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1 Introduction

Radiative transfer provides a complete description of absorption, scattering, and
radiation of light in a multiple scattering medium (Chandrasekhar 1960; Ishimaru
1999; Van de Hulst 2012). Consequently, radiative transfer is important for several
applications such as neutron transport (Bell and Glasstone 1970; Case and Zweifel
1967; Lewis and Miller 1984), astrophysics (Peraiah 2002; Sobolev 2017), geo-
physics (Tsang et al. 1985; Mobley 1994; Kirk 1994; Thomas and Stamnes 2002;
Kokhanovsky 2006b;Marshak andDavis 2005;Mishchenko et al. 2006;Mishchenko
2014), heat transfer (Modest 2013), biomedical optics (Welch et al. 2011; Wang and
Wu 2012), and computer graphics (Jensen 2001). Applying radiative transfer theory
is challenging for practical problems, because exact solutions of the radiative trans-
fer equation (RTE) are known only for special cases (Case and Zweifel 1967). Even
computational methods for radiative transfer require specializedmethods (Lewis and
Miller 1984; Gao and Zhao 2009) that can be challenging to implement and require
substantial computational resources. For these reasons, accurate approximations of
solutions of the RTE, and of the RTE itself, are valuable for gaining physical insight.

Boundary layer theory provides a systematic method to solve singularly per-
turbed boundary value problems (Bender and Orszag 2013; Hinch 1991; Miller
2006). Larsen and Keller (1974) introduced boundary layer theory for general initial-
boundary value problems for the RTE. In RTE boundary layer theory, one seeks the
asymptotic solution of the RTE in the regime of a strongly-scattering medium. How-
ever, it is a rather different approach from that taken in asymptotic radiative transfer
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theory (ARTT), which has been reviewed by Kokhanovsky (2006a). In the asymp-
totic limit of strong multiple scattering, the solution of a boundary value problem
for the RTE is written as a sum of an interior solution and boundary layer solutions.
The interior solution is governed by the diffusion approximation. The boundary layer
solutions correct for errors made by the diffusion approximation near the boundary.
Through a systematic perturbation theory, one can determine all of the subproblems
required to compute the interior and boundary layer solutions. Moreover, boundary
layer theory provides a procedure for computing boundary conditions for the diffu-
sion approximation. The result is a uniformly valid asymptotic approximation to the
solution of the RTE that is accurate over the entire domain.

The challenge in applying boundary layer theory to problems of practical interest
lies in explicitly computing the boundary layer solutions fromwhich boundary condi-
tions for the diffusion approximation are computed. Habetler andMatkowsky (1975)
have applied boundary layer theory to initial-boundary value problemswith isotropic
scattering in one spatial dimension. For that problem, one can compute the boundary
layer solutions explicitly using the singular eigenfunctions described by Case and
Zweifel (1967). Malvagi and Pomraning (1991), and Pomraning and Ganapol (1995)
have applied boundary layer theory to more general RTE problems by using an
approximate variational method to compute the boundary layer solutions. Recently,
the authors and their collaborators have used numerical methods in conjunction with
boundary layer theory to solve various RTE problems (Kim 2011; Kim andMoscoso
2011; Rohde and Kim 2012, 2014, 2017; Lehtikangas et al. 2012; Şahin-Biryol and
Ilan 2014; Dark and Kim 2017). Using numerical methods to compute boundary
layer solutions has opened up the use of boundary layer theory to RTE problems of
practical interest.

Another approximation, called two-flux theory, is a particularly simple, and intu-
itive approximation of the RTE in a plane-parallel medium. Its origin traces back
to Schuster (1905) in 1905 and Schwarzschild (1906) in 1906. However, it gained
popularity due to the works of (Kubelka and Munk 1931; Kubelka 1948). As a
result, two-flux theory is often called Kubelka–Munk theory. This theory has found
extensive use for various applications (e.g., see the review by Philips-Invernizzi
et al. (2001), largely due to its simplicity.

Two-flux theory models light fluxes traveling in forward and backward directions.
Absorption and scattering in the medium are quantified using absorption and scat-
tering coefficients, typically denoted by K , and S, respectively. One major challenge
in two-flux theory lies in connecting these coefficients to fundamental quantities in
radiative transfer. Many studies (Brinkworth 1972; Gate 1974; Nobbs 1985; Star
et al. 1988; Vargas and Niklasson 1997; Molenaar et al. 1999; Yang and Kruse 2004;
Yang et al. 2004; Yang and Miklavcic 2005; Edström 2007; Thennadil 2008; Neu-
man and Edström 2010; Myrick et al. 2011; Kokhanovsky 2007) have addressed the
theoretical basis for two-flux theory and its applicability to interpret measured data.
Sandoval and Kim (2014) derive two-flux theory using a systematic perturbation
analysis of the double-spherical harmonics method of order one in the limit of strong
multiple scattering. This perturbation method is similar to what is done in boundary
layer theory.
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In this paper, we review boundary layer theory and two-flux theory and draw
connections between them. In particular, we derive two-flux theory using the interior
solution from boundary layer theory governed by the diffusion approximation. This
derivation is more elementary than the one done by Sandoval and Kim (2014). Con-
sequently, it provides the framework needed to understand that two-flux theory is
simply a reformulation of the diffusion approximation. We use the double-spherical
harmonics method (Case and Zweifel 1967; Lewis and Miller 1984; Aronson 1986)
to compute boundary layer solutions which, in turn, provide an efficient and effec-
tive method for computing boundary conditions for the diffusion approximation.
We use the boundary conditions for the diffusion approximation to derive boundary
conditions for two-flux theory. We call this model the asymptotic two-flux theory,
because it is asymptotically accurate for strongly-scattering media. In addition, by
considering the double-spherical harmonics method of order one, we draw its equiv-
alence to four-flux theory and its connection to boundary layer theory. Through
these connections, we develop valuable insights into radiative transfer problems in
strongly-scattering media.

By comparing results by boundary layer theory and two-flux theory with direct
numerical solutions of the full RTE, we show their respective scope of applicability.
Boundary layer theory gives a uniformly-valid asymptotic approximation meaning
that it is accurate throughout the entire domain with an a-priori error bound. In
contrast, two-flux theory is not a uniformly valid asymptotic approximation– its
accuracy depends on the boundary conditions prescribed. For standard boundary
conditions based on the in-going flux at the boundary, two-flux theory is accurate
near the boundaries, but inaccurate in the interior of the medium. When boundary
conditions for two-flux theory are prescribed in a manner consistent with boundary
layer theory, we find that it is accurate in the interior of the medium, but not near
the boundaries. Both boundary layer and two-flux theories are valid for strongly
scattering media where scattering is not too sharply forward peaked.

The remainder of this paper is as follows. In Sect. 2 we discuss the RTE in a plane-
parallel slab, and describe all of the physical quantities in that problem. In Sect. 3,
we give explicit results for the spectrum of the scattering operator in the RTE. These
results are used throughout the analysis that follows. We describe boundary layer
theory for the RTE in Sect. 4 including all of the details in deriving the interior
and boundary layer solutions. In Sect. 5 we describe the double-spherical harmonics
method used to compute the boundary layer solutions which, in turn, provides a
method to compute boundary conditions for the diffusion approximation governing
the interior solution. We summarize the results from boundary layer theory using
the double-spherical harmonics method in a procedure to compute the asymptotic
approximation in Sect. 6. In Sect. 7 we give a new derivation of two-flux theory
based on the interior solution from boundary layer theory. In doing so, we are able to
identify its limitations and prescribe boundary conditions consistent with boundary
layer theory leading to the asymptotic two-flux theory.We showcomputational results
comparing all of these approximations in Sect. 8. Additionally, Sect. 8 discusses the
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relationship between four-flux theory and the double-spherical harmonics method
of order one. We discuss the extension of two-flux theory for the RTE in three
dimensions in Sect. 9. Section10 gives our conclusions.

2 Radiative Transfer in a Plane-Parallel Slab

Consider a uniformly absorbing and scattering medium contained in a plane-parallel
slab. When a continuous source of light penetrates into this medium, be it from
incident radiation and/or emanating from the surface, the light’s radiance (or specific
intensity), I (x ,Ω), can be described by the radiative transfer equation (RTE) (Chan-
drasekhar 1960),

Ω · ∇ I + κa I + κs L I = 0. (1)

Here, the spatial coordinates parallel to the slab surface are (x, y) ∈ R
2, and the

coordinate normal to the slab surface is z ∈ (z1, z2). The direction cosines Ω1, Ω2,
and Ω3 are the components of Ω , which is a vector on the unit sphere S2. The
absorption and scattering coefficients are denoted by κa and κs , respectively. The
scattering operator L is defined by

L I = I −
∫

S2
p(Ω,Ω ′)I (Ω ′) dΩ, (2)

where p(·) is called the scattering phase function. In a bounded domain, boundary
conditions prescribe the radiance for all directions pointing into the domain (Case
and Zweifel 1967; Ishimaru 1999). In general, boundary conditions take the form

I |z=z1 = b1 on {x ∈ R
2,Ω · ẑ > 0} , (3a)

I |z=z2 = b2 on {x ∈ R
2,Ω · ẑ < 0} , (3b)

where b1(x ,Ω) and b2(x ,Ω) prescribe the radiance entering the medium at z = z1
and z = z2, respectively, and ẑ denotes the unit vector pointing along the z-axis
in the positive sense. We can consider boundary conditions that take into account
reflections due to a refractive index mismatch. All of the results that follow can
take these reflecting boundary conditions into account. However, they complicate
the analysis without providing any additional insight, so we do not consider them
here.

We assume axi-symmetry so that b1 = b(μ) where μ = cos θ and θ is the incli-
nation angle made with respect to the z-axis. Moreover, we assume the radiance
enters the medium on z = z1 uniformly in (x, y). That light is the only source in
the problem, so that b2 = 0 on the surface z = z2. Furthermore, we assume that the
scattering is rotationally invariant and depends only on the angle made between the
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incident and scattering directions, so that p = p(Ω · Ω ′). In this case, the solution
of this boundary-value problem is uniform in (x, y) and azimuthally symmetric, i.e.,
I = I (z, μ). For this case, I is governed by the one-dimensional RTE

μ
dI

dz
+ κa I + κs L̃ I = 0 , (4)

where the azimuthally-integrated scattering operator is (henceforth, the tilde on L̃ is
dropped)

L I = I − 1

2

∫ 1

−1
h(μ,μ′)I (z, μ′) dμ′ . (5)

The redistribution function h in (4) is defined in terms of the scattering phase function
as

h(μ,μ′) = 1

2π

∫ 2π

0
p

(
μμ′ +

√
1 − μ2

√
1 − μ′2 cos(ϕ − ϕ′)

)
d(ϕ − ϕ′) (6)

and normalized according to

1

2

∫ 1

−1
h(μ,μ′)dμ′ = 1 . (7)

Equation (4) is to be solved in z1 < z < z2 subject to the boundary conditions

I |z=z1 = b(μ) on 0 < μ ≤ 1, (8a)

I |z=z2 = 0 on − 1 ≤ μ < 0. (8b)

It is convenient to define the non-dimensional distance variable, called the optical
depth,

τ = (κa + κs)z . (9)

Making the transformation of variable from z to τ and introducing the albedo,

�0 = κs

κs + κa
, (10)

we find that (4) becomes

μ
dI

dτ
+ I = �0

2

∫ 1

−1
h(μ,μ′)I (z, μ′) . (11)

The albedo defined in (10) satisfies 0 < �0 ≤ 1, with �0 = 1 corresponding to
conservative scattering in which κa = 0.



68 B. Ilan and A. D. Kim

3 Legendre Polynomial Expansion and the Spectrum
of the Scattering Operator

The Legendre polynomials are a sequence of orthogonal polynomials, P1(μ),
P2(μ), . . .. They arise as a special case of spherical harmonics (Courant and Hilbert
2008) for azimuthally invariant functions. These polynomials satisfy the orthogonal-
ity relation

1

2

∫ 1

−1
Pm(μ)Pn(μ)dμ = 1

2n + 1
δmn, (12)

with δmn denoting the Kronecker delta. The sequence {Pn(ν)}, n = 0, 1, 2, . . . is
complete in the L2 sense. In our analysis we shall frequently refer to the first two
Legendre polynomials, which are P0(μ) = 1 and P1(μ) = μ. We shall also make
use of the recursion relation

μPn(μ) = 1

2n + 1

[
(n + 1)Pn+1(μ) + n Pn−1(μ)

]
. (13)

Because the redistribution function (6) is inherently rotationally invariant, it can
be expanded in Legendre polynomials as

h(μ,μ′) =
∞∑

n=0

(2n + 1)gn Pn(μ)Pn(μ
′), (14)

where the coefficients are

gn = 2n + 1

2

∫ 1

−1

[
1

2

∫ 1

−1
h(μ,μ′)Pn(μ

′)dμ′
]

Pn(μ)dμ . (15)

Because the scattering phase function is normalized according to (7), it follows that
the first coefficient of (15) is g0 = 1. The second coefficient g1 is called the anisotropy
factor or mean cosine, which we denote by g1 = g. It is given by

g = 3

4

∫ 1

−1

[∫ 1

−1
h(μ,μ′)μμ′dμ′

]
dμ . (16)

The spectrum of the operator L , given in (5), plays a key role in our analysis. In
light of (14), we find that

L Pn(μ) = (1 − gn)Pn(μ). (17)

It follows that Pn(μ) is an eigenfunction of L with eigenvalue 1 − gn . For the standard
redistribution functions considered in the literature, all the eigenvalues are simple
and decreasing, i.e., gn > gn+1 for all n. Since g0 = 1, the lowest eigenvalue of L
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is zero. All the other eigenvalues are positive because gn < 1 for n > 0 (Sobolev
2017; Kim and Keller 2003). To summarize, L is a non-negative operator and the
isotropic function, P0(μ) = 1, spans its nullspace. The spectrum asymptotes to one
since gn → 0 as n → ∞. It also follows from (16) that the first non-zero eigenvalue
of L is 1 − g, i.e.,

Lμ = (1 − g)μ . (18)

4 Boundary Layer Theory and the Diffusion
Approximation

Boundary layer theory for radiative transfer is an asymptotic theory for highly-
scattering and weakly-absorbing media. There are three characteristic length scales
in (4): the characteristic absorption length, �a = κ−1

a , the scattering mean-free path,
�s = κ−1

s , and the thickness of the slab, �z = z2 − z1. The highly-scattering and
weakly-absorbing regime corresponds to �s � �z � �a . To make this precise, we
introduce the small, dimensionless parameter 0 < ε � 1 and set

κs�z = ε−1 , (19a)

κa�z = εα, (19b)

where α is a rescaled absorption coefficient. We make the change of variables

z → z̃ = z − z1
�z

. (20)

Henceforth, the tilde sign will be dropped. Substituting (20), (19a), and (19b) into
(4), we obtain

εμ
dI

dz
+ ε2α I + L I = 0. (21)

Equation (21) is to be solved in 0 < z < 1 subject to boundary conditions

I |z=0 = b(μ) on 0 < μ ≤ 1, (22a)

I |z=1 = 0 on − 1 ≤ μ < 0. (22b)

We remark that in terms of (19a) and (19b), the single scattering albedo (10) is

�0 = κs

κs + κa
= 1

1 + ε2α
= 1 − ε2α + O(ε4). (23)

Thus, the albedo for this scaling is near unity, i.e., 1 − �0 = O(ε2). It is well-known
that the diffusion approximation is valid in this regime. The diffusion approximation
asserts that the radiance becomes nearly isotropic deep inside the medium due to
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strong multiple scattering. In what follows, we derive the diffusion approximation
using perturbation methods.

We seek the solution of (21) subject to boundary conditions (22) in the asymptotic
limit as ε → 0+. If wewere to naïvely take the limit of (21) as ε → 0+, the derivative
term in (21) vanishes and the resulting equation could not satisfy boundary condi-
tions (8). In fact, the solution of this boundary value problem rapidly changes near
the boundaries z = 0 and z = 1. For this reason, (21) is called a singularly perturbed
equation. To address this, we seek its solution as the sum

I = Φ + Ψ (1) + Ψ (2), (24)

with Φ denoting the interior solution and Ψ (1) (resp. Ψ (2)) denoting the boundary
layer solution near z = 0 (resp. z = 1). In what follows, we seek to findΦ, Ψ (1), and
Ψ (2) using perturbation methods.

4.1 Interior Solution

We seek the asymptotic expansion for the interior solution in the form

Φ ∼
∞∑

n=0

εnφn, ε → 0+. (25)

Substituting (25) into (21) and collecting like-powers of ε, we find that

O(1) : Lφ0 = 0, (26a)

O(ε) : Lφ1 = −μ
dφ0

dz
, (26b)

O(εn) : Lφn = −μ
dφn−1

dz
− αφn−2 , n ≥ 2 . (26c)

We recall from Sect. 3 that P0(μ) spans the nullspace of L . Therefore, the general
solution of (26a) is

φ0 = P0(μ)ρ0(z), (27)

where ρ0(z) is an undetermined function of z. Substituting (27) into (26b) and recall-
ing that P1(μ) = μ gives

Lφ1 = −μρ ′
0(z) = −P1(μ)ρ ′

0(z). (28)

Equation (28) is a linear, non-homogeneous Fredholm integral equation of the second
kind. Its solution can be decomposed as the sum of the homogeneous solution φH

1
and the particular solution φP

1 . Following the analysis of (26a), φH
1 = ρ1(z)P0(μ)
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where ρ1(z) is an undetermined function of z. The condition for the solvability of the
nonhomogeneous problem, Lφ = f , with f denoting a general nonhomogeneous
term, is given by ∫ 1

0
P0(μ) f (μ)dμ =

∫ 1

0
f (μ)dμ = 0. (29)

In other words, the right-hand side of (28) (i.e., the non-homogeneous term) must be
orthogonal to the nullspace of L . Because P1(μ) is orthogonal to P0(μ) [see (12)], in
this case, solvability condition (29) is automatically satisfied. Recall that L P1(μ) =
(1 − g)P1(μ). Substituting φP

1 = C P1(μ)ρ ′
0(z) into (28), we find thatC = −1/(1 −

g). It follows that

φ1(z, μ) = ρ1(z)P0(μ) − 1

1 − g
ρ ′
0(z)P1(μ). (30)

Substituting (27) and (30) into (26c) with n = 2, we obtain

Lφ2 = −μρ ′
1(z)P0(μ) + 1

1 − g
ρ ′′
0 (z)μP1(μ) − αρ0(z)P0(μ) . (31)

Applying the recursion relation (13) with n = 1 yields

Lφ2 = −ρ ′
1(z)P1(μ) + 1

3(1 − g)
ρ ′′
0 (z) [2P2(μ) + P0(μ)] − αρ0(z)P0(μ) . (32)

Applying solvability condition (29) to the right-hand side of (32) leads to

1

3(1 − g)
ρ ′′
0 (z) − αρ0(z) = 0 . (33)

Equation (33) is called the diffusion equation. It gives the leading order asymptotic
behavior of the radiance in the interior of the medium.

It is instructive and useful to obtain higher-order corrections to the diffusion
approximation. To this end, we substitute (33) into (32) and obtain

Lφ2 = −ρ ′
1(z)P1(μ) + 2

3(1 − g)
ρ ′′
0 (z)P2(μ) . (34)

From spectral equation (17), we have L P1 = (1 − g)P1 and L P2 = (1 − g2)P2. Sub-
stituting these into (34) we find that

φ2(z, μ) = ρ2(z)P0(μ) − 1

1 − g
ρ ′
1(z)P1(μ) + 2

3(1 − g)(1 − g2)
ρ ′′
0 (z)P2(μ) ,

(35)
with ρ2(z) an undetermined function of z. Substituting (30) and (35) into (26c) with
n = 3, we find that
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Lφ3 = −ρ ′
2(z)μ + 1

1 − g
ρ ′′
1 (z)μP1(μ) − 2

3(1 − g)(1 − g2)
ρ ′′′
0 (z)μP2(μ)

− αρ1(z)P0(μ) + α

1 − g
ρ ′
0(z)P1(μ) .

(36)

Applying the recursion relation (13) with n = 1 and n = 2 leads to

Lφ3 = −ρ ′
2(z)P1(μ) + 1

3(1 − g)
ρ ′′
1 (z) [2P2(μ) + P0(μ)]

− 2

15(1 − g)(1 − g2)
ρ ′′′
0 (z) [3P3(μ) + 2P1(μ)]

− αρ1(z)P0(μ) + α

1 − g
ρ ′
0(z)P1(μ). (37)

Applying solvability condition (29) to the right-hand side of (37) yields

1

3(1 − g)
ρ ′′
1 (z) − αρ1(z) = 0 . (38)

Remarkably, (38) is the same as (33). We can continue on to determine φ3. The result
will be a linear combination of P3(μ), P2(μ), and P1(μ) with coefficients involving
derivatives of ρ1 and ρ0 and the homogeneous solution, P0(μ)ρ3(z), with ρ3(z) an
undetermined function of z. By substituting that result into the equation for φ4 and
ensuring its solvability, we will find that ρ2 satisfies the same diffusion equation as
ρ0 and ρ1.

Thus far, we have obtained an O(ε2) approximation of the interior solution as

Φ(z, μ) = ρ0(z)P0(μ) + ε

[
ρ1(z)P0(μ) − ρ ′

0(z)P1(μ)

1 − g

]

+ ε2
[
ρ2(z)P0(μ) − ρ ′

1(z)P1(μ)

1 − g
+ 2ρ ′′

0 P2(μ)

3(1 − g)(1 − g2)

]
+ O(ε3), (39)

with ρ0, ρ1, and ρ2 satisfying the diffusion equations

1

3(1 − g)
ρ ′′

n (z) − αρn(z) = 0, n = 0, 1, 2 . (40)

These diffusion equations are to be solved in 0 < z < 1. However, this perturbation
analysis does not provide a method to determine boundary conditions for (40). To
address this, we analyze the boundary layer solutions.
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4.2 Boundary Layer Solutions

The boundary layer solutionΨ (1) (resp.Ψ (2)) is a special solution of (21) that decays
rapidly in a region of thickness O(ε) about z = 0 (resp. z = 1), called the boundary
layer, and is exponentially small outside of this region.

To determine Ψ (1), we introduce the stretched variable z = εZ and set
Ψ (1)(μ, Z) = I (μ, εZ). Rewriting (21) in terms of Z and Ψ (1), we obtain

μ
dΨ (1)

dZ
+ LΨ (1) = −ε2αΨ (1). (41)

Substituting (24) into the boundary condition (8a), neglecting terms involving Ψ (2),
and solving for Ψ (1) leads to

Ψ (1)|Z=0 = b − Φ|z=0 on 0 < μ ≤ 1. (42)

We are able to neglect terms involving Ψ (2) in (42) because it is constructed to decay
rapidly in a region of thickness O(ε) about z = 1. Hence, it will be exponentially
small near Z = 0. Using (39) to O(ε) yields

Ψ (1)|Z=0 = b − ρ0(0) − ε

[
ρ1(0) − 1

1 − g
μρ ′

0(0)

]
on 0 < μ ≤ 1. (43)

However, to ensure asymptotic matching with the interior solution, we also require
that

Ψ (1) → 0 as Z → ∞ , (44)

which is called the asymptotic matching condition or the radiation condition. Thus,
(41) is to be solved in the half space, Z > 0, subject to boundary condition (42) and
radiation condition (44). We seek an asymptotic solution of the form

Ψ (1) ∼
∞∑

n=0

εnψ(1)
n , ε → 0+. (45)

Substituting (45) into (41), (43), and (44), and collecting like-powers of ε, we obtain
at O(1)

μ
dψ(1)

0

dZ
+ Lψ

(1)
0 = 0 in Z > 0 (46a)

ψ
(1)
0 |Z=0 = b − ρ0(0) on 0 < μ ≤ 1, (46b)

ψ
(1)
0 → 0 as Z → ∞, (46c)
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and at O(ε)

μ
dψ(1)

1

dZ
+ Lψ

(1)
1 = 0 in Z > 0 (47a)

ψ
(1)
1 |Z=0 = −ρ1(0) + 1

1 − g
μρ ′

0(0) on 0 < μ ≤ 1, (47b)

ψ
(1)
1 → 0 as Z → ∞, (47c)

The problems (46) and (47) determine the boundary layer solution in the boundary
layer near z = 0 up to O(ε2).

Similarly, we can derive corresponding problem for the boundary layer solution
Ψ (2) in the boundary layer near z = 1. For that case, we introduce the stretched
variable z = 1 − ε Z̃ and set Ψ (2)(μ, Z̃) = I (μ, 1 − ε Z̃) which satisfies

− μ
dΨ (2)

d Z̃
+ LΨ (2) = −ε2αΨ (2). (48)

Substituting (24) into the boundary condition (8b), neglecting terms involving Ψ (1),
and solving for Ψ (2) leads to

Ψ (2)|Z̃=0 = −Φ|z=1 on − 1 ≤ μ < 0. (49)

Using (39) to O(ε) yields

Ψ (2)|Z̃=0 = −ρ0(1) − ε

[
ρ1(1) − 1

1 − g
μρ ′

0(1)

]
on − 1 ≤ μ < 0. (50)

We require for asymptotic matching that

Ψ (2) → 0 as Z̃ → ∞ . (51)

We seek an asymptotic solution of the form

Ψ (2) ∼
∞∑

n=0

εnψ(2)
n , ε → 0+, (52)

and find that at O(1)

− μ
dψ(2)

0

d Z̃
+ Lψ

(2)
0 = 0 in Z̃ > 0, (53a)

ψ
(2)
0 |Z̃=0 = −ρ0(1) on − 1 ≤ μ < 0, (53b)
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ψ
(2)
0 → 0 as Z̃ → ∞, (53c)

and at O(ε)

− μ
dψ(2)

1

d Z̃
+ Lψ

(2)
1 = 0 in Z̃ > 0, (54a)

ψ
(2)
1 |Z̃=0 = −ρ1(1) + 1

1 − g
μρ ′

0(1) on − 1 ≤ μ < 0, (54b)

ψ
(2)
1 → 0 as Z̃ → ∞. (54c)

4.3 Boundary Conditions for the Diffusion Approximation

The boundary layer solutions satisfy conservative (no absorption), one-dimensional
RTEs. These problems cannot be solved analytically, in general. We will show how
to compute them numerically in the following section using the double-spherical
harmonics method. However, let us suppose here that we have the surface Green’s
function Gs(Z , μ;μ′) satisfying

μ
dGs

dZ
+ LGs = 0 in Z > 0 (55a)

Gs |Z=0 = δ(μ − μ′) on 0 < μ,μ′ ≤ 1, (55b)

Using this surface Green’s function, the solution of

μ
dψ

dZ
+ Lψ = 0 in Z > 0, (56a)

ψ |Z=0 = b(μ) on 0 < μ ≤ 1, (56b)

is given as

ψ(Z , μ) = (Gsb)(Z , μ) =
∫ 1

0
Gs(Z , μ;μ′)b(μ′)dμ′. (57)

While the solution given in (57) satisfies (56a) and boundary condition (56b), it
does not satisfy an asymptotic matching condition of the form ψ → 0 as Z → ∞.
We observe that a ψ = constant is a solution of (56a). This constant mode is the
only one that does not vanish as Z → ∞. Therefore, we must remove the constant
mode from the solution to ensure asymptotic matching. Let the operator G 0

s be the
part of Gs that maps the boundary data b to the constant mode. To ensure asymptotic
matching, we must have the boundary data satisfy
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(G 0
s b) = 0. (58)

Let

G 0
s [1] = β0, (59)

G 0
s [μ] = β1, (60)

G 0
s [b(μ)] = b̄. (61)

It follows from applying G 0
s to the right-hand side of (46b) and setting that result to

zero that
G 0

s [b − ρ0(0)] = b̄ − β0ρ0(0) = 0. (62)

This result sets the boundary condition for ρ0 on z = 0. Doing the same procedure
on (47b), we obtain

G 0
s

[
−ρ1(0) + μ

1

1 − g
ρ ′
0(0)

]
= −β0ρ1(0) + β1

1 − g
ρ ′
0(0) = 0, (63)

which sets a boundary condition for ρ1(0).
Let G̃s(Z , μ;μ′) satisfy

− μ
dG̃s

d Z̃
+ LG̃s = 0 in Z̃ > 0 (64a)

G̃s |Z̃=0 = δ(μ − μ′) on − 1 ≤ μ,μ′ < 0. (64b)

Then the solution of

− μ
dψ̃

d Z̃
+ Lψ = 0 in Z̃ > 0, (65a)

ψ̃ |Z̃=0 = b̃(μ) on − 1 ≤ μ < 0, (65b)

is given as

ψ̃(Z , μ) = (G̃s b̃)(Z , μ) =
∫ 0

−1
G̃s(Z , μ;μ′)b̃(μ′)dμ′. (66)

In fact, G̃s(Z̃ , μ;μ′) = Gs(Z̃ ,−μ;−μ′). Let G̃ 0
s be defined for G̃s analogously to

how G 0
s is defined for Gs . It follows from applying G̃ 0

s to the right-hand side of (53b)
and setting that result to zero, we obtain

G̃ 0
s [−ρ0(1)] = −β0ρ0(1) = 0. (67)
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This result sets a boundary condition for ρ0 on z = 1. Doing the same procedure on
(54b), we find that

G̃ 0
s

[
−ρ1(1) + μ

1

1 − g
ρ ′
0(1)

]
= −β0ρ1(1) − β1

1 − g
ρ ′
0(0) = 0, (68)

which sets a boundary condition for ρ1 on z = 1.
Through this analysis of the boundary layer solutions, we are able to determine

boundary conditions for the diffusion approximation. To summarize these results,
we have

ρ ′′
0 − 3α(1 − g)ρ0 = 0, in 0 < z < 1, (69a)

β0ρ0(0) = b̄, β0ρ0(1) = 0, (69b)

and
ρ ′′
1 − 3α(1 − g)ρ1 = 0, in 0 < z < 1, (70a)

β0ρ1(0) = β1
ρ ′
0(0)

1 − g
, β0ρ1(1) = −β1

ρ ′
0(1)

1 − g
, (70b)

Since ρ0 and ρ1 satisfy the same diffusion equation, we introduce ρ = ρ0 + ερ1

which satisfies
ρ ′′ − 3α(1 − g)ρ = 0, in 0 < z < 1, (71a)

β0ρ(0) − εβ1
ρ ′(0)
1 − g

= b̄, β0ρ(1) + εβ1
ρ ′(1)
1 − g

= 0. (71b)

This form satisfies the diffusion equation with Robin boundary conditions that are
typically used for the diffusion approximation. Here, the coefficients, β0 and β1 and
boundary data b̄ are computed from the boundary layer problems defined above to
ensure asymptotic matching.

5 Double-Spherical Harmonics Method

The double-spherical harmonics method is an efficient numerical method for com-
puting solutions of theRTE (Case andZweifel 1967; Lewis andMiller 1984;Aronson
1986). We discuss this method for solving boundary layer problems: (46), (47), (53),
and (54). By doing so, we obtain a method to compute the coefficients needed for
the boundary conditions of the diffusion approximation. In particular, we study the
conservative, one-dimensional RTE

μ
dψ

dZ
+ Lψ = 0 in Z > 0, (72)
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subject to boundary condition

ψ |Z=0 = b on 0 < μ ≤ 1. (73)

We will consider conditions required to satisfy the asymptotic matching condition:

ψ → 0, as Z → ∞. (74)

The solution of (72) is discontinuous for μ = 0 on Z = 0, i.e., on the bound-
ary along the direction that is tangent to the boundary. This discontinuity decays
exponentially away from the boundary due to scattering and absorption, so it does
not affect the well-posedness of this problem. However, its presence introduces a
computational difficulty. We address this issue by introducing the half-range specific
intensities,

ψ±(Z , μ) = ψ(Z ,±μ) , 0 < μ ≤ 1 . (75)

Substituting (75) into (72) and (5) leads to the coupled system

μ
dψ+
dZ

= −ψ+ + H1ψ+ + H2ψ− , (76a)

−μ
dψ−
dZ

= −ψ− + H1ψ− + H2ψ+ (76b)

with the boundary condition

ψ+|Z=0 = b on 0 < μ ≤ 1 . (77)

In (76) the half-range integral operators: H1 and H2, are defined by

H1ψ± = 1

2

∫ 1

0
h(μ,μ′)ψ±(Z , μ′)dμ′ , (78a)

H2ψ± = 1

2

∫ 1

0
h(μ,−μ′)ψ±(Z , μ′)dμ′ . (78b)

Since scattering is assumed to be rotationally invariant (see (6)), it follows that
h(−μ,−μ′) = h(μ,μ′) and h(μ,−μ′) = h(−μ,μ′). These symmetries have been
used in deriving (76).

Let
P̃n(μ) = √

2n + 1Pn(2μ − 1) (79)

denote the normalized Legendre polynomial mapped to the half range, 0 < μ ≤ 1.
For the double-spherical harmonics method, we expand ψ± as
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ψ±(z, μ) =
∞∑

n=0

u±
n (z)P̃n(μ) . (80)

The objective is to determine the coefficients u±
n (z). Substituting (80) into (76),

multiplying this by P̃m(μ), integrating with respect to μ over 0 < μ ≤ 1, and using
the half-space orthogonality relation,

∫ 1

0
P̃m(μ)P̃n(μ)dμ = δmn , (81)

we obtain the system of equations and boundary conditions for {u±
n } as

∞∑
n=0

Mmn
du+

n

dZ
= −u+

m +
∞∑

n=0

[
H (1)

mn u+
n + H (2)

mn u−
n

]
, (82a)

−
∞∑

n=0

Mmn
du−

n

dZ
= −u−

m +
∞∑

n=0

[
H (1)

mn u−
n + H (2)

mn u+
n

]
, (82b)

u+
m |Z=0 =

∫ 1

0
P̃m(μ)b(μ)dμ, m = 0, 1, . . . . (82c)

The matrices M , H (1), and H (2) are given by

Mmn =
∫ 1

0
μP̃m(μ)P̃n(μ)dμ, (83a)

H (1)
mn = 1

2

∫ 1

0
P̃m(μ)

∫ 1

0
h(μ,μ′)P̃n(μ)dμ , (83b)

H (2)
mn = 1

2

∫ 1

0
P̃m(μ)

∫ 1

0
h(μ,−μ′)P̃n(μ)dμ . (83c)

System (82) is to be solved for each m = 0, 1, . . .. When we truncate this infinite
system at m = N , we obtain a finite dimensional system suitable for numerical
computations. This truncation yields the double-spherical harmonics of order N
approximation,

ψ±(Z , μ) ≈
N∑

n=0

u±
n (Z)P̃n(μ), (84)

which we denote by D PN . The objective is to determine the N + 1 coefficients
u±

n (Z) for n = 0, 1, . . . , N .
Two useful properties of the half-range Legendre polynomials (79) assist in solv-

ing this problem. First, the matrices M , H (1), and H (2) are symmetric. Second,
from the theory of generalized Fourier series, it follows that (84), in which u±

n for
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n = 0, 1, . . . , N satisfy (82), gives the optimal (in the least-squares sense) polyno-
mial approximation of degree N forψ±. In fact, the advantage of using the half-range
specific intensities, ψ±, over the full-range specific intensity, ψ , is that former are
continuous functions everywhere in their domain of definition. This ensures faster
convergence forψ± as the number of modes N increases since only smoothness over
the half-range is required.

Let
U ±(Z) = (u±

0 , u±
1 , . . . , u±

N ) (85)

denote the vectors of the coefficients corresponding to (80). Using this notation, the
problem (82) can be written in matrix notation as

[
M 0
0 −M

]
d

dZ

[
U +
U −

]
+

[
I − H (1) −H (2)

−H (2)
I − H (1)

] [
U +
U −

]
= 0 , in Z > 0 , (86a)

U + = b on Z = 0 . (86b)

where I is the (N + 1) × (N + 1) identity matrix and the entries of the vector b are
defined according to

bn =
∫ 1

0
P̃n(μ)b(μ)dμ, n = 0, 1, . . . , N . (87)

We call (86) the D PNproblem for the half space. This is a 2(N + 1) × 2(N + 1)
system of equations along with boundary conditions. In what follows, we analyze
this system.

5.1 The Generalized Eigenvalue Problem for the DPNSystem

We seek a solution of (86) in the form

[
U +
U −

]
= eλZ

[
V +
V −

]
, (88)

where λ is an eigenvalue and [V +;V −] its associated eigenvector, where, for conve-
nience, we introduce the notation [U ;V ] = [U T , V T ]T , where the superscript T
denotes the transpose. Substituting (88) into (86a) leads to the 2(N + 1) × 2(N + 1)
generalized eigenvalue problem

λ

[
M 0
0 −M

] [
V +
V −

]
+

[
I − H (1) −H (2)

−H (2)
I − H (1)

] [
V +
V −

]
= 0 . (89)

We establish several important results regarding this problem.
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Property 1. (Symmetry) Ifλ is an eigenvalueof (89)with eigenvector [V +;V −],
then −λ is an eigenvalue with eigenvector [V −;V +].
This property follows from the invariance of (89) under the transformations: λ →
−λ, V + → V −, and V − → V +.
Property 2. (Orthogonality) If λ is an eigenvalue of (89) with eigenvector
[V +;V −] and ν is an eigenvalue with eigenvector [W +;W −], they satisfy
the orthogonality relation

(λ − ν)

[
W +
W −

]T [
M 0
0 −M

] [
V +
V −

]
= 0. (90)

This property follows from left-multiplying (89) for the eigen-triple (λ,V ±) by
[W +;W −]T ; left-multiplying (89) for the eigen-triple (ν,W ±) by [V +;V −],
and taking the difference between the resulting equations. The terms involving H (1)

and H (2) vanish, because these matrices are symmetric. A corollary of Property
2 is that eigenvectors corresponding to different eigenvalues are M-orthogonal to
each other in the sense that

[
W +
W −

]T [
M 0
0 −M

] [
V +
V −

]
= 0. (91)

Property 3. (Nullspace) Zero is an eigenvalue with multiplicity two and only
one (proper) corresponding eigenvector. The nullspace also has a one-dimensional
generalized eigensolution. In terms of the full-range radiance, the general solution
associated with the nullspace is

ψ = a0 + b0

(
Z − μ

1 − g

)
, (92)

where a0 and b0 are scalar constants. In terms of the half-range vectors, the gen-
eralized eigenvector solution corresponding to (92) is

[
V +
V −

]
= a0

[
ê1
ê1

]
+ b0

(
Z

[
ê1
ê1

]
− 1

1 − g

[
m1

−m1

])
, (93)

where ê1 = (1, 0, . . . , 0) is the unit vector in the “direction” associated with the
isotropic half-range Legendre polynomial P̃0 = 1 and

m1 = M ê1 = (M00, M01, . . . , M0N ) (94)

is the first column of M , whose entries correspond to the expansion of the coeffi-
cients of the functions ψ± = ±μ in the half-range Legendre polynomials.

This property can be understood as follows.Recall that L has a zero eigenvaluewith
an associated isotropic eigenfunction i.e., L P0(μ) = 0. In terms of the half-range
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intensities, this isotropic eigenfunction corresponds to ψ+ = ψ− = a0 P̃0(μ) with
a0 denoting a scalar constant. It follows that the vectors of expansion coefficients
are given byU + = U − = a0ê1. Hence, the constant a0 in (92) is in the nullspace.
By inspection, the second term in (92) is also a solution of this problem. This
implies that the second term in (93) is a generalized eigensolution in the nullspace.
Indeed, by Property 1, the zero eigenvalue has multiplicity two.

5.2 Solving the DPNProblem

We proceed to formally solve the D PNproblem (86). Recall that (93) is the nullspace
solution of the D PNeigenvalue problem (89) and that all the other eigenvalues come
in opposite-sign pairs, λ− j = −λ j , for j = 1, 2, . . . N , with associated eigenvectors
[V +

j ;V −
j ] and [V −

j ;V +
j ], respectively. The general solution of (86a) is

[
U +
U −

]
= a0

[
ê1
ê1

]
+ b0

(
Z

[
ê1
ê1

]
− 1

1 − g

[
m1

−m1

])

+
N−1∑
j=1

([
V −

j

V +
j

]
e−λ j Z a j +

[
V +

j

V −
j

]
eλ j Z b j

)
, (95)

where a j , and b j for j = 0, 1, . . . , N are coefficients to be determined. Requiring
that (95) remain bounded for all Z > 0 leads to setting b0 = b1 = . . . = bN = 0.
Therefore, [

U +
U −

]
= a0

[
ê1
ê1

]
+

N∑
j=1

[
V −

j

V +
j

]
e−λ j Z a j . (96)

Requiring that (96) satisfy the boundary condition (86b), we obtain

a0ê1 +
N∑

j=1

V −
j a j = b. (97)

Equation (97) is a linear system for the coefficients a j , j = 0, 1, . . . , N , which
can be readily solved. The solution of (72) is then obtained from (96) and the
D PNexpansion (80).

We can formally write the solution of (97) as a = Γ I0, where a denotes the
vector of expansion coefficients and Γ denotes the inverse of the matrix whose first
column is ê1 and whose subsequent columns are V −

j for j = 1, . . . , N , i.e.,

Γ = [
ê1; V −

1 ; · · · ; V −
N

]−1
. (98)
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The matrix Γ gives the mapping from the boundary data to the coefficients making
up the solution of (97). Let g T

0 denote the first row of Γ . It follows that

a0 = g T
0 b. (99)

Therefore, the inner product of g0 with the boundary data is the mapping from the
boundary data to the only non-decaying mode of (96). This operation is precisely
the D PNapproximation of the operator G 0

s introduced in Sect. 4.3.
For boundary layer solutions about z = 1, we need to solve

− μ
dψ̃

d Z̃
+ Lψ̃ = 0 in Z̃ > 0, (100)

subject to
ψ̃ |Z=0 = b̃ on − 1 ≤ μ < 0. (101)

By replacing μ with −μ, we obtain the same problem as (72) subject to boundary
condition (73). It follows that D PN solution is

[
Ũ +

Ũ −

]
= ã0

[
ê1
ê1

]
+

N−1∑
j=1

[
V +

j

V −
j

]
e−λ j Z ã j , (102)

with the vector of coefficients, ã = (a0, a1, . . . , aN ) defined as ã = Γ b̃ with

b̃n =
∫ 1

0
P̃n(μ)b̃(−μ)dμ, n = 0, 1, . . . , N . (103)

Note that V +
j and V −

j are switched in (102) from what appears in (96) due to the
replacement of μ by −μ.

6 Procedure for Computing the Asymptotic Approximation
of Boundary Layer Theory

We now have all of the components needed to evaluate the uniformly valid asymp-
totic approximation of the RTE in the strong-scattering regime. In what follows, we
summarize the results from above in a procedure to evaluate the asymptotic approx-
imation valid to O(ε2).

To compute the asymptotic approximation of the solution to

εμ
dI

dz
+ ε2 I + L I = 0 in 0 < z < 1, (104)
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for a specified redistribution function subject to boundary conditions

I |z=0 = b on 0 < μ ≤ 1, (105a)

I |z=1 = 0 on − 1 ≤ μ < 0, (105b)

we follow the procedure given below.

1. Interior solution

a. For the D PNmethod, set N and compute (83a), (83b), (83c), (87), and (94)
using Gauss quadrature to obtain M , H (1), H (2), b , and m1, respectively.
b. Construct and solve generalized eigenvalue problem (89) for the eigenvalues
λ± j and eigenvectors V ±

j , for j = 0, 1, 2, . . . N .
c. Use the solution from Step 1(b) to compute the matrix Γ given in (98) and
set g T

0 to be its first row.
d. Compute the coefficients

β0 = g T
0 ê1, (106a)

β1 = g T
0 m1, (106b)

b̄ = g T
0 b. (106c)

e. Using the results from Step 1(d), solve the diffusion approximation given by
(71) to obtain ρ(z).
f. Compute the half-range interior solutions,

Φ±(z, μ) = ρ(z) ∓ εμρ ′(z)/(1 − g), (107)

for z ∈ (0, 1), and μ ∈ (0, 1].
2. Boundary layer solutions

a. Compute the coefficients

a = Γ [b − ρ(0)ê1 + εm1ρ
′(0)/(1 − g)], (108)

ã = Γ [−ρ(1)ê1 − εm1ρ
′(1)/(1 − g)]. (109)

b. Using the results from Step 2(a), compute

[
U +
U −

]
=

N∑
j=1

[
V −

j

V +
j

]
e−λ j z/εa j , (110)

[
Ũ +

Ũ −

]
=

N∑
j=1

[
V +

j

V −
j

]
e−λ j (1−z)/εã j , (111)



Radiative Transfer of Light in Strongly Scattering Media 85

c. Using the results from Step 2(b), compute the half-range boundary layer
solutions

ψ
(1)
± (z, μ) =

N∑
n=0

u±
n (z)P̃n(μ) , (112)

ψ
(2)
± (z, μ) =

N∑
n=0

ũ±
n (z)P̃n(μ) . (113)

3. Asymptotic approximation

Compute the asymptotic approximation of the half-range specific intensities,

I±(z, μ) = Φ±(z, μ) + ψ
(1)
± (z, μ) + ψ

(2)
± (z, μ) , (114)

for z ∈ [0, 1], and μ ∈ (0, 1].
We call (114) the uniformly valid asymptotic approximation of the boundary layer

theory to O(ε2). It gives an approximation to the solution of the RTE in the entire
domainwith an error that scales asO(ε2). The interior solutionΦ± is derived from the
diffusion approximation. The boundary layer solutionsψ

(1)
± andψ

(2)
± give corrections

to the diffusion approximation near boundaries z = 0 and z = 1, respectively.

7 Deriving Two-Flux Theory

Using the results from boundary layer theory discussed above, we derive two-flux
theory. To do so, we introduce the half-range fluxes,

F±(z) =
∫ 1

0
I±(z, μ)μ dμ . (115)

Multiplying μ to (107) and integrating with respect to μ, we find that the associated
fluxes are

F±(z) = 1

2
ρ(z) ∓ ε

3(1 − g)
ρ ′(z) . (116)

Equation (116) establishes a relationship between F± and the diffusion
approximation.

Adding and subtracting the two equations in (116) for F±, we get

F+(z) + F−(z) = ρ(z) , (117a)

F+(z) − F−(z) = − 2ε

3(1 − g)
ρ ′(z) . (117b)
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Differentiating (117) with respect to z gives

F ′
+(z) + F ′

−(z) = ρ ′(z) , (118a)

F ′
+(z) − F ′

−(z) = − 2ε

3(1 − g)
ρ ′′(z) . (118b)

Solving for ρ ′ in (117b) and substituting that result into (118a), we obtain

F ′
+(z) + F ′

−(z) = −3(1 − g)

2ε

[
F+(z) − F−(z)

]
. (119)

Substituting (71a) into the right-hand side of (118b), we obtain

F ′
+(z) − F ′

−(z) = −2εαρ(z) . (120)

Solving for ρ from (117a) and substituting into (120), we get

F ′
+(z) − F ′

−(z) = −2εα[F+(z) + F−(z)] . (121)

By adding and then subtracting (119) and (121), dividing by 2, and rearranging terms,
we arrive at

F ′
+(z) = −

[
3(1 − g)

4ε
+ εα

]
F+ +

[
3(1 − g)

4ε
− εα

]
F− , (122a)

F ′
−(z) =

[
3(1 − g)

4ε
+ εα

]
F− −

[
3(1 − g)

4ε
− εα

]
F+ . (122b)

System (122) can be written as

F ′
+(z) = −(K̃ + S̃)F+ + S̃F−, (123a)

F ′
−(z) = (K̃ + S̃)F+ − S̃F− , (123b)

with coefficients

K̃ = 2εα , (124a)

S̃ = 3

4ε
(1 − g) − εα . (124b)

The equations in (123) are the two-flux equations, but written with respect to
scaling given in (20). We can write them in terms of the optical depth τ , defined in
(9), and use the albedo (10) to express the two-flux system as

F ′
+(τ ) = −(K̃ + S̃)F+(τ ) + S̃F−(τ ), (125a)

F ′
−(τ ) = (K̃ + S̃)F+(τ ) − S̃F−(τ ) , (125b)
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with

K̃ = 2(1 − �0), (126a)

S̃ = 3

4
(1 − g) − (1 − �0) . (126b)

Alternatively, by transforming back to the dimensional z variable using (9) and (10),
we arrive at the familiar two-flux equations in dimensional form,

F ′
+(z) = −(K + S)F+(z) + SF−(z), (127a)

F ′
−(z) = (K + S)F+(z) − SF−(z) , (127b)

with

K = 2κa, (128a)

S = 3

4
κs(1 − g) − 1

4
κa(1 + 3g) . (128b)

These results are the same as derived by Sandoval and Kim (2014).
We have derived the two-flux equations (127) above from computing the half-

range fluxes associated with the interior solution in boundary layer theory. This
derivation shows that in a strongly scattering medium, two-flux theory is entirely
consistent with the diffusion approximation. In fact, it is just a reformulation of the
diffusion approximation. Consequently, two-flux theory is asymptotically accurate
in the interior of the medium.

7.1 Limitations of Two-Flux Theory

Two-flux theory provides a simple and intuitive picture of light propagation in a
scattering medium. For that reason, it is very useful. However, it is important to
point out its limitations which we list below.

Limitation I. Two-flux theory is only valid for one-spatial dimension for prob-
lems with azimuthal symmetry.
Limitation II. Two-flux theory is only accurate for high-albedo media.
Limitation III. Two-flux theory is only valid in the interior of the domain. This
theory does not accurately determine the fluxes leaving the domain.

Limitation I is inherent in the assumption of azimuthal symmetry leading to
the one-dimensional RTE (4). We discuss a possible extension to three-dimensional
space in Sect. 9.Limitation II andLimitation III are manifest from our derivation
of System (127) from the interior solution (107) given in terms of the solution of the
diffusion approximation (71). Boundary layer theory provides an asymptotic solution
in the limit as ε → 0+ corresponding to�0 → 1. Furthermore, we have learned from
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boundary layer theory that the interior solution requires corrections in the form of
boundary layer solutions to accurately capture the intensity near the boundary.

7.2 Boundary Conditions

The two-flux equations need to be supplemented with boundary conditions. These
boundary conditions are usually determined by computing the half-range fluxes from
boundary conditions of the RTE in the following way. Multiplyingμ to (8a) and (8b)
integrating those results with respect to μ, we find that

F+(0) =
∫ 1

0
b(μ)μ dμ, (129a)

F−(1) = 0. (129b)

These boundary conditions intuitively prescribe the fluxes incident on the boundaries
z = 0 and z = 1. However, if we consider the fact that the two-flux equations are
derived directly from the interior solution given by the diffusion approximation,
these boundary conditions may not be appropriate. In boundary layer theory, this
interior solution requires the addition of boundary layer solutions to correct it near
the boundaries. We call the solution of the two-flux equations given by (123) with
boundary conditions (129) naïve two-flux theory.

As an alternative to boundary conditions (129) in naïve two-flux theory, we derive
boundary conditions consistent with those given in (71b) from boundary layer theory.
Substituting (117) into (71b), we find that

F+(0) = 1

β0 + 3
2β1

b̄ − β0 − 3
2β1

β0 + 3
2β1

F−(0), (130a)

F−(1) = β0 − 3
2β1

β0 + 3
2β1

F+(1). (130b)

In contrast to boundary conditions (129), these boundary conditions include an effec-
tive reflection at the boundary with reflection coefficient R = (β0 − 3β1/2)/(β0 +
3β1/2). Since these boundary conditions are derived from the asymptotic theory, we
call the solution of the two-flux equations given by (123) with boundary conditions
(130) asymptotic two-flux theory.

We expect a large difference in the accuracy between the naïve and asymptotic
two-flux theories. The entire solution of the two-flux equations depends on the bound-
ary conditions. Hence, differences in boundary conditions lead to differences in the
entire solution. Moreover, we identified in Limitation III that two-flux theory can-
not accurately capture the fluxes leaving the domain. Naïve two-flux theory insists
that the boundary conditions are the incident fluxes on the boundaries. In contrast,
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asymptotic two-flux theory anticipates the need for boundary layer solutions to over-
come Limitation III. We investigate the differences between these different two-
flux theories in the computational results.

8 Computational Results

In this section, we compare the radiative transfer theory and the approximations
discussed above. We seek to solve the RTE (21) with α = 1 for different values of ε

(or the albedo), and theHenyey-Greenstein redistribution function, defined as (Van de
Hulst 2012)

hHG(μ,μ′; g) = (1 − g2)E(k)

π |β − γ |√|β + γ | , (131a)

β = 1 − g2 − 2gμμ′ (131b)

γ = 2g
√

(1 − μ2)(1 − μ′2) , (131c)

where, in (131a), E(k) is the complete elliptic integral of the second kind, defined
as

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ , (132)

evaluated with k = 2γ /|β + γ |. The redistribution function (131) is obtained from
the three-dimensional Henyey-Greenstein scattering phase function, defined as

pHG(Ω,Ω ′; g) = 1

4π

1 − g2

(
1 + g2 − 2gΩ · Ω ′)3/2 , (133)

using the integral defined in (6).
In particular, we consider (21) in the domain 0 < z < 1 with the boundary con-

ditions

I |z=0 = μ2, on 0 < μ ≤ 1 , (134a)

I |z=1 = 0 , on − 1 ≤ μ < 0 . (134b)

Upon solution of this problem, we compute the half-range fluxes

F±(z) =
∫ 1

0
I±(z, μ)μdμ. (135)
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8.1 Comparison of Approximations

We compute the approximations of the problem (21) with boundary conditions (134)
using the following three theories.

• Naïve two-flux theory [(123) with boundary conditions (129)];
• Asymptotic two-flux theory [(123) with boundary conditions (130)];
• Boundary layer theory [Procedure given in Sect. 6].

In particular, we study F±(z) computed from all of these theories over 0 ≤ z ≤ 1.
To begin with, we solve this problem with ε = 0.01, which corresponds to �0 ≈

0.9999 [see (23)], and g = 0.4,which corresponds to amoderately forward-scattering
medium.We solve this problemusing the D PNmethodwith N = 12.We use 501 grid
points in z, and evaluate the integrals in (131) using the 128 point Gauss-Legendre
quadrature rule. In what follows, we denote the solution thus obtained the D P12

solution. To validate using this method, we compared results from the D P12 solution
to those from a highly resolved computation using the discrete ordinate method with
the double-Gauss quadrature rule (see Thomas and Stamnes 2002, for example). This
method has been shown to be pointwise convergent (Keller 1960). Through those
comparisons, we have found that for this problem, the D P12 solution has a maximum
relative error that is less than 10−6. For this reason, we consider the D P12 solution
as the benchmark, to which all other approximations evaluated here are compared.

Let F±(z) denote to the benchmark (D P12) solutions and let F̃±(z) denote the
approximate solutions. In what follows we refer to the absolute maximum errors, the
relative maximum errors, and the root-mean square (RMS) errors of the solutions.
These errors are defined as

absolute maximum error = max
z

{
|F+(z) − F̃+(z)| , |F−(z) − F̃−(z)|

}
,

relative maximum error = max
z

{
|F+(z) − F̃+(z)|

|F+(z)| ,
|F−(z) − F̃−(z)|

|F−(z)|

}
,

RMS error = max

⎧⎨
⎩

√√√√ 1

Nz

Nz∑
i=1

|F+(zi ) − F̃+(zi )|2 ,

√√√√ 1

Nz

Nz∑
i=1

|F−(zi ) − F̃−(zi )|2
⎫⎬
⎭ ,

respectively, where {zi }Nz

i=1 denote the discrete points along the z direction.
Figure 1 shows a comparison between the D P12, naïve two-flux, and asymptotic

two-flux solutions. The top row of plots show these solutions for 0 ≤ z ≤ 1. The
bottom row of plots show these solutions near the boundary at z = 0. The D P12

solution changes rapidly near the boundary at z = 0 corresponding to the boundary
layer. Because the solution itself is very small near z = 1, the rapid change near the
boundary z = 1 is not apparent in Fig. 1. Regardless, neither the naïve nor the asymp-
totic two-flux solutions accurately capture these rapid changes near the boundary.
The naïve two-flux solution is accurate at the boundaries, but not away from them.
The absolute error made by the the naïve two-flux solution for F+(1) is 4.224 × 10−4
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and for F−(0) is 8.689 × 10−4. Even though it captures the qualitative behavior of
F±(z) over 0 < z < 1, it exhibits a large quantitative error. In contrast, the asymp-
totic two-flux solution accurately approximates the D P12 solution for 0 < z < 1, but
makes a substantial error at the boundary layer near z = 0.

The relative maximum error of the naïve two-flux solution is 0.0930. This max-
imum error is attained in the interior of the domain. The relative maximum error
of the asymptotic two-flux solution is 0.0988. This maximum error is attained at
z = 0. From the results in Fig. 1, we observe that the asymptotic two-flux theory is
accurate over a much larger portion of the domain than the naïve two-flux theory.
This difference is captured better by the RMS error. The RMS error of the naïve two-
flux solution is 0.0136, whereas, the RMS error of the asymptotic two-flux theory
is 0.00163. With respect to the the RMS error, the asymptotic two-flux theory is an
order of magnitude more accurate than the naïve two-flux theory.

Figure 2 shows a comparison between the half-range interior solutions, Φ±,
boundary layer solutions, Ψ

(1)
± + Ψ

(2)
± , and the uniformly valid asymptotic solu-

tion of boundary layer theory, which is the sum given in (114). Here, we see how
the boundary layer solutions correct the interior solution near the boundaries. They
are exponentially small in the interior of the domain. Consequently, they do not
interfere with the approximation made by the interior solution there. Because the
boundary layer solutions take care of the boundary conditions and the rapid change
in the solution near the boundaries, they free the interior solution from having to
satisfy boundary conditions it is not capable of satisfying which, in turn, allows it
to accurately capture the solution in the interior of the domain. It is in this way that
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Fig. 1 Comparison between the D P12 solution (solid), the naïve two-flux solution (dots), and
asymptotic two-flux solution (dashes). Here ε = 0.01 (�0 ≈ 0.9999) and g = 0.4. Panels (a) and
(b) show F+ and F−, respectively. The bottom row of panels “zoom in” on the solutions inside the
boundary layer near z = 0
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Fig. 2 Comparison between the interior solution (dots), the boundary layer solution (solid), and
uniformly valid asymptotic solution (dashes) of boundary layer theory, for the same problem as in
Fig. 1. The bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0

boundary layer theory provides a uniformly accurate approximation throughout the
entire domain.

Figure 3 shows a comparison between the solutions computed using D P12, the uni-
formly valid asymptotic solution of boundary layer theory, and asymptotic two-flux
theory. Since asymptotic two-flux theory is consistent with the diffusion approxi-
mation, it is equivalent to the interior solution in boundary layer theory. The inte-
rior solution does not satisfy the boundary conditions prescribed with the RTE, so
it makes a significant error near the boundary z = 0. On the other hand, because
boundary layer theory corrects the diffusion approximation by including boundary
layer solutions near each of the boundaries, it provides a uniformly valid asymptotic
approximation for all 0 ≤ z ≤ 1. In particular, these boundary layer solutions accu-
rately capture the rapid change in the solution near z = 0 and z = 1. In particular, the
relative maximum error of the uniformly valid asymptotic approximation is approxi-
mately 8.343 × 10−4 with an RMS error of 1.135 × 10−4. As a result, the uniformly
valid asymptotic approximation and the D P12 solution are indistinguishable to the
eye. These results clearly show that boundary layer theory provides a very accurate
approximation over the whole domain. It is vastly superior over both of the two-flux
theories, as well as the diffusion approximation, since it includes the boundary layer
solutions that take into account the rapid changes near the boundaries.

The derivation of two-flux theory indicates that it is valid only in the interior
of the domain of a strongly scattering medium. The results shown here indicate
that asymptotic two-flux theory is more accurate than the naïve two-flux theory
everywhere except near the boundaries. If one only considers the fluxes exiting the
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Fig. 3 Comparison between the D P12 solution (dots), the uniformly valid asymptotic approxima-
tion (dashes), and the asymptotic two-flux theory (solid) for the same problem as in Fig. 1. The
bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0

domain, it appears that the naïve two-flux theory provides a more accurate approxi-
mation. However, using the naïve two-flux theory in this way is problematic because
it achieves this approximation at the expense of a substantial error everywhere else.
In contrast, boundary layer theory provides a uniformly accurate approximation over
the entire domain. Moreover, it is substantially more accurate.

8.2 Dependence on the Albedo

We now consider the accuracy of these approximations for different values of ε,
which is directly related to the albedo through (23). In particular, we compute the
relative errors of the different approximations with g = 0.4 for 0.001 ≤ ε ≤ 0.25
corresponding to 0.94 < �0 < 1. According to (23), 1 − �0 = O(ε2) and so is the
error of the asymptotic theory. The results in Fig. 4 show that the relative errors of
both the naïve and asymptotic two-flux theories are approximately 10%. In contrast,
the error of the uniformly valid asymptotic solution of boundary layer theory scales
as O(1 − �0) as predicted by the asymptotic theory.
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Fig. 4 Log-log plot of the
errors of the naïve two-flux
solution (dots), the
asymptotic two-flux solution
(dashes), and the uniformly
valid asymptotic solution
(solid) as functions of
1 − �0. All other parameters
are the same as in Fig. 1
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Fig. 5 a Log plot of the
errors of the naïve two-flux
solution (dots), the
asymptotic two-flux solution
(dashes), and the uniformly
valid asymptotic solution
(solid) as functions of the
anisotropy parameter g. All
other parameters are the
same as in Fig. 1
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8.3 Dependence on the Anisotropy Factor

The only other parameter in this problem besides the albedo, �0, is the anisotropy
factor, g. The results shown in Sect. 8.1 were for g = 0.4 corresponding to mildly
anisotropic scattering. We now consider the accuracy of these approximations for
different values of g in Eq. (131). According to the uniformly valid asymptotic theory,
the error isO(ε2). Thus, the leading order behavior of the error is given byCε2, where
C is some constant that is independent of ε (and consequently, �0). However, it may
depend on g. In what follows, we seek to determine the dependence of C on g.

Figure 5 shows the relative errors of the naïve and asymptotic two-flux theo-
ries, and the uniformly valid asymptotic solution of boundary layer theory. These
results show that the errors for both the naïve and asymptotic two-flux theories are
approximately 10% over all values of g. In contrast, the error of the uniformly valid
asymptotic solution of boundary layer theory is two order of magnitude smaller or
less for 0 ≤ g ≤ 0.9 . However, it appears to increase and become large as g → 1.
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8.4 Forward-Peaked Scattering

The results shown in Fig. 5 are for ε held fixed at ε = 0.01. Boundary layer theory
ensures that the error of the asymptotic solution will decrease quadratically as ε → 0
for any fixed value of g. It does not account for sharply forward-peaked scattering
corresponding to the asymptotic limit, g → 1. With sharply forward-peaked scat-
tering, the transport mean-free path, �tr = 1/[κs(1 − g)], is much larger than the
scattering mean-free path, �s = 1/κs , since g ≈ 1. In this parameter regime, there
is a wide separation between the scattering and diffusion length scales. As a result,
anisotropic, sharply forward-peaked scattering inhibits the onset of the diffusion
limit. Many more multiple scattering events are required for the radiance to become
nearly isotropic compared with the mildly anisotropic scattering case. It follows that
the penetration depth for the onset of the diffusion limit is much larger for this case.
At intermediate penetration depths, the character of highly anisotropic scattering is
different and requires additional considerations. Larsen (1999) gives an asymptotic
analysis of this problem leading to useful asymptotic expansions for the scattering
operator.

To investigate the case of anisotropic forward-peaked scattering, we show results
for g = 0.9. In Fig. 6, we compare the D P12, naïve two-flux, and asymptotic two-flux
solutions just as we have done in Fig. 1 for the g = 0.4 case. The overall qualitative
behaviors are the same as for g = 0.4. However, we observe here larger errors made
by both the naïve and asymptotic two-flux solutions. The errors for F− are larger than
those for F+. The relative maximum error of the naïve two-flux solution is 0.0913
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Fig. 6 Same as Fig. 1 for g = 0.9
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Fig. 7 Same as Fig. 3 with g = 0.9

and the relative maximum error of the asymptotic two-flux solution is 0.1022. The
RMS errors are 0.0157 and 0.0040 for the naïve and asymptotic two-flux solutions,
respectively.

In Fig. 7we showcomparisonswith the D P12 solution, the uniformly valid asymp-
totic solution of boundary layer theory, and asymptotic two-flux theory, just as Fig. 2
for the g = 0.4 case. Here, we find that these approximations are not as accurate as
theywere for the g = 0.4 case. The aforementioned errors of the asymptotic two-flux
solution carry over to the asymptotic solution of boundary layer theory. In particular,
the larger errors for F− affect the boundary layer solution which, in turn, exhibits
a noticeable error in the lower right plot of Fig. 6. The relative maximum error for
the boundary layer theory asymptotic approximation is 0.0190 and the RMS error is
0.0030.

Just as Fig. 5 indicates, we have found that the performance of all approximations
is worse for g = 0.9. The behavior of the error of the asymptotic solution of boundary
layer theory will decrease quadratically with ε. However, for this chosen value of
ε = 0.01 and g = 0.9, we find that the error is much larger than the case when
g = 0.4.

8.5 Four-Flux Theory and the DP1 Approximation

Two-flux theory is valid only in the interior of the domain. The eigenvalues of (123)
are given by
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λ = ±
√

K̃ (K̃ + 2S̃) = ±√
3α(1 − g), (136)

where we have used (124). Note that these eigenvalues correspond exactly to those
for the diffusion equation given in (71a). This result is not surprising since two-flux
theory is derived from the interior solution governed by the diffusion approximation.

An improvement over two-flux theory, called four-flux theory, incorporates an
additional length scale in the problem. This length scale is smaller than that given
in (136) and, from what we now understand from boundary layer theory, attempts
to resolve the rapid changes of the solution near the boundaries. Rather than give a
phenomenological method to determine this additional length scale, we consider the
D PNmethod with N = 1, which we call the D P1 approximation.

If we apply the D P1 approximation to (21), we obtain a 4 × 4 system. By Prop-
erty 1 of generalized eigenvalue problem (89), the D P1 approximationwill produce
2 distinct length scales corresponding to the 2 distinct ± pairs of eigenvalues. One
of those length scales corresponds to (136). The other length scale is the additional
length scale in four-flux theory. It is one eigenmode that seeks to approximate the
boundary layer solutions. For this reason, we call the four-flux solutions the results
from computing the half-range fluxes F± from the solution of the D P1 system.

Figure 8 shows a comparison of results computed using D P12, the boundary layer
solution, and four-flux theory. Here, we see that the four-flux solution captures the
rapid changes in the solution near the boundaries better than the two-flux solution
does. The maximum relative error made by the four-flux solution is 0.0129 and the
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Fig. 8 Comparison between the D P12 solution (dotted blue), the uniformly valid asymptotic
approximation (dashed red), and four-flux solution (solid black) for the same problem as in Fig. 1.
The bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0
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RMS error is 0.00185. This maximum relative error is 7 times smaller than those for
the naïve and asymptotic two-flux solutions. This RMS error is an order ofmagnitude
smaller than that for the naïve two-flux solution, but of the same order as the RMS
error for the asymptotic two-flux solution. However, boundary layer theory provides
a vastly better approximation than four-flux theory.

Four-flux theory provides a substantial improvement over two-flux theory through
the inclusion of an additional length scale. Rather than seeking to derive this length
scale phenomenologically, we consider instead computing the half-range fluxes from
the D P1 approximation. The D P1 approximation has 2 distinct length scales: one cor-
responds to the two-flux/diffusion length scale given in (136), and the other attempts
to resolve the rapid changes near the boundaries. Although four-flux theory qual-
itatively captures the rapid changes in the solution near the boundaries, it is less
accurate than the asymptotic approximation derived from boundary layer theory.

9 Extension of Two-Flux Theory for Three-Dimensional
Radiative Transfer

Many physical problems of interest require solving the three-dimensional RTE. For
this reason, it is tempting to seek a two-flux theory for the three-dimensional RTE.
Such a theory may be used to study beam propagation and scattering in a plane-
parallel medium, for example. However, Limitation I in Sect. 7.1 states that two-
flux theory is only valid for one-spatial dimension for problems with azimuthal
symmetry. Nonetheless, using the connection between two-flux theory and the dif-
fusion approximation established above, we can develop what amounts to a two-flux
theory for the three-dimensional RTE.

The diffusion equation in three dimensions is given by

Dρzz + D∇2
⊥ρ − αρ = 0 , (137)

where we have introduced the diffusion coefficient D = [3(1 − g)]−1, for conve-
nience, and ∇2

⊥ = ∂2
xx + ∂2

yy denoting the transverse Laplacian. In boundary layer
theory for the three-dimensional RTE, the interior solution is given by

Φ = ρ − ε3DΩ · ∇ρ + O(ε2), (138)

The half-range fluxes associated with this interior solution can be calculated as

F±(x, y, z) =
∫ 2π

0

∫ 1

0
Φ±(x, y, z, μ, ϕ)μdμdϕ = 1

2
ρ ∓ εDρz + O(ε2). (139)

Thus, we find that
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F+ + F− = ρ, (140a)

F+ − F− = −ε2Dρz . (140b)

By taking the partial derivative with respect to z, we obtain

F+,z + F−,z = ρz = − 1

2εD
(F+ − F−), (141a)

F+,z − F−,z = −ε2Dρzz = −ε2(α − D∇2
⊥)(F+ + F−). (141b)

From these results, we find that

F+,z = −
[

1

4εD
+ εα − D∇2

⊥

]
F+ +

[
1

4εD
− εα + D∇2

⊥

]
F−, (142a)

F−,z =
[

1

4εD
+ εα − D∇2

⊥

]
F− −

[
1

4εD
− εα + D∇2

⊥

]
F+. (142b)

The systemgiven in (142) gives the 3D two-flux equations. Perhaps this 3D extension
to two-flux theory is useful for some applications, but since it is entirely consistent
with the diffusion approximation, one may as well consider solving the 3D diffusion
approximation instead.

10 Conclusions

We have discussed approximations to the RTE in strongly scattering medium. In
particular, we have discussed boundary layer theory and two-flux theory. Both of
these theories have connections to the D PNmethod which we also explain. By inves-
tigating the connections between these two approximations and the D PNmethod, we
have gained valuable insight into each of them.

Boundary layer theory gives a systematic perturbation method to compute the
solution of the RTE in the limit as the albedo approaches one. It gives the solution as
the sumof the interior solution and the boundary layer solutions. The interior solution
is governed by the diffusion approximation. The boundary layer solutions satisfy a
conservative, one-dimensional RTE in a half space. By requiring that boundary layer
solutions satisfy asymptotic matching conditions, we derive boundary conditions
for the diffusion approximation. Since we cannot solve the boundary layer problems
analytically, we have used the D PNmethod to solve them. This method also provides
a convenientmethod to impose asymptoticmatchingwhich, in turn, provides a simple
method for computing the coefficients in the boundary conditions for the diffusion
approximation. The result of boundary layer theory is a uniformly valid asymptotic
approximation that is accurate over the entire domain with a precisely defined error
bound. Numerical results show that this asymptotic solution is very accurate over
the entire domain.
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Two-flux theory provides a simple and intuitive picture of light scattering and
absorption in one spatial dimension. However, it has lacked a systematic theo-
retical framework to derive its coefficients and boundary conditions. Here, we
have derived two-flux theory using the interior solution from boundary layer the-
ory. By doing so, we have determined that two-flux theory is just a reformulation
of the diffusion approximation. Consequently, it is accurate only for describing
light that has penetrated deep into a strongly scattering medium. It is not accu-
rate near boundaries or sources. This connection allows for the explicit determina-
tion of the coefficients. Specifically, we have found that the scattering coefficient
is S = 3κs(1 − g)/4 − κa(1 − 3g)/4, and the absorption coefficient is K = 2κa .
These results provide a useful connection between two-flux theory and the funda-
mental quantities in radiative transfer. However, just as the boundary conditions for
the diffusion approximation can be problematic, so are those for two-flux theory.
Here, we have derived boundary conditions for two-flux theory that are consistent
with the results in boundary layer theory for the interior solution. By doing so, we
have introduced the asymptotic two-flux theory. In contrast to naïve two-flux theory
that uses the fluxes incident on the boundary as boundary data, the asymptotic two-
flux theory has been shown to be more accurate in the interior of the domain away
from boundaries. However, despite the fact that the naïve two-flux theorymakes large
errors in the interior of the domain, it approximates the fluxes exiting the domain at
the boundaries better than the asymptotic two-flux theory.

Two-flux theory can be improved by adding another length scale that takes into
account the rapid change of the solution near the boundaries. The result is called
four-flux theory. Here, we have drawn a connection between four-flux theory and the
D PNmethod with N = 1. Numerical results show that four-flux theory computed
from D P1 provides an significant improvement over two-flux theory. However, four-
flux theory is substantially less accurate than boundary layer theory.

Finally, we consider two-flux theory for three-dimensional radiative transfer prob-
lems.Wehavederived this three-dimensional two-flux theory from three-dimensional
boundary layer theory just aswe have done for one-dimensional problems. This result
provides some insight into how two-flux theory extends to three-dimensional prob-
lems.However, since it is a reformulation of the diffusion approximation, it is perhaps
unnecessary to consider it for practical problems.

The close connections discussed here between boundary layer theory, two-flux
theory, and the D PNmethod in strongly scattering media provides valuable insight
into radiative transfer problems. Specifically, by drawing the connection between
the diffusion approximation and two-flux theory, we have explicitly determined the
coefficients in the two-flux equations. Additionally, the challenge in applying the
diffusion approximation near boundaries should serve as caution in applying two-
flux theory there, as well. Having these connections established should be useful to
other researchers considering these approximations for problems of practical interest.
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