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Preface

Welcome to ISoLA 2018, the 8th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, that was held in Limassol (Cyprus)
during November 5-9, 2018, endorsed by EASST, the European Association of
Software Science and Technology.

This year’s event followed the tradition of its symposia forerunners held 2004 and
2006 in Cyprus, 2008 in Chalkidiki, 2010 and 2012 in Crete, 2014 and 2016 in Corfu,
and the series of [ISOLA Workshops in Greenbelt (USA) in 2005, Poitiers (France) in
2007, Potsdam (Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto
(USA).

As in the previous editions, ISOLA 2018 provided a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004 the ISoLA series of events has served the purpose of bridging the gap
between designers and developers of rigorous tools on one hand, and users in engi-
neering and in other disciplines on the other hand. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements, algo-
rithms, methodologies, and practices, ISOLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consisted of a collection of special tracks devoted to
the following hot and emerging topics:

e A Broader View on Verification: From Static to Runtime and Back
(Organizers: Wolfgang Ahrendt, Marieke Huisman, Giles Reger, Kristin Yvonne
Rozier)
e Evaluating Tools for Software Verification
(Organizers: Markus Schordan, Dirk Beyer, Stephen F. Siegel)
e Towards a Unified View of Modeling and Programming
(Organizers: Manfred Broy, Klaus Havelund, Rahul Kumar, Bernhard Steffen)
e RV-TheToP: Runtime Verification from Theory to Industry Practice
(Organizers: Ezio Bartocci and Ylies Falcone)
e Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jéhnichen, Martin Wirsing)
e Reliable Smart Contracts: State of the Art, Applications, Challenges, and Future
Directions
(Organizers: Gerardo Schneider, Martin Leucker, César Sanchez)
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e Formal Methods in Industrial Practice—Bridging the Gap
(Organizers: Michael Felderer, Dilian Gurov, Marieke Huisman, Bjorn Lisper,
Rupert Schlick)
e X-by-Construction
(Organizers: Maurice H. ter Beek, Loek Cleophas, Ina Schaefer, and Bruce W. Watson)
o Statistical Model Checking
(Organizers: Axel Legay and Kim Larsen)
e Verification and Validation of Distributed Systems
(Organizer: Cristina Seceleanu)
e (Cyber-Physical Systems Engineering
(Organizers: J Paul Gibson, Marc Pantel, Peter Gorm Larsen, Jim Woodcock,
John Fitzgerald)

The following events were also held:

e RERS: Challenge on Rigorous Examination of Reactive Systems (Bernhard Steffen)
® Doctoral Symposium and Poster Session (Anna-Lena Lamprecht)
e Industrial Day (Axel Hessenkdmper, Falk Howar, Andreas Rausch)

Co-located with the ISOLA Symposium were:

e RV 2018: 18th International Conference on Runtime Verification (Saddek Bensalem,
Christian Colombo, and Martin Leucker)

e STRESS 2018: 5th International School on Tool-based Rigorous Engineering
of Software Systems (John Hatcliff, Tiziana Margaria, Robby, Bernhard Steffen)

Owing to the growth of ISoL.A 2018, the proceedings of this edition are published in
four volumes of LNCS: Part 1: Modeling, Part 2: Verification, Part 3: Distributed
Systems, and Part 4: Industrial Practice. In addition to the contributions of the main
conference, the proceedings also include contributions of the four embedded events and
tutorial papers for STRESS.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, the EasyConferences team for their continuous precious support
during the week as well as during the entire two-year period preceding the events, and
Springer for being, as usual, a very reliable partner in the proceedings production.
Finally, we are grateful to Kyriakos Georgiades for his continuous support for the
website and the program, and to Markus Frohme and Julia Rehder for their help with
the online conference service (EquinOCS).

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero — The Irish
Software Research Centre, and our own institutions: TU Dortmund and the University
of Limerick.

November 2018 Tiziana Margaria
Bernhard Steffen
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RV-TheToP: Runtime Verification
from Theory to the Industry Practice
(Track Introduction)

Ezio Bartoccil®) and Ylies Falcone?

! Vienna University of Technology, Vienna, Austria
ezio.bartocci@tuwien.ac.at
2 Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000 Grenoble, France

Abstract. This paper introduces the RV-TOP track at ISoLA’18. The
purpose of the track is to bring together experts on runtime verification
and industry practitioners domains to (i) disseminate advanced research
topics (ii) disseminate current industrial challenges and (iii) get RV more
attractive to industry and usable in additional application domains. The
track consists of eight contributed papers presented during three sessions.

1 Introduction

Runtime Verification (RV) [6,8] has gained much focus, from both the research
community and practitioners. Roughly speaking, RV combines a set of theories,
techniques and tools aiming towards efficient analysis of systems’ executions and
guaranteeing their correctness using monitoring techniques. Major challenges in
RV include characterizing and formally expressing requirements that can be
monitored, proposing intuitive and concise specification formalisms, and moni-
toring specifications efficiently (time and memory-wise).

RV can be employed before the deployment, for testing, verification, and
debugging purposes or after deployment to trigger some system recovery actions
when a safety property is violated and for ensuring reliability, safety, and security
and for providing fault containment and recovery as well as online system repair.
For example, one application of RV particularly studied in this track is to use it
in combination with runtime enforcement.

Runtime enforcement [15,17,20] is a powerful technique to ensure that a
program conforms to its specification. It has been initiated with the work of
Schneider on security automata which halt the program whenever it deviates
from its safety specification. Since then, several models and frameworks have
been defined to augment enforcement mechanisms with new primitives 10,14,
18,21,35] or allow them to enforce more expressive specifications [19,38,41].

As a field, major strides have been made recently to make RV a full fledge
verification technique:

— RV is now endowed with a competition for tools: three incarnations of the
competition have been organized [2,22,40], an extensive report on the first

© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 3-8, 2018.
https://doi.org/10.1007/978-3-030-03427-6_1
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edition has been published [7], and a successful workshop reporting reflections
on past competitions has been organized [39].

— A European COST action, ArVi!, is ongoing with the purposes of (i) clarifying
the dimensions of RV, its theory, algorithms and methods (ii) expose the
landscape of formalisms and tools proposed and built for RV (iii) expose novel
and challenging computational domains for RV and monitoring (iv) study
potential applications of RV to important application areas beyond software
and hardware reliability, including medical devices and legal contracts.

— Two successful schools dedicated to Runtime Verification have been orga-
nized and for the first time, high-quality videos of the lectures have been
recorded [12,16].

— A Springer LNCS tutorial volume [6] on advanced research topics has been
recently released by the organizers of the track.

Still, much effort is needed to make RV an attractive and viable methodology for
industrial use. The purpose of this track and its past editions [5,24,25] is to syn-
ergize, and initiate the further studies needed to apply RV to wider application
domains such as security, bio-health and the Internet of things.

The next section provides an overview of the papers presented at the track.
Each paper benefitted from a friendly reviewing process and received at least
two reviews.

2 Overview of the Track’s Sessions

The track consists of eight contributed papers presented during three sessions. In
the following we provide an overview of the topics discussed during each session.

2.1 Session 1 - Monitoring Cyber-Physical Systems
and the Internet of Things

The first session presents the main challenges in monitoring Cyber-Physical Sys-
tems (CPS) and Internet of Things (IoT). CPS consist of a set of computational
and physical entities tightly interacting. The computational entities are gener-
ally (spatially) distributed in a federated system-of-systems and they communi-
cate through the IoT, a network infrastructure that enables the interoperability
between the different computational devices. Examples of CPS include (semi-)
autonomous driving cars, medical devices, smart grids and smart cities. The com-
plex hybrid (discrete/analog) nature of CPS limits exhaustive formal verification
of safety properties only to small model instances. A more practical approach to
analyze CPS, is to monitor temporal (or spatio-temporal [3,27]) specifications [4]
over the CPS behaviors at simulation time [1,26] or at runtime [33,34,44].

The first paper [11] advocates the urgency for a new paradigm shift in the
software development of multi-agent CPS. In particular, they motivate the need

! www.cost-arvi.eu.
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of new specification languages, monitoring and enforcement mechanisms that
can address together both security and safety aspects at runtime.

The second paper [37] sketches a road map to develop secure and private
monitors for IoT. In particular, the authors follow the vision in [28,29] where the
use of decentralized monitors using migration [9,12] able to process locally the
gathered data and/or to enforce locally certain policies. The use of these monitors
introduce additional security and privacy threats to take into consideration. The
authors propose and also discuss the use of Attribute-Based Encryption [43], a
mechanism that can be used to ensure that monitors are executed by the right
devices in a secure and private way.

The last paper of this session [45] presents an RV framework for multi-process
monitoring on Android, supporting the analysis of nested indirect inter process
communications (IPC) calls. The proposed approach addresses the challenge of
ordering events across multiple Android processes and it allows users to specify
properties for multi-process monitoring.

2.2 Session 2 - RV for Industrial and Large-Scale Systems

The second session focuses on the use of RV tools and techniques in the context
of industrial and large scale systems.

The first paper [13] of this session provides useful criteria and considera-
tions (based on the authors’ experience with industrial partners) to measure the
success of academia-industry projects.

The second paper [46] presents the main features of SMEDL, an RV frame-
work that provides flexible and scalable deployment of monitors for large-scale
software. SMEDL has been employed in the context of a target tracking appli-
cations, developed by BAE Systems and evolving in the last 15 years.

The third paper [42] addresses the problem of reusability of runtime enforce-
ment strategies. In particular the authors target software components (i.e.,
Android apps and web applications) sharing a common life-cycle model with
specific callbacks. The knowledge of these models can be exploited to develop
generic runtime enforcement strategies that are not application dependent.

2.3 Session 3 - Latest Advances on Software Monitoring

The third session presents the latest advancements on monitoring software han-
dling large amount of data or with concurrent threads.

The first paper [30] extends the recently proposed approach [31,32] for mon-
itoring first-order temporal logic formulas over potentially large amount of data
using binary decision diagrams (BDDs). The authors discuss a new feature that
enables to forget data values when they no longer affect the RV verdict.

The second paper [36] provides an overview on the use of contracts that
guarantee safety from high-level atomicity violation in components running con-
currently.
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Abstract. Technological advances in distributed cyber-physical systems
(CPS) will fundamentally alter the way present and future human soci-
eties lead their lives. From a security or privacy perspective, a (multi-
agent) cyber-physical system is a network of sensors, actuators, and
computation nodes, i.e., a system with multiple attack surfaces and
latent exploits that originate both through software attacks and physical
attacks. In this paper, we argue that we are in pressing need to bring
about a paradigm shift in software development for multi-agent CPS. To
this end, security and privacy policies should be made a critical ingredi-
ent of agent interfaces with a goal of ensuring both localized safety and
privacy for each agent, as well as guaranteeing global system safety and
security. We present our vision on new theory, algorithms, and tools to
foster a culture of secure-by-design multi-agent CPS.

1 Introduction

Human societies of tomorrow will be immersed in multi-agent cyber-physical
systems (CPS). Examples include autonomous and semi-autonomous cars cou-
pled with intelligent transportation systems as well as fleets of unmanned aerial
vehicles (UAVs) performing mundane jobs like package delivery, and teams of
rescue robots in disaster management scenarios. A key feature of these systems
is that they consist of networked multi-agent cyber components that interact
with the physical environment. Informally, a CPS is a system that combines a
plant, i.e., a mechanical, electrical or hydraulic component that has temporal
behavior which follows the laws of physics, controlled by an embedded software
controller. A multi-agent CPS consists of two or more such CPSs with the ability
to communicate with each other or with a central agent. It is tempting to think
of a multi-agent CPS as just a larger CPS with several plants and controllers,
but what distinguishes a multi-agent CPS from an ordinary CPS is the decou-
pling between individual agents. Often, agents in such a multi-agent CPS are
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autonomous, i.e., have some degree of freedom in controlling their behavior with-
out the intervention from an external agent, or are semi-autonomous, i.e., they
have the ability to switch control between a human operator and an embedded
software controller.

In the past few years, we have seen the catastrophic levels of damage that
attacks on cyber-physical systems can cause; examples include the blackout of
the Ukrainian power grid in 2015 [30], and the MIRAI botnet that made use of
Internet of Things (IoT) devices to launch Distributed Denial-of-Service attacks
[25]. Some types of cyber-induced attacks can have physical impacts; examples
include several examples where automobile security was compromised [11,26,37],
including a wireless hack on a Jeep vehicle in a controlled setting that received
attention in popular media [18]. In the domain of aerial vehicles, examples include
a GPS spoofing attack that allegedly led to the abduction of a US drone [38]. It
is clear that the need for security and trust in cyberspace is fast changing into
a need for secure and trustworthy cyber-physical spaces.

As a multi-agent CPS is a network of sensors, actuators, and computation
nodes linked through communication channels, from a security perspective, such
a system presents a plethora of attack surfaces. Direct attacks on such systems,
as well as latent vulnerabilities can attract both software as well as physical
attacks. Here, by software attacks we mean traditional cyber attacks that target
communication of a CPS agent with its external world by seeking to compromise
its availability, corrupt its data integrity, or lead to a loss of its data confiden-
tiality. By physical attacks, we mean an adversarial action that can either learn
the internal physical state of the system by observing its input/output behavior,
alter its internal physical state by injecting commands or control actions, or use
actual physical phenomena to induce unsafe behavior. Note that these categories
are not mutually exclusive, and often attacks can be constructed by exploiting
vulnerabilities in both the software and physical domains.

Our position is based on the premise that for a multi-agent CPS, there is a
pressing need to design a framework that supports a diverse collection of security
and privacy policies, but more importantly, supports reasoning about the impact
of such policies on the safety of each agent in isolation, and also on the safety,
security and privacy of agents at the level of the multi-agent CPS as a whole.
More specifically, we argue that to achieve a paradigm shift in CPS security, we
need to pursue the following objectives:

— The first step for systematic and formal reasoning about security or privacy is
to have a machine-checkable language/logic that can express complex policies
such as information flow in the context of CPS.

— This language/logic can then be used to monitor and enforce policies at the
level of individual agents through careful design and implementation of sensor
instrumentation at system level to gather the data required to evaluate the
policies.

— Monitoring and enforcement of policies also needs to be done in a composi-
tional fashion at the level of multiple agents in the CPS to reason about the
impact of such policies at the level of the entire system.
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— Finally, the language and monitoring/enforcement mechanisms need to be
realized in real-world scenarios and systems with an eye on the next generation
of CPSs that will play a crucial life in our daily lives.

We elaborate on our position on each of these objectives and our view on address-
ing them in Sects. 2, 3 and 4.

2 Logic-Based Expression of Security and Privacy
Policies for CPS

Signal Temporal Logic (STL) is a machine-checkable logical formalism that was
first introduced in the context of specifying properties of mixed-signal circuits
[31]. There has been considerable interest in the use of STL for specifying
industrial-scale embedded systems and an ecosystem of monitoring and test-
generation tools has evolved around the logic [2,3,13,15,20,21,24]. We envision
two extensions to STL to express security properties on confidentiality, integrity,
and availability as well as temporal constraints that counter side-channel attacks.

@ Intersection

1
1
1
: Manager
1
1
1
1
1

Fig. 1. Depiction of an autonomous intersection manager system.

STL Extension for Security. Our first proposed extension is Security-Aware
Signal Temporal Logic (SA-STL), that introduces common security primitives
as first-class predicates in the logic. This will allow designers to express security
properties and constraints in a uniform, machine-checkable language. The key
advantage of using SA-STL is that it inherits quantitative semantics of STL,
which will allow us to quantify the degree of security of the system. SA-STL will
also include security constraints that are stochastic in nature by allowing prob-
abilistic predicates such as those allowed by Stochastic STL [29]. As this logic
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can reason over real-valued signals, it allows seamless reasoning over physical
signals and quantities in a single logic. Consider for example the scenario shown
in Fig. 1, where the car shown wishes to cross the intersection from the lane
marked 1 to the one marked 8. The SA-STL formula (1) says that, “if the car
receives a message from the intersection manager granting permission to use the
intersection, then, the car has a window of time in the future, where subject to
the constraints imposed by the car’s dynamics, the car can cross the intersection
in a same fashion.” We can express the following property in SA-STL as follows:

lane =1 A
G | | recvEncMsg = granted A = (accel<2 Uz lane=38) (1)
F|p,19jauthSender = IntMgr

We remark that this is just one aspect of the security policy that specifies the
timeliness of crossing and authenticity of the received message. We observe that
the above security policy can be expressed as a conjunction of separate parts
that monitor the transmission of the request signal, reception of the grant signal,
continuous monitoring of the physical signals corresponding to acceleration and
position in its control unit, and transmission of successful intersection navigation
once it reaches the desired lane.

Hyper Logics. A large set of important information-flow security and privacy
policies are inexpressible in trace-based variants of temporal logics (such as SA-
STL). Although existing hyper logics such as HyperLTL [12] can express complex
information flow policies, they currently do not allow explicit timing constraints
and real-valued signals. Thus, we propose to design a new logic called Hyper-
MTL that will allow explicit quantification over traces as well as timed temporal
operators that enforce timing constraints across multiple traces. For example,
we envision a timed until operator that enforces a time interval for the even-
tuality part of the operator as well as an error bound which allows events to
happen within that bound but across multiple traces. For example, by formula
o = Vr.Vr'.ar UJ by, we mean that in every pair of traces, b should occur within
explicit time interval I, but occurrences of b in m and 7’ can take place in a slid-
ing window such that occurrences are not j units apart. Thus, if I = [0, 00),
then the sliding window can move at any point along the time. This will allow
us to express protection policies against many side-channel timing attacks. This
logic can then be extended to have predicates over real-valued signals, similar
to STL, and we can formulate quantitative semantics to help obtain a notion of
robust satisfaction.

As each agent in a multi-agent CPS is effectively a hybrid dynamical sys-
tem with inputs and outputs, the above frameworks can employ recent research
results on attack-resilient control and attack detection to synthesize observers
that identify the conditions under which an agent is compromised. Thus, one can
investigate mapping observers synthesized in this fashion into a SA-STL-based
security or privacy policy expressed as a hyperproperty in the newly proposed
hyper logic.
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3 Monitor Synthesis and Resource-Aware Monitoring
Algorithms

Runtime monitoring is a technique commonly used for protecting a CPS against
uncertainties in its environment. Runtime monitoring enables (1) automatic
identification of the minimal number of states or program variables to moni-
tor so as to make monitoring minimally intrusive, (2) the use of quantitative,
predictive monitoring that is resource-optimal and can prevent a security vio-
lation before it occurs, (3) the use of quantitative trust management [5,42] to
dynamically monitor trust levels of agents in the multi-agent CPS, and use trust
as a mechanism to synthesize distributed observations through a multiplicity of
agents and sensors. Qur view is to design multi-faceted algorithms to monitor
complex security and privacy policies in CPS on several fronts.

Robust and Predictive Monitoring. We advocate combining robust online
monitoring for STL [14] and predictive monitoring for Metric Temporal
Logic [16]. We believe that robust predictive monitoring can provide nuanced
information about probabilistic and quantitative information of future security
risks, allowing earlier preventive actions.

Robust Monitoring of Hyper Logics. We envision algorithms for monitor-
ing timed hyperproperties with real-valued signals. These algorithms will expand
on previous efforts (e.g., [1,6,7,9,17]). Such a monitoring algorithm will take as
input either (1) concurrent output traces of an instrumented running system, (2)
offline logs of past executions, or (3) runtime traces and an abstract model of
the system [8] as well as a set of formulas. The algorithms will evaluate the for-
mulas and emit satisfaction/violation verdicts on the input online/offline traces.
In case of violation, these verdicts will be used to take action on maintaining
system safety or privacy. Following the recent trend, monitoring can be done on
a GPU [4] or FPGA [19] device to minimize the impact of probe effects on the
system under inspection and also achieve highly efficient resource management.

Sensor Instrumentation. Sensor instrumentation for monitoring under archi-
tectural constraints is inevitable to achieve effective CPS monitoring. One app-
roach is to exploit logging schemes for monitoring of distributed controller net-
works; for a single control loop (i.e., feature), [33,34,40,41] introduce conditions
that the instrumentation points need to satisfy to ensure full system observabil-
ity with continuous monitoring, even in the presence of malicious components.
Similarly, when intermittent monitoring is used, extensions of the techniques
from [22,23,27,28] can be utilized. This would effectively also allow for attack
detection and identification of compromised components.

4 Compositional Runtime Enforcement of CPS Security
Policies

Multi-agent CPS are inherently component-based. Thus, it is natural to think of
decompositional methods that partition the overall system security, privacy or
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safety into assumptions and guarantees at the level of individual agents. There
are two key building blocks that give us dynamic assurance of meeting securi-
ty/privacy policies at run time: (1) each agent monitors the assumptions speci-
fied by the security/privacy policy of the system on the inputs it receives from
other agents or the environment, (2) a runtime enforcement system uses various
techniques to enforce safe behavior of the CPS agent’s actuation system, and
to enforce the guarantees provided by the agent’s outward communication to
other agents. We discussed the first item in Sects.2 and 3. We now focus on
mechanisms for the second item.

Runtime Enforcement. In some cases, if some of the system components
have been compromised, the remaining components can still be used for control
with (potential) performance degradation but strong safety guarantees [35,36].
On the other hand, when some components are compromised, it is necessary
to rely on architectural support to ensure safe system operation in the case of
attacks [33,35] through a set of actuators. However, without architectural sup-
port, even when these actuators are identified they can continue to force the sys-
tem into an unsafe state. This can be prevented with the use of secure/trusted
hardware and architectural design that allows for decoupling of the attacked
actuators. Similarly, if a compromised control module (e.g., a task running on
an ECU) is detected, rebooting the controller and restoring it to a safe cyber-
physical state could neutralize the attack; similarly, the system may decide to
switch to a trusted controller that is safe, but may not be optimized for perfor-
mance (e.g., as in the standard simplex architecture [32,39]). In situations where
some, but not all of the control components are compromised, an interesting
problem to investigate is the use of micro-rebooting for system recovery, which
has shown to significantly reduce recovery cost, such as time to recover [10].
To design successful techniques, it is critical to have clear understanding of the
underlying system architecture and how architectural support can be exploited
to provide safe system performance even in the presence of attacks. Thus, one
can clearly capture platform resources in the form of real-time, assume/guar-
antee properties of the sensor, controller and actuation modules. This will help
support compositional analysis from the perspective of evolving software with
runtime changes in the system configurations. In this context, a key aspect
that will provide dynamic assurance is a clear formulation of various recov-
ery and enforcement mechanisms at the level of individual agents as part of the
agent’s architecture. Another area to investigate is developing repair transduc-
ers for enforcing security policies. String transducers are automata that map
input strings to output strings, and have been studied in the context of string
sanitization.

Compositional Design. The monitoring techniques for secure and privacy-
preserving CPS discussed in Sect.3 will provide different resiliency guarantees
for specific attack vectors, including claims about what attacks are detectable,
identifiable, and can be attenuated through resilient control. A missing link is still
providing guarantees on time-to-detection and identification, as well as poten-
tial control-performance cost degradation due to their use. One way to develop
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compositional design methods for combining different monitors is a hierarchi-
cal monitoring system, in order to improve system resiliency to attacks over
any monitor individually. Intuitively, multiple deployed monitors can guard one
another’s blind spot or they can be activated at different time-instances due to
the constrained system (e.g., computation) resources. There are multiple chal-
lenges to tackle, e.g., modeling, types of assumptions and guarantees, implemen-
tation and performance degradation costs, as well as attackers’ impact over time
if the security-aware module is not active. The use of logic-based modeling and
reasoning should also be investigated.

5 Conclusion

In this paper, we focused on the pressing need to bring about a paradigm shift
in software development for multi-agent CPS. We sketched our position on three
different orthogonal fronts to tackle the problem, namely, (1) designing specifi-
cation languages that can capture both security and CPS aspects of systems, (2)
runtime monitoring of CPS to detect security violations and detect attackers’
attempts to compromise security and/or privacy, and (3) runtime enforcement
to ensure security and safety of CPS. Our view is that security and privacy
policies should be made a critical ingredient of agent interfaces with a goal of
ensuring both localized safety and privacy for each agent, as well as guaranteeing
global system safety and security. This is especially crucial and challenging in
multi-agent CPS.
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Abstract. The rise of the Internet of Things brings about various chal-
lenges concerning safety, reliability and dependability as well as security
and privacy. Reliability and safety issues could be addressed by using dif-
ferent verification techniques, both statically and at runtime. In particu-
lar, migrating monitors could effectively be used not only for verification
purposes, but also as a way to gather information and to enforce certain
policies. The addition of monitors, however, might introduce additional
security and privacy threats. In this extended abstract we briefly sketch
ideas on how to combine migrating monitors with a public cryptographic
scheme named Attribute-Based Encryption as a way to ensure monitors
are run by the right devices in a secure and private manner.

1 Introduction

The Internet of Things (IoT) is used to refer to the pervasive network of inter-
connected devices embedded in everyday things—sensors, actuators, devices,
and applications for sharing information among them. Usual devices on the
ToT include RFID (Radio Frequency IDentification) tags, smartphones, smart-
watches, Implantable Medical Devices (IMD), and many other gadgets with
communication capabilities.

IoT inherits most of the challenges of distributed systems due the non-locality
of data collection and computation. In particular monitoring of such systems
presents a wide range of challenges [4-6,20] since monitors might need informa-
tion from other devices in order to duly perform their tasks.

The fact that monitoring cares about what goes on in different locations,
it is clear that a monolithic local monitor is not enough. Different monitor
instrumentation strategies have been proposed in the literature (e.g., [12]). The
approaches can be largely split into two categories: (i) centralised or orches-
tration approaches in which the monitor is centrally located, receiving all rel-
evant data and event-notification from the different nodes (e.g., [3]); and (ii)
choreography-based approaches, in which the monitor is statically split into local
parts instrumented in the different locations, and communicates only when as
required (e.g., [7]). Both approaches, however, pose challenges when applied
© Springer Nature Switzerland AG 2018
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to IoT environments. The former approach suffers from increased communica-
tion (with the central monitoring node), which grows as the number of nodes
increases, resulting in slowing down of the overall system and an increase in
power consumption. The major challenge with the latter approach is that for
many logics, splitting the monitors in an effective manner can be difficult [4,20].
Furthermore, when nodes might be discovered at runtime, static decomposition
of properties can be impossible to perform [12].

Migrating monitors is another approach proposed in the literature [11] based
on dynamic choreography—instrumenting monitors locally, but giving them the
ability to migrate to other locations when the need to access data or events from
elsewhere becomes necessary. This last solution can be particularly suited for
IoT environments where most of the correctness can be established locally. This
approach avoids a blow-up in the amount of communication of generated data
from IoT sensors.

Note that we have so far mentioned monitoring IoT without specifying in
detail what the tasks of the monitors are. We should distinguish here three
different applications of monitoring: (i) Proper monitoring, where the monitor
collects data, possibly performing side-effect free computations (e.g., calculate
an average during a specific amount of time) other than logging the information
or sending it to another device, monitor or node in the network; (ii) Runtime
verification, where the data is used for verification with respect to properties
specifying what the expected behaviour of the system should be. Given the
decentralised nature of IoT networks, such properties may be enacted by any
of the devices or parties participating in the network, with the monitor usu-
ally being automatically generated from the property (e.g., [14]); (iii) Runtime
enforcement takes this one step further by having the monitors carry code to be
executed in the monitored system, send specific commands to control the system,
in order to enforce a given property (as mentioned in runtime verification) by
not allowing the system to act differently than the specified property (e.g., [10]).

The complexity, and degree of intrusion increase with these levels of moni-
toring. Since monitors can effectively leak information about the state of other
entities on the system, we envisage a policy (or policies) which comes with the
IoT scenario, and which specifies what types of properties can be enacted by
which users e.g., a policy in a hospital context may state that no patient may
enact a property that monitors events occurring on another patient’s device.

Besides all the above issues, IoT monitoring is challenging due to the nature
of the sensors: they are highly constrained in terms of computation, memory, bat-
tery and storage capabilities. As a consequence, monitors should be able to run
under those constraints. Another challenge is that the IoT topology changes con-
tinuously over time because new sensors might be added and others are removed
from the network. Migrating monitors might help here since they could auto-
matically migrate to the new nodes when added, and they might eventually be
killed when nodes disappear, without affecting the overall monitoring system.

There is, however, a problem when using migrating monitors in both orches-
tration and choreography-based approaches if deployed in an IoT scenario: secu-



Migrating Monitors + ABE: A Suitable Combination for Secure IoT? 21

rity and privacy concerns. Migrating monitors are small software components
that travel from one node to another one to either collect data and perform
small computations (proper monitoring), verify some properties (runtime ver-
ification) or enforce some properties (runtime enforcement). IoT systems are
networks composed of subnetworks each containing confidential local informa-
tion, therefore the migrating monitors should not leak that information nor the
architecture to the rest of the system.

Security and privacy concerns on IoT have been considered to be amongst
the most challenging open issues nowadays (e.g., [2,15,18,21]), and Attribute
Based Encryption (ABE) has been identified as one of the more promising cryp-
tographic schemes to secure such systems [1,22]. ABE is a form of public key
encryption where the information is encrypted under a boolean formulae (called
access policy) which other parties must satisfy in order to decrypt the ciphertext.
This cryptographic scheme is particularly useful on IoT since it simultaneously
provides fine-grained access control and encryption [17]. Even though many the-
oretical proposals have been published in this area, only few works have deployed
this cryptographic scheme on high-constrained IoT devices [13,16,22,23].

2 Combining Migrating Monitors and ABE for Secure
IoT

The use of migrating monitors provides a way of augmenting IoT functionality,
side-by-side with ABE which provides guarantees that there are no additional
threats (in terms of security and privacy) due to the newly injected functionality.

Our proposed approach to achieve secure and private migrating monitors in
IoT would work as explained below:

(i) We provide a monitoring policy specification language, which will specify
which users' are allowed to enact what type of monitors on the network.
This will be used to regulate monitors which will be enacted dynamically.

(ii) We provide a formal language to define migrating monitors integrated with
ABE in such a way that it is possible to define which monitors will be
executed and where. Monitors can be encrypted under certain access policies
(made of attributes and represented as a boolean formulae) such that only
those users in the system holding those attributes can satisfy the access
policies and thus decrypt the monitors.

(iii) Monitors will be encrypted using a variant of ABE named Multi-Authority
Attribute-Based Encryption (MA-ABE) [19]. With this scheme, networks
and subnetworks are modelled in the MA-ABE scheme such that we can
define the scope of the monitors and thus different subnetworks can share
information privately and securely.

! Note that in this context, the term user may refer to sensors, software components
Or persons.
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(iv) Monitors will statically be checked for the specific purpose they are cre-
ated and thus identified as proper monitors, runtime verifiers or runtime
enforcers. A secure runtime environment to manage monitor control-logic
migrating from one IoT device to another is added to the IoT system,
which also guarantees that monitors can only be executed following their
main purpose. For instance, if a specification is tagged as a proper monitor
(and not, for instance, as an enforcer), it will not be allowed to change the
state of the devices and actuators, and will be limited to send control-flow
messages to other monitor managers.

(v) By allowing users to arbitrarily create new monitors according to the moni-
toring policies in place, an authentication system must guarantee that only
certified monitors can be run in the system.

3 Conclusions

We believe that there is great potential in using migrating monitors on IoT,
combined with ABE to guarantee that monitors do not pose new security and
privacy issues. In this paper, we have only presented some initial ideas and
sketched a general way to achieve an IoT architecture were such monitors may
run increasing functionality while not adding new security and privacy concerns.
Although here we have not presented a formal argument to show that in this
manner we do not introduce any new security and privacy threats, we believe
that the cryptographic properties of ABE, and additional measures added at the
architectural and monitoring management level, can ensure this to be the case. A
more technical presentation of this work would require formal proofs to show that
the combination is not vulnerable to attacks. In what concerns the practical side,
we are considering the implementation of the above into the tool Larva [9], by
extending DATEs [8] (the underlying automata-based specification language of
Larva) with primitives from ABE. One aspect of combining migrating monitors
and ABE that has not been addressed in our paper, and thus left as future work,
is the use of our approach in order to provide additional security and privacy
guarantees to the IoT.
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Abstract. Runtime verification (RV) covering the whole Android sys-
tem is challenging, due to the lack of support for analyzing and mon-
itoring events across multiple processes. Existing RV frameworks for
Android, which are often built on top of RV tools for Java, only support
single-process monitoring. In this paper, we describe an RV framework
for Android, capable of performing RV across multiple Android com-
ponents in different processes by capturing inter-process-communication
events. Our approach features an extended regular expression formalism,
allowing one to specify RV properties to describe event patterns across
processes. We illustrate the use of our framework by detecting nested
indirect service use through proxy processes, which is not possible with
prevailing RV tools on Android.

1 Introduction

A core characteristic of the Android platform is its multi-process architecture. RV
on Android often leverages or adapts existing RV frameworks that were designed
to work only with single-process Java applications [3,6,7,10,13]. For example,
detecting collusion attacks where some malwares work together to avoid security
checks [2] is not possible with prevailing RV frameworks for Android [4,5], as
events of interest cross their observable boundaries. A key limitation is therefore
the lack of event ordering across Android processes.

In this paper we present our framework for RV across multiple processes for
Android. We extend Android’s inter-process communication (IPC) mechanism
implemented in the “binder” library and provide a shared-memory service for
event communication. The framework builds on our previous work on multi-
process support for Android [11] and on ADRENALIN-RV [12], an RV framework
ensuring that all events of interest originating from any executed bytecode are
guaranteed to be monitored. To specify properties across multiple processes, we
enhance DiSL [9], the domain-specific language (DSL) used in ADRENALIN-
RV, with an extended regular-expression formalism. The user can therefore define
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properties over multiple processes of interest using this extended DSL, and our
framework will generate and deploy the specified RV tool automatically.

We illustrate the use of our framework with a case study showing how apps
use the services provided by Android via IPC, by expressing inter-process inter-
actions revealing nested indirect communications through proxy processes, which
prevailing RV tools for Android cannot detect.

2  Multi-process Support for RV

To support multi-process RV on Android, we describe how our approach ensures
event order across processes, and how user-defined properties are enforced
between processes.

Event Order Across Processes: We use two communication mechanisms
through an extension of the binder library and a special shared memory key-
value (K-V) store (see Fig.1). The extended binder library allows each binder
call to carry extra data (for control exchange) and events information is passed
through our own Android service providing the K-V store (for data exchange).
Thus, every binder call carries only a key with which the receiver of the binder
call can retrieve the events from the K-V store. The key of a binder call expires
when the binder call finishes, and the memory space for the values (events) will
be reclaimed. Since the lifetime of a binder call is short, the space in the K-V
store can be reused efficiently. To bridge the gap between Java and native code,
we provide a callback from the binder library, such that we can track binder calls
as Java-level BinderEvent instances.

:] DVM process Zygote
|:| |:| Java bytecode
O Monitor RV Lib
//// 1 \\\ o RN ~
forks forks | forks “~_ ~~_ _forks
L v Y S
Service Manager App App App
Java q Service Lib | q App Code | (j:l (j:l
Native Binder KV

Fig. 1. Overview of our framework for RV on Android

Property Enforcement Across Processes: User-defined RV properties are
specified using Multi-process Regular Expressions (MRE), our extended regular
expression formalism to describe event patterns across processes (see Sect.3).
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For each user-defined property, we generate a Deterministic Finite Automata
(DFA) used to match the given MRE with the event sequence including local
events and events from other processes retrieved from the shared K-V store.
The DFA can switch states among matching, matched, and fail, and a violation
handler will be triggered at a predefined state.

In Android, to avoid heavy class initialization, all apps and service processes
are forked from the Zygote process which includes already initialized Android
libraries. We take advantage of this mechanism to instrument and load Android
libraries in the Zygote process including our RV runtime library, making them
available everywhere (see Fig.1). We generate a unique monitor for each prop-
erty, including the DFA terminating state defined by the user, i.e., “matched” or
“fail”. The app and services (libraries) are instrumented at load time according
to the event generation rules defined in the instrumentation specification. At
runtime, in every process under scrutiny, the corresponding monitor verifies the
property. To this end, two kinds of events will be generated: (a) bytecode events
from the instrumented bytecode, and (b) binder events from the modified binder
library. The monitor can add events to or query the K-V store to pass or get
related events for the process at the other end of the binder call. If the DFA of a
monitor reaches the defined state to report, the violation handler will be called
with access to the event sequence causing the violation. The violation handler
may simply print a message, terminate a misbehaving app, or further explore
the violation using the extra data bound to the events.

3 Multi-process Regular Expressions

Regular expression (RE) formalisms are often used in RV tools to describe a
sequence of events in properties that are used to generate monitor code for vali-
dation. We introduce Multi-process Regular Expression (MRE) as an extension
to a traditional RE formalism to describe event patterns across multiple pro-
cesses.

MRE — (RE|-MRE_)x* (1)
_MRE_— #process(MRE) (2)

In this definition, RE stands for the event pattern described using normal
regular expressions. MRE_ is used to describe one inter-process communication
(IPC) interaction between the caller process starting the binder call and the
receiver process, and MRE is a sequence of RE or _MRE_. #ProcA(...) allows
the caller process to verify events that happened in process named ProcA during
the binder call. We use process names to identify events from different apps
because an Android app always uses its package name as process name, which
is guaranteed to be unique at installation time.

MRE can describe event patterns across processes, including nested cases
where the receiver of one binder call may start another binder call. For example,
during a binder call from ProcA to ProcB, while ProcB is processing the request
it may start a new binder call to ProcC before returning to ProcA. This can
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be specified as #ProcB(...#ProcC(...)...). An one-level indirection matching
any process can be specified with #(...), whereas #x(...) indicates an arbitrary
number of levels of nested indirections matching any process.

4 Monitor Code Generation

Our RV library parses the MRE, create the DFA, and generate the monitor
code. We extend DiSL [9] used in ADRENALIN-RV [12] to support our MRE
formalism. DiSL allows one to define an instrumentation in Java using anno-
tations. We use standard DiSL features for the event generation, while a new
annotation “@Property” was added to support MRE expressions. The method
annotated with the property acts as the violation handler. We build our work on
ADRENALIN-RV using dynamic weaving to benefit from comprehensive byte-
code instrumentation. This allows one to load the monitor code generated from
properties into the right library or app code whenever necessary and no repack-
aging is needed.

5 Monitoring Indirect Service Use

In Android, apps can call system services which run in a separate system server
process, and serve apps for different purposes, such as e.g. the Activity Manager
Service (AMS) to handle activities states or the Content Provider Service to
share data between apps. A service in Android is used directly if the app starts
an IPC call directly to the corresponding service thread in the system server
process. On the other hand, using a service indirectly means that an app accesses
the service via some “proxy” processes. More specifically, the app starts an IPC
to a proxy process during which the proxy starts the IPC call to the service in
the system server.

Whereas detecting direct calls to services can be done by analyzing a single
binder call (or to some extend, by inspecting service APIs invoked by an app),
nested indirect calls cannot be monitored through single binder call analysis.
Identifying such call patterns through proxies is important to detect misuse
of services or other security problem caused by some malware. Existing RV
tools monitoring events in only one process are not able to track such behaviors
involving multiple processes due to the lack of event ordering across processes.

5.1 Property Specification

The property definition supporting MRE to monitor indirect use of services is
shown in Fig. 2. The first part defines the instrumentation we need to get the
events, whereas the second part adds the monitoring logic for the events and the
processing logic when a violation is detected.

To analyze which service is being indirectly used, we instrument the cor-
responding classes in the Android library as shown in method serviceUse
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class ServiceDiSLClass {
final static String propertyld = "service";
@Before(marker = BodyMarker.class, scope = "com.android.server.«Service.x")
static void serviceUse(StaticContext dsc) {
PropertyManager.findProcessor(propertyld)
.newTLEvent( "use",
dsc. className(), //service name
dsc. methodName() //API being used
);
}
@Property(id = propertyld, mre = "#x((#system _server(use+))+)
"matched")
static void violation (DynamicContext mde) {
ServiceAnalysis. onViolation(mdc.getEvents());
}
}

n

, reportAt =

Fig. 2. Definition of the service-use property

annotated with @Before. The scope com.android.server.*Service.* speci-
fies to instrument all methods of classes whose name matches *Service in the
com.android.server package. We are able to instrument these classes inside
the Android library while other tools based on static weaving will not support
it. Any execution of the instrumented method will emit a service-use event to
the property monitor. The StaticContext is a DiSL API to provide static infor-
mation about the instrumented code region. Here, we use it for the service being
used (the class name) and the APT of this service (the method name).

The method violation annotated with @Property will automatically gener-
ate a monitor for this property. Events for different properties are distinguished
with the propertyId, allowing multiple properties to be monitored simultane-
ously. The MRE "#x* ((#system_server (use+))+)" reports a violation if we find
any service use(s) indirectly from any app (to the system server). Symbol “¥” can
match any name and any processes and as a result, we can find nested indirect
use with an arbitrary number of intermediate processes. When an indirect viola-
tion is found, the related events are retrieved via DynamicContext.getEvents ()
and processed to generate detailed reports.

5.2 Results

First, we investigate one-level indirection, using the "#_((#system_server
(use+))+)" MRE. Figure3 shows the indirect service uses found. A dashed
line represents the IPC call from an app to the one-level proxy process (with
the number of indirect service uses), while the solid line stands for the nested
direct use of the service. The highlighted region represents the related services
in the system server process. The analysis reveals that several apps use services
with an one-level indirection. Several apps always interact with a specific proxy,
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e.g., Google apps often use the process gapps as proxy. We can observe that
gapps itself uses the phone process as a proxy (64 calls). However, the # one-
level indirection MRE cannot tell us if any of the processes that uses gapps as
a proxy actually triggers a second-level nested indirection to phone. To explore
this, we use the "#* ((#system_server (use+))+)" specification for multi-level
verification. The results obtained confirm that only one-level indirection happen
globally, and that no caller of the gapps process triggers calls to phone, but gapps
itself initiates those calls. This demonstrates the power of our multi-process RV
approach on Android to verify multi-level nested indirections.

Fig. 3. Nested indirect service use in Android

6 Related Work

Static weaving is used in most of the existing instrumentation frameworks [1,4, 5]
for Android. However, it cannot cover library code and code loaded at runtime. In
contrast, our framework leverages dynamic weaving of ADRENALIN-RV [12],
enabling all instrumentation at load-time and allowing full bytecode coverage
including app, library, and dynamically loaded code. This ensures that all events
originating from any executed bytecode are guaranteed to be monitored.

RV tools for Android [4,5] only target single process cases and fail to analyze
behaviors between multiple Android components in different processes. In [§],
DroidTracer is used to monitor events to detect malware by analyzing Android’s
binder IPC message exchanges. Their approach does not extend the binder
library, and the analysis captures raw messages and unmarshalls them using
reverse engineering to identify events of interest. In contrast to our approach,
RV with DroidTracer is limited to direct communications only. Based on previ-
ous work [11], we support multi-process RV with an extended regular-expression
formalism and nested IPC monitoring for Android.
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7 Conclusion

This paper describes our framework for multi-process RV on Android and the
analysis of nested indirect IPC calls. Our approach addresses the challenge of
event ordering across multiple Android processes and allows users to specify
properties for multi-process monitoring with an extended multi-process regular
expression formalism. We show with a case study that our tool can monitor arbi-
trary levels of nested indirect interactions between Android apps and services.
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