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Abstract. Maintaining legacy software is one of the most common
struggles of the software industry, being costly yet essential. We tackle
that problem by providing better understanding of software by extracting
behavioural models using the model learning technique. The used tech-
nique interacts with a running component and extracts abstract models
that would help developers make better informed decisions. As promising
in theory, as slippery in application it is, however. This report describes
our experience in applying model learning to legacy software, and aims
to prepare the newcomer for what shady pitfalls lie therein as well as
provide the seasoned researcher with concrete cases and open problems.
We narrate our experience in analysing certain legacy components at
Philips Healthcare describing challenges faced, solutions implemented,
and lessons learned.

Keywords: Model learning · Active learning · Legacy software

1 Introduction

As software evolves over years and decades, its very architecture starts to change.
And with the original developers unavailable anymore, and the documentation
outdated, it becomes increasingly difficult to maintain that software. That is
what legacy software is [19]. Not only does maintenance become a more pressing
matter, but also a costly and even risky endeavor. As legacy software that has
been running a business successfully for decades, refactoring it without complete
understanding might lead to unexpected and severe impediments. To achieve
that level of understanding, different techniques have been deployed to analyse
legacy software, such as process mining [1], static code analysis [9], and our
method of choice, active model learning [19].

These techniques aim to model legacy software. With accurate readable
abstract models, developers can improve the software in less time, discover hid-
den behaviour, and generate documentation. Active model learning is a tech-
nique that aims to build a finite-state model of a system from observed input
and output [19].
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In practice, however, active model learning is not at all an easily realisable
endeavour. As many success stories there are [2,17,18], as many pitfalls we faced
in our experience applying it—pitfalls such as dealing with obscure proprietary
interfaces, unclear code, and lacking documentation; ensuring the accuracy of
the learning outcome; interpreting unexpected behaviour; avoiding state space
explosion; and a variety of technical problems. Our contribution lies in

– identifying the pitfalls in applying active model learning,
– detailing how they manifested in our industrial setting,
– providing lessons on how to deal with them,
– and suggesting future research directions.

This work is based on our experience with applying model learning to parts
of the X-ray imaging software at Philips Healthcare. We use LearnLib [7] as the
core learning engine combined with necessary complementary software that we
detail in Sect. 2. We first explain the theory in a simple manner, then describe our
target system and the learning setup. Section 3 lays out our main contribution
describing the practical experience through lessons learned and challenges faced.
Then in Sect. 4, we reflect on the practical challenges with suggested future
research directions and open questions. We finally conclude with Sect. 5.

2 Background

In this section, we describe the learning method and the component being learned
as well as a few relevant technicalities.

2.1 LearnLib, L* and Mealy Machines

As mentioned before, LearnLib [7] is our learning tool. LearnLib houses a few
learning algorithms, the most prominent of which is L*, first introduced by Dana
Angluin in 1986 [3]. L* learns regular languages by asking whether certain strings
belong to that language. This type of querying is not suited for reactive systems
such as the ones we mostly face in the industry. To tackle that, Niese in [15]
introduced a variant of L* called L∗

Mealy which outputs a Mealy machine such as
that shown in Fig. 2.

We shall explain some basic concepts, followed by the algorithm and then
Mealy machines. Refer to Fig. 1 showing the learning setup. The learner is inter-
nally composed of a model builder and a model tester. We assume that the
System under Learning (SuL) responds to every action. The learner can send
actions as input to the SuL and receive responses as output, making a sequence
of action/response pairs, called a trace. The learner has the ability to reset the
SuL back to its initial state and thus terminate the current trace. The learning
algorithm can be summarised in the following iterative steps:

1. Building: the builder sends/receives action/response traces to/from the SuL,
each trace followed by a SuL reset, to build a hypothesis model (as a Mealy
machine).
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2. Testing: the tester tests the hypothesis model against the SuL similarly
through action/response traces.

3. Feedback: if the tester discovers an action/response pair that is not consistent
with the hypothesis model, then return to step 1 (building) while using that
pair as a counter example to refine further queries; otherwise, the model is
verified and the learning is complete.

System
under

Learning
(SuL)

Model
Builder

Model
Tester

Learner

Input Action

Output Response

Fig. 1. High-level overview of the learning setup.

This technique requires the input actions to be defined beforehand as well
as the SuL’s reset routine. We call the set of all admissible input actions the
input alphabet or the action set. The set of all responses is similarly called the
output alphabet. It is not strictly necessary for the output alphabet to be known
beforehand.

Refer to Fig. 2 showing an example Mealy machine produced by this learning
technique and describing the following simple behaviour. Suppose that the SuL
admits actions: Init(X), which initialises an object X ; and Use(X), which uses
that object. Both actions give a Succ or Fail response. The simple behaviour
shown in this model is that an object X cannot be used successfully before being
initialised.

start
Use(X) / Succ

Use(X) / Fail Use(X) / Succ

Init(X) / Succ

Fig. 2. Example Mealy machine.

2.2 Description of the Legacy Component

Our case study is a software driver for the electrical generator of an X-ray
machine responsible for powering the X-ray tube. The driver sets the correct
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parameters for electrical requirements depending on the type of X-ray expo-
sure desired. The driver also monitors the hardware’s sensors for any necessary
intervention. It is called GS for Generator Service. The reasons it was chosen
for study were: (1) its reasonable size of 15,000 effective lines of code as mea-
sured by TICS1, (2) the expectation that it can be adequately described by a
state machine, (3) that it had undergone recent refactoring which meant that
more knowledge was available, (4) an interest in revealing any missed refactoring
opportunities or missed behaviour, and (5) that it was relatively easy to isolate
and communicate with.

The first step of studying this component as a black box was gaining as much
knowledge as possible about its interfaces and a bit about its inside architecture.
The ease of isolating it is resembled by the fact that it had only two interfaces
as seen in Fig. 3 one interface to the application layer (shown on the top side),
and another to the hardware layer (shown on the bottom side). We may refer
to them simply as top and bottom layers, respectively. The bottom interface
communicating with the hardware requires a certain HW interface adapter.

Hardware

Application Layer 

SuL

(Hardware
Abstraction Layer)

HW Interface Adapter

Fig. 3. Interface schematic of the GS component.

The behaviour we aimed to learn was essentially the one shown in Fig. 2,
where the component needs to be properly initialised in order to be used. The
reason behind learning such seemingly simple behaviour was (1) to confirm that
the learned behaviour is equivalent to our expectation (Sect. 3.4 uncovers this
result), and (2) to explore the result of learning with a lower-level action set,
discussed in Sect. 3.2. Our Experiments showed that the initialisation procedure
of our legacy component, as simple as it seems, is not straightforward and would
not be learned smoothly. In fact, all the experiments of this paper are merely
exploring the GS’s initialisation procedure.

Before we take the reader through our model learning experience addressing
individual learning experiments, we dive into the practical setup of the learning
environment.
1 TICS (TIOBE Software Quality Framework; www.tiobe.com/tics/tics-framework).

www.tiobe.com/tics/tics-framework
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2.3 Practical Learning Setup

The first step of setting up the learning experiment is to determine the interfaces
on the SuL, and then, for each interface, to determine the following:

– The input alphabet, which in practice would be the list of functions calls
provided by the interface.

– Means for sending actions to the SuL.
– Means for receiving or retrieving responses from the SuL.

We left out the output alphabet as we mentioned earlier that pre-defining it is
not absolutely necessary. The only requirement is reading the output regardless
of its type; the means of reading should be generic enough.

Note from Fig. 3 that we have two interfaces. This means that we need to
identify inputs and outputs through each of these two interfaces. On the top side
lies the application layer. In the real environment, commands are sent from the
application layer into the GS, which can result in output through any of the two
interfaces. We needed to replicate exactly that in order to send our actions. So,
we wrote our own component that acts as the application layer. We call that
component the action executer and it is part of the learning driver.

Note also from Fig. 3 that the bottom component is a hardware device. In
our setup, communicating with that device involved many low-level details that
were not possible to replicate through the action executer. Therefore we chose
to use an abstraction that is the hardware interface adapter.

In such a case, the natural question is how to run the SuL without the
actual hardware. Luckily, we had a test environment that provided the answer,
namely that the aforementioned hardware interface adapter supported a testing
mode where it would also act as a replacement for the real hardware through a
test stub. This posed a peculiar case discussed in Sect. 3.5. The action executer
communicates with that stub.

Refer to Fig. 4 showing the implemented learning setup. It essentially shows
the learning driver being hooked up to the SuL from Fig. 3. The action executer
connects to the SuL on the aforementioned interfaces and is responsible for the
following:

– Communicating with the Learner. It receives input actions from the learner
as strings and sends back responses as strings over a TCP socket connection.

– Translating input actions from strings into executable code. It can call func-
tions that the SuL provides on its interfaces.

– Receiving the relevant response, for each action, from the SuL and translating
it into a string.

– Resetting the SuL.

On the left side of Fig. 4 lies the LearnLib client which uses the LearnLib
library and is responsible for setting parameters of LearnLib, e.g. selecting a
learning algorithm and a testing algorithm, setting testing parameters, as well
as fetching the input alphabet, and producing graphs of learned automata. The
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source code of the LearnLib client is available online2. The LearnLib client and
the action executer combined make up what we call the learning driver, shown
in Fig. 4, whose main role as a whole is to provide a wrapper around the SuL
that acts as Mealy view for LearnLib.

For more information on the requirements and implementation of a learning
driver, we refer the reader to the work of Merten et al. [14].

Action
Executer

Learner

SuL 
 

HW Interface
Adapter

LearnLib 
Input

Output

LearnLib
Client 

Learning Driver

Fig. 4. Implemented learning setup.

3 Lessons Learned from the Case Study

This section details our experience with the case study through individual lessons
learned.

3.1 Utilising the Test Environment

The availability of a test environment for the SuL is very valuable for the purpose
of model learning. In our case, unit tests are conducted using the CppUnit testing
framework [12] and they initially provided insight on how to run the GS without
its hardware as mentioned in Sect. 2.3. In a similar use case, Hungar et al. [10]
utilised an integrated test environment in their learning setup that is described in
detail by Niese et al. in [16]. A major benefit of building such a test environment
is having tests of different levels of abstraction from as high as the whole SuL
to as low as the lowest subcomponents. In our case, this was achievable with
manual work of dissecting the tests into smaller units as discussed in Sect. 3.3.
An additional benefit we gained was the ability to extract information about the
SuL’s interface from individual tests. This point is significant in the case of legacy
software, and particularly in our case, where APIs were not well documented.
Luckily, the tests had high coverage and their functions acted as an abstraction
layer on the SuL’s lower-level interface. Moreover, the tests were written in a
rather consistent fashion and were quite readable.

Unit tests have a linear structure consisting of three stages: (1) setting pre-
conditions, (2) testing the outcome (usually with an assert statement), and (3)
2 https://gitlab.science.ru.nl/ramonjanssen/basic-learning.

https://gitlab.science.ru.nl/ramonjanssen/basic-learning


Pitfalls in Industrial Model Learning 127

resetting the environment. This can be mapped to the structure of learning
experiments, explained in Sect. 2.3, in the following way. From stage 1, we can
extract two things: the initialisation actions and the input actions. It is worth
mentioning that classifying a test’s pre-conditions into initialisation actions and
input actions is a matter of experiment design that we shall revisit in Sect. 3.2.
Next, from stage 2, we extract the relevant output which must be configured as
the SuL’s response to the input actions from stage 1 (to satisfy the Mealy view).
Finally, from stage 3, we learn how to undo the initialisation actions of stage
1. Once again, by looking at multiple tests, we extract the requirements for a
global (SuL) reset which we configure the learner to perform at the end of each
trace. Table 1 summarises this mapping.

Table 1. Mapping elements from unit tests into the learning experiment.

Test structure Information extracted

Pre-conditions Initialisation actions

Input actions

Outcome test SuL response/output

Reset Uninitialisation

Global (SuL) reset

Utilising the test environment is certainly a convenience, but we need to keep
a few issues in mind:

– The tests may not cover every possible action. Functions and special argu-
ments that are never used in the tests must be extracted from the SuL’s
code.

– The tests abstract from certain details. We may fine-tune our level of abstrac-
tion as covered in Sect. 3.2.

– Tests are context-specific. We may want to combine different contexts to
conduct experiments with more actions. But is learning with more actions
always a better idea? We address this question in Sect. 3.4.

– The nature of the learning process—where actions are executed in different
possible orders and with different frequencies—can often lead to traces that
are not covered in tests or ones that are not even achievable in normal use. A
test environment is probably not built to handle such scenarios and will thus
cause errors. We allude to this issue in Sect. 4.2.

– One more issue that is rather specific to our environment is the test stub
attached to the SuL and the particular challenge of separating the two in
regards of actions as well as learned models. This issue is discussed in Sect. 3.5.

We utilise the test environment in experiments of the following subsections,
and reuse excerpts of code directly taken from unit tests as we address the
challenges mentioned above.
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3.2 Fine-Tuning the Level of Abstraction of the Alphabet

When composing an alphabet from code, a level of abstraction must be deter-
mined. Consider the actions of the model in Fig. 2. Each of these actions encloses
multiple lower level actions that contain lower-level details which we simply hide
by choosing the higher level action set. This yields a more abstract and read-
able model yet linear and without much variety to explore. On the other hand,
however, let us explore the result of choosing the lowest level of abstraction.
Consider the code from Listing 1.

This excerpt is a precondition for most tests in our environment. For the
lowest level of abstraction, we chose to set each line of code as a single input
action. So this is our fine-grained action set. We set the response for each action
to be a simple success/failure check on the call. This setup yields the model in
Fig. 5 where transition labels correspond to line numbers in the code, all shown
transitions have the output success which is omitted, and failed calls are self-loop
transitions which are also omitted. We can clearly see the interleaving pattern
created by independent actions.

start T
1

2

3

3

2

4

5

3

4

6

7

5

2

3

6

5 6

7

74

5

7

2

4

6

Fig. 5. Learned model of activation with fine-grained actions. Transition labels corre-
spond to the line numbers in Listing 1.
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The reason they are independent is because they activate independent com-
ponents, and that can be done in arbitrary order. So, we can combine actions to
yield a more readable model. Action 1 will remain the same and be labelled a1,
while the sequence of actions 2 to 7 will be combined into action a2−7. Then we
reach the model in Fig. 6. We simply eliminate interleaving through abstraction.

start T
a1 a2-7

Fig. 6. The learned model of activation with coarse-grained actions.

Practical Results. We conducted two learning experiments, one with six input
actions for learning one of the two independent components, and the other with
12 input actions for learning both components together. The first experiment
took less than an hour and produced an eight-state model, and the second one
lasted 6.5 h and produced a 64-state model. These numbers depend on many
factors and are only given for the reader to get a sense of the cost of such an
experiment.

Step-Wise Action Refinement. It is not possible to determine which actions are
independent without either prior knowledge or experimentation. In the case
where domain knowledge is not available, we resort to a technique called stepwise
refinement [20]. It simply means we run the experiment with a minimal alpha-
bet, and incrementally increase the size of the alphabet; as soon as interleaving
is observed on two actions, such as 2 and 3 from Fig. 5, we abstract those into
one single action, and so on. The downside of this technique is that earlier parts
of the model will be learned again and again, which is clearly inefficient. Suppose
we are only interested in behaviour that occurs at some state R onwards. Then
to overcome the aforementioned inefficiency, we configured the learning driver
such that every time the SuL is started, a certain action sequence is executed
that transitions the state of the SuL to state R, which effectively makes the
learning begin from state R. Currently, LearnLib does not have the feature of
resuming learning from a certain state it has learned before. This is part of our
future work as it will make stepwise refinement much more efficient.

The lesson we learn here is that the objective of a learning experiment decides
which details to abstract. More fine-grained actions naturally yield more infor-
mation in the learned model. On top of that, in this particular experiment, it
provided a clue for one more property about the components labelled F and
L (Listing 1), namely that they are symmetric, which we explore in the next
subsection.

3.3 Exploiting Symmetry

Different patterns of symmetry are observed in software systems [6]. The pattern
we refer to is when a certain component can be replaced by another one without
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resulting in an observable change in behaviour. Refer to the experiment of the
previous section and to Listing 1. We learn from the domain expert that the
components labelled F and L are symmetric. So we conduct the same experiment
but excluding actions of the L component and we find that the new action set
suffices to reach a state we call TF (Fig. 7) which marks the F component active
and ready for executing further actions successfully.

start TF
1 2 4 6

Fig. 7. Learned model of activation with actions of only one of the two symmetric
components.

Thus we do not need to repeat the experiment for a certain component once
we have already done so on a behaviourally equivalent one. This assumption of
symmetry needs to be tested, however. So far, it is verified up to state T , but
as we expand our alphabet to learn further parts of the software, we need to
repeatedly verify that assumption. Doing so through matching traces from one
component against the other is much more efficient than repeating the learning
experiment altogether for the other assumed-symmetric component. In other
words, the learned model of one component can be used as a hypothesis to
be tested against the other symmetric model. We call this initial hypothesis a
conjecture and we discuss it in Sect. 4.

So far, we learned that we can reduce our models by abstracting independent
actions and by excluding one of two symmetric components from the action set.
We continue on learning the next activation procedure and learning more lessons.

3.4 Faster Learning vs. Thorough Testing

Besides L∗
Mealy [15], LearnLib offers a faster variant of the L* algorithm, called

TTT, introduced by Isberner [11]. Learning with TTT is more efficient simply
because it produces a final model sooner. However, it goes through many more
iterations and produces many more intermediate hypotheses, which requires
more rigorous testing. Thus, optimising the learning process also requires opti-
mising the testing algorithm.

Schuts et al. [17] provide experimental results on learning a small model
with TTT combined with various testing algorithms. They conclude that TTT
is faster than L* by a factor of 3 regardless of the testing method used. However,
producing a correct model is as significant a concern, if not more significant, as
speeding up the process. In our experiment, we contrasted between two learning
algorithms, L* and TTT, and two testing methods, the W-method [5] and a
simple random-walk test that LearnLib provides. The random walk tests random
paths in the hypothesis against the SuL. It requires a maximum number of
input actions and a probability of resetting the SuL after each action. The more
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rigorous W-method requires a parameter that effectively sets an upper bound
on the length of the tests. Therefore in both tests, an estimate on the size of the
target model must be made. This is quite problematic for the reason made clear
by the next experiment.

In this experiment, we have only two actions: Activate, which abstracts the
SuL activation procedure detailed in Sect. 3.2; and GetLogicalResource, which
returns a logical resource object to access the hardware. We shorten these two
actions as A and B respectively. The output of both actions is an S or F response
standing for success and failure respectively. The expected behaviour is exactly
that shown in Fig. 2 (if Init and Use are renamed to A and B respectively)
where action B’s success depends on action A’s success. With this expectation
in mind, estimating an upper bound on the number of states to eight, four times
larger than the expected model, should be rigorous enough. And indeed we get
the expected two-state model. However, with the cheaper random walk testing
method, we set the maximum number of actions to 1000, and discover that our
previous hypothesis was false and that a more accurate model is the ten-state
model of Fig. 8. The model shows that the action GetLogicalResource succeeds
after Activate but calling it eight times fills a certain hidden buffer and causes
any subsequent calls to fail, even though Activate still succeeds.

start

B/F

A/S

A/S A/S A/S A/S

B/S B/S B/S

B/S

B/SB/SB/SB/S
B/F

A/SA/SA/SA/SA/S

Fig. 8. A learned model showing the hidden buffer of size eight. Input actions are A:
Activate, and B: GetLogicalResource; outputs are S: Success, and F : Fail.

Clearly, we would not want to discover such behaviour in a larger experiment.
Such behaviour expands a two-state model to a ten-state model; and in a setup
with one more input action, it expanded four states to 28 states. However, we
would like to be aware of such behaviour and find a way to abstract from it. For
this particular case, such a sequence will never be executed in practice and is
therefore deemed uninteresting to learn. Not only that, but it is also expensive
to learn and test, and therefore we would like to avoid observing it altogether.
We call this an unduly complex model and we discuss it in Sect. 4.2.

Moreover, the bigger the action set, the lower the chance of discovering such
behaviour. Thus it is wiser to experiment with a smaller action set before expand-
ing.

We learned that faster learning comes with drawbacks. It comes at the
expense of the accuracy of the learned model. We showed a case where not
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only would faster learning yield a less accurate model, but even slower learning
with wrong assumptions can do the same.

3.5 Utilising the Test Stub

Recall from Sect. 2.3 that the HW interface adapter shown in Fig. 4 supports a
testing mode where a built-in test stub would act as a replacement for the real
hardware. This subsection contains multiple experiences and multiple lessons in
utilising the test stub. We start with a piece of code taken directly from a test
case, Listing 2, a procedure called ToStandby which runs after the activation
procedure of Listing 1.

The goal of the code is to activate the stub and make it reach a standby
state. It shows us the proper order of guiding the bottom layer (the stub) to a
Standby state. First, the stub notifies the GS that it is powered on and awaits
a request to go to an Idle state. Once it receives that request, the stub’s state
is set to Idle, it notifies the GS of that, and awaits the request to go to Standby.
Again, once it receives the request, the stub is set to Standby and it notifies the
GS of that.

Note the calls to on line 2 and line 5 marked in boldface. These
two calls are blocking, i.e. they wait for the output which means we are forced to
implement a timeout. In the real setting which uses actual hardware, such calls
are asynchronous, but in a testing environment, we are forced to make them
synchronous.

When forming the action set out of Listing 2, lack of domain knowledge forced
us to take the crude method of making each line of code into a single input action,
while configuring the output read to be the success or failure of that particular
call; in case of the call , we get an additional output which is also a
boolean value. Additionally, some actions that were added to the setup such as

are not part of this particular unit test but were extracted from
other tests and from the SuL’s source code.

Inseparable Components. The stub is part of HW interface adapter (Fig. 4) and
is thus inseparable from the SuL. While learning the SuL, it is probable that
part of the learned behaviour is due to the stub. This is not to say that the
stub is an undesired component. On the contrary, it provides great benefit in



Pitfalls in Industrial Model Learning 133

abstracting away all the obscure low-level communication details necessary in
the real hardware connection. Eliminating the stub enforces a greater task which
is to reverse engineer this low-level communication and incorporate it into our
input and output alphabets, after which we can choose whether to learn it or
to abstract away from it; the latter will, in turn, take us back to the situation
we are currently in. Moreover, there is no accessible interface between the SuL
and the interface adapter, which forces us to learn the combination of these two
components rather than the SuL alone. This problem is revisited in Sect. 4.4.

Nondeterminism and Timing. Continuing with the stub experiment and
the described alphabet, we discuss a certain problem we faced. As we ran the
learner a few times with this setup, it started complaining about nondetermin-
istic behaviour. It would report traces such as the following:

The arrow at the last line indicates output. The learner here is complain-
ing that the output for this trace is not deterministic, i.e., sometimes true and
other times false. In such a setting where blocking is forced on an otherwise-
asynchronous communication, we learn from Schuts et al. [17] that simply insert-
ing time pauses after each message is a viable solution. The reason is that the
SuL needs time to process and respond to messages. Through trial and error, we
were able to determine the shortest pause duration necessary for a deterministic-
output run. For this specific environment, the duration was 100 ms. A lesson
learned here is that reported nondeterminism may not be so for as simple a
reason as needing a time pause.

Expanding the Scope of the Output. A separate attempted solution to
solve the nondeterminism problem was applying an abstraction on the actions
by grouping them as follows:
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This setup did eliminate the need for inserting time pauses, but it yielded
neither new states nor new transitions in the learned model, which pointed our
attention to the output. Note that even though we abstracted actions, the scope
of the output has not changed. Thus, we decided to revert from the abstraction
solution back to the time-pause solution, and in addition do the following: to
read the output of both and after
each action and remove these two calls from the action set. In other words, we
moved them from the input alphabet to the output alphabet. We were able to
read both outputs because they were stored as flags in the HW interface adapter.
This yields the model in Fig. 9. Output flags are represented by a dash if read
false and by the first initial of the flag name if read true. And to save space, the
action names were shortened.

FTstart

IS IO SO

O

Notify(Off)/--

Notify(On)/IS

Notify(Off)/--

Set(I)/--

Se
t(S

)/-
-

Notify(On)/--

Se
t(I
)/-
- Set(S)/--

Set(S)/--

Set(I)/--

Notify(Off)/--
Set(I)/--

Notify(Off)/--
Set(S)/--

Notify(On)/-S

Notify(Off)/--

Notify(On)/--
Set(I)/--

Set(S)/--

Set(I)/--

Notify(On)/--
Set(S)/--

Notify(On)/--

Notify(Off)/--

Fig. 9. The learned model of the ToStandby procedure with fine-grained actions and
aggregated output.

Aggregating output and reading it globally revealed that both flags could be
set as response to a single action, a fact that contradicts the implicit assumption
of our previous output-reading setup. A more general benefit of aggregating out-
put is that it removes the nondeterminism resulting from the common ambiguity
of which output arrived first. The lesson learned here is that the scope of the
output should be expanded, i.e. by reading more output, especially if at little or
no extra cost.

The model in Fig. 9 also reveals that some actions, namely
and , have no effect on either the output or the state, which is
why they are omitted from the figure. This raises the question: do they cause no
change at all; or is the change simply hidden from our view due to this peculiar
test stub?

We still do not know the answer but the sure lesson is that in some cases we
cannot effectively learn the isolated target system and we are forced to utilise
auxiliary components such as the test stub.
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4 Future Work

In this section we discuss future solutions to the challenges seen in this case
study.

4.1 Learning with Conjectures

We have seen a case in Sect. 3.3 where we use the knowledge that two compo-
nents are symmetric. To ensure the accuracy of the learned model, we would like
to treat this piece of knowledge as an assumption or a conjecture. We were able
to verify the symmetry by learning each of the two components separately and
finding that they are strongly bisimilar. However, there are two problems with
this: first is the obvious unnecessary expense of learning the same behaviour
twice, and second is that this only verified symmetry up to state T . Adding
further actions to the experiment will require redoing the learning and the ver-
ification. So we would like to keep this conjecture of symmetry for all future
experiments. When starting a new experiment, the learner would start with the
conjecture and test it. Recall the three steps of the learning algorithm explained
in Sect. 2.1. Step 2 was testing the already built hypothesis model. Our future
direction is that we would like the conjecture to be an initial hypothesis model
and that in the first iteration of the loop, we start with step 2, i.e. testing the
hypothesis/conjecture.

Symmetry is one property that can be represented as a conjecture. There
are certainly other properties that fit into a conjecture, including undesired
sequences, explained in Sect. 4.2. This solution was mentioned in [13] as pre-
senting an abstract model to the learner before starting the experiment.

Furthermore, we need a formalism for conjectures such that a property can
be uniquely expressed and then translated into a hypothesis model. The output
learned model should abstract away unwanted details to produce a more readable
model just as Fig. 6 is compared to Fig. 5, while still keeping the information of
the expanded model as a formalised property.

In summary, we would like to research the theory necessary to express con-
jectures, translate them into hypotheses, start learning with a hypothesis as a
starting point, and output an abstract readable learned model.

4.2 Avoiding Illegal/Undesired Sequences

Because of the nature of the learning process where actions are executed in
different possible orders and with different frequencies, it can often lead to traces
that are not covered in tests or ones that are not even allowed in normal use. An
example is turning on a device that is already on. A test environment is probably
not built to handle such scenarios and will thus cause errors. In such a case, we
would like to specify two subsequent turn on actions as an illegal sequence. This
research direction investigates how to formulate such illegalities and how to keep
the learner’s traces within certain boundaries.
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Another example is the one seen in Sect. 3.4, where eight Activate actions in
a run is an undesired sequence because it explodes the state space and thus we
would like to avoid observing it altogether. This problem can fall under illegalities
but we would like to investigate whether such a sequence can be expressed as a
conjecture and thus fall under the problem discussed in Sect. 4.1.

4.3 Avoiding Repetition of Traces

In the current learning implementation, every new trace starts from the initial
state. In many cases, however, we are interested in a certain state and would
like to run multiple traces from that state without repeating the sequences that
leads to it after each reset. Bauer et al. [4] introduce the idea of reusing previous
traces in what they call the Reuse algorithm. The reuse algorithm acts as an
intermediate layer between the learner and the SuL. It would respond to the
learner with a previously known response instead of running it explicitly on the
SuL, which obviously saves time. They keep the information of previous runs in
a reuse tree.

As mentioned in Sect. 4.1, we would like to start learning from a hypothesis.
And we see in this context one way to implement this, namely that LearnLib
would use the hypothesis as a reuse tree. We believe that this is a more generic
approach, but the question remains about which approach is more efficient.

4.4 Composition and Decomposition of Models

Looking at the case of Sect. 3.5 and the learned model of Fig. 9, a pressing
question is: what does the model say about the real behaviour of the SuL, and
what does it say about the combination of the SuL and its interface adapter? Is
there a way to correctly decompose the learned model to deduce one describing
the behaviour of the SuL alone? Such a scenario can be seen in practice and the
question invites theoretical research. Moreover, the more complex the auxiliary
component is, the more difficult it will be to analyse the learned model.

On the other hand, we would like to investigate composition of models. Con-
sider the models of Figs. 7 and 9. The latter model starts at state FT where the
former model ends. Both have different sets of actions and different scopes. We
can make the assumption that the action set from one model has no effect on
the states of the other model. Based on this assumption, we can take the union
of these two models and present the resulting model as a conjecture for further
experiments, which would also serve in testing the assumption. Composing mod-
els that learn different parts of a system into one that describes the complete
behaviour is a problem that relates directly to the scalability of model learning
techniques and the efficiency of learning large systems.

4.5 Automating the Learning Setup

Automation is essential for growing the model learning technique into an
industrial-scale application. There are certain parts in the learning setup process
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that can be automated. For instance, Howar et al. [8] modified their LearnLib
driver such that it automatically applies an abstraction on the alphabet when
non-determinism is faced, whereas Merten et al. [14] automate the process of
setting up the learner with input alphabet and other parameters. The latter is
especially viable in our environment for the availability of consistent unit tests.

5 Conclusion

We narrated our experience in applying model learning to industrial legacy
software. We faced interleaving, discovered hidden behaviour unintentionally,
and dealt with an auxiliary component. We provided lessons about abstract-
ing actions, exploiting symmetry, thoroughly testing the learned models, dealing
with asynchronous communication, expanding the scope of read output, and
carefully treating auxiliary components. Finally, we discussed future research
directions, including learning with conjectures, and learning given an initial
hypothesis.

Acknowledgement. We would like to thank Joshua Moerman and Ramon Janssen
for their help with LearnLib and several related concepts, and Mathijs Schuts for
sharing his knowledge about model learning.
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