Katie If we calculate the mean for every one of these (rows),

then we have kind of the mean value.
30 Maria This is not the same type as the first one.
31 Katie/Anna/Rose No.
32 Rose This is now the mean value.
33 Anna So, if we calculate the mean value, then we know approx-

imately where all (trials) are conglomerating.
34 Rose Mhm. [nodding in agreement]
35 Anna Then we have a good calculation. We nailed it. Good job.

Now let’s calculate the mean.

In this phase, the students drew on the mean as a statistical concept in their
reasoning. The mean had the role as an alternative concept for drawing the inference
that 14 cm is the best RBL.Maria, for instance, stated, “this is not the same type as the
first one” (30), which is confirmed by three of the other girls. Anna’s final utterance
“then we have a good calculation. We nailed it. Good job. Now let’s calculate the
mean” (35), indicates a focus on finding a method that made them able to calculate.
This may indicate a perceived norm in the classroom to use approaches that draw on
calculations. The students furthermore presented this approach to the teacher when
she approached their group. They decided that Rose is responsible for calculating
the mean values for the three RBLs (12–14 cm). However, neither the results of this
calculation nor the mean value in general were further discussed in the GoGAR. The
students did not seem to feel the need to confirm the ISI that they had drawn based on
the diagram. This indicates that the mean had a subordinate role in the students’ IIR
on the best RBL. They seemed to use it as an additional reason that they perceived
meets the classroomnorms. In the final presentation,Katie summarized, “and thenwe
tried and calculated themean values for 12, 13, and 14 and thenwe got approximately
the same every time [as compared to the results from the diagram].”

Phase 5: Presenting and summarizing the reasoning.When the students presented
their work to their classmates at the end of the lesson, they summarized their work.
Here, it also became apparent why they seemed to be aware that the correlation “the
longer the rotor blades the longer the flying time” is limited; and thus focused on 15
as best length.
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Turn Speaker Statements
36 Katie We think that the best rotor length is between 13 and 16 cm. For

14, it worked best, for us.
When we tested it with like 20, it got completely too long.

37 Teacher So, you tried it out?
38 Maria Yes.
39 Katie Yes. It didn’t work out. The shorter… too short doesn’t work either.

So it just drops. So, we believe, something between 13 and 16.Well,
15. But if we choose one of our own lengths, then it is 14.

40 Teacher Okay.

In Turns 36 and 39, Katie summarized their reasons for finally choosing 14 as best
RBL: They reasoned based on the physicality that the helicopter dropped when it
is either too long or too short. Katie additionally expressed the informal confidence
interval; and pointed out the distinction between the correlation that the students
perceived within the data (“if we choose one of our own lengths, then it is 14”) and
the generalization beyond the data (“so, we believe, something between 13 and 16.
Well, 15.”)

7.5 Discussion

The purpose of this chapter is to investigate students’ IIR in social practices (Brandom
1994, 2000). In particular, we inquired into the roles that individual students, different
informal and formal statistical concepts, and norms may have on students’ IIR.

The group work of five grade 7 students, Maria, Katie, Anna, Lucy, and Rose,
illustrates how perceived norms and students’ moves in the course of the GoGAR
contributed to the emergence and development of IIR. It illustrates that ISI, the
resulting end-product of IIR, is consequently the result of a synergy of statistical
content and social practice, in which the individual students participate and each
have their roles. One student brings, for instance, a diagram into play, another student
insists to havemore values integrated, and a third student asks for explanation. In sum,
we see that students’ IIR in the group work and the resulting ISI consist of the moves
that the individual students make in the GoGAR. The students take—consciously
or not—different roles in moving the GoGAR and the IIR forward. In our study,
four out of five students in the group set different impulses that move and guide the
IIR. The students contribute to the ISI through actions (e.g., showing the diagram),
through claims on the content (e.g., “it does not go on forever”), questions (e.g., “can
you explain this?”), or requests (e.g., “you have to put in our values as well”). We
observe that normative aspects have a significant influence on the course of students’
IIR. The students seem to perceive, for instance, the norm to have a single value as
their answer (instead of the informal confidence interval that they believe in), or the
norm to find an approach that draws on calculation (the mean value), or to follow
the questions listed in the task. The students even appear to make use of normative
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aspects consciously. One student draws on the authority of the teacher to make her
groupmate integrate her values in the diagram.

Furthermore, the analysis illustrates the roles that the statistical ideas can take in
students’ IIR. In the group at hand, the diagram has a significant role; which can be
seen in students’ reasoning within the group work as well as in their presentation at
the end of the lesson. The students stress the fact that they can “see” the best RBL in
the diagram. It seems as if this representation is easier to grasp for them than themean,
which has a subordinate role in the students’ GoGAR. Students’ problems in their
conceptual understanding of the mean (as observed in Gal et al. 1990; Makros and
Russell 1995; Pollatsek et al. 1981)may be one reasonwhy they do not use it naturally
in their reasoning. In a large part of the GoGAR, the students discuss the best RBL
without explicating which concepts they draw on: They probably feel that they share
the same view and do not need to make the underlying reasons explicit (Cobb and
McClain 2004). Finally, the students discuss the mean value as a means to determine
the best RBL. They do not do so spontaneously, but rather react to the prompt in the
task. The mean value has the role to confirm what the students’ already saw in the
diagram. They draw on the mean value in order to “have a good calculation.” In fact,
the students mainly mention the mean value when communicating with their teacher.
It appears as if the students follow a perceived expectation by the teacher to use the
mean as a concept; however, they seem to “trust” the diagram in their own reasoning.
This illustrates the normative dimension of IIR: The reasons that the students draw
on may be different depending on the persons that are involved and their perceived
expectations.

Another normative aspect in students’ group work is their single value approach.
When discussing the best RBL, the students informally appear to discuss confidence
intervals (see Shaughnessy 2006); claiming, for instance, that the best length must
lie between 13 and 16. This connects to research results by Makar and Rubin (2009),
who found that students in their study broadened their predictions to range values in
order to improve their predictions. Broadening predictions is a strategy that students
use to decrease uncertainty and to avoid being wrong. On the other hand, one student
brings the perceived norm into play that one has to provide a precise, single-valued
answer, stating “it feels like we have to have one rotor length” (Maria). This has
an impact on students’ IIR: Their reasoning accordingly focuses on finding a single
value. This connects to research in the domain of statistics education acknowledging
and describing the impact of norms on students’ IIR (e.g., Bakker and Derry 2011;
Makar et al. 2011). However, in contrast to Makar et al. (2011), who point out
that there exist cognitive and social elements in students’ IIR (p. 169), we avoid to
differentiate between cognitive and social aspects. We rather see students’ utterances
as always influenced by norms and, thus, as normative themselves. Besides, the fact
that the students in our study frequently refer to what they “believe” in, relates to
Makar et al.’s (2011) assertion that beliefs are among the key drivers in students’
IIR.

Finally, our analyses and the results confirm that our epistemological theory based
on inferentialism allowed us to grasp students’ IIR as a social practice. This back-
ground theory assumes—similar to what Roth (2016) suggests—reasoning to be
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social. The results confirmed that such background theory can help researchers to
better understand students’ IIR in a social perspective. The explicit use of background
theories, as shown in this chapter, addresses a gap in statistics education research (see
Nilsson et al. 2018). In this chapter, we illustrated that an inferentialist epistemology
can constitute a meaningful supplement to ISI and IIR (as also suggested by Bakker
and Derry 2011). Even though inferentialism also has its “dark spots” (as pointed
out by Schindler et al. 2017), we think that it provides opportunities in particular for
investigating IIR in order to inquire into students’ reasoning as a social practice.
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Chapter 8
Posing Comparative Statistical
Investigative Questions

Pip Arnold and Maxine Pfannkuch

Abstract A “good” statistical investigative question is one that allows rich explo-
ration of the data in hand, discovery, and thinking statistically. Two outcomes from
four research cycles over a period of five years were: The development of criteria
for what makes a good statistical investigative question and a detailed two-way hier-
archical classification framework for comparative statistical investigative questions
that are posed. With a focus on the last research cycle, responses from pre- and post-
tests are explored, and the level of comparative statistical investigative questions that
students posed is discussed.

Keywords Comparisons · SOLO taxonomy · Statistical enquiry cycle
Statistical investigative questions

8.1 Introduction

Arnold (2008) highlighted posing statistical questions as a problematic situation
because of its role in assessment for qualifications in New Zealand and because
teachers lacked knowledge in this area. The problem arose in the first of four research
cycles where students in a test situation posed a statistical question, which was
checked as satisfactory by the teacher. The students subsequently were unable to
finish the test because their statistical question was not suitable for the given data.
This raised the question “Whatmakes a good statistical question?”, as the teacher and
researcher together had marked the student posed questions correct. In an attempt
to answer the question “What makes a good statistical question?” the literature was
reviewed extensively and the conclusion drawn was that generally the literature gave
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mixed messages about what makes a good statistical question and the purpose of a
statistical question. Indeed, Arnold (2013) concluded that the identified problemwas
actually about “What makes a good statistical investigative question?” Over four
research cycles what makes a good statistical investigative question was explored,
and the resultant criteria for what makes a good statistical investigative question were
formed. These criteria informed the teaching experiment for research cycle four with
a particular focus on comparative [statistical] investigative questions. Investigating
comparative situations is a major focus in the New Zealand statistics curriculum
at year 10 (ages 14–15) where this research took place. Hence, it is important for
New Zealand teachers to know what makes a good statistical question at the school
level, the components and concepts underpinning a good statistical question, and
the learning in which students should be immersed to support the posing of good
statistical questions. This chapter focuses on this fourth research cycle and explores
the research question—What level of comparative investigative questions are year
10 (ages 14–15) students posing?

8.2 Literature Review

8.2.1 Statistical Investigative Cycle

The first dimension of the four-dimensional framework for statistical thinking in
empirical enquiry (Wild and Pfannkuch 1999) is concerned with what one thinks
about and the way in which one acts during a statistical investigation. Wild and
Pfannkuch (1999) worked with the PPDAC (problem, plan, data, analysis, and con-
clusion) model (MacKay and Oldford 1994) of the statistical investigative cycle, and
this is the model that underpins the work in this research:

• The problem stage deals with grasping a particular system’s dynamics and under-
standing and defining the problem.

• The planning stage involves deciding what to measure and how, how the sample
will be taken, the design of the study, and how the data will be managed, including
the recording and collecting of data. It also includes piloting the investigation and
planning the analysis.

• The data stage is concerned with collecting, managing and cleaning the data.
• The analysis involves sorting the data, constructing tables and graphs as appro-
priate, exploring the data, looking for patterns, planned and unplanned analysis,
and generating hypotheses.

• The final stage of the cycle involves interpreting, generating conclusions, new
ideas and communicating findings.

In the statistical investigative cycle, questions and questioning arise in all areas.
Questions are formally posed in both the problem and planning stages, in particular.
Definitions and clarification of the purposes of these questions are now discussed.
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8.2.2 Questions Within the Statistical Investigative Cycle

The initial motivating question for this research was: What makes a good statistical
question? A number of studies were found where forming statistical questions were
part of the researched process (e.g. Burgess 2007; Hancock et al. 1992; Lehrer and
Romberg 1996; Pfannkuch and Horring 2005; Russell 2006) and a number of papers
or books were located that reported an overview of the current status of statistics
education, including forming statistical questions (e.g. Graham 2006; Konold and
Higgins 2002; Whittin 2006). After reviewing existing literature and considering the
statistical investigative cycle, the picture of what makes a good statistical question
was still unclear. There were mixed messages about the purpose of statistical ques-
tions and whether they were used for an investigation or to collect data from people.
From the literature (e.g. Burgess 2007; Russell 2006; Pfannkuch and Horring 2005)
and from experience, it was concluded that within statistical investigations we can
consider two types of questions: those that are formally posed and those that are
spontaneously asked throughout the investigative process.

The theory proposed by Arnold (2013), therefore, is that there is question posing
and question asking. Question posing results in a question being formally structured,
whereas question asking is a continual spontaneous interrogative process. Question
posing arises as a result of having a problem that needs to be addressed using a
statistical investigation. Posed questions may be asked for investigative or survey
purposes: investigative questions are those to be answered using data (the problem),
while survey questions are those asked to get the data (the plan). Question asking
also has two purposes, both of which involve an interrogation element: interrogative
questions are those asked as checkswithin the PPDACcycle,while analysis questions
are those asked about the statistics, graphs and tables in order to develop a description
of and an inference about what is noticed (the analysis).

As this research is focused on situations where students are working with sec-
ondary data, i.e. data that has already been collected and is given to them, Fig. 8.1
shows where questions fit within the statistical investigative cycle when students are
given data. The purpose of Fig. 8.1 is to show how many different types of “statis-
tical” questions are used within the PPDAC cycle, reinforcing how it could be very
confusing for students if the questions are not defined and named according to their
different purposes.

8.2.3 Posing Statistical Investigative Questions

In the big picture of statistical enquiry the investigative question is the statistical
question or problem that needs answering or solving. In most instances the inves-
tigative question starts from an “inkling” and is developed into a precise question.
The process of developing or creating the investigative question is iterative and
requires considerable work to get it right (e.g., delMas 2004; Franklin et al. 2005;



176 P. Arnold and M. Pfannkuch

Fig. 8.1 Questions within the statistical investigative cycle: secondary data (Arnold 2013, p. 22)

Hancock et al. 1992; Russell 2006; Wild and Pfannkuch 1999). There is also a need
when developing the investigative question to have “an understanding of the differ-
ence between a question that anticipates a deterministic answer and a question that
anticipates an answer based on data that vary” (Franklin and Garfield 2006, p. 350).

Posing investigative questions has been identified as a problem area for students,
for example, the idea of asking questions of the data. Pfannkuch and Horring (2005)
noted that students lacked understanding of what a question is and the idea that
one can pose a problem by asking questions of data: “Maybe students haven’t yet
formed that understanding of what a question is—how you can ask a question in a
set of data” (p. 208). Lehrer and Romberg (1996) found that students initially had
problems with asking questions of data: “students believed that questions cannot be
asked of data, only of people” (p. 80). Burgess (2007) noted that students found
posing investigative questions a problem but did not specify the particular issue that
arose. Other issues related to investigative questions include the need for teachers to
model posing investigative questions, initially as seed or starter ideas (e.g. Lehrer and
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Romberg 1996), but also to push students thinking about, for example, “typicalness”
and data as an aggregate rather than individual cases (e.g. Konold and Higgins 2003).

In order to get precise investigative questions that can be interpreted and that yield
useful information, an interrogative process, which involves asking questions of the
investigative question, is necessary (e.g., Burgess 2007; Graham 2006; Konold and
Higgins 2003). For example, Burgess (2007) acknowledged that some of the spe-
cialised content knowledge teachers needed for teaching statistics related to their
ability to be able to decide if a question posed by their students was suitable, unsuit-
able, orwhether changes could bemade tomake the question suitable.Graham (2006)
provided five useful considerations for forming a good investigative question, which
were different aspects of interrogating the investigative question. The considerations
were whether the question was: “(1) actually a question, rather than simply an area
for investigation…; (2) personally interesting to you…; (3) likely to draw on data
that will be available within the time frame of the investigation…; (4) specific, so
that it is answerable from data…; (5) measurable….” (p. 88). With this perspective,
investigative questions are formulated through an interrogative process with regard
to the considerations.

8.3 Methodology

Design based research (DBR) or design experiments were used. DBR has its founda-
tions in design science (Brown 1992) and typically involves a planned intervention
that develops ideas based on theoretically grounded innovations to inform practice
while simultaneously conducting research on the intervention (Brown 1992; Cobb
2000). In particular, DBR focuses on the types of learning that differ from common
or current practice and explores new and novel practices with the intent to change
systems by being innovative (Bakker 2004; Bakker and van Eerde 2015; Schwartz
et al. 2008).

Adesign experiment is a formof interventionist research that creates and evaluates novel con-
ditions for learning. The desired outcomes include new possibilities for educational practice
and new insights on the process of learning. Design experiments differ from most educa-
tional research because they do not study what exists; they study what could be. (Schwartz
et al. 2008, p. 47)

The research, using DBR, started with an initial preparation and design phase,
followed by a teaching experiment, then a retrospective analysis phase,which fed into
another preparation and design phase, with the cycle repeated four times (e.g. Bakker
2004; Bakker and van Eerde 2015). A hypothetical learning trajectory (HLT) (Simon
1995) was used in the design of instructional materials. In the teaching experiment
phase the teacher and researcher (as observer) together experienced the students’
learning and reasoning in the classroom. Each lesson was reflected on and informed
the next lesson. During the teaching experiment phase, evidence was collected in the
form of video-recordings of lessons, field notes, pre-and post-tests and interviews



178 P. Arnold and M. Pfannkuch

of some students for the retrospective analysis, which occurred at two levels. An
ongoing retrospective analysis informed subsequent planning and was motivated by
what seemed best for the students (Cobb 2000). The retrospective analysis at the end
of a teaching experiment was orientated by the HLT and conjectures both of which
provided a basis for developing the instruction theory (Bakker 2004; Cobb 2000).
The research process was iterative—design, test and redesign.

For the pre- and post-tests the retrospective analysis involved writing hierarchi-
cal descriptors based on the student data and criteria derived from the literature
followed by the subsequent classification of student responses into categories. The
categories evolved over four cycles and were based on the SOLO taxonomy (Biggs
and Colllis 1982). The SOLO taxonomy then provided the basis for quantification of
the responses, which were then analysed quantitatively. Transcriptions of the video
recordings were used to identify salient moments within the class lessons in order
to provide evidence and illustrations of how students were scaffolded to interrogate
and pose investigative questions.

Four research cycles were undertaken in 2007, 2008, 2009 and 2011. This chapter
reports on the findings and outcomes from 2011, the last cycle. At the end of the first
teaching cycle the problematic situation, what makes a good statistical question, was
identified.

8.3.1 Participants

The first two teaching experiments were undertaken in a state, mid-socio economic,
multicultural, suburban co-educational school with Teacher A, who in 2007 was in
her fifth year of teaching. Her year 10 students (ages 14–15) in 2007 were average
to below average in ability, while in 2008 the students were above average in ability.
The last two teaching experiments were undertaken in a state, mid-socio economic,
multicultural, inner-city girls’ school with Teacher B, who in 2009 was in her ninth
year of teaching. Her year 10 students in 2009 were average in ability. For the 2011
class focused on in this chapter, there were 29 students of above average ability
involved in the research. The class had a mix of ethnicities including New Zealand
European, Māori, Pasifika and Chinese.

8.4 Teaching Experiments

To situate the research question, the relevant elements of the four teaching experi-
ments are given. These are the elements that: (1) contributed to the criteria; and (2)
were relevant for comparative situations, the focus of the research question.

In every instance the teaching experiment is within the context of the statistics
topic in a year 10 (ages 14–15) mathematics class. Themain focus at this year level in
New Zealand is on comparative situations. Generally the students would have about
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4–5 weeks of the statistics topic across this one year of schooling. It is important for
the reader to note that at the time of this research, the teaching of posing investigative
questions inNewZealandwas limited to teachers putting an investigative question on
the board and then expecting the students to pose their own investigative questions
with little or no formal teaching about how to pose investigative questions. For
many students this would have been the first time they would have met comparative
situations and especially the expectation to pose comparative investigative questions.

8.4.1 Teaching Experiment One

Posing investigative questions was identified at the end of the first teaching experi-
ment as a problematic situation that was in need of further exploration (Arnold 2008).
The hypothetical learning trajectory for posing investigative questions evolved over
the teaching experiments. In the first teaching experiment, as questioning was not
identified as a problematic area specifically, the teaching and learning sequence was
created based on previous best practice, while focusing on using the statistical inves-
tigative cycle as envisioned in the new curriculum (Ministry of Education 2007). An
initial linear hierarchical categorisation system was proposed for judging investiga-
tive questions (Arnold 2008) based on initial evidence in the students’ post-tests [for
a full account of student pre- and post-tests see Arnold (2008)].

8.4.2 Teaching Experiment Two

In the second teaching experiment the problematic situation, what makes a good
investigative question, was initially addressed. During the teaching experiment the
teacher focused on ensuring that the variable and the target population were clear
in the question and that the question was asking about “some type of relationship
or comparison” (Teacher A, 2008, lesson 2). In summarising questions within the
statistical investigation cycle, three points were noted: (1) posing investigative ques-
tions requires students and teachers to have a clear idea of what the variable(s) are in
which they are interested; (2) what they want to do (summarise, compare or relate);
and (3) what the population of interest is. The planning involved deliberately teach-
ing these criteria to the students and providing sufficient examples to allow them to
practise with a number of different variables and populations. Teacher A deliberately
discussed and highlighted the three criteria.

In addition to the initial lesson on posing investigative questions, the teacher
decided to spend an additional lesson sorting, critiquing and improving investiga-
tive questions that had been posed by others. This involved the students first sorting
the questions into the different types (summary, comparison and relationship) and
then improving the investigative questions by making sure the investigative ques-
tions met the three criteria given by the teacher. In this lesson a number of points
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Criteria

1. The variable(s) of interest is/are clear and available
2. The population of interest is clear
3. The intent is clear
4. The question can be answered with the data
5. The question is one that is worth investigating, that it is interesting, that there is a purpose
6. The question allows for analysis to be made of the whole group

Fig. 8.2 Criteria for posing investigative questions

were mentioned by the teacher that have subsequently been linked to posing a good
investigative question or understanding the question posed.

• The teachermentioned several times during the lesson the need to considerwhether
the question was worth investigating. This links to Graham’s (2006) second con-
sideration (see Sect. 8.2.3).

• The actual variable that could be investigated was clarified; for example, they were
not investigating foot size; they were investigating right foot length.

• The use of comparative words when posing comparison questions was explored
to clarify the type of question; for example, using longer, taller or faster. Linked
to this was the use of the appropriate comparing word (precise language) ; for
example, use longer for right foot length, but not for right foot width (in this case
they would use wider).

Between the second and third teaching experiments there was extensive dialogue
between the researcher and colleagues at the university based largely on the retro-
spective analysis of student responses in the post-test from teaching experiment two.
This dialogue addressed language and the preciseness of wording, in particular, the
use of the article words a and the in investigative questions and the implications of
these as to which group the question was about. Through this dialogue and through
analysis of student responses, particularly poorly posed investigative questions, other
ideas of suitable criteria for “What makes a good investigative question?” were gen-
erated. At this point six criteria were established (see Fig. 8.2) for what makes a
good investigative question. These combine the three features the teacher used in
the second teaching experiment, moderating questions from the first teaching exper-
iment (Arnold 2008), and detailed analysis of the investigative questions that students
posed in their pre- and post-tests.

The researcher then trialled some teaching ideas with a year nine (ages 13–14)
class at another school to test how the criteria might be introduced to students. This
was not recorded as it was not part of the research for which permission to video was
granted, but it did provide an opportunity to trial some of the material before using
it in the third teaching experiment.
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8.4.3 Teaching Experiment Three

In the third teaching experiment criteria for what makes a good investigative question
were used and the teaching focused on the underlying conceptual knowledge needed
to understand the investigative question. The teaching and learning activities around
posing investigative questions in the third teaching experiment built on thework from
the second teaching experiment. The teacher (Teacher B, 2009) had been exposed
to much deeper thinking about posing investigative questions prior to teaching the
statistics unit. This had included workshops for all the teachers in the school on the
material, and the teacher was a member of a linked Teaching and Learning Research
Initiative project team (Pfannkuch et al. 2011).

Students posed investigative questions in class and then a selection of these was
used in the following lesson. During the following lesson the teacher asked the
students to sort questions that they had previously posed. The students identified
which questions they thought were investigative questions and which ones were not.
The students came to the conclusion that they did not like most of their questions.
Through a teacher-led discussion the students generated ideas that aligned with the
criteria for what makes a good investigative question. Students felt that the questions
they had been given were not suitable as investigative questions: the question was
not able to be answered because the variable was not one of the variables available
in the given data set; there was not enough data to answer the question; and some
questions were about an individual and not the whole group, which the students felt
was unacceptable. Generating the criteria from student discussion and their findings
was a deliberate strategy rather than the teacher just giving the criteria. An additional
activity was used later in the topic where students critiqued questions that had been
posed by others and improved on them based on the developed criteria.

As the teachermoved into new concepts, such as sampling, she started alwayswith
an investigative question, whichwas posed collectively as a class and checked against
the criteria that had been established. In addition in later lessons on using samples
to answer investigative questions about populations, care was taken to reinforce the
actual population about which the students were posing and answering investigative
questions. A fictitious school was invented and data cards for each “student” were
created to help to develop the concept of population and sample. The “population” ,
Karekare College students, was constantly referred to, and this population was also
physically shown as the data cards in a bag (see Fig. 8.3). This material represen-
tation of the population, coupled with the actual drawing of samples from the bag,
was designed to reinforce the connection between sample and population and the
investigative question.

In a wrap-up session the students again came back to the criteria about what
makes a good investigative question, and, as well as posing investigative questions
themselves, they had to critique questions posed by others. During this activity, an
interesting observation was made by one of the students to another student in the
group that was being observed: “Have you noticed that all the good ones are really
long?” (2009 student, final lesson).
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Fig. 8.3 Karekare College population bag with data cards (Arnold 2013, p. 152)

8.4.4 Teaching Experiment Four

In the final teaching experiment the teacher’s (Teacher B, 2011) approach to posing
investigative questions was different than in the previous experiments. She gave the
students questions that had been posed by others before she required them to pose
their own. The activity, where the students had to sort a number of investigative
questions into groups, provided a catalyst to talk about what questions were good
questions and what questions were not. From this discussion some of the criteria that
had previously been established by the research were re-established by the students.
That is, the students and teacher developed the criteria based on the class discussion
about the questions theywere sorting. Criteria that the students came upwith included
that the question needs to be about the overall distribution of the data, it must be
interesting, and the variable and group need to be stated. Student reflection at the end
of the lesson elicited a further criterion that had not been mentioned in class: that
the type of question needed to be clear. At this point the teacher resisted the urge to
“finish” the criteria (the students had identified five of the six criteria) and left the
sixth criterion for when it naturally arose in the teaching and learning sequence.

Defining the context, i.e. the variable and the population, became a focus, and
throughout the unit the teacher constantly asked the students to define the variable
and the population for each situation. This was also linked to moving from questions
about “these” students (the sample) to questions about the population. An example
of the teacher helping the students define the variable is given in the excerpt below. It
occurred in a lesson where students were exploring a situation where survey partic-
ipants had ranked themselves as to how good they thought they were at a particular
subject; for example, maths, reading, sport and the arts. The discussion was around
exactly what the variable is, i.e. is it boys rating themselves higher than girls rate
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themselves, or is it boys rating themselves as better when they compare themselves
to girls?

Teacher: The question they were asked was how good do you think you are at
maths. That was the question that they were asked. That was the survey
question.…How good do you think you are at maths? So remember we’re
comparing the boys and the girls. So when we’re posing an investigative
question we’re looking at the first one, so those were the survey questions.
The investigative question can someone give it to me, the first one?

Student: I wonder whether boys tend to think that they are better at maths than girls.
Year 4–13 boys and girls.

Teacher: Year 4 to 13 New Zealand boys tend to think …
Student: They are better at maths than girls.
Teacher: They are better at maths in this case than year 4 to 13 New Zealand girls.
Student: No not think they are. Because the boys wonder if they’re better than the

girls.
Teacher: Remember the question wasn’t “Are you better than girls?”, it’s just how

good you think you are so it’s not rating against the other. But in the overall
rating.
…

Teacher: What did we say up there? Boys rate themselves better at maths than girls.
The boys aren’t rating themselves compared to girls, it’s just when they
rate themselves, boys’ ratings tend to be higher than girls’ ratings. So the
question could have been: “I wonder whether ratings for maths ability by
year 4 to 13 New Zealand boys tend to be higher than ratings for maths
ability by year 4 to 13 New Zealand girls.”

In addition to the discussion regarding how to frame or describe the variable, the
teacher was clearly differentiating between the two types of questions that are posed,
i.e. survey questions and investigative questions. It is also worth noting her use of
the phrase “tend to” for comparison questions. This phrasing had become part of
the teacher’s natural language she used in relation to comparison questions, a key
element for a “good” comparison investigative question (see Fig. 8.4, and also links
to criteria 6, Fig. 8.2).

The teacher persisted throughout the unit of work reinforcing the criteria for what
makes a good investigative question, for example, getting the context sorted out by
getting the students to correctly define the variable(s) and the population (criteria
1 and 2, Fig. 8.2), and making the questions about the population not the sample
(criteria 2, Fig. 8.2). In addition she required them to make predictions of what
they expected, particularly in the comparison situation, asking students all the time
which group they thought would be bigger, taller or faster (links to criteria 3, 4 and
6, Fig. 8.2). The implication of these predictions was about how the comparison
question was framed—for example, did they have boys taller than girls or girls taller
than boys?—with the expectation being that the questionwas framed so that it aligned
with what the students expected to be true. So if they thought boys were taller than
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Question category Student question example Commentary

A. Nonsense, not related 
or not a comparison 
question.

I wonder Auckland region and 
Wellington region have the same 
student in year 10? (2009 student, 
post-test)

This question is irrelevant and does not meet 
criteria 1, 3, 4 and 6 (Fig. 8.2).

I wonder if the popliteal length relates 
to armspan. (2009 student, post-test)

This is a relationship question.

B. A question that is 
partially related to the 
data, but not answerable 
by the given data (either 
due to sample size issues 
or variable not in the 
data set).

I wonder if all the ambidextrous 
students are capable of kicking a ball 
with both left and right foot. (2009 
student, pre-test)

Handedness was in the data set provided; 
however, there wasn’t a question about 
ambidextrousness for “footedness”. Therefore 
criteria 1 and 4 (Fig. 8.2) are not met.

If Asian girls have a longer armspan 
than Indian boys. (2007 student, post-
test)

In the 2007 post-test there were only two Indian 
boys and two Asian girls. Does not meet criteria 
4 (Fig. 8.2).

C. A question that hints 
at comparison.

I wonder if more year 10 boys are 
physically fit than year 10 girls. (2011 
student, post-test)

This question suggests comparison, though as it 
reads it is probably only comparing a couple of 
categories, therefore not meeting criteria 6 (Fig. 
8.2).

I wonder if ambidextrous hand writers 
can speak different languages. (2009 
student, pre-test)

This question hints at comparing the number of 
languages spoken across handedness, and 
therefore not meeting criteria 3 and 4 (Fig. 8.2).

D. A question that has all 
of one group 
bigger/smaller than all 
of another group or 
compares an individual.

I wonder if all girls have longer hair 
than all boys. (2008 student, pre-test)

A good example of the type of thinking, and 
therefore the type of question, where students 
are thinking something is bigger and think all of 
one is bigger than all of the other. They have not 
yet grasped the idea of tendency or tending to 
be bigger/longer. 

I wonder if the average resting rate for 
a boy is lower than a girl? (2011 
student, pre-test)

Comparing a boy with a girl, comparing 
individuals.

E. A question that 
compares categorical 
data.

I wonder if secondary students that 
live in southland region are fitter than 
secondary students from Auckland 
region. (2009 student, post-test)

In the data set given, the variables that might be 
used to answer this question were both 
categorical, region they live in, and fitness 
levels (unfit, a little fit, …). 

F. A question that 
compares a summary 
statistic.

I wonder if the typical right foot length 
for year 11 boys is greater than the 
typical right foot length for year 11 
girls from the 2007 NZ 
CensusAtSchool database. (2008 
student, post-test)

This question is comparing “the typical”, which 
is interpreted as a summary statistic; for 
example, the median or the mode.

I wonder if the average hair length of 
16 year old girls is greater than the 
average hair length of 16 year old 
boys. (2008 student, pre-test)

This question is comparing the average, which 
could be median, mean or mode.

G. A question that 
assumes the idea of 
tendency. This includes 
questions that ask how 
much bigger or if there is 
a difference.

I wonder if secondary girl students 
have bigger wrist circumference than 
secondary boy students. (2009 student, 
post-test)

This question uses the phrase “have bigger” but, 
unlike the example in category D, they haven’t 
indicated that they are thinking all girls bigger 
than all boys, so this style of question has been 
categorised as assuming tendency.

I wonder if boys have longer popliteal 
lengths than girls. (2009 student, post-
test)

A second example showing a different variable; 
commentary above relevant for this question.

H. A question that 
includes the idea of 
tendency; for example, 
question includes words 

I wonder if boys in year 10 tend to be 
taller than girls in year 10. (2009 
student, post-test)

This question structure has one population 
tending to be taller/heavier OR have a 
longer/shorter [variable] than the other 
population.

or phrases such as on 
average, generally or 
tends.

I wonder if on average right handers 
have longer hair than left handers. 
(2008 student, pre-test)

This is a similar structure to the first, but instead 
of using “tend”, they have used “on average”.

I wonder if Yr 9–13 NZ boys have 
typically higher pulse rates compared 
to Yr 9–13 NZ girls. (2011 student, 
post-test)

This is a similar structure to the first also, but 
this time they have used “typically” to express 
the idea of tendency.

I wonder if the popliteal length of Yr 
9–13 NZ girls tend to be longer than 
Yr 9–13 NZ boys popliteal length
(2011 student, post-test)

This question structure has the variable (of one 
of the groups) tending to be bigger/smaller than 
the variable (of the other group), a different 
structure to the previous three.

Fig. 8.4 Comparison question examples (Arnold 2013, pp. 119–120)
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girls, then the question was framed that way. A key realisation from this research
was that students were conjecturing based on their general knowledge about which
group would tend to have bigger values. The students were not explicitly aware they
were making such a conjecture, but their posed questions strongly suggested that
they were. The teacher was drawing on a new insight from the second and third
teaching experiments.

8.5 Retrospective Analyses

Two findings came out of the retrospective analyses of student-posed investiga-
tive questions, these are: (1) criteria for what makes a good investigative ques-
tion (Fig. 8.2, not the focus of the research question for this chapter); and (2) a
detailed two-way classification matrix for comparative investigative questions that
are posed (Sect. 8.5.4). The teaching experiments described above provide evidence
of changes made to the teaching experiments as part of the ongoing retrospective
analysis between cycles. This section describes in detail the retrospective analy-
sis in relationship to the research question: What level of comparative investigative
questions are year 10 (ages 14–15) students posing? The main sources of data were
student pre- and post-test responses. In the pre- and post-tests the students were given
amultivariate data set with 13 variables. Examples of discrete variables were: gender,
year level at school and fitness level. Examples of continuous variables were: arm
span, popliteal length (length from behind the knee to the floor, when the leg is bent
at a right angle) and resting pulse rate. Students were asked to pose three comparison
investigative questions.

8.5.1 Classification of Comparison Investigative Questions

A possible framework for comparison investigative questions was developed based
on findings in the first teaching experiment (Arnold 2008). This initial framework
considered questions that were not answerable with the data given and questions
that were answerable, and the inclusion of the population signalled a higher level of
question. This initial framework proved to be too simplistic, as it was found that the
population descriptor required its own set of categories.

Comparison question categories were updated from the initial framework (Arnold
2008) following the second and third teaching experiments where student responses
generated new categories. The categories were updated further following the fourth
teaching experiment, as student responses signalled a need for further new categories.
Figure 8.4 gives the final comparison question categories that were proposed for all
year levels up to and including year 11. From year 12 onwards students have devel-
oped additional statistical knowledge which allows for more sophisticated investiga-
tive questions. This is not discussed in this chapter. Included in Fig. 8.4 are examples
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for each of the different categories and commentary about the example to aid the
reader. As signalled previously, the population descriptors (Criteria 2, Fig. 8.2) are
not included. A good comparison investigative question needs to meet criteria 1, 3,
4, 5 and 6 from Fig. 8.2. Categories A–C are not comparison investigative questions,
categories D and F are moving towards good comparison investigative questions,
category E captures categorical data, which was considered inappropriate for the
particular level and curriculum focus. Categories G and H are considered good com-
parison investigative questions with H being better than G.

8.5.2 Reflection on Final Framing of Comparison
Investigative Questions

Two reflections on the final framing of the comparison investigative questions need
to be mentioned. Firstly, the use of “tend to” to describe the idea of comparison,
where one group “tends to be higher” than the other for a given variable, was sig-
nalled right from the start of the work on posing investigative questions (Pfannkuch
et al. 2010). Researching students’ thinking about comparison situations (Pfannkuch
2006; Pfannkuch and Horring, 2005) had already identified “tend to” as being an
important consideration in teaching thinking about the question framing for compar-
ison situations.

Secondly, from the second teaching experiment to the third teaching experiment
the framing of the question used in the pre- and post-tests moved from “I wonder
if Year 11 NZ boys tend to have shorter hair than Year 11 NZ girls?” to “Does the
hair length of Year 11 NZ boys tend to be shorter than the hair length of Year 11
NZ girls?” Both are acceptable as suitable comparison questions at this curriculum
level, but the second question puts the variable (of the populations) clearly as the
item that is being compared.

8.5.3 Population Descriptors

In the initial classification for comparison questions, the top category, H, was identi-
fied as being a “good” question and has the population included in the question. As
student pre- and post-test responses were analysed from the second (2008) and third
(2009) teaching experiments, it became clear almost immediately that the “super”
category of population was not going to work. Students who had similar types of
questions had a wide range of populations. For example, in the 2008 post-test 22
of the 24 students posed an investigative question about one group being taller than
another group. Aside from the variation in the question format, 14 different popula-
tion or group descriptors were used. The descriptors fell into three main categories:
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(1) boys and girls (four variations); (2) various combinations of age groups (five
variations); and (3) year 11 boys and girls (five variations).

Within the three broader categories there are multiple ways that students could
phrase a descriptor based around whether they acknowledged that the broader pop-
ulation is New Zealand students and that the sample was taken from a particular
CensusAtSchool database. It could be possible to make a fine graded scale for popu-
lation descriptors, but pragmatism and what would be useful to teachers and students
meant that fewer categories were better than more. Initially there seemed to be three
clear categories: (1)Broad student population; for example, boys, girls, students (very
general, could mean all boys and girls in the world); (2) Broad New Zealand student
population; for example, New Zealand boys, New Zealand students (better than 1,
doesn’t consider the target subgroup of New Zealand boys and girls); (3) Actual
New Zealand student population; for example, New Zealand year 10 students, New
Zealand year 11 students, New Zealand secondary school girls.

However, as can be reasonably expected, student responses did not fall nicely
into the three categories. Where, for example, did year 11 boys and year 11 girls fit?
Clearly it is more specific than New Zealand students, but it doesn’t specify New
Zealand. An additional category was needed between broad New Zealand student
population and actual New Zealand student population. Two other types of ques-
tions occurred that did not fit within these four categories. In the first type, students
went broader than boys and girls but didn’t use a specific population descriptor; for
example, they asked about typical heights of males and females or of people. The
second type of population descriptor that didn’t fit into the four categories was when
students specifically or inadvertently posed their investigative question about the
sample. Examples of the second type of question are: “What are typical heights of
these year 11 students?” and “What are typical heights for year 11 students sampled
from the 2007 NZ C@S database?” Hence six population categories were consid-
ered as part of the overall question classification. These categories were confirmed
through analysing the questions posed in the fourth teaching experiment. The final
six population categories are:

1. Referring to the sample.
2. Broad population, not specifying students.
3. Broad student population; for example, boys, girls, students.
4. Broad New Zealand student population; for example, New Zealand boys, New

Zealand students.
5. Any relevant student population that can be generalised about from the actual

New Zealand student population used; for example, year 11 students, teenagers,
secondary school girls.

6. Actual New Zealand student population; for example, New Zealand year 10
students, New Zealand year 11 students, New Zealand secondary school girls.
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8.5.4 Two-Way Classification Framework (Matrix)

In order to classify a posed investigative question, the two categories, (1) question
category and (2) population descriptor category, need to be considered as the student
is working with both aspects (categories) at the same time. The combination of
the two aspects gives rise to a two-way classification framework for comparison
investigative questions. The framework is an 8 by 6 matrix (Fig. 8.5) made up of the
eight question categories (rows, Fig. 8.4) and six population descriptor categories
(columns, listed above).

The shaded portion of the matrix in Fig. 8.5 shows where the two aspects combine
to give all the combinations to describe the investigative questions posed; for exam-
ple, H6 (in Fig. 8.5) is a comparative investigative question that includes the idea
of tendency and has the actual New Zealand student population. The two-way clas-
sification framework developed during the retrospective analysis allowed for data
to be gathered from each student to answer the research question—What level of
comparative investigative questions are year 10 (ages 14–15) students posing?

8.6 Data Analysis

As described previously, students were asked to pose three comparison investigative
questions in the pre- and post-test. These questions were each individually graded
according to the comparison question category and the population descriptor cate-
gory. For example, “I wonder if the popliteal length of Yr 9–13 NZ girls tend to be
longer than Yr 9–13 NZ boys popliteal length” (student, post-test) was graded asH6
because as a comparison question it includes the idea of tendency and it also has
the actual New Zealand student population correct. On the other hand, “I wonder
if boys have longer popliteal lengths than girls” (student, post-test) was graded as
G3 because it assumes the idea of tendency and has only specified a broad student
population (boys and girls).

Population categories
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1. 2. 3. 4. 5. 6.
A. A1 A2 A3 A4 A5 A6
B. B1 B2 B3 B4 B5 B6
C. C1 C2 C3 C4 C5 C6
D. D1 D2 D3 D4 D5 D6
E. E1 E2 E3 E4 E5 E6
F. F1 F2 F3 F4 F5 F6
G. G1 G2 G3 G4 G5 G6
H. H1 H2 H3 H4 H5 H6

Fig. 8.5 Comparison investigative question matrix (Arnold 2013, p. 125)
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The grading system gave 48 different possibilities when the question categories
and the population descriptor categories were combined. In order to look at the
difference from pre- to post-test, the 48 possibilities were simplified into six overall
grades (see Fig. 8.6) using the SOLO taxonomy (Biggs and Collis 1982). The grades
were based on the category of the question (A to H) and the population category (1
to 6). Pre-structural to extended abstract responses were scored from 1 to 5. Hence
the above H6 grade was scored as extended abstract or numerically as 5 while the
G3 grade was scored as multi-structural or numerically as 3.

A final pre-test and a final post-test score were determined for each student by
finding the mean of their three SOLO grades for the three questions they posed.
These final scores were analysed to look at the difference between pre- and post-test.
Figure 8.7 shows the pre- and post-test questions posed by three different students
chosen to give a range of responses, to demonstrate the grade given for each ques-
tion and to show the subsequent SOLO score. For each question a student grade (a
combination of comparison category and population) is given, for example E3, and
their SOLO score for the question. This is summarised in the first column with their
mean pre-test score, mean post-test score and the difference between the pre- and
post-test means.

Student A moved from a combination of questions that were mostly non-
comparison questions with a general student population to posing comparison inves-
tigative questions that include both the idea of tendency and the target population.
Student A moved from pre-structural/uni-structural thinking to extended abstract
thinking. Student B on the other hand was posing comparison questions, either com-
paring categorical variables or assuming the idea of tendency, but using a general
student population. Student B moved to generally better population descriptors and
also having more questions that included the idea of tendency, from multi-structural

SOLO taxonomy 
level Grade Description of evidence

No response or 
idiosyncratic 0 

Questions that are not comparison questions, nonsense or not-related 
questions. Category A questions.

Pre-structural 1 
Questions that are partially related to the data, but not answerable by the 
given data. Category B questions, any population.

Uni-structural 2 
Questions that hint at comparison or have all of one group bigger/smaller 
than the other. Category C and D questions, any population. 

Multi-structural 3 
Questions that compare categorical data. Category E questions, any 
population. Relational or extended abstract categories (F, G and H) 
with population categories 1–4.

Relational 4 
Questions that compare summary statistics or assume the idea of 
tendency, including the idea of difference. Population is “acceptable”. 
Category F and G questions with population categories 5 and 6.

Extended abstract 5 
Questions that include the idea of tendency. Population is “acceptable”. 
Category H questions with population categories 5 and 6. 

Fig. 8.6 SOLO criteria for grading comparison investigative questions (Arnold 2013, p. 130)
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Student Pre-test responses Post-test responses

Student A

Mean pre-
test: 1.7

Mean post-
test: 5

Difference: 
3.3

I wonder whether the gender affects your fitness 
level (e.g. Are boys fitter than girls)? [E3, 3]

I wonder whether the armspan length is meant to 
be at a certain length whether you are a boy or 
girl? [C3, 1]

I wonder whether the ring finger of the students 
are meant to be smaller than the index finger or 
not? [A3, 0]

I wonder if the yr 9-13 NZ boys tend to have larger 
neck circumference than the yr 9-13 NZ girls. [H6, 
5]

I wonder if the yr 9-13 NZ girls tend to have 
longer armspans than the Yr 9-13 NZ boys [H6, 5]

I wonder if the yr 9-13 NZ boys tend to have larger 
popliteal lengths than Yr 9-13 NZ girls [H6, 5]

Student B

Mean pre-
test: 2.7

Mean post-
test: 4.7

Difference: 2

I wonder if the boy's wrist will be larger than the 
girls [G1, 3]

I wonder if more girls are less fit than boys [C3, 
2]

I wonder if girls are able to speak more 
languages compared to boys [G3, 3]

I wonder if yr 9-13 boys ringfinger at census [at] 
school tend to be longer than the yr 9-13 girls ring 
finger at census [at school] [H6, 5]

I wonder if yr 9-13 girls tend to speak more 
languages than yr 9-13 boys at census [H6, 5]

I wonder if yr 9-13 girls resting pulse is higher 
than yr 9-13 boys resting pulse at census [G5, 4]

Student C

Mean pre-
test: 0

Mean post-
test: 3

Difference: 3

I wonder what level of fitness most teenage boys 
are at [A3, 0]

I wonder what the average length of your index 
finger is for a teenage boy [A3, 0]

I wonder what the average pulserest is for 
teenage girls [A3, 0]

I wonder if 2009 NZ C@S boys tend to have a 
longer armspan than 2009 NZ C@S girls [H4, 3]

I wonder if 2009 NZ C@S girls tend to be more fit 
than 2009 NZ c@S boys [E4, 3]

I wonder if 2009 NZ C@S boys tend to have a 
longer index finger length than 2009 NZ C@S 
girls [H4, 3]

Fig. 8.7 Examples of student posed comparison investigative questions pre-test and post-test

thinking to extended abstract thinking. Student C initially was posing questions that
were summary type questions, suggesting she did not understand what was meant by
comparison questions. In the post-test student C was posing comparison questions
and mostly ones that included the idea of tendency. This student still needed to work
on her population descriptors because in all instances she was using the broad New
Zealand student population rather than the target population.

8.7 Findings

From the class of 29 students, 26 students completed both the pre- and post-test.
The findings are now discussed. Figure 8.8 shows the difference between students’
pre-test mean score and their post-test mean score. A difference of two indicates
that the student had a mean improvement of two points over their three comparison
questions.

Fig. 8.8 Graph of difference
between post-test mean score
and pre-test mean score
(Arnold 2013, p. 132)

-1 0 1 2 3 4
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Fig. 8.9 Graph showing student movement from pre-test mean score to post-test mean score (red
signals a negative movement—arrow pointing to the left, the circle signals no movement, green
signals a positive movement—arrow pointing to the right) (color figure online)

Figure 8.9 shows the actual movement, from pre-test mean score to post-test mean
score. The shaded grey area signals at least a multi-structural response on average.
Of the 26 students 21 were posing at least at a multi-structural level on average in
the post-test. The students in Fig. 8.9 are the same students as in Fig. 8.8. Working
from left to right in Fig. 8.8 matches the students from bottom to top in Fig. 8.9.

Of the 26 students that sat both the pre- and post-tests, 23 improved their mean
score (green/right pointing arrow in Fig. 8.9), one remained the same (circle in
Fig. 8.9), and two lowered their mean score (red/left pointing arrow in Fig. 8.9). In
the post-test, four students were working overall at extended abstract level, 10 at a
relational level, seven at a multi-structural level; one at a pre-structural level, and
four at a uni-structural level. The four uni-structural students all had a least one good
question amongst their three, but were let down by a combination of the population
category being low or one of the questions not being a comparison question. The
pre-structural student asked questions that were about individuals (a boy, a girl) and
also one non-comparison question. The students made significant improvement (p-
value<0.0001, paired t-test) in their mean scores from pre- to post-test question
posing and on average increased their mean grade by 1.78 points (95% CI� [1.29,
2.28]).

Analysis of the different types of questions the 2011 students posed in their post-
tests showed that for the comparison question categories (Fig. 8.10a) there were a
higher proportion of questions in category H (45 questions out of 87) than any of the
other categories for 2011. The population categories were also analysed across all
the post-test questions (Fig. 8.10b).

No students used the sample (category 1) as the population, and only one student
for one question used people generally as the population (category 2), and that was in
just one question. The proportion of questions using acceptable populations (category
5 and 6) was 67.7%. While the good population descriptor did not always line up
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Fig. 8.10 Graphs of post-test analyses of comparison questions

with the good comparison question category, over half the question categories and
two-thirds of the population descriptors were acceptable.

8.8 Discussion

The research question for this chapter was: What level of comparative investigative
questions are year 10 (ages 14–15) students posing? The findings suggest that year
10 (ages 14–15) students are capable of posing comparative investigative questions
that assume the idea of tendency (category H, Fig. 8.4) and have an acceptable
population descriptor (Sect. 8.5.3); in other words they can pose “good” comparative
investigative questions. For the 26 students who completed both the pre- and post-
test, 54%were at least at this level.Most of the remaining students (27%)were posing
comparative investigative questions, but their questions needed further refinement,
mostly in terms of tidying up the population descriptor in the question.

There are considerations for statistics teaching and learning from the findings
reported in this chapter. Firstly, the criteria (Fig. 8.2), the comparison question cat-
egories (Fig. 8.4) and the population descriptors (Sect. 8.5.3) provide structures to
support teachers and students in improving their overall investigative question pos-
ing. If the quality of the question posed can be identified, for example, G4, then the
improvements for the comparison question structure are given in Fig. 8.4 (G to H)
and for the population descriptors (4 to 6). For students in particular, if they can
become familiar with doing their own interrogation of their investigative questions
against the criteria (Fig. 8.2), they will develop “thinking like a statistician” routines.
Secondly, this chapter focuses only on investigative questions, the question that is
asked of the data and implies a need for teachers to emphasise what a good investiga-
tive question is. Teachers also need to be discussing and highlighting the many other
questions that are asked in statistical investigations, for example, survey questions,
analysis questions, interrogative questions, inferential questions (Makar 2015). All
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of these different question types make up the complex network of questions within
the statistical investigation cycle. Thirdly, language used in investigative questions
needs to be precise. Precise wording is critical (Biehler 1997; Pfannkuch et al. 2010)
as “loose” or non-precise wording can cause confusion e.g. the use of a or the (see
Sect. 8.4.2), and lead to poorly formed questions.

In addition, a number of statistical ideas and concepts should be developed con-
currently. These include sample and population and the connection between the two,
and ideas around tendency and typical. Finally, a statistical investigation is about
more than just comparing or calculating simple measures; it is about students think-
ing distributionally, describing what they see in the sample(s) they have selected,
and then making inferential statements about what may be happening back in the
population(s) (Pfannkuch et al. 2010).

8.9 Implications

This research has identified gaps in the research knowledge base on posing statistical
questions and consequently the big concepts underpinning the posing of good inves-
tigative questions that are needed for teaching and learning statistics at curriculum
level 5 (ages 13–15) in New Zealand. This research into posing investigative ques-
tions has already had a huge impact in New Zealand classrooms and beyond year
10, curriculum level 5 (ages 13–15). Posing investigative questions is a key aspect
of many of the statistics achievement standards in the national assessments, and
the term investigative question is now widely used. Criteria for what makes a good
investigative question, along with summary and comparison question categories, are
available online as a support for teachers.

Implications for teachers includehaving theopportunity to experience the teaching
and learningmaterial in order to support their understandings of the research findings.
Ideally this needs to happen before they take the material into their classrooms to use
with their students. The sharing of the findings can support the teachers in the same
way as it is hoped they will help their students. In addition supporting teachers to
understand the different purposes of questions in statistics or how the use of precise
language is important andmaking them aware of the potential confusions in language
use for students would also be essential components of any work with teachers.

There is an urgent need to upskill teachers in their knowledge of the conceptual
foundations required for posing good statistical questions. Many mathematics and
statistics teachers are mathematics—not statistics—trained, or trained years ago.
Either way, the statistics of today is not the statistics of their schooling or university
days. It requires new knowledge and newways of thinking. It also requires newways
of teaching, from a focus on the skills and calculations of the old statistics curriculum
to a focus on the statistical reasoning and thinking that is inherent in the new New
Zealand statistics curriculum as well as in the curricular guidelines for many other
countries, such as GAISE in the United States (Franklin et al. 2005).
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This chapter has addressed the problematic situation around what makes a good
investigative question, including the underpinning concepts that are needed to sup-
port the teaching and learning. Suggested further research could include a focus
on interrogating the statistical investigative cycle to find out what aspects should
be a focus for students ages 13–15 or at other ages. Another suggestion for future
research could be to explore students asking analysis questions. For example, what
thinking prompts do students need to have when they are starting to analyse their
data? Also because this research focused on comparison investigative questions and
related research has explored summary investigative questions, three further areas of
research could be posing relationship, time-series, and two-way table (two categor-
ical variables) investigative questions.
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Chapter 9
Pre-service Teachers and Informal
Statistical Inference: Exploring Their
Reasoning During a Growing Samples
Activity

Arjen de Vetten, Judith Schoonenboom, Ronald Keijzer and Bert van Oers

Abstract Researchers have recently started focusingon the development of informal
statistical inference (ISI) skills by primary school students. However, primary school
teachers generally lack knowledge of ISI. In the literature, the growing samples
heuristic is proposed as a way to learn to reason about ISI. The aim of this study was
to explore pre-service teachers’ reasoning processes about ISI when they are engaged
in a growing samples activity. Three classes of first-year pre-service teachers were
asked to generalize to a population and to predict the graph of a larger sample during
three rounds with increasing sample sizes. The content analysis revealed that most
pre-service teachers described only the data and showed limited understanding of
how a sample can represent the population.
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9.1 Introduction

In today’s society, the ability to reason inferentially is increasingly important (Liu
and Grusky 2013). One form of inferential reasoning is informal statistical inference
(ISI), which is defined as “a generalized conclusion expressed with uncertainty and
evidenced by, yet extending beyond, available data” (Ben-Zvi et al. 2015, p. 293)
without the use of formal statistical tests based on probability theory (Harradine
et al. 2011). In recent years, statistics education researchers have focused on how
primary school students can be introduced to ISI. Scholars have hypothesized that if
children are familiarized with the concept in primary school, they will understand the
processes involved in ISI reasoning and in statistical reasoning in general (Bakker
and Derry 2011; Makar et al. 2011). Evidence suggests that meaningful learning
environments can render ISI accessible to primary school students (Ben-Zvi et al.
2015; Meletiou-Mavrotheris and Paparistodemou 2015).

If children are to be introduced to ISI in primary school, future teachers need to
be well prepared to provide this introduction (Batanero and Díaz 2010). They must
have appropriate knowledge of the field that extends beyond the students’ knowledge
(Burgess 2009). It has been shown, however, that pre-service teachers’ knowledge of
ISI is generally weak (Batanero and Díaz 2010; De Vetten et al. 2018). This points
out the need to improve the ISI content knowledge of pre-service teachers.

Current research provides only scant evidence for how to support the development
of pre-service teachers’ knowledge of ISI (Ben-Zvi et al. 2015). In some statistics
education literature, the growing samples heuristic is recommended to stimulate
ISI reasoning (Joan Garfield et al. 2015). The idea of this heuristic is that samples
of increasing size are used to make inferential statements about a larger sample or
population.Using this heuristic to informally and coherently construct anddiscuss ISI
has typically not been investigated in the context of teacher education. Therefore, we
implemented the growing samples heuristic in three classes of first-year pre-service
teachers and explored their ISI reasoning when engaged in an activity that applies
this heuristic.

9.2 Theoretical Background

9.2.1 Teachers’ Knowledge of ISI

Teachers need to possess thorough knowledge of the content they teach (Hill et al.
2008) that extends beyond what their students actually learn (Ball et al. 2008), since
the former’s content knowledge impacts the latter’s learning achievements (Rivkin
et al. 2005) and facilitates the development of pedagogical content knowledge (Ball
et al. 2008; Shulman 1986). It has been shown that these relationships also hold for
ISI (Burgess 2009; Leavy 2010).
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To conceptualize the required knowledge of ISI for pre-service teachers, we used
theMakar and Rubin (2009) ISI framework. The three components of this framework
are broad to include various types of students (Makar and Rubin 2014). For this study
among pre-service teachers, we conceptualized the components in the followingway:

1. “Data as evidence”: The inference needs to be based on the data and not on
tradition, personal beliefs or experience. To base an inference on the sample
data, the data need to be analyzed descriptively, for example, by calculating the
mean (Zieffler et al. 2008). The resulting descriptive statistic then functions as
an evidence-based argument within ISI (Ben-Zvi 2006).

2. “Generalization beyond the data”: The inference goes beyond a description of
the sample data to make a claim about a situation beyond the sample data.

3. “Probabilistic language”: The inference includes a discussion of the sample char-
acteristics, such as the sample size and sampling method, and what these char-
acteristics imply about the representativeness of the sample and the certainty of
the inference. Moreover, the inference requires understanding whether a sample
is properly selected, the sample-to-sample variability is low, and this sample is
representative of the population and can be used for an inference.

One of the studies that have investigated (pre-service) primary school teachers’
content knowledge is De Vetten et al. (2018). In a large-scale questionnaire study,
they found that about half of the pre-service teachers agreed that data can be used as
reliable evidence for a generalization. The authors also showed that the respondents
were able to discern that probabilistic generalizations are possible, while determin-
istic generalizations are not. The evidence for the Probabilistic language component
suggests that many pre-service teachers have a limited understanding of sampling
methods, sample size, representativeness and sampling variability (De Vetten et al.
2018; Meletiou-Mavrotheris et al. 2014; Mooney et al. 2014; Watson 2001). With
respect to the knowledge of descriptive statistics more generally, (pre-service) teach-
ers’ knowledge has been shown to be typically superficial (Batanero and Díaz 2010;
Garfield and Ben-Zvi 2007; Jacobbe and Carvalho 2011). More specifically, pre-
service teachers tend to focus on measures of central tendency at the expense of
measures of dispersion (Canada and Ciancetta 2007); while the group’s understand-
ing of the mean, median and mode is mostly procedural (Groth and Bergner 2006;
Jacobbe and Carvalho 2011). De Vetten et al. (2018) asked respondents to evaluate
which descriptive statistics were well suited as arguments within ISI. The respon-
dents acknowledged that ISI can be based on global descriptive statistics, but they
did not recognize that ISI based on local aspects of the sample distribution is not
correct. These studies indicate that there is a need to improve pre-service teachers’
ISI content knowledge.
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9.2.2 Using the Growing Samples Heuristic to Support
the Development of ISI

Research on how to support pre-service teachers’ development of ISI content
knowledge is almost nonexistent (Ben-Zvi et al. 2015). Leavy (2006) intervention
study examined pre-service primary school teachers’ distributional reasoning when
engaged in experimental investigations. She found that the pre-service teachers in the
sample tended to compute measures of centrality only rather than explore datasets,
for example, using graphical representations. Moreover, the teachers often neglected
the role of variation in comparing distributions. However, the participants became
more attentive to variation and looked more at aggregate features of the distributions.
Although the tasks used were inferential, the analysis focused on distributional rea-
soning only. Leavy (2010) showed that final-year pre-service teachers do not reflect
on the meaning of the graphs and calculations they perform. The activity at the start
of the intervention involved making inferences and discussing sampling issues, but
the author did not analyze the activity in depth. These studies revealed that the pre-
service teachers in her sample tended to restrict their attention to descriptive statistics,
rather than how these descriptive statistics can be used in ISI.

In the context of statistics education generally, the growing samples heuristic has
been suggested as a promising approach to support the development of ISI reasoning
(Joan Garfield and Ben-Zvi 2008; Garfield et al. 2015). The idea of this heuristic is
that samples of increasing size are used to make inferential statements about a larger
sample or population. Ben-Zvi et al. (2012) showed that the heuristic helps middle-
grade students not only describe samples but also draw conclusions beyond the data.
Moreover, these students’ reasoning about uncertainty developed from either cer-
tainty only or uncertainty only to more sophisticated reasoning in which probability
language was used. Bakker (2004) found that when middle-grade students use this
heuristic, they develop coherent reasoning about key distributional aspects of sam-
ples, such as center, spread and density. We hypothesize that the growing samples
heuristic can aid the use of data as evidence because this heuristic draws students’
attention repeatedly to the data. Research suggests it is not self-evident that students
see sample data as evidence from which to make generalizations and predictions
(Ben-Zvi et al. 2007; Makar and Rubin 2009). The heuristic could also help students
to understand sample-to-sample variability because as the sample size increases, the
shape of the distribution stabilizes and more likely resembles the population distri-
bution (Garfield and Ben-Zvi 2008; Konold and Pollatsek 2002). In our view, the
heuristic may be well suited for teacher education, because the relative simplicity of
the heuristic allows pre-service teachers to translate the growing samples activities
to their own teaching practice in primary schools.
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9.2.3 Research Aim and Question

Until now, little, if anything, is known about how the growing samples heuristic
supports pre-service teachers’ development of reasoning about ISI. We hypothesize
that pre-service teachers may reason differently frommiddle school students. On the
one hand, we hypothesize that pre-service teachers are better suited to reason about
ISI because they have more (procedural) statistical knowledge, which they can use
in reasoning about ISI. Moreover, given their older age, they may be more able to
reason about an abstract population. On the other hand, their future role as teachers
might hinder them in drawing inferences as they might have a class of children in
mind as their natural population of interest (Schön 1983). Therefore, pre-service
teachers could relate sample results to a class instead of to an abstract population.

The aim of this exploratory study was to investigate the reasoning about ISI of
35 pre-service primary school teachers divided over three classes when they were
engaged in a growing samples activity (Fig. 9.1). The research question is: What
reasoning about informal statistical inference dofirst-year pre-service primary school
teachers display when they are engaged in a growing samples activity, and what is
the quality of their reasoning?

Fig. 9.1 Growing samples activity used in the current study
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9.3 Methods

9.3.1 Intervention

The three components of ISI provided the framework for the pre-service teachers’
ISI learning objectives. We formulated 10 learning objectives (Table 9.3, the last
column), which informed the design of the growing samples activity (Fig. 9.1). The
activity was inspired by the activities used by Bakker (2004) and Ben-Zvi et al.
(2012) and consisted of three rounds. In each round, the participants answered the
question, “Is the attitude toward mathematics of first-year male pre-service teachers
in general more positive than the attitude toward mathematics of first-year female
pre-service teachers?” Before the participants analyzed the data, they discussed how
the data were collected and how the data could be used to answer this question, the
“talking through the data creation process” (Cobb and Tzou 2009). This process was
used to support the participants’ confidence in the validity of their conclusions. The
teacher educator stressed that the question pertained to the population of all Dutch
first-year pre-service teachers and explained that the data came from a research
project conducted among pre-service teachers at their teacher college the previous
year. The data showed the averages of three 5-point Likert items. Therefore, the data
could take on values between one and five with increments of one third. Next, the
participants were provided with graphs of samples of increasing size. During each
round, the participants answered the question about the difference in the population
and predicted the shape of the graphs of the next round. The sheet of paper on which
the participants filled in their answers to these questions also showed the graphs of
the particular round. During the first round, the samples consisted of four men and
four women, during the second round 15 men and 15 women, and during the third
round 28men and 116 women, which was the size of the original dataset. The sample
size of four was meant to elicit responses of high or even complete uncertainty. The
samples sizes of the second and third rounds were chosen to investigate whether
the certainty of the participants’ responses would increase. Round 3 also provided
the opportunity to discuss ways to compare samples of unequal sizes. After each
round, the answers were discussed in a class discussion. This discussion had similar
patterns for each round in each class: The teacher educator asked for an answer to the
question, asked onwhat grounds this answerwas reached and probed for the certainty
of the conclusion. Next, the prediction for the larger samples was discussed. During
the last round, the comparison of the samples of unequal sizes was discussed, and
the arguments used during the entire activity were summed up. Some parts of the
discussion were more extensive than others, depending on the input from the pre-
service teachers. The activity lasted for 80 min. All three rounds were held on one
day. The participants worked in groups of two or three (Class A: 7 groups; Class B:
5 groups; Class C: 4 groups). In Class C, the first round was skipped because during
the third round in classes A and B motivation seemed to decline.

For each learning objective,we formulated a conceptualmechanism that explained
how the activity was hypothesized to scaffold the participants’ reasoning to attain the
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learning objectives (see Table 9.3, the conceptual mechanism column). We hypoth-
esized that the repetition of the question to generalize and predict would invite the
participants to use the data to draw a conclusion (the Data as evidence component).
When the sample sizes increased, the averages and the global shape stabilized. We
expected that the participants would notice that this and would use them as reliable
signals for generalization and prediction. The repetition of the questions would also
draw the participants’ attention to the inferential nature of the question (component
Generalization). Furthermore, we expected that presenting samples of different sizes
and shapes would draw the participants’ attention to differences in the sample distri-
butions and would influence the participants to realize that other sample distributions
could have resulted as well. They would, in turn, take the uncertainty of their con-
clusions into account. Finally, comparing how the sample data were spread about the
center of the data of the various samples would encourage the participants to take
uncertainty into account (the Probabilistic language component).

9.3.2 Participants

Three classes (A, B and C) for a total 35 first-year pre-service primary education
teachers participated in this study. This was a convenience sample, as the first author
also taught their course on mathematics education. They attended a small teacher
college in a large city in the Netherlands. In the Netherlands, initial teacher educa-
tion starts immediately after secondary school and leads to a bachelor’s degree. For
these students, mathematics teaching is usually not their main motive for becoming
teachers. The mean age of the participants was 19.47 years (SD: 1.54), three were
male, 20 had a background in secondary vocational education (students attending
this type of course are typically between 16 and 20 years old), 13 came from senior
general secondary education, and the educational background of the remaining two
was either something else entirely or unknown. Table 9.1 shows the educational
backgrounds for each class. Whereas descriptive statistics, probability theory and
some inferential statistics are part of the mathematics curriculum of senior general
education, these topics are generally not taught in secondary vocational education.

9.3.3 Data Collection and Data Analysis

Data collection consisted of the participants’ answer sheets and sound recordings of
the class discussions.

Content analysis in Atlas.ti was used to analyze the data. A coding scheme was
developed based on the learning objectives. All answer sheets (both text and graphs)
and class discussions were coded by assigning one or more codes related to the
learning objectives to the data. In an iterative process, the first author and an exter-
nal coder coded and discussed the coding scheme instructions until the instructions
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Table 9.1 Educational background per class of pre-service teachers

Educational
background

Class A Class B Class C Total

Secondary
vocational
education

7 9 4 20

Senior general
education

7 2 4 13

Something
else/unknown

1 0 1 2

Total 15 11 9 35

were deemed clear enough to be applied by a second coder. First, for each round all
contributions of each group or participant were put in a table, organized by learning
objective. Second, the group or individual contributions were aggregated for each
class, organized by learning objective. Third, to measure the quality of the partici-
pants’ reasoning about ISI, for each class, the contributions per learning objective
were compared to the hypothesized conceptual mechanism. This comparison was
conducted for each round and separately for the answer sheets and the class discus-
sions and for each class. Per round, an indicator (− −, −, 0, + or + +) was assigned
to each learning objective, indicating to what extent the actual reasoning of a class
was in line with the hypothesized reasoning (see Table 9.2). The indicators served
as quality indicators of the classes’ reasoning about ISI. Next, the indicators per
round were combined into one indicator per learning objective for the three rounds
together, separately for the answer sheets and the class discussions. Finally, the sep-
arate indicators for the answer sheets and the class discussions were combined into
one indicator per learning objective. These combined indicators were used to com-
pare the reasoning between the three classes. The assignment of the indicators was
discussed with an external researcher until consensus was reached (Table 9.3).

9.4 Results

9.4.1 Answer Sheets

Table 9.4 shows the results of the answer sheets, aggregated over the three classes
to give a comprehensive picture of the results. Aggregation was possible because
the differences between the three classes’ answer sheets were small. The left part of
Table 9.4 shows how the participants answered the question to draw a conclusion
about the difference between men and women in the population; the right part shows
how the participants predicted the distribution of a larger sample or the population.
In general, most participants used the data as evidence for their conclusions. In 36 of
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Table 9.4 Results of the analysis of the answer sheets

Conclusion Frequency

Data as evidence

Yes 36

Other sources 1

No 8

Total 45

Descriptive statistics

Global shape of distribution 6

Mean, median or sum 8

Spread 14

Local aspects of distribution 2

None 18

Total 48

Type of conclusion

Descriptive 1

Unclear: Descriptive or inferential 22

Inferential 9

Probabilistic inferential 1

Refusal to generalize 1

None 11

Total 45

Uncertainty

Probabilistic language 3

Sample size 3

None 39

Total 45

Prediction Frequency

Type of prediction

Shape smaller sample copied 26

Overemphasized conclusion 9

Shape smaller sample mimicked 7

Total 42

the 45 conclusions, the participants used the data as evidence, although not always
explicitly. For example, they wrote down only: “men are on average more positive.”
We interpret the use of “average” as an indication that the average of a sample
distribution was used as evidence. Only one group used another source as evidence
in their conclusion. This group argued that women’s decreased logical and spatial
thinking ability influenced their attitude toward mathematics.
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Fig. 9.2 Yasmine’s andEsther’s (ClassB; both participants had a vocational education background)
predictions of a larger sample that overemphasized the conclusion based on the small sample (pen
writing constitutes the participants’ predictions)

Concerning the descriptive statistics used as evidence, the participants often
noticed the higher average of men and the high spread of women, but they did
not connect the spread to their conclusion, as evidenced in this quote: “Many differ-
ences between men, few among women. Men love mathematics.” Moreover, of the
34 answers that included conclusions only 18 were accompanied by a descriptive
statistic as an argument, and only ten of these were supported by the mean or the
global shape, which are suitable descriptive statistics to compare two distributions.

In the predictions, there were more indications that the participants used other
sources of information. During the first round, six out of 11 groups overemphasized
in their prediction the conclusion that men are more positive about mathematics than
women, by moving the men’s distribution to the right and the women’s distribution
to the left, as shown in Fig. 9.2.

Related to the learning objective Generalization, in 22 of the 34 answers that
included a conclusion, it was unclear whether the conclusion pertained to the sample
only or to the population. The following is a typical example: “Men are more pos-
itive about mathematics than women.” Nine conclusions were coded as inferential
because they included the words “in general.” Only one group made a truly prob-
abilistic generalization, by stating, “With more people, the conclusion we draw is
more reliable, the attitude of men seems to be more positive.”

Of the total of 42 predictions, 26 were plausible in the sense that they followed the
global shape of the graph of the smaller samples. No group consistently smoothed the
graphs, and only about half of the groups widened the range. Nine graphs mimicked
the shape of the graphs of the smaller datasets, for example, by multiplying each
frequency with the factor the sample increased, which is a very unlikely outcome
(see Fig. 9.3). These results indicate that the participants did not understand that
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Fig. 9.3 Karel’s andNick’s (ClassC; other and vocational education background, respectively) pre-
dictions of a larger sample that mimics the smaller sample (pen writing constitutes the participants’
predictions)

a sample distribution resembles the population distribution more when the sample
increases.

On the answer sheets, uncertainty was mentioned by only one group. This group
concluded that no inference could be made based on four men and four women, and
they were also the only group that made a probabilistic generalization. The other
groups never mentioned uncertainty, apart from one weak indication of probabilistic
language in the prediction of a graph (“We expect…”).

9.4.2 Class Discussions

Whereas the reasoning on the answer sheets was largely similar across the three
classes, the class discussions differed in many respects. Therefore, we summarize
these class discussions by class.

9.4.2.1 Discussion in Class A

In Class A, the first round started with several participants stating that male pre-
service teachers are more positive about mathematics than female teachers. Cindy1

objected, thus opening up the field to discuss ISI.

Cindy: Here they are more positive, but just for these four persons. […]
Teacher educator: So you say the sample is too small.
Cindy: It is just like you take four persons from a class and ask them

what they think of the class. If you accidently pick four positive

1All the participants’ names are pseudonyms.



214 A. de Vetten et al.

people from the class, you get a very good picture [inaudible],
while the four other people could not like it at all.

Teacher educator: Ok, so we agree with this: the sample is just too small to say
anything sensible about.

Various: Yes.

Cindy argued that another sample could result in an entirely different outcome
because of the small sample size. She thus used ideas from sampling variability to
explain why she thought that generalization was not possible. At first, all partici-
pants agreed. However, Merel objected by referring to the lower spread in the men’s
distribution: “Well, I think, the men’s graph because it is less spread out, does say
something, I think.” She was very tentative about her conclusion that this lower
spread about the center of the data meant more certainty about the population dis-
tribution compared to the higher spread in the women’s distribution, but the teacher
educator confirmed the validity of her reasoning. Next, the averages for men and
women were compared. After the teacher educator pointed at the high spread about
the center of the data in the women’s graph, Merel again stated that the women’s
average was less informative because of the higher spread.

Turning to the predictions of the shapes of graphs for the 15 men and women,
Yanka explained her prediction and indicated she had made the women’s distribution
more negative than the distribution of the smaller sample (see Fig. 9.2 for a similar
prediction). Stressing the difference between men and women suggests she used
other sources of evidence than the sample data for her prediction. A few participants
suggested adjusting the predictions to make them resemble more the global shape of
the women’s graph for the sample of four.

During the class discussions in the second and third rounds, most of the time was
spent on discussing how one could estimate the means without calculations, leaving
little time to discuss ISI. During the second round, there was some attention to ISI
when the teacher educator askedwhether the participants expected the range towiden
in the prediction for the larger sample. The participants thought it would but without
showing indications of having thought about why the range would widen. It is thus
doubtful whether the participants understood that the sample distribution resembles
the population distribution more closely as the sample increases.

The third round, with samples of 28 men and 116 women, was concluded by
summarizing the arguments used. The teacher educator asked about the role of spread
regarding the conclusions. Initially, the participants struggled to answer this question,
but finally, one said less spread meant more certainty about the conclusion. However,
Merel, who introduced this claim during the first round, and Nicky appeared to
doubt whether there were any stable signals in the sample distribution. The latter
indicated that another sample (sampled the next week)may result in entirely different
distribution:

Merel: We just don’t know.
Nicky: [inaudible] next week it is on 1 again. [i.e., they are very negative about

mathematics.]
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In summary, at the start of the class discussion of the first round, Cindy’s remark
that a sample of four is too small for generalizations provided the opportunity to
discuss ISI. This discussion yielded the insight that a sample of four is too small
for generalizations. In addition, the group seemed to generally agree that the data
could be used as evidence. Apart from these insights, little attention was paid to ISI.
Moreover, understanding of how a sample can be used to generalize seemed to be
absent.

9.4.2.2 Discussion in Class B

In Class B, the class discussions during the first and second rounds were short;
moreover, only half of the participants participated. It was also unclear whether the
conclusions were meant to be descriptive or inferential.

During the first round, the teacher educator asked for the participants’ opinion
about the reliability of the generalization.Manon responded that four teachers “never
reveal the opinion of all pre-service teachers. One needs many more subjects.” None
of the participants supported or objected to this statement. Next, Manon described
the graph of the larger sample of women, which she made more negative, using her
own ideas about men’s and women’s attitudes about mathematics: “There are women
who find it very difficult […], and therefore, we made the women lower in the end.”
Again, the other participants did not participate in the discussion. During the second
round, the group discussed the conclusion and the prediction only briefly.

During the third round, the discussion about the comparison of samples of unequal
size yielded insights into the participants’ conceptions of sampling variability. To
compare the samples of 28 men and 116 women, some participants suggested multi-
plying the 28 men by 4 to make the sample sizes approximately equal (see Fig. 9.3).
This deterministic approach, which neglects sampling variability, was challenged by
other participants. For example, Rebecca stated, “Now you are estimating. You don’t
exactly know how men think and what they will fill in […]. But in the end you can’t
know anything about it.”

Later on, Yente explained why in her view this strategy is permissible:

Yente: Suppose at once there are all men who score 5 points. What we look at is, if
it would go like this. Howwe think that it went exactly, then it is no problem.
But we never know how other people think about it.

As Rebecca, Yente did not understand that a sample can be representative of the
population. However, to solve the problem of comparing samples of unequal sizes,
Yente simply assumed that if other men were sampled, they would have exactly
the same sample distribution. She seemed to be primarily concerned with how to
compare samples of unequal sizes, not with the issue of generalization:

Yente: If you just ask the Netherlands, then you can simply compare a number of
men and women, but because among pre-service teachers there are not so
many men, then you need to kind of estimate, I think.
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Doubts about whether a sample can be representative of a population were also
visible in the remarks of Marleen: “Yes, we can estimate. There are 116 women.
[…] If there are suddenly ten more who all totally agree, then it is quite different
from how it is now. It will always be estimation.” When challenged by the teacher
educator, Marleen changed her mind:

Teacher educator: If there are ten more who all totally agree, you said. [Draws
imaginary bar of ten women who all totally agree.] Is that likely?

Marleen: No.

Later on, she returned to her original idea:

Teacher educator: AndMarleen says that suppose there are 15women very positive,
or ten, we immediately say that is very unlikely.

Marleen: It could still be.

Whereas Yente switched from complete uncertainty to complete certainty, by
assuming that othermen had the same attitude as themen sampled,Marleen remained
doubtful about what result one could expect in a different sample. Only Rebecca
seemed to believe in the possibility of making generalizations: “That is the way
they always do it, right? If they want to know something, they don’t ask [inaudible;
probably: everyone].”

Overall, except for Rebecca, the Class B participants were reluctant to accept
the claim that a sample can be representative of a population. The class discussions
showed that this reluctance was probably caused by their lack of understanding of
sampling variability.

9.4.2.3 Discussion in Class C

In Class C, the first round was skipped because during the third round in Class A and
B motivation seemed to decline. The second round started with the conclusion that
men are more positive about mathematics than women. Whether this conclusion was
meant to be descriptive or inferential initially was unclear. In an extensive discussion
about the use ofmeasures of centrality as arguments, the group concluded that neither
the midpoint of the range nor the mode for non-normal distributions is useful in
comparing distributions. Next, seven of the nine participants participated in a lively
discussion about whether the conclusion would hold for the population. Initially,
various participants denied this.

Teacher educator: If we look at thesemen… I am curious to know, canwe say some-
thing about those 500 based on 15 men [500 was the assumed
size of the men’s population]?

Khloud: But this is not a good sample, is it?
Teacher educator: Why is this sample not good?
Khloud: Because there are way too few.
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Later on, Khloud related the size of the sample to sampling variability: “Yes,
at random, I understand, but maybe you by chance picked the best 15.” Two other
participants agreed with this statement, and one concluded that “in the end, one can
never say something about it,” which multiple participants agreed with. Then the
teacher educator asked about the relationship between spread and certainty.

Teacher educator: About whose attitude do you have more certainty: about men or
women?

(Almost) all: Men.

[…]

Karel: The chance is higher that they are all over there [points at the positive part
of the graph] than they are not over there.

Karel claimed that it was more likely that another sample of men would also be
predominantly positive about mathematics. Various participants agreed with Karel.
The teacher educator confronted the participants with their conflicting opinions:
Earlier they had said that nothing could be known, but then they indicated they
had more certainty about men. Khloud’s response illustrates how the participants
appeared to combine these opinions: “We know the chance, but we are not sure.”
Laura concluded, “Because you did such a small sample, [inaudible] you never know
for sure [inaudible] I still don’t think it is a good sample.” The participants wanted
not only to have a larger sample but also seemed to want a sample that would give
them complete certainty about their generalizations. Making generalizations with a
certain degree of uncertainty appeared to be problematic for them.

During the third round, ways to compare samples of unequal sizes were discussed.
Although, as in Class B, some participants suggested multiplying the 28 men by four
(see Fig. 9.3), or, alternatively, dividing the 116 women by 4, three participants
argued that one could use the mean to compare samples of unequal sizes because
the shape of a sample is expected to remain approximately the same as the sample
increases. In this discussion, Khloud showed a remarkably good understanding of
the effect of sample size on sample-to-sample variability: “In any case, if you would
take 15 people, then the chance is smaller it remains the same […] than if you have
28 people.” Overall, a small majority of the participants indicated that they expected
approximately the same results for a different sample, while none of the participants
expressed the opposite.

In sum, the majority of the Class C participants seemed to understand that it is
possible to make generalizations because the shape of a sample is expected to remain
approximately the same as the sample increases. Comparing the spread and the
certainty about the two distributions led the participants to express correct ideas about
sampling variability. However, they displayed an inclination to demand complete
certainty about the generalizations.
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Table 9.5 Quality of reasoning about ISI per class

ISI component Aspect Class

A B C

Data as evidence Data as evidence + + + + +

Center + − +

Spread + − 0

Distribution 0 0 0

Generalization
beyond the data

Generalization 0 − − +

Prediction 0 − −
Probabilistic
language

Sample size − − − −

Heterogeneity − − − +

Sampling
variabilit y

− − − 0

Certainty 0 − − +

NoteQuality of the reasoning about ISI, ranging from−− (reasoning not at all in line with learning
objective) to ++ (reasoning entirely in line with learning objective). See Table 9.2 for a detailed
explanation of the indicators

9.4.3 Quality of Reasoning About ISI

Table 9.5 shows the quality of reasoning about ISI for each class. Indicators were
assigned to the learning objectives that showed towhat extent the pre-service teachers
attained the learning objective (see Table 9.2). For most aspects, Class C’s reasoning
about ISI was the most sophisticated, although the first round was skipped in this
class. Class B’s reasoning was poor overall.

In all three classes, elaborate discussions about estimating themean took place. To
most participants, it seemed clear that a comparison of the means or the global shape
of the sample distributions was a valid way to compare the distributions. However,
although many participants noticed the high spread about the center of the data in the
women’s distribution, few understood that thismade a generalizationmore uncertain.
In Class A, two participants discussed the effect of the spread on the choice of the
measure of centrality.

On the answer sheets, there was little evidence that the participants intentionally
generalized to the population. Questioning by the teacher educator during the class
discussions made generalization a topic of discussion. To accept the feasibility of
making generalizations, an understanding of sampling variability proved vital. In
Class B, all but one of the participants thought nothing could be known about the
population as awhole, since another sample could differ significantly from the current
sample. In Classes A and C, most participants seemed to understand that making
uncertain generalizations is possible. Class A’s reasoning was superficial. Most of
the participants acknowledged the uncertainty of generalizations and that a sample of
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four is too small for any generalization, but what could be stated about a population
based on a sample was not discussed. Class C’s understanding of generalizations was
more sophisticated. They agreed that less spread means more certainty. However,
they demanded complete certainty about the generalizations, dismissing samples that
could not provide this complete certainty.

The participants’ predictions of the distributions of larger samples and the pop-
ulation revealed many did not understand that sample distributions would resemble
the population distribution when the sample increases. Classes B and C made many
predictions that exactly copied the shape of the distribution of the smaller sample. In
Class C, discussing the predictions was only a small part of the discussions, which
might partly explain the low quality of reasoning about predictions in this class.

Understanding of the learning objectives of the Probabilistic language compo-
nent differed among the three classes. Even in the best-performing class, Class C,
the ISI reasoning was not as sophisticated as expected. In all classes, the answer
sheets almost completely lacked attention to uncertainty. Class B’s reasoning about
uncertainty was the least developed. Although there was broad consensus that for the
sample of four generalization was impossible, other uncertainty aspects were not dis-
cussed. The participants did not use probabilistic language, except for the opposite,
certainty language, for example, in statements, such as “It can never be the case…”
In addition, the Class A participants agreed that for the sample of four, generaliza-
tion is impossible. Moreover, the majority of this class seemed to understand the
possibility of making uncertain generalizations. Only Class C had an intense class
discussion about the extent to which a sample may provide information about other
people not interviewed. Even there, however, the majority was not convinced that a
larger sample would look like the smaller sample. Only a minority could express the
idea that the shape of a sample is likely to remain approximately the same when the
sample increases, provided the sample is sufficiently large. The participants in Class
C regularly used uncertainty language during the class discussions.

9.5 Conclusions and Discussion

This study explored the growing samples heuristic in the context of teacher education.
We investigated how three classes of first-year pre-service primary education teachers
reasoned about ISI when engaged in a growing samples activity. The results show
that in two classes most seemed to agree that making (uncertain) generalizations
based on a sample is possible. However, overall, the majority was unable to link
the possibility of making generalizations to an understanding of how a well-selected
sample can be representative of the population.

Concerning the way descriptive statistics were used as arguments in ISI, the class
discussions revealed that most pre-service teachers implicitly used suitable descrip-
tive statistics to compare two distributions. On the answer sheets, however, only a
third of the conclusions were supported by suitable descriptive statistics. In particular
in Rounds 1 and 2 it could easily be seen, without calculation, that men were on aver-
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age more positive about mathematics than women. The difference may have been
too obvious to induce the pre-service teachers to write down descriptive statistics.

On the answer sheets, most conclusions seemed to describe the sample data only,
rather than generalize beyond the sample data. Inferential statements used at best
the colloquial term ‘in general,’ which could have been copied from the question
without the intention to generalize. The first explanation for this finding may be that
the need to generalize was not compelling enough. Another explanation could be that
the participants, in their role as future teachers, had a class of primary school students
in mind as their population of interest. When the class is the population of interest,
description suffices, and there is less inclination to generalize beyond this class. The
questioning by the teacher educator during the class discussions was necessary to
draw the pre-service teachers’ attention to the inferential nature of the questions.

Attention to uncertainty and sample size was virtually absent on the participants’
answer sheets. This underlines our conclusion that most of the pre-service teachers
described only the sample data. Description does not require uncertainty and sample
size to be taken into account. During the class discussion in Class B, the majority
of the pre-service teachers concluded that generalization is impossible because they
accepted the claim that nothing can be known about people who are not in the
sample. This resembles the instance found by Ben-Zvi et al. (2012) of students
uttering complete uncertainty. In Classes A and C, in contrast, the majority of the
participants seemed to acknowledge that making uncertain generalizations based
on a sample is possible. This finding is similar to the findings in De Vetten et al.
(2018) and the reasoning displayed by high-ability middle-grade students studied by
Ben-Zvi et al. (2012).

We found little evidence that the heuristics helped the pre-service teachers to
understand the concept of sampling variability, contrary to the ideas formulated by
Joan Garfield and Ben-Zvi (2008). Only one participant attempted to explain the sta-
bility of sample distributions when the sample increases by referring to probability
theory. Her explanation did not convince the other pre-service teachers. The predic-
tions of the distribution of larger samples and the population provided extra evidence
for this finding, since often these predictions too strictly followed the global shape of
the sample at hand. Not understanding sampling variability is problematic because it
seemed to make the participants reluctant to accept the possibility of making gener-
alizations. One reason why the activity did not foster an understanding of sampling
variability could be that for a given sample size, all groups received the same data
set. Understanding why the sample distributions become stable when the sample
increases might require a repeated samples approach, where each group receives a
different data set and compares their conclusions with other groups.

In Class C, only the second and third rounds were used, but their generalization
and sampling variability were the most sophisticated. The questioning by the teacher
educator appeared a more effective way to foster reasoning about these topics than
repeatedly asking the participants to generalize and make predictions. The results
also raise questions related to the optimal number of rounds, the sample size of the
first round, and the effect.
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These results show some benefits of the growing samples heuristic in general and
our operationalization in particular. First, the heuristic helped to initiate discussions
about the role of sample size in certainty and sampling variability, which are key
concepts in ISI. In addition, using sample distributions with different variabilities
seemed to have helped the participants to gain insight into the certainty of general-
izations. Second, the activity was useful for discussing many distributional aspects,
such as measures of centrality and the effect of spread on measures of centrality,
as was the case in Bakker’s (2004) study. However, discussing the calculation and
estimation of descriptive statistics took considerable class time, which could have
been spent more productively on how one can use descriptive statistics as arguments
in ISI, for example, what the spread of the sample distributions implies for the con-
clusions. Third, the use of samples of unequal sizes during the third round initiated
discussions about using themeasure of centrality in comparing different sample sizes
and about sampling variability.

The participants’ educational background could have played a role in the differ-
ent quality of reasoning about ISI between the classes. This background is clearly
different for Class B, compared to the other two classes. In Class B, nine of the 11
participants have a background in secondary vocational education but only seven
out of 15 in Class A and four out of eight in Class C. Since statistics is not part
of most secondary vocational education curricula but is part of most senior general
secondary education curricula, the pre-service teachers with a background in senior
general secondary education may have had the vocabulary and statistical tools to fur-
ther the reasoning about ISI during the class discussions. We found some evidence
for this explanation. One pre-service teacher in Class C explicitly stated, “I had
something about this in secondary school.” Moreover, one pre-service teacher with a
background in senior general secondary education introduced the term “probability
theory”, after which probability and chance became terms used to reason about sam-
pling theory. For a fruitful ISI discussion, a fair number of pre-service teachers with
appropriate background knowledge in statistics and probability theory may need to
be present.

Some issues warrant a cautious interpretation of the results. First, this was a
small-scale and explorative study, and the context was the Dutch educational system
where students enter teacher college immediately after secondary education. The
results are, accordingly, not readily generalizable to other contexts. However, similar
processes may occur in countries where students enter teacher college with similar
backgrounds and where the statistics curriculum in primary and secondary education
is comparable to theDutch system. Second, the design of the activity likely influenced
the reasoning. For example, the sample distributions may have influenced the results.
In particular, the data did not result in conflicting conclusions. During each round,
it was quite obvious that men were more positive about mathematics than women.
Third, sound recordings of the pre-service teachers when working in groups were
not available. Issues spoken about but not written down could have provided a more
complete picture of the participants’ reasoning, in particular about whether they
had spoken about generalization and uncertainty but had not written down these
issues. Nonetheless, the extensive class discussions of generalization and uncertainty
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probably provide a reliable general impression of the pre-service teachers’ reasoning
about ISI.

In conclusion, this study informs how the effectiveness of the heuristic can be
further strengthened. First, the pre-service teachers seemed to use correct descriptive
statistics as arguments in ISI. This finding indicates less focus might be given to
descriptive statistics and by using simple descriptive statistics, more on ISI itself.
Second, some pre-service teachers were reluctant to accept the possibility of making
generalizations beyond the data. Comprehension of this fundamental idea may be
fostered if each group uses a different data set. When the sample sizes increase, the
different data sets typically will begin to resemble each other, leading to confidence
on the learner’s behalf that from a certain sample size onward, a sample provides
reliable information about the population. Finally, because the pre-service teachers
tended to describe the data only, the need to make generalizations beyond the data
was not sufficiently compelling. Therefore, we recommend designing activities and
contexts in which description is clearly insufficient and where generalization beyond
the data is natural and inevitable. These changes to the growing samples heuristic
may help to provide pre-service teachers the knowledge to demonstrate to primary
school students the feasibility of making generalizations beyond the data.
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Chapter 10
Necessary Knowledge for Teaching
Statistics: Example of the Concept
of Variability

Sylvain Vermette and Annie Savard

Abstract This chapter explores teachers’ statistical knowledge in relation to the con-
cept of variability. Twelve high school mathematics teachers were asked to respond
to scenarios describing students’ strategies, solutions, and misconceptions when pre-
sentedwith a task based on the concept of variability. The teachers’ responses primar-
ily helped us analyze their comprehension and practices associated with the concept
of variability and gain insight into how to teach this concept. Secondly, the study
shows that students and high school teachers share the same conceptions on this
subject.

Keywords Professional knowledge · Statistics · Teacher’s knowledge
Teaching practices · Variability

10.1 Context

The importance of statistics in our lives is such that data management has become
a major key in the education of responsible citizens (Baillargeon 2005; Konold and
Higgins 2003). The abundance of statistical data available on the internet, the studies
reported on television news, or the studies and survey results published in newspapers
andmagazines all show that nowadays, citizensmust have analytical skills to develop
critical judgment and a personal assessment of the data they are confrontedwith daily.
This role of statistics in our current society makes it necessary to consider teaching
this discipline to train our students to be citizens of tomorrow. If the goal is to
encourage statistical thinking in students as future citizens, then not only do we need
to teach basic statistical data interpretation skills, but it is also essential to teach the
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concept of variability. Variability is a key concept for the development of statistical
thinking; statistics may be defined as the science of the variability in natural and
social events in the world around us (Wozniak 2005).

We live in a world characterized by variability. Take the example a business that
manages a city’s public transit system. It may announce that its trains will arrive at
the different stations every ten minutes. However, any regular transit user knows that
arrival times vary, and that the time tables are not always strictly respected. The time
intervals are unequal, and this lack of uniformity is a characteristic of the presence of
variability. Moreover, the variable number of travellers must also be considered. This
variable reflects the somewhat predictable variation of factors such as schedules or
seasons and the random and unavoidable daily variability for a given hour. In short, as
shown in this one ofmany possible examples, variability is reflected by the absence of
determinism. The complexity of the phenomena, affected particularly by the number
of variables involved, is the source of this variability and of the observed variations.
In the public transit example, studying the phenomenon in all its variability makes
it possible to ensure a generally satisfying and consistent service by planning the
required train capacity and anticipating a variable but reasonable delay between
train runs.

Acknowledging an event’s variability means recognizing that the results are sub-
ject to variation, understanding that they are unpredictable in the short run, con-
sidering the sampling fluctuations, and letting go of certainty to enter the world of
uncertainty (Vergne 2004). In statistics, the concept of variability might be thought of
as having two dimensions: sample fluctuations in different samples taken from a same
population and dispersion of data in a distribution that can be assessed usingmeasures
of spread.This last dimension is the focus of the present article. InQuebec, curriculum
documents (Ministry of Education and Higher Education 2004, 2007) introduce and
stress early ideas associated with variability related to contexts of sampling, particu-
larly in a probabilistic context. The curriculum also introduces ideas associated with
variability related to statistical data dispersion, for example measures of dispersion
(range, mean absolute deviation, standard deviation) , graphing and exploratory data
analysis. So, this statistical key concept is implicitly part of the academic curriculum
in school but without being clearly defined. This is problematic because in everyday
language, this concept may be understood as large variety being associated with large
variability. This common idea of variability as a measure of variety differs from its
statistical concept associated with concepts of variation and variance. As stated by
Reading and Shaughnessy (2004), variability is the cognitive processes involved in
describing both the propensity for change and measure of variation. The concept
of variability is inevitably associated with the concept of variation. As opposed to
Borim da Sina and Coutinho (2008) and Reading and Shaughnessy (2004), we do
not make a distinction between variation and variability in this book chapter.

Based on the foregoing, it is essential to teach the concept of variability to develop
students’ statistical thinking. It is therefore necessary to verify the teachers’ knowl-
edge on this subject because we assume that students’ knowledge development is
closely linked to the practices and knowledge of their teachers who support them and
organize teaching by creating environments conducive to learning.Wemay think that
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understanding conceptions related to a specific concept helps teachers not only to
better plan their teaching but also to better organize and manage students’ activities
in a classroom so they can learn the elements of a targeted mathematical concept. We
define conceptions as explicative models based on daily life experience for explain-
ing and interpreting phenomenon, as is, to make sense of the world (Savard 2014).
We consider them as personal knowledge; however, for the purpose of this paper, we
call them misconceptions.

Despite the presence of statistics and probability in the school curriculum in Que-
bec, training in statistics and in teaching this discipline is barely present in the uni-
versities’ teacher training curriculum despite the ever-growing presence of statistics
in academic programs (Gattuso and Vermette 2013). For example, our study shows
that, unlike for geometry or algebra, no class is exclusively dedicated to the didactics
of statistics in the Quebec universities teacher training programs. One may think that
mathematics teacher training in statistics and in teaching statistical concepts is not
very developed, which raises important questions about the nature of the statistical
experience encountered by teachers during their professional training. Several stud-
ies show the growing interest of high school mathematics teachers’ in understanding
the statistical concepts they teach (e.g., Bargagliotti et al. 2014; Dabos 2011; Garfield
et al. 2007; Green and Blankenship 2014; Hill et al. 2005; Silva and Coutinho 2006).
At the same time, we notice a growing awareness that teachers use specific forms
of knowledge within their practice that are different from the standard forms they
learned in their university mathematics courses (Moreira and David 2005, 2008;
Proulx and Bednarz 2010, 2011; Margolinas 2014). Recent developments related to
teachers’ mathematical knowledge show that some knowledge stems from teaching
practice and is therefore related to events from the learning/teaching context (Bed-
narz and Proulx 2009; Davis and Simmt 2006; Margolinas 2014). This interaction
between statistical training and practice in class is the central issue of the research
project described in this chapter.

Learning more about teachers’ knowledge related to the concept of variability
might provide a better understanding of their ability to teach this concept. The
research question in this chapter is: What is the high school teachers’ mathematical
knowledge about the concept of variability? In the following, theoretical anchors
around the concept of variability in statistics that guide this study are introduced
along with a clarification of what teachers’ professional knowledge means. After
considering the methodological aspects of the study, the analysis offers examples of
teachers’ strategies associated with tasks involving the concept of variability. The
chapter concludes with a discussion of the results with the perspective of training
future teachers.
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10.2 Theoretical Anchors

10.2.1 The Concept of Variability

One focus of statistics is inferring characteristics of a population through analysis
of data collected from a sample of the population. Here, the concept of variability
appears in the differences between different samples taken from a same population.
Understanding this variability is required to make statistical inferences because such
inferences essentially come with probabilistic uncertainty caused by sample fluctua-
tion. The concept of variability is then also linked to the development of probabilistic
reasoning as it allows, in a mathematical context, to forsake a determinist reason-
ing, and reason instead using the uncertainty caused by these sample fluctuations.
Some researchers such as Canada (2006) studied teachers’ interactions with this
concept. Others studied teachers’ understanding of variability: for example, Dabos
(2011) studied teachers’ conceptions; Peters (2011, 2014) studied the development
of this concept by teachers; Sanchez et al. (2011) studied teachers understanding of
variation.

Another important focus of statistics is interpreting descriptive statistics. As
already stated, we consider that the concept of statistical variability refers to the
dispersion of statistical data. A data distribution shows variation, and, although infor-
mation on an important dimension of a distribution is provided bymeasures of central
tendency, used alone such measures may suggest an incomplete representation of
the distribution. We then need to pay attention to the variability of the statistical vari-
able’s values, which can mainly be evaluated with dispersion measures that show the
variation of data in a distribution.

Ameasure of dispersion allows a data set to be described by a specific variable that
provides an indication of the variability of the values within the data set (Dodge 1993,
p. 225, translated from French). A widely-used dispersion measure for describing a
distribution’s variability is the range. It is not only used because it is easy to calculate
simply by obtaining the difference between the largest and the smallest value of a
distribution but also because the results are easy to interpret (the size of the smallest
interval that contains all the data). Used alone, the range is a limited way to measure
variability as it does not consider the influence of the frequency of each statistical
variable’s values on the variability. Another way to measure variability is to use the
mean and standard deviations, two measures that include all the distribution’s data,
and describe the data dispersion around the distribution’s center, in other words, the
distribution’s mean. Interpreting these measures is a bigger challenge. Recent studies
show that understanding these statistical measures is often limited to the calculation
of algorithms and thus highlight students’ difficulties in measuring variability in
terms of the proximity of the data to the distribution’s central point (Cooper and
Shore 2010; Dabos 2011; delMas and Liu 2005; Meletiou-Mavrotheris and Lee
2005). This seems to be particularly true with graphical representations; it seems
challenging to make connections between informal notions of variability based on
graphical displays andmore formalmeasures of variability (Cooper and Shore 2010).
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Fig. 10.1 Illustration of variability with vertical lines showing deviations from the mean (Cooper
and Shore 2010, p. 5)

According toGarfield andBen-Zvi (2005), being able to recognize and understand
how the concept of variability appears in different graphs, especially in histograms,
is an important aspect for developing this concept when we consider that graphs’
appearance is an obstacle that may induce alternative conceptions. This aspect seems
overlooked in high school where too often the focus is rather on the rules for creating
the graphs. Studentsmay take in the general look of a graph, themaximum,minimum
or outliers and still not deeply understand the relationships between the distribution’s
center and the data spread around the center leading to the concepts of mean and
standard deviation as ways to study variability (Cooper and Shore 2008).

Several misconceptions interfere with this key reasoning on the variability of a
statistical variable’s values, which is interpreting the data spread in terms of deviation
from the distribution’s center, when dealing with variability in histograms and bar
graphs. Variability may first be interpreted as a variation of the height of bars and
conclude that the wider variance in the heights of bars, the greater the variability
(Cooper and Shore 2008; Meletiou-Mavrotheris and Lee 2005). Reasoning based on
the difference between the bar heights leads to thinking about the problem vertically
(if the bars are vertical). This understanding of variability might lead to an incorrect
answer if the value corresponding to the mean is on the x-axis bearing the different
values of the variable. The deviations from the mean might be illustrated with hori-
zontal lines These deviations could certainly have also been represented by vertical
lines if the different values of the variable, and therefore the mean, had been on the
y-axis as shown in Fig. 10.1.

These two graphs illustrate the mean monthly amounts of rainfall in Beijing and
in Toronto. The values of the variable, the mean amount of rainfall per month, are
on the y-axis and do not include the frequency. It is therefore possible to compare
the variability in the mean amounts of rainfall by observing the difference between
the heights of bars and the line representing the overall mean amount for the year
and to conclude that there is a smaller variability in the mean monthly rainfall in
Toronto than in Beijing. In this case, the deviations from the mean may be illustrated
by vertical lines corresponding to the differences per month of the mean amount of
rainfall from the yearly mean rainfall. In short, a distribution’s variability cannot be
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judged based on the variation in the height of bars but rather on how the vertical
segments cluster around the yearly mean. Some graph types, as in Fig. 10.1, which
do not show the distribution of frequencies, may be problematic and difficult to
interpret.

Other elements associated with the visual aspect of the shape of the distribution
might influence the interpretation of variability in a graphical representation. For
example, one element is to use theGaussian or normal curve as a reference to compare
a graphical representation. When the graphical representation looks like a Gaussian
curve, the variability of the distribution is perceived as low. This way, variability is
seen as a deviation from normalcy (Dabos 2011). Another example is associating
a symmetrical distribution with low variability (delMas and Liu 2005; Meletiou-
Mavrotheris and Lee 2005). In this case, one may believe that this association is
influenced by the distribution’s shape that shows a perfect counterbalance of the
deviations of the statistical variable’s values from the center of the distribution.
Students might be ignoring the fact that the sum of all of the deviations from the
mean is the null and that to find a measure of dispersion around the mean, it is
necessary to use some technique such as the absolute value of each deviation, so the
negative deviations don’t offset the positive deviations.

Other aspects related to the variability of the values of a statistical variable may
certainly be documented.However, descriptive statistics andgraphical interpretations
are the preferred aspects for building teachers’ tasks (see Sect. 10.3). Another aspect,
related this time to the knowledge mobilized by the teachers in their practice, was
also put forward: the professional knowledge.

10.2.2 Professional Knowledge: Knowledge Linked
to Practice

Inspired by the works of Shulman (1986, 1988), two aspects of teacher knowledge
present a specific interest: content knowledge and pedagogical content knowledge.
Shulman defines content knowledge as how a specialist in a specific field understands
a related subject matter. Pedagogical content knowledge is the ability to organize
and manage students’ activities in the classroom, so they may be introduced to the
elements of a targeted mathematical knowledge (Bloch 2009). Pedagogical content
knowledge is the ability to introduce and explain a topic for others to understand.
This type of knowledge goes beyond content knowledge and focuses on a different
dimension; understanding the content to teach it (Holm and Kajander 2012; Proulx
2008).

It is possible to separate these two types of knowledge; however, in practice, they
are interrelated and very hard to distinguish (Even 1993; Even and Tirosh 1995).
Therefore, this study does not seek to distinguish content knowledge from pedagog-
ical content knowledge but rather focuses on the conceptualization of professional
mathematics based on the works of Moreira and David (2005, 2008), of Proulx and
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Bednarz (2010, 2011) and of Margolinas (2014) who consider academic and school
mathematics as two separate knowledge fields. For example, in teaching/learning
mathematical situations, many mathematical aspects arise and are considered by the
teacher: reasoning (appropriate or not), giving meaning to the concepts; concep-
tions, difficulties and errors on the comprehension of concepts; various strategies
and approaches to solve a problem; various representations, symbols/writings (stan-
dardized or not) to express solutions; and new questions and paths to explore. These
mathematical occurrences not only refer to concepts in curricular documents, which
dictate what must be taught, but also refer to mathematical elements that are part of
teaching/learning mathematics that the teacher must use in class. The teacher’s pro-
fessional mathematical knowledge refers to a body of knowledge and mathematical
practices built on teaching/learning mathematics (Bednarz and Proulx 2010).

This mathematical orientation based on practice (Even 1993; Even and Tirosh
1995) is at the heart of the present research. Here, high school mathematics teachers’
professional knowledge is studied from two perspectives based on tasks involving
statistical content and related students’ reasoning (see Sect. 10.3). The first perspec-
tive refers to the teachers’ knowledge of the concept of variability. Are the teachers
able to perform the task and identify the students’ misconceptions? The second per-
spective is their ability to intervene with students to help them reason from their
errors.

10.3 Methodology

This exploratory project, which was conducted in French, is part of a larger research
program focused on issues associated with teaching statistics with the objective of
developing and analyzing training to improve the statistical experience. To achieve
the present research’s goal, which is to learnmore related tomathematics high school
teachers’ statistical professional knowledge about the concept of variability, we inter-
viewed teachers using scenarios involving the concept of variability to collect data
from teachers’ answers and to better understand their ability to teach this concept.
TwelveQuebec high schoolmathematics teachers participated in the research project,
and all had studied one course in statistics in their initial training to be a mathematics
teacher. All of them had aminimum of five years experience in teachingmathematics
in secondary school. Since interviews were conducted at the end of the school year,
these teachers had already taught a chapter on statistics to their students during the
year.

It was a two-step experiment. First, an information letter was sent to teachers
coming from a school district, inviting them to participate in the research project.
This letter also briefly introduced the concept of variability and the purpose of the
study. Introducing the concept of variability was necessary since it is not expressly
defined in the Quebec school curriculum. The following statements were presented:
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– the aim of the study is to explore how the concept of variability is considered while
teaching,

– the concept of variability refers, among other things, to the dispersion of data in a
distribution and to sample fluctuations and,

– the possibility of quantifying the variability in a distribution of data by using
dispersion measures such as the range, interquartile range and standard deviation.

Second, when a teacher agreed to participate in the research project, he or she
was invited to meet the principal investigator for an interview, which consisted of
analyzing six scenarios. Twelve teachers were interested and were thus selected to
participate. The interviews were conducted in a high school situated in the middle
of the school district. In each of the scenarios, a statistical problem was presented
(Problem solving), along with one or two students’ solutions (Students’ responses
to the problem and interventions). These were built using statistical contents analy-
ses related to the concept of variability (didactical, conceptual, and epistemological
analysis; Brousseau 1998) and inspired by analyses performed in this field (Cooper
and Shore 2008, 2010; Dabos 2011; delMas and Liu 2005; Meletiou-Mavrotheris
and Lee 2005). For each of the scenarios, teachers had to make sense of the task, of
students’ thinking, and propose possible interventions to improve students’ statisti-
cal reasoning and understanding. This process provided information on the teachers’
professional knowledge of the concept of variability. In this chapter, we present two
scenarios involving a graphical representation linked to variability. The first scenario
focused on a distribution of data, while the second scenario focused on standard
deviation.

10.3.1 First Case Example1

Step 1: Problem solving

The charts below show the height, in centimeters, of Secondary 1 (grade 7) students
from two different schools. Each school has 93 students. Which chart shows the
greatest variability in the students’ height? Explain your choice (Figs. 10.2 and
10.3).

Step 2: Students’ responses to the problem and interventions

Although they reasoned differently, two students came to the same conclusion for this
question; school B’s graph shows a greater variability. The first student’s reasoning
is that school B’s graph has an oscillating pattern. The second student finds school
A’s graph almost symmetrical and concludes that school B’s graph shows a greater
variability. What do you think of the students’ answers? Which reasoning do you
favor? How would you respond to each student?

1Adapted from Canada (2004).
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Fig. 10.2 Height, in centimeters, of Secondary 1 (grade 7) students from school A
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Fig. 10.3 Height, in centimeters, of Secondary 1 (grade 7) students from school B

In this scenario, the concept of variability is shown in the way the data are dis-
persed in the two distributions of the heights. The correct answer is: School A has
the distribution with the greatest variability in the students’ height. The task given to
the teacher stems from the students’ misconceptions. The students’ reasoning high-
lighted in this problem are based on the works of Cooper and Shore (2008), delMas
and Liu (2005) and Meletiou-Mavrotheris and Lee (2005), who reported that, when
interpreting the variability of a data distribution, some students were influenced by
aspects related to the shape of the distribution. The first student’s answer is designed
to be influenced by the variation in height of school B’s bars. This student’s rea-
soning refers to the frequency variability and not to the variability in the subjects’
heights. The second student’s response is designed to be influenced by the symmetry
of school A’s chart.
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10.3.2 Second Case Example2

Step 1: Problem solving

Throughout the year, a teacher collected statistics on the quantity of water drank
by Secondary 4 (grade 10) students from her school. The school has three groups
each with 27 Secondary 4 students. The statistics she collected are in Fig. 10.4 here
below. When looking at groups A, B and C, which distribution has the greatest
standard deviation? Which distribution has the smallest standard deviation? Explain
your choice.

Step 2: Students’ responses to the problem and interventions

For this question, two students came to different conclusions regarding group C.
The first one said that group C’s graphical representation shows the distribution
with the largest standard deviation since it has the most bars which indicates a large
variety of the quantity of water drunk monthly by students. He then concluded that
this distribution has the largest standard deviation. The second student said that the
graphical representation of group C shows the distribution with the smallest standard
deviation. He based his reasoning on the fact that the bars from group C’s graphical
representation are at an even height and therefore this distribution has the smallest
standard deviation. Who is right? How will you respond to these students?

In this case example, the concept of standard deviation can be seen through the
dispersion of the quantities of water in the histograms representing the two distribu-
tions. The correct answer is: Group A has the distribution with the smallest standard
deviation, and Group B has the largest standard deviation. Again, the teacher is given
a task based on the students’ misconceptions. In their question, the choice for both
students’ reasoning is also based on the works of Cooper and Shore (2008), del-
Mas and Liu (2005) and Meletiou-Mavrotheris and Lee (2005). The first student’s
response was designed to be influenced by the number of bars, which is not an indi-
cator of a large standard deviation. Bywrongly associating the groupwith the highest
number of different values for the deviations, group C, with the distribution having
the greatest standard deviation, the student excludes the deviations’ sizes and the
number of students associated with each deviation. Also, by following this logic, it
would be difficult to identify the group with the smallest standard deviation because
the other two groups (A and B) have the same number of bars. The second student
is influenced by the non-variation in the height of bars in group C’s distribution. By
thinking this way, the student refers to the variation in the number of students instead
of the variation in the quantity of water drunk by students monthly.

The cases above were aimed at observing how the interrogated teachers dealt with
the students’ conception of variability to better understand the type of interventions
the teacherswould choose. Depending on the teachers’ answers, other questionswere
also asked during the interview in order to clarify their remarks and to obtain a deeper

2Adapted from Meletiou-Mavrotheris and Lee (2005).
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Fig. 10.4 A, B, C: quantity of water drunk monthly by secondary 4 students

comprehension of the professional knowledge of statistics the teachers used in rela-
tion to the concept of variability. No explanation was offered during the interview.
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The interviews were taped, and the teachers and interviewers’ comments were tran-
scribed before being analyzed. The data were analyzed using the framework about
the dimension of a statistical variable’s values formulated in Sect. 10.2.1: assess-
ing the responses as correct, incorrect, or unanswered; interpreting the alignment of
responses with reasoning (conceptions). An inductive analysis process was favoured
to identify categories from procedures identified by the researcher during the analyt-
ical process (Blais and Martineau 2006). It was possible to group the categories that
emerged in the analysis under different themes. The main goal of the analysis pre-
sented here is to illustrate the nature of the strategies used by teachers in a statistical
context involving the concept of variability.

10.4 Results

We will present the results coming from the two scenarios given individually to the
twelve teachers. For each scenario, we present solutions provided by the teachers
to the problem, followed by their interpretation of the students’ solutions and a
suggested intervention to make with students.

10.4.1 First Case Example

Solutions provided by the teachers

When asked to identify the graph illustrating the greatest variability in students’
height, most teachers, i.e. 9 out of 12, identified school A’s distribution as the one
with the greatest variability. However, even though this is a good answer, the results
must be examined in light of the arguments brought forward as all have different
meanings. One teacher considered the number of bars. For this teacher, many bars
equal a great variability and indicated a large variety of student heights.

Several different heights, somore dispersion and greater variability (translated from French).

This justification may refer to a meaning often found in the everyday language
where large variety is associated with large variability. This common idea of variabil-
ity differs from the statistical conception of the concept but still leads, in this case,
to correctly identify school A as the one with the greatest variability in Secondary 1
students’ height as its associated graph has more bars. At the same time, considering
that both groups have the same number of students, a bigger number of bars may
be associated with fewer students per height category. Even though this aspect was
not suggested by the teacher in question, a comparison can be made with five other
teachers’ (of the group of nine teachers) arguments referring to the data concentra-
tion. These teachers explained their choice based on the density of the distribution
of heights. They analyzed the data concentration by creating a visual example of the
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data spread on the whole distribution. For example, school A’s distribution has more
different heights and fewer students for each height.

For school A, we see that few students are found in each height and that there is a bigger
variety in height than in school B (translated from French).

Finally, the last three teachers who identified school A as the one with the greatest
variability based their answer on the range. To answer the question, these teachers
considered the spread between the distribution’s minimum and maximum heights,
which is 20 cm for school A’s students and 14 cm for school B’s. Using the range
may be explained by the fact that this measure, which is simple to calculate, gives
a quick first approximation of the data dispersion. However, its calculation is only
based on the distribution’s two extreme values. Used alone, the range is a limited
method to measure variability. In this case, for example, this measure of dispersion
doesn’t consider the influence of frequency on variability for each bar. It is surprising
to see the importance given to this measure of dispersion.

Among the three teachers who chose school B, two were influenced by the graph-
ical representations’ resemblance to a bell-shaped curve associated with a normal
distribution. According to them, a large variability is associated with a distribution
shape that deviates from the normal shape. The other teacher explained his choice
based on the fact that school B’s bars vary more in height. This teacher associates bar
height with students’ heights and not with frequency thus focusing on the variability
of frequencies rather than on the variability of the variable in question, which is the
height of the students.

Interpretation of the students’ solutions and an intervention to make with stu-
dents

In a second step, after analyzing the student response, five teachers out of 12 were
not able to identify the mistake or at least recognize the students’ misconceptions.
For the three teachers among them who selected school B on their own resolution,
it became difficult to refute the students’ reasoning as the teachers not only came to
the same final conclusions, but one also thought the same as the first student and the
other two reasoned similarly to the second student in terms of the Gaussian curve
being symmetrical. Each accepted the students’ misconceptions using reasoning
corresponding to their own. Two other teachers simply stated that they couldn’t
disagree as they were confused by the reasoning. These two teachers had both solved
the problem by referring to the number of bars and to the range of each distribution
of the heights.

The seven teachers who identified both students’ misconceptions were able to
suggest an intervention. Four teachers explained the problem by opposing the vari-
ability in sizes and frequencies to illustrate that in this case the problem needed to be
solved horizontally and not vertically (the values corresponding to the mean are on
the x-axis labeled with the different variable’s values). The other three teachers who
got the right solution favored an approach that allows the student to reflect on their
misconceptions. For instance, one of them suggested tabulating the values so the
shape of the distribution wouldn’t influence the students. We named this approach
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transition to numbers. The two other teachers gave the students a counter-example.
For instance, one of them suggested a symmetrical distribution showing a low vari-
ability despite wide differences in the bars’ heights.

If 14 students are 153 cm tall, 14 students 155 cm tall and 2 students 154 cm tall, you obtain
high and low bars and the distribution is symmetrical. Do the student heights vary greatly?
Not really, they all measure almost the same (translated from French).

For this task, seven teachers expressed knowledge of the conceptual issue by
identifying the disruptive role of the graphic aspect. This knowledge was translated
into explanations for students either by an alternate presentation of the problem
(transition to numbers) or by giving them a counter example.

10.4.2 Second Case Example

Solutions provided by the teachers

Nine out of twelve teachers did not get the right solution. Of these nine teachers, one
based his thinking on the data concentration of the central bin to solve the problem.
By counting the number of people outside of the central bin, we can identify the
distribution of groups B and C as those with the smallest standard deviation as they
have the same amount of data outside of the central bin. This misconception doesn’t
include the value of the standard deviation of the data outside of the central bin.

For the large standard deviation, I selected B and C because 24 out of the 27 respondents
were not in the average class (translated from French).

Another of these teachers was influenced by the symmetry of the three distribu-
tions. The teacher concluded that all of the distributions of the water drunk had the
same standard deviation affirming that the positive deviations perfectly offset the
negative ones. Here is what this teacher said:

I calculated the mean everywhere. I obtained 18. Then, I said that the distributions were
symmetrical. Since the standard deviation is deviations’s mean, I then affirmed that the three
distributions had the same standard deviation [the teacher bases his thinking on the fact that
the sum of the mean deviations is null for each distribution] (translated from French).

As for the other teachers who were incorrect, two of them specified that they
couldn’t answer the question. Three of them were influenced by the variation of the
heights of the histograms’ bars, just as the second student was, by claiming that the
smallest standard deviation is in group C because of the uniformity of the bars height,
and the greatest standard deviation is group A’s because the graph shows a greater
variation in the bars height.

The smallest was the third one because the data were more uniform [talking about the
uniformity of the bar height of group C], and the biggest would be the first one because
the data are more spread…the difference here between this and that [the subject shows the
difference of the height of bars]. There is a bigger variation in the students, a difference of
12; from 17 to 5 (translated from French).
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The other two teachers reasoned the same way as the first student by quantifying
the number of possibilities (number of bars) for each group. For the biggest standard
deviation, this reasoning leads to choosing group C as there are more possibilities in
this group (more bars).

Less possibilities so less variability [speaking of the graphical representation of group A].
How many possible answers are there here? There are 1-2-3. This means that the standard
deviation is smaller than group C’s (translated from French).

Interpretation of the students’ solutions and an intervention to make with stu-
dents

As in the first case example, nine out of 12 teachers, including the five teachers that
did not identify the students’ misconception in the first case example, were not able
to identify the issue or at least to see the student’s misconceptions. It was difficult
for them to intervene as they initially couldn’t solve the problem, and several among
them shared the student’s misconceptions in their own resolution.

Of the seven teachers who disagreed with the students reasoning in the first case
example, three of them disagreed with the reasoning of the two students in this case
example and again, saw the issue of interpreting the data dispersion of the graphical
representations in terms of data proximity to the center of the distribution. These
teachers suggested an intervention that would have the students realize that Group
C’s graphical representation does not show the distribution with the greatest standard
deviation nor with the smallest. For instance, one of the teachers explained this by
referring to standard deviation measures.

I wouldn’t know how to show him without the calculation [the subject refers to the standard
deviation’s measure for the three distributions]. There are obviously other methods, but I
would be quite afraid to show another way, then in another situation where it wouldn’t be
done in such a way they would try to do it by reasoning and make mistakes. As a teacher, I
often prefer to show them the so-called “safe” methods (translated from French).

The other two teachers suggested explanations by referring to the data concentra-
tion around the mean. For example:

To a student who says: “I think that Group C has the smallest dispersion because the bars
all have the same height.” I would answer negatively because extremes are still the same,
i.e. between 0 and 4 and between 32 and 36, in graph A, there is a more even dispersion
around the mean then in graph B where there is a cluster of people at the beginning, a cluster
of people at the end and almost nobody in between. But with Group C, people are spread
evenly (translated from French).

10.5 Discussion

This exploratory research project was based on the teachers’ comprehension of the
concept of variability in a statistical context through the exploration of two scenarios
rooted in their practice, a concept that is at the heart of statistical thinking. The
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proposed scenarios confronted teachers with students’ answers and reasoning that
highlighted misconceptions about variability and its graphical interpretation.

The knowledge of the concept and interpretation of variability, conceptions
observed in school students and university students (Cooper and Shore 2008; Dabos
2011; delMas and Liu 2005; Meletiou-Mavrotheris and Lee 2005) are also observed
in high school teachers. When asked to interpret the variability in a graphical repre-
sentation of a distribution, some teachers were influenced by aspects associated with
the distribution shape:

• Variability as a variation of the bars heights: The variation of the bar heights in a
histogram becomes an indicator of the distribution’s variability; the more the bars
heights vary, the greater the variability. This is a misconception of variability.

• Variability as a deviation from normalcy: The variability of a distribution is deter-
mined by its resemblance or not to the Gaussian or normal curve; a low variability
is associated with bell shaped “normal” distribution. This is a misconception of
variability.

• Variability as an asymmetrical distribution: The variability of a distribution is
determined by its symmetry, which in turn is associated with a low variability.
This is a misconception of variability.

• Variability as a measure of variety: A distribution’s variability is determined by
the number of bars included in the graphical representation; a high number of bars
represents a great variability. This conception refers to a meaning found in the
common language where we associate a great variety with a great variability. This
conception of variability, which ignores the size of the deviations and the number
of students associated with each bar, is incorrect.

The resemblance between students and teacher’s errors is important. It shows a
phenomenon related to statistics that we must understand. Common conceptions of
variability seem to interfere with the statistical notion of the concept. Both teach-
ers and students mix everyday and statistical connotations. For example, it may be
conceivable to associate uniformity with what varies little. This justification refers
to a common language meaning and differs from the idea of the statistical concept.
Furthermore, teachers’ misconceptions show the influence of the shape of graphical
representations of data. This created obstacles by encouraging misconceptions that
would not have occurred otherwise, such as associating variability with the variation
of bar heights. It also appears that the concept of standard deviation is meaningless
for most respondents when its interpretation, measuring the variability in terms of
the proximity of the data to the distribution’s center, represents a challenge. These
results support those of other research, which indicates that understanding the con-
cept of standard deviation is often limited to applying its algorithm and consequently
shows the difficulties in interpreting the results (Cooper and Shore 2010;Dabos 2011;
delMas and Liu 2005).

The teachers who could identify the students’ misconceptions stand among those
who solved the problem correctly. The results show that teachers who were able to
identify students’ misconceptions could propose an intervention. In fact, the results
linked to the two scenarios show a variety of interventions, each coming from very
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different approaches.Whereas some teachers explicitly and systematically referred to
themathematical issues of the problem to help students clarify the concept and answer
the question, others suggested directly ‘confronting’ students to make them doubt
their reasoning. In thefirst case, nopropositionwasmade to explicitly engage students
in thinking, researching and validating their reasoning process that is based on the
application of computational methods while in the second case teachers suggested
conditions that would allow students to doubt their misconception and the answer
obtained that way, thus creating a cognitive conflict forcing them to reevaluate their
representations, to question their conception and to justify or change it if needed.

The results have methodological limitations due, for example, to the number of
people questioned and limitations in the tasks given to the teachers, which involved
only visual representations of data with no statistical measures (e.g., no information
about standard deviation or mean). Nonetheless, the results do have some educa-
tional implications. First, these results might be useful for teaching students about
variability; for instance, to connect informal notions of variability based on graphical
displays to more formal measures of variability based on statistical indices related to
dispersion such as standard deviation. Secondly for future teacher training, the variety
of interventions offered by the teachers in the project could constitute the beginning
of a reflection that could be used to train future teachers. Some interventions were
found to be more creative providing conditions to allow students to become aware of
their misconceptions. More importantly is the realization that some of the teachers
could react instantly to students’ answers and reasoning while others could not. This
context raises concerns and highlights the need to increase teacher training in statis-
tics to expand their ability to intervene in the classroom in a statistical context and
to develop students’ statistical thinking. Focusing on teachers’ professional knowl-
edge in a statistical context and on how they use this knowledge in class is even
more important because of the specificity of statistical reasoning. It is necessary to
expand this knowledge, so it can be better understood and used by teachers at the
appropriate moment in their practice. Research on students’ learning is necessary
to serve as the basis for creating learning situations linked with a teaching/learning
context that would allow teachers to become comfortable with how students reason
in a statistical context. This would provide teachers with opportunities to learn how
to intervene to improve students’ reasoning and statistical knowledge.

The results also bring considerations for future research about teaching variabil-
ity. Because teaching the concept of variability seems to be a challenge for teachers,
we think it is essential to continue research efforts to try and better understand the
issues met by teachers in this study and consequently think of potential solutions
to contribute to their professional development. We believe that more research is
necessary to gain insight on teaching this concept in classes. These studies would
help answer many questions unanswered in this text: How is the concept of variabil-
ity currently taught by mathematics high school teachers? Do they encourage their
students to have a global understanding of the concept (e.g., interpreting the spread
of the data in terms of deviation from the distribution’s center, interpreting variabil-
ity in a graphical representation, interpreting variability with dispersion measures,
etc.)? What tasks do they use to teach the concept of variability? What context do
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they use to make the tasks they give to students more meaningful when teaching this
concept?What teaching resources do they use and what do they propose for teaching
the concept of variability? What teaching strategies are the most successful? How
can we help teachers learn to use those strategies that have shown promise?

We believe that such studies would help identify current teachers’ needs when
teaching the concept of variability, and contribute to the initial and continuous teacher
training for teaching statistics in high school.
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Chapter 11
Secondary Teachers’ Learning: Measures
of Variation

Susan A. Peters and Amy Stokes-Levine

Abstract This chapter describes results from a project to design and implement
professional development for middle and high school mathematics teachers to inves-
tigate how dilemma, critical reflection, and rational discourse affect teachers’ under-
standings and reasoning about variation. Framed by transformative learning theory,
this study highlights how teachers’ engagement with activities designed to prompt
dilemma, considerationofmultiple perspectives throughmultiple representations and
rational discourse, and examination of premises underlyingmeasures and procedures
broadened teachers’ perspectives on measures of variation. This study contributes
to teacher education by identifying circumstances conducive to deepening statistical
understandings and supporting increasingly complex statistical reasoning.

Keywords Mean absolute deviation · Professional development
Standard deviation · Transformative learning theory · Variation

11.1 Background

Statisticians and statistics educators espouse the importance of understanding vari-
ability for statistical thinking (e.g. Wild and Pfannkuch 1999). Even though the pri-
macy of variation to statistics has long been accepted, researchers are only beginning
to uncover the complexities of developing conceptual understandings of variability.
Considerable research focuses on students’ intuitive notions of variability (e.g. Read-
ing and Shaughnessy 2004; Watson 2006) and school students’ and adults’ limited
understandings of variability and formal measures of variation (e.g. delMas and
Liu 2005). Few studies focus on teachers, particularly in-service teachers, and how
to facilitate their development of conceptual understandings of variability (Sánchez
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et al. 2011).Yet, teachers need deep understandings in order to facilitate student learn-
ing. Continued research is needed to design instruction and activities that are effec-
tive for teachers to develop conceptual understandings as one step towards achieving
larger educational goals. We describe an investigation of a professional development
program designed to support middle and high school mathematics teachers’ rea-
soning and learning in statistics. We focus on teachers’ engagement with activities
to address how dilemma, critical reflection, and rational discourse affect teachers’
understandings and reasoning about measures of variation.

11.2 Previous Research About Measures of Variation

Although school and tertiary students in general may have less sophisticated math-
ematical understandings than secondary mathematics teachers, Shaughnessy (2007)
suggests thatmany “teachers have the same difficulties with statistical concepts as the
students they teach” (p. 1000)—a view that is supported by reviews examining stu-
dents’ and teachers’ reasoning and understanding of variation (Sánchez et al. 2011).
As a result, the body of research that examines students’ reasoning, understanding,
and learning about variation and related concepts can provide insights into struggles
that teachers might experience and important elements and connections needed for
teachers to develop robust understandings of variation.

Research suggests that school students have intuitive conceptions about variation
and are able to reason about the range and spread of data relative to a center (e.g.
Reading and Shaughnessy 2004). Additionally, students exhibit improved reasoning
about variability throughout their educational years as they study ideas related to data
and chance (e.g. Watson et al. 2007; Watson and Kelly 2004a, b, 2005). In general,
however, students encounter difficulties when asked to reason about variation using
formal measures of variation.

Developing meaning for and reasoning about formal measures of variation, par-
ticularly standard deviation, appears to be particularly problematic for students. For
example, prior to beginning an introductory-level college statistics course, some
mathematics majors struggled to describe the meaning of standard deviation beyond
relating it to variability in data (Cook and Fukawa-Connelly 2016). When compar-
ing distributions using formal measures of variation, other first-year college students
tended to examine agreement among different measures of variation to compare
variability in distributions in place of choosing measures for comparison based upon
data characteristics (Lann and Falk 2003). Their comparisons typically relied on the
range more than standard deviation/variance, mean absolute deviation, or interquar-
tile range. To draw conclusions about the magnitude of standard deviation in two
distributions, some introductory-level statistics students compared standard devia-
tions for multiple pairs of distributions by attempting to create rules to generalize
patterns in histogram bars (delMas and Liu 2005). Very few students employed con-
ceptual approaches to coordinate the location of the mean with deviations from the
mean. Even students who successfully completed an introductory statistics course
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with top grades viewed standard deviation only as a rule or formula (Mathews and
Clark 2003). In general, students who complete introductory courses—even courses
designed to advance reasoning about variation with formal measures of variation—
may only begin to consider variation as a measure of spread from center and begin to
display advanced understandings of variation by applying their knowledge to novel
situations (Garfield et al. 2007).

Teachers experience some of the same difficulties that tertiary students exhibit
when reasoning about and with formal measures of variation. For example, few of
the prospective science and mathematics teachers participating in Makar and Con-
frey’s (2005) study compared data sets by using standard deviation. Makar and Con-
frey observed that standard deviation as a measure of variation held little meaning for
these teachers. Little evidence suggests that many preservice secondary mathematics
teachers understand formal measures of variation as anything more than numerical
values or as computations (e.g. Makar and Confrey 2005; Sorto 2004). For many
teachers, even if they are able to calculate values for standard deviation and discuss
standard deviation as ameasure of variation, theymay be unable to reason about stan-
dard deviation in conjunction with the mean (Clark et al. 2007; Silva and Coutinho
2008).

Relatively recent interventions with students, however, offer strategies for help-
ing students (and teachers) to overcome some of these struggles associated with
developing understanding and reasoning about measures of variation for students to
successfully reason about andwith representations andmeasures such as determining
which best represent data (Garfield and Ben-Zvi 2005) and reasoning about spread
relative to center (Garfield et al. 2007). By engaging elementary students in processes
of modeling data that included inventing and revising measures of variability for data
from a measurement context, students invented and explored measures that included
sum of deviations and sum of absolute deviations from the mean and median (Lehrer
and Kim 2009; Lehrer et al. 2007), average absolute deviation from the mean and
median (Lehrer et al. 2007), and interquartile range (Lehrer et al. 2007). Such explo-
rations set the stage for students to engagemeaningfully with conventional measures.
Work with tertiary students suggests that an approach in which students consider the
constraints and affordances of different formal measures of variation can be effective
for deepening students’ conceptual understandings of the measures (Garfield et al.
2007). These studies offer insights into the types of activities that might facilitate
teachers’ development of conceptual understandings of formalmeasures of variation.
Further insights can be gleaned from theories of adult learning.

11.3 Frameworks

Most Pre-K–12 instruction focuses students on answering questions of what and
how, which allows students to construct understandings of new ideas or to enhance
their current understandings. Adult learning, however, often results from focusing
on the premises behind content and processes towards answering questions of why.
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Transformative learning theory (Mezirow 1991) is an adult learning theory that takes
into account the transformative learning that results from reflecting on premises. An
overarching tenet of the theory is that powerful learning results from transforming
meaning perspectives, which are the broad predispositions formed from culture and
experiences (Cranton 2006; Mezirow 1991).

Perspective transformation can begin with events that trigger a “disorienting
dilemma” to prompt examination of broad presuppositions or with a series of incre-
mental dilemmas that prompt examination of particular knowledge or attitudes (Tay-
lor 2000). These dilemmas are feelings of dissatisfaction with current thinking or
knowledge in relation tomeaning perspectives or meaning schemes, which consist of
specific expectations and knowledge used to interpret experiences implicitly (Cran-
ton 2006; Mezirow 1991). Dilemmas that induce questioning of assumptions for
meaning schemes can be resolved by creating, enhancing, or transforming meaning
schemes (Mezirow 2000). For example, a teacher whose initial meaning scheme
for standard deviation consists of algorithmic steps for calculating a value might
experience dilemma when engaging with activities to develop understanding of the
standard deviation as the approximate average deviation from the mean and subse-
quently enhance her meaning scheme by viewing the formula in terms of average and
deviations. The teacher might transform her meaning scheme for variation by reject-
ing her prior computational conceptions of measures of variation to view variation as
a multifaceted construct that permeates all of statistics after studying experimental
design and reflecting on sources of variability such as measurement error. Critical
reflection—reflecting on premises to question the importance, validity, or utility of
knowledge—is crucial for transformation to occur. Critical reflection often is sup-
ported by rational discourse—dialogue with oneself or others to examine alternative
perspectives and to assess expectations and knowledge—towards developing and
acting on plans to resolve dilemmas.

Transformative learning theory framed prior retrospective research that identified
factors teachers perceived as contributing to their development of deep understand-
ings of variation. Important for teachers’ learningwas not only engagement in rational
discourse to consider the perspectives of others but also active exploration with data
using multiple representations to gain new perspectives for concepts such as sam-
pling distribution, to explore premises underlying concepts, and to justify methods
and conclusions (Peters and Kopeikin 2016). Teachers also described how actively
engaging with tasks and activities that were focused on fundamental statistical con-
cepts and principles and key aspects of variability were important for their learning
about variation and related concepts (Peters 2014; Peters and Kopeikin 2016).

We designed our professional development program to build on the results of this
research and research related to students’ reasoning and learning about statistical
variation. We designed the professional development activities to include planned
triggers for dilemmas in typical areas of struggle using an overarching framework for
reasoning about variation (Peters 2011). The program offered teachers considerable
opportunities to explore content conceptually, engage in rational discourse with other
teachers, and examine underlying premises and reflect critically on the content to
enhance or transform their skills and knowledge related to formal measures of vari-
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ation. The program also incorporated characteristics of “high quality” professional
development such as sustained duration and focus on content towards developing
teachers’ content knowledge (e.g. Goos et al. 2007; Smith et al. 2005). The program
included a one-week intensive summer experience in which teachers actively experi-
enced K–12 statistics content as learners using the problem solving process detailed
in the Guidelines for Assessment and Instruction in Statistics Education (GAISE;
Franklin et al. 2007) and focusing on variation throughout the process.

Activities to investigate measures of variation began with teachers comparing
average five-year rates of return on stocks, mutual funds, and certificates of deposit
using a variety of representations generated in TinkerPlots (Konold andMiller 2005)
and considering students’ reasoning associated with boxplots and interquartile range
to describe and compare distributions by examining variability within distributions in
addition to overlap and variability between distributions. Teachers’ explorations con-
tinued by using arm circumference measurements that they collected and that were
collected from the National Health and Nutrition Examination Survey to consider
distributional features captured and not captured by a variety of standard and non-
standard measures for variation. Originating from research on students’ reasoning
about variation, these measures included the range (e.g. Garfield et al. 2007), sum of
deviations and sum of absolute deviations from themean andmedian (e.g. Lehrer and
Kim 2009; Lehrer et al. 2007), average absolute deviation from the mean andmedian
(e.g. Lehrer et al. 2007), and interquartile range (Biehler 2007; Wild et al. 2011).
Teachers then examined mean absolute deviation and its properties, contrasted mean
absolute deviation with standard deviation both symbolically and visually through
multiple representations, consideredwhy standard deviation typically is used in place
of mean absolute deviation, and considered the effects of outliers on each measure to
make progress towards developing dynamic conceptions of mean absolute deviation
and standard deviation by coordinating changes to the relative values about a mean
with their deviations from the mean. Lastly, teachers explored standard deviation
further by playing the standard deviation game developed by delMas and described
in delMas and Liu (2005).

11.4 Data Sources and Methods

Tenmiddle- and nine high-school teachers participated in a one-week, 40-hour, sum-
mer professional development program. Teachers varied in their statistical learning
and teaching experiences. Every teacher completed a minimum of one introductory-
level statistics course as part of a secondary, undergraduate, or graduate program, and
four teachers completed one or more advanced or mathematical statistics courses.
During a typical school year, some teachers taught at most 10 statistics-related
lessons, whereas others taught the equivalent of an introductory college-level statis-
tics course.

Data sources included audio- and video-recordings of large-group discussions
and small-group activities from professional development sessions, teachers’ written
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work and reflections, one semi-structured interview with each teacher, and teachers’
results on pre- and post-tests developed by the Levels of Conceptual Understanding
in Statistics (LOCUS) project (Jacobbe et al. 2011). LOCUS forms used for pre- and
post-assessment are equated and consist of 50 multiple-choice questions that cover
the gamut of statistical problem solving phases (i.e., formulate questions, collect data,
analyze data, interpret results) across beginning, intermediate, and advanced statis-
tical literacy levels.1 Semi-structured interviews were conducted after the weeklong
summer professional development sessions concluded to provide insights into how
dilemma, critical reflection, and rational discourse affected teachers’ understandings
and reasoning. Teachers also responded to statistics problems with multiple entry
points for the researchers to examine their statistical understandings and reasoning.
We gained further insight into teachers’ understandings and reasoning from profes-
sional development session recordings and teachers’ written work.

For each recording, we created a log of the content and developed transcripts. We
first examined aspects of the professional development program designed to encour-
age dilemma, critical reflection, and rational discourse by identifying relevant tran-
script passages. We searched written work and transcripts for evidence of dilemma,
critical reflection, and rational discourse, paying attention to indications of insights,
questions, or confusion; thoughts and reasoning beyond the immediately observable;
content-related interactions with other teachers, students, or texts or consideration
of multiple perspectives; and references to the preceding as potential evidence for
dilemma, critical reflection, and rational discourse, respectively. Two researchers
separately analyzed each transcript and teachers’ work and reflections using a com-
bination of codes developed from the theoretical framework and codes that emerged
from the data. Theory-related codes included the elements of transformative learning
(e.g. disorienting dilemma, self-examination, assessment of assumptions, engaging
in rational discourse, etc.) identified by Mezirow (1991, 2000). We examined data
for each participant, discussed discrepancies in our analyses until we reached agree-
ment, and made comparisons across participants to look for common themes as well
as variations from the themes.

11.5 Results

From the beginning to the end of the week of the summer professional development
program, teachers’ mean scores on equated LOCUS assessment forms improved
significantly from 75.5 to 81.1% (t(18)�3.53, p �0.001), and their median scores
improved significantly from 76 to 80% (W �137.5, p �0.002). Breaking results
apart by grade-level certification revealed that middle school teachers’ mean scores
improved significantly from72.4 to 78.2% (t(9)�2.82,p �0.010) andmedian scores
improved significantly from 71 to 78% (W �34.5, p �0.013), and high school

1The beginning, intermediate, and advanced statistical literacy levels assessed by LOCUS corre-
spond with the A, B, and C levels of development, respectively, articulated in the GAISE report
(Franklin et al. 2007).
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teachers’ mean scores improved significantly from 78.89 to 84.22% (t(8)�2.08, p
�0.035) and median scores improved significantly from 78 to 86% (W �37.5, p �
0.043). Three of the 19 teachers scored lower on the posttest, answering one, two,
or three more questions incorrectly on the posttest than on the pretest. The greatest
improvement came from two teachers who answered nine and ten more questions
correctly on the posttest.

Although this group of teachers did not show significant improvement on individ-
ual variation items, they did, on a scale from 1 to 10, report significantly increased
knowledge for reasoning about interquartile range (mean increase of 1.63, t(18)�
4.633, p <0.001), calculating mean absolute deviation and standard deviation (mean
increase of 3.34, t(18)�6.909, p<0.001), and reasoning about mean absolute devia-
tion and standard deviation (mean increase of 2.79, t(18)�7.512, p<0.001). In their
final reflections on the week, eight teachers explicitly mentioned deepened under-
standings of mean absolute deviation and standard deviation as important learning
they experienced fromprofessional development activities. Preliminary analyses sug-
gest several features that may have contributed to teachers’ overall improved scores
and perceptions of increased knowledge and reasoning abilities.

11.5.1 Dilemma

Teachers experienced dilemmas throughout the professional development program.
Several dilemmas stemmed from interpreting nonstandard measures of variation
and considering distributional features captured by the measures. For example, after
examining the sum of absolute deviations from the mean, Bob2 struggled to evaluate
distributional features captured by the sum, noting, “I don’t know what that really
does tell us.”When comparing the sum of absolute deviations with themean absolute
deviation, Naomi queried, “I wonder what the benefit is of using one over the other.”
Although many of the teachers previously encountered ideas of deviation, absolute
deviation, and mean absolute deviation, few, if any, previously considered nonstan-
dard measures such as the sum of absolute deviations from the mean. Focusing on
why they might use a nonstandard measure and considering underlying premises
such as why mean absolute deviation might better describe distributions than other
measures caused teachers to reexamine their understandings.

Other dilemmas arose when teachers interpreted graphical displays of data that
differed from traditional displays of univariate data such as dotplots or histograms.
For example, when interpreting graphs displaying linear deviations of upper arm
circumferences in centimeters from a mean upper arm circumference of 32.6 cm
(Fig. 11.1), teachers struggled to coordinate the graph with their procedures for
calculating mean absolute deviation. For example, the group consisting of Jackson,
Mallory, and Daphne calculated a mean absolute deviation of 2.225 cm for the data
displayed in Fig. 11.1 and observed that the mean absolute deviation was larger than

2All teacher names used in this chapter are pseudonyms.
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Fig. 11.1 Deviations from a mean upper arm circumference of 32.6 cm

the majority of absolute deviations due to the large data value of 44 cm. However,
they seemingly struggled to reconcile the differences between the averages they
calculated and between distance and deviation.

Jackson: The line is the, the vertical line is the, is the mean. And then they’ve got
a line from each dot to the mean.

Mallory: Well themean [MAD] thatwe calculatedwas 2.225. This [points to vertical
line] is [not 2.225].

Jackson: No, no, no. Okay, we’re getting our means [mixed up]. Both are means.
So the 2.225 is the mean of the deviations from the mean.

…

Mallory: Oh!
Jackson: This [points to vertical line on graph] is the mean of the actual arms.
Mallory: Okay.

…

Daphne: What do the horizontal lines represent?
Mallory: The distance from the mean.
Jackson: The deviations.
Daphne: Same thing. Right? … Now the question is, how does the mean of the

deviations you calculated relate to the graph below. Means the average of
all those.

Jackson: So the average length of the horizontal lines is 2.225.
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Daphne: Is the average length of the lines, right? That’s what you just said. The
mean of the deviations.

Mallory seemingly became confused after calculating a mean absolute deviation
value and hearing Jackson refer to the vertical line at 32.6 cm as the mean. After
Jackson clarifies the twomeans under consideration in the problem, the three teachers
consider what the horizontal segments represent, with Daphne equating Mallory’s
description of the representation of horizontal line segments as distance from the
mean with Jackson’s description of the representation as deviations. Ultimately, the
group was able to make connections between the calculation for mean absolute devi-
ation and the graphical display. Other groups struggled to make connections because
they focused on deviation rather than distance, such as Landen who concluded, “so
the mean of the deviation that we calculated doesn’t relate to this graph because we
calculated the mean of the absolute deviations.” As teachers responsible for teaching
mean absolute deviation (or standard deviation), Mallory and other teachers knew
how to calculate values for the measure(s) they taught. However, the graph presented
a novel perspective for considering mean absolute deviation—one focused on high-
lighting defining properties of the measures and the meaning of the measures—that
raised questions for the teachers.

Other teachers experienced dilemmas as they struggled to connect newly encoun-
tered ideas with concepts they thought they understood. For example, Bryce’s under-
standing of standard deviation was perturbed when he encountered mean absolute
deviation: “When I see average deviation I think standard deviation. So…average
deviation must mean some other measurement I’m not really familiar with.” As a
high school teacher of an introductory statistics course, Bryce had not previously
encountered mean absolute deviation. Recognizing the existence of a measure dif-
ferent from standard deviation that aligned better with his definition for standard
deviation provoked dilemma.

Some of the teachers’ dilemmas came from planned triggers—questions included
in activities to provoke dilemmas that could be anticipated. These dilemmas included
dilemmas stemming fromnonstandardmeasures andgraphical displays.Other dilem-
mas were unanticipated such as high school teachers confusing standard deviation
with mean absolute deviation.Whether teachers encountered anticipated or unantici-
pated dilemmas, however, they sought resolution to their dilemmas, often by enlisting
the help of other teachers.

11.5.2 Rational Discourse and Alternative Perspectives

Teachers engaged in rational discourse with others and examined multiple represen-
tations to gain alternative perspectives while considering premises, yielding insights
to resolve dilemmas. Sally, for example, indicated that she learned more about mean
absolute deviation as a result of: “a lot of the group work that we did and just hear-
ing other people explain it to me, other than like reading it in a book or online,
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understanding what it means a little bit more.” Similar to Sally, a majority of the
teachers identified working through activities as students and in collaboration with
other teachers as beneficial for their learning, and some of the richest interactions
occurred between middle and high school teachers due to the different content that
they taught.3 Consider the interactions among, for example,Bob,Landen, andAudrey
as they examined the sum of absolute deviations from the mean.

Bob: Sum of the absolute deviations from the mean. I don’t know what that
really does tell me. It’s just…

Landen: What I thought is it tells you if it, if there’s a whole bunch of deviation
from the mean.

Bob: Yeah. If the numbers are huge.
Landen: Yeah, because if the number’s really big then…
Audrey: Because that’s really, that’s basicallymean absolute, that’s theMAD [mean

absolute deviation] that we talk about. And that tells you…
Bob: But that’s before you do the MAD so you have the answer before you do

your MAD.
Audrey: Oh, yeah!
Landen: So it tells you if there’s a whole bunch. If, if there’s some that are really,

really big… Cause obviously, the smaller the number that it is.
Audrey: But it’s very relative too. You have to know what you’re starting with. I

don’t know.
Landen: It’s relative to the size and the numbers in the data set.
Audrey: Yes. Yes.
Landen: But I mean it’s really a measure of preciseness.
Bob: Measure of spread.

As middle school teachers who taught mean absolute deviation, Bob and Audrey
contributed observations of similarities and differences between mean absolute devi-
ation and the sum of absolute deviations from the mean to the discussion. Landen, a
high school teacher who previously “did not know MAD,” focused on aligning their
observations with their calculations for the three teachers to reach consensus that the
sum provided a measure of spread or preciseness that should be considered in rela-
tion to the number of and magnitude of data in the data set. Each teacher contributed
different features to advance each teacher’s understandings of the measure.

In addition to group discussions providingmultiple perspectives of content, teach-
ers credited multiple representations with providing alternative perspectives that
served to enhance their understandings. For example, teachers such as Daphne iden-
tified explorations with Fathom (Finzer 2002) and graphs such as those displayed
in Fig. 11.1 and in Fig. 11.24 with enabling them to visualize differences between

3In the United States, the Common Core State Standards in Mathematics (National Governors
Association Center for Best Practices and Council of Chief State School Officers 2010) include
mean absolute deviation in the standards for sixth grade; in high school, the focus shifts from using
mean absolute deviation as a measure of variation to using standard deviation.
4In Fathom, when selecting the option to Show Squares on a bivariate graph, the software presents
a visual representation of a square using the vertical segment between the data point and the fit
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Fig. 11.2 Fathom representation of squared deviations from a mean of 32.6 cm for a univariate
data set of upper arm circumferences in centimeters [ARM and ARM1]

mean absolute deviation and standard deviation such as how outliers influence each
measure in ways that the symbolic formulas for calculating the measures could not.
Specifically, Daphne identified working with “different data sets on Fathomwith and
without outliers and seeing the changes in values” asmore effective for her to consider
the effects of outliers on measures than calculating values for the measures without
any type of visualization. In particular, she mentioned the importance of seeing the
area representation for squared deviations in comparison with the length representa-
tion for absolute deviations. Brittany identified graphical explorations with Fathom
for helping her to understand differences between mean absolute deviation and stan-
dard deviation: “I had never heard of MAD before this week, but how to calculate
and whymakes sense—I have only calculated SD [standard deviation] by hand a few
times due to the ease of a graphing calculator but building it through Fathom helped
me to understand.” She further noted how “the visuals provided by the graphs helped
to make comparisons,” which were further facilitated through recording similarities
and differences in “the matrices/charts [that] helped pull it altogether.”

In many cases, individual representations from student work or from TinkerPlots
were representations teachers had not previously encountered, such as case-value

line as the basis for the square. The software does not use the side lengths to form squares with
congruent sides.
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plots,5 hat plots,6 or hat plots and boxplots superimposed over dot plots, which caused
them to also question the utility of the representations. In other cases, using multi-
ple representations to represent data allowed teachers such as Daphne to consider
“what different representations show you and don’t show you” about distributions
and to get what Rachel called “a clearer picture of variability.” The teachers used
the representations to begin considering premises such as when Daphne considered
circumstances under which “different representations are ‘better’” for describing
data or comparing distributions. Similarly, Jessica noted the utility of using dynamic
software to generate graphical representations “to see the comparisons and get an
understanding of why” one representation might be better than another.

Beyond using multiple representations to explore premises, teachers engaged in
rational discourse to examine premises. For example, the following excerpt reveals
how teachers examined the effect of outliers on standard deviation in contrast with
mean absolute deviation.

Cecilia: How would this [squaring large deviations] affect the mean of the squared
deviations?

Lewis: Well depending on, depending on outliers it’s going, er, not even outliers
but like values that are far away from the mean, it’s going to have a huge
effect…

Naomi: So values farther from the mean will be, um—like will have more of an
effect?…the sum of squares…

Cecilia: Greater impact when squared than absolute value…
Lewis: But why? [Pause.] I think what we’re trying to get at here is that the more

varied our data is, the more this value [mean of squared deviations] will
be.

Naomi: So just basically, the larger the deviation the larger the value [mean of
squared deviations] will be.

While examining graphs such as those displayed in Figs. 11.1 and Fig. 11.2,
focusing on sums and means of absolute and squared deviations, and collaboratively
contributing to conversations to answer questions, Cecilia, Lewis, and Naomi were
able to conclude that large outliers and values far from the mean would have a
greater effect on standard deviation than on mean absolute deviation. As with most
of the rational discourse the teachers evidenced during the professional development
program, teachers resolved minor dilemmas related to statistics, such as Naomi’s
questioning the effect of values at a large distance from the mean, by interacting with
other teachers and focusing on premise-related questions. In some cases, however,

5A case-value plot is a bar graph representation in which each data value is represented by a bar
with a length that represents the magnitude of the data value.
6A hat plot is a representation of data that is similar to a boxplot in that it represents a middle
collection of data values in a data set using a rectangle and extends the bottom edge of the rectangle
to theminimum andmaximumdata values to produce a visual that resembles a hat. Unlike a boxplot,
the central box does not necessarily represent the middle 50% of data but may instead represent the
middle 1/3 of data or the data within one standard deviation of the mean.
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rational discourse occurred after teachers previously engaged in critical reflection to
consider premises.

11.5.3 Critical Reflection

The professional development activities were designed to provoke both reflection
on content and processes and critical reflection on premises by constantly focusing
teachers on examining statistical concepts and understanding the premises behind sta-
tistical techniques. Approximately half of the teachers credited this focus on answer-
ing questions of “why” with deepening their understandings of the content and con-
trasted this focus with prior experiences. Jackson acknowledged the unique (to him)
focus on premises when he discussed his experiences in three previous statistics
courses.

I’ve taken three stats classes. I’ve taken Psych[ology] stats and two different stats classes.
We talked about standard deviation in every single one of them. The amount of time that
I’ve spent today attempting to actually understand [standard deviation] is greater than the
amount of time that I spent attempting to understand in all of the other classes combined.

In anonymous feedback on the week of professional development activities, sev-
eral teachers noted the benefit of finally understanding the concepts explored during
the professional development program, indicating that they finally knew “what stan-
dard deviation really is” or “whatmean absolute deviation really is…this confusedme
my first year!” Although teachers can be heard commenting throughout the week’s
videos about how the professional development activities pushed their thinking, such
as Bob indicating that his “mind was just blown” or Mallory indicating that her brain
was “squishy” when investigating the conceptual underpinnings of mean absolute
deviation and standard deviation, most indicated benefit from focusing on conceptual
understanding and premises.

Several teachers attended the professional development program after previously
spending significant time studying statistics and reflecting on the content during their
preparations to teach the content. For example, Margaret taught a college-equivalent
introductory statistics course and previously tried to determine why standard devi-
ation typically is used in place of mean absolute deviation. She observed that the
question about “why do we use this one?” arose “every year” in her classes. She
also shared the following within her small group of teachers working together on
activities:

For some reason, the standard deviation is a lot more useful than the mean absolute devia-
tion…for some reason statisticians prefer this one…But there is a reason. I can’t tell youwhat
it is but it does exist. Why they use standard deviation instead of mean absolute deviation.

Margaret credited the professional development activities with leading her to
some resolution for her long-standing dilemma about why standard deviation is used
more often than mean absolute deviation. Teachers worked through an activity in
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which they considered the unique minimum produced from a quadratic function in
comparison with a function formed from the sum of absolute linear functions.7 They
also considered the difficulty of working with the sum function versus the quadratic
function. At the conclusion of the activity, Margaret proclaimed enlightenment.

I finally know today why this works, why we use this one [standard deviation] and not the
other one [mean absolute deviation] …And I’ve looked it up online and I’ve seen pages and
reams and reams online. That (points to the activity sheet) makes more sense than anything.

In her reflections, Margaret proclaimed, “understanding why MAD is not used
was a wonderful revelation.” Prior to attending the professional development pro-
gram, Margaret spent considerable time and energy researching and reading “at least
50 pages” to determine why standard deviation is used and preferred over mean abso-
lute deviation. Prior critical reflection on premises related to measures of variation
may have positioned Margaret and others to develop new insights from engaging
in professional development activities with others—insights that they may not have
formed without prior reflection.

Even if teachers were not successful in resolving their dilemmas by engaging in
rational discourse and reflecting on activities during the 40 hours of the professional
development program, professional development activities provided a starting point
for future reflection. For instance, Caroline indicated that with regard to standard
deviation, “I understand it a little bit better but I don’t think I can articulate stan-
dard deviation.” However, she cites the professional development materials as one
resource that she could draw on to further her understandings: “I would…go back
and look at my notes.” Although not satisfied with her knowledge about standard
deviation or even mean absolute deviation, she suggested that she has confidence
that she can enhance her knowledge using the tools she has available to her.

I do like the activities that allow me to at least have some jumping, you know something to
jump off of as opposed to looking in the textbook. Cause I liked all of those [professional
development] activities. So it [the professional development program] has forced me to be
more cognizant of what standard deviation is even though I can’t really explain it as well as
others.

7In statistics, we often try to minimize error from a model for relationships in data. In the case of
univariate data, we might consider a model that best represents the data to be a single value, say
x, and look to minimize errors, or deviations, from x. Consider a simple data set of two upper arm
circumferences of 31 and 44 and two functions to find one or more values of x that minimize error
for this data set. A function for the sum of absolute deviations from x could be written as f (x)� |x −
31|+|x − 44|. The function for the sum of squared deviations from x could be written as g(x)� (x −
31)2 + (x − 44)2. The graph of f (x) achieves a minimum for all x between 31 and 44, inclusive, and
thus does not yield a unique value for x. The graph of g(x) is a parabola that achieves a mimum at its
vertex when x equals 37.5, which also is the mean for 31 and 44. Thus, g(x) yields a unique value
at which the sum of squared deviations is minimized, whereas f (x) yields infinitely many values
at which the sum of absolute deviations is minimized and not a single well-defined representative
value for the data. The graphs become more complicated when considering samples of larger size,
but the function for the sum of absolute deviations fails to produce a unique minimum value no
matter what sample size is given.
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Although Caroline does not explicitly mention reflection as crucial for her future
learning, her suggestion that she would need to look back on her notes and pro-
fessional development activities as a starting point suggests that she recognizes a
need for reflection to “become more familiar” and develop deeper understandings of
the measures. Other teachers expressed similar sentiments to suggest that they may
experience future enlightenment about content from their professional development
experiences.

The professional development program activities also provided a starting point for
teachers to question and reflect on the strategies they previously used to teach statis-
tics content. In their anonymous feedback on the professional development program,
several teachers identified areas theymight change in their practices for teachingmea-
sures of variation based upon their experiences from the professional development
program such as introducing boxplots in conjunction with dotplots when teaching
interquartile range or using visual representations to teach mean absolute deviation
(to show “visual deviation”). Others mentioned general areas of consideration that
likely would impact their teaching about measures of variation. For example, Landen
suggested a need to introduce content as more than symbols, examining the content
“less algebraically because it is better sometimes to think conceptually.” Bryce iden-
tified pushing students to consider premises in addition to content and process as
one of the changes he likely would institute in his practice. During his interview, he
recounted how some of the teachers struggled to articulate premises as they worked
through professional development activities and how their struggles caused him to
rethink his practice.

What is it?…I’m doing this, but I don’t know what I’m doing. Like, I can get it right…but
if you ask me why I did what I just did, I can’t tell you…That was really powerful to
me…Why do we do what we’re doing rather than are you really good at doing it…it’s
changed my perspective entirely…The way I look at it has changed a lot.

11.6 Discussion

In response to how dilemma, critical reflection, and rational discourse affected teach-
ers’ reasoning about and understandings of measures of variation, we first found that
professional development activities triggered dilemmas by incorporating standard
and nonstandard measures and representations and by focusing on conceptual under-
standing. Some dilemmas were anticipated and triggered purposefully by triggers
embedded in professional development materials whereas other dilemmas had not
been anticipated. Notably, dilemmas arose for teachers with different backgrounds
in statistics, including teachers with considerable prior experiences with statistics
and with sophisticated understandings, teachers who were relatively new to statistics
by having only completed a single introductory course focused on procedures, and
teachers of both middle and high school students. One of the open questions for
transformative learning theory is the types of factors or conditions that trigger trans-
formation (Taylor 1997, 2000). This study contributes knowledge about the types
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of experiences that can trigger dilemmas for teachers to potentially transform their
content knowledge (and pedagogical content knowledge) for measures of variation.
For the teachers in this study, dilemmas served to keep them engaged with profes-
sional development program content because they were motivated to resolve their
dilemmas.

To facilitate teachers’ resolution of dilemmas, the professional development activ-
ities provided opportunities for teachers to examine multiple representations and to
collaborate with teachers and the professional development facilitators to consider
alternative perspectives towards resolution. Specifically, teachers worked in groups
consisting of both middle and high school teachers. These teachers were responsible
for teaching different statistics content, which resulted in middle school teachers
being more familiar with mean absolute deviation and high school teachers being
more familiar with standard deviation. Teachers’ varied experiences allowed alter-
native perspectives to be shared for new insights to be gained and for new dilemmas
to arise from questions to gain understanding. Several teachers commented on the
insights they gained fromworking with teachers who taught at different grade levels.
Teachers also mentioned the importance of visual representations, including area
representations, for developing perspectives beyond those possible from symbolic
representations. Considerable literature supports the importance of using multiple
representations to learn mathematics (e.g. Brenner et al. 1997) and underscores the
importance of teachers’ knowledge of multiple representations for teaching (e.g.
Stohl 2005). This study suggestsmerit in presenting teacherswith alternative perspec-
tives through nonstandard representations of content that focus teachers on premises
underlying traditional representations of content.

Discourse and scaffolded activities centered on conceptual understanding served
to focus teachers on the premises underlying statistical concepts and procedures to
clarify their thinking. With respect to measures of variation, teachers mostly devel-
oped new or enhanced meaning schemes for the measures, with several high school
teachers developing new meaning schemes for mean absolute deviation and middle
and high school teachers enhancing their existing meaning schemes for standard
deviation. For some teachers, their meaning schemes about standard deviation may
have transformed based on initial views of standard deviation as average distance
from the mean and subsequent consideration for why standard deviation typically is
used in calculations. Many mathematics education researchers extol the importance
of reflection for learning (e.g. Goodell 2000; Roddick et al. 2000), but descriptions of
reflective practice largely focus on reflections related to content [e.g. “what I learned
this week” (Goodell 2000, p. 50)] or process [e.g. “how I learned it” (Goodell, 2000
p. 50)] without considering reflections on premises underlying content or processes
(e.g. “why did I learn from this process?”). Results from this study suggest that reflec-
tion on premises, indicative of critical reflection, is an important consideration when
designing professional development activities to advance teachers’ understandings
and development of content knowledge.

Although teachers’ learning related to measures of variation mostly was limited
to developing new meaning schemes or enhancing existing meaning schemes, some
teachers professed enhanced meaning schemes and transformed meaning schemes
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related to their teaching of measures of variation and teaching more generally.
Daphne, for example, suggested that her meaning scheme for teaching boxplots
and interquartile range was enhanced when she proclaimed that her students would
benefit from interpreting boxplots when they are superimposed over dotplots. Bryce
provides evidence that his meaning schemes for teaching may have transformed as
a result of experiencing the content as a learner with other teachers and the foci
of the professional development activities with which he engaged. These teachers’
successes with deepening their statistical understandings (and presumably their ped-
agogical content knowledge) suggest merit in designing professional development
activities with the constructs of dilemma, critical reflection, and rational discourse
in mind.

The study also raises questions about teacher education. Each of the teachers
participating in the study completed one or more statistics courses as part of their
degree programs. Yet, as evidenced by Jackson’s comments, not all of the teachers
developed conceptual understandings of foundational concepts such as variation by
the conclusion of their teacher preparation programs. Observations such as Jackson’s
raise questions about the effectiveness of current teacher preparation in statistics and
the statistical preparation needed for teachers to develop robust understandings and be
effective statistics instructors. Reports such as the Statistical Education of Teachers
(Franklin et al. 2015) offer recommendations for initial teacher preparation, including
recommendations that prospective teachers need powerful learning opportunities to
develop conceptual understandings of statistics content and need to engage in the
statistical problem-solving process in order to develop appropriate habits of mind for
doing statistics. Further research is needed, however, to determine the characteristics
of programs, courses, and activities that advance the field towards achieving the
vision upon which the recommendations are based.

The professional development program described in this paper aligns with the
Statistical Education of Teachers’ recommendations for practicing teachers, which
mirror the principles articulated for the preparation of prospective teachers. This
program, however, affected the statistical education of a small number of teachers.
Research is needed to investigate how results from teachers’ engagement with activ-
ities such as those described in this paper might be achieved with larger numbers
of teachers to affect change on a larger scale. The increasing availability of freely-
available online tools such as the Common Online Data Analysis Platform (CODAP,
The Concord Consortium 2017) offer promise for using similar types of technology-
based activities with teachers enrolled in Massive Open Online Courses (MOOCs;
see the chapter from Pratt, Griffiths, Jennings, and Schmoller in this volume) and
from less-developed countries. Questions about whether positive results might be
observed from such courses, however, need research-informed answers.
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Chapter 12
Exploring Secondary Teacher Statistical
Learning: Professional Learning
in a Blended Format Statistics
and Modeling Course

Sandra R. Madden

Abstract Providing opportunities for secondary teachers to develop the statistical,
technological, and pedagogical facility necessary to successfully engage their stu-
dents in statistical inquiry is nontrivial. Many mathematics and science teachers in
the U.S. have not benefitted from sufficient opportunity to learn statistics in a sense-
making manner. With statistics assuming a more prominent place in the secondary
curriculum, it remains a priority to consider viable ways in which to reach and sup-
port the statistical learning trajectory of both pre- and in-service teachers. This study
explores ways in which a course that blends face-to-face and virtual learning experi-
ences impacted in-service teachers’ technological pedagogical statistical knowledge
(TPSK) Results suggest the course positively impacted participants’ TPSK.

Keywords Blended learning · Professional development · Statistics · Teaching

12.1 Introduction

Statistics has achieved a position of status in the Pre-K-12 curriculum in the United
States and around the world; (Australian Curriculum Assessment and Reporting
Authority 2010;NationalGovernorsAssociationCenter for Best Practices&Council
of Chief State School Officers 2010; Conference Board of theMathematical Sciences
2010; Franklin et al. 2007). Secondary mathematics teachers are now responsible for
teaching statistics; yet remain ill prepared for the job (Batanero et al. 2011; Confer-
ence Board of the Mathematical Sciences 2010; Franklin et al. 2015; Madden 2008;
Shaughnessy 2007). In contrast to the largely theoretical statistical courses teach-
ers tend to take in mathematics departments, recent recommendations suggest the
need for authentic data-intensive exploration andmodeling experiences in addition to
theory-based coursework (Franklin et al. 2015). Teachers should develop facilitywith
the statistical process (Wild and Pfannkuch 1999); techniques and tools for simula-

S. R. Madden (B)
University of Massachusetts Amherst, Amherst, MA, USA
e-mail: smadden@umass.edu

© Springer Nature Switzerland AG 2019
G. Burrill and D. Ben-Zvi (eds.), Topics and Trends in Current Statistics Education
Research, ICME-13 Monographs, https://doi.org/10.1007/978-3-030-03472-6_12

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03472-6_12&domain=pdf
mailto:smadden@umass.edu
https://doi.org/10.1007/978-3-030-03472-6_12


266 S. R. Madden

tion, computation, and representation; and a generally elevated understanding of the
statistical landscape appropriate to meet 21st century curricular demands. Courses
to prepare teachers for these new demands are still rare and largely unexamined
(Franklin et al. 2015).

Related to pedagogical content knowledge (PCK) (Shulman 1986) and techno-
logical pedagogical content knowledge (TPCK) (Mishra and Koehler 2006), tech-
nological pedagogical statistical knowledge (TPSK) (Lee and Hollebrands 2011)
addresses the importance of teachers understanding students’ learning and think-
ing about statistical ideas; conceptions of how technology tools and representations
support statistical thinking; instructional strategies for developing statistics lessons
with technology; critical stance towards evaluation; and use of curricula materials
for teaching statistical ideas with technology (Groth 2007). TPSK informs a doer to
designer approach (Kadijevich andMadden 2015) to teacher learningwhere teachers
first engage in statistical investigations as learners (doers) and later design, implement
and study the implementation of statistical lessons as enacted (designers). Construc-
tionism (Papert 1991) is echoed in the doer to designer framework with its emphasis
on engaging teachers as statistical learners en route to supporting them to design,
implement, and reflect on statistical learning opportunities with their own students.

With these perspectives as guides, a blended format course (part face-to-face, part
virtual) was developed to support and explore teachers’ evolving TPSK. This study
begins to address the dearth of research exploring teachers’ TPSK development in
relation to the enacted curriculum in the classroom (Kadijevich and Madden 2015;
Lee and Nickell 2014).

12.2 Description of the Blended Learning Environment

A three-credit experimental graduate course offered in a US university was designed
by the author to facilitate middle and high school teacher learning of statistics and
modeling in the secondary curriculum. The course intended to impact teachers’ prac-
tices and their students’ opportunity to engage with statistical ideas. Design commit-
ments included: active learning, technology rich investigations, community of prac-
tice orientation (Wenger 1998), exploration of curriculum materials, and attention
to autonomy (Ryan and Deci 2000). The course consisted of five face-to-face (F2F)
four-hour sessions plus five virtual modules between F2F meetings (Fig. 12.1). This
course structure facilitated teachers’ schedules with intense statistical and technolog-
ical learning experiences during their summer break and thoughtful implementation
of statistical units of instruction with secondary students when the teachers returned
to school in September.

Course content included model-based sampling investigations, experimental
design investigations to motivate randomization testing, and other simulation-based
statistical tools for supporting statistical argumentation. Face-to-face sessions were
largely focused on statistical investigations intended to support the statistical pro-
cess and conceptual development, use of technology for exploring data, small and
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F2F 
June 

Virtual Modules 
July

F2F 
August 

Virtual Modules 
September 

F2F 
October 

1 2 1 2 3 3 4 4 5 5
Engaging and 
extending prior 
statistical knowledge; 
building community; 
informal inferential 
reasoning; intro to 
TinkerPlots, Fathom, 
and CPMP-Tools

Building facility with 
technology, generating 
and interrogating data 
created with the 
TinkerPlots Sampler, 
exploring and 
experiencing 
curriculum units, 
analyzing curricula 

By chance or by 
cause—
experimental 
design and 
randomization 
testing 

Simulating 
randomization testing 
with TinkerPlots and 
Fathom; learning new 
statistics through 
curriculum exploration; 
planning for unit 
implementation 

Sharing investigative 
& implementation 
experiences; 
empirical sampling 
distributions, Central 
Limit Theorem 
(CLT), regression 
and correlation 

Fig. 12.1 Course format, schedule, and content trajectory

whole group processing of readings and experiences, and general community build-
ing (Fig. 12.2).

In addition, participants were invited to read approximately 30 articles, conduct
a statistical curriculum analysis, and engage in an action research project in which
they designed, implemented, and reflectively analyzed student learning in a statistical
unit of study where technology was utilized. Participants electronically submitted
written assignments and discussion posts for each of the 10 distinct chunks of the
course. Appendix A (http://bit.ly/2OAkugq) provides an example of instructions
for participants for one of the virtual modules. Appendix B (http://bit.ly/2OAkugq)
provides a description of the curriculum analysis project and associated scoring
rubric. Appendix C (http://bit.ly/2OAkugq) contains the instructions for the curricu-

Fig. 12.2 Process-related design commitments
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lum implementation project. Course grades were determined by 40%preparation and
participation; 30% curriculum analysis project, 30% action research project (curricu-
lum implementation).

Aspects of the design of the course for participants included: (1) developing facil-
ity with Fathom (Finzer 2005), TinkerPlots (Konold and Miller 2005), and CPMP-
Tools (Keller 2006) software while conducting statistical investigations, much of
this during virtual modules; (2) analyzing secondary-level curriculum materials to
support statistical development as well as pedagogical sensibility; (3) designing,
implementing, and studying a technologically-relevant statistical unit in their own
classroom; and (4) choosing articles to read and statistical content and curricula
to investigate from a pool of recommendations. The author provided a library of
curriculum materials and literature for this study.

12.3 Methods

Ten secondary teachers (eight mathematics, two science) participated in the study.
Four of these participants were Teaching Fellows in a National Science Foun-
dation (NSF)-funded Noyce Master Teaching Fellow/Teaching Fellow project,
while six were volunteers from schools not associated with the Noyce project.
All names are pseudonyms. Each participant completed an initial background
and motivation survey as well as post course survey (see https://goo.gl/forms/
gaBXAPkFOzTBW1XP2). All course assignments, discussions, emails, and associ-
ated artifacts were collected for analysis. Survey data were analyzed using descrip-
tive statistics and standard quantitative methods. Document analysis techniques were
used for qualitative data with open and axial coding. With a focus on teachers’ devel-
opment of TPSK, initial codes included: statistical knowledge (SK) , technological
knowledge (TK), pedagogical knowledge (PK), STK, SPK, TPK, TPSK, tool use,
impact of curriculum, impact of activity, impact of reading, impact of discussion,
challenges, and miscellaneous. Each data source (e.g., discussion post or written
assignment) was analyzed and summarized. Coding categories were further explored
for themes across the data. Data were analyzed vertically by type and horizontally
by person. A chronological case study analysis for each participant was conducted
to capture the evolution of each participant’s learning over the period of the course
to answer the research question: To what extent and in what ways did the blended
format statistics and modeling course experiences impact participants’ TPSK?

A portion of the analysis is reported in this study. Results will coordinate teach-
ers’ self-reported data with data analyzed by the researcher. Changes in teachers’
perceptions of statistical and technological facility are summarized; descriptions
showcasing the breadth of curricular investigations and implementation projects are
presented; and two specific learning trajectories are provided to illustrate the devel-
opment of TPSK for project participants.

https://goo.gl/forms/gaBXAPkFOzTBW1XP2
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12.4 Results

12.4.1 Analysis of Participants’ Self-reported Pre-
and Post-intervention Data

An analysis of participants’ comfort level (1-low, 5-high) with statistical big ideas
pre- and post-intervention suggests limited prior statistical knowledge for most and
significant improvement in a number of areas (Table 12.1). Significant gains in the
areas of descriptive statistics, experimental design, sampling distributions, overall,
and facility with TinkerPlots and Fathom coincide with the goals of the course (see
Table 12.2).Understanding of statistical graphs showed improvement butwas also the
area most highly rated during the initial survey, and gains scores were not significant.
Correlation and regression were addressed only briefly at the end of the course;
however, some participants elected to explore curriculum units where these were
a focus. This decision to focus elsewhere was predicated on the fact that many
secondary teachers tend to have some familiarity with regression and correlation
through their work teaching algebra. Several participants selected instructional units
addressing correlation and regression during one of the modules where they could
choose from a variety of statistical units to explore. The relatively high standard
deviation associated with correlation and regressionmay be the result of representing
a bifurcation of experiences where some participants benefitted from independent
work, while others did not. Statistical inference was the area seeing the least change,
a result likely due to the more informal approach to inference that participants may
not have associated with more formal statistical inference.

Participants rated their personal engagement in the course (e.g., course readings,
statistical tasks and investigations, discussion posts, curriculum units, TinkerPlots,
Fathom, CPMP-Tools) . Aggregate ratings (1-low, 4-high) ranged from 2.86 to 3.71
(M-3.33, SD-0.31) and were strongly, positively associated with perceived learning
gains (Fig. 12.3).

Participants rated the extent to which course objectives were met. Mean ratings
(1-low to 5-high) were 4.30 or above with five of seven objectives receiving a median
rating of 5 (Table 12.2), suggesting participants believed course objectives were met.

12.4.2 Curriculum as Lever to Promote TPSK

Curriculumplayed amajor role in the course. Curriculum frameworks such asGAISE
and CCSSM were introduced to participants. Innovative curriculum texts developed
with funding from the NSF such as Core-Plus Mathematics Project (CPMP) (Hirsch
et al. 2015), Interactive Mathematics Program (IMP) (Fendel et al. 2012) and Con-
nected Mathematics Project (CMP) (Lappan et al. 2009) were utilized to develop
statistical ideas as well as to introduce participants to innovative instructional mate-
rials. These materials allowed for modeling classroom instruction in a manner that
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Table 12.2 Ratings for the extent to which course objectives were met (1-low, 5-high), N �10

Course objectives Summary ratings

To explore issues of secondary mathematics
curriculum recommendations and standards,
curriculum design, curriculum implementation,
and curriculum research

M �4.60, Mdn �5, SD�0.70

To support understanding of important
curricular trends and innovations in statistics
education at the middle and high school level

M �4.30, Mdn �4, SD �0.67

To support understanding of and relationships
among important statistical big ideas, most
notably, distribution, variability, and sampling
distributions as they relate to comparing
distributions

M=4.60, Mdn �5, SD �0.70

To support statistical reasoning, thinking, and
literacy, generally

M �4.70, Mdn �5, SD �0.48

To develop facility with innovative
technological tools for exploring data and
conducting statistical analyses.

M �4.70, Mdn �5, SD �0.48

To become familiar with research in the area of
statistics education in order to critically
examine curricular implications with respect to
statistical reasoning, thinking, and literacy

M �4.70, Mdn �5, SD �0.48

To support ability to implement high quality
statistical instruction at the secondary level

M �4.40, Mdn=4.5, SD �0.70

Fig. 12.3 Participants’
self-reported statistical
learning (scale 1-5) versus
self-reported course
engagement (scale 1-4)

privileged investigation, discovery, and argumentation. Learning that instructional
materials like those used during the course existed helped to encourage participants to
critically examine them. The curriculum analysis project allowed participants to look
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Table 12.3 Descriptions of participants’ curriculum analysis projects

Teacher Grade Level Project

Mathematics

Ingrid Middle Analysis of Connected Mathematics Project (CMP) 2
and Big Ideas Math Sixth Grade Curriculum using
GAISE Frameworks

Karen Middle Comparing Connected Mathematics Project 2, Data
About Us to Big Ideas Math, Grade 6, Chaps. 9 and 10

Alexia Middle Comparing Connected Mathematics Project, Samples
and Populations and 7th and 8th grade Big Ideas Math

Shelley High Exploring Core-Plus Mathematics Project (CPMP)
Units with GAISE Framework for use in College Prep
Statistics Course

Jared High Comparing the Interactive Mathematics Program
(IMP), Game of Pig, with The Basic Practice of
Statistics (BPS), Chap. 4 Probability and Sampling
Distributions

Claire High Comparing Interactive Mathematics Project (IMP), Pit
and the Pendulum Unit to Carnegie Learning Algebra
1, Chap. 8

Joanna High Comparing Project Lead the Way (Statistics 4.1) to
Core-Plus Mathematics Project, Unit 2, Lesson 1

Trevor High Curriculum Analysis of Core-Plus Mathematics:
Contemporary Mathematics in Context Courses 1 & 2

Science

Alexandra High Exploring the development of standard deviation
using Core-Plus Mathematics Course 1 Unit 1 and χ2

using Transition to College Mathematics Unit 1

Michelle High Coordinating GAISE Framework, A.P. Quantitative
Skills-A-Guide for Teachers, The Handbook for
Biological Statistics, Using BioInteractive Resources
to Teach Mathematics and Statistics in Biology, AP
Biology: Course Description, Next Generation
Science Standards, and Understanding by Design
(UbD) Unit Review rubric from Department of
Elementary and Secondary Education

carefully atways inwhich different curriculummaterials have potential to engage stu-
dents in statistical activity aswell as to address state and national standards. Contrasts
with more familiar materials became obvious. As Table 12.3 illustrates, all mathe-
matics participants and one science participant elected to analyze some combination
of curriculum materials that included NSF-funded materials. The other science par-
ticipant selected a broad range of resources for Advanced Placement (AP) Biology
(College Board 2015) to examine and critique. Completed projects were posted on
Moodle for sharing and brief presentations were made during a F2F session.
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By the end of the course and as will be illustrated in Sects. 12.4.3 and 12.4.4, par-
ticipants developed and demonstrated extensive familiarity with the GAISE Frame-
work and several high quality instructional resources for supporting student statistical
learning. They increased their facility with the use of dynamic statistical tools (e.g.,
TinkerPlots, Fathom, and CPMP-Tools) as they engaged in statistical activity as
learners. The requirement to complete curriculum implementation action research
projects at the end of the course signaled the expectation that lessons learned would
be explicitly tied to classroom practice. Using action research methods, participants
designed, implemented, and analyzed student learning from a statistical unit of study.
Table 12.4 contains brief descriptions of participants’ focus for their project and the
technological tool(s) they elected to implement with students.

A wide range of statistical content was addressed and explored through the cur-
riculum implementation projects; however, it was essential that participants could
select appropriate content for their particular teaching context. Participants briefly
presented their projects on the final day of the course. Their unique and improved
statistical, technological, and pedagogical knowledge was evidenced through these
individual projects and will be further described throughout the next two sections.

12.4.3 Tracing Learning Trajectories: Examining Two Cases
for TPSK

Tracing participants’ learning journeys over the course illuminated a complicated but
compelling storyline for each participant. Every participant attempted and completed
all aspects of the course; however, the extent to which each aspect was completed
varied considerably. Only a tiny fraction may be presented here, so I illustrate tra-
jectories of two distinct patterns of engagement.

12.4.3.1 The Case of Claire

Claire is a third year high school mathematics teacher who described her past largely
theoretical statistical learning experiences in great detail and characterized them as
procedurally dominated:

I took a 1.5 credit Prob Stats course on: Sample spaces, events, axioms for probabilities;
conditional probabilities and Bayes’ theorem; random variables and their distributions, dis-
crete and continuous; expected values, means and variances; covariance and correlation …
Also, I’ve taken a 2 credit Intermediate Probability course on: Continuous random variables,
distribution functions, joint density functions, … Chebyshev’ theorem …Most of the class
time was spent taking notes in a “fill in the blank” format and then once in a while we had
statistical investigations. The professor did not take time to know her students individually
and I felt that I didn’t learn much in her class because of this.

She indicated a desire to “learn methods for teaching statistics in a meaningful
and engaging manner.” Her pre-course statistics comfort level was 2.33.
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Table 12.4 Participants’ statistical curriculum implementation projects and associated technolog-
ical tool

Teacher Grade level Curriculum implementation project Technology
utilized with
students

Ingrid Middle What strategies and/or tools do students
employ in reasoning about best measure
of center to use to describe a data
distribution? How is this reasoning
explained in light of the intended and
implemented curriculum? CMP2, Data
Distributions

TinkerPlots

Karen Middle To what extent does students’ use of
multiple representations through
dynamic software and exploratory work
impact student understanding on the
effect outliers have on the mean?

TinkerPlots

Alexia Middle How does qualitative graphing of data
help students understand the concept of
slope?

TinkerPlots

Jared & Shelley High How does performing a randomization
distribution on student data impact
student’s understanding of statistical
likelihood?

Fathom

Claire & Trevor High How does having a statistical context for
a problem support and/or impact student
understanding of lines of best fit?

TinkerPlots

Joanna High Statistics for 9th grade mathematics
enrichment

Excel,
CPMP-Tools

Alexandra High Introducing standard deviation with
CPMP Course One, Unit 2, Lesson 2,
Investigation 4, “Measuring Variability:
The Standard Deviation.” Students will
demonstrate their learning through a
summative assessment and by analysis
of lab data from the “Rainbow Osmosis”
lab.

CPMP-Tools

Michelle High Statistics in AP Bio: Scaffolding
Student Understanding for HHMI
Biointeractive Curriculum

Fathom

Following the June F2F sessions and readings, her reflection, a portion of which
is below, indicated her growing understanding of the use of graphing calculators,
TinkerPlots, and the simulation process model for generating empirical sampling
distributions:

In Using Graphing Calculator Simulations in Teaching Statistics, Koehler gives a pretty
detailed description of how to use the graphing calculators, and I realize that the graphing
calculators aremuchmore powerful than even I knew. However, I found that this tool is much
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more syntactically confusing and I would anticipate that students would have a lot of trouble
understandingwhatwas truly happening in situations beingmodeled. In contrast, Lane-Getaz
describes that Tinkerplots really allows students to see the three layers of statistical modeling
with a great figure on page 280 of the yearbook. I think I finally have this whole process clear
in my mind! Finally, Lane cautions teachers that simulations can sometimes still produce
passive learners, so they must be presented with a query-first method of teaching. I really
want to remember this idea and try to pose a question of study tomy students at the beginning
of units and lessons of study.

In July, she assessed her own understanding after reading the Guidelines for
Assessment and Instruction in Statistics Education (Franklin et al. 2007) using 1, 2,
and 3 for levels A, B, and C:

I think I am probably around level 2.5, if we’re allowing halves. I’ve heard of some level 3
concepts, but do not have a firm grasp on, for example, the data analysis done on pp 67–70.
The coolest new thing that I learned about was the Quadrant Count Ratio. I didn’t know
there were more than one “correlation coefficient” although in retrospect it makes sense that
there isn’t just one. I like that I now could explain how to find this one, whereas I still have
no idea how Pearson’s correlation coefficient is calculated.

During her curriculum analysis project she compared a unit from the Interactive
Mathematics Project (IMP) to a unit developing similar content (standard deviation)
from her school’s newly adopted Carnegie Learning Program. She concluded IMP
provided more cognitively demanding tasks for students, but both texts performed
equally when compared to GAISE recommendations.

In September following a series of readings and tasks supporting understanding
the randomization test for comparing experimental treatment and control groups,
she writes about her own growth with TinkerPlots and Fathom and compares to
CPMP-Tools:

I think that TP and Fathom allow for a deeper understanding than CPMP tools because
you are building more of the functionality yourself. You have to work directly with the
resampling process, so you understand exactly what is happening and how the means are
being calculated. I understand better now how to use formulas in Fathom, and am gaining
ability with Fathom. I haven’t used it much before, but this is the second assignment I’ve
completed with it. I’m improving at using the sampler in TP.

In October, she attributes improved understanding of binomial distributions to her
reading selection.

‘Is Central Park Warming?’ This article describes an activity that students can do to find out
the probability that the warm temperatures in Central Park happened randomly. They then
compare this to the exact mathematical probability calculated from the binomial distribution.
This provided some insight to me about what the binomial distribution actually is!

For her curriculum implementation project, Claire partnered with a classmate to
design and implement a statistical unit in her peer’s class. Together, they developed
and reflected on the unit, its implementation, and impact on student learning. Shewas
unable to implement a statistics unit with her own classes due to curricular limitation
within the window for the course, so this partner project allowed her to still design
and study the implementation for the purpose of the course.

In the final survey, she remarked,
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This course has exposed me to literature in the field of statistics education which I can bring
to other educators in my school. I understand the flow of statistical learning that should
happen in middle and high schools. I think the most important pedagogical idea that I have
taken away is that it is more important for students to construct and use their own measures
in statistics before learning about and applying conventional measures. I very much feel like
I have more resources for the future.

Her comfort level with statistical ideas jumped to 3.83 at the end of the course
and her perceived facility with TinkerPlots and Fathom increased from 3 to 5 and 1
to 4, respectively. Claire is a case of a teacher from a highly regarded undergraduate
institution with a bachelor’s degree in mathematics, master’s degree in education,
and prior to her taking the course described herein, a very fragile understanding of
statistics with few constructive ways in which to teach statistics. Throughout the
course, she engaged thoroughly in tasks, investigations and all assignments and her
written record indicates strong growth as a learner and teacher of statistics; that is,
her TPSK improved dramatically. She communicates growing sensibilities about
statistics as a discipline, teaching statistics in a learner centered, technologically
oriented manner and alignment with professional guidelines for teaching.

12.4.3.2 The Case of Alexandra

Alexandra is a veteran high school science teacher who wrote, “I had a statistics
course in college…many years ago. I have been teaching chi square and standard
deviation to AP Biology students as part of the newest version of the course and feel
I need more background.” Her overall pre-course statistical comfort level was 1.67.
Following the initial F2F sessions and Module 1, Alexandra wrote,

Learning takes time, and good instruction loaded with experiences for students to develop
their ownunderstanding takesLOTSof time…Iwas impressed (overwhelmed?) by the topics
listed in the Common Core for the Statistics & Probability strand. To me, even the Grades
6/7/8 expectations seemed very challenging. I thought the detailed descriptions and examples
for Levels A/B/C as detailed in the GAISE Report were very helpful. I especially liked how
in some cases the same activity or exercise was used at multiple levels, to distinguish the
differences in understanding expected.

Following Module 2, she continued to express a sense of excitement, challenge
and pedagogical insight related to her activity:

After using TinkerPlots myself, I don’t need the experts to convince me of how helpful this
software tool could be inmy classroom.However, extensive time in a computer lab is difficult
to schedule inmy school, and finding extensive time for any new activity is a challenge! I will
explore using TinkerPlots to some degree, but what I found most interesting and potentially
useful in this set of readings was the exercise described by delMas and Liu in “Exploring
students’ conceptions of the standard deviation.” I can see how I could use the pairs of graphs
on page 62 (they call them test items) to help my students understand standard deviation.
In the study, students were asked to decide if, for each pair, the second graph would have a
higher or lower standard deviation than the first. By predicting, calculating/confirming, and
discussing these pairs of graphs 1 or 2 at a time, I believe my students could develop a better
understanding of standard deviation.
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For her curriculum analysis, Alexandra chose to explore two units from Core-
Plus Mathematics Program (CPMP) (Hirsch et al. 2015), one focusing on standard
deviation and the other on the χ2 test. Due to the mathematical demands of the χ2

unit, she sought out and discovered additional AP Biology (College Board 2015)
resources to support her learning that she shared with the other science teacher in
the course. The curriculum analysis project allowed her to build her own capacity to
understand and teach two important statistical ideas to her students.

Following Module 4, she demonstrated her grasp of randomization testing and
TinkerPlots facility:

I really had to follow the videos closely to do the randomizations initially, and even then I
needed additional assistance (Thanks person1 and person2!). But I just corrected a quiz for
my AP class…2 versions, means of 13.0 and 13.5. I was able to run a randomization test
using TinkerPlots to confirm that the difference in the quiz means has p value of 0.63, so I
think I can tell the students that one quiz was not easier than the other!While this (Module 4)
was time-consuming, between the exercises from the unit, the videos, the software practice,
and the readings, I feel very confident about my understanding of and my potential use
of/teaching of these concepts/tests.

Alexandra’s curriculum implementation was exemplary. She presented thought-
ful plans to build ideas of standard deviation with her students, used the CPMP unit
from her curriculum analysis project and utilized CPMP-Tools with her students.
She videotaped her classroom, collected student artifacts, and reflected on the expe-
rience with a colleague. Her reported insights showed her vulnerability as well as
her strengths as a teacher and champion for students. Alexandra’s project illumi-
nated her growth in statistical knowledge, technological statistical knowledge, her
student’s growth in statistical knowledge, and ultimately markedly improved TPSK.
She indicated a disposition toward continuing to grow and learn in this arena.

On the post-course survey, she wrote:

I learned a lot about statistical concepts and tools. I learned a lot about how students learn
statistics. This will have a direct impact onmy classroom andmy students, as I am better pre-
pared to help them understand measures of central tendency, variation, standard deviation, p
values, and chi square. I benefited from the exposure to technological tools, but could use a
lot more practice to feel truly comfortable using them. I learned about issues, challenges, and
successes that other teachers have in teaching statistical content to students. I learned a lot
from being a student and working in groups with others in completing some of the exercises.
I feel even more strongly that students need to understand the concepts behind the statistical
tools (what do they mean?). I have a much better sense of how the tools can be applied to
our own data sets. I found the exercises that we completed in class in groups to be excellent
learning activities in terms of concepts but also as models of teaching strategies. I enjoyed
working through the CPMP Lessons; I really like their approach in introducing concepts
gradually and before the equations and/or technological aids. They include pertinent exam-
ples and plenty of practice problems. I enjoyed working with TinkerPlots and Fathom and
am convinced of their power in illustrating many statistical concepts (randomization, value
of large data sets). Great experience. I would not have signed on if it had been offered online
only. The face-to-face sessions were particularly beneficial, and I believe the online modules
worked better given that we knew who the other students were when posting comments,
questions, etc.
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Her post-course statistical comfort level was 2.5. This rating seems to confirm
her awareness of the complexity of statistical learning, but perhaps underestimates
her actual learning. It may well illustrate this teacher’s acknowledgement of learning
while also recognizing the need to learn more. She seemed to recognize a state of
personal disequilibrium while at the same time developing agency in the statistical
teaching and learning realm. Alexandra’s reaction to the blended format of the class
suggests a real preference for face-to-face interaction to build community and it fore-
grounds potential reasons why hybrid statistics courses with face-to-face and virtual
components may support better learning for students than online only experiences
(Meyer and Lovett 2014).

12.4.4 Summary Perspectives Across Participants

Each of the other eight participants’ individual storylines vary, yet they each demon-
strated improved TPSK. As Table 12.5 illustrates, eight of 10 participants assessed
their statistical knowledge to have increased.One student’s rating frompre- to post did
not change; however, from the perspective of the instructor, this student demonstrated
increased statistical knowledge. During his curriculum implementation project, he
designed a set of lessons to introduce his students to randomization testing for com-
paring results from two groups in an experimental context. Randomization testing
as a means for comparing experimental and treatment groups was unfamiliar to all
participants prior to the course, thus this represents significant growth in statisti-
cal knowledge. The participant with a negative gain score represents a student who
demonstrated remarkable engagement with all aspects of the course and a grow-
ing facility with statistical ideas and tools; however, the student may not have felt
completely competent yet. As the participant mentioned in her curriculum imple-
mentation project,

It [the course] benefitted me by giving me an awareness of statistical learning and concepts
at the high school level. Some of the concepts we learned about I don’t think I realized were
of the statistical realm. It just made me realize that there is so much I don’t understand and
I feel like a novice. The course just really gave me an awareness that statistics is different
than math and I need to approach it differently with my students (Michelle).

The TSK scores in Table 12.5 represent self-reported gain scores with Fathom
and TinkerPlots. As the data show, every participant increased their TSK with at
least one technology. The two participants whose gains were zero or negative had
rated their facility highly on the initial survey and likely discovered there was much
more to learn than they had realized. As indicated in Table 12.1, gain scores for both
Fathom and TinkerPlots were significantly greater than 0.

Finally, each participant’s completed curriculum implementation project provided
evidence of TPSK growth. Three levels of TPSK were evident through the projects.
At the lowest level (✓), projects fell into one of three categories: (1) largely algebraic
reasoning rather than statistical reasoning but utilized technology productively; (2)
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Table 12.5 Summary of participants’ self-reported statistical understanding pre- and post-
intervention gain scores as the self-reported average gain in facility with TinkerPlots and Fathom,
and instructor assessment of TPSK demonstrated through curriculum implementation projects

Teacher Pre Post SK
pre→post

TSK
gains pre → post
Fathom/TP

TPSK
Curriculum
implementation
project

Course
grade

F TP

Alexandra 1.67 2.50 + 1 2 + ++ A

Ingrid 2.00 3.67 + 2 2 + ++ A

Jared 2.17 2.17 0 2 1 + + A−
Claire 2.33 3.83 + 3 2 + + A

Alexia 2.33 3.33 + 3 1 + ✓ A

Michelle 2.67 2.50 – 3 2 + ++ A

Joanna 2.83 3.17 + 0 1 + ✓ A−
Trevor 2.83 3.67 + 2 4 + + A−
Karen 3.5 3.83 + 1 −1 + + A

Shelley 4.17 4.33 + 2 2 + ✓ B+

✓indicates evidence of beginningTPSK,+ indicates evidence of strongTPSK, ++ indicates evidence
of excellent TPSK

relied on previously familiar technology and content but incorporated more student-
centered activity; and (3) relied heavily on a partner to do the technological or statisti-
cal heavy lifting. At the (+) and (++) levels, participants’ projects showcased greater
evidence of stretching in the direction of engaging learners with less familiar con-
tent using tools and materials that were initially unfamiliar. Projects rated (++) were
exceptional and represented thoughtful and thoroughly documented and analyzed
products. Two of the three projects in this category were from science teachers.

Document analyses further supported the following claims: (1) science teachers
in this environment appeared unusually receptive to learning statistics and adapting
their learning to their practice; (2) teachers with the highest self-reported statistical
comfort level tend to be those with significant statistics teaching experience and least
receptive to new ideas; (3) modeling using resampling ideas such as randomization
testing in technologically-conducive environments is accessible and beneficial; (4)
analyzing curriculummaterials usingGAISE (Franklin et al. 2007), National Council
ofTeachers ofMathematics (NCTM2000, 2009),NextGenerationScienceStandards
(NationalResearchCouncil 2013), andAdvancedPlacementBiology (CollegeBoard
2015) guidelines is worthwhile for teachers; and (5) pushing for teachers to design,
implement, and reflect on students’ statistical learning is formidable yet impactful.
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12.5 Discussion

Creating experiences with potential to directly impact participants’ capacity to
design, implement, and reflect on statistical units in their classrooms is a complicated
matter. Finding ways to support and nurture, while maintaining high expectations in
a virtual environment is daunting. It requires individualization and personal touch
that is feasible when N�10. Sequencing topics, amassing appropriate curricular
units and readings for nourishment and exploration, building and sustaining produc-
tive F2F and virtual communities of practice with teachers representing urban, rural,
suburban, middle and high school mathematics and science contexts is a complex
endeavor and requires a well-stocked arsenal of resources.

Teachers experienced shared activities during F2F sessions that challenged them
to make sense of statistical concepts, with and without technology, as well as provide
pedagogical modeling to consider. These sessions developed a sense of community
and fostered relationships that promoted productive virtual collaboration. Because
the virtual modules and curriculum projects allowed students to “choose their own
adventure,” they could target concepts and resources most relevant to their work or
interests. This autonomy appeared welcome and novel for teachers.

Ten teachers completed eight statistical curriculum implementation projects
requiring them to reflect on their students’ learning. Six students worked indepen-
dently and four students partnered up. Every project incorporated dynamic statistical
technology, somemultiple tools. Each project demonstrated student learning through
collected artifacts including classroom video and student work samples. Given the
written documentation of the plans, descriptions of the implementation, and reflec-
tions on the unit with at least one peer, it is clear that all of these teachers extended
their TPSK. Their enactments were informed by literature and course experiences.
They often referred to Core-Plus Mathematics (Hirsch et al. 2015) units and the
GAISE (Franklin et al. 2007) document for guidance and courageously went live
with real students with new and challenging content while utilizing and helping their
students use new tools. Evidence in the form of self-assessments, instructor assess-
ment, and participants’ written artifacts suggests that the doer to designer inspired
blended course design with summer/fall timeline has been impactful for teachers’
personal learning of statistics and modeling relevant for the secondary curriculum,
thus improving their TPSK. Furthermore, there is mounting evidence that teach-
ers’ thinking about statistical instruction has evolved toward a more sense-making,
activity-based, technology-oriented perspective, suggesting the approach is promis-
ing.
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Chapter 13
Statistical Reasoning When Comparing
Groups with Software—Frameworks
and Their Application to Qualitative
Video Data

Daniel Frischemeier

Abstract Comparing groups is a fundamental activity in statistics. Preferably such
an activity is embedded in a data analysis cycle and done with real and large datasets.
Software enables learners to carve outmany differences between the compared distri-
butions. One important aspect in statistics education is how to evaluate these complex
intertwined processes of statistical reasoning and the use of software when compar-
ing groups. The primary intention of this chapter is to introduce a framework for
evaluating statistical reasoning and software skills when comparing groups and to
show an application of this framework to qualitative data collected during a video
study of four pairs of preservice teachers comparing groups with TinkerPlots.

Keywords Frameworks · Group comparisons · Qualitative content analysis
Statistical reasoning · TinkerPlots

13.1 Introduction

Statistics has received more and more attention in school mathematics in the last
15 years in Germany. The leading idea “Data, Frequency and Chance” (Hasemann
and Mirwald 2012) recommends the implementation of statistics beginning at the
primary school level. In grades 5–10 in secondary schools in Germany the leading
idea “Data & Chance” (Blum et al. 2006) demands—amongst others—the imple-
mentation of a data analysis cycle (similar to the PPDAC cycle, which consists of
the phases Problem, Plan, Data, Analysis and Conclusions, see Wild and Pfannkuch
1999). In addition the work with real and rich data and the use of adequate software
is recommended. Since data explorations in large data sets are inevitably connected
with competent software use, preservice teachers need a good background not only
in statistical content but also in technological knowledge (see Lee and Hollebrands
2011). These facts set requirements not only for schools and teachers but also for
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universities who are responsible for the education of upcoming teachers in statistics.
Recommendations for elementary preservice teachers’ education in statistics can
be found in the recommendations of Arbeitskreis Stochastik (2012) on the German
national level and in Batanero et al. (2011) on an international level. Crucial aspects,
which can be found in both recommendations, are engagement in a data analysis
cycle (like PPDAC), exploration of real data with adequate software and interpreta-
tion of findings. The comparison of distributions, which is, according to Konold and
Higgins (2003, p. 206) “the heart of statistics”, can be seen as a fundamental activity
in statistics since this activity includes many of the fundamental ideas raised by Bur-
rill and Biehler (2011) such as data, variation, distribution and representation. When
comparing groups in real and rich datasets the use of software is important for an
explorative data analysis and for switching between different displays. The software
TinkerPlots (Konold andMiller 2011) offers several features, which can help learners
to compare groups and can be considered as adequate educational software to learn
data analysis and as a powerful tool for exploring data. More explicitly TinkerPlots
can be used for different purposes: as educational software for pupils from grade 4
to 10, as a data analysis tool for preservice teachers and as a medium for teachers to
demonstrate data analysis in classroom. This chapter presents a framework to evalu-
ate statistical reasoning when comparing groups with software (TinkerPlots) on the
basis of existing research (see the literature review below) and personal experiences.
The framework is used to analyze qualitative data in the form of transcripts created
from the recorded video data. The video study, which is itself embedded in a larger
project (Frischemeier 2017), had the aim to investigate how preservice teachers com-
pare groups in a real and rich dataset with TinkerPlots after a course for preservice
teachers on data analysis with TinkerPlots at Paderborn University.

13.2 Literature Review

The following provides a short overview of different trends in the research litera-
ture on learners´ reasoning when comparing groups. The literature review took into
account research articles and studies dealing with learners´ strategies for group com-
parisons and the use of frameworks to evaluate the strategies. One major aim was to
generate a framework for a video study to evaluate the group comparison skills of a
sample of preservice teachers with TinkerPlots, e.g. how capable are the preservice
teachers in comparing groups with TinkerPlots after the course.

Afirst trend in the research literature canbe seenusing theSOLO taxonomy (Biggs
and Collis 1982) for learners’ outcomes when comparing groups.Watson andMoritz
(1999) rated group comparison skills of Australian 3–8 graders via a SOLO taxon-
omy in the levels “unistructural”, “multistructural” and “relational”. They conducted
interviews where the participants were asked to compare distributions of test scores
of school classes (“which class is better?”) in different settings. All distributions
were given as stacked dot plots. Three of the four interview tasks included a group
comparison where both groups had equal sizes. In the fourth group comparison task,
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the setting was non-equal-sized. In the interview learners used numerical and visual
strategies to compare groups and to answer the question, which class was better.
Watson and Moritz (1999) found out—amongst other things—that more students in
higher grades tend to reason proportionally than do students in lower grades.

In a second trend, a focus on the concept of variability when comparing groups
can be identified. Makar and Confrey (2002) concentrated on preservice teachers
doing group comparison tasks with Fathom and generated a “taxonomy for classi-
fying levels of reasoning when comparing two groups”. Here they focused on the
way the learners used inferential reasoning to compare—amongst other things—vari-
ability between two groups. In an interview study with preservice teachers Makar
and Confrey (2004), as a subsequent study to Makar and Confrey (2002), identified
three different aspects of learners’ reasoning about variability when comparing two
groups: “as variation within a group—the variability of data”, “as variability between
groups—the variability of measures” and “distinguishing between these two types of
variability” (see Makar and Confrey 2004, p. 368). One major implication from their
research is that learners seem to be capable of identifying variability within groups
but have difficulties when comparing groups with regard to variability. Learners tak-
ing into account variability when comparing groups were also the focus of a study
by Ben-Zvi (2004), in which he observed that learners working on a group compar-
ison task at first concentrate on the variability of the distributions and later take into
account differences in regard to center, shape and outliers in the data.

Biehler (2001) postulated a normative view of group comparisons, which he views
as adequate strategies for doing group comparisons. According to Biehler (2001)
comparisons of two distributions of numerical variables are called p-based, if, for
some x the relative frequencies h(V ≥ x) and h(W ≥ x) are compared; in p-based
comparisons a specific argument x can be given (for example: 10 h), and the propor-
tion of cases that are equal or larger than 10 h is compared in both groups (Biehler
2001, p. 110). In addition, comparisons of two distributions of numerical variables
are called q-based, if, for some proportion p between 0 and 1, the matching quantiles
of the variables V undW , qV (p) with qW (p), are compared. With q(p) is the quantile
with respect to p. For p �0.5 this is a comparison of medians (Biehler 2001, p. 110).
Biehler (2007) points out further ideas and elements when comparing distributions
such as comparing the skewness of the distributions or using the so called “shift
model” to identify an additive or a multiplicative shift between the distributions (for
details see Biehler 2007).

Pfannkuch (2007), in a research study preceding Pfannkuch et al. (2004), devel-
oped a framework for rating learners’ skills comparing boxplot distributions, which
can also be used for rating learners’ group comparison skills in general. In this frame-
work Pfannkuch (2007) distinguishes several comparison elements such as summary,
signal, spread and shift, at first. Then Pfannkuch (2007, p. 159) rates the quality of the
comparison of each element in different hierarchical quality levels: “point decoder”
(level 0), “shape comparison describer” (level 1), “shape comparison decoder” (level
2) and “shape comparison assessor” (level 3). Whereas a “point decoder” identifies
differences of single values of the distributions and a “shape comparison describer”
makes comparison statements on a descriptive level, the highest level, the “shape
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comparison assessor” interprets differences between the distributions. The “shape
comparison decoder” can be seen as an intermediate step between level 1 and level
3 (for further details see Pfannkuch 2007, p. 159). This framework was also used by
Pfannkuch (2007) to analyze the outcomes of an empirical study where learners were
asked to compare distributions (given in the form of boxplots). Pfannkuch (2007)
observed that the participants preferred to compare the distributions via summary and
spread rather than via shift or signal elements. In addition, while most participants
worked out differences in the “describing” or “decoding” level, only a few worked
out differences in the highest level (“assessor”).

A fifth trend in research literature can be identified in regard to software use
when comparing groups. Biehler (1997) emphasized the role of software when doing
data explorations and when comparing groups and identified four phases: “statistical
problem”, “problem for the software”, “results of software use” and “interpretation
of results in statistics” (Biehler 1997, p. 175). Frischemeier (2014) has refined the
phases inductively (taking into account the findings from the data analysis) and distin-
guished between six phases when comparing groups with software (“real problem”,
“statistical activity”, “software use”, “reading off/documentation”, “conclusions”
and “reasons”). Biehler (1997) and Frischemeier (2014) noted that learners in their
work tended to jump into a statistical problem without considering the real problem
and that the learners produced displays with the software but do not interpret them
with regard to the statistical problem. There is scarce research with regard to specific
software skills of learners, when using software for their group comparison tasks.
Here the work ofMaxara (2009, 2014), in which a framework for skills using Fathom
for simulating chance experiments is given, can be adapted to a framework for more
general skills for digital tools (like TinkerPlots).

From the five different trends and frameworks presented in the literature review,
two main dimensions can be derived:

• D1: Statistical reasoning when comparing groups (Which elements are compared
by the learners? How do learners interpret their worked out differences?)

• D2: Skills of using software (e.g. TinkerPlots) when comparing groups (In which
way are learners capable of using the software in a competent way for their pur-
poses?)

For the component “Skills of using software (TinkerPlots) when comparing
groups”, the framework from Maxara (2009, 2014) about Fathom competences
when simulating chance experiments with Fathom will be adapted for the purposes
of this study. Accordingly for the dimension “Statistical reasoning when compar-
ing groups”, six elements for comparing groups: center, spread, skewness, shift,
p-based comparisons, and q-based comparisons are identified from the framework
of Pfannkuch (2007) and from the work of Biehler (2001, 2007). These elements
are taken as sustainable for group comparisons, and preservice teachers should carve
out differences between groups regarding them (as in Pfannkuch 2007; see below):
“point decoder” (level 0), “shape comparison describer” (level 1), “shape comparison
decoder” (level 2) and “shape comparison assessor” (level 3).
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As mentioned above the main intention of this chapter is to create frameworks
to evaluate the statistical reasoning of preservice teachers when comparing groups
with software, specifically TinkerPlots. In the following the frameworks used in the
study are derived from the literature in regard to the two dimensions D1 and D2. The
frameworks are then applied to the analysis of qualitative data collected in a video
study where preservice teachers have compared groups with TinkerPlots using real
datasets.

13.3 Frameworks for Evaluating Statistical Reasoning
When Comparing Groups with Software

13.3.1 Framework for D1 “Statistical Reasoning When
Comparing Groups”

One intention with regard to the dimension “Statistical reasoning when comparing
groups” was (similar to Pfannkuch 2007) to identify the group comparison elements
used by the study participants first and then rate the quality of the comparisons.
The categories (structural elements) for this framework “center”, “spread”, “shift”,
“skewness”, “p-based” and “q-based” have primarily arisen deductively on basis
of the literature review of Pfannkuch (2007) and Biehler (2001, 2007). From the
elements “signal”, “shift”, “summary” and “spread” of Pfannkuch (2007) the com-
parison element of “summary” was specified as a comparison element of “center”,
the comparison element “signal” was left out since this kind of comparison element
seemed to be too specific (for boxplots), so finally the comparison elements “center”,
“spread” and “shift” were identified. Based on Biehler (2001, 2007) the comparison
elements “skewness”, “p-based” and “q-based” were adopted. In a further step the
hierarchical levels of Pfannkuch (2007), “point decoder” (level 0), “shape comparison
describer” (level 1), “shape comparison decoder” (level 2) and “shape comparison
assessor” (level 3), weremerged, and new hierarchical levels “low quality”, “medium
quality” and “high quality” were defined for each structural element (center, spread,
shift, skewness, p-based, q-based). This lays the foundation for a high quality com-
parison related to the elements mentioned above where the elements are compared in
a quantitative way and are interpreted. For example, a high quality comparison state-
ment about the difference in income between men and women regarding “center”
would be “men earn 29.5% more than women on average”, because the difference is
quantified (“29.5%”) and interpreted (“men earn…more than women on average”).
When group comparison elements are only compared in a qualitative way but not
interpreted, they are rated as medium quality (example: “The mean of men is higher
than the mean of women”), because in this case it is only said that the mean of dis-
tribution X is larger than the mean of distribution Y. The case where the measures or
elements are compared in a wrong way is called “low quality”. Table 13.1, adapted
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from Frischemeier and Biehler (2016, p. 646), displays the definitions of the group
comparison elements in different quality levels.

13.3.2 Framework for D2 “Skills of Using Software
(TinkerPlots) When Comparing Groups”

The categories with regard to TinkerPlots skills take into account the categories of
Maxara (2009, 2014) about Fathom competencies when simulating chance exper-

Table 13.1 Group comparison elements and different quality levels

High quality Medium quality Low quality

Center Measures of center
(mean, median) are
compared in a
quantitative way and
are interpreted.

Measures of center
(mean, median) are
compared in a
qualitative way but are
not interpreted.

Measures of center
(mean, median) are
compared incorrectly.

Spread Measures of spread
(IQR) or informal
descriptions of spread
(such as “density” ,
“close”) are compared
and interpreted.

Measures of spread
(IQR) or informal
descriptions of spread
(such as “density”,
“close”) are compared
but not interpreted.

Spread is compared
with inadequate
measures (like range)
and/or is interpreted
incorrectly.

Shift Shift between both
distributions is
quantified correctly
(comparing the
position of the middle
50% or using the
“shift model”).

Shift between both
distributions is
described in a
qualitative way (e.g.
comparing
non-corresponding
numbers)

Shift between both
distributions is worked
out incorrectly.

Skewness Skewness of both
distributions is
described correctly,
and the differences
between the
distributions are
interpreted.

Skewness of both
distributions is
described correctly,
but the differences are
not interpreted.

Differences of
skewness are worked
out incorrectly.

p-based p-based differences
are identified and
interpreted.

p-based differences
are identified but not
interpreted.

p-based differences
are worked out
incorrectly.

q-based q-based differences
are identified and
interpreted.

q-based differences
are identified but not
interpreted.

q-based differences
are worked out
incorrectly.

Key examples related to spread, skewness, shift, p-based and q-based comparisons can be read in
Frischemeier and Biehler (2016, p. 647)
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Table 13.2 Definitions and examples related to “TinkerPlots skills” when comparing groups

TinkerPlots skill Definition Example

TinkerPlots skill high Learners have a concrete plan
in mind and can fulfill it with
TinkerPlots.

Conrad & Maria: “Let´s do a
boxplot”. Conrad and Maria
produce a boxplot in
TinkerPlots.

TinkerPlots skill medium Learners have a concrete plan
in mind and can fulfill it with
TinkerPlots after a
trial-and-error approach.

Hilde & Iris are unsure which
button is for displaying the
mean and which button is for
displaying the median.

TinkerPlots skill low Learners have a concrete plan
in mind and cannot fulfill it
with TinkerPlots.

Laura & Ricarda want to plot a
boxplot in TinkerPlots. After
some time Laura said: “I do
not know how”.

iments with Fathom. We have refined them in our data analysis process. A high
TinkerPlots skill indicates that learners want to perform a certain action with Tin-
kerPlots and can use TinkerPlots for their purpose. To rate TinkerPlots skills in this
way, participants in the video study were asked before every action with TinkerPlots
to articulate and describe their plan and intention. As an example consider the pair
Conrad andMaria (discussed further later in the section about the video study). Con-
rad and Maria want to display a boxplot of the distribution of the variable “monthly
income” and articulate: “let´s do a boxplot”. They immediately used TinkerPlots
to produce a boxplot of the distribution of their desired variable. This indicates a
“TinkerPlots skill high”. Another example of a high TinkerPlots skill can be seen
in Fig. 13.2. Here Hilde and Iris (again revisited later in the section about the video
study) discuss how to find the ratio of low-wage earners in both distributions (see
transcript excerpt, Fig. 13.2, line 01-03), and they successfully use dividers in Tin-
kerPlots (see transcript excerpt, Fig. 13.2, line 04-06) to figure out the desired ratios.
If the participants in a situation similar to the one above have a certain intention with
TinkerPlots but can only realize this intention via a “trial-and-error”-approach this
is “TinkerPlots skill medium”. As an example consider again the working phase of
Hilde and Iris: Hilde and Iris are unsure which button they have to use to display the
mean and which button they have to use to display the median of the distribution of
monthly income. In the case where the learners have a concrete intention with Tin-
kerPlots but cannot realize it with the software, the situation is rated as “TinkerPlots
skill low”. An example here is given in the working process of Ricarda and Laura
(also discussed further in the section about the video study). Laura and Ricarda want
to plot a boxplot in TinkerPlots, but after some time Laura says: “I do not know how”
and they do not plot a boxplot in TinkerPlots. In Table 13.2we see the overview for all
definitions and key examples related to “TinkerPlots skills” when comparing groups.
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13.4 Application of the Framework to Qualitative Data
Collected in a Video Study on Preservice Teachers
Comparing Groups with TinkerPlots

The focus of this study was on how preservice teachers compare groups with Tinker-
Plots after attending a course on data analysis with TinkerPlots called “Developing
statistical thinking and reasoning with TinkerPlots”.

The following summarizes the contents of the course and then considers how
the framework was applied. The choice of the task used in the video study, the
participants, the data collection and the data analysis process of the video study
are described. Finally the framework is applied to the video data and the written
work of four pairs of preservice teachers working on group comparison tasks with
TinkerPlots.

13.4.1 The Course “Developing Statistical Thinking
and Reasoning with TinkerPlots”

The course “Developing statistical thinking and reasoning with TinkerPlots” was
designed using the Design Based Research paradigm (Cobb et al. 2003). Funda-
mental ideas for this course are to “focus on developing central statistical ideas” ,
to “use real and motivating data sets” , to “use classroom activities to support the
development of students’ reasoning”, the integration of “appropriate technological
tools” , to “promote classroom discourse that includes statistical arguments and sus-
tained exchanges that focus on significant statistical ideas” and the “use of formative
assessment” (Garfield and Ben-Zvi 2008, p. 48). An overarching structure was the
PPDAC-cycle (Wild and Pfannkuch 1999). The participants were supposed to work
with real and multivariate data that they collected themselves (via questionnaire or
via downloading official data files from the internet), explored them with regard
to self-generated statistical questions using TinkerPlots, and then wrote down their
findings in a statistical report. All in all, the course consisted of four modules. In
the first module the participants got to know the PPD (Problem, Plan, Data) ele-
ments of the PPDAC-cycle. Here the participants learned how to generate adequate
statistical (research) questions, to plan a data collection, to generate questionnaires,
to collect data, to conduct a data collection, to store data and to clean data on their
own. Module two included an introduction to data analysis with TinkerPlots. Here
the participants were shown how to produce plots for univariate and bivariate data
explorations using TinkerPlots and how to describe and interpret them with regard
to fundamental elements like center, variation, skewness, etc. (Rossman et al. 2001;
Biehler 2007). One main idea was to develop statistical reasoning in conjunction
with cooperative learning environments like “think-pair-share” (Roseth et al. 2008).
At first the participants worked on a data exploration on their own (“think”), then
discussed it with partners (“pair”) and finally with experts (the teachers) in plenum
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(“share”). The peer feedback by the partners and the expert feedback by the teachers
was intended to develop the quality of the statistical investigations in module two
and to prepare them for wider explorations in module three. In module three, a large
part of the course was dedicated to wider explorations on differences among two
or more groups concentrating on the comparison of groups regarding the elements
center, spread, shift, skewness, p-based and q-based (see Pfannkuch 2007; Biehler
2007; Frischemeier 2017), which were also taken into account for the framework.
There were two norms set for the participants with regard to group comparisons:
first, to work out as many differences on the six elements as possible; second, to
interpret these differences, which are carved out between the two groups regarding
center, spread, shift, skewness, p-based and q-based comparisons. Boxplots were
highlighted as adequate displays for group comparisons; the use of the “shift model”
was highlighted for identifying possible additive ormultiplicative shifts between two
distributions. Also the participants were shown how to create different group com-
parison displays with TinkerPlots like histograms, hatplots, boxplots and stacked
dot plots. In addition the participants were shown how to use dividers for p- and
q-based comparisons in TinkerPlots. Finally, in the fourth module the participants
were introduced to inferential statistics in the sense of conducting randomization
tests with TinkerPlots (Frischemeier and Biehler 2014) as a succeeding activity to
comparing groups. Further details, lessons plans and materials used in the course can
be found in Frischemeier (2017).

13.4.2 Task of the Video Study

The task used in this video study included a group comparison activity in a real, large
and motivating dataset, which was a random sample from a large and multivariate
dataset (called VSE data) imported from the German Bureau of Statistics contain-
ing data on 861 persons from the German population and variables such as salary,
gender and region. Six weeks after the course “Developing statistical thinking and
reasoning with TinkerPlots”, eight participants from the course were invited to take
part in a video study, in which they were asked to compare groups in the VSE data
with TinkerPlots. The precise task they were to work on was: In which aspects do the
distributions of the variable “salary” of the men and the women differ? Carve out as
many differences in both distributions as you can. There are plenty of possibilities
to carve out differences between both groups with TinkerPlots. Figure 13.1 shows
different representations learners might use in TinkerPlots to work out differences
between both distributions regarding center, spread, shift and q-based comparisons
(Fig. 13.1, left), with regard to skewness (Fig. 13.1, centered) and with regard to
p-based comparisons (Fig. 13.1, right). For details and possible ways to solve the
VSE task see Biehler and Frischemeier (2015). From this initial point of possible
ways to carve out differences between both distributions and from the two dimen-
sions “Statistical reasoning when comparing groups” and “Skills of using software
(TinkerPlots) when comparing groups” the main research question was: How do the
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Fig. 13.1 PossibleTinkerPlots graphs forVSE task, createdwith theGermanversion ofTinkerPlots

preservice teachers in the study compare groups in this real dataset with TinkerPlots
after the course? More precisely three sub-questions can be distinguished for the
analysis of the video study:

• Which comparison elements do the preservice teachers use when comparing
groups in a real dataset in TinkerPlots?

• Do they interpret the differences they worked out for the comparisons?
• In which ways are the preservice teachers able to use the software TinkerPlots for
their purposes when comparing groups?

13.4.3 Data and Participants

The eight participants (all participants attended the course “Developing statistical
thinking and reasoning with TinkerPlots” described above) worked on the task in a
laboratory setting at the Paderborn University in groups of two. They were given an
exercise sheet with the task, a list of variables of the dataset and also the TinkerPlots
file containing the VSE data. Furthermore they were told to communicate aloud as
much as possible during their working process. There was no intervention at any time
in their working process by the interviewer. Their screen activities, their oral commu-
nication, and the action with TinkerPlots were recorded, and also their notes on their
exercise sheets were collected. The communication between the participants and
action with the software was transcribed taking into account the recommendations
of Kuckartz (2012). As an example see the following abstract from a transcript of
Hilde (H) and Iris (I) in Fig. 13.2. The software actions are documented in parenthe-
ses; each TinkerPlots action is also documented with a screenshot. Communication
between both participants is displayed in normal wording.
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Fig. 13.2 Excerpt of transcript of Hilde (H) and Iris (I) when working on VSE task

13.4.4 Data Analysis

The analysis of data was done with a qualitative content analysis approach (Mayring
2015). The scheme and the cycle of a qualitative content analysis can be seen in
Fig. 13.3.

When applying the qualitative content analysis, the first step is to define the object
of research and the research question. For the video study reported in this section,
the research question was: “How do our preservice teachers compare groups in this
real dataset with TinkerPlots after the course?”. In a second step the dimensions of
analysis are derived from the research question and the object of research (and also
from the existing field of literature). In this case two dimensions were identified—as
it was already done above after the literature review: “Statistical reasoning when
comparing groups” (D1) and “Skills of using software (TinkerPlots) when comparing
groups” (D2). Then (step 3) units of analysis (which data are taken into account for
the analysis?), minimum coding units (what is the smallest piece in the data taken
into account for analysis?) and maximum coding units (what is the largest piece in
the data taken into account for analysis?) are defined. In step 4 categories with exact
definitions and key examples are defined and coding schemes (see frameworks in
Tables 13.1 and 13.2) are set up. Then selected cases from the data material are coded
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Fig. 13.3 Scheme of qualitative content analysis in this study

followed by a first proof of quality by an independent researcher (step 5). If there are
many discussion points with the independent researcher, the categories have to be
modified and the whole material has to be coded with the modified categories again
(step 6). After step 7 the main proof of quality is implemented. The frameworks
with its definitions and key examples are given to an independent researcher. The
independent researcher codes the transcripts on the base of the frameworks. The
elements where the codings of the independent researcher are different from the
codings of the researcher will be discussed, and the intercoderreliability will be
calculated on the base of the formula below (seeMayring 2010, p. 120). Here xmeans
the number of codes that match between researcher and independent researcher, n
means the whole number of codes and k means the number of categories. Mayring
(2001) says, that κ ≥0.7 is adequate for proving intercoderreliability. In the case of
an adequate intercoderreliability, a frequency analysis of occurrence of codings is
done in step 8.

κ �
x
n − 1

k

1 − 1
k

If the intercoderreliability is inadequate, the coding scheme/framework has to be
revised—the procedure will then be continued with step 4.

One crucial point (seeMayring 2015, p. 374) in qualitative content analysis, which
can be seen in Fig. 13.3 (step 4), is a coding scheme/framework with exact defini-
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tions and key examples. A dynamic framework (see Table 13.1) was used to identify
the variety of group comparison elements and their quality. In the analysis of the
comparison elements and their quality, the focus was on the transcribed communi-
cation of the working phase and on the written notes of the participants collected
during the video study. Therefore, the analysis unit for dimension D1 covers the
transcribed conversation in-between the pairs and their written notes. Furthermore a
framework was created to rate and evaluate the TinkerPlots skills of the participants
(see Table 13.2). For coding the “TinkerPlots skills” the analysis unit covers the
transcribed conversation in-between the pairs and their action with the software. For
both frameworks, a word was chosen as minimum coding unit, and a unit of meaning
was chosen as maximum coding unit. The coding units were assigned to the codes
in a disjointed way. Intercoderreliability was established by comparing the codings
with an independent researcher (κ �1.000 for dimension D1 and κ �0.8875 for
dimension D2).

The following sections present the application of the frameworks to evaluate
statistical reasoning and software use when comparing groups.

13.4.5 Results for “Statistical Reasoning When Comparing
Groups” (D1)

A broad range of 28 comparison elements was used by the preservice teachers (see
Table 13.3) when working on the VSE task. The most used elements were p-based
comparisons (eight times) and comparisons via shift (six times). Comparisons with
regard to skewness and q-based comparisons were the least used. There was no
comparison rated with a low quality. 28.6% of the comparisons were done on a
high quality level, 71.4% on a medium quality level. Remarkably all p-based and
shift comparisons have been done in medium quality, so there might be a difficulty
for the preservice teachers to interpret these specific differences. With regard to the
comparisons via shift, no one used the “shift model”, although it was part of the
curriculum and it appeared in the data. Table 13.3 shows the distribution of codings
regarding group comparison elements and their quality used by the four pairs when
working on the VSE task.

The following applies the framework with respect to “Statistical reasoning when
comparing groups” to the work of the four pairs.

Conrad and Maria and Sandra and Luzie made only four comparison statements
each. All of them are rated with medium quality. Conrad and Maria compared the
distributions with regard to spread and shift and also used a q-based comparison.
Amongst other graphs, they produce a stacked dot plot with boxplots of the variable
monthly income separated by gender in TinkerPlots (Fig. 13.4).

For their q-based comparison they read off the minimum and the 1st quartile of
each distribution in TinkerPlots (with the help of the mouse cursor) and documented
their findings (see their written documentation in Fig. 13.5).
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Table 13.3 Frequency analysis of codings related to the group comparison elements and their
quality

High quality Medium quality Low quality Overall

Center 2 2 0 4

Spread 3 2 0 5

Shift 0 6 0 6

Skewness 2 1 0 3

p-based 0 8 0 8

q-based 1 1 0 2

Overall 8 (28.6%) 20 (71.4%) 0 (0.0%) 28 (100.0%)

Fig. 13.4 TinkerPlots graph produced by Conrad and Maria

Fig. 13.5 Translated q-based comparison done by Conrad and Maria (written note)

This q-based comparison as can be seen in Fig. 13.5, was rated with a medium
quality since the intervals of the lower 25% are just described but there is no com-
parison done between both groups.

Sandra and Luzie—like Conrad and Maria—also only made four comparison
statements. Remarkably they only used p-based comparisons to work out differences
between the distributions. All of them were rated with medium quality, since none of
the differences were interpreted nor compared directly. Figure 13.6 displays Sandra



13 Statistical Reasoning When Comparing Groups with Software … 297

and Luzie’s TinkerPlots graph for a p-based comparison where they identified the
relative frequencies of men and women having an income larger than 5000e.

Their findings can be seen in the documentation in Fig. 13.7. Since the relative
frequencies are documented, but the differences are neither interpreted nor compared,
we rate this comparison as a “medium quality p-based comparison”.

Hilde and Iris and Laura and Ricarda did ten comparisons each and used a large
range of comparison elements. Also high quality comparisons can be found in their
communication and working process.

Hilde and Irisworkedout differences betweenboth distributions via center, spread,
shift and p-based comparisons. The differences regarding center, shift and p-based
comparisons were worked out in medium quality. For an example of one of their
p-based comparisons of medium quality see the transcript excerpt in Fig. 13.2. Here
Hilde and Iris figured out the relative frequency of employees earning 1000e or less
per month (their definition of low-wage employees). They concluded that 22% of
the female employees and 14% of the male employees are low-wage employees. To
work out differences in regard to spread, Hilde and Iris used stacked dotplots and
boxplots in TinkerPlots (see Fig. 13.8). Furthermore they used so-called reference
lines in TinkerPlots to determine summary statistics like median, 1st quartile and 3rd
quartile of both distributions.

Fig. 13.6 TinkerPlots graph produced by Sandra and Luzie

Fig. 13.7 Translated p-based comparison done by Sandra and Luzie (written note)
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Fig. 13.8 TinkerPlots graph produced by Hilde and Iris

Both differences related to spread used by Hilde and Iris were rated as “high
quality comparison”. One example can be seen in their written note in Fig. 13.9.
Here Hilde and Iris read off the 1st and the 3rd quartiles of both distributions and
calculated the interquartile range (IQR) of each distribution. Their conclusion then
is that “the middle 50% of men spreads more than the middle 50% of the women”,
whichwas rated as a high quality comparison since the differences in regard to spread
are worked out correctly and are interpreted (“spreads more”).

All in all two of their ten comparisons (20%) are rated as high quality.
Laura & Ricarda showed the best performance of all pairs: They did ten com-

parisons and worked out differences between both distributions with regard to all
six group comparison elements. Six of their ten comparisons (60%) were rated as
“high quality”. In one of their comparisons in regard to center Laura and Ricarda

Fig. 13.9 Comparison of
spread done by Hilde and Iris
(written note)
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first displayed both distributions as horizontally stacked dotplots in TinkerPlots and
then calculated the mean of the distributions of “monthly income” (Fig. 13.10).

As one of their two comparisons related to center, Laura and Ricarda stated that
“in 2006 the men earn 29.5% more on average than the women” (see their written
documentation in Fig. 13.11).

This comparison was rated as high quality because it quantifies the differences
between the means in a multiplicative way (29.5%) and because this difference is
interpreted (“on average”).

13.4.6 Results for “Skills of Using Software (TinkerPlots)
When Comparing Groups”(D2)

Table 13.4 shows the distribution of codings related to “Skills of using software
(TinkerPlots) when comparing groups”. Examples can be seen in the description of
the framework D2 above.

The data suggests that TinkerPlots is used in a very competent way by the partic-
ipants in the study. Approximately three quarters (75.9%) of all codings are related
to high TinkerPlots skills. About 86% of the codings are related to at least medium

Fig. 13.10 TinkerPlots graph produced by Laura and Ricarda

Fig. 13.11 Comparison of center done by Laura and Ricarda (written note)
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Table 13.4 Frequency analysis of codings related to the TinkerPlots skills by all pairs

TinkerPlots skill
high

TinkerPlots skill
medium

TinkerPlots skill
low

Overall

Conrad & Maria 22 (75.9%) 1 (3.4%) 6 (20.7%) 29 (100.0%)

Hilde & Iris 33 (80.5%) 7 (17.1%) 1 (1.9%) 41 (100.0%)

Ricarda & Laura 22 (81.5%) 2 (7.4%) 3 (11.1%) 27 (100.0%)

Sandra & Luzie 5 (45.4%) 1 (9.2%) 5 (45.4%) 11 (100.0%)

Overall 82 (75.9%) 11 (10.2%) 15 (13.9%) 108 (100.0%)

TinkerPlots skills, and only approximately 14% of the codings are related to low
TinkerPlots skills. Therefore, the participants seem to be capable of using Tinker-
Plots for their purposes when comparing groups. There are some small differences
in between the pairs: Whereas three pairs (Conrad and Maria, Hilde and Iris and
Ricarda and Laura) show they have good TinkerPlots skills (percentage of codings
related to high TinkerPlots skills are larger than 75%), Sandra and Luzie show some
problems in their TinkerPlots use, since only 45.4% of their codings are related to a
high TinkerPlots skill and 45.4%of their codings are related to lowTinkerPlots skills.
These limited TinkerPlots skills also hindered them in their investigation and data
exploration process because they were neither able to calculate summary statistics
nor to display common graphs for group comparisons (like boxplots) in TinkerPlots.

13.4.7 Relationships Between the Dimensions D1 and D2

To identify any patterns between the pairs in regard to the levels “Statistical rea-
soning when comparing groups high” and “TinkerPlots skills high”, the percentages
of codings of “TinkerPlots skill high” and “Statistical reasoning when comparing
groups high” were used (see Fig. 13.12). Laura and Ricarda show good statistical
reasoning when comparing groups and also show a competent use of TinkerPlots
when comparing groups. The statistical reasoning when comparing groups of Hilde
and Iris can be evaluated between high and medium, since 20% of their codings
are related to a high and 80% of their codings are related to a medium quality. The
software skills of Hilde and Iris can be rated “high”. Conrad and Maria also show
high TinkerPlots skills, but they lack statistical reasoning since none of their codings
is related to a high quality comparison. So their statistical reasoning when compar-
ing groups would overall be described as medium. Sandra and Luzie show rather
medium skills when comparing groups; like Conrad and Maria, they lack statistical
reasoning with no codings of high quality. Taking into account the reasoning and the
skills of these four pairs, it is not possible to infer from high TinkerPlots skills that
there will be high statistical reasoning elements. On the other hand those pairs in our
study who show high statistical reasoning elements (like Hilde and Iris and Laura &
Ricarda) also tend to show high TinkerPlots skills.
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Fig. 13.12 Scatterplot with percentages of codings in regard to “Statistical Reasoning when com-
paring groups high” and “TinkerPlots skills high”

13.5 Summary and Conclusion

The application of the frameworks D1 and D2 shows that the whole range of com-
parison elements was used by the participants in the study. The participants showed a
competent use of the tool TinkerPlots, because they were able to use the tool for their
purposes when comparing groups, were able to explore data with TinkerPlots, and
were able to carve out differences between distributions in these large datasets. The
comparison statements made were at least on a medium level. On the other hand, the
application of the frameworks also shows some discrepancies between the pairs in
detail, as mentioned in the results section: The majority of the comparisons (71.4%)
are rated as medium quality because the differences were just described but not inter-
preted. Similar findings were also found in the empirical study of Pfannkuch (2007).
Also Biehler (1997) and Frischemeier (2014) noted that learners often concentrate
on the production of displays and the calculation of summary statistics but do not
interpret their findings. Furthermore—with regard to the norms set in the course
(“work out as many differences as possible” and “interpret the differences”)—too
many comparison statements lacked interpretation, and some of the pairs like San-
dra and Luzie did not use the variety of possible comparison elements to identify
the differences between the distributions. In addition only two q-based comparisons
were used, although using q-based comparisons was taught in the course when intro-
ducing boxplot comparisons. The “shift model” was not used at all, although it was
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presented as an adequate strategy to identify shifts between two distributions and it
happened to be visible in the data.

The frameworks displayed in Tables 13.1 and 13.2 applied to the data of the video
study can help to evaluate the performance of preservice teachers when comparing
groups with TinkerPlots. The framework on statistical reasoning gives insight on the
one hand to see which group comparison elements are taken into account and on the
other hand demonstrates whether the differences between the groups are worked out
correctly or whether they are described or interpreted.

The framework of the software skills shows how competent learners can use
TinkerPlots in a group comparison process. Independently from TinkerPlots, the
framework can also be applied with different software/tools like Excel, Fathom, etc.
To rate software skills with this framework the communication of the participants
whenusingTinkerPlots for comparinggroups should be taken into account because of
the special operationalization ofTinkerPlots skills in this framework. TheTinkerPlots
skills are operationalized in a way that a high skill is given when the intention which
was articulated can be fulfilled successfully with the software. To be able to rate the
skill, you have to know what the learners have articulated before.

In general both frameworks can help teachers to identify learners´ problems with
several group comparison elements which might not have been used in the compar-
ison process or which have been used incorrectly. Here for example a teacher could
identify that q-based comparisons were not often used and that there was no high
quality shift comparison and no high quality p-based comparison, and therefore a
teacher could pay more attention to these aspects in further courses. The frameworks
can also be used as a norm for teaching. Teachers could teach students towork out dif-
ferences between two or more distributions in regard to group comparison elements
such as center, pointing out the different qualities of comparison (high, medium, low)
and trying to enhance interpreting differences between groups. Researchers doing
a qualitative study might find the framework useful as a method to analyze data on
statistical reasoning in regard to comparing groups.

13.6 Further Research

Areas of further research can be divided in three facets. First the framework can
be refined (more dimensions/more levels/more elements) and applied to larger data
sets. The framework can also be applied in other settings, for example for analyz-
ing empirical qualitative data on comparing groups activities for primary school.
Classroom research in regard to enhancing data analysis with TinkerPlots in primary
school with 3rd and 4th graders is now ongoing (e.g. Breker 2016). A third aspect
of further research is learning from the results of the video-study in regard to course
design (Re-Design of the course “Developing statistical thinking and reasoning with
TinkerPlots”). In a re-designed course the norm “work out as many differences as
possible” would be set up in a more explicit way with a focus on interpreting worked
out differences, which may happen as part of in-class-discussion while considering
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adequate and non-adequate examples for interpretation. Additionally q-based com-
parisons, the “shift model” and the interpretation of p-based comparisons would
need to be highlighted in a re-designed course.
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Part IV
Teachers’ Perspectives



Chapter 14
Teachers’ Perspectives About Statistical
Reasoning: Opportunities
and Challenges for Its Development

Helia Oliveira and Ana Henriques

Abstract This study concerns the perspectives of 11 mathematics teachers about
the potential and the challenges of developing a learning environment targeting stu-
dents’ statistical reasoning in a Developmental Research Project context. We focus
on their perspectives regarding the tasks, the software, and their role in promoting an
adequate classroom discourse, from their written answers to an open questionnaire.
Findings show that the teachers distinguish key aspects that characterize the statis-
tical reasoning conveyed by the tasks and ways the students used the software to
explore them, as well as the necessity of assuming a new role that stands in contrast
with traditional teaching practices. The findings also point out several obstacles that
give rise to a reflection about the design of the project.

Keywords SRLE · Statistical reasoning · Tasks · Teachers’ perspectives
Technology

14.1 Introduction

International current guidelines for teaching statistics (e.g. Franklin et al. 2007)
prioritize the development of students’ literacy and reasoning and challenge teachers
to create learning environments that are in contrast to the prevailing classroom prac-
tices. Given that the classroom environment and the adopted teaching approaches,
including the tasks to be proposed, are key factors in learning, Garfield and Ben-Zvi
(2009) offer a model for a Statistical Reasoning Learning Environment (SRLE)
to support a thorough understanding of statistics and the development of statistical
reasoning. However, the adoption of new curricular perspectives and the need to pro-
mote learning environments with such characteristics is a novelty to teachers whose
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experience is mainly based on descriptive statistics (Ben-Zvi and Makar 2016) and
raises a number of challenges for them (Leavy 2010; Makar and Fielding-Wells
2011). Thus, teacher educators are required to create opportunities for teachers’
professional development in statistics, particularly through courses that are closely
related to the teaching practice (Ben-Zvi and Makar 2016). Several studies show
that, when implementing new approaches in their lessons, teachers may benefit from
collaborative working environments involving other teachers and researchers (Good-
child 2014; Makar and Fielding-Wells 2011; Potari et al. 2010).

To promote teaching practice under the SRLE model with a group of Portuguese
mathematics teachers, a Developmental Research Project (DRP) was conducted
where teachers and researchers worked collaboratively in the design and implemen-
tation of tasks that seek to promote students’ statistical reasoning. Recognizing that
teachers do not have many opportunities for professional development in statistics
(Batanero et al. 2011) and that the envisioned teaching practice is rather different
from the traditional one (Garfield andBen-Zvi 2009), a study to understand the teach-
ers’ perspectives about their lived experience with SRLE in the project was carried
out. Acknowledging that research on teachers’ education for these new approaches
in statistics is still scarce (Ben-Zvi and Makar 2016), and that the important dimen-
sions of teachers’ beliefs and attitudes have received less attention from the research
than teachers’ knowledge (Batanero et al. 2011; März and Kelchtermans 2013), this
study aims to contribute to the knowledge about how innovative teaching practices
targeting students’ statistical reasoning are perceived by the teachers.

Recognizing the novelty and complexity of the envisioned practice according
with the SRLE model (Garfield and Ben-Zvi 2009), it is important to understand
how teachers perceived the environment’s specific features. We focus our study on
the teachers’ perspectives concerning the tasks and the software that was used and
their own role as teachers in promoting an adequate classroom discourse, which are
three of the main elements of SRLE that have received particular attention in the
DRP. In accordance with our research goal, we formulated the following research
question: What are the teachers’ perspectives about the potential and the challenges
of developing a learning environment targeting students’ statistical reasoning?

14.2 Theoretical Framework

14.2.1 Statistical Reasoning

Statistical reasoning, commonly described as the way individuals reason using sta-
tistical ideas and how they give meaning to statistical information, encompasses
the conceptual understanding of important ideas such as variation, distribution, cen-
ter, spread, association and sampling or the combination of ideas about data and
uncertainty that leads to inference (Ben-Zvi and Garfield 2004; Makar et al. 2011).
This ability to draw conclusions that extend beyond the available data has received



14 Teachers’ Perspectives About Statistical Reasoning … 311

increasing attention in both curriculum documents and research in statistics educa-
tion, and Informal Statistical Inference (ISI) has become a key objective of statistical
reasoning.

Students’ informal ideas of statistical inference should be developed from the
first years of school as it is a known area of difficulty for older students when formal
ideas are later introduced (Franklin et al. 2007; Makar et al. 2011; Watson 2008).
However, ISI should not be taught to students as an entity in itself, but rather it would
be preferable to focus the instruction on reasoning processes that lead to inference
(Makar and Rubin 2009). Such informal inferential reasoning means “drawing con-
clusions or making predictions, informally, on a ‘broadened universe’ from patterns,
representations, statistical measures and statistical models of random samples, while
considering the strength and limitations of the sample and the inferences reached”
(Ben-Zvi 2006, p. 2).

Recent research focused on ISI supports the use of statistical investigations in
classrooms in order to foster the emergence of students’ inferential practices (Hen-
riques and Oliveira 2016; Leavy 2010). Thus, students can experience statistics as
an investigative process to solve real problems, as they are encouraged to formulate
their own statistical questions (conjectures) about a significant phenomenon, to plan
a proper data collection, to select suitable graphic and numerical methods in order to
analyse such data and to draw conclusions and inferences from the developed activ-
ity (Franklin et al. 2007). Due to their nature, statistical investigations often provide
a distinctive context for observing students’ conceptual ideas about statistical rea-
soning, namely fundamental processes like variation, transnumeration, evaluating
statistical models and integrating contextual and statistical features of the problem
(Wild and Pfannkuch 1999). At the same time, they may involve students in funda-
mental components of informal inference, such as decision making and prediction
(Makar and Rubin 2009; Watson 2008). For teachers, the use of investigations also
provides knowledge that can be used in the design, implementation, and assessment
of instruction in statistics and data exploration (Henriques and Oliveira 2013), since
they incorporate domain-specific knowledge of students’ statistical reasoning.

The huge development of technology and the accessibility of real data have an
important impact on the curriculum guidelines, providing students and teachers with
new tools to explore the ISI in rich and meaningful contexts, including the use of a
broader process of statistical investigation (Ben-Zvi et al. 2012). In particular, the
use of dynamic statistical learning environments, such as TinkerPlots™ (Konold and
Miller 2005), in combinationwith appropriate curricula and instructional settings, has
shown great potential in the learning of statistics and in the development of students’
statistical reasoning, particularly the Informal Inferential Reasoning (Makar et al.
2011). This chapter highlights the possibility of using databases already integrated
in the software reducing the amount of time to collect data, as an integrated stage of
the investigation cycle. In addition, students can create and explore the potential of
their own graphical representations and statistical measures taking advantage of the
software tools. This helps students to actively build knowledge “doing” and “see-
ing” statistics and to think about observed phenomena (Konold andMiller 2005). The
dynamic nature of the software also enables young students to informally explore
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data to make conjectures and to use the experimental results to test or modify these
conjectures (Paparistodemou and Meletiou-Mavrotheris 2008). Discussion is stim-
ulated, as the results of prediction or conjectures are rapidly viewed, and allows
students to look for justifications for their statements, reinforcing their ability to
reason statistically (Ben-Zvi 2006; Watson 2008).

In line with these curricular orientations, the Portuguese mathematics syllabus for
basic education (ME 2007) advocated a more in-depth and extended role of statistics
in school mathematics suggesting the use of data-oriented approaches and statistical
investigations in the teaching and learning of this topic for all grades from primary
to lower secondary school (6–14 years old). However, since in the national context
formal statistical inference is reserved for university courses and, traditionally, stu-
dents are not exposed to ISI methods before that, informal inferential reasoning is
not explicitly referred as a learning objective in that curricular document. Neverthe-
less, the same document suggests that activities should be conducted to promote the
emergence of this reasoning by provoking students to “ask questions about a certain
subject, identify [relevant] data to be collected, and organize, represent and interpret
such data in order to answer the questions previously asked” (p. 26). In these situa-
tions, the teacher has the responsibility to encourage students to make decisions and
inferences based on the collected data and to use proper language, considering their
development level (ME 2007). This document also recognizes the important role
of technology in data handling, justifying that technological tools “are fundamental
(…) to carry out work under this topic, as they allow students to focus on choosing
and supporting the methods to be used in data analysis and results interpretation,
releasing them from time consuming calculations” (p. 43). Despite these recommen-
dations, statistics has received little attention from mathematics teachers in basic
education in Portugal. In addition, the integration of technology in education is not
yet widespread, due to the lack of training in this area and to countless difficulties
teachers face because of the scarcity or absence of technology in a large number of
schools.

These new perspectives on teaching and learning of statistics call for changes in
the teaching practices, namely in regard to the contexts to be presented to students, the
statistical processes to be explored, and the technological resources to be used. In this
respect, Garfield and Ben-Zvi (2009) point out a statistical learning environment that
promotes the development of statistical reasoning (SRLE), based on six principles
of instructional design:

(1) focus on developing central statistical ideas, such as distribution, variability,
covariation, sampling and inference, in order to deepen the conceptual under-
standing of students instead of learning procedures;

(2) use of real data, challenging students to become involved in data collection
and in the formulation of conjectures and statistical inferences based on data
analysis;

(3) use of classroom activities to develop students’ statistical reasoning, especially
focusing on the proposed tasks and on how to develop them;
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(4) integrate appropriate technological tools to help data exploration and analysis,
supporting students in results’ interpretation and conceptual understanding;

(5) promote classroomdiscourse focused onmeaningful statistical ideas, promoting
discussion and negotiation of meanings; and

(6) use of assessment to monitor students’ learning, focusing on understanding
rather than on skills, and to reflect about the learning process.

14.2.2 Teachers’ Perspectives

Teachers’ practices are influenced by many factors. Teachers’ perspectives on statis-
tics as an important factor influencing their willingness to adopt new teaching strate-
gies and, therefore, the successful implementation of new curriculum guidelines, has
long been stablished (Estrada et al. 2011). Recent research on non-cognitive factors
such as teachers’ beliefs and attitudes towards statistics and its teaching gives some
sense of teachers’ perceptions about factors that determine or affect their teaching
practice. For example, in Martins et al. (2012) study, basic education school teachers
enjoyed teaching statistics and agreed to include the topic in the curriculum since
they recognized its importance and usefulness in students’ daily life. Findings from
previous studies (Chick and Pierce 2011; Watson 2001) also showed that teachers,
in general, have positive attitudes towards statistics. However, in Watson’s (2001)
study, most of the teachers admitted the need for professional development in order
to improve their ability to teach statistics in accordance with the new perspectives,
favouring classroom-based work and collaborative contexts.

To study teachers’ perspectives on statistics, it is fundamental to know their per-
ceptions regarding new recommendations for teaching statistics, such as GAISE
(Franklin et al. 2007). These perceptions have become a focus of analysis, and Groth
(2008) noted that teachers seldom see these reforms as a means to significantly
change the teaching objectives and their approaches to this subject. Instead, they
tend to perceive these reforms as supplements or revisions of their current pedagog-
ical repertoire. For instance, in the studies conducted by Groth (2008) and Chick
and Pierce (2011), teachers from different education levels, who participated in a
focus group about the implementation of GAISE recommendations, seem not to be
aware of the need to develop their knowledge about how different statistics is from
mathematics. Regarding the use of technology, Groth (2008) also concluded that the
teachers are aware of such recommendations and that their positive attitudes con-
tribute to its successful integration in the teaching and learning processes. However,
according to the author, teachers might use technology superficially only to follow
the syllabus, if they do not understand how to use it properly to teach a specific
statistical topic. The same difficulties were present for other educational strategies
such as the use of cooperative learning. Therefore, assessing teachers’ perceptions
regarding the proposed GAISE reforms may provide opportunities to disclose both
the difficulties that emerge while those recommendations are implemented and some
lines of action for teacher education.
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14.3 The Developmental Research Project

14.3.1 Context and Participants

This study falls under the scope of a Developmental Research Project (Goodchild
2014) aimed to build and test a sequence of tasks oriented towards students’ statistical
reasoning, using TinkerPlots™ software. Based on a Design Research perspective
(Cobb et al. 2009), involving interactive cycles of planning, implementation and
reflection, the project intended to build professional development opportunities in
statistics for Portuguese mathematics teachers of basic education (5th to 9th grades).
The 11 teachers who participated in the DRP taught in public schools located within
urban or suburban areasmainlywith disadvantaged socioeconomic conditions,where
many students come from single-parent families and have a school retention back-
ground. These teachers were known by the two researchers (the authors) as effective
professionals who had some affinity with an inquiry approach in mathematics teach-
ing (Menezes et al. 2015) and became interested in learning how to develop an
instructional approach aligned with the recent curricular trends in school statistics
(Franklin et al. 2007; ME 2007). The topic of statistical reasoning, particularly the
Informal Inferential Reasoning (IIR) , and the use of TinkerPlots™ were a novelty
for the majority of them. Considering the importance of the classroom environment
and the adopted teaching approach in associationwith the challenging tasks proposed
to students, the researchers first discussed the SRLE perspective with this group of
teachers (Garfield and Ben-Zvi 2009). In the subsequent meetings, the participant
teachers and the authors were involved in the design of tasks and resources for a
sequence of lessons in line with the SRLE principles, and using TinkerPlots™.

The DRP was developed during one school year, between November and June,
with 40 h of meetings of joint work and assuming an essentially collaborative nature.
The authors undertook the double role of researchers and teacher educators, and the
teachers were co-responsible for the proposition and discussion of tasks, classroom
implementation and reflection about the whole process.

The mathematics teachers worked in pairs or in small groups of three in the plan-
ning of the lessons, collecting data and reflecting on them. One or both teachers
in the pair implemented the sequence of tasks with their own class, with the sup-
port of the other teacher for the classroom management and data collection. After
finishing the tasks’ sequence with their students, the teachers shared and discussed
their experience in the DRP meetings. The materials produced as well as the joint
reflection in the group informed the tasks’ reformulation and the conditions for their
implementation in the subsequent cycle. In the last two meetings of the DRP, each
group of teachers presented orally a report about the evidences of their students’ IIR,
discussed it with the larger group, and afterwards produced a short written report
concerning the same issues.
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14.3.2 Teaching and Learning Environment: Tasks
and Software

A sequence of three tasks solved in 8th grade classes and the way they were explored
by the students is presented to illustrate the worked carried out in the DRP. The tasks
were designed to be solved in two or three lessons of 90 min. Although these tasks
were not intended to cover all the statistical topics included in the syllabus for the
considered grade, they were aligned with the Portuguese mathematical syllabus (ME
2007). As statistical inference is not a learning objective in the mathematics syllabus,
the tasks were not explicitly designed to focus on inference. However, they included
a set of questions that embody the IIR components described in literature (Makar
and Rubin 2009; Zieffler et al. 2008) and therefore provided opportunities to engage
and simultaneously support students in several aspects of informal inferential prac-
tice (Henriques and Oliveira 2016). For example, when solving these tasks, students
could use their intuitive or prior knowledge on fundamental statistical concepts and
probabilistic language to make predictions, without using formal statistical method-
ology, and were challenged to give justifications based on evidence. TinkerPlots™
software was used in all tasks, as a tool for data handling, since it is easy to use and
provides a dynamic learning environment to support the development of students’
statistical reasoning.

Tasks 1 and 2 were applied to build the skills students would need in Task 3 for
conducting a statistical investigation and for making inferences, as they were not
familiar with this kind of activity nor had previous experiences with technology in
their mathematics lessons. Task 1, Nenana (Fig. 14.1), is the one with a more struc-
tured nature and starts from a research question, being guided by a set of questions
that lead students to interpret a real context situation by exploring the available data in
TinkerPlots™. The students can use different representations when exploring these
data in order to obtain evidence for their claims and to make predictions in several
ways. The task also leads students to discuss the unpredictability of the phenomena
and to become familiar with the notions of distribution and variability, which can also
help them to have a critical attitude when confronted with numerical information.

The second task of the sequence, Task 2, Fish Experiment (inspired by Bakker
and Derry 2011, Fig. 14.2) is aimed to encourage students to think about the research
process in statistics and to make inferences from different samples in order to answer
an initial question. The first question raised a discussion in class about how to plan
a statistical experience which includes obtaining the necessary evidence to verify,
based on the data, the truth of the statement in question. To help students understand
the need and the advantage of using a representative sample of the population and
other factors that determine the precision of any inferences, aspects related to sam-
pling were discussed, for example, which data were needed and how to collect them.
Another aspect covered by this task was exploring the notion of sample variability.
Using the simulation functionality available in the software, the students were able
to create several samples (of growing dimension or with the same dimension) and
compare them using, for example, the boxplot tool.
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TASK 1 – Nenana Ice Classic
The Nenana Ice Classic is a competition held annually by the town of Nenana, Alaska, to 
guess when the ice of the Tanana River breaks. People bet on the exact minute that a 
wooden high tripod will fall into the icy river. The contest was initiated by the inspectors 
of railways in Alaska in 1917 and has taken place every year since then. In 2015, for 
example, the winner received a prize of three hundred and thirty thousand US dollars.

In 2001, two Stanford scientists published a paper in the journal Science where they 
concluded that at that time the thaw occurred 5.5 days earlier than in 1917, when the 
contest began. Does the thaw occur earlier over the years?

What do you think is the answer to this question? Explain what may support your answer.

We propose you to explore this issue from a database of TinkerPlots software where you can access information about 
the thaw in the river. Data are available for some attributes (variables) that you can view in the form of cards or tables 
and whose description is presented there in a text box.

Part I
1. Check your initial conjecture using a graphical representation of the data on the number of days occurring since 
January 1 until the day of thawing, over this period of years. What do you think is the answer to this question, now? 
Justify it.

Part II
You also find information in TinkerPlots on the time of day on which the thaw occurred ("segment" attribute) over the 
years. Answer the following questions based on graphical representations and justify them.
1a) In how many years has the thaw occurred in the morning?

b) At what hour of the day does the thaw occur more often? Explain your thought.
2a) What can you conclude about the different months in relation to the time of day when the thaw occurs? What 

evidence do you have about that?
b) And what can you conclude about the different months in relation to the month in which the thaw occurs over 

the years? What evidence do you have about that?
3. Consider the following statement: “The thaw in May tends to occur earlier during the day than in April”.

a) Use a diagram of extreme and quartiles (based on Boxplot tool TinkerPlots) to check the veracity of the above. 
Draw the diagram on your sheet.

b) Based on the information that can you take from the diagram of extreme and quartiles and explain why you 
agree or disagree with the above statement.

Fig. 14.1 Task 1, Nenana

Finally, Task 3, The human body: a study in school (Fig. 14.3), engaged students
in all phases of a statistical investigation (Wild and Pfannkuch 1999) to discover
more about the students in their school. Students were required to use their previous
knowledge about the context and statistical concepts and processes (e.g. understand-
ing the need for data, graphical representations, distribution, variability, covariation,
and sampling) as well as probabilistic language to make informal judgments and pre-
dictions about the school population, based on data collected in their class. The task
also challenged students to explain their reasoning, integrating persuasive data-based
arguments in their conclusions. This work was supported by the exploration of their
real data through various representations, facilitated by the use of TinkerPlots™.

In line with the two first principles of SRLE (Garfield and Ben-Zvi
2009)—developing central statistical ideas and using real data—the three tasks aimed
to develop diverse central statistical ideas and intended to get students involved in
the exploration and analysis of a set of real data. The data sets were provided directly
or obtained by students through simulation or data collection, aiming towards under-
standing the need for data in order to draw conclusions. The visual analysis of these
data, encouraged by many of the formulated questions in the tasks, could lead stu-
dents to develop the notions of covariation (informally) and distribution, to recognize
data variability and to draw together dispersion measures with central tendency in



14 Teachers’ Perspectives About Statistical Reasoning … 317

TASK 2 – Fish Experiment
Aquaculture is the farming of aquatic organisms such as fish, molluscs, crustaceans and 
amphibians as well as the cultivation of aquatic plants for human use. This activity is 
operating for a long time, as there are records referring to aquaculture practices by 
Chinese people several centuries before our era and to the growth of Nile tilapia 
(Sarotherodon niloticus) 4000 years ago. Currently, aquaculture is responsible for 
producing half of the fish consumed by the world population.
(http://en.wikipedia.org/wiki/Aquaculture)

A fish farmer has stocked a pond with a new type of genetically engineered fish. The 
company that supplied them claims that “genetically engineered fish will grow to be 
longer, reaching twice the length of normal fish”.

Do you think the fish farmer can rely on the claim of the company? What should he do 
to check its veracity?

You now have the opportunity to simulate a ‘catching’ to answer the question: Do genetically engineered fish grow 
longer than normal fish? If so, how much?

Part I
The fish farmer decided to stock their pond with 625 fish, some tagged as normal and some as genetically engineered. 
After they were fully grown, the farmer caught fishes from the pond and measured them. In your experiment, those fish 
are simulated by data cards (fish-card) which show their type (normal or genetically engineered) and length (in cm).
1. In the graph below, record the data (fish type and length) of a 

set of 25 fish-cards resulting from the simulated ‘catching’ 
carried out by you and your colleagues.

2. Based on that graphical representation, try to answer the 
question: Do genetically engineered fish grow longer than 
normal fish? If so, how much?

3. Would your answer be the same if you had selected one 
sample of size 50? Explain why.

Part II
We now propose an exploration on this question from a database of TinkerPlots software – “Fish Experiment”, where 
you can simulate samples of different sizes (SampleSize = 25, 30, 50, 75, …).
1. Simulate three samples of sizes 25, 50 and 100. For each of them, based on the resulting graphical representation, 

create a boxplot and record, in the table below, some of the statistical measures you get.
Growing samples

Sample 1 (25) Sample 2 (50) Sample 3 (100)
Genetically 
engineered 

fish

Mean
Median
IQ range

Normal 
fish

Mean
Median
IQ range

2. Based on the recorded information, compare the distributions of the diverse samples obtained and answer to the 
initial question of the task. Give arguments to justify your response and to help the fish farmer to decide whether to 
keep doing business with the company.

Part III
We propose another challenge: Will several samples of the same size be similar to each other?
Start your work by simulating a first sample of a size of your choice and then, with the function DATA-> Rerandomize, 
generate two other samples of the same size. Compare the three samples, using graphical representations and statistical 
measures that you can obtain and record them in the following table.

Sample size ____
Sample 1 Sample 2 Sample 3

Genetically 
engineered 

fish

Mean
Median
IQ range

Normal 
fish

Mean
Median
IQ range

genetic

normal

8 13 18 23 28 33 38 43

T
yp

e

Length (cm)

Write a short essay to present your findings regarding the above question and to explain what evidence you have to 
answer the way you did.

Fig. 14.2 Task 2, Fish Experiment
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TASK 3 – The human body: a study in school
The Vitruvian Man is a famous drawing by Leonardo da Vinci, around 1490, included in his 
diary. The drawing depicts a man in two superimposed positions with his arms and legs apart 
and inscribed in a circle and square.
It is based on a famous excerpt of the ancient Roman architect Vitruvius’ Book III of his 
treatise De Architectura, describing the ideal human proportions. For example, that book 
specifies that:

• a palm is four fingers
• a foot is four palms
• the length of the outspread arms (arm span) is equal to the height of a man

Vitruvius had already tried to fit the human body proportions in a circle and a square but his attempts were not perfect. 
It was Leonardo da Vinci who correctly adjusted it within the expected mathematics patterns.
(http://pt.wikipedia.org/wiki/Homem_Vitruviano_(desenho_de_Leonardo_da_Vinci))

How could you characterize the middle school students in your school regarding some of Vitruvius’ measures 
such as height, foot size and arm span?

Part I
1. Think about what information will be needed to answer this question and how to collect data by answering the 
following questions.

a) What is the population under study?
b) What sample size can we work with?
c) How could you choose a representative sample?
d) What variables should we study? Are these variables qualitative or quantitative? Are they continuous or 

discrete?
2. Indicate a procedure that would lead to the selection of a biased sample (unrepresentative).
3. For convenience, today we are only going to collect data on our class. Carefully measure and record each attribute 
(height, arm span, foot size) for each class member.

Part II
1. Analyse the data you collected, which is already in a TinkerPlots database.

a) What interesting questions about this information could you ask? Consider the following:
- Students’ height;
- Boys and girls’ arm span;
- Relationship between students’ foot size and height;
- Another aspect that you think is relevant to study.

b) What do you think is the answer to your questions? Explain the reasons for your answer.
c) Respond to two of the questions asked in 1a) using graphical representations.

2. From the data collected on your class, prepare a short essay on what you could say about the characteristics of all the 
students in the school, considering the aspects in question 1.a). Explain what evidence you used to make your 
predictions.

Fig. 14.3 Task 3, The human body: a study in school

order to informally describe and explore the presence of variability that arises from
sampling and its relevance in inference making. The following three principles of
SRLE, developing statistical reasoning, meaningful discourse and using appropriate
technology, are related to the classroom activity. The tasks had a central role in the
work developed by students in small groups, with a special focus on the collective
discussion and the teacher’s systematization (Menezes et al. 2015). The use of Tin-
kerPlots™ softwarewas a characteristic of the learning environment. The simplicity
of creating diverse graphic representations and the instant calculation of statistical
measures allowed students to focus on the reasoning processes. Besides, considering
the importance of communication in the activity with the software, the students were
organized in small groups in front of the computer. In general, teachers also promoted
a discourse focused on meaningful statistical ideas that encouraged the argumenta-
tion and negotiation of meanings through questions formulated during the tasks,
requesting students to show arguments in order to support their inferences. Lastly,
regarding the sixth principle, related to using assessment, and considering this as a
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research and development project, several tools were used to analyze diverse aspects
of the statistical reasoning of the students. The participating teachers collaborated in
a joint and continuous reflection about the suitability of the tasks and the way they
were implemented (Oliveira and Henriques 2015).

14.4 Methodology

This study follows a qualitative approach (Denzin and Lincoln 2005) focusing on
the perspectives of the 11 participating teachers about their experience in the DRP,
regarding the promotion of a learning environment that targets students’ statistical
reasoning. The study reported in this chapter relies specifically on data collected
from nine open questions of a questionnaire (Fig. 14.4), individually answered by
the teachers, at the end of the project. Since teachers could answer the questions
at home and use as much time and space to write as they wanted, the assumption
is that they could express their views without major constraints. In order to prevent
conditioning the participants’ answers, the principles of SRLE (Garfield andBen-Zvi
2009) were not explicitly referred to in the questionnaire.

Teachers’ answers were analyzed regarding their perspectives on: (i) the tasks;
(ii) the technology used in these lessons; and (iii) the teacher’s role in promoting an
adequate classroom discourse. For each of these dimensions, the potential and the
challenges that the teachers (whose names are fictitious) mentioned in connection
with the SRLE principles (described in Sect. 14.2.1) are given. A first version of the
findings was produced which included all quotes that have been identified, followed
by a new simplified version keeping the quotes that seemedmore clear in themessage
and eliminated all the others. Finally, the data were checked for consistency between
the teachers’ answers in the questionnaire (Fig. 14.4) and their group’swritten reports.
No major inconsistencies were found, although the questionnaires provided more
information regarding the teachers’ perspectives than the reports, as the reports had
a more limited focus.

The questionnaire

1. In your opinion, what is importance of developing students’ statistical reasoning?
2. Regarding the class where this experiment was carried out, please indicate what aspects of statistical reasoning 

were shown by the students and the ones that have proved to be more difficult for them.
3. In your opinion, what is the role of the teacher when promoting the student’ statistical reasoning?
4. What difficulties have you faced as a teacher to promoting students’ statistical reasoning in the lessons where these 

tasks were applied?
5. In your opinion, what are the main characteristics of a task aiming to develop students’ statistical reasoning?
6. What aspects stand out regarding the use of TinkerPlots in solving these tasks in the classroom?
7. Are you planning to use TinkerPlots again in the near future? Why?
8. To what extent do you feel to be prepared to continue developing this kind of work with your students? Explain?
9. Did you develop new perspectives on the teaching and learning of Statistics during this experience? Explain.

Fig. 14.4 The teachers’ questionnaire
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14.5 Findings

14.5.1 The Tasks in the Project

The teachers’ answers reflect their positive assessment of the tasks developed under
the project and implemented in their classrooms.All teachers recognized the utility of
statistics for their students, and most of them seemed to be aware of the specificity of
the subject regarding the centrality of data and the key ideas and statistical processes
involved. For example, Alice, highlighted the importance of the data in statistics
associated with a context, by stating that “In statistics data are regarded as numbers
in context, which, in turn, gives meaning to the interpretation of the results but also
constrains the procedures”, a noticeable aspect during the tasks’ exploration by the
students. Some teachers also underlined that working with these tasks in their lessons
conveyed to them a new vision about the distinguishing characteristics of statistics
and in particular of statistical reasoning: “Realizing that statistical reasoning is not
the same as mathematical reasoning, and that they are promoted in different ways,
has been a new perspective presented to me by this project” (Clara).

The participant teachers proved to be very responsive to the use of real data in the
proposed tasks, which they considered of paramount importance to involve students
in the work and to support their reasoning. This is referred to by all the teachers,
indicated byAndreia’swords: “The exploratory tasks should bebasedon real contexts
in order to involve students but also to support the development of their inferential
reasoning” . Some teachers also pointed out that it would be beneficial if the data
were collected by the students themselves considering that, with such activity, “their
commitment” (Rosário) could be improved.

These teachers also recognized the proposed tasks’ potential for developing sta-
tistical ideas and pointed out, with different emphasis, the need for data and other
ideas such as distribution, data noise and center, covariation, sampling and infer-
ence. Carlota, for example, referred to the tasks’ characteristics, which were aimed
to promote students’ statistical reasoning: “They should first help students to make
conjectures so that, with the sample, the students can test such conjectures and orga-
nize the data in order to support their claims”. On the other hand, another teacher,
Catarina,mentioned the diverse statistical processes inwhich studentswere involved.
For example, in Task 1 (Fig. 14.1), presenting data in different ways, reasoning with
statistical models and integrating the context in the statistical analysis and, in Task
3 (Fig. 14.3), acknowledging the need for data and recognizing data noise:

I think students showed, during the work developed in task 1 (…), an evolution in the
following components – transnumeration, reasoning with statistical models and integration
of the context in the statistical analysis. (…) Lastly, in the third task (…), I think it is possible
to say that the mostly highlighted SR components were: the need for data, recognizing
variability and reasoning with statistical models.

As mentioned above, the proposed tasks led to the exploration of data in ways that
students could develop the informal notion of covariation. Some teachers referred to
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the informal representations used by the students to explore the existence of relation-
ships between variables [in task 3, Fig. 14.3], made possible by the software, as one
of the aspects covered in these lessons. For instance, Maira stated: “[the software]
allows [exploring] the possible connection between two variables. It allows students
to choose their own informal representations”.

Distribution, another key notion aimed to be developed with these tasks by the
creation and exploration of graphics in the TinkerPlots™, is also implicitly referred
by the teachers. The idea of distribution center, summarized in a statistical measure,
is cited by several teachers as an evidence of students’ meaningful activity and
learning experiences in statistics; Isabel stated, “A large number of groups used
mean and median in order to generalize the information, with others considering the
interquartile range a good indicator”. However, these teachers did not mention any
joint interpretation of a central tendency measure and a spread measure. Sampling
and informal inference were the most targeted ideas in the tasks in the project. The
former, because it is part of the mathematics basic education syllabus in Portugal,
and the latter because it is considered a central aspect of the statistical reasoning.
Some teachers’ opinion is that though these are complex notions for the students
they were able to grasp them, at least to a limited extent. In fact, as stated by Susana,
in many cases “Students showed they can make generalizations beyond the data as
well as use data as evidence to make generalizations”.

The understanding of the sampling process is scarcely stressed by the teachers,
but still some of them referred it when claiming that the work, in particular with
the software, helped students to understand important concepts such “as sample,
data noise in a sample process and variability in equal size samples from a certain
population [in Task 2, Fig. 14.2]” (Catarina).

Some of the main challenges pointed out by the teachers regarding the statistical
reasoning targeted by the tasks are also connected with the same big statistical ideas
mentioned above. For instance, some teachers argued that students tended todisregard
data noise in the tendencies that were to be generalized and that, in general, they
did not use the probabilistic language or the uncertainty concept in generalizing
processes, as referred by Rosário:

Most of the time, the biggest difficulty [for students] is to move from data to bigger sets
using the probabilistic language. This transition and its discovery were always difficult to be
achieved [by students] mostly due to the difficulty to understand the concept of uncertainty,
which is typical of statistics and probabilities (a topic that will be taught in the 9th grade).
For these [8th grade] students, mathematics was still perceived as an “exact truth” producer
and the introduction of the uncertainty notion was a novelty.

This last difficulty may be associated with the little attention given to it when
planning the sequence of lessons in the DRP and supporting students’ the work in
the classroom, namely during the tasks final discussion involving the whole class.
The established goals for these lessons, centered on the promotion of students’ sta-
tistical reasoning, defied the teachers’ practice, as Clara noted: “The development
and approach of tasks promoting inferential reasoning is a great challenge, and it
requires some reflection and consolidation of the fundamental ideas [on part of the
teacher]”. According to this teacher, for continuing working with the students with
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respect to these ideas “a further study on the meaning of statistical reasoning and its
development with the students” would be necessary.

While the teachers valued the presence of real data in the tasks, as mentioned
above, they also considered that the exploration of real situations or situations close
to reality raised some problems for some students’ reasoning process. This happens
when students use their knowledge about the situation to draw conclusions not sup-
ported by data, as referred by one teacher regarding the first task of the sequence:
“Students made (…) generalizations beyond data (…) when they argued based on
their daily knowledge, and not based on data, about [what they expect to happen] in
the next 10 years [bringing to discussion] (…) the environment issue [and] global
warming” (Penélope). Thus, a central choice option for these tasks, one the teachers
consider of high value, may also represent, from their point of view, an obstacle to
student’s reasoning and therefore something that they must learn how to deal with
in their teaching practice.

14.5.2 TinkerPlots’ Use by Students

The software used in all lessons for solving the tasks was acknowledged by all teach-
ers as extremely valuable for creating a learning environment that fosters students’
statistical reasoning. One of the software’s main potentials mentioned by the teach-
ers is the easiness of producing a great variety of graphical representations, almost
instantaneously, which allows students to analyze data in many ways and to further
develop their understanding of distribution, data noise and covariation, albeit infor-
mally as it is intended at this school level. As stated by Isabel, students may therefore
“analyze the main characteristics of a distribution (…) and to compare more than
one set of data”.

Additionally, due to the fact that students do not waste time in calculations of
statistics measures nor in constructing graphical representations by hand, the teach-
ers argued that they could concentrate their efforts “in [data] analysis and in drawing
conclusions, [namely] producing informal inferences” (Catarina). They still stressed
that this resource favors the formulation and test of conjectures and the discussion
and argumentation of ideas, as stated byAndreia: “[TinkerPlots™] makes the lessons
more dynamic, providing the opportunity for a more in-depth discussion where stu-
dents can test and, thus, find evidences to validate their conjectures”. Another high-
lighted potential of the software by the teachers is that of producing virtual simula-
tions (in Task 2, Fig. 14.2) and to use data from as many samples as one wishes and
thus “contributing to students’ reasoning about sample distribution” (Isabel).

The majority of these teachers considered that students started to use Tinker-
Plots™ with relative ease. However, they also mentioned a number of challenges
related to its use in the classroom, in particular due to the large number of students
in the classes. Some of them stated they had to meet many requests from students
regarding the functionalities of the software or the interpretation of the obtained rep-
resentations and their relationshipwith the task’s questions, as referred by Susana: “It
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was difficult to answer all the students’ questions in time, which were often related
firstly to how the software worked and then with the diversity of representations and
meanings”. The challenges connected with the use of the software that was intended
to support students’ statistical reasoning can also be understood from the teachers’
recognition of the need to deepen their knowledge about its use in order to be able
to support the students more effectively, as stated by Alice:

At the moment, I feel I have basic training, which allows me to keep working with the
students. I need to deepen my knowledge about the software in order to answer more easily
the multiple requests made almost simultaneously by the students during the lessons.

We note that teachers are aware of how this technology may help students to
explore and interpret the data and to support reasoning processes in statistics. Simul-
taneously, they also recognize the need to further develop their skills in using Tin-
kerPlots™ in the classroom, which is expected given the reduced number of lessons
that were conducted.

14.5.3 The Teacher’s Role

Besides the tasks and the software used in the DRP, the teachers also recognize the
importance of their own role in creating an environment that supports students’ sta-
tistical reasoning. Susana, one of the teachers who pointed out that differentmoments
of the lesson (task introduction, autonomous group work, and whole class discussion
of the students’ work) demand different roles, stated that the teacher supports the
students “by asking guiding questions, encouraging data analysis, data exploration
and the understanding of statistical concepts/representations as well as the written
record of conjectures and conclusions, together with justifications”. This kind of
classroom discourse is referred to by almost all teachers, who recognize its impor-
tance in promoting students’ statistical reasoning. Carlota argues that: “helping the
groups [of students] to argue and justify their answers and the various explorations
they did until reaching an answer is fundamental to help other students to understand
the “why” concerning the conclusions that are being presented”. Participating in this
project stimulated the teachers to be more conscious that learning could be promoted
by a classroom dynamics focused on the students’ activity and in its discussion, as
it is the case of Catarina: “I believe I grew greatly with this experience and became
more aware on how I can use certain aspects or students’ answers to promote their
learning from the tasks I will propose”.

Teachers also underlined several challenges they faced when conducting these
lessons, particularly following up the autonomous work of the groups. In some cases,
such challengeswere associatedwith the intention of providing non-directive support
in classes with a large number of students. As Carlota mentions, the assistance she
would like to provide each group would take too much time, considering the needs
of the whole class:
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It is not easy to help without guiding the students too much, since it is difficult to manage so
many students in the classroom (…) Sometimes I felt I wanted to persist in supporting one
group but allowing them to think [by themselves] and to find the error (…) but sometimes it
was impossible since I had many groups [in the class] which were dependent from my help.

Also, the plannedmoment for shared discussions did not alwaysmeet the teachers’
expectations. Some teachers considered that leading whole class discussions was
quite challenging for them due to factors such as the time restrictions and classroom
physical conditions that limited the involvement of all students in a conversation.
As stated by Andreia: “The biggest difficulty was managing the class dynamics
according with the existing physical conditions, calling all students’ attention so they
could hear one another and they could concentrate on the requested work and on the
discussions”. Some teachers recognized that the success of whole class discussions
also requires that they develop specific actions even before thatmoment. For instance,
to guarantee that students are able to participate in a significantway, a small number of
teachers referred to the importance of constantly reminding the students towrite down
their answers. As commented by Isabel, there is “the need for constant monitoring
of students’ written records so that, at the moment of collective discussion, students
are able to present the justifications and to sustain the strategies they used”.

In that moment it may not be easy to call on all the different representations
made by the students in the computer which, for instance, Alice considers to be a
consequence of her lack of knowledge about the software and “of specific knowledge
to teach statistics with a focus on statistical reasoning” . However the majority of the
teachers involved in the DRP do not mention these aspects in their answers to the
questionnaire (Fig. 14.4).

14.6 Conclusions

Our study focused on the teachers’ perspectives regarding the opportunities to pro-
mote students’ statistical reasoning using a specific technology environment as well
as the challenges the teachers identified in that context. Themain findings of the study
are summarized and discussed below, taking into account the dimensions associated
with three main elements of SRLE (Garfield and Ben-Zvi 2009) considered in the
analysis: the tasks, the software and the teacher’s role in promoting the classroom
discourse.

First, regarding the teachers’ perspectives about the potential of the learning envi-
ronment to promote students’ statistical reasoning, the teachers made a very positive
assessment of what had been achieved within the DRP. They were aware of many
important features of the tasks, the selected software and the way they were com-
bined, with the goal of promoting statistical reasoning. In their teaching practice,
the teachers were used to establish descriptive statistics as a main learning objective
(Leavy 2010), which did not happen in these lessons. In fact, the teachers identified
important statistical ideas and processes, namely the need for data, notions focused
on distribution, such as variation and center, covariation, sampling and inference.
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Despite the limited nature of the questionnaire (Fig. 14.4) that does not allow an
in-depth reflection focused on all statistical ideas involved in the tasks they used,
the teachers expressed their increasing awareness of specific aspects that character-
ize statistics, in particular statistical reasoning, thereby meeting what Groth (2008)
argues as necessary to effectively implement the new curriculum guidelines. Never-
theless, the fact that they do not mention some important ideas of the SRLE model
(Garfield and Ben-Zvi 2009), for example, the joint interpretation of a measure of
central tendency with a dispersion measure, indicates the need to possibly make this
aspect more visible when designing the instructional tasks and setting objectives with
the teachers.

Regarding the integration of technology in these lessons, from the teachers’ per-
spectives, students easily get familiar with TinkerPlots™, and its use helps them to
focus on data analysis, allowing the creation of multiple graphical representations
and the instant calculation of statistical measures. The teachers recognized that the
visualization of different graphical representations, made easy by the software and
encouraged by the tasks’ questions, contributed to the development of central statis-
tical ideas, such as distribution, variability and covariation. From their perspective,
it also allowed the exploration of other specific aspects of the syllabus such as sam-
pling, which is highly relevant in promoting the emergence of informal inferential
practices. It was acknowledged that the use of real data associated with a meaningful
context was facilitated by the software, which in turn enhanced the students’ involve-
ment in the work and led them to understand the need for data in decision-making.
The teachers’ perspective regarding the role of the software constitutes a relevant
output of the DRP since they seem to fully understand its structural role in creating a
learning environment that fosters statistical reasoning. This seems to be in opposition
with some superficial uses of technology in the classroom just to comply with the
syllabus (Groth 2008).

Additionally, all teachersmentioned their important role in promoting a classroom
discourse that stands in sharp contrast with traditional teaching practices (Garfield
andBen-Zvi 2009). It is clear from their commentaries that they understand that these
lessons should be organized in order to give students the opportunity to expand their
autonomous work and discuss ideas with their peers. Therefore, teachers associate
their non-directive role in these lessons with two main moments (students’ work in
the task and whole class discussion), considering that they need to be attentive to
students’ thinking, ask questions that promote their thinking and ask them to explain
their ideas.

Second, an analysis of the teachers’ perspectives about the challenges they face
in creating the envisioned learning environment to promote students’ statistical rea-
soning reveals that they recognize that the objectives established for these lessons
are complex and the teaching practice is rather demanding. They are aware of stu-
dents’ difficulties, namely in making generalizations from samples, as they usually
do not take data variability into account in the tendencies to be generalized, and
they miss the use of probabilistic language when formulating those generalizations.
These are issues that will need to be addressed in the future, when planning further
interventions.
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The use of technology in these lessons raised some challenges for teachers. Some
of them believed they were not able to provide an adequate support to all groups due
to the large number of students in the class and the diversity of representations they
createdwithTinkerPlots™. Given the reduced number of lessons and lack of previous
experience, the teachers need to further develop their skills in using TinkerPlots™
in the classroom. However, the conditions required to use technology have also to
be taken into consideration.

The challenges associated with promoting a distinctive classroom discourse that
were mentioned by the teachers do not come as a surprise, since the majority of
students in these classes were not acquainted with this kind of environment. This
was a particularly sensitive aspect in this project due to the open nature of the tasks,
the variety of representations that emerged from the students’ activities and the
required processes of argumentation, particularly in whole class discussions. The
challenging aspects identified by the teachers stress the necessity of going deeper
in anticipating the teacher’s role for preparing students to fully participate in that
part of the lesson (Menezes et al. 2015), which is a process that takes time, both for
students and teachers. A detailed analysis of the teachers’ practice in these lessons
would give us important information regarding the specific difficulties they faced.

Due to the particular conditions created in the DRP, every teacher could count on
another fellow teacher in each lesson to assist the students, which contributed to a
sense of confidence on the part of the teachers to conduct these lessons. In fact, the
benefits of having teachers participating in collaborative working environments with
other teachers and researchers when innovative approaches are proposed have been
documented in research (Goodchild 2014; Makar and Fielding-Wells 2011; Potari
et al. 2010). Finally, assuming that sustained changes in teaching practices rely on
individual and social processes of sense-making (März and Kelchtermans 2013) and
considering the teachers’ claim about the need to further their professional devel-
opment for working under the SRLE perspective, it would be beneficial to continue
supporting teachers with more initiatives and projects of a collaborative nature.
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Chapter 15
A Study of Indonesian Pre-service
English as a Foreign Language Teachers
Values on Learning Statistics

Khairiani Idris and Kai-Lin Yang

Abstract Pre-service English as a Foreign Language (EFL) teachers are service
students of a statistics course who will apply statistics knowledge as a tool in their
future profession. Their future learning of statistics might be related to the value they
have for statistics at the endof the course.Byusing aphenomenographic approach,we
investigated 38 Indonesian pre-service EFL teachers’ values on learning statistics.
Three components of values on learning statistics were identified, which can be
related to the components from task-value theory: intrinsic, attainment, and utility.
The participants could be categorized as having either positive or negative values for
each component. In addition, some conflicting characteristics were noticed, which
could reflect the characteristics of Indonesian pre-service EFL teachers. Implications
for college statistics teaching and future research are discussed.

Keywords Indonesian pre-service EFL teachers · Introductory statistics
Values on learning statistics

15.1 Introduction

The goal of college statistics courses is to produce statistically educated students,
meaning they should develop statistical literacy (Aliaga et al. 2005; Franklin and
Garfield 2006), which is a fundamental skill required by citizens (Rumsey 2002; Utts
2003) and away of thinking in society (Giesbrecht 1996). Formost service students in
introductory statistics courses, statistics is an essential tool for their future profession
(Scheaffer and Stasny 2004) as well as for doing their undergraduate research, which
is a part of study requirements in some countries, like Indonesia (Sailah 2014).
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Pre-service English as a Foreign Language (EFL) teachers, in particular, have
at least three professional roles in the future in which they might need to utilize
statistics. First, as future teachers, they might need statistical investigation skills for
doing educational research including analyzing their own teaching which necessitate
learning investigation process (Heaton and Mickelson 2002). Learning the investi-
gation process also entails a deep understanding of statistical knowledge, not only
about how to carry out data analysis, but also about how to find problems and formu-
late investigation questions (Franklin and Garfield 2006; Wild and Pfannkuch 1999).
Second, as English Language Learners, pre-service EFL teachers may also require
statistics to improve their knowledge and expertise. For example, since most of the
useful studies published in linguistics journals are quantitative in nature (Lazaraton
2000), they would need statistical skills to understand findings from these studies.
Third, statistics might be used as one of the contents they would introduce in their
reading classes, because the ‘content’ in teaching languagemay go beyond literature.
Moreover, due to the emergence of English immersion programs in some countries to
promote students’ English language competencies while learning content subjects,
including mathematics (e.g., Cheng et al. 2010; Padilla and Gonzalez 2001; Yushau
2009), English language teachers may play a crucial role in such program. Referring
to the suggestion from Crandall (1987), EFL teachers may use the relevant mathe-
matics texts that students will read in their mathematics classes, which is significant
to enable students to acquire reading skills they can apply in learning mathematics.
Thus, learning statistics, which is one of the contents included in school mathemat-
ics, is one way to promote EFL teachers’ knowledge and expertise which has been
identified as increasingly marginalized within content areas (Cross 2011). Due to
the evolving nature of statistics as a discipline, the knowledge should be subject to
lifelong learning for pre-service EFL teachers. Moreover, when reading is viewed
as an approach to learning content, not only content area teachers’ perceptions and
values on the content area reading (Hall 2005) but also language teachers’ values
about the content are required for investigation in the relevant research.

Several studies have shown that students’ further involvement in the activities
related to the subject learned is associated with the way they value the learning of
the subject (Eccles and Wigfield 2002; Liem et al. 2008; Yang 1999). Likewise,
students’ appreciation of the course was found to dominate their willingness to learn
statistics and led to a mature approach in learning the course (Gordon 1995; Petocz
and Reid 2005). This may imply the need for pre-service EFL teachers to hold a
disposition towards the values on the learning of statistics in addition to the values on
the knowledge obtained through investigation (Heaton andMickelson 2002) because
they might need to learn and utilize statistical investigation in the future.

Despite the significance of students’ values on learning, studies on this area are
sparse in statistics education literature. Therefore, this study aimed to explore qual-
itatively different ways in which pre-service EFL teachers value the learning of
statistics. Accordingly, the research questions proposed in this study were: How do
pre-service EFL teachers value the learning of statistics and what different categories
can be assigned to describe their values on learning statistics?
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Task value (Eccles et al. 1983; Eccles andWigfield 2002) is defined as the reasons
or incentives students believe they would receive from engaging in the activity. We
considered the theory would be able to describe the ways in which students’ valued
learning of statistics in this study when the task was specifically related to learning
statistics.More elaboration of task value theory is discussed in the subsequent section.

15.2 Theoretical Framework

15.2.1 Components of Task Value

The word value in the phrase task value was defined by Eccles and Wigfield (2002)
as the incentives or reasons for doing an activity (or task). Theorists have offered a
variety of definitions of task value (e.g., Atkinson 1964; Eccles et al. 1985). These
definitions, however, have a common theme: value can be the incentives, rewards,
and/or attainment that one expects to obtain by engaging in a task. When students
value something, they are more likely to engage in that behavior (Barron and Hulle-
man 2015). Furthermore, Eccles et al. (1985) proposed four different components of
task values as reasons why a task would hold value for an individual: intrinsic value,
attainment value or importance, utility value or usefulness of the task, and cost. The
answer to a question like “Why do you want to do the task?” can capture the essence
of this value the student has for a task (Wigfield and Eccles 2000) as described in
more detail below.

Intrinsic value, or interest value, is the inherent enjoyment of pleasure one gets
from engaging in a task for its own sake (Eccles et al. 1983; Eccles and Wigfield
2002). This includes a statement like “In general, I findworking onmath assignments
is very interesting”.

Attainment value is the importance of doing well on a task in terms of one’s
self-schema and core personal values (Eccles et al. 1983; Eccles andWigfield 2002).
That is, it reflects that the task affirms a valued aspect of an individual’s identity and
meets a need that is important to an individual such as to fulfill achievement or social
needs. A statement such as “I feel that getting a high score in mathematics is very
important for me,” can be categorized in this component.

Utility value is defined as howwell a task relates to current and future goal (Eccles
et al. 1983; Eccles and Wigfield 2002). That is, it reflects the usefulness of the task
for achieving short-term or long-term goals. This value is the extrinsic value, which
was also labeled to emphasize engaging in a task as a means for achieving another
end (Barron and Hulleman 2015). For example, a statement like “What I learn from
mathematics class is useless for my daily life outside school” can be designated into
this component.

Finally, cost is conceptualized in terms of negative aspects of engaging in the
task. This component includes the amount of effort, time lost, and suffered as a
consequence of engaging in the task. For example, the statement “doing statistics
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task takes up too much time” can be included as the effort cost. Thus, the perceived
costs associated with performing a task can negatively impact the overall value of
the task (Eccles et al. 1983; Eccles and Wigfield 2002; Flake et al. 2015).

The theory of task value along with its components formed the basis for research
design of this study. We began by designing open-ended questions as the means
to capture the essence of pre-service EFL teachers’ perceived values for learning
statistics. Afterwards, the components of task value were employed to interpret their
responses as well as in generating categories for describing the qualitatively different
ways in which they valued the learning of statistics.

15.2.2 Factors Related to Values on Learning Statistics

Ageneral motivation for individuals to perform their best is the need for achievement
(Atkinson 1964). An expectancy-value theory of achievement motivation developed
later (Eccles et al. 1985;Wigfield andEccles 2000) suggested that task values directly
influence performance, persistence, and choice. Accordingly, Bandura (1989) stated
that individuals’ actions reflect their value preference. This may imply that the way
students value their learningwould influence their learning behavior. Some empirical
studies have also suggested that task value was related to the utilization of learning
strategies and thus influences achievement (e.g., Pintrich and Schrauben 1992).

From the perspective of approaches to learning (Biggs 1985; Marton and Säljö
1984), it has been acknowledged that students adopt the learning strategymost appro-
priate for their motives, including their perceptions of the relevance of the subject
for their study field (Lucas 2001). Students who were driven by extrinsic motivation
would apply a surface learning strategy by memorizing facts from the books or lec-
tures. Those who learned due to their intrinsic interest would apply deep learning
strategy by reading widely and interrelating with previous knowledge. Students who
learned due to the intention to attain a high grade would apply a strategic strategy by
learning through a systematic way and schedule time to compete with other learn-
ers. From the description of task value components in the previous sub-section, we
may relate intrinsic value component to intrinsic motive, utility value component
to extrinsic motive, and attainment value component to attainment motive. Hence,
there might be different learning strategies used by students in the different value
components.

To date, studies on students’ values on learning statistics are sparse in litera-
ture. Nonetheless, some other constructs, such as attitudes toward statistics (e.g.,
Dauphinee et al. 1997; Schau et al. 1995; Wise 1985), can be highly related to values
on learning statistics. In fact, values and attitudes are the two constructs that have
been acknowledged to have a close relationship (Bishop et al. 1999). Accordingly,
several components of attitudes toward statistics, such as beliefs about competence
and about the difficulty of statistics, are among factors assumed to influence values
(Eccles and Wigfield 2002). Some items used to measure attitudes toward statistics
in SATS (Gal et al. 1997), such as “I will have no application for statistics in my
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profession” (beliefs about the usefulness and relevance of statistics) and “I like statis-
tics” (interest in learning statistics) , are related to values on learning statistics. The
former is related to utility value while the latter is related to intrinsic value. However,
using such Likert-type items may limit the interpretability of the values expressed by
students. Hence, in this study we would like to deepen our understanding regarding
the different reasons students value the learning of statistics by using open-ended
questions that can provide sufficient opportunity for students to express their values
on learning statistics. Moreover, by applying the qualitative method we could reveal
not only how students could be classified into different value components but also
how students’ values on learning statistics were contrasted across the components.

On the other hand, the ways students value the learning of statistics may also be
related to their conceptions of statistics, i.e., the extent to which they understand
statistics. For instance, Petocz and Reid (2005) found that students with the limited
conceptions of statistics perceived that there would not be any role for statistics
in their future profession, while those who had the broader conceptions could see
statistics as an important skill for their future profession. The perceived usefulness
of statistics in future profession could be accounted as the utility value of learning
statistics (Eccles and Wigfield 2002).

15.3 Method

Because values on learning may be highly related to cultures, we applied a phe-
nomenographic method in this study to reveal pre-service EFL teachers’ value on
the learning of statistics. The method, which was initiated by Marton and his col-
leagues (1981) inSweden,was designed to answer particular questions about people’s
thinking and learning. More specifically, Marton (1994) defined phenomenography
as

the empirical study of the limited number of qualitatively different ways in which vari-
ous phenomena in, and aspects of, the world around us are experienced, conceptualized,
understood, perceived and apprehended. (p. 4424)

This research method has been used widely in educational research to identify
different ways of experiencing teaching and learning (e.g., Crawford et al. 1998; Tsai
2004) as well as academic disciplines included in the area of statistics education (e.g.,
Gordon 2004; Idris and Yang 2017; Petocz and Reid 2005; Reid and Petocz 2002;
Yang 2014).

15.3.1 Participants

Thirty-eight pre-service EFL teachers (29 females and 9 males) who were taking an
introductory statistics course completed an open-ended questionnaire. These partic-
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ipants will be referred to as ‘students’ in this chapter. The students were from the
English EducationDepartment of an Islamic college in Aceh Province, in the western
part of Indonesia. The introductory statistics course is one of the compulsory courses
for students in the English Education Department and is offered during their second
year at the college. The course, which involves topics such as data displays, numerical
summaries, examining data distributions, correlation analysis, simple linear regres-
sion, t-test and chi-square test, is expected to provide basic statistical knowledge and
skills for students, before they take the Educational Research Methodology course
as a preparation to conduct their undergraduate research at the end of their college
education. The course consists of one lecture per week of 100-minute duration. The
class is usually taught using a traditional lecture style, and the assessment includes
individual and group assignments and quizzes as well as a midterm and final exam-
ination. In several class meetings, students are asked to take their personal portable
computer to the class for learning data analysis with Microsoft Excel and SPSS soft-
ware. This research was conducted around mid-semester, by which time students
have learned the topics of data displays, numerical summaries, and examining data
distributions.

Before taking the introductory statistics course, the students had learned some
basic statistics as part of high school mathematics. The educational backgrounds
of students in this study, however, varied, particularly related to experience and
expertise in statistics, because the students came from different types of senior high
schools (see Table 15.1) with a different amount of statistics content offered in
their schools. General and Islamic senior high schools have similar mathematics
curriculums, which differ from those in vocational schools. The latter provide less
statistics content than do the former. In the Indonesian senior high school curriculum
developed by Badan Standar Nasional Pendidikan (Office of National Standard for
Education), basic statistics content is included in grade 11 and is limited to data
displays and descriptive statistics such as measures of center and variability. There
are also two content areas in basic probability: sampling space and probability of an
event (Badan Standar Nasional Pendidikan [BSNP] 2006). Vocational schools have
similar statistics content but with more limited hours of teaching. Less teaching of
statistics content is also found in several majors of vocational school such as art,
tourism, and household technology, which do not include probability at all (BSNP
2006).

15.3.2 Data Collection

The data in this study included 38 written responses and 23 interview transcripts,
which were obtained from a two-stage data collection procedure. In the first stage,
38 students gave their written responses to three open-ended questions designed to
investigate their values of learning statistics.

Q1. Do you study hard in the statistics course?
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Table 15.1 Demographics of 38 students in questionnaire survey

Types of
senior high
school
attended

Statistical topics learned Female Male Total

Data
displays

Descriptive
statistics

Probability

General
senior high
schoola

√ √ √
17 4 21

Islamic
senior high
schoola

√ √ √
8 5 13

Vocational
high
schoolb

√ √
majorsc 4 0 4

Total 29 9 38

aScience majors learned statistics for more hours with more advanced content compared to social
and language majors
bStatistics content and teaching hours were more limited than in the other schools
cMajors: students majoring in art, tourism, and household technology did not learn this topic

Q2. Please give your reason
Q3. What targets do you set to achieve when learning statistics?

We used Q1, which asked about the intensity of learning activity, to capture stu-
dents’ engagement in learning statistics by considering that students are more likely
to engage in doing something when they value it (Barron and Hulleman 2015).
Afterwards, as there are many reasons why the task would hold value for a student
(Wigfield and Eccles 2000), Q2 and Q3 were designed to capture the reasons stu-
dents have for engaging in the learning of statistics. During the data collection we
ascertained that students were informed that their participation would not affect their
course performance, and they were allowed to choose whether to participate or not
in this research.

After the administration of the questionnaire, 23 (19 females and 4 males) of the
38 students whose types of high schools’ background were varied (i.e., 2 vocational,
7 Islamic, and 14 general senior high schools), volunteered to take part in personal
interviews with a researcher. These interviews represent the second stage of the
data collection. Each interview session, lasting from 30 min to one hour (median�
42 min), was situated to allow students to express and share their views conveniently.
The interviewer brought along students’ written responses and began each session by
asking students to read their statements to the open-ended survey questions and then
clearly elucidated their responses. Students were asked to give examples and probed
to explain their written responses. For instances, probing questions used to delve into
students’ reasons related to their interest in learning statisticswere “what factorsmake
you like learning statistics?” and “what factors make you dislike learning statistics?”
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The interviews were audio-taped and transcribed for further analysis. Follow-up
interviews through internet social media and phone were also undertaken whenever
possible for some aspects of the transcripts that needed clarification. On occasion,
the lecturer teaching the introductory statistics course was involved in discussing
the interview responses and her teaching of the course. Some documents, such as
teaching materials, tests, and results, were also recorded as supporting data. For
example, teaching materials and test items could uncover the source of confusion in
the thinking of those students who dislike numerical activities.

15.3.3 Data Analysis

Analysis of written responses and interview transcripts was conducted with the aim
of describing the ways in which students valued the learning of statistics. We kept
this goal in mind during the data analysis in order to ensure the research questions
of this study could be answered properly. As the data were in Indonesian language,
two Indonesian native-speaker researchers took part in the analysis to explore the
variations that emerged from the data.At the end of analysis, one researcher translated
the categories and quotes from Indonesian to English and discussed it with a non-
Indonesian speaking researcher to ensure the proper terms had been used in the
translation to reflect the precise meanings.

This analysis took place in three main stages. In the first stage, we tried to capture
the general features of each of the students regarding their values associated with
learning statistics. We did this by repeatedly reading each of the written responses
and interview transcriptions. These general features were then summarized for each
student. The second stage was for identifying keywords to represent each feature
found from the previous stage. The keywords were then grouped into different cate-
gories based on their similar characteristics. We further interpreted each keyword as
an intrinsic value, attainment value, utility value, or cost component and then sepa-
rated the negative and positive responses within each component. The data analyses
in these first two stages were carried out independently by the two researchers.

In the next stage, comparisons and discussions were used to find agreement with
the initial draft of categories. In this process, re-examining the data was carried
out together at some places to assure that all information was properly interpreted.
The classification of students into each of the finalized categories was recorded
upon agreement of both researchers. Several corresponding keywords for each value
component were selected and are shown in the second columns of Table 15.2.
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Table 15.2 Components of values on learning of statistics

Components Keywords No. of responses
(%)

Sample quotes

Intrinsic values (+) Interested,
challenged,
curious, satisfied

22 (57.9%) I feel satisfied
every time I can
get the correct
solutions

Both 6 (15.8%)

(−) Dislike, bored,
confused,
complicated

10 (26.3%) Too many
confusing
formulas

Attainment
values

Beyond 2 (5.2%)

(+) High grade,
outperform, excel

18 (47.4%) The important
thing is I can get
A+

(−) Pass the course,
pass the exam

9 (23.7%) I study statistics
to pass the exam

No evidence 9 (23.7%)

Utility values (+) Thesis, career,
daily life

34 (89.5%) It’ll be helpful in
doing my thesis
research

(−) Useless, no
benefit

2 (5.3%) I haven’t seen
any benefit from
what I’ve learned

No evidence 2 (5.3%)

15.4 Findings

15.4.1 Three Components of Values on Learning Statistics

We found three rather than four components of values on learning statistics in this
study: intrinsic, attainment, and utility values. The cost component was not identified
in our data, which might be due to the limitation of methodology used, particularly
related to the proper questions proposed in interviews to probe student thinking of this
component. Nonetheless, wemay argue that empirically, cost was not the component
that would be thought naturally by our students in expressing their value on learning
statistics. Moreover, the quantitative empirical research reported in literature (e.g.,
Eccles and Wigfield 1995; Parsons et al. 1984) has also suggested that task value
could be represented by the three components. Despite the different methodology
used, our study could echo the findings of these studies.

Table 15.2 presents the keywords used in categorizing responses into the corre-
sponding components, and the number of responses for each component, which is
also shown as a percentage of 38 students, to indicate the proportion of respondents.



338 K. Idris and K.-L. Yang

Brief sample quotes retrieved from interview transcripts or written responses are also
provided as the illustrative features of the corresponding groups.

We initiated the analysis by attempting to classify each student into either positive
or negative values for each component based on his/her responses for the open-ended
questions and/or interview.Yet,we found that somewritten responses had insufficient
information about the attainment and utility components.We classified those students
into “no evidence” in the two components.

Intrinsic values, which correspond to the enjoyment students get from learning
statistics, could be identified from all students’ responses. 22 students expressed pos-
itive intrinsic value, while 10 students expressed negative intrinsic value on learning
statistics. On the other hand, we found six students expressing both positive and
negative responses, which could not be interpreted precisely as positive or negative
value. For example, S5 stated his deep satisfaction in learning statistics:

The feeling when getting correct solutions of difficult problems… it’s like the feeling when
achieving a big success…

However, in another part of the transcript, he gave another statement about his
unfavorable feeling about statistics:

…because I have to memorize those confusing formulas that mix-up of alphabetical letters
and numbers.

Similar cases also emerged from five other students, who had common charac-
teristics of having low interest in statistics but sometimes feeling challenged and
satisfied. Hence, we categorized these students as having both positive and negative
values of intrinsic component.

As for attainment values, we defined a positive value as one representing students
who express an ambition and set a target for obtaining a high grade or outperform-
ing other students in learning statistics. The negative value, in contrast, represented
a group of students with avoidance components of need-achievement motivation
(Atkinson 1964) who set the lowest target in learning such as to pass the exam or
the course. There were nine insufficient responses from this component which we
classified as no evidence. In addition, we found two students expressed distinctive
response related to attainment value which could neither be classified as positive
nor negative attainment value in learning statistics. These students conveyed their
view that they put more concern on understanding the materials rather than scores
or competitive ambition. We quote one of these statements below:

…scores will follow when we can understand (the materials), the important thing is to
understand. After understanding, the chance of making mistakes will certainly be lessen…
I do not target the scores.

This expressionmight exhibit the views on attainment to be beyond scores, to gain
mastery. Hence, we assigned the two students’ responses into the beyond attainment
values component.

Utility values, on the other hand, could be determined for 36 students, twoofwhom
could be classified easily into negative values. These two studentswere unaware about



15 A Study of Indonesian Pre-service English … 339

the usefulness of learning statistics and claimed that the course was meaningless for
them and they could not see any benefit in learning it. We also observed that most
of students’ responses within the positive utility values mentioned that one of the
usefulness of statistics was for doing their undergraduate research.

15.4.2 Relationships Among Components

There was another finding that emerged from the analysis of values on learning
statistics—a student having a positive value in one component was not an indica-
tor that he/she was also positive in other components. Tables 15.3, 15.4 and 15.5
show, respectively, the number of students for the relationships between intrinsic
and attainment, intrinsic and utility, and attainment and utility components. As for
students who had beyond positive and negative attainment value, we noticed that they
expressed positive values in both intrinsic and utility components (see Tables 15.3
and 15.4), which means that they could feel enjoyment in learning statistics and
believed in the usefulness of learning the course for their future. Table 15.3 shows
that, approximately, 32% (12 out of 38) of the students had positive values in both
intrinsic and attainment values on learning statistics. There were about 10% (4 out of
38) of the students who expressed positive intrinsic and negative attainment values
on learning statistics. One of them mentioned her low confidence or negative ability
beliefs (Eccles et al. 1983) in statistics that made her set a low target in learning
statistics.

Table 15.3 Relationship between intrinsic and attainment components

Intrinsic Total

(+) Both (−)

Attainment Beyond 2 – – 2

(+) 12 3 3 18

(−) 4 1 4 9

No evidence 4 2 2 9

Total 22 6 10 38

Table 15.4 Relationship between utility and attainment components

Utility Total

(+) (−) No evidence

Attainment Beyond 2 – – 2

(+) 17 – 1 18

(−) 8 – 1 9

No evidence 7 2 – 9

Total 34 2 2 38
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Table 15.5 Relationship between intrinsic and utility components

Intrinsic Total

(+) Both (−)

Utility (+) 21 6 7 34

(−) – – 2 2

No evidence 1 – 1 2

Total 22 6 10 38

“No, I don’t target high score because I knowmy own ability, it seems that I’m not competent
enough to get high scores in statistics, even though I like this course…”

On the contrary, about 8% (3 out of 38) of students expressed negative intrinsic
and positive attainment values. This may simply explain that the students’ motive in
learning was an achieving motive (Biggs 1985), with which they have high ambition
for outperforming others in class whether or not they like the course. For example,
one of these students stated her dislike of the statistics course in her written response.

“I don’t really like it. The materials are confusing and there are too many formulas.”

Yet, later she stated that to get the high score is her target in learning statistics.

“My target in learning this course is to obtain high scores.”

From Table 15.4 we may see that almost half of students (17 out of 38) showed
positive values in both attainment and utility components. There were 8 students who
expressed positive utility together with negative attainment values, which means that
those students were aware about the usefulness of learning statistics, yet they did not
think that it would be important to perform well in learning statistics.

We also found that, from Table 15.5, out of the 34 students within the positive
utility value, 7 of them were grouped into the negative intrinsic value. A sample
quote from one of students within this group is as below.

“Statistics will be helpful for doing my thesis research, but I don’t really like it. It’s very
difficult and confusing.”

15.5 Discussions and Suggestions

15.5.1 Characteristics of Indonesian Pre-service EFL
Teachers’ Value on Learning Statistics

In this study, we explicitly uncovered the ways in which Indonesian pre-service EFL
teachers’ value their learning of statistics through the three components of task value
defined by Eccles et al. (1983): intrinsic components, attainment component, and
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utility component. Based on the interview and open-ended question responses, the
students can be classified into either positive or negative value in each component.
Particularly for intrinsic and attainment components, we found two categories of
values on learning statistics that did not seem to have been reported in the prior
studies related to task value, i.e., both positive and negative intrinsic and beyond
positive and negative attainment values.

Among these components, the positive values of the utility component accounted
for the highest numbers of students, particularly those who recognized the use of
statistics for their undergraduate research. One reason for this finding might be due
to the statistics lecturer who often emphasized the connection of the materials to
students’ undergraduate research for the purpose of motivating their learning, as
revealed from the interview with the lecturer. One of characteristics of students from
South-East Asian countries (including Singapore, Philippines, and Indonesia) is that
they would tend not to challenge or disagree with what their teacher says in the
classroom (Liem et al. 2009), even though they did not fully grasp the ideas. This
phenomenon was echoed in our finding, in which we found that there were some
students who believed that they need statistics since their lecturer had conveyed from
the beginning of the course that it would be useful for their undergraduate research.

The expression of both positive and negative values on the intrinsic component,
on the other hand, was evident in six students, who expressed their enjoyment in
learning statistics as something challenging and giving personal satisfactions. At the
same time, they also indicated their unfavorable feelings toward the course due to
some specific parts such as confusing and dense formulas they need to use. These
students can be categorized as holding conflicting conceptions or beliefs (Marton
and Pong 2005). We suggest that such characteristics of students need to be taken
into consideration when statistics lecturers design teaching activities or materials
for students learning statistics. Emphasizing conceptual understanding rather than
relying heavily on formulas is considered more effective for student learning in
introductory statistics class (Aliaga et al. 2005; Franklin and Garfield 2006).

This conflicting beliefs characteristic is difficult to identify through closed ques-
tionnaire surveys since students would tend to respond based on what they believe
is socially desirable (Marton and Pong 2005). Therefore, this might be one possible
reason for the high attitude in learning mathematics of Indonesian students reported
in international surveys. For instance, it would be more unlikely for these students
to choose disagree in their response to a questionnaire statement like “I enjoy learn-
ing many interesting things in mathematics,” because they did enjoy some parts in
learning mathematics. Therefore, this finding could also shed light on how the items
for value on learning statistics questionnaire should be developed. Since a student
may value the procedural part of statistics differently from its conceptual part, we
suggest that it would be more meaningful to combine the how and what to value in
an item. For example, the items assessing intrinsic value in a questionnaire of task
value such as “In general, I find working on math assignment very boring” (Eccles
and Wigfield 1995) can be modified for statistics learning as: “I find working on the
procedural part in statistics assignment very boring”.
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As for the value of beyond positive and negative attainment, the two students who
expressed this value were found to hold positive value in the other two components.
Since one of these students had an average score in statistics, we cannot assume
that such value had resulted from their high performance. Those students can be
characterized as mastery-oriented students (Ames 1992), because they will choose
challenging tasks and were more concerned with their own progress than with out-
performing others. Such kind of learning characteristic can be expected as the key
to lifelong learning. Hence, we should put more concern on developing the value
of beyond positive and negative attainment in learning statistics, as the initial step
for preparing students to be lifelong learners. Moreover, referring to Biggs and Tang
(2011), students will change from a surface to a deep approach to learning statistics
only by knowing why and how statistics should be learned. Thus, one possible way
for preparing students for their lifelong learning in statistics class is by directing
them not only on why to learn but also on how to learn statistics.

15.5.2 Conflicting Values on Learning Statistics

The findings of this study also showed that some students hold conflicting values
among the three components. That is, they expressed a negative value in one compo-
nent while holding a positive value in another component. Since task value is shaped
over timeby individual and contextual factorswhich include past experiences and cul-
tures (Eccles et al. 1983), the conflicting values found among Indonesian pre-service
EFL teachers might be explained by these factors. For example, the discrepancy
between intrinsic and attainment values might be the result of the culture of Indone-
sia as a collectivist country (Hofstede 2001). Students from collectivist societies are
less competitive than those in individualist societies and prefer to work together as
a group, and they would not mind being modest to suit and conform to the majority
of students (Triandis 1995). Such characteristics might lead students to have less
ambition to outperform others or to be the best in class.

On the other hand, students who expressed negative attainment together with
a positive intrinsic value may indicate a low self-ability belief (Eccles and Wig-
field 1995). These students tend to set the target as low as they can to just pass
the course examination although they have positive intrinsic and utility values in
learning statistics. This phenomenon could be investigated in future studies, as the
interplay between ability beliefs has been shown to be positively related to effort
and persistence (Wigfield and Eccles 2000) as well as performance (OECD 2014).
Furthermore, in order to encourage students’ belief that ability can be improved,
statistics lecturers may provide less challenging problems in the initial stage—such
as those with familiar contexts that can be partially solved based on students’ prior
knowledge. Additionally, collaborative learning environments, such as team discus-
sions and game activities related to statistical principles (Davis and Blanchard 2004),
are considered suitable for students from collectivist cultures, but competitive
learning between groups can be used when students review learned materials
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(Kolawole 2008). Setting up such learning environments are among the many ways
to encourage students’ self-ability belief, which can lead them towards the positive
attainment values on learning statistics.

Furthermore, while almost 90% of the students expressed positive utility value,
only 60% of them had a positive intrinsic value, which indicated the need for more
concern about developing more positive intrinsic values towards learning statistics.
This phenomenon may further reflect the characteristics of students in East-Asian
countries, as discussed previously, i.e., theywould not disagreewithwhat their teach-
ers said in the classroom even though they did not fully grasp the ideas. Thus, making
students really view statistics asmeaningful and useful knowledge that promotes their
development may increase their positive intrinsic value. Various teaching and learn-
ing approaches have been suggested in literature to make students see the relevance
of statistics for their life and future professions, such as doing the real statistics
investigations (Smith 1998) and implementing farmer market projects for business
students (Hiedemann and Jones 2010). Particularly for pre-service EFL teachers,
we suggest that embedding the statistics contexts in English reading tests or using
quantitative research articles from linguistics journals in teaching materials as one
way to improve their interest in learning the course. Because valuing results from
internalization and integration, which require that students are able to feel competent,
related, and autonomous while doing the activities (Deci et al. 1991), the design of
teaching may play an important role in developing values about learning statistics.

15.6 Conclusions

In summary, we have explored the different ways in which students value learning
statistics on the basis of the motivation theory of task value (Eccles et al. 1983;
Eccles and Wigfield 2002). This study sheds light on the elaboration of this theory,
more particularly for statistics learning. Moreover, some critical value components
were identified which revealed the variation of Indonesian pre-service EFL teachers’
values about learning statistics. This variation, to some extent, might be explained
by characteristics specific to Indonesian pre-service EFL teachers, since individuals’
values on learning are shaped by their past experiences and social stereotypes (Eccles
et al. 1983). The specific characteristics of Indonesian pre-service EFL teachers
may include previous experiences in learning statistics and the role of statistical
skills in their study field and future profession. Additionally, the conflicting values
held by some students could be related to the aspect of Indonesian cultures. Thus,
the findings of this study might be generalized to other service students in college
statistics course who have some common characteristics with our students, such as
having diverse experiences in learning statistics as part of school mathematics and
the possibility to utilize the knowledge in their future professions. The conflicting
beliefs found in intrinsic value components suggested considering the conditions of
learning including what and how to learn as an additional information in the intrinsic
component. Besides, the value of beyond attainment can be added in addition to
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the items indicated positive or negative attainment value in the questionnaire of
task value. For example, a statement like “In studying the course, I focus more
on understanding the materials than just gaining high scores” may indicate beyond
positive and negative attainment values.
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Chapter 16
A MOOC for Adult Learners
of Mathematics and Statistics: Tensions
and Compromises in Design

Dave Pratt, Graham Griffiths, David Jennings and Seb Schmoller

Abstract There are many adults with low mathematical/statistical knowledge who
would like to enhance that understanding. There are insufficient teachers to respond
to the level of need and so innovative solutions must be found. In the UK, the Ufi
Charitable Trust has funded a project to develop a free open online course to offer
motivated adults access to powerful ideas. We reflect on the tensions and compro-
mises that emerged during its design. More specifically, referring to data collected
from users, we consider the challenge of developing resources that will support het-
erogeneous students from unknown backgrounds, who may have already been failed
by the conventional educational system andwhowill have no interactive tutor support
within this course.

Keywords Citizen Maths · Familiar situations · Learning · Powerful ideas
Purpose · Utility

16.1 Adult Learners of Mathematics and Statistics

Open online courses (MOOCs) are sometimes posed as offering an educationally
and cost-effective way of enabling adults new opportunities to improve their grasp
of a particular subject, without needing to enroll on a face-to-face course, and at a
much lower cost per learning outcome than for an equivalent taught course. MOOCs,
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for example those provided under the banners of FutureLearn, Coursera, EdX or
Udacity, are typically at or approaching undergraduate degree level. But within the
general adult population there are major gaps in knowledge at much lower levels.
Mathematical and statistical knowledge is a case in point. Khan Academy (www.
khanacademy.org) provides open online resources for learning mathematics, though
these are closely tied to the traditional ‘schools’ curriculum.

A substantial proportion of the adult population (reported as 29% in BIS 2013,
p. 38) have basic numeracy, but are not confident users of key mathematical ideas in
life and work, at, in UK terms, Level 2.1 Statistically literate behaviour is, according
to Gal (2002), predicated on the activation of five knowledge bases, including math-
ematics, and a cluster of supporting dispositions. Statistical literacy, defined as “the
ability to interpret, critically evaluate, and communicate about statistical information
and messages” (Gal 2002, p. 1), is one critical but neglected skill area that needs to
be addressed if adults are to become more informed citizens and recognise the value
of statistics in making decisions (Wallman 1993).

In 2013, a consortium comprising Calderdale College, UCL’s Institute of Educa-
tion, and the awarding organization OCR secured funding from the Ufi Charitable
Trust to develop a free open online course for self-motivated adults who want to
improve their appreciation ofmathematics and statistics at Level 2. The course, being
free to the user, needed to be sustainable at very low cost per learner. The course “Cit-
izenMaths: Powerful Ideas in Action” (www.citizenmaths.com) has been developed
over the last 30 months, through four main iterations, during which period several
thousand people have signed up for it. Citizen Maths covers five powerful ideas in
mathematics: proportion, measurement, pattern, representation, and uncertainty. The
focus of this paper is on the tensions and compromises in the design of the sections
of the course on representation (powerful because it underpins data, graphs, distribu-
tions, sampling and bias), and, to a lesser extent, on uncertainty (powerful because
it underpins probability, risk, odds, large and small scale effects). We illustrate the
design of the course through example activities drawn from representation and uncer-
tainty. In fact, these activities speak to several of the five suggestions to work with
learners in ways that are different from the typical instructional methods as proposed
by Gal (2002). We explain those connections when reporting the example activities
below.

As the course has developed,we have collected information to evaluate and inform
each iteration of the resource. To review the challenges, the following data has been
collected and will be used:

– Information about participants at sign up including their purposes in taking part
– Data about participant completion of each element of Citizen Maths

1In the UK system, Level 2 is the standard expected of school students by age 16. BIS (2013 p.
xxviii) notes that individuals “with skills below Level 2 may not be able to compare products and
services for the best buy, or work out a household budget.” This describes a floor for level 2 but at
the higher end, it is expected that individuals will be able to solve multi-stage problems. For data
handling, this would mean dealing with descriptive rather than inferential statistics and calculating
probabilities for combined events but not formalising algebraically as distributions.

http://www.khanacademy.org
http://www.citizenmaths.com
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– Participant viewsof the various activities via rating scales and additional qualitative
comments.

In this paper, we discuss four design challenges often arising when the con-
straints of the course conditions competed with our pedagogic ideals. The challenges
addressed are: how to offer resources to heterogeneous students; how to engage stu-
dents without tutor support; how to promote meaningful mathematics; and how to
assess. For each of the four challenges, we discuss the issues involved and evaluate
our response in light of the data collected.

16.2 Challenge 1: How to Offer Resources
to Heterogeneous Students

16.2.1 Discussion of Challenge 1

In a conventional teaching situation, the classroom teacher or tutor will often know
the students in a quite personal way but, even if this is not the case, there will be a
number of known characteristics amongst the students. In the case of our MOOC,
little is known about the students. We anticipated that our students, as adults, will
have been through elementary and high school mathematics, taught with a focus
on the skills, methods and concepts set out in typical school curricula. Although
research gives some general pointers to what typical learners know and understand
at Level 2, further complexity was added to the design challenge because we could
expect our learners to be heterogeneous in what, as experienced adults, they might
bring to the course.

We therefore took an early view that there was little point in offering a course that
focused on those same methods, skills and concepts in the system that had already
failed our students. Instead of focusing hard on techniques when we knew little about
what techniques the students might already have grasped, we aimed to focus on a few
powerful ideas that might give our students some insight into how the discipline can
‘get stuff done’ for them (Pratt 2012). In this respect, we were influenced by Papert’s
ideas on how students should learn to mathematize before following a formal course
in mathematics (Papert 1972).

Each powerful idea in Citizen Maths is structured according to different ways in
which it might be experienced, called ‘Powerful-Ideas-In-Action’ (PIAs). Each PIA
consists of three or four activities, in which the student learns how the mathematical
idea might be useful for them in their personal, social, occupational or scientific
lives—the same contexts used byPISA (www.oecd.org/pisa/). Here are two examples
of activities from each of the PIAs in ‘Representation’, which broadly speaking
focuses on statistical literacy. Studentsmeet the PIA, ‘interpreting data’, for example,
in the contexts of: (i) how voting translates into seats in the Houses of Parliament
and (ii) using statistics on violence and alcohol; both contexts can be considered
societal. Students meet ‘interpreting charts’, for example, in the context of: (i) trends

http://www.oecd.org/pisa/
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inmedia communications and (ii) howyour household income compares to the rest of
the country; both contexts could both be regarded as personal. Students use statistics
when ‘comparing groups’ in the context, for example, of: (i) how many people live
in the same house in different regions of the country (societal) and (ii) of battery
lifetimes for different usage of mobile phones (personal). Similarly, students work
on the Uncertainty powerful idea through the PIAs, ‘making decisions’, ‘playing
games’ and ‘creating or using simulations’ in personal, societal and occupational
contexts.

It is worth noting that various powerful ideas present different challenges when
attempting to create opportunities for the idea to be seen as useful in the students’
everyday or working life. How one interprets statistical data is highly dependent on
the context whereas other areas of mathematics are often presented formally as if
they were context-free. Cobb and Moore (1997) argued that, although mathemati-
cians draw on context for motivation, their ultimate concern is with abstract patterns.
In contrast, patterns in data analysis only have value according to how those pat-
terns interweave with a contextual story line. Indeed, Wild and Pfannkuch (1999)
have noted the fundamental importance of context in statistical thinking, when they
depicted such thinking as emanating from the rawmaterials of statistical knowledge,
information in data and context knowledge.

Our approach in Citizen Maths has been somewhat radical insofar as we have
attempted to design activities that present proportion, measurement and pattern as
contextually meaningful as those in representation and uncertainty; in so doing, we
recognize that this aspect of the project has been especially challenging.

16.2.2 Evaluating Our Response to Challenge 1

Prior to registering to use Citizen Maths, participants are encouraged to undertake a
pre-course self-assessment which is intended to make sure that the individuals who
do take part have some understanding of the level of mathematics involved and the
commitment needed. By the end of February 2017, there were just under 19,000
individuals who had completed a pre-course self-assessment of whom just under
10,000 had gone on to register for the course.

What can we say about these individuals?

The age profile of participants (see Fig. 16.1) shows a good spread across age groups
with modal group being in their 30s. There was a smaller percentage of the par-
ticipants under 20 although it should be noted that the sign-up process required
individuals to be older than 16 and thus the available cohort is smaller than other age
groups.

The gender split isweighted towardswomen (seeFig. 16.2). This is consistentwith
broader educational participation, for example Bosworth and Kersley (2015) noted
that there were 53.9% females to 40%males involved in apprenticeship programmes
in the academic year 2012/13.
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Fig. 16.1 Age profile of
participants in Citizen Maths

0%5%10%15%20%25%30%

16-19 20-29 30-39 40-49 50-59 60-69 70 ormore
Fig. 16.2 Gender profile of
participants in Citizen Maths

We asked the participants to identify the level of their highest qualification in
any subject and for mathematics. The largest group did identify qualifications that
were at NQF level 2 and below with significant numbers at Advanced level (level
3) and Higher education levels (level 4 and above). This includes those who have
successfully progressed in non-mathematical subjects but have yet to achieve in
mathematics.

We asked individuals to identify their reasons for taking part in CitizenMaths (see
Fig. 16.3). It is worth noting that a good proportion of those signing up to Citizen
Maths could be described as ‘interested professionals’ who have already succeeded
at mathematics and have taken part in order to see how useful the resource is for
others. Nevertheless, these are not a majority and as time moves on, and participant
numbers increase, they are becoming an ever-smaller proportion of the total.

Overall, Citizen Maths has attracted males and females across ages who feel that
they need to improve their mathematics and these individuals do have a range of
other qualifications (although most have not achieved NVQ level 3). Whilst we do
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Fig. 16.3 The goals of the starters of Citizen Maths as selected when registering

have data about some other characteristics, it might be also be useful to know how
participants are spread in relation to income or by profession. This might help us to
understand for whom the course is most and least effective and to make changes.
The problem is that the more questions that are asked, the larger is the barrier to
participation.

We have noted some of the characteristics of those who have signed up to Citizen
Maths and noted the mix. What is missing here is the extent to which the resource
may or may not meet the needs of this group. In the evaluation of our response to
Challenge 2 we summarise the feedback about the effectiveness of the course from
users.

16.3 Challenge 2: How to Engage Students Without Tutor
Support

16.3.1 Discussion of Challenge 2

Teachers in conventional classrooms are able to offer a personal level of interest and
empathy with their students. In Citizen Maths there is no tutor present in real time.
Moreover, the course aims to be sustainable in the future without the presence of a
tutor. We decided to make the course feel personal by adopting techniques used by
Peter Norvig and Sebastian Thrun in their very successful 2011 open online course
“An introduction to artificial intelligence”. We used two ‘to-camera’ tutors, each of
whom would introduce and develop particular PIAs. We make regular use of short
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videos, sometimes involving the talking head of one of the tutors but often showing
their hands or computer screen as they develop the mathematical idea in real time.
Although no real-time interaction with students was possible, we hoped this would
help to develop some intimacy, almost as if the tutor were talking directly with the
student in their own home (Guo et al. 2014).

A limitation of this approach is that it is not possible to produce video that is
equally engaging and correctly paced for a diverse set of students. The ‘feature’,
however, that people can, if they wish, skip through videos or indeed repeat them
may be an important benefit but with the associated risk that a student who skips
through videos might miss a key learning point.

We recognized that these students already would have some initial motivation for
joining the course and it was important to maintain engagement or eagerness that
might be available at the outset. Face-to-face teachersmight use their own personality
to push through times when their class is less engaged. The best we could offer was
to design purposeful tasks and this became very important in our approach in the
light of other limitations.

Designing tasks that are seen as purposeful by the learners such that the learner
comes to appreciate the power of the mathematics in that context is far from triv-
ial, even in conventional classrooms (Ainley et al. 2006). Noss and Hoyles (1996)
discuss what they call the ‘play paradox’; when a designer builds an environment
that supports playful activity, the designer loses some control over what the learner
might in fact learn. The teacher in a conventional classroom is unlikely to escape
this same tension. With a clear obligation to a curriculum, teachers have to manage
a corresponding ‘planning paradox’ (Ainley et al. 2006) as they attempt to inspire
engagement without losing focus on that curriculum. This tension was alleviated to
some extent in designing CitizenMaths by avoiding a highly prescriptive curriculum.
We aligned ourselves to a philosophy in which the aim was to introduce students
to the power of mathematics and statistics within their personal and social contexts.
This felt less constraining than a commitment to a curriculum, especially one that
might emphasize skills and techniques.

In discussing how to enhance statistical literacy, Gal (2002) proposed that a novel
way to work with learners might be to focus on understanding results from polls,
samples, and experiments as reported in the media. In fact, in one Citizen Maths
activity, the student is required to predict the number of seats that a political party
will gain, given the results of a prior opinion poll. The activity is first introduced by
Noel-Ann, one of the two to-camera tutors, who describes the results of an opinion
poll conducted on the day of the general election, and Noel-Ann then introduces
an app, specially designed for the course. The app allocates seats randomly to the
main political parties, according to probabilities set by the opinion poll results (see
Fig. 16.4). The app introduces an element of playfulness as the student can run the app
several times and perhaps note that the number of seats allocated varies though there
is a limit to the extent of the variation. Utts (2003) has emphasised the importance
of helping students to understand that variability is natural.

Of course, there is a danger that the student may miss this key learning point.
In a conventional classroom, the teacher is able to assess the extent to which the
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Fig. 16.4 The app allocates randomly seats to each of the main political parties

Fig. 16.5 Screenshots from slot machine activity. Students are asked the following question: does
the slot machine payback at least 85% of its income?

student needs support in recognizing the nature of the random fluctuation. The best
we can do in the MOOC context is to include a self-assessment quiz and offer a
review of the lesson. In this example, Noel-Ann shows how she used the app and
places some emphasis on the key learning points. Even so, the activities often felt
more prescriptive than might have been the case with a teacher working with a class
face-to-face, who could respond on the fly to what the students were doing.

The above example is one ofmanywherewe adopted the use of technology to instil
a sense of playfulness, which we hoped would encourage sustained engagement.
Whereas the above activity involves using a specially designed app, we exploited
technology in a variety of other ways. For example, an activity on interpreting crime
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figures offers the data in the form of a spreadsheet. The data shows the number of
violent incidents each year and how many of those were carried out by offenders
under the influence of alcohol or drugs. The students are invited to explore this data
to investigate possible relationships between crime and the use of alcohol or drugs.
We see this example of analysing crime figures as responding to another of the five
suggestions by Gal (2002) to work with learners in new ways. The crime figures
activity offers an opportunity to develop a critical stance by supporting beliefs with
statistical information. In fact, according to the analysis by Watson and Callingham
(2003), the use of critical thinking signals the two highest of six levels of statisti-
cal literacy (the highest level also requires the use of mathematical expertise such
as proportional thinking). A second example is in the playing games PIA of the
‘Uncertainty’ powerful idea. The students are given a simulation of a slot machine
(Fig. 16.5). They are told that slot machines are illegal if they do not pay out in the
long term more than a stated proportion of its income, in this case 85%. The activity
might support understanding probabilistic aspects of statements about risk and side
effects (another of the five new areas in which work might be done with learners,
as proposed by Gal 2002). In addition to playing the slot machine game, the student
can open up the app and look inside at the coding, written in Scratch (https://scratch.
mit.edu/).

Being able to open up the app creates new dimensions for an inquisitive student,
and builds on earlier stages of Citizen Maths which introduce Scratch programming
as a way of revealing hidden mathematics (Noss and Hoyles 1996). Of course, a
student who gets out of their depth in this course will have less support to recover
than one in a conventional situation. For example, we have noted students becoming
frustrated when programming in Scratch because of not knowing simple remedies to
problems such as how to clear the screen. Such problems would be resolved trivially
by a live tutor. On the other hand, the student can always return to the original app,
and try again, although this is not necessarily an ideal solution. In later iterations
of the course, we have developed on-screen help and refined its design to improve
usability.

There are a number of learning points in this activity. The students may appreciate
the power of knowing the underlying probabilities, as can be found by examining
code, rather than just running the simulation. They can gain some understanding of
how they may win in the short term but they will inevitably lose in the long term if
they keep playing. This latter point, as is often the case in Citizen Maths, has social
as well as statistical importance.

16.3.2 Evaluating Our Response to Challenge 2

We have collected a range of information that we can use to assess engagement.
These include the extent to which various part of the course are completed, the views
of participants on whether they have met their goals, and feedback from the course
‘widgets’ on various components of the course.

https://scratch.mit.edu/
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Figure 16.6 shows a snapshot of course completion during the stage at which all
elements of the Citizen Maths course were available. We see that there is drop off on
unit completion as the course progresses with relatively small numbers completing
all 18 units (less than 100). It is important to note that these data were collected in a
17-week period whereas we expect a typical participant to take as much as 50 weeks
to complete the course. As such we expect the unit completion rates to be a little
higher as time progresses.

The breakdown of completers by age profile (Fig. 16.7) and gender (Fig. 16.8)
compared to registrations is evidence that the course does engageour different groups.
The age profile of completers is a little younger than the registrations although all
groups have completers. The gender breakdown of completers is similar to that of
registrations with a slightly higher proportion of female completers. It is also worth
noting that the proportion of completers who identified that they wished to ‘work
through thewhole course, to improvemymaths’was higher than registrations (85.6%
completion compared to 70.1% registrations). This is important as it shows that the
course has engaged its target audience more than ‘interested professionals’.

How does the snapshot data (Fig. 16.6) compare to other MOOCs? Clow (2013)
notes that progression through MOOCs tends to display a decaying feature, the
funnel, far more dramatic than in traditional, face-to-face courses. The author draws
together data from a range of sources to illustrate the effect. For example, Clow
notes that the “first MIT course, Circuits and Electronics, attracted over 150,000

All five Powerful Ideas: starters and finishers by Unit
June 6, 2016 to February 28, 2017 (log scale on left axis)

Prop = proportion, Unc = uncertainty, Rep = representation, Pat = pattern, Mea = measuring (the five Powerful Ideas)

0%
10%
20%
30%
40%
50%
60%
70%

10
100

1000
10000

Started in period Finished in period Proportion of unit starts inishing
Fig. 16.6 Graph showing a snapshot of the numbers of participants starting and finishing the
different elements of the course between June 6, 2016 and February 28, 2017 (note the left hand
scale is logarithmic and is used for the starter/finisher bars, the right hand scale is linear and is used
to display the proportion of finishers to starters for each unit)
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Fig. 16.7 Proportion of
registrations and completers
by age

Fig. 16.8 Proportion of
registrations and completers
by gender

participants, but “fewer than half look at the first problem set”, and only 7157 passed,
or about 5%” (Daniel 2012 cited in Clow 2013: 187).

These results suggest that the course is broadly in line with other MOOCs in
terms of engagement and completion. Indeed, those who completed each powerful
idea were asked to rate the extent to which their goals were met on a scale of 1–5
(1 being “not at all” to 5 “completely”) and were very positive about the course. For
the Uncertainty section of the course, the overall figure was just short of 4 and for
representation the views averaged 3.5.

At the bottom of each lesson in Citizen Maths is an optional “Rate this lesson”
widget, allowing learners rapidly to provide high level feedback as to the utility of
the lesson on a five point (0–4) scale (0 being “not at all useful” to 4 “extremely
useful”).

Figure 16.9 shows the aggregate feedback for the 18 course units, with the three
units within, respectively Uncertainty (6–8) and Representation (9–11) highlighted.

This data shows that learners using the feedback widget are on average reasonably
satisfied with the usefulness of Citizen Maths, with some small variations between
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successive units. Of course, it must be remembered that widget scores are being
provided by a “survivor” population; the further into the course a learner is, the more
theymight be expected to find course units useful because dissatisfied learners would
tend to cease to engage with the course.

At the powerful idea level the data is broken down by age, gender, and goal in
Fig. 16.10. Again, we have evidence that across the different groups that we have
identified there are participants that have engaged positively with the course.

The completers of each powerful idea were also asked to judge the extent to
which they engaged with the course elements. The summary (see Fig. 16.11) shows
a broadly positive picture.

There was some differentiation in how each activity type was viewed by partici-
pants.

Overall, we see that as the course progresses there is an attrition rate of some
concern. Nevertheless, we are optimistic that once the full course has been running
for long enough to make a considered judgement, the attrition rate will not be out
of line with many other open online courses (see Clow 2013). This is most likely
to be true for learners who have made a proper start rather than for those who have
merely “dipped in” to take a look. Of those who complete the relevant sections of
the course, there is evidence that a good proportion engage well with the various
aspects of the course. Of course, we should not be complacent; these positive views
are from those who have completed various sections of the course. Those that drop
out have not had the chance to contribute to these views. Also, the participants are

Fig. 16.9 Aggregate
feedback from the “Rate this
lesson” widget

Unit 1 Mixing 2.50
Unit 2 Comparing 2.73
Unit 3 Scaling 2.46
Unit 4 Sharing 2.71
Unit 5 Trading off 2.73
Unit 6 Making decisions 2.71
Unit 7 Playing 2.83
Unit 8 Simulating 2.67
Unit 9 Interpreting data 2.70
Unit 10 Interpreting charts 2.80
Unit 11 Comparing groups 2.84
Unit 12 Appreciating 2.80
Unit 13 Tiling 2.76
Unit 14 Constructing 3.06
Unit 15 Reading scales 2.86
Unit 16 Converting 2.73
Unit 17 Estimating 2.83
Unit 18 Quantifying 2.97
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Age

All 16-19 20-29 30-39 40-49 50-59 60-69 70+

Uncertainty (Units 6 to 8) 2.73 2.92 2.71 2.62 2.74 2.68 2.83 2.56

Representation (Units 9-11) 2.77 2.99 2.84 3.04 2.57 2.70 2.66 2.28

Gender Goal*

All Female Male Goal 1 Goals 2-6 

Uncertainty (Units 6 to 8) 2.73 2.75 2.71 2.77 2.61

Representation (Units 9-11) 2.77 2.82 2.64 2.96 2.32

*Goals as in Fig. 16.3. Goal 1 is “to work through the whole course, to improve my maths”

Fig. 16.10 Aggregate feedback from the “Rate this lesson” widget broken down by age, gender,
and goal

Which of the following options best sums up your engagement with …?

I carefully 
watched every 
video and did
every activity, 
sometimes more 
than once

I worked through 
all the content, 
but sometimes 
my attention 
wandered

I skimmed 
through, mainly 
to see what was 
there rather than 
to engage closely 
with the course

I sampled what 
was there, 
focusing on the 
things that 
interested me

None of these 
options apply in 
my case

I would prefer 
not to say

Uncertainty

36% 32% 27% 5% 0% 0%

Representation

32% 32% 27% 5% 5% 0%

Fig. 16.11 Summary of feedback from users about how engaged they felt by parts of CitizenMaths

not positive across the board and there are some potential concerns that could be
addressed. For example, there are some participants who are unconvinced of the
value of programming with Scratch.
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16.4 Challenge 3: How to Promote Meaningful
Mathematics

16.4.1 Discussion of Challenge 3

Many online mathematics learning resources, such as those in the Khan Academy,
are closely tied to traditional topic areas—for example, arithmetic, algebra, geome-
try—and either assume that students will find these meaningful or that other human
learning support will provide context and purpose. Citizen Maths aims to communi-
cate the purpose of mathematics in a way that will make it intrinsically meaningful.
The challenge to design purposeful activities in a tutor-free environment is further
complicated by the need to help the student engage and make sense of the math-
ematics. In a conventional classroom, effective teachers continuously monitor the
student’s actions and step in, as necessary, to clarify or offer alternative ways of
thinking about the mathematics. Although we have no such opportunity in Citizen
Maths, we are dealing with students who, as adult learners, are experienced mem-
bers of society and will have a range of prior experiences. There is of course some
difficulty in exploiting these experiences when the backgrounds of the students will
inevitably be so variable. We explored in Citizen Maths solutions in which the tech-
nology was adaptive to how the students responded to the challenges. Although such
technology is improving rapidly, we were unconvinced that the technical adaptive
systems were sufficiently advanced as yet to make effective recommendations to the
student in the holistic (as opposed to skill-based) approach we were adopting.

We were aware of the literature on the authenticity trap. Lave’s (1988) early work
on situated cognition had led to a discussion of the need to create authentic learning
experiences; but, it is not possible to take an authentic experience into the classroom,
or indeed into a MOOC, because the act of doing so transforms the task, which is no
longer authentic. However, research (Nunes et al. 1993) has shown that knowledge
is not so much trapped in the situation where that knowledge first became available
but is rendered meaningful by that situation. We set out to find situations that were
likely to be familiar, even if not directly experienced, and use them to introduce the
student to the power of mathematics and statistics in those situations.

The ‘interpreting charts’ PIA of Citizen Maths has, as one focus, learning about
styles and biases in reporting and advertisements, one of the five suggestions for
new areas of work with learners proposed by Gal (2002). The following example
from this PIA illustrates how it is at the same time possible to engage with charts
in personally meaningful ways. This example draws on an applet created by the
Institute of Fiscal Studies (www.ifs.org.uk/wheredoyoufitin/). The applet asks the
user to enter a few basic facts about themselves, such as their household income,
and generates a histogram that shows in which percentile out of the population as a
whole the user’s net income lies (see the shaded bar in Fig. 16.12 to the left of £300
per week).

In this example, we clearly positioned the learner as the active person at the centre
of the task as we imagined they would enter data about their own household. We

http://www.ifs.org.uk/wheredoyoufitin/
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Fig. 16.12 This user’s income is well below that of most households in the population

intended that the familiarity of the context would help the student to interpret the
histogram. In other situations the learner might feel more like an onlooker. Consider
the position of a male student in the following example taken from the ‘making
decisions’ PIA of ‘Uncertainty’. The student is given data about the number of
women out of 1000 who receive a positive result from a mammogram, used to
screen for breast cancer. They are also given data about the proportion of times
that the screening machine gives a positive result when the woman does not have
breast cancer (a false positive). The result is that, of the women who get a positive
mammogram result, more than ten times as many do not have breast cancer as the
number that do. Although the calculations are not difficult, many people find this
result surprising. This situation will be familiar to many students, though may be felt
more personally by female than by male students.

This is an example where in a sense we piqued curiosity by courting controversy, a
well-known trick that face-to-face teachers use but which we are also able to exploit.
The problem is that there is no teacher to support students when the controversy is
too upsetting. Might this be problematic for students whose near relative is suffering
from breast cancer? Or is there advantage insofar as the student will be less exposed
if working with the materials from home on their own rather than in front of peers?
We asked such questions in various focus groups. Views were divided but on balance
it was felt that the opportunity to raise social awareness should not be missed. After
all, it is reasonable to suppose that the use of statistics to support or deny claims
during the study of sensitive and controversial topics might promote critical thinking
and a broad appreciation of the value of statistics. In the light of these views, we
have included such situations in the course, partly because the controversy can be
engaging but also because they demonstrate the power of mathematics and statistics
to inform such debate. We acknowledge though that this decision might be limiting
were the course to be used as part of a blended course or within a learning centre,
since controversy raises potentially embarrassing scenarios in collective learning
situations that such courses might seek to avoid.
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16.4.2 Evaluating Our Response to Challenge 3

One of the key elements of Citizen Maths was the selection of activities that draw
upon a range of scenarios in order to engage learners in meaningful mathematics.
We noted the example of income data drawn from the Institute of Fiscal studies
in ‘interpreting’ and the decision-making aspect of uncertainty using data around
mammograms. What evidence do we have to evaluate the extent to which these
activities might be perceived as meaningful?

One thing to note is the completion data and positive views of the completers
noted above displaying a good engagement by a number of participants.Nevertheless,
this does not necessarily mean that the participants feel the mathematics has been
meaningful. What we do have are some of the comments made by those using the
feedback ‘widgets’. A small number added qualitative comments, many of which
were fairly short ‘I did/didn’t find this useful’. Others made some more interesting,
and mostly positive, comments.

I really enjoyed this section, I was able to do the calculations quickly & easily. I have even
been able to grasp rounding and will be using this method to help me in future tasks.

I feel I have learnt how to read and interpret data on both on a spreadsheet and evenwithout the
aid of a spreadsheet. This lesson has been themost enjoyable, clear and easiest to understand.

This is a good app to use to interpret household data. I enjoyed working through the lessons.

And even when the comments suggest some less positive outcomes, there is also
evidence of meaningful engagement.

I found this part very difficult to follow but have taken notes so I will be practising this
session again.

Of course, there are some more negative comments around some activities. In
commenting on a dice simulation activity.

I did not like this activity as it is something I won’t need.

Aside from the comment suggesting that the activity is not meaningful to the
learner, going back to challenge 2 and the lack of tutor support, there is no oppor-
tunity for us to intervene to discuss this further. A discussion space would offer
an opportunity for other users to be involved in debates around such utility issues.
Interestingly a more positive comment on the ‘pass the pigs’ game suggests that
meaningful activity can be a very personal issue

Definitely got me thinking as I have played the Pass the Pigs so this helped me to construct
mental images to accompany the statements about the probability.
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16.5 Challenge 4: How to Assess

16.5.1 Discussion of Challenge 4

In designing the structure of the course, we have followed the PISA methodol-
ogy (www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Mathematics%
20Framework%20.pdf) when categorizing activities in terms of content (PISA uses
four categories), content topics (15 topics), mathematical processes (3 categories),
mathematical capabilities (7 categories), and context (see the four categories above).
By using these categories to profile our activities, we have been able to monitor cov-
erage of both mathematical content and the processes without closely prescribing a
curriculum, which might have hindered our large grain-size aims.

Citizen Maths does not lead directly to a qualification, although we have col-
laborated with the awarding organization, OCR, a partner in the project, to track
compatibility (or otherwise) between their Cambridge Progression Level 2 units
(www.ocr.org.uk/qualifications/by-type/cambridge-progression/) and Citizen
Maths. A lack of availability of a direct qualification presumably does not meet
some students’ desires but our focus has been on students who were motivated
to gain a sense of mathematics as a discipline, perhaps as a precursor to working
towards a qualification.

Teachers of conventional courses are able to adopt methods of formative assess-
ment to respond to their students within lessons and between lessons in ways not
open to us in Citizen Maths. For example, although the course offers a suggested
sequence of activities, this preordained sequence might not be suited to some learn-
ers because of their prior knowledge or interests. Because there is no tutor to assess
whether the proposed sequence should be broken, the course is left open for students
to make that decision themselves in the light of progress. Our approach instead was
to offer several types of short assessment tasks, aimed at helping the student to make
up their own mind whether they have properly understood the content.

These assessment tasks frequently offer multiple-choice questions. When the stu-
dent gives the wrong answer, responses attempt to give some hint about where they
may have gone wrong. When the student gives the correct answer, the response
gives a full explanation of the answer in case the student obtained the correct answer
through incorrect reasoning.Where possible thewrong options in themultiple-choice
questions are chosen to reflect common errors that students make though, in Citizen
Maths, the student’s wrong responses can only be used for formative assessment by
the student and not by a teacher, as recommended by Wiliam (2014).

For example, the activity on interpreting data about incidents of crime, described
above, is followedby the question “What is the percentage of alcohol related incidents
in 2006/2007?” The correct answer is 54%. It is anticipated that some students will
mistakenly refer to the data where the use of drugs (rather than alcohol) is apparent.
Such a mistake would lead to an answer of 21%. If a student gives that answer, the
following response is given by way of a hint, “This is the percentage of drug related
incidents. Use the data for alcohol related”.

http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015%20Mathematics%20Framework%20.pdf
http://www.ocr.org.uk/qualifications/by-type/cambridge-progression/
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Multiple-choice questions are not always appropriate to assess learning points.
For example, a number of activities in the course have a range of solutions that
are not easily captured by a system of offering multiple choices. In other cases, the
essence of the task lies in the process of doing it, rather than in the outcome. It is not
perhaps surprising that this type of activity is quite prevalent when the aim of the
course is to engage students in work that reveals the power of mathematics. In such
cases, the onus is on the student to watch the to-camera tutor review the task and
decide for themselves whether they have understood it sufficiently. One of the powers
that Citizen Maths and other MOOCs have that is not available in the conventional
classroom is that students can easily return as many times as they want to a video of
the tutor’s explanation or to a task they have already done. So, we hope that a student
who is not satisfied that they have properly understood the activity after watching
the tutor is able to return to the introductory video and the task itself.

16.5.2 Evaluating Our Response to Challenge 4

We have no direct evidence for the extent to which these elements of the course have
been effective. The multiple-choice questions are typical activities within lessons,
not a separate element. During the development of the course, we chose to collect
data on the lesson level rather than on individual components. As such we cannot
claim any particular success for the responses to participant choices except to note
that the sessions overall have achieved good ratings, the quizzes are noted as a good
feature (see Fig. 16.13) and there are positive comments from users about the value
of the quizzes. One learner describing the positive features of Citizen Maths noted
that with the quizzes there is a “summary of the question you’ve just answered and
whether you got it correct, and if you haven’t, an explanation of why it’s not correct”.

16.6 Final Comments

We accept that some of our solutions have been compromises in the sense that they
often do notmatch our pedagogic ideals, whichwe have learned through research and
teaching in conventional classrooms. Some colleges of further education are using
our materials as additional resources and in those cases a tutor will typically be able
to support the learning process. On the other hand, it is not realistic to expect the
shortfall in Level 2mathematical understanding across the population to be remedied
in conventional ways. The 2011 Skills for Life survey (BIS 2012) estimated that some
72% of the population of England were below Level 2 and the 2012 international
survey of adult skills (PIACC) (BIS 2013), while using different level descriptors,
was consistent with this level of need. The existing educational structure of further,
adult and vocational education could not cater for anything close to numbers on
this scale. This problem may be even more acute in the case of statistical literacy,
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Fig. 16.13 Feedback on Citizen Maths course features by users

where the shortage of appropriately knowledgeable teachers is widely reported (see,
for example in Batanero et al. 2011) and where a better-informed populace would
advantage individuals and society (see, for example, Gal 2002).

Designing the structure and the content of Citizen Maths has been an interesting
challenge andwe have described some of those challenges in this paper. By focussing
on powerful ideas rather than specific small grain-size techniques, we have placed
emphasis on a broad interpretation of numeracy and statistical literacy. While it
could be argued that such a change in emphasis would benefit teaching and learning
in conventional classrooms, it seems critically important in aMOOC-based approach
where the students are heterogeneous and sufficientlymature to bring rich experience
to the learning environment.

We believe that the use of contextualised activities actualises those powerful ideas
in familiar and meaningful ways whether those tasks are fundamentally mathemati-
cal or statistical in nature. Of course, in the representation and uncertainty PIAs, the
role of context potentially extends beyond motivation and meaningfulness to oppor-
tunities for developing understanding of the contextually-dependent transitions from
design to data capture, from exploring data to identifying patterns and towards the end
of the statistical problem-solving activity from results to their interpretation (Cobb
and Moore 1997). We note though that the transition from design to data would be
challenging to implement in aMOOC and has not as yet been the focus for an activity
in Citizen Maths.

We have experienced affordances in the use of a MOOC that are common with
the use of technology in teaching and learning statistics and probability in classroom
contexts: (i) the facility to handle complex computations can help the student to
focus on the underlying conceptual challenge and not be distracted by the difficulties
of carrying out calculations; (ii) the repetition of trials digitally enables data to be
collected quickly so that variation in data can be explored; (iii) the use of computer-
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based simulations allows the learner to explore situations which might not otherwise
be accessible to the student; (iv) programming the computer allows the learner to try
out models of solutions and then modify those proposed solutions according to feed-
back; (v) dynamic graphical displays tends to support visualisation of mathematical
and statistical concepts.

Of course, we do not argue that MOOCs such as Citizen Maths offer as good
a learning experience as can be provided by teachers, but we have noticed some
advantages: (i) students can work intensively over a short spaces of time or spread
their work over longer periods to fit learning around other commitments; (ii) they can
learn at their own pace by repeating lessons or specific videos as often as they like;
(iii) students canmake choices about what content to study and in which order, which
might suit those students who are aware of particular strengths and weaknesses in
mathematics or statistics; (iv) it is possible to access the resources remotely rather
than needing to travel to a particular location to engage in learning; (v) some students
might appreciate being able to learn on their own in order to avoid embarrassment
should they feel inadequate in some way or if the topic were in some way sensitive
or controversial (though of course there are also distinct advantages to collaborative
learning, which is more natural in a conventional classroom).

As social platforms continue to improve it is possible that MOOCs will in the
future be able to support collaborative learning in ways that have not been built into
Citizen Maths. Some might argue that future research might provide a better under-
standing of conceptual development in mathematics and statistics with opportunities
for artificially intelligent support structures. Our experiences suggest however that
when the focus is on broad interpretations of numeracy and statistical literacy, the
grain size of what needs to be learned is large enough for us to believe that society
is still some way from being able to develop such systems.

The data collected so far on users offers some broadly positive feedback about
the extent to which we met these challenges. Sustaining Citizen Maths in the future
will be another challenge. Some additional finance will be needed as shortcomings
in the current course will inevitably be identified and the use of data files will quickly
need to be updated. Fundamental changes in technology will offer new solutions,
including better ways to personalize the experience, making old technologies look
obsolete. Citizen Maths was never going to be an ideal solution but the process has
enhanced our knowledge about what seems to work and what does not, knowledge
which should help us be ready for that time.

16.7 Endnote

This paper is narrowly focused on the interests of Topic Study Group 15. But a wider
range of issues appearswhen creating (maths)MOOCs. Several of these are described
on the Citizen Maths web site, at https://citizenmaths.com/, and, in particular, on the
Citizen Maths blog, at https://citizenmaths.com/blog.

https://citizenmaths.com/
https://citizenmaths.com/blog
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Chapter 17
Critical Citizenship in Colombian
Statistics Textbooks

Lucía Zapata-Cardona and Luis Miguel Marrugo Escobar

Abstract The goal of this research is to study how the statistical component of fifth-
grademathematics textbooks inColombia contributes to the development of students’
critical citizenship. This research followed a socio-critical perspective. Content anal-
ysis was the technique used to make sense of the data produced by analyzing seven
mathematics textbooks, and the units of analysis were 261 tasks in the statistical
components. The results show that the contexts of the tasks were mostly hypothet-
ical with very few tasks presented in real contexts. The tasks mainly functioned as
platforms to introduce measurement calculations and application of statistical pro-
cedures. When the tasks were presented within real contexts, the conditions were
not used to the fullest extent to contribute to the development of students’ critical
citizenship. The tasks promoted mainly statistical and technological knowledge over
reflective knowledge, failing to contribute to the students’ socio political awareness.

Keywords Critical citizenship · Statistics education · Textbooks · Textbook tasks

17.1 Introduction

Literature suggests that students in compulsory education learn a great deal of infor-
mation about statistical concepts and procedures that they are unable to use when
confronted with real world problems (Bakker et al. 2012). Students learn to manipu-
late statistical symbols to perform well on school exams, but such practices are use-
less in out-of-school situations (Roth 1996). This phenomenon reveals a dichotomy
between school knowledge and the student world, which is promoted mainly by the
way in which statistics is taught—fragmented and procedural [some authors call it
inert knowledge (Bakker and Derry 2011)] and disconnected from the context in
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which knowledge is produced. In an era of information and technology, schooling
does not need to focus on factual knowledge; instead, it could focus on developing
students’ critical citizenship—a quality of thought that supports students “to be crit-
ical citizens who can challenge and believe that their actions will make differences
in society” (Giroux 1988, as paraphrased in Skovsmose 1992, p. 2). To accomplish
this goal, many authors have argued that teaching should encourage the mathemat-
ical process of modelling in real contexts (Barbosa 2006; Biembengut and Hein
2002; Skovsmose 1992; Stillman et al. 2013) imbedded in critical issues of society
(in the sense proposed by Skovsmose 1999), and we support that argument. Criti-
cal citizenship emphasizes awareness of the social/political context (Stillman et al.
2013), promotes environmentally and socially aware citizens, and develops a critical
disposition towards the surrounding world.

Textbooks are essential tools in the educational system in different societies.
Teachers and students as well as parents use textbooks as curricular guidelines.
For many teachers, textbooks provide resources for the design, implementation and
assessment of statistics lessons and can influence the way teaching practice is ori-
ented. Particularly in Colombia, teachers who have the responsibility of teaching
statistics are mathematics teachers with a very unsteady statistics background, and
textbooks can give them the security they lack. Taking into account the role of the
textbooks as essentialmaterials in the educational system,we explore the relationship
among the statistical components of mathematics textbooks and students’ opportu-
nities to develop socio-political awareness. The research question explored in this
research is: To what extent does the statistical component of fifth-grade mathematics
textbooks in Colombia have the potential to play a transformative role in developing
students’ critical citizenship?

Colombian curriculum guidelines do not specifically address the development
of critical citizenship. In fact, Colombian curriculum guidelines are more focused
on making explicit the minimum performance standards and contents that students
have to master at the end of the school year than on developing critical thinking as
members of society. However, positioned in a critical epistemology of knowledge,
we consider that, “[…] education must take part in efforts to educate students to be
critical engaged citizens” (Barbosa 2006, p. 294). In other words, the development
of critical citizenship is the ultimate goal of education. Students’ knowledge should
not be isolated from the social and cultural environment in which they live. There
is a very shortsighted view when the curriculum focuses exclusively on procedures.
Nowadays, statistics education in many places in the world is focusing attention
beyond being a simple methodological science. For example, the mission statement
of the American Statistical Association includes the goal of “using our discipline to
enhance human welfare” (Lesser 2007). This statement means that statistics should
be a tool to help citizens understand and transform their world in ways that go beyond
just learning statistical concepts and procedures. The goal of the work described in
this chapter is to make public the opportunities to develop critical citizenship from
curriculum materials in Colombia.
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17.2 Theoretical Framework

17.2.1 Critical Citizenship

We understand critical citizenship as an intellectual tool oriented to educate crit-
ical and aware citizens who have the responsibility to participate in society and
contribute to its transformation. Critical citizens go beyond mastering statistical (in
general, scientific) skills and use them to understand and transform critical issues in
society. Some authors have referred to the same construct but using different lan-
guage. For example, Giroux (1988) talks about critical democracy to refer to the
possibilities of thought—rooted in a spirit of critique—that enables people to partic-
ipate in the understanding and transformation of their society. D’Ambrosio (1999)
and Skovsmose (1992)—possibly inspired by the ideas of literacy from Paulo Freire
(Guerrero 2008)—talk about mathemacy and matheracy respectively. In their dis-
cussions, mathemacy is the mathematics for equity and democracy. It is a fusion
of mathematics with democracy to educate students to be critical, engaged citizens.
Matheracy offers “a much broader dimension to mathematical thinking, stressing its
value as an instrument for explaining, understanding and coping with reality in its
broad sense. Matheracy is the main intellectual instrument for the critical view of
the world” (D’Ambrosio 1999, p. 150). Matheracy has a strong connection with the
real context—called the “world outside” by D’Ambrosio.

Barbosa (2006) assumed a socio-critical perspective in which the teaching of
mathematics should contribute to the critical understanding of the surrounding world
and should promote reflection on the role of mathematics in society. From this per-
spective, one of the aims of mathematics in school is to produce critical, politically
engaged citizens. According to Barbosa, the context needs to be extracted from stu-
dents’ everyday lives or other sciences that are not pure mathematics. It is essential
that the contexts are real instead of hypothetical or fictional. The term real within
a socio-critical perspective means that the context is tied to social facts and critical
issues of society. The real context has to touch students’ lives because the meanings
are negotiated, and the inferences are linked to the students’ specific real-world prob-
lems. Stillman et al. (2013) use the expression socio-critical competency to refer to
the development of critical dispositions emphasizing awareness of the social/political
context and state that the contexts related to social, economic or environmental indi-
cators have potential for enhancing an understanding of the world.

Skovsmose (1992) refers to a similar construct called democratic compe-
tence—critical citizenship—when discussing the development of the required skills
for “children’s and adolescents’ later participation in democratic life as critical cit-
izens” (p. 3). Finally, Valero (2002) calls it citizenship education1 referring to the
development of citizen awareness. She argues that citizens do not act in the world
exclusively in terms of their cognitive dimension, but they participate in a social-

1This is a translation by the authors. The expression in Spanish is Formación ciudadana.
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economic-politic-historic-cultural world. Her point of view implies the inclusion of
real references related to social facts or problems in the teaching of mathematics.

This literature review shows that critical democracy, matheracy (or mathemacy),
socio-critical competency, critical citizenship, and citizenship education are different
expressions referring to a similar notion, that in this paper is called critical citizen-
ship. All the authors agree with the importance of connecting the school to the “world
outside” through real contexts. According to Skovsmose (1992), in the process of
developing democratic competency (critical citizenship), three types of knowledge
come into play: mathematical knowledge, technological knowledge and reflective
knowledge. To develop critical citizenship, reflective knowledge should be privi-
leged over mathematical and technological knowledge. Mathematical knowledge is
linked to the mathematical skills, including competencies to reproduce mathemati-
cal thinking, theorems, and proofs as well as mastering a variety of algorithms. In
this research, the mathematical knowledge is the statistical knowledge (i.e. required
knowledge to calculate a central tendency measurement). Technological knowledge2

is the knowledge needed to develop and use the technology (i.e. required knowledge
to represent data in a graphic). Reflective knowledge is meta-knowledge based on
broad interpretations and previous knowledge. The starting point is to understand
the situation in which the technological knowledge comes into play, but the goal is
the reflection on the ethical and social consequences of technology in society (i.e.
assessment of the social consequences of a study that uses per capita income of a
population as an estimate of the quality of life when there are strong inequities within
the members of the community). Reflective knowledge could lead to different kinds
of questions: Are we using the appropriate statistical summary? Are the results reli-
able? Can we use the result effectively? Can we say something about the quality of
life using other methods? Reflective knowledge takes into account the mathematical
and the technological knowledge.

17.2.2 Context in Developing Critical Citizenship

The statistics education community has conventionally valued the context of the data
in teaching statistics. Cobb and Moore’s statement about the important of context in
statistics is well known: “data are not just numbers, they are numbers with a context”
(1997, p. 801). In that regard, according to Pfannkuch and colleagues (2016), the
modeler goes back and forth between mathematics and reality in the modelling
activity, and the context is the source of meaning (Cobb and Moore 1997). However,

2Skovsmose uses the context of motoring to clarify the differences among technological and reflec-
tive knowledge. Technological knowledge is related to the skills required to construct and repair a
car while the reflective knowledge is related to the skills required to drive a car and to assess the
social consequences of car production. “Technological knowledge itself is unable to predict and
analyse the results of its own production; reflections are needed. The competence in constructing
cars is not sufficient for the evaluation of the social consequences of car production” (Skovsmose
1992, p.7).
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in a socio-critical perspective, the context goes beyond the scope that the statistics
education community traditionally has given to it.

In the socio-critical perspective, the development of critical citizenship has a
close relation to the context in which the tasks are imbedded. According to Stillman
et al. (2013), real contexts are fundamental to promote the development of critical
citizenship. Other authors have stated that framing statistics in real world situations
could constitute a way to study and transform critical issues in society. Thus for
example, Lesser states “some datasets from the real world may have the power to
effect a lasting appreciation of or even commitment to statistics as a tool to help
understand (and maybe improve) some of our society’s most profound or pressing
matters” (2007, paragraph 1). The context is not only an excuse to frame statistical
problems in attractive ways but a setting in which students learn about the world
in which they live, explore it empirically and get tools to critically act and react.
While this process of developing awareness is taking place, students learn content
and statistical tools to make sense of their world. Thus, reflective knowledge is the
ultimate goal in the socio-critical perspective while statistical and technological
knowledge are simultaneously developed.

The purpose of curriculum materials is to support teaching, facilitate students
learning (Travé González and Pozuelos Estrada 2008) and help students to master
skills (Mateos Montero 2008). When an additional goal to support students trans-
forming critical issues of society is added, context becomes essential. Curriculum
materials based on social, economic and environmental contexts allow students to
develop skills in the management of statistical tools but also to form their social con-
sciousness. In this sense, the formative power of statistics and its connection to human
activity is emphasized. Statistics is the result of human construction; therefore, it is
an activity that responds to the requirements of culture and is born of the needs of the
human being. “The objects and the scientific activity are social and cultural results”
(Etchegaray 2010, p. 14); therefore, curriculum materials to support the teaching
of statistics should not be isolated from the human condition, nor from social and
cultural contexts. In general, sciences are a response to problems of anthropological
nature that arise in relation to the physical, biological and social environment in
which the human being lives (Etchegaray 2010). Taking into account this consider-
ation, curriculum materials to teach statistics should address this relationship of the
human being with nature (in the sense expressed by Radford 2016).

Accumulation of statistical knowledge is not enough for developing critical cit-
izenship. To accomplish this goal, tasks should be framed in contexts that students
can study critically. Curriculum materials should include nontrivial tasks related to
critical issues of society (environmental problems, social inequalities, gender bias,
social indicators) offering opportunities for students to reflect upon the context of
these tasks as they learn or apply the associated statistical content, procedures and
tools. Teaching statistics using critical issues of society “would also include students
developing a sense of empowerment to be able to use statistics to “talk back” to or
change the world” (Lesser 2007, paragraph 9).

Framing tasks within real contexts could function as a strategy to support the
development of students’ reflective knowledge. Such a strategy allows students to
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move back and forth between the real world and the formalities of the statistical
science. This strategy can also help to overcome inert, fragmented and disconnected
statistical knowledge—disengaged from the student world—and contribute to the
understanding and transformation of society. It has the potential to link concepts,
statistical reasoning, investigative processes, and real social contexts.

17.2.3 Context in Developing Statistical Reasoning
and Thinking

Framing tasks in real contexts to teach statistics is not only important for the devel-
opment of critical citizenship but also for the development of statistical thinking and
statistical reasoning. Literature has shown that traditional approaches to teaching
statistics have focused predominantly on skills, concepts and procedures, failing to
lead students to think and reason statistically (Ben-Zvi and Garfield 2004). Using
problems in real contexts to teach statistics could have the potential to promote
statistical thinking and reasoning.

In this regard, Pfannkuch and Wild (2004) have indicated that one approach to
contribute to students’ development of statistical thinking is by solving real world
problems. They suggested that real world problems help students in making predic-
tions, seeking explanations, finding causes within concrete contexts. According to
the authors, statistical thinking is a construct related to understanding the big ideas
about variation, sampling, and transnumeration, but it also includes being able to
understand and utilize the context of a problem in forming investigations and draw-
ing conclusions. Pfannkuch and Wild talk about statistical thinking as an integration
of contextual knowledge and statistical knowledge. The contextual situation perme-
ates the statistical summaries and any type of analysis. Statistical thinkers are able
to make inferences from data but also to critique and evaluate the result of a problem
solved.

According toGarfield (2002), and later expanded byBen-Zvi andGarfield (2004),
statistical reasoning may be defined as the way people reason with statistical ideas
andmake sense of statistical information. This involves making interpretations based
on sets of data, representations of data, or statistical summaries of data. Reasoning
means understanding and being able to explain statistical processes and being able to
fully interpret statistical results within a particular context. Both statistical reasoning
and thinking have strong connections to the context.

17.2.4 Research in Textbooks

A textbook is an extensive printed object intended to guide the student’s work
throughout the school year in a specific area of knowledge (Johansson 2003).
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Research in mathematics textbooks is a field with a recent history, and much of
the development of this line of research has taken place in the last three decades
(Fan et al. 2013) and has moved in different directions. Some studies have explored
the organization of the content presented in the textbooks (González-Astudillo and
Sierra-Vasquez 2004; Jones and Fujita 2013; Mesa 2000; Otte 1986; Salcedo 2015).
Other studies have set their sights on the coherence among textbooks and public
policy and research (Borba and Selva 2013; Cantoral 1997; Chandler and Brosnan
1995; Johansson 2003; Usiskin 2013); others have studied how students (Rezat 2013)
and teachers use the textbook (Nie et al. 2013; Remillard 2005). Other studies have
focused on historical studies of textbooks (González-Astudillo and Sierra-Vasquez
2004; Howson 2013; Pepin et al. 2013; Xu 2013). Finally, another group of stud-
ies examined textbooks from critical standpoints or in other words, the possibilities
of the textbooks to contribute to the development of the social dimension of the
subjects who use them (Herbel-Eisenmann 2007; Stillman et al. 2013; Österholm
and Bergqvist 2013). This suggests that while research about textbooks has focused
on specific aspects of the texts such as content, use, coherence with public policy,
or historical revision, very few studies have conceived the textbook as an instru-
ment with transformative capacity in the educational process. Some authors have
considered it “excessive to believe that a textbook can or should even cause a vital
transformation. It is one of the materials provided to use in the classroom, but its
influence should not be overestimated”3 (Prendes-Espinosa 2001). Contrary to this
approach, we feel that the textbook is not only an instrument to disseminate objective
knowledge—technical and intransformable—that students have to assimilate, but it
should be a tool to support learning as a “communal acquisition of forms of reflec-
tion of the world” (see Footnote 3) (Radford 2006, p. 114), and “the process that
constitutes our human capacities” (p. 114). Consequently, it is necessary to deepen
the study of the textbook as a tool that supports the development of students’ critical
citizenship. This research is a contribution in that direction.

17.3 Methodology

The research question explored in this study is: to what extent does the statistical
component of fifth-grade mathematics textbooks in Colombia have the potential to
play a transformative role in developing students’ critical citizenship. To answer that
question, it is necessary to study what is in the textbooks and to study the context
in which the tasks are proposed. For that reason, the technique to make sense of the
data collected was content analysis. Although content analysis can be systematic,
objective and quantitative, it moves between “the rigor of objectivity and the fertility
of subjectivity” (López-Noguero 2002, p. 173), and attempts to uncover the hidden,
the “unsaid” of the documents. It reveals the internal structure of the information on
the sources of study.

3Translation from the authors.
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The documents studied were the statistical components of fifth-grade (age 10 and
11) mathematics textbooks available in printed format in the textbook market of the
Colombian educational system. Fifth grade is an intermediate moment in Colombian
schooling (10–11 years of age) that is appropriate to study textbook contribution
to the development of critical citizenship. The very first grades in the Colombian
educational system are dedicated to students’ integration into the school life, and
although there is use of textbooks, the use is sporadic and occurs under the close
orientation of teachers. Literature has shown that this is a common phenomenon, and
that from 4th and 5th grades school mathematics—both content and organization—is
essentially based on the use of the textbook (Johansson 2003).

Even thoughwe recognize that there are different formats of textbooks and that the
electronic texts are gaining recognition, we focused on themost popular format in our
socio-cultural context, which is the printed version. We selected the textbooks using
the textbook catalogue4 prepared by the Ministry of Education of Colombia to help
teachers and schools selecting their textbooks. The catalogue listed 28 mathematics
textbooks from ten different publishers from 2005 to 2014. If a publisher had several
editions of a textbook in that 10-year period, we only took into account the most
recent edition. Although the catalogue included textbooks in English for bilingual
education, we only considered textbooks in Spanish since it is the official language of
instruction. The catalogue listed some textbooks that were not available in themarket
any longer. We only included those available in the textbook market at the beginning
of 2014.We validated the information with two bookstore visits.5 Table 17.1 presents
the selected textbooks.

The units of analysis were the tasks in the statistical components of the math-
ematics textbooks proposed for the students. A statistical task is what the student
was asked to do, such as: application of algorithms, symbol manipulation, design
representations, transformation of problems in expressions or models (Shimizu et al.
2010). In other words, it is the assignment proposed for the students in the textbook
after introducing a statistical topic. We were not interested in how the tasks were
enacted in class but in studying the tasks themselves, as they seem to be intended
by the designers, in terms of the potential role in developing students’ critical citi-
zenship. The use of the task as the unit of analysis is justified according to Trends
in International Mathematics and Science Study—TIMSS 1999 in which more than
80% of the time of the regular mathematics class students spend it in mathematical
tasks (Hiebert et al. 2003). An example of a task appears in Fig. 17.1. We designed
and applied an instrument to each of the 261 tasks proposed in the statistical com-
ponent of the selected textbooks. We did not use any criterion either to include or
exclude tasks; every task was analyzed. The instrument focused on the nature of
the context (real, hypothetical, theoretical, without context), dimension of context

4Cataloguewas available on line, at the beginning of 2014, in the following link http://aplicaciones2.
colombiaaprende.edu.co/textos_escolares/contenidos/resultado_busqueda.php. However, the link
is not available anymore.
5One of the bookstores has its catalogue available on-line. Catalogue visited
on February 11, 2014 http://www.panamericana.com.co/categorias/categoria.aspx?p=
reN6vDa2UjMBxvdrQqQYWeLel8MiV6lZ

http://aplicaciones2.colombiaaprende.edu.co/textos_escolares/contenidos/resultado_busqueda.php
http://www.panamericana.com.co/categorias/categoria.aspx?p=reN6vDa2UjMBxvdrQqQYWeLel8MiV6lZ
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Table 17.1 Selected textbooks

Textbook name [Translation into English] Publisher

Los Caminos del Saber 5 (Joya-Vega, et al.
2014) [The Paths of Knowledge 5]

Santillana

Avanza Matemáticas 5 (Silva-Calderon, 2014)
[Forward Mathematics 5]

Norma

Enlace Matemáticas 5 (Acevedo-Caicedo and
Pérez-de-Díaz, 2013) [Mathematics Link 5]

Educar

Matemáticas en Red 5 (Duran et al. 2013)
[Mathematics in the Net 5]

Ediciones SM

Matemática Experimental 5 (Uribe-Cálad,
2013) [Experimental Mathematics 5]

Uros Editores

Zona Activa 5 (Mejía-Fonseca et al. 2011)
[Active Zone 5]

Voluntad

Contacto Matemático 5 (Beltrán-Beltrán et al.
2014) [Mathematics Contact 5]

Editorial Educativa

(political, social, economic, scientific, historical, cultural), type of knowledge pro-
moted according the classification of Skovsmose (1992)—statistical, technological,
or reflective. As wementioned before, reflective knowledge could combine statistical
and technological knowledge. Consequently, a task could have been doubled coded;
however, we only coded the most prevalent type of knowledge. A task in a real con-
text gives accurate information that can be contrasted with external sources—data
bases from statistical departments, historical records, or scientific data, for example:
“number of kilometers different vehicles travel with a gallon of gasoline” (Acevedo-
Caicedo and Pérez-de-Díaz 2013, p. 67). A task in a hypothetical context provides
no verifiable information, for example: “the age of young people registered for a
contest was recorded and presented in the diagram. Construct the frequency table”
(Beltrán-Beltrán et al. 2014, p. 257). The data of a task in a theoretical context can be
simulated by using manipulatives or software or by applying combinatorics theory;
for example, “write all the pairs after throwing two dice” (Joya-Vega et al. 2014,
p. 244). A task without context is presented away from any connection to the world;
for example, “write the mode of each data set, A� [2, 3, 4, 4, 5, 6, 7]” (Joya-Vega
et al. 2014, p. 180). The dimension of the context was only analyzed in the tasks of
real nature. The dimension has to do with the range over which the real tasks extend
(social, political and others). As a validation strategy, the two researchers applied
the instrument to each task independently and then compared the coding. The results
revealed a high level of agreement in the coding; those in which the researchers dis-
agreed were resolved by discussion. To illustrate the application of the instrument,
Fig. 17.1 shows an example of a task. In that example, the nature of the context of the
task was coded as real, since the exchange rate from US dollar (USD) to Colombian
peso (COP) can be contrastedwith historical reports in newspapers. The dimension of
the context was coded as economic, since the task relates twowell-known currencies.
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Fig. 17.1 Example of a task taken from Beltrán-Beltrán et al. (2014, p. 254)

The type of knowledge promoted was coded as technological (knowledge needed to
develop and use technology) since the task asked the students to use information
already given to construct a new graphical representation.

17.4 Results

By studying the nature of the context linked to the tasks (Fig. 17.2), we found that the
majority were hypothetical (59.3% of the total, 155 tasks), and very few were real
(11.5% of the total, 30 tasks). This finding was similar when we analyzed the nature
of context discriminated by textbook (Fig. 17.3). Although the textbooks produced by
Norma Publisher (Silva-Calderon 2014) and by Voluntad Publisher (Mejía-Fonseca
et al. 2011) stood out among the rest with a larger number of tasks in real contexts,
the number of these was still small compared to the tasks in hypothetical contexts.

Fig. 17.2 Nature of the context of the tasks in textbooks
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Fig. 17.3 Nature of the context of the tasks by Publisher

Taking into account the socio-critical perspective, this is a troubling result since
real contexts are essential to promote the development of critical citizenship. We
cannot understand the world by turning our backs to the realities of the world. The
problemwith non-real (hypothetical and theoretical) or absent contexts is that instead
of helping students improve their understanding of the world, such contexts offer a
strange view of the reality and a limited perspective of the implementation of school
mathematics in the world (Stillman et al. 2013). Furthermore, the tasks in non-real
contexts keep promoting the division between the world and the school, and students
continue to believe that school knowledge is only useful and functional in school and
that the world needs another type of knowledge. To develop a critical view of the
world students should be given tasks that model social phenomena, where context is
fundamental.

Although the tasks presented in real contexts were unusual, those were analyzed
according to the dimension of context (see Fig. 17.4).Most of the tasks in real contexts
were linked to sports (e.g., number of athletes participating in the National Games in
2012, by gender, by state and by sport category; medals won at the National Games in
2012 by state;medalswon by athletes at the PanAmericanGames inRio de Janeiro in
2007) followed by scientific contexts (e.g., life span of animals, fuel consumption by
type of vehicle, number of species per fungi group, weight of an elephant by numbers
of days after being born), social contexts (e.g., production of waste by country,
number of people per state in Colombia) and artistic contexts (e.g., number of strings
by instrument in the National Symphony Orchestra, average time to repeat a tongue-
twister poem in the classroom, number of magicians attending the International
Day of Magic in Spain). Very few tasks were presented in economic contexts (e.g.,
variation of the price for a pound of coffee from 2004 to 2009, minimum wage in
Colombia from 2005 to 2009, performance of the US dollar exchange rate in the first
half of the year), and political contexts. Even though some of the real contexts were
interesting, the context was exclusively used to introduce statistical measurement
calculations or the construction of graphical representations. There was not a single
reference in which tasks in real contexts were used as an avenue to enhance students’
critical citizenship.

To contribute to the development of the students’ critical citizenship, understand-
ing and involvement in the world, the tasks should be presented in real contexts that
reflect critical issues of society. Tasks related to population growth, food production,
spread of diseases, climate change, diet, quality of life, poverty, poverty measures,
socio-economic indicators, human development indicators, environmental impact
have the potential to contribute to these objectives (Stillman et al. 2013).
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Fig. 17.4 Dimension of real contexts within the textbooks

Another interesting result was the type of knowledge promoted for the tasks. A
task can promote statistical, technological or reflective knowledge (or more than
one simultaneously). The socio-critical perspective focuses primarily on promoting
reflective knowledge where the statistical or technological knowledge are associated
with reflective knowledge. We found that the textbooks tasks promoted essentially
statistical knowledge (60.9% of the tasks), followed by technological knowledge
(37.9% of the tasks). Only three tasks (1.1%) were focused on stimulating reflective
knowledge (Fig. 17.5). The development of critical citizenship is associated with the
opportunities students have to engage in reflection; these opportunities are diminished
if there is little chance to connect students with their world.

The following is an example of a task in one of the textbooks that promoted
reflective knowledge: “Identify a problem in your school. Carry out a statistical pro-
cess. Use the analysis of the information to generate strategies to solve the identified
problem” (Duran et al. 2013, p. 51). The task is very simple, but it articulates several
elements (1) positions the task in a real context that is familiar and pertinent to the
students, (2) requires the use of statistical tools to collect and analyze data (acti-
vates statistical and technological knowledge), (3) challenges the students to look
for solutions to a contextual problem (activates reflective knowledge).

Some tasks presented in real contexts that had potential for introducing, dis-
cussing, reflecting and modelling social phenomena were scenarios exclusively used
to introduce the calculation of statistical measurements or probabilities. Those were
interesting opportunities to promote the development of critical citizenship in stu-
dents that were lost. For example, a task presented in the context of waste production
(see Fig. 17.6) reduced the student’s challenge to transfer information given in a bar
graph to a frequency table and to calculate the average production per day.

Fig. 17.5 Type of knowledge promoted by the tasks
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Fig. 17.6 A task in a real context [from Matemática Experimental 5, (Uribe-Cálad 2013, p. 249)]

A taskwith excellent characteristics tomodel real phenomena andwith conditions
that could promote reflective knowledge was limited to promoting statistical (aver-
aging) and technological (chart reading) knowledge. A task like this should offer
the students an opportunity to discuss the environmental impact of waste produc-
tion and the ways in which schools, families and individuals could help in reducing
the environmental impact. To do that, the task should not focus only on the statis-
tical measures or procedures or in the visual representation of data. Textbook tasks
should take students beyond simple calculations and offer opportunities to discuss
the context and find and collect relevant data related to the task. Textbooks should
ask questions like:What do the numbers say about garbage production in the world?;
What can you say about the differences in garbage production between Japan and
Spain?; Could you develop a strategy to estimate the amount of garbage your class
produces annually?; Can you create a strategy to collect data related to garbage?
Could you offer ideas of how to reduce garbage production in your class? This find-
ing is in line with the literature that has found similar results. When tasks use the
context of social phenomena, statistical and technological knowledge is privileged
over reflection about social or cultural concerns (Stillman et al. 2013).

17.5 Conclusions and Implications

This chapter described the relationship between the statistical components of math-
ematical textbooks and the development of students’ critical citizenship. The main
findings reveal that the nature of the tasks proposed in the textbooks is essentially
hypothetical; that when the tasks are presented within real contexts, the context is
rapidly abandoned to focus exclusively on statistical computations; and that there
is a strong emphasis on statistical and technological knowledge over knowledge for
social development. The imbalance among the different types of knowledge cannot
be attributed exclusively to the textbook. Although the way in which teachers imple-
ment the textbook material in the classroom was not the goal of this study, it raises a
potential limitation of this research. How the tasks are implemented in the classroom
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and how the teacher complements them with current information from students’ par-
ticular context to promote critical citizenship requires further investigation. Some
teachers may add social context when none seems to be present in the task, while
others might reduce any social context or reflection—and this would be important
to know. It would also be important to know if the findings for grade 5 are true for
other grades, particularly in the upper grades.

Perhaps textbooks by themselves fail to prepare students for critical citizenship,
but they can become important tools to bring such a curriculum to the classroom. If
the tasks presented in the textbooks are inscribed within real contexts—not only to
provide scenarios to calculate statistical measures or graphical interpretations—and
promote reflective knowledge, teachers might be more likely to help students make
connections between statistics and the world and to support the development of
socio-political aware citizens.

What was found in relation to the context that accompany the tasks might suggest
that the textbooks studied carry conceptions of knowledge anchored in philosophical
positions close to Platonism and formalism. In Platonism, mathematics (and other
sciences) take place in the world of the ideas where abstraction is privileged. In a
similar way, formalism considers mathematics separated from the empirical world
(Skovsmose 1999). Consequently, the knowledge that seems to be promoted by the
textbooks is often disarticulated, fragmented, inert, rigid, and formal (Makar et al.
2011, Zapata-Cardona and González-Gómez 2017). Perhaps it is time to think about
textbooks from philosophical standpoints in which learning is not reduced to abstract
and formal knowledge but to develop forms of reflection about the world (Radford
2006).
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Chapter 18
Critical Mathematics Education
and Statistics Education: Possibilities
for Transforming the School
Mathematics Curriculum

Travis Weiland

Abstract This chapter discusses how ideas from critical mathematics education and
statistics education intersect and could be used to transform the types of experiences
that students have with both mathematics and statistics in the school mathematics
curriculum. Key ideas from the critical mathematics literature are described to pro-
vide a background from which to discuss what a critical statistics education could
be. The chapter ends with a discussion of some of the major barriers that need to be
considered to make such a vision a reality and possible future directions for moving
towards making a critical statistics education a reality.

Keywords Critical literacy · Critical mathematical education · Statistics education
Statistical literacy

18.1 Importance of Statistics in School

Data are everywhere in society today, aimed at influencing our decisions about
what toothpaste to buy, what politician we should vote for, or what medicine is
the best treatment for what ails us (Steen 2001). Today huge breakthroughs in sci-
ence, medicine, economics, and public policy are being made using advanced data
modeling techniques (Davidian and Louis 2012). Statistics, which is often described
as the science of data, is becoming an increasingly important topic of study because
of our society’s reliance on data (Ben-Zvi and Garfield 2008; Gattuso and Otta-
viani 2011). Experts and policy makers in many fields are increasingly basing their
decisions on statistical results, using data to draw out new insights about the world
(Pfannkuch 2008). In data driven societies, it is crucial that individuals are able to
interpret and critically analyze quantitative data and statistics (Ben-Zvi and Garfield
2004) to be critical citizens (Skovsmose and Valero 2008). As the need has increased
for governments to become more transparent in their operation and decision making,
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it has become crucial for citizens to have a strong statistical literacy to make sense of
technical reports (Ullmann 2016). Furthermore, recent votes in both England (Brexit)
and the United States (2016 Presidential Election) were fraught with misinformation
campaigns many of which included the misuse of data based arguments (Belham
2016), which points to the importance of statistical literacy for being an engaged
critical citizen. One of the commonly held goals of public education in the United
States is to prepare students to become citizens of society (Labaree 1997). In light
of the data centric focus of modern societies, a goal of public K-12 education should
include teaching students to be statistically literate active citizens in their data-driven
societies.

As the prevalence of discourse using data increases it is important that students
are able to critically interpret such discourses in their context in society. The term
critical is used here not in the critical thinking sense that is generally used in education
drawing upon the traditional ways of knowing of different disciplines. Instead it is
used in the way critical or emancipatory pedagogical writings describe to interrogate,
problematize, and reconstitute discourses that are dehumanizing, unjust, and position
groups as others (Darder 2014; Freire 1970; Giroux 2011; Gutstein 2003). In the
case of statistics this involves using statistics to investigate the underlying structures
and hidden assumptions present in society and also to critique and understand the
hidden assumptions in the use of statistics. Many assumptions come with the use of
quantitative data that are not always apparent in the contexts students are given to
investigate in their school classrooms.

This chapter presents an argument, rooted in past scholarship, for a critical statis-
tics education in conjunctionwith criticalmathematics education (Skovsmose 1994a)
in K-12 education with the intention of giving students experiences with reading and
writing the world with mathematics (Gutstein 2003, 2006, 2013) and statistics. This
is not an entirely new idea as Lesser (2007) has introduced the notion of teaching
statistics with social justice, and a number of scholars have begun to delve into the
complexities of raising sociopolitical issues in statistics classes (e.g. Bergen 2016;
Engel 2016; Gray 2016; Poling and Naresh 2014). Also Gal (2002) began to draw
Freire’s (1970) ideas into his work on statistical literacy more than a decade ago in
terms of critical dispositions. However, the majority of this work has been done or
written for a post-secondary statistics education audience, and only a small subset of
most societies’ citizens goes on to post-secondary education. The use of data based
arguments and statistics today is exploding in almost every setting making it crucial
for all individuals to have experiences to learn and use statistical concepts and prac-
tices to make sense of the types of sociopolitical issues they will need to navigate
and make sense of in their daily lives as citizen’s in today’s modern societies.

18.2 The Complex Nature of Statistics in the School Setting

K-12 educational settings are very different and far more complex than most
post-secondary settings in several regards. To begin with students in K-12 settings
are not yet considered adults and are typically under the direct care of their parents
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Fig. 18.1 The situatedness
of statistics in school

and families in many nations, which also means that families also commonly have
a voice in their children’s education. Past research has shown parents can be quite
influential in shaping what students are taught in mathematics classrooms (Boaler
2002; Herbel-Eisenmann et al. 2006). Unlike most post-secondary settings where
students predominantly self-select the institution and curriculum in which they wish
to participate, students in K-12 settings have little agency over the institutions they
attend or the curriculum they experience, which is predominantly determined by
geography and governmental policy. Furthermore,what students are taught in schools
must be negotiated by a significant number of stakeholders including: parents, policy
makers, teachers, researchers, disciplinary experts, politicians, etc. (Apple 1992).
These stakeholders in turn bring all their own beliefs, values, and perspectives to
bear on shaping the school mathematics curriculum. Unfortunately, the result has
often been a very neutral mathematics curriculum, which does not address the truly
political nature of mathematics education or the formatting power it has in shaping
the world around us (Gutiérrez 2013a; Skovsmose 1994b).

The teaching and learning of statistics in the school setting is further compli-
cated because it is situated in the mathematics curriculum, as modeled in Fig. 18.1,
where it has only begun to gain a foothold in terms of statistical thinking and rea-
soning (Scheaffer and Jacobbe 2014). Furthermore, statistics is generally taught by
mathematics teachers who may have had little to no past experience with statistics
(Shaughnessy 2007), not by statisticianswho generally teachmuch of post-secondary
statistics. This means that many of the teachers directly shaping the curriculum that
students experience in the mathematics classroom are likely more enculturated in the
practices of the discipline of mathematics than they are of the discipline of statistics.
Unfortunately, as Eichler and Zapata-Cardona (2016) point out, empirical research
on mathematics teachers’ teaching of statistics in the K-12 setting has been lim-
ited up to this point. Pointing out some of the complexity of considering statistics
education in the K-12 school setting illustrates how different it is in many regards
compared to post-secondary settings where much of the statistics education work
around sociopolitical issues has been done.
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18.3 Critical Mathematics

The world today is faced with a multitude of challenges such as economic collapse,
poverty, resource depletion, climate change, polarization inwealth, extreme national-
ism, and immigration/migration. As a result more and more scholars are advocating
for bringing these issues into school classrooms (Apple and Beane 2007; Giroux
2011; Ladson-Billings 1995). Scholars in mathematics education have been advo-
cating for similar efforts in the teaching of mathematics as well. In consideration of
the social, political, and ethical dimensions of mathematics education, scholars in
mathematics education over the past two decades have begun calling for the use of
critical (Frankenstein 1994; Skovsmose 1994a; Wager and Stinson 2012) and cultur-
ally relevant pedagogies (Gutstein et al. 1997; Ladson-Billings 1995). These scholars
seek to create mathematics classrooms where students learn how to understand their
social, cultural, and political context in society as well as how to change that context.
There has also been a growing literature base in the field of mathematics education
based around incorporating social and political critique into the mathematics cur-
riculum (Gutiérrez 2009, 2013a; Skovsmose 1994a; Skovsmose and Valero 2008).
Many of these scholars argue for centering pedagogy around problem posing and
connecting content areas to fundamental questions of society rather than focusing
on neutral or trivial problems or contexts (Frankenstein 2009; Freire 1970; Gutstein
2006; Gutstein and Peterson 2013). This is a serious problem because as Skovsmose
(1994b) points out,

It is important to relate the idea of the invisibility of mathematics to the assumption about
the formatting power of mathematics, because if both assumptions are correct, we witness
a challenging and critical situation for mathematics education. This conflict has been for-
mulated as the paradox of relevance: on the one hand, mathematics has a pervasive social
influence and, on the other hand, students and children are unable to recognize this relevance.
(p. 82)

Critical mathematics scholars argue that students need opportunities to see and
experience the pervasive influences mathematics has on the social world. To clarify
how the word critical is used in this scholarship, Gutstein et al. (1997) bring up
an interesting point about critical mathematical thinking and how critical has two
meanings in this instance. One meaning for critical is in the mathematical sense as
in making sense of problems, creating arguments, making conjectures, critiquing the
reasoning of others, ideas that generally fall under the term critical thinking. We see
these in NCTM’s (2000) Principles and Standards, which have been taken up in a
wide variety of educational settingsworldwide. For example, the reasoning and proof
standard includes “make and investigatemathematical conjectures” and “develop and
evaluate mathematical arguments and proofs” (NCTM 2000, p. 56). There is also the
meaning of critical in the broad sense, using multiple perspectives to look at an issue,
and questioning the context in which one is situated and in education questioning
standards, curriculum and practices (Gutstein et al. 1997). It is this second meaning
of critical that critical mathematics education scholarship contributes to mathematics
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education. As Skovsmose (1994b) describes in his book Towards a Philosophy of
Critical Mathematics Education,

If educational practice and research are to be critical, they must address conflicts and
crises in society. Critical education must disclose inequalities and suppression of whatever
kind. A critical education must not simply contribute to the prolonging of existing social
relationships. It cannot be the means for continuing existing inequalities in society. To be
critical, education must react to the critical nature of society. (p. 22)

In Gutstein’s (2003, 2006) writings he discusses his work teaching mathematics
for social justice in urban public schools incorporating issues brought by his students
such as urban planning, stop and frisk, gentrification, and AIDs/HIV. He discusses
how he created challenging mathematics curriculum with students that pushed stu-
dents to be academically successful in mathematics but also provided students with
experiences using mathematical concepts to investigate and critique their own con-
text in society. Gutstein (2006) draws heavily from Paulo Freire’s literacy work,
which was done predominantly in Brazil to help the marginalized of that nation in
the latter half of the twentieth century to become literate, to make sense of and in turn
influence and improve their reality and position in their world. Freire and Macedo
(1987) discussed literacy in terms of reading the word and the world, learning to
make sense of symbol systems by using them in conjunction with making sense
of the world around oneself. They also discussed writing the word and the world,
emphasizing how literacy can empower people to make sense of the world around
them but to also influence and shape the world around them. Gutstein (2006) draws
heavily from these notions to describe how to envision reading and writing the world
with mathematics. He describes reading the world with mathematics as meaning:

to use mathematics to understand relations of power, resource inequities, and disparate
opportunities between different social groups and to understand explicit discrimination based
on race, class, gender, language, and other differences. Further, it means to dissect and
deconstruct media and other forms of representation. It means to usemathematics to examine
these various phenomena both in one’s immediate life and in the broader social world and
to identify relationships and make connections between them. (Gutstein 2003, p. 45)

This definition emphasizes how mathematical literacy can be used to read the
word, which increasingly includes mathematical and quantitative language (Steen
2001) and also to read the world, which has been structured based on quantitative and
technological discourses rooted in the abstract language of mathematics (Skovsmose
1994b). Reading the world with mathematics can in turn lead to writing the world
with mathematics, which Gutstein defines as:

using mathematics to change the world… I view writing the world with mathematics as a
developmental process, of beginning to see oneself capable of making change, and I refer
to writing the world for youth as developing a sense of social agency. A “sense” of social
agency captures the gradual nature of students’ growth-it is not an all-or-nothing proposition.
(Gutstein 2006, p. 27)

Writing the world with mathematics in this sense also implies being able to use
mathematics in a meaningful way for positively changing the world, which would
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seem to be very much in line with the goals of mathematics curriculum policy doc-
uments such as the Common Core Standards for Mathematics (National Governors
Association Center for Best Practices&Council of Chief State School Officers 2010)
in the United States. However, in that document’s description of its goal for mathe-
matics education, making every student college and career ready, there is no specific
connection made to changing the world for the better. It is neutral with respect to
ethics to guide what constitutes a positive change or to even consider positive change
in the context of mathematics, which is something that critical literacy emphasizes
(Giroux 1993) and that can be seen in Gutstein’s (2003, 2006) definitions of reading
and writing the world with mathematics.

Mathematics can be used to change the world in very unjust ways. For example,
consider the recent economic recession after the housing bubble burst. A number
of bankers were blamed for using their abilities with mathematics, in unscrupulous
ways, to cheat individuals out of large sums of their money, which sent the economy
into a downward spiral (Cohan 2015). Just because an individual has themathematics
skills and abilities to be ready for a career does not mean they have any ethical
principles behind how to use those abilities. If the goal of education truly is to prepare
critical citizens for participation in democracy (Apple and Beane 2007; Giroux 1989)
there needs to be some sense of developing ethics to guide such participation (Giroux
1993). Ethics is often linked to notions of fairness and social justice in mathematics
education (Boylan 2016) but is a very murky term used and taken up in a wide variety
of ways. I use the term ethics here broadly to mean a set of philosophical or moral
values that people use to make decisions in relation to others, their communities, and
the world at large.

The notions of critical mathematics and the idea of reading and writing the word
and the world with mathematics can be drawn on in considering how to in turn foster
students in K-12 school settings to read and write both the word and the world with
statistics. Critical statistics education is needed in spite of a growing literature base
around critical mathematics education because, as described in the next section, the
disciplines of mathematics and statistics are distinct.

18.4 The Disciplines of Mathematics and Statistics

Mathematics is a socially created dynamic body of knowledge with a social his-
tory, and with areas expanding and contracting over time situated in context (Bishop
1988; Davis and Hersh 1981). A common definition of mathematics drawing from
the Oxford English Dictionary is “the abstract science of number, quantity, and
space” (Mathematics n.d.). However, what is considered to be the specific scope and
knowledge of mathematics is socially agreed upon by members of the discipline
and changes with time (Davis and Hersh 1981), which makes it inherently political.
As a point of clarification, I am using the term political in the way it is commonly
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Fig. 18.2 The relationship
between the disciplines of
mathematics and statistics

used in sociopolitical perspectives, which is to describe any situation that involves
making a choice or decision as there are always multiple options or perspectives in
such situations, where one is chosen and advantaged over others and such decisions
are always situated in power relations. From the sociopolitical perspective defining
mathematics is political in the sense that its boundaries, practices, andwhat is consid-
ered knowledge are situated in, and shaped by, power relations between individuals
and institutions, where certain views and perspectives may advantage some, while
disadvantaging or silencing others (Gutiérrez 2013b). Statistics formally came into
fruition in the 18th century (Katz 2009; Stigler 1986) and has similar characteristics.
However, instead of being looked at as the science of quantity and space it is often
viewed as the science of data or measurement (Davidian and Louis 2012; Stigler
1986). Both mathematics and statistics are part of the mathematical sciences (Steen
2001). As Moore and Cobb (2000) describe, “mathematicians and statisticians share
a commitment to a process of pattern searching, generalization, and verification that
operates at a deep level, despite surface differences” (p. 22). Furthermore, mathemat-
ics and statistics are linked through probability, which is a part of mathematics that is
crucial to statistical inference (Fienberg 1992). However, statistics is its own distinct
discipline not a sub-discipline or branch of mathematics (Cobb and Moore 1997;
Franklin et al. 2007; Gattuso and Ottaviani 2011; Groth 2013), but it is inextricably
linked tomathematics asmodeled in Fig. 18.2. As Steen (2001) points out, “Although
each of these subjects shares with mathematics many foundational tools, each has its
own distinctive character, methodologies, standards, and accomplishments” (p. 4).

Some of the main differences between statistics and mathematics are discussed
in the literature and are described in the next section. This is done not to create
divisions or to argue for taking statistics out of themathematics curriculumbut instead
to embrace the diversity of these two disciplines and how they provide different
ways of looking at the world. Furthermore, such differences can position statistics
as a powerful entry point for interrogation of sociopolitical issues in the school
mathematics curriculum, which is discussed later.
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18.5 Differences Between Statistics and Mathematics

There is a strong literature base that discusses the differences between the discipline
of mathematics and that of statistics (Cobb and Moore 1997; Franklin et al. 2007;
Gattuso 2006; Gattuso and Ottaviani 2011; Groth 2007, 2013; Pfannkuch 2008). The
major differences discussed in these works are context, variability, uncertainty, and
inductive versus deductive reasoning.

In statistics, “data are not just numbers they are numbers with a context” (Cobb
and Moore 1997, p. 801). This is a departure from mathematics, particularly what is
taught in schools, where numbers are frequently presented and used in their abstract
form without any connection to context (Gattuso and Ottaviani 2011). As Cobb and
Moore (1997) discuss, in mathematics, context is generally stripped away from a
problem to try and uncover, or abstract, the underlying mathematical structure of
the context. However, in statistics, the analysis of data cannot be considered without
thinking about the context of the data (Cobb and Moore 1997; Franklin et al. 2007;
Wild and Pfannkuch 1999). There is a constant interplay between considering a
statistical problem and the context of the problem (Groth 2007; Wild and Pfannkuch
1999).

The need for the discipline of statistics comes from the omnipresence of variability
(Cobb and Moore 1997) in the world. Simply stated in most cases individuals or
objects that we study are not all the same for every attribute. Therefore statistics
focuses on how attributes can vary from individual to individual or object to object.
In statistics there are four main kinds of variation: measured, natural, induced, and
sampling (Franklin et al. 2007).

It is important to point out that variation is not absent from mathematics, but that
it is considered in a very deterministic way. Consider a linear function, the values
of dependent and independent variables covary with one another but in a specific
unchanging way (e.g. “as x increases by 2 y increases by 3”). The discipline of
statistics uses the concept of linear functions. However, instead of determining what
the value of the dependent (y) variable will be, given the value of the independent (x)
variable, the function is used to “fit” the data. In other words, a linear function can be
used to summarize the relationship between an independent or explanatory variable
and a dependent or response variable, where the accuracy of a prediction depends on
the amount of variation between the observed and predicted values of the response
variable explained by the explanatory variable in the model. This procedure is used
in an effort to create a linear function that best “fits” the data, but will only provide
predictions, which may not be very accurate depending on the amount of variation
the model can account for in the actual data values.

As a result of the omnipresence of variation in statistical investigations, there is
no certainty in the solutions. The end product of a statistical investigation is better
thought of as a well principled argument (Abelson 1995). Mathematics on the other
hand is generally treated in a very deterministic way, logically deducing a single
solution to a problem using theorems, axioms, and definitions from the community
of mathematics (Gattuso and Ottaviani 2011).
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Another main difference between statistics and mathematics is the type of rea-
soning generally used. Mathematics primarily relies on deductive reasoning using
definitions, axioms, and theorems, in a logical chain of reasoning, to come to a con-
clusion. For example, a student could use Euclid’s definition of a circle and his first
and third postulates to construct an equilateral triangle. At the same time Euclidean
geometry is based on certain unprovable assumptions such as the parallel postulate,
which if changed creates an entirely new type of geometry and way of viewing the
world (Katz 2009). The practice of statistics is often driven by a question for which
data are collected analyzed and interpreted to answer the question (Franklin et al.
2007; Wild and Pfannkuch 1999). It is from the data that information is empirically
derived, which is the hallmark of inductive reasoning. Similar to uncertainty this
can lead to issues in teaching statistics as teachers who have had few experiences
with statistics may attempt to deduce solutions from rules and assumptions to find
a single certain answer rather than inducing them from the data to find a range of
possibilities.

These differences can also lead to common statistics teaching practices that are
different from those of mathematics. In this regard, teaching concepts from statistics
is not the same as teaching concepts from mathematics, though clearly there are
parallels between the two (Franklin et al. 2007; Gattuso 2006; Gattuso and Ottaviani
2011). Since statistics is often situated within the mathematics curriculum at the
K-12 level, this position can give the impression that statistics is just a branch of
mathematics (Groth 2007). This is not to say that statistics should be taught outside
of mathematics at the K-12 level (Franklin et al. 2007; Usiskin 2014). However, it
is important to understand that statistics is a distinct discipline and as such there are
different strategies, habits of mind, and practices involved in teaching concepts from
statistics (Cobb and Moore 1997; Groth 2007). One approach is that of Gattuso and
Ottaviani (2011) who aim “to emphasize the necessity of complementing statisti-
cal thinking and mathematical thinking in school and generating didactic strategies
allowing statistics andmathematics to evolve together, in a harmoniousway” (p. 122).
They also state that statistics concepts and problems can be used to complimentmath-
ematical thinking and bring more context and students’ interests into mathematics
classrooms. For these topics to evolve together in K-12 curriculum teachers should
know both their similarities and their differences. How critical statistics could be
envisioned differently than critical mathematics based on some of the disciplinary
differences described in this section is elaborated on in the next section.

18.6 Differences Between Critical Statistics and Critical
Mathematics

Critical mathematics has had several decades to build a base of literature and create
examples for using mathematics for social justice. A number of the examples of
critical mathematics activities in the classroom involve concepts from statistics. This



400 T. Weiland

section presents two examples of such activities and points out how these activities
could be expanded to provide students with robust experiences involving statistics.

Skovsmose and Valero (2008) in their paper on Democratic access to mathemat-
ically powerful ideas use an example that involves drawing samples of eggs from a
population of eggs and seeing how many are infected based on a rate of infection
reported by the Dutch government. This is inherently a statistical task creating a
model based on chance to model getting an egg infected with salmonella. Some of
the questions the authors had the students consider as part of this task were:

The basic question to be addressed by this experiment has to do with the reliability of
information provided by samples. How can it be that a sample does not always tell the
“truth” about the whole population? And how should we operate in a situation where we do
not know anything about the whole population, except from what a sample might tell? How
can we, in this case, evaluate the reliability of numerical information? (p. 9)

These questions are very rooted in statistical practices. This activity discussed by
Skovsmose and Valero is meant to begin to get students to discuss the differences
between ideal mathematical calculations and figures from empirical data collection,
which is an important difference between the ways of knowing in mathematics and
those of statistics. However though sampling was discussed, there was no emphasis
on a discussion of variability, which would become a focal point if there had been
an explicit focus on teaching statistics in this activity. For example, students could
compare their samples across groups to facilitate a discussion of sampling variability,
which could be expanded upon to begin to introduce the idea of sampling distributions
as well as develop the ideas of standard error and margins of error to emphasize the
variability present in empirical work.

Again the point is not to separate mathematics and statistics as they are deeply
connected and statistics relies heavily on mathematics (Groth 2007, 2013). Instead,
the aim is to point out the differences so that they are emphasized and not lost in
classroom mathematics instruction. For example, in Skovsmose and Valero’s (2008)
discussion of the egg task, they move into the mathematical realm of calculating
theoretical probabilities instead of highlighting the idea of variation and how it can
be measured and interpreted. Now this move might be because Skovsmose and
Valero are trying to communicate to the mathematics education community in this
particular example. However, in many cases this is the same community that is
tasked with teaching statistics in the school setting and could potentially benefit from
seeing specific examples of statistical practices in conjunction with the teaching of
mathematics.

Another example comes from a project that Gutstein (2003) used in one of his
mathematics classes described here:

For example, I developed a project in which students analyzed racially disaggregated data
on traffic stops. The mathematical concepts of proportionality and expected value are central
to understanding racial profiling. Without grasping those concepts, it is hard to realize that
more African American and Latino drivers are stopped than one would expect, and this
disproportionality should lead one to examine the root causes of the anomaly (p. 49).

Similar to the egg problem, the mathematical concepts become the focus of the
discussion where there are also opportunities to discuss and investigate important
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statistical concepts. In this example Gutstein (2003) focuses on the idea of propor-
tionality to discuss how the African American and Latino/a drivers were pulled over
disproportionately due to probabilistically determined expected values. However,
these disaggregated data can be considered an example of a sample, which provides
an opportunity to talk about variation in samples and to look at this proportion in
terms of a sampling proportion. A sample proportion has a margin of error that needs
to be considered when making inferences to a population. This context also pro-
vides the opportunity to introduce the idea of sampling distributions, which could be
developed using a simulation to bootstrap a sampling distribution from the sample
drawn. In this way, students could also begin to investigate what it means for a sample
proportion to be unlikely to be drawn due to chance and to begin to make inferences
about the population proportion.

The discussion above illustrates how rich mathematical lessons could be used
to teach statistical concepts in mathematics classrooms to possibly help students to
read and write both the word and the world with both mathematics and statistics. It
is important that statistics educators begin to contribute more to these conversations
based on their own expertise, which could be used to begin to emphasize statistical
and mathematical concepts and practices in school curriculum.

18.7 Critical Statistics Education

In this section I outline a possible vision for critical statistics education beginning
by briefly drawing a broad connection between Freire’s (Darder 2014; Freire 1998;
Freire and Macedo 1987) notions of literacy and Gal’s (2002) description of statis-
tical literacy in conjunction with statistical enquiry (Franklin et al. 2007; Wild and
Pfannkuch 1999) to situate a view of critical statistics education in an overarching
literacy perspective. The remainder of the discussion focuses on elaborating several
points of intersection that connect the ideas discussed in earlier sections relative to
critical mathematics education to statistics education, namely: considering context,
variation, subjectivity, transnumeration, and problem posing.

18.7.1 Literacy Perspective

The term statistical literacy has been used by many scholars with many different
meanings attributed to it (Ben-Zvi and Garfield 2004). In this chapter I have chosen
to draw from Gal’s definition of statistical literacy because of its seminal importance
and because it is still one of the most commonly used definitions. Gal’s (2002) states:

The term statistical literacy refers broadly to two interrelated components, primarily (a)
people’s ability to interpret and critically evaluate statistical information, data-related argu-
ments, or stochastic phenomena, which they may encounter in diverse contexts, and when
relevant (b) their ability to discuss or communicate their reactions to such statistical infor-
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mation, such as their understanding of the meaning of the information, their opinions about
the implications of this information, or their concerns regarding the acceptability of given
conclusions (p. 49).

In his discussion, Gal (2002) describes two different types of contexts. The first,
which is the focus of his definition of statistical literacy, he refers to as the reading
context, which he describes as “people’s ability to act as effective “data consumers”
in diverse life contexts” (p. 50). The other is the enquiry context, which is described
as, “in enquiry contexts individuals serve as ‘data producers’ or ‘data analyzers’
and usually have to interpret their own data and results and report their findings
and conclusions” (p. 50). A connection can be made here to the idea of reading and
writing the world with mathematics (Gutstein 2006), discussed earlier. I propose
that reading the world with statistics is what Gal (2002) describes as the reading
context in statistical literacy and writing the world with statistics is partially what
Gal (2002) refers to as enquiry contexts. I say partially because writing the world
refers to changing one’s context, which goes beyond just producing and analyzing
data to using it to take action to change the context it describes. Gal’s definition
of statistical literacy focuses on the reading context, though he does mention the
enquiry context. To further elaborate on the enquiry context to describe writing the
world with statistics from the critical literacy perspective, I am choosing to draw on
the statistical investigative cycle from the GAISE framework (Franklin et al. 2007)
and from Wild and Pfannkuch’s (1999) work on statistical enquiry.

18.7.2 Context

One aspect of statistics that makes it particularly powerful for dealing with issues
of race, gender, sexuality, immigration, sustainability and other sociopolitical issues
is that it is the science of data, and data are inherently situated in context. Statistics
can in fact be a gateway to introducing contextual discussions, situated in the daily
realities of students, into the mathematics classroom, and in this way it can serve
to act as a lens for reading the world. Statistics helps provide tools, practices, and
habits of mind to measure and make sense of patterns in the world around us. It is
this very focus that makes it so powerful for reading the world.

In relation to statistics education this perspective requires that teaching and learn-
ing statistics is situated in actual meaningful contexts for students. Frankenstein
(2009) in her work discusses the importance of real real-world problems in mathe-
matics education, where the context does not just serve as “window dressing” for a
mathematics problem, but the actual focus and purpose of the problem is to explore
and learn more about a context. From a disciplinary standpoint statistics is aptly
suited to take on this task. However, to do so the issue must be taken head on in the
school setting where mathematics and statistics are often portrayed as neutral, situ-
ated in fictitious contextualized situations (Frankenstein 2009; Skovsmose 1994a).
This means contexts such as people’s favorite color, age, or height should not be used
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as window dressing for tasks focused on calculation or following routine algorithms;
instead instruction should focus on contexts that are from students daily lives and
the contexts in which they are situated and using those as spring boards for students
to explore and learn statistics in practice as part of making sense of a meaningful
context.

For example, when looking at a data set with categories of male and female for
gender a discussion around what is gender could begin. A discussion could revolve
around whether these two categories are adequate for capturing the gender diversity
of a population or as some arguewhether they really exist at all except as a social con-
struct (Butler 1990). This discussion could alsomove from reading context to enquiry
context (Gal 2002) discussing issues of how to collect data on a person’s gender to
actively investigate issues around gender identity, which could then be interpreted
and reported to write the word. Could data be collected by allowing an individual to
self-identify using a fill in the blank item versus a dichotomous choose-one item?
What implications does such a choice have on how the data can be analyzed and
interpreted? Such investigations might also be focused on identifying and uncover-
ing issues of genderism related to access to education, wages, or representation in
government and society in an effort to transform conditions to write the world. Dis-
cussions of gender and other social constructs also relate to the notion of operational
definitions of social constructs, which is an issue specific to statistics, which should
be part of critical statistics education and has been discussed by others (e.g. Lesser
2007).

Drawing in such context also inherently brings in other issues particularly at the
K-12 level where mathematics has traditionally been taught in a very neutral form
(Gutiérrez 2013a; Skovsmose 1994b). Bringing sociopolitical contexts common in
today’s modern societies into the classroom also means opening up the classroom
to the divisive and at times very insensitive and confrontational discourse that is
also prevalent in societies around such issues. This raises a number of issues for the
implementation of such curriculum that will be discussed and elaborated on later in
the chapter.

18.7.3 Variability

Oneof themain purposes for the discipline of statistics is in attending to the omnipres-
ence of variability inherent in our world (Cobb andMoore 1997). It is this very focus
that makes statistics so powerful for reading the world. Variability comes in many
forms, from howwemeasure things, to howwe sample things, to howwe try to show
“cause and effect” by creating conditions to induce variability, to the fact that popu-
lations of things vary in measure of their attributes from one thing to the next. The
word things is appropriate because statistics really is that broad in its application that
it is applied to living things (people, animals, plants, etc.) and inanimate objects both
created by people (machines, products, emissions, etc.) and created naturally (rocks,
planets, stars, geological formations, etc.). In statistics there is an explicit emphasis
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on trying to make sense of variability, measure it, visualize it, and at times control it.
In the educational setting, explicit acknowledgement and treatment of variability is
crucial (Cobb and Moore 1997; Franklin et al. 2007; Shaughnessy 2007), not only
because of its central role in the discipline, but also because it helps to provide stu-
dents with the perspective that everything does not always fit into a single numeric
answer.

18.7.4 Subjectivity

Another issue to consider is how people’s subjectivity plays a role both in the produc-
tion of data based arguments and in the interpretation of such arguments. This relates
to reading and writing both the word and the world as our subjectivities influence
everything we see, say, do, and make sense of. Our subjectivities act to filter how
we can experience and act upon the world (Foucault 1972; Gutiérrez 2013b; Hard-
ing 1991). In statistics education, subjectivity is often treated in relation to biases
in data production, such as how survey questions are worded, samples chosen, and
participants or things are assigned to groups (Franklin et al. 2007; Utts 2003). How-
ever, what is not always considered is how the subjectivity of the reader of data
based arguments plays a role in the reader’s interpretation of the arguments. For
example, consider the current anti-vaccination movements that are growing in spite
of overwhelming amounts of scientific data that support the benefits of vaccination
and the lack of scientific data to support claims of the purported negative effects of
vaccinations. Some of my own subjectivities are likely evident in this statement and
also throughout this chapter. People’s subjectivities are always present in making
sense of statistical arguments or carrying out statistical investigations whether they
are lurking below the surface or transparently made explicit. Therefore it is crucial
that authors make their subjectivities explicit in their data based arguments and that
they reflect on how such subjectivity might influence their arguments.

There is a reason why “alternative facts” can spread like wild-fire in spite of a
lack of supporting evidence, and it relates to the subjectivities through which people
filter the world, making some statements more plausible, while others less. Open
discussions of such issues in the classroom can prepare students to make sense of
such alternative facts and should be a part of a critical statistics education.

18.7.5 Transnumeration

The construct of transnumeration comes from past research in statistics education
on the types of statistical thinking involved in statistical enquiry and is defined as
“numeracy transformations made to facilitate understanding” (Wild and Pfannkuch
1999, p. 227). A number of different transformations of representations are involved
in modeling data including the initial measurement of some real-world phenomenon,
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applying aggregate measures to represent data, constructing data visualizations to
represent data, creating statistical arguments that are convincing and understandable
to communicate to an intended audience related to the problem situation being inves-
tigated (Pfannkuch et al. 2002). Transnumeration is related to context, variability, and
subjectivity that were discussed previously. It is related to context as the initial oper-
ationalization and measurement of things involves transnumeration by quantifying
and classifying the things, changing their representation to better understand them.
This is also related to subjectivity because it is the person organizing and carrying
out a statistical investigations that determines how to represent reality through how
they decide to classify and quantify the aspects of reality they are measuring.

The focus on variability also connects to the notion of transnumeration where
data visualization and statistical measures are used in service of making sense of a
context to learn more about the context itself. In the context of variation different
measures such as the range, interquartile range, and standard deviation can be used to
represent variation aswell as graphical displays such as boxplots, histograms, and bar
graphs, which allow the investigator to “see” variation in the data. This relates back
to statements earlier that the focus needs to be on statistics in service of reading and
writing the world. Through visualizing variation in a data set one can begin to look
for patterns and structures in the data that relay information about the context being
measured.With the current explosion of technology in theworld today, exploring data
through visualizations and basic statistical measures has become increasingly easy to
do even from the palm of your hand. This trend makes the notion of transnumeration
increasingly important in statistics education and a crucial aspect of any vision of
a critical statistics education as it is deeply intertwined in the process of statistical
enquiry and relates to writing the world.

18.7.6 Problem Posing

Afinal aspect that is important for a critical statistics education is pedagogical and that
is the practice of teaching throughproblemposing (Freire 1970). Problemposingdoes
not mean simply giving students problems to solve. Instead, Freire (1970) describes
it as a pedagogy where the teacher/student dichotomy is broken down, and both
teachers and students collaborate in dialogue with one another. This pedagogy pairs
well with teaching and learning statistics as teachers and students can explore issues
together bringing their own prior experiences to bear to make sense of data based
arguments. Furthermore, statistical investigations are based around problem posing
as they begin with asking questions (Franklin et al. 2007). It is crucial that students be
given opportunities to pose their own problems, which are meaningful and relevant
to their lives that they can then investigate. Teachers in turn can bring their strong
background in mathematics and statistics into the conversation to show different lens
for making sense of issues and reading the world. More specifically in the case of
fostering statistical literacy, students need experience posing such problems and then
going through the stages of a statistical investigative cycle, endingwith interpretations
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of their results that include critiques of their process. Such experiences should include
considering the implications the interpretationsmademayhave in termsof the context
and what actions might be suggested as a result.

18.8 Issues of Implementation

There are a number of significant issues related to implementing a critical statistics
education perspective in school classrooms. One is the consideration of context. It
is central to statistics and to critical mathematics education, yet the discussion of
sociopolitical issues such as race, sexuality, or even political campaigns is generally
considered very controversial in school classrooms and in some cases is forbidden
by administrators or policy. Yet those are the kind of issues students face in their
lives and that are visible in the world around them. Ignoring such issues within the
walls of the mathematics classroom only perpetuates the paradox of relevance that
Skovsmose (1994b) discussed. An important consideration here is what does this
mean for the classroom teacher who is tasked to plan and carry out mathematics and
statistics curriculum in the classroom?

To facilitate meaningful discussions around mathematical and statistical concepts
and practices as well as their application to contextual issues is a significant task
and requires some knowledge of the context being explored. This does not mean that
teachers need to be experts in a multitude of content areas related to the contexts they
explore to be able to carry on meaningful conversations and investigations with their
students. However, they do need to have some familiarity with the major discussion
points around such issues and the different viewpoints that are relevant. Furthermore,
they should have taken some time to consider their own subjectivity towards such
issues and how they might influence their instruction. Without prior consideration
and reflection, classroom discussions could fall into ideological arguments with little
basis in supporting evidence or more importantly in using mathematics and statistics
to explore such issues. Considering contextual issues also means teachers need to be
comfortable with not knowing everything that is being discussed in the classroom
and to be comfortable in the role as learners along with their students and that
students may at times challenge the teacher’s own positioning in discussions. This
relates directly to taking up a problem posing pedagogy (Freire 1970), discussed
previously.

Another issue for implantation is related to teacher education and considering how
to shape experiences for teachers to be prepared to take on the tasks necessary for
implementing a vision of critical statistics education in their classrooms. Teachers
are already expected to enter the classroomwith content knowledge, and increasingly
pedagogical content knowledge is being included in teacher training (Ball et al. 2008;
Shulman 1987), but what is not common is discussion of what knowledge of contexts
that can be investigated usingmathematics and statisticsmight be useful or necessary.
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It is not realistic to require teachers to have an extensive knowledge of contexts
for the use of mathematics and statistics, particularly given the already overloaded
curriculum of many teacher education programs. However, where advances towards
such teaching could bemade is in terms of pedagogy inmethods courses, focusing on
how to make sense of contexts using mathematics and statistics in the classroom and
how to facilitate meaningful discussions around such issues. Furthermore, there is
still a need for teachers to have more preparation in statistical concepts and practices.
The Statistical Education of Teachers (Franklin et al. 2015) is taking strides in this
direction. However, it will take many years for such policy to effect widespread
changes in classrooms, and such policy documents do not explicitly advance a critical
perspective of statistics education, which has been the focus of this chapter.What this
means is that for teachers to be prepared and have the proper resources to facilitate
experiences for students consistent with a critical statistical education, significant
strides will need to be made at the teachers education level. A possible way to do
this would be to work from the guidelines of the Statistical Education of Teachers
(Franklin et al. 2015) providing pre-service teachers with statistics and statistics
methods courses and focusing on the types of pedagogy discussed in this chapter.
Furthermore, in statistics content courses an emphasize could be made on using
statistics to investigate real real-world problems, which there has already been a call
to do at the undergraduate level (Frankenstein 1994, 2009; Lesser 2007).

Taking up the type of pedagogy described in this chapter of course is easier said
than done, and the reform movement in mathematics education has met serious
challenges in a similar endeavor (Schoenfeld 2004). One such relevant issue is that
of families, parents and their beliefs and values around what and how their children
should be taught in schools. A number of mathematics reform movements in the
U.S. have been crippled and collapsed by parents (Orrill 2016). This in part could
be managed by not only working to create learning environments based on open
dialogue between teachers and students but also by opening up such spaces through
dialoguing with parents and the community as well. In a very real sense it is such
open dialogue that is a hallmark of democracy, and to prepare students to be citizens
in their democratic societies we can begin by creating learning environments that
function as democracies where all vested parties have a say. Now this is not to say that
such an opening up of learning spaces does not bring its own issues, but it does allow
for dialogue and negotiation between parties to create a balance of perspectives and
goals in shaping the learning environments for students to experience. That being
said, taking this approach has not always worked in the past with reform efforts in
mathematics, and there is a need for more research around how to initiate and sustain
productive dialogue between all the stakeholders in education. Though I have only
presented a few of the challenges I would argue they are some of the largest that
need to initially be tackled to begin to shift towards both a critical mathematics and
critical statistics education in schools.
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18.9 Conclusion

This chapter presented the foundations and a possible vision forwhat a critical statisti-
cal education could be inK-12mathematics classrooms. Inmoving forward however,
there needs to be more work investigating what a critical statistics education could
look like in the classroom. This type of work requires partnerships between statis-
tics and mathematics educational researchers and mathematics teachers to develop
a better understanding of how critical statistics education can be implemented in
the classroom as well as what are some of the affordances and constraints of such
implementation. Implications that this type of education has for mathematics teacher
education also need to be considered and studied. For example, what type of expe-
riences do mathematics teachers need to have to develop the flexible understanding
of statistics and mathematics necessary for this type of teaching? Another question
of concern is how to get important stakeholders of the mathematics community on
board and involved with such changes.

Statistics’ value in K-12 education with the goal of preparing students to become
citizens in today’s information based societies comes from the core practices that
make up the statistical process: to pose questions, collect relevant data, analyze
the data in the context of a problem (Franklin et al. 2007), and then verbalize the
story that the data tell about an issue to others in a precise well principled argument
(Abelson 1995). These practices situated in mathematics classrooms can begin to
provide students with experiences in critically investigating and critiquing their own
context in society, while developing the statistical concepts and practices that will
enable them to make sense of their context. The task is dynamic and complex. The
goal is not for students to completely understand or solve issues of society but to
instead grapple with ideas using statistics to read and write the word and the world.
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