
Increasing the Reusability of Enforcers
with Lifecycle Events

Oliviero Riganelli, Daniela Micucci, and Leonardo Mariani(B)

University of Milano-Bicocca, Viale Sarca 336, 20126 Milan, Italy
{riganelli,micucci,mariani}@disco.unimib.it

Abstract. Runtime enforcement can be effectively used to improve the
reliability of software applications. However, it often requires the def-
inition of ad hoc policies and enforcement strategies, which might be
expensive to identify and implement. This paper discusses how to exploit
lifecycle events to obtain useful enforcement strategies that can be easily
reused across applications, thus reducing the cost of adoption of the run-
time enforcement technology. The paper finally sketches how this idea
can be used to define libraries that can automatically overcome problems
related to applications misusing them.

Keywords: Runtime enforcement · Self-healing · Proactive library

1 Introduction

Runtime enforcement techniques are effective solutions for guaranteeing that
software applications satisfy certain correctness policies at runtime [17]. When
using runtime enforcement, developers are typically in charge of identifying the
policies that must be enforced, defining a strategy to enforce them, and finally
implementing the software enforcer that applies the strategy.

The enforced policies are often application-specific, that is, policies are defined
ad hoc for the target application. Working with application-specific policies
might be quite expensive. In fact every time a new application is considered,
new policies must be identified, and the modelling and implementation activi-
ties must be repeated from scratch.

Interestingly policies may also refer to libraries and components that can
be reused across applications being themselves eligible for reuse. Reusable poli-
cies are extremely important because they can alleviate the developers from the
burden of identifying both the policies to be enforced and the corresponding
enforcement strategies. Developers could simply reuse policies and enforcement

This work has been partially supported by the H2020 Learn project, which has been
funded under the ERC Consolidator Grant 2014 program (ERC Grant Agreement n.
646867) and the GAUSS national research project, which has been funded by the MIUR
under the PRIN 2015 program (Contract 2015KWREMX).

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 51–57, 2018.
https://doi.org/10.1007/978-3-030-03427-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_7&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_7


52 O. Riganelli et al.

strategies while they reuse libraries, de facto simplifying the application of run-
time enforcement techniques.

Unfortunately, the definition of reusable policies and enforcement strategies
can be challenging. Since the context of use of a library is not known a priori,
a reusable policy and the corresponding enforcement strategy could be defined
referring to the operations of the library only. For example, a reusable policy of a
library for interacting with the file system may require that a file is opened before
any content is written in the file. However, several relevant policies may depend
not only on the usage of a library, but also on the behavior of the application
that interacts with the library. For instance, a policy that forces an app to close
a file before its execution is suspended depends on both the library and the app,
and cannot be specified referring to the library only.

There is a popular class of software applications that naturally facilitate both
the identification of reusable policies and the definition of enforcement strategies.
We call them life-cycle based applications. They are applications whose units of
composition are modules with an explicitly documented life-cycle model. There
is a huge number of life-cycle based applications. For example, Android apps
are composed of activities with a known life-cycle model and with callbacks that
are invoked when there is a change in the state of the app; similarly Spring
applications are composed of components with a known life-cycle model and
callbacks. The same applies to many other contexts, such as Web applications,
multi-threaded applications, and so on.

Life-cycle based applications have the important advantage of responding to
the same life-cycle and implementing the same callbacks, regardless of what a
specific application does. Thus policies and enforcement strategies can exploit
this information to consider some aspects of the behavior of the application, still
remaining reusable. We call these reusable policies life-cycle based policies and
the corresponding strategies life-cycle based enforcement strategies.

We further elaborate the concept of life-cycle based application and policy in
Sect. 2. We show how we exploited these concepts to define proactive libraries, a
class of libraries augmented with reusable enforcement strategies, in Sect. 3. We
provide final remarks in Sect. 4.

2 Life-Cycle Based Policies

The life-cycle of a software unit specifies the possible states of the unit and the
events that can cause the transition between two states. Units with a non-trivial
and well-defined lifecycle are typically executed and managed by a framework
that explicitly controls their life, invoking callback methods when there is a
state transition. For example, Android activities have callback methods that
are invoked when an application is started and suspended. Similarly, Web com-
ponents have callback methods that are invoked when they are created and
destroyed.

These callback methods are pervasively present in life-cycle based applica-
tions. For instance, every activity in every Android application implements the



Increasing the Reusability of Enforcers with Lifecycle Events 53

same callback methods. This is an important aspect that eases the definition of
both reusable policies and reusable enforcement strategies that can be generally
valid for every application of a specific domain. For instance, a policy about an
Android library can also refer to callback methods without any loss of generality.

Policies with life-cycle events are particularly relevant. Applications may have
to implement non-trivial behaviors in reaction to state transitions [1–3,6,7,9],
and this may lead to faulty applications, for instance applications with faulty
library interactions [14,21].

Although these policies might be non-trivial to address, they are easy to find
in the documentation of libraries and systems and can be the basis for the design
of reusable policies. We report below three examples of reusable policies that can
be defined for completely different life-cycle based systems.

The onPause() method is an Android callback that is automatically executed
when a user stops interacting with an activity and is relevant to several correct-
ness policies. For instance, an activity that is paused after acquiring the Camera
must release it otherwise the camera might be unusable from other activities1.

In the OSGi Java framework [4], application bundles can be started, stopped,
installed, and uninstalled remotely without rebooting. The execution of these
operations must obey to specific policies. For example, stopping a bundle requires
unregistering every previously registered service [3].

React is a JavaScript library widely used to build encapsulated compo-
nents that can be composed to create complex Web UIs [5]. Each component
has several life-cycle callback methods that can be overridden to execute cus-
tom code at particular times in the component’s life-cycle. For example, the
method componentWillUnmount() is invoked immediately before a component
is unmounted and destroyed. The library documentation requires applications to
implement specific operations when this callback is executed, such as invalidating
timers, deleting network requests, or cleaning up subscriptions [6].

Note that all these examples are cases of policies that can be arbitrarily
reused across applications since they exploit information about life-cycle events
and library APIs. These policies would be impossible to define without exploiting
the information about life-cycle events.

In the next section, we show how we exploited this concept to define proactive
libraries, that is, libraries equipped with life-cycle based enforcement strategies
We present proactive libraries in the Android domain because it is the most
popular among the application domains described above, and because it has
been already used as application domain in related work [11,18,20].

3 Proactive Libraries

Let us refer to the Plumeria2 app, a simple Android app, to illustrate the concept
of proactive library [19]. Plumeria has a fault, that is, one of its activities does not
release the camera when it is suspended, as a consequence the camera becomes
1 https://developer.android.com/guide/topics/media/camera#release-camera.
2 https://github.com/DonLiangGit/Plumeria.

https://developer.android.com/guide/topics/media/camera#release-camera
https://github.com/DonLiangGit/Plumeria


54 O. Riganelli et al.

inaccessible to the other apps of the device. This is a classic resource leak problem
that could be avoided by enforcing the policy presented in Sect. 2. In particular,
if the camera API is released as a proactive library, this problem would never
show up because it would be automatically detected and fixed by the enforcement
mechanism embedded in the proactive library.

Proactive libraries are standard libraries augmented with the built-in capa-
bility of enforcing reusable policies at runtime.

Figure 1 shows the generation process of proactive libraries. The process dis-
tinguishes the development and the runtime phases.

Fig. 1. The generation process of proactive libraries.

At development time, developers start from the identification of reusable
correctness policies, that is, natural language statements that specify how the
application should use a library according to the status of both the application,
detected through the execution of its life-cycle callback methods, and the library,
detected through the execution of its API methods. The reusable correctness
policy that ensures the correct usage of the camera is: “An activity that is paused
while having the control of the camera must first release the camera.”

Correctness policies are used to derive enforcement models that define how to
react to correctness policies violations. We use edit automata [16] to define the
enforcement models because they naturally support the definition of enforcement
rules by means of events to be intercepted, inserted and suppressed, and they
could be also verified [20]. The definition of an enforcement model does not
require any knowledge about the app that uses the API, but it uniquely requires
the knowledge of the API and of the Android callback methods, which are the
same for any app.

Figure 2 shows a slightly simplified enforcement model that forces the release
of the Camera when the activity is paused without releasing the Camera. The
prefix r is used to distinguish the calls to the API methods from callbacks. To



Increasing the Reusability of Enforcers with Lifecycle Events 55

Fig. 2. Simplified enforcement model for the Camera.

keep the example real but small, the enforcement model does not include the
part that reassigns the Camera to the activity once its execution is resumed.

To actually enforce the policy in the target environment, the enforcement
models are turned into proactive software modules that intercept the execution
of life-cycle callback methods and API methods, and produce additional invoca-
tions when needed, according to the enforcement model.

Since proactive modules are activated by the invocation of specific methods,
their execution in the user environment is controlled by a policy enforcer that
intercepts the events and dispatches them to the deployed proactive modules.
The policy enforcer also controls the activation and deactivation of the proactive
modules, which can be turned off and on by the user.

The language and frameworks to implement the proactive modules and the
policy enforcer depend on the target environment. In the case of Android, we use
the Java Xposed framework [8], which allows to cost-efficiently intercept method
invocations and change the behavior of an Android app using run-time hooking
and code injection mechanisms.

In our experience, we successfully used proactive libraries to automatically
overcome several problems present in Android apps [19].

4 Conclusions

Research on runtime enforcement has already delivered both theoretical [10,12,
16,17] and practical results [11,13,15,19]. However, identifying policies, speci-
fying enforcement strategies, and implementing the corresponding enforcers is
still a difficult and time consuming task. Reusable policies, as discussed in this
paper, can relieve developers from this tedious and error-prone task, facilitating
reuse and easing the practical adoption of the runtime enforcement technology.

We plan to extend our work on runtime enforcement in three directions.
Automatic code generation of runtime enforcement mechanisms: since manu-
ally implementing runtime enforcement mechanisms is particularly difficult and
expensive, we plan to define a model-driven software development process and
the corresponding tool chain to automatically derive enforcer code from the
models. Automatic testing of software enforcers: To achieve highly reliable and
safe enforcing mechanisms, we need techniques specifically defined to validate



56 O. Riganelli et al.

the behavior of software enforcers, which have the distinguishing characteristic
of being designed to dynamically change the behavior of other software applica-
tions, causing hard to predict side effects. Public repository of software enforcers:
Since life-cycle based enforcement strategies are application-independent, pub-
lishing well developed software enforcers in a public repository is important to
facilitate the distribution of plug-and-play enforcement strategies that can be
easily exploited by developers.

References

1. Apache Felix iPOJO - Lifecycle callbacks. http://tiny.cc/iyvoty
2. Kubernetes - Container Lifecycle Hooks. http://tiny.cc/k9voty
3. OSGi - Life Cycle Layer. http://tiny.cc/k9voty
4. OSGi Alliance - The Dynamic Module System for Java. https://www.osgi.org
5. React - A JavaScript library for building user interfaces. http://tiny.cc/iyvoty
6. React - State and Lifecycle. https://reactjs.org/docs/state-and-lifecycle.html
7. Spring - Customizing the nature of a bean. http://tiny.cc/rs2oty
8. Xposed. http://repo.xposed.info/
9. Android: The Activity Lifecycle. https://developer.android.com/guide/

components/activities/activity-lifecycle.html
10. Bielova, N., Massacci, F.: Do you really mean what you actually enforced? Int. J.

Inf. Secur. (IS) 10(4), 239–254 (2011)
11. Falcone, Y., Currea, S., Jaber, M.: Runtime verification and enforcement for

android applications with RV-Droid. In: Qadeer, S., Tasiran, S. (eds.) RV 2012.
LNCS, vol. 7687, pp. 88–95. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-35632-2 11

12. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transfer 14(3), 349–382 (2012)

13. Hallé, S., Ettema, T., Bunch, C., Bultan, T.: Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In: Proceedings of the International Conference on Automated Software
Engineering (ASE) (2010)

14. Hou, D., Li, L.: Obstacles in using frameworks and APIs: an exploratory study of
programmers’ newsgroup discussions. In: Proceedings of the International Confer-
ence on Program Comprehension (ICPC) (2011)

15. Kumar, A., Ligatti, J., Tu, Y.-C.: Query monitoring and analysis for database
privacy - a security automata model approach. In: Wang, J., et al. (eds.) WISE
2015. LNCS, vol. 9419, pp. 458–472. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26187-4 42

16. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

17. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:39 (2009)

18. Riganelli, O., Micucci, D., Mariani, L.: Healing data loss problems in android
apps. In: Proceedings of the International Workshop on Software Faults (IWSF),
Co-located with ISSRE (2016)

19. Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with proactive libraries.
In: Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) (2017)

http://tiny.cc/iyvoty
http://tiny.cc/k9voty
http://tiny.cc/k9voty
https://www.osgi.org
http://tiny.cc/iyvoty
https://reactjs.org/docs/state-and-lifecycle.html
http://tiny.cc/rs2oty
http://repo.xposed.info/
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://doi.org/10.1007/978-3-642-35632-2_11
https://doi.org/10.1007/978-3-642-35632-2_11
https://doi.org/10.1007/978-3-319-26187-4_42
https://doi.org/10.1007/978-3-319-26187-4_42


Increasing the Reusability of Enforcers with Lifecycle Events 57

20. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 241–258. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 15

21. Wang, W., Godfrey, M.W.: Detecting API usage obstacles: a study of ios and
android developer questions. In: Proceedings of the Working Conference on Mining
Software Repositories (MSR) (2013)

https://doi.org/10.1007/978-3-319-67531-2_15

	Increasing the Reusability of Enforcers with Lifecycle Events
	1 Introduction
	2 Life-Cycle Based Policies
	3 Proactive Libraries
	4 Conclusions
	References




