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Abstract. Increasing competition, stronger customer focus, shorter product
lifecycles and accelerated technological developments imply that companies are
faced with the challenge of adapting their own production to the circumstances
at ever shorter intervals. The factory planning project is becoming increasingly
complex, but there is less and less time available for adaptation. Particularly in
the initial planning phase, targets are defined without reliable planning infor-
mation for the further course, which have far-reaching consequences for the
outcome of a successful planning. This paper shows a possibility to generate
meaningful solution alternatives at an early stage of the target planning in order
to enable an efficient planning process in terms of time and costs. With the help
of a constraint-based variant compilation on the basis of previously defined
target and frame parameters as well as existing information on the current
factory system, various possible solution variants for target planning are to be
created. A specific use case scenario was used to develop and test the presented
methodology. By comparing combinations of the most diverse possible solu-
tions, the use of a combinatory logic approach enables the first rough and
plausible solution variants to be generated automatically, on the basis of which
the detailed planning process for achieving the determined solution variant can
be created. This way, planning bottlenecks due to the wrong choice of variants
as well as large time expenditure for the creation of solution variants can be
avoided.

Keywords: Automatic composition � Combinatory logic � Factory planning
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1 Introduction

When initiating a new factory planning project, it is assumed that the status quo of the
factory system is not suitable for future requirements. Due to changing framework
conditions and influencing factors which directly affect companies, the factory system
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has to be adapted in order to remain competitive. In a first step, it is necessary to
determine which target state has to be achieved. Correspondent with the company’s
goals, project objectives are developed to provide a specific framework under certain
conditions for the future planning project [1].

However, the strategically oriented goals from the management level cannot be
transferred directly to an operative project planning. Figure 1 shows the different levels
of influences and responsibilities which are involved in a factory planning project. Each
level has different topics to deal with which cumulates in specific information relevant
for the following level. For example, a legal guideline might be the restriction to use
different materials because of ecological concerns. These materials were used before by
the company and now have to be replaced with other materials that follow these new
legal guidelines and laws. An example for an objective of the corporate management
might be to address a wider range of wealthier range of customers which accepts a
much higher price for a product that fulfills certain ecological requirements. In order to
follow these objectives of the strategic management in combination with the legal
guidelines that have to be followed, the operational management, the level of “Solution
variants”, uses these cumulated information formulated by every preceding level to
consider different solution variants. The last level is responsible for generating a
planning process workflow based on the solution variants worked out before which
transfers the chosen variant in specific tasks.

An intermediate stage is required in which the management compares the corre-
sponding goals with the strategic corporate goals and defines specific objectives for the
planning project in cooperation with the project management [2].

The target planning phase is intended for this purpose in the context of several
factory planning procedures [3–5]. Within this first planning phase, individual planning
scenarios are worked out which can fulfill the respective objectives and other frame-
work conditions. However, the task of target planning is not responsible for developing
implementation measures for the solution variants. These implementation measures are
considered by the factory planning procedures to be developed in the following, rather
operationally shaped planning phases [2, 5].

It is a requirement of the target planning to consider possible developments and
future scenarios in order to develop suitable solution variants [6]. However, such
solution variants are initially developed on a very rough basis. They are elaborated with
the help of creative methods such as brainstorming or scenario techniques and are
based on fuzzy information and knowledge [5, 6]. On the one hand, this is necessary in
order to start the development of implementation measures and the general planning
process as soon as possible in order to be able to begin with the implementation of the
adaptation as quickly as possible. On the other hand, at this early stage a detailed
elaboration of the problem definition is not possible due to missing or insufficient and,
as already mentioned, fuzzy information [7]. This fast and less detailed and therefore
very vague procedure brings along the danger of ending up in a planning dead-end and
thus inefficiently working on the whole planning project [8].

If the percentages of cost responsibility of the respective planning phases are
considered in a classical factory planning procedure (see Fig. 2), it becomes apparent
that the target planning phase occupies half of the total financial volume. This means
that decisions made in the target planning phase have a strong influence on the financial
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dimension of the whole planning project. As mentioned before there are several factory
planning procedures which consider the target or goal planning as a very first step of
the whole planning procedure. In this early phase, however, decisions can be adjusted
to avoid possible financial damage, which could occur later in the planning process.
The decisions of the target planning thus have a significant influence on the successful
completion of the project, as it lays the foundation for further procedures.

The objective of the target planning is to develop suitable rough solution variants
based on different framework conditions and performance targets for the factory sys-
tem. These variants are to serve as a guideline and orientation for successful planning.
They specify a planning direction with corresponding tasks, which are further detailed
in the following planning steps and phases. This first planning phase lays the foun-
dation for the ongoing planning project and is a necessary basis for further decisions
made in the following planning phases. Classical planning procedures in factory
planning follow the principle of rough approximations to fixed specifications and also
make it clear that the results of target planning are on a low level of detail [3, 5, 11].
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In order to achieve the objectives of the target planning, specific topics are
addressed and worked out. First, a definition of the problem for the present planning
project must be elaborated, on which the subsequent planning tasks can refer to. In
addition, the framework conditions for the project must be clarified. These include not
only legal requirements, but also requirements that are in line with corporate man-
agement requirements, such as the planning period, the budget for planning or available
human resources. The persons involved in the planning team are decisive, as they
provide a certain solution space for the development of alternative solution variants
based on their individual knowledge and background. This can result in a restricted
number of variants because of their individual creativity and knowledge.

Based on the objectives set by the company’s management and the identified
framework conditions, options of action for formulating solution variants can now be
developed. Options for action represent individual aspects of a solution variant, which
result as a combination in a possible scenario for achieving the defined targets. The
solution variant created by the project team and then agreed on by the management is
the aforementioned intermediate stage between the strategic and operative level and the
basis for the more detailed planning in the following planning phases (see Fig. 3). An
example of a solution variant could be to increase the output of the production system
by changing the existing layout. Therefore the layout has to be changed in a way that
several segments have to be rearranged because of additional machines and the shift
schedule might be necessary to reconsider etc. The details concerning in which way the
goals and tasks will be achieved and processed and how to develop the necessary
information will be part of the following phases.

Figure 3 shows on the left side the classic approach of formulating and considering
several solution variants which then results in evaluating and choosing a specific
variant which seems to be the best possible option for the planning project. As men-
tioned before several information and framework conditions are considered to derive

Fig. 2. Cost responsibility in factory planning projects [3, 9–11]
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options of actions. These options of action will then be combined to form individual
solution variants based on the creativity and knowledge of the participating project
members. There is a vast number of possible variants that can be formed out of the
options for action, which cannot be handled in its entirety by some participants on their
own. Because of the huge variety of possible combination of options, it might be too
complex to formulate every existing solution for the specific project by hand. The
process of combining several options for action to a specific solution variant is very
hands-on and therefore the variants have a high risk of creating mistakes and future
problems in the ongoing planning process.

To optimize this process of formulating solution variants and in combination with
that to reduce the risk of failure and possible, high costly problems for the whole
planning project the planning phase of target planning needs to be reconsidered in the
way this phase is handled. Therefore, the method of combinatory logic will be used to
accelerate the generation of high quality and reliably working solution variants, which
is illustrated on the right side of Fig. 3. This paper will show the benefits of a fast,
reliable and automated generation of solution variants with the help of combinatory
logic based on a specific use case. With the help of combinatory logic, it will be
possible to reduce influences of individual creativity and knowledge of all participants
in order to reduce the possible problems that come with these factors. This will also
improve the following planning process as it points out specific intermediate planning
tasks, which can be used to generate an optimized planning process workflow for the
whole project. Section 2 summarizes related work for the research fields factory
planning and software synthesis. The synthesis is performed by making use of the
Combinatory Logic Synthesizer (CL)S that is outlined in Sect. 3. These preliminaries

Fig. 3. Classic and new approach for generating solution variants [10]
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are followed by a description of the use case, selected implementation details and a
discussion of the results.

2 Related Work

Little attention has been paid so far to the research field of target planning as part of the
wider field of factory planning [6, 12]. There are only few approaches to optimize the
phase of target planning and therefore the development of rough solution variants.
Approaches that are more specific can be found in the field of general corporate and
strategic planning. Some recent works describe the problems of target planning within
the context of factory planning and present approaches for a suitable solution space
management along the factory planning process, as well as the scenario analysis in the
target planning and the maturity level management of factory planning itself [6, 8, 13].
However, only a few other approaches were developed which specifically address the
target planning as part of the factory planning and therefore try to improve and opti-
mize this planning phase.

The phase of goal definition and variant formation represents a small part of the
whole factory planning process and does not receive the necessary attention as the
percentage of cost responsibility suggests (see Fig. 2). Within the scope of corporate
and strategic planning there are more specific approaches which clarify the classifi-
cation of the target planning of a factory planning project as a link between strategic
corporate planning and the operative implementation of the planning project [4, 14,
15]. In addition, it becomes clear that creativity techniques such as the already men-
tioned scenario technique, SWOT analysis, brainstorming and cognitive methods are
being used to an increasing extent for the development of solution variants [16–19]. It
also emerges from the strategic planning that the focus of academic research is on the
interaction of the responsible planners with adjacent disciplines and not on the opti-
mization of developing solution variants as a main aspect [19, 20]. New approaches for
the automatically supported development of solution variants are not in focus.
Approaches for the automated compilation of planning tasks within the scope of factory
planning have already been shown, but not yet specifically transferred to the field of
target planning [21]. In the area of software engineering, however, there are quite a
number of approaches that also use the combinatory logic approach like it is shown in
this paper, but not with a specific application reference to the field of factory planning.

There are various approaches to the problem of software synthesis that can be
distinguished by Search Space, User Intent and Search Technique. These aspects form
the dimensions in program synthesis [22, 23].

The program to be synthesized contains domain relevant code. Thus, the dimension
of search space is strongly connected to the research field of domain modeling.
Accordingly, the specification of the search space can be achieved by using a Domain-
Specific Model [24]. The development of these models is usually supported by domain
specific modeling tools. The additional design effort for these tools can be compensated
by the CINCO meta modeling framework [25–27]. Its applicability has been shown by
the development of DIME [28]. The user intent is a formulation of the desired program.
Common formalisms to express its properties are temporal logic [29–31], first-order
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logic [32] or higher-order logic [33]. Moreover, synthesis can be performed according
to a set of input/output examples [34, 35]. The search technique determines how the
synthesis algorithm is looking for the target program within the search space. There are
several approaches that incorporate constraint solving [36], the use of semantic rea-
soners (i.e. a graph-based search technique) [37] or neural networks [38].

Synthesis can be a powerful technique to support planning tasks, yet only a few
studies deal with automated code generation in this domain. The work in [39]
demonstrates the synthesis of domain-specific hierarchical task network (HTN) plan-
ning software. Planware [40, 41] is a system to synthesize algorithms that produce
optimal domain-specific schedules. The synthesis of workflows can also be considered
as a part of planning synthesis. The concept proposed in [29] enables for the iterative
refinement of the domain specification until a suitable process can be generated. In
[37], automated runtime flexibility for software engineering processes is provided by
incorporating a semantic reasoner and ad-hoc changes of process instances featured by
AristaFlow [42]. As opposed to these studies, the approach for target planning pre-
sented in this paper is formally sound and complete. It is particularly well suited to
handle synthesis tasks with an emphasis on features and it produces a list of possible
solutions that can be further analyzed by experts.

The component-based software synthesis is a powerful technique which can for-
malize variability in product lines by making use of feature models. Feature modeling
and Software Product Lines (SPL) [43–45] are closely related topics that represent
individualization and standardization of software. They both contribute to shortening
development life cycles of software products by facilitating the reuse of software while
comprehending a systematic management of software product families. Research
resulted in the programming paradigm feature oriented software development which is
supported by comprehensive development environment [46].

Variability modeling is a well developed research topic in the context of business
process modeling and still receives continued attention. In 2017, an overview to
existing approaches in this field was given in a comprehensive survey by La Rosa, van
der Aalst et al. [47].

3 Combinatory Logic Synthesizer

The Combinatory Logic Synthesizer ((CL)S, [48]) is a framework to compose software
components or data structures according to their type signature. In this paper, (CL)S is
used to form rough solution possibilities for target planning. Thus, its formal foun-
dation will be outlined in this section to provide the reader with an elementary
understanding of the theoretical background.

The framework determines a result term in the form of an applicative composition
in compliance with combinatory logic. Applicative terms are defined as e ::¼ xj e e0ð Þ,
where x ranges over a denumerable set of variables. The type system of (CL)S is based
on intersection types [49].
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Type expressions are denoted r, s and defined as follows:

r; s ::¼ a xjaj jr ! sjr\ s

Type constants are ranged over by a, b, c, … and they can be programming
language types (native types) or textual descriptions (semantic types). The special type
constant x is the root element of the subtyping relation. Type variables are ranged over
by a, b, c, … and they are substituted with type constants according to a substitution
map. This map is part of the domain specification (i.e. not part of type expressions) and
will be used to resolve type variables prior to the computation of an inhabitant.
Additionally, type expressions can contain function types (!) and intersections (\ ).

(CL)S performs the software synthesis by solving the type theoretic problem of
inhabitation. It is often abbreviated as C ‘ ? : s and asks if a term with type s exists
under the type assumptions stated in C. The propositions-as-types correspondence [50,
51] connects the type theory with programs. According to the propositions-as-types
correspondence, a proof term M for the type judgement C ‘ M : s must be a program or
data structure that conforms to the target type s. Thus, solving the inhabitation problem
can be interpreted as type-directed software synthesis.

The synthesis is not building code from scratch but making use of software com-
ponents held in a repository C. The components are also referred to as combinators as
they will be composed in a combinatory way. The repository is a finite set that contains
a type assumption for each combinator: C ¼ x1 : s1ð Þ; . . .; xn : snð Þf gwith xi 6¼ xj for i 6
¼ j where x1; . . .; xn represent combinator names and s1; . . .; sn are the corresponding
type assumptions. During inhabitation, the combinator’s type is used to determine
which elements can be applied to each other in order to satisfy the target type. The
current inhabitation algorithm is proven to be complete and enumerates all inhabitants.

In addition to the type signature, implementation details can be provided for
combinators. They can contain programs, data, data fragments or functions. Moreover,
variability points can be inserted and described with the type expression. The use of
type taxonomies and type variables further supports the comprehensive specification of
complex combinators. An algorithm to decide the inhabitation problem for intersection
types is described in detail in [52].

The component-based synthesis with intersection types can be classified according
to the dimensions in program synthesis [22]. Domain knowledge can be expressed by
the semantic layer and corresponding combinator implementation. The search space is
defined by well-formed applicative compositions of available combinators. The
inhabitation algorithm represents the search strategy and the user intent must be sup-
plied as a target type expression.

(CL)S has been used to synthesize BPMN 2.0 business process descriptions in
interaction with the Combinatory Process Synthesis framework (CPS, [53]), showing
that the synthesis approach is suitable to generate structured data. Recent research puts
the emphasis on language independent code generation using meta code generation
[54]. For this study, the Scala based version of the (CL)S was used1. The underlying

1 The source code of the (CL)S framework is available at https://github.com/combinators/cls-scala.
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formalism extends the Bounded Combinatory Logic (BCL, [52]) by introducing n-ary
type constructors and demanding the use of substitution maps for type variables.
Compared to BCL, this results in higher expressiveness while type variable mappings
require a more precise specification.

4 Specific Industrial Use Case for Testing the Approach

To build a test model and to review the developed code, a real planning scenario of a
company in the manufacturing industry was used as a basis.

The planning impulse was triggered by the company management. Due to a
changing customer structure with correspondingly different products and sales figures,
the production system had to be changed. First, framework conditions and targets were
formulated at the level of corporate management in order to set a direction for the final
design of the planning. The main points were:

– No changes to existing production lines.
– Employees will not be laid off or hired.
– The property or the existing built-up area will not be changed.
– The factory hall is not extended.
– A certain sales figure must be produced with the existing manufacturing equipment.

Further information on these framework conditions and targets were provided in
order to be able to develop rough solution variants according to these specifications.
First, a sales volume could be determined that differed from the previous one. The
demands by the customer of each individual product are to be more volatile than
before, which requires increased flexibility for the new system. Likewise, the changed
product variants result in increased storage requirements in order to be able to cover the
correspondingly greater variety of products.

The goals and general conditions set by the corporate management led to the
decision that the biggest variable that would fulfill the requirements and goals was the
planning of a new logistics concept. The number of employees as well as the existing
structure of the building and production lines should remain unchanged. It was checked
whether the production lines and the respective equipment were technically capable of
manufacturing the new products. As this could be guaranteed, the focus was on
logistics as a variable to be changed. Storage types as well as the conveying means
including the corresponding connections to the respective operating means of the
production lines had to be redesigned. After it was decided that a new rough logistics
concept should be developed, all relevant parameters were identified in order to be able
to meet the targets with the new concept (see Fig. 4). The main parameters were the
capacity of the storage types, the needed space in the layout and the costs of each
logistic element. Based on these parameters three rough solution variants could be
generated, which differed in the financial expenditure along other specifics.

For the algorithm, individual parameters, such as type of storage like Kanban racks
or high rack store, as well as conveying equipment such as classic forklifts or auto-
mated guided vehicles were identified and analyzed. These parameters were subdivided
into small groups with their individual attributes such as cost rates, area requirements or
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capacities, so that these values could be transferred into a form that can be processed by
the algorithm (see Fig. 4). With this breakdown of individual solution elements,
individual options for action could be broken down into many smaller elements. This
should allow a more diverse generation of solution variants without being limited by
the planner and the solution space of his participating personal. In addition, the
respective attributes of each element should allow a more detailed compilation
according to specific criteria such as costs or used space in the factory.

5 Implementation and Experimental Results

In this section, we will use the previously presented use case as a practical framework
for evaluating our approach to automated composition of factory configurations. The
scenario is well suited to illustrate process synthesis because it is well-structured and
contains inherent variability. The inputs for the CL(S) are available as an accompa-
nying download2. It is the aim to use the synthesis algorithm described in Sect. 3 to
automatically show which configuration options can be used for the use case and under
which conditions they can be implemented. In order to be able to map the variability
and the numerous different configuration possibilities in the present scenario, the
scenario was converted into a feature model. Feature models are originally a repre-
sentation of all occurrences of a software product line (SPL). An SPL is a collection (or
family) of related programs that are based on a common software kernel but differ in
features. A “feature” is defined as a “salient or distinguishable user-visible aspect,
quality or characteristic of a software system” [55]. Feature models are visualized
through feature diagrams and used throughout the product line development process.
The model defines the features, their characteristics, as well as their dependencies,
which are reflected in the diagram.

In addition, the models can have other constraints, which can be represented in
additional documentation (tables, etc.). A concrete incarnation of a member of an SPL
is called a feature configuration. A configuration is only allowed if it does not violate
any constraints described in the model. The concept of the software product lines has
been adapted to the present work and its underlying scenario. It will be introduced and
used as a production product line (PPL) at this point. In our scenario, different variants
of individual components of the material flow are considered as features. Different
transport systems for example represent different factory features. Configuration is
allowed if at least one feature is selected from all the required components and global
constraints such as the budget limit are not violated. The scenario model is shown in
Fig. 4.

The model shows the existing variation possibilities. For example, it is possible to
combine different transport systems. Each system has individual characteristics, such as
specific costs, throughput or floor space requirements.

In the next step, the feature model was transformed into combinators for synthesis.
The individual combinators are shown in Fig. 5. The name of the combinator follows

2 https://james.cs.tu-dortmund.de/smjawink/CLS-FactoryConfig.
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the “prefix” + “name of the feature to be selected” structure. Possible prefixes are
“storage-Selector” and “transportSelector” to indicate the corresponding branch of the
Feature Model Tree. The combiner for selecting an AutoStorage system is therefore
called “storage SelectorAutoStore”. In principle, there is a combiner for each entry in
the feature tree whose signature can be filled in by various forms of its child nodes. As
a result the existing combinator “configuration” needs an expression of the transport
and storage selector to be able to be executed. This is equivalent to the entry BA-
Configuration in the Feature Model.

Note the two combinators addTransport and AddStorage, which are intended to
increase the number of transport or storage systems used. For instance, if you want to
use 2 Forklift trucks, the combinator selectTransport (ForkLift) would be executed
twice and then combined with the addStorage combinator to form a transport system.
With this construction, however, there is a problem: Since the constraints are not
checked until after the synthesis algorithm has been completed, it can theoretically
happen that the addStorage combinator could be back-interchanged infinitely, resulting
in an infinite number of solutions. To prevent this, the maximum depth of the resulting
tree grammar in the implementation has been limited.

The inhabitation is executed with a call of the form:

lazy val resultsFromRequests: Results =
Results.add(Gamma.inhabit[Form](‘FactoryConfig
(‘AutoStore)).

This means that the algorithm is asked if it is possible to generate a solution that
meets the required specifications from the given repository C. In the example above,
the use of an AutoStore system is explicitly specified. For the experiment in the present
scenario, no restrictions of this kind were specified in order to enable as many possible
solutions as possible. All other constraints were taken directly from the given scenario
in order to make the solutions applicable to it.

The solution set is then displayed in a web interface where the user can view and
evaluate the solutions. The web interface displaying the solutions of the experimental
run can be seen below.

Fig. 4. Feature model
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In the use case scenario, the following configuration was chosen as the solution: As
a transportation system, an AGV System was selected, the storage system was an
AutoStore rack. As Fig. 6 shows, this solution also appears in the solution set of the
algorithm (solution number 5 of 24 in total). In addition, further alternative configu-
rations can be seen.

These generated solutions differ in terms of various measures, such as the capacity
or the number of employees required per shift. For instance, the usage of a forklift truck
as a transportation appears to be much cheaper, but also offers a smaller amount of
transportation capacity per hour. Which configuration is selected at the end also
depends on how the responsible persons weight the individual parameters and which
personal preferences they have and fits best to given case.

This shows that our approach does not only provide all possible solutions, but also
evaluates them directly with regard to important key figures. This way, the responsible
persons not only directly see which options are available, but can also directly see their
pros and cons and thus make a quick and well-founded decision.

Fig. 5. Combinator repository overview
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6 Conclusion and Outlook

It has been shown that plausible and useful solutions for target planning can be
obtained with our approach. By offering a large number of different solutions and a
large variability of different aspects of the solution, planners can make quick and
reliable decisions based on the generated proposals and thus advance the planning
process. Further, it is possible to support the following more detailed planning process
by giving specific directions based on the chosen solution variant. Therefore the
possible solution space for the whole detailed planning process can also be reduced so
that a more precise planning process can be generated afterwards.

In order to further improve the technology and its benefits, various points of
dependences are conceivable. Of course, the first starting point to consider is to support
more complex decisions and other aspects of the planning process such as the ressource
planning or the layout planning through the procedure. In addition to that, other areas
where planning workflows are needed to manage complex planning projects could be
addressed with the approach shown in this paper. An example would be the man-
agement of the construction of a new hospital building where a great amount of
different information and dependences are interconnected with each other. It is nec-
essary to be able to handle this complex kind of project and our approach would be
beneficial in automatically generating sufficient planning workflows based on our
produced solution variants.

The currently still hard-coded combinator repositories are also to be dynamized in
the future. The development of a parser that automatically generates the combinators
from a domain model is conceivable. In combination with modern domain modeling

Fig. 6. Inhabitants of the experimental run

Automatic Composition of Rough Solution Possibilities 499



tools such as DyWA [25], it would be possible for users without programming
knowledge to design repositories and execute inhabitation requests.

Another starting point is to improve the quality of the solutions offered. By adding
feedback loops and using machine learning methods, the tool aims to gain knowledge of
generated solutionswhichwere considered good andpracticable. In the best case scenario,
it should be able to learn which possible configurations are the best for certain requests.
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