
Formal Methods in Industrial Practice -
Bridging the Gap (Track Summary)

Michael Felderer1,2, Dilian Gurov3, Marieke Huisman4(B), Björn Lisper5,
and Rupert Schlick6

1 University of Innsbruck, Innsbruck, Austria
2 Blekinge Institute of Technology, Karlskrona, Sweden

3 KTH Royal Institute of Technology, Stockholm, Sweden
4 University of Twente, Enschede, The Netherlands

m.huisman@utwente.nl
5 Mälardalen University, Väster̊as, Sweden

6 AIT Austrian Institute of Technology, Seibersdorf, Austria

1 Motivation and Goals

Already for many decades, formal methods are considered to be the way forward
to help the software industry to make more reliable and trustworthy software.
However, despite this strong belief, and many individual success stories, no real
change in industrial software development seems to happen. In fact, the software
industry is moving fast forward itself, and the gap between what formal methods
can achieve, and the daily software development practice does not seem to get
smaller (and might even be growing).

In the past, numerous recommendations have already been made and studies
performed on how to develop formal methods research in order to close the
gap (e.g., [3,5–7,9,13,17]) between research and industrial practice, which also
exists in other areas of software engineering like testing [10]. This track had
the goal to investigate why the gap between research and industrial practice
nevertheless still exists for formal methods, and what steps can be taken by the
formal methods research community to bridge it.

The track consisted of three sessions of three speakers of 30 min each, fol-
lowed by a 90 min closing discussion. We invited speakers that have collaborated
with industry, and asked them for their experiences and recommendations on
what should be done to close the gap. We also invited industrial speakers who
have collaborated with academia, so as to learn from their experiences. Finally,
the 4th session presented the idea to have a repository with formally verified
benchmarks, to foster the industrial adoption of formal methods. During the
closing discussion, we discussed the set up of such a benchmark. In addition,
we also investigated if there are shared recommendations, and how we can put
these recommendations into practice.

The track was in part a continuation of a Lorentz workshop in 2015, titled
Verification of Concurrent and Distributed Software: Towards Industrial Use.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 77–81, 2018.
https://doi.org/10.1007/978-3-030-03427-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_10


78 M. Felderer et al.

2 Contributions

2.1 Session 1: Testing and Requirements in Industrial Practice

The first session investigated current practices in testing and requirements engi-
neering in industrial practice, and how formal techniques can help. During this
session, the following papers were presented.

Peleska et al. [15] (Model-based Testing for Avionic Systems Proven Benefits
and Further Challenges) report on the transition of model-based testing (MBT)
from a widely discussed research discipline to an accepted technology that is
currently becoming state of the art in industry, and in particular, in the field
of safety-critical systems testing. They review how focal points of MBT-related
research in the past have “survived” and found their way into today’s commercial
MBT products. The authors describe the benefits of MBT that are – from their
experience – most appreciated by practitioners. Moreover, some interesting open
challenges are described, and potential future solutions are presented. Their
material is based on practical experience with recent MBT campaigns performed
for Airbus in Germany.

Bardin et al. [2] (Test Case Generation with PathCrawler/LTest: How to
Automate an Industrial Testing Process) consider automatic white-box testing
based on formal methods as a relatively mature technology for which operational
tools are available. Despite this, and the cost of manual testing, the technology is
still rarely applied in an industrial setting. The authors describe how the specific
needs of the user can be taken into account in order to build the necessary inter-
face with a generic test tool. They present PathCrawler/LTest, a generator of
test inputs for structural coverage of C functions, and describe the essential par-
ticipation of the research branch of an industrial user in bridging the gap between
the tool developers and their business unit and adapting PathCrawler/LTest to
the needs of the latter.

Alzuhaibi et al. [1] (Pitfalls upon Applying Model Learning to Industrial
Legacy Software) address refactoring of legacy software as one of the most com-
mon struggles of the current software industry, being costly and yet essential.
They tackle this problem by applying model learning with the aim of understand-
ing the observable behaviour of legacy components. The used technique interacts
with a component in runtime and extracts abstract models that lead to better
informed development decisions. The authors describe their experience in apply-
ing model learning to legacy software, aiming to prepare the newcomer for what
shady pitfalls lie therein, as well as to provide the seasoned researcher with con-
crete cases and open problems. They narrate their experience in analysing certain
legacy components at Philips Healthcare describing challenges faced, solutions
implemented, and lessons learned.

2.2 Session 2: Software Verification in Industrial Practice

The second session then took the point of view of people working in software
verification, and how they considered that their techniques could be used in
industrial practice. During this session, the following papers were discussed.



Formal Methods in Industrial Practice - Bridging the Gap (Track Summary) 79

Nyberg et al. [14] (Formal Verification in Automotive Industry: Enablers
and Obstacles) describe and summarize their experiences from six case studies
in applying formal verification techniques to embedded, safety-critical code. The
studies have been conducted at Scania over the period of eight years. Despite
certain successes, the authors admit to have so far failed to introduce formal
techniques on a larger scale. Based on their experiences, they identify and dis-
cuss some key obstacles to, and enabling factors for, the successful incorpora-
tion of formal verification techniques into the software development and quality
assurance process.

Knüppel et al. [11] (Scalability of Deductive Verification Depends on Method
Call Treatment) address the problem of treating method calls in the context of
deductive verification of safety-critical and security-critical applications applied
in industry. During verification, a method call can either be replaced by an avail-
able method contract (called contracting) or by inlining the method’s implemen-
tation. The authors argue that neither approach alone is feasible for verifying
real-world software systems: Only relying on method inlining does not scale, as
the number of inlined methods may lead to a combinatorial explosion; on the
other hand, contracting is notoriously hard and time-consuming, making it eco-
nomically unrealistic to be used exclusively. The authors discuss circumstances in
which one of the two approaches is preferred. They evaluate the program verifier
KeY with large programs varying in the number of method calls of each method
and the maximum depth of the stack trace. Their analyses show that specifying
10% additional methods in a program can reduce the verification costs by up-to
50%, and, thus, an effective combination of contracting and method inlining is
indispensable for the scalability of deductive verification.

Cok [8] (Java Automated Deductive Verification in Practice: Lessons from
industrial proof-based projects) considers automated proof-based deductive ver-
ification used in industry to give confidence in the security and correctness of
libraries and applications. The author presents various observations on current
tools and processes based on recent experience with verification projects on
industrial software, related to scalability, breadth, specification language express-
ibility and semantics, capabilities of underlying SMT tools, and integration into
industrial build and continuous integration processes.

2.3 Session 3: Application Areas

The 3rd session investigated how focusing on specific application areas could
help to make the use of formal verification techniques more feasible. During this
session, the following papers were presented.

Bolignano and Plateau [4] (Security Filters for IoT Domain Isolation) con-
sider network segregation as the key to the security of the Internet of Things, but
also to the security of more traditional critical infrastructures or SCADA sys-
tems that need to be more and more connected and allow for remote operations.
The authors believe that traditional firewalls or data diodes are not sufficient,
considering the new issues at stake and that a new generation of filters is needed
to replace or complement existing protections in these fields.



80 M. Felderer et al.

Larsen et al. [12] (20 Years of Uppaal Enabled Industrial Model-Based Valida-
tion and Beyond) review how the Uppaal Tool Suite served in industrial projects
and was both driven and improved by them throughout the last 20 years. They
show how the need of industry for model-based validation, performance evalu-
ation and synthesis shaped the tool suite and how the tool suite aided the use
cases it was applied in. The authors highlight a number of selected cases, includ-
ing success stories and pitfalls, and discuss the important roles of both basic
research and industrial projects.

Zakharov and Novikov [18] (Verification of Operating System Monolithic Ker-
nels without Extensions) observe that operating systems and, in turn, applica-
tions strongly depend on monolithic kernels, and so the requirements for func-
tionality, security, reliability and performance of the latter are ones of the high-
est. Currently used approaches to software quality assurance help to reveal quite
many defects in monolithic kernels, but none of them aims at detecting all vio-
lations of checked requirements and providing some guaranties that target pro-
grams always operate correctly. The authors present a new method which is
based on software verification and which enables thorough checking and finding
complicated faults for various versions of monolithic kernels. One of its most
important features is that it is not necessary to spend considerable effort for
configuring tools and developing specifications to obtain valuable verification
results, but one is able to steadily improve their quality. The authors imple-
mented the suggested method within the software verification framework Klever
and evaluated it on subsystems of the Linux monolithic kernel.

2.4 Session 4: A Repository of Formal Methods Examples and
Experiments

Schlick et al. [16] (A Proposal of an Example and Experiments Repository to
Foster Industrial Adoption of Formal Methods) observe that formal methods
have been around almost since the beginning of computer science. Nonetheless,
the perception in the formal methods community is that pickup by industry is
rather low, measured by the potential benefits. As one approach to address this
issue, they sketch the setup of a repository of software development problems
and an accompanying open data storage to document, disseminate and compare
solutions from formal model based methods. The purpose of this is to allow the
industry to better understand the available solutions and more easily select and
adopt one fitting their needs. At the same time, it should foster the adoption of
open data and good scientific practice in the research field.

References

1. Alzuhaibi, O., Mooij, A., van Wezep, H., Groote, J.F.: Pitfalls upon applying model
learning to industrial legacy software. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 121–138. Springer, Heidelberg (2018)



Formal Methods in Industrial Practice - Bridging the Gap (Track Summary) 81

2. Bardin, S., Kosmatov, N., Marre, B., Mentré, D., Williams, N.: Test case gen-
eration with PathCrawler/LTest: how to automate an industrial testing process.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 104–120.
Springer, Heidelberg (2018)

3. Bicarregui, J., et al.: Formal methods into practice: case studies in the application
of the B method. IEE Proc.-Softw. 144(2), 119–133 (1997)

4. Bolignano, D., Plateau, F.: Security filters for IoT domain isolation. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 194–211. Springer, Hei-
delberg (2018)

5. Bowen, J.P., Hinchey, M.G.: Ten commandments of formal methods. Computer
28(4), 56–63 (1995)

6. Bowen, J.P., Hinchey, M.G.: Ten commandments revisited: a ten-year perspective
on the industrial application of formal methods. In: Proceedings of the 10th Inter-
national Workshop on Formal Methods For Industrial Critical Systems, pp. 8–16.
ACM (2005)

7. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. (CSUR) 28(4), 626–643 (1996)

8. Cok, D.: Java automated deductive verification in practice: lessons from industrial
proof-based projects. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11247, pp. 176–193. Springer, Heidelberg (2018)

9. Davis, J.A., et al.: Study on the barriers to the industrial adoption of formal
methods. In: Pecheur, C., Dierkes, M. (eds.) FMICS 2013. LNCS, vol. 8187, pp.
63–77. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41010-9 5

10. Garousi, V., Felderer, M.: Worlds apart: industrial and academic focus areas in
software testing. IEEE Software 5, 38–45 (2017)

11. Knüppel, A., Thüm, T., Padylla, C., Schaefer, I.: Scalability of deductive verifica-
tion depends on method call treatment. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 159–175. Springer, Heidelberg (2018)

12. Larsen, K.G., Lorber, F., Nielsen, B.: 20 years of Uppaal enabled industrial model-
based validation and beyond. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11247, pp. 212–229. Springer, Heidelberg (2018)

13. Margaria, T., Steffen, B.: Agile IT: thinking in user-centric models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88479-8 35

14. Nyberg, M., Gurov, D., Lidström, C., Rasmusson, A., Westman, J.: Formal veri-
fication in automotive industry: Enablers and obstacles. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11247, pp. 139–158. Springer, Heidelberg (2018)

15. Peleska, J., Brauer, J., ling Huang, W.: Model-based testing for avionic systems
proven benefits and further challenges. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 82–103. Springer, Heidelberg (2018)

16. Schlick, R., Felderer, M., Majzik, I., Nardone, R., Raschke, A., Snook, C., Vittorini,
V.: A proposal of an example and experiments repository to foster industrial adop-
tion of formal methods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS,
vol. 11247, pp. 249–272. Springer, Heidelberg (2018)

17. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surv. (CSUR) 41(4), 19 (2009)

18. Zakharov, I., Novikov, E.: Verification of operating system monolithic kernels with-
out extensions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11247,
pp. 230–248. Springer, Heidelberg (2018)

https://doi.org/10.1007/978-3-642-41010-9_5
https://doi.org/10.1007/978-3-540-88479-8_35

	Formal Methods in Industrial Practice - Bridging the Gap (Track Summary)
	1 Motivation and Goals
	2 Contributions
	2.1 Session 1: Testing and Requirements in Industrial Practice
	2.2 Session 2: Software Verification in Industrial Practice
	2.3 Session 3: Application Areas
	2.4 Session 4: A Repository of Formal Methods Examples and Experiments

	References




