)

Check for
updates

Flexible Monitor Deployment
for Runtime Verification of Large Scale
Software

Teng Zhang', Gregory Eakman?, Insup Lee!, and Oleg Sokolsky! (=)

! University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,lee,sokolsky}@cis.upenn.edu
2 BAE Systems, Burlington, MA 01803, USA

gregory.eakman@baesystems.com

Abstract. The paper presents a brief overview of the SMEDL monitor-
ing system that provides flexible and scalable deployment of monitors
for large-scale software. The SMEDL specification language expresses
monitoring logic as a collection of monitoring objects and monitoring
architecture as flows of information between the monitored system and
monitoring objects. The system supports synchronous as well as asyn-
chronous deployment of monitoring objects and dynamic instantiation of
monitoring objects on demand. The application of the SMEDL system
for the monitoring of a target tracking application is briefly discussed.

1 Introduction

Modern software systems affect all aspects of our lives, offering ever richer capa-
bilities. This outsized role comes at a price: software keeps increasing in scale and
complexity, requiring ever more effort to design, build, test, and deploy. Hardly
any large-scale systems are designed from scratch today. Systems are integrated
from separately developed modules, both vertically and horizontally. Concur-
rency and distributed computation are extensively used in the integration of
modules. Modules are often developed by independent teams and incorporated
as black boxes into the larger system. Moreover, over the life of the system, indi-
vidual modules will be updated, so systems assembled and deployed in different
time frames are likely to use different versions of the module. All of these factors
allow incompatibilities between modules to slip in, in the form of communication
protocol errors, broken assumptions made by developers of individual modules,
etc. As a result, flaws in a software system are often discovered after the system
is built and deployed.

Runtime monitoring can be used to detect and diagnose these flaws and
alert system users and developers. In this paper, we will consider specification-
based monitoring, where monitors detect deviation of system behaviors from the

This work is supported in part by the Air Force Research Laboratory (AFRL) and
Defense Advanced Research Projects Agency (DARPA) under contract FA8750-16-C-
0007 and by ONR SBIR contract N00014-15-C-0126.

© Springer Nature Switzerland AG 2018

T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 42-50, 2018.
https://doi.org/10.1007/978-3-030-03427-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_6

Flexible Monitor Deployment for Runtime Verification 43

specifications and raise alarms (or, potentially, trigger recovery). This kind of
monitoring came to be known as runtime verification [3]. To be useful in moni-
toring of large-scale software systems, runtime verification needs to be supported
by a flexible monitor deployment framework. The framework should allow us to
specify our requirements, determine how each requirement should be monitored,
which observations are needed by monitors to perform their job and how these
observations should be extracted. In cases where dynamic instantiation of moni-
tors or communication between monitors are needed, the framework should also
allow us to specify when and how monitors need to be instantiated and removed,
and what communication flows should be present.

performance monitor

3) A
job start and ! !
completion | i

server server

process “ee

process

Fig. 1. Running example

Throughout the paper, we will be using a simple example of performance
monitoring. Consider the setting illustrated in Fig. 1. We have a system built as
a set of distributed server processes, each completing a series of jobs. A shaded
process indicates that server processes can be added and shut down dynamically
to satisfy demand. The monitor should calculate an average performance metric
for the whole system. Such a monitor would receive timestamped observations
from each process, corresponding to start and completion of each job, status
of a job at completion, etc., and output alerts if performance, according to the
chosen metric, falls below a threshold.

The paper is organized as follows. In Sect. 2, we give a brief introduction to
runtime verification and discuss challenges of applying runtime verification tech-
niques to large-scale software systems. Section 3 we introduce a flexible moni-
toring framework and discuss how it addresses the challenges. We conclude the
paper with a discussion of remaining challenges and future work.

2 Background: Runtime Verification

Runtime verification is a collection of techniques for correctness monitoring of
systems with respect to formally specified properties. An executable monitor is
constructed for a given property and is run over a stream of observations to arrive
at a conclusion, whether the property is satisfied or not. Runtime verification
approaches differ in how properties are specified; how monitors are constructed;
how observations are extracted; whether monitoring is performed online or over
a recorded trace; if the monitoring is online, how the monitors are deployed
within the running system.

44 T. Zhang et al.

2.1 Challenges

Application of runtime verification to large-scale software systems faces a number
of challenges that stem from many of the same factors that make large-scale
software hard in the first place. Below, we consider several of these challenges.

Multiple Properties with Different Criticality Levels. A large software
system would have many different properties to monitor. Some of these properties
relate to safety and security of the system and require fast response. Evaluation of
others, for example performance properties, may be delayed or even performed off
line. Monitors for these properties may rely on the same observations. And there
can be dependencies between properties; for example, a security monitor may
perform anomaly detection on a performance metric. Keeping track of properties
along with their dependencies, and ensuring that deployment of monitors is
appropriate for their criticality levels and preserves dependencies, is a challenge
that quickly increases with the scale of the system.

Global vs. Local Properties. Some of the properties to monitor may be
local to one module in the system, while others concern global behaviors of the
system. In a distributed system, checking global properties may incur prohibitive
overhead and interfere with the system operation. Local monitoring is usually
preferable. Deciding where monitors should be placed and managing monitor
placement in a large system is a challenge.

Multiple Variants of System Implementations. As discussed above, differ-
ent system installations may utilize different implementations of system modules.
This creates two challenges to be addressed. First, the same observation may
have to be extracted differently in different versions of a module. For example,
in one version of the module, an observation may be obtained by instrumenting
a particular function call. In a subsequent version, the call may be renamed or
eliminated through code refactoring, so that a different instrumentation needs to
be introduced. Second, properties specific to the module may also change. For
example, the property may reflect assumptions that the module makes about
interactions with its environment. A new version of the module may make dif-
ferent assumptions. Maintaining multiple versions of the property is another
challenge that is exacerbated by scale.

3 SMEDL Monitoring System

In order to address the above challenges, we have developed a prototype mon-
itoring system [4] that aims to address challenges presented above. Below, we
discuss several salient features of the SMEDL! system.

! SMEDL stands for Scenario-based Meta-Event Definition Language.

Flexible Monitor Deployment for Runtime Verification 45

’ global monitor

I

local monitor

local monitor

server server

process

process

Fig. 2. Modular specification of the performance monitor

3.1 System Design

Modular Property Specification. In order to effectively monitor a property
in a large-scale distributed system, SMEDL allows us to specify properties in
a modular fashion. In this way, a complex property can be decomposed into a
set of monitoring modules that communicate with each other and collectively
implement the monitor for the overall property. A common pattern for modular
specification is partitioning a global property for a distributed system into a set of
locally deployed modules that operate on local observations of each process in the
distributed system and convey results of local processing to the global module
that computes the overall result. Consider our performance monitor example.
Instead of sending all observations to a monolithic global monitor, we partition
it into a set of local monitors, one for each process, and a global monitor, as
shown in Fig. 2. Local monitors would calculate performance of that process and
then send a summary to the global monitor that would aggregate local reports
into the global value.

Monitor Coordination and Communication. Clearly, monitor modules
need to communicate with each other. The flow of interactions between monitors
depends on the property and how it is partitioned into modules. Specification of
the monitoring architecture, described below, makes these flows explicit.

Synchronous and Asynchronous Deployment. We specify the logic of each
monitor module and, separately, how this module is to be deployed. Often, the
user has a choice of deploying the same module synchronously or asynchronously,
so decoupling the logic of the module from its deployment strategy increases
flexibility of the framework. Continuing our example, for the modular moni-
tor shown in Fig.2, we deploy the global monitor asynchronously, while local
monitors can be deployed synchronously or asynchronously, depending on, e.g.,
relative overheads of the two approaches.

Dynamic Monitor Instantiation. Large-scale software systems typically con-
tain many similar components that can be added and removed dynamically. In
our example, server processes can be spun up and down to meet the demand.
When this happens, local monitors are instantiated for each new server process
and are connected to the global monitor.

Separation of Property Specification from Observation Extraction. A
monitoring specification describes, among other things, what observations are

46 T. Zhang et al.

needed by the monitor in order to do its job. In order to deploy monitors, we also
need to know how to extract these observations from the target system. Extrac-
tion of observations can be performed in many different ways, for example by
instrumenting source code or binaries of system components, by snooping on the
system bus, or even off line, reading from a recorded trace. Over time, the target
system may evolve and offer new ways of observation extraction, or different
variants of system component implementations may require different placement
of instrumentation probes. It is important to accommodate these changes in the
monitoring setup with as little disruption as possible. SMEDL separates moni-
toring logic from observation extraction using an event-based API, so that events
can be raised in a specified format by an appropriate extraction technology. We
have experimented with several such technologies, such as AspectC [2] for instru-
menting C source code and a dynamic translation tool SySense by GrammaTech
for capturing observations from binary code.

3.2 Monitoring Specification

In SMEDL, monitoring specification contains two major parts: monitoring
objects and monitoring architecture.

Monitoring Objects. Monitoring objects represent logic used in checking the
property. Each monitoring object has an interface: imported events that a mon-
itor receives from its environment and exported events that it raises. Imported
events can be observations from the target system or events sent by other mon-
itors. Similarly, exported events can be alarms that are delivered to the system
operator or used to trigger recovery, or they can be sent to other monitors for pro-
cessing. The logic itself is expressed using communicating finite state machines
extended with local state variables. State machines take transitions in response
to imported events and can raise exported events or update state variables when
a transition is taken. Monitoring modules are designed to allow the use of other
formalisms to express the logic.

Monitoring objects can have identity parameters. Choosing different param-
eter values allow us to have multiple instances of monitoring objects. In our
running example, a natural parameter for the local monitor is the identity of a
server. We note that at the specification level, we may want to abstract from
the precise nature of this identity. Depending on the system implementation, a
server process may be identified by a computer name, an IP address, or maybe
a virtual machine identifier where the server runs.

Monitoring Architecture. Monitoring architecture is a directed graph that
represents communication between monitoring objects. Nodes of the graph have
ports that correspond to events that the node can consume or produce. Nodes
that represent monitoring objects have ports that match the interface of the
object. Nodes can also represent components of the target system. Ports of these
nodes represent observations that are obtained from this component. Edges in
the graph represent communication flows from exported events of one node to

Flexible Monitor Deployment for Runtime Verification 47

imported events of another node. Nodes in a monitoring architecture are par-
titioned into sets. Monitoring objects within a set are deployed together and
are executed synchronously, using a single thread of control. When a monitoring
object is placed into a set with a node representing a system component, monitor
instances are running synchronously with the component, essentially becoming a
part of component instrumentation. Objects in an architecture may be instanti-
ated statically or dynamically. Statically instantiated objects are created at the
beginning of a monitored run of the system. Dynamically instantiated objects
are created when new values of identity parameters are discovered.

4 Case Studies

The SMEDL system is extensively used in the RINGS project, led by BAE
Systems as part of the DARPA BRASS program. The goal of the program is
to develop techniques to adapt a given application to changes in the application
environment or the underlying execution platform. The RINGS project focuses
on a target tracking application, developed by BAE Systems and continuously
evolved over a period of over 15 years. The tracker receives data from a number
of sensors, e.g., imaging devices, that supply information about observed objects,
and contains algorithms that parse sensor inputs and compose observations into
tracks, i.e., sequences of points representing position of an object over time.

Over time, both the application and its environment can change. For exam-
ple, new sensors are introduced into the system, and parsers for new sensor
inputs need to be added. Standards for the format of sensor data evolve, which
also requires changes to parsers. Track processing algorithms may need to be
updated to account for new sensors. The tracker uses a large number of tuning
parameters to handle weather and other environmental conditions. Misconfigu-
ration of parameter settings may lead to poor tracking results.

We use SMEDL monitors to detect when the application does not behave as
intended. Alarms raised by monitors trigger adaptation modules that perform
fault localization and generate patches that compensate for the detected changes.
In this paper, we discuss only the detection aspect of the case study.

The main challenge in constructing monitors for the tracking application is
that there is no ground truth about tracks available at run time. Instead, moni-
tors have to rely on indirect evidence of misbehavior. Alternatively, monitor can
focus on specific faults that are known to have caused misbehavior in the past.
Both approaches are imperfect: indirect monitors may not catch all violations,
while fault monitors may raise false alarms if the system tolerates the fault.
Below, we discuss examples of both monitoring approaches.

Track Quality Monitors. Developers of the tracking application have identi-
fied a number of metrics that characterize track output quality. These metrics,
collected using a sliding window time interval, include average duration of a
track observed in a time interval and the number of unassociated detections, i.e.,
observations of objects that are not associated with any track, also in a given

48 T. Zhang et al.

time interval. We can monitor these metrics at run time and raise an alarm when
significant changes are observed. Note that these metrics are indirect.

Consider the design of a track duration monitor. A track is observed as a
sequence of timestamped points. Each new point added to the track results in
a track report. Each track report is delivered to the monitor as an event that
carries the track identifier as attribute. We also assume that the system produces
timeout events that represent boundaries of the sliding window. The monitoring
architecture is very similar to the one shown in Fig. 2: there is a local monitor
for each track that calculates duration of the track in the current window and,
at each window boundary, sends the value to the global monitor to calculate the
metric for all tracks and raise an alarm, if needed. As tracks are added by the
application, new track monitors are instantiated.

To implement calculation of a quality metric over a sliding window, the win-
dow is partitioned into a series of subwindows, each represented by a separate
monitor. In addition, a window manager monitor for each track handles switch-
ing of subwindows, while the aggregator monitor combined calculations from
each subwindow into the overall track duration within the whole window. The
architecture of the monitor is shown in Fig. 3a. Some events and auxiliary mon-
itors are not shown for clarity. Each box represents a monitor, with types of
monitor parameters shown in brackets. Edges represent events exchanged by
monitors. Each edge is annotated with parameter matching that determines
replication of event flows when new instances are created. Consider, for exam-
ple, the track event raised by WindowManager and consumed by Subwindow
monitor. The matching ties the first parameter of the WindowManager instance
raising the event to the first parameter of the Subwindow instance receiving the
event. Since Subwindow has the second parameter, not bound by the matching,
the connection is a fan-out, when the track event is received by all instances
subwindow monitors for that track. By contrast, event metric_sub represents
a fan-in, when events raised by any subwindow for a track are delivered to the
Aggregator instance for that track. Finally, metric events raised by any track
aggregator are delivered to the same Metric monitor, which is not parameter-
ized. An instance of the architecture for two tracks, and two subwindows in a
window, is shown in Fig. 3b.

We illustrate a monitoring specification in SMEDL using a simplified ver-
sion of the Aggregator monitor, shown in Fig. 4. The monitor includes a single
parameter, denoted by the identity keyword and a number of state variables.
It has two imported (input) events, one representing a report from a subwindow
and the other used for initialization, and one exported (output) event, repre-
senting the track duration calculated at the window boundary. It also has a
number of internal events, described below. Monitoring logic is represented by a
collection of scenarios. Each scenario represents an event-driven state machine.
In this example, each scenario has a single state. Each transition in a scenario
is triggered by an imported or internal event and can happen only if a guard is
satisfied. Guards are predicates over state variables of the monitor and attributes
of the triggering events. When a transition occurs, a series of actions is executed,

Flexible Monitor Deployment for Runtime Verification 49

a)
WmdowManager Subwindow Aggr.egator Metrics
[int] track [int,int] metric_sub lint]
| Wi [0} i \ggregator{0]}
add_track
b)

Aggregator[1]

WindowManager[2]

Aggregator(2]

l.

Fig. 3. Monitoring architecture for the case study

each of which either updates a state variable or raises an exported or internal
event. For clarity, we do not show details of the guards and elide most of the
actions. We can see that each scenario performs a certain check represented as a
guard. For example, the check can determine whether the track started or was
dropped within the current window, and updates the state variables accordingly.
Then, an internal event is raised to trigger the next check.

object Aggregator

identity
int id;

state
int msg_cnt = 0;
int event_cnt = 0;
float observed_time = 0;

events
imported initial(int, float, int, int);
imported metric_sub(int, float, float, int);
internal checkNum();
internal il(int, float, float);
internal i2(float,float);
internal i3(float);
internal output();
exported metric(int, float);

scenarios

initialization:

init -> initial(ts, sub_w, sub_size, prob) {...} -> init
accumulation:

start -> metric_sub(n,ft,lt,flag) { msg_cnt ++; ...; raise il(n,ft,1t); } -> start
chkl:

in -> il(n,ft,1t) when (gl) { event_cnt = event_cnt + n; raise i2(ft,lt); } -> in
in -> i1(n,ft,1t) when (!gl) { event cnt = event _cnt + n; raise checkNum(); } -> in

ft_chk:
ftc -> i2(ft,1t) when (g2) { ...; raise i3(lt); } -> ftc
ftc -> i2(ft,1t) when (!g2) { raise i3(lt); } -> ftc
t_chk:
ltc -> i3(1t) when (g3) { ...; raise checkNum(); } -> ltc
ltc -> i3(1t) when (!g3) { raise checkNum(); } -> ltc
output_chk:
opc -> checkNum() when (g4) { observed time = ...; raise output(); } -> opc
opc -> checkNum() when (!g4) { observed time = ...; raise output(); ...; } -> opc
out:
fin -> output() { ...; raise metric(event cnt, observed time); ...; } -> fin

Fig. 4. Specification of the Aggregator monitor

Sensor Format Monitors. The second case study, also motivated by past
experiences, concerns data interchange formats. To facilitate independent devel-

50 T. Zhang et al.

opment of sensor devices and tracking applications, data interchange standards
such as STANAG 4607 [1] have been introduced. Nonetheless, incompatibilities
can still be encountered during missions, either because a sensor does not always
follow the standard or because the parser module has not been updated to the
latest version of the standard. The standard offers both a binary encoding of
sensor messages and an XML encoding. We have developed monitors to detect
deviations from the standard binary format. In the binary format, fields do not
have explicit delimiters and their sizes are specified within the parser. If a field in
the message has a different size than the parser expects, fields will be misaligned
and the message will be parsed incorrectly. In our case study, we rely on the
knowledge of acceptable ranges for a field in the message in order to detect and
localize the problem.

5 Conclusions

We have presented challenges to monitoring of complex software system and
briefly described a monitoring system that aims to address the challenges by
offering flexible monitor specification and deployment. The monitoring system
has been applied in a case study involving a large-scale target tracking appli-
cation. In the case study, monitors have been used detect deviations from the
original application intent and to trigger an automated search for repair.

References

1. NATO ground moving target indicator format - STANAG 4607, edition 2. https://
standards.globalspec.com/std /1300603 /nato-stanag-4607. Accessed 9 May 2018,
September 2010

2. Coady, Y., Kiczales, G., Feeley, M., Smolyn, G.: Using aspectC to improve the mod-
ularity of path-specific customization in operating system code. SIGSOFT Softw.
Eng. Notes 26(5), 88-98 (2001)

3. Sokolsky, O., Havelund, K., Lee, I.: Introduction to the special section on runtime
verification. Softw. Tools Technol. Transf. 14(3), 243-247 (2012)

4. Zhang, T., Gebhard, P., Sokolsky, O.: SMEDL: combining synchronous and asyn-
chronous monitoring. In: Falcone, Y., Sdnchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 482-490. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_32

https://standards.globalspec.com/std/1300603/nato-stanag-4607
https://standards.globalspec.com/std/1300603/nato-stanag-4607
https://doi.org/10.1007/978-3-319-46982-9_32

	Flexible Monitor Deployment for Runtime Verification of Large Scale Software
	1 Introduction
	2 Background: Runtime Verification
	2.1 Challenges

	3 SMEDL Monitoring System
	3.1 System Design
	3.2 Monitoring Specification

	4 Case Studies
	5 Conclusions
	References

