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Abstract. Ethereum smart contracts are programs that run inside a
public distributed database called a blockchain. These smart contracts
are used to handle tokens of value, can be accessed and analyzed by
everyone and are immutable once deployed. Those characteristics make
it imperative that smart contracts are bug-free at deployment time, hence
the need to verify them formally. In this paper we describe our current
efforts in building an SMT-based formal verification module within the
compiler of Solidity, a popular language for writing smart contracts. The
tool is seamlessly integrated into the compiler, where during compilation,
the user is automatically warned of and given counterexamples for poten-
tial arithmetic overflow/underflow, unreachable code, trivial conditions,
and assertion fails. We present how the component currently translates
a subset of Solidity into SMT statements using different theories, and
discuss future challenges such as multi-transaction and state invariants.

1 Introduction

The Ethereum [6] platform is a system that appears as a singleton networked
computer usable by anyone, but is actually built as a distributed database that
utilizes blockchain technology to achieve consensus. One of the features that sets
Ethereum apart from other blockchain systems is the ability to store and execute
code inside this database, via the Ethereum Virtual Machine (EVM ). In contrast
to traditional server systems, anyone can inspect this stored code and execute
functions that can have stateful effects. Since blockchains are typically used
to store ownership relations of valuable goods (for example cryptocurrencies),
malicious actors have a monetary incentive to analyze the inner workings of such
code. Because of that, testing (i.e. dynamic analysis of some typical inputs) does
not suffice and analyzing all possible inputs by utilizing static analysis or formal
verification is recommended.

SAT/SMT-based techniques have been used extensively for program verifica-
tion [1,3,5,8,11,12]. This paper shows how the Solidity compiler, which generates
EVM bytecode, utilizes an SMT solver and a Bounded Model Checking [5] app-
roach to verify safety properties that can be specified as part of the source code,
as well as fixed targets such as arithmetic underflow/overflow, division by zero
and detection of unreachable code and trivial conditions. For the user, the main
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advantage of this system over others is that they do not need to learn a second
verification language or how to use any new tools, since verification is part of
the compilation process. The Solidity language has requirement and assertion
constructs that allow to filter and check conditions at run-time. The verification
component builds on top of this and tries to verify at compile-time that the
asserted conditions hold for any input, assuming the given requirements.

This paper is organized as follows: Sect. 2 introduces the EVM and smart
contracts. Sect. 3 gives a very brief overview of Solidity. Sect. 4 discusses the
translation from Solidity to SMT statements and next challenges. Finally, Sect. 5
contains our concluding remarks.

Related Work. Oyente [13], Mythril [7] and MAIAN [15] are SMT-based symbolic
execution tools for EVM bytecode that check for specific known vulnerabilities,
where Oyente also checks for assertion fails. They simulate the virtual machine
and execute all possible paths, which takes a performance toll even though the
approach works well for simple programs.

Subsets of Solidity have been translated to Why3 [18], F* [4] and LLVM [10],
but the first requires learning a new annotation specification language and the
latter two only verify fixed vulnerability patterns and do not verify custom user-
provided assertions.

2 Smart Contracts

Programs in Ethereum are called smart contracts. They can be used to enforce
agreements between mutually distrusting parties as long as all conditions can
be fully formalized and do not depend on external factors. Typical use-cases are
decentralized tokens which can have a currency-like aspect, any mechanisms that
build on top of these tokens like exchanges and auctions or also decentralized
tamper-proof registry systems like a domain name system.

Each smart contract has an address under which, among other things, its
code, and a key-value store of data (storage) are stored. The code is fixed after
the creation phase and only the smart contract itself can modify the data stored
at its address.

Users can interact with a smart contract by sending a transaction to its
address. This causes the smart contract’s code to execute inside the so-called
Ethereum Virtual Machine (EVM), which is a stack-based 256-bit machine with
a minimalistic instruction set. Each execution environment has a freshly initial-
ized memory area (not to be confused with the persisting storage). During its
execution, a smart contract can also call other smart contracts synchronously,
which causes their code to be run in a new execution environment. Data can be
passed and received in calls. Furthermore, smart contracts can also create new
smart contracts with arbitrary code.

Since it would otherwise be easy to stall the network by asking it to execute
a complex task, the resources consumed are metered during execution in a unit
called gas. Each transaction only provides a certain amount of gas, which acts
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as a gas limit. If execution is terminated via the stop instruction, any remaining
gas is refunded and the transaction is successful. However, if an exceptional
condition or this gas limit is reached without prior termination, any effect of
the transaction is reverted and it is marked as a failure. In every case, the user
who requested the execution pays for it with Ethereum’s native token, Ether,
proportionally to the amount of gas consumed.

A reverting termination can also happen prior to all gas being consumed. This
is a special feature of the Ethereum Virtual Machine, which makes the control-
flow analysis different from other languages. Whenever the EVM encounters
an invalid situation (invalid opcode, invalid stack access, etc.), execution will
not only stop, but all effects on the state will be reverted. This reversion takes
effect in the current execution environment, and the environment will also flag
a failure to the calling environment, if present. Typically, when a call fails, high
level languages will in turn cause an invalid situation in the caller and thus the
reversion affects the whole transaction.

There is also an explicit opcode that causes the current call to fail, which is
essentially the same as described above, but as an intended effect. Very briefly,
the SMT encoding we will discuss later assumes that no intended failure hap-
pens and tries to deduct that no unintended failure can occur. This allows the
programmer to state preconditions using intended failures and postconditions
using unintended failures.

3 Solidity

Solidity is a programming language specifically developed to write smart con-
tracts which run on the Ethereum Virtual Machine. It is a statically-typed curly-
braces language with a syntax similar to Java. The main source code elements
are called contracts and are similar to classes in other languages. Contract-level
variables in Solidity are persisted in storage while local variables and function
parameters only have a temporary lifetime. Among others, Solidity has integer
data types of various sizes (up to 256 bits, the word size of the EVM), address
types and an associative array type called mapping which can only be used for
contract-level variables.

The source code in Fig. 1 shows a minimal example of a token contract.
Users are identified by their addresses and initially, all tokens are owned by the
creator of the contract, but anyone who owns tokens can transfer an arbitrary
amount to other addresses. Authentication is implicit in the fact that the address
from which a function is called can be accessed through the global variable
msg.sender. In practice, this is enforced by checking a cryptographic signature
on the transaction that is sent through the network.

The require statement inside the function transfer is used to check a pre-
condition at run-time: If its argument evaluates to false, the execution terminates
and any previous change to the state is reverted. Here, it prevents tokens being
transferred that are not actually available.

In general, invalid input should be caught via a failing require. The related
assert statement can be used to check postconditions. The idea behind is that
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contract Token {

/// The main balances / accounting mapping.

mapping(address => uint256) balances;

uint256 totalSupply;

/// Create the token contract crediting ‘msg.sender‘ with

/// 10000 tokens.

constructor() public {

totalSupply = 10000;

balances[msg.sender] = totalSupply;

}

/// Transfer ‘_value‘ tokens from ‘msg.sender‘ to ‘_to‘.

function transfer(address _to, uint256 _value) public {

require(balances[msg.sender] >= _value);

balances[msg.sender] -= _value;

balances[_to] += _value;

}

}

Fig. 1. Example of a token contract.

it should never be possible to reach a failing assert. assert essentially1 has the
same effect as require, but is encoded differently in the bytecode. Verification
tools on bytecode level (as opposed to the high-level approach described in this
article) typically check whether it is possible to reach an assert in any way.

We now show how an assert can be introduced into the transfer function
to perform a simple invariant check.

function transfer(address _to, uint256 _value) public {
require(balances[msg.sender] >= _value);
uint256 sumBefore = balances[msg.sender] + balances[_to];
balances[msg.sender] -= _value;
balances[_to] += _value;
uint256 sumAfter = balances[msg.sender] + balances[_to];
assert(sumBefore == sumAfter);

}

The assert checks that the sum of the balances in the two accounts involved
did not change due to the transfer. Currently, the assert statement is not
removed by the compiler, even if the formal analysis module can prove that
it never fails.

Note that in the general case, balances[_to] can overflow and thus an
analysis tool might flag this assert as potentially failing. In this specific example,
though, the amount of available tokens is too small for this to happen.

1 As opposed to require, assert will result in all remaining gas to be consumed.
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Another important feature that we refer to later in this paper are function
modifiers. These are Solidity constructs that are used as patterns to change
the behavior of functions, and in many cases, to restrict them. Commonly used
modifiers are, for example, allowing only the owner of the contract to execute
the function, or executing a function if and only if the amount of Ether sent is
greater than a certain value. Figure 2 shows a contract using the former, where
the execution of function f continues if and only if the original deployer of the
contract is the caller. We discuss later how to use modifiers to represent function
pre- and postconditions.

contract C

{

address owner;

// A function using this modifier will be executed only

// if the require condition holds.

modifier onlyOwner {

require(msg.sender == owner);

_;

}

// Create the contract setting the deployer as owner.

constructor() public {

owner = msg.sender;

}

function f() onlyOwner {

...

}

}

Fig. 2. Example of modifiers.

4 SMT-Based Solidity Verification

SMT solvers are powerful tools to prove satisfiability of formulas in different log-
ics which often have the necessary expressiveness to model software in a straight-
forward manner [1,3,8,11].

We translate Solidity contracts and their functions into SMT formulas using
a combination of different quantifier-free theories. We shall name the translated
formulas the SMT encoding of the Solidity program. The goal of the translation
from Solidity to SMT formulas is to verify safety properties from the Solidity
program by performing queries to the SMT solver.



SMT-Based Verification of Solidity Smart Contracts 381

4.1 SMT Encoding

The SMT encoding is computed during a depth-first traversal of the abstract
syntax tree (AST) of the Solidity program and thus roughly follows the execu-
tion order. For now, each function is analyzed in isolation and thus the context
regarding the SMT solver (contract storage, local variables, etc.) is cleared before
each function of a contract is visited. There are five types of formulas that are
encoded from Solidity inside each function. Three of them, Control-flow, Type
constraint and Variable assignment are simply translated as SMT constraints.
The Branch conditions are the conditions of the current branch of execution and
thus grow and shrink as we traverse the AST. The last, Verification Target, cre-
ates a formula consisting of the verification goal conjoined with the previously
mentioned constraints, including the current branch conditions, and queries the
SMT solver for satisfiability. The different types of encoding are described below.

Branch Conditions. For an if-statement if (c) T else F , we add c to the
branch conditions during the visit of T . After that, we replace c by ¬c for the
visit of F and also remove that when we are finished with the if-statement.

Control-Flow. These constraints model conditional termination of execution. A
require(r) statement (and similar for assert(r)) terminates execution if r
evaluates to false, but of course only if it is executed. Thus, we add a constraint
b → r, where b is the conjunction of the current branch conditions. Note that due
to the implication, we can keep this constraint even when we leave the current
branch.

Type Constraint. A variable declaration leads to a correspondent SMT variable
that is assigned the default value of the declared type. For example, Boolean vari-
ables are assigned false, and integer variables are assigned 0. Function parameters
are initialized with a range of valid values for the given type, since their value is
unknown. For instance, a parameter uint32 x is initialized as 0 ≤ x < 232 (32
bits), a parameter int256 y is initialized as −2255 ≤ y < 2255, and a param-
eter address a is assigned the range 0 ≤ a < 2(8∗20) (20 bytes). The encoder
currently supports Boolean and the various sizes of Integer variables.

Variable Assignment. The encoding of a variable assignment follows the Single
Static Assignment (SSA) where each assignment to a program variable intro-
duces a new SMT variable that is assigned to only once. When a program vari-
able is modified inside different branches of execution, a new variable is created
after the branch to re-combine the different values after the branches. We use the
if-then-else-function ite to assign the value ite(c, x1, x2) (if-then-else), where
c is the branch condition and x1 and x2 are the two SSA variables corresponding
to x at the ends of the branches (cf. the φ function in SSA).

Verification Target. Every arithmetic operation is checked against underflow
and overflow according to the type of the values, and an example is given if
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there is an underflow or overflow. We also check whether branch conditions are
constant, warning the user about unreachable blocks or trivial conditions. The
conditions in calls to assert represent target postconditions that the Solidity
programmer wants to ensure at runtime and are verified statically. If it is possible
to disprove the assertion provided that the control flow can reach it (i.e. the
current branch conditions are satisfiable), the user is given a counterexample.
In contrast, require conditions are meant to be used as filters for unwanted
input values when they are unknown, for example, in public functions, acting
like preconditions for the rest of the scope. Therefore, failing calls to require
are not treated as errors and are just checked for triviality and reachability.

Figure 3 shows on the left a Solidity sample that requires all five types of
encoding, shown on the right, in order to verify the intended properties. Since the
variables uint256 a and uint256 b are function parameters, they are initialized
(lines 1 and 2) with the valid range of values for their type (uint256). If a =
0, the require condition about b is used as a precondition when verifying the
assertion in the end of the function (line 3). The next two assignments to b
create the new SSA variables b1 and b2 (line 4). Variable b3 encodes the second
and third conditions, and b4 encodes the first condition (lines 5 and 6). Finally,
b4 is used in the assertion check (line 7). Note that the nested control-flow is
implicitly encoded in the ite variables b3 and b4. We can see that the target
assertion is safe within its function.

contract C

{

function f(uint256 a, uint256 b)

{

if (a == 0)

require(b <= 100);

else if (a == 1)

b = 1000;

else

b = 10000;

assert(b <= 100000);

}

}

1. a0 ≥ 0 ∧ a0 < 2256 ∧
2. b0 ≥ 0 ∧ b0 < 2256 ∧
3. (a0 = 0) → (b0 ≤ 100)∧
4. b1 = 1000 ∧ b2 = 10000
5. b3 = ite(a == 1, b1, b2) ∧
6. b4 = ite(a == 0, b0, b3) ∧
7. ¬b4 ≤ 100000

Fig. 3. SMT encoding of an assertion check.

As described above, the component performs several local checks during a
single run, therefore it is critical that the used SMT solver supports incremental
checking. Moreover, we do not abstract difficult operations such as multiplica-
tion between variables, and rather try to give precise answers when possible.
Therefore we combine various quantifier-free theories, such as Linear Arith-
metics, Uninterpreted Functions and Nonlinear Arithmetics. Solidity has inte-
grated Z3 [14] and CVC4 [2] via their C++ APIs. The two SMT solvers are
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used together to increase solving power. This has been important especially for
the programs that require Nonlinear reasoning, since often one solver is able to
prove a property that the other cannot. The component is also able to generate
smtlib2 [17] formulas in order to interface with additional solvers.

4.2 Specific Examples

Even though the current implementation of the SMT module supports a small
subset of Solidity, it can already be used to detect flaws that might be overlooked
by the user. We present now a few examples of buggy code that the compiler is
able to detect regarding constant conditions, overflow, and assertion checking.

The following loop is infinite because the author of the code forgot to incre-
ment the loop variable i. In that case, the user receives a message about the
loop’s condition being always true for the case where owners.length is not zero.

for (uint i = 0; i < owners.length;)
{

// ...
}

Another type of problem that the compiler finds automatically is unreach-
able code. In the following control-flow expressions, it warns the user that the
condition in the else if is unreachable.

if (a >= 7) { ... }
else if (a >= 10) { ... }

Arithmetic operations should be checked against overflow, especially when
parameters of public functions are used. The code below may easily lead to an
overflow, which the tool reports with a counterexample. The overflow can be
prevented with a require statement.

function addFunds(uint256 _amount) {
// require((_amount + funds) >= funds);
funds += _amount;

}

One of the most important features is the ability to check safety properties
statically, by using Solidity’s assert. The following example code uses an assert
to check the equivalence of two computations, once written using control-flow
statements, once as a direct Boolean formula.

function f(bool a, bool b) public pure {
bool c;
if (a) {

if (b) c = false;
else c = true;

}
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else {
if (b) c = true;
else c = false;

}
assert(c != ((a && !b) || (!a && b)));

}

Note that the assertion will be reported to fail with the valuation a = false,
b = false, c = false. The safe condition would be assert(c == ((a && !b)
|| (!a && b)));.

4.3 Future Plans

We introduce now the features that we intend to implement in the SMT module,
as well as discuss arising research problems where we present simple examples
that highlight how the new features will work.

Our current implementation plans for the component involve supporting a
larger subset of the language, including more complex data structures such as
mapping. This is especially important for cases such as token contracts, where
properties such as funds leakage and wrong balance could be used as targets.
The component is meant to be built as a Bounded Model Checker, unrolling
loops up to a constant bound and automatically detecting bounds when possible.
We also intend to introduce a loop pre and postconditions syntax to help the
unbounded case.

Range Restriction of Real Life Values. Some Solidity environment variables have
a 256 bit unsigned integer type, although the range of their values is much more
restricted in practice. For instance, the UNIX timestamp of the current block in
seconds, block.timestamp will not exceed 64 bits for the next 500 billion years.
To reduce the false positives rate for overflows, it makes sense to restrict the
value range for these variables in the SMT encoding. It is an open question how
to do this properly, since a straightforward hard cap at some point could create
undesired artefacts around that point. Another environment variable that could
have a similar behavior is block.number.

Revert After Error. Errors are irrelevant if they result in a state change reversion
(Sect. 2). The user should be warned about failing checks such as overflow only if
they do not result in a state reversion. One popular example is the SafeMath [16]
contract which is commonly used to turn wrapping arithmetics into overflow-
checked arithmetics:

function add(uint256 a, uint256 b) internal pure
returns (uint256) {

uint256 c = a + b;
require(c >= a);
return c;

}
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Although the tool detects an overflow in the computation of a + b, the
overflow will result in a truncation of c in two’s complement and thus any
execution that contains the overflow will revert at the require. In this case
the user should not be warned of the error, since no erroneous cases exist in
accepted executions.

Aliasing. In many languages, complex data structures are only assigned by ref-
erence, creating two names for the same object and thus changes performed via
one name also affect references via the second name. This is of course a big chal-
lenge for formal verification and is known as the aliasing problem. This is also
the case for some aspects of Solidity, but data stored in storage does not have
this problem: The structure of storage is determined at compile-time, and all
objects are statically allocated; while arrays can grow, their position in storage
is fixed at compile-time. Because of that, the aliasing problem is not an issue,
as long as we can assume that there are no hash collisions in keccak256 and
dynamic arrays are small enough.

contract C

{

uint a;

constructor () public {}

function a1() public { a = 1; }

function a2() public { a = 2; }

function a3() public { a = 3; }

function a4() public { a = 4; }

function plusA(uint x) public view returns (uint) {

require(x < 1000);

return a + x;

}

}

Fig. 4. Contract with a storage variable invariant.

Multi-transaction Invariants. One of the most interesting aspects we intend
to research and support is multi-transaction invariants. The ultimate goal is
to compute invariants for state variables (resident in the contract’s storage)
considering any arbitrary number of calls to the contract. This would enable
these invariants to be used as preconditions whenever they are accessed. Figure 4
presents an example contract with a state variable a which can be assigned
differently depending on which public function is called. We can see that if we
consider all possible paths, a is never greater than 4, so the invariant a ≤ 4 holds.
Currently, without the discovery of the invariant, the SMT module reports an
overflow case in the return statement of function plusA. If the invariant is used



386 L. Alt and C. Reitwiessner

as a pre-condition of the function, by adding require(a <= 4), for example,
no overflow is reported. The SMT component should in the future be able to
automatically infer these invariants.

Post-constructor Invariants. A special and restricted case of multi-transaction
invariants usage are contracts where a state variable is assigned in the construc-
tor and never modified again. A common example is contract Token from Sect. 3.
We can see from the constructor that the totalSupply of tokens is 10000, which
is also the initial amount of tokens given to the deployer of the contract. The
only way to move tokens is via the function transfer, which decreases a cer-
tain amount of tokens from one account, if it owns enough, and increases the
same amount in another account. We can modify function transfer to use the
invariant about state variable totalSupply:

function transfer(address _to, uint256 _value) public {
require(balances[msg.sender] >= _value);
uint256 sumBefore = balances[msg.sender] + balances[_to];
totalSupply -= sumBefore;
balances[msg.sender] -= _value;
balances[_to] += _value;
uint256 sumAfter = balances[msg.sender] + balances[_to];
totalSupply += sumAfter;
assert(sumBefore == sumAfter);
assert(totalSupply == 10000);

}

As we can see, the number of total tokens never changes and the invariant
totalSupply = 10000 holds in the beginning of any function of the contract.
Similarly to the previous example, it is not possible to prove the last assertion
without the knowledge about the invariant.

Modifiers as pre and Postconditions. An orthogonal approach to automatically
inferred invariants is to provide a good syntax so that Solidity programmers
can explicitly state pre and postconditions of functions. Modifiers (Sect. 3) are
a natural candidate for that, given their ability to behave as patterns that wrap
functions. In the following code, the modifier safeBalance states pre and post-
conditions for the transfer function in the Token contract (Sect. 3), ensuring
that the concrete value of totalSupply does not change after a token transfer.

modifier safeBalance {
require(totalSupply == 10000);
_;
assert(totalSupply == 10000);

}

function transfer(address _to, uint256 _value) safeBalance {
...

}
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Function Abstraction. If modifiers are used as pre and postconditions as
described above, it could be possible to abstract functions based on these
modifiers. Let zeroAccount be a function from contract Token that transfers
all the tokens that an account holds to another one of their choice. Function
zeroAccount should also be sure that the totalSupply did not change.

function zeroAccount(address _to) {
transfer(_to, balance[msg.sender]);
assert(totalSupply == 10000);

}

One approach to analyze zeroAccount is to abstract function transfer by
encoding only its modifiers and ignoring its body when trying to prove the
assertion. This query is much cheaper for the SMT solver, and in many cases (as
it is in this one) it might be enough to prove the assertion.

Effective Callback Freeness. The idea of Effective Callback Freeness was recently
introduced by [9]. A smart contract C is effectively callback free, if any state
change caused by a callback in C can also be caused by an execution that does
not have this callback. Straightforward examples include a contract that uses a
mutex mechanism to disallow state changes if the function is called as a callback,
and the general pattern where all functions perform state changes before they
call other contracts. The authors show that most of the contracts deployed on
Ethereum have this property. This is a powerful property, since it means that any
invariant computed for a contract’s state variables still holds even after calling
external contracts with unknown behavior. We intend to study how to integrate
this approach to our static analysis.

5 Conclusion

We have presented our current work and future plans building an SMT-based
formal verification module inside the Solidity compiler. The module creates SMT
constraints from the Solidity code and queries SMT solvers to statically check
for underflow/overflow, division by zero, unreachable/trivial code, and asser-
tion fails, where require statements are used as assumptions. The programmer
receives, in compile-time, feedback with counterexamples in case any of the tar-
get properties fail, without any extra effort. The SMT constraints and queries
are created using theories that model the Solidity program precisely, therefore
the given counterexamples are correct.

The features that are currently under implementation aim at extending the
subset of Solidity that is supported, as well as improving error reporting. Future
work on the SMT module includes interesting broader research questions, such
as computing multi-transaction invariants for state variables, detecting post-
constructor invariants, and using modifier-based abstraction for functions.
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