l‘)

Check for
updates

Test Case (GGeneration
with PATHCRAWLER /LTEST: How
to Automate an Industrial Testing Process

Sébastien Bardin', Nikolai Kosmatov!®) Bruno Marre!, David Mentré?,
and Nicky Williams®

1 CEA, List, Software Reliability and Security Lab, PC 174, Gif-sur-Yvette, France
{sebastien.bardin,nikolai.kosmatov,bruno.marre,nicky.williams}@cea.fr
2 Mitsubishi Electric R&D Centre Europe (MERCE), Rennes, France

d.mentre@fr.merce.mee.com

Abstract. Automatic white-box testing based on formal methods is
now a relatively mature technology and operational tools are available.
Despite this, and the cost of manual testing, the technology is still rarely
applied in an industrial setting. This paper describes how the specific
needs of the user can be taken into account in order to build the necessary
interface with a generic test tool. We present PATHCRAWLER/LTEST, a
generator of test inputs for structural coverage of C functions, recently
extended to support labels. Labels offer a generic mechanism for speci-
fication of code coverage criteria and make it possible to prototype and
implement new criteria for specific industrial needs. We describe the
essential participation of the research branch of an industrial user in
bridging the gap between the tool developers and their business unit and
adapting PATHCRAWLER/LTEST to the needs of the latter. We present
the excellent results so far of their ongoing adoption and finish by men-
tioning possible improvements.

1 Introduction

In current software engineering practice, testing [3,25,27,34] is the primary app-
roach to find errors in a program. Testing all possible program inputs being
intractable in practice, the software testing community has long worked on the
question of test selection: which test inputs to choose in order be confident that
most, if not all, errors have been found by the tests. This work has resulted in
proposals of various testing criteria (a.k.a. adequacy criteria) [3,34], including
code-coverage criteria. A coverage criterion specifies a set of test requirements
or test objectives, which should be fulfilled by the test suite (i.e., the set of
test-cases). Typical requirements include for example covering all statements
(statement coverage) or all branches (decision coverage) in the source or com-
piled code. Code coverage criteria present two advantages. Firstly, the obtained
coverage can be quantified. Secondly, code coverage criteria facilitate automated
testing: they can be used to guide the selection of new test inputs, decide when

© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 104-120, 2018.
https://doi.org/10.1007/978-3-030-03427-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_12

Test Case Generation with PATHCRAWLER/LTEST 105

testing should stop and assess the quality of a test suite. This is notably the case
in white-box (a.k.a. structural) software testing, in which the tester has access
to the source code—as is the case, for example, in unit testing. Tools for the
generation of test input values for code coverage are often based on program
analysis and formal methods for reasoning about the structure and semantics of
the source code.

Code coverage criteria are widely used in industry. In regulated domains such
as aeronautics, code coverage criteria are strict normative requirements that the
tester must satisfy before delivering the software. In other domains, they are
recognized as good practice for testing.

However, automatic tools for the generation of test inputs to satisfy code
coverage criteria have not yet made it into widespread industrial use. This despite
the maturity of the underlying technology and the promise of significant gains
in time, manpower and accuracy. This reticence is probably cultural in part: an
automated test process can be very different to a manual one and test engineers
who are used to functional testing have to accept the idea that an automatic
tool can generate test inputs to respect a code coverage criterion but cannot
provide the oracle. It can no doubt also be explained by the very importance of
the test process: businesses may be reluctant to conduct experiments in such a
crucial part of the development cycle. Finally, we have to suppose that existing
test tools do not correspond closely enough to the needs of industrial users and
cannot easily be integrated into existing processes.

This is the gap which has to be closed in order for automatic structural test-
ing tools to be used in an industrial setting and this paper describes how one such
tool is currently being integrated into industrial practice thanks to a successful
experience of collaboration between academia and industry. The present work
was done in collaboration between CEA List, a research institute, and MERCE,
a research center of Mitsubishi Electric. First, we describe the functionality of the
main components of the tool, resulting from several years of academic research
and selected by the industrial user as being the most appropriate for its needs.
Then we describe the crucial role played by the research branch of the industrial
user in refining the definition of the needed functionality and building the inter-
face between the tool and the end users in the business unit. Finally, we present
the benefits of the proposed solution and provide some lessons learnt from this
experience.

2 Overview of the Tool Architecture

The structure of the complete business-oriented test solution is illustrated by
Fig. 1. The generic test generation tool PATHCRAWLER/LTEST provided by the
CEA List institute contains three main ingredients. A concolic testing tool,
PATHCRAWLER, is used to generate test-cases for a given C program. The genera-
tion of concrete test inputs for a given program path relies on a constraint solver,
CoLIBRI. The specification mechanism of labels and a specific label-oriented
strategy allow an efficient support of a desired test coverage criterion expressed
as labels.

106 S. Bardin et al.

Business-oriented testing solution based on PathCrawler/LTest

Generic PathCrawler/LTest tool

Annotator: .
2dd labels Label-oriented strategy E>i

Qutput Test Sheet
. est Sheel
E> (PathCrawIer test generation engine) processor:

C Code Stubber: sheets
add stubs Colibri constraint solver E> D

Stubs

produce test

Fig. 1. Tool architecture

To adapt PATHCRAWLER/LTEST for a specific industrial context, additional
modules were developed by MERCE, the research branch of the industrial part-
ner. They include ANNOTATOR (that expresses the specific target criterion in
terms of labels), STUBBER (that produces necessary stubs) and OUTPUT PRO-
CESSOR (that creates the required test reports).

The paper is organized as follows. First, Sect. 3 presents the PATHCRAWLER
testing tool and its main features. Then, Sect. 4 presents the COLIBRI constraint
solver used by the considered testing tool. Next, Sect. 5 introduces the notion of
labels, a recent specification mechanism for coverage criteria, and describes their
benefits. Section 6 presents the support of labels in the LTEST toolset developed
on top of PATHCRAWLER. The ongoing adoption of PATHCRAWLER/LTEST by
an industrial partner is described in Sect. 7. Finally, Sect. 8 provides a conclusion
and future work.

3 PATHCRAWLER Test Generation Tool

PATHCRAWLER [10,32] is a test generation tool for C programs which was ini-
tially designed to automate structural unit testing by generating test inputs for
full structural coverage of the C function under test.

PATHCRAWLER has been developed at CEA List since 2002. Over the years
it has been extended to treat a larger subset of C programs and applied to many
different verification problems, most often on embedded software [14,28,33,35].
In 2010, it was made publicly available as an online test server [1], for evaluation
and use in teaching [19].

PATHCRAWLER is based on a method [32] which was subsequently baptized
concolic or Dynamic Symbolic Execution [11,31], i.e. it performs symbolic exe-
cution along a concrete execution path. The user provides the compilable files
containing the complete ANSI C source code of the function under test, f, and
all other functions which may be directly or indirectly called by f. He also selects
the coverage criterion and any limit on the number of loop iterations in the cov-
ered paths as well as an optional precondition to define the test context. He
may finally provide an oracle in the form of C code or annotate the code with
assertions. Test generation is then carried out in two major phases.

Test Case Generation with PATHCRAWLER/LTEST 107

In the first phase, PATHCRAWLER extracts the inputs of f and creates a test
harness used to execute f on a given test-case. The test harness is basically an
instrumented version of the code that outputs a trace of the path covered by
each test-case. The extracted inputs include the formal parameters of f and the
non-constant global variables used by f. Each test-case will provide a value for
each of these inputs. This phase uses the FRAMA-C platform [18], developed at
CEA List.

The second phase generates test inputs to respect the selected coverage cri-
terion. This phase is based on symbolic execution, which generates constraints
on symbolic input values, and constraint solving to find the solution, in the
form of new concrete input values, to a new set of constraints. Indeed, symbolic
execution is used to analyse the trace of the execution path followed when the
harness executes f on the concrete input values of each generated test-case, and
produce the path predicate defining the input variables which cause that path to
be covered.

PATHCRAWLER differs in two main ways from other tools based on this con-
crete/symbolic combination.

Like other tools, PATHCRAWLER runs the program under test on each
test-case in order to recover a trace of the execution path. However, in
PATHCRAWLER's case actual execution is chosen over symbolic execution merely
for reasons of efficiency and to demonstrate that the test does indeed acti-
vate the intended execution path. Unlike tools designed mainly for bug-finding,
PATHCRAWLER does not use actual execution to recover the concrete results
of calculations that it cannot treat. This is because these results can only pro-
vide an incomplete model of the program’s semantics and PATHCRAWLER aims
for complete coverage of a certain class of programs rather than for incomplete
coverage of any program.

Indeed, even with incomplete coverage many bugs can often be detected,
but PATHCRAWLER was designed for use in more formal verification processes
where coverage must be quantified and justified so that and it can also be used
in combination with static analysis techniques [12,29]. If a branch or path is
not covered by a test, then unreachableness of the branch or infeasibility of the
path must be demonstrated. Soundness and completeness are necessary for 100%
satisfaction of a coverage criterion. Test-case generation is sound when each test-
case covers the test objective for which it was generated, and complete when
absence of a test-case for some test objective means this objective is infeasible
or unreachable.

The soundness of the PATHCRAWLER method is verified by concrete execution
of generated test-cases on the instrumented version of the program under test.
The trace obtained by the concrete execution of a test-case confirms that this
test-case really executes the path for which it was generated.

Completeness can only be guaranteed when the objectives can all be cov-
ered by a reasonable number of test-cases, symbolic execution correctly repre-
sents the semantics of C and constraint solving (which is combinatorially hard)
always terminates in a reasonable time. Note that completeness and the verifica-

108 S. Bardin et al.

tion of soundness on the instrumented code actually require symbolic execution
of program features to be adapted to the target platform (compiler optimisa-
tions, libraries, floating-point unit, etc.) and also PATHCRAWLER’s execution of
the tests on the instrumented code to be carried out in the same environment.
PATHCRAWLER is currently only adapted to a Linux development environment
and Intel-based platform. The search strategy of the PATHCRAWLER method
ensures iteration over all feasible paths of the program, which is necessary for
completeness, for all terminating programs with finitely many paths. Programs
containing infinite loops cannot be tested in any case in the way we describe
here, as the execution of the program on the test inputs would never terminate.
Any infinite loop which has been introduced as the result of a bug can only be
detected by a timeout on the execution of each test-case on the instrumented
code. Terminating programs with an infinite number of paths must have an infi-
nite number of inputs and this is another class of programs that cannot be tested
using the PATHCRAWLER method.

The second main difference between PATHCRAWLER and other similar tools
is that PATHCRAWLER is based not on a linear arithmetic or SMT solver but
on the finite domain constraint solver COLIBRI, also developed at CEA List
(see Sect.4). PATHCRAWLER and COLIBRI are both implemented in Constraint
Logic Programming, which facilitates low-level control of constraint resolution
and the development of specialized constraints, as well as providing an efficient
backtracking mechanism. Within PATHCRAWLER, specialized constraints have
been developed to treat bit operations, casts, arrays with any number of vari-
able dimensions and array accesses using variable index values. The attempt to
correctly treat all C instructions is ongoing but PATHCRAWLER can already treat
a large class of C programs.

PathCrawler outputs detailed results in the form of XML files. These include
overall statistics on the test session, including results in terms of coverage,
whether the session ended normally or timed out or crashed and start and end
times. For each test-case, the input values, result (according to the user’s oracle
or assertions, if provided, or run-time error, timeout or detection of an unitialised
variable), covered path and concrete output values are provided. The result is
either the verdict according to the user’s oracle or assertions, if provided, or
maybe a run-time error, timeout or detection of an unitialised variable. The
symbolic (i.e. expressed as a formula over input variables) output values are also
given. Moreover, for each path prefix which could not be covered, the reason is
given: demonstration of infeasability, constraint resolution timeout, limit on the
number of loop iterations, or untreated C language construction. The predicate
on the input variables of each covered path and uncovered prefix is also given.
In the case of path prefixes found to be infeasible, the predicate can be used
to explain the infeasibility to the user and in the case of constraint resolution
timeout, it can be used to determine manually the feasability of the path.

Test Case Generation with PATHCRAWLER/LTEST 109

4 CoLIBRI Constraint Solver

Constraint solving techniques are widely recognized as a powerful tool for Valida-
tion and Verification activities such as test data generation or counter-example
generation from a formal model [23], program source code [15,16] or binary code
[7]. A constraint solver maintains a list of posted constraints (constraint store)
over a set of variables and a set of allowed values (domain) for each variable,
and provides facilities for constraint propagation (filtering) and for instantiation
of variables (labeling) in order to find a solution.

In this section we present the COLIBRI library (COunstraint LIBrary for veRI-
fication) developed at CEA List since 2000 and used inside the PATHCRAWLER
tool for test data generation purposes. The variety of types and constraints
provided by COLIBRI makes it possible to use it in other testing tools at CEA
List like GATeL [23], for model based testing from Lustre/SCADE, and Osmose
[7], for structural testing from binary code.

General Presentation. COLIBRI provides basic constraints for arithmetic oper-
ations and comparisons of various numeric types (integers, reals and floats).
Cast constraints are available for cast operations between these types. COLIBRI
also provides basic procedures to instantiate variables in their domains making
it possible to design different instantiation strategies (or labeling procedures).
These implement specific heuristics to determine the way the variables should
be instantiated during constraint resolution (e.g. a particular order of instan-
tiation) and the choice of values inside their domain (e.g. trying boundary or
middle values first). Thus the three aforementioned testing tools have designed
their own labeling procedures on the basis of COLIBRI primitives.

The domains of numerical variables are represented by unions of disjoint
intervals with finite bounds: integer bounds for integers; double float bounds
for reals; and double/simple float bounds, infinities or NaNs for double/simple
floating point formats. These unions of intervals make it possible to accurately
handle domain differences. For each numeric type and each basic unary/binary
operation or comparison, COLIBRI provides the corresponding constraint.

Moreover, for each arithmetic operation, additional filtering rules apply alge-
braic simplifications, which are very similar for integer and real arithmetics,
whereas floating arithmetics uses specific rules.

Bounded and Modular Integer Arithmetics. COLIBRI provides two kinds of arith-
metics for integers: bounded arithmetics for ideal finite integers and modular
arithmetics for signed /unsigned computer integers.

Bounded arithmetics is implemented with classical filtering rules for integer
interval arithmetics. These rules are managed in the projection functions of
each arithmetic constraint. Moreover, a congruence domain is associated to each
integer variable. Filtering rules handle these congruences in order to compute
new ones and maintain the consistency of interval bounds with congruences (as

110 S. Bardin et al.

in [20]). The congruences are introduced by multiplications by a constant and
propagated in the projection functions of each arithmetic constraint.

Modular arithmetics constraints are implemented by a combination of
bounded arithmetics constraints with modulus constraints as detailed in [17].
Thus they benefit from the mechanisms provided for bounded integer arith-
metics. Notice that using unions of disjoint intervals for the domain represen-
tation makes it possible to precisely represent the domain of signed/unsigned
integers.

Real and Floating Point Arithmetics. Real arithmetics is implemented with clas-
sical filtering rules for real interval arithmetics where interval bounds are double
floats. In real interval arithmetics each projection function is computed using
different rounding modes for the lower and the upper bounds of the result-
ing intervals. The lower bound is computed by rounding downward, towards
—1.0Inf (i.e. —o0), while the upper bound is computed by rounding upward,
towards 4+1.0Inf (i.e. +00). This enlarging ensures that the resulting interval
of each projection function is the smallest interval of doubles including all real
solutions.

Floating point arithmetics is implemented with a specific interval arithmetics
as introduced by Michel in [26]. Notice that properties like associativity or dis-
tributivity do not hold in floating point calculus. The projection functions in
this arithmetics have to take into account absorption and cancellation phenom-
ena specific to floating point computations. These phenomena are handled by
specific filtering rules allowing to further reduce the domains of floating point
variables. For example, the constraint A +r X = A over floating point numbers
means that X is absorbed by A. The minimal absolute value in the domain of
X can be used to eliminate all the values in the domain of A that do not absorb
this minimum. Thus, in double precision with the default rounding mode (called
nearest to even), for X = 1.0 the domain of A is strongly reduced to the union
of two interval of values that can absorb X:

[MinDouble .. —9007199254740996.0, 9007199254740992.0 .. MaxDouble].

COLIBRI uses very general and powerful filtering rules for addition and
subtraction operations as described in [24]. For example, for the constraint
A+ B = 1.0 in double precision with the nearest to even rounding mode, such
filtering rules converge to the same interval for A and B

[—9007199254740991.0 .. 9007199254740992.0].

Implementation Details. COLIBRI is implemented in ECLiPSe Prolog [30]. Its
suspensions, generic unification and meta-term mechanisms make it possible to
easily design new abstract domains and associated constraints. Incremental con-
straint posting with on-the-fly filtering and automatic backtracking to a previous

Test Case Generation with PATHCRAWLER/LTEST 111

constraint state provided by COLIBRI are important benefits for search-based
state exploration tools, and in particular, for test generation tools.

To conclude this short presentation of COLIBRI, let us remark that the accu-
racy of its implementation relies a lot on the use of unions of intervals and
the combination of abstract domain filtering rules with algebraic simplifications.
Experiments in [4,9,13] using SMT-LIB benchmarks show that COLIBRI can be
competitive with powerful SMT solvers. In 2017 and 2018, COLIBRI was the win-
ner of the floating point category at the 12th and 13th International Satisfiability
Modulo Theories Competitions (SMT-COMP 2017 and 2018).

5 Generic Specification of Coverage Criteria with Labels

In 2014, a previous paper introduced labels (8], a code annotation language
to encode concrete test objectives, and showed that several common coverage
criteria can be simulated by label coverage. In other words, given a program
P and a coverage criterion C, the concrete test objectives instantiated from C
for P can always be encoded using labels. In this section, we recall some basic
results about labels.

Labels. Given a program P, a label ¢ is a pair (loc, p) where loc is a location of
P and ¢ is a predicate over the internal state at loc, that is, such that:

— ¢ contains only variables and expressions (in the same language as P) defined
at location loc in P, and
— (contains no side-effect expressions.

There can be several labels defined at a single location, which can possibly
share the same predicate. More concretely, our notion of labels can be compared
to labels in the C language, decorated with a pure C expression. Some examples
of labels (named 1, ...,1l4) are given in Fig. 2.

statement_1;
// 11: x==5
// 12: x==y && a<3
statement_2;
// 13: x==5
// 14: x!=y && a>=b
statement_3;

R T I S

Fig. 2. Examples of labels

We say that a test datum ¢ covers a label ¢ = (loc,) in P, denoted t ~5p £,
if the execution of P on t reaches loc on some program state s such that s
satisfies ¢. For example, for the program given in Fig. 2, label [; is covered by
test datum ¢ if the execution of the program for this test datum reaches line 2

112 S. Bardin et al.

(or, more precisely, the program location between statements 1 and 2) with a
program state in which x = 5. If statement 2 does not modify variable and
its execution does not change control flow, label I3 will be covered by the same
test datum. However, if statement 2 can modify x or change control flow, a
simultaneous coverage of both labels is not guaranteed.

An annotated program is a pair (P, L) where P is a program and L is a set
of labels defined in P. Figure 2 shows an example of an annotated program with
four labels.

Given an annotated program (P, L), we say that a test suite TS satisfies the
label coverage criterion LC for (P, L) if TS covers every label of L, that is, for
any label ¢ in L, there is a test-case ¢t in T'S such that ¢ ~p ¢. This is denoted

Criterion Encoding. We say that label coverage simulates a given coverage crite-
rion C if any program P can be automatically annotated with a set of labels L in
such a way that any test suite T'S satisfies LC for (P, L) if and only if TS covers
all the concrete test objectives instantiated from C for P. We call annotation
(or labeling) function such a procedure automatically adding test objectives to
a given program for a given coverage criterion.

It is shown in [8] that label coverage can notably simulate basic-block cover-
age (BBC), branch coverage (BC) and decision coverage (DC), function cover-
age (FC), condition coverage (CC), decision-condition coverage (DCC), multi-
ple condition coverage (MCC), GACC |[2], as well as the side-effect-free frag-
ment of weak mutations (WM?) in which the considered mutation operators
are not allowed to introduce side-effects. Moreover, these encodings can be fully
automated: the corresponding labels can be inserted automatically into the pro-
gram under test. Similarly, labels can be used to encode other, more specific
criteria.

Figure 3 illustrates the simulation of some common criteria with labels on
sample code. The resulting annotated code is automatically produced by the cor-
responding annotation functions. For example, consider decision coverage (DC).
It is easy to see that a test suite covers DC for the initial program (on the left) if
and only if this test suite covers LC for the annotated program produced for the
DC criterion. It is ensured by the systematic insertion of labels for all branches
of the code. The encoding of GACC (General Active Clause Coverage) [2] is
shown in Fig.4. In GACC, each clause in a decision should become true for
some test-case and false for some test-case. In addition, the clause should affect
the decision: changing the value of this clause should change the whole decision.
For example, labels named 1, [in Fig. 4 simulate these requirements for the first
clause x==y: label [; ensures that it can become true, while label I3 ensures it
can become false. The second part of the predicates of these labels ensures that
changing only the first clause would indeed change the decision.

Test Case Generation with PATHCRAWLER/LTEST 113

statement_1; statement_1;
statement_1; // 11: x==y // 11: x==y && a<b
statement_1; // 11: x==y && a<b // 12: x!l=y // 12: x!=y && a<b
if (x==y && a<b) . // 12: !(x==y && a<b)||// 13: a<b // 13: x==y && a>=b
{...}; if (x==y && a<b) // 14: a>=b // 14: x!=y && a>=b
statement_3; {...}; if (x==y && a<b)||if (x==y && a<b)
statement_3; {...}; {...};
statement_3; statement_3;
Decisions (DC) Conditions (CC) Multiple Conditions (MCC)

int foo (int x) {

. . int foo (int x) { // 11: x==0
nt Loolwnt WU |/ 11+ true /7 12: x50
- ——|statement_1; // 13: x<0

; o e statement_1;
}
}

Functions (FC) Input Domain Partition (IDC)

Fig. 3. Simulating standard coverage criteria with labels

statement_1;

// 11: x==y && ((true && a<b) != (false && a<b))
statement_1; // 12: ! (x==y) && ((true && a<b) != (false && a<b))
if (x==y && a<b) . // 13: a<b && ((x==y && true) != (x==y && false))
{...}; // 14: !(a<b) && ((x==y && true) != (x==y && false))
statement_3; if (x==y && a<b)

{...};
statement_3;

General Active Clause Coverage (GACC)

Fig. 4. Simulating the GACC coverage criterion with labels

6 Efficient Test-Case Generation for Labels in LTEST

Labels appear to be not only convenient to express various testing criteria, but
also amenable to efficient support in various testing tasks. Previous efforts [6,8,
21] showed that labels can be efficiently supported during test-case generation,
coverage evaluation and detection of polluting (e.g. infeasible) test objectives.
This support was originally implemented in 2013-2014 in the LTEST toolset [5].
In this section, we detail the label-oriented strategy for test-case generation used
in the PATHCRAWLER/LTEST tool and implemented in top of PATHCRAWLER.

The label-oriented strategy is based on two main principles, tight instru-
mentation and iterative label deletion. They can be implemented in a dedicated
manner or used in a black-box manner on top of a Dynamic Symbolic Execution
(DSE) tool. We follow the second approach to present them here, and assume
we have an existing DSE tool used to cover program paths.

Let us illustrate tight instrumentation in comparison with a simple approach,
referred to as direct instrumentation (cf. Fig.5). In direct instrumentation the

114 S. Bardin et al.

statement_1;

// 1: p

statement_2;

statement_1;
if (p) {

// report 1 is covered
i

statement_2;

statement_1;
if (nondet) {
if (p) {
// report 1 1is covered
}
exit (0);
}i
statement_2;

Direct instrumentation

Tight instrumentation

Fig. 5. Two ways to instrument a label: direct and tight instrumentation

True

True

Direct instrumentation

G

L

False

alse

Tight instrumentation

B e DL

Fig. 6. Comparison of direct and tight instrumentation for a sequence of N labels

label is replaced by a conditional statement that checks the label predicate p
and reports that the label is covered whenever the predicate is satisfied. In tight
instrumentation, the conditional statement is reached only when a nondeter-
ministic operation nondet returns true. Moreover, the execution exits after the
evaluation of the label predicate, whenever it is true or not. Note that any DSE
engine can simulate non-deterministic choices via an additional input array of

(symbolic) boolean values.

In the resulting instrumented program, direct instrumentation leads to cre-
ating two paths' for each path in the non-instrumented program, while tight
instrumentation makes DSE consider only one additional program path each

1 And sometimes even more, if the label was inside a loop or a function called several

times.

Test Case Generation with PATHCRAWLER/LTEST 115

time a label is traversed. This situation is schematically illustrated for a sequence
of N labels in Fig.6. We see that tight instrumentation leads to N + 1 paths to
be considered by DSE, while direct instrumentation results in 2V paths.

Along with a smaller number of paths to consider, tight instrumentation
brings another benefit: conditions coming from labels are added to path predi-
cates only during the evaluation of the label predicate, while in direct instrumen-
tation path predicates always contain conditions on previously traversed labels.
Thus, tight instrumentation yields only a linear growth of the path space without
any complexification of path predicates.

The main idea behind iterative label deletion is to ignore a label that has been
covered while continuing the test generation session. It can be easily implemented
by introducing a status for each label and considering that the nondet operation
never returns true for an already covered label. The label-oriented test generation
strategy is further detailed in [8].

7 Ongoing Adoption of PATHCRAWLER/LTEST in an
Industrial Setting

Mitsubishi Electric is a global group having a wide range of activities from Home
Products to Space Systems including Automotive Equipment, Transportation
Systems, Energy Systems and many others. A lot of those products are software
intensive, are developed in C language and are safety critical, like train con-
trol systems or automotive components. They thus require a high quality level,
typically meeting railway EN 50128 SIL4 or automotive ISO 26262 ASIL D cer-
tification criteria. To reach such quality, extensive and diverse testing is needed.
This testing is very costly, due to the effort needed to reach such very stringent
testing criteria: design adequate test sheets satisfying the criteria with adequate
test-cases, fill inputs and expected outputs of those test-cases, apply those test
sheets on the developed code, compare actual and expected outputs, determine
actual coverage, compare actual results to expected one, determine missing cov-
erage and rework the test sheets and the code accordingly. On a typical safety
critical software, 65% of the cost is due to testing and associated rework.
Mitsubishi Electric R&D Centre Europe (MERCE) is the advanced Euro-
pean research laboratory of Mitsubishi Electric group. From MERCE knowledge
of business unit test process, MERCE identified that PATHCRAWLER/LTEST
could accelerate it. More specifically given a C source code as input,
PATHCRAWLER/LTEST can automatically produce a set of test-cases satisfying a
coverage criterion, thus opening the door to automatic structural test generation.
The only manual step is to encode as labels the coverage criterion through anno-
tation on the tested source code. MERCE knows that to be usable by engineers,
a new technology should be as automated and as integrated as possible within
the existing development process. Thus MERCE decided to focus on unit test-
ing which seems amenable to full automation. Therefore, the question studied
by MERCE was simple: is it possible to design a fully automatic structural unit

116 S. Bardin et al.

test generation tool that can be easily integrated into the current development
process used in the business unit?

To answer this question MERCE started to evaluate PATHCRAWLER/LTEST
technology, first on a few examples provided by the business unit. MERCE man-
ually encoded a business unit coverage criterion by adding labels on the source
code samples, a few functions ranging from a few hundreds to one thousand lines
of code. PATHCRAWLER/LTEST was able to successfully cover all the labels, in
a few seconds for small functions to a few tens of minutes for the biggest one
having 2'%% paths?. One interesting outcome of PATHCRAWLER technology is
that it is possible to determine when a test objective (i.e. a label) is impossible
to cover due to the structure of the code, which seemed a quite important feed-
back to give to the tester and potentially a crucial information to be used in a
certification process.

From this first very positive step, MERCE decided to start the design and the
implementation of the desired test generation solution. This solution works as fol-
lows (cf. Fig. 1): take as input the original, unmodified source code, automatically
add labels satisfying the business unit coverage criterion through ANNOTATOR,
automatically produce stubs suitable for unit testing through STUBBER, find
actual test-cases using PATHCRAWLER/LTEST, process its output in OUTPUT
PROCESSOR to produce final test sheets in Excel and CSV (Comma Separated
Value) formats for human and machine use in the remaining part of the test pro-
cess. MERCE developed an OCaml plug-in of about 1,500 lines within FRAMA-C
to do the annotation and stub generation parts, reusing FRAMA-C capabili-
ties to parse and modify C source code. An additional program of 2,000 lines
was also written to coordinate the call to the annotation plug-in, the call to
PATHCRAWLER, the parsing of PATHCRAWLER’s output and production of ready-
to-use test sheets.

MERCE conducted experiments with this new tool on real industrial code.
This code is about 80,000 lines of C code (without headers), making about
1,300 functions to unit test distributed over about 150 files. The MERCE tool
was able to parse and annotate 100% of the files, and to successfully apply
PATHCRAWLER/LTEST for generating test sheets for 86% of the functions and
covering about 14,000 test objectives, of which 17% are structurally impossible
test objectives. The total test generation time is about 8h on a regular PC, i.e.
less than a day, taking on average 26 s per function. MERCE roughly estimated
the total manual generation of those tests to 230 work days?, therefore bringing
an effective benefit factor of more that 230 for test input generation. Those very
good results are very encouraging for pushing the technology in business units.

Developing such a tool requested a non negligible engineering effort from
MERCE. Despite FRAMA-C providing all the needed framework, understanding
and applying the FRAMA-C toolbox, moreover in the non mainstream OCaml

2 Recall that path exploration stops as soon as all labels are covered.
3 This time does not include the time to elaborate an oracle whose elaboration remains
manual.

Test Case Generation with PATHCRAWLER/LTEST 117

language, took some time. On the benefit side, PATHCRAWLER provides all the
information needed to produce the test sheets and thus creating them was rela-
tively easy.

8 Conclusion and Future Work

We have described an example of how to transfer new technology based on formal
methods to industrial use. PATHCRAWLER is a mature test generation tool and
labels offer an easy way to adapt it to the user’s own code coverage criterion.

Several lessons can be learned from this experience. First of all, this work
demonstrates that a close collaboration between the tool developers and the indus-
trial user is vital. Having an efficient tool developed by a research laboratory
is necessary, but often not sufficient for its integration into an industrial testing
process. The role of MERCE in adapting the tool to the specific needs of the
business units has been crucial.

Changing habits in an industrial process is always difficult and that is why,
when trying to industrialize PATHCRAWLER /LTEST technology, MERCE focused
on a fully automated tool that would integrate well in the current testing process.
Of course such automation is done at the expense of richer functionalities: in
this case MERCE focused on unit testing (while PATHCRAWLER/LTEST could
probably handle more elaborate testing). And beyond the technological core,
there is still a lot of mundane integration work to adapt the tool to the real
process (e.g. with other tools or legacy test material) and let testers be at ease
with it.

An important factor is related to the completeness of the tool, or its capacity
to justify the absence of a test input for a given test objective. This feature can
be particularly appreciated in an automated testing process since it can be very
difficult (or even impossible) to achieve manually. Soundness and completeness of
the tool are also particularly important in the context of certification. They help
to rigorously justify the coverage of each test-case and the whole test suite, and
to provide the certification authority with a proof of best-achievable coverage.

The performance of the tool is another crucial factor for its integration. While
current speed of PATHCRAWLER/LTEST has already shown an astonishing pos-
sible increase in productivity (a factor of 230 on a real-life example), having
even higher performance would allow interactive use and direct integration into
developers’ IDE, thus allowing even greater productivity by merging the testing
phase into the development phase.

Regarding future work, extension of PATHCRAWLER/LTEST to currently
unhandled coverage criteria (like MCDC) is certainly a strong requirement as
those criteria are requested by standards like ISO 26262. Other examples of
test criteria of interest are related to rigorous boundary testing and coverage of
function outputs. Efficient support of hyperlabels [22], a recent generalization of
labels to a larger class of criteria, is another future work direction.

118

S. Bardin et al.

References

10.

11.

12.

13.

14.

. The PathCrawler online test generation service (2010-2018). http://pathcrawler-

online.com/

. Ammann, P., Offutt, A.J., Huang, H.: Coverage criteria for logical expressions. In:

Proceedings of the 14th International Symposium on Software Reliability Engi-
neering (ISSRE 2003), pp. 99-107 (2003)

Ammann, P.; Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, Cambridge (2008)

. Bardin, S., Herrmann, P., Perroud, F.: An alternative to SAT-based approaches for

bit-vectors. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 84-98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-
2.7

Bardin, S., Chebaro, O., Delahaye, M., Kosmatov, N.: An all-in-one toolkit for
automated white-box testing. In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS,
vol. 8570, pp. 53-60. Springer, Cham (2014). https://doi.org,/10.1007/978-3-319-
09099-3_4

. Bardin, S., et al.: Sound and quasi-complete detection of infeasible test require-

ments. In: Proceedings of the 8th IEEE International Conference on Software Test-
ing, Verification and Validation (ICST 2015), pp. 1-10. IEEE (2015)

Bardin, S., Herrmann, P.: Structural testing of executables. In: Proceedings of the
First International Conference on Software Testing, Verification, and Validation
(ICST 2008), pp. 22-31. IEEE (2008)

Bardin, S., Kosmatov, N., Cheynier, F.: Efficient leveraging of symbolic execution
to advanced coverage criteria. In: Proceedings of the 7th IEEE International Con-
ference on Software Testing, Verification and Validation (ICST 2014), pp. 173-182.
IEEE (2014)

Bobot, F., Chihani, Z., Marre, B.: Real behavior of floating point. In: Proceedings
of the 15th International Workshop on Satisfiability Modulo Theories (SMT 2017),
Part of CAV 2017 (2017)

Botella, B., et al.: Automating structural testing of C programs: experience with
PathCrawler. In: Proceedings of the 4th International Workshop on the Automa-
tion of Software Test (AST 2009), Part of the 31st International Conference on
Software Engineering (ICSE 2009), pp. 70-78. IEEE (2009)

Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
2008), pp. 209-224. USENIX Association (2008)

Chebaro, O., Kosmatov, N., Giorgetti, A., Julliand, J.: Program slicing enhances
a verification technique combining static and dynamic analysis. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing, Software Verification
and Testing Track (SAC-SVT 2012), pp. 1284-1291. ACM (2012)

Chihani, Z., Marre, B., Bobot, F., Bardin, S.: Sharpening constraint programming
approaches for bit-vector theory. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR
2017. LNCS, vol. 10335, pp. 3-20. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-59776-8 1

Dierkes, M., Faivre, A., Le Guen, H., Williams, N.: Completion of test models
based on code analysis. In: Proceedings of the Conference on Embedded Real Time
Software and Systems (ERTS2 2014) (2014)

http://pathcrawler-online.com/
http://pathcrawler-online.com/
https://doi.org/10.1007/978-3-642-12002-2_7
https://doi.org/10.1007/978-3-642-12002-2_7
https://doi.org/10.1007/978-3-319-09099-3_4
https://doi.org/10.1007/978-3-319-09099-3_4
https://doi.org/10.1007/978-3-319-59776-8_1
https://doi.org/10.1007/978-3-319-59776-8_1

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

Test Case Generation with PATHCRAWLER/LTEST 119

Gotlieb, A.: Euclide: a constraint-based testing platform for critical C programs.
In: Proceedings of the Second International Conference on Software Testing Veri-
fication and Validation (ICST 2009), pp. 151-160. IEEE (2009)

Gotlieb, A., Botella, B., Watel, M.: INKA: ten years after the first ideas. In: Pro-
ceedings of the the International Conference on Software and Systems Engineering
and their Applications (ICSSEA 2006) (2006)

Gotlieb, A., Leconte, M., Marre, B.: Constraint solving on modular integers. In:
Proceedings of the Workshop on Constraint Modelling and Reformulation (ModRef
2010), Part of CP 2010 (2010)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Asp. Comput. 27(3), 573-609 (2015)
Kosmatov, N., Williams, N., Botella, B., Roger, M.: Structural unit testing as a
service with pathcrawler-online.com. In: Proceedings of the 7th IEEE International
Symposium on Service-Oriented System Engineering (SOSE 2013), pp. 435-440.
IEEE (2013)

Leconte, M., Berstel, B.: Extending a CP solver with congruences as domains for
software verification. In: Proceedings of the Workshop on Constraints in Software
Testing, Verification and Analysis (CSTVA 2006), Part of CP 2006 (2006)
Marcozzi, M., Bardin, S., Kosmatov, N., Papadakis, M., Prevosto, V., Correnson,
L.: Time to clean your test objectives. In: Proceedings of the 40th International
Conference on Software Engineering (ICSE 2018), pp. 456-467. ACM (2018)
Marcozzi, M., Delahaye, M., Bardin, S., Kosmatov, N., Prevosto, V.: Generic and
effective specification of structural test objectives. In: Proceedings of the IEEE
International Conference on Software Testing, Verification and Validation (ICST
2017), pp. 436-441. IEEE (2017)

Marre, B., Blanc, B.: Test selection strategies for Lustre descriptions in GATeL.
Electron. Notes Theor. Comput. Sci. 111, 93-111 (2005)

Marre, B., Michel, C.: Improving the floating point addition and subtraction con-
straints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 360-367. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9 30

Mathur, A.P.: Foundations of Software Testing. Addison-Wesley Prof (2008)
Michel, C.: Exact projection functions for floating point number constraints. In:
Proceedings of the 7th International Symposium on Artificial Intelligence and
Mathematics (AIMA 2002) (2002)

Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, 3rd edn. Wiley,
Hoboken (2011)

Park, J., Pajic, M., Lee, 1., Sokolsky, O.: Scalable verification of linear controller
software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
662—679. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 43

Petiot, G., Kosmatov, N., Giorgetti, A., Julliand, J.: How test generation helps
software specification and deductive verification in Frama-C. In: Seidl, M., Till-
mann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 204-211. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09099-3 16

Schimpf, J., Shen, K.: ECLiPSe - from LP to CLP. Theory Pract. Log. Program.
12(1-2), 127-156 (2011)

Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 5th Joint Meeting of the European Software Engineering Confer-
ence and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE 2005), pp. 263-272. ACM (2005)

https://doi.org/10.1007/978-3-642-15396-9_30
https://doi.org/10.1007/978-3-662-49674-9_43
https://doi.org/10.1007/978-3-662-49674-9_43
https://doi.org/10.1007/978-3-319-09099-3_16

120 S. Bardin et al.

32. Williams, N., Marre, B., Mouy, P., Roger, M.: PathCrawler: automatic generation
of path tests by combining static and dynamic analysis. In: Dal Cin, M., Kaéniche,
M., Pataricza, A. (eds.) EDCC 2005. LNCS, vol. 3463, pp. 281-292. Springer,
Heidelberg (2005). https://doi.org/10.1007/11408901 21

33. Williams, N., Roger, M.: Test generation strategies to measure worst-case execution
time. In: Proceedings of the 4th International Workshop on Automation of Software
Test (AST 2009), pp. 88-96 (2009)

34. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366-427 (1997)

35. Zutshi, A., Sankaranarayanan, S., Deshmukh, J.V.; Jin, X.: Symbolic-numeric
reachability analysis of closed-loop control software. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control (HSCC
2016), pp. 135-144 (2016)

https://doi.org/10.1007/11408901_21

	Test Case Generation with PathCrawler/LTest: How to Automate an Industrial Testing Process
	1 Introduction
	2 Overview of the Tool Architecture
	3 PathCrawler Test Generation Tool
	4 Colibri Constraint Solver
	5 Generic Specification of Coverage Criteria with Labels
	6 Efficient Test-Case Generation for Labels in LTest
	7 Ongoing Adoption of PathCrawler/LTest in an Industrial Setting
	8 Conclusion and Future Work
	References

