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The LIDORT and VLIDORT Linearized
Scalar and Vector Discrete Ordinate
Radiative Transfer Models: Updates
in the Last 10 Years

Robert Spurr and Matt Christi

1 Introduction

1.1 General Background

It has been 10 years since the last major review paper on the LIDORT and VLIDORT
radiative transfer models; this paper appeared in Light Scattering Reviews, Volume
3 (Spurr (2008), hereinafter referenced as [R1]). The present work will review the
current status of the two models in the light of new developments and upgrades in
the intervening period. LIDORT stands for “LInearized Discrete Ordinate Radiative
Transfer”, and the LIDORTmodel is a comprehensive linearized scalar (no polariza-
tion) RT package based on the discrete-ordinate method for solution of the radiative
transfer equation (RTE). VLIDORT is the corresponding vector version of LIDORT,
dealing with polarized light fields.

Radiative Transfer (RT) models have been around for more than a century, from
early investigations in stellar atmospheres, through the pioneering work by Chan-
drasekhar in the 1940s on the Rayleigh-atmosphere planetary problem, to the wealth
of numerical code packages available today. Interestingly, it is only in recent years
(see for exampleMishchenko 2014 and references therein), that a rigorous derivation
of the radiative transfer equation (RTE) has been established for randomly-oriented
particles and particle groups, starting from a set of fundamental assumptions in clas-
sical electromagnetic scattering theory.

In his famous book on radiative transfer, Chandrasekhar laid out his analytic
solution to the Stokes-vector polarized RTE for a single-layer Rayleigh scattering
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medium (Chandrasekhar 1960). Part of the heritage for LIDORT comes from the
older DISORT model (Stamnes et al. 1988), which was made available in the late
1980s. DISORT is the first multiple-scattering multi-layer discrete ordinate scalar
RT numerical model able to deal with both solar and thermal sources.

The LIDORT model development was started in 1999 in response to a need for a
multiple-scattering RT model that would not only calculate radiance fields, but also
generate analytically-derived accurate fields of radiance partial derivatives (Jaco-
bians, also known as weighting functions or sensitivity functions) with respect to
any atmospheric and/or surface parameters that characterize the optical property
inputs to the model. Simultaneous output of calculated intensities and Jacobians is
essential for the forward-model component of remote-sensing retrievals based on
inverse techniques using functional minimization (with and without regularization)
(Rodgers 2000). Jacobians are also important for linear error analyses and sensitivity
studies.

RT models having this capability are said to be “linearized”. Indeed, the use of
linearized RTmodels is obviously superior to the older technique of finite-difference
(FD) Jacobian computation,whereby two separate calls to theRTmodel are needed to
develop a radiance difference to be divided by a perturbation of the desired Jacobian
parameter. For applications requiring multi-layer profile Jacobians, FD estimates are
slow and cumbersome, requiring many RT model calls; there are also questions of
accuracy, since it is a matter of trial and error choosing the degree of perturbation.
With LIDORT, a single call to the model will deliver any number of Jacobians of all
kinds, and there are no issues of perturbation accuracy.

The LIDORT linearization method is based on end-to-end analytic differentia-
tion of the entire discrete ordinate radiation field in a multi-layer atmosphere, start-
ing with individual layer solutions of the RTE, and moving through the solutions
to the boundary-value problem and the post-processing of the solutions using the
source-function integration technique (Spurr et al. 2001; Spurr 2002). Other lin-
earized RT models have used the “forward-adjoint” RT solution method to obtain
accurate derivatives (Hasekamp and Landgraf 2002; Ustinov 2005; Rozanov and
Rozanov 2007; Doicu and Trautmann 2009).

1.2 Historical Overview of the (V)LIDORT Models

There have been a number of versions of LIDORT since its inception in 1999, and
similarly for VLIDORT (original version, 2004). Table 1 gives an overview of the
model features and associated version numbers. The first LSR paper [R1] covered
versions of LIDORTup to and including 3.3, andVLIDORTup toVersion 2.4 (orange
shading); up to that point, codes were written in Fortran 77. Thereafter, codes were
translated to Fortran 90. More details on the historical development of these models
may be found in the product User Guides.
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Table 1 Major capabilities of LIDORT and VLIDORT

Feature LIDORT
version

VLIDORT
version

Pseudo-spherical (solar beam attenuation) 2.1 1.0

Generalized output of Jacobians 2.1 2.0

Green’s function treatment 2.3 n/a

3-kernel BRDF system+ linearizations 2.4 2.2

Performance (multiple SZA, BVP telescoping) 3.0 2.2

Outgoing sphericity correction 3.2 2.3

Total column Jacobian facility 3.3 2.4

Transmittance-only thermal mode 3.3 2.4

Fortran 90 releases, use of I/O type structures 3.5 2.5

Development of BRDF supplement 3.5 2.5

Development of new surface-leaving supplement 3.6 2.6

Atmospheric and surface Planck-function Jacobians 3.7 2.7

Codes made thread-safe for OpenMP parallel computing 3.7 2.7

Introduction of Taylor series expansions 3.7 2.7

Use of phase functions (matrices) in FO code 3.8 2.8

Do-loop optimizations; bookkeeping improvements 3.8 2.8

BRDF and surface-leaving supplement upgrades 3.8 2.8

Fortran 77 Versions. The first version of LIDORT was developed in 1999 with the
profile-Jacobian linearization in a plane-parallel atmosphere (Spurr et al. 2001). Out-
put of weighting functions was limited to the TOA (top-of-atmosphere) upwelling
radiation field, with surface property Jacobians only for the Lambertian albedo.
Second versions of LIDORT included development of the pseudo-spherical treat-
ment of the solar beam attenuation in a curved atmosphere, and extensions for both
upwelling and downwelling Jacobian output at any layer boundary or intermediate
level. Green’s function methods were introduced for solving the radiative trans-
fer equation (RTE) for solar beam source terms (Spurr 2002; Van Oss and Spurr
2002), and a fully-linearized 3-kernel BRDF (bidirectional reflection distribution
function) was developed for the surface boundary condition (Spurr 2004). For the
third LIDORT versions, the generation of total column (as opposed to profile) Jaco-
bians was integrated into the code, along with an exact treatment of single scattering
for curved line-of-sight paths. Developments for VLIDORT have followed a similar
path, starting in 2004 with the first version (no linearization), with second versions
developed subsequently following their counterparts with the scalar code (Spurr
2006). All these developments were summed up in the previous review article [R1].

Fortran 90 Versions. In 2010, the LIDORT code was translated to Fortran 90 (Ver-
sion 3.5), followed byVLIDORT (Version 2.5). Themodels’ organization and coding
were overhauled in order to bring the codes in linewithmodern computing standards.
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An important consideration has been the need for the codes to function in a parallel
computing environment; this has meant that all COMMON blocks and associated
“include” files (prominent features of the F77 codes) were removed, to be replaced
by explicit argument declarations for all inputs and outputs, and a number of I/O
type structures. Since this translation, the two codes have had equivalent capabili-
ties, and further developments (separation of the BRDF function into a stand-alone
supplement, development of similar supplements for surface-leaving capabilities and
generation for phase function inputs, generation of new Jacobian facilities such as
those for Planck functions, additional performance enhancements including thread-
safe code for OpenMP parallel-computing environments) have proceeded in tandem
for both codes.

1.3 Scope of this Chapter

The earlier review [R1] contained a full mathematical description of the discrete
ordinate theory behind LIDORT and VLIDORT, including a comprehensive treat-
ment of the linearization, both with respect to atmospheric and surface parameters.
In the present work, the major aim of the paper is to highlight and describe new
developments to the models in the last 10 years, and the mathematical descriptions
will be more selective.

Section 2 contains a digest of the discrete-ordinate radiative transfer formulation,
and here we develop the RTE solutions and summarize the determination of the com-
plete radiation field and associated atmospheric and surface Jacobians. The emphasis
here will be on the scalar treatment in the LIDORTmodel. Most of the mathematical
details will be confined to two appendices.

Section 3 will discuss the LIDORT and VLIDORT model input and output, with
special emphasis on the creation of optical property inputs required for Jacobian out-
put; the latter includes new developments for temperature Jacobians in the thermal
regime, and “levels-to-layers” conversions for profile Jacobian output. Also in this
section we summarize refinements and performance enhancements to the RT solu-
tion method (pseudo-spherical approximation, delta-M scaling, N-T ansatz, solution
saving and BVP telescoping).

Section 4 deals with the model supplements. One of the main changes since [R1]
has been in the treatment of BRDF surfaces—scalar and vector surface reflectance
quantities are now generated in separate stand-alone “BRDF supplements” to the
main codes. An appendix contains details of the upgraded list of BRDF kernels used
in (V)LIDORT. Also, a new supplement has been created for surface-leaving radia-
tion sources (ocean water-leaving, land-based solar-induced fluorescence). Another
development is with the FO (first-order) codes, that is, the “exact” single-scatter
and direct-thermal parts of the models—these parts have been entirely re-written for
the latest releases, and made into self-standing supplemental codes that can either
operate on their own or within the greater (V)LIDORT environments; new optical
property supplements have been written for the FO models.
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With the large and growing community of LIDORT and VLIDORT users, we
have included a section on software aspects of the model. Section 5 starts with an
overview of themodel directory structure, andmoves on to benchmarking and perfor-
mance enhancements—the latter developments in particular include a number of new
implementations, including OpenMP parallelization. Section 6 has the concluding
remarks.

Other radiative transfer models available from RT Solutions will not be treated
here, but they are mentioned in Sect. 5 as part of the benchmarking. In particular, the
scalar LIDORT-RRS model (LRRS) (Spurr et al. 2008), which has first-order redis-
tributed rotational-Raman scattering sources, has recently been upgraded and given
an analytic Jacobian capability (Spurr andChristi 2018, in preparation). RT Solutions
also has a 2-stream model (Spurr and Natraj 2011), and linearized electromagnetic
Mie and T-matrix scattering codes (Spurr et al. 2012).

Final note. The present work summarizes the two main models in their current
incarnations (Version 2.8 for VLIDORT, Version 3.8 for LIDORT). These versions
were completed in 2018, and are publicly available.

2 The LIDORT and VLIDORT Models

In this section, we provide a selective description of the discrete-ordinate formalism
at the foundation of the two RTmodels. Most of the material here is well known from
the literature, and a more comprehensive mathematical description may be found in
[R1] for instance.

Although Sect. 2.1 introduces the main vector RTE, we focus thereafter on the
scalar LIDORT model and its use of infinite-medium Green’s function solution
methods for the RTE particular integral. [Additional material on VLIDORT vector
RTE solutionswill be found inAppendixAas noted in the text.] Section 2.2 dealswith
determination of discrete-ordinate solutions for the (scalar) homogeneous equations
and both particular integrals (solar and thermal sources). Section 2.3 is concerned
with the boundary value problem for the whole-atmosphere discrete-ordinate field,
and the use of source function integration methods to determine the radiation field at
arbitrary levels in the atmosphere and for any viewing geometry. Section 2.4 contains
aspects of the linearization process, focusing only on the main results.

2.1 Summary of the Vector RTE

The 1-D vector RTE for plane-parallel scattering in a single layer is:

μ
∂

∂x
I(x, μ, ϕ) � −I(x, μ, ϕ) + S(x, μ, ϕ); (2.1)
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S(x, μ, ϕ) � ω(x)

4π

2π∫

0

1∫

−1

�
(
x, μ, μ′, ϕ − ϕ′)I(x, μ′, ϕ′)dμ′dϕ′ + Q(x, μ, ϕ).

(2.2)

Here, I(x, μ, ϕ) is the Stokes vector expressed a function of the polar angle cosine
μ (measured from the upward vertical), the azimuth angle ϕ relative to some fixed
direction, and vertical optical thickness (for extinction) x measured from the top of
the layer. The 4-vector I has components {I, Q,U, V } where I is the total intensity,
Q and U describe linear polarization, and U circular polarization. The degree of
polarization is given by P � I−1

√
Q2 +U 2 + V 2. In addition, ω(x) is the single

scattering albedo and�
(
x, μ, μ′, ϕ − ϕ′) the phase matrix for scattering of incident

Stokes vectors with respect to the meridian plane.
In our formulation, we assume that the atmosphere comprises a stratum of

optically uniform layers, so that in any given layer, the optical inputs ω(x) and
�
(
x, μ, μ′, ϕ − ϕ′) do not depend on the optical thickness x, and we henceforth

drop this dependence. If there are N layers in total, with vertical optical depths given
by {�k}, k � 1, . . . N , the cumulative optical depth coordinate τ in layer n is related
to x through: τ � x +

∑n
k�1 �k .

The term Q(x, μ, ϕ) is the source function. For solar beam scattering, we have:

Q(x, μ, ϕ) � ω

4π
�(μ,−μ0, ϕ − ϕ0)F�Ta exp[−λx], (2.3)

where {−μ0, ϕ0} is the solar direction relative to the meridional plane, F� the
solar beam Stokes flux vector before attenuation; in the Earth’s atmosphere F� �[
F�, 0, 0, 0

]T
(natural sunlight, unpolarized). The term Ta exp[−λx] in Eq. (2.3) is

the solar beam attenuation in the pseudo-spherical (P-S) approximation, Ta being
the atmospheric transmittance to layer top, and λ a geometrical factor (the “average
secant”). The P-S formulation treats solar beam attenuation for a curved atmosphere,
but all scattering takes place in a plane-parallel medium; indeed, λ � −1/μ0 when
beam attenuation is itself plane-parallel.

In the thermal emission regime (black-body equilibrium), scattering is assumed
isotropic and the source term is:

Q(x, μ, ϕ) � [1 − ω]

4π
B(x). (2.4)

Here, B(x) � [B(x), 0, 0, 0]T, with the Planck function B(x) expressed as a
function of x ; in common with other RTmodels, we will assume a linear dependence
B(x) � a + bx across a single layer.

The connection between matrix � and the scattering matrix F(	) (assumed to a
function only of scattering angle	) for vectors defined with respect to the scattering
plane is given through the application of two 4×4 rotation matrices:
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�
(
μ,μ′, ϕ − ϕ′) � L(π − σ2)F(	)L(−σ1). (2.5)

Rotation angles σ1 and σ2 can be expressed in terms of the incident
and scatter directions, and the cosine scattering angle is cos	 � −μμ′ +√(

1 − μ2
)√(

1 − μ′2) cos(ϕ − ϕ′). For the scalar RTE, matrix � is replaced by
its (1,1) element, the phase function �(	), which is invariant under rotation. We
now focus on the scalar LIDORT solutions.

2.2 Scalar RTE Solutions for LIDORT

Considering now the scalar versions of Eqs. (2.1) and (2.2), the first step to solving
this RTE is to perform the azimuthal separation, that is, to express the total inten-
sity as a cosine-azimuth series I (x, μ, φ) � ∑

m (2 − δm0)Im(x, μ) cosm(φ − φ0),
for the set of Fourier components Im(x, μ). In addition, phase functions �(	) are
also separated in azimuth via the addition theorem for Legendre polynomials. [In
VLIDORT, the Stokes 4-vector elements are separated in terms of Fourier sine and
cosine series in relative azimuth angle, and the azimuthal separation is completed
by expressing the elements of F(	) in terms of generalized spherical functions; see
Appendix A, Sect. A.1].

The resulting RTE for component Im(x, μ) is then solved by applying a dou-
ble Gauss-Legendre quadrature approximation of multiple scattering integrals. The
quadrature discrete ordinates are

{±μ j , c j
}
, j � 1, . . . Nd , in the positive and neg-

ative polar half spaces. This results in the following set of 2Nd coupled linear differ-
ential equations to be solved in a given layer n:

± μi
d In(x,±μi )

dx
� −In(x,±μi )

+
ωn

2

Nd∑
j�1

c j
[
In
(
x, μ j

)
�n

(±μi , μ j
)
+ In

(
x,−μ j

)
�n

(±μi ,−μ j
)]

+ Qn(x,±μi ).

(2.6)

Here, �n
(±μ,μ′) � ∑2Nd−1

l�m βnl Pl
m(±μ)Pl

m

(
μ′) in terms of associated Legen-

dre functions Pl
m(μ), and the Fourier index in Eq. (2.6) has been suppressed for ease

of exposition. In line with the azimuth separation, the coefficients βnl arise from the
phase function Legendre polynomial expansion: �n(	) � ∑2Nd−1

l�0 βnl Pl(cos	).
The set of properties {�n, ωn, βnl} are fundamental inputs to the RTE (for the scalar
case); these are the IOPs (inherent optical properties), and it is the task of the user
to define them for LIDORT (for VLIDORT there will be a set of 6 expansion coef-
ficients—see Appendix A, Sect. A.1).
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The RTE Eq. (2.6) is solved by first finding the homogeneous solutions (in the
absence of source terms Qn(x,±μi ), and then determining the particular integral
with the inclusion of the source term. This is a standard procedure, and the result is:

In(x,±μi ) �
Nd∑

α�1

[
C+
nαX

±
inαe

−knαx + C−
nαX

∓
inαe

−knα(�n−x)
]
+ G±

ni (x). (2.7)

The homogeneous solutions are found by solving an eigensystem of order Nd ; we
skip the details here for the scalar case, but Appendix A has the derivation for the
vector RTE. Separation constants {knα} and solution vectors

{
X±

nα

}
arise from the

eigensystem solution. QuantitiesC±
nα are the constants of integration which are deter-

mined through application of the boundary conditions (Sect. 2.3). The presence of the
exponential e−knα(�n−x) ensures that solutions are numerically bounded (Stamnes and
Conklin 1984). The main complication in the vector case is the presence of complex-
valued solutions for situations with circular polarization (Appendix A, Sect. A.2).

Solar Sources

Given that the solar source term in Eq. (2.3) has exponential dependence exp[−λnx]
on optical thickness, it is possible to substitute a trial solution with the same form;
eliminating the optical thickness dependence results in a linear-algebra systemwhich
can be solved using standard methods. This is the procedure used in VLIDORT (see
Appendix A).

In LIDORT however, we use a Green’s function method (Siewert 2000a, Spurr
2002), in which the solution is written as follows:

G±
ni (x) �

Nd∑
α�1

[
AnαM+

nα(x)X±
inα + BnαM−

nα(x)X∓
inα

]
; (2.8a)

Anα � 1

Rnα

Nd∑
j�1

c j
[
Q+

jn X
+
jnα + Q−

jn X
−
jnα

]
; (2.8b)

Bnα � 1

Rnα

Nd∑
j�1

c j
[
Q−

jn X
+
jnα + Q+

jn X
−
jnα

]
; (2.8c)

Rnα �
Nd∑
j�1

μ j c j
[
X+

jnαX
+
jnα − X−

jnαX
−
jnα

]
; (2.8d)

M+
nα(x) � F�Tn

e−knαx − e−λn x

λn − knα

; (2.8e)

M−
nα(x) � F�Tn

e−λn x − e−λn�n e−knα(�n−x)

λn + knα

; (2.8f)
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Q±
jn � (2 − δm0)

ωn

2

LM∑
l�m

Pl
m

(±μ j
)
βln P

l
m(−μ0). (2.8g)

Terms
{
Anα, Bnα, Rnα, Q±

jn

}
are independent of optical thickness x in layer n,

depending only on the homogeneous solution vectors X±
nα , the discrete ordinate

quadrature and the IOPs {ωn, βln} for a given layer n. The optical thickness depen-
dency is expressed through multipliers M±

nα(x), where Tn exp[−λnx] is the solar
beam attenuation in the (P-S) approximation.

The Green’s function treatment contains only closed-form algebraic expressions.
The solution is also stable: in the limitλn → knα,M+

nα(x) → F�Tnλnx in Eq. (2.8e),
though a Taylor series expansion may be required close to this limit.

Thermal Sources

With a source term given by Eq. (2.4), and isotropic scattering, only the Fourier
m � 0 term survives for thermal sources. We take the linear dependence of the
Planck function on x :

Bn(x) � an + bnx ; an � Bn−1; bn � Bn − Bn−1

�n
; (2.9)

in terms of Planck functions Bn−1 and Bn at layer boundaries, and the set {Bn} for
n � 0, 1, . . . N is a fundamental thermal-emission input to the RT models. The
surface emission term BSur f is also an input.

It is possible to substitute a trial solution of the same linear form as a function
of x . This is the procedure adopted for VLIDORT; removal of x-dependency again
leads to linear algebra solutions for the particular integral.

In LIDORT however, we use the closed form Green’s function solution, which
has the following form (Spurr 2002):

G±
n (x) � �n

Nd∑
α�1

[
A−
nαT −

nα(x)X∓
nα + A+

nαT +
nα(x)X±

nα

]
;

A±
nα � 1

Rnα

Nd∑
j�1

c j
[
X+

jnα ± X−
jnα

]
. (2.10)

Here, Rnα is defined in Eq. (2.8d), and �n � 1 − ωn .
The multipliers T ±

nα(x) are easy to evaluate, and for reasons that will become
apparent when we consider Planck function linearization in Sect. 3.3, we note only
the values at x � �n and x � 0 respectively, expressed as linear combinations of
Bn−1 and Bn:

T +
nα(�n) � P+

nαBn−1 +Q+
nαBn; T −

nα(0) � P−
nαBn−1 +Q−

nαBn. (2.11a)
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P+
nα � Snα − 1

�nknα

(�n − Snα); Q+
nα � +

1

�nknα

(�n − Snα); (2.11b)

P−
nα � Snα +

1

�nknα

(
�ne

−�nknα − Snα

)
; Q−

nα � − 1

�nknα

(
�ne

−�nknα − Snα

)
.

(2.11c)

In these equations, Snα � 1
knα

(
1 − e−�nknα

)
. We note also that T +

nα(0) �
0; T −

nα(�n) � 0.
We can now compute the particular integrals at layer boundaries, by substituting

these results into Eq. (2.7); again we write the answers as linear combinations of
Planck functions:

G±
n (0) � Bn−1P±

nα + BnQ±
nα

≡ Bn−1�n

N∑
α�1

[
A−
nαP−

nαX∓
nα

]
+ Bn�n

N∑
α�1

[
A−
nαQ−

nαX∓
nα

]
; (2.12a)

G±
n (�n) � Bn−1R±

nα + BnS±
nα

≡ Bn−1�n

N∑
α�1

[
A+
nαP+

nαX±
nα

]
+ Bn�n

N∑
α�1

[
A+
nαQ+

nαX±
nα

]
. (2.12b)

Although we have chosen values at the layer boundaries, the multipliers T ±
nα(x)

can be found readily enough for arbitrary optical thickness x , and quantities G±
n (x)

can then be derived as linear combinations of Planck functions as in Eq. (2.12).

2.3 Boundary Conditions and Post-processed Solutions

Confining our attention to the scalar case, we summarize the main steps to complete
intensity field computations. The constants of integration

{
C±
nα

}
in Eq. (2.7) are

determined by imposition of three boundary conditions. These are: (I) forn � 1, there
is no downwelling diffuse field at the top of the atmosphere (TOA); (II) upwelling and
downwelling intensity fields are continuous across all intermediate layer boundaries;
(III) there is a surface reflection condition at the bottom of the atmosphere (BOA)
linking the upwelling and downwelling intensity fields there. Explicitly for the scalar
case with solar beam sources:

Nd∑
α�1

[
C+
nαX+

nα + C−
nαX−

nα�nα

] � −G±
n (0); (n � 1) (2.13a)
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Nd∑
α�1

[
C+

pαX±
pα�pα + C−

pαX∓
pα

]−
Nd∑

α�1

[
C+
nαX±

nα + C−
nαX∓

nα�nα

]

�
NQ∑
q�1

[
G±

n (0) − G±
p

(
�p

)]
; (2.13b)

Nd∑
α�1

[
C+

NαU−
α �Nα + C−

NαU+
α

] � −H + H�; (2.13c)

U±
α � X±

nα − (2 − δm0)RLX∓
nα; (2.13d)

H � G−
N (�N ) − (2 − �m0)RLG+

N (�N );

H� � (2 − �m0)

(
F�μ0

4π

)
T�R� (2.13e)

Here,�nα ≡ e−knα�n , and inEq. (2.13b) for the intermediate boundaries, p � n−1
and n � 2, . . . N , where there are N layers in all. In the surface condition (2.13c),
we have some auxiliary definitions in (2.13d) and (2.13e). In these equations, L
is a diagonal matrix of rank Nd with entries {μi ci }, i � 1, . . . Nd , R is a surface
reflection matrix of rank Nd , and H� is the direct beam reflectance for solar flux
F�, whole-atmosphere beam transmittance T�, and beam surface reflectance R�.
Reflection matrices for a BRDF surface are constructed from knowledge of the
surface bidirectional reflectances, which are provided by the BRDF supplements
(Sect. 4.2). For a Lambertian surface, R � R� � ALE, in terms of the Lambertian
albedo AL (E is the identity matrix of rank Nd ), and only the Fourier m � 0 term
survives on the right of Eq. (2.13c).

The resulting boundary value problem (BVP) is well known from the literature.
Combining these conditions, the BVP is a sparse banded tri-diagonal linear algebra
system:

AC � B; → C � A
−1
B. (2.14)

Here, C is a vector with elements
{
C+
nα,C−

nα

}
, α � 1, . . . Nd , n � 1, . . . N , A

is a matrix constructed from quantities
{
X±

nα, U±
α , �nα

}
, and B is the column vector

constructed from solutions on the right hand sides of Eqs. (2.13a). A visualization
of this algebra system is given in the LIDORT work (Spurr et al. 2001). The solution
for C is obtained using a band compression algorithm and linear algebra modules
from the LAPACK numerical package. The procedure for the vector case is similar
(Spurr 2006).

The BVP yields the discrete ordinate fields I±
ni (x), i � 1, . . . Nd everywhere.

These fields are sufficient to determine integrated quantities such as the actinic flux.
To obtain output at other polar angles, we apply source function integration, in which
the discrete ordinate field is substituted in all multiple-scatter integrals in the original
RTE, and the “post-processed” field is then developed recursively by optical depth
integration starting from TOA (downwelling radiation) or BOA (upwelling). Here,
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we write down the main results based on the Green’s function method, looking just
at the upwelling intensity I−

n (x, μ) for layer n in polar direction μ, with I−
n−1(μ)

denoting the value of the field at layer upper boundary (x � 0).

I−
n−1(μ) � I−

n (μ) exp

[
−�n

μ

]
+ S−

n (μ);

S−
n (μ) � H−

n (μ) + E−
n (μ) + D−

n (μ). (2.15)

H−
n (μ) �

Nd∑
α�1

[
C+
nαZ

+
nα(μ)H−−

nα (μ) + C−
nαZ

−
nα(μ)H−+

nα (μ)
]
; (2.16a)

Z±
nα(μ) � 1

2

2Nd−1∑
l�m

ωnβnl P
l
m(μ)

Nd∑
j�1

Pl
m

(∓μ j
)
c j X

±
jnα; (2.16b)

H−+
nα (μ) � e−knα�n − e−�n/μ

1 − μknα

; H−−
nα (μ) � 1 − e−knα�n e−�n/μ

1 + μknα

; (2.16c)

E−
n (μ) � Q−

n (μ)E−
n (μ); E−

n (μ) � 1 − e−λn�n e−�n/μ

1 + μλn
; (2.16d)

Q±
n (μ) � 1

2

2Nd−1∑
l�m

ωnβnl P
l
m(μ)

Nd∑
j�1

Pl
m

(∓μ j
)
c j Q

±
jn; (2.16e)

D−
n (μ) �

Nd∑
α�1

[
Z+
nα(μ)AnαD−+

nα (μ) + Z−
nα(μ)BnαD−−

nα (μ)
]
; (2.16f)

D−+
nα (μ) � H−+

nα (μ) − E−
n (μ)

λn − knα

; D−−
nα (μ) � E−

n (μ) − H−−
nα (μ)e−λn�n

λn + knα

. (2.16g)

Similar results apply for the downwelling recursion. The quantities
Z±
nα(μ) can be thought of as solution vectors at polar stream μ. The

groups
{
H−±

nα (μ), E−
n (μ),D−±

nα (μ)
}

of post-processing multipliers all arise
from integrations over optical depth across the layer n. For more discus-
sion, see (Spurr 2002). With the multiplier D−+

nα (μ) in Eq. (2.16g), both
numerator and denominator tend to zero in the limit λn → knα , and
this kind of instability has to be treated with Taylor series expansions
[c.f. Eq. (2.8e)]. Such expansions are treated in detail in Appendix C.

Thermal Sources. The boundary-value problem for thermal sources is constructed
in a similar fashion. For simplicity, we assume a dark surface with no reflection;
surface emissivity is then unity (in the following, Bsur f is the surface emission Planck
function). Writing the BVP as AC � B once again, the explicit form for B may be
written:
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B �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−G+
1(0)

G±
2 (0) − G±

1 (�1)

. . .

G±
N (0) − G±

N−1(�N−1)

G−
N (�N ) + EBsur f

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−B0P+
1α − B1Q+

1α

−B2Q±
2α − B0R±

1α + B1
(
P±
2α − S±

1α

)
. . .

−BNQ±
Nα − BN−2R±

N−1,α + BN−1
(
P±
Nα − S±

N−1,α

)
BN−1R−

Nα + BNS−
Nα + EBsur f

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2.17)

The notation follows definitions used in Eq. (2.12). Here, E is vector of rank Nd

with unit entries; this represents the emissivity. We note that each of these quantities
is dependent on the complete set {Bn}, n � 0, . . . N , and also on Bsur f . We omit
derivation of the post-processed thermal solutions, only remarking that they may be
readily expressed as linear combinations of atmospheric and surface Planck function
inputs.

2.4 Linearization of the Intensity Field

Continuing with the scalar LIDORT model, we will mostly quote the linearization
results from Spurr (2002). The treatment here is for profile linearizations, where
we recognize that some particular integrals in any given layer n will depend upon
atmospheric parameters not only in that layer, but also in other layers p �� n; in
other words, the linearization will involve “cross-layer derivatives”. These cross-
layer derivatives arise only from solar beam attenuation through layers above and
including n, that is, for p ≤ n. In general, we the “dot” notation:

Ȧ pnα ≡ ξp
∂Anα

∂ξp
(2.18)

for the normalized partial derivative of quantity Anα in layer n with respect to atmo-
spheric variable ξp in layer p.

For homogeneous solutions, there are no cross-layer derivatives. In this case, it is
necessary to differentiate the eigenproblem that defines solutions to the homogeneous
equations. [For VLIDORT, linearization of the vector homogeneous RTE solutions
is trickier, thanks to the presence of complex eigensolutions—this linearization is
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found in Appendix A, along with analytic differentiation of the solar-beam particular
integral obtained by substitution methods].

Continuing forLIDORT,we assume that the following linearizations already exist:

Y±
nα � Ẋ±

nα ≡ ξp
∂X±

nα

∂ξp
; fnα � k̇nα ≡ ξp

∂knα

∂ξp
. (2.19)

Now consider the Green’s function solution driven by source terms
dependent on quantities

{
Q±

ni , λn
}
; again we define the linearizations:

Q̇±
pni � ξp

∂Q±
ni

∂ξp
; λ̇pn � ξp

∂λn
∂ξp

, and suppose that they have been established from
differentiation of the appropriate source terms; details may be found in Spurr (2002).

First, we differentiate analytically some of the results in Eq. (2.8a) to find:

Ȧ pnα �
(∑Nd

j�1 c j
[
Q+

nj Y
+
jnα + Q−

nj Y
−
jnα

]
− Ṙnα Anα

)
δnp

Rnα

+

∑Nd
j�1 μ j c j

[
X+

jnα Q̇
+
pni + X−

jnα Q̇
−
pni

]

Rnα

;

Ṙnα � 2
∑Nd

j�1
μ j c j

[
X+

jnαY
+
jnα + X−

jnαY
−
jnα

]
. (2.20)

A similar expression pertains for Ḃpnα . Note that the first term in Ȧ pnα is only
present for p � n; the second term has additional cross-derivatives.

Analytic differentiation of the first of the multiplier terms in Eq. (2.8e) yields:

Ṁ+
pnα(x) � −M+

nα(x)

[
Ṫpn

Tn
−
(
λ̇pn − fnαδnp

)
λn − knα

]

+
−(ẋknα + x fnα)e−knαxδnp − (

ẋλnδnp + x λ̇pn
)
e−λn x

λn − knα

. (2.21)

A similar exercise pertains for the other multiplier derivative Ṁ−
pnα(x) (not

done here). Note that since x is a partial optical thickness in layer n, we have
ẋ � x

(
�̇n/�n

)
, where �̇n ≡ ξn

∂�n
∂ξn

is one of the fundamental linearized optical

property inputs. Note that the linearized multiplier Ṁ+
pnα(x) in Eq. (2.21) will be

subject to instability as λn → knα , and wewill again require Taylor series expansions
in this limit (see Appendix C).

Continuing, the final linearized Green’s function solution for one of the source
term series is obtained by chain-rule differentiation of Eq. (2.8a), using results
obtained above:

Ġ±
pn(x) �

Nd∑
α�1

[
Ȧ pnαM+

nα(x)X±
nα + AnαṀ+

pnα(x)X±
nα + δnp AnαM+

nα(x)Y±
nα

]

+
Nd∑

α�1

[
ḂpnαM−

nα(x)X∓
nα + BnαṀ−

pnα(x)X∓
nα + δnp BnαM−

nα(x)Y∓
nα

]
.

(2.22)
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Next, we can through-differentiate Eq. (2.7) to obtain Jacobians for the discrete
ordinate radiation field, once we have obtained derivatives of the integration con-
stants. Formal linearization of Eq. (2.14) yields (keeping our abbreviated “dot”
derivative notation to represent the derivative operator ξp

∂
∂ξp

):

Ċ � A
−1
B

′; B
′ � Ḃ − ȦC. (2.23)

Thus, the linearized BVP is completed through back-substitution with a different
column vectorB′; we already have the inverseA−1 from solving the original BVP. For
the linearization ofA, we recall that thismatrix ismade up from elements

{
X±

nα, knα

}
,

for which we already have derivatives [Eq. (2.19)], so we assume this has been done;
this part of the linearization is the same regardless of source terms, and more details
on deriving Ȧ in Eq. (2.23) may be found in the LIDORT papers.

For the linearized vector Ḃ in Eq. (2.23), we observe that B is constructed from
vectors

{
G±

n (x)
}
in all layers, and these linearizations are given above in Eqs. (2.20)

and (2.21); values of x are required only at layer boundaries (x � 0 or x � �n). The
only new consideration comes with the direct beam term in Eq. (2.13c), which has
the linearization [see Eq. (2.13e)]:

Ḣ� � (2 − δm0)

(
F�μ0

4π

)
Ṫ�R�. (2.24)

In a plane-parallel atmosphere, T� � exp
[
− 1

μ0

∑N
n�1 �n

]
, so that Ṫ� � −T�

μ0
�̇p.

The linearization of T� in the pseudo-spherical approximation is a little more com-
plicated (Sect. 3.4). The linearized BVP solution gives derivatives of the integration
constants, that is, Ċ±

pnα � ξp
∂C±

nα

∂ξp
.

For linearization of the post-processed solution, we must differentiate Eq. (2.15):

İ−
p,n−1(μ) �

[
İ−
pn(μ) − δnp

�̇n

μ
I−
n (μ)

]
exp

(
−�n

μ

)
+ Ṡ−

pn(μ), (2.25)

and the system in Eqs. (2.16); this is a lengthy but straightforward exercise, and here
we indicate a few of the key steps in this process. The three contributions to the
integrated source terms Ṡ−

pn(μ) may all be differentiated using the chain rule and
quantities that have already been linearized; we note just the following linearizations
(the rest can be inferred).

Ḣ+
nα(μ) � δnp

[
−e−knα�n

(
fnα�n + knα�̇n

)
+ �̇n

μ
e−�n/μ

]
+ μ fnαH+

nα(μ)

1 − μknα

; (2.26a)
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Ż±
nα(μ) � δnp

2

2Nd−1∑
l�m

ωnβnl P
l
m(μ)

Nd∑
j�1

Pl
m

(∓μ j
)
c jY

±
jnα

+
δnp

2

2Nd−1∑
l�m

[
ω̇nβnl + ωnβ̇nl

]
Pl
m(μ)

Nd∑
j�1

Pl
m

(∓μ j
)
c j X

±
jnα; (2.26b)

Ė−
np(μ) � [

Q̇−
pn(μ)E−

n (μ) + Q−
n (μ)Ė−

pn(μ)
]
; (2.26c)

Ė−
pn(μ) �

[
λ̇pn�n + δnp(λn + 1/μ)�̇n

]
e−λn�n e−�n/μ − μλ̇pnE−

nq(μ)

1 + μλn
; (2.26d)

Ḋ−+
pnα(μ) � δnpḢ+

nα(μ) − Ė−
pn(μ) − (

λ̇pn − δnp fnα

)
D−+

nα (μ)

λn − knα

. (2.26e)

Other derivatives
{
Ḣ−

nα(μ), Ḋ−−
pnα(μ)

}
may be calculated similarly. Taylor series

expansions will be required in the limit λn → knα in Eq. (2.26e). Note that Ḣ±
nα(μ)

and Ż±
nα(μ) have no cross-derivative contributions. Derivatives Ȧ pnα and Ḃpnα have

been determined as part of the Green’s function linearization, and the derivatives
Q̇±

pn(μ) emerge from differentiation of Eq. (2.16e). It is clear from this analysis that
linearized IOPs

{
�̇n, ω̇n, β̇nl

}
are also fundamental inputs to the Jacobian calcula-

tions; Sect. 3.1 has some examples for their preparation.
This completes the Green’s function solution and its linearization for profile Jaco-

bians. Treatment of whole-atmosphere (“column”) Jacobians is very similar, and
the main equations are the same, with the chief difference being the presence of
cross-layer derivatives in all layers. For profile Jacobians, not all layer source terms
in Eqs. (2.8) and (2.16) have cross-derivatives; for the column linearization, every
equivalent term will have cross-derivatives.

We now turn to surface property linearization. Here, we use the “double-dot” oper-
ator notation Ä ≡ ∂A

∂σ
to denote partial differentiation with respect to some surface

property σ (which might be the Lambertian albedo, or a parameter that characterizes
a BRDF surface, e.g. wind speed for ocean glitter BRDF). Un-normalized derivatives
are used for this analysis.

First, we note that eigenproblem variables
{
knα, X±

nα

}
for RTE homogeneous

solutions have no surface derivatives
(
k̈nα � 0

)
; the same applies to the Green’s

function solutions in Eqs. (2.8) and (2.16). The linearized BVP for the surface case
is then

C̈ � A
−1
B

′′; B
′′ � B̈ − ÄC. (2.27)

For matrix Ä and vector B̈, surface derivatives will only appear for the reflection
condition in Eq. (2.13c). Specifically, for the quantities in Eqs. (2.13d) and (2.13e),
we have:

Ü±
α � −(2 − δm0) ¨RLX

∓
nα; (2.28a)



The LIDORT and VLIDORT Linearized Scalar and Vector Discrete … 17

Ḧ � G̈−
N (�N ) − (2 − δm0)

{
R̈LG

+
N (�N ) + RLG̈+

N (�N )
}
; (2.28b)

Ḧ� � (2 − δm0)

(
F�μ0

4π

)
T�R̈�. (2.28c)

The surface property linearizations R̈ and R̈� are crucial inputs to LIDORT. For
the Lambertian case, R � R� � ALE, the surface parameter σ � AL , and so
R̈ � R̈� � E. For a BRDF surface, it is the task of the BRDF supplement to provide
R̈ and R̈� as inputs to the model. Once solved, the linearized BVP gives derivatives
C̈±
nα � ∂C±

nα

∂σ
of the integration constants.

For the post processed solution, we proceed as before, differentiating first
Eq. (2.15):

Ï−
n−1(μ) � Ï−

n (μ) exp

(
−�n

μ

)
+ S̈−

n (μ). (2.29)

For S̈−
n (μ), only the term H−

n (μ) in Eq. (2.16a) will have surface-property deriva-
tives, thanks to the presence of linearized integration constants C̈±

nα; all other quanti-
ties have no dependence on surface parameters. This completes the surface lineariza-
tion process.

3 Aspects of the LIDORT Models

3.1 Preparation of Optical Inputs

As noted already, the LIDORT and VLIDORTmodels require IOP (“inherent optical
property”) inputs {�n, ωn, βnl} and {�n, ωn,�nl} respectively, defined for each layer
n. Here, �n is the layer optical thickness for extinction, and ωn and βnl are the layer
single-scattering albedo and the set of phase functionLegendre expansion coefficients
respectively; {�nl} is the matrix of “Greek coefficients” needed for VLIDORT’s
generalized spherical function expansions.

Without loss of generality, we confine ourselves to a typical example for the
scalar case. In terms of the layer trace-gas absorption optical depth Gn , the Rayleigh
scattering optical depth Rn and the aerosol extinction and scattering optical depths
εn and sn , we have:

�n � Gn + Rn + εn; ωn � Rn + sn
�n

; βnl � Rnβ
(Ray)
l + snβ

(Aer)
nl

Rn + sn
. (3.1)

Here, β(Ray)
l and β

(Aer)
nl are the phase function expansion coefficients for Rayleigh

and aerosol scattering respectively. For Rayleigh scattering,β(Ray)
0 � 1, andβ

(Ray)
2 �

(1 − ρr )/(2 + ρr ) in terms of the depolarization ratio ρr , with all other coefficients
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Table 2 Greek coefficients for Rayleigh scattering

Coefficient αl βl γl δl εl ζl

l � 0 0 1 0 0 0 0

l � 1 0 0 0 3(1−2ρr )
(2+ρr )

0 0

l � 2 6(1−ρr )
(2+ρr )

(1−ρr )
(2+ρr )

−
√
6(1−ρr )
(2+ρr )

0 0 0

are zero. For aerosol scattering, β
(Aer)
nl may be returned from a Mie or T-matrix

(or other) electromagnetic scattering calculation; a commonly-used coefficient set
is β

(HG)
nl � (2l + 1)(gn)

l for the Henyey-Greenstein phase function, where gn is the
layer asymmetry factor.

We suppose the trace gas absorption optical depth for a single absorber is
Gn � χnαn , where χn is the layer column density, and αn the absorber cross-section.
The Rayleigh scattering optical depth is Rn � anσRay in terms of the layer air column
density an and Rayleigh cross-section σRay . In Eq. (3.1), εn and sn are the aerosol
layer extinction and scattering optical depths respectively.

For VLIDORT, coefficients β
(Ray)
l and β

(Aer)
nl in Eq. (3.1) are replaced by the

respective Greek matrices �
(Ray)
nl and �

(Aer)
nl comprising up to six independent coef-

ficients (see Appendix A.1 for more details). For Rayleigh scattering, �(Ray)
l coef-

ficients are given in Table 2; for aerosol scattering, they may be generated through
electromagnetic scattering calculations.

Linearized properties. We provide two examples of linearized-IOP inputs here for
purposes of illustration. For more details on linearized optical properties, the reader
is referred to [R1]; see also the treatment in Spurr and Christi (2014). If we require
profile Jacobians with respect to the set {χn}, then it is easy to write down linearized
optical properties corresponding to Eq. (3.1) above:

∂�n

∂χn
� αn;

∂ωn

∂χn
� −ωnαn

�n
;

∂βnl

∂χn
� 0. (3.2)

Again if we now suppose that layer columns {χn(ξ)} are known functions of some
bulk property ξ , then we can define linearized inputs required for a calculation of a
bulk property Jacobian with respect to ξ :

∂�n

∂ξ
� ∂χn

∂ξ
αn;

∂ωn

∂ξ
� − ωn

�n
αn;

∂βnl

∂ξ
� 0. (3.3)

These are pure absorption cases with no derivatives of the expansion coefficients.
We give one more example, an important one. We assume that the analytic depen-

dencies of air column amounts {an} and gas column amounts {χn} on layer tem-
peratures {Tn} are known, and that the trace gas cross-sections αn(Tn) have known
temperature dependence. In other words, we know the derivatives ∂an/∂Tn, ∂χn/∂Tn
and ∂αn/∂Tn . We then write down temperature-Jacobian linearized IOPs:
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∂�n

∂Tn
� ∂Gn

∂Tn
+

∂Rn

∂Tn
;

∂ωn

∂Tn
�

∂Rn
∂Tn

− ωn
∂�n
∂Tn

�n
;

∂βnl

∂Tn
� β

(Ray)
nl − βnl

Rn + sn

∂Rn

∂Tn
;

(3.4a)

∂Gn

∂Tn
� χn

∂αn

∂Tn
+ αn

∂χn

∂Tn
;

∂Rn

∂Tn
� σRay

∂an
∂Tn

. (3.4b)

In Spurr and Christi (2014), linearized optical inputs were defined with regard
to a set of parameters which characterize certain atmospheric constituent distribu-
tions. The canonical example here is a Gaussian-shaped aerosol or trace-gas plume
parameterized by the total aerosol or trace-gas optical depth τ0, the Gaussian peak
height z p and the peak half width hw. Given a discretized plume profile of aerosol
or trace gas optical depth {εn} parameterized in this manner one can write down
optical property derivatives of {εn} with respect to these three plume characteristics{
τ0, z p, hw

}
, and hence obtain linearized IOP inputs for a LIDORT or VLIDORT

calculation of Jacobians with respect to these parameters.

3.2 Considerations for Jacobian Outputs

For reasons of numerical stability, it is preferable to give linearized IOPs in normal-
ized form, that is, we specify ξ ∂�n

∂ξ
instead of ∂�n

∂ξ
, for example. The corresponding

weighting function output will be normalized in the same manner. This considera-
tion does not apply to surface property Jacobians; inputs for these are always un-
normalized, as are the resulting surface-property Jacobians themselves. [This latter
consideration is important, as it is quite possible to have a dark surface (zero albedo)
with a non-zero albedo Jacobian].

Weighting function outputs are often related, particularly if linearized IOPs show
proportionality. Thus for example, it is possible to derive an additional profile Jaco-
bian for a second trace gas absorber by multiplying the equivalent Jacobian for the
first absorber by the ratio of the absorption optical depths for the two gases. This
example is discussed in Van Oss and Spurr (2002), and other authors have looked at
defining a basic set of optical property weighting functions from which all physical
Jacobians can be derived [see for example Ustinov (2005)].

In this regard, we look next at the generation of Jacobian output at Level bound-
aries.

Layers-to-Levels Jacobian Output.

The (V)LIDORTmodels ingest layer IOPs and their derivatives, and profile Jacobian
outputs are for layer-defined quantities. In Spurr and Christi (2014), it was shown
that profile Jacobians with respect to level quantities (that is, constituent profiles
specified at layer boundaries, for example volume mixing ratios for trace species)
can be determined from (V)LIDORT Jacobian output specified with respect to the
layer optical depths. An example with molecular absorbers will suffice to illustrate
this conversion.
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Suppose we have an atmosphere in which quantities {pn, Tn, hn, vn} (pres-
sure, temperature, height, trace-gas volume mixing ratios) are defined at levels
n � 0, 1, . . . N . The air density at each level is ρn � Cpn/Tn with the constant
of proportionality C expressed in terms of the density at standard temperature and
pressure (STP). In a simple application of the hydrostatic equation, we can write the
following for the absorber and air column densities Gn and Rn:

Gn � 1

2
Cdn

{
pn−1vn−1αn−1

Tn−1
+

pnvnαn

Tn

}
; Rn � 1

2
CdnσRay

{
pn−1

Tn−1
+

pn
Tn

}
. (3.5)

Here, dn � hn−1−hn is the layer height difference, and αn the level cross sections
(which may be functions of pressures and temperatures at these levels). We can write
derivatives of these layer optical depths with respect to level VMRs or temperatures
for levels k � n or k � n − 1:

∂Gn

∂vk
� 1

2
Cdn

pkαk

Tk
;

∂Rn

∂vk
� 0. (3.6)

Given the layer Jacobian output ∂ I
∂Gn

and ∂ I
∂Rn

obtained in the usual way from
LIDORT, we obtain level VMR Jacobians by means of a chain-rule transformation:

∂ I

∂v0
� ∂ I

∂G1

∂G1

∂v0
; (3.7a)

∂ I

∂vk
� ∂ I

∂Gk

∂Gk

∂vk
+

∂ I

∂Gk+1

∂Gk+1

∂vk
, k � 1, . . . N − 1; (3.7b)

∂ I

∂vN
� ∂ I

∂GN

∂GN

∂vN
. (3.7c)

Level temperature Jacobians ∂ I
∂Tk

may be obtained in a similar manner to those in
Eqs. (3.7), given starting points obtained by differentiating Eq. (3.5):

∂Gn

∂Tk
� 1

2
Cdn

pkvk
Tk

{
∂αk

∂Tk
− αk

Tk

}
;

∂Rn

∂Tk
� −1

2
Cdn

pkσRay

T 2
k

. (3.8)

Level Jacobians ∂ I
∂Tk

will include both sets of layer Jacobians ∂ I
∂Gn

and ∂ I
∂Rn

from
LIDORT or VLIDORT. More details can be found in the above reference.

3.3 Temperature Jacobians in the Thermal Regime

In the thermal regime,wehave additional temperature dependence arising through the

Planck function inputs Bn(ν) � 2hν3

c

[
1

exp hν
ZTn

−1

]
, n � 0, 1, . . . N (level index). Here

ν is the frequency, c and h the speed of light and Planck’s constant respectively, and
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Z is Boltzmann’s constant. While it is easy to obtain ∂Bn(ν)

∂Tn
by explicit differentiation

of the Planck function, we need additional (V)LIDORT derivatives with respect to
Bn(ν) in order to obtain the complete temperature Jacobian in the thermal regime:

∂ I

∂Tn
�
(

∂ I

∂Tn

)
optical

+
∂ I

∂Bn

∂Bn

∂Tn
. (3.9)

The first term in this equation is the level-Jacobian result obtained with linearized
IOP inputs, as inEqs. (3.7) and (3.8). For the second term inEq. (3.9), the computation
of ∂ I

∂Bn
is not trivial in a multiple-scattering multi-layer atmosphere, and this feature

was only introduced recently into LIDORT (in 2015) and VLIDORT (2016). Here
we outline the solution for the LIDORT case.

We start with Eqs. (2.12a) and (2.12b), in which the thermal source particular
integral in layer n is expressed as a linear combination of Planck functions Bn and
Bn−1 at the layer boundaries. Differentiation with respect to these quantities is then
straightforward.

Given the boundary-value problem AC � B and its solution C � A
−1
B, the

linearization of this is δkC � A
−1δkB, where we have used the shorthand δk � ∂

∂Bk
.

Matrix A has no dependence on the Planck functions (δkA � 0), and δkB may
be written down by an explicit examination of the entries in Eq. (2.12a) and their
linearizations. Indeed, for the first two levels:

δ0B �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P+
1α

−R+
1α

0
0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
; δ1B �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Q+
1α

P±
2α − S±

1α

−R+
2α

0
. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

., etc . . . (3.10)

The trick here is to make sure that the vector entries δkB are filled up correctly—a
variable defined at level boundary k will have an effect on adjacent layers above and
below this boundary. Since we have the inverse matrixA−1 from the original solution
of the radiance field, the linearized vector δkC is readily computed.

The linearized discrete ordinate solution in layer n with respect to the Planck
function Bk at level k can now be written

∂I±
n (x)

∂Bk
�

N∑
α�1

[
∂Lnα

∂Bk
X±

nαe
−xknα +

∂Mnα

∂Bk
e−(�n−x)knα X∓

nα

]
+

∂G±
n (x)

∂Bk
. (3.11)

Here the derivatives
{

∂Lnα

∂Bk
, ∂Mnα

∂Bk

}
emerge from the δkB vector, while ∂G±

n (x)
∂Bk

fol-

lows from explicit differentiation of Eqs. (2.12a) and (2.12b). Derivatives ∂G±
n (x)

∂Bk
exist

only for n � k or n � k + 1, but
{

∂Lnα

∂Bk
, ∂Mnα

∂Bk

}
are defined for all values of n.
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Surface emission Jacobian. We make one remark here about Jacobians with respect
to the surface Planck function Bsur f . Clearly none of the Green’s function particular
integrals in Eqs. (2.12) depend on this quantity; we are left with a linearization of
the boundary value problem. If we write δsur f � ∂

∂Bsur f
, the linearized problem is

δsur fC � A
−1δsur fB, where from Eq. (2.13), we find that the only surviving term in

the differentiation is:

δsur fB �

⎛
⎜⎜⎜⎜⎜⎝

0
0
. . .

0
E

⎞
⎟⎟⎟⎟⎟⎠

. (3.12)

Linearization of the post-processed solutions with respect to Bsur f may be
determined readily enough through differentiation of the components of the post-
processed radiance solution in Eqs. (2.16).

3.4 Pseudo-spherical Capability, Delta-M Scaling, N-T
Ansatz

Pseudo-spherical capability

LIDORT and VLIDORT can deal with solar-beam attenuation in a curved spherical-
shell atmosphere. This is the pseudo-spherical (P-S) approximation. We use the
“average-secant” parameterization (Spurr 2002), in which the solar beam transmit-
tance in layer n is expressed as an exponential function of vertical optical thickness
x in that layer:

	n(x) � Tn−1e
−λn x ; λn � 1

�n
ln

Tn−1

Tn
; Tn � exp

[
−

n∑
k�1

fnk�k

]
. (3.13)

Here, Tn−1 and Tn are the ray-traced transmittances to the layer upper and lower
boundaries respectively, and �n is the vertical optical thickness of the layer. In a
plane parallel atmosphere, λn ≡ 1/μ0, where −μ0 is the SZA cosine. Quantities
{Tn} are expressed in terms of the ray-traced Chapman factors fnk , purely geomet-
rical quantities defined as the ratios of layer slant-path distances to vertical height
differences. For a geometrical (non-refracting) atmosphere, one need only specify
the height grid {hn}, n � 0, 1 . . . N , and the earth radius REarth as inputs to the
model.

Linearization of the pseudo-spherical scheme is straightforward. Without loss of
generality,we can define derivativeswith respect to the set {�n}—other linearizations
can be obtained through chain-rule differentiation. From Eq. (3.13), it follows that:
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∂Tn

∂�k
� − fnkTn;

∂λn

∂�k
� fnk − fn−1,k − δnkλn

�n
. (3.14)

Here δnk is the Kronecker-delta; note that both these quantities have cross-layer
derivatives.

Delta-M Scaling and the N-T Ansatz

The delta-M scaling procedure (Wiscombe 1977) is a useful approximation for
dealing with sharply-peaked forward scattering. The delta-M scaling is standard
to LIDORT and VLIDORT.

In scalar RT with LIDORT, the delta-M ansatz is to approximate the true phase
function in a given layer n as �n(	) ≈ 2π fnδ(1 − cos	) + (1 − fn)�̃n(	) in
terms of delta-function extinction in the forward scattering direction, and a smoother
“residual” phase function �̃n(	). Introducing this approximation into theRTEallows
use of a set of “scaled” IOPs determined by selection of the truncation factor fn . This
procedure is performed for each layer, and for any discrete-ordinate RT calculation
with Nd streams in the half-space, the relevant formulae for scaled IOPs are:

fn � βnM

(2M + 1)
; �̃n � �n(1 − fnωn); ω̃n � ωn(1 − fn)

(1 − fnωn)
; β̃nl � βnl − fn(2l + 1)

(1 − fn)
.

(3.15)

Here M � 2Nd , and l � 0, 1, . . . 2Nd − 1 in the definition of β̃nl .
In VLIDORT, we take the truncation factor fn as defined Eq. (3.15), and adopt the

following scaling for the set of Greek coefficients: 4 coefficients {αnl , βnl , δnl , ζnl}
will scale as βnl in Eq. (3.15), while γnl and εnl will scale as γ̃nl � γnl/(1 − fn).
This is the system adopted in Chami et al. (2001), where more details may be found.

Linearized “delta-M scaled” IOPs for LIDORT were first discussed in Van Oss
and Spurr (2002). If we suppose that unscaled properties {�n, ωn, βnl} in layer n
have known derivatives

{
�̇n, ω̇n, β̇nl

}
with respect to some quantity ξ varying in

that layer, then the linearized scaled IOPs are (we also include the VLIDORT γnl
scaling for completenes):

ḟn � β̇nM

(2M + 1)
; ˙̃
�n � �̇n(1 − fnωn) − �n

(
ḟnωn + fnω̇n

)
; (3.16a)

˙̃ωn � ω̃n
(
ḟnωn + fnω̇n

)
+ ω̇n(1 − fn) − ωn ḟn

(1 − fnωn)
; (3.16b)

˙̃
βnl � β̇nl − ḟn(2l + 1) + ḟnβ̃nl

(1 − fn)
; ˙̃γnl � γ̇nl + ḟn γ̃nl

(1 − fn)
. (3.16c)

The Nakajima and Tanaka [N-T] ansatz (Nakajima and Tanaka 1988) is a well-
known procedure for obtaining more accurate RT solutions when the delta-M scal-
ing is in force. The N-T process works by replacing the internal discrete-ordinate
single-scatter (SS) calculation (which is based on the use of a set of 2Nd phase
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function/matrix expansion coefficients) with an “exact” single scatter calculation
using the phase function itself (LIDORT) or the phase matrix (VLIDORT). When
the delta-M scaling applies, the exact single scatter computation is performed using
the unscaled phase function/matrix and single scatter albedo, but using the scaled
optical thickness variable.

The complete NT single-scatter calculation was first described for LIDORT and
VLIDORT in [R1], including linearization aspects. In earlier versions of the SS
calculations, phase functions or F-matrices were always computed internally using
input sets of spherical-function expansion coefficients and internal calculations of
Legendre or spherical-function polynomials.

There have been two changes in the implementation of SS computations in recent
versions of LIDORT and VLIDORT. Now, it is possible to ingest phase function
(LIDORT) or F-matrix (VLIDORT) inputs directly without the need for reconstruc-
tions using expansion coefficients. In addition, the entire SS calculation has now
been modularized, so that it can be used either as a single call from LIDORT or
VLIDORT, or as a stand-alone First-Order (FO) model for use in other applications.
This FO model is described in Sect. 4.4.

4 (V)LIDORT Supplements and First-Order Codes

4.1 Overview

From an early stage, the bidirectional reflectance distribution function (BRDF) sur-
face capability has always been present in both the scalar and vector RT codes (Spurr
2004). In earlier versions of the codes, configuration control for BRDF inputs was an
integral part of the overall input control scheme for the models. However, following
user feedback after the first LSR review [R1], it was decided tomove the computation
of overall BRDF properties into a separate supplementary module, so that the main
RT code is not encumbered by choices of BRDF kernels and their specifications.
This not only simplifies the (V)LIDORT input configurations, but also allows the
user much more flexibility with setting up BRDF conditions.

The motivation here follows that for the atmospheric optical property inputs,
namely, that (V)LIDORT only ingests the total optical layer quantities (optical thick-
nesses, single scattering albedos, scattering matrices/phase functions); the RT code
does not distinguish between individual trace gas absorbers, or between Rayleigh
and particulate scattering. Similarly with the BRDF surface: (V)LIDORT requires
only the total BRDF inputs for direct-bounce and diffuse-field reflectance—the code
no longer distinguishes individual BRDF kernels that make up the total reflectance.

The BRDF supplement computation is the subject of Sect. 4.2 below. This follows
on from the treatment in [R1], though in recent years a number of additional BRDF
kernels have been introduced. We also discuss the BRDF supplement input/output,
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and give an example of the supplement usage. BRDFkernels are detailed inAppendix
B.

The surface-leaving (SL) supplement was introduced in 2011 to the LIDORT and
VLIDORT codes, and postdates the [R1] review. For land surfaces, there is now a
facility for SIF (Solar-induced Fluorescence) radiances in the NIR—this is based on
a recent climatology which generates a double-Gaussian isotropic fluorescence field
depending only on the SZA, and time geolocation (Frankenberg et al. 2012). For
water-leaving radiances, there is now a more sophisticated ocean optics model, and
an extension to non-isotropy through rough-surface glitter. Surface-leaving options
are discussed in Sect. 4.3.

Although it is possible for bothRTcodes to ingest pre-calculated “first-order” (FO)
radiation (single scattering and direct-bounce intensity/Stokes-vector fields, direct
thermal and surface emission), there is no specific supplement that will compute
these fields. However, the FO code Version 1.5, which is now part of the (V)LIDORT
models, can be thought of as a supplement in its own right—all FO subroutines are
stand-alone, and are normally called inside the (V)LIDORT master modules when a
single Boolean flag controlling their execution is set. The FO codes are described in
Sect. 4.4 below.

In regard to the FOcalculations, a third supplement has been newlywritten forVer-
sions 2.8 (VLIDORT) and also for 3.8 (LIDORT), following feedback from a number
of users. These new adjuncts are called the F-Matrix supplement “FMATRIX” (for
VLIDORT) and the phase function supplement “PHASFUNC” (for LIDORT); they
are designed to ingest external data sets of scattering matrices (vector code) or phase
functions (scalar code) and from these, generate optical property input for VLIDORT
and LIDORT in two forms—first, for accurate single-scattering computations, a set
of scattering matrices or phase functions at user-defined scattering angles, and sec-
ond, all necessary spherical function expansion coefficients for use in the LIDORT
and VLIDORT multiple scatter computations. These supplements are discussed in
Sect. 4.5.

4.2 Bidirectional Reflectance Supplement

4.2.1 BRDF Requirements for the RT Models

We confine attention here to the scalar LIDORT surface boundary condition linking
reflected upwelling with incident downwelling radiances, which may be written:

I ↑(μ, ϕ) �
2π∫

0

1∫

0

ρ
(
μ,μ′, ϕ − ϕ′)I ↓(μ, ϕ)μ′dμ′dϕ′. (4.1)

We have assumed that the BRDF ρ
(
μ,μ′, ϕ − ϕ′) depends only on the rela-

tive azimuth direction. For the direct-bounce condition (single reflection of atten-
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uated direct sunlight in a spherically curved atmosphere), we require BRDFs
ρ(μ1, μ0, ϕ1 − ϕ0) for incoming SZA cosines μ0, outgoing line-of-sight cosines
μ1 and relative azimuth angles ϕ1 − ϕ0.

We express the BRDF as a Fourier cosine series in relative azimuth:

ρ
(
μ,μ′, ϕ − ϕ′) �

2Nd−1∑
m�0

(2 − δm0)ρm
(
μ,μ′) cosm(ϕ − ϕ′). (4.2)

For surface reflectance of the diffuse field, we then require the four Fourier-series
components ρm(μi , μ0), ρm

(
μi , μ j

)
, ρm

(
μ1, μ j

)
and ρm(μ1, μ0). Here,

{
μ j
}
, j �

1 · · · Nd are the Nd discrete ordinate polar streams. Note that the cosine series for
ρm(μ1, μ0) components represents a truncated form of the direct-bounce intensity,
and these components are not normally required when the direct-bounce BRDF is
computed.

LIDORT requires these five total BRDF quantities (direct-bounce BRDF, four
Fourier-component forms) to specify completely the surface boundary condition.
The task for the BRDF supplement is to provide these total inputs.

4.2.2 BRDF Supplement: Kernel Functions

Some of the material in this section has appeared before in [R1], but we include it
for completeness. Details on the kernels may also be found in Appendix B.

The BRDF supplement relies on the combination of one or more analytic semi-
empirical BRDF kernel functions. Thus, the scalar total BRDF ρtotal

(
μ,μ′, ϕ − ϕ′)

is specified as a linear weighting of (up to) four semi-empirical kernel functions:

ρtotal
(
μ,μ′, ϕ − ϕ′) �

4∑
k�1

Rkρk
(
μ,μ′, ϕ − ϕ′, bk

)
. (4.3)

Here, Rk are linear combination coefficients or “kernel amplitudes”. For each
kernel, the geometrical dependence is known, but the kernel function will (in some
but not all cases) depend on the values taken by a vector bk of pre-specified param-
eters. Well-known examples include the Cox-Munk BRDF for glitter reflectance
from the ocean (Cox and Munk 1954a, b); and the Ross-Li portfolio of land-
surface kernels used in the MODIS BRDF retrieval system (Lucht and Roujean
2000; Lucht et al. 2000). The Cox-Munk kernel comprises a wave-facet probability
distribution function (depending on wind-speed W ), and a Fresnel reflection func-
tion (depending on the air-water relative refractive index nrel ). In this case, vector
bk � {W, nrel} has two elements. For a Lambertian surface, there is only one kernel:
ρLambertian

(
μ,μ′, ϕ − ϕ′) � 1 for all incident and reflected angles, and coefficient

R1 is just the Lambertian albedo.
Altogether, the LIDORT BRDF supplement has 13 kernel choices, and these

are summarized in Table 3, along with associated non-linear parameters. A full
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Table 3 The BRDF Kernel functions in LIDORT

Index Name Size bk Reference

1 Lambertian 0 –

2 Ross thick 0 Wanner et al. (1995)

3 Ross thin 0 Wanner et al. (1995)

4 Li sparse 2 Wanner et al. (1995)

5 Li dense 2 Wanner et al. (1995)

6 Roujean 0 Wanner et al. (1995)

7 Hapke 3 Hapke (1993)

8 Rahman 3 Rahman et al. (1993)

9 Cox-Munk 2 Cox and Munk
(1954a)

10 BPDF soil 1 Maignan et al. (2009)

11 BPDF vegetation 1 Maignan et al. (2009)

12 BPDF NDVI 3 Maignan et al. (2009)

13 New Cox-Munk 3 Sayer et al. (2010)

discussion of the first 9 kernels is in Spurr (2004). Kernels 10–12 are scalar versions
of polarized land-surface reflectances, based on code provided by François-Marie
Bréon (Maignan et al. 2009). Kernel 13 is based on new water-leaving and ocean
reflectance parameterizations provided in the context of the 6S model (Kotchenova
et al. 2006; Andrew Sayer, private communication).

For land surfaces, analytic kernel models have trouble dealing with distinctive
vegetation signatures such as “hot-spots”, and in an interesting new departure, Huang
et al. (2017) have used a detailed 3-D canopy-vegetation model to generate look-up
tables of VLIDORT BRDF inputs in place of the usual kernel-driven supplement
calculation Also in this regard, a snow surface data-base (Lyapustin et al. 2010) has
been adapted for use in VLIDORT.

Fourier components of the kernel BRDFs are calculated through:

ρkm
(
μ,μ′, bk

) � 1

2π

2π∫

0

ρk
(
μ,μ′, ϕ, bk

)
cosmϕdϕ. (4.4)

The azimuth integration done by double numerical quadrature over the ranges
[0, π ] and [−π, 0]; the number of BRDF azimuth quadrature abscissa is set to 100
to obtain a numerical accuracy of 10−4 for all kernels considered (Spurr 2004).

Linearization of this BRDF scheme was reported in Spurr (2004), and a mech-
anism developed for the generation of surface property weighting functions with
respect to the kernel amplitudes Rk and to elements bpk of the kernel parameters
bk . The complete discrete ordinate RT model is differentiable with respect to these
surface properties, given the following kernel derivatives:
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∂ρtotal
(
μ,μ′, ϕ

)
∂Rk

� ρk
(
μ,μ′, ϕ, bk

)
;

∂ρtotal
(
μ,μ′, ϕ

)
∂bpk

� ∂ρk
(
μ,μ′, ϕ, bk

)
∂bpk

.

(4.5)

The amplitude derivative is straightforward. The (non-linear) parameter deriva-
tives depend on the empirical formulation of the kernel in question; all kernels in the
BRDF supplement are analytically differentiable with respect to any such parameter
dependencies.

Remark In the vector code VLIDORT, the BRDF is actually a 4×4 matrix, linking
incident and reflected Stokes 4-vectors. The scalar BRDF scheme outlined above
has been fully implemented in VLIDORT by setting the {1,1} element of a 4×4
vector kernel Pk equal to the corresponding scalar kernel function ρk ; all other BRDF
matrix elements are then zero.

4.2.3 White-Sky and Black-Sky Albedos

It is sometimes useful to normalize the total BRDF inputs according to a choice
of spherical albedo—either the total spherical or white-sky albedo (WSA), or the
directional black-sky albedo (BSA), the latter dependent on the solar zenith angle
(θ0). This is particularly appropriate when using the MODIS-based system of semi-
empirical BRDF kernels, where it is sometimes necessary to normalize according to
an external value of the albedo.

Assuming the kernel BRDFs to be normalized to 1/π , the two albedos are defined
by:

AWSA � 4

1∫

0

1∫

0

μμ′ρ0
(
μ,μ′)dμdμ′; ABSA(μ0) � 2

1∫

0

μ′ρ0
(
μ′, μ0

)
dμ′.

(4.6)

Hereμ0 � cos θ0, and ρ0
(
μ,μ′) is the Fourier-zero component of the total BRDF.

Assuming a 4-kernel total BRDF,we canwrite the albedo-scaled (normalized) BRDF
as

ρ̃
(
μ,μ′, ϕ − ϕ′) � Ã

ASA

4∑
k�1

R(k)ρ(k)
(
μ,μ′, ϕ − ϕ′). (4.7)

Here, Ã is a given external spherical albedo (eitherWSAorBSA), and the internal
spherical albedo is ASA � ∑4

k�1 R
(k)A(k)

SA, where A(k)
SA � A(k)

WSA for the white-sky
case, or A(k)

SA � A(k)
BSA(μ0) for the black-sky case. In order to obtain values of A

(k)
SA, the

half-space polar integrals in Eq. (4.6) are done byGaussian quadrature using abscissa
and weights

{
μp,wp

}
, p � 1 . . . Np. The default value of Np is currently 24. We
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thus require computation of the Fourier components ρ
(k)
0

(
μ0, μp

)
(BSA case), or

ρ
(k)
0

(
μq , μp

)
(WSA case). The BRDF supplement has a consistency check on the

magnitude of the total internally-calculated BRDF spherical albedo ASA; this should
be non-negative and take a value in the interval [0, 1].

Remark Albedo-scaling (if selected) applies to all BRDF Fourier components as
well as the direct bounce term. In the BSA case, albedo-scaling is dependent on
the SZA through μ0, and it then follows that the scaled components ρ̃m

(
μ j , μi

)
and

ρ̃m
(
μ j , μ1

)
will pick up a dependence on θ0 which the original unscaled components

did not possess. Because of this additional dependence, BSA scaling can only be
applied to all BRDF outputs for a single value of θ0.

WSA/BSA Linearizations

Starting with analytic partial derivatives in Eq. (4.5), application of albedo scaling
requires additional differentiation. Indeed, from Eq. (4.7) we find (dropping the
geometrical variables for convenience):

∂ρ̃

∂R(k)
� Ãρ(k) − ρ̃A(k)

SA

ASA
;

∂ρ̃

∂b(k)
� ÃR(k) ∂ρ(k)

∂b(k) − ρ̃
∂A(k)

SA

∂b(k)

ASA
. (4.8)

This last result requires the following computations to be added to the BRDF
supplement:

∂A(k)
WSA

∂b(k)
� 4

0∫

0

1∫

0

μμ′ ∂ρ
(k)
0

∂b(k)

(
μ,μ′)dμdμ′;

∂A(k)
BSA

∂b(k)
(μ0) � 2

1∫

0

μ′ ∂ρ
(k)
0

(
μ′, μ0

)
∂b(k)

dμ′.

(4.9)

These derivatives are also determined using quadrature
{
μp,wp

}
. It is possible to

generate derivatives of the scaled BRDFs with respect to the user-supplied external
spherical albedo Ã. The WSA/BSA-derivative is easy to write down; indeed, from
Eq. (4.6) we find that ∂ρ̃

∂ Ã
� ρ̃

Ã
.

For the vector BRDF supplement, spherical albedos are derived from the (1,1)
element of the (Fourier-zero) component of the BRDF matrix. All other elements of
this matrix are scaled by the same spherical albedo.

4.3 Surface Leaving Supplement

TheSL supplement is a separate systemof (V)LIDORT-based software that generates
a source of upwelling radiance at the lower boundary, for instance, “water-leaving”
radiance from the ocean, or near-infrared solar-induced fluorescence (SIF) from
vegetation. The SL contributions to (V)LIDORT from this supplement will depend
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on the downwelling solar illumination angle θ0, By analogy with the BRDF case,
we need to specify a “direct” source of upwelling radiance, depending on incoming
and outgoing directions, and for the diffuse field, Fourier components of the surface
leaving radiance. The three SL terms are (restricting attention to the scalar case):

Sm(μi , μ0), i � 1, . . . , Nd ; Sm(μ,μ0); Sdirect (μ,μ0, ϕ − ϕ0). (4.10)

Here, m � 0, 1, . . . , 2Nd − 1 is the Fourier component index as before. The first
term is the (Fourier component of) upwelling radiance into the polar discrete ordinate
directions {μi }, and this is required for the diffuse-field boundary condition at the
lower surface. The second term is the (Fourier component of) upwelling radiance
into user-defined stream direction μ, and this is required for post-processing of the
discrete ordinate solution (source function integration). In the post-processing, it
is more accurate to use the complete term SDirect (μ,μ0, ϕ − ϕ0) in place of the
Fourier-series truncation. This “correction” is analogous to the precise calculation
of the direct-beam surface reflection based on the values of Sm(μ0, μ), and in this
case, the Fourier terms Sm(μ0, μ) are not needed in the (V)LIDORT calculations.

The simplest SL specification comprises an isotropic term S∗(μ0)which depends
only on the SZA. In this case, Sm(μi , μ0) � 0,m ≥ 1 and S0(μi , μ0) � S∗(μ0) for
all outgoing polar directions μi , and also SDirect (μ,μ0, ϕ − ϕ0) � S∗(μ0).

Linearization.We assume that surface-leaving terms dependonly on quantities intrin-
sic to the surface (no atmospheric dependence). We require the SL supplement to
supply partial derivatives of terms in Eq. (4.10) with respect to some surface property
ξ (whichmight be the wind speed or the fluorescence at 755 nm; see below); themain
RT codes are then able to ingest these linearized inputs, thereby making it possible
for (V)LIDORT to produce Jacobian output with respect to surface property ξ . We
now discuss the current SL implementations.

Water-leaving. In the first SL supplements to the RT models, water-leaving con-
tributions were regarded as isotropic with no SZA dependence. All water leaving
radiances were equal to the flux-normalized (underwater) upwelling radiance S∗ in
the ocean at the surface (Fresnel transmittance through the surface was taken to be
unity). The value of S∗ was obtained through an empirical formulation based on
marine scattering and absorption (pure water, pigment (chlorophyll) and CDOM).
This ocean-optics model was based originally on the specification in the 6S model,
but we have updated the model based in part on the more recent work of Morel
and Gentili (2009). The ocean-optics model is dependent only on wavelength (in
Microns), the salinity and pigment concentration in [mg/M].

The 6S formulation also included a treatment of the ocean-air transmittance factor
for a rough surface; this is based on the azimuthal integration (for each solar angle
and line of sight angle in the atmosphere) of the reverse-medium glint calculation
for the rough-surface interface, taking into account Snell’s law of refraction and the
conservation of light intensity divided by the square of the reflective index. Glint
calculations here are done using the same Cox-Munk calculation as that for the
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BRDF (with wind-directionality and refractive index determined through salinity.
The whitecap correction to the SL is also required if we are computing water-leaving
radiance in conjunction with atmospheric glint with foam.

Although the SLEAVE and BRDF supplements are using the same software for
glint reflectance, Fresnel coefficient calculation, plus refractive index and whitecap
determination, the supplements have been kept completely separate in the interests
of modularity. When using the two supplements together, it is essential that they both
operate with a common set of inputs. With this in mind, there is a subroutine which
checks the compatibility of SLEAVE and BRDF inputs. Two other “input-check”
routines are also present to ensure that geometrical variables are consistent between
(V)LIDORT and its BRDF and SL supplements.

Fluorescence. This is based on the double-Gaussian model (Frankenberg et al. 2012)
which has now been used in a number of studies on the SIF signature. We would
like to thank Dr. Chris O’Dell for allowing us to use this model. The calculation is
simple:

S∗(θ0) ≡ F(λ, θ0) � F755(θ0)

{
A1 exp

[
− (λ − λ1)

2

σ 2
1

]
+ A2 exp

[
− (λ − λ2)

2

σ 2
2

]}
.

(4.11)

Thewavelengthsλ1 andλ2 correspond to peaks at 683nmand730nmrespectively,
and all the Gaussian constants are tabulated in the aforementioned reference. The SIF
is isotropic. The fluorescence F755(θ0) at 755 nm is based on a large multi-year data
set derived from satellite observations, depending on solar angle θ0, ‘epoch’ (year,
month, day, hour, etc.) and latitude and longitude coordinates. Equation (4.10) is easy
to differentiate with respect to the defining parameters. The main interest here is with
the amplitude parameter ξ ≡ F755(θ0) for which the partial derivative ∂S∗(θ0)/∂ξ is
trivial. It is possible to define also Jacobians with respect to the Gaussian parameters
in Eq. (4.11), and there is a facility for this option.

4.4 First-Order Codes (Single Scattering, Direct Thermal
Calculations)

For the newversions (VLIDORT2.8,LIDORT3.8)wehave revised and simplified the
treatment of single scattering, direct-bounce reflection and direct thermal emission
in a curved spherical-shell atmosphere. This section replaces the exposition in [R1].

Dealing first with single scattering in the upwelling direction � � (μ, ϕ), for a
given layer n in an optically-stratified atmospheric model, the vector RTE is (assum-
ing non-refractive geometry):

dI(x,�)

dx
� −I(x,�) +

ωn

4π
An(x)�

↑
n (�,�0)F�. (4.12)
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Here, x is the optical thickness coordinate along the line of sight,�0 � (−μ0, ϕ0)

is the solar beam direction, F� � (F�, 0, 0, 0)T the solar flux vector, �↑
n (�,�0)

the scattering matrix, ωn the single scattering albedo, and An(x) the solar beam
attenuation to the point of scatter. Note that, although the directions {�,�0} will
change along the line of sight, the angle of scatter remains constant in straight-line
geometry.

In the (V)LIDORTmodels, layers are optically uniform, soωn and�↑
n (�,�0) are

constant for a given layer n, and x � ρns in terms of the (constant) layer extinction
coefficient ρn , and path distance s. In terms of the layer vertical height difference hn
and layer vertical optical thickness �n (one of the basic IOP inputs), ρn � �n/hn .
Using path distance as the variable (more convenient, as this is independent of wave-
length), we integrate along the line-of-sight from s � 0 to s � Dn (at the top
boundary of the layer):

I(Dn,�) � I(0,�)e−ρn Dn + S↑
n ;S↑

n � σn

4π
�↑

n (�,�0)F�

Dn∫

0

An(s)e
−ρn(Dn−s)ds.

(4.13)

This defines the upwelling layer source term S↑
n . In addition, we have σn � ωnρn

(the scattering coefficient), and the attenuation An(s) is found by ray-tracing:

An(s) � exp

[
−

n∑
k�1

dnk(s)ρk

]
, (4.14)

where dnk(s) are solar path distances through whole layers k � 1, . . . n − 1 and the
partial distance in layer k � n to the point of scatter.

To obtain the upwelling single-scatter field at all levels in the atmosphere,
Eq. (4.13) is applied recursively, starting at the surface; if we write I↑

n to indicate the
upwelling Stokes vector at level boundary n (lower boundary of the layer), then for
instance at the top of the atmosphere:

I↑
0 (�) � CN I↑

Sur f (�) +
N∑

k�1

Ck−1S
↑
k (�); Cn �

n∏
k�1

e−ρk Dk ; C0 � 1. (4.15)

Similar expressions pertain for output at other levels. The FO model for the
upwelling field does include the direct-bounce surface reflectance of the solar beam:

I↑
Sur f (�) � 1

π
ASur f μ0R(�,�0)F�. (4.16)

with ASur f the solar beam attenuation to the surface, and R(�,�0) the BRDF reflec-
tion matrix at the surface. In the new FO supplement, there is also the capability to
generate fields at intermediate points between level boundaries; the main difference
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here is that we must now consider partial-layer transmittances and attenuation inte-
grals:

I(s,�) � I(0,�)e−ρns +
σn

4π
�↑

n (�,�0)F�

s∫

0

An(t)e
−ρn(s−t)dt . (4.17)

The treatment for downwelling radiation is very similar.
In the FOmodel, there are three options for computing path attenuations. The first

option assumes the atmosphere is plane-parallel. In this casewewrite s � (hn − z)/μ
in terms of the vertical height difference z from layer-top and the line-of-sight cosine
μ, and we have An(s) � Tn exp[−ρnz/μ0], where Tn is the solar beam transmittance
to layer-top. Then we obtain the familiar result:

Dn∫

0

An(s)e
−ρn(Dn−s)ds � Tn

μρn

[
1 − exp(−�nκn)

κn

]
; κn � 1

μ0
+
1

μ
. (4.18)

The second option allows for curved ray-tracing of the solar beam, but not for
the outgoing line-of-sight (the pseudo-spherical approximation). Here we still have
s � (hn − z)/μ, so we could work with vertical coordinates. In the average-secant
parameterization used for solar beam attenuation in the multiple-scatter LIDORT
and VLIDORT computations, An(s) � Tn exp[−λnρnz], where the average secant
is given by λn � ln[Tn/Tn+1]/ρnhn . In this case, the result in Eq. (4.18) applies, only
this time with κn � λn + 1

μ
.

The third choice for the FO model is the fully-spherical situation in which both
incoming and outgoing paths are treated for spherical geometry. In this case, the FO
model will evaluate attenuation integrals numerically, using a quadrature scheme:

Dn∫

0

An(s)e
−ρn(Dn−s)ds ∼�

Nq∑
j�1

c j An
(
s j
)
e−ρn(Dn−s j). (4.19)

Here, the quadrature is
{
s j,c j

}
, j � 1 . . . Nq taken over the interval [0, Dn]. We

have found that Gauss-Legendre integration yields accuracy at the 10−6 level in all
situations, with Nq varying from 5 to 12. However, there are occasions where care
must be taken with this procedure. For an optically thick layer below clear skies,
solar beam attenuation through such a layer may become vanishingly small. There is
then no light reaching the lowest part of the line-of-sight path, and quadrature over
interval [0, Dn] will not work. The remedy is to introduce a cutoff distance Dnc such
that quadrature in Eq. (4.19) is over the interval [Dnc, Dn]. The cutoff is determined
as follows: assuming that the layer attenuation exp[−dnn(s)ρn] never falls below a
certain threshold value Acrit , we use ray-tracing and numerical solution methods
to solve for Dnc through the equation Acrit � exp[−dnn(Dnc)ρn]. We have found
Acrit � 10−8 is a suitable threshold.
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The situation with direct thermal emission is simpler. The scalar RTE is

d I (x, μ)

dx
� −I (x, μ) + (1 − ωn)Bn(x). (4.20)

Here, x is now the vertical optical thickness coordinate measured from the bottom
of the layer, and Bn(x) the Planck Function for temperatures in layer n. For the
upwelling field, the solution corresponding to Eq. (4.13) is

I(Dn, μ) � I(0, μ)e−ρn Dn + (1 − ωn)

Dn∫

0

Bn(x)e
−ρn(Dn−s)ds. (4.21)

There are two choices. The first is the plane-parallel option, with no sphericity
along the line-of-sight. Once again, x � −ρnz; s � (hn − z)/μ. Using the lin-
ear parameterization Bn(x) � an + bns in terms of the distance coordinate s, then
Eq. (4.21) is then easy to integrate explicitly:

Dn∫

0

Bn(s)e
−ρn(Dn−s)ds � (ρnan − bn)

(
1 − e−ρn Dn

)
ρ2
n

+
bnDn

ρn
. (4.22)

In the second choice, the line-of-sight moves through a curved atmosphere, and
we must again use the distance quadrature as in Eq. (4.19) to perform the integral in
Eq. (4.21).

Building the field recursively using Eq. (4.15) also applies in the thermal case,
except that the surface term is now given by I ↑

Sur f (�) � Bsur f E(μ), with emissivity
E(μ) and surface Planck function Bsur f . Downwelling treatment for direct thermal
radiation unfolds in an analogous way.

Linearizations. We note that the FO fields are differentiable with respect to any
basic set of optical properties that characterize the RT problem. In layer n,
we assume that the IOPs {�n, ωn,�n(�,�0)} have known analytic derivatives{
�̇n, ω̇n, �̇n(�,�0)

}
with respect to variable ξn in layer n. Differentiation of

Eq. (4.13) yields:

İ(Dn,�) � [
İ(0,�) − ρ̇nDnI(0,�)

]
e−ρn Dn + Ṡ↑

n ; (4.23a)

Ṡ↑
n � 1

4π

[
σ̇n�

↑
n (�,�0) + σn�̇

↑
n (�,�0)

]
F�

Dn∫

0

An(s)e
−ρn(Dn−s)ds

+
σn

4π
�↑

n (�,�0)F�

Dn∫

0

[
Ȧn(s) − ρ̇n(Dn − s)An(s)

]
e−ρn(Dn−s)ds. (4.23b)
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In terms of linearized IOPs, we have ρ̇n � �̇n/hn , and σ̇n � ρ̇nωn + ρnω̇n .
Equation (4.23b) contains some new integrals for the attenuations; the derivative
attenuation from Eq. (4.14) is:

Ȧn(s) � −dnn(s)ρ̇n An(s). (4.24)

Additionally, there are cross-layer derivatives of Eq. (4.14), since the attenuation
depends on optical properties in layers k < n. If quantity ξk in layer k gives rise to
optical property derivatives ∂ρk/∂ξk , then (using a “prime” symbol for ∂/∂ξk)

I′(Dn,�) � I′(0,�)e−ρn Dn +
σn

4π
�↑

n (�,�0)F�

Dn∫

0

A′
nk(s)e

−ρn(Dn−s)ds. (4.25)

Here, A′
nk(s) � −dnk(s)ρ ′

k An(s), for k < n. Integrals with derivatives of the
attenuations will have analytical expressions for the plane-parallel option and the
pseudo-spherical option with the average-secant parameterization. These integrals
have already cropped up in the full RTE linearizations. For the other option with full
sphericity, integrals in Eq. (4.25) are done using the distance quadrature as noted
above.

Solution linearization of the complete single-scatter field then follows from the
chain-rule differentiation of the recurrence relation Eq. (4.15) and others similar to
it. We note in particular the surface attenuation in Eq. (4.16) will have derivatives
from every layer.

Onefinal consideration is the surface-property linearization of the direct-reflection
in Eq. (4.16). If the BRDF has derivative ∂/∂W (indicated below with a “double
prime” symbol), with respect to some surface quantityW (e.g. wind speed for ocean
glitter), then there will be Jacobians such as the following:

I↑′′
0 (�) � CN I↑′′

Sur f (�); I↑′′
Sur f (�) � 1

π
ASur f μ0R′′(�,�0)F�. (4.26)

Linearization of the direct thermal FO field has two aspects. The first is differen-
tiation with respect to the usual set of optical property variables—in a manner not
unrelated to the above treatment for the SS field, we may differentiate the results
in Eqs. (4.20)–(4.22), noting the need for additional quadrature integration involv-
ing the Plank functions. The other consideration is differentiation with respect to
the Planck functions themselves—an important factor when considering tempera-
ture Jacobians in the thermal regime. This issue was dealt with in Sect. 3.3 and the
facility developed there is appropriate to the present case.
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4.5 F-Matrix and Phase Function Supplements

We deal with the vector F-Matrix (FMATRIX) case; the scalar supplement is a
subset of this, as the phase function is the (1,1) element of the 4×4 scatter-
ing matrix. We suppose that there exists an external set of 6 F-matrix compo-
nents F11(	k), F12(	k), F22(	k), F33(	k), F34(	k), F44(	k) on a grid of scatter-
ing angles {	k}. The first requirement of the “FMATRIX” supplement is to provide
VLIDORT with F-matrix elements for the FO calculations, for a set of scattering
angles

{
	±

v

}
corresponding to choices of solar and viewing geometry configurations

(indexed by the letter v). The second requirement is to generate sets of “Greekmatrix”
expansion coefficients to be used in the VLIDORT multiple scatter calculations.

For the first requirement, we use interpolation (currently, cubic splining is the
default). It is important that the external grid {	k} is fine enough in the forward scat-
tering direction to allow for sufficient accuracy in the interpolation. For example, the
tri-axial ellipsoidal dust–aerosol data set provided by Meng et al. (2010) has resolu-
tions 0.01° from0° to 2°, 0.05° from2° to 5°, 0.1° from5° to 10°, 0.5° from10° to 15°,
1.0° from 15° to 175°, and 0.25° for the remaining values to 180°. Further, this data is
presented as {ln F11(	k), R12(	k), R22(	k), R33(	k), R34(	k), R44(	k)}, in terms
of the logarithm of the phase function, and the ratios Rpq(	k) � Fpq(	k)/F11(	k).
At the forward and backward peaks, the spline interpolation end-point gradients
are constrained to take the values obtained by finite difference estimates using the
data-set entries—we have found that this constraint makes a big improvement in
interpolation accuracy, especially close to the forward peak.

TheGreek coefficients are established through the orthogonality of the generalized
spherical functions used for the Fourier-azimuth expansion of the phase matrix.
Indeed, application of orthogonality properties gives (Mishchenko et al. 2006):

βl �
(
l +

1

2

) 1∫

−1

a1(μ)Pl
00(μ)dμ; ζl �

(
l +

1

2

) 1∫

−1

a4(μ)Pl
00(μ)dμ; (4.27a)

αl ± δl �
(
l +

1

2

) 1∫

−1

[a2(μ) ± a3(μ)]Pl
2,±2(μ)dμ; (4.27b)

γl �
(
l +

1

2

) 1∫

−1

b1(μ)Pl
02(μ)dμ; εl �

(
l +

1

2

) 1∫

−1

b2(μ)Pl
02(μ)dμ. (4.27c)

Hereμ � cos	. The integrals are performed by double Gauss-Legendre quadra-
ture with a high number of abscissae (typically 2000)—necessary to capture vari-
ability of the scattering functions especially near the forward peak. Clearly, a second
round of interpolation is necessary to obtain scattering functions on the quadrature
grid. This is another reason why it is highly desirable to have the input F-matrix
functions at a sufficiently fine resolution—Greek coefficients will not be accurate
otherwise.
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5 Software Considerations

5.1 Package Overview

Herewe give an overview of the current LIDORT code package organization (Fig. 1).
The VLIDORT package is organized in a similar fashion, with one difference (there
are two test directories). From the parent LIDORT directory, there are 9 upper-
level subdirectories, including one for the main source code (“lidort_main”), one
for LIDORT’s Fortran 90 input/output type structure definition files (“lidort_def”),
one for testing environments (“lidort_test”), one for the first-order (FO) source code
(“fo_main_1p5”) and one for the LIDORT supplement modules (“sup”). Further,
object files (“obj”), module files (“mod”), LIDORT package utilities (“util”), and
documentation (“docs”) are also stored in separate directories.

In the main “test” directory, there are a number of driver programs which are
designed to test most aspects of the code; these tests rely on configuration-file inputs
to set the type-structure inputs.Detailsmaybe found in theUserGuide.Test execution
is controlled through a number of shell scripts. Test results should then be compared
with pre-calculated results in the “saved_results” subdirectories.

The similarly-structured VLIDORT package has two test directories (“vli-
dort_s_test” and “vlidort_v_test”), the first for scalar-only output (no polarization),
the second for vector output with polarization. Tests in the “vlidort_s_test” mirror
those in LIDORT’s “lidort_test” sub-directory.

As noted in the Introduction, earlier versions of the codes as described in [R1]
were written in Fortran 77, and in transitioning to Fortran 90, all F77 COMMON

Docs
- User Guide
--Release Notes

mod

obj

u l

Parent Directory

lidort_def
- I/O type structures

sup

lidort_main
- Code Subrou nes

fo_main_1p5

lidort_test
- test Drivers
--Configura on files
--Test Results
- makefile, Shell scripts
- atmospheric data

Data (Fluorescence)

saved_results

Brdf

Sleave

Phasfunc

Fig. 1 Directory structure for the LIDORT package
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blocks and associated “include” files were replaced. Now, all inputs and outputs
are declared with the “implicit none” qualifier and the Fortran 90 “intent(in/out)”
statements. Most recent versions of (V)LIDORT have the capability to run in the
OpenMP parallel-computing environment, and we discuss this performance aspect
in Sect. 5.2.3 below.

In addition, a new exception handling system has been introduced. Formerly,
input-check and calculation errors were written to file as they occurred during model
execution. This is not convenient for applications where (V)LIDORT is called within
a larger software environment. Now, the (V)LIDORTmodels will assemble error and
warning messages during execution, then output these messages along with “traces”
to locate error sources.

5.2 Performance Enhancements

5.2.1 Multiple-SZA and “Observational Geometry” Options

In R1, the “multiple-SZA” facility was described. This takes advantage of the fact
that the homogeneous RTE solution (in the absence of sources) needs to be done
just once, whereas the particular integrals are required for every solar source beam.
Earlier versions of (V)LIDORT were based on just one solar zenith angle (SZA)
input, requiring the models to be called repeatedly for each desired beam geometry.
Now, there is an internal loop over the set of solar sources. The time-saving arises
when solving the boundary value problem AXv � Bv, where Xv is the vector of
integration constants for the RTE solution with solar geometry v, Bv is the source
term vector constructed from particular integral solutions for this geometry, with
matrix A constructed only from RTE homogeneous solutions. The inverse matrix
A

−1 is calculated once only before the loop over solar geometry. Finding A−1 is the
most time-consuming part of the code (especially for VLIDORT), and once done, the
back-substitution exercise Xv � A

−1
Bv is straightforward and fast. We remark only

that convergence of the Fourier azimuth series in VLIDORT/LIDORT does depend
on the SZA, so the model keeps track of this convergence separately for each SZA,
thereby avoiding unwanted additional computation.

In the latest (V)LIDORT codes, we have introduced the “observational geom-
etry” option. This arises from typical satellite atmosphere/surface retrieval algo-
rithms, where there is a requirement for radiative transfer output at specific “so-
lar zenith angle, viewing angle, relative azimuth angle” observational geometry
triplets. Although (V)LIDORT models have multiple user-angle and multiple-SZA
options, this capability is not efficient for generating output for observational geom-
etry triplets. For example, if there are 4 such triplets, then previously (V)LIDORT
was configured to generate 4×4×4�64 output radiances, that is, one RT output
for each of the 4 solar zenith angles, each of the 4 viewing angles, and each of the
4 relative azimuth angles. One may view this as computing a “4×4×4 lattice cube
of solutions”, and this is fine for building a look-up table (LUT). However for triplet
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output with 4 SZA values, we require only those solutions along the diagonal of this
“lattice cube of solutions” (i.e. 4 instead of 64, one for each triplet); the other 60
solutions are redundant.

The observational geometry facility bypasses this redundancy. When in force, a
single call will generate the discrete-ordinate radiation fields for each SZA in the
given triplet set, and then carry out post-processing only for those viewing zenith and
relative azimuth angles uniquely associated with the triplet SZA. One of the big time
savings here is with the internal geometry routines in (V)LIDORT—in our example,
we require 4 calls instead of 64 calls needed in a “Lattice” computation for the same
set of geometries.

5.2.2 Solution-Saving and BVP-Telescoping

“Solution-Saving” refers to the avoidance of finding unnecessary full solutions to the
RTE when there is no scattering in a given layer n, for a given Fourier componentm.
Such a situation is quite common—for example in a Rayleigh (molecular) scattering
atmosphere with one or more contiguous cloud layers. Rayleigh scattering has a
cos2 	 dependence on scattering angle 	 and is present only for Fourier m ≤ 2,
so in this example it is necessary to solve the RTE for m > 2 only in the cloud
layers. For the non-scattering layers, the extinction law applies, and radiance is
propagated through such layers according to transmittances Tn(μ) � exp[−�n/μ],
where�n is the layer vertical optical depth, andμ any directional cosine. Linearized
RTE solutions are also zero in non-scattering layers, but any linearized solutions
in adjacent scattering layers will also be transmittance-propagated through non-
scattering layers. Note that if this transmittance propagation passes through layer n
for which a parameter derivative �̇n � ∂�n/∂ξn is present, then the linearization
will pick up an additional term Ṫn(μ) � −Tn(μ)�̇n/μ.

The “BVP-Telescoping” facility was first described in [R1]. Here we give a brief
summary, noting additional developments in the latest versions. BVP-Telescoping
goes hand-in-hand with “Solution-Saving”—when there is a contiguous group of
actively scattering layers in an otherwise non-scattering atmosphere (e.g. Rayleigh
for Fourierm > 2), it is possible to reduce the size of the boundary value problem to a
linear algebra system of much lower rank—essentially we are determining discrete-
ordinate RTE integration constants for the radiation fields in these active scattering
layers, noting that these solutions will be transmittance-propagated through non-
scattering layers above and below the cloud deck. This reduction of rank in the BVP
linear-algebra system represents a substantial time-saving operation. Performance
aspects of the telescoped BVP ansatz have been examined also in (Efremenko et al.
2013).

For Fourier components m > 0, a Lambertian (isotropic) lower boundary surface
is dark, and in this case light propagated downwards from the cloud deck will not be
reflected upwards from the surface to contribute to the upwelling field in the cloud.
This is the simplest situation for BVP telescoping, and this has been the default
until recently. Now, the (V)LIDORT codes are able to deal with a reflecting surface
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characterized by a BRDF. In this case downwardly-propagated scattered light from
the cloud deck will be reflected upwards to rejoin the active layers, and one must
fold in a BRDF surface-reflection condition for the lowest boundary of the reduced
BVP. Linearization of this more general BVP scenario with surface reflection has
also been accomplished. Note that the BVP telescoping will also work with a cloud
deck having no non-scattering layers beneath (“fog at the ground” scenario).

5.2.3 OpenMP Facility, Software Speed-Up Improvements

The VLIDORT 2.7 (2015) and LIDORT 3.7 (2014) codes were given the capability
to run in OpenMP distributed parallel-computing environments. OpenMP compat-
ibility requires that the codes are “thread-safe”, and this development has necessi-
tated some software structural changes. The main such change has been the removal
of “SAVE” statements—arrays with this attribute would be shared among parallel
OpenMP threads and this would lead to anomalous behavior.

Care should be taken regarding proper preparation forOpenMP test environments:
parallel programming tests such as these can result in memory segmentation faults if
steps are not taken to ensure enoughmemory is set aside for both main and OpenMP-
spawned computational threads. For more information, the reader should consult the
VLIDORT and LIDORT User Guides, where there are some guidelines for using the
codes in OpenMP.

Both codes show excellent “scalability” when using OpenMP. Running with 2
cores in a single CPU, the speed-up is very close to 2.0, while an OpenMP run with
4 cores will generate a speed-up of around 3.8. These figures are typical, but will
depend on the application (large wavelength loops in hyperspectral environments,
for example).

Finally, there have been a number of internal coding revisions to ensure that
do-loop ordering and array-filling makes efficient use of memory. This latter consid-
eration has proved to be most valuable for applications with profile Jacobians, where
performances have improved by as much as 30%.

5.3 Benchmarking, Validation and Inter-model Consistency

5.3.1 Rayleigh and Aerosol Slab Problems

Benchmarking for the VLIDORT model was discussed in [R1], and we give a brief
summary here. The Rayleigh slab problem refers to a single-layer plane-parallel
medium of optical thickness 1.0, conservative Rayleigh scattering with polarization
(single scattering albedo ω � 1.0), and a Lambertian lower surface. For this sce-
nario, the V-component of the Stokes vector is decoupled. The original solution for
linear polarization was found by Chandrasekhar in the 1940s, and benchmark results
were presented in the Coulson, Dave and Sekera (CDS) tables (Coulson et al. 1960).
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Although VLIDORT is technically unable to handle conservative scattering math-
ematically, it has been possible to validate VLIDORT by setting ω � 0.99999999,
and as noted in [R1], VLIDORT can reproduce all CDS entries to within the accuracy
level specified for these tables.

More recently, a new set of Rayleigh slab-problem benchmarks has been gen-
erated (Natraj and Hovenier 2012), using a new coding of Chandrasekhar’s classi-
cal Rayleigh slab solution. The coding uses double-precision arithmetic, and these
authors showed that the CDS tables are generally accurate to only 4 or 5 signif-
icant figures (SF). These authors also carried out a VLIDORT validation for the
CDS inputs; using 32 discrete ordinates in the half-space, and they were able to get
agreement to better than 9 SF with VLIDORT output for this problem.

The (plane-parallel) aerosol slab problem is similar, but with aerosol scatter-
ing instead of Rayleigh. For VLIDORT, we first compared with results from the
discrete-ordinatemodel of Siewert (2000b). This scenario has a solar angle of 53.130°
(μ0 � 0.6), with single scatter albedoω � 0.973527, surface albedo 0.0, slab optical
thickness 1.0, and a set of Greek coefficients as noted in Table 1 of Siewert (2000b).
Stokes 4-vector output is given in a set of eight tables for a number of optical thick-
ness values from 0 to 1, and a number of output streams. Multiple scattering was
based on 24 discrete ordinates in the half space. All results were reproduced by
VLIDORT with complete fidelity. A second benchmarking was done against results
from Garcia and Siewert (1989) for a related aerosol slab problem; this time with
albedo 0.1. Tables 3–10 in Garcia and Siewert (1989) were reproduced to 5 SF in
all cases, with VLIDORT using 20 discrete ordinates in the half space. This result is
noteworthy because the radiative transfer computations in Garcia and Siewert (1989)
were done using a completely different radiative transfer methodology (the so-called
FN method).

5.3.2 LIDORT-VLIDORT Comparisons

The two models should be completely consistent in all respects. Indeed, with the
exception of additional polarized optical properties in VLIDORT, the model inputs
are the same. VLIDORT will operate in “scalar mode” when the input parameter
NSTOKES is set to 1 and in this case, VLIDORT reproduces very closely any results
generated independently from calls to LIDORT with equivalent geometrical and
optical inputs. It should be noted that exact agreement (to all SF) cannot be expected,
since LIDORT uses Green’s function methods to solve the RTE particular integral,
whereas VLIDORT employs the conventional exponential-substitution method for
this task. We have found that agreement between VLIDORT and LIDORT in all
situations is better than 9 SF for this scalar-only comparison.
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5.3.3 Consistency with the 2-Stream and Linearized Rotational-Raman
Scattering Models

LIDORT and VLIDORT are the twomain models in the family of RT codes provided
byRTSolutions. One of the other codes of interest here is the dedicated 2-stream (2S)
radiance/fluxmodel (Spurr andNatraj 2011). 2S is amultiple-scatteringRTmodel in a
multi-layer stratifiedmedia; it can operate with either choice of the 2-stream ordinate
(μ̄ � 0.5 or μ̄ � 1/

√
3). 2S has most of the capabilities of the LIDORT/VLIDORT

codes, although flux and radiance outputs are presently confined to level boundaries.
2S has both BRDF and surface-leaving supplements which are fully compatible with
those of LIDORT.

In the context of the accelerated radiative transfer applications using principal
component analysis (PCA) of optical property fields (Natraj et al. 2010) (see also
Spurr et al. 2016 and references therein), both VLIDORT and LIDORT have been
independently validated against 2S, for top-of-atmosphere upwelling radiances and
bottom of atmosphere downwelling fields. This was achieved by setting the number
of discrete ordinates Nd � 1 in LIDORT and VLIDORT, and comparing the multiple
scattering output with 2S output for a given solar zenith angle and a set of viewing
scenarios.

The second model to check for consistency is the LRRS (LIDORT Rotational-
Raman Scattering) code (Spurr et al. 2008). This is a scalar LIDORT-based RT
model with both elastic scattering (nowavelength redistribution) and inelastic (wave-
length redistributed) molecular scattering due to rotational-Raman transitions by air
molecules. LRRS treats elastic scattering to all orders, but Raman photons are inelas-
tically scattered just once. LRRS is able to ingest the same optical inputs as LIDORT,
so the elastic scattering output from LRRS can be compared exactly with its counter-
part fromLIDORT. This is true for a wide range of applications, since LRRS has both
BRDF and Surface-leaving supplements which are fully compatible with LIDORT.
LRRS has recently been linearized and brought up to date with the latest develop-
ments in (V)LIDORT, and the LRRS upgrades will be described in a monograph
under preparation (Spurr and Christi 2018).

6 Concluding Remarks

In this paper, we have reviewed developments and upgrades to the LIDORT and
VLIDORT discrete ordinate radiative transfer models over the last 10 years, since
the publication of the last review paper [R1] (Spurr 2008). We have also included
a summary of the newer FO (First-Order) codes, which are stand-alone but fully
compatible with the (V)LIDORT models.

We have focused in particular on a number of supplements, including modules
for the generation of BRDF inputs, solar-induced fluorescence, a new treatment of
water-leaving radiances, and external single-scattering computations based on user-
defined phase functions and scattering matrices (the latter in connection with the FO
model).
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We also discussed some new linearization capabilities, especially the generation
of analytic weighting functions with respect to Planck function inputs as required
for thermal emission sources, and the derivation of level-boundary Jacobians (with
respect to temperatures and mixing ratios in particular) from transformations of the
(V)LIDORT layer optical property Jacobians.

We have summarized a number of performance enhancements, including a gener-
alized Taylor-series treatment for closely adjacent polar-stream directions, improve-
ments to the treatment of BRDFs in BVP-Telescoping scenarios. Both the LIDORT
and VLIDORT models are now “thread-safe”, which enables them to be used in
OpenMP parallel computing environments.

The latest release versions for the codes are: Version 2.8 for VLIDORT, Version
3.8 for LIDORT, Version 2.4 for 2S, Version 1.5 for the FO code, and Version 2.5
for the LRRS code. These versions have the same capabilities, with a completely
consistent set of inputs and outputs. The LIDORT family of RT models has found
widespread use in the remote sensing community—the codes are freely available and
covered by the GNU General GPL license version 3.0. All codes are accompanied
by User Guide documentation, and may be obtained by contacting Robert Spurr at
RT Solutions Inc.

Appendix A. RTE Solutions for VLIDORT

A.1 Azimuthal Separation

In applications involving randomly oriented particles with one plane of symmetry,
the scattering matrix F(	) in Eq. (2.5) has six independent entries:

F(	) �

⎛
⎜⎜⎜⎝

a1(	) b1(	) 0 0

b1(	) a2(	) 0 0

0 0 a3(	) b2(	)

0 0 −b2(	) a4(	)

⎞
⎟⎟⎟⎠. (A.1)

For this form of the scattering matrix, one can develop expansions of these func-
tions in terms of a set of generalized spherical functions Pl

mn(cos	) (Mishchenko
et al. 2006):
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a1(	) �
M∑
l�0

βl P
l
00(cos	);

a2(	) + a3(	) �
M∑
l�0

(αl + ζl)P
l
2,2(cos	);

a2(	) − a3(	) �
M∑
l�0

(αl − ζl)P
l
2,−2(cos	);

a4(	) �
M∑
l�0

δl P
l
00(cos	) (A.2)

b1(	) �
M∑
l�0

γl P
l
02(cos	); b2(	) � −

M∑
l�0

εl P
l
02(cos	) (A.3)

The (1,1) entry in F(	) is just the phase function and satisfies the normalization
condition:

1

2

π∫

0

a1(	)sin	d	 � 1. (A.4)

The set of six expansion coefficients (“Greek constants”) {αl, βl , γl , δl , εl , ζl} are
key inputs to VLIDORT, and the number of terms M in these expansions depends on
the desired level of numerical accuracy. Here, {βl} are the phase function expansion
coefficients as used in the scalar RTE. These “Greek constants” specify the polarized-
light single-scattering law, and there are a number of efficient analytical techniques
for their computation, not only for spherical particles (see for example de Rooij and
van der Stap 1984) but also for randomly-oriented homogeneous and inhomogeneous
non-spherical particles and aggregated scatterers (Hovenier et al. 2004; Mackowski
and Mishchenko 1996; Mishchenko and Travis 1998).

To proceed with the RTE solution, it is necessary to make Fourier decompositions
(in terms of the cosine and sine of the relative azimuth angle between incident and
scattered light directions) of the phase matrix and the Stokes vector in order to
separate the azimuthal dependence.

I
(
x, μ, φ − φ′) � 1

2

M∑
m�0

(
2 − δm,0

)
�m

(
φ − φ′)Im(x, μ); (A.5)

�
(
μ, φ,μ′, φ′) � 1

2

M∑
m�0

(
2 − δm,0

)[
Cm

(
μ,μ′)cosm(φ − φ′) + Sm

(
μ,μ′)sinm(φ − φ′)];

(A.6)

Here, �m(φ) ≡ Diag[cosmφ, cosmφ, sinmφ, sinmφ]. We follow the formula-
tion for azimuthal separation of the scattering matrix developed by Siewert (1982),
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Vestrucci and Siewert (1984). Most vector radiative transfer models now follow this
work. Accordingly, we write:

Cm
(
μ,μ′) � Am

(
μ,μ′) + DAm

(
μ,μ′)D; Sm

(
μ,μ′) � Am

(
μ,μ′)D − DAm

(
μ,μ′);
(A.7)

Am
(
μ,μ′) �

M∑
l�m

Pm
l (μ)BlPm

l

(
μ′); D � Diag[1, 1,−1,−1]; (A.8)

Bl �

⎛
⎜⎜⎜⎝

βl γl 0 0

γl αl 0 0

0 0 δl −εl

0 0 εl ζl

⎞
⎟⎟⎟⎠;Pm

l (μ) �

⎛
⎜⎜⎜⎜⎝

Pm
l (μ) γl 0 0

γl Rm
l (μ) −Tm

l (μ) 0

0 −Tm
l (μ) Rm

l (μ) 0

0 0 0 Pm
l (μ)

⎞
⎟⎟⎟⎟⎠. (A.9)

The “Greekmatrices” contain the spherical-function expansion coefficients, while
the matrices Pm

l (μ) contain the associated Legendre functions Pm
l (μ) and the func-

tions Rm
l (μ) and Tm

l (μ) which are closely related to the generalized spherical func-
tions Pl

mn(μ) (for details, see for example Siewert 2000b).
This azimuth separation process yields the following RTE for the Fourier com-

ponent Im(x, μ):

μ
dIm(x, μ)

dx
� −Im(x, μ) +

ω

2

M∑
l�m

Pm
l (μ)Bl

1∫

−1

Pm
l

(
μ′)Im(x, μ′)dμ′ + Qm(x, μ).

(A.10)

For the solar source term, with solar direction {−μ0, φ0}, we have.

Q�
m(x, μ) � ω

2

M∑
l�m

Pm
l (μ)BlPm

l (−μ0)F�exp
[−τ�(x, μ)

]
, (A.11)

in terms of the TOA solar flux F� � [
F�, 0, 0, 0

]T
and solar beam attenuation

exp
[−τ�(x, μ0)

]
, where τ�(x, μ0) is the beam optical depth in a spherical-shell

atmosphere.

A.2 Homogeneous Solutions in VLIDORT

A.2.1 Eigenvalue Solutions

In the discrete-ordinate solution method, we solve for each Fourier component in
Eq. (A.10) by first finding the homogeneous solutions (without the solar or thermal
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source terms). With the familiar discrete ordinate quadrature with stream directions
andweights {±μi , ci } for i � 1, . . . Nd , where Nd is the number of discrete ordinates
in the polar half space. The resulting vector RTE for these streams is then

±μi
dIm(x,±μi )

dx
± Im(x,±μi ) � ω

2

M∑
l�m

Pm
l (±μi )Bl

Nd∑
j�1

[
Pm
l

(
μ j
)
Im
(
x, μ j

)

+ Pm
l

(−μ j
)
Im
(
x,−μ j

)]
(A.12)

There are 8Nd coupled first-order linear differential equations for Im(x,±μi ) in
this system, which is solved by eigenvalue methods, using the ansatz:

Iα(x,±μi ) � Wα(±μi ) exp[−kαx]. (A.13)

We then define the following two vectors of rank 4Nd :

W
±
α � [

WT
α(±μ1), WT

α(±μ2), . . . , WT
α

(±μNd

)]T
. (A.14)

The system is decoupled using sum and difference vectors Xα � W
+
α + W

−
α

and Yα � W
+
α − W

−
α , and the order is then be reduced from 8Nd to 4Nd . The

result is an eigenproblem for the collection of separation constants and associated
solution vectors {kα,Xα},where indexα � 1, . . . , 4Nd labels the eigensolutions. The
eigenmatrix for this system is constructed from the optical property inputs {ω, Bl} and
combination products of matrices Pm

l (±μi ). The eigenproblem is Siewert (2000b):

X
∗
αG � k2αX

∗
α;GXα � k2αXα; (A.15a)

G � F
+
F

−;F± �
[
E − ω

2

M∑
l�m

P(l,m)BlA±
P
T(l,m)C

]
M

−1; (A.15b)

P(l,m) � Diag
[
Pm
l (μ1), Pm

l (μ2), . . . , Pm
l

(
μNd

)]T
; (A.15c)

M � Diag
[
μ1E, μ2E, . . . , μNd E

]
;C � Diag

[
c1E, c2E, . . . , cNd E

]
. (A.15d)

Here, A± � E ± (−1)l−mD;E � Diag[1, 1, 1, 1];D � Diag[1, 1,−1,−1],
E is the 4Nd × 4Nd identity matrix; X∗

α and Xα are the left and right eigenvectors
respectively,withX∗

α the conjugate transpose ofXα . The linkbetweenXα and solution
vectors W±

α comes through the auxiliary equations:

W
±
α � 1

2
M

−1

[
E ± 1

kα

F
+

]
Xα. (A.16)

Eigenvalues occur in pairs {±kα}. Left and right eigenvectors share the same spec-
trum of eigenvalues. As noted by Siewert (2000b), both complex- and real-variable
eigensolutions may be present in the full Stokes 4-vector case (rank 4Nd ). Eigensolu-
tionsmay be determined numericallywith the complex-variable eigensolverDGEEV
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from the LAPACK suite (Anderson et al. 1995). DGEEV generates both right and
left eigenvectors, which have unit moduli. In the scalar case (no polarization, solu-
tions only for the I-component of the Stokes vector), the eigensystem has rank Nd ,
the eigenmatrix is symmetric and all eigensolutions are real-valued. In this case, the
eigensolver module ASYMTX (Stamnes et al. 1988) may be used. ASYMTX is an
adaptation of the LAPACK routine for real-valued problems; it delivers only the right
eigenvectors. For vector solutions neglecting circular polarization (Stokes I, Q and U
only), complex eigensolutions are absent, and one may then use the faster ASYMTX
routine.

Returning to the full Stokes 4-vector case, the complete homogeneous solution in
one layer is then:

I
+(x) � D

+
4Nd∑
α�1

{
LαW

+
α exp[−kαx] +MαW

−
α exp[−kα(� − x)]

}
; (A.17a)

I
−(x) � D

−
4Nd∑
α�1

{
LαW

−
α exp[−kαx] +MαW

+
α exp[−kα(� − x)]

}
; (A.17b)

Here, D− � Diag[D, D, . . . D], and D
+ � E; these matrices arise from applica-

tion of symmetry relations (Siewert 2000b). The use of optical thickness � − x in
the second exponential ensures that solutions remain bounded (Stamnes and Con-
klin 1984). The quantities {Lα,Mα} are the constants of integration; determined by
application of the boundary conditions and solution of the resulting boundary-value
problem.

In the Stokes 4-vector case, some contributions to I
±(x) will be complex, some

real. It is understood that we compute the real parts of any complex variable expres-
sions. Thus for example if

{
kα,W−

α

}
is a complex eigensolution with associated

(complex) integration constant Lα , the real part of the solution will be:

Re
[
LαW

−
α e

−kαx
] � Re[Lα]Re

[
W

−
α e

−kαx
]− Im[Lα]Im

[
W

−
α e

−kαx
]
. (A.18)

From a bookkeeping standpoint, one must keep count of the number of real and
complex solutions, and treat them separately in the numerical implementation. For
clarity of exposition, we have not made an explicit separation of complex variables,
and it will be clear from the context whether real or complex variables are under
consideration.

A.2.2 Linearization of the Eigenvalue Solutions

For a single layer, we require derivatives of the eigensolution
{
kα,W±

α

}
with respect

to some atmospheric variable ξ in that layer. The starting point for the differentia-
tion is the set of linearized optical properties V ≡ ξ∂�/∂ξ ;U ≡ ξ∂ω/∂ξ ;Z l ≡
ξ∂Bl/∂ξ , that is, normalized partial derivatives of the set of IOPs {�,ω, Bl}. The
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eigensolution depends only on the quantities {ω, Bl}. Applying the linearization
operator L ≡ ξ∂/∂ξ to the eigenmatrix, we find

L(G) � L
(
F
+
)
F

− + F
+L
(
F

−); (A.19a)

L
(
F

±) � −
[
1

2
{UPlmBl + ωPlmZl}A±

P
T
lmC

]
M

−1. (A.19b)

Linearization treatments are different for the full Stokes 4-vector case, and the
scalar and Stokes 3-vector situations.

4-vector case. We apply linearization to both the left and right eigensystems:

L
(
X

∗
α

)
G + X

∗
αL(G) � 2kαL(kα)X∗

α + k2αL
(
X

∗
α

)
; (A.20a)

GL(Xα) + L(G)Xα � 2kαL(kα)Xα + k2αL(Xα). (A.20b)

We form a dot product ⊗ by pre-multiplying the second of these equations by the
transpose vector X∗

α:

X
∗
α ⊗ GL(Xα) + X

∗
α ⊗ L(G)Xα � 2kαL(kα)X∗

α ⊗ Xα + k2αX
∗
α ⊗ L(Xα). (A.21)

Using the relation X
∗
α ⊗ GL(Xα) � X

∗
αG ⊗ L(Xα) � k2αX

∗
α ⊗ L(Xα), we find

that

yα ≡ L(kα) � X
∗
α ⊗ L(G)Xα

2kαX
∗
α ⊗ Xα

. (A.22)

This is the linearization of the separation constants. Next, we substitute this result
in Eq. (A.20a) to obtain the following linear algebra problem for each eigensolution
linearization:

HαL(Xα) � Cα; Hα � G − k2αE; Cα � 2kα yαXα − L(G)Xα. (A.23)

For real eigensolutions, this system has rank 4Nd , and for complex solutions, the
rank is 8Nd .

Implementation of this system of equations “as is” is not possible due to the
degeneracy of the eigenproblem, andwe need additional constraints to find the unique
solution for L(Xα). The treatment for real and complex solutions is different.

For the real-valued eigensolutions, the unit-modulus eigenvector normalization is
Xα ⊗ Xα � 1 in dot-product notation. Linearizing, this yields one equation:

L(Xα) ⊗ Xα + Xα ⊗ L(Xα) � 0. (A.24)

The solution procedure uses 4Nd − 1 equations from Eq. (A.23), along with Eq.
(A.24) to form a slightly modified linear system of rank 4Nd . This system is then
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solved by standard means using the DGETRF and DGETRS LU-decomposition
routines from the LAPACK suite.

For complex-valued eigensolutions, Eq. (A.23) is a complex-variable system for both
the real and imaginary parts of the linearized eigenvectors. There are 8Nd equations
in all, but now we require two constraint conditions to remove the eigenproblem
arbitrariness. The first is Eq. (24). The second condition is imposed by the following
normalization from the LAPACK DGEEV routine for solution of complex-valued
eigenproblems: for that element of a (complex-valued) eigenvector which has the
largest real value, the corresponding imaginary part is always set to zero. Thus,
for eigenvector Xα with components X j ∈ Xα, j � 1, 2, . . . 4Nd , if Xq satisfies
condition Re[Xq ] � max j�1,2,...4Nd

{
Re[X j ]

}
, then Im[Xq ] � 0, and consequently

L
(
Im[Xq ]

) � 0. This is the second condition. The solution procedure is then: (1) in
Eq. (A.24) to strike out the qth row and column in matrix Hα for which Im[Xq ] is
zero, and the qth column in vectorCα; and (2) in the resulting system of rank 8Nd−1,
replace one of the rows with the normalization constraint Eq. (A.24). L(Xα) is then
the solution of the resulting linear system.

Scalar and 3-vector case. Here the (real-valued) eigensolutions are obtained using
eigensolver ASYMTX—this has no adjoint solution, so there is no determination
of L(kα) as in Eq. (A.22). Instead, we solve for variables {L(kα),L(Xα)} using
HαL(Xα) � 2kαL(kα)Xα − L(G)Xα from above, plus the normalization condition
to form a joint system of rank 3Nd + 1 (vector) or rank Nd + 1 (scalar).

Having derived the linearizations {L(kα),L(Xα)}, we complete this section by
differentiating the auxiliary result in Eq. (A.16) to establish L

(
W

±
α

)
:

L
(
W

±
α

) � 1

2
M

−1

[
∓L(kα)

k2α
F
+ ± 1

kα

L
(
F
+
)]
Xα +

1

2
M

−1

[
E ± 1

kα

F
+

]
L(Xα).

(A.25)

Finally, we have linearizations of the transmittance derivatives in Eq. (A.17a):

L(exp[−kαx]) � −[xL(kα) + kαL(x)] exp[−kαx]. (A.26)

Since the partial layer optical thickness x is proportional to the total layer optical
depth � in an optically uniform layer, we have L(x) � x/�L(�) � x/�V in terms
of the basic linearized optical property input V ≡ ξ∂�/∂ξ .

A.3 Particular Integral Solar Solutions in VLIDORT

In VLIDORT, particular integrals for both solar and thermal sources in the vector
RTE are established using traditional substitution methods, rather than the Green’s
function approach which is used in LIDORT. This is mainly for bookkeeping reasons
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associated with the use of complex and real variables. In this section we discuss
solutions for the solar sources using this method.

A.3.1 Solar-Beam Sources—Substitution Method

For the solar source term with direction {−μ0, φ0}, we have from Eq. (A.11) above,
the following source terms in the discrete ordinate directions:

Q�
nm(x,±μi ) � ωn

2

M∑
l�m

Pm
l (±μi )BnlPm

l (−μ0)F�Tnexp[−λnx]. (A.27)

Here, we have kept the layer index explicit, and x denotes the vertical optical
thickness asmeasured from the top of layer n; we used the pseudo-spherical treatment
of solar beam attenuation (Sect. 3.4). The exponential form for the beam attenuation
allows us to write the particular solution in the form:

I�
nm(x,±μi ) � Zn(±μi )Tnexp[−λnx], (A.28)

and by analogy with the homogeneous case, we may define the following vectors of
rank 4Nd :

Z
±
n � [

ZT
n (±μ1), ZT

n (±μ2), . . . , ZT
n

(±μNd

)]T
. (A.29)

We decouple the equations using sum and difference vectors Rn � Z
+
n + Z

−
n and

Sn � Z
+
n − Z

−
n , and the order is reduced from 8Nd to 4Nd . We obtain the following

linear-algebra problem of rank 4Nd :

HnRn � Bn; Hn � λ2
nE − Gn; Bn �

[
F

−
n Q

+
n +

1

λn
Q

−
n

]
M

−1; (A.30)

Q
±
n � ωn

∑M

l�m
P�(l,m)BnlA±

P
T
�(l,m)M−1; (A.31a)

P�(l,m) � Diag
[
Pm
l (−μ0), Pm

l (−μ0), . . . , Pm
l (−μ0)

]T
. (A.31b)

Matrices F−
n and Gn were defined in Eqs. (A.15).

This system is solved using the LU-decomposition modules DGETRF and
DGETRS from LAPACK; the formal solution is X�

n � H
−1
n Bn. The particular inte-

gral is completed with the auxiliary equations:

Z
±
n � 1

2
M

−1

[
E ± 1

λn
F
+
n

]
Rn. (A.32)

In the scalar LIDORT model, this system has rank Nd . In the vector model, the
particular solution consists only of real variables.
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A.3.2 Linearized Solar-Beam Sources—Substitution Method

For this linearization, the most important consideration is the presence of cross-
derivatives: in a fully illuminated atmosphere, the particular solution in layer n is
differentiable with respect to atmospheric variables ξp in all layers p ≤ n. For the
solar beam attenuation, transmittance Tn depends on variables ξp in layers p < n,
while average secant λn depends on variables ξp in layers p ≤ n. Linearization
of the average-secant parameterization is in Sect. 3.4. It follows that the solution
vectors Z±

n will also depend on ξp for p ≤ n, so their linearizations will contain
cross-derivatives. Finally, we note that the eigenmatrixGn is constructed fromoptical
properties only defined in layer n, so that Lp(Gn) � 0,∀p �� n.

Differentiation of Eqs. (A.30) and A.31a) yields a related linear problem:

HnLp(Rn) � B
′
np � Lp(Bn) − Lp(Hn)Rn; (A.33a)

Lp(Hn) � −δnpLp(Gn) + 2λnLp(λn)E; (A.33b)

Lp(Bn) � δnp

[
Ln
(
F

−
n

)
Q

+
n + F

−
n Ln

(
Q

+
n

)
+

1

λn
Ln
(
Q

−
n

)]
M

−1 − Lp(λn)

λ2
n

Q
−
n M

−1;

(A.33c)

Ln
(
Q

±
n

) �
∑M

l�m

[
UnP�(l,m)Bnl + ωnP�(l,m)Znl

]
A±

P
T
�(l,m)M−1. (A.33d)

In Eq. (A.33c), the quantity Ln
(
F

−
n

)
comes from Eq. (A.19b). This linear system

has the same matrix Hn , but with a different source vector B′
np. The solution is then

found by back-substitution, given that the inverse ofHn has already been established
when solving forRn . Thus,Lp(Rn) � H

−1
n B

′
n . Linearization of the particular integral

is then completed through differentiation of the auxiliary equations (A.32):

Lp
(
Z

±
n

) � 1

2
M

−1

[
E ± 1

λn
F
+
n

]
Lp(Rn) ± 1

2λ2
n

M
−1
[
λnδnpLn

(
F
+
n

)− Lp(λn)F
+
n

]
Rn.

(A.34)

Appendix B. BRDF Kernel Functions

B.1 Ocean Glitter Kernels

B.1.1 Cox-Munk Glint Reflectance

For ocean glitter, we use the well-known geometric-optics regime for a single rough-
surface redistribution of incident light, in which the reflection function is governed
by Fresnel reflectance and takes the form (Jin et al. 2006):
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ρCM
(
μ,μ′, ϕ − ϕ′,m, σ 2

) � F(m, θr )

μμ′|γr |4
P
(
γr , σ

2
)
D
(
μ,μ′, σ 2

)
(B.1)

Here, σ 2 is the slope-squared variance (also known as the mean-slope-square)
of the Gaussian probability function P

(
γr , σ

2
)
which has argument γr (the polar

directionof the reflectedbeam), D
(
μ,μ′, σ 2

)
is a shadow function correction (Sancer

1969).
F(m, θr ) is the scalar Fresnel reflection for incident angle θr � 1

2θSC AT and
relative refractive index m. The scattering angle θSC AT is determined in the usual
manner from the incident and reflected directional cosines μ′ and μ, and the relative
azimuth ϕ − ϕ′.

The two non-linear parameters characterizing this kernel are
{
m, σ 2

}
. The prob-

ability and shadow functions are given by:

P
(
α, σ 2

) � 1

πσ 2
exp

[
− α2

σ 2
(
1 − α2

)
]
. D

(
α, β, σ 2

) � 1

1 + �
(
α, σ 2

)
+ �

(
β, σ 2

) ;

�
(
α, σ 2

) � 1

2

⎧⎨
⎩
√(

1 − α2
)

π

σ

α
exp

[
− α2

σ 2
(
1 − α2

)
]

− er f c

⎡
⎣− α

σ

√(
1 − α2

)
⎤
⎦
⎫⎬
⎭.

(B.2)

The variance is commonly related to the wind speed W in (m/s) through the
empirical relation σ 2 � 0.003 + 0.00512W (Cox and Munk 1954a). A typical value
for m is 1.33.

For the linearization, the key parameter is the wind-speed (or equivalently, the
mean slope-square) The probability function is easily differentiated with respect to
σ 2. Indeed, we have:

∂P
(
α, σ 2

)
∂σ 2

� P
(
α, σ 2

)
σ 4

[
α2(

1 − α2
) − σ 2

]
. (B.3)

Again, the shadow function can be differentiated analytically with respect to σ 2

in a straightforward manner, once we recall that the derivative of the error function is
Gaussian.We thus have linearized BRDF quantities prepared for (V)LIDORT, which
will then be able to generate analytic weighting functions with respect to the wind
speed.

Linearization of the kernel with respect to refractive index m will require the
partial derivative ∂F(m, θr )/∂m, which is easy to determine from the usual Fresnel
formula; this Jacobian is less useful.

We note also that VLIDORT has a vector kernel function for sea-surface glitter
reflectance, based on the specification in Mishchenko and Travis (1998).

This formulation is for a single Fresnel reflectance by wave facets. In reality,
glitter is the result of many reflectances. It is possible to incorporate a correction for
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multiple reflectances for this glitter contribution, both for the direct-bounce term and
the Fourier components. Given that the glitter maximum is typically dominated by
direct reflectance of the solar beam, we confine discussion to multiple-reflectance of
this term. We consider only one extra order of reflectance:

R(�,�0) ∼� R0(�,�0) + R1(�,�0); R1(�,�0) �
2π∫

0

1∫

0

R0
(
�,�′)R0

(
�′, �0

)
dμ′dϕ′.

(B.4)

R0
(
�,�′) is the zeroth-order reflectance from incident direction�′ � {

μ′, ϕ′} to
reflected direction� � {μ, ϕ}. The azimuthal integration is done by doubleGaussian
quadrature over the intervals [−π, 0] and [0, π ]; the polar stream integration is also
done by quadrature. It is obviously possible to calculate higher orders of reflectance
for all BRDF functions, but this rapidly becomes computationally prohibitive. We
have found that the neglect of multiple glitter reflectances can lead to errors of 1–3%
in the upwelling intensity at the top of the atmosphere, the higher figures being for
larger solar zenith angles. Finally, we note that the higher-order reflectances are in
turn differentiable with respect to the slope-squared parameter, so that Jacobians for
the wind speed can still be determined.

B.1.2 Alternative Cox-Munk Glint Reflectance

The above ocean-glint reflectance option in LIDORT is based on an older imple-
mentation of the well-known Cox-Munk distribution of wave facets—this does not
include any treatment of whitecaps (foam), and there is no allowance for the wind
direction. Further, the CM implementation is based on a fixed real-valued refractive
index for water.

We have now added an alternative Cox-Munk implementation which addresses
these issues. This new-CM option is based on the glint treatment in the 6S code
(Vermote et al. 1997; Kotchenova et al. 2006), and includes an empirical whitecap
contribution. The latter model also includes a more recent treatment of water-leaving
radiance (Morel and Gentili 2009), and the LIDORT SLEAVE supplement has been
updated according to the 6S treatment. These new 6S-based options in the LIDORT
BRDF and SLEAVE supplements are designed to operate in tandem. Indeed, the
total surface radiance in the 6S model is given by

I (μ1, μ0, ϕ1 − ϕ0) � (1 − Rwc)S(μ1, μ0) + Rwc + (1 − RL )ρNCM (μ1, μ0, ϕ1 − ϕ0), (B.5)

where the water-leaving term S(μ1, μ0) does depend on the outgoing and incoming
directions but is azimuth-independent, ρNCM is the Cox-Munk glint reflectance, and
Rwc and RL are the empirically-derived whitecap contributions (final and Lamber-
tian).

For LIDORT to possess this functionality for the ocean surface, the BRDF sup-
plement must provide the second and third terms on the right-hand-side of (B.5),
while the SLEAVE supplement supplies the first term. Note that both supplements
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require the same whitecap formulation. The derivation of the water-leaving term is
done in the next section.

The Cox-Munk calculation for ρNCM depends on the wind speed, wind-direction
and refractive index. The latter is a complex variable that depends on the salinity
of the ocean, and we use the 6S formulation. The anisotropic treatment assumes an
(azimuthal) wind direction relative to the solar incident beam, and this follows the
formulae developed by Cox and Munk in the 1950s.

For facet anisotropy, the wind-direction is dependent on the solar position, and
it follows that any BRDF quantity will pick up additional dependence on the solar
angle. It is then only possible to use this “New-CM” option with a single solar zenith
angle (and hence a single wind-direction azimuth) - multiple solar beams are ruled
out. See also the remark in Sect. 4.2.3 regarding use of the black-sky albedo. There
is exception handling for this eventuality.

In addition, we have linearized this “New-CM” glint reflectance with respect to
the wind speed. Finally, we note that this glint reflectance is scalar only, so that
the above considerations apply only to the (1,1) element of the reflectance matrix
in the vector BRDF supplement for VLIDORT. Polarization of this contribution is
currently undergoing investigation.

B.2 Land-Surface BRDF Kernels

B.2.1 MODIS BRDF System

The fiveMODIS-type kernels (numbers 2–6 in Table 3) (Wanner et al. 1995) must be
used in a linear combination with a Lambertian kernel. The kernels divide naturally
into two groups: the volume scattering terms with no non-linear parameters (Ross-
thin, Ross-thick) and the geometric-optics terms with 2 non-linear parameters (Li-
sparse, Li-dense) or no non-linear parameters (Roujean). See Wanner et al. (1995)
and Spurr (2004) for details of the kernel formulae.

In fact, it is standard practice in MODIS BRDF retrievals to use a combination
of Lambertian, Ross-thick and Li-Sparse kernels, and this 3-kernel combination is
common:

ρtotal
(
�,�′) � fiso + fvolρRossT hick

(
�,�′) + fgeoρLi Sparse

(
�,�′) (B.6)

An alternative form of the Ross kernels has also been introduced—this has a better
parameterization of the hot-spot effect. The Rahman and Hapke kernels (#7 or #8)
were discussed in [R1].
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B.2.2 BPDF Kernels

The 3 BPDF kernels (Maignan et al. 2009) (numbers 10–12 in Table 3) were devel-
oped as semi-empirical models for polarized land-surface bidirectional reflectances.
All three kernels are based on Fresnel reflectance. The polarization effects enter
through the Fresnel reflectance term; for LIDORT, we require only the scalar Fresnel
reflectance.

For the BPDF “Soil” type, the scalar reflectance is:

ρSO I L
(
μ,μ′, ϕ − ϕ′,m

) � F(m, θr )

4μμ′ (1 − sin θr ). (B.7)

As before, F(m, θr ) is the Fresnel reflection for incident angle θr � 1
2θSC AT and

relative refractive index m (which is the sole kernel parameter). Linearization of the
kernel with respect to refractive index m requires the partial derivative of F(m, θr ).

For the BDPF “Vegetation” type, there is dependence on the leaf orientation prob-
ability σ(α) and the leaf facet projections, through use of a plagiophile distribution:

ρV EGN
(
μ,μ′, ϕ − ϕ′,m

) � F(m, θr )

4μμ′
ζ (α)

H
(1 − sin θr );

cosα �
(
μ + μ′)
2 cos θr

; ζ (α) � 16

π
cos2 α sin α;

H �
∑3

k�0 akμ
k

μ
+

∑3
k�0 akμ

′k

μ′ , (B.8)

where the leaf projection H depends on the set of “plagiophile coefficients” {ak}.
Again, the refractive index is the only surviving kernel parameter to be considered
for linearization.

For the BPDF “NDVI” kernel, we have:

ρNDV I
(
μ,μ′, ϕ − ϕ′,m, N ,C

) � CF(m, θr )

4(μ + μ′)
exp[− tan θr ] exp[−N ], (B.9)

where there are exponential attenuation terms, one of which depends on theNDVI N ;
in this formula, the scaling factor is C (nominally, this is set to 1.0). Linearizations
with respect to the parameters N and C are easy to establish. The NDVI varies from
−1 to 1 and is defined as the ratio of the difference to the sum of two radiance
measurements, one in the visible and one in the infrared.

Appendix C. Taylor Series Expansions

We have already noted that certain “multipliers” arising from optical-thickness inte-
grations which are needed to find various solutions to components of the RT field
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may possess instability when certain limiting conditions are in place. Taylor series
expansions are then required to remove such instabilities. Although some simple
expansions were used in earlier versions of the LIDORT and VLIDORT codes, the
whole issue has been completely revised in recent versions of the code (since [R1]
was published), and we go into some detail here. Remarks on the VLIDORT imple-
mentation are made where appropriate.

C.1 Multipliers for the Intensity Field

We first look at the homogeneous-solution and primary-scatter downwelling multi-
pliers, and the Green’s function (downwelling) multiplier for the diffuse source term
at discrete-ordinate polar cosines. These are respectively:

H↓
j �

(
e−�k j − e−�μ−1

)

μ−1 − k j
; F↓ �

(
e−�μ−1 − e−�λ

)

λ − μ−1
;G↓

j �
(
e−�k j − e−�λ

)
λ − k j

.

(C.1)

As before, λ is the layer average secant corresponding to spherical-shell atten-
uation of the solar beam, k j is the separation constant corresponding to discrete
ordinate stream j arising from solution of the homogeneous RTE eigenproblem, μ
is the cosine of the line-of-sight viewing polar angle, and � is the layer total optical
depth. [Layer index n is suppressed for clarity].

For polarized RT with VLIDORT, some of the separation constants k j may be
complex variables; but λ and μ are always real-valued. Taylor series expansions
involving k j are only applicable for real values.

We consider the limiting cases
∣∣λ − k j

∣∣ → 0,
∣∣μ−1 − k j

∣∣ → 0 or
∣∣λ − μ−1

∣∣ → 0.
Writing ε for any of these quantities, if the order of the Taylor-series expansion is M ,
then we neglect terms O

(
εM+1

)
. Considering first the multiplier G↓

j from Eq. (C.1),
then if ε � λ − k j , we have e−�k j � Weε� ≈ WzM+1(�), where we have written
W � e−�λ, andwe have used the notation zM+1(x) � ∑M+1

m�0 zm(x)εm to approximate
the exponential eε�, so that the coefficients are z0(x) � 1, zm(x) � xm/m! for
0 < m ≤ M + 1. Applying the expansion, we find:

G↓
j ≈ W (zM+1(�) − 1)

ε
� �Wz∗

M(�). (C.2)

Here, the new coefficients are z∗
0 � 1, z∗

m � �m/(m + 1)! for 0 < m ≤ M . Note
that we need to expand first to order M + 1 to ensure that the final expression is
defined to order M .
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Next we look at those two multipliers for the Green’s function post-processed
field which may be susceptible to instability through appearance of the term λ − k j

in the denominator:

M↑↑
j � H↑

j − F↑

λ − k j
; M↓↓

j � H↓
j − F↓

λ − k j
, (C.3)

where H↓
j and F↓ have been defined in Eq. (1), and

H↑
j �

(
1 − e−�k j e−�μ−1

)

μ−1 + k j
; F↑ �

(
1 − e−�μ−1

e−�λ
)

λ + μ−1
. (C.4)

Looking at M↑↑
j in Eq. (C.3), we set k j � λ − ε, and find:

M↑↑
j ≈ Y

ε
[(1 − WUzM+1(�))aM+1(Y ) − (1 − WU )], (C.5)

where U � e−�μ−1
,Y � (

λ + μ−1
)−1

, and series aM+1(x) has coefficients a0(x) �
1, am(x) � xm for 0 < m ≤ M + 1. Since a0 � z0 � 1, it is apparent that the
(1 − WU ) contributions will fall out, and the result can then be written:

M↑↑
j ≈ Y [YaM(Y ) − WUcM(�,Y )]. (C.6)

Here cM(�,Y ) has coefficients c0 � 1, and cm(�,Y ) � ∑m
p�0 z p(�)am−p(Y )

for 0 < m ≤ M . We have found that use of these series coefficients is convenient for
computation, allowing us to generate expressions to any order of accuracy without
complicated algebraic expressions.

The other multiplier M↓↓
j in Eq. (C.3) may be treated similarly. Note that mul-

tipliers in Eq. (C.4) are numerically stable entities, along with the other Green’s
function multipliers G↑

j , M
↓↑
j and M↑↓

j , the latter three quantities being defined with
denominator λ + k j .

The above multipliers are required for output of the upwelling and downwelling
radiance fields at layer boundaries. LIDORT has the ability to generate output at any
level away from layer boundaries (the “partial-layer” option). In this case, source
function integration to an optical thickness τ < � in layer n will result in “partial-
layer” multipliers similar to those already defined above. For example, consider the
following three functions:

H↓
j (τ ) �

(
e−τk j − e−τμ−1

)

μ−1 − k j
; F↓(τ ) �

(
e−τμ−1 − e−τλ

)

λ − μ−1
;G↓

j (τ ) �
(
e−τk j − e−τλ

)
λ − k j

;

(C.7)
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These are the downwelling partial-layer multipliers equivalent to those in Eq.
(C.1). Taylor series expansions for these and the corresponding Green’s function
multipliers have been generated in a similar fashion.

C.2 Linearized Multipliers for the Jacobian Fields

The entire LIDORT discrete ordinate solution is analytically differentiable (Spurr
2002) with respect to any atmospheric quantity, and this includes the multipliers
discussed above. It is therefore necessary to develop Taylor series expansions for
those linearized multipliers which are susceptible to numerical instability.

We start with partial derivatives k̇ j ≡ ∂k j/∂ξ, λ̇ ≡ ∂λ/∂ξ and �̇ ≡ ∂�/∂ξ with
respect to some atmospheric quantity ξ defined in layer n (index is not explicit here).
Since the layer optical depth� is an intrinsic optical property, its derivative �̇ is also
an intrinsic input. The viewing angle cosineμ has no derivative. Note that k̇ j � 0 and
�̇ � 0 for a profile atmospheric quantity ξm defined in layer m �� n (no cross-layer
derivatives); on the other hand, the average secant λwill have cross-layer derivatives
for layers m < n, thanks to solar beam attenuation through the atmosphere. For the
third multiplier in Eq. (C.1), the derivative is

∂G↓
j

∂ξ
� −e−�k j

(
k̇ j� + k j�̇

)
+ e−�λ

(
λ̇� + λ�̇

)− G↓
j

(
λ̇ − k̇ j

)
λ − k j

. (C.8)

Expanding Eq. (C.8) as a Taylor series with k j � λ − ε, and using the series-
coefficient notation developed in Sect. C.1, we find:

∂G↓
j

∂ξ
≈ −(k̇ j� + λ�̇ + ε�̇

)
WzM+1 +

(
λ̇� + λ�̇

)
W − (

λ̇ − k̇ j
)
�Wz∗

M+1

ε
. (C.9)

Again, W � e−�λ, and the series zM+1 and z∗
M+1 have argument � and were

defined in Sect. C.1. Since z0 � z∗
0 � 1, the lowest-order terms in the numerator of

Eq. (C.9) will fall out, and we are left with:

∂G↓
j

∂ξ
≈ −W

[
�̇zM +

(
k̇ j� + λ�̇

)
�z∗

M +
(
λ̇ − k̇ j

)
�2z†M

]
, (C.10)

where the third series z†M has coefficients z†0 � 1/2 and z†m � �m/(m + 2)! for
0 < m ≤ M . Note that the presence of the series z†M to order M implies that the
original series must be computed to order M + 2; that is, we require zM+2.

Linearization of the Green’s function multipliers in Eq. (C.3) follows similar
considerations. We give one example; explicit differentiation of M↑↑

j yields

∂M↑↑
j

∂ξ
� Ḣ↑

j − Ḟ↑ − (
λ̇ − k̇ j

)
M↑↑

j

λ − k j
; (C.11)
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Ḣ↑
j � Ue−�k j

[
�̇
(
μ−1 + k j

)
+ k̇ j�

]− k̇ j H
↑
j

μ−1 + k j
; Ḟ↑ � UW

[
�̇
(
μ−1 + λ

)
+ λ̇�

]− λ̇F↑

λ + μ−1 .

(C.12)

Expanding in the usual manner and employing results established already, we find

Ḣ↑
j ≈ [

UW
(
k̇ j� + �̇Y−1 − ε�̇

)
zN − k̇ j Y (1 − WUzN )aN

]
YaN ; (C.13)

Ḟ↑ � [
UW

(
λ̇� + �̇Y−1

)− λ̇Y (1 − WU )
]
Y ; (C.14)

where now N � M + 2 terms in the series have been retained in the expansions. Eq.
(C.11) implies that we also require the original multiplier M↑↑

j expanded to order
M + 1, that is,

M↑↑
j ≈ Y [YaM+1(Y ) − WUcM+1(�,Y )] (C.15)

should be used in Eq. (C.11). Putting together the above three equations, and can-
celing out the lowest-order terms in the expansions, we find after some algebra that

∂M↑↑
j

∂ξ
≈ Y

[
WUS(1)

M − S(2)
M − S(3)

M

]
, (C.16)

where the three series S(q)

M � ∑M
m�0 s

(q)
m εm have coefficients

s(1)
m � (

�̇Y−1 + k̇ j�
)
cm+1(�,Y ) − �̇cm(�,Y ); (C.17a)

s(2)
m � Y k̇ j [bm+1(Y ) +WUdm+1(�,Y )]; (C.17b)

s(3)
m � (

λ̇ − k̇ j
)
[bm+2(Y ) +WUcm+2(�,Y )]. (C.17c)

Subsidiary coefficients for 0 < m ≤ M are given by am � Ym (series expansion
of (1 − εY )−1), and bm � (m + 1)Ym (series expansion of (1 − εY )−2). We also
have the product coefficients cm(�,Y ) � ∑m

p�0 z p(�)am−p(Y ) and dm(�,Y ) �∑m
p�0 z p(�)bm−p(Y ) obtained from the first exponential series z(�) which approx-

imates e�ε .
Derivatives of the other multipliers subject to possible instability may be obtained

similarly, and there are also derivatives of the partial-layer multipliers to be consid-
ered.

Software for all these instability cases has been written for LIDORT and VLI-
DORT - in both models, the order M controls the accuracy of the Taylor series
expansions. The other parameter controlling the use of these limiting-case calcula-
tions is the “small-number” value ε. LIDORT and VLIDORT use double-precision
floating-point arithmetic. With this in mind, we have chosen ε � 10−3 as the default,
after testing linearized multiplier accuracies obtained by running the model with and
without the instability corrections. In practice M � 3 provides more than sufficient
accuracy for this choice of ε.
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Radiative Transfer of Light in Strongly
Scattering Media

Boaz Ilan and Arnold D. Kim

1 Introduction

Radiative transfer provides a complete description of absorption, scattering, and
radiation of light in a multiple scattering medium (Chandrasekhar 1960; Ishimaru
1999; Van de Hulst 2012). Consequently, radiative transfer is important for several
applications such as neutron transport (Bell and Glasstone 1970; Case and Zweifel
1967; Lewis and Miller 1984), astrophysics (Peraiah 2002; Sobolev 2017), geo-
physics (Tsang et al. 1985; Mobley 1994; Kirk 1994; Thomas and Stamnes 2002;
Kokhanovsky 2006b;Marshak andDavis 2005;Mishchenko et al. 2006;Mishchenko
2014), heat transfer (Modest 2013), biomedical optics (Welch et al. 2011; Wang and
Wu 2012), and computer graphics (Jensen 2001). Applying radiative transfer theory
is challenging for practical problems, because exact solutions of the radiative trans-
fer equation (RTE) are known only for special cases (Case and Zweifel 1967). Even
computational methods for radiative transfer require specializedmethods (Lewis and
Miller 1984; Gao and Zhao 2009) that can be challenging to implement and require
substantial computational resources. For these reasons, accurate approximations of
solutions of the RTE, and of the RTE itself, are valuable for gaining physical insight.

Boundary layer theory provides a systematic method to solve singularly per-
turbed boundary value problems (Bender and Orszag 2013; Hinch 1991; Miller
2006). Larsen and Keller (1974) introduced boundary layer theory for general initial-
boundary value problems for the RTE. In RTE boundary layer theory, one seeks the
asymptotic solution of the RTE in the regime of a strongly-scattering medium. How-
ever, it is a rather different approach from that taken in asymptotic radiative transfer
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theory (ARTT), which has been reviewed by Kokhanovsky (2006a). In the asymp-
totic limit of strong multiple scattering, the solution of a boundary value problem
for the RTE is written as a sum of an interior solution and boundary layer solutions.
The interior solution is governed by the diffusion approximation. The boundary layer
solutions correct for errors made by the diffusion approximation near the boundary.
Through a systematic perturbation theory, one can determine all of the subproblems
required to compute the interior and boundary layer solutions. Moreover, boundary
layer theory provides a procedure for computing boundary conditions for the diffu-
sion approximation. The result is a uniformly valid asymptotic approximation to the
solution of the RTE that is accurate over the entire domain.

The challenge in applying boundary layer theory to problems of practical interest
lies in explicitly computing the boundary layer solutions fromwhich boundary condi-
tions for the diffusion approximation are computed. Habetler andMatkowsky (1975)
have applied boundary layer theory to initial-boundary value problemswith isotropic
scattering in one spatial dimension. For that problem, one can compute the boundary
layer solutions explicitly using the singular eigenfunctions described by Case and
Zweifel (1967). Malvagi and Pomraning (1991), and Pomraning and Ganapol (1995)
have applied boundary layer theory to more general RTE problems by using an
approximate variational method to compute the boundary layer solutions. Recently,
the authors and their collaborators have used numerical methods in conjunction with
boundary layer theory to solve various RTE problems (Kim 2011; Kim andMoscoso
2011; Rohde and Kim 2012, 2014, 2017; Lehtikangas et al. 2012; Şahin-Biryol and
Ilan 2014; Dark and Kim 2017). Using numerical methods to compute boundary
layer solutions has opened up the use of boundary layer theory to RTE problems of
practical interest.

Another approximation, called two-flux theory, is a particularly simple, and intu-
itive approximation of the RTE in a plane-parallel medium. Its origin traces back
to Schuster (1905) in 1905 and Schwarzschild (1906) in 1906. However, it gained
popularity due to the works of (Kubelka and Munk 1931; Kubelka 1948). As a
result, two-flux theory is often called Kubelka–Munk theory. This theory has found
extensive use for various applications (e.g., see the review by Philips-Invernizzi
et al. (2001), largely due to its simplicity.

Two-flux theory models light fluxes traveling in forward and backward directions.
Absorption and scattering in the medium are quantified using absorption and scat-
tering coefficients, typically denoted by K , and S, respectively. One major challenge
in two-flux theory lies in connecting these coefficients to fundamental quantities in
radiative transfer. Many studies (Brinkworth 1972; Gate 1974; Nobbs 1985; Star
et al. 1988; Vargas and Niklasson 1997; Molenaar et al. 1999; Yang and Kruse 2004;
Yang et al. 2004; Yang and Miklavcic 2005; Edström 2007; Thennadil 2008; Neu-
man and Edström 2010; Myrick et al. 2011; Kokhanovsky 2007) have addressed the
theoretical basis for two-flux theory and its applicability to interpret measured data.
Sandoval and Kim (2014) derive two-flux theory using a systematic perturbation
analysis of the double-spherical harmonics method of order one in the limit of strong
multiple scattering. This perturbation method is similar to what is done in boundary
layer theory.
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In this paper, we review boundary layer theory and two-flux theory and draw
connections between them. In particular, we derive two-flux theory using the interior
solution from boundary layer theory governed by the diffusion approximation. This
derivation is more elementary than the one done by Sandoval and Kim (2014). Con-
sequently, it provides the framework needed to understand that two-flux theory is
simply a reformulation of the diffusion approximation. We use the double-spherical
harmonics method (Case and Zweifel 1967; Lewis and Miller 1984; Aronson 1986)
to compute boundary layer solutions which, in turn, provide an efficient and effec-
tive method for computing boundary conditions for the diffusion approximation.
We use the boundary conditions for the diffusion approximation to derive boundary
conditions for two-flux theory. We call this model the asymptotic two-flux theory,
because it is asymptotically accurate for strongly-scattering media. In addition, by
considering the double-spherical harmonics method of order one, we draw its equiv-
alence to four-flux theory and its connection to boundary layer theory. Through
these connections, we develop valuable insights into radiative transfer problems in
strongly-scattering media.

By comparing results by boundary layer theory and two-flux theory with direct
numerical solutions of the full RTE, we show their respective scope of applicability.
Boundary layer theory gives a uniformly-valid asymptotic approximation meaning
that it is accurate throughout the entire domain with an a-priori error bound. In
contrast, two-flux theory is not a uniformly valid asymptotic approximation– its
accuracy depends on the boundary conditions prescribed. For standard boundary
conditions based on the in-going flux at the boundary, two-flux theory is accurate
near the boundaries, but inaccurate in the interior of the medium. When boundary
conditions for two-flux theory are prescribed in a manner consistent with boundary
layer theory, we find that it is accurate in the interior of the medium, but not near
the boundaries. Both boundary layer and two-flux theories are valid for strongly
scattering media where scattering is not too sharply forward peaked.

The remainder of this paper is as follows. In Sect. 2 we discuss the RTE in a plane-
parallel slab, and describe all of the physical quantities in that problem. In Sect. 3,
we give explicit results for the spectrum of the scattering operator in the RTE. These
results are used throughout the analysis that follows. We describe boundary layer
theory for the RTE in Sect. 4 including all of the details in deriving the interior
and boundary layer solutions. In Sect. 5 we describe the double-spherical harmonics
method used to compute the boundary layer solutions which, in turn, provides a
method to compute boundary conditions for the diffusion approximation governing
the interior solution. We summarize the results from boundary layer theory using
the double-spherical harmonics method in a procedure to compute the asymptotic
approximation in Sect. 6. In Sect. 7 we give a new derivation of two-flux theory
based on the interior solution from boundary layer theory. In doing so, we are able to
identify its limitations and prescribe boundary conditions consistent with boundary
layer theory leading to the asymptotic two-flux theory.We showcomputational results
comparing all of these approximations in Sect. 8. Additionally, Sect. 8 discusses the
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relationship between four-flux theory and the double-spherical harmonics method
of order one. We discuss the extension of two-flux theory for the RTE in three
dimensions in Sect. 9. Section10 gives our conclusions.

2 Radiative Transfer in a Plane-Parallel Slab

Consider a uniformly absorbing and scattering medium contained in a plane-parallel
slab. When a continuous source of light penetrates into this medium, be it from
incident radiation and/or emanating from the surface, the light’s radiance (or specific
intensity), I (x ,Ω), can be described by the radiative transfer equation (RTE) (Chan-
drasekhar 1960),

Ω · ∇ I + κa I + κs L I = 0. (1)

Here, the spatial coordinates parallel to the slab surface are (x, y) ∈ R
2, and the

coordinate normal to the slab surface is z ∈ (z1, z2). The direction cosines Ω1, Ω2,
and Ω3 are the components of Ω , which is a vector on the unit sphere S2. The
absorption and scattering coefficients are denoted by κa and κs , respectively. The
scattering operator L is defined by

L I = I −
∫

S2
p(Ω,Ω ′)I (Ω ′) dΩ, (2)

where p(·) is called the scattering phase function. In a bounded domain, boundary
conditions prescribe the radiance for all directions pointing into the domain (Case
and Zweifel 1967; Ishimaru 1999). In general, boundary conditions take the form

I |z=z1 = b1 on {x ∈ R
2,Ω · ẑ > 0} , (3a)

I |z=z2 = b2 on {x ∈ R
2,Ω · ẑ < 0} , (3b)

where b1(x ,Ω) and b2(x ,Ω) prescribe the radiance entering the medium at z = z1
and z = z2, respectively, and ẑ denotes the unit vector pointing along the z-axis
in the positive sense. We can consider boundary conditions that take into account
reflections due to a refractive index mismatch. All of the results that follow can
take these reflecting boundary conditions into account. However, they complicate
the analysis without providing any additional insight, so we do not consider them
here.

We assume axi-symmetry so that b1 = b(μ) where μ = cos θ and θ is the incli-
nation angle made with respect to the z-axis. Moreover, we assume the radiance
enters the medium on z = z1 uniformly in (x, y). That light is the only source in
the problem, so that b2 = 0 on the surface z = z2. Furthermore, we assume that the
scattering is rotationally invariant and depends only on the angle made between the
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incident and scattering directions, so that p = p(Ω · Ω ′). In this case, the solution
of this boundary-value problem is uniform in (x, y) and azimuthally symmetric, i.e.,
I = I (z, μ). For this case, I is governed by the one-dimensional RTE

μ
dI

dz
+ κa I + κs L̃ I = 0 , (4)

where the azimuthally-integrated scattering operator is (henceforth, the tilde on L̃ is
dropped)

L I = I − 1

2

∫ 1

−1
h(μ,μ′)I (z, μ′) dμ′ . (5)

The redistribution function h in (4) is defined in terms of the scattering phase function
as

h(μ,μ′) = 1

2π

∫ 2π

0
p

(
μμ′ +

√
1 − μ2

√
1 − μ′2 cos(ϕ − ϕ′)

)
d(ϕ − ϕ′) (6)

and normalized according to

1

2

∫ 1

−1
h(μ,μ′)dμ′ = 1 . (7)

Equation (4) is to be solved in z1 < z < z2 subject to the boundary conditions

I |z=z1 = b(μ) on 0 < μ ≤ 1, (8a)

I |z=z2 = 0 on − 1 ≤ μ < 0. (8b)

It is convenient to define the non-dimensional distance variable, called the optical
depth,

τ = (κa + κs)z . (9)

Making the transformation of variable from z to τ and introducing the albedo,

�0 = κs

κs + κa
, (10)

we find that (4) becomes

μ
dI

dτ
+ I = �0

2

∫ 1

−1
h(μ,μ′)I (z, μ′) . (11)

The albedo defined in (10) satisfies 0 < �0 ≤ 1, with �0 = 1 corresponding to
conservative scattering in which κa = 0.
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3 Legendre Polynomial Expansion and the Spectrum
of the Scattering Operator

The Legendre polynomials are a sequence of orthogonal polynomials, P1(μ),
P2(μ), . . .. They arise as a special case of spherical harmonics (Courant and Hilbert
2008) for azimuthally invariant functions. These polynomials satisfy the orthogonal-
ity relation

1

2

∫ 1

−1
Pm(μ)Pn(μ)dμ = 1

2n + 1
δmn, (12)

with δmn denoting the Kronecker delta. The sequence {Pn(ν)}, n = 0, 1, 2, . . . is
complete in the L2 sense. In our analysis we shall frequently refer to the first two
Legendre polynomials, which are P0(μ) = 1 and P1(μ) = μ. We shall also make
use of the recursion relation

μPn(μ) = 1

2n + 1

[
(n + 1)Pn+1(μ) + n Pn−1(μ)

]
. (13)

Because the redistribution function (6) is inherently rotationally invariant, it can
be expanded in Legendre polynomials as

h(μ,μ′) =
∞∑

n=0

(2n + 1)gn Pn(μ)Pn(μ
′), (14)

where the coefficients are

gn = 2n + 1

2

∫ 1

−1

[
1

2

∫ 1

−1
h(μ,μ′)Pn(μ

′)dμ′
]

Pn(μ)dμ . (15)

Because the scattering phase function is normalized according to (7), it follows that
the first coefficient of (15) is g0 = 1. The second coefficient g1 is called the anisotropy
factor or mean cosine, which we denote by g1 = g. It is given by

g = 3

4

∫ 1

−1

[∫ 1

−1
h(μ,μ′)μμ′dμ′

]
dμ . (16)

The spectrum of the operator L , given in (5), plays a key role in our analysis. In
light of (14), we find that

L Pn(μ) = (1 − gn)Pn(μ). (17)

It follows that Pn(μ) is an eigenfunction of L with eigenvalue 1 − gn . For the standard
redistribution functions considered in the literature, all the eigenvalues are simple
and decreasing, i.e., gn > gn+1 for all n. Since g0 = 1, the lowest eigenvalue of L
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is zero. All the other eigenvalues are positive because gn < 1 for n > 0 (Sobolev
2017; Kim and Keller 2003). To summarize, L is a non-negative operator and the
isotropic function, P0(μ) = 1, spans its nullspace. The spectrum asymptotes to one
since gn → 0 as n → ∞. It also follows from (16) that the first non-zero eigenvalue
of L is 1 − g, i.e.,

Lμ = (1 − g)μ . (18)

4 Boundary Layer Theory and the Diffusion
Approximation

Boundary layer theory for radiative transfer is an asymptotic theory for highly-
scattering and weakly-absorbing media. There are three characteristic length scales
in (4): the characteristic absorption length, �a = κ−1

a , the scattering mean-free path,
�s = κ−1

s , and the thickness of the slab, �z = z2 − z1. The highly-scattering and
weakly-absorbing regime corresponds to �s � �z � �a . To make this precise, we
introduce the small, dimensionless parameter 0 < ε � 1 and set

κs�z = ε−1 , (19a)

κa�z = εα, (19b)

where α is a rescaled absorption coefficient. We make the change of variables

z → z̃ = z − z1
�z

. (20)

Henceforth, the tilde sign will be dropped. Substituting (20), (19a), and (19b) into
(4), we obtain

εμ
dI

dz
+ ε2α I + L I = 0. (21)

Equation (21) is to be solved in 0 < z < 1 subject to boundary conditions

I |z=0 = b(μ) on 0 < μ ≤ 1, (22a)

I |z=1 = 0 on − 1 ≤ μ < 0. (22b)

We remark that in terms of (19a) and (19b), the single scattering albedo (10) is

�0 = κs

κs + κa
= 1

1 + ε2α
= 1 − ε2α + O(ε4). (23)

Thus, the albedo for this scaling is near unity, i.e., 1 − �0 = O(ε2). It is well-known
that the diffusion approximation is valid in this regime. The diffusion approximation
asserts that the radiance becomes nearly isotropic deep inside the medium due to
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strong multiple scattering. In what follows, we derive the diffusion approximation
using perturbation methods.

We seek the solution of (21) subject to boundary conditions (22) in the asymptotic
limit as ε → 0+. If wewere to naïvely take the limit of (21) as ε → 0+, the derivative
term in (21) vanishes and the resulting equation could not satisfy boundary condi-
tions (8). In fact, the solution of this boundary value problem rapidly changes near
the boundaries z = 0 and z = 1. For this reason, (21) is called a singularly perturbed
equation. To address this, we seek its solution as the sum

I = Φ + Ψ (1) + Ψ (2), (24)

with Φ denoting the interior solution and Ψ (1) (resp. Ψ (2)) denoting the boundary
layer solution near z = 0 (resp. z = 1). In what follows, we seek to findΦ, Ψ (1), and
Ψ (2) using perturbation methods.

4.1 Interior Solution

We seek the asymptotic expansion for the interior solution in the form

Φ ∼
∞∑

n=0

εnφn, ε → 0+. (25)

Substituting (25) into (21) and collecting like-powers of ε, we find that

O(1) : Lφ0 = 0, (26a)

O(ε) : Lφ1 = −μ
dφ0

dz
, (26b)

O(εn) : Lφn = −μ
dφn−1

dz
− αφn−2 , n ≥ 2 . (26c)

We recall from Sect. 3 that P0(μ) spans the nullspace of L . Therefore, the general
solution of (26a) is

φ0 = P0(μ)ρ0(z), (27)

where ρ0(z) is an undetermined function of z. Substituting (27) into (26b) and recall-
ing that P1(μ) = μ gives

Lφ1 = −μρ ′
0(z) = −P1(μ)ρ ′

0(z). (28)

Equation (28) is a linear, non-homogeneous Fredholm integral equation of the second
kind. Its solution can be decomposed as the sum of the homogeneous solution φH

1
and the particular solution φP

1 . Following the analysis of (26a), φH
1 = ρ1(z)P0(μ)
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where ρ1(z) is an undetermined function of z. The condition for the solvability of the
nonhomogeneous problem, Lφ = f , with f denoting a general nonhomogeneous
term, is given by ∫ 1

0
P0(μ) f (μ)dμ =

∫ 1

0
f (μ)dμ = 0. (29)

In other words, the right-hand side of (28) (i.e., the non-homogeneous term) must be
orthogonal to the nullspace of L . Because P1(μ) is orthogonal to P0(μ) [see (12)], in
this case, solvability condition (29) is automatically satisfied. Recall that L P1(μ) =
(1 − g)P1(μ). Substituting φP

1 = C P1(μ)ρ ′
0(z) into (28), we find thatC = −1/(1 −

g). It follows that

φ1(z, μ) = ρ1(z)P0(μ) − 1

1 − g
ρ ′
0(z)P1(μ). (30)

Substituting (27) and (30) into (26c) with n = 2, we obtain

Lφ2 = −μρ ′
1(z)P0(μ) + 1

1 − g
ρ ′′
0 (z)μP1(μ) − αρ0(z)P0(μ) . (31)

Applying the recursion relation (13) with n = 1 yields

Lφ2 = −ρ ′
1(z)P1(μ) + 1

3(1 − g)
ρ ′′
0 (z) [2P2(μ) + P0(μ)] − αρ0(z)P0(μ) . (32)

Applying solvability condition (29) to the right-hand side of (32) leads to

1

3(1 − g)
ρ ′′
0 (z) − αρ0(z) = 0 . (33)

Equation (33) is called the diffusion equation. It gives the leading order asymptotic
behavior of the radiance in the interior of the medium.

It is instructive and useful to obtain higher-order corrections to the diffusion
approximation. To this end, we substitute (33) into (32) and obtain

Lφ2 = −ρ ′
1(z)P1(μ) + 2

3(1 − g)
ρ ′′
0 (z)P2(μ) . (34)

From spectral equation (17), we have L P1 = (1 − g)P1 and L P2 = (1 − g2)P2. Sub-
stituting these into (34) we find that

φ2(z, μ) = ρ2(z)P0(μ) − 1

1 − g
ρ ′
1(z)P1(μ) + 2

3(1 − g)(1 − g2)
ρ ′′
0 (z)P2(μ) ,

(35)
with ρ2(z) an undetermined function of z. Substituting (30) and (35) into (26c) with
n = 3, we find that
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Lφ3 = −ρ ′
2(z)μ + 1

1 − g
ρ ′′
1 (z)μP1(μ) − 2

3(1 − g)(1 − g2)
ρ ′′′
0 (z)μP2(μ)

− αρ1(z)P0(μ) + α

1 − g
ρ ′
0(z)P1(μ) .

(36)

Applying the recursion relation (13) with n = 1 and n = 2 leads to

Lφ3 = −ρ ′
2(z)P1(μ) + 1

3(1 − g)
ρ ′′
1 (z) [2P2(μ) + P0(μ)]

− 2

15(1 − g)(1 − g2)
ρ ′′′
0 (z) [3P3(μ) + 2P1(μ)]

− αρ1(z)P0(μ) + α

1 − g
ρ ′
0(z)P1(μ). (37)

Applying solvability condition (29) to the right-hand side of (37) yields

1

3(1 − g)
ρ ′′
1 (z) − αρ1(z) = 0 . (38)

Remarkably, (38) is the same as (33). We can continue on to determine φ3. The result
will be a linear combination of P3(μ), P2(μ), and P1(μ) with coefficients involving
derivatives of ρ1 and ρ0 and the homogeneous solution, P0(μ)ρ3(z), with ρ3(z) an
undetermined function of z. By substituting that result into the equation for φ4 and
ensuring its solvability, we will find that ρ2 satisfies the same diffusion equation as
ρ0 and ρ1.

Thus far, we have obtained an O(ε2) approximation of the interior solution as

Φ(z, μ) = ρ0(z)P0(μ) + ε

[
ρ1(z)P0(μ) − ρ ′

0(z)P1(μ)

1 − g

]

+ ε2
[
ρ2(z)P0(μ) − ρ ′

1(z)P1(μ)

1 − g
+ 2ρ ′′

0 P2(μ)

3(1 − g)(1 − g2)

]
+ O(ε3), (39)

with ρ0, ρ1, and ρ2 satisfying the diffusion equations

1

3(1 − g)
ρ ′′

n (z) − αρn(z) = 0, n = 0, 1, 2 . (40)

These diffusion equations are to be solved in 0 < z < 1. However, this perturbation
analysis does not provide a method to determine boundary conditions for (40). To
address this, we analyze the boundary layer solutions.
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4.2 Boundary Layer Solutions

The boundary layer solutionΨ (1) (resp.Ψ (2)) is a special solution of (21) that decays
rapidly in a region of thickness O(ε) about z = 0 (resp. z = 1), called the boundary
layer, and is exponentially small outside of this region.

To determine Ψ (1), we introduce the stretched variable z = εZ and set
Ψ (1)(μ, Z) = I (μ, εZ). Rewriting (21) in terms of Z and Ψ (1), we obtain

μ
dΨ (1)

dZ
+ LΨ (1) = −ε2αΨ (1). (41)

Substituting (24) into the boundary condition (8a), neglecting terms involving Ψ (2),
and solving for Ψ (1) leads to

Ψ (1)|Z=0 = b − Φ|z=0 on 0 < μ ≤ 1. (42)

We are able to neglect terms involving Ψ (2) in (42) because it is constructed to decay
rapidly in a region of thickness O(ε) about z = 1. Hence, it will be exponentially
small near Z = 0. Using (39) to O(ε) yields

Ψ (1)|Z=0 = b − ρ0(0) − ε

[
ρ1(0) − 1

1 − g
μρ ′

0(0)

]
on 0 < μ ≤ 1. (43)

However, to ensure asymptotic matching with the interior solution, we also require
that

Ψ (1) → 0 as Z → ∞ , (44)

which is called the asymptotic matching condition or the radiation condition. Thus,
(41) is to be solved in the half space, Z > 0, subject to boundary condition (42) and
radiation condition (44). We seek an asymptotic solution of the form

Ψ (1) ∼
∞∑

n=0

εnψ(1)
n , ε → 0+. (45)

Substituting (45) into (41), (43), and (44), and collecting like-powers of ε, we obtain
at O(1)

μ
dψ(1)

0

dZ
+ Lψ

(1)
0 = 0 in Z > 0 (46a)

ψ
(1)
0 |Z=0 = b − ρ0(0) on 0 < μ ≤ 1, (46b)

ψ
(1)
0 → 0 as Z → ∞, (46c)
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and at O(ε)

μ
dψ(1)

1

dZ
+ Lψ

(1)
1 = 0 in Z > 0 (47a)

ψ
(1)
1 |Z=0 = −ρ1(0) + 1

1 − g
μρ ′

0(0) on 0 < μ ≤ 1, (47b)

ψ
(1)
1 → 0 as Z → ∞, (47c)

The problems (46) and (47) determine the boundary layer solution in the boundary
layer near z = 0 up to O(ε2).

Similarly, we can derive corresponding problem for the boundary layer solution
Ψ (2) in the boundary layer near z = 1. For that case, we introduce the stretched
variable z = 1 − ε Z̃ and set Ψ (2)(μ, Z̃) = I (μ, 1 − ε Z̃) which satisfies

− μ
dΨ (2)

d Z̃
+ LΨ (2) = −ε2αΨ (2). (48)

Substituting (24) into the boundary condition (8b), neglecting terms involving Ψ (1),
and solving for Ψ (2) leads to

Ψ (2)|Z̃=0 = −Φ|z=1 on − 1 ≤ μ < 0. (49)

Using (39) to O(ε) yields

Ψ (2)|Z̃=0 = −ρ0(1) − ε

[
ρ1(1) − 1

1 − g
μρ ′

0(1)

]
on − 1 ≤ μ < 0. (50)

We require for asymptotic matching that

Ψ (2) → 0 as Z̃ → ∞ . (51)

We seek an asymptotic solution of the form

Ψ (2) ∼
∞∑

n=0

εnψ(2)
n , ε → 0+, (52)

and find that at O(1)

− μ
dψ(2)

0

d Z̃
+ Lψ

(2)
0 = 0 in Z̃ > 0, (53a)

ψ
(2)
0 |Z̃=0 = −ρ0(1) on − 1 ≤ μ < 0, (53b)
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ψ
(2)
0 → 0 as Z̃ → ∞, (53c)

and at O(ε)

− μ
dψ(2)

1

d Z̃
+ Lψ

(2)
1 = 0 in Z̃ > 0, (54a)

ψ
(2)
1 |Z̃=0 = −ρ1(1) + 1

1 − g
μρ ′

0(1) on − 1 ≤ μ < 0, (54b)

ψ
(2)
1 → 0 as Z̃ → ∞. (54c)

4.3 Boundary Conditions for the Diffusion Approximation

The boundary layer solutions satisfy conservative (no absorption), one-dimensional
RTEs. These problems cannot be solved analytically, in general. We will show how
to compute them numerically in the following section using the double-spherical
harmonics method. However, let us suppose here that we have the surface Green’s
function Gs(Z , μ;μ′) satisfying

μ
dGs

dZ
+ LGs = 0 in Z > 0 (55a)

Gs |Z=0 = δ(μ − μ′) on 0 < μ,μ′ ≤ 1, (55b)

Using this surface Green’s function, the solution of

μ
dψ

dZ
+ Lψ = 0 in Z > 0, (56a)

ψ |Z=0 = b(μ) on 0 < μ ≤ 1, (56b)

is given as

ψ(Z , μ) = (Gsb)(Z , μ) =
∫ 1

0
Gs(Z , μ;μ′)b(μ′)dμ′. (57)

While the solution given in (57) satisfies (56a) and boundary condition (56b), it
does not satisfy an asymptotic matching condition of the form ψ → 0 as Z → ∞.
We observe that a ψ = constant is a solution of (56a). This constant mode is the
only one that does not vanish as Z → ∞. Therefore, we must remove the constant
mode from the solution to ensure asymptotic matching. Let the operator G 0

s be the
part of Gs that maps the boundary data b to the constant mode. To ensure asymptotic
matching, we must have the boundary data satisfy
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(G 0
s b) = 0. (58)

Let

G 0
s [1] = β0, (59)

G 0
s [μ] = β1, (60)

G 0
s [b(μ)] = b̄. (61)

It follows from applying G 0
s to the right-hand side of (46b) and setting that result to

zero that
G 0

s [b − ρ0(0)] = b̄ − β0ρ0(0) = 0. (62)

This result sets the boundary condition for ρ0 on z = 0. Doing the same procedure
on (47b), we obtain

G 0
s

[
−ρ1(0) + μ

1

1 − g
ρ ′
0(0)

]
= −β0ρ1(0) + β1

1 − g
ρ ′
0(0) = 0, (63)

which sets a boundary condition for ρ1(0).
Let G̃s(Z , μ;μ′) satisfy

− μ
dG̃s

d Z̃
+ LG̃s = 0 in Z̃ > 0 (64a)

G̃s |Z̃=0 = δ(μ − μ′) on − 1 ≤ μ,μ′ < 0. (64b)

Then the solution of

− μ
dψ̃

d Z̃
+ Lψ = 0 in Z̃ > 0, (65a)

ψ̃ |Z̃=0 = b̃(μ) on − 1 ≤ μ < 0, (65b)

is given as

ψ̃(Z , μ) = (G̃s b̃)(Z , μ) =
∫ 0

−1
G̃s(Z , μ;μ′)b̃(μ′)dμ′. (66)

In fact, G̃s(Z̃ , μ;μ′) = Gs(Z̃ ,−μ;−μ′). Let G̃ 0
s be defined for G̃s analogously to

how G 0
s is defined for Gs . It follows from applying G̃ 0

s to the right-hand side of (53b)
and setting that result to zero, we obtain

G̃ 0
s [−ρ0(1)] = −β0ρ0(1) = 0. (67)
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This result sets a boundary condition for ρ0 on z = 1. Doing the same procedure on
(54b), we find that

G̃ 0
s

[
−ρ1(1) + μ

1

1 − g
ρ ′
0(1)

]
= −β0ρ1(1) − β1

1 − g
ρ ′
0(0) = 0, (68)

which sets a boundary condition for ρ1 on z = 1.
Through this analysis of the boundary layer solutions, we are able to determine

boundary conditions for the diffusion approximation. To summarize these results,
we have

ρ ′′
0 − 3α(1 − g)ρ0 = 0, in 0 < z < 1, (69a)

β0ρ0(0) = b̄, β0ρ0(1) = 0, (69b)

and
ρ ′′
1 − 3α(1 − g)ρ1 = 0, in 0 < z < 1, (70a)

β0ρ1(0) = β1
ρ ′
0(0)

1 − g
, β0ρ1(1) = −β1

ρ ′
0(1)

1 − g
, (70b)

Since ρ0 and ρ1 satisfy the same diffusion equation, we introduce ρ = ρ0 + ερ1

which satisfies
ρ ′′ − 3α(1 − g)ρ = 0, in 0 < z < 1, (71a)

β0ρ(0) − εβ1
ρ ′(0)
1 − g

= b̄, β0ρ(1) + εβ1
ρ ′(1)
1 − g

= 0. (71b)

This form satisfies the diffusion equation with Robin boundary conditions that are
typically used for the diffusion approximation. Here, the coefficients, β0 and β1 and
boundary data b̄ are computed from the boundary layer problems defined above to
ensure asymptotic matching.

5 Double-Spherical Harmonics Method

The double-spherical harmonics method is an efficient numerical method for com-
puting solutions of theRTE (Case andZweifel 1967; Lewis andMiller 1984;Aronson
1986). We discuss this method for solving boundary layer problems: (46), (47), (53),
and (54). By doing so, we obtain a method to compute the coefficients needed for
the boundary conditions of the diffusion approximation. In particular, we study the
conservative, one-dimensional RTE

μ
dψ

dZ
+ Lψ = 0 in Z > 0, (72)
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subject to boundary condition

ψ |Z=0 = b on 0 < μ ≤ 1. (73)

We will consider conditions required to satisfy the asymptotic matching condition:

ψ → 0, as Z → ∞. (74)

The solution of (72) is discontinuous for μ = 0 on Z = 0, i.e., on the bound-
ary along the direction that is tangent to the boundary. This discontinuity decays
exponentially away from the boundary due to scattering and absorption, so it does
not affect the well-posedness of this problem. However, its presence introduces a
computational difficulty. We address this issue by introducing the half-range specific
intensities,

ψ±(Z , μ) = ψ(Z ,±μ) , 0 < μ ≤ 1 . (75)

Substituting (75) into (72) and (5) leads to the coupled system

μ
dψ+
dZ

= −ψ+ + H1ψ+ + H2ψ− , (76a)

−μ
dψ−
dZ

= −ψ− + H1ψ− + H2ψ+ (76b)

with the boundary condition

ψ+|Z=0 = b on 0 < μ ≤ 1 . (77)

In (76) the half-range integral operators: H1 and H2, are defined by

H1ψ± = 1

2

∫ 1

0
h(μ,μ′)ψ±(Z , μ′)dμ′ , (78a)

H2ψ± = 1

2

∫ 1

0
h(μ,−μ′)ψ±(Z , μ′)dμ′ . (78b)

Since scattering is assumed to be rotationally invariant (see (6)), it follows that
h(−μ,−μ′) = h(μ,μ′) and h(μ,−μ′) = h(−μ,μ′). These symmetries have been
used in deriving (76).

Let
P̃n(μ) = √

2n + 1Pn(2μ − 1) (79)

denote the normalized Legendre polynomial mapped to the half range, 0 < μ ≤ 1.
For the double-spherical harmonics method, we expand ψ± as
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ψ±(z, μ) =
∞∑

n=0

u±
n (z)P̃n(μ) . (80)

The objective is to determine the coefficients u±
n (z). Substituting (80) into (76),

multiplying this by P̃m(μ), integrating with respect to μ over 0 < μ ≤ 1, and using
the half-space orthogonality relation,

∫ 1

0
P̃m(μ)P̃n(μ)dμ = δmn , (81)

we obtain the system of equations and boundary conditions for {u±
n } as

∞∑
n=0

Mmn
du+

n

dZ
= −u+

m +
∞∑

n=0

[
H (1)

mn u+
n + H (2)

mn u−
n

]
, (82a)

−
∞∑

n=0

Mmn
du−

n

dZ
= −u−

m +
∞∑

n=0

[
H (1)

mn u−
n + H (2)

mn u+
n

]
, (82b)

u+
m |Z=0 =

∫ 1

0
P̃m(μ)b(μ)dμ, m = 0, 1, . . . . (82c)

The matrices M , H (1), and H (2) are given by

Mmn =
∫ 1

0
μP̃m(μ)P̃n(μ)dμ, (83a)

H (1)
mn = 1

2

∫ 1

0
P̃m(μ)

∫ 1

0
h(μ,μ′)P̃n(μ)dμ , (83b)

H (2)
mn = 1

2

∫ 1

0
P̃m(μ)

∫ 1

0
h(μ,−μ′)P̃n(μ)dμ . (83c)

System (82) is to be solved for each m = 0, 1, . . .. When we truncate this infinite
system at m = N , we obtain a finite dimensional system suitable for numerical
computations. This truncation yields the double-spherical harmonics of order N
approximation,

ψ±(Z , μ) ≈
N∑

n=0

u±
n (Z)P̃n(μ), (84)

which we denote by D PN . The objective is to determine the N + 1 coefficients
u±

n (Z) for n = 0, 1, . . . , N .
Two useful properties of the half-range Legendre polynomials (79) assist in solv-

ing this problem. First, the matrices M , H (1), and H (2) are symmetric. Second,
from the theory of generalized Fourier series, it follows that (84), in which u±

n for
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n = 0, 1, . . . , N satisfy (82), gives the optimal (in the least-squares sense) polyno-
mial approximation of degree N forψ±. In fact, the advantage of using the half-range
specific intensities, ψ±, over the full-range specific intensity, ψ , is that former are
continuous functions everywhere in their domain of definition. This ensures faster
convergence forψ± as the number of modes N increases since only smoothness over
the half-range is required.

Let
U ±(Z) = (u±

0 , u±
1 , . . . , u±

N ) (85)

denote the vectors of the coefficients corresponding to (80). Using this notation, the
problem (82) can be written in matrix notation as

[
M 0
0 −M

]
d

dZ

[
U +
U −

]
+

[
I − H (1) −H (2)

−H (2)
I − H (1)

] [
U +
U −

]
= 0 , in Z > 0 , (86a)

U + = b on Z = 0 . (86b)

where I is the (N + 1) × (N + 1) identity matrix and the entries of the vector b are
defined according to

bn =
∫ 1

0
P̃n(μ)b(μ)dμ, n = 0, 1, . . . , N . (87)

We call (86) the D PNproblem for the half space. This is a 2(N + 1) × 2(N + 1)
system of equations along with boundary conditions. In what follows, we analyze
this system.

5.1 The Generalized Eigenvalue Problem for the DPNSystem

We seek a solution of (86) in the form

[
U +
U −

]
= eλZ

[
V +
V −

]
, (88)

where λ is an eigenvalue and [V +;V −] its associated eigenvector, where, for conve-
nience, we introduce the notation [U ;V ] = [U T , V T ]T , where the superscript T
denotes the transpose. Substituting (88) into (86a) leads to the 2(N + 1) × 2(N + 1)
generalized eigenvalue problem

λ

[
M 0
0 −M

] [
V +
V −

]
+

[
I − H (1) −H (2)

−H (2)
I − H (1)

] [
V +
V −

]
= 0 . (89)

We establish several important results regarding this problem.
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Property 1. (Symmetry) Ifλ is an eigenvalueof (89)with eigenvector [V +;V −],
then −λ is an eigenvalue with eigenvector [V −;V +].
This property follows from the invariance of (89) under the transformations: λ →
−λ, V + → V −, and V − → V +.
Property 2. (Orthogonality) If λ is an eigenvalue of (89) with eigenvector
[V +;V −] and ν is an eigenvalue with eigenvector [W +;W −], they satisfy
the orthogonality relation

(λ − ν)

[
W +
W −

]T [
M 0
0 −M

] [
V +
V −

]
= 0. (90)

This property follows from left-multiplying (89) for the eigen-triple (λ,V ±) by
[W +;W −]T ; left-multiplying (89) for the eigen-triple (ν,W ±) by [V +;V −],
and taking the difference between the resulting equations. The terms involving H (1)

and H (2) vanish, because these matrices are symmetric. A corollary of Property
2 is that eigenvectors corresponding to different eigenvalues are M-orthogonal to
each other in the sense that

[
W +
W −

]T [
M 0
0 −M

] [
V +
V −

]
= 0. (91)

Property 3. (Nullspace) Zero is an eigenvalue with multiplicity two and only
one (proper) corresponding eigenvector. The nullspace also has a one-dimensional
generalized eigensolution. In terms of the full-range radiance, the general solution
associated with the nullspace is

ψ = a0 + b0

(
Z − μ

1 − g

)
, (92)

where a0 and b0 are scalar constants. In terms of the half-range vectors, the gen-
eralized eigenvector solution corresponding to (92) is

[
V +
V −

]
= a0

[
ê1
ê1

]
+ b0

(
Z

[
ê1
ê1

]
− 1

1 − g

[
m1

−m1

])
, (93)

where ê1 = (1, 0, . . . , 0) is the unit vector in the “direction” associated with the
isotropic half-range Legendre polynomial P̃0 = 1 and

m1 = M ê1 = (M00, M01, . . . , M0N ) (94)

is the first column of M , whose entries correspond to the expansion of the coeffi-
cients of the functions ψ± = ±μ in the half-range Legendre polynomials.

This property can be understood as follows.Recall that L has a zero eigenvaluewith
an associated isotropic eigenfunction i.e., L P0(μ) = 0. In terms of the half-range
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intensities, this isotropic eigenfunction corresponds to ψ+ = ψ− = a0 P̃0(μ) with
a0 denoting a scalar constant. It follows that the vectors of expansion coefficients
are given byU + = U − = a0ê1. Hence, the constant a0 in (92) is in the nullspace.
By inspection, the second term in (92) is also a solution of this problem. This
implies that the second term in (93) is a generalized eigensolution in the nullspace.
Indeed, by Property 1, the zero eigenvalue has multiplicity two.

5.2 Solving the DPNProblem

We proceed to formally solve the D PNproblem (86). Recall that (93) is the nullspace
solution of the D PNeigenvalue problem (89) and that all the other eigenvalues come
in opposite-sign pairs, λ− j = −λ j , for j = 1, 2, . . . N , with associated eigenvectors
[V +

j ;V −
j ] and [V −

j ;V +
j ], respectively. The general solution of (86a) is

[
U +
U −

]
= a0

[
ê1
ê1

]
+ b0

(
Z

[
ê1
ê1

]
− 1

1 − g

[
m1

−m1

])

+
N−1∑
j=1

([
V −

j

V +
j

]
e−λ j Z a j +

[
V +

j

V −
j

]
eλ j Z b j

)
, (95)

where a j , and b j for j = 0, 1, . . . , N are coefficients to be determined. Requiring
that (95) remain bounded for all Z > 0 leads to setting b0 = b1 = . . . = bN = 0.
Therefore, [

U +
U −

]
= a0

[
ê1
ê1

]
+

N∑
j=1

[
V −

j

V +
j

]
e−λ j Z a j . (96)

Requiring that (96) satisfy the boundary condition (86b), we obtain

a0ê1 +
N∑

j=1

V −
j a j = b. (97)

Equation (97) is a linear system for the coefficients a j , j = 0, 1, . . . , N , which
can be readily solved. The solution of (72) is then obtained from (96) and the
D PNexpansion (80).

We can formally write the solution of (97) as a = Γ I0, where a denotes the
vector of expansion coefficients and Γ denotes the inverse of the matrix whose first
column is ê1 and whose subsequent columns are V −

j for j = 1, . . . , N , i.e.,

Γ = [
ê1; V −

1 ; · · · ; V −
N

]−1
. (98)
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The matrix Γ gives the mapping from the boundary data to the coefficients making
up the solution of (97). Let g T

0 denote the first row of Γ . It follows that

a0 = g T
0 b. (99)

Therefore, the inner product of g0 with the boundary data is the mapping from the
boundary data to the only non-decaying mode of (96). This operation is precisely
the D PNapproximation of the operator G 0

s introduced in Sect. 4.3.
For boundary layer solutions about z = 1, we need to solve

− μ
dψ̃

d Z̃
+ Lψ̃ = 0 in Z̃ > 0, (100)

subject to
ψ̃ |Z=0 = b̃ on − 1 ≤ μ < 0. (101)

By replacing μ with −μ, we obtain the same problem as (72) subject to boundary
condition (73). It follows that D PN solution is

[
Ũ +

Ũ −

]
= ã0

[
ê1
ê1

]
+

N−1∑
j=1

[
V +

j

V −
j

]
e−λ j Z ã j , (102)

with the vector of coefficients, ã = (a0, a1, . . . , aN ) defined as ã = Γ b̃ with

b̃n =
∫ 1

0
P̃n(μ)b̃(−μ)dμ, n = 0, 1, . . . , N . (103)

Note that V +
j and V −

j are switched in (102) from what appears in (96) due to the
replacement of μ by −μ.

6 Procedure for Computing the Asymptotic Approximation
of Boundary Layer Theory

We now have all of the components needed to evaluate the uniformly valid asymp-
totic approximation of the RTE in the strong-scattering regime. In what follows, we
summarize the results from above in a procedure to evaluate the asymptotic approx-
imation valid to O(ε2).

To compute the asymptotic approximation of the solution to

εμ
dI

dz
+ ε2 I + L I = 0 in 0 < z < 1, (104)
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for a specified redistribution function subject to boundary conditions

I |z=0 = b on 0 < μ ≤ 1, (105a)

I |z=1 = 0 on − 1 ≤ μ < 0, (105b)

we follow the procedure given below.

1. Interior solution

a. For the D PNmethod, set N and compute (83a), (83b), (83c), (87), and (94)
using Gauss quadrature to obtain M , H (1), H (2), b , and m1, respectively.
b. Construct and solve generalized eigenvalue problem (89) for the eigenvalues
λ± j and eigenvectors V ±

j , for j = 0, 1, 2, . . . N .
c. Use the solution from Step 1(b) to compute the matrix Γ given in (98) and
set g T

0 to be its first row.
d. Compute the coefficients

β0 = g T
0 ê1, (106a)

β1 = g T
0 m1, (106b)

b̄ = g T
0 b. (106c)

e. Using the results from Step 1(d), solve the diffusion approximation given by
(71) to obtain ρ(z).
f. Compute the half-range interior solutions,

Φ±(z, μ) = ρ(z) ∓ εμρ ′(z)/(1 − g), (107)

for z ∈ (0, 1), and μ ∈ (0, 1].
2. Boundary layer solutions

a. Compute the coefficients

a = Γ [b − ρ(0)ê1 + εm1ρ
′(0)/(1 − g)], (108)

ã = Γ [−ρ(1)ê1 − εm1ρ
′(1)/(1 − g)]. (109)

b. Using the results from Step 2(a), compute

[
U +
U −

]
=

N∑
j=1

[
V −

j

V +
j

]
e−λ j z/εa j , (110)

[
Ũ +

Ũ −

]
=

N∑
j=1

[
V +

j

V −
j

]
e−λ j (1−z)/εã j , (111)
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c. Using the results from Step 2(b), compute the half-range boundary layer
solutions

ψ
(1)
± (z, μ) =

N∑
n=0

u±
n (z)P̃n(μ) , (112)

ψ
(2)
± (z, μ) =

N∑
n=0

ũ±
n (z)P̃n(μ) . (113)

3. Asymptotic approximation

Compute the asymptotic approximation of the half-range specific intensities,

I±(z, μ) = Φ±(z, μ) + ψ
(1)
± (z, μ) + ψ

(2)
± (z, μ) , (114)

for z ∈ [0, 1], and μ ∈ (0, 1].
We call (114) the uniformly valid asymptotic approximation of the boundary layer

theory to O(ε2). It gives an approximation to the solution of the RTE in the entire
domainwith an error that scales asO(ε2). The interior solutionΦ± is derived from the
diffusion approximation. The boundary layer solutionsψ

(1)
± andψ

(2)
± give corrections

to the diffusion approximation near boundaries z = 0 and z = 1, respectively.

7 Deriving Two-Flux Theory

Using the results from boundary layer theory discussed above, we derive two-flux
theory. To do so, we introduce the half-range fluxes,

F±(z) =
∫ 1

0
I±(z, μ)μ dμ . (115)

Multiplying μ to (107) and integrating with respect to μ, we find that the associated
fluxes are

F±(z) = 1

2
ρ(z) ∓ ε

3(1 − g)
ρ ′(z) . (116)

Equation (116) establishes a relationship between F± and the diffusion
approximation.

Adding and subtracting the two equations in (116) for F±, we get

F+(z) + F−(z) = ρ(z) , (117a)

F+(z) − F−(z) = − 2ε

3(1 − g)
ρ ′(z) . (117b)
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Differentiating (117) with respect to z gives

F ′
+(z) + F ′

−(z) = ρ ′(z) , (118a)

F ′
+(z) − F ′

−(z) = − 2ε

3(1 − g)
ρ ′′(z) . (118b)

Solving for ρ ′ in (117b) and substituting that result into (118a), we obtain

F ′
+(z) + F ′

−(z) = −3(1 − g)

2ε

[
F+(z) − F−(z)

]
. (119)

Substituting (71a) into the right-hand side of (118b), we obtain

F ′
+(z) − F ′

−(z) = −2εαρ(z) . (120)

Solving for ρ from (117a) and substituting into (120), we get

F ′
+(z) − F ′

−(z) = −2εα[F+(z) + F−(z)] . (121)

By adding and then subtracting (119) and (121), dividing by 2, and rearranging terms,
we arrive at

F ′
+(z) = −

[
3(1 − g)

4ε
+ εα

]
F+ +

[
3(1 − g)

4ε
− εα

]
F− , (122a)

F ′
−(z) =

[
3(1 − g)

4ε
+ εα

]
F− −

[
3(1 − g)

4ε
− εα

]
F+ . (122b)

System (122) can be written as

F ′
+(z) = −(K̃ + S̃)F+ + S̃F−, (123a)

F ′
−(z) = (K̃ + S̃)F+ − S̃F− , (123b)

with coefficients

K̃ = 2εα , (124a)

S̃ = 3

4ε
(1 − g) − εα . (124b)

The equations in (123) are the two-flux equations, but written with respect to
scaling given in (20). We can write them in terms of the optical depth τ , defined in
(9), and use the albedo (10) to express the two-flux system as

F ′
+(τ ) = −(K̃ + S̃)F+(τ ) + S̃F−(τ ), (125a)

F ′
−(τ ) = (K̃ + S̃)F+(τ ) − S̃F−(τ ) , (125b)
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with

K̃ = 2(1 − �0), (126a)

S̃ = 3

4
(1 − g) − (1 − �0) . (126b)

Alternatively, by transforming back to the dimensional z variable using (9) and (10),
we arrive at the familiar two-flux equations in dimensional form,

F ′
+(z) = −(K + S)F+(z) + SF−(z), (127a)

F ′
−(z) = (K + S)F+(z) − SF−(z) , (127b)

with

K = 2κa, (128a)

S = 3

4
κs(1 − g) − 1

4
κa(1 + 3g) . (128b)

These results are the same as derived by Sandoval and Kim (2014).
We have derived the two-flux equations (127) above from computing the half-

range fluxes associated with the interior solution in boundary layer theory. This
derivation shows that in a strongly scattering medium, two-flux theory is entirely
consistent with the diffusion approximation. In fact, it is just a reformulation of the
diffusion approximation. Consequently, two-flux theory is asymptotically accurate
in the interior of the medium.

7.1 Limitations of Two-Flux Theory

Two-flux theory provides a simple and intuitive picture of light propagation in a
scattering medium. For that reason, it is very useful. However, it is important to
point out its limitations which we list below.

Limitation I. Two-flux theory is only valid for one-spatial dimension for prob-
lems with azimuthal symmetry.
Limitation II. Two-flux theory is only accurate for high-albedo media.
Limitation III. Two-flux theory is only valid in the interior of the domain. This
theory does not accurately determine the fluxes leaving the domain.

Limitation I is inherent in the assumption of azimuthal symmetry leading to
the one-dimensional RTE (4). We discuss a possible extension to three-dimensional
space in Sect. 9.Limitation II andLimitation III are manifest from our derivation
of System (127) from the interior solution (107) given in terms of the solution of the
diffusion approximation (71). Boundary layer theory provides an asymptotic solution
in the limit as ε → 0+ corresponding to�0 → 1. Furthermore, we have learned from
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boundary layer theory that the interior solution requires corrections in the form of
boundary layer solutions to accurately capture the intensity near the boundary.

7.2 Boundary Conditions

The two-flux equations need to be supplemented with boundary conditions. These
boundary conditions are usually determined by computing the half-range fluxes from
boundary conditions of the RTE in the following way. Multiplyingμ to (8a) and (8b)
integrating those results with respect to μ, we find that

F+(0) =
∫ 1

0
b(μ)μ dμ, (129a)

F−(1) = 0. (129b)

These boundary conditions intuitively prescribe the fluxes incident on the boundaries
z = 0 and z = 1. However, if we consider the fact that the two-flux equations are
derived directly from the interior solution given by the diffusion approximation,
these boundary conditions may not be appropriate. In boundary layer theory, this
interior solution requires the addition of boundary layer solutions to correct it near
the boundaries. We call the solution of the two-flux equations given by (123) with
boundary conditions (129) naïve two-flux theory.

As an alternative to boundary conditions (129) in naïve two-flux theory, we derive
boundary conditions consistent with those given in (71b) from boundary layer theory.
Substituting (117) into (71b), we find that

F+(0) = 1

β0 + 3
2β1

b̄ − β0 − 3
2β1

β0 + 3
2β1

F−(0), (130a)

F−(1) = β0 − 3
2β1

β0 + 3
2β1

F+(1). (130b)

In contrast to boundary conditions (129), these boundary conditions include an effec-
tive reflection at the boundary with reflection coefficient R = (β0 − 3β1/2)/(β0 +
3β1/2). Since these boundary conditions are derived from the asymptotic theory, we
call the solution of the two-flux equations given by (123) with boundary conditions
(130) asymptotic two-flux theory.

We expect a large difference in the accuracy between the naïve and asymptotic
two-flux theories. The entire solution of the two-flux equations depends on the bound-
ary conditions. Hence, differences in boundary conditions lead to differences in the
entire solution. Moreover, we identified in Limitation III that two-flux theory can-
not accurately capture the fluxes leaving the domain. Naïve two-flux theory insists
that the boundary conditions are the incident fluxes on the boundaries. In contrast,
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asymptotic two-flux theory anticipates the need for boundary layer solutions to over-
come Limitation III. We investigate the differences between these different two-
flux theories in the computational results.

8 Computational Results

In this section, we compare the radiative transfer theory and the approximations
discussed above. We seek to solve the RTE (21) with α = 1 for different values of ε

(or the albedo), and theHenyey-Greenstein redistribution function, defined as (Van de
Hulst 2012)

hHG(μ,μ′; g) = (1 − g2)E(k)

π |β − γ |√|β + γ | , (131a)

β = 1 − g2 − 2gμμ′ (131b)

γ = 2g
√

(1 − μ2)(1 − μ′2) , (131c)

where, in (131a), E(k) is the complete elliptic integral of the second kind, defined
as

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ , (132)

evaluated with k = 2γ /|β + γ |. The redistribution function (131) is obtained from
the three-dimensional Henyey-Greenstein scattering phase function, defined as

pHG(Ω,Ω ′; g) = 1

4π

1 − g2

(
1 + g2 − 2gΩ · Ω ′)3/2 , (133)

using the integral defined in (6).
In particular, we consider (21) in the domain 0 < z < 1 with the boundary con-

ditions

I |z=0 = μ2, on 0 < μ ≤ 1 , (134a)

I |z=1 = 0 , on − 1 ≤ μ < 0 . (134b)

Upon solution of this problem, we compute the half-range fluxes

F±(z) =
∫ 1

0
I±(z, μ)μdμ. (135)
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8.1 Comparison of Approximations

We compute the approximations of the problem (21) with boundary conditions (134)
using the following three theories.

• Naïve two-flux theory [(123) with boundary conditions (129)];
• Asymptotic two-flux theory [(123) with boundary conditions (130)];
• Boundary layer theory [Procedure given in Sect. 6].

In particular, we study F±(z) computed from all of these theories over 0 ≤ z ≤ 1.
To begin with, we solve this problem with ε = 0.01, which corresponds to �0 ≈

0.9999 [see (23)], and g = 0.4,which corresponds to amoderately forward-scattering
medium.We solve this problemusing the D PNmethodwith N = 12.We use 501 grid
points in z, and evaluate the integrals in (131) using the 128 point Gauss-Legendre
quadrature rule. In what follows, we denote the solution thus obtained the D P12

solution. To validate using this method, we compared results from the D P12 solution
to those from a highly resolved computation using the discrete ordinate method with
the double-Gauss quadrature rule (see Thomas and Stamnes 2002, for example). This
method has been shown to be pointwise convergent (Keller 1960). Through those
comparisons, we have found that for this problem, the D P12 solution has a maximum
relative error that is less than 10−6. For this reason, we consider the D P12 solution
as the benchmark, to which all other approximations evaluated here are compared.

Let F±(z) denote to the benchmark (D P12) solutions and let F̃±(z) denote the
approximate solutions. In what follows we refer to the absolute maximum errors, the
relative maximum errors, and the root-mean square (RMS) errors of the solutions.
These errors are defined as

absolute maximum error = max
z

{
|F+(z) − F̃+(z)| , |F−(z) − F̃−(z)|

}
,

relative maximum error = max
z

{
|F+(z) − F̃+(z)|

|F+(z)| ,
|F−(z) − F̃−(z)|

|F−(z)|

}
,

RMS error = max

⎧⎨
⎩

√√√√ 1

Nz

Nz∑
i=1

|F+(zi ) − F̃+(zi )|2 ,

√√√√ 1

Nz

Nz∑
i=1

|F−(zi ) − F̃−(zi )|2
⎫⎬
⎭ ,

respectively, where {zi }Nz

i=1 denote the discrete points along the z direction.
Figure 1 shows a comparison between the D P12, naïve two-flux, and asymptotic

two-flux solutions. The top row of plots show these solutions for 0 ≤ z ≤ 1. The
bottom row of plots show these solutions near the boundary at z = 0. The D P12

solution changes rapidly near the boundary at z = 0 corresponding to the boundary
layer. Because the solution itself is very small near z = 1, the rapid change near the
boundary z = 1 is not apparent in Fig. 1. Regardless, neither the naïve nor the asymp-
totic two-flux solutions accurately capture these rapid changes near the boundary.
The naïve two-flux solution is accurate at the boundaries, but not away from them.
The absolute error made by the the naïve two-flux solution for F+(1) is 4.224 × 10−4
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and for F−(0) is 8.689 × 10−4. Even though it captures the qualitative behavior of
F±(z) over 0 < z < 1, it exhibits a large quantitative error. In contrast, the asymp-
totic two-flux solution accurately approximates the D P12 solution for 0 < z < 1, but
makes a substantial error at the boundary layer near z = 0.

The relative maximum error of the naïve two-flux solution is 0.0930. This max-
imum error is attained in the interior of the domain. The relative maximum error
of the asymptotic two-flux solution is 0.0988. This maximum error is attained at
z = 0. From the results in Fig. 1, we observe that the asymptotic two-flux theory is
accurate over a much larger portion of the domain than the naïve two-flux theory.
This difference is captured better by the RMS error. The RMS error of the naïve two-
flux solution is 0.0136, whereas, the RMS error of the asymptotic two-flux theory
is 0.00163. With respect to the the RMS error, the asymptotic two-flux theory is an
order of magnitude more accurate than the naïve two-flux theory.

Figure 2 shows a comparison between the half-range interior solutions, Φ±,
boundary layer solutions, Ψ

(1)
± + Ψ

(2)
± , and the uniformly valid asymptotic solu-

tion of boundary layer theory, which is the sum given in (114). Here, we see how
the boundary layer solutions correct the interior solution near the boundaries. They
are exponentially small in the interior of the domain. Consequently, they do not
interfere with the approximation made by the interior solution there. Because the
boundary layer solutions take care of the boundary conditions and the rapid change
in the solution near the boundaries, they free the interior solution from having to
satisfy boundary conditions it is not capable of satisfying which, in turn, allows it
to accurately capture the solution in the interior of the domain. It is in this way that
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Fig. 1 Comparison between the D P12 solution (solid), the naïve two-flux solution (dots), and
asymptotic two-flux solution (dashes). Here ε = 0.01 (�0 ≈ 0.9999) and g = 0.4. Panels (a) and
(b) show F+ and F−, respectively. The bottom row of panels “zoom in” on the solutions inside the
boundary layer near z = 0



92 B. Ilan and A. D. Kim

0 0.5 1
-0.05

0

0.3

(a)

0 0.05
-0.05

0

0.3

0 0.5 1
-0.05

0

0.3

(b)

0 0.05
-0.05

0

0.3

Fig. 2 Comparison between the interior solution (dots), the boundary layer solution (solid), and
uniformly valid asymptotic solution (dashes) of boundary layer theory, for the same problem as in
Fig. 1. The bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0

boundary layer theory provides a uniformly accurate approximation throughout the
entire domain.

Figure 3 shows a comparison between the solutions computed using D P12, the uni-
formly valid asymptotic solution of boundary layer theory, and asymptotic two-flux
theory. Since asymptotic two-flux theory is consistent with the diffusion approxi-
mation, it is equivalent to the interior solution in boundary layer theory. The inte-
rior solution does not satisfy the boundary conditions prescribed with the RTE, so
it makes a significant error near the boundary z = 0. On the other hand, because
boundary layer theory corrects the diffusion approximation by including boundary
layer solutions near each of the boundaries, it provides a uniformly valid asymptotic
approximation for all 0 ≤ z ≤ 1. In particular, these boundary layer solutions accu-
rately capture the rapid change in the solution near z = 0 and z = 1. In particular, the
relative maximum error of the uniformly valid asymptotic approximation is approxi-
mately 8.343 × 10−4 with an RMS error of 1.135 × 10−4. As a result, the uniformly
valid asymptotic approximation and the D P12 solution are indistinguishable to the
eye. These results clearly show that boundary layer theory provides a very accurate
approximation over the whole domain. It is vastly superior over both of the two-flux
theories, as well as the diffusion approximation, since it includes the boundary layer
solutions that take into account the rapid changes near the boundaries.

The derivation of two-flux theory indicates that it is valid only in the interior
of the domain of a strongly scattering medium. The results shown here indicate
that asymptotic two-flux theory is more accurate than the naïve two-flux theory
everywhere except near the boundaries. If one only considers the fluxes exiting the
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Fig. 3 Comparison between the D P12 solution (dots), the uniformly valid asymptotic approxima-
tion (dashes), and the asymptotic two-flux theory (solid) for the same problem as in Fig. 1. The
bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0

domain, it appears that the naïve two-flux theory provides a more accurate approxi-
mation. However, using the naïve two-flux theory in this way is problematic because
it achieves this approximation at the expense of a substantial error everywhere else.
In contrast, boundary layer theory provides a uniformly accurate approximation over
the entire domain. Moreover, it is substantially more accurate.

8.2 Dependence on the Albedo

We now consider the accuracy of these approximations for different values of ε,
which is directly related to the albedo through (23). In particular, we compute the
relative errors of the different approximations with g = 0.4 for 0.001 ≤ ε ≤ 0.25
corresponding to 0.94 < �0 < 1. According to (23), 1 − �0 = O(ε2) and so is the
error of the asymptotic theory. The results in Fig. 4 show that the relative errors of
both the naïve and asymptotic two-flux theories are approximately 10%. In contrast,
the error of the uniformly valid asymptotic solution of boundary layer theory scales
as O(1 − �0) as predicted by the asymptotic theory.
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Fig. 4 Log-log plot of the
errors of the naïve two-flux
solution (dots), the
asymptotic two-flux solution
(dashes), and the uniformly
valid asymptotic solution
(solid) as functions of
1 − �0. All other parameters
are the same as in Fig. 1
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Fig. 5 a Log plot of the
errors of the naïve two-flux
solution (dots), the
asymptotic two-flux solution
(dashes), and the uniformly
valid asymptotic solution
(solid) as functions of the
anisotropy parameter g. All
other parameters are the
same as in Fig. 1
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8.3 Dependence on the Anisotropy Factor

The only other parameter in this problem besides the albedo, �0, is the anisotropy
factor, g. The results shown in Sect. 8.1 were for g = 0.4 corresponding to mildly
anisotropic scattering. We now consider the accuracy of these approximations for
different values of g in Eq. (131). According to the uniformly valid asymptotic theory,
the error isO(ε2). Thus, the leading order behavior of the error is given byCε2, where
C is some constant that is independent of ε (and consequently, �0). However, it may
depend on g. In what follows, we seek to determine the dependence of C on g.

Figure 5 shows the relative errors of the naïve and asymptotic two-flux theo-
ries, and the uniformly valid asymptotic solution of boundary layer theory. These
results show that the errors for both the naïve and asymptotic two-flux theories are
approximately 10% over all values of g. In contrast, the error of the uniformly valid
asymptotic solution of boundary layer theory is two order of magnitude smaller or
less for 0 ≤ g ≤ 0.9 . However, it appears to increase and become large as g → 1.
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8.4 Forward-Peaked Scattering

The results shown in Fig. 5 are for ε held fixed at ε = 0.01. Boundary layer theory
ensures that the error of the asymptotic solution will decrease quadratically as ε → 0
for any fixed value of g. It does not account for sharply forward-peaked scattering
corresponding to the asymptotic limit, g → 1. With sharply forward-peaked scat-
tering, the transport mean-free path, �tr = 1/[κs(1 − g)], is much larger than the
scattering mean-free path, �s = 1/κs , since g ≈ 1. In this parameter regime, there
is a wide separation between the scattering and diffusion length scales. As a result,
anisotropic, sharply forward-peaked scattering inhibits the onset of the diffusion
limit. Many more multiple scattering events are required for the radiance to become
nearly isotropic compared with the mildly anisotropic scattering case. It follows that
the penetration depth for the onset of the diffusion limit is much larger for this case.
At intermediate penetration depths, the character of highly anisotropic scattering is
different and requires additional considerations. Larsen (1999) gives an asymptotic
analysis of this problem leading to useful asymptotic expansions for the scattering
operator.

To investigate the case of anisotropic forward-peaked scattering, we show results
for g = 0.9. In Fig. 6, we compare the D P12, naïve two-flux, and asymptotic two-flux
solutions just as we have done in Fig. 1 for the g = 0.4 case. The overall qualitative
behaviors are the same as for g = 0.4. However, we observe here larger errors made
by both the naïve and asymptotic two-flux solutions. The errors for F− are larger than
those for F+. The relative maximum error of the naïve two-flux solution is 0.0913
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Fig. 6 Same as Fig. 1 for g = 0.9
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Fig. 7 Same as Fig. 3 with g = 0.9

and the relative maximum error of the asymptotic two-flux solution is 0.1022. The
RMS errors are 0.0157 and 0.0040 for the naïve and asymptotic two-flux solutions,
respectively.

In Fig. 7we showcomparisonswith the D P12 solution, the uniformly valid asymp-
totic solution of boundary layer theory, and asymptotic two-flux theory, just as Fig. 2
for the g = 0.4 case. Here, we find that these approximations are not as accurate as
theywere for the g = 0.4 case. The aforementioned errors of the asymptotic two-flux
solution carry over to the asymptotic solution of boundary layer theory. In particular,
the larger errors for F− affect the boundary layer solution which, in turn, exhibits
a noticeable error in the lower right plot of Fig. 6. The relative maximum error for
the boundary layer theory asymptotic approximation is 0.0190 and the RMS error is
0.0030.

Just as Fig. 5 indicates, we have found that the performance of all approximations
is worse for g = 0.9. The behavior of the error of the asymptotic solution of boundary
layer theory will decrease quadratically with ε. However, for this chosen value of
ε = 0.01 and g = 0.9, we find that the error is much larger than the case when
g = 0.4.

8.5 Four-Flux Theory and the DP1 Approximation

Two-flux theory is valid only in the interior of the domain. The eigenvalues of (123)
are given by
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λ = ±
√

K̃ (K̃ + 2S̃) = ±√
3α(1 − g), (136)

where we have used (124). Note that these eigenvalues correspond exactly to those
for the diffusion equation given in (71a). This result is not surprising since two-flux
theory is derived from the interior solution governed by the diffusion approximation.

An improvement over two-flux theory, called four-flux theory, incorporates an
additional length scale in the problem. This length scale is smaller than that given
in (136) and, from what we now understand from boundary layer theory, attempts
to resolve the rapid changes of the solution near the boundaries. Rather than give a
phenomenological method to determine this additional length scale, we consider the
D PNmethod with N = 1, which we call the D P1 approximation.

If we apply the D P1 approximation to (21), we obtain a 4 × 4 system. By Prop-
erty 1 of generalized eigenvalue problem (89), the D P1 approximationwill produce
2 distinct length scales corresponding to the 2 distinct ± pairs of eigenvalues. One
of those length scales corresponds to (136). The other length scale is the additional
length scale in four-flux theory. It is one eigenmode that seeks to approximate the
boundary layer solutions. For this reason, we call the four-flux solutions the results
from computing the half-range fluxes F± from the solution of the D P1 system.

Figure 8 shows a comparison of results computed using D P12, the boundary layer
solution, and four-flux theory. Here, we see that the four-flux solution captures the
rapid changes in the solution near the boundaries better than the two-flux solution
does. The maximum relative error made by the four-flux solution is 0.0129 and the
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Fig. 8 Comparison between the D P12 solution (dotted blue), the uniformly valid asymptotic
approximation (dashed red), and four-flux solution (solid black) for the same problem as in Fig. 1.
The bottom row of panels “zoom in” on the solutions inside the boundary layer near z = 0
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RMS error is 0.00185. This maximum relative error is 7 times smaller than those for
the naïve and asymptotic two-flux solutions. This RMS error is an order ofmagnitude
smaller than that for the naïve two-flux solution, but of the same order as the RMS
error for the asymptotic two-flux solution. However, boundary layer theory provides
a vastly better approximation than four-flux theory.

Four-flux theory provides a substantial improvement over two-flux theory through
the inclusion of an additional length scale. Rather than seeking to derive this length
scale phenomenologically, we consider instead computing the half-range fluxes from
the D P1 approximation. The D P1 approximation has 2 distinct length scales: one cor-
responds to the two-flux/diffusion length scale given in (136), and the other attempts
to resolve the rapid changes near the boundaries. Although four-flux theory qual-
itatively captures the rapid changes in the solution near the boundaries, it is less
accurate than the asymptotic approximation derived from boundary layer theory.

9 Extension of Two-Flux Theory for Three-Dimensional
Radiative Transfer

Many physical problems of interest require solving the three-dimensional RTE. For
this reason, it is tempting to seek a two-flux theory for the three-dimensional RTE.
Such a theory may be used to study beam propagation and scattering in a plane-
parallel medium, for example. However, Limitation I in Sect. 7.1 states that two-
flux theory is only valid for one-spatial dimension for problems with azimuthal
symmetry. Nonetheless, using the connection between two-flux theory and the dif-
fusion approximation established above, we can develop what amounts to a two-flux
theory for the three-dimensional RTE.

The diffusion equation in three dimensions is given by

Dρzz + D∇2
⊥ρ − αρ = 0 , (137)

where we have introduced the diffusion coefficient D = [3(1 − g)]−1, for conve-
nience, and ∇2

⊥ = ∂2
xx + ∂2

yy denoting the transverse Laplacian. In boundary layer
theory for the three-dimensional RTE, the interior solution is given by

Φ = ρ − ε3DΩ · ∇ρ + O(ε2), (138)

The half-range fluxes associated with this interior solution can be calculated as

F±(x, y, z) =
∫ 2π

0

∫ 1

0
Φ±(x, y, z, μ, ϕ)μdμdϕ = 1

2
ρ ∓ εDρz + O(ε2). (139)

Thus, we find that
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F+ + F− = ρ, (140a)

F+ − F− = −ε2Dρz . (140b)

By taking the partial derivative with respect to z, we obtain

F+,z + F−,z = ρz = − 1

2εD
(F+ − F−), (141a)

F+,z − F−,z = −ε2Dρzz = −ε2(α − D∇2
⊥)(F+ + F−). (141b)

From these results, we find that

F+,z = −
[

1

4εD
+ εα − D∇2

⊥

]
F+ +

[
1

4εD
− εα + D∇2

⊥

]
F−, (142a)

F−,z =
[

1

4εD
+ εα − D∇2

⊥

]
F− −

[
1

4εD
− εα + D∇2

⊥

]
F+. (142b)

The systemgiven in (142) gives the 3D two-flux equations. Perhaps this 3D extension
to two-flux theory is useful for some applications, but since it is entirely consistent
with the diffusion approximation, one may as well consider solving the 3D diffusion
approximation instead.

10 Conclusions

We have discussed approximations to the RTE in strongly scattering medium. In
particular, we have discussed boundary layer theory and two-flux theory. Both of
these theories have connections to the D PNmethod which we also explain. By inves-
tigating the connections between these two approximations and the D PNmethod, we
have gained valuable insight into each of them.

Boundary layer theory gives a systematic perturbation method to compute the
solution of the RTE in the limit as the albedo approaches one. It gives the solution as
the sumof the interior solution and the boundary layer solutions. The interior solution
is governed by the diffusion approximation. The boundary layer solutions satisfy a
conservative, one-dimensional RTE in a half space. By requiring that boundary layer
solutions satisfy asymptotic matching conditions, we derive boundary conditions
for the diffusion approximation. Since we cannot solve the boundary layer problems
analytically, we have used the D PNmethod to solve them. This method also provides
a convenientmethod to impose asymptoticmatchingwhich, in turn, provides a simple
method for computing the coefficients in the boundary conditions for the diffusion
approximation. The result of boundary layer theory is a uniformly valid asymptotic
approximation that is accurate over the entire domain with a precisely defined error
bound. Numerical results show that this asymptotic solution is very accurate over
the entire domain.
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Two-flux theory provides a simple and intuitive picture of light scattering and
absorption in one spatial dimension. However, it has lacked a systematic theo-
retical framework to derive its coefficients and boundary conditions. Here, we
have derived two-flux theory using the interior solution from boundary layer the-
ory. By doing so, we have determined that two-flux theory is just a reformulation
of the diffusion approximation. Consequently, it is accurate only for describing
light that has penetrated deep into a strongly scattering medium. It is not accu-
rate near boundaries or sources. This connection allows for the explicit determina-
tion of the coefficients. Specifically, we have found that the scattering coefficient
is S = 3κs(1 − g)/4 − κa(1 − 3g)/4, and the absorption coefficient is K = 2κa .
These results provide a useful connection between two-flux theory and the funda-
mental quantities in radiative transfer. However, just as the boundary conditions for
the diffusion approximation can be problematic, so are those for two-flux theory.
Here, we have derived boundary conditions for two-flux theory that are consistent
with the results in boundary layer theory for the interior solution. By doing so, we
have introduced the asymptotic two-flux theory. In contrast to naïve two-flux theory
that uses the fluxes incident on the boundary as boundary data, the asymptotic two-
flux theory has been shown to be more accurate in the interior of the domain away
from boundaries. However, despite the fact that the naïve two-flux theorymakes large
errors in the interior of the domain, it approximates the fluxes exiting the domain at
the boundaries better than the asymptotic two-flux theory.

Two-flux theory can be improved by adding another length scale that takes into
account the rapid change of the solution near the boundaries. The result is called
four-flux theory. Here, we have drawn a connection between four-flux theory and the
D PNmethod with N = 1. Numerical results show that four-flux theory computed
from D P1 provides an significant improvement over two-flux theory. However, four-
flux theory is substantially less accurate than boundary layer theory.

Finally, we consider two-flux theory for three-dimensional radiative transfer prob-
lems.Wehavederived this three-dimensional two-flux theory from three-dimensional
boundary layer theory just aswe have done for one-dimensional problems. This result
provides some insight into how two-flux theory extends to three-dimensional prob-
lems.However, since it is a reformulation of the diffusion approximation, it is perhaps
unnecessary to consider it for practical problems.

The close connections discussed here between boundary layer theory, two-flux
theory, and the D PNmethod in strongly scattering media provides valuable insight
into radiative transfer problems. Specifically, by drawing the connection between
the diffusion approximation and two-flux theory, we have explicitly determined the
coefficients in the two-flux equations. Additionally, the challenge in applying the
diffusion approximation near boundaries should serve as caution in applying two-
flux theory there, as well. Having these connections established should be useful to
other researchers considering these approximations for problems of practical interest.

Acknowledgements A. D. Kim acknowledges support from the Air Force Office of Scientific
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Polarized Radiation Transport Equation
in Anisotropic Media

Margarita G. Kuzmina

The paper is dedicated to the memory of Evgraph Sergeevich
Kuznetsov.

This paper is a translation of my old paper aimed at vector radiative transfer studies
published back in 1976 in Russian as a preprint of Institute of Applied Mathematics
of Russian Academy of Sciences (Kuzmina 1976). Because the paper has not been
widely circulated, it remains almost unknown outside Russia. This is the main rea-
son why I have been asked to prepare this translation for Springer Series in Light
Scattering. Since 1976 excellent works have been published on this subject (Tsang
and Ishimaru 1992; Tsang and Kong 1992; Mandt and Tsang 1992; Mishchenko
et al. 2002; Mishchenko 2008a, b; Barabanenkov 2009; Mishchenko et al. 2016).
However, the paper has its merits as it stands even now after more than 40 years
after its publication. Therefore, it has been decided to prepare the slightly revised
paper. Some misprints have been corrected. However, the general structure of the
paper remains. Therefore, a reader can grasp a flavor of the approach to the problem
existing back in the middle of last century.

In particular, in this paper polarized radiation transport equation in media com-
posed of randomly spatially distributed discrete non-spherical scatterers, the scat-
terer sizes being comparable with the electromagnetic radiation wavelength, has
been derived from the equations of classical electrodynamics. The transport equa-
tion derivation is based on the analysis of the system of equations for self-consistent
radiation field that has been obtained as the solution to the problem of electromag-
netic wave multiple scattering by an ensemble of isolated discrete scatterers. The
electric field vector of coherently scattered electromagnetic wave (that propagates
without scattering through continuous anisotropic medium) has been obtained via
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statistical averaging of the governing system of equations. The optical properties of
the anisotropic medium can be expressed in terms of the scattering amplitude oper-
ator of individual scatterers forming the dispersed medium and the scatterer spatial
distribution. The non-coherently scattered radiation behavior is governed by vector
radiation transport equation for anisotropic medium. The matrix extinction operator
of the transport equation is expressed in terms of anisotropic medium optical proper-
ties whereas the scattering phase matrix is expressed through the law of scattering of
individual scatterers. In addition to usual radiation transport processes the transport
equation describes also some radiation interference phenomena related to different
velocities of propagation and different absorptions of normal waves in anisotropic
medium.

1 Introduction

In recent years a number of papers appeared where the vector transport equation
describing polarized radiation transfer in optically isotropic and anisotropic media
had been derived based on exact electrodynamics equations for multiple radiation
scattering by statistical ensembles of scatterers.

In the frames of traditional approach to the problems of radiation multiple scatter-
ing the radiation transport equation is usually derived based on energy balance con-
siderations. So the transport equation in fact represents linearized integro-differential
Boltzmann equation. Since the Bolzmann equation exactly describes transport pro-
cesses of massive particles in various media, the energy-based approach for transport
equation obtaining implies that electromagnetic radiation is described in the frames
of geometrical optics approximation. Therefore, as one should expect, in the frames
of the traditional approach all the effects of radiation interference are neglected. And
in addition, the approach of electromagnetic radiation description is admissible under
the conditions λ � l, where l is the length of free radiation path between the acts
of radiation scattering, λ being the radiation wavelength.

However, as was earlier known, for radiative transfer problems in some media
(such as aerosol, fog and optically anisotropic media) the radiation interference phe-
nomena cannot be completely neglected. So, a correct way of radiation transport
equation deriving based on consideration of the problem of multiply scattered elec-
tromagnetic radiation by an ensemble of chaotically distributed discrete scatterers is
desirable.

The problem was first considered and solved by Foldy (1945) for the case of dis-
persed medium composed of point uncorrelated isotropic-scatting scatterers, and the
description of wave radiation field in the frames of scalar approximation. Although
the paper (Foldy 1945) preceded the papers byDyson (1949) and Salpeter and Bether
(1951), it is just in the paper (Foldy 1945) the mathematically exact restrictions on
radiation field and scattering medium were formulated, and the equations of Dyson-
and Bether–Salpeter type were first obtained. The extension of the results by Foldy



Polarized Radiation Transport Equation in Anisotropic Media 107

to the case of dispersed medium composed of anisotropic-scattering correlated scat-
terers was further given by Lax (1951).

After attracting into transport theory of Dyson- and Bether–Salpeter equations,
obtained via perturbation series summation, many papers devoted to obtaining and
justification of scalar transport equation appeared. In the way the transport equations
were obtained for random inhomogeneous media composed of discrete correlated
scatterers (Gnedin and Dolginov 1964, 1965, 1967; Barabanenkov and Finkelberg
1967; Barabanenkov et al. 1969, 1970, 1971), for media composed of continuous
scatterers formed by dielectric permittivity fluctuations (Gnedin et al. 1970a, b, c;
Barabanenkov et al. 1970), and for media containing of both discrete and continuous
scatterers (Ovchinnikov 1974). One of the ways of scalar transport equation deriving
consisted in preliminary obtaining of so called generalized transport equation for
spectral density of mean radiation field and the mean Green function, and conse-
quent obtaining of usual transport equation from the generalized one (Ovchinnikov
and Tatarsky 1972). Transport equation for spectral intensity tensor, accounting some
interference effects and the phenomena caused by stimulated and spontaneous radia-
tion, was derived in the frames of quantum-statistical approach (Kruglov 1978). The
transport equation obtaining in the frames of quantum electrodynamics and con-
sequent limit transfer to the classical radiation transport equation surely could be
considered as the most exact approach. However, the approach based on classical
radiation field description is in some sense preferable because of its simplicity and
also because of comprehensive physical description of electromagnetic field prop-
erties. By the reason the approach developed in the paper (Watson 1969), where the
solution to the problem of multiply scattered polarized radiation in rarefied electron
plasma is given, seems quite adequate. In fact the approach presented in (Watson
1969) can be considered as the extension of approach developed in (Foldy 1945)
to the case of vector radiation field and scatterer correlations accounting. Just as
in the papers (Foldy 1945; Lax 1951), in the paper (Watson 1969) the coherently
scattered radiation was selected, the medium refraction index was obtained, and
radiation transport equation for coherence matrix was derived. The extension of the
approach developed in (Watson 1969) to the case of turbulent plasma, where radia-
tion propagates over curved rays, was further given in the paper (Law and Watson
1970). Yu. I. Gnedin, A. Z. Dolginov and N. A. Silant’ev derived polarized radiation
transport equation for optically anisotropic media composed of correlated scatterers,
small compared with radiation wavelength (Gnedin et al. 1970a, b; Dolginov et al.
1970; Silant’ev 1971). In particular, in the paper (Dolginov et al. 1970) the system
of Lippman-Shwinger equations was first derived from the Maxwell equations, the
intensity, the polarization and the radiation frequency change for multiply scattered
radiation being further obtained.

In the presented paper the polarized radiation transport equation has been obtained
for dispersed medium composed of discrete correlated scatterers, the scatterer sizes
being comparable with radiation wavelength. The separation of scattered radiation
field into coherently and non-coherently scattered components arises in the process
of statistical averaging of multiply scattered radiation by the ensemble of discrete
scatterers. The coherently scattered electromagnetic wave propagates without scat-
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tering in effective continuous optically anisotropic medium. It is decomposed into
the sum of two independent waves (normal waves) propagating in the medium with
different phase velocities and different absorptions. The refraction indices, absorp-
tion coefficients and polarization states of the normal waves are expressed in terms
of ensemble averaged operator of scattering amplitude in forward-scattering direc-
tion. The multiply scattered radiation transfer in the dispersed anisotropic medium is
governed by vector transport equation. In the paper it is written for four-component
polarization vector (in particular, for the Stokes vector). The scattering phase matrix
of medium volume element is expressed in terms of scattering characteristics of
individual scatterers and the scatterer statistical distribution. The differential opera-
tor of the vector transport equation reflects radiation interference effects caused by
different phase velocities and different absorptions of normal waves in anisotropic
medium.

2 Statement of the Problem. The System of Restrictions
on Medium and Radiation Parameters

Let us consider the problem of multiple scattering of classical quasi-monochromatic
electromagnetic radiation (of the wavelength λ) by sparse dispersed medium (an
ensemble of N , N � 1, sparsely randomly distributed isolated macroscopic scat-
terers) occupying the volume V .

Suppose that

(01) Both spatial distribution of scatterers and the distribution on scattering char-
acteristics (sizes, orientations etc.) are specified, the scattering characteristics
being defined by a scattering parameter s (taking the values either from discrete
or from continuous set of values).

(02) Scattering characteristics of individual scatterers are stationary and do not
depend on the fact that a scatterer belongs to the dispersed medium.

(03) The velocities of scatterers are sufficiently small, so that spatial scatterer posi-
tions can be considered as adiabatically varying parameters (The condition is
fulfilled if |vsc| � vph, where vph is the phase velocity of electromagnetic
wave in the medium).

(04) The number of scatterers is great: N � 1.

Further the natural relations between the parameters of multiple scattering prob-
lem should be formulated in terms of the parameters—the length l of free radiation
path between the acts of scattering, the average scatterer diameter ds , the radiation
wavelength λ In the case of very short wavelengths (λ � l) radiation transfer in the
medium is governed by the Boltzmann equation. In the situation the radiation extinc-
tion is taken into account,whereas all the radiation interference effects are completely
neglected. In the parametric domain λ < l the geometrical optics approximation
is valid. In the case the ray refraction in the process of multiple radiation scattering
can be accounted, but the diffraction effects cannot be taken into account. So, the
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radiation transfer problem can be formulated in terms of medium refractive index
fluctuations (Gnedin et al. 1970a, b, c; Barabanenkov et al. 1972). At last, in the para-
metrical domain λ ∼ l both scatterer correlation effects become essential and the
accounting of diffraction phenomena is of importance. Further problem simplifica-
tion is possible under the condition ds � λ (when the approximation of elementary
dipoles for scatterers is applicable, the case of Rayleigh scattering).

The approach to transport equation deriving used in the paper in fact represents
the extension of the methods developed in the papers (Lax 1951; Watson 1969). It
allows to consider the problem in the parametrical domain

λ < l, ds ≥ λ, ds � l.

In addition we also admit that the condition

(05) l � λ is satisfied as well (to avoid of bulky computations). The condition
means that each new scattering act occurs in far-field zone of all the other
scatterers.

We also admit the following additional simplifying restrictions:

(06) the coherent scattering occurs in exactly forward scattering direction (the
restriction was not used in the paper (Waterman and Truell 1961)).

Indeed, as it is known (Watson 1969; Dolginov et al. 1970), the coherent scattering
can be neglected outside the diffraction conewhich angle is of the order ((ω/c)Rs)−1,
where Rs is the diameter of the whole volume of scattering medium. Therefore,
the mentioned approximation is the more exactly satisfied, the better the inequality
(ω/c)Rs � 1 is fulfilled. The last inequality should be fulfilled sufficiently well for
multiply scattering media, because otherwise (that is, at (ω/c)Rs ≤ 1 due to the
condition (05) we would have (ω/c)l � 1, and so the inequality Rs � l would take
place, that is, the approximation of single scattering would be valid in the medium).

(07) Rc � l, where Rc is the typical correlations length (the condition allows to be
restricted by correlation functions of low orders).

The next three medium constraints are introduced for the sake of calculation
simplification:

(08) the restriction |n(α) − 1| � 1, α � 1, 2, where n(1,2) are the eigenvalues of
the medium refractive index operator (the consequence of medium sparsity).

(09)
∣
∣dn(α)/dr

∣
∣ � 0, α � 1, 2. (That is, the case of homogeneous medium is

considered where the propagation of non-scattered radiation can be described
in the frames of geometrical optics, the rays being straight lines).

(10) weak medium optical anisotropy approximation is accepted: (E(r,k),k) � 0,
where k is the wave vector direction in the medium (that is, the transversality
of electrical field vector of electromagnetic wave in the medium is admitted).
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3 Multiple Scattering of Electromagnetic Wave
by an Ensemble of Isolated Scatterers

Consider the problem of multiple scattering of plane quasi-monochromatic electro-
magnetic wave by an ensemble of N sparsely randomly distributed isolated macro-
scopic scatterers, the scatterer centers being defined by radius-vectors r1, . . . rN ,

and scattering characteristics—by scattering parameters s1, . . . sN . The electrical
field vector of the electromagnetic wave in some spatial point r can be written as

Einc(r, k0, t) � Einc (r, k0) e −i ω t � Einc ei(ω /c)k0r e−i ω t , (3.1)

where k0 � (ω/c)k0 is the wave vector of incident wave, k0 is the unit vector, normal
to the wave front, E is the vector defining the electromagnetic wave polarization.

The electrical field of electromagnetic wave, scattered by the isolated scatterer
with center location at the point rn, can be defined as the solution of the boundary-
value problem for vector wave equation (Newton 1969), and in far-field zone of the
scatterer can be written as

Esc(r, rn) � Ĝ(◦)(|r − rn|) Â(rn, sn; k0 → kn0)Einc(rn, k0), (3.2)

where

kn0 � r − r0
|r − r0| , k0|r − r0| � 1, (3.3)

Ĝ(◦)(|r − r0|) � ( Î − kn0kn0) · e
i(ω/c)|r−r0|

|r − r0| , (3.4)

and Ĝ(◦)(|r − r0|) is the asymptotic expression in far-field zone for Green function
of the vector wave equation. The linear operator Â(rn, sn;k0 → kn0) entering into
the Eq. (3.2), is known as amplitude scattering operator. It defines the amplitude of
divergent spherical scattered wave in far-field zone which can be written as

Esc(r,kn0) � Ĝ(◦)(|r − rn|)Fsc(rn,kn0),

Fsc(rn,kn0) ≡d f Â(rn, sn;k0 → kn0)Einc(r0,k0) (3.5)

In the case of system of N fixed scatterers the electrical field is the superposition of
the waves scattered by all scatteres. Due to the condition (05) any scattered wave can
be considered as locally plane one, and therefore all the wave vector directions are
definitely specified. Indeed, let Esc(r, rn) is the electric field vector at the point r,
scattered by the scatterer located at the point rn and propagated further to the point
r without scattering. Then one can write
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E(r) � Einc(r,k0) +
N
∑

n�1

Esc(r; rn), (3.6)

Esc(r; rn) � Ĝ(◦)(|r − rn|){ Â(rn, sn;k0 → kn0)Einc(r0,k0)

+
N
∑

m ��n

Â(rn, sn;kmn → kn0)Esc(rn; rm)}, n � 1, . . . N , (3.7)

where

kn0 � r − rn
|r − rn| , kmn ≡d f

rn − rm
|rn − rm | , (3.8)

Putting in Eq. (3.7) r � rk one can obtain the system of equations for Esc(rk, rn)
which can be considered as the basic system of equations for the problem of multiple
scattering. The system (3.7) is intuitively clear because it accounts for each scatterer
of the ensemble the fact of presence of all the other scatterers. The systemwaswritten
first by Foldy (1945) for the ensemble of isotropic-scattering point scatterers. It was
further extended by Lax (1951) to the case of ensemble of scatterers with arbitrary
operator of scattering amplitude. Later Watson showed (Watson 1969) that the exact
solution of vector wave equation satisfies the system (3.7) written for system of point
dipoles.

The Eqs. (3.6) and (3.7) can be presented in more usual form after substitution
the expression for Esc(r, rn) into the right-hand part of the Eq. (3.7). The expansion
of E (r) in the form of series on scattering multiplicity then can be seen:

E(r) �Einc(r,k0) +
N
∑

n�1

Ĝ(◦)(|r − rn|) Â(rn, sn,k0 → kn0)Einc(rn,k0)+

+
N
∑

n�1

N
∑

m ��n

Ĝ(◦)(|r − rn|) Â(rn, sn,kmn → kn0)Ĝ(◦)(|rn − rm |)·

· Â(rm, sm,k0 → kmn)Einc(rm,k0) + . . . (3.9)

The second term inEq. (3.9) obviously corresponds to the contribution from single
scattered incident wave by all the scatterers of the ensemble, the third term—to the
contribution from secondly scattered wave and so on.

Define now the bases for calculation of electric field of electromagnetic wave
that are necessary for polarization calculation. The matrix of amplitude scattering
operator is usually defined in such a way that the matrix elements Aαβ(r, s;k′ →
k), α, β � 1, 2 relate the components Einc

α (r,k′) of electrical field vector Einc(r,k′)
of electromagnetic wave, incident to the scatterer in the direction k′ and calculated
in some basis {e′

1, e
′
2,k′}, with the components Fsc

β (r,k), β � 1, 2 of the amplitude
of electric field of the wave, scattered in the direction k and calculated in some basis
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{e1, e2, k}. We define these bases as B(s ′)(k′) and B(s)(k) , correspondingly, and
define their vectors by the formulas:

⎧

⎪⎪⎨

⎪⎪⎩

e(s
′)

2 � e2(k′) � k × k′

|k × k′| , e(s
′)

1 � e(s
′)

2 × k′,

e(s
′)

3 � k′ � e(s
′)

1 × e(s
′)

2 ,

(3.10)

⎧

⎨

⎩

e(s)2 � e2(k) � e(s
′)

2 , e(s)1 � e(s)2 × k,

e(s)3 � k � e(s)1 × e(s)2 .
(3.11)

At (ω/c)k(r − r0) � 1 the system of Eq. (3.7) can be written in components as
follows:

Esc(r, rn) �
2
∑

α�1

E (s) sc
α (r,kn0)e(s)(kn0); E (s) sc

α (r,kn0) ≡d f (Esc(r, rn), e(s)α (kn0)),

(3.12)

Einc(r,k0) �
2
∑

β�1

E (s ′)inc
β (r,k0)e(s

′)(k0); E (s ′)inc
β (r,k0) ≡d f (Einc(r,k0), e

(s ′)
β (k0)),

(3.13)

E (s)sc
α (r,kn0) � ei(ω/c)|r−rn |

|r − rn| {
2
∑

β�1

Aαβ(rn, sn,k0 → kn0)E
(s ′)inc
β (rn,k0)

+
N
∑

m ��n

2
∑

β ′�1

Aαβ ′(rn, sn,kmn → kn0)E
(s ′) sc
β ′ (rn,kmn)}. (3.14)

After introduction of the notations

E(s)sc(r,kn0) ≡d f

[

E (s)sc
1 (r,kn0)

E (s)sc
2 (r,kn0)

]

Â(s)(r, s,k′ → k) ≡d f

[

A11(r, s,k′ → k) A12(r, s,k′ → k)

A21(r, s,k′ → k) A22(r, s,k′ → k)

]

,

the system of Eq. (3.14) can be rewritten in the form

E(s)sc(r,kn0) � ei(ω/c)|r−rn |

|r − rn| { Â(s)(rn, sn,k0 → kn0)E(s ′) inc(rn,k0)

+
N
∑

m ��n

Â(s)(rn, sn,kmn → kn0)E(s ′)sc(rn,kmn)}. (3.14*)
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Besides the bases B(s ′)(k′) and B(s)(k) that are related to the plane of scattering
it is necessary to introduce also the bases that would be naturally related to the
dispersed medium. One of the proper bases is B(0)(k) � {e(1)(k), e(2)(k)} which
vectors coincide with the polarization vectors of normal waves propagating in the
direction k in the dispersed anisotropic medium. The vectors of the basis B(0)(k)
satisfy the conditions

(e(α)(k), e(α)(k)) � 1, (e(α)(k),k) � 0, α � 1, 2; (e(1)(k), e(2)(k)) � 0. (3.15)

Another basis of real-valued vectors that is convenient for Stokes parameters
calculation, can be defined as follows. Let n0 be some physically selected direction
in the medium. Define the vectors of the basis B(l)(k) � {e(l)1 (k), e(l)2 (k), e(l)3 (k)} by
the formulas

⎧

⎪⎪⎨

⎪⎪⎩

e(l)2 (k) � n0 × k
|n0 × k| , e(l)1 � e(l)2 × k,

e(l)3 � k � e(l)1 × e(l)2 ,

(3.16)

The components of vector Esc (r, k) in different bases are connected by the known
linear transformations. For example, if we put

E(l)sc(r,k) � L̂(k)E(s)sc(r,k), (3.17)

where

Lαβ(k) � (e(s)α (k), e(l)β (k)), α, β � 1, 2, (3.18)

then the matrix of amplitude operator, defining the relation between the compo-
nents of the vectors F(l)sc(r,k) and F(0)sc(r,k), is expressed through the matrix
Â(s)(r, s;k′ → k) by the known formula

Â(l)(r, s,k′ → k) � L̂(k) Â(s)(r, s,k′ → k)L̂−1(k′) (3.19)

4 Statistical Description of the Medium. Configuration
Averaging

Following the method developed in (Foldy 1945; Lax 1951; Watson 1969), we
define configuration ensemble of scatterers by introduction of the probability density
PN (r1, . . . rN ; s1, . . . sN ) so that PN�N

k = 1drkdsk is the probability to find N scat-
terers inside the volume element�N

k = 1drkdsk of the 3N ·N-dimensional phase space.
Obviously, the functions PN (r1, . . . rN ; s1, . . . sN ) should satisfy the normalization
condition
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∫

V

. . .

∫

V

smax∫

smin

. . .

smax∫

smin

PN (r1, . . . rN ; s1, . . . sN )�N
k = 1drkdsk � 1. (4.1)

The probability density for single scatterer with given scattering properties is
defined by

P1(r j , s j ) �
∫

V

. . .

∫

V

smax∫

smin

. . .

smax∫

smin

PN (r1, . . . rN ; s1, . . . sN )�N
k ��jdrkdsk, (4.2)

and for given scatterer pair—by the expression

P2(r j , s j ) �
∫

V

. . .

∫

V

smax∫

smin

. . .

smax∫

smin

PN (r1, . . . rN ; s1, . . . sN )�N
k ��i,jdrkdsk. (4.3)

For statistically independent scatterers we obviously have

PN (r1, . . . rN ; s1, . . . sN ) � �N
k = 1P1(r j , s j ), (4.4)

and the difference

P2(ri , r j ; si , s j ) − P1(ri , si )P1(r j , s j )

characterizes the correlation degree between the scatterers. For ensemble of corre-
lated scatterers it is convenient to express P2(ri , r j ; si , s j ) in terms of correlation
functions g2(ri , r j ; si , s j ) :

P2(ri , r j ; si , s j ) � P1(ri , si )P1(r j , s j ){1 + g2(ri , r j ; si , s j )}. (4.5)

We will use further the approximation

g2(ri , r j ; si , s j ) � 0 at
∣
∣ri − r j

∣
∣ > Rc. (4.6)

The number of scatterers of all types in unitmediumvolume, located in the vicinity
of spatial point r, is defined by

n(r) �
smax∫

smin

P1(r, s)ds. (4.7)

The density of scatterers with scattering parameter s, and their correlation density
are given by the expressions
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ρ(r, s) � NP1(r, s), (4.8)

n(r, r′; s, s ′) � N 2P2(r, r′; s, s ′). (4.9)

It is convenient to introduce the conditional probabilities for calculation of con-
figuration averages:

PN (r1, . . . rN ; s1, . . . sN ) � P1(ri , si )P (i)
N−1(r1, . . . rN ; s1, . . . sN/ri , si )

� P2(ri , r j ; si , s j )P (i, j)
N−2(r1, . . . rN ; s1, . . . sN/ri , r j ; si , s j ).

(4.10)

Then configuration average for some random function F(r1, . . . rN ; s1, . . . sN ) can
be expressed as

〈F(r)〉 ≡d f

∫

V

. . .

∫

V

smax∫

smin

. . .

smax∫

smin

F(r1, . . . rN ; s1, . . . sN )×

× PN (r1, . . . rN ; s1, . . . sN )�N
k = 1drkdsk. (4.11)

The conditional averages are defined by the usual formulas

〈F(r)〉i ≡d f

∫

V

. . .

∫

V

smax∫

smin

. . .

smax∫

smin

F(r1, . . . rN ; s1, . . . sN )P (i)
N−1�

N
k��idrkdsk, (4.12)

and the relation

〈F(r)〉 �
∫

V

smax∫

smin

〈F(r)〉iP1(ri , si )dri dsi (4.13)

obviously takes place. If the correlation between the scatterer locations and its states
is absent, one can write

ρ(r, s) � ρ(r)q(s),

where ρ(r) is the average scatterer density (independently on the scatterer sort).

5 Coherently Scattered Radiation. The Relation Between
Medium Optical Parameters and Scattering
Characteristics of Individual Scatterers

The system of Eqs. (3.6)–(3.7) allows, in principle, to exactly solve the problem of
electromagnetic wave multiple scattering by arbitrary ensemble of scatterers. How-
ever, since N is very great, only statistically averaged solution (over scatterer con-
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figurations and scattering characteristics) is of interest. We perform the averaging
of the system (3.6) in the frames of accepted restrictions. The approximate integral
equation for averaged electromagnetic field in the medium (the field of coherently
scattered wave) can be obtained as the result.

By performing the averaging procedure of both the sides of the Eq. (3.7) (with
accounting (4.12)–(4.13)) one can find

〈Esc(r)〉 �
N
∑

n

Ĝ(◦)(|r − rn|){〈 Â(rn, sn;k0 → kn0)〉nEinc(rn,k0)

+
N
∑

n

〈 Â(rn, sn;kmn → kn0)Esc(rn; rm)〉mn}. (5.1)

Under the accepted approximation that coherent scattering occurs only in exact
forward direction, (see the condition (06)) in the simplest case of the ensemble of
statistically independent scatterers the Eq. (5.1) can be reduced to the equation

〈Esc(r,k0)〉 �
∫

V

Ĝ(◦)(
∣
∣r − r′∣∣)Â(r′;k0 → k0){Einc(r′,k0) +

N
∑

n

〈Esc(r′,k0)〉r′ }dr′,

(5.2)

where 〈Esc(r′,k0)〉r′ is the field of scattered wave in the vicinity of scatterer located
at the point r′ , averaged over the locations of all the scatterers besides the scatterer
itself.

Following (Watson 1969), the additional approximation in the process of averag-
ing of Eq. (3.7) was also used:

〈Esc(r, r′)〉r′ ≈ 〈Esc(r, r′)〉. (5.3)

From physical viewpoint it means that the radiation field is only slightly different
from the field that would occur at the vicinity of the point r′ if the scatterer be
absent at the point. Obviously, the approximation (5.3) is fulfilled well for very large
scatterer ensembles (at N � 1 ). For ensemble of correlated scatterers the simplest
approximation can be written as (Lax 1951)

〈Esc(r, r′)〉r′ ≈ c〈Esc(r, r′)〉, (5.4)

where the constant c is defined by the mean level of correlations. Accepting the
approximation (5.3) and setting

Ec(r,k0) � Einc(r,k0) + 〈Esc(r,k0)〉, (5.5)

one can obtain the following integral equation for Ec(r, k0) :



Polarized Radiation Transport Equation in Anisotropic Media 117

Ec(r,k0) � Einc(r,k0) +
∫

dr′Ĝ(◦)(
∣
∣r − r′∣∣)Â(r′;k0 → k0)Ec(r′,k0), (5.6)

where

Â(r;k0 → k0) � c

smax∫

smin

ρ(r, s) Â(r, s;k0 → k0)ds. (5.7)

Applying the operator ∇ × ∇ × f + (ω/c)2f to both the sides of the Eq. (5.6)
and using the equation for Green function Ĝ(

∣
∣r − r′∣∣), one will found that Ec(r,k0)

satisfies the differential equation

∇ × ∇ × Ec(r,k0) + (ω/c)2n̂2(r,k0)Ec(r,k0) � 0, (5.8)

where

n̂2(r,k0) ≡d f Î + 4π (ω/c)−2Â(r;k0 → k0). (5.9)

So, the coherently scattered radiation field satisfy the wave equation for contin-
uous optically anisotropic medium with the refractive index operator n̂(r,k0) that
is defined by statistically averaged operator of scattering amplitude of individual
scatterers (concerning the properties of n̂(r,k0) see (Newton 1969), for example).
For sparse dispersed medium, when

∣
∣nαβ (r,k0) − 1

∣
∣ � 1, α, β � 1, 2, (5.10)

one can obtain from Eq. (5.9):

n̂(r,k0) ≈ Î + 2π (ω/c)−2Â(r;k0 → k0). (5.11)

If scatterer spatial distribution and the distribution on scattering characteristics
are not correlated, that is, when

ρ(r, s) � ρ(r)q(s),

the operator n̂(r,k0) can be expressed by the formula

n̂(r,k0) ≈ Î + 2π (ω/c)−2ρ(r)

smax∫

smin

Â(r, s;k0 → k0)ds. (5.11a)

So, for homogeneous medium we have



118 M. G. Kuzmina

n̂(k0) ≈ Î + 2π (ω/c)−2ρ

smax∫

smin

Â(s;k0 → k0)ds. (5.11b)

At last, if the scatterer ensemble consists of discrete collection ofM scatterer sorts
each being distributed with constant density, then

n̂(k0) ≈ Î + 2π (ω/c)−2
M
∑

m�1

Nm Âm(k0 → k0). (5.11c)

where Nm is the number of scatterers of sortm in the unit volume. Therefore, in gen-
eral case the coherently scattered electromagnetic wave consists of two independent
waves:

Ec(r,k0) �
2
∑

α�1

E (α)e(α)(k0)ei(ω/c)(n(α)+iκ (α)), E (α) � (Einc, e(α)), α � 1, 2.

(5.12)

The polarization vectors of normal waves e(1,2)(k0) (not orthogonal in general
case), their refractive indices n(1,2)(k0), and absorption coefficients κ (1,2)(k0) are
defined by the eigenvalues Â(1,2) and the eigenvectors e(1,2)(k0) of the operator
Â(r, k0 → k0)(see Supplement):

n(α)(k0) � 1 + 2π (ω/c)−2ReA(α)(r;k0 → k0), (5.13)

κ (α)(k0) � 2π (ω/c)−2ImA(α)(r;k0 → k0), α � 1, 2. (5.14)

The formulas (5.11) allow to analyze the dependence ofmediumoptical character-
istics on the features of scatterer ensemble. Consider, for example, a slab of dispersed
medium composed of identical scatterers oriented at the same angle respectively the
slab normal and completely chaotically distributed over the azimuth angle. Then
simple qualitative considerations give the result: linear birefringence and dichroism
cannot be inherent to the dispersedmedium. On the contrary, themedium can possess
only circular birefringence and dichroism in the case. In general, optical anisotropy
of dispersed medium composed of completely chaotically distributed non-spherical
scatterers can arise only in the case of scatterers of special shape (with broken mirror
symmetry).

Accounting of correlations leads to appearance of additional term in the formula
(5.9). For dispersedmedium composed of point dipoles the additional correction term
in the formula for medium refractive index (arising due to pair scatterer correlations)
was obtained by Watson (1969). The method of calculating of the correction term
to n̂2 ( k) due to pair correlations, developed in (Watson 1969), can be extended to
the case of scatterers with arbitrary amplitude scattering operator (it is performed at
present paper, see Eqs. (7.14), (7.18)).
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6 System of Equations for Non-coherently Scattered
Radiation

To calculate the non-coherently multiply scattered radiation field defined by
Eq. (5.12) it is helpful to pass from the system of Eqs. (3.6)–(3.7) to the new one,
where the decomposition of multiply scattered electromagnetic wave into the sum of
coherently and non-coherently scattered waves would be performed. Let Fsc(r, rn)
be the electrical field vector of non-coherently scattered wave by the scatterer located
at the point rn and transferred to the point r after undergoing coherent scattering only.
Then one can write:

E(r) � Ec(r,k0) +
N
∑

n�1

Fsc(r, rn) � Ec(r,k0) + Fsc(r), (6.1)

Fsc(r) ≡d f

N
∑

n�1

Esc(r, rn) − {Esc(r,k0) − Einc(r,k0)},

〈Fsc(r)〉 � 0. (6.2)

The functions Fsc(r, rn) satisfy the system of equations

Fsc(r, rn) � Ĝ(|r − rn|;kn0){Â(rn, sn;k0 → kn0)Ec(rn,k0)

+
N
∑

n

Â(rn, sn;kn0 → kmn)Fsc(rn, rm)}, (6.3)

where Ĝ(|r|, k) is the asymptotic expression for Green function of thewave Eq. (5.8)
in infinite continuous anisotropic medium in far field zone (Newton 1969; Law and
Watson 1970). In the case of homogeneous anisotropic medium the elements of
matrix-function Ĝ(|r|, k) are defined by simple expressions. Being calculated in
the basis {e(1)(k), e(2)(k), k }, where e(α)(k), α � 1, 2 are the eigenvectors of
the operator Â(r,k0 → k0), and n(α)(k), α � 1, 2 are defined by its eigenvalues
accordingly to (5.13), the matrix Ĝ(|r|, k) is the diagonal matrix with the elements

Ĝαα(|r|,k) � r−1ei(ω/c)n(α)(k)r , α � 1, 2, Ĝ33(|r|,k) � 0. (6.4)

Following (Watson 1969), the system of Eq. (6.3) can be derived from (5.2) via
using the series on multiply scattered waves and performing the configuration aver-
aging procedure. As a result we obtain the following decomposition for Fsc(r; rn) :
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Fsc(r; rn) �
N
∑

n

{
2
∑

α�1

G(α)(|r − rn |; kn0)e(α)(kn0)
2
∑

α�1

A(◦)αβ (rn, sn ; k0 → kn0)Ecβ (r0,k0)

+
2
∑

α�1

G(α)(|r − rn |; kn0)e(α)(kn0)×

×
N
∑

m ��n

2
∑

β ′�1

A(◦)αβ ′
(rn, sn ; kmn → kn0)F (◦)β ′

(rn, rm ; kmn)}

�
N
∑

n�1

2
∑

α�1

F (◦)α(r, rn ; kn0)e(α)(kn0). (6.5)

Defining F(◦)(r, rn ;kn0) as

F(◦)(r, rn;kn0) ≡d f

[

(Fsc(r, rn), e(1)(kn0))

(Fsc(r, rn), e(2)(kn0))

]

, (6.6)

we have

F(◦)(r, rn;kn0) � Ĝ(◦)(|r − rn|,kn0){ Â(◦)(rn, sn;k0 → kn0)E(◦)c(rn,k0)

+
N
∑

m ��n

Â(◦)(rn, sn;kmn → kn0)F(◦)(rn, rm ;kmn)}, (6.7)

where the matrices Â(◦)(rn, sn;k0 → kn0), Â(◦)(rn, sn;kmn → kn0), and the
columns Ec(r,k0),F(◦)(rn, rm ;kmn) are defined by formulas (3.17), (3.19), and
Ĝ(◦)(|r − rn|,kn0) is the matrix of second order with the elements

G(◦)αβ(|r − rn|,kn0) � G(α)(|r − rn|,kn0)δαβ, G(α) � |r − rn|−1ei(ω/c)n(α)(kn0)|r−rn |.
(6.8)

7 Integral Radiation Transport Equation

Radiation transport equation for scattering medium is usually written either for
two-dimensional coherence matrix Ĵ (r,k) or for four-component polarization vec-
tor I(r,k) � [I1(r,k), I2(r,k), I3(r,k), I4(r,k)]T which components are lin-
ear combinations of the matrix Ĵ (r,k) (for example, for Stokes vector IS(r,k) �
[I (r,k), Q(r,k),U (r,k), V (r,k)]T ). The elements of the coherence matrix Ĵ (r,k)
are calculated in some basis {e(l)1 (k), e(l)2 (k)}, that is naturally related to the medium
and satisfies the conditions (e(l)α ,k) � 0, α � 1, 2. The elements Jαα(r,k) of the
Ĵ (r,k) define the values of radiation flux density propagating along the direc-
tion k inside unit solid angle and possessing the polarization states e(l)α (k). If
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(e(l)α , e(l)β ) � δαβ, the value I (r,k) � Tr Ĵ (r,k) is the radiation intensity, prop-
agating along the direction k inside unit solid angle. Then we have

Jαβ(r,k) � (c/8π )〈E (l)
α (r,k)E (l)

β (r,k)〉 (7.1)

In the case the basis {e(1)(k), e(2)(k)} is convenient to be chosen as the basis
{e(l)1 (k), e(l)2 (k)}.

Before calculating the elements of the coherencematrix it is necessary to introduce
some auxiliary variables. Let r be an observation point, remote from the volume of
scattering medium (|r| � |rn|, n � 1, . . . N ), and {e1(k), e2(k),k} be some given
basis. Put

Uαβ(r,k) � (c/8π )〈(eα(k),E(r))(eβ (k),E(r))∗〉 (7.2)

and

Uc
αβ(r,k0) � (c/8π )(eα(k0),Ec(r))(eβ(k0),Ec(r))∗. (7.3)

Obviously,Uαα(r,k) is the value of radiation flux density of polarization state eα,

scattered by the medium in the direction k. Now one should substitute the expression
(6.1) forE(r) into the Eq. (7.2) and perform the averaging. Due to the condition (6.2)
one can obtain the result:

Uαβ(r,k) �
2
∑

α′,β ′
(eα(k), e(α

′)(k0))(eβ(k), e(β
′)(k0))∗Uc

α′β ′(r,k0)

+
N
∑

m,n

2
∑

α′,β ′
〈(eα(k), e(α

′)(kn0))(eβ(k), e(β
′)(km0))

∗Fα′(r,kn0)Fβ ′(r,km0)〉.

(7.4)

By using the condition (6.2) it is possible to represent the averaged second term
in the Eq. (7.4) in the form

(c/8π )
∫

V

smax∫

smin

drndsn
2
∑

α′,β ′
(eα(k), e(α

′)(kn0))(eβ (k), e(β
′)(kn0))∗{〈F (◦)

α′ (r,kn0)F
(◦)∗
β ′ (r,kn0)〉n

+
∫

V

smax∫

smin

drmdsmρ(rm )q(sm )g2(rn, rm ; sn, sm )〈F (◦)
α′ (r,kn0)F

(◦)∗
β ′ (r,kn0)〉mn} (7.5)

Really, in the Eq. (7.5) the term containing the factor ρ(rn)ρ(rm)q(sn)q(sm) (that
would correspond to the contribution into Uαβ(r,k) from coherently scattered radi-
ation) vanishes because all the contributions from coherent scattering have been
already taken into account via the term Uc

αβ(r,k). Besides, due to the conditions
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|r − rn| � O(l), |rn − rm | � O(Rc), one can put e(α)(kn0) � e(α)(km0). Define
further the value

Jαβ

(

r, r′,k′) ≡d f
c

8π
ρ
(

r′)
smax∫

smin

q
(

s ′)ds ′{
〈

F (◦ )∗
α

(

r,k′
n0
)

F (◦)∗
β

(

r,k′
n0
)〉

n

+
∫ ∫ smax

smin

ρ(rm)q(sm)g2(rn, rm ; sn, sm)δ
[rn + rm

2
− r′

]

〈

F (◦)
α (r,kn0)F

(◦)∗
β (r,km0)

〉

mn
}. (7.6)

Substitute nowEq. (7.6) into Eq. (7.5) and after that the Eq. (7.5) into the Eq. (7.4).
Then, assuming that e(α)(kn0) ∼� e(α)

(

k′), one can obtain the following expression
for Uαβ(r,k):

Uαβ(r,k) �
2
∑

α′β ′

(

eα, e(α
′)(k0)

)(

eβ, e(β ′)(k0)
)∗
Uc

αβ(r,k0)

+
∫

V
dr′

2
∑

α′β ′

(

eα, e(α
′)
(

k′)
)(

eβ, e(β
′)
(

k′)
)∗

Jα′β ′
(

r, r′,k′) (7.7)

At α � β the integrand in the second term of the Eq. (7.7) represents the mean
of radiation energy density of polarization state eα, coming to the point r from unit
volume of the scattering medium located in the vicinity of the point r′. Let now the
unit vector k be the vector defining some direction. The coherence matrix elements
that are of interest for the considered problem can be defined by the formula (Watson
1969):

Jαβ(r,k) � Uc
αβ(r,k0)δ(k − k0) +

∫

−k

∣
∣r − r′∣∣2d

∣
∣r − r′∣∣Jαβ

(

r, r′;k
)

. (7.8)

The integral in the Eq. (7.8) is calculated along the line specified by the vector
−k � −(r−r′)(

∣
∣r − r′∣∣)−1.Comparing the Eq. (7.8) and the Eq. (7.7) one can easily

see that

Uαβ(r,k) �
∫

d�k′

2
∑

α′β ′

(

eα, e(α
′)(k′)

)(

eβ, e(β ′)
(

k′)
)∗

Jα′β ′
(

r,k′). (7.9)

Nowall the necessary values for the radiation transport equation have been already
defined. However, before the obtaining of the equation itself it is appropriate to spec-
ify the approximations for the Green function and the polarization characteristics of
coherently scattered radiation that will figure in the process of configuration averag-
ing. Since the locations of the points rn . rm, r, r′ satisfy the conditions
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|rn − rm | � O(Rc),
∣
∣r − r′∣∣ � O(Rc), |r − rn| � O(l), |r − rm | � O(l),

∣
∣r′ − rn

∣
∣ � O(l),

∣
∣r′ − rm

∣
∣ � O(l),

it is possible to use the approximations

G(α)(|r − rm |,km0) � ei
ω
c n

(α)(kn0)kn0(rn−rm )G(α)(|r − rn|;kn0), (7.10)

G(α)
(∣
∣r′ − rn

∣
∣,kn0

) � ei
ω
c n

(α)(kn0)kn0(r′−r)G(α)(|r − rn|;kn0), (7.11)

Fα

(

r′, rn
) � ei

ω
c n

(α)(kn0)(r′−r)Fα(r, rn), (7.12)

Fα(r, rn) �G(α)(|r − rn|,kn0){ei ω
c n

(α)(kn0)(kn0−k0)(rn−rm )

·
2
∑

β

A(◦)
αβ(rn, sn;k0 → kn0)Ec

β(rn,k0)

+
∑

p ��n

ei
ω
c n

(α)(kn0)(kn0−kmn)(rn−rp)
2
∑

β ′
A(◦)

αβ ′
(

rn, sn;knp − kn0
)

F (◦)
β ′
(

rn, rp
)}.

(7.13)

Substitute now the expression for Fα(r′, rn) into the formula (7.6) and per-
form the configuration averaging operation for the Eq. (7.6) under accounting the
Eqs. (7.10)–(7.13). Using the vector notations we obtain the following expression
for the value J(r, r′,k) :

J
(

r, r′,k
) ≡d f

c

8π

smax∫

smin

ρ(rn, sn)dsn{
.

〈F(◦)(r,kn0) ⊗ F(◦)∗(r,kn0)〉n +

+
∫

V

smax∫

smin

ρ(rm, sm)g2(rn, rm ; sn, sn)dr′dsnδ
[rn + rm

2
− r′

]

〈
.

F(◦)(r,kn0)

⊗
.

F(◦)∗(r,kn0)〉mn} (7.14)

Finally we have:

J
(

r, r′;k
) � [Ĝ(◦)(∣∣r − r′∣∣,k

)⊗ Ĝ(◦)∗(∣∣r − r′∣∣,k
)

]{P̂(r′;k0 → k
)

Jc
(

r′,k0
)

+
∫

d�k′ P̂
(

r′;k′ → k
)

J
(

r′,k′)}, (7.15)

where

P̂
(

r;k′ → k
) � L̂(k)�̂

(

r,k′ → k
)

L̂−1
(

k′), (7.16)
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L̂(k) � L̂(k) ⊗ L̂∗(k), (7.17)

�̂
(

r,k′ → k
) �

Smax∫

Smin

dsρ(r, s)
{

Â(s)
(

r, s;k′ → k
)⊗ Â(s)∗(r, s;k′ → k

)
}

+

∫

V

smax∫

smin

dr′ds ′ρ
(

r′, s ′)g2
(

r, r′; s, s ′)ein̂(k)(k∼k′)(r∼r′)·

·
{

Â(s)
(

r′, s ′;k′ → k
)⊗ Â(s)∗(r′, s ′;k′ → k

)
}

, (7.18)

ein̂(k)x ≡d f

(

ein
(1)(k)x 0

0 ein
(2)(k)x

)

⊗
(

ein
(1)(k)x 0

0 ein
(2)(k)x

)

. (7.19)

Multiplying both the sides of Eq. (7.14) by
∣
∣r − r′∣∣2d

∣
∣r − r′∣∣ and performing the

integration along the direction −k , one can obtain the equation

J(r,k) � Jc(r,k0)δ(k − k0)+
∫

−k

∣
∣r − r′∣∣2d

∣
∣r − r′∣∣Ĝ(◦)(∣∣r − r′∣∣,k

)⊗ Ĝ(◦)∗(∣∣r − r′∣∣,k
)

∫

d�k′ P̂
(

r′;k′ → k
)

J
(

r′,k′) (7.20)

At last, using the expressions for refractive indices of normal waves in anisotropic
medium and attracting the optical theorem according to which the relations take
place

σ
(α)
t (k) � 4π

(ω

c

)−1
Im A(α)(k → k), (7.21)

the following expression for Ĝ(◦)(∣∣r − r′∣∣,k
)⊗ Ĝ(◦)∗(∣∣r − r′∣∣,k

)

can be obtained

Ĝ(◦)(r,k) ⊗ Ĝ(◦)∗(r,k)

� r−2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

e−σ (1)(k)r 0 0 0

0 ei
ω
c [ñ(1)(k)−ñ(2)(k)]− σ(1)+σ (2)

2 r 0 0

0 0 ei
ω
c [ñ(1)(k)−ñ(2)(k)]− σ(1)+σ (2)

2 r 0

0 0 0 e−σ (2)(k)r

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(7.22)

Now we are able to write the final version of integral transport equation for polar-
ization vector J(r,k) , calculated in the basis {e(1)(k), e(2)(k)} :

J(r,k) � Jc(r,k0)δ(k − k0) +
∫

−k

d
∣
∣r − r′∣∣eD̂(|r−r′|)

∫

d�k′ P̂
(

r′;k′ → k
)

,

(7.23)
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eD̂(r) ≡d f r
2
[

Ĝ(◦)(r,k) ⊗ Ĝ(◦)∗(r,k)
]

. (7.24)

8 Integro-Differential Radiation Transport Equation. The
Drift Operator

By differentiation of the Eq. (7.23) along the direction k one can obtain the integro-
differential radiation transport equation that can be written as

(k,∇)J(0)(r,k) + D̂(0)(k)J(0)(r,k) �
∫

P̂ (0)(r; k′ → k
)

J(0)
(

r,k′)d�k′ , (8.1)

D̂(0)(k) �
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ
(1)
t (k) 0 0 0

0 1
2

[

σ (1)(k) + σ (2)(k)
]

+ iωc
[

ñ(1) − ñ(2)
]

0 0

0 0 1
2

[

σ (1)(k) + σ (2)(k)
]− iωc

[

ñ(1) − ñ(2)
]

0

0 0 0 σ
(2)
t (k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8.2)

The Eqs. (8.1)–(8.2) looks like vector radiation transport equation for optically
isotropic medium with the following exceptions:

(1) the Eq. (8.1) is written for the polarization vector J(0)(r,k) defined in the basis
of eigenvectors of the operator Â(r, k → k);

(2) the differential operator of integro-differential radiation transport equation
for optically anisotropic medium differs from that one for optically isotropic
medium by the presence of matrix operator D̂(k) that is responsible for inter-
ference effects causedby the different phase velocities and absorptions of normal
waves in anisotropic medium;

(3) the structure for scattering operator P̂(r;k′,k) (see the Eqs. (7.16)–(7.19))
reveals the relation between the scattering properties ofmediumvolume element
and microscopic medium characteristics (the amplitude scattering operator of
individual scatterers) and the features of scatterer statistical distribution.

The Eq. (8.1) can be transformed into that one written for another polarization
vector I(r,k), connected with J(0)(r,k) by linear transformation and defined in
some basis {e(l)1 (k), e(l)2 (k)}, naturally related to geometry of scattering medium. In
particular, the transport equation can be written for the Stokes vector, IS(r,k). Let
J(0)(r,k) be the polarization vector defined in the basis {e(1)(k), e(2)(k)} of normal
waves (in general, not orthonormal), the polarization vector J(l)(r,k) be the same
polarization vector defined in some “laboratory” orthonormal basis {e(l)1 (k), e(l)2 (k)},
and �̂0(k) be the matrix with elements

�0
αβ(k) � (e(α)(k), e(β)(k)), α, β � 1, 2.
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Then, as one can be convinced, there is the following relation between J(0)(r,k)

and J(l)(r,k):

J(l)(r,k) � L̂(k)J(0)(r,k), J(0)(r,k) � �̂(k)L̂+(k)J(l)(r,k), (8.3)

where

L̂(k) � L̂T (k) ⊗ (L̂T (k))∗, L̂αβ � (e(α), e(l)
β ), α, β � 1, 2, (8.4)

�̂(k) �
[

�̂T
0 (k)

]−1 ⊗
[

�̂0(k)
]−1

(8.5)

�̂0(k) �
[

1 a
a∗ 1

]

, a � (e(1), e(2)), (8.6)

�̂(k) � 1

1 − aa∗

⎡

⎢
⎢
⎢
⎣

1 −a −a∗ aa∗

−a∗ 1 a2 −a∗

−a a2 1 −a
aa∗ −a −a∗ 1

⎤

⎥
⎥
⎥
⎦

(8.7)

Apply now the linear transformation �L+ to the transport Eq. (8.1) taking into
account the relations (8.3). As a result we obtain the following transport equation for
the polarization vector J(l)(r,k) :

(k,∇)J(l)(r,k) + D̂(l)(k)J(l)(r,k) �
∫

P̂ (l)
(

r;k′ → k
)

J(l)
(

r,k′)d�k′ , (8.8)

where

D̂(l)(k) � L̂(k) D̂(0)(k) �̂(k) L̂+(k),

P̂ (l)(r,k′ → k) � L̂ P̂ (0)(r,k′ → k)�̂L̂+. (8.9)

If it is necessary to write the transport equation for another polarization vector,
defined in the same basis, I(r,k) � T̂ J(l)(r,k), it can be realized via the following
transformation the transport equation:

(k,∇)I(r,k) + D̂(k)I(r,k) �
∫

P̂
(

r;k′ → k
)

I
(

r,k′)d�k′ , (8.10)

where

D̂(k) � ˆ̃L ˆ̃D(k)
ˆ̃
�

ˆ̃L+, P̂
(

r;k′ → k
) � ˆ̃L(k)

ˆ̃
Γ
(

r;k′ → k
)

L̃−1(k), (8.11)

ˆ̃A ≡d f T̂ Â T̂−1.
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In particular, for the Stokes polarization vector (I(r,k) � IS(r,k)) we have

T̂ S �

⎡

⎢
⎢
⎢
⎣

1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎤

⎥
⎥
⎥
⎦

, (T̂ S)−1 � 0.5

⎡

⎢
⎢
⎢
⎣

1 1 0 0
0 0 1 1
0 0 1 i
1 −1 0 0

⎤

⎥
⎥
⎥
⎦

(8.12)

Now we can write the radiation transport equation for the Stokes vector for some
typical particular situations. First of all notice that case of homogeneous optically
isotropic medium is realized under the condition

Â(r,k → k) � Â(k → k) � a0 Î2, (8.13)

where a0 is a constant¸ and Î2 is unit matrix of the second order. In the case any
orthonormal basis can be chosen as the basis {e(1)(k), e(2)(k)}, the basis vectors,
located in the plane orthogonal to the vector k, being either real-valued or complex-
valued. If radiation transport problem is considered in the slab, n0 being the normal
to the slab surface, it is convenient to choose

e(l)
2 (k) � e(0)

2 (k) � n0 × k
|n0 × k| , e(l)

1 (k) � e(0)
1 (k) � e(0)

2 × k. (8.14)

So, in the case of isotropic medium we have

L̂(k) � �̂(k) � Î4, (8.15)

where Î4 is the unit diagonal matrix of fourth order. Therefore, the matrices of the
drift operator D̂(k) and of the scattering operator P̂ of transport equation can be
written in the form

D̂(k) � σt Î4, σt � Im a0, (8.16)

P̂
(

k′ → k
) � L̂ S(k)�̂S

(

k′ → k
)

[LS
(

k′)]−1, (8.17)

Γ̂ S
(

k′ → k
) � T̂ S�̂

(

k′ → k
)

[T̂ S]−1, (8.18)

L̂ S(k) � T̂ S[L̂T (k) ⊗ (L̂T (k))∗][T̂ S]−1 �

⎡

⎢
⎢
⎢
⎣

1 0 0 0

1 a2 − b2 2ab 0

0 −2ab a2 − b2 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

, (8.19)
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[L̂ S
(

k′)]−1 � T̂ S[L̂∗(k′) ⊗ (L̂T (k′))∗][T̂ S]−1 �

⎡

⎢
⎢
⎢
⎣

1 0 0 0

1 a′ 2 − b′ 2 −2a′b′ 0

0 2a′b′ a′ 2 − b′ 2 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

,

(8.20)

L̂αβ(k) � (e(l)
α (k), e(s)

β (k)), α, β � 1, 2, (8.21)

a � −(n0,k′) + (n0,k)(k,k′)
|k × k′||n0 × k| , a′ � (n0,k) − (n0,k′)(k,k′)

|k × k′||n0 × k′| ,

b � n0k k′

|k × k′||n0 × k| , b′ � n0k k′

|k × k′||n0 × k′| . (8.22)

The matrix Γ̂ in the formula (8.18) is defined by the expression (7.18), and the
vectors e(s)1 (k), e(s)2 (k)—by the formulas (3.10), (3.11).

Thus, the vector transport Eq. (8.10) with the operators D̂ and P̂ , defined by
formulas (8.16) and (8.17), describing transfer of multiply scattered electromag-
netic radiation in homogeneous optically isotropic medium, coincides with transport
equation that can be phenomenologically derived based on consideration of energy
balance relations (see, for example, (Chandrasekhar 1950)).

The transport equation for slab of optically anisotropic medium with linear bire-
fringence (linear double refraction) can deliver another example. Let the normal n0
to the slab surface coincides with the medium optical axis. As it is known, in the
medium two linearly polarized electromagnetic waves can propagate in each direc-
tion k in themedium, their refractive indices ñ(1)(k), ñ(2)(k) and polarization vectors
e(0)1 (k), e(0)2 (k) being specified by the formulas (8.14). So, the matrix Â( k → k) is
diagonal in the basis {e(0)1 (k), e(0)2 (k) },

Â(k → k) �
[

A(1)(k) 0

0 A(2)(k)

]

, (8.23)

and therefore¸ just as in the case optically isotropic medium, the relationship (8.15)
is valid. It means that the matrix of operator P̂(k′ → k) can be obtained according to
the formulas (8.19)–(8.22). Thematrix of operator D̂(k) can be also easily calculated
and written as

D̂ (k) � T̂ S D(l)[T̂ S ]−1

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.5[σ (1)(k) + σ (2)(k)] 0.5[σ (1)(k) − σ (2)(k)] 0 0

0.5[σ (1)(k) − σ (2)(k)] 0.5[σ (1)(k) + σ (2)(k)] 0 0

0 0 0.5[σ (1)(k) + σ (2)(k)] −(ω/c)[n(1) − n(2)]

0 0 (ω/c)[n(1) − n(2)] 0.5[σ (1)(k) + σ (2)(k)]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (8.24)
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The drift operator D̂(k) defines the law of propagation of coherently scattered
radiation in optically anisotropicmedium. Indeed, if non-coherent scattering is absent
(P̂(k′ → k) ≡ 0), then from Eq. (7.20) one obtains

I(r,k) � Ic(r,k), (8.25)

the polarization vector of coherently scattered radiation being satisfied to the differ-
ential equation

(k,∇)Ic(r,k) + D̂(k)Ic(r,k) � 0 (8.26)

The problem of coherently scattered radiation transfer through optically anisotropic
media, that represents an independent interest, was studied in a number of papers (see
for example (Sazonov 1969; Zheleznyakov et al. 1974; Sazonov 1974)). The paper
(Silant’ev 1971) contains the analysis of drift operator for various anisotropic media
composed of oriented isolated scatterers, small compared radiation wavelength, and
the analysis of properties of radiation coherently scattered and transferred in slabs
of the anisotropic media.

In the simplest case of anisotropicmediumwith linear birefringence the analysis of
drift operator D̂(k) allows to extract some features of coherently scattered radiation
by a slab of the anisotropic medium. For example, one can obtain the result: at
oblique incidence of parallel linearly polarized radiation flux to the slab surface of
the anisotropic medium the coherently scattered and transferred by the slab radiation
acquires elliptical polarization.

Supplement

Eigenvalues and eigenvectors of the operator Â(k → k)
Consider first the case of Hermitian matrix Â(k → k), representing it as

Â(k → k) �
[A′

11 A′
12

A′
12 A′

22

]

+ i

[

0 A′′
12

−A′′
12 0

]

, (S.1)

where

A′
αβ � ReAαβ, A′′

αβ � ImAαβ.

The eigenvalues A(1) and A(2) of a Hermitian matrix are real values and are the
roots of the characteristic polynomial

λ2 − tλ + d,
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where

t � Tr Â, d � det Â.

Put at firstA′′
12 � 0 (whatmeans from physical viewpoint that non-absorbing non-

magnetic anisotropicmedium is considered). Thenwehave the following eigenvalues
and and orthonormal eigenvectors of the operator Â(k → k)

A(1,2) � 1

2

{
(A′

11 +A′
22

)±
√
(A′

11 − A′
22

)2
+ 4A′ 2

11

}

, (S.2)

e(0)(1) � (

C2
o +A′ 2

12

)−1/2

[

A′
12

Co

]

, (S.3)

e(0)(2) � (

C2
o +A′ 2

12

)−1/2

[

Co

−A′
12

]

. (S.4)

where

C0 � 1

2

{

−(A′
11 − A′

22

)

+
√
(A′

11 − A′
22

)2
+ 4A′ 2

12

}

. (S.5)

So, in the anisotropic medium along any direction k two linearly polarized waves
in mutually orthogonal polarization states, defined by vectors e(0)(1) and e(0)(2), can
propagate without absorption with phase velocities v

(α)
ph (k)�c/A(α)(k), α � 1, 2.

Let now A′′
12 �� 0. Then in the basis {e(0)(1), e(0)(2)} the operator can be written as

Â(k → k) �
⎡

⎣
A(0)1 iA′′

12

−iA′′
12 A(0)2

⎤

⎦. (S.6)

The eigenvalues and eigenvectors of Â(k → k) are now defined by the expres-
sions:

A(1,2) � 1

2
{(A(0)1 +A(0)2) ±

√
(A(0)1 − A(0)2

)2
+ 4A′′ 2

12 }, (S.7)

e(1) � (

C2
1 +A′′ 2

12

)−1/2

[

A′′
12

−i C1

]

, e(2) � (

C2
1 +A′′ 2

12

)−1/2

[

C1

−i A′′
12

]

, (S.8)

C1 � 1

2
{−(A(0)1 − A(0)2) +

√

(A(0)1 − A(0)2)2 + 4A′′ 2
12 }. (S.9)

Therefore in the case of Hermittean and complex-valued Â( k → k) two ellip-
tically polarized waves in mutually opposite polarization states can propagate in
anisotropic medium along any direction k without absorption. For these waves the
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orientations of large axes of polarization ellipse coincide with the directions e(0)(1)

and e(0)(2). In particular, if A′′
12 � A(0)1 − A(0)2 we have

A(1,2) � A(0)(1,2) +
A′′

12

A(0)(1) − A(0)(2)
, (S.10)

e(1) �
[

1 +

( A′′
12

A(0)(1) − A(0)(2)

)2
]−1/2

⎡

⎣

1

−i A′′
12

A(0)(1)−A(0)(2)

⎤

⎦,

e(1) �
[

1 +

( A′′
12

A(0)(1) − A(0)(2)

)2
]−1/2

⎡

⎣

A′′
12

A(0)(1)−A(0)(2)

i

⎤

⎦. (S.11)

Therefore, at small valueA′′
12 the normal waves are weakly elliptically polarized.

The case A(0)(1)� A(0)(2) corresponds to magneto-optical effect in isotropic
medium. Indeed, we have

A(1,2) � A(0) ± A′′
12, (S.12)

e(1,2) � 2−1/2

[

1

±i

]

, (S.13)

and so the circular birefringence takes place in the medium.
In general case the eigenvalues of Â( k → k) are complex-valued, and the

eigenvectors are not orthogonal. The normal matrices, satisfying the condition
Â Â+�Â+Â, possess orthogonal eigenvectors.
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Aerosol Layer Height over Water via
Oxygen A-Band Observations from
Space: A Tutorial

Anthony B. Davis and Olga V. Kalashnikova

1 Introduction

Aerosols are a highly problematic area in climate science for several reasons. On
the one hand, they are at least partially anthropogenic, originating from industrial
facilities spewing pollution as well as agricultural activity, seasonal biomass burning,
land-use change, and even wood-stove cooking in densely populated regions. On the
other hand, aerosols interact in very poorly understood ways with clouds and hence,
indirectly, the climate system as a whole (Boucher and Randall 2014). It is widely
acknowledged that remote sensing from space will be instrumental in advancing this
scientific challenge, and the National Academies have recently formulated specific
ways in which NASA can to bring its satellite missions to bear on this problem in
the course of the next decade (National Academies of Sciences, Engineering, and
Medicine 2018).

Both active (lidar) and passive approaches will be implemented in both large
(multi-sensor) and small spacecraft. One important observable is the vertical profile
of aerosols in the atmosphere. Thismeasurement is normally assigned to lidar systems
because their pulsed transmitters and time-sensitive receivers can easily locate the
source of the scattered laser light, assuming a single-scattering has occurred. This is
however an expensive, massive, and energy-hungry technology that delivers detailed
aerosol profiles down to either the surface or the highest optically thick cloud layer,
along a narrow sub-satellite “curtain” (Winker et al. 2010). Over time, the curtain
will sweep across all the important regions from a climate perspective. We note
that there is also an acute need to determine the height of aerosol layers for the
purposes of ocean color remote sensing (Duforêt et al. 2007), especially when they
are absorbing and optically thin since aerosol optical thicknesses (AOTs) in excess
of 0.3 are screened out.
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There is an alternative to lidar sensing for aerosol (and cloud) profiling that is en-
tirely passive. For starts, there is passive sensitivity to aerosol height in the near-UV
via changes in the contribution of Rayleigh scattering, but multi-angle polarimetric
observations are required to unravel the confounding factors of absorption and alti-
tude(Kalashnikova et al. 2011a;Wuet al. 2016). In this study, however,wewill use the
abundant sunlight available in the visible/near-IR (VNIR) spectral region containing
oxygen A-band (759–772 nm). This spectroscopic capability has been investigated
extensively in the literature (Gabella et al. 1999; Min and Harrison 2004; Corradini
and Cervino 2006; Pelletier et al. 2008; Dubuisson et al. 2009; Kokhanovsky and
Rozanov 2010; Sanghavi et al. 2012; Frankenberg et al. 2012; Xu et al. 2017). Above
all, we have learned that aerosol profile information content and retrieval accuracy
increases with spectral resolution: as many as ∼2000 (Frankenberg et al. 2012) and
as few as two (Xu et al. 2017) channels have been used. The later minimalistic
case of just two channels, hence just one differential optical absorption spectroscopy
(DOAS) ratio, is investigated here for the first time, as far as we know, using multiple
view angles for aerosols.

Note that, even at high spectral resolving power, the vertical resolution of lidar
is not rivaled but the passive A-band techniques apply to imaging systems. The
exquisite vertical resolution achieved by lidar in its narrow linear transect through
the atmosphere is therefore traded for a coarser aerosol profiling in every pixel across
a potentially wide swath of imagery.

In other words, in optically thin cases (say, AOT is 0.3 at most), a lidar system can
literally see through thewhole layer and the so-called lidar equation (based physically
on a single back-scattering) can be adopted as the forward model for the lidar return.
In optically thick ones, say, AOT in excess of 3 (Vaughan et al. 2009, among others),
it can not,1 so the O2 A-band comes to the rescue but multiple scattering needs to be
accounted for in the forward model. Active lidar and passive A-band are therefore
a natural synergy of observation methods. However, lidar technology is expensive
and, being limited to the sub-satellite transect, the horizontal spatial sampling is
inherently poor. O2 A-band is the exact opposite on both issues, so it is important
in our view to enable the passive A-band technique to embrace the whole range of
optical depths, no matter if it is for aerosols or clouds, even if (as we show further
on) only one piece of information is available at the small end of the AOT spectrum
due to instrumental limitations.

Before narrowing our focus onto di-oxygen DOAS methods and optically thin
scenarios, we note that there are other remote sensing methods for inferring aerosol
layer height. For starts, themulti-angle capability ofMISR (Diner et al. 1998) enables
stereoscopic retrievals of heights and motion vectors for clouds (CVM) (Moroney
et al. 2002), and aerosol plumes aswell.While cloud height are reported operationally
as part of MISR “CVM” product, the plume height data for aerosols from MISR is
derived manually with the MISR Interactive eXplorer (MINX) tool (Nelson et al.

1Davis et al. (2009), and authors cited therein) take the opposite perspective and argue that, with
new lidar equations that account fully for multiply scattered laser light, lidar techniques can be
extended to optically thick clouds and, for that matter, aerosol plumes.
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2008, 2013). By incorporating additional information on the direction of apparent
plume motion from a trained user, the MINX visualization and analysis software
enables precise retrievals of aerosol plume heights and instantaneous winds at a hor-
izontal resolution of 1.1 km. MINX plume height and motion retrievals provided
unique and valuable information on aerosol injection heights from volcanic erup-
tions (Flower and Kahn 2018), wild fires (Val Martin et al. 2010), and dust source
activations (Kalashnikova et al. 2011b).

Another remote sensing take on aerosol layer height from multi-angle imaging
is the emerging class of aerosol plume tomography techniques. When the goal is to
reconstruct the 3D structure of an an aerosol plume, part of that is its top and bas
altitude. Aides et al. (2013) demonstrate an efficient physics-based reconstruction of
synthetic aerosol distributions. Like here, but in 3D, they adopt a single-scattering
radiative transfer (RT) model to solve the very high dimensional inverse problem on
a 3D grid of unknown opacity values, and they quantify at least forward modeling
error when plume opacity is increased to the point wheremultiple scattering becomes
significant. In contrast, Garay et al. (2016) demonstrate the reconstruction of a real-
world smoke plume sufficiently far from the wild fire source that it is optically thin.
These last authors used a combination of MISR’s geolocated radiances for nadir and
all oblique views (“Level 1b” data) and retrieved (“Level 2”) aerosol properties, and
validated their transect reconstruction by comparison with aerosol profiling from a
nearby lidar station. In fact, due to the strong need for “regularization” to make the
large inverse problem tractable, Garay et al.’s most robust retrieval was indeed the
tenuous smoke plume’s smooth top altitude.

The remainder of the paper is structured as follows. In Sect. 2, we describe our
forward model for DOAS radiance ratios based on the O2 A-band as measured from
a space-based sensor. In Sect. 3, a simplified version of this RT problem is described
that is tailored specifically for information content (IC) analysis, and not for real-
world data analysis; it is then solved analytically.We are then in a position to derive in
closed-form the associated Jacobian matrix elements for DOAS ratios for the simpli-
fied forward RT model. In Appendix “IC Analysis in Optimal Estimation Theory”,
we summarize signal IC analysis in the general framework of optimal estimation
(OE), which makes extensive use of Jacobians. In Sect. 4, we reckon with the instru-
mental idiosyncrasies for the Ocean Color Imager (OCI) developed at NASA/GSFC
for the core spectrometry on the PACE (Plankton, Aerosol, Cloud, and ocean Ecosys-
tem) mission (NASA 2017) and/or a multi-angle sensor (MAS) since such sensors
are being considered for the same platform.2 In Sect. 5, we perform quantitative
assessments of IC for mono-angle spectrometry, for multi-angle sampling of a single
DOAS ratio, and for the fusion of both modalities. Finally, in Sect. 6, we summarize
and qualify our findings, and outline future work.

Remark The present paper is written as a tutorial that documents key aspects of a
demonstration of feasibility for proposed retrievals of a single-layer (hence two-
parameter) aerosol profile using the O2 A-band. In particular, it transpires that,

2These “contributed” sensors for the PACE mission are in fact imaging polarimeters, but we will
only use the intensity (i.e., 1st component of the Stokes vector) herein.
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between the first physics-based modeling of the differential optical absorption spec-
troscopy (DOAS) signals using simplified one-dimensional (1D) RT and the follow-
ingOE-based analysis of IC about the parameterized aerosol profile, an unexpectedly
large sample of the math encountered in a typical university curriculum is exploited.
We will list the topics used in the Summary section, and discuss the possibility of us-
ing this study as a showcase of “applicable” math in a single remote sensing research
project. In a related publication (Davis et al. 2018), we will use a computational 1D
RT model to quantify the modeling error associated with the simplifying assump-
tions made about the optical properties of the atmosphere/surface system in order to
reduce herein the model to a closed-form expression, as is required for the tutorial
exercise. We will also highlight the application of the simplified DOAS signal model
to the problem of atmospheric correction in ocean color studies.

2 1D RT Modeling for DOAS Ratios

Let Iλ(z,�) be radiance at wavelength λ in direction � at level z in a plane-parallel
opticalmediumM= {x = (x, y, z)T ∈ R

3; 0 ≤ z ≤ H}, wherewe can take H = ∞,
as needed. M is characterized optically by height-dependent scattering, absorption
and extinction coefficients, denoted respectively σs(z), σaλ(z) and σλ(z), in m−1,
where

σλ(z) = σs(z) + σa,λ(z). (1)

We also need to specify the phase function P(z,� · �′) in sr−1 (hence normalized
to unity) for scattering from � into �′, or vice versa. We allow for extinction to
vary with λ, but not the scattering properties σs(z) and P(z,� · �′) because, in the
present study at least, we focus on a narrow spectral range where only molecular
absorption cross-section varies significantly.

Furthermore, we identify two sources of light absorption:

σa,λ(z) = σ(p)
a (z) + kλ(z), (2)

where σ
(p)
a (z) is the particulate (aerosol) absorption coefficient and kλ(z) is the in-

terstitial gaseous absorption coefficient.
Figure1 shows our detailed representation of the O2 A-band region at a resolving

power λ/�λ = 15300 using total-column absorption optical depth,

τO2(λ) =
H∫

0

kλ(z) dz. (3)
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Fig. 1 τO2 in (3) versus λ at resolution �λ = 0.05 nm. At this resolution, maximum O2 optical
depth is about 125. Assuming, for simplicity, an approximately exponential profile for of absorption
coefficient in altitude, i.e., kλ(z) ≈ kλ(0) exp(−z/Hmol), with a pressure scale height Hmol = 8 km,
we have kλ(0) ≈ τO2 (λ)/Hmol, which is tracked on the right-hand axis. These data were kindly
provided to us by Dr. Suniti Sanghavi, who generated them from the HITRAN line-by-line database
(Rothman 2010). This resolution yields a maximum ground-level extinction of kλ(0) = 15.6 km−1,
hence a mean-free-path (also e-folding distance) 〈�〉 = 1/kλ(0) ≈ 64 m for direct transmission
based on Beer’s law: Tλ(�) = e−kλ�. Indeed, viewed physically as a cumulative probability of
surviving extinction over a distance �, it yields 〈�〉λ = ∫ ∞

0 � |dTλ(�)/d�| d� = 1/kλ

Radiance Iλ(z,�), which has units ofW/m2/sr/nm, obeys the 1DRTequation (RTE)3

μ
dIλ
dz

+ σλ(z)Iλ = Sλ(z,�) + qλ(z,�), (4)

where μ = �z . The above integro-differential 1D RTE balances sinks (left-hand
side), namely, directional change and extinction, and sources (right-hand side) at
position (z,�) in the composite space M×unit sphere (denoted hereafter as usual by
“4π”). Accordingly, qλ(z,�) is the known source term, in W/m3/sr/nm, describing
the injection of radiant energy at (z,�), and

Sλ(z,�) = σs(z)
∫

4π

P(z,� · �′)Iλ(z,�′)d�′ (5)

3Although long-accepted on a phenomenological basis (Chandrasekhar 1950), the RTE in (4)–(5)
was derived rigorously from EM wave theory (i.e., Maxwell’s equations) and statistical optics only
in 2002 by Mishchenko Mishchenko (2002).
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is the generally unknown source function describing in-scattering from any direction
into �′ at level z.

It is convenient in numerical transport theory to change the vertical coordinate
from z to

τz(λ) =
H∫

z

σλ(z
′) dz′, (6)

which varies over a finite interval [0,τ0(λ)]. We can thus define the inverse zτ (λ)

of this function, which relates [0,τ0(λ)] to [0,H ] for a given λ, potentially for H =
∞. We need to know this correspondence since optical properties are generally
prescribed in z. For ease of reading, we drop in the remainder the subscript z and the
argument λ in (6). We then have to solve the coupled equations

μ
dIλ
dτ

+ Iλ(τ ,�) = Sλ(τ ,�) + qλ(τ ,�), (7)

Sλ(τ ,�) = ωλ(τ )

∫

4π

P(τ ,� · �′)Iλ(τ ,�′)d�′ (8)

for Iλ(τ ,�), where

ωλ(τ ) = σs(zτ )

σλ(zτ )
(9)

is the layer’s SSA. For completion, we need to specify boundary conditions (BCs)
for (7), that is, Iλ(0,�) for μ > 0 and Iλ(τ0,�) for μ < 0.

Consider now the so-called “formal solution” of (7), which is best formulated
separately for downwelling (μ > 0) and upwelling (μ < 0) radiances:

Iλ(τ ,�) =
{∫ τ

0 [Sλ + qλ]
(
τ ′,�

)
e− τ−τ ′

μ dτ ′/μ + Iλ(0,�)e− τ
μ , for μ > 0∫ τ0

τ [Sλ + qλ]
(
τ ′,�

)
e− τ ′−τ

|μ| dτ ′/|μ| + Iλ(τ0,�)e− τ0−τ
|μ| , for μ < 0

.

(10)
Substitution of (8) into (10) yields an integral 1DRTE that can be solved numerically
by iteration. In operator short-hand, we have (Davis and Knyazikhin 2005)

Iλ = Kλ ∗ Iλ + Qλ, (11)

where Qλ is a generic source term,Kλ is the kernel of the integral equation, and “∗”
means a convolution product. In the case of 1D RT, this convolution combines both
the angular integration in (8) and the “up-wind” spatial integration in (10) where,
logically, contributions to radiance somewhere, in a certain direction �, can only
come from sources (including in-scattering) distributed along −�.

This leads to a straightforward numerical solution by Neumann series expansion
(Evans and Marshak 2005), a.k.a. successive orders of scattering:
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Iλ(τ ,�) = (E − K)−1 ∗ Qλ(τ ,�)

=
∞∑
n=0

I (n)

λ (τ ,�) =
∞∑
n=0

Kn
λ(τ ,�; τ ′,�′) ∗ I (0)

λ (τ ′,�′), (12)

where E is the identity operator, and we have introduced the directly transmitted
radiance field I (0)

λ (τ ,�) = Qλ(τ ,�) along with the iteration rule I (n+1)
λ (τ ,�) =

Kλ(τ ,�; τ ′,�′) ∗ I (n)

λ (τ ′,�′).
For solar illumination, we take qλ(τ ,�) ≡ 0 in (7), hence in (10), and set the

upper boundary condition (BC) in (10, top option) as:

Iλ(0,�) = F0λδ(� − �0), for μ > 0, (13)

where F0 denotes the incoming spectral solar irradiance, in W/m2/nm and �0 is the
incoming solar direction with �0z = μ0 = cos θ0 > 0, where θ0 is SZA; we can set

�0x =
√
1 − μ2

0 and�0y = 0 (i.e.,φ0 = 0)without loss of generality. The associated
source term for the integral equation in (11), and to be used in its iterative solution
(12), is

Qλ(τ ,�) = I (0)
λ (τ ,�) =

{
F0λe

− τ
μ0 , for μ = μ0 and φ = φ0

0, otherwise
, (14)

which results from the 2nd term in (10, upper option) using the upper BC expressed
in (13).

A standard lower BC for (10, bottom option) describes bi-directional reflectivity:

Iλ(τ0,�) =
∫

μ′>0

ρλ(�
′,�)Iλ(τ0,�

′)d�′, for μ < 0, (15)

where ρλ(�
′,�) is the bi-directional reflection distribution function (BRDF) of the

underlying surface. We note that the surface BDRF ρλ(�
′,�) in the right-hand side

is the target in atmospheric correction for landmass remote sensing.

3 Simplified RT Modeling for Satellite DOAS Signals

3.1 Simplifying Assumptions

First, we will assume a black, purely absorbing surface. In reality, water is a highly
specular reflector, even ruffled by wind, but we will not consider sunglint directions.
Barring high surface wind (hence white caps and broadened sunglint) and turbidity
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Fig. 2 Schematic of 3-layer optical medium used in this study, along with various definitions and
approximations used in the study. Note that, in the limits of no scattering outside of the aerosol
layer and no surface reflection, only top and middle layers matter

(“case-2” water), the ocean’s reflectivity is very low indeed, especially in the red-to-
NIR transition region where the O2 A-band resides.

Secondly, we will focus on the dependence of O2’s absorption cross-section CO2

on wavelength λ, and neglect its temperature and pressure dependencies. That leaves
the gaseous absorption coefficient, kλ(z) expressed as CO2(λ)×molecular density,
which is proportional to atmospheric pressure p(z). As needed, we will further
assume that the pressure profile is exponential, with a scale-height Hmol ≈ 8 km:
p(z) ≈ p0 exp(−z/Hmol), where p0 sea-level pressure that, for simplicity, we will
assume is standard (1013.25 hPa).

Our third simplification is to divide the atmosphere into twoor three distinct layers:
one above the aerosols (with absorbing gas only), a mixed layer of uniform aerosols
and absorbing gas and, as needed, one below the aerosols (again absorbing gas
only). See schematic in Fig. 2. This is to say that we are concentrating the scattering
by aerosol particles in one well-defined layer. In fact, the two key remote sensing
unknowns for us are ptop, the pressure at the top of the aerosol layer, and�p, pressure
thickness of the layer. As needed, these key parameters can be translated into layer-
top altitude, ztop ≈ Hmol log(p0/ptop), and geometric layer thickness, �z ≈ Hmol ×
�p/(ptop + �p/2), assuming �p � ptop and invoking the mean-value theorem for
improved accuracy.

Our fourth simplification is that aerosol optical thickness (AOT) at the A-band,
τp, remains �0.1. This low-AOT assumption will enable us to invoke the single-
scattering approximation for theRT problem,which leads to relatively simple closed-
form expressions. This constraint roughly translates to anAOT (usually at 550 nm) in
the middle of the visible (VIS) spectrum that is�0.15 to 0.2, assuming the Angstrom
exponent ranges between 1 (coarse particulates) and 2 (finer particles). These mid-
VIS AOTs are typical of conditions where the atmospheric correction of PACE ra-
diances at the top-of-atmosphere (TOA) should perform well enough to deliver the
desired water-leaving radiance.

At A-band wavelengths, Rayleigh optical thickness of the total atmospheric col-
umn is only ≈0.025, i.e., 1/4 or so of the nominal AOT budget of ≈0.1. Rayleigh
scattering is therefore neglected as a fifth simplification. We are confident that this is
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a tolerable modeling error for our present purposes of rough IC analysis, that is, pro-
vide yes/no answers to the question of retrievability of ptop and/or�p. However, this
simplification would introduce a systematic bias in an actual retrieval algorithm that
is unnecessary, even in the analytical single-scattering approximation. Note that, in
the absence of Rayleigh scattering and of surface reflection, the optional atmospheric
layer below the aerosols is immaterial until one of these hypothesis is relaxed.

Finally, a sixth simplification is introduced further on to deal with spectral inte-
gration by the space-based instruments that we will investigate.

3.2 Derivation of an Analytical Expression for DOAS Ratios

In the above, we make five simplifying assumptions that enable a closed-form an-
alytical solution of the DOAS RT problem in a plane-parallel atmosphere. Briefly,
they are:

1. surface is black, i.e., BRDF ρλ(�
′,�) in (15) vanishes identically;

2. detailed variations of O2 absorption cross-section with temperature and pressure
are negligible, which enables us to write the gaseous absorption optical depth
from TOA to pressure level p ≤ p0 as

τg(λ, p) ≈ τO2(λ) × p/p0, (16)

with τO2(λ) from (3);
3. atmosphere has just 2 or 3 layers (from TOA down to surface, absorbing gas,

mixed aerosol and gas, more gas if the aerosols are primarily lofted above the
boundary layer);

4. aerosol layer is optically thin at the A-band, i.e., τp = σp�z, remains�0.1, which
translates to AOT�0.15 to 0.2 in the mid-VIS depending on Angstrom exponent;

5. Rayleigh scattering is negligible, as the associated optical depth at the A-band is
only ≈0.025.

We thus neglect hereafter all orders of scatteringn ≥ 2 in the expansionof radiance
in (12). Directly transmitted (a.k.a. “uncollided”) radiance is already given in (14).
The singly scattered radiance in any upward direction is obtained by applying the
integral kernel Kλ once to it. In other words, we substitute (14), i.e., F0λe

− τ
μ0 δ(� −

�0), into the definition (8), and then use the result in (10, lower option), with both
qλ(τ

′,�) and Iλ(τ0,�) set to 0. The outcome is

I (1)
λ (τ ,�) = F0λ

τ0(λ)∫

τ

ωλ(τ
′)P(τ ′,�0 · �)e

−
(

1
μ0

+ 1
|μ|

)
τ ′
dτ ′/|μ|. (17)

In the remainder, we will focus on upwelling radiance escaping to space (i.e., τ = 0
in the above) in direction �(μ,φ) where μ < 0 and φ is the azimuthal angle relative
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to the principal plane (containing the vertical axis and �0); in particular, we will be
using |μ| = cos θ, where θ is VZA.

We now invoke the assumed 2- or 3-layered structure in Fig. 2, reduced effectively
to just the top two layers by neglecting surface reflection and Rayleigh scattering:

1. A purely absorbing (ωλ(τ ) ≡ 0) gaseous layer between TOA at p = 0 (also z =
H = ∞, τ = 0) and the top of the scattering layer at p = ptop, hence τtop(λ) =
τO2(λ) × ptop/p0 from (16), effectively the lower bound of the integral in (17).
Its contribution to (17) is therefore a multiplicative factor of

T (2-way)
above (τO2(λ);μ0, |μ|; ptop) = e

−
(

1
μ0

+ 1
|μ|

)
τtop(λ) = e

−
(

1
μ0

+ 1
|μ|

)
τO2 (λ)

ptop
p0 . (18)

2. A mixed aerosol and gas layer where we have a uniform phase function value,
hence another multiplicative factor P(�0 · �), extending between τtop(λ) and
τtop(λ) + τtot(λ), where τtot(λ) = τp + τO2(λ)�p/p0.We assume that its pressure
thickness�p is small enough compared to ptop and p0 thatwe can take the gaseous
absorption coefficient kλ as constant in the layer. If so, then the SSA term in (17)
is uniform inside the layer, and given by

ωmixed(τO2(λ);�p;ωp, τp) = ωpτp

τtot(λ)
= ωpτp

τp + τO2(λ)�p/p0
, (19)

where ωp is the SSA for the aerosol particles.

With the change of variables τ ′ = τtop(λ) + τ ′′, Eq. (17) at τ = 0 becomes:

I (1)
λ (0,�) = F0λ T

(2-way)
above (τO2(λ);μ0, |μ|; ptop) (20)

× ωmixed(τO2(λ);�p;ωp, τp)P(�0 · �)

τtot(λ)∫

0

e
−

(
1

μ0
+ 1

|μ|
)
τ ′′
dτ ′′/|μ|,

where τtot(λ) is defined as the denominator in (19), and the integral can be evaluated
analytically.

Overall, the scattering layer contributes the 2nd line in (20), a multiplicative
factor that is best written as (μ0/π)R(�0,�;ωp, τp; τO2(λ);�p), where R(· · · ) is
the layer’s bi-directional reflection factor (BRF). Collecting expressions from (18)–
(20), the observed signal in “BRF” form is

π I (1)
λ

μ0F0λ
(0,�) = T (2-way)

above (τO2(λ);μ0, |μ|; ptop) R(τO2(λ);�0,�;�p;ωp, τp) (21)
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where

R(τO2(λ);�0,�;�p;ωp, τp) = ωmixed(τO2(λ);�p;ωp, τp) [4πP(�0 · �)]

× 1 − e
−

(
1

μ0
+ 1

|μ|
)(

τp+τO2 (λ)
�p
p0

)

4(μ0 + |μ|) . (22)

The term in square brackets in the 1st line is the popular non-dimensional way of
writing the phase function, which gives the more familiar functional form used in
the 2nd line.

In the last five numbered equations, we have isolated with semi-colons variables
from: (i) O2, i.e., spectroscopy; (ii) solar and viewing geometry; (iii) aerosol profile,
which is the A-band remote sensing unknown; and (iv) aerosol properties that need
to be determined from other observations.

Wecannow form thedesiredDOASratio bydividing (21)–(22) by its “continuum”
value at τO2(λ) = 0. Letting M(μ0, |μ|) = 1

μ0
+ 1

|μ| denote airmass, this works out
to be

I (1)
λ

I (1)
cont

(τO2(λ); M; ptop,�p; τp) = e−MτO2 (λ)
ptop
p0 (23)

× 1 − e
−M

(
τp+τO2 (λ)

�p
p0

)

1 − e−Mτp
× τp

τp + τO2(λ)
�p
p0

,

which is independent of the aerosol’s SSA ωp and phase function 4πP(�0 · �). We
note that ωp must nonetheless be non-zero, and the closer to unity the better (to boost
signal). The 1st line in (23) comes from the upper layer of absorbing gas, and the
2nd line in (23) is from the ratio of aerosol layer BRFs with the absorbing gas mixed
in divided by the same expression without the absorbing gas.

3.3 Simplified 1D RT Forward Model in Final Form

To the extent that the end justifies the means, our five simplifying assumptions have
lead to a relatively simple expression in (23) for theDOAS signals of interest here that
is simple enough to analyze by inspection. We thus gain intuitive physical insights
into the passive remote sensing of aerosol height using O2 A-band measurements
from space, on top of performing the formal—and somewhat abstract—statistics-
based IC analysis further on.

The monochromatic DOAS ratio obtained in (23) can be redefined as our forward
model for remote sensing signals:
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Fλ(M; x;b) = Fλ(M; ptop,�p; τp) (24)

= e−MτO2
ptop
p0

⎛
⎝1 − e

−M
(
τp+τO2

�p
p0

)

1 − e−Mτp

⎞
⎠

(
τp

τp + τO2

�p
p0

)
,

where we use the airmass factor

M(μ0, |μ|) = 1

μ0
+ 1

|μ| = 1

cos θ0
+ 1

| cos θ| , (25)

with θ0 and θ denoting respectively the solar and viewing zenith angles (SZA and
VZA). All the dependence on λ is via τO2 . The OCI spectrometer modulates the
DOAS ratio via τO2(λ), while the MAS does it by changing μ(θ) in M . By sampling
either λ or M , we build up the n-dimensional vector-valued Fλ(M; ptop,�p; τp)
used further on. The m-dimensional “state space” is spanned by x = (ptop,�p) in
this study, hencem = 2, and the non-retrieved parameter space contains only b = τp.

A first-order series expansion of the approximate DOAS ratio in (24) in both
τO2(λ) and τp, which contains the first cross-term in τpτO2(λ), yields4

Fλ(M; ptop,�p; τp) ≈ 1 − ptop + (
1 − Mτp/6

)
�p/2

p0
MτO2(λ) + · · · (26)

We note that the correction in Mτp/6 is necessarily quite small because (i) τp is
already small, and (ii) we want to stay away from large airmasses; on both accounts,
this safeguards the single-scattering approximation. It thereforemakes physical sense
that the cumulative optical path in the oxygen is ≈ MτO2(λ)(ptop + �p/2)/p0, i.e.,
down from the TOA to the middle of the aerosol layer and back to space.

Figure3 illustrates our simplified estimation of the monochromatic DOAS ratio
in (24) for typical solar/viewing geometry as a function of (ptop,�p) for different
values of τO2(λ). Notice that τO2(λ)must become quite large before lines of constant
DOAS ratio start gaining any significant curvature, at which point there may not be
much light left (low SNR). That difference in local slope is key to retrieving both
height and thickness of the aerosol layer. This prediction is confirmed in the next
Sections where the OCI spectrometer under consideration will not have access to
deep enough spectral lines, for lack of resolving power.

More importantly, the slopes of the nearly straight iso-DOAS ratio lines need to
change significantly from one observation to the next if we want to retrieve both
ptop and �p. From (26), we see that it can only happen by modulating M(μ0, |μ|) in
multi-angle mode, and not by changing τO2 , via λ, in spectroscopy. This too will be
confirmed numerically in the next Sections.

4Because of cancellations between themiddle and last factors in the 2nd line of (24), the exponentials
in themiddle term have to be expanded to order 3 to obtain the first surviving cross-term in τpτO2 (λ).
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Fig. 3 DOAS ratio in (24) as a function of (ptop,�p) for (μ0, |μ|) = (1/2, 1), hence airmass
M = 3 in (25), and τp = 0.1. From left to right, we have τO2 = 0.03, 0.3, 3. Note that the iso-ratio
curves only start deviating from nearly straight lines, where ptop + �p/2(1 − Mτp/6) ≈ constant,
according to (26), at quite large values of τO2
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3.4 Jacobians of Simple 1D RT Model

To conduct our IC analysis further on, we will use Rodgers’ OE theory
(Rodgers 2000), which calls for Jacobian matrices, namely, ∂Fλ/∂x and ∂Fλ/∂b.
In the present case, Jacobians are more readily expressed as logarithmic partial
derivatives, ∂ ln Fλ/∂ ln xi = (xi/Fλ) × ∂Fλ/∂xi (i = 1, . . . ,m), and similarly for
the components of b.

For the model in (24), these logarithmic Jacobians are:

ptop
Fλ

∂Fλ

∂ ptop
= −MτO2

ptop
p0

; (27)

�p

Fλ

∂Fλ

∂�p
= −

(
1

M(τp + τO2�p/p0)
− 1

eM(τp+τO2�p/p0) − 1

)
MτO2

�p

p0
; (28)

τp

Fλ

∂Fλ

∂τp
=

(
τO2

�p

p0

+ eMτp

[(
(eMτp − 1)eMτO2�p/p0 − 1

)
τO2

�p

p0

+ (
eMτO2�p/p0 − 1

) (
τp + τO2

�p

p0

)
Mτp

])

/ [(
eMτp − 1

) (
eM(τp+τO2�p/p0) − 1

) (
τp + τO2

�p

p0

)]
. (29)

It can be shown that the first two expressions are always negative. Interestingly,
∂ ln Fλ/∂ ptop in (27) is independent of ptop, �p and τp.

Figure4 shows these three sensitivities as functions of the two variables sampled
by different types of sensor, namely, τO2 and M . A spectrometer, like OCI/PACE,
samples τO2 via wavelength λ. A multi-angle imager, like the potential MAS/PACE,
samples airmassM . From left to right,we see the logarithmic derivatives of theDOAS
ratio Fλ(M; · · · ) with respect to ptop, �p, and τp for a lofted aerosol layer between
3 and 5Km altitude, i.e. {ptop,�p} = {542,154} hPa, with τp = 0.1. The relative
magnitudes in the three legends make clear what the easiest property to retrieve is
by either observational modality, namely, ptop. There is much less sensitivity to �p
unless one can access large values of τO2 , meaning high spectral resolution. There
is very little sensitivity to τp in the DOAS ratio, which is good news since it is a
required parameter here, but that is retrieved otherwise, with known uncertainty. We
see here that this uncertainty will not affect the DOAS-based retrievals very much.

4 Impacts of Instrument Design

We will discuss passive aerosol profiling capability using the O2 A-band for two
types of instrument.
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Fig. 4 Logarithmic derivatives of the forward model Fλ(M; x; b) for the DOAS ratio using the
simplified 1D RT in (24) as functions of (τO2 , M), that is, the two variables sampled respectively
by OCI and MAS. From left to right: x = {ptop,�p} in (27)–(28), and b = {τp} in (29). We see
from (27) that the iso-curves in the leftmost panel are exactly hyperbolic
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• First, we consider a hyper-spectral sensor with 5-nm resolution that modulates the
DOAS ratio, via contiguous sampling of λ in τO2(λ), which appears three times
in (24). At that resolution, it takes at most four spectral pixels to completely cover
the A-band. OCI, the minimum payload for the PACE mission, is our inspiration.

• Second, we consider a multi-spectral (discrete sampling of λ) MAS that samples
the A-bandwith only two channels, one in-band and one in the continuum. Such an
instrument modulates the DOAS ratio via |μ|, the (absolute) cosine of the VZA,
in the airmass factor M . M also three times in (24), two of which are in the
product M(μ0, |μ|)τO2(λ). The sensor on the proposed Multi-Angle Imager for
Aerosols (MAIA) investigation (Diner et al. 2018) at NASA will have such non-
polarimetric A-band channels, and it is indeed our inspiration. Notwithstanding,
a growing number of space-based MASs will have polarimetric capability, some
including A-band channels, others not.

Finally, we will consider the capability that results from a fused OCI-and-MAS
sensor pair that may be brought together as part of a future mission.

The upper-left panel in Fig. 5 shows the same spectral information as in Fig. 1 but
displayed as a DOAS ratio using only the first term in (24), i.e., assuming a reflec-
tive surface rather than a scattering aerosol layer.We therefore set ptop = p0,�p = 0,
and take M = 3, as a typical value, e.g., 60◦ SZA and nadir viewing. Also in this
panel, we have delineated above the top axis an example of where the boundaries bet-
ween spectral channels could be in the OCI, with 5-nm resolution. Below the bottom
axis is another indicator of theposition andwidth for the “in-band” channel forMAIA.

Imagine now a sequence of three or four spectral pixels, each 5-nm wide, that
can fall randomly on the essentially “line-by-line” signal in the upper-left panel and
average it to that degraded resolution.One instance is indicated at the top of the upper-
left panel. The outcomes are plotted in the upper-right panel of Fig. 5 as a function
of the short-wavelength edge of the shortest wavelength pixel using, for simplicity, a
square bandpass filter 5nm wide. Anticipated DOAS ratio error bars of 2% are also
plotted. For the purposes of passive aerosol profiling, there are good, bad and average
scenarios color-coded respectively in green (one instance), red (two instances) and
orange (one instance). In a “bad” situation, two of the three spectral pixels give the
same ratio, to within the noise. A “good” situation is when there are three different
ratios as broadly separated as possible, not counting a near-unity value. An “average”
or“random” situation is anything else. In the remainder, we will assume the average
case highlighted in this panel. Positions of those four spectral pixels are reproduced
along the upper axis of the upper-left panel. There is hardly any absorption in the
4th one. In principle, it could be adopted as the continuum “reference” channel, and
used to form the three other DOAS ratios. In practice, reference DOAS channels are
located at a small but finite spectral distance from the absorption band.

As our sixth and final modeling simplification, we will use a single M-dependent
“effective” value of τO2 for the spectral pixel,

5 defined as

5This is in lieu of spectrally averaging the numerator of the DOAS ratio in (24), as well as the
Jacobians from (27)–(29), for every different choice of the aerosol and geometry parameters. This is
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Fig. 5 In the left-side panels, we see O2 A-band spectroscopy in DOAS ratio format at quasi-
line-by-line (top) and OCI (bottom) resolutions, respectively; further descriptions in main text.
The upper-right panel shows the diversity of coarse-resolution DOAS ratios that can be obtained
depending on the spectral registration of the OCI instrument, i.e., exactly where the hyper-spectral
channels (with 5-nm bandpass) are separated in the A-band region; colored vertical lines explained
in main text. Lower-right panel shows synthetic BRFs for the single “in-band” spectral channel of
a notional MAS with the same sampling of VZAs as MISR/Terra. In the two lower panels, hyper-
spectral (left) and multi-angle (right) signatures are shown for two aerosol profiles: 0–2 km and
3–5 km, over a dark surface; otherwise identical AOT of 0.1 and smoke-like optical properties, as
described in main text. Expected instrument error bars are plotted, 2% for DOAS ratios and 3% for
BRFs, showing that the two profiles can be distinguished, especially in the multi-angle observations

τ (i)
O2

(M) = − 1

M
ln

⎛
⎜⎝ 1

�λi

∫

�λi

e−MτO2 (λ)dλ

⎞
⎟⎠ , (30)

tantamount to driving themonochromatic forwardmodel in (24)with a single “effective”wavelength
λi (M) such that τO2 (λi (M)) = τ

(i)
O2

(M) for i = 1, 2, 3.
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where M = 3 (e.g., 60◦ SZA with nadir viewing) and i = 1, 2, 3. Thus, the domi-
nant first term in (24) would be accurately estimated for thin (�p � p0) low-level
(ptop ≈ p0) aerosols. Specifically, this leads to τ (1)

O2
(3) = 0.142, τ (2)

O2
(3) = 0.243, and

τ (3)
O2

(3) = 0.027 for our random (i.e., neither “lucky” nor“unlucky”) spectral regis-
tration scenario in Fig. 5, upper-right panel.

In the lower-left panel, we see the piecewise constant DOAS ratios for the four
spectral observations. Here again, 2% error bars are plotted. Two aerosol profiles
are used. In both cases, we take AOT τp = 0.1. In one case (solid lines), the aerosol
layer is between the surface and the top of the planetary boundary layer set at 2 km
({ptop,�p} = {789,224} hPa); this is a frequent occurrence. In the other scenario
(dashed lines), the aerosol is assumed to be lofted by synoptic winds to 3–5 km
altitude ({ptop,�p} = {542,154} hPa); this also happens frequently. In particular, it
can be Saharan dust spreading clear across the Atlantic Ocean. At any rate, the two
profiles can be distinguished (accounting for instrument noise levels), at least in the
two shortest wavelength ranges.

Finally, the lower-right panel of Fig. 5 showsBRFs fromanotionalMASsensor for
the “in-band” spectral channel indicated near the lower axis of the upper-left panel,
also treated with an effective τMAS

O2
(3) = 0.384. In this case, 3% error bars are used,

as is standard practice in absolute radiometry. The nine angles used here are chosen to
be identical to those of the Multi-angle Imaging Spectro-Radiometer (MISR) (Diner
et al. 1998): nadir, ±26.1◦, ±45.6◦, ±60.0◦, and ±70.5◦, with “+” meaning “fore”
and“−” meaning “aft” looks that correspond respectively to forward and backward
scattering in Terra’s descending sun-synchronous orbit in the northern hemisphere,
and conversely south of the equator. A smooth smoke-like phase function6 was used,
along with a relatively low single scattering albedo (SSA) of 0.88071, in (21)–(22).
The same two aerosol profiles as in the lower-left panel were used, and we see that
they are even more distinguishable in this synthetic MAS observation, even in view
of the 3% radiometric noise level.

5 Information Content Analyses

5.1 IC Quantification Method

Wewill continue to denote our forward model for the DOAS signal in (24) as F(x;b)

where x = (ptop,�p)T, superscript “T”means transpose, is our A-band remote sens-
ing target. Thenumber of unknowns in the atmospheric state space is thereforem = 2.
The only quantity that is required is b = τp, the non-retrieved aerosol property that
is estimated (with known uncertainty) using other spectroscopic and/or multi-angle
polarimetric signals. Then F(x,b) = (F1(x,b), . . . , Fn(x,b))T is an n-dimensional

6Spherical (Mie) particles following a lognormal size distribution, with rg = 0.06 μm geometric
mean radius, ln(σg) = 0.6, and complex refractive index 1.518 − 0.02368 i at λ = 446 nm; although
this is not the O2 A-band wavelength, the resulting phase function is representative.
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vector in measurement space containing all the observed DOAS ratios using either/or
mono-angle spectroscopic and multi-angle bi-spectral sensing since both methods
can modulate the key quantity in the DOAS ratio in (24), namely, M(μ0, |μ|)τO2(λ).

We will use concepts from Rodgers’ OE theory (Rodgers 2000), which is sum-
marized in Appendix “IC Analysis in Optimal Estimation Theory” . That framework
is heavily dependent on the n × m Jacobian matrices J = ∂F/∂x and Jb = ∂F/∂b,
which are evaluated in closed form for our simplified 1D RT model in a previous
Section.

To use the formalism of OE, we need to specify numerically these three vari-
ance/covariance matrices:

• Sy, for observation error on DOAS ratios, is taken as diagonal (vanishing covari-
ances), assuming a relative 1.5% error (one standard deviation or “StDev”), which
is ≈1/2 of the conventional assumption for absolute radiometric error of ≈3%,
but is typical for ratios of radiances from the same sensor since different channels
tend to drift in the similar ways; we therefore have

√
Syi i = 0.015 × Fi (x;b),

i = 1, . . . , n.
• Sb, for the uncertainty on b = τp, is taken as

√
Sb11 = max{0.02, 0.15τp}, which

is commensurate with quantities used in operational space-based aerosol remote
sensing (Kahn et al. 2010).7

• Sa, a priori uncertainty on retrieved properties x = (ptop,�p)T, is also assumed
diagonal, with

√
Sa11 = 250 hPa and

√
Sa22 = 150 hPa; in essence, this means that

the top of the aerosol layer is log-normally distributed with a 68% chance of laying
between ≈1 and ≈7 km, and that uncertainty on its thickness is ≈1200/ptop [km],
with ptop expressed in hPa, e.g., approximately±1.3 km for a low (0–2 km) aerosol
layer and ±2 km for a lofted (3–5 km) one. These are quite loose constraints.

To be consistentwith the single-scatteringmodel, we set τp = 0.1 at theA-band,which
translates roughly to AOT of ≈0.15 at 550 nm, assuming an Angstrom exponent α
of about unity, and ≈0.2 if α increases (smaller particles) to about 2. That choice
leads to

√
Sb11 = 0.02.

Our goal is to quantify the retrievability of the aerosol profile defined parametri-
cally in Sect. 3. To this effect, we invoke the notion of partial Degree Of Freedom
(DOF) A j j for the j th retrieved retrieved property x j that is defined in (48). As ex-
plained inAppendix “ICAnalysis inOptimal Estimation Theory”, it is closely related
to “information content” per se in the formalism of OE. It is actually a measure of in-
formation gain going from the prior to posterior uncertainty on x; see Appendix “IC
Analysis in Optimal Estimation Theory”. In the remainder, we assign x1 = ptop and
x2 = �p. To estimate the anticipated retrieval error from A j j , we use (49).

7In all cases discussed in this article, the eigenvalues of JbSbJTb (forward modeling error) are very
small compared to the diagonal terms in Sy (measurement error).
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Fig. 6 Partial DOFs for ptop (left panel) and �p (right panel) as functions of (ptop,�p), for the
OCI instrument alone. Detailed discussion in main text

5.2 OCI

What happens if we only have the hyper-spectral OCI sensor registered spectrally
in an average configuration with respect to the A-band, as defined in Sect. 4? In
this case, we have n = 3, with one DOAS ratio for each of the three in-band spectral
pixels for a single direction (assumed, for simplicity, to be nadir). Figure6 shows A11

for ptop and A22 for �p based on this minimal PACE instrumentation, as functions
of xT = (ptop,�p). We see that the two extremes of DOF are occurring.

The partial DOF is indeed relatively high for ptop, hence excellent chances of
retrievability with a typical error StDev[ptop] ≈ 68 hPa (≈27% of the 250 hPa
prior), from (49) using a mid-range DOF. That translates approximately to 0.6Km
for aerosols in the boundary layer, and ≈0.9 km when lofted. At least for small
AOT, A11 (hence StDev[ptop]) is insensitive to ptop itself, and there is a slight but
systematic increase (decrease) with an increase in �p.
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In sharp contrast, we have very low partial DOF for �p, hence no chance of
retrievability, and we see from (49) that the uncertainty is still almost at the prior
of ±150 hPa, i.e., the observations did not help much. We can trace this to the fact
that one cannot separate dependencies on ptop and �p in (24) at 1st order in MτO2 ,
cf. (26). The 2nd and higher-order terms are required, and they are much smaller in
magnitude.

5.3 MAS

What happens if we can only use the MAS?We start with an “in-band” channel with
an effective τMAS

O2
= 0.384 (same center but slightly narrower than shown in Fig. 5).

We will assume n = 5, which is the anticipated minimum number of directions to
be collected by the proposed MAIA sensor for any given target, which will give
us a lower bound on the A-band performance of that instrument. We thus obtain
one DOAS ratio for each of the following VZAs: nadir, ±30◦, and ±60◦. That
translates to |μ| j = 1,

√
3/2 (twice), and 1/2 (twice), hence Mj = 3, 3.155 (twice),

and 4 (twice) for a SZA of 60◦. Alternatively, we can again take n = 3, and use a
weighting matrix W = Diag[1, 2, 2]) for the sum-of-squared-residuals term, hence
W−1 = Diag[1, 1/2, 1/2] that multiplies Sy in (34).

Computations of the partial DOFs for ptop and �p as functions of the unknown
aerosol profile parameters (ptop,�p)yield 2Dplots (not shown) that lookvery similar
to the left-hand panel in Fig. 6, even if it is about�p—only the ranges of values in the
legend change. We have listed the top-to-bottom DOF trends in the 2nd data column
of Table1, labeled “MAS #1,” where we also display StDev[ptop] and its counterpart
for ztop with proper physical units. We see that, with respect to OCI, there is a modest

Table 1 DOFs for ptop and �p, and StDev’s for ptop and ztop, using either OCI, the notional MAS
for PACE (#1), both, or the enhanced MAS planned for MAIA (#2). DOFs are described by the top
(�p = 500 hPa) to bottom (�p = 100 hPa) trend in plots such as in Fig. 6. For �p with OCI, we
note (with italics) that the very slight trend is in the opposite direction. StDev[ptop] is from (49),
and StDev[ztop] ≈ Hmol×StDev[ptop]/(ptop + �p/2), with Hmol = 8 km for the mid-range DOF.
Aerosols described as either “lofted layer” or“boundary layer” refer respectively to (ptop,�p) =
(542,154) hPa, i.e., 3–5 km, and (789,224) hPa, i.e., 0–2 km

Sensor: OCI MAS #1 both MAS #2

DOF Top/thicker 0.929 0.945 0.949 0.949

ptop Bottom/thinner 0.922 0.931 0.931 0.931

StDev of Top/thicker 67 59 56 56

ptop (hPa) Bottom/thinner 70 66 66 66

StDev of Lofted layer 0.9 0.8 0.8 0.8

ztop (km) Boundary layer 0.6 0.5 0.5 0.5

DOF Top/thicker 0.0690 0.135 0.190 0.220

�p bottom/thinner 0.0735 0.085 0.090 0.110
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increase in partial DOF for ptop, and a significant one for �p. However, the latter
improvement in partial DOF (A22 going from ≈0.071 to the range 0.085–0.135) is
not enough to consider x2 = �p as a reasonable target for retrieval.

An alternative MAS configuration was also tested where the in-band channel is
exactly as shown in Fig. 5). That filter choice (6 nm FWHM, up from 5 nm) leads to
τMAS
O2

= 0.363, somewhat lower than previously considered due to the admittance of
wavelengths closer to the A-band’s wings, but has an improved SNR. However, the
number and range of VZAs is now set to the maxima considered for MAIA: nadir,
±26◦, ±43◦, ±56◦, and ±67◦. The outcome in DOFs and in retrieved parameter
uncertainties is entered in the last column of Table1, labeled “MAS#2.”As expected,
the improved VZA sampling more than compensates the decrease in effective τMAS

O2
,

as we see improved performance—still not enough however to go after �p as a
target.

5.4 OCI Plus MAS

What happens when we fuse the OCI- and MAS#1-based DOAS ratios into a single
dual-modality observation? The outcome for DOFs and StDevs is displayed in the
next-to-last column of Table1, labeled “both.” We see that, as expected, retrieval
performance is improved over OCI or MAS#1 alone on both accounts, ptop and �p.
However, the enhancement is small for ptop as both sensors already do well. In short,
OCI takes us most of the way for ptop, even with an “average” spectral sampling
in the sense defined previously, in connection with Fig. 5. By coincidence, the ptop
DOF range for OCI+MAS#1 matches (to 3 significant digits) that of the enhanced
MAS#2 (last column of Table1), identical retrieval uncertainties thus follow.

On the other hand, the increase in IC for �p from adding the MAS#1 to OCI is
dramatic (DOF can more than double). However, it does not reach the level achieved
by MAS#2, and thus remains too small to justify keeping �p as a remote sensing
target. It should therefore be moved from x to b in the arguments of the forward
model F(x;b), with a prescribed value and an uncertainty either set to StDeva[�p]
for OCI, or obtained from Table1 for MAS and when both sensors are used.

6 Summary & Outlook

A new challenge in passive atmospheric remote sensing from space is to determine
not only the column-integrated aerosol load, namely, aerosol optical thickness (AOT),
but also the height of the aerosol layer, especially if it is a strongly absorbing species
such as dust, smoke or volcanic ash. These aerosol types can indeed reside virtually
anywhere in the atmospheric column depending on injection height, synoptic winds
and distance from sources.
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Scientific motivation for this new thrust in aerosol profiling comes from air qual-
ity (where the interest is in particulates near the surface, as opposed to the column-
integrated AOT), climate physics (e.g., aerosol impacts on clouds), atmospheric cor-
rection (in particular, for advanced ocean color studies), and other application areas.
Technological motivation for not relying entirely on active lidar systems stems from:
(i) their higher cost and complexity compared to passive systems; (ii) their limited
spatial sampling in the horizontal compared to passive imaging sensors, even though
their vertical resolution is far superior than any passive method can achieve; and (iii)
their limited capability in terms of AOT for detection of aerosol layer base as well as
top. It iswidely acknowledged that, in contrastwith lidar, passiveO2 A-band profiling
techniques work best for aerosol scenes with AOT�0.3, which will often occur near
sources and rarely elsewhere. Notwithstanding, we showed here that A-band aerosol
profiling can be extended to lower AOTs, albeit at the cost of loosing one piece of
information, namely, aerosol layer thickness, at least for the PACE-inspired sensor
configurations that we studied. In short, active lidar and passive A-band methods for
aerosol profiling are truly complementary.

In the Introduction, we surveyed two alternative techniques for inferring aerosol
layer height and, possibly, thickness as well. They characteristically exploit multi-
angle imaging. The first is based on basic geometry, kinematics and computer vision:
feature tracking and stereoscopy inspired byMISR’s operational cloud products (top
height and motion vector), but implemented in an interactive software package that
focuses on the detection and characterization of various kinds of aerosol plumes
near their sources (where the general wind direction is clear even in a single view).
The other is the emerging capability of aerosol plume tomography that is grounded
in physics-based image synthesis using 3D radiative transfer (RT) in the single-
scattering limit (also used here), and on computational techniques for solving large
inverse problems. We refer the reader back to Sect. 1 for detailed references.

We used the definitions of information content (IC) and partial degrees of freedom
(DOFs) from Rodgers’ (2000) statistical theory of optimal estimation (OE) to inves-
tigate the feasibility of passive aerosol profiling using the oxygen A-band absorption
feature at 759–772 nm. Being in the solar spectrum, O2 A-band signals result from
atmospheric scattering and surface reflection.We neglected the latter in the simplified
RT model adopted here, which is justified for the ocean surface outside of the glint
angles and shallow waters, and in the absence of high turbidity. Furthermore, scatter-
ing is limited to a single event in the aerosol layer, which is therefore assumed to be
optically thin at A-band wavelengths, say, AOT(A-band)�0.1, hence AOT(550 nm)
�0.15 to 0.2 depending on particle size. We exploit differential optical absorption
spectroscopy (DOAS) ratios of radiances sampled both in-band and in the contin-
uum, which are largely immune to absolute radiometric error; residual measurement
error is assumed to be ≈1.5%. The resulting DOAS ratio estimation is independent
of all inherent aerosol optical properties past AOT; specifically, its single scattering
albedo and phase function (i.e., composition and size/shape) are irrelevant. In reality,
they are simply second-order (Hollstein and Fischer 2014) since they impact only
radiance scattered twice or more.
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The motivation for these RT simplifications is that we ultimately want a closed-
form analytical expression for the observed DOAS ratios and, consequently, of its
derivatives (“Jacobians”) with respect to aerosol properties, whether or not they are
targets for A-band retrieval. Specifically, we considered a parametric representation
of the aerosol profile based on the assumption of a single aerosol layer located
precisely between two pressure levels. These levels are the A-band remote sensing
unknowns. AOT is assumed to be retrieved using other spectral channels, with a
known uncertainty.

Having in hand the desired closed-form expressions for the DOAS observations,
we computed analytically all the elements of the associated Jacobianmatrices, which
are used extensively in IC analysis in the framework of OE theory. However, we first
used these rarely available analytical Jacobians to successfully predict the outcome
of the statistical IC analysis of DOAS signals using purely physical arguments. That
said, our forward model based on such simplified RT is not expected to perform well
in an actual retrieval algorithm due to systematic biases. It is only tasked with giving
us yes/no answers to questions of retrievability of profile parameters for optically
thin aerosol plumes, given a few different instrumental configurations.

Two future NASA efforts, the PACE (Plankton, Aerosol, Cloud, and ocean
Ecosystem) mission (NASA 2017) and the proposed MAIA (Multi-Angle Imager
for Aerosols) investigation (Liu and Diner 2017; Diner et al. 2018), dictated our
choices of A-band DOAS signal sampling. In these cases, sampling is either hyper-
spectral at a single viewing angle (PACE) or else a simple bi-spectral sampling of
the A-band absorption feature at multiple viewing angles (MAIA). In short, both
OE and simplified RT theories tell us that PACE’s Ocean Color Instrument (OCI)
data can support the retrieval of aerosol layer’s height, but not its thickness, at least
for low AOTs. The same conclusion is drawn for a MAIA-like multi-angle/multi-
spectral sensor that does not use polarization in either of its in-band and reference
A-band channels. To first order, OCI has very little sensitivity to the aerosol layer’s
thickness. Its multi-angle/multi-spectral counterpart has some thickness sensitivity,
just not enough to actually retrieve it with any confidence, at least for the low AOTs
and notional instrument configurations examined herein.

That said, the combination of polarization (Ding et al. 2016) and multi-angle
capabilities is very promising (Kokhanovsky et al. 2015). The same can be said about
far higher AOTs along with a forward model that accounts for multiple scattering
since joint height-and-thickness retrievals have been demonstrated for clouds using
either spectroscopy (Rozanov and Kokhanovsky 2004; Kokhanovsky and Rozanov
2005; Schuessler et al. 2014) or multi-angle imaging (Ferlay et al. 2010; Desmons
et al. 2013; Merlin et al. 2016).

Future missions may have both types of instrument considered here, so it is of
interest to see if fused OCI-like and multi-angle/multi-spectral data can improve the
IC, which it does although still not enough to retrieve layer thickness, at least for the
PACE-inspired instrument configurations examined here.

In closing, we have stated upfront our goal of delivering a tutorial that covers
the physical and mathematical technicalities of this focused remote sensing research
project. More specifically, either in the main text or in the Appendix, we spell out
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definitions and sketch derivations in sufficient detail for advanced undergraduate
and graduate STEM (Science, Technology, Engineering & Mathematics) students
to see a broad transect of their basic training in math brought to bear on a single
so-called “paper-study” in remote sensing retrieval feasibility. Such studies are in-
creasingly viewed as a requirement before serious consideration of remote sensing
hardware development. A (probably non-exhaustive) list of mathematical concepts
encountered is: integral calculus in one and more dimensions, ordinary differen-
tial equations (ODEs) and their solution by satisfying given boundary conditions,
multi-dimensional integral equations and their numerical solution as a Neumann
series, multivariate Taylor series expansions, approximation by series truncation,
partial derivatives, multivariate probability distributions and statistics, matrix alge-
bra, nonlinear function minimization by conjugate gradient descent, ill-posed matrix
inversion, conditional probabilities, maximum likelihood, and Shannon entropy.
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Appendix: IC Analysis in Optimal Estimation Theory

Least-Squares Fit of a Forward Model to Data

The standard approach (Bevington and Robinson 1992; Press et al. 1989) to fit-
ting a generally nonlinear forward model F(x;b) to data y is to equate them, as
n-dimensional vectors in measurement space, with allowance for random error ε:

y = F(x;b) + ε. (31)

where x is the m-dimensional vector in a state space that contains all the parameters
used to find the best fit to the data;b is another vector in the space of non- or otherwise-
retrieved parameters that are imperfectly known to within a known uncertainty.

Wewill consider two sources of error in ε: (i) instrumental error that affects y, and
(ii) forward model error that affects F(x;b). Our main concern in the latter case is
uncertainty on b, the parts of a larger state vector that have to be treated as givenwhen
retrieving x. Instrumental error is characterized by its n × n variance/covariance
matrix

Sy = E[(y − E[y])(y − E[y])T] (32)
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where E[·] denotes mathematical expectation. Uncertainty on the non/otherwise-
retrieved parameters is defined by their variance/co-variance matrix Sb, which can
be converted into the equivalent SF of the measurement error matrix in (32) by using
the Jacobian matrix Jb = ∂F/∂b and its transpose JTb :

SF = JbSbJTb . (33)

Since we are confident that measurement error in y and modeling error in F(x;b)

are independent random variables, their (co)variance matrices just add to form:

Sε = Sy + SF. (34)

The classic least-squares minimization method determines the estimate

xbp = argmin
x

[
�y(x)

]
(35)

for the best possible fit of the data for model F(x;b) by finding the minimum of the
cost function

�y(x) = 1

2
(y − F(x;b))TS−1

ε (y − F(x;b)). (36)

In the frequent situationwhereSε is diagonal,�y(x) is the sumof squared “observed–
predicted” residuals down-weighted by the uncertainty on each measurement. As-
suming, for themoment, that�y(x) is convex, one can use the iterativeGauss-Newton
algorithm:

xi+1 = xi + SxJTS−1
ε (y − F(xi ;b)), (37)

where J = ∂F/∂x is the usual n × m Jacobian matrix, and

Sx = (
JTS−1

ε J
)−1

, (38)

using an arbitrary starting position x0; this method converges in one step if F(x;b) is
linear in x. Iteration is stopped when the non-dimensional weighted sum of residuals
in (36), often denoted as χ2/2, is ≈ n/2.

Note that xbp from (35) will not be identical to the true state vector in (31) for at
least two basic reasons, starting with the least serious:

• First, the data y are collected with a specific realization of the random instrument
noise in ε, i.e., the component quantified by Sy in (34). Averaging over different
measurements of ywill reduce the noise level (by the square-root of the number of
independent measurements) but not eliminate it. However, the distance between
the true and estimated state vectors is likely to be on the order of the square-root
of the diagonal elements of Sx in (38), i.e., the predicted retrieval error for each
element of x:

StDev[x j ] = √
Sx j j ( j = 1, . . . ,m). (39)
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• Moreover, most interesting problems, in remote sensing in particular, result in non-
convex cost functions in (36), simply because F(x;b) is non-linear. Hence there is
no guarantee that it has a single global minimum to find by iterative Gauss-Newton
steps. So, even assuming that the true state is near the global minimum of �y(x),
depending on the initial guess x0 at the state vector, the iterative search could end
in a local minimum that is generally not within the distance in (39) of the true
state. A well-known mitigation strategy for the non-convexity problem is to use
the Levenberg-Marquardt minimization algorithm (Marquardt 1963; Bevington
and Robinson 1992) where S−1

x = JTS−1
ε J in (38) is replaced by a weighted sum

of itself and its diagonal elements. The weight starts high on the diagonal matrix,
which make the iteration behave like a straightforward gradient descent, which
can work for non-convex function minimization (away from inflection points). As
the weight shifts away from the diagonal, the method reverts to Gauss-Newton
steps as the correct minimum is approached in a state-space region where �y(x)
is locally convex.

Finally, the whole inverse problem at hand can be ill-posed, that is, S−1
x can be

nearly singular, thus making its inversion in (38) highly unstable. The trajectory of
iterative minimization in (37) will then be very sensitive to small perturbations of
y, e.g., instrumental noise. We now introduce a solution to this last issue since in
remote sensing there is often much redundancy in the observations with respect to
the unknowns in the retrieval.

Optimal Estimation

Rodgers’ (2000) theory of optimal estimation (OE) revisits the above inverse problem
of parameter estimation in the forward signal model from a Bayesian perspective, as
a means for dealing with chronic ill-posedness by introducing regularization. Bayes
theorem relates two conditional probabilities and two unconditional counterparts:

P(x|y) = P(y|x)P(x)/P(y), (40)

where the last one is just a normalization factor of no particular interest here. P(x)
is the “prior” or“a priori” probability, while P(x|y) is the “posterior” probability.

Letting | · | denote the determinant of a square matrix, and assuming gaussian
distributions, we have

log P(x|y) = −1

2

[
(x − x̂)TS−1

x (x − x̂) + log |Sx| + m log(2π)
]

(41)

for the posterior probability of atmospheric state properties x, given data y. Also, we
note that x̂ is a new estimate of the prevailing state vector. Both x̂ and Sx will depend
on y, F(x;b), and related quantities, as shown below. In addition, we have
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log P(x) = −1

2

[
(x − xa)TS−1

a (x − xa) + log |Sa| + m log(2π)
]

(42)

for the a priori probability of atmospheric state, i.e., what we know about it before
any observations are made. Finally, we have

log P(y|x) = −�y(x) − 1

2
log

[
(2π)n|Sε|

]
(43)

for the probability of obtaining the specific observations y, given the atmospheric
state x, i.e., probability of seeing the random residuals used in (36) to estimate the
cost function �y(x).

One then defines x̂ as the state with maximum likelihood, i.e., that maximizes
P(y|x)P(x), a product of two gaussian PDFs. In other words,

x̂ = argmin
x

[
�y(x) + 1

2
(x − xa)TS−1

a (x − xa)
]

, (44)

instead of (35). The Gauss-Newton algorithm in (37) still applies but, rather than
(38), we now have

Sx = (
JTS−1

ε J + S−1
a

)−1
. (45)

Although theremaybe better choices, one can always start the iterationswith x0 = xa.
As in (39), the diagonal elements Sx j j of Sx are the posterior estimates of variance
on the retrieved properties in x̂.

Degrees of Freedom

At any rate, and contrary to (38), the matrix inversion problem in (45) is by design
well-posed, thanks to the presence of S−1

a . However, convergence goes to x̂ rather
than xbp in (35).

It is therefore of interest to evaluate the m × m matrix

A = (
JTS−1

ε J + S−1
a

)−1
JTS−1

ε J, (46)

i.e., the left-hand product of (45) with the potentially ill-conditioned matrix to be
inverted in (38). Recall that these expressions are the predicted uncertainties on the
retrieved state properties with and without regularization, respectively; in the latter
case, however, the potentially unstable matrix inversion is not performed. A little
algebra leads to the simpler expression

A = Im − SxS−1
a , (47)
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Fig. 7 Schematic
representation of an OE for
m = 2 atmospheric state
parameters relevant to the
investigation presented in the
main body. Ellipses are
iso-likelihood contours
where we have (x −
E[x])TS−1(x − E[x]) = 1,
and these curves are traced
respectively for the prior
(grey) and posterior (black)

where Im is the m × m identity matrix. Now, in OE theory, A is known as the “av-
eraging kernel,” and Rodgers (2000) shows that it can be defined simply as ∂x̂/∂x,
where x is the true state parameter.

If Sa is diagonal (no prior covariances), then the diagonal terms of A are

A j j = 1 − Sx j j
Sa j j

(48)

for j = 1, . . . ,m. Sincewe can anticipate that 0 ≤ Sx j j ≤ Sa j j , we have A j j ∈ [0, 1].
A j j is known as the partial “degree of freedom” (DOF) for the retrieved property x j .
It is directly related to the predicted retrieval error

StDev[x j ] = √
Sa j j × (1 − A j j ) = StDeva[x j ]

√
1 − A j j , (49)

recalling that Sa is taken as diagonal.
Following the methodology of Merlin et al. (2016), we use A j j and StDev[x j ]

from (48)–(49) extensively in the main body of this article. The former is an intuitive
non-dimensional metric of the value added by the observations projected onto a spe-
cific state variable. If Sx j j � Sa j j , then A j j approaches unity, which means that the
observations have vastly improved our knowledge of the state variable x j . If, on the
contrary, Sx j j � Sa j j , then A j j approaches zero, which means that the observations
have not helped very much.

Figure7 illustrates for m = 2 a typical concentration of probability measure (IC
increase) in a familiar state space when going from the prior to posterior PDFs
for x. In both cases, we have traced, assuming gaussian PDFs, the lines of iso-
probability value at 1/(2π)

√
e|S|, equivalently, where (x − E[x])TS−1(x − E[x]) =

1 for easy visualization of the magnitudes of prior and posterior standard deviations.
The area of each ellipsoid is ∝|S|. More specifically, the regions inside the ellipses
both account for 68% of the prior and posterior events. Note that, while Sa is diagonal
(no covariance), Sx is generally not.
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A better-known quantification of overall retrieval performance in OE theory is

Tr[A] =
m∑
j=1

A j j ∈ [0,m], (50)

which is the (implicitly, total) number of Degrees of Freedom. It approximates the
maximum number of state properties (among m) that can be retrieved from the n
observations in y in view of: (i) the instrumental noise (Sy); (ii) forward model error
(SF), in this case, from uncertainty in non-retrieved parameters (Sb); (iii) sensitivities
of the forward model to the state variables to be retrieved (J), or not (Jb); and (iv)
prior information about the atmospheric state (Sa).

The off-diagonal terms in A are non-dimensional quantities of the type
E

[
(x1 − x̂1)(x2 − x̂2)

]
divided by a diagonal element of Sa, again assuming it is

diagonal. These normalized cross-correlations describe how different state variables
interfere (statistically) with one-another, two-by-two. Keeping these numbers small
results in more regular (hence, more easily inverted) matrix S−1

x . That, in turn, will
help the performance of the retrieval algorithm. In the design phase of the observa-
tion system, the forward model F(x;b) can thus be used to optimize the sampling of
y in a way that keeps cross-variable interference as small as possible.

Entropy and Information Content

Lastly, we relate DOFs to information theoretical concepts, and thus justify our claim
all along that we are quantifying Information Content per se. Following Shannon
(1948), Rodgers (1998) defines the increase in information (equivalently, decrease
in entropy) associated with the acquisition of observations y and their processing—
by, e.g., OE methods—as

− �H = − log2(|Sx|) − log2(|Sa|)
2

= −1

2
log2(|SxS−1

a |) = −1

2
log2(|Im − A|),

(51)
when expressed in bits. Information gain −�H ranges from 0+ (|Sx| � |Sa|) to ∞
(|Sx| � |Sa|). This follows directly from the expression for the entropy of a generic
m-dimensional gaussian probability density function, Pm(E[x],S): from, e.g., (42),
we have

H(m, |S|) = −E[log Pm(E[x],S)] = 1

2
log((e2π)m |S|), (52)

which is naturally independent of the mean E[x]. To visualize this IC increase (en-
tropy decrease), −�H in (51) is 1/2 the log of the ratio of the areas of the two
ellipsoids in Fig. 7.
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Abbreviations & Acronyms

1D one-dimensional
AOT aerosol optical thickness
BC boundary condition
BRDF Bi-directional Reflection Distribution Function
BRF Bi-directional Reflection Factor
DOAS Differential Optical Absorption Spectroscopy
DOF Degree(s) Of Freedom
FWHM Full-Width Half-Max
GSFC Goddard Space Flight Center
IC Information Content
IR infra-red
JPL Jet Propulsion Laboratory
MAIA Multi-Angle Imager for Aerosols
MAS Multi-Angle Sensor
NASA National Aeronautics and Space Agency
OE Optimal Estimation
OCI Ocean Color Imager
PACE Plankton, Aerosol, Cloud, and ocean Ecosystem
RT radiative transfer
SNR signal-to-noise ratio
SSA single scattering albedo
StDev Standard Deviation
SZA solar zenith angle
TOA Top-of-Atmosphere
UV ultra-violet
VNIR visible/near-infrared
VIS visible
VZA viewing zenith angle
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Optical Properties of Black Carbon
Aggregates

Chao Liu

1 Introduction

Black carbon (BC, also widely referred to as soot), a typical carbonaceous aerosol, is
an important by-product of incomplete combustion of fossil fuel, biomass, biofuel,
etc. (Sorensen 2001; Bond and Bergstrom 2006; Bond et al. 2013; Shrestha et al.
2010; Sharma et al. 2013). As the most absorbing aerosol of solar radiation, BC
directly warms atmosphere and reduces radiation reaching the surface, and, thus,
plays a critical role on global and regional weather and climate (Jacobson 2001;
Menon et al. 2002; Bond and Sun 2005; Ramanathan and Carmichael 2008; Schwarz
et al. 2008; Chakrabarty et al. 2009; Scarnato et al. 2013; Bond et al. 2013).

BC can heat the atmosphere through absorbing solar radiation, and leads to pos-
itive direct radiative forcing (DRF) at the top of the atmosphere and negative DRF
at the surface (Bergstrom et al. 2003; Bibi et al. 2017). BC’s mass may be relatively
small in the atmosphere compared with other aerosols, whereas it is the second
strongest anthropogenic contributor to current global warming, after carbon dioxide
(Ramanathan and Carmichael 2008). The annual BC emission is a few Tg per year
with significant uncertainties from different studies (Bond et al. 2007; Ramanathan
and Carmichael 2008), and the global average BC optical depth at 550 nm is approx-
imately 0.01 (Chung et al. 2012a). Modeled BC radiative forcing ranges widely from
~0.1 to 1.2 W/m2 at the top of the atmosphere with differences of almost an order
of magnitude (Jacobson 2001; Ramanathan and Carmichael 2008; Bond et al. 2011,
2013), and observation constrained studies estimate total (natural+anthropogenic)
BC forcing about 0.9–1.0 W/m2 (Sato et al. 2003; Ramanathan and Carmichael
2008). The IPCC 5th Assessment Report (AR5) suggests a total radiative forcing of
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atmospheric BC to be 0.6 W/m2, with 0.4 W/m2 of this from fossil fuel and biofuel
(IPCC 2013).

The BC absorption can also exert the so-called semi-direct effect by enhanc-
ing cloud evaporation (Koch and Del Genio 2010). Furthermore, BC is responsible
for indirect radiative forcing by acting as cloud condensation nuclei or ice nuclei,
which affect cloud microphysical processes and change cloud lifetimes (Lohmann
and Feichter 2005). In the atmosphere, the average lifetime of BC is a few days due
to both wet removal and dry deposition, and it is much shorter than that of long-lived
greenhouse gases. If BC particles deposit in cloud particles or snow and ice surface, it
can not only dramatically change the cloud or surface reflectance, but also contribute
to melting, in particular for Arctic sea ice (Conant et al. 2002; Painter et al. 2012;
He et al. 2016, 2018).

BC is still one of the least known factors for DRF estimations, and significant
efforts should be devoted to improve our understanding on BC optical properties.
Observations may provide the most “reliable/realistic” aerosol properties, whereas
both in situ and laboratory observations have their limitations on obtaining a complete
and detailed knowledge of BC optical properties (Schmid et al. 2006; Mishchenko
et al. 2007; Subramanian et al. 2007; Moosmüller et al. 2009; Smith et al. 2015).
First, aerosols always exist in the atmosphere as mixtures of various kinds, and, to
measure pure BC, instruments and experiments can hardly be designed to completely
avoid the influence of other aerosol materials. Secondly, BC optical properties may
be significantly influenced by observational instruments or sampling. For example,
filter-based instruments (e.g., particle soot absorption photometer) collect aerosol
particles in special filters, and this may break the geometry or size distribution of
natural particles (thus affect BC optical properties) (Lawless et al. 2004; Arnott
et al. 2005; Cappa et al. 2008). Furthermore, observations can only be carried out
at limited conditions or wavelengths, and can not provide optical properties over
the entire interested spectrum. As a result, numerical modeling becomes not only a
meaningful addition to improve our understanding on BC optical properties, but also
an important method for its radiative forcing simulation and optical-based property
retrievals.

The BC optical properties have been extensively studied with numerous numer-
ical models, either exact or approximate, and the importance of the complex BC
aggregation structures on BC optical properties is well shown and widely noticed
(Kahnert 2003; Kolokolova et al. 2006; Liu and Mishchenko 2005, 2007; Radney
et al. 2014). This chapter presents a systematic numerical investigation on the scat-
tering and absorption properties of BC with aggregation structures. We emphasize
not only on the importance of nonsphericity on BC optical properties, but also on
the capabilities and limitations of popular numerical models for the simulations. The
optical properties, including the extinction, scattering, and absorption cross sections
(Cext, Csca, and Cabs) or efficiencies (Qext, Qsca, and Qabs), single-scattering albedo
(SSA), asymmetry factor (g), and angular-dependent scattering matrix elements (Pij),
will be extensively discussed in this chapter, and we consider most of them at a single
visible wavelength of 500 nm. All results discussed in this chapter are for those of
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randomly oriented particles.More details on the definitions of those optical quantities
can be found in (Liou 2002; Mishchenko et al. 2002).

The rest of this chapter is organized as follows. The properties of BC aggregates,
i.e., key parameters influencing optical properties, are introduced in Sect. 2. The
capabilities and limitations of numerical models to simulate the optical properties
of BC in the form of aggregates are discussed and compared in Sect. 3. Sections 4
and 5 introduce the optical properties of bare and mixed BC, respectively, and the
influences of geometric parameters will be revealed in details. An interesting model
to produce BC/aerosol colors in the ambient atmosphere is applied to show whether
BC is black in Sect. 6. Section 7 concludes this study.

2 Black Carbon Aggregates

Before discussing the optical properties, BC geometry, size, and refractive index are
briefly introduced and reviewed in this section, because they are key variables to
determine the optical properties of any particles. Only by considering reliable BC
properties, numerical investigation can obtain meaningful conclusions to improve
our understanding on optical properties. Note that the review is not used to strictly
limit the numerical simulations of this chapter, and our investigations in Sects. 4
and 5 may use variables beyond the observed values discussed here to maximize the
advantages of numerical study, and to obtain a more complete understanding on BC
optical properties.

2.1 Geometry

BCparticles normally exist in the formof aggregateswith hundreds or even thousands
of small spheres in the range of 20–60 nm in diameter, which are commonly called
spherule or monomer (Dankers and Leipertz 2004; Chakrabarty et al. 2006; Dukhin
et al. 2007). Such geometries have been extensively proved by microscopic images
(Gwaze et al. 2006;Kamimoto et al. 2007;Alexander et al. 2008; Tumolva et al. 2010;
Wang et al. 2017). Once emitted into the atmosphere, BC particles undergo aging
process, which can occur over a few hours after its emission and last for days (Lee
1983; Moffet and Prather 2009; Riemer et al. 2010; Peng et al. 2016; Liu et al. 2013,
2017b). BC aggregates collapse from lacy chain-like clusters intomore compact ones
during a short period of time (Martins et al. 1998; Posfai et al. 2004; Scarnato et al.
2013; Dlugach and Mishchenko 2015). Meanwhile, those aggregates can be mixed
with other aerosol components by absorption or condensation of gaseous species,
coagulation with other aerosols, and oxidation, and become inhomogeneous with
coatings of nitrate, sulfate, or other carbonaceous materials.

Figure 1 illustrates some microscopic images of BC particles, examples of in situ
or laboratory observations from different combustion fuels and conditions (Bambha
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Fig. 1 Some microscopic images of black carbon particles from different in-situ or laboratory
observations. a Ethylene-air flame from a laminar co-flow diffusion burner (Bambha andMichelsen
2015), b laboratory sample (Chen et al. 2016), c traffic emission (Pirjola et al. 2017), d–f non-
premixedmethane-air flame (Scarnato et al. 2013), g forest fire (field-emission from theLasConchas
fire) (China et al. 2013), h–j boundary layer sample at Sagres, Portugal (Li et al. 2003), k laboratory
sample (Chen et al. 2016), l ethylene-air flame from a laminar co-flow diffusion burner (Bambha
and Michelsen 2015), m Chinese urban (Wang et al. 2017), n mountaintop of Tai, China (Wang
et al. 2017), o ambient sample from a coastal site (Freney et al. 2010), and p Mexico City (MC)
plumes (Adachi et al. 2010)

and Michelsen 2015; Chen et al. 2016; Pirjola et al. 2017; Scarnato et al. 2013;
China et al. 2013; Li et al. 2003; Wang et al. 2017; Freney et al. 2010; Adachi
et al. 2010). Those particles show clear aggregation structures with small spherical
monomers, and examples of both lacy and compacts particles are illustrated in the
figure. By analyzing images like those in Fig. 1, the geometric parameters as well as
the monomer properties can be retrieved. Figure 1 only shows the aggregate overall
geometries, not the size, so the scale label is not included in all images.

To quantitatively describe the highly complex and randomly structured BC clus-
ters, the concept of fractal aggregate (FA) shows great success and wide applications
(Herd et al. 1992; Sorensen 2001). The FA assumes same-sized spheres to be point-
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to-point attached with each other, and is mathematically described by the statistic
scaling rule:

N � kf

(
Rg

a

)Df

(1)

where N is the number of monomers in an aggregate, and a is the monomer radius.
kf andDf are the fractal prefactor and fractal dimension, respectively. Rg is the radius
of gyration, given by:

R2
g � 1

N

N∑
i�1

(−→ri − −→ro
)2

+ a2 (2)

Here−→ri is the position vector of the ithmonomer, and−→ro is that of the aggregatemass
center. Note, different from the general expression, an additional a2 term is included
in Eq. (2), because the gyration radius is defined here as the mean square distance
between mass center and all points on the spherule surfaces (Filippov et al. 2000).
The definition is given because energy transfer or chemical reaction of aggregates
with the carrier gas occurs on the surface. However, the definitions can only be
significantly different for relatively small aggregates.

Following Eq. (1), as kf or Df increases, a relatively small Rg is required, which
corresponds to amore compact particle. After originally emitted into the atmosphere,
BC aggregates exhibit lacy structures with a small fractal dimension Df, normally
less than 2 (see Fig. 1a–d), whereas aged BC may be more compact (Fig. 1i–l, Df

maybe close to 3), and be mixed with other aerosols (Fig. 1m–p) (Sorenson 2001;
Zhang et al. 2008; Chakrabarty et al. 2009; Wu et al. 2016).

In the framework of the FA, the detailed parameters of BC geometry have been
extensively studied by analyzing themicroscopic images, and various different fractal
dimension and fractal prefactor are obtained. Meanwhile, the sizes of the monomers
also gain a lot interests, and a slight size distribution on the monomer diameters is
noticed (Sorensen et al. 1992; Sorensen andRoberts 1997; Sorensen 2001, 2011;Burr
et al. 2012). Reported fractal dimension values range from 1.8 to 2.6 (Sorensen 2001;
Kahnert and Devasthale 2011; Bambha andMichelsen 2015; Chen et al. 2016;Wang
et al. 2017), and some BC images show aggregates close to solid spheres (Fig. 1l,
o), the corresponding fractal dimension of which must be close to 3. Thus, we will
consider fractal dimension values between 1.8 and 2.8 to account for variation on
aggregate structure, and aggregates with Df of 1.8 and 2.8 will be referred to as lacy
and compact aggregates, respectively. The fractal prefactor is less discussed in the
literatures due to its relatively less influence on aggregate optical properties, which
will be noticed in Sect. 3, and a value of 1.2 estimated by Sorensen and Reborts
(1997) will be used as the default value in this study.

To accurately calculate the optical properties of a given particle, its geometries
should be rigorously presented. With the control of the statistic scaling rule, it is
possible to generate those FAs numerically, and there are various different algorithms
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Fig. 2 Examples of numerically generated fractal aggregates with N=100. The upper panels are
aggregates with a fixed fractal prefactor of 1.2 and fractal dimensions from 1.8 to 2.8 in steps of
0.2, and the lower panels are those with a fixed fractal dimension of 1.8, and fractal prefactors from
1.0 to 1.8 in steps of 0.2

for this (Witten and Sander 1981; Jullien and Kolb 1984; Oh and Sorensen 1998;
Filippove et al. 2000; Sorensen 2001).Diffusion-limited aggregationmodel, allowing
monomers to aggregate in the space by random walking, is one of the first numerical
models to produce aggregates with a complex fractal structure (Witten and Sander
1981; Oh and Sorensen 1998), and has been developed to various different versions.
However, the fractal parameters cannot be prescribed in diffusion-limited models,
and similar models include the chemical-limited algorithm (Jullien and Kolb 1984).
The tunable aggregationmodel allows the fractal parameters to be arbitrarily defined,
and is more flexible for aggregate generation (Filippove et al. 2000). Among them,
the particle-cluster based models give particles by adding monomers one by one, and
a particle grow larger with a quite clear “center”. This limitation can be avoided by
the cluster-cluster based aggregation algorithm. In the cluster-cluster algorithm, two
original aggregates that follow the statistic scaling rule themselves are aggregated to
form a larger one that also satisfy the rule by giving an appropriate relative distance.
Nomatter how the particles are generated, all the resulting particles should follow the
statistic scaling rule. This study used a tunable particle-cluster aggregation algorithm,
and the details for the aggregate formation can be found in Filippove et al. (2000).

Figure 2 shows some examples of numerically generated BC aggregates with 100
monomers. The upper panels are aggregates with a fixed fractal prefactor of 1.2 and
fractal dimensions from 1.8 to 2.8 in steps of 0.2, and the lower panels are those with
a fixed fractal dimension of 1.8, and fractal prefactors from 1.0 to 1.8 in steps of 0.2.
With the increase ofDf, aggregates change from lacy clusters to compact ones, and an
aggregate with Df of 2.8 is almost a sphere (similar to Fig. 1i–l). Comparing Figs. 1
and 2, it is safe to conclude that the FA is a reasonable model to represent realistic BC
geometries, and, by changing the fractal parameters, it provides sufficient flexibility
to define aggregates of different kinds.
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2.2 Size

As one of the most widely observed quantities for aerosol studies, particle size dis-
tribution is a relatively well known BC microphysical property. Due to the irregular
geometries and the different principles used for size measurements, various different
definitions have been applied for BC size, e.g., mobility diameter, mass equivalent
diameter, and size based on projected areas (Bond et al. 2002; Schnaiter et al. 2005;
Chakrabarty et al. 2006; Kirchstetter and Novakov 2007; Reddington et al. 2013;
Wang et al. 2015). For example, the Scanning Mobility Particle Sizer (SMPS) mea-
sures the mobility diameter, which is also sensitive to particle shape. The Single
Particle Soot Photometer (SP2), a particle-by-particle based instrument that incan-
desces non-BC materials, gives the size of BC core (Gao et al. 2007). The projected
areas derived from BC microscopic images are also an important variable to express
BC sizes. The SP2 instruments give BC volume-equivalent diameters from a few
tens nanometer to almost 1 μm (Reddington et al. 2013; Wang et al. 2015). Sim-
ilar ranges of BC size are obtained from the equivalent projected area diameters
(Chakrabarty et al. 2006, 2014) and the SMPS (Schnaiter et al. 2005; Kirchstetter
and Novakov 2007), although the definitions on the sizes as well as the distributions
are quite different. To simplify and unify the definition, this study uses two param-
eters interchangeably to represent BC size: number of monomers in an aggregate
(N) and diameter (dv) of equivalent volume sphere. For aggregates with same-sized
monomers (radius of a), the two are related by: dv � 2a 3

√
N .

The lognormal size distributions are found to provide a reasonable representation
on realistic BC aggregate and monomer size distributions, and are extensively used
for numerical approximation ofBC radiative properties and forcing (Bond et al. 2002;
Chakrabarty et al. 2006; Moffet and Prather 2009; Chung et al. 2012a; Reddington
et al. 2013;Wang et al. 2015). If the equivalent-volume diameter dv is used to specify
the lognormal size distribution, we have:

p(dv) � 1

dv

√
2π lnσ

exp

⎡
⎣−

(
ln

(
dv/dgmd

)
√
2lnσ

)2
⎤
⎦ (3)

The geometric mean diameter (GMD, i.e. dgmd) in the lognormal size distribution
indicates the ‘averaged’ particle size, and the geometric standard deviation (GSD,
i.e. σ) is a shape parameter describing the spread of particle sizes. We use a GMD
of 0.12 μm and a GSD of 1.5 as default BC size distribution in this study for bulk
scattering properties (Alexander et al. 2008; Coz and Leck 2011; Reddington et al.
2013; Wang et al. 2015). As mentioned above, realistic BC monomers also show
narrow size dispersion in the form of lognormal distribution (Köylü and Faeth 1992,
1994; Lehre et al. 2003; Dankers and Leipertz 2004; Chakrabarty et al. 2006, 2007;
Liu et al. 2006; Bescond et al. 2014), and its effects on BC optical properties will be
discussed in Sect. 4.2.
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Fig. 3 Lognormal size distributions of black carbon aggregate and monomer. The sizes of non-
spherical BC aggregates are defined by the diameters of corresponding volume equivalent sphere.
The geometric mean diameters for aggregates and monomers are chosen to be 120 and 33 nm, and
the geometric standard deviations are set to be 1.5 and 1.3, respectively

Figure 3 compares the lognormal size distributions for the BC aggregate and
monomer, and diameters of the corresponding equivalent volume spheres are used to
specify the aggregate size. The aggregate size distribution follows the default values
mentioned above, i.e., dgmd �0.12 μm and σ�1.5, and the parameters are set to be
33 nm and 1.3 for BC monomers based on observations (Bond et al. 2002; Lehre
et al. 2003; Bescond et al. 2014). We can see that the monomer diameters have a very
narrow range of variation compared to aggregate volume-equivalent diameter distri-
bution. The numbers of monomers in an aggregate corresponding to the equivalent
volume diameter are listed in the top for reference, and the number is calculated by
assuming a monomer diameter of 30 nm, which is our default value. Besides Sect.
4.2 that discusses the influence of particle minor structures on BC optical properties,
the rest of this chapter does not consider monomer size distributions, and studies
only aggregates with same-sized monomers.

2.3 Refractive Index

The refractive index (RI), a wavelength dependent complex variable, is one of the
most important parameters to determine particle optical properties. However, it is
also one of the most uncertain properties of BC aerosols, because they cannot be
directly measured. Current values of BC refractive indices are normally retrieved
from observed absorption, scattering (or extinction) of suspended particles or from
reflectance of compressed aerosol solids (Dalzell and Sarofim 1969; Chang and
Charalampopoulos 1990; Stagg and Charalampopoulos 1993; Van-Hulle et al. 2002;



Optical Properties of Black Carbon Aggregates 175

Moteki et al. 2010), whereas there are unneglectable uncertainties on both optical
measurements and retrieval algorithms. Furthermore, BC materials from different
combustions are possible to show different refractive indices, and this is verified by
the previous studies (Hanel 1976; Sorensen 2001; Bergstrom et al. 2002; Bond and
Bergstrom 2006; Lu et al. 2015). As a result, numerous datasets of BC refractive
index have been developed over different spectrums to obtain its optical properties
for radiative applications (D’Almeida et al. 1991; Krekov 1993; Hess et al. 1998).
Some of those datasets extend refractive indices at particular wavelengths into those
over continuum spectrum using the dispersion equations or Kramers-Kronig analy-
sis (Dalzell and Sarofim 1969; Querry 1987; Chang and Charalampopoulos 1990;
D’Almeida et al. 1991; Krekov 1993), so they can be applied for practical radiative
applications conveniently. Those BC refractive indices are carefully reviewed and
summarized in a couple of review researches (Sorensen 2001; Bond and Bergstrom
2006)

Figure 4 compares BC refractive indices from previous studies. Both real and
imaginary parts of the BC particles show quite wide ranges of variations, and we
eliminated results with real part larger than 2 and imaginary part much larger than
1.1. The real part varies between 1.5 and 2.0 with most values lying between 1.7 and
1.9. The imaginary part shows similar range of variation, and values from 0.4 up to
1.1 have been retrieved or used. Furthermore, quite different spectral variations over
the wavelength are shown for both the real and imaginary parts. The figure clearly
shows the uncertainty and large variation onBC refractive index. The refractive index
of 1.8+0.6i at a wavelength of 500 nm will be used as our primary parameters for
simulations, and exceptions to the aforementioned parameters will be specifically
described in the discussion.
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Table 1 Parameters used to define BC aggregates for numerical simulations of light scattering
properties

Property Parameter Default value Range considered

Geometry Df 1.8 1.8–2.8

kf 1.2 1.0–1.8

N 100 or 200 1–3000

a 15 nm 5–50 nm

Size distribution Aggregate GMD: 120 nm; GSD: 1.5 50–200 nm

Monomer Same-sized: diameter of 30 nm
Different-sized: GMD of 33 nm

5–50 nm

Refractive index Real part 1.8 1.2–2.0

Imaginary part 0.6 0.2–1.0

To summarize, this section provides a brief review on BC properties related to
numerical simulations for its optical properties, and summarizes their ranges of
variations for the optical property simulations. The default values as well as the
ranges used for sensitive studies are listed in Table 1.

3 Numerical Methods for BC Optical Properties

3.1 Methods

Great efforts have been devoted to investigate the optical properties of atmospheric
particles from numerical aspect. The scattering properties of particles much smaller
than the incident wavelengths are normally approximated by the Rayleigh theory
(Bohren and Huffman 2008; Moosmüller and Arnott 2009), and those of homoge-
neous or core-shell spheres are efficiently and accurately obtained by the Lorenz-Mie
theory (Mie 1908; Bohren and Huffman 2008). However, atmospheric aerosols, such
as BC particles studied in this chapter, are neither spherical nor much smaller than
the incident wavelength (e.g., visible light), and optical properties given by corre-
sponding equivalent spheres can hardly represent those of particles with aggregate
structures (Li et al. 2010, 2016). The typical BC particles have equivalent-volume
diameters in the same order of visible wavelength, e.g., a size parameter of 0.75 for
a particle with a diameter of 0.12 μm at the wavelength of 0.5 μm, which makes
the Rayleigh approximation challenged. However, BC monomers are normally in
the Rayleigh regime, and, as one of the simplest and the most popular approxima-
tions, the Rayleigh-Debye-Gans approximation (RDG) is the very first description
for the scattering and absorption of aggregates of those monomers (Sorensen et al.
1992; Farias et al. 1996b). The RDG represents only a first-order approximation,
and the approximation is adopted by neglecting multiple scattering among the pri-
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mary monomers that obey Rayleigh scattering themselves. It provides fairly good
description of fractal soot scattering and absorption, whereas sometimes yields rela-
tive errors much larger than 15% (Sorensen et al. 1992; Cai et al. 1993; Farias et al.
1996b; Sorensen 2001; Van-Hulle et al. 2002; Sorensen et al. 2018). More details on
the RDG model can be found in the classic review given by Sorensen (2001).

With the development of numerical methods for light scattering by non-spherical
particles,more andmore accuratemethods are applied to account for the optical prop-
erties ofBCaggregates. TheMultiple SphereT-Matrixmethod (MSTM) (Mackowski
1994, 2006, 2014; Mackowski and Mishchenko 1996, 2011; Liu et al. 2008) and the
Generalized Multi-particle Mie (GMM) method (Xu 1995; Xu and Gustafson 2001;
Xu and Khlebtsov 2003) are the most popular ones based on similar physical prin-
ciples, and the two methods are specially designed to handle aggregates of spheres.
Different from theRDG, theMSTMandGMMrequire the exact configurations ofBC
aggregates, i.e., the position, size, and component of each monomer. General meth-
ods for arbitrarily shaped particles, such as the discrete dipole approximation (DDA)
(Draine and Flatau 1994; Yurkin and Hoekstra 2007, 2011), can also be applied to
calculate aggregate optical properties, and they can be applied to further improve
the complexity of BC geometries (Yon et al. 2015; Liu et al. 2016b). Besides, Liou
et al. (2011) develop a geometric-optics approach coupled with surface-wave con-
tributions for light scattering by aggregates, and the model shows great performance
on approximating the optical properties of BC aggregates and snow grains.

Table 2 summarizes the popular numerical models discussed above to study BC
optical properties, and all of themwill be discussed in this study.We first demonstrate
the significant errors that may be introduced by applying an approximate method
(RDG or equivalent-sphere based approximations), and, then, compare the compu-
tational accuracy and efficiency of the three accurate models, namely the MSTM,
GMM, and DDA. After this section, we use only those numerically accurate models
to investigate BC optical properties. The MSTM is used as a benchmark model for
idealized aggregates with perfect spherical monomers and no overlapping, and the
DDA is used in Sect. 4.2 for irregular ones with minor imperfect structures.

3.2 Approximate Methods

Approximate methods such as the RDG do not require specified particle geometry
for the simulation, whereas the MSTM calculates the optical properties of a given
particle with precisely defined geometry. For a given set of geometric parameters, the
fractal aggregates are randomly generated, and only the relative distances between the
aggregates are fixed for the tunable aggregation algorithm. Each aggregate geometry
can be referred to as an aggregate ‘realization’. Before evaluation on the approximate
method, we first verify how many aggregate realizations are needed for the accurate
methods to give the optical properties of aggregates with certain structures.

Table 3 list ratios of the standard deviation to the mean value of optical properties
of 20 aggregates with 10, 100, and 1000 monomers, and they indicate the relative
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Table 2 Comparison of some popular numerical models used to calculate BC optical properties

Method Description of the model Source

MSTM Accurate method for aggregates of
spheres based on the superposition
T-matrix method

Public code by Mackowski and
Mishchenko (1996, 2011)

GMM Accurate method for aggregates of
spheres based on the interaction
among spherical particles

Public code by Xu (1995)

DDA Accurate model for particles with
arbitrary shapes by solving Maxwell’
equations in frequency domain

Public code by Yurkin and Hoestra
(2011)

RDG First-order approximation by
neglecting multiple scattering among
monomers

Self-developed following Sorensen
(2001)

Equivalent
Sphere

Use the optical properties of
equivalent sphere to represent those
of non-spherical particles

Public code by Bohren and Huffman
(2008)

Table 3 Ratios of standard deviations to mean values of aggregate optical properties from different
particle realizations. For the same aggregate parameters and size, optical properties of 20 aggregates
with different realizations are calculated and averaged

Df N Cext (%) Cabs (%) Csca (%) g (%)

1.8 10 0.39 0.38 0.84 0.14

100 0.43 0.30 3.5 1.7

1000 0.21 0.13 1.8 0.15

2.8 10 0.37 0.28 0.37 0.0020

100 0.18 0.19 0.18 0.0049

1000 0.035 0.048 0.057 0.00046

variance of the optical properties due to aggregate realizations. The default vari-
ables are used for the simulations: a refractive index of 1.8+0.6i at a wavelength
of 0.5 μm, and aggregates with a fractal prefactor of 1.2 and fractal dimensions of
1.8 and 2.8. Most ratios are under 0.5%, and only scattering cross sections for lacy
aggregates have a ratio up to 3.5%. The ratios generally decrease with the increase of
aggregate size. The optical property variations also become less significant for com-
pact aggregates due to relatively spherical and compact structure. To summarize, a
few aggregation realizations (less than 10) are enough to give the averaged optical
properties of BC aggregates (Liu and Smallwood 2010; Liu et al. 2012b). However,
for the computational efficiency, this study mostly uses results of a single aggregate
realization to represent those of an ensemble with the same parameters.

Both spherical approximations based on the Lorenz-Mie method and those in
the framework of the RDG introduce significant errors on calculating aggregate
optical properties (Sorensen et al. 1992; Cai et al. 1993; Farias et al. 1996b;
Li et al. 2010, 2016). Figure 5 compares the optical properties of BC particles
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Fig. 5 Comparison of the optical properties (i.e., extinction (Cext) and absorption (Cabs) cross
sections, single-scattering albedo (SSA), and asymmetry factor) of black carbon aggregates given
by different numerical models as functions of monomer number

calculated by numerical exactmethod (i.e.MSTM), theRDGapproximation, and two
equivalent spherical approximations. The extinction and absorption cross sections,
single-scattering albedo, and the asymmetry factor as functions of aggregate size
(i.e. monomer number in an aggregate) are illustrated in the figure. The correspond-
ing results for equivalent volume and surface area spheres are referred to as the EVS
and ESS, respectively. For each BC size (N), theMSTM results in Fig. 5 are averaged
over those of 20 different aggregate realizations. We can see that the results given by
the RDG and the equivalent spheres are significantly different from those given by
the MSTM. For aggregates with Df �1.8, the RDG underestimates cross sections by
approximately 13% to 25%, whereas shows asymmetry factors close to those given
by theMSTM. As the aggregates become compact, the interaction amongmonomers
becomes stronger, and, besides the absorption, the RDG results become worse. The
relative errors of the extinction cross sections reach to almost 30%, and those for
the SSA are even larger. However, the RDG approximates the absorption of com-
pact aggregates relatively accurately with relative errors less than 10%. Note that
the absorption given by the RDG is the sum of absorption of individual monomers
given by the Rayleigh approximation, and is independent of aggregate structure.
Because the RDG approximation gives the optical properties of given aggregates
with really simple equations based on the Rayleigh approximation, its computa-
tional burden can be ignored. The EVS approximation can neither account for the
effects of aggregation structures, and its performance varies at different conditions
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Table 4 Bulk scattering properties averaged over an ensemble of black carbon particles with a
lognormal size distribution

Cext (μm2) Cabs (μm2) Csca (μm2) g

MSTM Df �1.8 0.021 0.018 0.0027 0.61

MSTM Df �2.8 0.026 0.018 0.0083 0.58

RDG Df �1.8 0.018 0.015 0.0024 0.58

RDG Df �2.8 0.026 0.015 0.010 0.46

EVS 0.029 0.019 0.010 0.41

for different quantities. The cross sections are relatively reasonable for aggregates
with less than ~600 monomers, whereas the absorption is significantly underesti-
mated for large aggregates. The ESS approximation completely overestimates the
cross sections, because the sphere with the same surface as those of the aggregate
has much larger particle volume.

Figure 5 indicates that the accuracy of the approximations for different quantities
varies at different aggregate sizes, and Table 4 lists the bulk properties averaged over
an ensemble of different-sized aggregates. The default BC size distribution with the
GMD of 0.12 μm and the GSD of 1.5 is considered. With this size distribution,
most aggregates have less than 300 monomers (see Fig. 3). All results listed are
averaged values per single particle. Again, the RDG underestimates the extinction
of lacy aggregates (Df �1.8) by 15%, mainly due to the underestimation on the
absorption. Coincidentally, the RDG gives extinctions of compact aggregates close
to the MSTM results, whereas underestimates and overestimates the absorption and
scattering, respectively. The EVS approximation overestimates the cross sections by
5% (absorption) to over 200% (scattering of lacy aggregate). The ESS results deviate
most significantly, and are not discussed.

The non-zero scattering matrix elements of aggregates with 400 monomers given
by the numerically approximate and accurate methods are compared in Fig. 6. The
RDG and MSTM show similar scattering phase functions for aggregates with lacy
structure, whereas quite different results are noticed for the compact aggregates. The
EVS phase function differs from both lacy and compact MSTM results. The ratios
of other elements to the phase function for lacy aggregates features of the Rayleigh
scattering due to relatively weak interactions amongmonomers, and only theMSTM
results for compact aggregates and the EVS solutions show slight differences from
those of the Rayleigh scattering.

Figure 7 is the same as Fig. 6 but for the scattering matrix elements of an ensem-
ble of BC aggregates with the default size distribution. Although the aggregates with
Df �2.8 are almost spherical and highly compact, their phase function still exhibits
relative differences over 40% from those of the EVS at some scattering angles. The
RDG results agree relatively closely to theMSTM ones for the lacy aggregates. Both
the RDG and EVS approximations underestimate the forward scattering and over-
estimate the backward scattering. Again, the differences on other scattering matrix
elements occurs only on compact BC given by the MSTM and the EVS.
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Fig. 6 Comparison of the non-zero scattering matrix elements of black carbon aggregates given
by different numerical methods. The BC aggregate has 400 monomers, and the diameter of the
equivalent volume sphere is 0.22 μm

The equivalent sphere approximation uses optical properties of spheres to rep-
resent those of non-spherical properties, and the “equivalence” can be defined for
different quantities. Besides volume and surface area, radius of gyration is also a
potential equivalent variable, and it is possible to have two equivalent parameters at
the same time by using multiple spheres, i.e., both volume and ratio of volume to
projected area. However, none of those spherical equivalent approximations gives
reasonable solutions on the optical properties of BC aggregates (Li et al. 2010).
Overall, we conclude that both the RDG and spherical approximation lead to numer-
ical errors over 10% and up to over 100% for the optical properties of aggregates,
although some model may show reasonable agreement on a particular quantity for a
particular aggregate geometry. As a result, all results from here on will be calculated
by the methods that can accurately account for the non-spherical geometries of BC
aggregates.

To summarize, due to the different errors introduced by those approximate mod-
els, accurate methods and aggregation structure have to be applied to account for
the optical properties of BC particles, although such computations are much more
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Fig. 7 Same as Fig. 6 but for those averaged over the given particle size distribution

complex and time consuming. Actually, even accurate methods show accuracy to
different degrees, and will be investigated in the following subsection.

3.3 Accurate Methods

Among the various numerically accurate solutions, we focus on three, namely the
MSTM, GMM, and DDA, because they are the most popular and appropriate ones
widely used for BC applications. The MSTM and GMM are chosen because of
their particular applicability and clear advantages on the accuracy and efficiency.
The DDA is a general method for particles with arbitrary geometries, and has also
been one of the most popular models for BC optical simulations (Draine and Flatau
1994; Kahnert et al. 2012; Scarnato et al. 2013; Moteki 2016), especially those with
irregular aggregate structures. The time domain method, such as the finite-difference
time domain (FDTD) method (Yang and Liou 1996) and the pseudo-spectral time
domain (PSTD) method (Liu 1997), will not be considered in this study, because, for
lacy particles such as aggregates, their computational efficiency is incomparable to
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that of the DDA due to much larger computational domain. The DDA considers only
dipoles inside the particle, whereas the entire domain including both the particle and
the three-dimensional free space hosting the particle has to be computed in the time
domain methods. Meanwhile, the monomer fine structure is not appropriate for the
PSTD, which performs better with coarse spatial resolutions (Liu 1997; Liu et al.
2012a).

Both the MSTM and GMM consider a BC aggregate rigorously as a cluster of
spheres defined by their positions, sizes, and refractive indices, whereas the DDA
discretizes the spatial domain using small ‘dipoles’ to represent particles with arbi-
trary shapes. Thus, the discretization of DDA simulation becomes an additional
parameter that should be considered, and it affects both the efficiency and accu-
racy of the simulation. Here, the size of dipole is defined by the number of dipoles
in a wavelength (lambda), i.e., dpl. With the increase of dpl (i.e., smaller dipole
size), the DDA represents the particle geometries better and results in more accurate
optical properties, whereas more computational resources are required. Here, default
convergence-controlling parameters in the DDA,MSTM, andGMMmodels are used
for all simulations.

Figure 8 shows the accuracy and computational efficiency of the DDA with the
increase of dpl, and the ‘exact’ solutions are given by the MSTM. We consider
an aggregate with 200 monomers. With the increase of the dpl, the DDA results
converge to those of the MSTM, whereas there are still relative errors of ~3% for
the cross sections with dpl reaching up to 600. The DDA simulations normally
suggest a dpl in the order of a few tens for particles much larger than the incident
wavelength, and, here, a dpl value up to 600 seems still insufficient. Both the MSTM
and DDA implementations used by this study are parallelized based on the MPI,
and are carried out on the same single node with 24 64-bit 2.5 GHz processors. The
bottom right panel shows the computational times used by the DDA and MSTM,
and the MSTM becomes almost three orders of magnitude faster than the DDA
simulations with a dpl of 600. For practical applications, the differences between
the DDA and MSTM should be understood more carefully. The FA is an idealized
geometry model with perfect spheres point-to-point attached, but realistic monomers
do exhibit some degrees of imperfection, such as surface roughness and overlapping
between monomers. The MSTM treats a particle as perfect spheres exactly the same
as idealized FA, whereas the DDA can not represent the monomers perfectly as
spheres in the discretized spatial domain. Thus, a portion of the DDA numerical
error is introduced by such inaccurate shape representation, especially for simulations
with a small dpl value. As a result, such ‘error’ can be understood as a correction
for a more realistic representation of realistic particle geometries, although it lacks
sufficient control for immediate application. Thus, additional caution should be taken
on the choice of dpl when applying the DDA for BC optical property simulations,
and normally a very large dpl, i.e., a few hundred, should be used to account for
the small monomer structure. More details on the performance of the DDA for the
particular application of BC aggregates can be found in Liu et al. (2018).

Figure 9 compares the integral scattering properties of aggregates with 200
monomers and different fractal dimensions given by the three numerically accu-
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Fig. 8 Comparison of the optical properties (extinction and absorption cross sections, and asymme-
try factor) and computational time given by the MSTM and DDA with different spatial resolutions
for aggregates with 200 monomers. The spatial resolution of the DDA simulation is presented by
the number of dipoles in a wavelength/lambda (dpl)

rate methods. The extinction and absorption cross sections, and asymmetry factors
are compared, and the computational times used by the three methods are also given
in the right bottom panel. The GMM code is serial, and its computational time is
divided by the number of processes used by the other models for fair comparison.
TheGMMandMSTMgive almost the same results with relative differences less than
1% for the cross sections, whereas those between the DDA and MSTM are around
4% (a dpl of 200 for the DDA simulations). The differences of the three methods
on the asymmetry factors are relatively small, i.e., under 0.5% for most cases. For
the computational efficiency, the MSTM is the most efficient one, which is an order
of magnitude faster than the GMM. The efficiency of both the MSTM and GMM is
less sensitive to aggregate geometry, whereas the DDA simulations become almost
two orders of magnitude faster as the aggregates become compact.

The relative differences of the GMMandDDA results compared with the counter-
part MSTM ones are listed in Table 5, and most of those results have been discussed
in Fig. 9. Again, the GMM results are close to those of the MSTM, and relative
differences of the DDA on the cross sections are still quite obvious at a dpl of 200.
Meanwhile, both the GMM and DDA are less efficient than the MSTM.

Figure 10 illustrates the scattering matrix elements of aggregates with 200
monomers given by the MSTM, GMM, and DDA, and lacy (Df �1.8) and com-
pact (Df �2.8) aggregates are considered. Although the three models give almost
the same asymmetry factors (an integral of the scattering phase function), slight
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Fig. 9 Comparison of the optical properties of BC aggregates with different fractal dimensions
given by the three methods. DDA simulations use a dpl of 200

Table 5 Relative differences of the optical properties of BC aggregates given by the GMM and
DDA compared to the corresponding MSTM results, and their computational efficiency (ratios of
computational time used by the GMM/DDA to that by the MSTM)

Df Cext (%) Cabs (%) g (%) Efficiency

GMM DDA GMM DDA GMM DDA GMM DDA

1.8 −0.07 4.35 −0.07 4.72 −0.15 0.12 3.1 × 101 1.2 × 102

2.0 0.42 4.30 0.46 4.75 −0.02 0.05 3.9 × 101 1.4 × 102

2.2 0.42 4.12 0.48 4.68 −0.07 0.10 4.8 × 101 7.5 × 101

2.4 −0.19 3.88 −0.23 4.52 −0.14 −0.10 5.7 × 101 3.9 × 101

2.6 0.46 3.56 0.54 4.39 −0.07 0.36 5.5 × 101 1.2 × 101

2.8 −0.76 3.57 −0.83 4.54 0.72 0.67 4.5 × 101 5.8 × 100

differences are noticed on the phase functions of the lacy aggregates, especially in
the backward direction. The agreement on the compact aggregate is much closer.
Besides the P34 elements, almost the same results are obtained for other scattering
matrix elements.

TheDDAhas its advantages for particles with irregular geometries, such as aggre-
gates with non-spherical or overlapped monomers, so we would also present a com-
parison between the DDA and MSTM for an inhomogeneous case, i.e., aggregates
with non-absorbing coating spheres, which can be handled by both methods. Table 6
compares the optical properties and computational times of the MSTM and DDA
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Fig. 10 Comparison of the scattering matrix elements of a black carbon aggregate with 200
monomers given by the MSTM, GMM and DDA

for bare and coated aggregates, and the geometries considered are illustrated in the
table. Aggregates with 100 monomers are considered, and the blue sphere indicate
the coating. The coating volume fraction Fcoating is set to be 0.99 to completely wrap
the BC aggregates, and the coating refractive index is assumed to be 1.45. For the
DDA simulations, the particles are discretized by grids with a dpl of 100 and 200.
The accuracy and efficiency of the DDA for bare BC aggregates are similar to the
results discussed above, whereas results for coated particles are quite different. First,
with a large coating sphere, the accuracy of the DDA is substantially improved, and
its results are almost the same as those of the MSTM at a dpl of either 100 or 200.
Secondly, the MSTM becomes even more efficient for coated aggregates, whereas
the DDA takes muchmore computational time because of larger particle overall size.
Here, we just briefly compare the DDA and MSTM for coated aggregates from a
methodological aspect, andmore discussion on the optical properties of coated/mixed
BC will be presented in Sect. 5.

With a better understanding on the numerical models and their performances, we
can go forward to discuss the optical properties of BC aggregates, and the following
two sections will present the optical of bare and coated BC aggregates respectively.



Optical Properties of Black Carbon Aggregates 187

Table 6 Computational time of the MSTM and DDA methods for BC aggregates with a non-
absorbing spherical coating

Particle Method Qext Qabs SSA g Time

MSTM 1.08 0.951 0.116 0.476 3.31
DDA(100) 1.14(6%) 1.01(6%) 0.113(−3%) 0.477(0.2%) 69.9

DDA(200) 1.12(4%) 0.995(5%) 0.114(−2%) 0.477(0.2%) 557

MSTM 1.28 0.980 0.234 0.264 1.63
DDA(100) 1.35(6%) 1.04(6%) 0.227(−3%) 0.264(0%) 8.45

DDA(200) 1.33(4%) 1.02(4%) 0.228(−3%) 0.264(0%) 29.5

MSTM 3.97 0.0776 0.980 0.756 1.82
DDA(100) 3.97(0%) 0.0762(−2%) 0.981(0.1%) 0.756(0%) 475

DDA(200) 3.97(0%) 0.0767(−1%) 0.981(0.1%) 0.756(0%) 4030

MSTM 3.98 0.0694 0.983 0.753 1.20
DDA(100) 3.98(0%) 0.0686(−1%) 0.983(0%) 0.754(0.1%) 407

DDA(200) 3.98(0%) 0.0690(−1%) 0.983(0%) 0.753(0%) 3450

4 Optical Properties of Bare BC

The FA is the most popular and successful model to represent the geometries of
natural BC particles, and we refer it as an overall, or first-order, description of BC
particles. Meanwhile, realistic particles also show some detailed features, e.g., non-
spherical or polydisperse monomers, and imperfect connection among monomers,
which are not included in the framework of original FA, and these factors also influ-
ence the optical properties of bare BC (Dobbins and Megaridis 1991; Eggersdorfer
and Pratsinis 2012; Skorupski and Mroczka 2014; Yon et al. 2015; Liu et al. 2015b).
Those factors doesn’t change BC overall geometry and influence the aggregates less
significantly, and we refer them as minor, or imperfect, geometric features. This
section discusses the influence of aggregate properties and minor imperfect struc-
tures on the optical properties of BC aggregates, and an optical property database
based on the FA and accurateMSTM simulation is developed for practical BC related
radiative transfer and retrieval applications.
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Fig. 11 Effects of fractal aggregate parameters, i.e., Df (left), kf (middle), and a (right), on the
optical properties of black carbon aggregates. Both single-(colorful solid) and bulk-(black dashed)
scattering properties are illustrated in the figure

4.1 Influence of Aggregate Properties

Figure 11 compares the optical properties of both single-sized (N=100, 400, and
1000) and ensemble-averaged (dashed black curves) aggregates, and the x-axis
variables from left to right panels are the fractal dimension, fractal prefactor, and
monomer radius, respectively. To illustrate the properties in the same coordinate and
to better understand the effects due to geometry, all cross sections are plotted as
values for those per single monomer with a diameter of ao �15 nm. This is done by:

Cm � Co

N

(a0
a

)3
(4)

Here,Co is the original cross section of the given aggregate, andCm is the normalized
values per monomer illustrated in the figure. For example, the cross sections of the
aggregate with 100monomers plotted in the figure are the values divided by 100, and,
for the right panelswith differentmonomer radii, the differences onmonomer volume
are also normalized by that of the monomer with ao=15 nm by the (ao/a)3 term.
For aggregates with different fractal dimensions, the extinction of highly compact
aggregates is 20–30% larger than the lacy counterparts, mainly due to the significant
increase in the scattering cross sections. The influence of fractal prefactor on the
extinction is less significantwith relative differences less than 5%as kf varies between
1.0 and 1.8. Monomer size has the most significant influence on the extinction even
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after the values normalized to those with the same volume. This is because that the
scattering of a single monomer at this size range grow rapidly (e.g., proportional to
a6 based on the Rayleigh approximation). The effects of aggregate parameters on
the absorption is less significant, and the absorption cross section per monomer is
approximately 1.4×10−4 μm2 (at refractive index of 1.8 + 0.6i). The variations of
the asymmetry factors on the Df, kf, and a are not monotonic, and are quite different
for aggregates with different sizes. The bulk properties averaged over the default size
distribution are also given in the figure by the dashed black curves, and, forDf and kf
in the left and middle panels, the bulk properties follow the same trends as those of
single-sized aggregates. The bulk scattering properties of aggregates with different
monomer diameters show different variations from those of single-sized aggregates.
Because the size distribution is defined for equivalent volume diameter, and, as the
monomer size increases, aggregates with smaller N are accounted to following the
overall size distribution.

The effects of the fractal dimension on the scatteringmatrix elements of an ensem-
ble of aggregates are shown in Fig. 12. With the increase of the fractal dimension,
the particle projected area becomes smaller, and both the forward and backward
scattering become smaller (Note that all phase functions in this chapter are normal-
ized in the from of 1

2

∫ π

0 P11(θ)dcos(θ) � 1). The fractal dimension does not show
significant influences on other scattering matrix elements, and the differences shown
in the P22 and P34 elements seem noticeable only because of the relatively small
ranges used for the y-coordinate. The scattering matrices are much less sensitive to
the fractal prefactor, and there are relative differences of less than 20% in the forward
and backward directions for phase functions of aggregates with kf values between
1.0 and 1.8. Thus, the corresponding results are not given here.

As discussed in Sect. 2.3, there are significant uncertainties on the refractive
indices of BC particles, and Figs. 13 and 14 illustrate the effects of refractive index
on aggregate optical properties. Figure 13 shows the integral scattering properties
of aggregates with different refractive indices as functions of aggregate size, and
here we use equivalent volume diameter dv, instead of N , as x-axis. Both real and
imaginary parts affect the extinction and absorption of fractal aggregates, and the
imaginary part shows a stronger influence than that of the real part. The extinction
and absorption show relative differences less than 10% with the real part increasing
from 1.6 to 2.0. As the imaginary part increases from 0.4 to 1.0, both the extinction
and absorption cross sections are approximately doubled. Thus, the imaginary part
should be more carefully studied and constrained for BC optical properties. The
bottom panels of Fig. 13 are the asymmetry factors, which are not sensitive to the
refractive indices. Because only a single realization is considered for each aggregate
size, the asymmetry factors in the bottom panel show obvious oscillations.

Figure 14 illustrates the bulk scattering matrix elements of aggregates with differ-
ent refractive indices, and results based on three sets of refractive indices are given.
Refractive index has almost no effects on the scattering matrix elements. Differences
can only be noticed for the ratio of P22 to P11, whereas all values are close to 1 with
relative differences less than 1%.
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Fig. 12 Bulk scattering matrix elements of aggregates with different fractal dimensions and the
default size distributions

This subsection considers the particle overall geometry and refractive index by
assuming BC as aggregates of perfectly spherical monomers without overlapping.
Besides aggregate size, the fractal dimension and the imaginary part of refractive
index show the strongest influences on aggregate optical properties. Meanwhile,
different optical properties show different sensitivities on BC geometric parameters
or refractive indices. For example, the absorption per volume BC is less sensitive to
geometric variables, and the scattering pattern is less sensitive to particle refractive
indices.

4.2 Influence of Minor Structures

Different from the perfect FA model, realistic BC monomers are neither same-sized
nor attached without overlapping. Some detailed structures do not influence BC
overall geometry, whereas may affect BC optical properties to some degrees (Cai
et al. 1993; Brasil et al. 1999, 2000; Bescond et al. 2014). How significantly may
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those structure change BC absorption and scattering properties, and how can they
be considered in practical applications? This subsection answers these questions by
considering three minor factors as examples: monomer size dispersion, overlapping,
and necking. Actually, those features have been investigated in previous studies
independently (Farias et al. 1996a; Charalampopoulos and Shu 2002; Bescond et al.
2013; Cheng et al. 2014; Dong et al. 2015; Yon et al. 2015; Doner and Liu 2017),
and they obtain quite different conclusions on the influences.

Figure 15 shows examples of aggregates with the minor imperfect structures.
The upper panels are aggregates with (a) different-sized monomers, (b) overlapped
monomers, and (c) necking between the attached monomers, and the bottom panels
are illustrative and detailed sketches to define those structures. To describe monomer
dispersion, a size distribution is specified for monomer diameters, such as the red
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Fig. 14 Non-zero scattering matrix elements of aggregates with different refractive indices. The
fractal dimension and prefactor are 1.8 and 1.2 respectively, and monomer diameter is set to be
30 nm

curve in Fig. 3. Then, the diameter of eachmonomer in an aggregate can be randomly
generated to follow the given size distribution, and be aggregated similarly to the FA
with same-sized monomers by following the statistic scaling role (Liu et al. 2015a).
The monomer overlapping is generated by directly enlarging monomers. In this way,
therewill be overlapping betweenmonomers, whereas the overall aggregate structure
is not effected. The ratio of the enlarged new radius a′ to the original one ao, i.e.,
a′/ao, is used to quantify the degree of overlapping (see Fig. 15e). For perfectly
attached aggregates without overlapping, we have a′ � ao. Note that the monomer
themselves are modified, so the effects on the optical properties are not only from
overlapping. Thus, the results should be interpreted more carefully. Third, to present
the necking, we introduce circular cylinders with the rotational axis coincident to the
axis between the two attached monomers, and, as illustrated by the red portion of
Fig. 15f, the extra part introduced by the cylinder is referred to as the necking. The
radius of the circular cylinder an is used to describe the degree of necking, and an can
vary between 0 and ao, with an � 0 representing non-necking. For aggregates with
different-sized monomers, spherical monomers are still perfectly attached with each
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Fig. 15 Examples of fractal aggregates with minor imperfect geometries: a different-sized
monomers (the lognormal distribution with dgeo �33 nm and σ�1.25), b overlapping between
connected monomers, and c necking structures between connected monomers. The fractal param-
eters of the aggregates are Df �1.8 and kf �1.2. The upper panels are for aggregates with 100
monomers, and the bottom panels are illustrative figure to details the minor structures

other, so the MSTM is capable to calculate their optical properties, and the DDA is
used for aggregates with overlapping or necking structures.

As mentioned in Sect. 2.2, the lognormal distributions are found to closely rep-
resent the observed monomer diameter distributions (Köylü and Faeth 1992, 1994;
Lehre et al. 2003;Dankers andLeipertz 2004;Chakrabarty et al. 2006, 2007;Bescond
et al. 2014). Figure 16 shows the probability distribution functions ofmonomer diam-
eter with a GMD of 33 nm and three GSDs (σ ) of 1.1, 1.3, and 1.5. As the GSD
increases, the monomer size distributions become wider, with not only more larger
monomers but also more smaller ones. For σ �1.5, the monomer diameters gen-
erally range between 10 nm to over 60 nm, and such wide variations of diameter
must significantly influence the corresponding optical properties. Actually, σ values
from 1.3 up to 1.7 are observed from different fuel combustions (Chakrabarty et al.
2006). More larger monomers appear as the GSD increases, so the aggregate volume
and monomer equivalent volume diameter increase. dv is shown in the right panel of

Fig. 16, and the dv is related to the size distribution by: dv � dgmd 3

√
exp

(
4.5ln2σ

)
.

With σ increasing from 1.0 to 1.5, the total volume is doubled, and the equivalent
volume diameter increases from 33 to ~42 nm.

Figure 17 illustrates the integral optical properties of aggregates with different-
sized monomers as functions of the GSD. The blue curves and shaded areas indicate
the averaged values and their variation (plus and minus one standard deviation) of
the optical properties. A refractive index of 1.75+0.435i and an incident wavelength
of 650 nm are used for this figure based on Liu et al. (2015a). Here, 100 aggre-
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and geometric standard deviations of 1.1, 1.3, and 1.5. Right: The equivalent volume diameter of
different-sized monomers as a function of geometric standard deviation

gate realizations are generated for each case to account for the randomness of not
only aggregation realizations but also monomer size dispersion. As σ increases, the
extinction, scattering, and absorption cross sections all increase mainly because of
larger total BC volume contributed by larger monomers. The scattering and absorp-
tion cross sections at σ � 1.5 become 2.5 and 1.0 times larger than the corresponding
values at σ � 1.0, i.e., aggregates with same-sized monomers of 2ao �33 nm. The
asymmetry factor does not show too much variation over the monomer size devia-
tion. The results in red are the scaled counterparts that remove the effects of changes
on monomer equivalent volume diameter by multiplying the absolute value by a cor-
rection factor. Considering that the scattering and absorption of a single monomer
are proportional to the volume and its square, respectively, the corresponding factors
are defined as

(
dv/dgmd

)3 � exp
(
4.5ln2σ

)
and

(
dv/dgmd

)6 � exp
(
9ln2σ

)
. For the

extinction, we use the same factor as that for absorption, because BC extinction is
mainly contributed by its absorption. The changes on the scaled values are much
smaller. As σ increases to 1.5, the absorption and scattering after scaling decreases
slightly by 5% and 20%, respectively, and there is only a relative variation of less
than 0.3% for the extinction. This means that the changes on the absolute cross sec-
tions are mainly caused by the increase of the total BC volume, and, thus, can be
more easily considered by just multiplying a volume scale factor to the properties
of same-sized aggregates. The effects of monomer size distribution on the scattering
phase matrix are also relatively weak, and will not be discussed here. More details
on the influence of monomer size distribution on BC optical properties can be found
in Liu and Smallwood (2011), Wu et al. (2014), and Liu et al. (2015a).
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The influences of overlapping and necking on aggregate optical properties are
illustrated in Fig. 18. The DDA is used to calculate the optical properties of those
‘irregular’ particles, and, again, we include both absolute and scaled values in the
figure. For the overlapping, the total volume also increases as the overlapping degree
increases, i.e., a′/ao increases. Because the monomers are enlarged, the increases
of the absolute cross sections cannot be understood to be contributed only by over-
lapping. Here, we pay more attestation on the scaled values, which do not change
significantly. For the severe necking case with an/ao increasing to 1, the necking
volume researches to over 40% of the original aggregate volume, and the extinc-
tion and absorption increase over 60% compared to the ideal no-necking case. The
scattering cross section shows the most significant variation due to necking, which



196 C. Liu

C
ab

s (
x1

0-2
μ

m
2
)

0

2

4

6
Absolute Values
Scaled Values

C
ab

s (
x1

0-2
μ

m
2
)

2

4

,

C
sc

a
 (

x1
0-2

μ
m

2
)

0

1

2

a /a
o

1.0 1.1 1.2 1.3 1.4 1.5

g

0.4

0.6

a
n
/a

o

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 18 Optical properties of aggregates with overlapping (left) and necking (right) structures.
Both absolute and scaled (accounting for the changes on aggregate total volume) values are given.
ao is original monomer radius, and parameters a′ and an are used to describe monomer overlapping
and necking (see Fig. 15), respectively

is doubled, whereas the asymmetry factor is almost unchanged with the increase of
necking. Again, the scaled values (red curves) are those normalized ones considering
BC volume, removing effects due to volume change. The influences of overlapping
and necking on the scaled extinction and absorption are much weaker, less than 20%
for most cross sections. Thus, similar to monomer size dispersion, the effects of
overlapping and necking can be roughly approximated by multiplying only a scale
factor accounting for the volume differences.

Figure 19 illustrates the scatteringmatrix elements of aggregates with overlapping
(a′/ao � 1.1 and 1.5) and necking (an/ao � 0.2 and an/ao � 0.8) monomers as
well as those of perfect aggregates

(
a′/ao � 1.0

)
, and two cases with weak and

severe minor structures are illustrated. Again, almost no difference is noticed for
the matrix elements besides the phase functions. There are noticeable differences on
the phase function and P22/P11 of aggregates with heavily overlapping and necking
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cases, because, with a′/ao � 1.5 or an/ao � 0.8, the aggregates are clearly different
from the corresponding perfect case. Considering that we are discussing the effects
of minor structures, and imperfect factors with small values of a′/ao or large values
of an/ao are not minor anymore. Note that the P22/P11 term may change by ~3% for
the severe overlapping case. However, overall, the effects of minor structures on the
scattering matrix elements are all minor.

To summarize, the minor imperfect structures do show clear influence on the
optical cross sections of BC aggregates, whereas have less effects on the scattering
matrix elements, which agreewith previous studies. However, the influence ismainly
caused by the variation on BC total volume, and scaled results in Figs. 17 and 18
indicate that the optical properties of aggregates with minor imperfect structures can
be approximated using those of perfect aggregates by multiplying a correction factor
to account for the volume/mass difference.
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Fig. 20 Framework of the database based on pre-calculated database and interpolation for optical
properties of aggregates with small monomers

4.3 An Optical Property Database of BC Aggregates

As we have shown in Sect. 3, either simple RDG approximation or equivalent spher-
ical model introduces obvious errors on aggregate optical properties. Meanwhile,
the simulations for optical property of non-spherical particles are computational
expensive and trivial, because the aggregates should be rigorously generated and
defined. Thus, we extend our simulations for a wide range of aggregate parameters,
and develop a database to give optical properties of BC aggregates efficiently and
accurately. Figure 20 illustrates the framework of the database. The fundamental
role of the database is to obtained BC optical properties with given FA structure
parameters, refractive index, and size distribution, and this is done mainly by inter-
polation among those pre-calculated results given by precise aggregate geometries
and the MSTM. The effects of minor imperfect structures are considered by scaling
with respect to BC volume as discussed in previous subsection, while a volume cor-
rection factor should be approximated and given by the user. Overall, the database
includes two parts: a dataset with a large amount of aggregate optical properties pre-
calculated using the MSTM, and an implementation including mainly interpolation
to give the properties at certain BC parameters. The bulk optical properties of a given
size distribution is given by integral over given size distribution of N or dv.

Table 7 lists the variables we considered for the large dataset. First, three different
fractal dimensions are used to account for both lacy and compact aggregates, while
we fix the fractal prefactor to be 1.2 due to its less significant influence on optical
properties and relatively less variation. We consider 135 aggregate overall sizes
defined by monomer numbers from 1 to 3000. For monomer size, monomer size
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Table 7 Variables and
parameters considered for
pre-calculated optical
properties

Parameter Values

Df 1.8, 2.3, and 2.8

aggregates size (N) 135 different N values from 1
up to 3000

Monomer size (xa) 0.05 to 0.5 in steps of 0.05

Real part of refractive index 1.1, 1.2, 1.4, 1.6, 1.8, 2.0

Imaginary part of refractive
index

0.1, 0.2, 0.4, 0.6, 0.8, 1.0

parameters (size relative to wavelength), instead of absolute sizes, are set from 0.05
to 0.5 in steps of 0.05, so different-sizedmonomers that have the same size parameters
at different wavelengths are calculated only once in the database. Six real parts and
six imaginary parts of refractive indices are used, and this leads to a total of 36
complex refractive indices. Thus, the optical properties of a total of almost 150,000
aggregates with different parameters are calculated by the MSTM. The details of the
database can be found in Liu et al. (2019), and much more results are discussed in
the study.

Figure 21 illustrates an example of the pre-calculated optical properties. The
top panels are the optical properties of aggregates with a fractal dimension of 1.8
and refractive index of 1.8+0.4i. The x-axis and y-axis are for aggregate size N
and monomer size parameter xm, respectively. Because the area of corresponding
equivalent volume sphere, instead of the project area of the aggregate, is used to
calculate the extinction efficiency, the efficiencies reach as large as 8 in the figure. A
factor of 10 is multiplied to the SSA and g values in the figure, so the same color bar
as those for Qext with values between 0 and 8 can be used. The middle and bottom
panels are those of more compact aggregates withDf of 2.3 and 2.8, respectively, and
the results are given as their relative differences from those of aggregates with Df �
1.8 for comparison. All optical properties increase as the monomer size or monomer
number increases, because most of those aggregates have equivalent volume size
parameters less than 2. The middle and bottom panels show the influence of fractal
dimension on the optical properties, and the influences are substantially different,
which will not be discussed in details. We calculate similar data for all 36 different
refractive indices, and that makes it possible to give optical properties for most BC
related applications.

5 Optical Properties of Mixed BC

As mentioned in Sect. 2.1, after emitted into the atmosphere, BC particles may mix
with other aerosols, and become inhomogeneous with coatings of nitrate, sulfate,
or other carbonaceous materials, most of which are non-absorbing. This process is
also known as aging, and the mixed BC can also be referred to as aged BC. The
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Fig. 21 Top panel: Extinction efficiency, single-scattering albedo, and asymmetry factor of fractal
aggregates with a fractal dimension of 1.8 and a refractive index of 1.8+0.4i at different monomer
and aggregates sizes. Middle and bottom panels: Relative differences (RD) of the scattering prop-
erties for aggregates with different fractal dimensions

mixing state brings another important, if not the largest, uncertainty on BC optical
properties. This section answers two questions: how the mixing state and mixing
properties would affect BC optical properties, and how significant non-absorbing
coating may enhance BC absorption.

Themixing states, e.g., size, structure, component, and relative position, make the
BC particles even more complex. For simplification, this study considers only non-
absorbing coating. If brown carbon, which is moderately absorbing itself, is coated
on strongly absorbing BC, its influence on the optical properties, especially total
absorption, may be even more difficult to be evaluated. Due to the uncertainties on
brown carbon or other absorbing materials, we consider only non-absorbing coating
in this chapter, e.g., sulfate aerosols, and a corresponding refractive index of 1.45 at
the wavelength of 0.5 μm (imaginary part of zero) is considered.

5.1 Internally Mixing Model

Toaccount for the effects ofBCaging, an ideal numericalmodel is needed to represent
the internally mixed BC aggregates. As we have shown in Table 4, the DDA takes
much more computational time for the simulations with mixed BC particles, so we
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want to take the advantage of the MSTM efficiency. This is possible, because the
MSTMcan consider clusters with spheres that are totally inside another sphere. In the
model, we keep using the concept of the FA for BC particles, and simplify the coating
to have a spherical overall geometry following the model developed by Liu et al.
(2017a). For heavily coated BC, the coating does have spherical coating (see Fig. 1n,
o). Even with this simplest case, there are at least three more parameters to specify
the particle, i.e., the component (fixed to be sulfate), size, and relative position of
the coating sphere and aggregate. Three steps are used to generate a coated particle.
First, a bare BC aggregate and a sphere with given sizes are generated, and the
size/volume of the coating sphere is calculated by given BC volume and its volume
fraction in the mixture. Second, the coating sphere and BC aggregate are mixed as
a superposition with a defined relative distance between the two particles. Third,
the coating sphere and aggregate are adjusted for the sake of applying the MSTM.
Because some volume of the coating sphere is occupied by BC monomers inside the
sphere, its radius should be enlarged until researching the required coating volume.
Meanwhile, to avoid the overlapping of the BC monomer and coating sphere, we
randomly remove all overlapped monomers (partially inside and partially outside)
to the outside of the coating sphere, and the relocation is performed to make the
movement as short as possible. In this way, the overall structure is not significantly
modified, and the generated particle can be considered by the MSTM.

Figure 22 shows some examples of modeled FAs with spherical coating, and
both lacy and compact aggregates are illustrated in the figure. The large transparent
spheres in the figure represent the coating material, and the BC aggregates all have
100monomers. In the top andmiddle panels, the volume fraction of the coating sphere
from left to right increases from 0.5 to 0.9, and the centers of the coating sphere are
located at mass center of the aggregate. The bottom panels show ‘coating’ attached
at the edge of a BC aggregate, and they can be understood as an extreme mixing
case. In the MSTM, those coated aggregates are treated as a single inhomogeneous
particle, and the interaction between its two components are fully accounted. This
section adopts this special model to represent mixed BC aggregates, and, considering
the significant variations of coating geometries that may occur in the atmosphere,
multiple models should be combined to account for more realistic effects of coating.

5.2 Influence of Coating Properties

The influence of aging/coating on BC optical properties has become one of the most
popular topics on BC radiative forcing and retrieval, because mixing properties as
well as the corresponding optical properties are still poorly understood (Moffet and
Prather 2009; Wu et al. 2016; Liu et al. 2013, 2017b). As a result, it is necessary
to use idealized models to capture some important factors for further investigation
and to understand the effects quantitatively. The simple model introduced above is
considered, because the corresponding particles are similar to realistic particles and
their optical properties can be efficiently and accurately calculated by the MSTM.
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Fig. 22 Examples of aggregates with spherical coating. Top andmiddle panels: the coating volume
fraction changes from 0.5, 0.75, to 0.9 (from left to right). Bottom panels: aged BC with the coating
sphere attached at aggregate edge

Figure 23 illustrates the effects of coating on the integral optical properties, andwe
consider (1) coating volume fraction Fcoating (left) and (2) relative position between
the centers of BC aggregate and coating sphere (right). BC aggregates with 100
monomers andDf of 1.8 (Lacy) and 2.8 (Compact) are considered. In the left panels,
we fix the size and shape of the BC aggregates, and increase the coating volume
(coating volume fraction, i.e., Fcoating). The extinction and scattering cross sections
show themost dramatic variations, because the coating increases particle sizes. More
importantly, the absorption of lacy and compact aggregate increases by 50% and
100% respectively, which is widely known as the “lensing effects” (Fuller et al. 1999;
Schnaiter et al. 2005; Peng et al. 2016), and the enhancement is more significant as
the coating fraction becomes larger than 0.5. The degree of enhancement can be
explained by how significantly the BC aggregates are embedded by the coating. For
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small coating fraction, only a small fraction of the aggregate is embedded. We will
discuss this enhancement on absorptionwithmore details in the following subsection.
With the increase of the non-absorbing material, the single scattering albedo of the
mixture increases from approximately 0.1 to over 0.8, and an absorbing dominant
particle becomes scattering dominant. The changes on the asymmetry factor are also
reasonable as the particle becomes larger with the increase of the coating fraction
(again, BC particle is fixed). In the right panels, we fix coating volume fraction at
Fcoating �0.9, and change the relative distance between the two. The x-axis is for
normalized distance between BC aggregate and coating. A normalized distance of 0
represents a coating sphere located at the aggregate mass center, and 1 corresponds
to the extreme case with coating sphere attached at the ‘edge’ of the aggregate (e.g.,
the bottom panels of Fig. 22). With the coating moving to the edge of the aggregate,
the extinction decreases by approximately 15%, and the absorption of compact and
lacy aggregates decreases by 50% and 25%, respectively. However, the effects of the
coating relative position on scattering cross section and asymmetry factor are less
significant.

Figure 24 shows the scattering matrix elements of a bare aggregate, a coated
one, and the corresponding coating sphere. The aggregate has 100 monomers with
a radius of 15 nm, and the volume fraction of the coating is 0.9, which makes
the coating sphere to be the dominate component of the particle. The scattering
patterns are mainly determined by those of the large coating sphere, especially for
the forward scattering, and the coated aggregate gives larger backward scattering.
The phase functions of ‘coated lacy’ and ‘coated compact’ aggregates are close to
each other, so we only show those of lacy ones. Other scattering matrix elements
show similar properties. Thus, the scattering matrix elements of mixed BC aggregate
are determined by those of both the aggregate and the coating sphere, and the relative
volume of the two components become an important parameter.

Although this simple model is helpful to understand the effects of coating on BC
optical properties, the uncertainties on aged BC make the interpretation difficult. To
be more specific, without clear knowledge on the detailed mixing states, numerical
model itself can hardly quantify the coating effects.

5.3 How Significantly May Coating Enhance BC Absorption

The influence of coatings on BC absorption has been extensively studied both the-
oretically and experimentally (Fuller et al. 1999; Schnaiter et al. 2005; Shiraiwa
et al. 2010; Dong et al. 2015; Peng et al. 2016; Liu et al. 2013, 2017b). The coating
is well-known to enhance absorption of BC, whereas observations with different
instruments from different circumstances obtain different results with a factor rang-
ing from 1.3 to 4 times (Schnaiter et al. 2005; Bond et al. 2006; Cappa et al. 2012).
This enhancement may lead to systematic errors on understanding BC properties,
e.g., measurements of BC concentrations, because some instruments infer BC prop-
erties based on absorption measurements. Different optical models for the internal
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Fig. 23 Optical properties of black carbon aggregates with 100 monomers as functions of coating
volume fractionFcoating (left panels) and normalized distance betweenBC and coating centers (right
panels)

mixture between BC and non-absorbing component have also been applied to tackle
the problem related to absorption enhancement (Lesins et al. 2002; Chung et al.
2012b; Dong et al. 2015), and simple examples include the effective medium theo-
ries and concentric core-shell model. However, the experimental measurements of
atmospheric BC conducted by Cappa et al. (2012) show that the measured absorp-
tion enhancement due to weakly absorbing coating is much lower than that predicted
by the core-shell Mie theory. These inconsistent findings and different observations
suggest that the effects of coating on BC absorption are still not well understood,
and the numerical model may provide some hints.

Previous discussions consider BC aggregates with spherical coating material,
which is a reasonable and practical model for aged BC, whereas BC particles in the
atmosphere show much larger variations on their geometries. Transmission or scan-
ning microscopic images show almost any geometry you can imagine, and a single
model is impossible to represent all possible particles in the ambient atmosphere.
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Fig. 24 Scattering matrix elements of a bare aggregate, a coated aggregate, and a coating sphere

Seven inhomogeneous models with different mixing structures are considered here
as shown by Fig. 25. Most of those models have been considered on other studies
independently to account for the effects of aging or internal mixing on BC opti-
cal properties, whereas these results can hardly be compared with each other due
to the different definitions on the particle properties. Thus, different models show
influences on BC optical properties to different degrees, and an inter-comparison
of different models may present a more realistic representation on BC states in the
atmosphere. The BC components are treated as either spheres or aggregates, while
the coating geometries are considered to be spherical in this study for the sake of
applying the MSTM.

Figure 26 shows the averaged absorption cross sections of the bare and mixed BC
particles, and the coating amount is assumed to give a coating volume fraction of
0.9. The two columns in the left are for bare BC with lacy and compact structures,
respectively, and the other cases are for aged BC with different mixing structures
corresponding to the geometries from Fig. 25c–i. Case 6 gives the largest absorption
enhancement, which assumes BC monomer randomly located in the coating sphere.
Cases 5 and 8 give similar enhancement, in which BC particles are located in the
coating center in the form of compact aggregates and sphere, respectively. Case 3



206 C. Liu

Fig. 25 Particles geometries considered to represent the internal mixing of non-absorbing coating
and BC

shows almost no increase in the absorption, because the particles are ‘externally’
mixed and the interaction between BC and coating is relatively weak. For Case 7, the
BC on the coating surface limits the energy reaching the particle, so the absorption
is also not significantly enhanced. Overall, as Fig. 26 shows, the mixing with non-
absorbingmaterial may enhance the absorption by a factor from 5% to approximately
100%due to differentmixing andBC structures. This range of enhancementmay also
change due to further increase in the coating volume or properties of coatingmaterial.
For example, hydroscopic aerosols, e.g., sulfate or nitrate aerosols, can easily mix
with BC, and mixed BC may absorb water vapor in the humid environment. Thus,
an absorption enhancement larger than 100% may be reasonable if BC particles are
heavily coated by absorbing a large amount of water. Again, it should be noticed
that this study assumes a fixed volume fraction of BC or coating for different-sized
BC particles, which may be not true, and this may also influence the results to some
degree.
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6 Is BC Black in the Atmosphere?

6.1 Numerical Model

With the discussion of BC, we can hardly ignore the existence of a relatively less
absorbing carbonaceous material, i.e., Brown Carbon (BrC), which is named based
on its appearance color and spectral absorptivity. BrC and BC are separated by their
observational colors, and have quite different spectral absorptivity variation. BC is
referred to as ‘black’ carbon, because it is highly absorbing and shows black color
(Bond 2001; Bond et al. 2013; Chakrabarty et al. 2013). Does BC only show black
color in the atmosphere? It is difficult to give an accurate answer from observation,
because aerosols in the atmosphere are always a mixture of different components.
Meanwhile, theBrC that has a stronger spectral variation on its absorption is supposed
to show brown color in the atmosphere (Andreae and Gelencsér 2006) due to its
stronger absorption in the shorter visible wavelengths, and its absorption decreases
more dramatically in the visible regions as wavelength increases (Kirchstetter et al.
2004; Bahadur et al. 2012; Gyawali et al. 2012). Thus, it is interesting to investigate
the realistic color of BC and other aerosols in the ambient atmosphere.

We simulate the color of a BC aerosol layer in the ambient atmosphere in three
steps. First, we carry out single scattering simulations to obtain the scattering prop-
erties of BC particles, and the bulk optical properties are obtained by averaging
over typical BC size distributions. Secondly, radiative transfer simulations are per-
formed to approximate the portion of visible light that goes through the aerosol layer
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Fig. 27 a A colorful smoke image of fire, and b configuration to simulate colors of BC layer in
the atmosphere. The transmittance (instead of reflectance) of the red, green and blue light is used
in this study for the color display, and the models used to display color is mentioned in the figure
in red

and reaches the surface at each single wavelength. A two-stream radiative transfer
model is used, and it can efficiently approximate the reflectance, transmittance, and
absorptance of an aerosol layer. Last, the transmitted light at the visible spectrum is
visualized based on the RGB colormodel to show its color in the ambient atmosphere
(Liu et al. 2016a).

The left panel of Fig. 27 is a colorful image of fire smoke, and we can see colors
such as yellow, brown, or grey colors from white to black. The right panel of Fig. 27
illustrates the procedure of our simulation. It is similar to the realistic ambient con-
dition, in which solar light reaches the observer after passing an aerosol layer. In
the figure, the incident light, i.e. purely white light, will be scattered and absorbed
by the aerosol layer, and the transmitted light, including both the direct and diffuse
energy, is used to display the color seen by an observer. Random spheres in the figure
represent the aerosol layer, and their optical properties determine the relative strength
of each outgoing monochromatic light, then the color. This procedure is mentioned
with much more details in Liu et al. (2016a) to understand carbonaceous aerosol
colors.
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6.2 BC Color in the Atmosphere

Figure 28 shows the colors of black carbon aerosols with realistic particle size distri-
butions as a function of optical depth at thewavelength of 550 nm, and theAbsorption
Ångström Exponent (AAE) (Russell et al. 2010) and absorptance of the BC layer
are shown in the right panels. The default aggregate size distribution is used for
the optical property simulations. We consider aerosol layers with optical depths at
wavelength of 550 nm ranging from 0 up to 2. The incident angle is set to 40°. The
wavelength-dependent refractive indices from Chang and Charalampopoulos (1990)
are considered for BC optical properties. The AAE is a parameter describing the
spectrum variance of aerosol absorption, and larger AAE means that the absorption
decreases more quickly as the wavelength increases (Ganguly et al. 2005; Lack and
Cappa 2010; Lack and Langridge 2013).

Thus, stronger spectral variation on the absorption leads to stronger differences
on the transmitted light and gives brown color for the BC layer. It is expected that,
as the optical depth increases, the color of the aerosol layer becomes darker, because
the layer reflects and absorbs more and more incident energy. Furthermore, both
lacy and compact BC show some brown colors with optical depth under 1, whereas
become almost black with optical depth larger than ~1.2. As shown in the right top
panel, both lacy and compact BC have AAE larger than 1 at a GMD of 0.12 μm.
The black color is shown for optical depth larger than ~1.2, which corresponds to
absorptance greater than 0.8. This indicates that the aerosol layer cannot be too thick
to show ‘colors’ other than black.

Figure 29 illustrates the colors of BC aerosols at different particle sizes (i.e.,
different geometric mean diameters) and optical depths, and the BC particles are
assumed to be lacy (left) and compact (right) aggregates, respectively. It clearly
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Fig. 29 Colors of lacy (left) and compact (right) black carbon layers at different optical depth and
particle geometric mean diameters. The optical depth is for the value of the aerosol layer at the
green wavelength 550 nm

demonstrates that the color of aerosol layers is less sensitive to BC geometry or size
distribution than to optical depth, whereas brown colors are noticed for all BC sizes.
To summarize, although BC is named as black carbon, it may show slight brown
colors in the ambient atmosphere.

7 Conclusion

This chapter focuses on the scattering and absorption properties of BC aerosols,
and reveals the importance of particle nonsphericity and inhomogeneity. Geometri-
cally, BC particles are represented using the fractal aggregates, and various numerical
models (e.g., theRDG, equivalent-sphere approximations,MSTM,GMM, andDDA)
with quite different accuracies are capable to simulate their optical properties. Those
models used for light scattering properties of BC aggregates are compared, and, by
considering both the efficiency and accuracy, the MSTM shows better performance.
The geometries of fractal aggregates are also modified to account for effects of
particle minor structures (polydisperse monomer, overlapping, and necking) on the
optical properties, and a simple numerical model is developed to consider the effects
of non-absorbing coating. Our results indicate that the nonsphericity and inhomo-
geneity of BC particles should be considered for further applications such as BC
property retrievals and radiative transfer.

As we have discussed in this chapter, the numerical models show great capability
on calculating BC optical properties, and it’s possible to treat black carbon particles
as almost any ideal geometries (e.g., fractal aggregates, minor structures, internal
mixing), which definitely improve the representation of natural BC particles. How-
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ever, considering the significant uncertainties related to BCmicrophysical properties
and variations on BC particle themselves, numerical modeling itself can never give
us a complete understanding on BC optical properties, and more efforts should be
devoted to the collaboration of observation and numerical modeling. Only by consid-
ering observations with more details, the numerical model can help to improve our
understanding on BC optical properties. Meanwhile, the numerical results should be
used more frequently to verify observations.
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