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Preface

Welcome to ISoLA 2018, the 8th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation, that was held in Limassol (Cyprus)
during November 5–9, 2018, endorsed by EASST, the European Association of
Software Science and Technology.

This year’s event followed the tradition of its symposia forerunners held 2004 and
2006 in Cyprus, 2008 in Chalkidiki, 2010 and 2012 in Crete, 2014 and 2016 in Corfu,
and the series of ISoLA Workshops in Greenbelt (USA) in 2005, Poitiers (France) in
2007, Potsdam (Germany) in 2009, in Vienna (Austria) in 2011, and 2013 in Palo Alto
(USA).

As in the previous editions, ISoLA 2018 provided a forum for developers, users, and
researchers to discuss issues related to the adoption and use of rigorous tools and
methods for the specification, analysis, verification, certification, construction, test, and
maintenance of systems from the point of view of their different application domains.
Thus, since 2004 the ISoLA series of events has served the purpose of bridging the gap
between designers and developers of rigorous tools on one hand, and users in engi-
neering and in other disciplines on the other hand. It fosters and exploits synergetic
relationships among scientists, engineers, software developers, decision makers, and
other critical thinkers in companies and organizations. By providing a specific,
dialogue-oriented venue for the discussion of common problems, requirements, algo-
rithms, methodologies, and practices, ISoLA aims in particular at supporting
researchers in their quest to improve the usefulness, reliability, flexibility, and effi-
ciency of tools for building systems, and users in their search for adequate solutions to
their problems.

The program of the symposium consisted of a collection of special tracks devoted to
the following hot and emerging topics:

• A Broader View on Verification: From Static to Runtime and Back
(Organizers: Wolfgang Ahrendt, Marieke Huisman, Giles Reger, Kristin Yvonne
Rozier)

• Evaluating Tools for Software Verification
(Organizers: Markus Schordan, Dirk Beyer, Stephen F. Siegel)

• Towards a Unified View of Modeling and Programming
(Organizers: Manfred Broy, Klaus Havelund, Rahul Kumar, Bernhard Steffen)

• RV-TheToP: Runtime Verification from Theory to Industry Practice
(Organizers: Ezio Bartocci and Ylies Falcone)

• Rigorous Engineering of Collective Adaptive Systems
(Organizers: Rocco De Nicola, Stefan Jähnichen, Martin Wirsing)

• Reliable Smart Contracts: State of the Art, Applications, Challenges, and Future
Directions
(Organizers: Gerardo Schneider, Martin Leucker, César Sánchez)



• Formal Methods in Industrial Practice—Bridging the Gap
(Organizers: Michael Felderer, Dilian Gurov, Marieke Huisman, Björn Lisper,
Rupert Schlick)

• X-by-Construction
(Organizers:Maurice H. ter Beek, LoekCleophas, Ina Schaefer, and BruceW.Watson)

• Statistical Model Checking
(Organizers: Axel Legay and Kim Larsen)

• Verification and Validation of Distributed Systems
(Organizer: Cristina Seceleanu)

• Cyber-Physical Systems Engineering
(Organizers: J Paul Gibson, Marc Pantel, Peter Gorm Larsen, Jim Woodcock,
John Fitzgerald)

The following events were also held:

• RERS: Challenge on Rigorous Examination of Reactive Systems (Bernhard Steffen)
• Doctoral Symposium and Poster Session (Anna-Lena Lamprecht)
• Industrial Day (Axel Hessenkämper, Falk Howar, Andreas Rausch)

Co-located with the ISoLA Symposium were:

• RV 2018: 18th International Conference on Runtime Verification (Saddek Bensalem,
Christian Colombo, and Martin Leucker)

• STRESS 2018: 5th International School on Tool-based Rigorous Engineering
of Software Systems (John Hatcliff, Tiziana Margaria, Robby, Bernhard Steffen)

Owing to the growth of ISoLA 2018, the proceedings of this edition are published in
four volumes of LNCS: Part 1: Modeling, Part 2: Verification, Part 3: Distributed
Systems, and Part 4: Industrial Practice. In addition to the contributions of the main
conference, the proceedings also include contributions of the four embedded events and
tutorial papers for STRESS.

We thank the track organizers, the members of the Program Committee and their
referees for their effort in selecting the papers to be presented, the local Organization
Chair, Petros Stratis, the EasyConferences team for their continuous precious support
during the week as well as during the entire two-year period preceding the events, and
Springer for being, as usual, a very reliable partner in the proceedings production.
Finally, we are grateful to Kyriakos Georgiades for his continuous support for the
website and the program, and to Markus Frohme and Julia Rehder for their help with
the online conference service (EquinOCS).

Special thanks are due to the following organization for their endorsement: EASST
(European Association of Software Science and Technology) and Lero – The Irish
Software Research Centre, and our own institutions: TU Dortmund and the University
of Limerick.

November 2018 Tiziana Margaria
Bernhard Steffen
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RV-TheToP: Runtime Verification
from Theory to the Industry Practice

(Track Introduction)

Ezio Bartocci1(B) and Yliès Falcone2

1 Vienna University of Technology, Vienna, Austria
ezio.bartocci@tuwien.ac.at

2 Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000 Grenoble, France

Abstract. This paper introduces the RV-TOP track at ISoLA’18. The
purpose of the track is to bring together experts on runtime verification
and industry practitioners domains to (i) disseminate advanced research
topics (ii) disseminate current industrial challenges and (iii) get RV more
attractive to industry and usable in additional application domains. The
track consists of eight contributed papers presented during three sessions.

1 Introduction

Runtime Verification (RV) [6,8] has gained much focus, from both the research
community and practitioners. Roughly speaking, RV combines a set of theories,
techniques and tools aiming towards efficient analysis of systems’ executions and
guaranteeing their correctness using monitoring techniques. Major challenges in
RV include characterizing and formally expressing requirements that can be
monitored, proposing intuitive and concise specification formalisms, and moni-
toring specifications efficiently (time and memory-wise).

RV can be employed before the deployment, for testing, verification, and
debugging purposes or after deployment to trigger some system recovery actions
when a safety property is violated and for ensuring reliability, safety, and security
and for providing fault containment and recovery as well as online system repair.
For example, one application of RV particularly studied in this track is to use it
in combination with runtime enforcement.

Runtime enforcement [15,17,20] is a powerful technique to ensure that a
program conforms to its specification. It has been initiated with the work of
Schneider on security automata which halt the program whenever it deviates
from its safety specification. Since then, several models and frameworks have
been defined to augment enforcement mechanisms with new primitives [10,14,
18,21,35] or allow them to enforce more expressive specifications [19,38,41].

As a field, major strides have been made recently to make RV a full fledge
verification technique:

– RV is now endowed with a competition for tools: three incarnations of the
competition have been organized [2,22,40], an extensive report on the first

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 3–8, 2018.
https://doi.org/10.1007/978-3-030-03427-6_1
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4 E. Bartocci and Y. Falcone

edition has been published [7], and a successful workshop reporting reflections
on past competitions has been organized [39].

– A European COST action, ArVi1, is ongoing with the purposes of (i) clarifying
the dimensions of RV, its theory, algorithms and methods (ii) expose the
landscape of formalisms and tools proposed and built for RV (iii) expose novel
and challenging computational domains for RV and monitoring (iv) study
potential applications of RV to important application areas beyond software
and hardware reliability, including medical devices and legal contracts.

– Two successful schools dedicated to Runtime Verification have been orga-
nized and for the first time, high-quality videos of the lectures have been
recorded [12,16].

– A Springer LNCS tutorial volume [6] on advanced research topics has been
recently released by the organizers of the track.

Still, much effort is needed to make RV an attractive and viable methodology for
industrial use. The purpose of this track and its past editions [5,24,25] is to syn-
ergize, and initiate the further studies needed to apply RV to wider application
domains such as security, bio-health and the Internet of things.

The next section provides an overview of the papers presented at the track.
Each paper benefitted from a friendly reviewing process and received at least
two reviews.

2 Overview of the Track’s Sessions

The track consists of eight contributed papers presented during three sessions. In
the following we provide an overview of the topics discussed during each session.

2.1 Session 1 - Monitoring Cyber-Physical Systems
and the Internet of Things

The first session presents the main challenges in monitoring Cyber-Physical Sys-
tems (CPS) and Internet of Things (IoT). CPS consist of a set of computational
and physical entities tightly interacting. The computational entities are gener-
ally (spatially) distributed in a federated system-of-systems and they communi-
cate through the IoT, a network infrastructure that enables the interoperability
between the different computational devices. Examples of CPS include (semi-)
autonomous driving cars, medical devices, smart grids and smart cities. The com-
plex hybrid (discrete/analog) nature of CPS limits exhaustive formal verification
of safety properties only to small model instances. A more practical approach to
analyze CPS, is to monitor temporal (or spatio-temporal [3,27]) specifications [4]
over the CPS behaviors at simulation time [1,26] or at runtime [33,34,44].

The first paper [11] advocates the urgency for a new paradigm shift in the
software development of multi-agent CPS. In particular, they motivate the need

1 www.cost-arvi.eu.

www.cost-arvi.eu
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of new specification languages, monitoring and enforcement mechanisms that
can address together both security and safety aspects at runtime.

The second paper [37] sketches a road map to develop secure and private
monitors for IoT. In particular, the authors follow the vision in [28,29] where the
use of decentralized monitors using migration [9,12] able to process locally the
gathered data and/or to enforce locally certain policies. The use of these monitors
introduce additional security and privacy threats to take into consideration. The
authors propose and also discuss the use of Attribute-Based Encryption [43], a
mechanism that can be used to ensure that monitors are executed by the right
devices in a secure and private way.

The last paper of this session [45] presents an RV framework for multi-process
monitoring on Android, supporting the analysis of nested indirect inter process
communications (IPC) calls. The proposed approach addresses the challenge of
ordering events across multiple Android processes and it allows users to specify
properties for multi-process monitoring.

2.2 Session 2 - RV for Industrial and Large-Scale Systems

The second session focuses on the use of RV tools and techniques in the context
of industrial and large scale systems.

The first paper [13] of this session provides useful criteria and considera-
tions (based on the authors’ experience with industrial partners) to measure the
success of academia-industry projects.

The second paper [46] presents the main features of SMEDL, an RV frame-
work that provides flexible and scalable deployment of monitors for large-scale
software. SMEDL has been employed in the context of a target tracking appli-
cations, developed by BAE Systems and evolving in the last 15 years.

The third paper [42] addresses the problem of reusability of runtime enforce-
ment strategies. In particular the authors target software components (i.e.,
Android apps and web applications) sharing a common life-cycle model with
specific callbacks. The knowledge of these models can be exploited to develop
generic runtime enforcement strategies that are not application dependent.

2.3 Session 3 - Latest Advances on Software Monitoring

The third session presents the latest advancements on monitoring software han-
dling large amount of data or with concurrent threads.

The first paper [30] extends the recently proposed approach [31,32] for mon-
itoring first-order temporal logic formulas over potentially large amount of data
using binary decision diagrams (BDDs). The authors discuss a new feature that
enables to forget data values when they no longer affect the RV verdict.

The second paper [36] provides an overview on the use of contracts that
guarantee safety from high-level atomicity violation in components running con-
currently.
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Abstract. Technological advances in distributed cyber-physical systems
(CPS) will fundamentally alter the way present and future human soci-
eties lead their lives. From a security or privacy perspective, a (multi-
agent) cyber-physical system is a network of sensors, actuators, and
computation nodes, i.e., a system with multiple attack surfaces and
latent exploits that originate both through software attacks and physical
attacks. In this paper, we argue that we are in pressing need to bring
about a paradigm shift in software development for multi-agent CPS. To
this end, security and privacy policies should be made a critical ingredi-
ent of agent interfaces with a goal of ensuring both localized safety and
privacy for each agent, as well as guaranteeing global system safety and
security. We present our vision on new theory, algorithms, and tools to
foster a culture of secure-by-design multi-agent CPS.

1 Introduction

Human societies of tomorrow will be immersed in multi-agent cyber-physical
systems (CPS). Examples include autonomous and semi-autonomous cars cou-
pled with intelligent transportation systems as well as fleets of unmanned aerial
vehicles (UAVs) performing mundane jobs like package delivery, and teams of
rescue robots in disaster management scenarios. A key feature of these systems
is that they consist of networked multi-agent cyber components that interact
with the physical environment. Informally, a CPS is a system that combines a
plant, i.e., a mechanical, electrical or hydraulic component that has temporal
behavior which follows the laws of physics, controlled by an embedded software
controller. A multi-agent CPS consists of two or more such CPSs with the ability
to communicate with each other or with a central agent. It is tempting to think
of a multi-agent CPS as just a larger CPS with several plants and controllers,
but what distinguishes a multi-agent CPS from an ordinary CPS is the decou-
pling between individual agents. Often, agents in such a multi-agent CPS are
c© Springer Nature Switzerland AG 2018
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autonomous, i.e., have some degree of freedom in controlling their behavior with-
out the intervention from an external agent, or are semi-autonomous, i.e., they
have the ability to switch control between a human operator and an embedded
software controller.

In the past few years, we have seen the catastrophic levels of damage that
attacks on cyber-physical systems can cause; examples include the blackout of
the Ukrainian power grid in 2015 [30], and the MIRAI botnet that made use of
Internet of Things (IoT) devices to launch Distributed Denial-of-Service attacks
[25]. Some types of cyber-induced attacks can have physical impacts; examples
include several examples where automobile security was compromised [11,26,37],
including a wireless hack on a Jeep vehicle in a controlled setting that received
attention in popular media [18]. In the domain of aerial vehicles, examples include
a GPS spoofing attack that allegedly led to the abduction of a US drone [38]. It
is clear that the need for security and trust in cyberspace is fast changing into
a need for secure and trustworthy cyber-physical spaces.

As a multi-agent CPS is a network of sensors, actuators, and computation
nodes linked through communication channels, from a security perspective, such
a system presents a plethora of attack surfaces. Direct attacks on such systems,
as well as latent vulnerabilities can attract both software as well as physical
attacks. Here, by software attacks we mean traditional cyber attacks that target
communication of a CPS agent with its external world by seeking to compromise
its availability, corrupt its data integrity, or lead to a loss of its data confiden-
tiality. By physical attacks, we mean an adversarial action that can either learn
the internal physical state of the system by observing its input/output behavior,
alter its internal physical state by injecting commands or control actions, or use
actual physical phenomena to induce unsafe behavior. Note that these categories
are not mutually exclusive, and often attacks can be constructed by exploiting
vulnerabilities in both the software and physical domains.

Our position is based on the premise that for a multi-agent CPS, there is a
pressing need to design a framework that supports a diverse collection of security
and privacy policies, but more importantly, supports reasoning about the impact
of such policies on the safety of each agent in isolation, and also on the safety,
security and privacy of agents at the level of the multi-agent CPS as a whole.
More specifically, we argue that to achieve a paradigm shift in CPS security, we
need to pursue the following objectives:

– The first step for systematic and formal reasoning about security or privacy is
to have a machine-checkable language/logic that can express complex policies
such as information flow in the context of CPS.

– This language/logic can then be used to monitor and enforce policies at the
level of individual agents through careful design and implementation of sensor
instrumentation at system level to gather the data required to evaluate the
policies.

– Monitoring and enforcement of policies also needs to be done in a composi-
tional fashion at the level of multiple agents in the CPS to reason about the
impact of such policies at the level of the entire system.
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– Finally, the language and monitoring/enforcement mechanisms need to be
realized in real-world scenarios and systems with an eye on the next generation
of CPSs that will play a crucial life in our daily lives.

We elaborate on our position on each of these objectives and our view on address-
ing them in Sects. 2, 3 and 4.

2 Logic-Based Expression of Security and Privacy
Policies for CPS

Signal Temporal Logic (STL) is a machine-checkable logical formalism that was
first introduced in the context of specifying properties of mixed-signal circuits
[31]. There has been considerable interest in the use of STL for specifying
industrial-scale embedded systems and an ecosystem of monitoring and test-
generation tools has evolved around the logic [2,3,13,15,20,21,24]. We envision
two extensions to STL to express security properties on confidentiality, integrity,
and availability as well as temporal constraints that counter side-channel attacks.

Intersection
Manager

1

2

3 4

5

6

7 8

Fig. 1. Depiction of an autonomous intersection manager system.

STL Extension for Security. Our first proposed extension is Security-Aware
Signal Temporal Logic (SA-STL), that introduces common security primitives
as first-class predicates in the logic. This will allow designers to express security
properties and constraints in a uniform, machine-checkable language. The key
advantage of using SA-STL is that it inherits quantitative semantics of STL,
which will allow us to quantify the degree of security of the system. SA-STL will
also include security constraints that are stochastic in nature by allowing prob-
abilistic predicates such as those allowed by Stochastic STL [29]. As this logic
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can reason over real-valued signals, it allows seamless reasoning over physical
signals and quantities in a single logic. Consider for example the scenario shown
in Fig. 1, where the car shown wishes to cross the intersection from the lane
marked 1 to the one marked 8. The SA-STL formula (1) says that, “if the car
receives a message from the intersection manager granting permission to use the
intersection, then, the car has a window of time in the future, where subject to
the constraints imposed by the car’s dynamics, the car can cross the intersection
in a same fashion.” We can express the following property in SA-STL as follows:

G

⎛
⎝

⎛
⎝
lane = 1 ∧
recvEncMsg = granted ∧
F[0,10]authSender = IntMgr

⎞
⎠ =⇒ (accel<2 U[3,10] lane=8)

⎞
⎠ (1)

We remark that this is just one aspect of the security policy that specifies the
timeliness of crossing and authenticity of the received message. We observe that
the above security policy can be expressed as a conjunction of separate parts
that monitor the transmission of the request signal, reception of the grant signal,
continuous monitoring of the physical signals corresponding to acceleration and
position in its control unit, and transmission of successful intersection navigation
once it reaches the desired lane.

Hyper Logics. A large set of important information-flow security and privacy
policies are inexpressible in trace-based variants of temporal logics (such as SA-
STL). Although existing hyper logics such as HyperLTL [12] can express complex
information flow policies, they currently do not allow explicit timing constraints
and real-valued signals. Thus, we propose to design a new logic called Hyper-
MTL that will allow explicit quantification over traces as well as timed temporal
operators that enforce timing constraints across multiple traces. For example,
we envision a timed until operator that enforces a time interval for the even-
tuality part of the operator as well as an error bound which allows events to
happen within that bound but across multiple traces. For example, by formula
ϕ = ∀π.∀π′.aπ Uj

I bπ′ , we mean that in every pair of traces, b should occur within
explicit time interval I, but occurrences of b in π and π′ can take place in a slid-
ing window such that occurrences are not j units apart. Thus, if I = [0,∞),
then the sliding window can move at any point along the time. This will allow
us to express protection policies against many side-channel timing attacks. This
logic can then be extended to have predicates over real-valued signals, similar
to STL, and we can formulate quantitative semantics to help obtain a notion of
robust satisfaction.

As each agent in a multi-agent CPS is effectively a hybrid dynamical sys-
tem with inputs and outputs, the above frameworks can employ recent research
results on attack-resilient control and attack detection to synthesize observers
that identify the conditions under which an agent is compromised. Thus, one can
investigate mapping observers synthesized in this fashion into a SA-STL-based
security or privacy policy expressed as a hyperproperty in the newly proposed
hyper logic.
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3 Monitor Synthesis and Resource-Aware Monitoring
Algorithms

Runtime monitoring is a technique commonly used for protecting a CPS against
uncertainties in its environment. Runtime monitoring enables (1) automatic
identification of the minimal number of states or program variables to moni-
tor so as to make monitoring minimally intrusive, (2) the use of quantitative,
predictive monitoring that is resource-optimal and can prevent a security vio-
lation before it occurs, (3) the use of quantitative trust management [5,42] to
dynamically monitor trust levels of agents in the multi-agent CPS, and use trust
as a mechanism to synthesize distributed observations through a multiplicity of
agents and sensors. Our view is to design multi-faceted algorithms to monitor
complex security and privacy policies in CPS on several fronts.

Robust and Predictive Monitoring. We advocate combining robust online
monitoring for STL [14] and predictive monitoring for Metric Temporal
Logic [16]. We believe that robust predictive monitoring can provide nuanced
information about probabilistic and quantitative information of future security
risks, allowing earlier preventive actions.

Robust Monitoring of Hyper Logics. We envision algorithms for monitor-
ing timed hyperproperties with real-valued signals. These algorithms will expand
on previous efforts (e.g., [1,6,7,9,17]). Such a monitoring algorithm will take as
input either (1) concurrent output traces of an instrumented running system, (2)
offline logs of past executions, or (3) runtime traces and an abstract model of
the system [8] as well as a set of formulas. The algorithms will evaluate the for-
mulas and emit satisfaction/violation verdicts on the input online/offline traces.
In case of violation, these verdicts will be used to take action on maintaining
system safety or privacy. Following the recent trend, monitoring can be done on
a GPU [4] or FPGA [19] device to minimize the impact of probe effects on the
system under inspection and also achieve highly efficient resource management.

Sensor Instrumentation. Sensor instrumentation for monitoring under archi-
tectural constraints is inevitable to achieve effective CPS monitoring. One app-
roach is to exploit logging schemes for monitoring of distributed controller net-
works; for a single control loop (i.e., feature), [33,34,40,41] introduce conditions
that the instrumentation points need to satisfy to ensure full system observabil-
ity with continuous monitoring, even in the presence of malicious components.
Similarly, when intermittent monitoring is used, extensions of the techniques
from [22,23,27,28] can be utilized. This would effectively also allow for attack
detection and identification of compromised components.

4 Compositional Runtime Enforcement of CPS Security
Policies

Multi-agent CPS are inherently component-based. Thus, it is natural to think of
decompositional methods that partition the overall system security, privacy or
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safety into assumptions and guarantees at the level of individual agents. There
are two key building blocks that give us dynamic assurance of meeting securi-
ty/privacy policies at run time: (1) each agent monitors the assumptions speci-
fied by the security/privacy policy of the system on the inputs it receives from
other agents or the environment, (2) a runtime enforcement system uses various
techniques to enforce safe behavior of the CPS agent’s actuation system, and
to enforce the guarantees provided by the agent’s outward communication to
other agents. We discussed the first item in Sects. 2 and 3. We now focus on
mechanisms for the second item.

Runtime Enforcement. In some cases, if some of the system components
have been compromised, the remaining components can still be used for control
with (potential) performance degradation but strong safety guarantees [35,36].
On the other hand, when some components are compromised, it is necessary
to rely on architectural support to ensure safe system operation in the case of
attacks [33,35] through a set of actuators. However, without architectural sup-
port, even when these actuators are identified they can continue to force the sys-
tem into an unsafe state. This can be prevented with the use of secure/trusted
hardware and architectural design that allows for decoupling of the attacked
actuators. Similarly, if a compromised control module (e.g., a task running on
an ECU) is detected, rebooting the controller and restoring it to a safe cyber-
physical state could neutralize the attack; similarly, the system may decide to
switch to a trusted controller that is safe, but may not be optimized for perfor-
mance (e.g., as in the standard simplex architecture [32,39]). In situations where
some, but not all of the control components are compromised, an interesting
problem to investigate is the use of micro-rebooting for system recovery, which
has shown to significantly reduce recovery cost, such as time to recover [10].
To design successful techniques, it is critical to have clear understanding of the
underlying system architecture and how architectural support can be exploited
to provide safe system performance even in the presence of attacks. Thus, one
can clearly capture platform resources in the form of real-time, assume/guar-
antee properties of the sensor, controller and actuation modules. This will help
support compositional analysis from the perspective of evolving software with
runtime changes in the system configurations. In this context, a key aspect
that will provide dynamic assurance is a clear formulation of various recov-
ery and enforcement mechanisms at the level of individual agents as part of the
agent’s architecture. Another area to investigate is developing repair transduc-
ers for enforcing security policies. String transducers are automata that map
input strings to output strings, and have been studied in the context of string
sanitization.

Compositional Design. The monitoring techniques for secure and privacy-
preserving CPS discussed in Sect. 3 will provide different resiliency guarantees
for specific attack vectors, including claims about what attacks are detectable,
identifiable, and can be attenuated through resilient control. A missing link is still
providing guarantees on time-to-detection and identification, as well as poten-
tial control-performance cost degradation due to their use. One way to develop
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compositional design methods for combining different monitors is a hierarchi-
cal monitoring system, in order to improve system resiliency to attacks over
any monitor individually. Intuitively, multiple deployed monitors can guard one
another’s blind spot or they can be activated at different time-instances due to
the constrained system (e.g., computation) resources. There are multiple chal-
lenges to tackle, e.g., modeling, types of assumptions and guarantees, implemen-
tation and performance degradation costs, as well as attackers’ impact over time
if the security-aware module is not active. The use of logic-based modeling and
reasoning should also be investigated.

5 Conclusion

In this paper, we focused on the pressing need to bring about a paradigm shift
in software development for multi-agent CPS. We sketched our position on three
different orthogonal fronts to tackle the problem, namely, (1) designing specifi-
cation languages that can capture both security and CPS aspects of systems, (2)
runtime monitoring of CPS to detect security violations and detect attackers’
attempts to compromise security and/or privacy, and (3) runtime enforcement
to ensure security and safety of CPS. Our view is that security and privacy
policies should be made a critical ingredient of agent interfaces with a goal of
ensuring both localized safety and privacy for each agent, as well as guaranteeing
global system safety and security. This is especially crucial and challenging in
multi-agent CPS.
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Abstract. The rise of the Internet of Things brings about various chal-
lenges concerning safety, reliability and dependability as well as security
and privacy. Reliability and safety issues could be addressed by using dif-
ferent verification techniques, both statically and at runtime. In particu-
lar, migrating monitors could effectively be used not only for verification
purposes, but also as a way to gather information and to enforce certain
policies. The addition of monitors, however, might introduce additional
security and privacy threats. In this extended abstract we briefly sketch
ideas on how to combine migrating monitors with a public cryptographic
scheme named Attribute-Based Encryption as a way to ensure monitors
are run by the right devices in a secure and private manner.

1 Introduction

The Internet of Things (IoT) is used to refer to the pervasive network of inter-
connected devices embedded in everyday things—sensors, actuators, devices,
and applications for sharing information among them. Usual devices on the
IoT include RFID (Radio Frequency IDentification) tags, smartphones, smart-
watches, Implantable Medical Devices (IMD), and many other gadgets with
communication capabilities.

IoT inherits most of the challenges of distributed systems due the non-locality
of data collection and computation. In particular monitoring of such systems
presents a wide range of challenges [4–6,20] since monitors might need informa-
tion from other devices in order to duly perform their tasks.

The fact that monitoring cares about what goes on in different locations,
it is clear that a monolithic local monitor is not enough. Different monitor
instrumentation strategies have been proposed in the literature (e.g., [12]). The
approaches can be largely split into two categories: (i) centralised or orches-
tration approaches in which the monitor is centrally located, receiving all rel-
evant data and event-notification from the different nodes (e.g., [3]); and (ii)
choreography-based approaches, in which the monitor is statically split into local
parts instrumented in the different locations, and communicates only when as
required (e.g., [7]). Both approaches, however, pose challenges when applied
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to IoT environments. The former approach suffers from increased communica-
tion (with the central monitoring node), which grows as the number of nodes
increases, resulting in slowing down of the overall system and an increase in
power consumption. The major challenge with the latter approach is that for
many logics, splitting the monitors in an effective manner can be difficult [4,20].
Furthermore, when nodes might be discovered at runtime, static decomposition
of properties can be impossible to perform [12].

Migrating monitors is another approach proposed in the literature [11] based
on dynamic choreography—instrumenting monitors locally, but giving them the
ability to migrate to other locations when the need to access data or events from
elsewhere becomes necessary. This last solution can be particularly suited for
IoT environments where most of the correctness can be established locally. This
approach avoids a blow-up in the amount of communication of generated data
from IoT sensors.

Note that we have so far mentioned monitoring IoT without specifying in
detail what the tasks of the monitors are. We should distinguish here three
different applications of monitoring: (i) Proper monitoring, where the monitor
collects data, possibly performing side-effect free computations (e.g., calculate
an average during a specific amount of time) other than logging the information
or sending it to another device, monitor or node in the network; (ii) Runtime
verification, where the data is used for verification with respect to properties
specifying what the expected behaviour of the system should be. Given the
decentralised nature of IoT networks, such properties may be enacted by any
of the devices or parties participating in the network, with the monitor usu-
ally being automatically generated from the property (e.g., [14]); (iii) Runtime
enforcement takes this one step further by having the monitors carry code to be
executed in the monitored system, send specific commands to control the system,
in order to enforce a given property (as mentioned in runtime verification) by
not allowing the system to act differently than the specified property (e.g., [10]).

The complexity, and degree of intrusion increase with these levels of moni-
toring. Since monitors can effectively leak information about the state of other
entities on the system, we envisage a policy (or policies) which comes with the
IoT scenario, and which specifies what types of properties can be enacted by
which users e.g., a policy in a hospital context may state that no patient may
enact a property that monitors events occurring on another patient’s device.

Besides all the above issues, IoT monitoring is challenging due to the nature
of the sensors: they are highly constrained in terms of computation, memory, bat-
tery and storage capabilities. As a consequence, monitors should be able to run
under those constraints. Another challenge is that the IoT topology changes con-
tinuously over time because new sensors might be added and others are removed
from the network. Migrating monitors might help here since they could auto-
matically migrate to the new nodes when added, and they might eventually be
killed when nodes disappear, without affecting the overall monitoring system.

There is, however, a problem when using migrating monitors in both orches-
tration and choreography-based approaches if deployed in an IoT scenario: secu-
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rity and privacy concerns. Migrating monitors are small software components
that travel from one node to another one to either collect data and perform
small computations (proper monitoring), verify some properties (runtime ver-
ification) or enforce some properties (runtime enforcement). IoT systems are
networks composed of subnetworks each containing confidential local informa-
tion, therefore the migrating monitors should not leak that information nor the
architecture to the rest of the system.

Security and privacy concerns on IoT have been considered to be amongst
the most challenging open issues nowadays (e.g., [2,15,18,21]), and Attribute
Based Encryption (ABE) has been identified as one of the more promising cryp-
tographic schemes to secure such systems [1,22]. ABE is a form of public key
encryption where the information is encrypted under a boolean formulae (called
access policy) which other parties must satisfy in order to decrypt the ciphertext.
This cryptographic scheme is particularly useful on IoT since it simultaneously
provides fine-grained access control and encryption [17]. Even though many the-
oretical proposals have been published in this area, only few works have deployed
this cryptographic scheme on high-constrained IoT devices [13,16,22,23].

2 Combining Migrating Monitors and ABE for Secure
IoT

The use of migrating monitors provides a way of augmenting IoT functionality,
side-by-side with ABE which provides guarantees that there are no additional
threats (in terms of security and privacy) due to the newly injected functionality.

Our proposed approach to achieve secure and private migrating monitors in
IoT would work as explained below:

(i) We provide a monitoring policy specification language, which will specify
which users1 are allowed to enact what type of monitors on the network.
This will be used to regulate monitors which will be enacted dynamically.

(ii) We provide a formal language to define migrating monitors integrated with
ABE in such a way that it is possible to define which monitors will be
executed and where. Monitors can be encrypted under certain access policies
(made of attributes and represented as a boolean formulae) such that only
those users in the system holding those attributes can satisfy the access
policies and thus decrypt the monitors.

(iii) Monitors will be encrypted using a variant of ABE named Multi-Authority
Attribute-Based Encryption (MA-ABE) [19]. With this scheme, networks
and subnetworks are modelled in the MA-ABE scheme such that we can
define the scope of the monitors and thus different subnetworks can share
information privately and securely.

1 Note that in this context, the term user may refer to sensors, software components
or persons.
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(iv) Monitors will statically be checked for the specific purpose they are cre-
ated and thus identified as proper monitors, runtime verifiers or runtime
enforcers. A secure runtime environment to manage monitor control-logic
migrating from one IoT device to another is added to the IoT system,
which also guarantees that monitors can only be executed following their
main purpose. For instance, if a specification is tagged as a proper monitor
(and not, for instance, as an enforcer), it will not be allowed to change the
state of the devices and actuators, and will be limited to send control-flow
messages to other monitor managers.

(v) By allowing users to arbitrarily create new monitors according to the moni-
toring policies in place, an authentication system must guarantee that only
certified monitors can be run in the system.

3 Conclusions

We believe that there is great potential in using migrating monitors on IoT,
combined with ABE to guarantee that monitors do not pose new security and
privacy issues. In this paper, we have only presented some initial ideas and
sketched a general way to achieve an IoT architecture were such monitors may
run increasing functionality while not adding new security and privacy concerns.
Although here we have not presented a formal argument to show that in this
manner we do not introduce any new security and privacy threats, we believe
that the cryptographic properties of ABE, and additional measures added at the
architectural and monitoring management level, can ensure this to be the case. A
more technical presentation of this work would require formal proofs to show that
the combination is not vulnerable to attacks. In what concerns the practical side,
we are considering the implementation of the above into the tool Larva [9], by
extending DATEs [8] (the underlying automata-based specification language of
Larva) with primitives from ABE. One aspect of combining migrating monitors
and ABE that has not been addressed in our paper, and thus left as future work,
is the use of our approach in order to provide additional security and privacy
guarantees to the IoT.
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Abstract. Runtime verification (RV) covering the whole Android sys-
tem is challenging, due to the lack of support for analyzing and mon-
itoring events across multiple processes. Existing RV frameworks for
Android, which are often built on top of RV tools for Java, only support
single-process monitoring. In this paper, we describe an RV framework
for Android, capable of performing RV across multiple Android com-
ponents in different processes by capturing inter-process-communication
events. Our approach features an extended regular expression formalism,
allowing one to specify RV properties to describe event patterns across
processes. We illustrate the use of our framework by detecting nested
indirect service use through proxy processes, which is not possible with
prevailing RV tools on Android.

1 Introduction

A core characteristic of the Android platform is its multi-process architecture. RV
on Android often leverages or adapts existing RV frameworks that were designed
to work only with single-process Java applications [3,6,7,10,13]. For example,
detecting collusion attacks where some malwares work together to avoid security
checks [2] is not possible with prevailing RV frameworks for Android [4,5], as
events of interest cross their observable boundaries. A key limitation is therefore
the lack of event ordering across Android processes.

In this paper we present our framework for RV across multiple processes for
Android. We extend Android’s inter-process communication (IPC) mechanism
implemented in the “binder” library and provide a shared-memory service for
event communication. The framework builds on our previous work on multi-
process support for Android [11] and on ADRENALIN-RV [12], an RV framework
ensuring that all events of interest originating from any executed bytecode are
guaranteed to be monitored. To specify properties across multiple processes, we
enhance DiSL [9], the domain-specific language (DSL) used in ADRENALIN-
RV, with an extended regular-expression formalism. The user can therefore define
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properties over multiple processes of interest using this extended DSL, and our
framework will generate and deploy the specified RV tool automatically.

We illustrate the use of our framework with a case study showing how apps
use the services provided by Android via IPC, by expressing inter-process inter-
actions revealing nested indirect communications through proxy processes, which
prevailing RV tools for Android cannot detect.

2 Multi-process Support for RV

To support multi-process RV on Android, we describe how our approach ensures
event order across processes, and how user-defined properties are enforced
between processes.

Event Order Across Processes: We use two communication mechanisms
through an extension of the binder library and a special shared memory key-
value (K-V) store (see Fig. 1). The extended binder library allows each binder
call to carry extra data (for control exchange) and events information is passed
through our own Android service providing the K-V store (for data exchange).
Thus, every binder call carries only a key with which the receiver of the binder
call can retrieve the events from the K-V store. The key of a binder call expires
when the binder call finishes, and the memory space for the values (events) will
be reclaimed. Since the lifetime of a binder call is short, the space in the K-V
store can be reused efficiently. To bridge the gap between Java and native code,
we provide a callback from the binder library, such that we can track binder calls
as Java-level BinderEvent instances.

Fig. 1. Overview of our framework for RV on Android

Property Enforcement Across Processes: User-defined RV properties are
specified using Multi-process Regular Expressions (MRE), our extended regular
expression formalism to describe event patterns across processes (see Sect. 3).
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For each user-defined property, we generate a Deterministic Finite Automata
(DFA) used to match the given MRE with the event sequence including local
events and events from other processes retrieved from the shared K-V store.
The DFA can switch states among matching, matched, and fail, and a violation
handler will be triggered at a predefined state.

In Android, to avoid heavy class initialization, all apps and service processes
are forked from the Zygote process which includes already initialized Android
libraries. We take advantage of this mechanism to instrument and load Android
libraries in the Zygote process including our RV runtime library, making them
available everywhere (see Fig. 1). We generate a unique monitor for each prop-
erty, including the DFA terminating state defined by the user, i.e., “matched” or
“fail”. The app and services (libraries) are instrumented at load time according
to the event generation rules defined in the instrumentation specification. At
runtime, in every process under scrutiny, the corresponding monitor verifies the
property. To this end, two kinds of events will be generated: (a) bytecode events
from the instrumented bytecode, and (b) binder events from the modified binder
library. The monitor can add events to or query the K-V store to pass or get
related events for the process at the other end of the binder call. If the DFA of a
monitor reaches the defined state to report, the violation handler will be called
with access to the event sequence causing the violation. The violation handler
may simply print a message, terminate a misbehaving app, or further explore
the violation using the extra data bound to the events.

3 Multi-process Regular Expressions

Regular expression (RE) formalisms are often used in RV tools to describe a
sequence of events in properties that are used to generate monitor code for vali-
dation. We introduce Multi-process Regular Expression (MRE) as an extension
to a traditional RE formalism to describe event patterns across multiple pro-
cesses.

MRE → (RE| MRE )∗ (1)

MRE → #process(MRE) (2)

In this definition, RE stands for the event pattern described using normal
regular expressions. MRE is used to describe one inter-process communication
(IPC) interaction between the caller process starting the binder call and the
receiver process, and MRE is a sequence of RE or MRE . #ProcA(...) allows
the caller process to verify events that happened in process named ProcA during
the binder call. We use process names to identify events from different apps
because an Android app always uses its package name as process name, which
is guaranteed to be unique at installation time.

MRE can describe event patterns across processes, including nested cases
where the receiver of one binder call may start another binder call. For example,
during a binder call from ProcA to ProcB, while ProcB is processing the request
it may start a new binder call to ProcC before returning to ProcA. This can
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be specified as #ProcB(...#ProcC(...)...). An one-level indirection matching
any process can be specified with #(...), whereas #∗(...) indicates an arbitrary
number of levels of nested indirections matching any process.

4 Monitor Code Generation

Our RV library parses the MRE, create the DFA, and generate the monitor
code. We extend DiSL [9] used in ADRENALIN-RV [12] to support our MRE
formalism. DiSL allows one to define an instrumentation in Java using anno-
tations. We use standard DiSL features for the event generation, while a new
annotation “@Property” was added to support MRE expressions. The method
annotated with the property acts as the violation handler. We build our work on
ADRENALIN-RV using dynamic weaving to benefit from comprehensive byte-
code instrumentation. This allows one to load the monitor code generated from
properties into the right library or app code whenever necessary and no repack-
aging is needed.

5 Monitoring Indirect Service Use

In Android, apps can call system services which run in a separate system server
process, and serve apps for different purposes, such as e.g. the Activity Manager
Service (AMS) to handle activities states or the Content Provider Service to
share data between apps. A service in Android is used directly if the app starts
an IPC call directly to the corresponding service thread in the system server
process. On the other hand, using a service indirectly means that an app accesses
the service via some “proxy” processes. More specifically, the app starts an IPC
to a proxy process during which the proxy starts the IPC call to the service in
the system server.

Whereas detecting direct calls to services can be done by analyzing a single
binder call (or to some extend, by inspecting service APIs invoked by an app),
nested indirect calls cannot be monitored through single binder call analysis.
Identifying such call patterns through proxies is important to detect misuse
of services or other security problem caused by some malware. Existing RV
tools monitoring events in only one process are not able to track such behaviors
involving multiple processes due to the lack of event ordering across processes.

5.1 Property Specification

The property definition supporting MRE to monitor indirect use of services is
shown in Fig. 2. The first part defines the instrumentation we need to get the
events, whereas the second part adds the monitoring logic for the events and the
processing logic when a violation is detected.

To analyze which service is being indirectly used, we instrument the cor-
responding classes in the Android library as shown in method serviceUse
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Fig. 2. Definition of the service-use property

annotated with @Before. The scope com.android.server.*Service.* speci-
fies to instrument all methods of classes whose name matches *Service in the
com.android.server package. We are able to instrument these classes inside
the Android library while other tools based on static weaving will not support
it. Any execution of the instrumented method will emit a service-use event to
the property monitor. The StaticContext is a DiSL API to provide static infor-
mation about the instrumented code region. Here, we use it for the service being
used (the class name) and the API of this service (the method name).

The method violation annotated with @Property will automatically gener-
ate a monitor for this property. Events for different properties are distinguished
with the propertyId, allowing multiple properties to be monitored simultane-
ously. The MRE "#*((#system server(use+))+)" reports a violation if we find
any service use(s) indirectly from any app (to the system server). Symbol “*” can
match any name and any processes and as a result, we can find nested indirect
use with an arbitrary number of intermediate processes. When an indirect viola-
tion is found, the related events are retrieved via DynamicContext.getEvents()
and processed to generate detailed reports.

5.2 Results

First, we investigate one-level indirection, using the "# ((#system server
(use+))+)" MRE. Figure 3 shows the indirect service uses found. A dashed
line represents the IPC call from an app to the one-level proxy process (with
the number of indirect service uses), while the solid line stands for the nested
direct use of the service. The highlighted region represents the related services
in the system server process. The analysis reveals that several apps use services
with an one-level indirection. Several apps always interact with a specific proxy,
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e.g., Google apps often use the process gapps as proxy. We can observe that
gapps itself uses the phone process as a proxy (64 calls). However, the # one-
level indirection MRE cannot tell us if any of the processes that uses gapps as
a proxy actually triggers a second-level nested indirection to phone. To explore
this, we use the "#*((#system server(use+))+)" specification for multi-level
verification. The results obtained confirm that only one-level indirection happen
globally, and that no caller of the gapps process triggers calls to phone, but gapps
itself initiates those calls. This demonstrates the power of our multi-process RV
approach on Android to verify multi-level nested indirections.

Fig. 3. Nested indirect service use in Android

6 Related Work

Static weaving is used in most of the existing instrumentation frameworks [1,4,5]
for Android. However, it cannot cover library code and code loaded at runtime. In
contrast, our framework leverages dynamic weaving of ADRENALIN-RV [12],
enabling all instrumentation at load-time and allowing full bytecode coverage
including app, library, and dynamically loaded code. This ensures that all events
originating from any executed bytecode are guaranteed to be monitored.

RV tools for Android [4,5] only target single process cases and fail to analyze
behaviors between multiple Android components in different processes. In [8],
DroidTracer is used to monitor events to detect malware by analyzing Android’s
binder IPC message exchanges. Their approach does not extend the binder
library, and the analysis captures raw messages and unmarshalls them using
reverse engineering to identify events of interest. In contrast to our approach,
RV with DroidTracer is limited to direct communications only. Based on previ-
ous work [11], we support multi-process RV with an extended regular-expression
formalism and nested IPC monitoring for Android.
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7 Conclusion

This paper describes our framework for multi-process RV on Android and the
analysis of nested indirect IPC calls. Our approach addresses the challenge of
event ordering across multiple Android processes and allows users to specify
properties for multi-process monitoring with an extended multi-process regular
expression formalism. We show with a case study that our tool can monitor arbi-
trary levels of nested indirect interactions between Android apps and services.
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Abstract. Runtime verification, with its practical applicability and
myriad of theoretical challenges it still poses, has the potential to bridge
the gap between academic research in the field of formal methods with
the software industry. In order to facilitate this, it is useful to extrapolate
success patterns from previous projects: Are certain characteristics of an
industry-academia project a determining factor in the project’s success?
How can runtime verification design decisions take into considerations
project characteristics to improve the chances of success?

This paper attempts to shed some light on these questions by reflect-
ing on five projects with two partners over the past ten years. A number
of lessons emerge, perhaps the most poignant one being the need to
think long term in setting mutually beneficial goals from which a strong
working relationship can emerge.

1 Introduction

Although various underlying notions from runtime monitoring and verification,
albeit in limited form, have long found themselves in standard quality assurance
practice in industry, its adoption as a first class element and building block of the
system being built is still rare. Much of the use of runtime verification techniques
in industry, thus still stems from projects in conjunction with academic partners
interested in exploring scalability and industrial-relevance of these techniques.
In the literature reporting these projects, the focus is invariably the effective-
ness of the techniques used on the system under scrutiny. What is usually not
reported (being beyond the scientific scope of such publications), is the process
of adoption, the context of the project, the logistic challenges encountered and
its longer term impact in terms of adoption of techniques beyond the scope
of the original project e.g. Was it an industry- or academia-led project? Was
runtime verification being engineered retrospectively on a legacy system or one
being developed from scratch? It is worth noting that some, although not all, of
the observations we make are relevant to any project with partners from both
industry and academia, and not limited to runtime verification.
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In this paper, we present anecdote-based observations based on our expe-
rience from five academia-industry projects1, discussing and reviewing major
design decisions in runtime verification engineering. An implicit assumption
throughout the paper will be that the goal of the academia-industry collabo-
ration is the benefit to both parties. Hence, in the next section we attempt to
describe success from the two points of view. In Sect. 3 we describe project meta-
characteristics which might affect the engineering decisions discussed in Sect. 4.
We bring everything together in Sect. 5 by reviewing our decisions in five projects
and report on their success. The last section concludes with some final remarks.

2 Defining Success

Success in the context of industry-academia projects may take various forms,
and defies a simple uni-dimensional metric. Instead, it makes more sense to talk
of ways in which a project may have a positive impact on the industrial partner,
the academic one, or the collaboration between the two.

2.1 Impact on Industrial Partners

We start by identifying different ways in which a collaborative runtime verifica-
tion project may leave an impact on the industrial partners.

Direct changes within their systems: The direct way in which a project
may leave impact is in resulting to changes in their actual software systems
(post-project) either through (i) stronger runtime checks within the normal
logic of the system to ensure higher confidence in system correctness; or
(ii) changes in the system architecture, introducing separate logical units to
perform runtime checks or even through the adoption of the use of a runtime
verification tool thus completely separating concerns of the normal system
and verification logic.

Changes to the quality assurance process: Another way in which projects
may leave an impact on the system is through the quality assurance process,
particularly during testing, either (i) by enabling the quality assurance team
to identify further correctness elements or runtime scenarios, thus resulting
in more or better test oracles and test cases; or (ii) through the adoption

1 While it would have been preferable to include a wider set of projects in our analysis
(including those from other research groups), we found that reporting of the “post-
mortem” of such projects is sparse in the literature. Many of the observations we
make in this paper are on the non-scientific aspects of the research projects (e.g.
whether participation of the industrial partner in the project had an impact on
the way they approached validation and verification of other systems they were
developing), which are typically not discussed in scientific reports of the outcome of
such projects. Therefore, while we are aware of several projects which have applied
academic techniques in an industrial setting, we cannot include these in this paper
due to the lack of information of what happened after the end of the project.
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of techniques from runtime verification to support the specification of a test
suite—from the oracles to test scripts and test cases e.g. moving from timeless
assertion-based oracles which assert constraints on the system state at a
particular point in the execution of the system, to temporal oracles each of
which may refer to and compare the state of the system at various temporal
points.

Indirect effects: Although the project may not result in direct changes to the
current or planned future versions of the system, or to the quality assurance
process, exposure to runtime verification may have indirect and longer-term
effects, sometimes due to the Hawthorne effect2 resulting from oversight by
the academic partner due to the collaboration and accentuated by the domain
ignorance of the oversight [12]. Two ways we have seen this happen was
through exposing architects and developers (i) to alternative ways in which
verification can be integrated into a system, yet keeping it in a separate
component; and (ii) to the realisation of the possibility to look at different
levels of failure handling at runtime going beyond class invariants and pre-
and post-conditions.

Although we define the notion of success in a rather broad manner, we have
witnessed projects which have partially failed to realise an impact in any of
the three effects listed above, typically due to one of (i) the fact that day-to-
day fire-fighting with system problems did not leave enough time and resources
to consider further changes which runtime verification may require; (ii) lack of
interest in immersion into deploying runtime verification due to the designers
or developers involved felt that the change was imposed on them (e.g. through
company policy to participate in the project) or due to being involved with a
team which felt that dynamic analysis was not within their remit (e.g. developers
may feel that it is an aspect which quality assurance should handle, or the quality
assurance may feel that the onus should be on the developers since the checks
are performed at runtime); or (iii) despite an interest to consider the use of
runtime monitoring or verification, fear (rightly or wrongly) of its impact on the
complexity of the system and its performance impeded its adoption.

2.2 Impact on Academic Partners

Given the different objectives of the academic partners, the impact sought is
similarly different. We identify three aspects in which joint runtime verification
projects with industrial partners can prove to be fruitful:

Evaluation of new techniques on real-world systems: Typically, a pri-
mary measure of success from an academic perspective in many collabora-
tive projects is that of evaluating new techniques on a real-world system.
The degree to which the proposed techniques are successfully integrated into

2 Sometimes referred to as the observer effect, the Hawthorne effect is the phe-
nomenon that when aware of being observed, individuals may modify aspects of
their behaviour.
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the system to be evaluated is a major measure of project impact from the
academic side.

Application of tools to real-world systems: Many academically developed
tools tend to be proof-of-concept artefacts, and mostly developed in an evo-
lutionary manner across generations of students, mostly with little regard to
software engineering practice. The experience of applying such tools on real-
world systems can be a major challenge but can result in important insight
on the strengths but also on design and algorithmic bottlenecks of the tools.

Understanding better the challenges to real-world adoption: The very
experience of attempting to transpose runtime verification techniques to be
applicable in a real-world setting is in itself a learning experience, expos-
ing the academic partners to real-world challenges, which can lead to the
development of new techniques and solutions, and establish longer-term col-
laboration with the industrial partners.

3 Success-Determining Factors

When considering our past projects (see Sect. 5), two common success-determ-
ining characteristics clearly emerge.

Project lead: One of the determining factors is the degree to which all the
partners have at stake in the project. Particularly from the industrial side,
where ongoing commercial deadlines and pressures may result in the project
being put on the back burner; how central the project is to those partners
immediate (or near-future) commercial objectives makes a substantial dif-
ference to the chances of success. In general, projects which are instigated,
designed and/or led by these partners result in two important advantages
towards achieving success:
(i) Priority: In industrial settings, priorities may change easily and quickly

(e.g., change in leadership, change in market, etc). When a project is
low on the industrial partner’s priority list, chances are that resources
get allocated elsewhere. Projects which were initiated by the industry
partner(s) tended to be given more priority and it was easier to obtain
information and get access to resources in a timely manner.

(ii) Engagement: When an industrial partner gets involved in a project
without a clear direct benefit (but perhaps to start a long term research
collaboration, to test what academic tools may offer, or to get in touch
with students as potential employees), there is a great possibility that
the academic researchers will not find much enthusiasm and engagement
from the stakeholders within the company—particularly employees who
do not see the value of the project.

Legacy vs. new system: A major distinction in industrial runtime verification
projects is whether the effort concerns an existing legacy system or whether
the system is being designed from the ground up with runtime verification in
mind. This issue is particularly pronounced in runtime verification due to the
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desirability of extracting events non-intrusively at runtime. Legacy systems
are typically hard to modify and interoperate with for several reasons, partic-
ularly their brittleness and sometimes poorly supported dated technologies.
Furthermore, obtaining the necessary information and understanding how a
legacy system works might also be significantly challenging due to unmain-
tained or incomplete documentation and code which has been changed and
fixed over and over again.
On the other hand, a system which is being newly built and which incorpo-
rates runtime verification from the start, may provide a dedicated interface
for the monitor which makes all relevant events readily available and also
listens out for any incoming instructions from the monitor.

4 Design Decisions

When applying runtime verification to real-world systems, a number of design
decisions have to be taken. In this section we focus on some of the most pertinent
ones, particularly those which (from our experience—see the next section) may
severely affect project success. It is worth noting that some of the design choices
are interconnected and may influence each other.

4.1 System Feedback: Level of Runtime Intrusion

One important decision is that of how intrusive on the system the runtime anal-
ysis will be. From a most basic level in which one can merely monitor or observe
a system and log information about its runtime behaviour, then moving up to
runtime verification, in which not only is the behaviour observed, but particular
behavioural patterns are identified to be undesirable and algorithmically classi-
fied to be so. This latter level of intrusion can be taken further by adding on logic
to support runtime recovery or reparation, triggering in the case of undesirable
behaviour being observed (to make up for it)3. One can also go another step
further, using runtime enforcement [9] to ensure that the undesirable behaviour
is avoided in the first place, modifying the system’s behaviour to ensure it works
as expected.

The higher the level of intrusion, the more difficult it is to have the run-
time system to be integrated with the production-ready system. In the context
of the success-determining criteria discussed in Sect. 3, intrusion beyond non-
reparatory runtime verification is unlikely to be achieved on legacy systems, but
this can be pushed up considerably in industry-led projects on systems still being
designed and developed.

4.2 Online vs. Offline

Another fundamental design decision is whether runtime monitoring is carried
out online or offline. Online monitoring interacts directly with the system at run-
time while offline monitoring involves processing runtime events independently
3 This is supported by typical RV tools such as JavaMOP [4] and Larva [8].
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of the running system. This is a major difference from an intrusiveness point
of view as in the case of online monitoring the verification software very likely
interferes with the running system and typically competes for the same resources.

Considering the success-determining factors identified in the previous section,
similar to higher intrusiveness, online monitoring decreases the likelihood of
the project being taken onboard by the industrial partner on the live systems.
Therefore, caution should be used and in the case of an academia-led legacy
project, it should ideally be avoided altogether. On the other hand, when working
in the context of an industry-led project where a system is being designed and
developed with online runtime verification in mind, the associated risks can be
minimised and catered for.

4.3 System-Monitor Communication

Once the runtime verification mode of online vs. offline is decided, one would
typically decide on the communication mode; particularly how the system events
are to reach the verifier. The choice is highly dependent on whether monitoring
takes place online or offline. As one would expect, offline monitoring allows for
communication to be significantly more loosely coupled. For example this may
take the form of simply dumping a relevant part of the monitored system’s
database. The advantage of loose coupling is that it does not interfere with the
monitored system. In the case of online monitoring, the choice between tightly
and loosely coupled communication modes would typically be more constrained
by the desire to have the monitor receive system events in a timely fashion.
Options in this case may range from direct method calls from the system, to
message transmission over a network. While all these options are possible when
considerations are included in the design, more care should be taken when dealing
with legacy systems due to repercussions the modifications may bring about.

4.4 Event Extraction

Legacy systems are less amenable to incorporating a clean and modular way
of extracting relevant system events. It is for this reason that runtime verifi-
cation is perhaps one of the best case studies for aspect-oriented programming
(AOP)[10]. However, even with the sophistication of AOP, understanding which
method invocations to capture and whether these provide enough context to
bind the necessary data variables is a non-trivial task. Moreover, when runtime
verification is also used to steer the system (as opposed to simply being a pas-
sive observer), particular care needs to be taken to ensure that bugs are not
accidentally introduced. Maintenance and system updates might also result in
unintended consequences in the system-monitor interaction. Another approach
to extract events in a legacy system context is through the use of a proxy. This
is convenient when the events of interest are visible from a communication point
of view.

In contrast, when dealing with a new system, the monitoring of events can
be designed as part of the system, i.e. the system proactively makes relevant
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events available to the monitor. When a new system is designed for an offline
setting, one may still opt for a less direct way of extracting events, such as by
interfacing with the database. Extracting events from the database would also
probably be the most rational choice when dealing with a legacy system, albeit
some database modifications might be needed.

4.5 Specification of Properties

When dynamic analysis is used to verify behaviour, the manner in which the dis-
criminator between correct or expected behaviour from bad behaviour is written,
plays an important role in determining the success of adoption of the techniques
in the real-life system. Although in some projects (particularly academia-led
ones) the specification language used may be determined by the objectives of
the project itself (e.g. a project focussing on how overheads induced due to mon-
itoring specifications using a particular logic or class of logics can be reduced), in
many cases this choice may be flexible, ranging from one extreme of developer-
friendly specifications written as observers in the same programming language
as the main system, to the other extreme involving the use of complex logics
which developers may require training to use in an effective manner. In between,
one can find intermediate specification languages which bridge this gap e.g. the
use of graph-based formalisms (e.g. automata) or regular expressions with which
most developers would be familiar.

As in the other design challenges, the higher the industrial involvement, the
more one can choose to identify and adopt an appropriate logic (possibly hidden
beneath syntactic sugar or within a controlled natural language), while with
lower industrial involvement, developer-friendly formalisms would be preferable.

5 Observations and Commentary

In order to review our past projects in the light of the above design choices, we
start by describing the projects. We had five projects with two partners, with
the information summarised in Fig. 1 ordered in completion date order. The
first project was with one partner while the following four projects were with
the second partner4.

1. System Feedback: Level of Runtime Intrusion. In the majority of the projects,
we opted for the least intrusive of the approaches—that of a passive observer.
In the case of the first project where we had online monitoring, we could also
alert the system of a violation. Further along the intrusiveness spectrum, the
last project includes runtime enforcement where transactions may be stopped
if they would lead to a violation. In this last project, the monitor also plays
the role of an observer when collating statistics which do not involve corrective
actions.

4 Names of the industrial partners are left out due to information sensitivity and in
order to allow us to be able to discuss project success or otherwise more freely.
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2. Online vs. Offline. The online vs. offline choice is closely related to the intru-
siveness choice before. All observer monitors were naturally offline while the
rest of the options necessitated an online architecture.

3. System-Monitor Communication. The offline monitoring projects made use
of a database dump and text files to store the observed data. The online
counterparts intercepted method calls in the first case, while in the second
case, used asynchronous messages to establish handshakes between the system
and the monitor.

4. Event Extraction. The second and third projects used a database script to
obtain a copy of the relevant part of the database. In the first and fourth
projects, we used aspect-oriented programming since these were legacy sys-
tems, while in the last project we could construct custom events which were
designed as part of the system.

5. Specification of Properties. In most projects we used an automata-based
formalism—namely DATEs [7]. In the case of the fourth project we used
assertions since these were extracted automatically from test traces. Finally,
in the last project we provided a controlled natural language [11] which inter-
nally compiled to a ruled-based language.

Proj Part
Characteristics Decisions
Lead System Intr On/Off Comm Events Spec

1 A Aca Leg RV On Method call AOP Aut
2

B

Aca Leg Obs Off Db dump Db script Aut
3 Ind Leg Obs Off Db dump Db script Aut
4 Aca Leg Obs Off Text files AOP Ass
5 Ind New Enf/Obs On/Off Async messaging Custom events CNL

Fig. 1. Summary of the collaborative runtime verification projects discussed.

Given the above design choices, we can now comment on the successes of each
partnership:

Partner A (Project 1). From an academic perspective, this project provided us
with the experience and case study needed to create a practical runtime
verification tool. From an industry perspective, it was useful to demonstrate
to the partner how checks can be embedded in a system and how they can be
expressed. However, to date we are not aware of any use of explicit runtime
verification technologies adopted within their system.

Partner B (Projects 2–5). The first project with this partner served mainly to
prepare the way for other future ones—the next project was an initiative of a
number of employees and was successfully deployed on their live data. These
experiences led the way to two other projects: Projects 4 and 5. Project 4 was
successful from an academic perspective in exploring new ideas however, so
far it did not result in direct effects in the industrial technology used. The last
project enabled us the freedom of applying the latest academically developed
ideas to an industrial system with relative success from both perspectives.
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Key Observations

Better chances of success when legacy systems are monitored offline:
We note that with the exception of the last project, all projects took place on
legacy systems. In all cases with the exception of the first project, we applied
offline monitoring when working with legacy systems. The first project which
went against this pattern was not successful from an industrial perspective.

Industry-led projects more likely to succeed (industrially): Another
observation is that the two industry-led projects were both very successful
from an industrial perspective. From an academic perspective, it is less pre-
dictable though as the emphasis is on finding a solution to the problem at
hand.

Industry-led projects on non-legacy systems give rise to win-win
situations: Although the latest project has the advantage of hindsight
gained from previous projects, and a well established relationship with the
partner, it was also the only one which was both industry-led and dealt with
a non-legacy system. We hypothesise that these latter characteristics signifi-
cantly improved the chances of achieving high levels of success from the point
of view of both parties.

6 Conclusions

In this paper, we have considered how poignant characteristics of a project affect
the engineering choices in the context of runtime verification. Engineering design
decisions are particularly delicate in the context of runtime verification since,
unlike other techniques such as testing or static analysis, the generated runtime
verification code typically interacts directly with the running system. Runtime
verification design aspects such as whether to monitor a system online or offline
have been the subject of numerous publications [2,3,5]. However, to the best of
our knowledge, it is the first time that runtime verification engineering design
choices were put against the backdrop of project meta-characteristics. Indis-
putably, there are various other variables contributing to the success (or lack
thereof) of a project. In particular, the human aspects come to mind with ques-
tions such as how to build a working relationship amongst partners, how to
involve the right stakeholders in the project, and how to handover the outcome
of a project to the industrial partner have been tackled in [6] and more generally
in [1].

Ultimately, the chance of success of an academia-industry project depends
on the quality of the relationship (and the trust) between the parties. Once the
parties learn to better understand each other, the chances of success increase
dramatically. For this reason, a project in the early years of a collaboration might
simply serve the purpose of establishing a good working relationship between
the partners. Once the relationship improves, it becomes more probable that
undertaken projects are of higher importance to the industrial partner. Hence,
the more likely it is that a project is industry-led and concerns a non-legacy
system which consequently (as we have explained throughout the paper) increase
the design options dramatically.
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4. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for Java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-
1 36

5. Colombo, C., Pace, G., Abela, P.: Safer asynchronous runtime monitoring using
compensations. Formal Methods Syst. Des. 41(3), 269–294 (2012)

6. Colombo, C., Pace, G.J.: Industrial experiences with runtime verification of finan-
cial transaction systems: lessons learnt and standing challenges. In: Bartocci, E.,
Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp. 211–
232. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 7

7. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03240-0 13

8. Colombo, C., Pace, G.J., Schneider, G.: LARVA – safer monitoring of real-time
java programs (tool paper). In: Seventh IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2009, Hanoi, Vietnam, 23–27 November
2009, pp. 33–37 (2009)

9. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Methods Syst.
Des. 38(3), 223–262 (2011)

10. Kiczales, G.: Aspect-oriented programming. In: 27th International Conference on
Software Engineering (ICSE 2005), 15–21 May 2005, St. Louis, Missouri, USA, p.
730 (2005)

11. Kuhn, T.: A survey and classification of controlled natural languages. CoRR,
abs/1507.01701 (2015)

12. Niknafs, A., Berry, D.M.: An industrial case study of the impact of domain igno-
rance on the effectiveness of requirements idea generation during requirements
elicitation. In: 21st IEEE International Requirements Engineering Conference, RE
2013, Rio de Janeiro-RJ, Brazil, 15–19 July 2013, pp. 279–283 (2013)

https://doi.org/10.15224/978-1-63248-038-5-10
https://doi.org/10.15224/978-1-63248-038-5-10
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-319-75632-5_7
https://doi.org/10.1007/978-3-642-03240-0_13
https://doi.org/10.1007/978-3-642-03240-0_13


Flexible Monitor Deployment
for Runtime Verification of Large Scale

Software

Teng Zhang1, Gregory Eakman2, Insup Lee1, and Oleg Sokolsky1(B)

1 University of Pennsylvania, Philadelphia, PA 19104, USA
{tengz,lee,sokolsky}@cis.upenn.edu

2 BAE Systems, Burlington, MA 01803, USA
gregory.eakman@baesystems.com

Abstract. The paper presents a brief overview of the SMEDL monitor-
ing system that provides flexible and scalable deployment of monitors
for large-scale software. The SMEDL specification language expresses
monitoring logic as a collection of monitoring objects and monitoring
architecture as flows of information between the monitored system and
monitoring objects. The system supports synchronous as well as asyn-
chronous deployment of monitoring objects and dynamic instantiation of
monitoring objects on demand. The application of the SMEDL system
for the monitoring of a target tracking application is briefly discussed.

1 Introduction

Modern software systems affect all aspects of our lives, offering ever richer capa-
bilities. This outsized role comes at a price: software keeps increasing in scale and
complexity, requiring ever more effort to design, build, test, and deploy. Hardly
any large-scale systems are designed from scratch today. Systems are integrated
from separately developed modules, both vertically and horizontally. Concur-
rency and distributed computation are extensively used in the integration of
modules. Modules are often developed by independent teams and incorporated
as black boxes into the larger system. Moreover, over the life of the system, indi-
vidual modules will be updated, so systems assembled and deployed in different
time frames are likely to use different versions of the module. All of these factors
allow incompatibilities between modules to slip in, in the form of communication
protocol errors, broken assumptions made by developers of individual modules,
etc. As a result, flaws in a software system are often discovered after the system
is built and deployed.

Runtime monitoring can be used to detect and diagnose these flaws and
alert system users and developers. In this paper, we will consider specification-
based monitoring, where monitors detect deviation of system behaviors from the
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specifications and raise alarms (or, potentially, trigger recovery). This kind of
monitoring came to be known as runtime verification [3]. To be useful in moni-
toring of large-scale software systems, runtime verification needs to be supported
by a flexible monitor deployment framework. The framework should allow us to
specify our requirements, determine how each requirement should be monitored,
which observations are needed by monitors to perform their job and how these
observations should be extracted. In cases where dynamic instantiation of moni-
tors or communication between monitors are needed, the framework should also
allow us to specify when and how monitors need to be instantiated and removed,
and what communication flows should be present.

Fig. 1. Running example

Throughout the paper, we will be using a simple example of performance
monitoring. Consider the setting illustrated in Fig. 1. We have a system built as
a set of distributed server processes, each completing a series of jobs. A shaded
process indicates that server processes can be added and shut down dynamically
to satisfy demand. The monitor should calculate an average performance metric
for the whole system. Such a monitor would receive timestamped observations
from each process, corresponding to start and completion of each job, status
of a job at completion, etc., and output alerts if performance, according to the
chosen metric, falls below a threshold.

The paper is organized as follows. In Sect. 2, we give a brief introduction to
runtime verification and discuss challenges of applying runtime verification tech-
niques to large-scale software systems. Section 3 we introduce a flexible moni-
toring framework and discuss how it addresses the challenges. We conclude the
paper with a discussion of remaining challenges and future work.

2 Background: Runtime Verification

Runtime verification is a collection of techniques for correctness monitoring of
systems with respect to formally specified properties. An executable monitor is
constructed for a given property and is run over a stream of observations to arrive
at a conclusion, whether the property is satisfied or not. Runtime verification
approaches differ in how properties are specified; how monitors are constructed;
how observations are extracted; whether monitoring is performed online or over
a recorded trace; if the monitoring is online, how the monitors are deployed
within the running system.
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2.1 Challenges

Application of runtime verification to large-scale software systems faces a number
of challenges that stem from many of the same factors that make large-scale
software hard in the first place. Below, we consider several of these challenges.

Multiple Properties with Different Criticality Levels. A large software
system would have many different properties to monitor. Some of these properties
relate to safety and security of the system and require fast response. Evaluation of
others, for example performance properties, may be delayed or even performed off
line. Monitors for these properties may rely on the same observations. And there
can be dependencies between properties; for example, a security monitor may
perform anomaly detection on a performance metric. Keeping track of properties
along with their dependencies, and ensuring that deployment of monitors is
appropriate for their criticality levels and preserves dependencies, is a challenge
that quickly increases with the scale of the system.

Global vs. Local Properties. Some of the properties to monitor may be
local to one module in the system, while others concern global behaviors of the
system. In a distributed system, checking global properties may incur prohibitive
overhead and interfere with the system operation. Local monitoring is usually
preferable. Deciding where monitors should be placed and managing monitor
placement in a large system is a challenge.

Multiple Variants of System Implementations. As discussed above, differ-
ent system installations may utilize different implementations of system modules.
This creates two challenges to be addressed. First, the same observation may
have to be extracted differently in different versions of a module. For example,
in one version of the module, an observation may be obtained by instrumenting
a particular function call. In a subsequent version, the call may be renamed or
eliminated through code refactoring, so that a different instrumentation needs to
be introduced. Second, properties specific to the module may also change. For
example, the property may reflect assumptions that the module makes about
interactions with its environment. A new version of the module may make dif-
ferent assumptions. Maintaining multiple versions of the property is another
challenge that is exacerbated by scale.

3 SMEDL Monitoring System

In order to address the above challenges, we have developed a prototype mon-
itoring system [4] that aims to address challenges presented above. Below, we
discuss several salient features of the SMEDL1 system.

1 SMEDL stands for Scenario-based Meta-Event Definition Language.
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Fig. 2. Modular specification of the performance monitor

3.1 System Design

Modular Property Specification. In order to effectively monitor a property
in a large-scale distributed system, SMEDL allows us to specify properties in
a modular fashion. In this way, a complex property can be decomposed into a
set of monitoring modules that communicate with each other and collectively
implement the monitor for the overall property. A common pattern for modular
specification is partitioning a global property for a distributed system into a set of
locally deployed modules that operate on local observations of each process in the
distributed system and convey results of local processing to the global module
that computes the overall result. Consider our performance monitor example.
Instead of sending all observations to a monolithic global monitor, we partition
it into a set of local monitors, one for each process, and a global monitor, as
shown in Fig. 2. Local monitors would calculate performance of that process and
then send a summary to the global monitor that would aggregate local reports
into the global value.

Monitor Coordination and Communication. Clearly, monitor modules
need to communicate with each other. The flow of interactions between monitors
depends on the property and how it is partitioned into modules. Specification of
the monitoring architecture, described below, makes these flows explicit.

Synchronous and Asynchronous Deployment. We specify the logic of each
monitor module and, separately, how this module is to be deployed. Often, the
user has a choice of deploying the same module synchronously or asynchronously,
so decoupling the logic of the module from its deployment strategy increases
flexibility of the framework. Continuing our example, for the modular moni-
tor shown in Fig. 2, we deploy the global monitor asynchronously, while local
monitors can be deployed synchronously or asynchronously, depending on, e.g.,
relative overheads of the two approaches.

Dynamic Monitor Instantiation. Large-scale software systems typically con-
tain many similar components that can be added and removed dynamically. In
our example, server processes can be spun up and down to meet the demand.
When this happens, local monitors are instantiated for each new server process
and are connected to the global monitor.

Separation of Property Specification from Observation Extraction. A
monitoring specification describes, among other things, what observations are
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needed by the monitor in order to do its job. In order to deploy monitors, we also
need to know how to extract these observations from the target system. Extrac-
tion of observations can be performed in many different ways, for example by
instrumenting source code or binaries of system components, by snooping on the
system bus, or even off line, reading from a recorded trace. Over time, the target
system may evolve and offer new ways of observation extraction, or different
variants of system component implementations may require different placement
of instrumentation probes. It is important to accommodate these changes in the
monitoring setup with as little disruption as possible. SMEDL separates moni-
toring logic from observation extraction using an event-based API, so that events
can be raised in a specified format by an appropriate extraction technology. We
have experimented with several such technologies, such as AspectC [2] for instru-
menting C source code and a dynamic translation tool SySense by GrammaTech
for capturing observations from binary code.

3.2 Monitoring Specification

In SMEDL, monitoring specification contains two major parts: monitoring
objects and monitoring architecture.

Monitoring Objects. Monitoring objects represent logic used in checking the
property. Each monitoring object has an interface: imported events that a mon-
itor receives from its environment and exported events that it raises. Imported
events can be observations from the target system or events sent by other mon-
itors. Similarly, exported events can be alarms that are delivered to the system
operator or used to trigger recovery, or they can be sent to other monitors for pro-
cessing. The logic itself is expressed using communicating finite state machines
extended with local state variables. State machines take transitions in response
to imported events and can raise exported events or update state variables when
a transition is taken. Monitoring modules are designed to allow the use of other
formalisms to express the logic.

Monitoring objects can have identity parameters. Choosing different param-
eter values allow us to have multiple instances of monitoring objects. In our
running example, a natural parameter for the local monitor is the identity of a
server. We note that at the specification level, we may want to abstract from
the precise nature of this identity. Depending on the system implementation, a
server process may be identified by a computer name, an IP address, or maybe
a virtual machine identifier where the server runs.

Monitoring Architecture. Monitoring architecture is a directed graph that
represents communication between monitoring objects. Nodes of the graph have
ports that correspond to events that the node can consume or produce. Nodes
that represent monitoring objects have ports that match the interface of the
object. Nodes can also represent components of the target system. Ports of these
nodes represent observations that are obtained from this component. Edges in
the graph represent communication flows from exported events of one node to
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imported events of another node. Nodes in a monitoring architecture are par-
titioned into sets. Monitoring objects within a set are deployed together and
are executed synchronously, using a single thread of control. When a monitoring
object is placed into a set with a node representing a system component, monitor
instances are running synchronously with the component, essentially becoming a
part of component instrumentation. Objects in an architecture may be instanti-
ated statically or dynamically. Statically instantiated objects are created at the
beginning of a monitored run of the system. Dynamically instantiated objects
are created when new values of identity parameters are discovered.

4 Case Studies

The SMEDL system is extensively used in the RINGS project, led by BAE
Systems as part of the DARPA BRASS program. The goal of the program is
to develop techniques to adapt a given application to changes in the application
environment or the underlying execution platform. The RINGS project focuses
on a target tracking application, developed by BAE Systems and continuously
evolved over a period of over 15 years. The tracker receives data from a number
of sensors, e.g., imaging devices, that supply information about observed objects,
and contains algorithms that parse sensor inputs and compose observations into
tracks, i.e., sequences of points representing position of an object over time.

Over time, both the application and its environment can change. For exam-
ple, new sensors are introduced into the system, and parsers for new sensor
inputs need to be added. Standards for the format of sensor data evolve, which
also requires changes to parsers. Track processing algorithms may need to be
updated to account for new sensors. The tracker uses a large number of tuning
parameters to handle weather and other environmental conditions. Misconfigu-
ration of parameter settings may lead to poor tracking results.

We use SMEDL monitors to detect when the application does not behave as
intended. Alarms raised by monitors trigger adaptation modules that perform
fault localization and generate patches that compensate for the detected changes.
In this paper, we discuss only the detection aspect of the case study.

The main challenge in constructing monitors for the tracking application is
that there is no ground truth about tracks available at run time. Instead, moni-
tors have to rely on indirect evidence of misbehavior. Alternatively, monitor can
focus on specific faults that are known to have caused misbehavior in the past.
Both approaches are imperfect: indirect monitors may not catch all violations,
while fault monitors may raise false alarms if the system tolerates the fault.
Below, we discuss examples of both monitoring approaches.

Track Quality Monitors. Developers of the tracking application have identi-
fied a number of metrics that characterize track output quality. These metrics,
collected using a sliding window time interval, include average duration of a
track observed in a time interval and the number of unassociated detections, i.e.,
observations of objects that are not associated with any track, also in a given
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time interval. We can monitor these metrics at run time and raise an alarm when
significant changes are observed. Note that these metrics are indirect.

Consider the design of a track duration monitor. A track is observed as a
sequence of timestamped points. Each new point added to the track results in
a track report. Each track report is delivered to the monitor as an event that
carries the track identifier as attribute. We also assume that the system produces
timeout events that represent boundaries of the sliding window. The monitoring
architecture is very similar to the one shown in Fig. 2: there is a local monitor
for each track that calculates duration of the track in the current window and,
at each window boundary, sends the value to the global monitor to calculate the
metric for all tracks and raise an alarm, if needed. As tracks are added by the
application, new track monitors are instantiated.

To implement calculation of a quality metric over a sliding window, the win-
dow is partitioned into a series of subwindows, each represented by a separate
monitor. In addition, a window manager monitor for each track handles switch-
ing of subwindows, while the aggregator monitor combined calculations from
each subwindow into the overall track duration within the whole window. The
architecture of the monitor is shown in Fig. 3a. Some events and auxiliary mon-
itors are not shown for clarity. Each box represents a monitor, with types of
monitor parameters shown in brackets. Edges represent events exchanged by
monitors. Each edge is annotated with parameter matching that determines
replication of event flows when new instances are created. Consider, for exam-
ple, the track event raised by WindowManager and consumed by Subwindow
monitor. The matching ties the first parameter of the WindowManager instance
raising the event to the first parameter of the Subwindow instance receiving the
event. Since Subwindow has the second parameter, not bound by the matching,
the connection is a fan-out, when the track event is received by all instances
subwindow monitors for that track. By contrast, event metric sub represents
a fan-in, when events raised by any subwindow for a track are delivered to the
Aggregator instance for that track. Finally, metric events raised by any track
aggregator are delivered to the same Metric monitor, which is not parameter-
ized. An instance of the architecture for two tracks, and two subwindows in a
window, is shown in Fig. 3b.

We illustrate a monitoring specification in SMEDL using a simplified ver-
sion of the Aggregator monitor, shown in Fig. 4. The monitor includes a single
parameter, denoted by the identity keyword and a number of state variables.
It has two imported (input) events, one representing a report from a subwindow
and the other used for initialization, and one exported (output) event, repre-
senting the track duration calculated at the window boundary. It also has a
number of internal events, described below. Monitoring logic is represented by a
collection of scenarios. Each scenario represents an event-driven state machine.
In this example, each scenario has a single state. Each transition in a scenario
is triggered by an imported or internal event and can happen only if a guard is
satisfied. Guards are predicates over state variables of the monitor and attributes
of the triggering events. When a transition occurs, a series of actions is executed,
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Fig. 3. Monitoring architecture for the case study

each of which either updates a state variable or raises an exported or internal
event. For clarity, we do not show details of the guards and elide most of the
actions. We can see that each scenario performs a certain check represented as a
guard. For example, the check can determine whether the track started or was
dropped within the current window, and updates the state variables accordingly.
Then, an internal event is raised to trigger the next check.

Fig. 4. Specification of the Aggregator monitor

Sensor Format Monitors. The second case study, also motivated by past
experiences, concerns data interchange formats. To facilitate independent devel-
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opment of sensor devices and tracking applications, data interchange standards
such as STANAG 4607 [1] have been introduced. Nonetheless, incompatibilities
can still be encountered during missions, either because a sensor does not always
follow the standard or because the parser module has not been updated to the
latest version of the standard. The standard offers both a binary encoding of
sensor messages and an XML encoding. We have developed monitors to detect
deviations from the standard binary format. In the binary format, fields do not
have explicit delimiters and their sizes are specified within the parser. If a field in
the message has a different size than the parser expects, fields will be misaligned
and the message will be parsed incorrectly. In our case study, we rely on the
knowledge of acceptable ranges for a field in the message in order to detect and
localize the problem.

5 Conclusions

We have presented challenges to monitoring of complex software system and
briefly described a monitoring system that aims to address the challenges by
offering flexible monitor specification and deployment. The monitoring system
has been applied in a case study involving a large-scale target tracking appli-
cation. In the case study, monitors have been used detect deviations from the
original application intent and to trigger an automated search for repair.
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Abstract. Runtime enforcement can be effectively used to improve the
reliability of software applications. However, it often requires the def-
inition of ad hoc policies and enforcement strategies, which might be
expensive to identify and implement. This paper discusses how to exploit
lifecycle events to obtain useful enforcement strategies that can be easily
reused across applications, thus reducing the cost of adoption of the run-
time enforcement technology. The paper finally sketches how this idea
can be used to define libraries that can automatically overcome problems
related to applications misusing them.

Keywords: Runtime enforcement · Self-healing · Proactive library

1 Introduction

Runtime enforcement techniques are effective solutions for guaranteeing that
software applications satisfy certain correctness policies at runtime [17]. When
using runtime enforcement, developers are typically in charge of identifying the
policies that must be enforced, defining a strategy to enforce them, and finally
implementing the software enforcer that applies the strategy.

The enforced policies are often application-specific, that is, policies are defined
ad hoc for the target application. Working with application-specific policies
might be quite expensive. In fact every time a new application is considered,
new policies must be identified, and the modelling and implementation activi-
ties must be repeated from scratch.

Interestingly policies may also refer to libraries and components that can
be reused across applications being themselves eligible for reuse. Reusable poli-
cies are extremely important because they can alleviate the developers from the
burden of identifying both the policies to be enforced and the corresponding
enforcement strategies. Developers could simply reuse policies and enforcement
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strategies while they reuse libraries, de facto simplifying the application of run-
time enforcement techniques.

Unfortunately, the definition of reusable policies and enforcement strategies
can be challenging. Since the context of use of a library is not known a priori,
a reusable policy and the corresponding enforcement strategy could be defined
referring to the operations of the library only. For example, a reusable policy of a
library for interacting with the file system may require that a file is opened before
any content is written in the file. However, several relevant policies may depend
not only on the usage of a library, but also on the behavior of the application
that interacts with the library. For instance, a policy that forces an app to close
a file before its execution is suspended depends on both the library and the app,
and cannot be specified referring to the library only.

There is a popular class of software applications that naturally facilitate both
the identification of reusable policies and the definition of enforcement strategies.
We call them life-cycle based applications. They are applications whose units of
composition are modules with an explicitly documented life-cycle model. There
is a huge number of life-cycle based applications. For example, Android apps
are composed of activities with a known life-cycle model and with callbacks that
are invoked when there is a change in the state of the app; similarly Spring
applications are composed of components with a known life-cycle model and
callbacks. The same applies to many other contexts, such as Web applications,
multi-threaded applications, and so on.

Life-cycle based applications have the important advantage of responding to
the same life-cycle and implementing the same callbacks, regardless of what a
specific application does. Thus policies and enforcement strategies can exploit
this information to consider some aspects of the behavior of the application, still
remaining reusable. We call these reusable policies life-cycle based policies and
the corresponding strategies life-cycle based enforcement strategies.

We further elaborate the concept of life-cycle based application and policy in
Sect. 2. We show how we exploited these concepts to define proactive libraries, a
class of libraries augmented with reusable enforcement strategies, in Sect. 3. We
provide final remarks in Sect. 4.

2 Life-Cycle Based Policies

The life-cycle of a software unit specifies the possible states of the unit and the
events that can cause the transition between two states. Units with a non-trivial
and well-defined lifecycle are typically executed and managed by a framework
that explicitly controls their life, invoking callback methods when there is a
state transition. For example, Android activities have callback methods that
are invoked when an application is started and suspended. Similarly, Web com-
ponents have callback methods that are invoked when they are created and
destroyed.

These callback methods are pervasively present in life-cycle based applica-
tions. For instance, every activity in every Android application implements the
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same callback methods. This is an important aspect that eases the definition of
both reusable policies and reusable enforcement strategies that can be generally
valid for every application of a specific domain. For instance, a policy about an
Android library can also refer to callback methods without any loss of generality.

Policies with life-cycle events are particularly relevant. Applications may have
to implement non-trivial behaviors in reaction to state transitions [1–3,6,7,9],
and this may lead to faulty applications, for instance applications with faulty
library interactions [14,21].

Although these policies might be non-trivial to address, they are easy to find
in the documentation of libraries and systems and can be the basis for the design
of reusable policies. We report below three examples of reusable policies that can
be defined for completely different life-cycle based systems.

The onPause() method is an Android callback that is automatically executed
when a user stops interacting with an activity and is relevant to several correct-
ness policies. For instance, an activity that is paused after acquiring the Camera
must release it otherwise the camera might be unusable from other activities1.

In the OSGi Java framework [4], application bundles can be started, stopped,
installed, and uninstalled remotely without rebooting. The execution of these
operations must obey to specific policies. For example, stopping a bundle requires
unregistering every previously registered service [3].

React is a JavaScript library widely used to build encapsulated compo-
nents that can be composed to create complex Web UIs [5]. Each component
has several life-cycle callback methods that can be overridden to execute cus-
tom code at particular times in the component’s life-cycle. For example, the
method componentWillUnmount() is invoked immediately before a component
is unmounted and destroyed. The library documentation requires applications to
implement specific operations when this callback is executed, such as invalidating
timers, deleting network requests, or cleaning up subscriptions [6].

Note that all these examples are cases of policies that can be arbitrarily
reused across applications since they exploit information about life-cycle events
and library APIs. These policies would be impossible to define without exploiting
the information about life-cycle events.

In the next section, we show how we exploited this concept to define proactive
libraries, that is, libraries equipped with life-cycle based enforcement strategies
We present proactive libraries in the Android domain because it is the most
popular among the application domains described above, and because it has
been already used as application domain in related work [11,18,20].

3 Proactive Libraries

Let us refer to the Plumeria2 app, a simple Android app, to illustrate the concept
of proactive library [19]. Plumeria has a fault, that is, one of its activities does not
release the camera when it is suspended, as a consequence the camera becomes
1 https://developer.android.com/guide/topics/media/camera#release-camera.
2 https://github.com/DonLiangGit/Plumeria.

https://developer.android.com/guide/topics/media/camera#release-camera
https://github.com/DonLiangGit/Plumeria
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inaccessible to the other apps of the device. This is a classic resource leak problem
that could be avoided by enforcing the policy presented in Sect. 2. In particular,
if the camera API is released as a proactive library, this problem would never
show up because it would be automatically detected and fixed by the enforcement
mechanism embedded in the proactive library.

Proactive libraries are standard libraries augmented with the built-in capa-
bility of enforcing reusable policies at runtime.

Figure 1 shows the generation process of proactive libraries. The process dis-
tinguishes the development and the runtime phases.

Fig. 1. The generation process of proactive libraries.

At development time, developers start from the identification of reusable
correctness policies, that is, natural language statements that specify how the
application should use a library according to the status of both the application,
detected through the execution of its life-cycle callback methods, and the library,
detected through the execution of its API methods. The reusable correctness
policy that ensures the correct usage of the camera is: “An activity that is paused
while having the control of the camera must first release the camera.”

Correctness policies are used to derive enforcement models that define how to
react to correctness policies violations. We use edit automata [16] to define the
enforcement models because they naturally support the definition of enforcement
rules by means of events to be intercepted, inserted and suppressed, and they
could be also verified [20]. The definition of an enforcement model does not
require any knowledge about the app that uses the API, but it uniquely requires
the knowledge of the API and of the Android callback methods, which are the
same for any app.

Figure 2 shows a slightly simplified enforcement model that forces the release
of the Camera when the activity is paused without releasing the Camera. The
prefix r is used to distinguish the calls to the API methods from callbacks. To
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Fig. 2. Simplified enforcement model for the Camera.

keep the example real but small, the enforcement model does not include the
part that reassigns the Camera to the activity once its execution is resumed.

To actually enforce the policy in the target environment, the enforcement
models are turned into proactive software modules that intercept the execution
of life-cycle callback methods and API methods, and produce additional invoca-
tions when needed, according to the enforcement model.

Since proactive modules are activated by the invocation of specific methods,
their execution in the user environment is controlled by a policy enforcer that
intercepts the events and dispatches them to the deployed proactive modules.
The policy enforcer also controls the activation and deactivation of the proactive
modules, which can be turned off and on by the user.

The language and frameworks to implement the proactive modules and the
policy enforcer depend on the target environment. In the case of Android, we use
the Java Xposed framework [8], which allows to cost-efficiently intercept method
invocations and change the behavior of an Android app using run-time hooking
and code injection mechanisms.

In our experience, we successfully used proactive libraries to automatically
overcome several problems present in Android apps [19].

4 Conclusions

Research on runtime enforcement has already delivered both theoretical [10,12,
16,17] and practical results [11,13,15,19]. However, identifying policies, speci-
fying enforcement strategies, and implementing the corresponding enforcers is
still a difficult and time consuming task. Reusable policies, as discussed in this
paper, can relieve developers from this tedious and error-prone task, facilitating
reuse and easing the practical adoption of the runtime enforcement technology.

We plan to extend our work on runtime enforcement in three directions.
Automatic code generation of runtime enforcement mechanisms: since manu-
ally implementing runtime enforcement mechanisms is particularly difficult and
expensive, we plan to define a model-driven software development process and
the corresponding tool chain to automatically derive enforcer code from the
models. Automatic testing of software enforcers: To achieve highly reliable and
safe enforcing mechanisms, we need techniques specifically defined to validate
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the behavior of software enforcers, which have the distinguishing characteristic
of being designed to dynamically change the behavior of other software applica-
tions, causing hard to predict side effects. Public repository of software enforcers:
Since life-cycle based enforcement strategies are application-independent, pub-
lishing well developed software enforcers in a public repository is important to
facilitate the distribution of plug-and-play enforcement strategies that can be
easily exploited by developers.
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13. Hallé, S., Ettema, T., Bunch, C., Bultan, T.: Eliminating navigation errors in
web applications via model checking and runtime enforcement of navigation state
machines. In: Proceedings of the International Conference on Automated Software
Engineering (ASE) (2010)

14. Hou, D., Li, L.: Obstacles in using frameworks and APIs: an exploratory study of
programmers’ newsgroup discussions. In: Proceedings of the International Confer-
ence on Program Comprehension (ICPC) (2011)

15. Kumar, A., Ligatti, J., Tu, Y.-C.: Query monitoring and analysis for database
privacy - a security automata model approach. In: Wang, J., et al. (eds.) WISE
2015. LNCS, vol. 9419, pp. 458–472. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-26187-4 42

16. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005)

17. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur. 12(3), 19:1–19:39 (2009)

18. Riganelli, O., Micucci, D., Mariani, L.: Healing data loss problems in android
apps. In: Proceedings of the International Workshop on Software Faults (IWSF),
Co-located with ISSRE (2016)

19. Riganelli, O., Micucci, D., Mariani, L.: Policy enforcement with proactive libraries.
In: Proceedings of the 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS) (2017)

http://tiny.cc/iyvoty
http://tiny.cc/k9voty
http://tiny.cc/k9voty
https://www.osgi.org
http://tiny.cc/iyvoty
https://reactjs.org/docs/state-and-lifecycle.html
http://tiny.cc/rs2oty
http://repo.xposed.info/
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://doi.org/10.1007/978-3-642-35632-2_11
https://doi.org/10.1007/978-3-642-35632-2_11
https://doi.org/10.1007/978-3-319-26187-4_42
https://doi.org/10.1007/978-3-319-26187-4_42


Increasing the Reusability of Enforcers with Lifecycle Events 57

20. Riganelli, O., Micucci, D., Mariani, L., Falcone, Y.: Verifying policy enforcers. In:
Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 241–258. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2 15

21. Wang, W., Godfrey, M.W.: Detecting API usage obstacles: a study of ios and
android developer questions. In: Proceedings of the Working Conference on Mining
Software Repositories (MSR) (2013)

https://doi.org/10.1007/978-3-319-67531-2_15


BDDs on the Run

Klaus Havelund1(B) and Doron Peled2

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel

Abstract. Runtime verification (RV) of first-order temporal logic must
handle a potentially large amount of data, accumulated during the moni-
toring of an execution. The DejaVu RV system represents data elements
and relations using BDDs. This achieves a compact representation, which
allows monitoring long executions. However, the potentially unbounded,
and frequently very large amounts of data values can, ultimately, limit
the executions that can be monitored. We present an automatic method
for “forgetting” data values when they no longer affect the RV verdict
on an observed execution. We describe the algorithm and illustrate its
operation through an example.

1 Introduction

Runtime verification (RV) can be used to check the execution (run) of a system
against a temporal property, yielding an alarm when the property is violated,
so that aversive action can be taken. For each consumed event the monitor
performs incremental computation, updating its internal memory, and has to
decide whether the property is violated based on the finite part of the execution
trace that it has viewed so far. To inspect an execution, the monitored system
is instrumented to report on occurrences of events.

Runtime verification is often applied to executions that consist of events that
contain data values [1–7,9–13,16–18]. A large amount of different observed data
values can pose a challenge to the efficiency of RV systems, in terms of time and
space, since it is essential to keep up with rapid occurrence of events in very
long executions. We present the DejaVu system and its logic Qtl (Quantified
Temporal Logic), which in its core supports past temporal properties, including
existential quantification, predicates with data values and variables, the Boolean
operators and, not, and the modal operators � for previous-time and S for since.
Several standard operators are derived from these.

In [14] we presented an early version of DejaVu and its algorithm based on
the use of BDDs. We describe here furthermore an approach for detecting when

The research performed by the first author was carried out at Jet Propulsion Labora-
tory, California Institute of Technology, under a contract with the National Aeronautics
and Space Administration. The research performed by the second author was partially
funded by ISF grant 2239/15: “Runtime Measuring and Checking of Cyber Physical
Systems”.

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 58–69, 2018.
https://doi.org/10.1007/978-3-030-03427-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_8


BDDs on the Run 59

data elements that were seen so far do not affect the rest of the execution and
can be discarded, also referred to as dynamic data reclamation. As an example,
consider the following formula, asserting that data can be written to a file only
if it has been opened in the past, and not closed since then.

∀f ((∃dwrite(f, d)) −→ (¬close(f)S open(f))) (1)

We can observe that if a file was opened and subsequently closed, then the
property would be invalidated if a value is written to that file, just as in the case
where the file was never opened. This means that we can “forget” that a file was
opened when it is closed, without affecting our ability to monitor the formula. If
there are no more than N files simultaneously opened at any time, then we need
space for only N files for monitoring the property. This is in contrast to [14],
where space for all new file names must be allocated. We present the algorithm
for storing data as BDDs, and the automatic detection of data values that are
not required anymore, reclaiming the space used for storing them.

The contents of the paper is as follows. Section 2 presents the syntax
and semantics of Qtl. Section 3 describes the basic BDD-based algorithm.
Section 4 outlines the dynamic data reclamation approach. Section 5 illustrates
the extended algorithm by executing a monitor on an example trace. Finally
Sect. 6 concludes the paper.

2 Syntax and Semantics

Let X be a finite set of variables. An assignment over a set of variables W ⊆ X
maps each variable x ∈ W to a value from its associated domain domain(x).
We assume that the domains (e.g., integers, strings) are infinite (see [14] for
dealing with finite domains). For example [x → 5, y → “abc”] maps x to 5
and y to “abc”. Let T be a set of predicate names, where each predicate name
p is associated with some domain domain(p). A predicate is constructed from
a predicate name and a variable or a constant of the same type. Thus, if the
predicate name p and the variable x are associated with the domain of strings,
we have predicates like p(“gaga”), and p(x). Predicates over constants are called
ground predicates. An event is a finite set of ground predicates. For example,
if T = {p, q, r}, then {p(“xyzzy”), q(3)} is a possible event. An execution trace
σ = s1, s2, . . . is a finite sequence of events.

The formulas of the logic Qtl are defined by the following grammar. For
simplicity of the presentation, we define here the logic with unary predicates,
but this is not due to any principle limitation, and, in fact, our implementation
supports predicates with multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ ∧ ϕ) |¬ϕ | (ϕ S ϕ) | � ϕ | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground
predicate p(a) occurs in the most recent event. The formula p(x), for a variable
x ∈ X, holds with a binding of x to the value a if a ground predicate p(a)
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appears in the most recent event. The formula (ϕ S ψ) means that ψ held in
the past (possibly now) and since then ϕ has been true. The formula � ϕ means
that ϕ is true in the previous event. We can furthermore define the following
derived operators: false = ¬true, (ϕ ∨ ψ) = ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) = (¬ϕ ∨ ψ),
P ϕ = (true S ϕ), H ϕ = ¬P ¬ϕ, and ∀x ϕ = ¬∃x ¬ϕ.

Let free(ϕ) be the set of free (i.e., unquantified) variables of a subformula
ϕ. Let I[ϕ, σ, i] be the semantic function, defined below. It returns the set of
assignments that satisfy ϕ after the ith event of the execution σ. The empty
set of assignments ∅ behaves as the Boolean constant 0 and the singleton set
that contains an assignment over an empty set of variables {ε} behaves as the
Boolean constant 1. We define the union and intersection operators on sets of
assignments, even if they are defined over non identical sets of variables. In this
case, the assignments are extended over the union of the variables. Thus inter-
section between two sets of assignments, A1 and A2, is defined like a database
“join” operator; i.e., it consists of assignments whose projection on the common
variables agree with an assignment in A1 and with an assignment in A2. Union
is defined as the operator dual of intersection. Let Γ be a set of assignments
over a set of variables W ; we denote by hide(Γ, x) the set of assignments over
W \{x}, obtained from Γ by removing the assignment to x for each element of Γ.
In particular, if Γ is a set of assignments over just the variable x, then hide(Γ, x)
is {ε} when Γ is nonempty, and ∅ otherwise. Afree(ϕ) is the set of all possible
assignments of values to the variables that appear free in ϕ. We add a 0 position
for each sequence σ (which starts with s1), where I returns the empty set for
each formula. The assignment-set semantics of Qtl is shown in the following.
For all occurrences of i it is assumed that i > 0.

– I[ϕ, σ, 0] = ∅.
– I[true, σ, i] = {ε}.
– I[p(a), σ, i] = if p(a) ∈ σ[i] then {ε} else ∅.
– I[p(x), σ, i] = {[x �→ a] | p(a) ∈ σ[i]}.
– I[(ϕ ∧ ψ), σ, i] = I[ϕ, σ, i]

⋂
I[ψ, σ, i].

– I[¬ϕ, σ, i] = Afree(ϕ)\I[ϕ, σ, i].
– I[(ϕ S ψ), σ, i] = I[ψ, σ, i]

⋃
(I[ϕ, σ, i]

⋂
I[(ϕSψ), σ, i − 1]).

– I[�ϕ, σ, i] = I[ϕ, σ, i − 1].
– I[∃x ϕ, σ, i] = hide(I[ϕ, σ, i], x).

3 An Efficient Algorithm Using BDDs

We describe here an algorithm for monitoring Qtl, first presented in [14], and
implemented as the first version of the tool DejaVu. We shall represent a set
of assignments as an Ordered Binary Decision Diagram (OBDD, although we
write simply BDD) [8].

Recall that a BDD is a directed acyclic graph (DAG), where the non-leaf
nodes represent Boolean variables. Figures 2 and 3 (to be explained) show BDDs
over the BDD variables b0, b1, b2, and b3. A BDD is a compact representation of
a Boolean formula over these variables, and can be used to determine, for a given
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assignment to the variables, whether the formula is true or not. Each non-leaf
node is the source of two arrows leading to other nodes. A dotted-line arrow
represents that the Boolean variable has the value 0 (false), while a thick-line
arrow represents that it has the value 1 (true). The nodes in the DAG have the
same order along all paths from the root. However, some of the nodes may be
absent along some paths, when the result does not depend on the value of the
corresponding Boolean variable. Each path leads to a leaf node that is marked
by either 0 (false) or 1 (true), representing the Boolean value returned by the
formula for the variable assignment corresponding to the followed path.

Assume that we see p(“ab”), p(“de”), p(“af”) and q(“fg”) in subsequent
events in an execution trace, where p and q are predicates over the domain
of strings. When a value associated with a variable appears for the first time
in the current event (in a ground predicate), we add it to the set of values of
that domain that were seen. We assign to each new value an enumeration, rep-
resented as a binary number, and use a hash table to point from the value to its
enumeration. The least significant bit in an enumeration is represented by BDD
variable b0, and the most significant bit by the BDD variable with highest index.
Using a three-bit enumeration b2b1b0, the first encountered value “ab” can be
represented1 as the bit string 000, “de” as 001,“af” as 010, and “fg” as 011. A
BDD for a subset of these values returns a 1 for each bit string representing
an enumeration of a value in the set, and 0 otherwise. E.g. a BDD representing
the set {“de”,“af”} (2nd and 3rd values) returns 1 for 001 and 010. This is the
Boolean function ¬b2 ∧ (b1 ↔ ¬b0).

When representing a set of assignments for two variables x and y with k
bits each, we use Boolean BDD variables xk−1, . . . , x0, yk−1, . . . y0. A BDD will
return a 1 for each bit string consisting of the concatenation of enumerations
that correspond to the represented assignments, and 0 otherwise. For example,
to represent the assignment [x �→ “de”, y �→ “af”], where “de” is enumerated
as 001 and “af” with 010, the BDD will return a 1 for 001010. The BDD that
returns always 0 is denoted by BDD(⊥), and the BDD that returns always 1 is
denoted by BDD(�).

Given a ground predicate p(a), observed in the currently monitored event
of the execution, then when matching with p(x) in the monitored property, let
lookup(x, a) be the enumeration of a. If this is a’s first occurrence, then it will
be assigned a new enumeration. Otherwise, lookup returns the enumeration
that a received before. The function build(x, V ), where V is a set of values,
returns a BDD that represents the set of assignments where x is mapped to (the
enumeration of) a for a ∈ V . This BDD is independent of the values assigned to
any variable other than x, i.e., they can have any value.

The algorithm, shown below, operates on two vectors (arrays) of values
indexed by subformulas (as in [15]): pre for the state before that event, and
now for the current state (after the last seen event).

1 Enumerations are here selected using a counter initialized to 0, as in [14]. The data
reclamation solution in Sect. 4 instead uses a SAT solver.
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1. Initially, for each subformula ϕ, now(ϕ) := BDD(⊥).
2. Observe a new event (as set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ

then now(ϕ) is updated before now(ψ).
– now(true) := BDD(�).
– now(p(a)) := if p(a) ∈ s then BDD(�) else BDD(⊥).
– now(p(x)) := build(x, V ) where V = {a | p(a) ∈ s}.
– now((ϕ ∧ ψ)) := and(now(ϕ), now(ψ)).
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ), pre((ϕSψ)))).
– now(� ϕ) := pre(ϕ).
– now(∃x ϕ) := exists(〈x0, . . . , xk−1〉, now(ϕ)).

5. Goto step 2.

At any point during monitoring, enumerations that are not used in the pre and
now BDDs represent all values that have not been seen so far in the input. In
particular, we save for that purpose the highest valued enumeration 11 . . . 11,
which we denote by BDD(11 . . . 11). This allows us to use a finite representation
and quantify existentially and universally over all values in infinite domains.

4 Dynamic Data Reclamation

We now describe the possibility of reusing enumerations of data values, when
this does not affect the decision whether the property holds or not. When a value
a is reclaimed, its enumeration e can be reused for representing another value
that appears later in the execution.

Recall that upon the occurrence of a new event, the basic algorithm uses
the BDD pre(ψ), for any subformula ψ, representing assignments satisfying this
subformula calculated based on the sequence monitored so far before the new
event. Since these BDDs sufficiently summarize the information that will be
used about the execution monitored so far, reclaiming data can be automated
without user guidance or static formula analysis, solely based on the information
the BDDs contain.

We are seeking a condition for reclaiming values of a variable x. Let A be a
set of assignments over some variables that include x. Denote by A[x = a] the set
of assignments from A in which the value of x is a. We say that the values a and
b are analogous for variable x in A, if hide(A[x = a], x) = hide(A[x = b], x). This
means that a and b, as values of the variable x, are related to all other values in
A in the same way. A value can be reclaimed if it is analogous to the values not
seen yet in all the assignments represented in pre(ψ), for each subformula ψ.

As the pre BDDs use enumerations to represent values, we find the enumera-
tions that can be reclaimed. Then, their corresponding values are removed from
the hash table, and the enumerations can later be reused to represent new val-
ues. Recall that the enumeration 11 . . . 11 represents all the values that were
not seen so far. Thus, we can check whether a value a for x is analogous to the
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values not seen so far for x by performing the checks on the pre BDDs between
the enumeration of a and the enumeration 11 . . . 11. In fact, we do not have to
perform the checks enumeration by enumeration, but use a BDD expression that
constructs a BDD representing (returning 1 for) all enumerations that can be
reclaimed for a variable x.

Assume that a subformula ψ has three free variables, x, y and z, each with
k bits, i.e., x0, . . . , xk−1, y0, . . . , yk−1 and z0, . . . , zk−1. The following expression
returns a BDD representing the enumerations for values of x in assignments
represented by pre(ψ) that are related to enumerations of y and z in the same
way as 11 . . . 11.

Iψ,x = ∀y0 . . . ∀yk−1∀z0 . . . ∀zk−1(pre(ψ)[x0 \ 1, . . . xk−1 \ 1] ↔ pre(ψ))

To take advantage of reclaimed enumerations, we represent a set of avail-
able enumerations for a variable x using a BDD avail(x). Initially at the start
of monitoring, we set avail(x) := ¬BDD(11 . . . 11). Let sub(ϕ) be the set of
subformulas of the property ϕ. When we are short in the number of available
enumerations and thus we want to perform data reclamation, we calculate Iψ,x

for all the subformulas ψ ∈ sub(ϕ) that contain x as a free variable, and set:

avail(x) := (
∧

ψ ∈ sub(ϕ), x ∈ free(ψ)

Iψ,x) ∧ ¬BDD(11 . . . 11)

This updates avail(x) to denote all available enumerations, including
reclaimed enumerations. When we need a new enumeration for variable x, we just
pick some enumeration e that satisfies avail(x). Let BDD(e) denote a BDD that
represents only the enumeration e. To remove that enumeration from avail(x),
we update avail(x) as follows:

avail(x) := avail(x) ∧ ¬BDD(e)

The formula Iψ,x includes multiple quantifications (over the bits used to repre-
sent the free variables other than x). Therefore, it may not be efficient to reclaim
enumerations too frequently. We can reclaim enumerations either periodically or
when avail(x) becomes empty or close to empty.

As the BDD-based algorithm detects which enumerations e can be reclaimed,
we need to identify the related data value a and update the hash table, so that
a will not point to e. In particular, we need to be able to find the data that is
represented by a given enumeration. To do that, one can use a trie: in our case
this will be a trie with at most two edges from each node, marked with either
0 or 1. Traversing the trie from its root node on edges labeled according to the
enumeration e reaches a node that contains the value a that is enumerated as e.
The traversing and updating the trie is linear per each enumeration. The current
implementation, however, uses the simpler straightforward strategy of walking
though all values and removing those which point to reclaimed enumerations.
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5 Example Monitor Execution

In this section we illustrate the working of the algorithm with a minimal, and
yet complete, example. Specifically we execute the algorithm on formula (1) and
the following trace consisting of nine events:

{open(f1)},{open(f2)},{open(f3)},
{close(f1)},{close(f2)},{close(f3)},
{open(f1)},{open(f4)},{write(f4,2)}

The formula contains two variables f and d, and we use just two bits to represent
each of these, yielding four possible bit combinations per variable: 00, 01, 10, and
11. The enumeration 11, however, as has been explained, is devoted to represent
values not seen yet in the trace during monitoring, hence with two bits we can
represent three values observed in the trace at a time.

To recall previous material, the algorithm in Sect. 3 updates for each new
event the now array, updating entries for innermost formulas first. References
are made to the pre array when computing BDDs for subformulas containing a
temporal operator at the outermost level, such as in this case the subformula
(¬close(f)S open(f)). The subformulas-first principle is achieved by enumerat-
ing subformulas as shown in Fig. 1 (left) and use this enumeration to update the
now array in the generated monitor code2, as shown in Fig. 1 (right).

We illustrate now the BDDs generated for selected positions in the now array
as the events in the above trace are submitted to the monitor. Figure 2 shows
selected BDDs from monitoring the first six events, whereas Fig. 3 shows selected
BDDs from monitoring the remaining three events. A BDD is either the deno-
tation of avail(f) (Sect. 4), or the contents of the now array at an index corre-
sponding to a position in the subformula tree in Fig. 1 (left). The caption for
each BDD identifies either avail(f) or a subformula index, an @-sign, and the
event that caused the computation of this BDD.

Recall that upon analysis of a new event, a data value in the event for a
variable is mapped to one of the bit enumerations 00, 01, or 10 (in a hash table
for that variable). The BDD denoted by a subformula (and stored in the now
array at the appropriate index) for a single variable will represent a subset of
these three enumerations, representing the set of values making the subformula
true. The BDD for a variable has a unique BDD variable for each bit. In our
case BDD variables b0 and b1 are used to represent the variable f , and BDD
variables b2 and b3 are used to represent variable d. The monitoring of the trace
above proceeds as follows.

Initially: Figure 2a shows the BDD representing initially available enumerations
for variable f (avail(f)). These are all enumerations different from 11 (namely
00, 01, and 10). The enumeration 11 is the reserved enumeration representing
all values not yet seen, and is the only assignment leading to leaf-node 0 (follow
the fully drawn arrows).

2 An additional 600+ lines of, mostly property-independent, code is generated.
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Fig. 1. Numbering of subformulas and generated monitor for property (1).

After event open(f1): Figure 2b shows the generated BDD for the enumeration
10 (note that the least significant rightmost bit in 10 corresponds to the BDD
variable b0 at the top of the BDD). This enumeration represents file f1, and is
picked from avail(f) using a SAT solver. Figure 2c shows the BDD for subformula
4 (¬close(f)S open(f)). It represents the enumeration 10 for file f1, since this
is the only file that has been opened so far and not closed yet, and this BDD
is therefore the same as the one in Fig. 2b. Figure 2d shows the BDD denoted
by avail(f) thereafter, representing the set {00, 01}. Note that these are the
enumerations where the leftmost (most signifiant) bit is 0, shown in the BDD as
BDD variable b1 having value 0 (the dashed line).

After event open(f2): Figure 2e shows the enumeration 01 allocated for file
f2. avail(f) is updated accordingly, subtracting 01 (now shown). Figure 2f shows
the BDD for subformula 4, which now represents the set containing the two
enumerations {10, 01}. This illustrates the core principle of representing a set of
assignments as a BDD. This BDD is obtained by performing a BDD or (corre-
sponding to a set union) on the BDDs for 10 respectively 01.

After event open(f3): Figure 2g shows the last available enumeration 00
allocated for file f3. avail(f) is updated accordingly, subtracting 00, and now
becomes BDD(⊥) (not shown), that returns 0 for all enumerations. Figure 2h
shows the BDD for subformula 4, which now represents the set containing the
three enumerations {10, 01, 00}, in other words: any enumeration except 11,
which is the only enumeration leading to 0.

After event close(f1): Figure 2i shows the BDD for node 4 after removal of the
enumeration 10 representing file f1, resulting in the set: {01, 00}, which contains
all enumerations where BDD variable b1 (representing the most significant bit)
is 0.

After events close(f2) and close(f3): The subsequent closing of files f2 and
f3 results in a situation where node 4 is BDD(⊥), since all files now have been



66 K. Havelund and D. Peled

01

b0

b1

(a) avail( f ) initially

0 1

b0

b1

(b) node 7 @ open(f1)

0 1

b0

b1

(c) node 4 @ open(f1)

01

b1

(d) avail( f )@ open(f1)

0 1

b0

b1

(e) node 7 @ open(f2)

0 1

b0

b1 b1

(f) node 4: @ open(f2)

01

b0

b1

(g) node 7 @ open(f3)

01

b0

b1

(h) node 4: @ open(f3)

01

b1

(i) node 4 @ close(f1)

Fig. 2. Selection of BDDs computed during monitoring of first six events.

closed. Furthermore, avail(f) is also still BDD(⊥), meaning that the opening of
a new file not yet seen will cause reclamation to be initiated.

After event open(f1): The re-opening of file f1 is possible without data recla-
mation (even though avail(f) is BDD(⊥)) since the former enumeration 10 asso-
ciated with f1 is still recorded in the hash table and is therefore reused. This leads
to a BDD for node 4 that is the same as in Fig. 2c. avail(f) remains BDD(⊥).
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Fig. 3. Selection of BDDs computed during monitoring of remaining three events.

After event open(f4): The opening of file f4 causes data reclamation since
there are no more available enumerations: avail(f) is BDD(⊥). Recall from
Sect. 4 that the new value of avail(f) is computed by computing the BDD Iψ,f of
available enumerations for variable f for each subformula ψ, and and-ing them
together with not(BDD(11)). We only need to compute these contributions for
temporal formulas. Figure 3a shows the BDD Iψ,f for ψ = (¬close(f)S open(f)).
Since file f1 was re-opened, and thereby its enumeration 10 reused, the irrele-
vant enumerations Iψ,f stemming from this subformula are all the enumerations
(including the special value 11, which will be subtracted later) that are different
from 10, which here is the only enumeration leading to a 0-leaf. Figure 3b shows
the value of avail(f) after these computations have been performed, resulting in
the BDD representing all enumerations different from 10 and 11. These are the
enumerations {01, 00} (BDD variable b1, representing the most significant bit,
is 0), which now can be allocated again for new data. Specifically, Fig. 3c shows
the BDD for the allocation of enumeration 01 for the new file f4.
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After event write(f4,2): Above we have seen examples of how a set of assign-
ments to a single variable (f) is represented as a BDD. The writing of the datum
2 to file f4 illustrates how assignments to multiple variables, in this case f and d,
are represented. Writing 2 to file f4 invokes the just allocated enumeration 01 for
f4 and a new enumeration 10 for d (same procedure as for f). Figure 3d shows the
BDD representing the juxtaposition of these two enumerations. BDD variables
b0 and b1 (representing f) denote the enumeration 01, and BDD variables b2 and
b3 (representing d) denote the enumeration 10. This BDD therefore represents
the assignment [f �→ f4, d �→ 2]. Finally, Fig. 3e shows the BDD in node 2 of
Fig. 1 after performing existential quantification over d on the 4-variable BDD
in Fig. 3d. The result is obtained by removing BDD variables b2 and b3, and
repointing BDD variable b2’s incoming arrow to leaf-node 1.

6 Conclusion

We described a BDD-based algorithm for monitoring executions of a system
against first-order past time temporal logic properties. The algorithm supports
automated dynamic data reclamation, removing data values when they no longer
affect the verdict. The BDD data structure appears to offer advantages for run-
time verification w.r.t. efficiency of monitoring, but also w.r.t. expressiveness
of the logic. Although not discussed in this paper, DejaVu supports numerical
relations between variables, and, in addition to quantification over all possible
values in an infinite domain, also quantification only over values seen in the trace.
Future work includes support for real-time constraints, and functions applied to
data values.
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Abstract. In this paper we present Contracts for Concurrency. A contract for
concurrency specifies the protocol to access the services provided by a software
module or library. A program that respects a (well-defined and complete) contract
for a module is safe from high-level atomicity violations with respect to that
module. On the other hand, violations of a contract may denote errors in the
program, and the application of contracts for concurrency to some real-world
open source software packages did uncover a few latent bugs.

1 Introduction

The encapsulation of a set of services as software module offers strong advantages in
the software development process, since it promotes the reuse of code and eases the
maintenance efforts. If unacquainted with the implementation details of a particular
set of services provided by a software module, the programmer may fail to identify
correlations that exist across those services, such as data and code dependencies, and
misuse the services and introduce bugs in the program. This is particularly relevant in a
concurrent setting, where it is hard to account for all the possible interleavings between
threads and their effects in the module’s internal state when its services are used.

When using a (third-party) software module, a program must follow its protocol,
which defines the legal sequences of invocations of its methods. For instance, a module
that offers an abstraction to deal with files will typically demand the programmer to start
by calling the method open(), followed by an arbitrary number of read() and write()

operations, and concluding with a call to close(). A program that does not follow this
protocol is incorrect and should be fixed. A way to enforce a program to conform to such
well defined behaviours is to use the design by contract methodology [5], and specifying
contracts that regulate the module’s protocol. Contracts serve as useful documentation
and may be automatically verified, thus ensuring the program obeys the protocol [1,3].

Concurrency brings new challenges to the definition of module protocols, as it also
brings additional requirements such as ensuring the atomic execution of sequences of
calls that are susceptible of causing atomicity violations. Some of these (high-level)
atomicity violations are possible even when the individual methods of the module are
protected by some concurrency control mechanism.
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Fig. 1. Program with a atomicity violation.

Figure 1 shows part of a program that
suffers from a high-level atomicity viola-
tion. The schedule() method gets a task
from a queue and executes it only if it
is ready to run. This program contains
a potential high-level atomicity violation
since the method may end executing a
task that was not marked as ready. This
may happen when another thread concur-
rently schedules the same task, despite
the fact the methods of Task are atomic. In this case the isReady() and run() methods
should be executed in the same atomic context to avoid atomicity violations. Atomicity
violations are one of the most common source of bugs in concurrent programming [4],
and are particularly susceptible to occur when composing calls to an external module
whose implementation details are unknown.

In this paper we describe Contracts for Concurrency [2,6], which improves the
correctness of concurrent programs by extending module usage protocols with a speci-
fication of the sequences of calls that should be executed atomically.

2 Contract Specification

The contract of a module is a protocol, and this protocol specifies which sequences
of calls of the non-private methods of that module are to executed atomically. In the
spirit of the programming by contract methodology, the specification of the terms of
the contract, including the identification of the sequences of methods that should be
executed atomically, is a responsibility of the module’s developer.

The Contract for Concurrency of a module with public methods m1, · · ·,mn is a
set of clauses, each clause ci is described by ei, a star-free regular expression over the
alphabet {m1, · · ·,mn}. Star-free regular expressions are regular expressions without the
Kleene star, using only the alternative (|) and the (implicit) concatenation operators.

Each sequence defined in ei must be executed atomically by the program using the
module, otherwise there is a violation of the contract. Our verification analysis assumes
that the contract defines a finite number of call sequences.

Example. Consider the array implementation as offered by the Java standard library,
java.util.ArrayList. For simplicity we will only consider the methods add(obj),
contains(obj), indexOf(obj), get(idx), set(idx,obj), remove(idx), and size().

The following contract defines some of the clauses for this class.

1. contains indexOf

2. indexOf (remove | set | get)
3. size (remove | set | get)
4. add (get | indexOf)

Clause 1 of the above contract denotes that the execution of contains() followed by
indexOf() should be atomic, otherwise the client program may confirm the existence
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of an object in the array, but fail to obtain its index due to a concurrent modification.
Clause 2 represents a similar scenario where, in addition, the position of the object
is modified. Clause 3 deals with the common situation where the program verifies if
a given index is valid before accessing the array. To make sure the size obtained by
size() is valid when accessing the array, these calls must be atomic. Clause 4 maps
scenarios where an object is added to the array and then the program tries to obtain
information about that object by querying the array.

Another relevant clause is “contains indexOf (set | remove)”, but the contract’s
semantic already enforces the atomicity of this clause as a consequence of the compo-
sition of clauses 1 and 2, as they overlap in the indexOf() method.

2.1 Extending Contracts with Parameters

Basic contracts may be too restrictive because they enforce methods to always be exe-
cuted atomically. However, frequently two methods may have to be executed atomically
if they refer to the same data and my be executed concurrently otherwise. To incorporate
this concept, Contracts were extended with parameters [2,6].

Example. When including symbolic parameters, the above contract may be refined as:

1. contains(X) indexOf(X)

2. X=indexOf( ) (remove(X) | set(X, ) | get(X))
3. X=size() (remove(X) | set(X, ) | get(X))
4. add(X) ( get(X) | indexOf(X))

This contract uses the underscore as a free variable, and captures in detail the depen-
dencies between method calls, expressing the relations that are problematic and exclud-
ing those that do not cause atomicity violations, hence allowing for more concurrency
without compromising correctness.

2.2 Extending Contracts with Spoilers

Some sequences of method calls from the module’s API may need to be executed atom-
ically with respect to some well identified methods, while with some others they do
not. For example, the clause contains indexOf states that this sequence of calls must
always be executed atomically (w.r.t. methods of the given module), regardless of which
methods the other threads are executing. Interleaving a thread executing this sequence
with another one is thus a contract violation regardless of whether the other thread
executes remove or get, not distinguishing that the former is harmful while the latter
is not.

Contract spoilers [2] address the above problem by allowing to express in which
context the contract clauses shall be enforced. For that, each clause of the basic contract
(a target) is coupled with a set of spoilers that restrict its application. A spoiler repre-
sents a set of sequences of methods that may violate its target. Client programs must
then ensure that each target is executed atomically w.r.t. its spoilers, whenever exe-
cuted on the same object. For the target clause contains indexOf, a possible spoiler
is remove, and the extended clause would be: contains indexOf � remove.



Verifying Real-World Software with Contracts for Concurrency 73

Example. The basic contract for java.util.ArrayList extended with parameters and
spoilers is:

1. contains(X) indexOf(X) � remove( )

2. X=indexOf( ) ( remove(X) | set(X, ) | get(X) ) � remove( ) | add( ) | set(X, )

3. X=size() ( remove(X) | set(X, ) | get(X) ) � remove( )

4. add(X) ( get(X) | indexOf(X) ) � remove( ) | set(X, )

3 Conclusions

The Contracts for Concurrency may be validated statically or dynamically [2,6]. Exper-
iments with applying these Contracts in real-world programs resulted in identifying
multiple atomicity violations in production open-source softwares such as Tomcat1,
Derby2, Cassandra3, Chromium-1 (version 6.0.472.35). Both, the automatic generation
of Contracts for Concurrency and their extension to address other concurrency issues
are current ongoing work.
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1 Motivation and Goals

Already for many decades, formal methods are considered to be the way forward
to help the software industry to make more reliable and trustworthy software.
However, despite this strong belief, and many individual success stories, no real
change in industrial software development seems to happen. In fact, the software
industry is moving fast forward itself, and the gap between what formal methods
can achieve, and the daily software development practice does not seem to get
smaller (and might even be growing).

In the past, numerous recommendations have already been made and studies
performed on how to develop formal methods research in order to close the
gap (e.g., [3,5–7,9,13,17]) between research and industrial practice, which also
exists in other areas of software engineering like testing [10]. This track had
the goal to investigate why the gap between research and industrial practice
nevertheless still exists for formal methods, and what steps can be taken by the
formal methods research community to bridge it.

The track consisted of three sessions of three speakers of 30 min each, fol-
lowed by a 90 min closing discussion. We invited speakers that have collaborated
with industry, and asked them for their experiences and recommendations on
what should be done to close the gap. We also invited industrial speakers who
have collaborated with academia, so as to learn from their experiences. Finally,
the 4th session presented the idea to have a repository with formally verified
benchmarks, to foster the industrial adoption of formal methods. During the
closing discussion, we discussed the set up of such a benchmark. In addition,
we also investigated if there are shared recommendations, and how we can put
these recommendations into practice.

The track was in part a continuation of a Lorentz workshop in 2015, titled
Verification of Concurrent and Distributed Software: Towards Industrial Use.

c© Springer Nature Switzerland AG 2018
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2 Contributions

2.1 Session 1: Testing and Requirements in Industrial Practice

The first session investigated current practices in testing and requirements engi-
neering in industrial practice, and how formal techniques can help. During this
session, the following papers were presented.

Peleska et al. [15] (Model-based Testing for Avionic Systems Proven Benefits
and Further Challenges) report on the transition of model-based testing (MBT)
from a widely discussed research discipline to an accepted technology that is
currently becoming state of the art in industry, and in particular, in the field
of safety-critical systems testing. They review how focal points of MBT-related
research in the past have “survived” and found their way into today’s commercial
MBT products. The authors describe the benefits of MBT that are – from their
experience – most appreciated by practitioners. Moreover, some interesting open
challenges are described, and potential future solutions are presented. Their
material is based on practical experience with recent MBT campaigns performed
for Airbus in Germany.

Bardin et al. [2] (Test Case Generation with PathCrawler/LTest: How to
Automate an Industrial Testing Process) consider automatic white-box testing
based on formal methods as a relatively mature technology for which operational
tools are available. Despite this, and the cost of manual testing, the technology is
still rarely applied in an industrial setting. The authors describe how the specific
needs of the user can be taken into account in order to build the necessary inter-
face with a generic test tool. They present PathCrawler/LTest, a generator of
test inputs for structural coverage of C functions, and describe the essential par-
ticipation of the research branch of an industrial user in bridging the gap between
the tool developers and their business unit and adapting PathCrawler/LTest to
the needs of the latter.

Alzuhaibi et al. [1] (Pitfalls upon Applying Model Learning to Industrial
Legacy Software) address refactoring of legacy software as one of the most com-
mon struggles of the current software industry, being costly and yet essential.
They tackle this problem by applying model learning with the aim of understand-
ing the observable behaviour of legacy components. The used technique interacts
with a component in runtime and extracts abstract models that lead to better
informed development decisions. The authors describe their experience in apply-
ing model learning to legacy software, aiming to prepare the newcomer for what
shady pitfalls lie therein, as well as to provide the seasoned researcher with con-
crete cases and open problems. They narrate their experience in analysing certain
legacy components at Philips Healthcare describing challenges faced, solutions
implemented, and lessons learned.

2.2 Session 2: Software Verification in Industrial Practice

The second session then took the point of view of people working in software
verification, and how they considered that their techniques could be used in
industrial practice. During this session, the following papers were discussed.
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Nyberg et al. [14] (Formal Verification in Automotive Industry: Enablers
and Obstacles) describe and summarize their experiences from six case studies
in applying formal verification techniques to embedded, safety-critical code. The
studies have been conducted at Scania over the period of eight years. Despite
certain successes, the authors admit to have so far failed to introduce formal
techniques on a larger scale. Based on their experiences, they identify and dis-
cuss some key obstacles to, and enabling factors for, the successful incorpora-
tion of formal verification techniques into the software development and quality
assurance process.

Knüppel et al. [11] (Scalability of Deductive Verification Depends on Method
Call Treatment) address the problem of treating method calls in the context of
deductive verification of safety-critical and security-critical applications applied
in industry. During verification, a method call can either be replaced by an avail-
able method contract (called contracting) or by inlining the method’s implemen-
tation. The authors argue that neither approach alone is feasible for verifying
real-world software systems: Only relying on method inlining does not scale, as
the number of inlined methods may lead to a combinatorial explosion; on the
other hand, contracting is notoriously hard and time-consuming, making it eco-
nomically unrealistic to be used exclusively. The authors discuss circumstances in
which one of the two approaches is preferred. They evaluate the program verifier
KeY with large programs varying in the number of method calls of each method
and the maximum depth of the stack trace. Their analyses show that specifying
10% additional methods in a program can reduce the verification costs by up-to
50%, and, thus, an effective combination of contracting and method inlining is
indispensable for the scalability of deductive verification.

Cok [8] (Java Automated Deductive Verification in Practice: Lessons from
industrial proof-based projects) considers automated proof-based deductive ver-
ification used in industry to give confidence in the security and correctness of
libraries and applications. The author presents various observations on current
tools and processes based on recent experience with verification projects on
industrial software, related to scalability, breadth, specification language express-
ibility and semantics, capabilities of underlying SMT tools, and integration into
industrial build and continuous integration processes.

2.3 Session 3: Application Areas

The 3rd session investigated how focusing on specific application areas could
help to make the use of formal verification techniques more feasible. During this
session, the following papers were presented.

Bolignano and Plateau [4] (Security Filters for IoT Domain Isolation) con-
sider network segregation as the key to the security of the Internet of Things, but
also to the security of more traditional critical infrastructures or SCADA sys-
tems that need to be more and more connected and allow for remote operations.
The authors believe that traditional firewalls or data diodes are not sufficient,
considering the new issues at stake and that a new generation of filters is needed
to replace or complement existing protections in these fields.
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Larsen et al. [12] (20 Years of Uppaal Enabled Industrial Model-Based Valida-
tion and Beyond) review how the Uppaal Tool Suite served in industrial projects
and was both driven and improved by them throughout the last 20 years. They
show how the need of industry for model-based validation, performance evalu-
ation and synthesis shaped the tool suite and how the tool suite aided the use
cases it was applied in. The authors highlight a number of selected cases, includ-
ing success stories and pitfalls, and discuss the important roles of both basic
research and industrial projects.

Zakharov and Novikov [18] (Verification of Operating System Monolithic Ker-
nels without Extensions) observe that operating systems and, in turn, applica-
tions strongly depend on monolithic kernels, and so the requirements for func-
tionality, security, reliability and performance of the latter are ones of the high-
est. Currently used approaches to software quality assurance help to reveal quite
many defects in monolithic kernels, but none of them aims at detecting all vio-
lations of checked requirements and providing some guaranties that target pro-
grams always operate correctly. The authors present a new method which is
based on software verification and which enables thorough checking and finding
complicated faults for various versions of monolithic kernels. One of its most
important features is that it is not necessary to spend considerable effort for
configuring tools and developing specifications to obtain valuable verification
results, but one is able to steadily improve their quality. The authors imple-
mented the suggested method within the software verification framework Klever
and evaluated it on subsystems of the Linux monolithic kernel.

2.4 Session 4: A Repository of Formal Methods Examples and
Experiments

Schlick et al. [16] (A Proposal of an Example and Experiments Repository to
Foster Industrial Adoption of Formal Methods) observe that formal methods
have been around almost since the beginning of computer science. Nonetheless,
the perception in the formal methods community is that pickup by industry is
rather low, measured by the potential benefits. As one approach to address this
issue, they sketch the setup of a repository of software development problems
and an accompanying open data storage to document, disseminate and compare
solutions from formal model based methods. The purpose of this is to allow the
industry to better understand the available solutions and more easily select and
adopt one fitting their needs. At the same time, it should foster the adoption of
open data and good scientific practice in the research field.

References

1. Alzuhaibi, O., Mooij, A., van Wezep, H., Groote, J.F.: Pitfalls upon applying model
learning to industrial legacy software. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 121–138. Springer, Heidelberg (2018)



Formal Methods in Industrial Practice - Bridging the Gap (Track Summary) 81

2. Bardin, S., Kosmatov, N., Marre, B., Mentré, D., Williams, N.: Test case gen-
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Abstract. In this article, we report on the transition of model-based
testing (MBT) from a widely discussed research discipline to an accepted
technology that is currently becoming state of the art in industry; in
particular, in the field of safety-critical systems testing. It is reviewed
how focal points of MBT-related research in the past have found their
way into today’s commercial MBT products. We describe the benefits of
MBT that are – from our experience – most appreciated by practitioners.
Moreover, some interesting open challenges are described, and potential
future solutions are presented. The material presented in this paper is
based on our practical experience with recent MBT campaigns performed
for Airbus in Germany.
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1 Introduction

1.1 Motivation

Though the industrial applicability of formal verification methods has been con-
tinuously improved during the last decade, standards for safety-critical systems
development – for example, the avionic standard RTCA DO-178C [31] – insist
on performing tests on target hardware, in particular, HW/SW integration tests.
This is well-justified, because implicit assumptions made during formal software
verification about the underlying hardware and firmware may not be fulfilled by
the target computer. As of today, there are no trustworthy and comprehensive
formal models of complete control computers. Promising approaches cover, for
example, CPU, cache, and interface bus models for the purpose of worst-case
execution time calculation [17], or complex CPU models for general verification

The work presented in this contribution has been partially funded by the German
Federal Ministry for Economic Affairs and Energy (BMWi) in the context of project
STEVE, grant application 20Y1301P.
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objectives [11], but none of them provides a complete computer model. Therefore,
a formal treatment of HW/SW integration allowing to forgo HW/SW integration
testing will remain infeasible for at least another decade.

As a consequence, methods improving the effectiveness of HW/SW integra-
tion testing are of considerable importance. According to our assessment of cur-
rent trends in cyber-physical systems, the growing application complexity will
make it impossible in the near future to perform trustworthy test campaigns
without automating several of the crucial testing activities. Automation should
apply to test case identification, requirements tracing, test procedure generation,
execution, and evaluation.

We consider model-based testing (MBT) as one of the most promising meth-
ods allowing for this higher degree of test automation. At the same time, we
deem MBT to be able to maintain adequate test strength in presence of increas-
ing application complexity.

1.2 Contributions

In this paper, we review some of the most important research areas of MBT
during the last decade and point out how they have become key enablers for
tool-supported MBT in practice. It is a suitable point in time for such a review,
because several major key players in several application domains currently shift
their development, verification, and validation processes towards model-based
systems engineering (MBSE). This assessment is based on our own experiences
with verification and validation of safety-critical systems in the avionic, automo-
tive, and railway domains.

We describe several aspects of MBT that are regarded to be the main benefits
from the practitioner’s perspective. Moreover, an open problem is described,
concerning the automated model-based construction of effective test cases for
given requirements. A solution to this challenge is proposed, and we expect that
this will help to make MBT even more effective for industrial application in the
future.

Examples are provided from “real-world” projects performed by Verified Sys-
tems International for Airbus during HW/SW integration test campaigns for the
cabin communication system and the smoke detection control system.

Technical, tool-related aspects are highlighted using our MBT product RT-
Tester. Following the taxonomy proposed in [33], this tool operates with deter-
ministic, timed, discrete, transition-based input-output model specifications rep-
resented in SysML [24]. The test generation can be based on model coverage
criteria, requirements coverage, as well as on user-defined symbolic test cases
specified as LTL formulas. Concrete test data for symbolic test cases is calcu-
lated using an SMT constraint solver [28]. Test execution is offline, this means
that the test data to be passed to the SUT is calculated before the test execution.
This is adequate for SUTs from the safety-critical systems domain, where deter-
ministic behavior is expected and tests need to be repeatable without changing
the data between executions.
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It should be emphasized that there is a growing number of MBT tools whose
maturity is adequate for practical application in an industrial context: in several
aspects, RT-Tester competes with tools like Rational Test Conductor and Auto-
mated Test Generator1, the TGV tool integrated with TorX [4], and UppAal-
TRON [19]. Each of these tools has its unique selling points, but they adhere
to the same model-based testing paradigm, where models specify the expected
behavior of the SUT, test cases are identified in the model using some auxiliary
information, and concrete test data are calculated using model checking meth-
ods for witness generation or SMT constraint solvers. We have named these
three tools explicitly, because we are aware of their functionality and of their
suitability for application in industrial-scale projects2.

1.3 Terminology

When using the term MBT in the context of this paper, this is understood in the
following sense. A test model is developed specifying the expected behavior of
the SUT, as far as observable on the interfaces of a hardware-in-the-loop (HiL)
testing environment. The tests are black-box, so the internal model structure
will just represent a functional decomposition of the applications to be tested
and not necessarily reflect the internal SUT design. The test model is used to
automatically identify test cases, calculate concrete test data, and generate test
procedures running the test cases against the SUT. This includes the genera-
tion of test oracles checking the SUT responses observed against the expected
behavior encoded in the model.

It should be noted that MBT also comprises a complementary approach,
where models represent testing activities and/or test cases and steps to be per-
formed against an SUT. We refer to [21,22] as an example of an industrial-
strength tool following this paradigm. This paradigm, however, will not be con-
sidered further for the rest of this paper.

Following the terminology of the avionics software development standard
RTCA DO-178C [31, p. 117], a test case is a set of test inputs, execution condi-
tions, and expected results developed for a particular objective, such as to exercise
a particular program path or to verify compliance with a specific requirement.
Note that in our context, test inputs are usually traces of input vectors to be
passed to the SUT at specific points in time during the test execution. Further-
more, the expected results are typically not specified on a per-test case basis,
because an executable version of the test model can be run as a test oracle
in back-to-back fashion to the SUT during test execution, checking the SUT
reactions in dependency of the inputs.

Just as software test case executions result in a certain code coverage, we
use the term model coverage to be achieved by an MBT test case execution.
1 See https://www.ibm.com/support/knowledgecenter/SSB2MU 8.2.1/com.btc.tcatg.

user.doc/topics/com.btc.tcatg.user.doc.html and ftp://public.dhe.ibm.com/software/
uk/itsolutions/innovate2013/12.00 Udo Brockmeyer-003.pdf.

2 A more extensive list of MBT tools is given in http://mit.bme.hu/∼micskeiz/pages/
modelbased testing.html#tools.
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The timed trace of input vectors associated with a test case, when simulated in
the test model, leads to a model execution covering certain external and internal
model interfaces, as well as states and transitions in concurrent timed state
machines. Formally, mode executions can be interpreted as the computations
of Kripke structures [25]. Each computation step consists of a state valuation
function indicating the values of interfaces and internal model variables and
specifying the state machine control states each concurrent machine resides in.
In analogy to code coverage metrics, various measures for model coverage exists.
As an example, we mention transition coverage which gives the percentage of
state machine transitions covered by a test suite, when executing its test cases
against the model. A detailed overview of coverage metrics for models can be
found in [25,35].

A test procedure is an executable unit in the HiL environment which drives
one or more concrete test cases against the SUT, at the same time checking the
SUT responses against the expected ones specified in the test model.

1.4 Overview

A case study derived from a real-world test model is presented in Sect. 2; this
will be used in the subsequent sections to illustrate various aspects of MBT
for HW/SW-integration testing of avionic systems. The case study is a revised
version of the one originally presented in [26]. In Sect. 3, some crucial MBT-
related research results of the past are reviewed. Using RT-Tester as a reference
tool, it is explained how these results have found their way into today’s tools
that are capable of handling industrial-scale MBT campaigns. Section 4 reviews
the main benefits of MBT in practice, as perceived by our customers and by the
MBT specialists at Verified Systems. In Sect. 5, one of the most important open
MBT challenges is discussed: the problem to generate meaningful test cases for
given requirements from a test model, without having to supply too much and too
complex information in a manual way about how the requirement is encoded in
the model. A solution for this challenge is proposed in Sect. 6. Section 7 presents
a conclusion. We refer to related work throughout the text where appropriate.

2 Case Study – Fasten Seatbelt Sign Control

To illustrate various aspects of MBT for avionic systems, a case study concerning
the control of fasten seatbelt (FSB) signs is presented in this section. The study
has been derived from the real FSB control function as used in today’s aircrafts,
but it has been reduced with respect to the input and output interfaces to be
handled, and the control logic has been simplified to facilitate the presentation
of various MBT features.

2.1 Interfaces

The input and output interfaces of the FSB control function, parameters, and
internal model variables are listed in Table 1.
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Table 1. Variables used in state machine diagrams.

Symbol I M O Meaning

pa p FSB AUTO condition variant, range 1, 2, 3

pea p Excessive altitude (EA) handling variant for FSB signs, range
0 (no EA handling for FSB signs), 1 (FSB signs are switched
on when EA is active)

C • Cockpit switch for FSB signs, range 0 (FSB signs OFF), 1
(ON), 2 (AUTO)

EA • Excessive altitude (i.e., cabin decompression) is active, range
0 (false), 1 (true)

EM • Emergency mode active (normal power unavailable), range 0
(false), 1 (true)

ESG • Engine shutdown & aircraft on ground, range 0 (false), 1
(true)

L • Nose landing gear down & locked, range 0 (false), 1 (true)

S1 • Slats 1 extended, range 0 (false), 1 (true)

S2 • Slats 2 extended, range 0 (false), 1 (true)

a • AUTO condition active, range 0 (false), 1 (true)

f • FSB ON condition active, range 0 (false), 1 (true)

SC • System startup completed, range 0 (false), 1 (true)

F • Fasten seatbelts signs are switched on, range 0 (off), 1 (on), 2
(undefined)

I: p = configuration parameter (regarded as constant input)
I: • = Input variable
M: Internal model variable
O: Output variable

The main input is the FSB cockpit switch C which is used to switch the
signs on (switch position 1) or off (position 0). In switch position 2 (so-called
AUTO position), the FSB signs are switched automatically on or off, depending
on further inputs L, S1, S2, and ESG signaling the status of the nose landing
gears, slats 1 and 2, and the engine status in conjunction with on-ground status
of the aircraft, respectively. The normal control logic can be overridden by the
occurrence of the excessive altitude condition (input EA) or by the loss of normal
power (input EM).

The SUT outputs considered during FSB-related tests are represented by
variables SC indicating that the SUT is in the operative state and F indicating
whether the FSB signs are to be switched on. Output F is an abstraction of
the status of all FSB signs which are connected to a peripheral bus and need
to be controlled by sending ON/OFF commands to all device addresses where
FSB signs are deployed. Since all FSB signs are switched synchronously, the
test model just uses one variable aggregating their state. A subordinate software
layer of the test engine monitors the individual device states and aggregates
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the concrete bus commands associated with FSB devices to outputs 0 (all FSB
signs off), 1 (all on), or to value 2 (undefined) as long as the FSB signs are in
inconsistent states.

The control logic for FSB signs depends on two configuration parameters
pa and pea which may be set only once at system startup and remain constant
during the whole SUT execution. Parameter pa has 3 different values determining
the variant how FSB signs are automatically switched on or off while the cockpit
switch is in the AUTO position. Boolean parameter pea indicates whether the
occurrence of the excessive altitude state affects the FSB control logic or not.

Fig. 1. State machine calculating the auto condition.

2.2 Functional Model

The FSB control functionality is modeled by three concurrent, interacting state
machines depicted in Figs. 1, 2, and 3. The first machine decides whether the
condition for switching signs automatically on holds and records the decision in
internal variable a (see Table 1). The second decides whether FSB signs should
be switched on and records this decision in the model variable f . The decision is
based on inputs C and EA, and on the AUTO condition a. The third machine
actually writes to the FSB control output F ; the output value depends on the
current value of f and the state of the EM input.
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Fig. 2. State machine modeling the FSB ON/OFF logic.

Fig. 3. State machine modeling the FSB output handler logic, taking the emergency
mode into account.
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The state machines shown adhere to UML/SysML syntax as defined in [24].
The change event when(c) occurs when a Boolean condition c switches from
false to true. The transitions emanating from transient choice pseudo states
are labelled with guard conditions in square brackets, determining the transition
to be followed.

FSB AUTO Function. The FSB AUTO condition depends on a parameter pa,
since different airlines prefer specific variants of the automatic switch function;
this is modeled by the state machine shown in Fig. 1. The machine sets the
internal model variable a to 1 if and only if the AUTO condition holds. When pa
equals 1, signs shall be automatically switched on if the aircraft is not on ground
with engines switched off (ESG = 0), and the nose landing gear is down and
locked or at least one of the slats is extended. With parameterization pa = 2,
the AUTO condition only depends on nose landing gear and slats, and for pa = 3,
it depends on the nose landing gears alone.

FSB Control Logic. The central control logic setting the FSB on flag f is
shown in Fig. 2. If the excessive altitude state EA has no influence on the FSB
control logic (this is reflected by parameter setting pea = false), control of the
FSB signs is specified completely by submachine FSB NORMAL: the signs are
switched on if the cockpit switch is in position 1, or if it is in position 2 and the
AUTO condition a holds. Otherwise the FSB signs are switched off.

If the FSB control logic should take the excessive altitude state into account
(pea = true), occurrence of this state forces the signs to be switched on, regard-
less of the cockpit switch position and the state of the AUTO condition. When
the excessive altitude state is no longer active, the FSB signs are switched again
according to the rules of the FSB NORMAL submachine.

The state machine in Fig. 2 also exemplifies how model elements can be traced
back in SysML to the requirements they help to realize. In the example shown
here, only two requirements (FSB-001 and FSB-002) are referenced. The first
one is defined as follows (the second requirement is discussed below in Sect. 5).

FSB-001. The FSB signs shall be switched on if the cockpit switch C is in
position 1, and they shall be switched off if C is switched back to 0. This
holds as long as the sign state is not overridden by the excessive altitude
condition or the emergency mode.

Obviously, all transitions setting f to 1 or 0 due to cockpit switch changes
between C == 1 and C == 0 contribute to modeling this requirement. There-
fore, the transitions triggered by C == 1 and C == 0 conditions are connected
to the requirement by means of a satisfy relationship. Its interpretation is that
every model computation triggering one of these three transitions is a witness for
requirement FSB-001. Moreover, the transition from FSB NORMAL to EXCES-
SIVE ALTITUDE REACTION and a transition in Fig. 3 are linked to FSB-001,
because they specify how the effect of the switch C can be overridden by inputs
EA and EM.
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FSB Output Handler. The state machine depicted in Fig. 3 performs the
actual writes to the output interface F . As long as normal power is available
(EM = false), output F is switched consistently with internal variable f . The
occurrence of a power loss (EM = true) forces the FSB signs to be switched off.

3 Key Enablers for MBT in Practice

The comprehensive research on MBT performed during the last decades has
provided a tremendous amount of results of high practical relevance. In this
section, just four of these are discussed, because they have been most valuable
for building today’s MBT tools that are able to cope with industrial-scale MBT
campaigns.

Symbolic Model Coverage Test Cases. Test cases are designed to inves-
tigate specific SUT properties. Since the expected SUT behavior is encoded in
the test model, each test case is reflected by a model property, i.e., a (possi-
bly infinite) set of model executions. Recall from Sect. 1.3 that an execution is
interpreted as a sequence of states in a Kripke structure, each state characteriz-
ing the current value of each model interface and each internal variable, as well
as the control states each state machine resides in. Model execution sets can be
characterized by temporal logic formulas. For the purpose of testing, we are only
interested in safety properties, because their violation can be detected by finite
prefixes of infinite computations. For the RT-Tester tool, Linear Temporal Logic
(LTL) is used for this purpose [9]. As a consequence, all practically relevant test
cases can be represented symbolically as safety formulas from temporal logic [32].
A concrete test case is just a finite solution of such a formula. The admissible
solutions need to fulfill the side condition that they must be extensible to infinite
executions of the model. This induces a symbolic representation of each test case
as a formula

TestCase ≡ I(s0) ∧
k∧

i=1

Φ(si−1, si) ∧ G(s0, . . . , sk) (1)

which is well-known from bounded model checking [3]. Here, I(s0) specifies the
initial model state, and Φ is the model’s transition relation. G(s0, . . . , sk) is a
first-order representation of the LTL formula ϕ specifying the property to be
tested and interpreted on the finite state sequence s0, . . . , sk as described in [3].

Model coverage test cases specify conditions to cover a certain model ele-
ment during a test execution. Though we will discuss in Sect. 5 below that these
test cases do not always result in tests of satisfactory strength, they have the
considerable advantage that they can be automatically derived from the model.

Example 1. The model coverage goal “cover the transition from FSB ON to
FSB OFF labelled by change event C == 0” in submachine FSB NORMAL can
be specified in LTL as

F
(
FSB ON ∧ C = 0 ∧ (¬EA ∨ ¬pea)

)
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The finally operator F admits any computation that visits state FSB ON
and lets condition C == 0 become true while in this state. Note that state
FSB ON can never be entered while condition C == 0 is fulfilled. Therefore,
F

(
FSB ON ∧ C = 0

)
really specifies the occurrence of the change event “while

in FSB ON, C changes from a non-zero value to zero”.
The condition (¬EA ∨ ¬pea) ensures that the transition is really taken and

not overridden by the occurrence of excessive altitude, leading to a high-level
transition into EXCESSIVE ALTITUDE REACTION. �

Automated Test Data Calculation. From a solution of (1), the sequence of
input vectors si(x), i = 0, . . . , k, together with their input time stamps si(t), i =
0, . . . , k is extracted. Model parameters are encoded in the transition relation as
special inputs p satisfying si(p) = si−1(p), i = 1, . . . , k. This implies that they
can be set only once as the very first input and remain constant throughout the
remaining execution. For the solution of formula (1), RT-Tester uses an SMT
solver that is capable of handling transition relations of typical test models as
they occur in avionic systems [28]. Other tools obtain concrete test data by
means of the witness generators of global model checking tools [10].

Automated Test Procedure Generation. The concrete test data obtained
when solving the constraints specified by a symbolic test case can be executed
against the SUT by means of a test procedure. Using typical model-to-text trans-
formations which are well-known from code generation in model-driven devel-
opment (see, e.g., [2]), one or more concrete test cases can be transformed into
a test procedure to be executed against the SUT. In RT-Tester, the procedure
also executes the test oracles obtained from the model as separate threads, such
that all SUT responses are continuously checked against the responses expected
according to the model.

Replay. With a test model at hand, it is helpful to be able to compare an
observed test execution to the expected execution specified by the model. During
such a replay, the inputs of the test execution are used as inputs to a model simu-
lation, and the outputs observed are compared to the outputs expected according
to the simulation. The replay function provides several important capabilities.
(1) It supports debugging of failed test executions by allowing to compare the
observed data to the computation expected according to the model. (2) It sup-
ports tool qualification (see [5] for more details about this topic). (3) It allows for
the identification of additional test cases that have been covered during the test
execution, without specifying them explicitly as a test objective. This is achieved
in the RT-Tester tool by checking whether the model executions obtained dur-
ing the replay are also solutions of other symbolic test cases which had not been
specified when generating the test procedure.
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Test Oracles as Passive Testers. Since the test model encodes the expected
behavior of the SUT, it can be transformed into a passive tester providing a
test oracle continuously checking all SUT reactions for compliance with the
expected behavior. In RT-Tester, this is achieved by generating code from the
state machines of the model which runs in back-to-back fashion with the SUT
during the test execution. Every input sent to the SUT is also consumed by
these executable machines, and they communicate via the shared model vari-
ables. Every SUT output, however, is compared by these machines against the
expected output they have calculated before, taking into account admissible
latency in SUT outputs and admissible deviations of floating point data. More
details about the test oracle generation process have been described in [25].

4 MBT Benefits in Practice

In our discussions with verification and validation experts from Airbus, the fol-
lowing characteristics of Verified’s MBT technology were considered as the main
advantages, in comparison to conventionally programmed test procedures.

Automated Requirements Tracing. The MBT approach allows for automated
creation of traceability information, linking requirements to test cases (see more
about this aspect in the sections below), test cases to test procedures, and test
procedures to test results.

Automated Identification of Implicitly Covered Test Cases. When running a test
procedure to execute one or more test cases, some other test cases are covered
as well, because the SUT passes through states where other properties could
also be checked. In RT-Tester, the replay function described above records these
additional test cases and stores the coverage and PASS/FAIL information in a
test management database system.

150% Models. Most avionic systems are parameterized by configuration data
influencing their behavior. A so-called 150% model covers the expected SUT
behavior for all admissible parameterizations. RT-Tester supports the identifi-
cation of SUT configurations that need to be considered in different tests and
automatically generates test procedures for the required parameter combinations
(see [26] for a more detailed description of this feature).

Advantages During Regression Testing. When test procedures are programmed
in the conventional way, all of them need to be analyzed when a new release
of the SUT is created due to updated and added requirements. In contrast to
this, the MBT approach allows us just to change the test model. Then the test
procedures are re-generated automatically for the new SUT behavior.

Efficient Verification of Verification Results. Since RT-Tester can be qualified
according to the requirements of RTCA DO-178, it is no longer necessary to
verify the test procedures with respect to correct implementation of test cases
and checks against expected results.
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Test Suite Validation in Simulation Mode. With a test model at hand, many
MBT tools allow for generating a simulation of the SUT. This is exploited by
RT-Tester, so that the effectiveness of a test suite can be evaluated even before
the SUT is available. Only the requirements specifications are needed, so that
the test model can be created. By creating an executable simulation from the
model and injecting errors into the simulation, it is possible to assess the test
suite strength by checking which of the errors are detected by the generated
procedures.

Efficient Failure Analysis. Advanced MBT tools allow for an intuitive and
detailed comparison of the SUT behavior observed against the behavior expected
according to the model. This facilitates the analysis of failed test executions in
a considerable way. In RT-Tester, this feature is provided by the replay function
described above.

The MBT benefits listed in this section have been discussed in more detail
in [26].

5 Challenges

A Summary of Open Problems Affecting MBT in Practice. From our
practical experience, the open problems listed in Table 2 present major challenges
to be overcome in order to raise the efficiency of MBT for embedded control
systems in the avionic domain to the next level.

Problems 1 and 2 stated in Table 2 are well-known and have been extensively
addressed in the MBT literature. It is interesting to note, however, that Prob-
lem 3 has not been identified in the survey articles [23,30,33]: there, the problem
of finding constraint solvers or counter example generators with sufficient perfor-
mance has been regarded as the main challenge. From our experience, however,
the latter problem can be regarded to be solved for a large portion of today’s
test models typically encountered in embedded systems testing. Moreover, the
Problems 4 and 5 have not been addressed in any of these surveys. Our interpre-
tation of this fact is that now, since more feedback from industrial-scale MBT
projects is available, new challenges become visible. Finally, it is very encour-
aging to note that several risks and open problems listed in [23,30] have been
adequately solved during the last years.

Problem Statement. In the remainder of this paper, we will discuss Problem 3
(Meaningful test scenarios) in more detail. This challenge is induced by the neces-
sity to perform selective, requirements-based testing in most testing campaigns,
instead of executing all tests suggested by an MBT strategy. Though a complete
model encodes all functional requirements by structural and behavioral model
elements, the identification of requirements in models is a non-trivial matter. In
particular, conventional model coverage criteria (e.g., transition coverage) result
in test strength that strongly depends on the syntactic model representation [14].
As a consequence, their requirements coverage may be very weak, if the model
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Table 2. Open problems affecting MBT for embedded control systems in practice.

No. Problem Description See

1. Efficient and
correct
modeling

Creating test models with sufficient detail to serve
as a basis for both test data generation and
verification of expected results requires considerable
effort. Moreover, the quality of the models is crucial
for the quality of the test suites to be generated.
Finally, the creation of good test models requires
higher expertise than, for example, programming
simple test procedures in a script language

[23,30]

2. Configuration
testing

Selection of meaningful parameter settings for
testing configurable embedded control systems
presents a big challenge, because the parameter
space is usually too big to be enumerated for all
possible combinations. This problem is often
discussed in the context of product line testing and
combinatorial testing

[18,20,26,33]

3. Meaningful
test scenarios

Calculating concrete test data by means of
constraint solvers or as counter-examples from a
model checker does not necessarily lead to timed
input traces for the SUT which are considered as
“typical normal behavior”. On the contrary,
without further guidance, generators will often
produce test data that rather represent robustness
tests or lack test strength (see Example 2 below).
Therefore, methods to provide guiding constraints
without unduly increasing the manual test data
generation effort are required

[6,26]

4. Interface
abstraction

If the SUT controls a very large number of
peripheral elements (e.g., all fasten seatbelt signs in
an aircraft), it is cumbersome to represent all of
these interfaces explicitly in the test model.
Instead, interface abstractions are needed to
represent classes of peripherals with equivalent
state. For test oracles generated from the model,
this introduces further complications if the
abstraction is a relation between concrete interfaces
states and abstracted ones, and not a simple
mapping. In the case of a relation, a concrete state
can be associated with several abstract interface
states, and the oracle needs additional guidance
about which abstract state to expect

[6]

5. Oracles for
hybrid systems

For systems combining time-discrete with
time-continuous behavior, test oracles need to take
into account admissible deviations which may occur
both in the time and in the value domain

[1]
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has an unsuitable syntactic representation. Only the so-called complete testing
strategies3 guarantee adequate requirements coverage, at the cost of large test
suite sizes [13].

To illustrate this challenge, consider the following example. It shows that
tests generated to achieve model coverage may result in weak test cases for the
associated requirements, because the choice of test data made by the constraint
solver to cover the required model elements will not always be the best for
checking the associated requirements.

Example 2. Consider the requirement

FSB-002. Whenever excessive altitude occurs (EA = 1) and the excessive
altitude reaction for FSB has been configured (pea = 1), the FSB signs
are activated until the excessive altitude situation no longer applies or the
emergency mode (EM = 1) is entered.

Formally, this requirement may be adequately captured by the LTL formulas

G
(
SC ∧ EA ∧ pea ⇒ X(fW¬EA)

)
(2)

G
(
f ⇒ X(FW(EM ∨ ¬f))

)
(3)

Formula (2) states that if the FSB controller is active and excessive altitude
occurs and is configured, the model variable f will be set to 1 and keep this
value at least until the excessive altitude situation no longer applies.4 Formula (3)
states that whenever f is 1, the FSB signs will be switched on (F = 1) until the
emergency mode occurs (EM = 1) or f is set back to 0.

If a test is generated from the model which just covers the transitions between
EXCESSIVE ALTITUDE REACTION and hierarchic state FSB NORMAL in state
machine FSB LOGIC, the constraint solver may come up with the following solu-
tion.

1. Set EA = 1; pea = 1; C = 1; EM = 0;
2. After some wait time, set EA = 0;

This test is certainly valid for the excessive altitude reaction, but it is quite weak
because the cockpit switch C is kept in the ON position throughout the test: It
cannot be decided whether the occurrence of excessive altitude or the FSB ON
command from the cockpit has caused the activation of FSB signs. �
3 A test suite is complete with respect to a given reference model M , conformance

relation ≤, and fault domain D, if (1) every implementation conforming to M passes
all test cases, and (2) every implementation whose behavior is reflected by a model
M ′ in the fault domain D fails at least one test case in the suite if M ′ does not
conform to M . The fault domain D contains a (possibly infinite) set of models that
may or may not conform to the reference model. In black-box testing, completeness
can only be guaranteed under the assumption that the true SUT behavior is captured
by one of the models in D.

4 Formula ψ1Wψ2 uses the weak until operator which states that ψ1 will hold until ψ2

holds, but it is not guaranteed that ψ2 will ever become true. In this case, ψ1 will
always hold, so ψ1Wfalse ≡ Gψ1.
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Discussion of Existing Solutions. The challenge stated above is quite well-
known, and several solutions have been suggested and also implemented in tools.

Observer State Machines. Safety requirements may be expressed by so-called
observers (also called test automata) that are inserted into the model as concur-
rent components. They monitor inputs, outputs and internal state changes and
transit to a final state COVERED indicating requirements coverage, as soon as
the model executions observed are suitable witnesses for the requirements [16].
With the help of an observer, requirements coverage has been transformed into
a reachability problem, and test generation for a requirement can always be
expressed by the goal F(COVERED).

The test generation technique based on observers is well-established, and it
is integrated in many model checking and testing tools, including RT-Tester.
However, the creation of the test automata requires additional effort, on top of
the effort required for developing the original test model.

Fine-Grained Requirements Specification by Temporal Logic. Since requirements
are reflected by subsets of model executions, they may be specified by temporal
logic formulas, referring to inputs, outputs, internal model variables and control
states. This has been illustrated in Example 2 above. Finding a finite witness
computation for such a formula results in a test case for the requirement. By
adding conjuncts to the original formula specifying the requirement, unwanted
test case solutions can be ruled out. The unwanted solution with C = 1 in
Example 2 could be avoided, for example, by adding the condition G(C = 0) to
the formulas (2) and (3).

This technique is also well-stablished and supported by many tools, includ-
ing RT-Tester. Again, the effort for characterizing each requirement as a tem-
poral logic formula can be quite high, in particular, when it comes to excluding
unwanted solutions.

Test Scenario Specifications. A third option to create requirements-specific tests
is to specify test scenarios5, where test engineers use their expertise to restrict the
potential solutions for covering a requirement to the “expressive and interesting”
ones. As a result, the constraint solver’s degrees of freedom are restricted, so that
it comes up with appropriate solutions.

Again, this technique is supported by tools like RT-Tester, but it should only
be used for situations where special expertise suggests that some “hand-crafted”
test cases could be valuable. For general requirements-based testing, it is again
desirable to avoid the additional effort for manual scenario development.

These considerations have led to a novel approach to requirements-based
testing which is described in the next section and currently implemented in
RT-Tester.

5 We use the term test scenario to denote a composite test case, exercising a larger
fragment of SUT functionality in end-to-end fashion. Typically, a test scenario com-
prises several model coverage test cases in a specific order.
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Fig. 4. Data flow analysis graph derived from the FSB application model.

6 A New Approach to Automated Requirements-Based
Test Generation

As described in Sect. 2, requirements can be linked to SysML model elements
with low effort. Just covering the model elements associated with each require-
ment, however, will often lead to weak test cases for the requirement under
consideration, as illustrated in Example 2. In this section, it is explained how an
approach based on static model analysis enables us to produce effective test sce-
narios for a given requirement in an automated way, exploiting the use-definition
chain information and knowledge about conditional assignments obtained during
the static analysis.

Static Analysis. By traversing the abstract syntax sub-tree of each state
machine, the static analysis identifies all conditions leading to writes to inter-
nal model variables and outputs. This is a conventional static use-definition
chain analysis across several concurrent test model components. It can be per-
formed with well-established methods, see, e.g. [7]. For the FSB controller
case study, the resulting graph is depicted in Fig. 4. Every internal variable
and every output variable is listed in square boxes, together with their possi-
ble assignment expressions. In this paper’s case study, the assignment are just
a = 0, a = 1, f = 0, f = 1, F = 0, F = 1; in the general case, all assignments
expressions
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variable = expression(variable1, . . . , variablek) (4)

are collected. In rounded boxes, the conditions for executing such assignments
are listed. For example, the condition SC ∧ EM is sufficient to perform a write
F = 0 or to ensure that F stays at that value. Note that in more complex
models, these condition expressions may also refer to control states and timing
conditions.

Requirements Annotation. Instead of using observers or temporal logic for-
mulas to capture requirements in the model, we just need requirements annota-
tions containing the variables (inputs, outputs, parameters, internal variables)
referenced in the requirements specification. If the textual requirements specifi-
cation already uses a dictionary of uniquely specified identifiers, these symbols
can be directly used in the model, and the identifier extraction can be made
in an automated way. Otherwise, the extraction needs to be performed manu-
ally. This however, certainly requires much less effort than creating observers or
requirements specifications in temporal logic.

Example 3. For requirement FSB-002 in Example 2, the symbols involved are
EA,EM, pea, f, F . �

Automated Requirements-Based Test Scenario Generation. We present
an algorithm for calculating test scenarios that are suitable for testing a given
requirement.

Inputs. As input for the automated test scenario generation, the original test
model, the static analysis graph illustrated in Fig. 4, and the symbols associated
with a given requirement are used as inputs.

Outputs. A collection of one or more test scenarios.

Parameter Settings. In the first step, the values of all parameters referenced by
the requirement are enumerated; each enumeration induces a separate test.

Example 4. For requirement FSB-002 from Example 2, one test is produced for
pea = 1 and one for pea = 0. Unreferenced parameters can be instantiated with
any value, because they occur nowhere in the use-definition chain; we choose pa =
3 for these tests. In [26], a more detailed discussion of systematic configuration
testing is presented. In Fig. 5, the data flow analysis graph for parameter setting
pa = 3, pea = 1 is presented. �

Negation of Unrelated Conditions. In the data flow graph, unrelated conditions
inducing writes to symbols associated with the requirement are negated, so that
they will not affect the test of the requirement under consideration.

Example 5. For requirement FSB-002 from Example 2, conditions containing
none of the symbols EA,EM, f, F are unrelated. This leads to a further reduction
of the graph displayed in Fig. 5 to the one shown in Fig. 6. �
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Fig. 5. Reduced data flow analysis graph for parameters pa = 3, pea = 1.

Fig. 6. Reduced data flow analysis graph, where conditions unrelated to requirement
FSB-002 have been negated (marked by a line above the predicate’s rounded box).

Association of Constraints with Output Valuations. For every combination of
output assignments according to Eq. (4), the applicable conditions inducing these
assignments are extracted from the reduced data flow graph.
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Example 6. From Fig. 6, the following constraints inducing F = 0 are extracted.

OFF(1) SC ∧ EM
OFF(2) SC ∧ ¬EM ∧ ¬EA ∧ C = 2 ∧ ¬L
OFF(3) SC ∧ ¬EM ∧ ¬EA ∧ C = 0

Output valuation F = 1 induces the following constraints.

ON(1) SC ∧ ¬EM ∧ EA ∧ C = 0
ON(2) SC ∧ ¬EM ∧ EA ∧ C = 2 ∧ ¬L

�

Scenario Construction. Finally, the scenario is constructed by creating sequences
of constraints inducing the different assignments to each output variable.

Example 7. From the formulas in Example 6, we derive a test scenario covering
the conditions

OFF(1) → ON(1) → OFF(2) → ON(2) → OFF(3) → ON(1)

Obviously, this covers all aspects of FSB-002. �

7 Conclusion

In this paper, model-based testing has been reviewed from today’s application
perspective in the avionic systems domain. Essential research results enabling the
construction of effective tools have been discussed. The main benefits of MBT,
as perceived by practitioners, were described. A new solution for a major open
MBT challenge concerning the automated generation of requirements-based test
cases has been proposed.

We expect that in the safety-critical systems domain, there will be a growing
need for novel testing strategies with guaranteed fault coverage in the near future.
These so-called complete strategies are currently still considered as an important
research field, but deemed not yet to be fit for practical application. This is
due to the enormous number of test cases to be performed when using the
original complete methods, as described, for example, in [8,34]. This, however,
has changed during recent years with the introduction of equivalence classes
and symbolic methods into complete testing methods [12,13,29]. This enables
to decrease the number of tests needed to guarantee complete fault coverage in a
significant way. First experiments have shown that these new complete methods
are already capable to handle real-world applications in several domains [15,27].
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Abstract. Automatic white-box testing based on formal methods is
now a relatively mature technology and operational tools are available.
Despite this, and the cost of manual testing, the technology is still rarely
applied in an industrial setting. This paper describes how the specific
needs of the user can be taken into account in order to build the necessary
interface with a generic test tool. We present PathCrawler/LTest, a
generator of test inputs for structural coverage of C functions, recently
extended to support labels. Labels offer a generic mechanism for speci-
fication of code coverage criteria and make it possible to prototype and
implement new criteria for specific industrial needs. We describe the
essential participation of the research branch of an industrial user in
bridging the gap between the tool developers and their business unit and
adapting PathCrawler/LTest to the needs of the latter. We present
the excellent results so far of their ongoing adoption and finish by men-
tioning possible improvements.

1 Introduction

In current software engineering practice, testing [3,25,27,34] is the primary app-
roach to find errors in a program. Testing all possible program inputs being
intractable in practice, the software testing community has long worked on the
question of test selection: which test inputs to choose in order be confident that
most, if not all, errors have been found by the tests. This work has resulted in
proposals of various testing criteria (a.k.a. adequacy criteria) [3,34], including
code-coverage criteria. A coverage criterion specifies a set of test requirements
or test objectives, which should be fulfilled by the test suite (i.e., the set of
test-cases). Typical requirements include for example covering all statements
(statement coverage) or all branches (decision coverage) in the source or com-
piled code. Code coverage criteria present two advantages. Firstly, the obtained
coverage can be quantified. Secondly, code coverage criteria facilitate automated
testing: they can be used to guide the selection of new test inputs, decide when
c© Springer Nature Switzerland AG 2018
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testing should stop and assess the quality of a test suite. This is notably the case
in white-box (a.k.a. structural) software testing, in which the tester has access
to the source code—as is the case, for example, in unit testing. Tools for the
generation of test input values for code coverage are often based on program
analysis and formal methods for reasoning about the structure and semantics of
the source code.

Code coverage criteria are widely used in industry. In regulated domains such
as aeronautics, code coverage criteria are strict normative requirements that the
tester must satisfy before delivering the software. In other domains, they are
recognized as good practice for testing.

However, automatic tools for the generation of test inputs to satisfy code
coverage criteria have not yet made it into widespread industrial use. This despite
the maturity of the underlying technology and the promise of significant gains
in time, manpower and accuracy. This reticence is probably cultural in part: an
automated test process can be very different to a manual one and test engineers
who are used to functional testing have to accept the idea that an automatic
tool can generate test inputs to respect a code coverage criterion but cannot
provide the oracle. It can no doubt also be explained by the very importance of
the test process: businesses may be reluctant to conduct experiments in such a
crucial part of the development cycle. Finally, we have to suppose that existing
test tools do not correspond closely enough to the needs of industrial users and
cannot easily be integrated into existing processes.

This is the gap which has to be closed in order for automatic structural test-
ing tools to be used in an industrial setting and this paper describes how one such
tool is currently being integrated into industrial practice thanks to a successful
experience of collaboration between academia and industry. The present work
was done in collaboration between CEA List, a research institute, and MERCE,
a research center of Mitsubishi Electric. First, we describe the functionality of the
main components of the tool, resulting from several years of academic research
and selected by the industrial user as being the most appropriate for its needs.
Then we describe the crucial role played by the research branch of the industrial
user in refining the definition of the needed functionality and building the inter-
face between the tool and the end users in the business unit. Finally, we present
the benefits of the proposed solution and provide some lessons learnt from this
experience.

2 Overview of the Tool Architecture

The structure of the complete business-oriented test solution is illustrated by
Fig. 1. The generic test generation tool PathCrawler/LTest provided by the
CEA List institute contains three main ingredients. A concolic testing tool,
PathCrawler, is used to generate test-cases for a given C program. The genera-
tion of concrete test inputs for a given program path relies on a constraint solver,
Colibri. The specification mechanism of labels and a specific label-oriented
strategy allow an efficient support of a desired test coverage criterion expressed
as labels.
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Fig. 1. Tool architecture

To adapt PathCrawler/LTest for a specific industrial context, additional
modules were developed by MERCE, the research branch of the industrial part-
ner. They include Annotator (that expresses the specific target criterion in
terms of labels), Stubber (that produces necessary stubs) and Output pro-
cessor (that creates the required test reports).

The paper is organized as follows. First, Sect. 3 presents the PathCrawler
testing tool and its main features. Then, Sect. 4 presents the Colibri constraint
solver used by the considered testing tool. Next, Sect. 5 introduces the notion of
labels, a recent specification mechanism for coverage criteria, and describes their
benefits. Section 6 presents the support of labels in the LTest toolset developed
on top of PathCrawler. The ongoing adoption of PathCrawler/LTest by
an industrial partner is described in Sect. 7. Finally, Sect. 8 provides a conclusion
and future work.

3 PathCrawler Test Generation Tool

PathCrawler [10,32] is a test generation tool for C programs which was ini-
tially designed to automate structural unit testing by generating test inputs for
full structural coverage of the C function under test.

PathCrawler has been developed at CEA List since 2002. Over the years
it has been extended to treat a larger subset of C programs and applied to many
different verification problems, most often on embedded software [14,28,33,35].
In 2010, it was made publicly available as an online test server [1], for evaluation
and use in teaching [19].

PathCrawler is based on a method [32] which was subsequently baptized
concolic or Dynamic Symbolic Execution [11,31], i.e. it performs symbolic exe-
cution along a concrete execution path. The user provides the compilable files
containing the complete ANSI C source code of the function under test, f , and
all other functions which may be directly or indirectly called by f . He also selects
the coverage criterion and any limit on the number of loop iterations in the cov-
ered paths as well as an optional precondition to define the test context. He
may finally provide an oracle in the form of C code or annotate the code with
assertions. Test generation is then carried out in two major phases.
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In the first phase, PathCrawler extracts the inputs of f and creates a test
harness used to execute f on a given test-case. The test harness is basically an
instrumented version of the code that outputs a trace of the path covered by
each test-case. The extracted inputs include the formal parameters of f and the
non-constant global variables used by f . Each test-case will provide a value for
each of these inputs. This phase uses the Frama-C platform [18], developed at
CEA List.

The second phase generates test inputs to respect the selected coverage cri-
terion. This phase is based on symbolic execution, which generates constraints
on symbolic input values, and constraint solving to find the solution, in the
form of new concrete input values, to a new set of constraints. Indeed, symbolic
execution is used to analyse the trace of the execution path followed when the
harness executes f on the concrete input values of each generated test-case, and
produce the path predicate defining the input variables which cause that path to
be covered.

PathCrawler differs in two main ways from other tools based on this con-
crete/symbolic combination.

Like other tools, PathCrawler runs the program under test on each
test-case in order to recover a trace of the execution path. However, in
PathCrawler’s case actual execution is chosen over symbolic execution merely
for reasons of efficiency and to demonstrate that the test does indeed acti-
vate the intended execution path. Unlike tools designed mainly for bug-finding,
PathCrawler does not use actual execution to recover the concrete results
of calculations that it cannot treat. This is because these results can only pro-
vide an incomplete model of the program’s semantics and PathCrawler aims
for complete coverage of a certain class of programs rather than for incomplete
coverage of any program.

Indeed, even with incomplete coverage many bugs can often be detected,
but PathCrawler was designed for use in more formal verification processes
where coverage must be quantified and justified so that and it can also be used
in combination with static analysis techniques [12,29]. If a branch or path is
not covered by a test, then unreachableness of the branch or infeasibility of the
path must be demonstrated. Soundness and completeness are necessary for 100%
satisfaction of a coverage criterion. Test-case generation is sound when each test-
case covers the test objective for which it was generated, and complete when
absence of a test-case for some test objective means this objective is infeasible
or unreachable.

The soundness of the PathCrawler method is verified by concrete execution
of generated test-cases on the instrumented version of the program under test.
The trace obtained by the concrete execution of a test-case confirms that this
test-case really executes the path for which it was generated.

Completeness can only be guaranteed when the objectives can all be cov-
ered by a reasonable number of test-cases, symbolic execution correctly repre-
sents the semantics of C and constraint solving (which is combinatorially hard)
always terminates in a reasonable time. Note that completeness and the verifica-
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tion of soundness on the instrumented code actually require symbolic execution
of program features to be adapted to the target platform (compiler optimisa-
tions, libraries, floating-point unit, etc.) and also PathCrawler’s execution of
the tests on the instrumented code to be carried out in the same environment.
PathCrawler is currently only adapted to a Linux development environment
and Intel-based platform. The search strategy of the PathCrawler method
ensures iteration over all feasible paths of the program, which is necessary for
completeness, for all terminating programs with finitely many paths. Programs
containing infinite loops cannot be tested in any case in the way we describe
here, as the execution of the program on the test inputs would never terminate.
Any infinite loop which has been introduced as the result of a bug can only be
detected by a timeout on the execution of each test-case on the instrumented
code. Terminating programs with an infinite number of paths must have an infi-
nite number of inputs and this is another class of programs that cannot be tested
using the PathCrawler method.

The second main difference between PathCrawler and other similar tools
is that PathCrawler is based not on a linear arithmetic or SMT solver but
on the finite domain constraint solver Colibri, also developed at CEA List
(see Sect. 4). PathCrawler and Colibri are both implemented in Constraint
Logic Programming, which facilitates low-level control of constraint resolution
and the development of specialized constraints, as well as providing an efficient
backtracking mechanism. Within PathCrawler, specialized constraints have
been developed to treat bit operations, casts, arrays with any number of vari-
able dimensions and array accesses using variable index values. The attempt to
correctly treat all C instructions is ongoing but PathCrawler can already treat
a large class of C programs.

PathCrawler outputs detailed results in the form of XML files. These include
overall statistics on the test session, including results in terms of coverage,
whether the session ended normally or timed out or crashed and start and end
times. For each test-case, the input values, result (according to the user’s oracle
or assertions, if provided, or run-time error, timeout or detection of an unitialised
variable), covered path and concrete output values are provided. The result is
either the verdict according to the user’s oracle or assertions, if provided, or
maybe a run-time error, timeout or detection of an unitialised variable. The
symbolic (i.e. expressed as a formula over input variables) output values are also
given. Moreover, for each path prefix which could not be covered, the reason is
given: demonstration of infeasability, constraint resolution timeout, limit on the
number of loop iterations, or untreated C language construction. The predicate
on the input variables of each covered path and uncovered prefix is also given.
In the case of path prefixes found to be infeasible, the predicate can be used
to explain the infeasibility to the user and in the case of constraint resolution
timeout, it can be used to determine manually the feasability of the path.
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4 Colibri Constraint Solver

Constraint solving techniques are widely recognized as a powerful tool for Valida-
tion and Verification activities such as test data generation or counter-example
generation from a formal model [23], program source code [15,16] or binary code
[7]. A constraint solver maintains a list of posted constraints (constraint store)
over a set of variables and a set of allowed values (domain) for each variable,
and provides facilities for constraint propagation (filtering) and for instantiation
of variables (labeling) in order to find a solution.

In this section we present the Colibri library (COnstraint LIBrary for veRI-
fication) developed at CEA List since 2000 and used inside the PathCrawler
tool for test data generation purposes. The variety of types and constraints
provided by Colibri makes it possible to use it in other testing tools at CEA
List like GATeL [23], for model based testing from Lustre/SCADE, and Osmose
[7], for structural testing from binary code.

General Presentation. Colibri provides basic constraints for arithmetic oper-
ations and comparisons of various numeric types (integers, reals and floats).
Cast constraints are available for cast operations between these types. Colibri
also provides basic procedures to instantiate variables in their domains making
it possible to design different instantiation strategies (or labeling procedures).
These implement specific heuristics to determine the way the variables should
be instantiated during constraint resolution (e.g. a particular order of instan-
tiation) and the choice of values inside their domain (e.g. trying boundary or
middle values first). Thus the three aforementioned testing tools have designed
their own labeling procedures on the basis of Colibri primitives.

The domains of numerical variables are represented by unions of disjoint
intervals with finite bounds: integer bounds for integers; double float bounds
for reals; and double/simple float bounds, infinities or NaNs for double/simple
floating point formats. These unions of intervals make it possible to accurately
handle domain differences. For each numeric type and each basic unary/binary
operation or comparison, Colibri provides the corresponding constraint.

Moreover, for each arithmetic operation, additional filtering rules apply alge-
braic simplifications, which are very similar for integer and real arithmetics,
whereas floating arithmetics uses specific rules.

Bounded and Modular Integer Arithmetics. Colibri provides two kinds of arith-
metics for integers: bounded arithmetics for ideal finite integers and modular
arithmetics for signed/unsigned computer integers.

Bounded arithmetics is implemented with classical filtering rules for integer
interval arithmetics. These rules are managed in the projection functions of
each arithmetic constraint. Moreover, a congruence domain is associated to each
integer variable. Filtering rules handle these congruences in order to compute
new ones and maintain the consistency of interval bounds with congruences (as
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in [20]). The congruences are introduced by multiplications by a constant and
propagated in the projection functions of each arithmetic constraint.

Modular arithmetics constraints are implemented by a combination of
bounded arithmetics constraints with modulus constraints as detailed in [17].
Thus they benefit from the mechanisms provided for bounded integer arith-
metics. Notice that using unions of disjoint intervals for the domain represen-
tation makes it possible to precisely represent the domain of signed/unsigned
integers.

Real and Floating Point Arithmetics. Real arithmetics is implemented with clas-
sical filtering rules for real interval arithmetics where interval bounds are double
floats. In real interval arithmetics each projection function is computed using
different rounding modes for the lower and the upper bounds of the result-
ing intervals. The lower bound is computed by rounding downward, towards
−1.0Inf (i.e. −∞), while the upper bound is computed by rounding upward,
towards +1.0Inf (i.e. +∞). This enlarging ensures that the resulting interval
of each projection function is the smallest interval of doubles including all real
solutions.

Floating point arithmetics is implemented with a specific interval arithmetics
as introduced by Michel in [26]. Notice that properties like associativity or dis-
tributivity do not hold in floating point calculus. The projection functions in
this arithmetics have to take into account absorption and cancellation phenom-
ena specific to floating point computations. These phenomena are handled by
specific filtering rules allowing to further reduce the domains of floating point
variables. For example, the constraint A+F X = A over floating point numbers
means that X is absorbed by A. The minimal absolute value in the domain of
X can be used to eliminate all the values in the domain of A that do not absorb
this minimum. Thus, in double precision with the default rounding mode (called
nearest to even), for X = 1.0 the domain of A is strongly reduced to the union
of two interval of values that can absorb X:

[MinDouble .. − 9007199254740996.0, 9007199254740992.0 ..MaxDouble].

Colibri uses very general and powerful filtering rules for addition and
subtraction operations as described in [24]. For example, for the constraint
A + B = 1.0 in double precision with the nearest to even rounding mode, such
filtering rules converge to the same interval for A and B

[−9007199254740991.0 .. 9007199254740992.0].

Implementation Details. Colibri is implemented in ECLiPSe Prolog [30]. Its
suspensions, generic unification and meta-term mechanisms make it possible to
easily design new abstract domains and associated constraints. Incremental con-
straint posting with on-the-fly filtering and automatic backtracking to a previous
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constraint state provided by Colibri are important benefits for search-based
state exploration tools, and in particular, for test generation tools.

To conclude this short presentation of Colibri, let us remark that the accu-
racy of its implementation relies a lot on the use of unions of intervals and
the combination of abstract domain filtering rules with algebraic simplifications.
Experiments in [4,9,13] using SMT-LIB benchmarks show that Colibri can be
competitive with powerful SMT solvers. In 2017 and 2018, Colibri was the win-
ner of the floating point category at the 12th and 13th International Satisfiability
Modulo Theories Competitions (SMT-COMP 2017 and 2018).

5 Generic Specification of Coverage Criteria with Labels

In 2014, a previous paper introduced labels [8], a code annotation language
to encode concrete test objectives, and showed that several common coverage
criteria can be simulated by label coverage. In other words, given a program
P and a coverage criterion C, the concrete test objectives instantiated from C
for P can always be encoded using labels. In this section, we recall some basic
results about labels.

Labels. Given a program P , a label � is a pair (loc, ϕ) where loc is a location of
P and ϕ is a predicate over the internal state at loc, that is, such that:

– ϕ contains only variables and expressions (in the same language as P ) defined
at location loc in P , and

– ϕ contains no side-effect expressions.

There can be several labels defined at a single location, which can possibly
share the same predicate. More concretely, our notion of labels can be compared
to labels in the C language, decorated with a pure C expression. Some examples
of labels (named l1, . . . , l4) are given in Fig. 2.

Fig. 2. Examples of labels

We say that a test datum t covers a label � = (loc, ϕ) in P , denoted t L�P �,
if the execution of P on t reaches loc on some program state s such that s
satisfies ϕ. For example, for the program given in Fig. 2, label l1 is covered by
test datum t if the execution of the program for this test datum reaches line 2



112 S. Bardin et al.

(or, more precisely, the program location between statements 1 and 2) with a
program state in which x = 5. If statement 2 does not modify variable x and
its execution does not change control flow, label l3 will be covered by the same
test datum. However, if statement 2 can modify x or change control flow, a
simultaneous coverage of both labels is not guaranteed.

An annotated program is a pair 〈P,L〉 where P is a program and L is a set
of labels defined in P . Figure 2 shows an example of an annotated program with
four labels.

Given an annotated program 〈P,L〉, we say that a test suite TS satisfies the
label coverage criterion LC for 〈P,L〉 if TS covers every label of L, that is, for
any label � in L, there is a test-case t in TS such that t L�P �. This is denoted
TS L�〈P,L〉 LC.

Criterion Encoding. We say that label coverage simulates a given coverage crite-
rion C if any program P can be automatically annotated with a set of labels L in
such a way that any test suite TS satisfies LC for 〈P,L〉 if and only if TS covers
all the concrete test objectives instantiated from C for P . We call annotation
(or labeling) function such a procedure automatically adding test objectives to
a given program for a given coverage criterion.

It is shown in [8] that label coverage can notably simulate basic-block cover-
age (BBC), branch coverage (BC) and decision coverage (DC), function cover-
age (FC), condition coverage (CC), decision-condition coverage (DCC), multi-
ple condition coverage (MCC), GACC [2], as well as the side-effect-free frag-
ment of weak mutations (WM’) in which the considered mutation operators
are not allowed to introduce side-effects. Moreover, these encodings can be fully
automated: the corresponding labels can be inserted automatically into the pro-
gram under test. Similarly, labels can be used to encode other, more specific
criteria.

Figure 3 illustrates the simulation of some common criteria with labels on
sample code. The resulting annotated code is automatically produced by the cor-
responding annotation functions. For example, consider decision coverage (DC).
It is easy to see that a test suite covers DC for the initial program (on the left) if
and only if this test suite covers LC for the annotated program produced for the
DC criterion. It is ensured by the systematic insertion of labels for all branches
of the code. The encoding of GACC (General Active Clause Coverage) [2] is
shown in Fig. 4. In GACC, each clause in a decision should become true for
some test-case and false for some test-case. In addition, the clause should affect
the decision: changing the value of this clause should change the whole decision.
For example, labels named l1, l2 in Fig. 4 simulate these requirements for the first
clause x==y: label l1 ensures that it can become true, while label l2 ensures it
can become false. The second part of the predicates of these labels ensures that
changing only the first clause would indeed change the decision.
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Fig. 3. Simulating standard coverage criteria with labels

Fig. 4. Simulating the GACC coverage criterion with labels

6 Efficient Test-Case Generation for Labels in LTest

Labels appear to be not only convenient to express various testing criteria, but
also amenable to efficient support in various testing tasks. Previous efforts [6,8,
21] showed that labels can be efficiently supported during test-case generation,
coverage evaluation and detection of polluting (e.g. infeasible) test objectives.
This support was originally implemented in 2013–2014 in the LTest toolset [5].
In this section, we detail the label-oriented strategy for test-case generation used
in the PathCrawler/LTest tool and implemented in top of PathCrawler.

The label-oriented strategy is based on two main principles, tight instru-
mentation and iterative label deletion. They can be implemented in a dedicated
manner or used in a black-box manner on top of a Dynamic Symbolic Execution
(DSE) tool. We follow the second approach to present them here, and assume
we have an existing DSE tool used to cover program paths.

Let us illustrate tight instrumentation in comparison with a simple approach,
referred to as direct instrumentation (cf. Fig. 5). In direct instrumentation the
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Fig. 5. Two ways to instrument a label: direct and tight instrumentation

Fig. 6. Comparison of direct and tight instrumentation for a sequence of N labels

label is replaced by a conditional statement that checks the label predicate p
and reports that the label is covered whenever the predicate is satisfied. In tight
instrumentation, the conditional statement is reached only when a nondeter-
ministic operation nondet returns true. Moreover, the execution exits after the
evaluation of the label predicate, whenever it is true or not. Note that any DSE
engine can simulate non-deterministic choices via an additional input array of
(symbolic) boolean values.

In the resulting instrumented program, direct instrumentation leads to cre-
ating two paths1 for each path in the non-instrumented program, while tight
instrumentation makes DSE consider only one additional program path each

1 And sometimes even more, if the label was inside a loop or a function called several
times.
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time a label is traversed. This situation is schematically illustrated for a sequence
of N labels in Fig. 6. We see that tight instrumentation leads to N + 1 paths to
be considered by DSE, while direct instrumentation results in 2N paths.

Along with a smaller number of paths to consider, tight instrumentation
brings another benefit: conditions coming from labels are added to path predi-
cates only during the evaluation of the label predicate, while in direct instrumen-
tation path predicates always contain conditions on previously traversed labels.
Thus, tight instrumentation yields only a linear growth of the path space without
any complexification of path predicates.

The main idea behind iterative label deletion is to ignore a label that has been
covered while continuing the test generation session. It can be easily implemented
by introducing a status for each label and considering that the nondet operation
never returns true for an already covered label. The label-oriented test generation
strategy is further detailed in [8].

7 Ongoing Adoption of PathCrawler/LTest in an
Industrial Setting

Mitsubishi Electric is a global group having a wide range of activities from Home
Products to Space Systems including Automotive Equipment, Transportation
Systems, Energy Systems and many others. A lot of those products are software
intensive, are developed in C language and are safety critical, like train con-
trol systems or automotive components. They thus require a high quality level,
typically meeting railway EN 50128 SIL4 or automotive ISO 26262 ASIL D cer-
tification criteria. To reach such quality, extensive and diverse testing is needed.
This testing is very costly, due to the effort needed to reach such very stringent
testing criteria: design adequate test sheets satisfying the criteria with adequate
test-cases, fill inputs and expected outputs of those test-cases, apply those test
sheets on the developed code, compare actual and expected outputs, determine
actual coverage, compare actual results to expected one, determine missing cov-
erage and rework the test sheets and the code accordingly. On a typical safety
critical software, 65% of the cost is due to testing and associated rework.

Mitsubishi Electric R&D Centre Europe (MERCE) is the advanced Euro-
pean research laboratory of Mitsubishi Electric group. From MERCE knowledge
of business unit test process, MERCE identified that PathCrawler/LTest
could accelerate it. More specifically given a C source code as input,
PathCrawler/LTest can automatically produce a set of test-cases satisfying a
coverage criterion, thus opening the door to automatic structural test generation.
The only manual step is to encode as labels the coverage criterion through anno-
tation on the tested source code. MERCE knows that to be usable by engineers,
a new technology should be as automated and as integrated as possible within
the existing development process. Thus MERCE decided to focus on unit test-
ing which seems amenable to full automation. Therefore, the question studied
by MERCE was simple: is it possible to design a fully automatic structural unit
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test generation tool that can be easily integrated into the current development
process used in the business unit?

To answer this question MERCE started to evaluate PathCrawler/LTest
technology, first on a few examples provided by the business unit. MERCE man-
ually encoded a business unit coverage criterion by adding labels on the source
code samples, a few functions ranging from a few hundreds to one thousand lines
of code. PathCrawler/LTest was able to successfully cover all the labels, in
a few seconds for small functions to a few tens of minutes for the biggest one
having 2145 paths2. One interesting outcome of PathCrawler technology is
that it is possible to determine when a test objective (i.e. a label) is impossible
to cover due to the structure of the code, which seemed a quite important feed-
back to give to the tester and potentially a crucial information to be used in a
certification process.

From this first very positive step, MERCE decided to start the design and the
implementation of the desired test generation solution. This solution works as fol-
lows (cf. Fig. 1): take as input the original, unmodified source code, automatically
add labels satisfying the business unit coverage criterion through Annotator,
automatically produce stubs suitable for unit testing through Stubber, find
actual test-cases using PathCrawler/LTest, process its output in Output
processor to produce final test sheets in Excel and CSV (Comma Separated
Value) formats for human and machine use in the remaining part of the test pro-
cess. MERCE developed an OCaml plug-in of about 1,500 lines within Frama-C
to do the annotation and stub generation parts, reusing Frama-C capabili-
ties to parse and modify C source code. An additional program of 2,000 lines
was also written to coordinate the call to the annotation plug-in, the call to
PathCrawler, the parsing of PathCrawler’s output and production of ready-
to-use test sheets.

MERCE conducted experiments with this new tool on real industrial code.
This code is about 80,000 lines of C code (without headers), making about
1,300 functions to unit test distributed over about 150 files. The MERCE tool
was able to parse and annotate 100% of the files, and to successfully apply
PathCrawler/LTest for generating test sheets for 86% of the functions and
covering about 14,000 test objectives, of which 17% are structurally impossible
test objectives. The total test generation time is about 8 h on a regular PC, i.e.
less than a day, taking on average 26 s per function. MERCE roughly estimated
the total manual generation of those tests to 230 work days3, therefore bringing
an effective benefit factor of more that 230 for test input generation. Those very
good results are very encouraging for pushing the technology in business units.

Developing such a tool requested a non negligible engineering effort from
MERCE. Despite Frama-C providing all the needed framework, understanding
and applying the Frama-C toolbox, moreover in the non mainstream OCaml

2 Recall that path exploration stops as soon as all labels are covered.
3 This time does not include the time to elaborate an oracle whose elaboration remains

manual.
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language, took some time. On the benefit side, PathCrawler provides all the
information needed to produce the test sheets and thus creating them was rela-
tively easy.

8 Conclusion and Future Work

We have described an example of how to transfer new technology based on formal
methods to industrial use. PathCrawler is a mature test generation tool and
labels offer an easy way to adapt it to the user’s own code coverage criterion.

Several lessons can be learned from this experience. First of all, this work
demonstrates that a close collaboration between the tool developers and the indus-
trial user is vital. Having an efficient tool developed by a research laboratory
is necessary, but often not sufficient for its integration into an industrial testing
process. The role of MERCE in adapting the tool to the specific needs of the
business units has been crucial.

Changing habits in an industrial process is always difficult and that is why,
when trying to industrialize PathCrawler/LTest technology, MERCE focused
on a fully automated tool that would integrate well in the current testing process.
Of course such automation is done at the expense of richer functionalities: in
this case MERCE focused on unit testing (while PathCrawler/LTest could
probably handle more elaborate testing). And beyond the technological core,
there is still a lot of mundane integration work to adapt the tool to the real
process (e.g. with other tools or legacy test material) and let testers be at ease
with it.

An important factor is related to the completeness of the tool, or its capacity
to justify the absence of a test input for a given test objective. This feature can
be particularly appreciated in an automated testing process since it can be very
difficult (or even impossible) to achieve manually. Soundness and completeness of
the tool are also particularly important in the context of certification. They help
to rigorously justify the coverage of each test-case and the whole test suite, and
to provide the certification authority with a proof of best-achievable coverage.

The performance of the tool is another crucial factor for its integration. While
current speed of PathCrawler/LTest has already shown an astonishing pos-
sible increase in productivity (a factor of 230 on a real-life example), having
even higher performance would allow interactive use and direct integration into
developers’ IDE, thus allowing even greater productivity by merging the testing
phase into the development phase.

Regarding future work, extension of PathCrawler/LTest to currently
unhandled coverage criteria (like MCDC) is certainly a strong requirement as
those criteria are requested by standards like ISO 26262. Other examples of
test criteria of interest are related to rigorous boundary testing and coverage of
function outputs. Efficient support of hyperlabels [22], a recent generalization of
labels to a larger class of criteria, is another future work direction.
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Abstract. Maintaining legacy software is one of the most common
struggles of the software industry, being costly yet essential. We tackle
that problem by providing better understanding of software by extracting
behavioural models using the model learning technique. The used tech-
nique interacts with a running component and extracts abstract models
that would help developers make better informed decisions. As promising
in theory, as slippery in application it is, however. This report describes
our experience in applying model learning to legacy software, and aims
to prepare the newcomer for what shady pitfalls lie therein as well as
provide the seasoned researcher with concrete cases and open problems.
We narrate our experience in analysing certain legacy components at
Philips Healthcare describing challenges faced, solutions implemented,
and lessons learned.

Keywords: Model learning · Active learning · Legacy software

1 Introduction

As software evolves over years and decades, its very architecture starts to change.
And with the original developers unavailable anymore, and the documentation
outdated, it becomes increasingly difficult to maintain that software. That is
what legacy software is [19]. Not only does maintenance become a more pressing
matter, but also a costly and even risky endeavor. As legacy software that has
been running a business successfully for decades, refactoring it without complete
understanding might lead to unexpected and severe impediments. To achieve
that level of understanding, different techniques have been deployed to analyse
legacy software, such as process mining [1], static code analysis [9], and our
method of choice, active model learning [19].

These techniques aim to model legacy software. With accurate readable
abstract models, developers can improve the software in less time, discover hid-
den behaviour, and generate documentation. Active model learning is a tech-
nique that aims to build a finite-state model of a system from observed input
and output [19].
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In practice, however, active model learning is not at all an easily realisable
endeavour. As many success stories there are [2,17,18], as many pitfalls we faced
in our experience applying it—pitfalls such as dealing with obscure proprietary
interfaces, unclear code, and lacking documentation; ensuring the accuracy of
the learning outcome; interpreting unexpected behaviour; avoiding state space
explosion; and a variety of technical problems. Our contribution lies in

– identifying the pitfalls in applying active model learning,
– detailing how they manifested in our industrial setting,
– providing lessons on how to deal with them,
– and suggesting future research directions.

This work is based on our experience with applying model learning to parts
of the X-ray imaging software at Philips Healthcare. We use LearnLib [7] as the
core learning engine combined with necessary complementary software that we
detail in Sect. 2. We first explain the theory in a simple manner, then describe our
target system and the learning setup. Section 3 lays out our main contribution
describing the practical experience through lessons learned and challenges faced.
Then in Sect. 4, we reflect on the practical challenges with suggested future
research directions and open questions. We finally conclude with Sect. 5.

2 Background

In this section, we describe the learning method and the component being learned
as well as a few relevant technicalities.

2.1 LearnLib, L* and Mealy Machines

As mentioned before, LearnLib [7] is our learning tool. LearnLib houses a few
learning algorithms, the most prominent of which is L*, first introduced by Dana
Angluin in 1986 [3]. L* learns regular languages by asking whether certain strings
belong to that language. This type of querying is not suited for reactive systems
such as the ones we mostly face in the industry. To tackle that, Niese in [15]
introduced a variant of L* called L∗

Mealy which outputs a Mealy machine such as
that shown in Fig. 2.

We shall explain some basic concepts, followed by the algorithm and then
Mealy machines. Refer to Fig. 1 showing the learning setup. The learner is inter-
nally composed of a model builder and a model tester. We assume that the
System under Learning (SuL) responds to every action. The learner can send
actions as input to the SuL and receive responses as output, making a sequence
of action/response pairs, called a trace. The learner has the ability to reset the
SuL back to its initial state and thus terminate the current trace. The learning
algorithm can be summarised in the following iterative steps:

1. Building: the builder sends/receives action/response traces to/from the SuL,
each trace followed by a SuL reset, to build a hypothesis model (as a Mealy
machine).
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2. Testing: the tester tests the hypothesis model against the SuL similarly
through action/response traces.

3. Feedback: if the tester discovers an action/response pair that is not consistent
with the hypothesis model, then return to step 1 (building) while using that
pair as a counter example to refine further queries; otherwise, the model is
verified and the learning is complete.

System
under

Learning
(SuL)

Model
Builder

Model
Tester

Learner

Input Action

Output Response

Fig. 1. High-level overview of the learning setup.

This technique requires the input actions to be defined beforehand as well
as the SuL’s reset routine. We call the set of all admissible input actions the
input alphabet or the action set. The set of all responses is similarly called the
output alphabet. It is not strictly necessary for the output alphabet to be known
beforehand.

Refer to Fig. 2 showing an example Mealy machine produced by this learning
technique and describing the following simple behaviour. Suppose that the SuL
admits actions: Init(X), which initialises an object X ; and Use(X), which uses
that object. Both actions give a Succ or Fail response. The simple behaviour
shown in this model is that an object X cannot be used successfully before being
initialised.

start
Use(X) / Succ

Use(X) / Fail Use(X) / Succ

Init(X) / Succ

Fig. 2. Example Mealy machine.

2.2 Description of the Legacy Component

Our case study is a software driver for the electrical generator of an X-ray
machine responsible for powering the X-ray tube. The driver sets the correct
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parameters for electrical requirements depending on the type of X-ray expo-
sure desired. The driver also monitors the hardware’s sensors for any necessary
intervention. It is called GS for Generator Service. The reasons it was chosen
for study were: (1) its reasonable size of 15,000 effective lines of code as mea-
sured by TICS1, (2) the expectation that it can be adequately described by a
state machine, (3) that it had undergone recent refactoring which meant that
more knowledge was available, (4) an interest in revealing any missed refactoring
opportunities or missed behaviour, and (5) that it was relatively easy to isolate
and communicate with.

The first step of studying this component as a black box was gaining as much
knowledge as possible about its interfaces and a bit about its inside architecture.
The ease of isolating it is resembled by the fact that it had only two interfaces
as seen in Fig. 3 one interface to the application layer (shown on the top side),
and another to the hardware layer (shown on the bottom side). We may refer
to them simply as top and bottom layers, respectively. The bottom interface
communicating with the hardware requires a certain HW interface adapter.

Hardware

Application Layer 

SuL

(Hardware
Abstraction Layer)

HW Interface Adapter

Fig. 3. Interface schematic of the GS component.

The behaviour we aimed to learn was essentially the one shown in Fig. 2,
where the component needs to be properly initialised in order to be used. The
reason behind learning such seemingly simple behaviour was (1) to confirm that
the learned behaviour is equivalent to our expectation (Sect. 3.4 uncovers this
result), and (2) to explore the result of learning with a lower-level action set,
discussed in Sect. 3.2. Our Experiments showed that the initialisation procedure
of our legacy component, as simple as it seems, is not straightforward and would
not be learned smoothly. In fact, all the experiments of this paper are merely
exploring the GS’s initialisation procedure.

Before we take the reader through our model learning experience addressing
individual learning experiments, we dive into the practical setup of the learning
environment.
1 TICS (TIOBE Software Quality Framework; www.tiobe.com/tics/tics-framework).

www.tiobe.com/tics/tics-framework
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2.3 Practical Learning Setup

The first step of setting up the learning experiment is to determine the interfaces
on the SuL, and then, for each interface, to determine the following:

– The input alphabet, which in practice would be the list of functions calls
provided by the interface.

– Means for sending actions to the SuL.
– Means for receiving or retrieving responses from the SuL.

We left out the output alphabet as we mentioned earlier that pre-defining it is
not absolutely necessary. The only requirement is reading the output regardless
of its type; the means of reading should be generic enough.

Note from Fig. 3 that we have two interfaces. This means that we need to
identify inputs and outputs through each of these two interfaces. On the top side
lies the application layer. In the real environment, commands are sent from the
application layer into the GS, which can result in output through any of the two
interfaces. We needed to replicate exactly that in order to send our actions. So,
we wrote our own component that acts as the application layer. We call that
component the action executer and it is part of the learning driver.

Note also from Fig. 3 that the bottom component is a hardware device. In
our setup, communicating with that device involved many low-level details that
were not possible to replicate through the action executer. Therefore we chose
to use an abstraction that is the hardware interface adapter.

In such a case, the natural question is how to run the SuL without the
actual hardware. Luckily, we had a test environment that provided the answer,
namely that the aforementioned hardware interface adapter supported a testing
mode where it would also act as a replacement for the real hardware through a
test stub. This posed a peculiar case discussed in Sect. 3.5. The action executer
communicates with that stub.

Refer to Fig. 4 showing the implemented learning setup. It essentially shows
the learning driver being hooked up to the SuL from Fig. 3. The action executer
connects to the SuL on the aforementioned interfaces and is responsible for the
following:

– Communicating with the Learner. It receives input actions from the learner
as strings and sends back responses as strings over a TCP socket connection.

– Translating input actions from strings into executable code. It can call func-
tions that the SuL provides on its interfaces.

– Receiving the relevant response, for each action, from the SuL and translating
it into a string.

– Resetting the SuL.

On the left side of Fig. 4 lies the LearnLib client which uses the LearnLib
library and is responsible for setting parameters of LearnLib, e.g. selecting a
learning algorithm and a testing algorithm, setting testing parameters, as well
as fetching the input alphabet, and producing graphs of learned automata. The
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source code of the LearnLib client is available online2. The LearnLib client and
the action executer combined make up what we call the learning driver, shown
in Fig. 4, whose main role as a whole is to provide a wrapper around the SuL
that acts as Mealy view for LearnLib.

For more information on the requirements and implementation of a learning
driver, we refer the reader to the work of Merten et al. [14].

Action
Executer

Learner

SuL 
 

HW Interface
Adapter

LearnLib 
Input

Output

LearnLib
Client 

Learning Driver

Fig. 4. Implemented learning setup.

3 Lessons Learned from the Case Study

This section details our experience with the case study through individual lessons
learned.

3.1 Utilising the Test Environment

The availability of a test environment for the SuL is very valuable for the purpose
of model learning. In our case, unit tests are conducted using the CppUnit testing
framework [12] and they initially provided insight on how to run the GS without
its hardware as mentioned in Sect. 2.3. In a similar use case, Hungar et al. [10]
utilised an integrated test environment in their learning setup that is described in
detail by Niese et al. in [16]. A major benefit of building such a test environment
is having tests of different levels of abstraction from as high as the whole SuL
to as low as the lowest subcomponents. In our case, this was achievable with
manual work of dissecting the tests into smaller units as discussed in Sect. 3.3.
An additional benefit we gained was the ability to extract information about the
SuL’s interface from individual tests. This point is significant in the case of legacy
software, and particularly in our case, where APIs were not well documented.
Luckily, the tests had high coverage and their functions acted as an abstraction
layer on the SuL’s lower-level interface. Moreover, the tests were written in a
rather consistent fashion and were quite readable.

Unit tests have a linear structure consisting of three stages: (1) setting pre-
conditions, (2) testing the outcome (usually with an assert statement), and (3)
2 https://gitlab.science.ru.nl/ramonjanssen/basic-learning.

https://gitlab.science.ru.nl/ramonjanssen/basic-learning
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resetting the environment. This can be mapped to the structure of learning
experiments, explained in Sect. 2.3, in the following way. From stage 1, we can
extract two things: the initialisation actions and the input actions. It is worth
mentioning that classifying a test’s pre-conditions into initialisation actions and
input actions is a matter of experiment design that we shall revisit in Sect. 3.2.
Next, from stage 2, we extract the relevant output which must be configured as
the SuL’s response to the input actions from stage 1 (to satisfy the Mealy view).
Finally, from stage 3, we learn how to undo the initialisation actions of stage
1. Once again, by looking at multiple tests, we extract the requirements for a
global (SuL) reset which we configure the learner to perform at the end of each
trace. Table 1 summarises this mapping.

Table 1. Mapping elements from unit tests into the learning experiment.

Test structure Information extracted

Pre-conditions Initialisation actions

Input actions

Outcome test SuL response/output

Reset Uninitialisation

Global (SuL) reset

Utilising the test environment is certainly a convenience, but we need to keep
a few issues in mind:

– The tests may not cover every possible action. Functions and special argu-
ments that are never used in the tests must be extracted from the SuL’s
code.

– The tests abstract from certain details. We may fine-tune our level of abstrac-
tion as covered in Sect. 3.2.

– Tests are context-specific. We may want to combine different contexts to
conduct experiments with more actions. But is learning with more actions
always a better idea? We address this question in Sect. 3.4.

– The nature of the learning process—where actions are executed in different
possible orders and with different frequencies—can often lead to traces that
are not covered in tests or ones that are not even achievable in normal use. A
test environment is probably not built to handle such scenarios and will thus
cause errors. We allude to this issue in Sect. 4.2.

– One more issue that is rather specific to our environment is the test stub
attached to the SuL and the particular challenge of separating the two in
regards of actions as well as learned models. This issue is discussed in Sect. 3.5.

We utilise the test environment in experiments of the following subsections,
and reuse excerpts of code directly taken from unit tests as we address the
challenges mentioned above.
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3.2 Fine-Tuning the Level of Abstraction of the Alphabet

When composing an alphabet from code, a level of abstraction must be deter-
mined. Consider the actions of the model in Fig. 2. Each of these actions encloses
multiple lower level actions that contain lower-level details which we simply hide
by choosing the higher level action set. This yields a more abstract and read-
able model yet linear and without much variety to explore. On the other hand,
however, let us explore the result of choosing the lowest level of abstraction.
Consider the code from Listing 1.

This excerpt is a precondition for most tests in our environment. For the
lowest level of abstraction, we chose to set each line of code as a single input
action. So this is our fine-grained action set. We set the response for each action
to be a simple success/failure check on the call. This setup yields the model in
Fig. 5 where transition labels correspond to line numbers in the code, all shown
transitions have the output success which is omitted, and failed calls are self-loop
transitions which are also omitted. We can clearly see the interleaving pattern
created by independent actions.

start T
1

2

3

3

2

4

5

3

4

6

7

5

2

3

6

5 6

7

74

5

7

2

4

6

Fig. 5. Learned model of activation with fine-grained actions. Transition labels corre-
spond to the line numbers in Listing 1.
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The reason they are independent is because they activate independent com-
ponents, and that can be done in arbitrary order. So, we can combine actions to
yield a more readable model. Action 1 will remain the same and be labelled a1,
while the sequence of actions 2 to 7 will be combined into action a2−7. Then we
reach the model in Fig. 6. We simply eliminate interleaving through abstraction.

start T
a1 a2-7

Fig. 6. The learned model of activation with coarse-grained actions.

Practical Results. We conducted two learning experiments, one with six input
actions for learning one of the two independent components, and the other with
12 input actions for learning both components together. The first experiment
took less than an hour and produced an eight-state model, and the second one
lasted 6.5 h and produced a 64-state model. These numbers depend on many
factors and are only given for the reader to get a sense of the cost of such an
experiment.

Step-Wise Action Refinement. It is not possible to determine which actions are
independent without either prior knowledge or experimentation. In the case
where domain knowledge is not available, we resort to a technique called stepwise
refinement [20]. It simply means we run the experiment with a minimal alpha-
bet, and incrementally increase the size of the alphabet; as soon as interleaving
is observed on two actions, such as 2 and 3 from Fig. 5, we abstract those into
one single action, and so on. The downside of this technique is that earlier parts
of the model will be learned again and again, which is clearly inefficient. Suppose
we are only interested in behaviour that occurs at some state R onwards. Then
to overcome the aforementioned inefficiency, we configured the learning driver
such that every time the SuL is started, a certain action sequence is executed
that transitions the state of the SuL to state R, which effectively makes the
learning begin from state R. Currently, LearnLib does not have the feature of
resuming learning from a certain state it has learned before. This is part of our
future work as it will make stepwise refinement much more efficient.

The lesson we learn here is that the objective of a learning experiment decides
which details to abstract. More fine-grained actions naturally yield more infor-
mation in the learned model. On top of that, in this particular experiment, it
provided a clue for one more property about the components labelled F and
L (Listing 1), namely that they are symmetric, which we explore in the next
subsection.

3.3 Exploiting Symmetry

Different patterns of symmetry are observed in software systems [6]. The pattern
we refer to is when a certain component can be replaced by another one without
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resulting in an observable change in behaviour. Refer to the experiment of the
previous section and to Listing 1. We learn from the domain expert that the
components labelled F and L are symmetric. So we conduct the same experiment
but excluding actions of the L component and we find that the new action set
suffices to reach a state we call TF (Fig. 7) which marks the F component active
and ready for executing further actions successfully.

start TF
1 2 4 6

Fig. 7. Learned model of activation with actions of only one of the two symmetric
components.

Thus we do not need to repeat the experiment for a certain component once
we have already done so on a behaviourally equivalent one. This assumption of
symmetry needs to be tested, however. So far, it is verified up to state T , but
as we expand our alphabet to learn further parts of the software, we need to
repeatedly verify that assumption. Doing so through matching traces from one
component against the other is much more efficient than repeating the learning
experiment altogether for the other assumed-symmetric component. In other
words, the learned model of one component can be used as a hypothesis to
be tested against the other symmetric model. We call this initial hypothesis a
conjecture and we discuss it in Sect. 4.

So far, we learned that we can reduce our models by abstracting independent
actions and by excluding one of two symmetric components from the action set.
We continue on learning the next activation procedure and learning more lessons.

3.4 Faster Learning vs. Thorough Testing

Besides L∗
Mealy [15], LearnLib offers a faster variant of the L* algorithm, called

TTT, introduced by Isberner [11]. Learning with TTT is more efficient simply
because it produces a final model sooner. However, it goes through many more
iterations and produces many more intermediate hypotheses, which requires
more rigorous testing. Thus, optimising the learning process also requires opti-
mising the testing algorithm.

Schuts et al. [17] provide experimental results on learning a small model
with TTT combined with various testing algorithms. They conclude that TTT
is faster than L* by a factor of 3 regardless of the testing method used. However,
producing a correct model is as significant a concern, if not more significant, as
speeding up the process. In our experiment, we contrasted between two learning
algorithms, L* and TTT, and two testing methods, the W-method [5] and a
simple random-walk test that LearnLib provides. The random walk tests random
paths in the hypothesis against the SuL. It requires a maximum number of
input actions and a probability of resetting the SuL after each action. The more
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rigorous W-method requires a parameter that effectively sets an upper bound
on the length of the tests. Therefore in both tests, an estimate on the size of the
target model must be made. This is quite problematic for the reason made clear
by the next experiment.

In this experiment, we have only two actions: Activate, which abstracts the
SuL activation procedure detailed in Sect. 3.2; and GetLogicalResource, which
returns a logical resource object to access the hardware. We shorten these two
actions as A and B respectively. The output of both actions is an S or F response
standing for success and failure respectively. The expected behaviour is exactly
that shown in Fig. 2 (if Init and Use are renamed to A and B respectively)
where action B’s success depends on action A’s success. With this expectation
in mind, estimating an upper bound on the number of states to eight, four times
larger than the expected model, should be rigorous enough. And indeed we get
the expected two-state model. However, with the cheaper random walk testing
method, we set the maximum number of actions to 1000, and discover that our
previous hypothesis was false and that a more accurate model is the ten-state
model of Fig. 8. The model shows that the action GetLogicalResource succeeds
after Activate but calling it eight times fills a certain hidden buffer and causes
any subsequent calls to fail, even though Activate still succeeds.

start

B/F

A/S

A/S A/S A/S A/S

B/S B/S B/S

B/S

B/SB/SB/SB/S
B/F

A/SA/SA/SA/SA/S

Fig. 8. A learned model showing the hidden buffer of size eight. Input actions are A:
Activate, and B: GetLogicalResource; outputs are S: Success, and F : Fail.

Clearly, we would not want to discover such behaviour in a larger experiment.
Such behaviour expands a two-state model to a ten-state model; and in a setup
with one more input action, it expanded four states to 28 states. However, we
would like to be aware of such behaviour and find a way to abstract from it. For
this particular case, such a sequence will never be executed in practice and is
therefore deemed uninteresting to learn. Not only that, but it is also expensive
to learn and test, and therefore we would like to avoid observing it altogether.
We call this an unduly complex model and we discuss it in Sect. 4.2.

Moreover, the bigger the action set, the lower the chance of discovering such
behaviour. Thus it is wiser to experiment with a smaller action set before expand-
ing.

We learned that faster learning comes with drawbacks. It comes at the
expense of the accuracy of the learned model. We showed a case where not
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only would faster learning yield a less accurate model, but even slower learning
with wrong assumptions can do the same.

3.5 Utilising the Test Stub

Recall from Sect. 2.3 that the HW interface adapter shown in Fig. 4 supports a
testing mode where a built-in test stub would act as a replacement for the real
hardware. This subsection contains multiple experiences and multiple lessons in
utilising the test stub. We start with a piece of code taken directly from a test
case, Listing 2, a procedure called ToStandby which runs after the activation
procedure of Listing 1.

The goal of the code is to activate the stub and make it reach a standby
state. It shows us the proper order of guiding the bottom layer (the stub) to a
Standby state. First, the stub notifies the GS that it is powered on and awaits
a request to go to an Idle state. Once it receives that request, the stub’s state
is set to Idle, it notifies the GS of that, and awaits the request to go to Standby.
Again, once it receives the request, the stub is set to Standby and it notifies the
GS of that.

Note the calls to on line 2 and line 5 marked in boldface. These
two calls are blocking, i.e. they wait for the output which means we are forced to
implement a timeout. In the real setting which uses actual hardware, such calls
are asynchronous, but in a testing environment, we are forced to make them
synchronous.

When forming the action set out of Listing 2, lack of domain knowledge forced
us to take the crude method of making each line of code into a single input action,
while configuring the output read to be the success or failure of that particular
call; in case of the call , we get an additional output which is also a
boolean value. Additionally, some actions that were added to the setup such as

are not part of this particular unit test but were extracted from
other tests and from the SuL’s source code.

Inseparable Components. The stub is part of HW interface adapter (Fig. 4) and
is thus inseparable from the SuL. While learning the SuL, it is probable that
part of the learned behaviour is due to the stub. This is not to say that the
stub is an undesired component. On the contrary, it provides great benefit in
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abstracting away all the obscure low-level communication details necessary in
the real hardware connection. Eliminating the stub enforces a greater task which
is to reverse engineer this low-level communication and incorporate it into our
input and output alphabets, after which we can choose whether to learn it or
to abstract away from it; the latter will, in turn, take us back to the situation
we are currently in. Moreover, there is no accessible interface between the SuL
and the interface adapter, which forces us to learn the combination of these two
components rather than the SuL alone. This problem is revisited in Sect. 4.4.

Nondeterminism and Timing. Continuing with the stub experiment and
the described alphabet, we discuss a certain problem we faced. As we ran the
learner a few times with this setup, it started complaining about nondetermin-
istic behaviour. It would report traces such as the following:

The arrow at the last line indicates output. The learner here is complain-
ing that the output for this trace is not deterministic, i.e., sometimes true and
other times false. In such a setting where blocking is forced on an otherwise-
asynchronous communication, we learn from Schuts et al. [17] that simply insert-
ing time pauses after each message is a viable solution. The reason is that the
SuL needs time to process and respond to messages. Through trial and error, we
were able to determine the shortest pause duration necessary for a deterministic-
output run. For this specific environment, the duration was 100 ms. A lesson
learned here is that reported nondeterminism may not be so for as simple a
reason as needing a time pause.

Expanding the Scope of the Output. A separate attempted solution to
solve the nondeterminism problem was applying an abstraction on the actions
by grouping them as follows:
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This setup did eliminate the need for inserting time pauses, but it yielded
neither new states nor new transitions in the learned model, which pointed our
attention to the output. Note that even though we abstracted actions, the scope
of the output has not changed. Thus, we decided to revert from the abstraction
solution back to the time-pause solution, and in addition do the following: to
read the output of both and after
each action and remove these two calls from the action set. In other words, we
moved them from the input alphabet to the output alphabet. We were able to
read both outputs because they were stored as flags in the HW interface adapter.
This yields the model in Fig. 9. Output flags are represented by a dash if read
false and by the first initial of the flag name if read true. And to save space, the
action names were shortened.
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Fig. 9. The learned model of the ToStandby procedure with fine-grained actions and
aggregated output.

Aggregating output and reading it globally revealed that both flags could be
set as response to a single action, a fact that contradicts the implicit assumption
of our previous output-reading setup. A more general benefit of aggregating out-
put is that it removes the nondeterminism resulting from the common ambiguity
of which output arrived first. The lesson learned here is that the scope of the
output should be expanded, i.e. by reading more output, especially if at little or
no extra cost.

The model in Fig. 9 also reveals that some actions, namely
and , have no effect on either the output or the state, which is
why they are omitted from the figure. This raises the question: do they cause no
change at all; or is the change simply hidden from our view due to this peculiar
test stub?

We still do not know the answer but the sure lesson is that in some cases we
cannot effectively learn the isolated target system and we are forced to utilise
auxiliary components such as the test stub.
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4 Future Work

In this section we discuss future solutions to the challenges seen in this case
study.

4.1 Learning with Conjectures

We have seen a case in Sect. 3.3 where we use the knowledge that two compo-
nents are symmetric. To ensure the accuracy of the learned model, we would like
to treat this piece of knowledge as an assumption or a conjecture. We were able
to verify the symmetry by learning each of the two components separately and
finding that they are strongly bisimilar. However, there are two problems with
this: first is the obvious unnecessary expense of learning the same behaviour
twice, and second is that this only verified symmetry up to state T . Adding
further actions to the experiment will require redoing the learning and the ver-
ification. So we would like to keep this conjecture of symmetry for all future
experiments. When starting a new experiment, the learner would start with the
conjecture and test it. Recall the three steps of the learning algorithm explained
in Sect. 2.1. Step 2 was testing the already built hypothesis model. Our future
direction is that we would like the conjecture to be an initial hypothesis model
and that in the first iteration of the loop, we start with step 2, i.e. testing the
hypothesis/conjecture.

Symmetry is one property that can be represented as a conjecture. There
are certainly other properties that fit into a conjecture, including undesired
sequences, explained in Sect. 4.2. This solution was mentioned in [13] as pre-
senting an abstract model to the learner before starting the experiment.

Furthermore, we need a formalism for conjectures such that a property can
be uniquely expressed and then translated into a hypothesis model. The output
learned model should abstract away unwanted details to produce a more readable
model just as Fig. 6 is compared to Fig. 5, while still keeping the information of
the expanded model as a formalised property.

In summary, we would like to research the theory necessary to express con-
jectures, translate them into hypotheses, start learning with a hypothesis as a
starting point, and output an abstract readable learned model.

4.2 Avoiding Illegal/Undesired Sequences

Because of the nature of the learning process where actions are executed in
different possible orders and with different frequencies, it can often lead to traces
that are not covered in tests or ones that are not even allowed in normal use. An
example is turning on a device that is already on. A test environment is probably
not built to handle such scenarios and will thus cause errors. In such a case, we
would like to specify two subsequent turn on actions as an illegal sequence. This
research direction investigates how to formulate such illegalities and how to keep
the learner’s traces within certain boundaries.
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Another example is the one seen in Sect. 3.4, where eight Activate actions in
a run is an undesired sequence because it explodes the state space and thus we
would like to avoid observing it altogether. This problem can fall under illegalities
but we would like to investigate whether such a sequence can be expressed as a
conjecture and thus fall under the problem discussed in Sect. 4.1.

4.3 Avoiding Repetition of Traces

In the current learning implementation, every new trace starts from the initial
state. In many cases, however, we are interested in a certain state and would
like to run multiple traces from that state without repeating the sequences that
leads to it after each reset. Bauer et al. [4] introduce the idea of reusing previous
traces in what they call the Reuse algorithm. The reuse algorithm acts as an
intermediate layer between the learner and the SuL. It would respond to the
learner with a previously known response instead of running it explicitly on the
SuL, which obviously saves time. They keep the information of previous runs in
a reuse tree.

As mentioned in Sect. 4.1, we would like to start learning from a hypothesis.
And we see in this context one way to implement this, namely that LearnLib
would use the hypothesis as a reuse tree. We believe that this is a more generic
approach, but the question remains about which approach is more efficient.

4.4 Composition and Decomposition of Models

Looking at the case of Sect. 3.5 and the learned model of Fig. 9, a pressing
question is: what does the model say about the real behaviour of the SuL, and
what does it say about the combination of the SuL and its interface adapter? Is
there a way to correctly decompose the learned model to deduce one describing
the behaviour of the SuL alone? Such a scenario can be seen in practice and the
question invites theoretical research. Moreover, the more complex the auxiliary
component is, the more difficult it will be to analyse the learned model.

On the other hand, we would like to investigate composition of models. Con-
sider the models of Figs. 7 and 9. The latter model starts at state FT where the
former model ends. Both have different sets of actions and different scopes. We
can make the assumption that the action set from one model has no effect on
the states of the other model. Based on this assumption, we can take the union
of these two models and present the resulting model as a conjecture for further
experiments, which would also serve in testing the assumption. Composing mod-
els that learn different parts of a system into one that describes the complete
behaviour is a problem that relates directly to the scalability of model learning
techniques and the efficiency of learning large systems.

4.5 Automating the Learning Setup

Automation is essential for growing the model learning technique into an
industrial-scale application. There are certain parts in the learning setup process
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that can be automated. For instance, Howar et al. [8] modified their LearnLib
driver such that it automatically applies an abstraction on the alphabet when
non-determinism is faced, whereas Merten et al. [14] automate the process of
setting up the learner with input alphabet and other parameters. The latter is
especially viable in our environment for the availability of consistent unit tests.

5 Conclusion

We narrated our experience in applying model learning to industrial legacy
software. We faced interleaving, discovered hidden behaviour unintentionally,
and dealt with an auxiliary component. We provided lessons about abstract-
ing actions, exploiting symmetry, thoroughly testing the learned models, dealing
with asynchronous communication, expanding the scope of read output, and
carefully treating auxiliary components. Finally, we discussed future research
directions, including learning with conjectures, and learning given an initial
hypothesis.
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for their help with LearnLib and several related concepts, and Mathijs Schuts for
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Abstract. We describe and summarize our experiences from six indus-
trial case studies in applying formal verification techniques to embed-
ded, safety-critical code. The studies were conducted at Scania over the
period of eight years. Despite certain successes, we have so far failed to
introduce formal techniques on a larger scale. Based on our experiences,
we identify and discuss some key obstacles to, and enabling factors for
the successful incorporation of formal verification techniques into the
software development and quality assurance process.

1 Introduction

Formal methods are making their way only slowly into industrial practice for
quality assurance of general software (SW). Their adoption in the domain of
embedded, safety-critical systems, however, has seen much progress over the last
years, as evidenced by the industrial case studies reported in the literature, e.g.
see [18]. One reason for this development, from an industrial perspective, is the
increased analysis effort advocated by various standards to achieve functional
safety of such systems. The automotive functional safety standard ISO 26262, for
instance, recommends formal verification for higher levels of criticality. Another
reason is related to feasibility: the relatively smaller size of embedded code as
compared to arbitrary applications, and the constraints on how such code is
structured in order to safeguard against potential unwanted behaviours, make
the application of formal analysis and verification techniques a viable comple-
ment to the traditional testing approaches. One example of a company devel-
oping embedded SW is Scania, a leading manufacturer of commercial vehicles,
and specifically heavy trucks and buses. A large part of the embedded C-code
developed at Scania is safety-critical, and a considerable effort during code
development and deployment is spent on quality assurance. On top of the tradi-
tional testing methods, Scania is exploring the possibility for integrating vari-
ous formal methods, such as deductive verification and model checking, into the
code design and quality assurance process. The main motivation for this is the
increased safety requirements resulting from innovative trucking solutions such
as platooning and autonomous driving.
c© Springer Nature Switzerland AG 2018
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In the present paper, we present a summary of our experiences with applying
formal verification techniques to a number of industrial case studies at Scania.
The first three studies concern the deductive verification of requirements on
C-code modules by means of semi-automated annotation of the code (for the
given requirements), and the use of an off-the-shelf verification tool, VCC[6],
to statically check the annotations. The fourth study investigates the applica-
tion of two popular model checkers, the Simulink Design Verifier and Uppaal,
to verify requirements formalized as Simulink models. The fifth study evaluates
the application of learning-based testing, a form of black-box testing executed
in a virtualization environment, for checking requirements expressed in tempo-
ral logic. The last of these studies concerns the verification of correctness of
the requirement breakdown of top-level requirements down to component-level
requirements, following an hierarchical architectural description of the system.

Based upon the industrial case studies, but also considering other impor-
tant aspects affecting the industrial usability of formal verification methods, the
main contributions of the paper are to (i) summarize and generalize the observa-
tions and experiences from the conducted case studies, (ii) identify and discuss
factors that enable wide-scale adoption of formal verification techniques, and
tools supporting these, in the software development and quality assurance pro-
cess within the automotive industry, (iii) identify and discuss factors that are
obstacles to this development, and (iv) propose a roadmap of tasks to facilitate
a near-time widespread usage of formal verification in industry. With this, our
work contributes to the wider, ongoing discussion on how to facilitate the trans-
fer of verification technology from academic research to industrial practice (see,
e.g., [2,18] among many others).

Structure of the Paper. The remainder of the paper is organized as follows. In
Sect. 2 we describe the industrial context in which we strive to apply formal
methods, while Sect. 3 describes our case studies and identifies enablers and
obstacles related to these. In Sect. 4, we discuss other industrial factors, not
exposed in the case studies, but still related to the adoption of formal verification.
In Sect. 5, we summarize and generalize our observations and experiences, and we
discuss how enablers can be utilized and obstacles overcome to reach a successful
adoption of formal methods in the automotive industry. Section 6 concludes the
paper.

2 Context of Study

This section describes the industrial context in which the case study was con-
ducted. As described in the introduction of the paper, Scania is a leading man-
ufacturer of heavy trucks and buses. The R&D department consists of roughly
4000 engineers and, of these, about 1000 are working on the development of the
electrical system in the truck. This includes design of electronic control units
(ECUs) but the main effort is the development of embedded SW.

Most parts of the software are safety critical, i.e. a bug has the potential to
cause accidents, and in many cases with fatal consequences. In alignment with
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the general trend in the automotive area, a substantial part of the current devel-
opment efforts are related to ADAS (Advanced Driver Assistance Systems) and
Autonomous Driving (AD) [16]. This involves a huge amount of safety critical
software. To support the development of safety-critical systems, Scania applies
the automotive functional-safety standard ISO26262 [10].

In comparison with other automotive companies, Scania relies to a very
high degree on in-house development. As a consequence, Scania has developed
in-house expertise in SW development. Also, it has been possible to optimize SW
with respect to specific Scania needs, for example resulting in higher execution
performance, fewer line of codes, and lower complexity.

Scania has adopted the principle of evolving product lines. This means that
there is only one product line, with e.g. an 8-wheel drive mining truck and a city
bus representing just two different configurations. The product line is evolving,
in the sense that some parts of the construction going into production, typi-
cally SW, are changed every week. As a consequence, there are no ‘model years’.
Furthermore, Scania vehicles are connected, so SW updates can be managed
‘over-the-air’ and be initiated at any time. All these circumstances sum up to a
need for highly competent product-data and configuration-management systems,
with the ability to track the exact set of parts and configuration of each Sca-
nia vehicle ever produced and over its lifetime. In fact, such highly competent
product-data and configuration-management systems do not exist commercially,
so Scania has been forced to also develop this in-house. Yet another conse-
quence of the evolving product line, is that a large part of the software is legacy;
each single update typically introduces only a small part of completely new SW.
Most SW remains the same or is the result of minor incremental improvements.

Regarding processes and organization, Scania has since long adopted the
principles of lean and agile. The adoption is general, covering development, pro-
duction, and after market support, but is particularly articulated in the area of
SW development. Focus is not on documentation, for example of requirements,
but instead on the people involved and their knowledge and competence. Each
developer has the responsibility to understand customer needs, and develop the
product according to these needs. Other companies often split the development
in ‘layers’ with different responsibilities such as requirement elicitation, high
level design, low level design, implementation (programming), and testing. In
contrast, Scania generally adopts a flatter structure where the same engineer
may be responsible for all these tasks, but only for their part of the construc-
tion. As a result of these principles, Scania is able to obtain an industry-leading
product [1] in spite of a lack of heavy documentation.

Lastly, the engineers developing embedded systems at Scania, including
programmers, come from a variety of backgrounds. Most common education
is mechanical engineering followed by electrical engineering or applied physics.
Engineers with computer science background are rare. This means that engineers
learn the practice of software engineering and programming, not from state-of-
the-art university courses, but from other practicing engineers.
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3 Industrial Case Studies

Several studies have been performed at Scania, evaluating the incorporation of
different forms of formal verification into parts of the embedded systems develop-
ment process. The case studies are sorted into 4 groups according to the method
of formal verification used. The case study groups are described in Sects. 3.1,
3.2, 3.3 and 3.4, which includes the conclusions drawn for each specific method.

In Sect. 3.5 we summarize the enablers and obstacles identified in the different
case studies, and in Sect. 3.6 the results are discussed more generally.

The purpose of the industrial case studies was to evaluate the suitability of
different verification techniques for general-purpose use within the automotive
industry. The cases were chosen based on criticality to safety, generality, and
availability.

In all cases the verification was performed by people with some experience
with formal methods but who cannot be considered experts within the respective
areas, with the assistance of researchers familiar with the topics. Much of the
work was performed within MSc theses, and as such the effort required in terms
of time was several months.

3.1 Deductive Verification of C Code

Evaluating and improving upon methods for deductive verification of C code has
been an ongoing project at Scania. This section describes three case studies,
and the different tools and methods used and developed for this purpose.

Tool Support. The primary tool used in the three studies is VCC [6]. Other
tools have also been experimented with, most prominently Frama-C [7] with a
plugin called WP. Both of these tools use deductive reasoning to prove proper-
ties of C code. The verification is function-modular, meaning that functions are
verified independently, relative to the specifications of the other functions. These
specifications are given in the form of function contracts, which are provided in
the source code by means of annotations, and for which each tool has its own
annotation language.

Each of the tools has its advantages and disadvantages. For example, while
VCC supports more fine-grained reasoning about concurrency and complex data
structures, compared to Frama-C it appears less mature and does not support
verification of floating-point arithmetic. More details about the tools and our
reasoning for choosing them can be found in [12].

In addition to the tools performing the actual verification, we have developed
our own prototype tool to automate parts of the annotation process, which we
call Annotation Weaver. This tool automatically inserts into the code so-called
auxiliary annotations, which are annotations that are needed independently of
the functional requirements, and that can be generated by combining analysis of
the source code and data from an interface specification (defining e.g. the types
and ranges of input/output variables). Examples include ensuring the validity
and separation of pointers.
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Industrial Cases. Three different software modules have been used in the context
of deductive verification.

The first of these modules is called STEE, which is a C module of the embed-
ded system that controls the dual-circuit steering system in vehicles. The initial
work was performed in two MSc projects [8,12], and a report on our continued
experiences was published in [9], which we summarize here. This module has
an associated specification document, describing 27 requirements on the soft-
ware. The requirements were stated informally, and some of them were safety-
critical. The case study focused on requirements that were strictly functional,
i.e., requirements that define output values as a function of the input values. In
the existing requirements this functional relation was often described by means of
intermediary requirement variables (variables that are neither input nor output
variables and that might not be represented in the software). A formal require-
ments model that captured these properties was defined, according to which the
module requirements were formalized. We also found that this model allows the
set of requirements to be understood and visualized as a combinational logic cir-
cuit. A visualization of all case study requirements affecting the output variable
SCHS is shown in Fig. 1.
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Fig. 1. Combinational logic circuit of case study requirements.

In the report, a process was described for the manual annotation and verifica-
tion of the C module with respect to the formalized requirements. The C module
consisted of 10 functions in total, of which one acted as an entry-point function.
Thus, the formal requirements could be converted into a contract for this func-
tion, which then had to be decomposed through the function hierarchy.
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The next case was a C module called VLTQ. This module is responsible for
calculation of torque losses. Compared to the module addressed in the previous
case study, VLTQ uses more complex programming constructs (such as loops,
which are completely absent in STEE, to perform interpolation), and performs
floating-point arithmetic.

The specification for this module was given as a flow chart, with a small part
of the module specified in more detail in the form of a finite-state machine. The
purpose of the case study was two-fold: to continue the exploration of automating
the verification process, and to manually verify a single safety-critical aspect of
the module. The property to be verified was one stating that the summation of
several contributions to the total torque loss should be within a given interval.

The most recent case is the C module UAPC (Unintended Activation of
Planetary Clutch), which is a module monitoring a safety-critical output value
of another module. The module has a single requirement, which is not strictly
functional as it is both temporal and stateful.

Results. Out of the 27 existing STEE requirements, 14 were identified as func-
tional and specific to the case study module. Of these, 10 were successfully
verified, and a possible inconsistency was identified between two of the require-
ments. The remaining 4 requirements were not verified because of lack of time.
Verification of the entire annotated module took 165 s, and the function which
required the most time took 65 s. The case study also resulted in the identi-
fication of guidelines for writing code and requirements that facilitate formal
verification, as well as descriptions of several common obstacles and solutions
for dealing with them.

We also experimented with inlining functions to avoid having to solve the
problem of decomposing function contracts. However, inlining just a few func-
tions of the STEE module resulted in the verification time of VCC increasing
to unreasonable levels, in some cases not terminating within hours.

In the VLTQ case we never managed to verify the desired property. One of the
reasons for this was the fact that VCC lacks certain fundamental features such as
reasoning about floating point arithmetic, something which is commonly found in
the C code developed at Scania. Another reason was the lack of specification,
both in terms of precise description of the wanted functionality, as well as in
description of the interface.

One outcome from the latter case studies was the above-mentioned Annota-
tion Weaver prototype tool for automatic generation and insertion of auxiliary
annotations. More restrictions on the source code were also identified, in order
to ease automation of the verification process.

Conclusions. In our experience report [9], we concluded that deductive verifica-
tion of embedded C code is a viable option, but requires rigorous formalization
and deep understanding of the tools and processes. We also noted that automa-
tion of large parts of the process is a requirement for more widespread use, and
described possible paths towards this goal.
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Our belief in the value of automation of the verification process has since been
reinforced. Even with the help of a tool for inserting auxiliary annotations, and
with built-up expertise from previous experiences, successfully verifying proper-
ties of complex code is still a laborious task.

We also conclude that putting restrictions on the C code is a necessity. This is
particularly true for the automated decomposition of contracts, since generating
specifications is very hard in the general case. A possible solution to this is the
use of smaller scale monitors, such as UAPC, that validate the safety-critical
outputs of larger modules. Such constructs may even enable the use of inlining
of functions for verification purposes.

The evaluated verification tools also lack certain fundamental features, such
as reasoning about floating points in the case of VCC. The use of floating point
arithmetic cannot simply be restricted, instead such shortcomings in tools need
to be worked around.

Finally, formalizing the requirements involved resolving inconsistencies and
ambiguities that are not apparent in informal requirements, but which makes
successful verification impossible. Even worse, one module lacked even informal
requirements.

3.2 Model Checking of Simulink Models

Another technique for formal verification of requirements that has been explored
is model checking, and more details about our experiences can be found in [3].

Tool Support. In this case study the model checkers Simulink Design Verifier
(SDV)1 and Uppaal [5] were compared qualitatively, with respect to their ability
to be used in an actual industrial process for formal verification of requirements.
SDV was chosen since it is an embedded model checker in Simulink, which is
nowadays a de facto standard for design and evaluation of embedded systems.
Uppaal was chosen since it is a popular and well documented model checker,
and has been successfully applied to problems of similar characteristics.

The model checker of SDV is called Prover Plug-In. Given a Simulink model,
a requirement specification is expressed as a combination of Proof objectives and
Proof assumptions that define a relation between the inputs and the outputs of
the model. Proof objectives and assumptions can be modelled by logical and rela-
tional operators, MATLAB functions, or Stateflow graphs. A Proof objective is
proven valid if there does not exist any state of the model that violates the Proof
objective, given restrictions on the inputs, as specified by Proof assumptions.
When a violation is detected, SDV generates a test vector that can demonstrate
the violation in simulation.

Uppaal is a model checker based on the theory of timed automata [5] that
allows symbolic representation of time. Uppaal provides a graphical editor, a
simulator and a verifier. The verifier verifies properties that are defined as a
subset of TCTL (Timed Computation-Tree Logic) and whenever a property is

1 http://www.mathworks.se/products/sldesignverifier/.

http://www.mathworks.se/products/sldesignverifier/
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not satisfied, it provides a counter example in the form of a trace that can be
explored with the help of the simulator.

Industrial Case. The case study target was the Fuel Level Display (FLD) SW
component, whose purpose is to provide an estimate of the total fuel level using
a Kalman filter.

A subset of the specification consisting of 7 functional requirements was
chosen for verification. Out of these requirements, 5 of them were dependent
on time, while the other 2 were not. The emphasis was not placed on proving
correctness of the system design, nor on the computational efficiency of the tools,
but on the ability of the tools to be used within the organization in an actual
process, in order to identify the problems faced by regular engineers performing
model checking.

Results. The formalization of the requirements with SDV seemed fairly easy to
grasp for the engineers, since it is based on function blocks and this is a well-
known concept in systems and control engineering. Moreover, since SDV uses
the original Simulink model, the interfaces between the submodules are clearly
defined. This becomes very helpful because system requirements are typically
defined in terms of these submodules/interfaces.

Table 1 shows the time needed for each verification. It is remarkable that
some of the proofs needed a substantial amount of time, despite the simplicity
of the system. This raised concerns about the scalability of this technique.

Table 1. SDV verification results.

Req. Time (s) Req. Time (s)

AER201-12 2 AER202-2 3

AER201-13 238 AER202-3 25

AER201-14 238 AER202-2 1

AER201-15 24

Using Uppaal, the engineers first had to manually construct a model of
the FLD component based on timed automata, and subsequently formalize
the requirements into TCTL properties. These manual activities required extra
supervision, and needed much more time than initially expected. The first prob-
lem was associated with the fact that Uppaal has no support for using fixed and
floating point numbers in the models. A solution to this is to scale such numbers
up to integers, which for complex systems requires certain expertise. Second, due
to the degree of abstraction, the engineers had some difficulties with mapping
the elements of the timed automata with the real elements of the system.

Due to this, and because of the strict time requirements of the project, not all
of the requirements in Table 1 were verified with Uppaal. For the requirements
that were verified, the verification time was substantially lower than for SDV,
e.g. the verification time of AER202-2 was 0.2s.
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Conclusions. The insights gathered from the case study is that SDV offers key
features, such as the support for fixed point and floating point numbers and
clearly defined interfaces, which appeal to the typical engineer. As an embedded
feature of Simulink, which is widely used in industry, it eliminates the problem
of having to transform the system to be verified into a formal model. Instead the
requirements can be formalized as Simulink models, which the engineers found
easy because of their familiarity with Simulink.

Uppaal, on the other hand, offers high performance as compared to SDV,
and relies on well-founded theories for handling complexity. Uppaal requires the
model to be transformed into timed automata, which is a relatively unknown
concept to a typical engineer. As such, the formalization of the system to be
verified requires considerable expertise and constitutes a real obstacle for its
integration with current industry practices. This process would itself need to be
verified or automated.

3.3 Learning-Based Testing

Our next case study evaluated the use of learning-based testing, a form of black-
box testing, as a means for quality assurance of embedded safety-critical code.

Tool Support. LBTest [14] (see Fig. 2) is an automated, combined test-stimuli
generator and evaluator that implements the methodology of learning-based test-
ing [13]. LBTest is used to generate test-stimuli and evaluate responses from the
system-under-test (e.g. an ECU). LBTest receives requirements as input, but
has no model of the system-under-test. Instead, LBTest incrementally learns
a model of the black-box system by issuing sequences of input and updating
its learned model. The learning algorithm generally explores the state-space
in a breadth-first manner, and a model checker receives the tentative models
learned. Each such tentative model is checked against the requirements and, if
the model is non-compatible, the model checker produces a concrete counterex-
ample input/output sequence. This counterexample is sent to the system-under-
test for validation. Most often, executing the counterexample will mispredict the
output of the system-under-test and this will lead to amendments to the learned
model, but when the prediction is correct, a true requirements violation has been
detected.

Industrial Case. To evaluate the feasibility of learning-based testing for auto-
motive applications, a benchmark experiment was performed [4,11], comparing
LBTest to an existing test-suite on the Dual Circuit Steering (STEE) applica-
tion, a sub-system of the ECU software.

As LBTest expects requirements formulated in PLTL (Propositional Linear-
time Temporal Logic), the set of existing, informal requirements first had to be
translated into PLTL. Out of the original 32 informal requirements, 11 could
not be formalized in PLTL since some were not describing any actual rela-
tion between inputs and outputs and others referred to a specific platform for
hardware-in-the-loop (HIL) testing. This ratio seems to be on par with other
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Fig. 2. LBTest architecture

similar studies [4]. The remaining 21 requirements could be formalized in PLTL,
although they required extensive reformulation since they made use of variables
denoting assumed internal states and internal signals. Also, the informal require-
ments did not always systematically model all the corner cases necessary for an
unambiguous translation into formal requirements.

Results. To estimate the strength of LBTest to an existing test-suite (piTest),
10 errors were manually injected into the system-under-test and the recalls of the
errors for each test-tool were compared. LBTest failed to detect 2 of 10 injected
errors whereas piTest failed to detect 3 of 10 injected errors [4]. The types of
errors that were detected or missed by the two tools may give an indication of
their respective strengths and weaknesses. The errors not detected by LBTest
were both changes to boundary values, whereas the errors not detected by piTest
where changes to output values. No conclusive analysis was made for the missed
errors. One integration of the testing procedure took about 7 h to terminate for
an empirically estimated final model coverage at 97%. There are many potential
ways to improve the performance of LBTest, but at the time of the experiment,
the long turnaround time was an impediment to more extensive mutation testing.

Conclusions. Having performed the case study, we believe that empirical black-
box methods, where tests are automatically generated from formal requirements,
add testing-value since they should be less likely to miss errors due to feature
interactions. Also, black-box testing puts minimal constraints on how the actual
software is produced (i.e., what languages, tools or processes are used to produce
the software), and does not even require access to the source code. However,
as indicated by the 3 out of 10 missed injected errors, empirical methods can
never conclusively prove the absence of bugs, and also, no amount of testing will
automatically generate high quality software-design.
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3.4 Verification of Requirements and Variability

At Scania, an in-house tool for specification, structuring, and verification
of requirements has been developed for research purposes [17]. This section
describes a case study where this in-house tool was used to perform a breakdown
of a top-level safety requirement (a safety goal) all the way down to requirements
on software modules.

Tool Support. In the in-house tool, requirements can be specified and linked
together across different abstraction levels, forming a hierarchical breakdown of
top-level requirements down to low-level requirements on software and hardware.
The tool also integrates with other parts of the Scania toolchain by fetching
data that various other tools have made available in a central database. This
database contains information about internal software variables, CAN signals,
truck configuration parameters (such as names, ranges, and types) and other
data that has proven valuable for formal reasoning about specifications.

The tool supports formal specification of requirements in a simple logic lan-
guage, as well as assigning validity of requirements in terms of production dates
and truck configurations. These features enable simple sanity checks such as
syntactic validation of requirements, and whether two linked requirements are
ever valid in the same configuration or at the same production date, as well as
checks of more complex properties such as completeness and consistency. Uti-
lizing the data from other tools, we can semantically check whether values used
in requirements and configuration specifications are in the actual range of the
referenced signals or parameters. Combining these formal aspects, it is possible
to verify, for example, whether a high-level requirement is fulfilled (i.e. semanti-
cally entailed) by its linked lower level requirements at a certain production date
for all configurations in which the high-level requirement is valid. All checks and
verification are performed on-the-fly, using the SMT solver Z3 [15].

Industrial Case. The case study target was the dual-circuit steering system,
already described in Sect. 3.1. In the case study, a safety goal for the dual-circuit
system was formalized and broken down in several levels until requirements could
be allocated to the STEE module. Verification was performed at each level to
check that every requirement was entailed by its linked requirements at the lower
level.

Results and Conclusions. An experience gathered from the case study was that
the task of formalizing and structuring requirements to be able to verify entail-
ment is truly difficult. Especially when working with the high-level requirements,
despite appearing easy to formulate in concept, many ambiguities and unclar-
ities arose when trying to formalize them. One reason for this difficulty with
formalizing the requirements was the low quality of the existing informal require-
ments, which in turn suggests that writing requirements in general is hard. A
feature of the tool that gave support during the formalization was the on-the-
fly check/verification of requirement conditions. The fact that the feedback was
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provided almost immediately was critical since it was then in most cases clear
what action caused the violation of a condition. It was even found that getting
such immediate feedback was so important that it could be beneficial to even
increase performance at the cost of added false-negatives.

3.5 Summary of Enablers and Obstacles

A comprehensive summary of the enablers and obstacles identified in the different
industrial case studies is shown in Table 2, listed in the order they are discussed
below.

In all of the case studies problems with performance and scalability were
encountered. This can to some extent be mitigated by taking verification into
account both when formalizing the requirements (so that they can be efficiently
verified) as well as during development of the application, whether it is writ-
ten in C or modelled in Simulink (e.g. by putting restrictions on the allowed
constructs). In any case, a deep understanding of the relevant tools is necessary.

Another common thread is that formalization and (in the case of deductive
verification) annotation of requirements is a very time-consuming and complex
task. As such, this process needs to be automated as far as possible, and for tasks
that cannot be automated, as much support (e.g. feedback) as possible needs to
be provided by tools. Because of the complexity, formalization is also prone to
being erroneous, and one solution to this are tools supporting the validation of
requirements.

In several case studies the formalization was even found to be impossible
due to ambiguities and contradictions in the requirements, which suggests that
formalization is a valuable task in itself since it exposes such deficiencies.

3.6 Discussion

In order to formally verify a system/SW against its requirements, both the sys-
tem/SW and its requirements first need to be formalized, i.e. described mathe-
matically. Formalizing complex system or SW properties is indeed difficult, and
an observation from working with the presented case studies is that this diffi-
culty seems to grow with the level of abstraction. That is, it is part of every-day
development to engineer formal products, e.g. code. Reasoning about what the
code does is hard, but feasible. Formalizing what the code does, e.g. in terms of
pre- and post-conditions, is very hard. Formalizing the overall property that the
code is intended to do is even harder. What is most difficult is formalizing and
structuring requirements to be able to verify relations between requirements.

This difficulty is reflected in the quality of engineering artifacts at these
abstraction levels. This was an issue in all of the case studies: the high-level engi-
neering artifacts that we were supposed to verify against were highly ambiguous
and the only artifact that could truly be trusted was the code (“code is king”)
or the model that the code was generated from. Thus, we had to look into
the code/model to resolve the ambiguities and ‘understand’ what the high-level
artifacts were expressing. Naturally, we could claim that we had good judgment
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Table 2. Identified enablers (E) and obstacles (O) in each case study group using
methods: (1) deductive verification, (2) model checking, (3) learning-based testing,
and (4) requirements verification.

ID Conclusion E/O CS Group

1 2 3 4

1 Deep understanding of tool and method required O � � �
2 Restrictions on code E �
3 Tool lacks capabilities (e.g. floats) O � �
4 Automation E � � � �
5 Inefficiency/scalability issues O � � �
6 Monitor small parts of code E �
7 Low-quality informal requirements O � � � �
8 Lack of requirements O �
9 Formalization of requirements is hard O � � �

10 Formal modeling of the code is hard O �
11 Time-consuming manual work O � �
12 Familiar requirement formalization E �
13 Feedback to users E � �

when doing this; however, the question still stands if we simply verified that the
implementation does what it expresses rather than what it is intended to do.

One difference that might contribute to this discrepancy in quality between
high-level artifacts and code is that when working with the latter, one receives
almost immediate feedback from the tools operating on it. In contrast, when
working with structuring high-level requirements, there is little to no feed-
back support provided by tools. Working towards providing such support in
the requirements and variability case study, we indeed found that it was critical
that a user gets immediate feedback when violating a requirement condition, so
that it becomes evident which action caused the violation. We even found that
getting such immediate feedback was so important that it could be beneficial to
increase performance at the cost of increased false-negatives.

Another observation is that the difficulty in formalizing grows if the formal-
ization is to be done by someone who is not an expert in the chosen formal-
ism. This was observed in the case study comparing Uppaal and SDV where
a big obstacle for the integration of Uppaal with current industry practices is
the fact that the user is forced to formalize a system and its requirements as
timed automata and CTL formulas, which are relatively unknown formalisms to
a typical engineer. Uppaal also does not provide support for fixed and float-
ing point numbers, which means that it requires scaling up to integer numbers,
which requires some expertise. In contrast, using SDV requires only knowledge
in modelling using Simulink blocks, a formalism used daily by many engineers.
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However, as shown in the case study, SDV does not scale very well, and thus,
cannot be used to verify an arbitrary model; knowing which models can and
which cannot be verified (due to, e.g., scaling issues) requires experience and
inside-knowledge of the underlying theory and applied algorithms.

Thus, both SDV and Uppaal suffer from critical drawbacks with respect to
being applied in practice. Most notably, their usage is rather restricted to peo-
ple with expertise and in-depth understanding of the tools and their underlying
theory. This observation is common for all of the tools used in the case studies.
E.g. when using VCC understanding the underlying theory of the tool is essen-
tial to writing annotations that may be successfully verified and, perhaps more
importantly, to avoid writing annotations specifying an incorrect behaviour of
the code that is then successfully verified because of software bugs.

In addition to this similarity, VCC suffers from the same problem with scal-
ability, which was made evident when trying to inline the helper functions of the
STEE module in order to avoid the manual decomposition of top-level function
contracts.

Using exhaustive, formal methods in parallel with developing the software
is more likely to ensure that good software development practices will be used
(e.g. designs with minimal amounts of undefined internal state).

4 Other Factors

In Sect. 3, we draw conclusions of enablers and obstacles based upon solely the
case studies. In the present section, we try to add the perspective of other factors,
namely management and SW architecture.

Management Commitment. In general, engineers and management are typ-
ically positive to, and understand, the benefits from using formal verification
such as higher confidence, automation, etc. However, there is often a lack of
understanding of what is actually needed to make these methods work in prac-
tice. This includes not understanding the level of effort and competence needed
to formalize the systems and requirements to be analyzed.

Formal verification is not yet state-of-practice in the automotive industry.
This means that to start practicing formal verification, new costly resources
and competences need to be added. In a cost-aware development department,
any new cost needs to be strongly motivated. To motivate a recruitment in
the area of formal verification, upper management needs to be convinced about
the benefits. However, as observed in the case studies, it is not at all clear that
formal verification is technically ready for general automotive industrial practice.
Furthermore, management decisions are often sensitive to general trends; i.e.
if it is known that other companies are practicing formal verification or are
planning to do so, it is easier to motivate recruitment. However, currently, formal
verification is not part of a general automotive trend.

Having safety critical software should increase the need for formal verifica-
tion. However, ISO26262 recommends but does not require the usage of formal
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verification. So there has to be reason to go beyond what is required in ISO26262.
One reason could be that the cost or time required of verifying a system with
formal methods is lower than for traditional methods. This should be more
articulated for parts of the vehicle that are more safety critical, i.e. having the
highest safety integrity level. Since ADAS and AD involves more safety critical
components, this trend might very well reach a turning point when the amount
of verification of highly critical components is so large that the limitations of
current testing methods become a blocker for introducing this new technology
into the vehicles.

Legacy Systems. Formal verification comes with restrictions on the code and
requirements having certain structures and being written following certain prin-
ciples. Having systems consisting of large amounts of legacy code with legacy
requirements often implies that these restrictions are not respected. Thus formal
verification can not be used or the SW and requirements need to be rewritten,
making formal verification harder to justify from a cost perspective.

Architecture and SW Complexity. The fact that embedded systems are
developed in-house, may have both positive and negative effects on architecture
and code complexity. A software tailor made for only one use case, is likely to
have the consequence of a less general architecture. This stands in contrast to
SW developed by suppliers, that are mandated to follow industry standards,
such as AutoSAR, and provide a general architecture possible to adapt to all its
customers. The comparably smaller focus on SW architecture makes systematic
usage of formal verification difficult, especially using compositional verification.

On the other hand, a more streamlined and less general SW is likely to also
have a positive effect on SW complexity. An example is the execution model
used at Scania. Since it is known exactly when and which code is needed to
be executed, relying on a general-purpose operating system is unnecessary, and
a very simple real time scheduling principle can be used, for example relying
to a high degree on fixed time scheduling, avoiding many issues associated with
concurrency.

Product line principles have likely a negative effect on SW complexity. A
similar negative effect may be seen in the requirements. For example, to sup-
port many product variants, requirements need in general to be parameterized
or instantiated into many variants. This combined with the need for keeping
requirements decomposition consistent is a substantial challenge.

In addition to architecture, a general adoption of formal methods and tools
requires a high degree of information consistency across the organization. For
example if an effort is made to prove the correctness of a system producing a
signal X, but then the system consuming the signal has a different interpretation
of the same signal X, a correctness proof of the second system will not help to
guarantee correctness of the total combined system. To avoid this situation,
general cross-system usage of formal verification needs to be backed up by a
formal data-model, and in turn an information model.
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4.1 Summary of Enablers and Obstacles

In accordance with Sect. 3, we summarize in Table 3 the enablers and obstacles
identified above.

Table 3. Identified enablers (E) and obstacles (O) related to other factors.

ID Conclusion E/O

14 Methods are efficient for at least some cases E

15 Resistance to process and methodology changes O

16 Evidence of method matureness and efficiency is missing O

17 Method usage requires new recruitement O

18 Not required by the process standards O

19 Many upcoming safety critical applications E

20 Unnecessarily complex software O

21 Bad system and SW architecture O

22 Legacy SW O

23 Generic parameterized software O

24 Standardized architectural frameworks E

25 Complex variability O

5 Exploiting Enablers and Overcoming Obstacles

Tables 2 and 3 summarize 25 enablers and obstacles found in the case studies and
the analysis of business-related factors inherent to the automotive industry. As a
next step, we analyze the obstacles to identify remedies, and analyze the enablers
to identify means through which they can be exploited. This is presented below,
by grouping together similar remedies and exploitations. Based on this, we then
suggest a roadmap of concrete tasks to be performed.

Improvement of Formal Verification Tools (3, 4, 5, 10, 11, 13). Tools
need to be improved to add capabilities, e.g., handling of floats. Tools also need
to be largely automated, especially concerning annotation of the code to be
verified. Tools need to become more efficient for larger problems, i.e., scalability
needs to be addressed. Tools need to have immediate and informative feedback
to the user. If the target language of the verification tool is different from the
implementation language of the code, then automated transformation from code
to the verification target language is needed. Alternatively, tools need to be
developed such that they can handle the implementation language of the code.
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Improvement of Methodology on SW and Architecture (1, 2, 17).
Restrictions on code for verification tools to be efficient need to be identified.
Also, patterns of code, where formal verification is likely to work well, need to be
defined. In general, the methodology has to be simple, and education material for
engineers has to be developed. The aim should be a methodology that does not
require deep expert knowledge. As part of the methodology improvement, general
requirements on the code, SW and system architecture need to be identified.

Improvement of SW and Systems (6, 20, 21, 22, 23, 25). Development
of new SW and systems need to follow the general requirements on the code,
SW and system architecture identified above in the remedy on SW and architec-
ture methodology. This includes structuring the code into highly safety-critical
components, to be formally verified, and non- or less safety-critical components,
that do not need to be verified formally. To avoid complex verification tasks,
complex SW has to be avoided. In addition, legacy SW and systems need to be
refactored using the same principles.

Improvement of Tools and Methodology for Requirements Engineer-
ing (7, 8, 9, 12, 13, 24). Engineers writing requirements, informal or formal,
need knowledge of how to write good requirements. It is the authors’ observation
that existing books and industrial courses in requirements engineering are not
at all sufficient to make engineers produce requirements of high enough quality
to be formalized. The problem is that requirements engineering researchers, who
are typically authors of books, and experienced industrial practitioners, who are
typically the teachers in courses, have no or very little experience in writing
formal requirements used in formal verification. So what is needed is a collab-
oration between requirements engineering researchers, industrial practitioners,
and researchers in formal verification, to produce new books and courses.

Unfortunately, raising the stringency of requirements will often make it
harder to write the requirements. This in turn will reduce the willingness to at
all write requirements. A big part of the solution can be requirements-authoring
tools with excellent support for the user. A source of inspiration could be SDV
with their formal requirement language that is very intuitive to the engineers.
Another part of the solution can be a tight connection to the SW architecture
(with formal references to component interfaces), as we demonstrated in [17].

Another complementary direction is to rely on requirements patterns, and
make them highly accessible to the user. This is more likely to succeed if an archi-
tectural framework is assumed, and even more so if standardized architectural
frameworks, such as AutoSAR, are considered.

Technology Transfer (14, 15, 16, 18, 19). The key to technology transfer
are successful pilot projects using the new methodologies and tools. These suc-
cess stories need also to be shared across companies. When successful projects
can be demonstrated, confidence in formal verification as an efficient method
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will grow. This then lays the ground for more strongly recommended or even
demanded formal verification in revised process standards, such as future edi-
tions of ISO26262.

5.1 Suggested Roadmap

As can be noted, many of the remedies are in control of, and can be solved
within, the research community. However, several of the remedies can only be
implemented with help from industry. Also, to maximize the likelihood of a near-
time widespread usage of formal verification in industry, the order of the remedies
should be carefully chosen. Below we provide a roadmap, with a suggested order
of remedies, and also a suggested allocation of tasks to the research community
and industry, respectively.

Task 1. Improvements of the formal verification tools. This is a task that the
research community needs to take.

Task 2. Along with Task 1, the general requirements on the code, SW and sys-
tem architecture need to be identified. This task needs to be taken by
the research community, but in collaboration with industry.

Task 3. Improvement of tools and methodology for requirements engineering.
Researchers from the areas of requirements engineering and formal ver-
ification need to collaborate. Also, a close collaboration with industry
is needed.

Task 4. Technology transfer. When tools and methodology for requirements
authoring and tools for formal verification are ready, they need to be
applied in real industrial pilot projects developing new systems. Indus-
try will need to lead this task, but researchers should be involved in
coaching.

Task 5. Improvement of legacy SW and systems to meet the requirements iden-
tified in Task 2 on general requirements on the code, SW and system
architecture. After having completed Task 4, industry should be ready
to take on this task by itself.

6 Conclusion

Despite providing a straightforward way towards applying formal verification,
the suggested roadmap requires considerable work and dedication over an
extended period of time. Without realizing this, it is easy to get caught in a
typical Catch 22 of formal methods: on the one hand, to truly make such meth-
ods work requires significant effort and resources (for education, development,
organization, etc.), while on the other hand, industry wants to see proof that they
really work before putting such an amount of effort and resources in realizing
them.

It is therefore important to emphasize that a move towards a more formalized
way of working, despite requiring a lot of effort, could actually be beneficial
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regardless of whether formal methods end up being used or not, since it forces
an organization to establish a more rigorous and structured development. At
that point, then, actual usage of formal methods can be considered a bonus
from this effort.
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Abstract. Today, software verification is vital for safety-critical and
security-critical applications applied in industry. However, specifying
large-scale software systems for efficient verification still demands high
effort and expertise. In deductive verification, design by contract is a
widespread software methodology to explicitly specify the behavior of
programs using Hoare-style pre- and postconditions in a modular fashion.
During verification, a method call can either be replaced by an available
method contract or by inlining the method’s implementation. We argue
that neither approach alone is feasible for verifying real-world software
systems. Only relying on method inlining does not scale, as the number
of inlined methods may lead to a combinatorial explosion. But specify-
ing software is in itself notoriously hard and time-consuming, making it
economically unrealistic to specify large-scale software completely. We
discuss circumstances in which one of the two approaches is preferred.
We evaluate the program verifier KeY with large programs varying in
the number of method calls of each method and the maximum depth
of the stack trace. Our analyses show that specifying 10% additional
methods in a program can reduce the verification costs by up-to 50%,
and, thus, an effective combination of contracting and method inlining
is indispensable for the scalability of deductive verification.

Keywords: Deductive verification · Design by contract
Method inlining · Method contracting · KeY · Method call treatment

1 Introduction

A challenging task in software engineering is to reason about the correctness of
large programs [32]. Deductive verification is a technique focusing on formal pro-
gram verification by generating proof obligations based on implementation and a
formal specification [1,22]. Such proof obligations can then be proved to be cor-
rect by interactive and automated program provers [1,26] to ensure that a soft-
ware system behaves as explicitly specified. In design by contract, specifications
are typically provided in the form of code annotations [4,17,38]. A developer
following this methodology annotates part of the source code, such as methods,
with contracts. Contracts are inspired by the theory of Hoare triples [31]. That
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is, contracts specify preconditions that need to be satisfied by callers and post-
conditions that callers can then rely on. Moreover, contracts can have additional
information, such as frame conditions, which express explicitly what locations
(i.e., program variables) a method is allowed to modify [10].

However, deductive verification combined with design by contract is not a
widespread methodology in industry. Despite its various advantages, such as an
increased trust in the program’s correctness, industry sees little benefit in it
compared to less demanding approaches (e.g., unit testing). One reason is that
it is regareded as cost-ineffective. Indeed, the specification effort is high and
error-prone [5] and verification tasks are time-consuming.

In this regard, method call treatment is one critical aspect in the discussion
about scability of deductive verification. Generally, there exist three strategies
to handle method calls. The first strategy is to always inline methods [1]. That
is, each method call in the method under verification is replaced by its respec-
tive implementation. However, method inlining is often infeasible due to two
reasons: (1) it fails per definition in case of recursion or unavailable source code
and (2), based on large call stacks, it often results in larger and more complex
proof obligations, which are too costly to verify. The second strategy is method
contracting [35], where we exploit the contract of a called method if available.
In this case, the verification consists of checking the preconditions at call-site
and abstracting the call by its postcondition. If the implementation of a method
specified with a contract changes, and the contract holds after the change, only
the method itself had to be verified again. With pure method inlining, always all
callers need re-verification. One problem is that not all methods can be specified,
as the specification effort is typically too high for large-scale software systems.
The third strategy is to use both, method inlining and method contracting, in
combination.

Surprisingly, method inlining and method contracting seem to be used inter-
changeably in research. Numerous evaluations simply use one or the other with-
out justification and often not even let readers explicitly know which one was
applied (e.g., [1,2]). This is problematic, as research prototypes are typically
applied to tiny examples only, where the verification effort is not high enough
to see a difference. Hence, when aiming to apply such approaches to large-scale
programs in industry, where the specification and verification effort is indeed
high, applicability may be unclear.

In this paper, we investigate method call treatment and its scalability in
the context of deductive verification empirically to discuss on how to improve
the cost-effectiveness of this methodology to become more effective in indus-
trial applications. As a starting point, we employ KeY [1], a static verifier for
Java programs with an active community. In KeY, a user either applies pure
method inlining or replaces methods with their respective contract (i.e., apply-
ing inlining only when no contract is available). To measure the verification
effort in a controlled evaluation setting, we generate large, fully specified artifi-
cial programs that vary in the number of method calls within each method and
the maximum depth of the stack trace. We justify the generation of artificial
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programs based on three reasons: (1) to the best of our knowledge, no fully-
specified real software systems exist that provide a large enough call depth nec-
essary for our evaluation, (2) the specification effort of such systems is too large
for us to specify them ourselves, and (3) generating such programs gives us con-
fidence in the correctness of the implementation and specification. In summary,
we make the following contributions:

– We discuss method inlining and method contracting for their advantages and
limitations in deductive verification and propose to use an effective mixture
of both approaches.

– We introduce an artificial benchmark for JML-based verification tools.
– We evaluate our proposal on large generated programs with KeY empiri-

cally by measuring the verification effort in different scenarios. Our empirical
investigation is a stepping stone towards automated deductive verification
and better applicability for industrial use cases.

2 Method Call Treatment in Deductive Verification

Deductive verification is a formal approach to reason about logical properties
of programs [43]. Properties such as “does not crash”, “has no arithmetic over-
flows”, and even more complex behavioural properties such as “sorts an array”
are possible. Program verifiers translate these properties and the program to
different flavors of first-order logic to reason about their conformance and to
become amenable for proof automation [1,4,26]. Deductive program verification
is often based on one of two approaches to transform implementation and spec-
ification into provable verification conditions, namely weakest precondition cal-
culus and symbolic execution. Following the original formulation of Floyd-Hoare
logic [27,31], Dijkstra suggested the weakest precondition calculus to compute
the weakest conditions that must hold at the initial state of the program for
given postconditions [22]. Symbolic execution follows a forward manner. Here,
all possible execution paths for all possible input data are explored, which can
be exploited for program verification against functional properties [15]. Program
verification is often not fully automatic due to the undecidability of the under-
lying verification problem. User interaction, such as providing loop invariants,
becomes necessary when proofs exist but cannot be found automatically.

The program verifier KeY allows practitioners to verify that a given Java
program (or parts thereof) adheres to its contracts written in the Java Mod-
eling Language (JML). Figure 1 illustrates how JML is used to specify the
intended behavior of a Java program in terms of method contracts. Here, method
maxInArray returns the maximum integer in an integer array and max the max-
imum of two integers. The keyword requires represents the precondition that
must be fulfilled. The keyword ensures represents the postcondition that all
callers of that method can rely on when the precondition is fulfilled.

Method maxInArray calls method max when the size of the array exceeds
one. To verify that maxInArray indeed conforms to its contract, we must verify
that all invoked methods behave correctly as well. Otherwise, we cannot ensure
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Fig. 1. Specification of Methods maxInArray and max

that the method returns the maximum integer in the given array. Typically, two
options exist to treat method calls in deductive program verification: method
inlining and method contracting. In this regard, we can either inline the imple-
mentation of method max into method maxInArray at invocation time or we can
use the method contract instead.

When verifying a specified method, method contracting only focuses on the
first level of method calls, whereas in method inlining the whole call stack of
a method is of interest. In our experience, real programs have stack sizes of
20 and beyond. A considerable consequence is thus the increase in size and
complexity of the respective proof obligations when method inlining is used,
potentially rendering the verification effort infeasible. However, defining strong
enough contracts for automated verification is notoriously hard and requires
numerous iterations. Even when methods are already specified by developers, a
lot of time is spent on refining dependent contracts to make them sufficient for
method contracting.

Although examples of real-world software as subject to deductive verification
exist in the literature (e.g., TimSort [21] or JavaCard [48]) where a combination
of method inlining and contracting was used, the difference in verification effort
between both approaches is negligible, because of their comparably small call
stacks. To the best of our knowledge, verification effort for either approach of
larger programs has not been evaluated empirically before. In the next section,
we first discuss under which circumstances method inlining or contracting is
preferred.
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3 Criteria for Method Call Treatment

Method inlining and method contracting have both their place in deductive veri-
fication. In this section, we discuss advantages and drawbacks of both strategies.
To this end, we chose criteria important for software engineering and deductive
verification involving specification correctness, specification effort, information
hiding, unbounded loops, unbounded recursion, verification effort, and incremen-
tal verification. In the following discussion, we further distinguish two types of
criteria. First, hard criteria, where only one approach is applicable in a verifi-
cation attempt. Second, soft criteria, where both approaches are applicable but
with varying degrees of success.

3.1 Hard Criteria for Method Call Treatment

Specification Effort. Baumann et al. [5] already argued that writing adequate
specifications is the hardest part in formal verification. Typically, developers
specify methods concurrently. As a consequence, insufficient specifications or
even unspecified methods during the early verification attempts are inevitable.
In our experience, writing specifications that are sufficient for method contract-
ing requires numerous iterations over a method itself and its called methods.
Moreover, not each developer that specifies contracts is also involved in the ver-
ification itself, making it almost impossible to come up with a sufficient method
contract for complex behavior from the beginning. Hence, invocations of insuffi-
ciently specified methods can only be dealt with through method inlining, when
there are no resources available for improving the specification.

Incomplete Implementation. A concern with method inlining when proving
correctness of a method is that the implementation of all called methods must
be accessible. If source code is unavailable, as often is the case for calls to APIs
(e.g., Java’s Collection API), or a method is not yet implemented, inlining will
fail and correctness cannot be ensured. An exception to the case when source
code is unavailable constitutes techniques regarding the verification of bytecode
[40]. However, bytecode verification is limited to languages executed by a virtual
machine (e.g., Java). Method contracting omits the implementation, as the con-
tract makes the intended behavior of a method explicit. If we assume that all
called methods adhere to their respective contract, we can prove correctness with
method contracting even when source code is unavailable by providing adequate
contracts.

Unbounded Loops and Unbounded Recursion. Dealing with loops and
recursion in deductive verification is typically difficult. Bounded loops and
bounded recursive calls can be unrolled [1]. When the stop criterion is indefinite
at compile-time, loop invariants must be specified and used during verification.
For instance, the length of the input array of maxInArray is not necessarily
known before run-time. If the array’s length cannot be determined statically,
the for-loop becomes unbounded (e.g., the size of the input array is determined
at run-time). Inlined methods depending on unbounded loops or recursion may
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therefore result in a time out and consequently fail. A good choice is to use
method contracting instead if a contract is available. In the aforementioned
example, when maxInArray is called in a method that we want to prove correct,
method contracting or an additional loop invariant is the preferred choice to
automatically ensure that maxInArray does not violate any stated properties.
The call could also provide concrete bounds, but would deteriorate software
evolution and maintainability.

3.2 Soft Criteria for Method Call Treatment

Verification Effort. Verification effort is typically either measured in terms
of proof steps of a found proof [1] or in total execution time. Here, we focus
on the former measurement, as it is independend of external factors, such as
computational power. In particular, reasons for a large number of proof steps
are manifold, such as the size and complexity of the program and specification
that are subject to verification. For instance, symbolic execution in KeY leads
to a step-wise unfolding of Java source code. In case of dynamic dispatch, addi-
tional case distinctions have to be made during verification [1]. Unlike method
contracting, pure method inlining may lead to a combinatorial explosion in the
verification effort, as each method can invoke methods itself that must be also
inlined. Nevertheless, there exist cases where sufficient method contracts may
also result in larger predicates than the actual implementation. In our eval-
uation, we aim at empirically investigating the verification effort for method
inlining and method contracting in more detail.

Re-verification Effort. When software evolves, each modification may solve
prior defects or lead to the introduction of new defects and, thus, re-verification
becomes necessary. Because verification is expensive, it is desirable to save ver-
ification effort once a program is proved by only re-verifying the parts affected
by a change. If the implementation of a specified method changes, only the con-
tract has to be re-established for contracting, whereas for method inlining all
callers must be re-verified. If the specification of a method changes, however,
only contracting is affected. In this case, the method itself and all of its callers
must be re-verified. Moreover, this may involve an adaption of multiple depend-
ing contracts. Method inlining is unaffected in this regard, because specifications
of inlined methods are ignored. To conclude, we state the hypothesis that the
re-verification effort is less with method contracting than with method inlining.

3.3 Summary

Table 1 summarizes our insights of the previous discussion. A “+” means that the
respective approach usually performs better and a “–” means that the respective
approach fails or performs poorly in that category. The first three rows represent
the hard criteria for method call treatment. When dealing with insufficient spec-
ifications, only method inlining allows us to verify the correctness of a method.
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In case of incomplete implementations and unbounded loops and recursion, how-
ever, only method contracting suffices. For the soft criteria, we see verification
effort and re-verification effort after a change in the implementation in favor of
method contracting. If the specification of a called method changes and method
inlining is used, re-verification is not needed. However, if the specification of a
proven method changes, method inlining should perform worse depending on call
width and call depth of the method. Our goal of the next section is to investigate
verification effort under change empirically.

Table 1. Comparison of method contracting and method inlining based on chosen
criteria

Criteria Contracting Method inlining

Specification effort – +

Incomplete implementation + –

Unbounded loops and recursion + –

Verification effort (initial phase) + –

Re-verification effort (change in implementation) + –

Re-verification effort (change in specification) – +

4 Scalability of Method Call Treatment

We conducted a controlled experiment to measure the effect of method inlining
and method contracting on scalability for deductive verification. According to
our experience, it is untypical to verify a software system all at once. Hence, we
are particularly interested in the effort needed for re-verification of small changes
in implementation and specification of single methods. The two independent
variables are (a) the call width representing the number of method calls within
a method body and (b) the call depth representing the maximum stack trace of
a method call. Both variables allow us to increase the program complexity in a
comprehensible and controllable way.

For proving methods in realistic software systems, two problems arise. On
the one hand, due to our interest in the verification effort under change, each
method needs to be specified with strong enough contracts. The demand in
specification effort is, thus, high and not manageable by us for research projects
of this scope. On the other hand, for call depths of 20–30, the verification effort
becomes infeasible with method inlining. Our solution is therefore to generate
artificial programs, varying in call width and call depth, for which we can ensure
correct implementations and specifications such that all proofs can be closed
automatically.

The rationale behind excluding user interaction is twofold. First, developers
need to know how to formally specifiy software, but they should not need to
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have expertise in proof theory [4]). This, however, is necessary to work with
verification systems interactively. Second, the increased expense does not justify
the additional insights we may get and is probably unmanageable for us with
respect to our experiments.

For the comparison between method inlining and method contracting, we
(a) evaluate the root method and a leaf method under change, which gives us
indirectly upper and lower bounds for the verification effort of an arbitrary
method in-between the call hierarchy, and (b) evaluate the verification effort
of ten randomly chosen scenarios, where specifications are sufficient for method
contracting in 0%, 10%, ..., 100% of the total number of methods. We address
the following research questions.

– RQ1.1: What is the re-verification effort if the root method’s implementation
is changed?

– RQ1.2: What is the re-verification effort if the root method’s contract is
changed?

– RQ2.1: What is the re-verification effort if a leaf method’s implementation
is changed?

– RQ2.2: What is the re-verification effort if a leaf method’s contract is
changed?

– RQ3: Given a partially specified program, to what extend does the distribu-
tion of contracts impact the verification effort?

Our generators produce Java programs with JML specifications for a given
call width and call depth. We analyzed these programs using the program verifier
KeY in version 2.6. With the exception to the treatment of method calls, all
parameters are set to their respective default. All generators, implementation
artifacts, and experimental results can be found online.1

4.1 Benchmark for JML-Based Verification

Sorting algorithms are typical in software systems and should ideally be verified
to ensure their intended behavior [21]. They are particularly interesting for an
evaluation, as they embody real use cases with typical language constructs such
as arrays or loops. We therefore decided to implement a sorting algorithm close
to bubble sort called circuitous sorting, where we are able to specify a variable
call width and call depth. However, writing generators with variable call width
and call depth to produce verifiable programs with moderate complexity is non-
trivial. For the circuitous sorting program we needed countless iterations until
all generated method contracts including loop invariants were strong enough for
the successful verification with method contracting. Consequently, we decided
to write a generator for a simpler program first, namely a program with variable
call width and call depth that performs an addition called circuitous addition.
Our generators together with their respective results may serve as benchmarks

1 https://www.github.com/AlexanderKnueppel/MethodCallTreatment.

https://www.github.com/AlexanderKnueppel/MethodCallTreatment
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for upcoming techniques that aim at reducing verification effort. In the following,
we briefly describe both generators.

Generator for the Circuitous Addition: We built a generator for programs
that count and return the number of total method calls plus some input i.
The control flow of these programs with call width n and call depth m for the
root method a1 is as follows. First, the method a1 takes an integer as input
and invokes n methods. Each of these methods invokes n methods itself. This
procedure goes on until the depth size m is reached. Leaf methods return input
i. As depicted in Fig. 2, a1’s method contract ensures in its ensures statement
that i is incremented by 2. In the example, the call depth is set to 1, so b1 is a
leaf method returning input i.

Fig. 2. Root method a1 and leaf method b1 of generated circuitous addition program
with call width = 2 and call depth = 1.

Generator for Circuitous Sorting: The root method a1 of the generated
circuitous sorting program for call width n = 2 is depicted in Fig. 3. Usually,
bubble sort is formulated using two nested loops. To integrate call width and
call depth, we decomposed the original algorithm into numerous methods accord-
ingly. The leaf method brings exactly one element to its correct sorting position
in the input array. The methods on the layer above are calling the leaf method
n times and are also bringing one element to the correct position themselves.

Code Optimization. Our generators produce very large programs with many
methods for high call widths and call depths. For instance, the add program
with call width 9 and call depth 9 allocates approximately 10GB of hard drive.
As a result, a huge amount of time is spent in the parsing process of the pro-
gram in KeY for such programs. We thus simplified our programs such that
only one method is created for each layer. The examples in Figs. 2 and 3 are
already optimized such that they call method b1 two times instead of calling a
method b1 and then a method b2, both having an equivalent implementation
and specification. We checked that the verification effort in KeY is the same for
both approaches, which is why we kept this optimization for RQ1 and RQ2.
For RQ3, we use the former approach, as otherwise we would not be able to
have specified and non-specified methods at the same time on the same layer.
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Fig. 3. Root method a1 of the circuitous sorting program for call width = 2.

4.2 Empirical Comparison of Method Call Treatment

We now present the results of our study for circuitous addition and circuitous
sorting. We decided to use KeY, since a user can choose between the options
method expand (i.e., method inlining) and method contracting. We conducted
all experiments on an infrastructure with two virtual servers, each constituting
16 cores and an assigned RAM of 48 GB. We limited the number of proof steps
to 500,000 per experiment, after which we could not observe anymore progress
in the verification phase.

RQ1.1: What is the re-verification effort if the root method’s implementation is
changed? If the root method’s body is changed, only the root method must be
verified again, because the root method has no callers. Figure 4a and b depict the
number of proof steps needed to verify the root method of the circuitous addition
and circuitous sorting programs for method inlining and method contracting. Y-
axes of (a)–(c) have logarithmic scale. The call depth for both programs reaches
from 1 to 10. The call width is 5 for the circuitous addition program and 1
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for the circuitous sorting program. In our experience, 5 is a realistic number of
method calls for good-structured Java programs. However, circuitous sorting was
not verifiable anymore for larger call widths. The result were either timeouts or
OutOfMemory-exceptions. As expected, changing the root method’s implementa-
tion results in exponential verification effort for method inlining, because every
method in the call stack is inlined. For method contracting, we have linear veri-
fication effort.

Fig. 4. Empirical results of our evaluation for various change scenarios with respect to
call width and call depth.

RQ1.2: What is the re-verification effort if the root method’s specification is
changed? Likewise to RQ1.1, if the root method’s specification is changed, only
the root method must be verified again. Hence, the result is the same as for
RQ1.1.

RQ2.1: What is the re-verification effort if a leaf method’s implementation is
changed? For method inlining, every method that inlines the respective leaf
method must be verified again. In this case, the verification effort becomes expo-
nential, as every method is inlined at each layer above their own layer exactly
once. For method contracting, only the leaf method must be verified and, thus,
only a constant number of proof steps is required, independent of the call depth.
This case is identical to RQ2.2 in terms of verification effort.

RQ2.2: What is the re-verification effort if a leaf method’s contract is changed?
If the contract of a leaf method is changed, we have constant verification effort
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for method inlining and proportional effort to the number of callers for method
contracting (cf. Fig. 4c). However, for method inlining we only need to re-verify
the leaf method, whereas for method contracting, we need to re-verify the leaf
method and every caller of it exactly once, independent of our optimization. The
re-verification effort is thus higher with method contracting.

RQ3: Given a partially specified program, to what extend does the distribution
of contracts impact the verification effort? We evaluated ten scenarios, where
the circuitous addition program was specified iteratively. In each iteration, 10%
additional randomly-chosen methods are specified. Subsequently, the verification
effort of the root method is measured to control call width and call depth. Since
KeY does not support a mixture of method contracting and method inlining
natively, this way we simulate a combination of both approaches. The box plot in
Fig. 4d illustrates the results, where 0% represents method inlining (i.e., only the
root method is specified) and 100% represents method contracting (i.e., every
method is specified). The analysis emphasizes that strategically specifying an
additional 10% of all methods inside the call hierarchy can reduce the verification
effort by up-to 50% on average (cf. the median on 20% and 30%). Moreover,
there is a wide range in verification effort on numerous iterations. Hence, it
matters which parts are specified with respect to the verification effort and,
thus, there seems to be potential for a guiding specification process to further
support developers.

Threats to Validity. We generated programs ourselves, which threatens inter-
nal validity, as we might have chosen unrealistic specifications or implementa-
tions. However, the sorting program exhibits that writing generators for specified
source code – even for small programs – sufficient for method contracting and
automated verification is non-trivial. Moreover, we focused on controlling call
width and call depth to investigate the scalability of method call treatment
approaches, which otherwise would not have been possible. In this regard, we
mostly depicted results for a call width of five, as long methods are considered
a bad smell anyway [28]. Moreover, we specified all loops in the sorting program
with a loop invariant. Even for method inlining, loop invariants are necessary to
find proofs automatically.

An external threat is the choice of KeY as the only verification system. In
fact, our evaluation revealed a bug in the implementation leading to an increased
garbage collection, which deteriorated the verification time needed. Yet, KeY is
one of the most mature verification systems for Java programs with a dedi-
cated community. Moreover, we were not interested in the total number of proof
steps needed for either method inlining or method contracting, but how both
approaches influence deductive verification in relation. Finally, we generated pro-
grams with exactly one class, as we did not want to measure the influence of
classes on the verification effort, but only changes in specification and imple-
mentation of methods directly.



Scalability of Deductive Verification Depends on Method Call Treatment 171

5 Related Work

Method call treatment is only one parameter of many in the verification of pro-
grams. For instance, other parameters in KeY include the treatment of loops (i.e.,
loop unrolling or using a specified invariant), strategies for proof splitting, and
also how arithmetic or quantifiers are treated [1]. However, we were particularly
interested in the differences between method inlining and method contracting,
which is why we set all other parameters to their defaults.

To give a feeling on how research on deductive verification is considering
the treatment of method calls, we inspected numerous publications. In particu-
lar, we looked at publications containing empirical evaluations and verification
measurements, as well as publications contributing conceptual ideas based upon
method contracts. To briefly summarize, we found eight publications that use
method contracting [5,16,17,23,24,39,44,49] and seven publications that use
method inlining [7,18,20,34,37,42,47]. Numerous other publications we investi-
gated do not give information about the used approach [1,2,6,9,11,13,25,46].
Our evaluation shows that method call treatment is not yet another parame-
ter, but greatly affects the performance of evaluations significantly. Essentially,
inlining allows us to trade human time for an increase in machine time. To put
claimed evaluation results into perspective, the respective approach to method
calls should thus be indicated.

A survey on different languages for behavioral contracts was done by Hat-
cliff et al. [30]. Besides JML, there are alternatives for specifying Java source
code, such as C4J [14] or Contract4J [50]. Other examples of tools for deduc-
tive program verification include Dafny [36], VCC [19], Verifast [33], Spec# [4],
KIV [41], Why3 [8], and F* [45]. We plan to investigate those tools with respect
to method call treatment in the future.

A further abstraction on contracts is provided by means of abstract con-
tracts [29]. Method inlining is prone to changes in the implementation, whereas
method contracting is prone to changes in the specification. Abstract contracts
delay reasoning about changes of method contracts to the latest stage and, thus,
enable sophisticated proof reuse by being less prone to changes.

There exist also alternatives to human-written contracting that were not
discussed here. Algorithmic techniques aim at extracting contracts for helper
procedures, such as logical abduction [3] or logical interpolation based on Horn
clauses [12]. Such techniques can help to achieve efficiency and scalability of ver-
ification without significantly increasing the required human specification effort,
potentially reducing the latter to human inspection of machine-produced speci-
fications.

6 Conclusion and Future Work

Deductive verification has not found its way into industry yet due to issues
with the scalability in specification and verification. We investigated method call
treatment, which is an important parameter that needs to be considered when
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working with deductive verification. Our discussion on the differences between
method inlining and method contracting reveals that neither approach is supe-
rior in all aspects. Surprisingly, an empirical comparison with respect to the
verification effort and specification effort has not been made before. We filled
that gap by conducting experiments using the program verifier KeY, in which we
used artificial programs varying in the number of method calls of each method
and the maximum depth of the stack trace.

A sufficient specification for method contracting demands high effort. The
study of the circuitous sorting program showed that even specifying small pro-
grams to be sufficient for method contracting is hard. However, mainly relying
on method inlining in the verification process leads to scalability problems. In
this case, our benchmark revealed that inlining over numerous layers is ineffec-
tive for re-verification (i.e., time out for the circuitous addition program over a
call depth of five). We thus advocate to use an efficient mixture of both, method
inlining and method contracting; putting too much work on less impacting spec-
ifications may impair the verification effort significantly, whereas a better priori-
tization is indispensable when programs are specified and verified incrementally
(cf. Fig. 4d).

To make deductive verification scalable, we need to develop strategies for
identifying specifications of prime importance that reduce the accumulated ver-
ification effort. To investigate how such strategies may look like, it is necessary
to verify more fully-specified programs with respect to the number of proof steps
needed, and also to evaluate how other parameters and other verifiers influence
the verification effort. In particular for KeY, an additional annotation in the
source code to indicate method calls that should be inlined (i.e., even in the
presence of a contract) could be integrated to allow for a explicit mixture of
method inlining and method contracting. To cope with high specification effort
in general, stronger tool support is needed for guiding less experienced developers
in the specification process.
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Abstract. Formal methods in the form of automated proof-based
deductive verification is increasingly used in industry to give confidence
in the security and correctness of libraries and applications. This paper
presents observations on current tools and processes based on recent
experience with verification projects on industrial software: scalability,
breadth, specification language expressibility and semantics, capabilities
of underlying SMT tools, and integration into industrial build and con-
tinuous integration processes.

1 Introduction

Automated deductive, static analysis of software has been increasing in capa-
bility over the past decade. This trend was initially fueled by performance and
feature improvements in SMT solvers and has now reached the point that soft-
ware verifications of industrial software in practical use are being executed. As
capability has improved and the kinds of problems being tackled have changed,
the challenges for deductive verification have also changed. In this paper I present
some of those challenges as experienced in recent industrial verification projects.

Automated deductive verification follows the following paradigm: the intent
of the software under study (the ‘target software’) is expressed in machine-
readable specifications; both these specifications and the target software are
translated into a logical form; a logical proof tool then determines, if possible,
whether the logical representations of the specifications and the implementation
are consistent. If so, then the implementation is considered verified, that is, to be
consistent with the specifications; if not, then either the implementation or the
specifications (or both) have some fault to be found and corrected. Automation
is critically important for the technique to become widespread and for efficiency
in application. Thus we do not consider tools that translate into interactive proof
environments.

The observations reported in this paper are largely the result of projects that
used the Java Modeling Language (JML) and the OpenJML program verifica-
tion tool. However, these observations are also informed by experience with and
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discussions about the KeY tool, ACSL and Frama-C, Ada and SPARK, C# and
Spec#, Dafny, and designing specification languages for C++ and Fortran.

2 Specification Languages and Tools

JML [6,31] is a language for specifying behavior of (non-concurrent) Java source
code. Its syntax and semantics are similar to its host programming language,
Java, with extensions appropriate to expressing assertions in a typed first-order
logic appropriate to reasoning about software. JML is largely method-centric,
with syntax to write pre-, frame- and post-conditions for each method, along with
object invariants and other advanced features. JML is widely used in education
about software specification and as a platform for research and experimentation
in specification and reasoning about software.

JML is similar in purpose and structure to other Behavioral Interface Spec-
ification Languages [18]. Other examples are later languages such as ACSL for
C programs [5], Spec# for C# [35], SPARK for Ada [3], and Dafny [23]. JML
was designed using experience with the Larch tools [17] and with Eiffel [24].
The Key tool [2] is also a program verification tool for Java, but addresses only
the pre-generics (Java 4) subset of Java. In contrast to BISLs are specification
languages such as Z [29] and the B-method [1] that are more mathematical, are
programming-language independent, and are refined, with accompanying proofs,
to implementations in specific programming languages.

OpenJML [8–10,13,33] is a tool built on the OpenJDK [32] Java compiler.
It translates both Java and JML into a logical form. This logical form contains
a (large) number of specific assertions (a.k.a verification conditions); if all of
the assertions are true, then the Java implementation is consistent with the
given specifications. The logical form is translated into SMT-LIB [4,34] and
then back-end logical solvers check whether the verification conditions are true
and hence whether method implementations and specifications are consistent.
Like most of the tools mentioned above, OpenJML uses an SMT solver (in our
case, Z3 [16]) to check the logical verification conditions. Each of the specification
languages above has corresponding tools to generate verification conditions and
manage back-end tools that check those conditions. An example is the Frama-
C [30] toolkit for ACSL. Some proof systems, such as Coq and Isabelle, are
partially interactive, whereas OpenJML and most SMT-based tools aim for full
automation, given program annotations.

An example of JML is given in Fig. 1. Syntactically, JML specifications are
written as structured Java comments (beginning with //@ or /*@). The method
specification is expressed as a sequence of clauses: the requires clause is a pre-
condition, assignable denotes a frame-condition, ensures a post-condition, and
signals the post-condition on throwing an exception. Frame conditions state
what memory locations may be assigned by the method; any memory location
not mentioned can be assumed to be unchanged by the actions of the method.
Not shown are invariants, which state consistency properties of data structures
that are expected to always hold (except perhaps during manipulation).
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Accompanying tools perform both static checking and runtime assertion
checking using the JML specifications. Other specification languages use similar
keywords, language structure, and architecture, differing mainly in the specifi-
cation language constructs needed for various individual aspects of the different
programming languages.

Applying logical reasoning tools to prove the consistency of implementation
and specification without executing the program is called static deductive veri-
fication (DV). Our focus is on automated tools, which need the user to provide
specifications of functional behavior, but then carry out a proof of the implied
assertions automatically. Other tools may use interactive proof tools, implement
runtime assertion checking, or apply other less-logically-founded static checking
techniques.

Fig. 1. Example JML specification of an absolute-value method

3 Target Projects

The primary project on which the observations in this paper are based is a case
study [15] of an implementation of a secure streaming communication protocol
that underpins much of the communication between distributed components in
Amazon and AWS (e.g., AWS’s Kinesis service). The software was a useful case
study because it was developed without deductive verification as a concern, and
consequently it is an instance of legacy code implementing a design that was
not affected by any constraints of a verification system and was the subject of
specification and verification only after being written. It is also highly impor-
tant to Amazon and its customers and so worth the effort of specification and
verification. This code is not yet publicly available, as it is Amazon proprietary
code, but AWS is considering open sourcing this code, as it has with some other
critical software. The open sourcing is driven in part by security-conscious cus-
tomers who are requesting publication of the code with verification proofs, to
help them understand and audit how security is established on their behalf.

Additional insight into the specification needs of large-scale software comes
from verification projects on other proprietary software, on the development of
various specification tools for US-government-funded research contracts [11,12],
and on case studies performed during current development of a specification
language for C++ [36].

4 Observations

Industrial-scale software differs significantly from challenge problems posed in
competitions or as published exercises that demonstrate particular proof tech-
niques. The latter often focus on particular means to verify the implementation
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of algorithms or design patterns. Industrial-scale software by contrast is much
larger in scale. Intricate algorithms are limited to small corners of the software.
Instead the concerns are ones of data representation, data movement, abstrac-
tion, and large state spaces. Consequently the abilities needed of proof tools and
SMT solvers are different. The implications for tools are more ones of engineering
and representation than of logical capability.

The following subsections discuss a variety of issues encountered during our
case study.

4.1 Scale

A significant industrial software system can be quite large. Even when well-
designed and modular, the state space is large and the dependencies among mod-
ules are significant. Consider what is needed to verify a method of a class with
a large internal state, that is, with many data fields. First, each data field may
have associated invariants. These may be implicit invariants such as the numeri-
cal range of primitive types or explicit invariants distinguishing legal states from
illegal. These explicit invariants may be class (in the Java sense) invariants for
the type of the data field. Thus there are dependencies on all of the types of the
data fields and formal parameters. Those dependencies may propagate recur-
sively. In addition, there are relationships among Java types to be represented:
which types are derived from others and which are not. For example, even if
a class is itself quite simple, every Java class derives ultimately from Object,
which includes a toString method, and so includes String, CharSequence,
StringBuffer, CharBuffer, StringBuilder, sequences, arrays, and the like.
Interfaces add more complexity because an object of (static) class A may indeed
be an instance of interface I if the object happens to be an instance of some
(unseen) class D derived from A that also implements interface I.

Consequently the collection of all the facts that might be relevant to a method
(the prelude) is quite large, even if the body of the method itself is very simple.
The proof of the assertions required to verify the method may require only a
small number of facts from the prelude. However, a proof tool needs to wade
through all of these facts to find the relevant ones. At best a large prelude will
only cause the proof attempt to take more memory or more time; but it might
also cause an unknown result because of inadequate time or memory.

One way to address this situation is to rely on well-engineered SMT solvers
to sort through all the chaff. In this approach, the translation of the verification
problem to SMT would include all the facts of the prelude. The SMT solver
would need to parse this large prelude and maintain an internal representation
of it all. The SMT solver then executes a search through these facts to find a
chain of inferences that leads to a contradiction. A well-engineered solver will
not select possible next facts in its search by random, but rather will base its
search at least in part on common variables and the like. Such a search ought to
remove or at least deprioritize facts unlikely to be relevant to the desired proof.
This does not reduce the size of the fact set, but does rely on the SMT tool to
handle large fact sets well.
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A second approach is for the translation tool to be somewhat selective in its
choice of facts to include in the prelude. For example, suppose a method’s imple-
mentation calls a method m in another class B. That will create dependencies on
invariants of B and on any classes or methods mentioned in the specification of
m. But it need not create dependencies on other methods of B or their specifi-
cations. Similarly, suppose that a method being verified has a formal parameter
b of type B. If fields or methods of b are used, then the specifications of b and
any invariants of B become possibly relevant. However, if the value b is simply
copied into a field of type B, then no properties of b or B are relevant, other
than, possibly, whether b is permitted to be null or not.

Thirdly, after generating a set, even a fully complete set, of prelude facts, the
translation tool could do its own exploration of the web of dependencies among
the facts themselves, discarding any that do not appear to be connected to the
assertions to be proved. Recall that the SMT prover is attempting to establish
a contradiction; removing a logical fact will never cause a contradiction where
there was none with the fact included. That is, removing facts will at worst cause
the inability to establish a desired assertion, never establish one unsoundly. This
approach simplifies the logical problem presented to the SMT solver, at the cost
of doing some work that the solver may well be able to do itself.

It is an open research question in the design of program verification transla-
tion tools and of SMT solvers to what extent pre-processing of the input asser-
tions for the purpose of removing irrelevant facts is best done by the SMT solver
or as part of translation to SMT, or a combination.

4.2 Writing Specifications

It is well-known that a core problem of scale when applying deductive verification
is that specifications need to be written for each method. The effort to write and
check these specifications is still considerable. Thus the cost of such projects
could be reduced, and consequently the breadth of application increased, by
having practical specification inference and other means of lessening specification
writing. Specification inference is a large, active area of research. One endeavor
to include inference as part of verification tools is [28].

4.3 Specifications of Libraries

Another common aspect of large-scale software is heavy use of library routines.
In fact, the absence of broadly applicable libraries is seen as an impediment to
adoption of a new programming language—the experience of C++, Java and
Python are examples. Verifications of individual algorithms or demonstrations
of proof techniques are much less likely to use library routines.

To prove facts about code that uses library methods requires that those
methods have specifications documenting their effects. Separately, the imple-
mentations of the library routines should be verified against the specifications,
but for clients of the library it is the presence of the specifications that is impor-
tant. This raises the question: who is to write and review the specifications of
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such libraries? If deductive verification were part of common practice (or when
it is) it will be seen as part of the development of a library to write (and verify)
the specifications also. But we are not yet at that point in accepted practice.
It remains an open piece of work, for example, to write specifications for the
ever-growing Java system library. (Some specifications are part of the OpenJML
release, on the public OpenJML github site [33].) Similarly, the ACSL specifica-
tions for the C standard libraries as used by the Frama-C tool have much to be
added.

This problem is accentuated by the fact that there may be more than one
set of specifications needed. The specifications for runtime-assertion checking for
example need to be executable, while those used for static verification need to
be amenable to deductive verification tools. Even within the use of static verifi-
cation, in some situations light-weight specifications are sufficient for assuring a
lack of runtime errors while in others carefully detailed behavioral specifications
are needed to prove behavioral properties of client programs. Different tools for
the same specification language may have differing success with different ways
of formulating equivalent specifications.

Thus, along with generating an initial set of specifications for commonly used
libraries, it is an open research question as to how much customization of the
form of the specifications is necessary to accommodate the variety of antici-
pated applications. Would a well designed specification language accommodate
all uses? Is some sort of macro facility needed to enable or disable different parts
of a specification for different applications? Or does there need to be wholly
different sets of specifications perhaps in quite different specification languages?

4.4 Verification of Libraries

As noted in the last subsection, clients of libraries need specifications for those
libraries if they are to perform DV on code using those libraries. Perhaps the
clients are producing software libraries of their own and need to generate specifi-
cations for them. Writing specifications for libraries has some unique challenges.
A method in an application or a library that is used within the application or
library must be specified in a way that (a) permits the implementation of the
method to be proved consistent with the specification and (b) permits clients
(callers) of the method to know what the method does. Overly weak specifica-
tions make (a) easy but (b) impossible; strong specifications make (b) possible
but (a) more challenging. Thus many methods have a natural check: the spec-
ifications must be correctly strong enough or something will not verify in the
system as a whole.

However, the methods at the public API of a library do not have this check,
because they are not necessarily called by the library itself. It is easy for methods
at the top of the call tree to have specifications that are too weak: easily proved
against their own implementations, but inadequate to prove the behavior of
their callers. A solution for this problem is for the library developers to also
create a set of example programs that exercise the public API and are proved
correct against the specifications of the API. In fact, these example programs
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could be part of the library’s (dynamic) test suite. Even further, it could be a
requirement that all of the (dynamic) test cases in the library’s test suite should
also be statically verified to succeed. Constructing a test suite suitable for both
static and dynamic testing requires a bit of creative generalization: for static
verification, we would state that a test should hold for the complete range and
combinations of legal parameters; for dynamic testing, we would choose some
subset of the range and combinations of parameters to exercise.

An important aspect of these tests of the public API is that combinations
of the public API methods work together as expected. For example, a test of a
Stack library would check that a push followed by a pop gives expected results.
Although the specifications for individual methods might be correct, proving
that combinations work as expected ensures that the methods’ specifications are
strong enough to prove client programs. As a simple example of this approach,
consider the implementation of a Stack class in Fig. 2. Here Stack may be an
abstract class of an interface; that is, it may not have a concrete implementation;
even a concrete implementation may be private, and not to be exposed to the user
to ensure information hiding. So model variables are used to represent the intent
of the specification; here the stack is modeled as an array and a size (whether or
not the actual implementation uses a corresponding concrete representation).

These specifications are correct (according to informal expectations of a
Stack) and consistent with a (not-shown) implementation. They are also suffi-
cient to show that an assertion such as push(i); int j = pop(); //@ assert
i == j; is true. However, they cannot show that the assertion in push(i);
push(ii); int jj = pop(); int j = pop(); //@ assert i == j; is true.
The problem is that the methods are under-specified: for example, push should
also ensure that the elements in the stack before the push operation are still
present in the same order after the push operation. Verifying example uses such
as the second example above do not guarantee that the specifications are always
adequately strong, but are a help.

Fig. 2. Stack methods with weak specifications
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4.5 Continuous Integration

It is now standard practice in software development to implement a dynamic test
suite that is run regularly: certainly for each release, but better each night, or
continuously if it is large, or even on each commit to the source code repository.
The same discipline should be adopted for static verification. This is generally
a straightforward process. It requires that proof attempts be recheckable auto-
matically. For SMT-based proofs, this means simply re-attempting the proof. For
interactive proofs, this means capturing the proof steps as a script and replaying
the proof, checking that it is still valid. When SMT solvers are able to record
proofs, it will perhaps be possible to replay those as well, saving considerable
time over re-finding the proof.

Verifying a large system can be very time-consuming. In our case study a full
run of 5K lines of code took about 16 h. However, the proof system is modular and
hence highly parallelizable. Proof attempts of each of the 700 or so methods in
our case study could have been executed independently and in parallel, limiting
the wall clock time to about 60 min for the longest proof and much less for most
proofs.

A related challenge is engaging the software developers responsible for code
development directly in the specification and verification process. Currently it
is much more common for formal methods experts to complete verifications as
a separate project. Even if verification remains a specialty, as dynamic testing
often is, having the static verification aspect be a first-class, fully-integrated
aspect of the development process is the goal.

4.6 Verifying Security

Software safety and correctness require proving that the actual behavior includes
the intended behavior. Security on the other hand requires in part that no unin-
tended behaviors can happen as a by-product of intended behaviors. That is, ver-
ification only establishes the properties that are stated; there may be other nec-
essary properties that have been forgotten. To avoid unintended behaviors, the
concept of code coverage as a quality metric for dynamic testing can be extended
to static verification. Various degrees of code coverage are well known in dynamic
testing: all statements are executed, all branch possibilities are taken, all possible
paths are exercised, etc. Static verification by design already considers all of these
possibilities and checks for correct behavior for each combination. However, the
range of possibilities considered is constrained by a method’s preconditions and
the properties established are limited to the stated postconditions. That leaves
open the following possibility: a method performs its expected functionality but
also some additional functionality; the precondition of the method is written
to preclude that extra functionality, that is, the extra functionality appears to
be dead code; an application calls the method, ignoring the precondition’s con-
straint, and exercises the extra functionality (which might have some nefarious
intent). The same result can be obtained by a weak postcondition that does not
say anything about the extra functionality. In these cases, the static verification
will succeed and dynamic testing may also.
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Accordingly, we would like a measure of static code coverage. Such a measure
could work as follows.

– To measure the quality of preconditions, the verification system can check
that given the stated preconditions all basic code blocks of the method’s
implementation are feasible and all branches and switches can take on any of
the implemented values. That is, there is no dead code and no trivial branch
conditions. It is also possible to measure whether all preconditions are needed
by selectively eliminating each top-level conjunct and testing whether the
implementation is still verifiable.

– For frame conditions, the system should check that the set of modifiable
locations is no larger than necessary.

– For postconditions, the verification system can check that each modifiable
location in the frame condition is constrained by the postcondition.

Fig. 3. Swap function with unspecified functionality

For example, the implementation in Fig. 3 is consistent with the specifica-
tion and (mostly) with what would be expected of a swap procedure. However,
the implementation has some extra functionality in that it modifies location
a[23456] (or 23457), possibly leaking information. Note that the frame condi-
tion allows modifying any array location but the postcondition does not express
any properties of array locations other than i and j. This underspecification
can be detected by tools (though not all underspecifications can be). Either the
frame condition should be modified to be more restrictive, such as assignable
a[i], a[j] or the postcondition should express additional properties, such as
ensures (\ forall int i; 0 <=k && k<a.length;

k!=i && k!=j ==> a[k] == \old(a[k]));

In either case, the proof would now fail; alternately, if the new specifications
accurately reflected the implementation, the extra functionality of modifying
the extra array location would be apparent in the specifications.

It might also be possible to check that the implementation is minimal in some
sense. In the course of translating specifications and implementation into logic,
each condition and statement of the specification and implementation becomes
part of the overall logical condition to be checked. What is important then is
that each logical term arising from the specification or implementation be essen-
tial in establishing the proof of consistency. We can omit from this requirement
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any background axioms that do not explicitly stem from the code and its speci-
fications. Imagine omitting each program statement in turn, or alternately, each
logical assertion in the translation, and then rechecking whether the proof is still
successful. A single extraneous assignment could be omitted and the proof suc-
cessful, indicating that it is irrelevant to the specifications. However, this concept
needs considerable expansion to detect cases in which multiple statements work
in concert to produce the extra functionality; it also relies on having a complete
functional specification of the target software.

4.7 Expressiveness of Specification Languages

Specification-based software verification is capable of verifying the functional
behavior of software. Without specifications, tools can only check that software
does not violate internal properties of the programming languages themselves,
such as not dereferencing null pointers and not indexing arrays out of bounds.
The functional behavior specification need not be complete. For example, one
might specify and verify only key security or information flow properties that one
expects the target software to obey. In verifying such properties one is determin-
ing that no security boundary is violated, but it still is possible that, for example,
the target software does nothing at all, which would include not violating secu-
rity properties.

So, verification systems aspire to being able to verify fairly complete spec-
ifications of the functional behaviors of a system. But verification systems can
only check that the specifications and the target software are consistent. Even
if they agree, both may be wrong in the sense that neither represents what the
author or a user actually want the system’s behavior to be. A specification and
the target software implementation are two different representations of what the
software does. There is some merit in simply having a second representation to
double-check that the human intent for the software is what is desired. However,
it is much better if the specification is written in a form in which it is much
more obvious than in the code itself what the software is intended to do. If the
specification is as verbose and difficult to understand as the code, then not much
is gained. In any case, it is clear that the specifications must undergo human
review for correctness; the verification system must be designed so that such
human review is likely to find specification errors and omissions.

So a first goal is conciseness and readability. Can an appropriate combina-
tion of defaults, readable syntax and clear expression enable specifications that
are concise, readable, and correctly understood by humans. Current specifica-
tion languages of the BISL variety express specifications in a variant of sorted
first-order logic with a syntax and semantics close to the target programming
language. By using syntax like the target programming language, as opposed
to, for example, a programming-language independent mathematical language,
the learning barrier is lowered: software engineers using the target programming
language will be familiar with the syntax of the specification language. And,
by using a form of sorted first-order logic, the meaning of and translation to a
logical form is unambiguous and straightforward.
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But such a syntax may not be the best one for expressing the desired behav-
ior or for human review of whether the specified behavior matches the desired
behavior. Consider some examples. How would one specify the behavior of a tool
that parsed a text input and produced an abstract syntax tree? The standard
means in computer science for describing the behavior of a parser is a BNF spec-
ification of the intended grammar. One might combine that in this case with a
library of tree operations.

Consider a second example: how would one specify the desired behavior of a
continuously operating IoT device? One means is a state table: a table showing
the appropriate action for each combination of input and environmental condi-
tions. Such tables were promoted at least as far back as [27] as a specification that
was more understandable by domain experts than purely logical representations.

Both of these examples are instances of DSLs – domain-specific languages –
geared to the problem domain at hand. The advantage of DSLs is that they can
be tailored to the concepts and syntax of the problem domain. The disadvantage
is that each DSL must be accompanied by tools that convert instances of the DSL
to a logical form that appropriate, e.g., SMT, tools can reason about. And this
conversion, as one more step in the tool chain, must itself be verifiably correct.
This disadvantage, however, needs to be addressed once, by tool-building experts.
The advantage is gained each time the DSL is used to specify an appropriate
system.

Thus our observation on this point is the following. Specification languages
tied to programming languages have been good for development of specification
methodology by programmers, logicians and verification experts. They are still
an appropriate foundation for specification. As we move from verifying algo-
rithms to verifying applications and systems, we should now explore adding
capabilities appropriate to the domains being specified. Some research questions
are these:

– What DSLs have general utility and understandability by experts across a
number of domains?

– Can there be a meta-DSL framework that simplifies the work of creating a
new DSL for a domain and the work of (verifiably) correctly translating that
DSL into a checkable logical representation?

– What new theories should be built into SMT solvers to improve the runtime
performance and the proof success rate in reasoning about assertions that
originally came from DSLs?

4.8 Specification Language Features

The previous subsection described a general approach for future specification
languages—domain specific specification languages. There are also a number of
smaller-scale features needed in current languages or that need semantic clarity.
An interesting comparison on this point is the set of challenges evaluated a dozen
years ago in [21] (see Sect. 5 below), which reacted to challenges enumerated prior
to that, in [19].
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Mathematical Concepts. A common underpinning to many abstraction and
modeling problems is basic mathematical concepts such as sets and sequences. In
one sense these are the most basic domain-specific specification languages. Their
use was anticipated in [21] Sect. 2.1.4. Moving toward incorporating mathemat-
ical types into the specification language is a step away from BISLs and toward
language-independent modeling. Nevertheless, at least if the built-in mathemat-
ical types are restricted to concepts that are broadly known, such types supply
a ready-to-hand set of basic concepts. Furthermore such types can be purely
mathematical, value-based types, so reasoning about them is much simpler, as
there are no concerns about mutable values or aliasing or program state. The
experience of the case studies reported here is that a robust set of mathematical
types would simplify both modeling and reasoning about software.

In static deductive verification, the question arises as to whether such types
are (a) simply axiomatized within a theory of uninterpreted functions or (b)
built-in to SMT solvers as theories with their own decision procedures. The point
of using specialized decision procedures in SMT solvers is to improve proof per-
formance, so one should expect that if supported by the SMT solver, mathemat-
ical types in the specification languages should be mapped to the corresponding
concepts in SMT-LIB. For example, SMT-LIB has long included arrays, integers
and reals and is in the process of defining strings, sets and sequences.

For runtime assertion checking, mathematical types in the specification lan-
guage will need executable representations. This is generally straightforwardly
feasible with some restrictions. For example, unbounded quantification is gener-
ally not supported in runtime assertion checking.

Once the representation of these modeling types is defined, there still remains
the task of defining and axiomatizing a suitable set of such constructs.

Invariants. Invariants state properties of data representations that define the
permitted states of that representation. As distinguished in ACSL, some invari-
ants are strong, meaning that they always hold; an example is requiring that a
reference field be never null. Other invariants may be weak meaning that they
need hold only at function call and return points. The latter form is necessary to
be able to modify data structures, allowing invariants to be violated temporar-
ily. However, as discussed in [22] and elsewhere, strictly requiring invariants to
hold at procedure call boundaries is often impractical and can be non-modular.
Specification writers need more fine-grained control over which invariants hold
at given program points. Spec#, for example, required explicit opening and clos-
ing of representations (and their invariants). Research such as [25] and [21] (and
citations therein) propose disciplines for tree-structured ownership-based con-
trol of invariants. However, no proposed solution is without its difficulties and
no solution has been widely adopted and implemented. This also is very much
still an open research issue.

Abstraction and Refinement. Large software systems rely on abstraction
and modularity to be comprehensible. In object-oriented programming, a base
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class can be used to represent some abstract behavior, which is then concretely
implemented in derived classes. Clients use the base class without knowing the
specifics of the implementation. The behavior of the base class is known through
its specification. That specification must be written in terms of abstractions, as
there are no public concrete fields in the base class to which to refer. Then the
derived class implementation must be connected to the base class abstractions
in a way that the derived class implementations will satisfy the base class speci-
fications. This connection is expressed as a definition that functions as an axiom.
For example, JML declares model fields in the base class and defines them with
a represents clause in the derived class.

The semantics of these model fields and representational definitions must be
considered carefully. For example, at what program points does the definition
hold? Ideally it always holds even at program points that class invariants do not
hold. For that to be true the definition cannot depend on weak invariants.

A second point to note is that the specification of the abstraction should be
expressed in terms appropriate to the abstraction. Thus the desire for mathemat-
ical data types in the specification language (Sect. 4.8) or even full-fledged, user-
defined specification language extensions appropriate to the domain (Sect. 4.7).

A third point relates to management of definitions and axioms. Mathematical
concepts use both theorems about the concepts and definitions relating the con-
cepts to simpler component properties. A student of mathematical proof needs
to develop an intuition as to when proofs can be accomplished using theorems
alone and when the definitions need to be ‘unfolded’ and the proof expressed
in terms of the elements of the definition. Similarly, the translation of specifica-
tions and implementations into logic needs to include both axiomatizations of
properties of abstraction concepts and their definitions. But proof tools need the
intuition to know when and when not to unfold the definitions as part of the
search process.

Finally, the specification relationship between abstract and concrete is similar
to the relationships between different levels of refinement in refinement-based
design. It would be desirable to have the same concepts and methodologies for
both.

Quantification. SMT solvers were originally designed to work on sets of ground
formulae, without quantification. Though quantified formulae are now an essen-
tial part of SMT-LIB, their use can often lead to unknown results from a solver
rather than a clear result of validity or invalidity. Theories including quantified
formula rely on heuristics to determine when and how to instantiate a quantifi-
cation; performance problems can arise from recursive or infinite matching loops
in the solvers.

On the other hand, research in automated first-order theorem proving (ATP)
as used in the TPTP project and the CADE ATP system competition are built
to handle quantified formulae from the start, with the specific theories that
SMT solvers incorporate being a much later addition. Consequently there would
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appear to be much to learn and much practical gain for software verification by
cross-pollinating and uniting these two fields of research.

Hidden State and Observational Purity. Sound reasoning about programs
with state (i.,e., most imperative programs) requires stating frame conditions—
specifications about the set of non-local memory locations that might be changed
by a method. Such specifications propagate up the call tree, recursively. Even
with means to abstractly represent sets of locations, a substantial degree of
information hiding and abstraction is lost. What is needed is a means to allow
internal state changes within a method without needing to mention them in a
frame condition, as long as such changes are not observed outside the method.
This property is called observational purity.

An example is a method that caches the result of a computation, so that
the result can be returned quickly if the same computation is requested again.
The internal state (the cache) is not visible (except by runtime performance);
the method returns the same result whether or not the cache is populated. We
would like to specify the action of the method, including its frame conditions,
without having to mention the cache.

Observational purity has been the subject of a variety of research [7,14,26].
The problem principally affects large-scale systems, where information hiding
and abstraction are particularly important. Perhaps as a result, the theory has
not yet been completely worked through and tools do not implement syntax to
accommodate observational purity.

Understanding and Debugging Proof Failures. In a verification project,
by far the bulk of time is spent understanding why proof attempts fail. The
reasons can be any combination of faulty specifications, faulty implementation,
inadequacies in the logical representations of specification or implementation, or
lack of capability in the underlying solver. Even if the reasons are just in the
first two categories, it can be quite difficult to determine the cause and fix of the
problem. Over time the situation has improved. For example, IDEs now typically
represent counterexample information in source code terms and the execution
path of the counterexample overlaid on the source code (cf. OpenJML [8], Dafny,
and the Why3 IDE as examples).

However, there are still significant improvements to be made. Legitimate
counterexamples are concrete; better would be symbolic counterexamples—for
example, that the proof fails if x is negative, not just when x is -2. Furthermore,
the engineer is often trying to determine what information is missing, a difficult
question for a reasoning system to answer. In other situations a set of specifi-
cations is infeasible, meaning it contains a contradiction; in that case, it would
be helpful to provide the user with a minimal set of logical formulae that create
the contradiction.
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4.9 Concurrency

Specifying and verifying programs using concurrently executing threads or pro-
cesses is still an open area of research. The case study prompting this paper
used quite a bit of multi-threading, which had to be simply ignored, leaving a
partial verification of the software package. Multi-threaded programs are harder
to write and thus stand to benefit more from verification. Consequently practical
specification and verification techniques for concurrent software would be very
timely.

5 Related Work

Considerable progress has been made in specification theory and implementation
over the past decade, to the point where the principal problems encountered in
our case study had to do with the scale of industrial software and the work of
writing functional specifications rather than the lack of specific verification tech-
niques. Nevertheless, on reviewing past compilations of verification challenges, it
is clear that many significant problems have remained either unsolved or unim-
plemented. As evidence, Table 1 lists the challenges documented in the 2012
assessment of the state of specification [21], with a brief comment on the current
state.

Table 1. Specification challenges as listed in [21]

Challenge (section numbers from [21]) Current state (section numbers in this paper)

Section 2.1 Specifying modeling types Still an issue, as discussed in Sect. 4.8

Section 2.2 Comprehensions Still an issue, though not discussed here

Section 3.1 Method calls in specifications Largely solved in OpenJML and Dafny, though
convenient handling of frame conditions (e.g.,
Sect. 4.8) needs improvement and
implementations of reads clauses are still
needed

Section 3.2 Frame conditions for static
fields

Largely still open

Section 3.3 Class initialization Largely still open

Section 4.1 Semantics of invariants Though partially solved there are still
significant open questions (cf. Sect. 4.8)

Section 4.2 Specifying finalizers Not yet addressed

Section 5.1 Specifying uses of function
objects

Theory presented in [20]; evaluation and
implementation underway in OpenJML and
ACSL++

Section 5.2 Specifying invocations of
function objects

Section 6.1 Library specifications Still an issue as discussed in Sect. 4.3

Section 6.2 Multiple tools An open issue as discussed in Sect. 4.3
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6 Conclusion

The scale and scope of realistic, industrial software makes demands of specifi-
cation languages that are different from those needed to verify algorithms and
small demonstration programs. They include managing complexity, appropri-
ately specifying abstractions, including mathematics and DSL concepts in the
specification language, additional techniques for verifying libraries, and the need
for full-fledged specification of system libraries. In addition, though progress
has been made in recent years in understanding and improving specification
languages and tools, revisiting previously published compilations of challenges
reveals many areas that still need better semantics and more thorough imple-
mentations. At industrial scale, a core problem is still the work required to write
functional specifications for a large software system, so successful specification
inference that reduces this burden is essential (cf. [28]). Nevertheless, despite the
research and implementation work yet to be completed, successful deductive ver-
ifications of industrially-relevant software is beginning to be possible, practical,
and even welcomed by developers.
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Abstract. Network segregation is key to the security of the Internet of Things
but also to the security of more traditional critical infrastructures or SCADA
systems that need to be more and more connected and allow for remote oper-
ations. We believe traditional firewalls or data diodes are not sufficient con-
sidering the new issues at stake and that a new generation of filters is needed to
replace or complement existing protections in these fields.
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1 Introduction

Modern IoT (i.e. Internet of Things) security architectures generally make use of
partitions to define security domains and try to impose strict information-flow policies
on the messages that transit from one domain to another. Typically, this is achieved by
forcing all messages to transit through dedicated filters. The correct implementation of
such filters is essential for the whole security of the system as the only path available to
hackers to perform remote attacks, when the architecture is well designed, is to send
triggering messages through these filters. Gateways in new automotive architectures are
representative example of devices that implement filters. They are typically used to
control the information flows between various security domains, such as the powertrain
domain, the infotainment domain, the comfort domain, etc.

The proposed approach is meant to be applied to filters but only in situations where
it is possible to explicitly identify and characterize commands and responses that are
allowed to go through a given filter. As we will see, this is a sensible requirement to
answer to the new security concerns arising in various contexts like: when connecting
critical systems (e.g. Cyber Physical Systems), when connecting SCADA1 systems
(e.g. Operational Technology Systems connected to the IT infrastructure), in embedded
automotive, aeronautic, or railway equipment, and more generally the IoT. For the IoT,
this is mainly due to the fact that the large volume of connected devices creates huge
opportunities and extremely good business models for hackers.

In this paper we will first explain why there is a new challenge. We will then
explain how this new challenge can be addressed in general, and then show how the
security of the more demanding filters can be achieved.

1 SCADA: Supervisory Control And Data Acquisition, a type of industrial control system.
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2 The New Challenge with Remote Attacks

In this section we will show that the new challenge is mainly due to the existence of
new business models for hackers. In the past, reaching an acceptable level of security
mainly boiled down to implementing a few basic ingredients: cryptographic algorithms
and protocols (such as digital signatures and encrypted communications), secure ele-
ments, etc. However, the advent of the IoT and the need to connect remotely to
SCADA and critical systems are changing the security paradigm. There is now a real
business model for hackers and organized crime syndicates in performing remote
attacks. By investing a few millions of euros, they are now indeed almost sure to be
able to identify potential large-scale remote attacks in current connected architectures
with potentially a very high return on investment. In the IoT industry hackers can for
example send a few devices to “reverse-engineering consultants” located in countries
where this can be done legally or without too much risk. With the proper reconstructed
documentation, they can then ask “creative” hacking consultants to prepare an attack.
With such a budget at hand it is almost always possible to identify dramatic large-scale
attacks, at least by exploiting bugs and errors that always exist in the OS and protocol
stacks that are included in the Trusted Computing Base (TCB) of a device. Such errors
can usually be found in the software architecture, or in the design, implementation or
configuration of a device. The business model is usually quite obvious to find as in
most situations such attacks make it at least possible to block the normal operation of
the targeted infrastructure, causing damages that are way beyond the investment. In
many cases such attacks could even create more dramatic situations that might lead to
loss of life. An attack similar to the well-publicized Jeep attack [4] would correspond
roughly to an investment of less than half a million of dollars (an estimate based on the
detailed description of the identification phase of the attack by the authors), and if
performed on a massive scale by criminal organizations could have led to the death of a
very large number of people. These new business models (which in the case of the IoT
is exploiting the combination of high volume and potentially physical impact) are
bringing unpreceded security needs on the resistance to logical attacks and this is
clearly a disruption in the security needs.

Security for high volume transactions (such as in payment systems) were (and are)
mitigated by the use of proper risk management. Such risk management techniques are
a lot less efficient (and in some cases not applicable) when it comes to IoT systems, as
actions cannot be delayed or canceled as financial transactions can be. It is for example
not practically possible to detect and block in real time an attack that would make all
cars of a certain model turn right at a given time.

In the next subsection, we try to give more accounts on the fact that it is always
possible to use the weaknesses of the OSs or protocol stacks that are part of the TCB.

2.1 The Challenge of Securing OSs, Kernels and Protocol Stacks

Various public databases (such as [2]) provide statistics on public bugs or vulnera-
bilities on all kinds of software. These databases clearly show that current OSs and
kernels suffer from a great number of errors and weaknesses, no matter who writes
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them, and no matter how long they have been in the field. For example, new errors are
still reported in the thousands every year on “well-known” systems such as Linux.

This situation is basically due to the inherent complexity of such OSs and kernels,
which rely more and more on complex and sophisticated hardware. OSs and kernels are
by nature concurrent and very complex because of the need to support various kinds of
peripherals (interruption handling becomes more and more difficult), the performance
objectives (e.g. complexity of cache management), the resource consumption issues
(e.g. need for a sophisticated power management), etc. This complexity increases with
time, increases with new IoT architectures and increases when it comes to micropro-
cessors (as opposed to microcontrollers).

Even Trusted Execution Environments (TEEs), i.e. small security OSs that were
introduced to very significantly reduce the size of the TCB, are regularly attacked [9,
10, 13]).

The real challenge (and only known solution) is to produce and demonstrate that
the OSs, kernels and software stacks that are part of the TCB are as close as possible to
“zero-bug” i.e. are free from errors (in their design and implementation) that could be
potentially exploited for logical attacks.

Traditional software engineering techniques such as exhaustive testing or code
inspections are clearly not sufficient anymore to bring the level of assurance that is
needed to secure complex OSs. This is due to the fact that there are too many different
situations to consider for a kernel designer or tester and no real methods to review the
quality of such kernel code in a systematic way, beside the use of proof techniques.

Instead we believe the only valid response to such complexity is a special class of
formal methods, which are known as deductive techniques or proof techniques. Even
other formal methods such as static analysis or model checking are not fully addressing
the problem at hands. More details are presented in [1].

2.2 Limitations of Traditional Firewalls

The firewall is the right concept for controlling and building the segregation of an
architecture but it has two significant drawbacks (1) the configuration of a firewall is
usually done on low level protocol concepts such as ports, IP addresses, etc., and
making sure that such configuration implements the correct high-level security policy is
difficult and very error prone at best (2) most importantly the TCB of a firewall includes
at least its OS as well as its protocol stacks. Both are very error prone. In practice the
complexity of the attack surface forbids this architecture from meeting the highest level
of security, which is a must for the use-cases at hand. The first drawback can be
avoided using applicative firewalls. This kind of firewalls allows to use higher level
concepts to implement the security policy, which reduces the gap between the security
policy and its implementation and hence the risk of error.

The second drawback is not only much more difficult to cope with, it is also very
general: it applies to standard packet filter firewalls, to applicative firewalls, whether
they use so-called “protocol break” or not. In all these firewalls there is at least an OS
as part of the TCB and this OS is very error prone (i.e. the TCB is complex and not
formally proven as it should be). The only exception, besides the new approach we are
presenting in this paper is when a dedicated filtering hardware is used instead of an OS,
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but as of now such dedicated hardware are either too simple to address the need or too
complex and error prone to be brought to the right level of security and of certification.

The attack surface of a traditional firewall is indeed unnecessarily large. In order to
better understand this, let us consider an extremely simple (and unrealistic) security
policy which is meant to impose that only the text command “set” can be sent remotely
and that this command has a single mandatory parameter whose values can be only
“on” or “off”. Let us consider here that these commands are sent using TCP/IP on an
Ethernet network and let us consider in a first step, for the sake of simplicity, that we
are not using a VPN or more generally that messages are not signed or encrypted. We
implicitly assume here in this illustrative example a firewall that is based on a standard
secure OS (i.e. not based on a micro-kernel), but similar examples could be shown for
other architectures.

Even if this security policy is only to accept two possible commands: “set on” and
“set off”, the degrees of freedom for the attacker are huge, and hence the surface of
attack. First at the lexical level, the attacker could insert spaces in the text command (or
other allowed delimiters such as tabs) in an attempt to exploit, for example, imple-
mentation bugs they have found in the lexical analyzer. They could in the same way
exploit bugs in the syntactic analyzer (typically after reverse engineering it). The
chances that they find problems that lead to real attacks there are limited because lexical
and syntactic analysis is a well-understood software engineering problem with lots of
available scientific know-how and tools. However, such weaknesses may still exist
anyway (inadequate grammar type, buffer overflow due to improper memory config-
uration, etc.). What is important in this case is that such degrees of freedom will
typically exist within each layer of the protocol stack (e.g. application layer, host-to-
host transport layer, internet layer, network interface layer), which enlarges the attack
surface, increasing the possibility of finding an exploitable bug. Wireless communi-
cation links are more exposed to these issues compared to wired ones because radio
technologies (i.e. GSM, WiFi, Bluetooth, ZigBee, etc.) are usually complex and very
error prone. In addition, in an OS such as Linux, protocols stacks are part of the kernel,
which makes the attacks even simpler. In any case attackers will have an extremely
large surface of attack (i.e. many degrees of freedom) to try to exploit bugs in the
various protocol layers or in the OS itself.

2.3 Some Representative Attacks

Many attacks on IT systems are reported every day. Here we present some attacks of
diverse kinds as a matter of illustration. The first one is the so-called 2015 attack on the
Ukrainian power grid [12]. It is quite representative of weaknesses coming from the
complexity of the general architecture of large-scale IT systems and their configuration.
In the case of this attack, it appears that only a weak security policy was enforced, i.e.
users with only a low-level credential could still send any commands and receive any
response from critical systems. In their comprehensive report Booz-Allen-Hamilton
recommends among other measures (1) to install a stateful firewall or data diode, (2) to
use a stronger authentication mechanism (such as two-factor authentication) for some
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of the accesses. Using a stateful applicative firewall would allow to enforce a proper
security policy but the security level of existing firewalls2 is not sufficient to cope with
potential attacks (considering the level of return of investment that could be obtained
by organized criminal organizations). A data diode is simpler and therefore can be
brought to the right level of security (for example some data diodes have obtained an
EAL7 Common Criteria certification) but can only make sure that the flow of infor-
mation goes in a single direction: it cannot selectively block some commands and allow
other. In addition, such systems usually require bidirectional communications, so data
diodes are not adequate for this purpose. The filter we propose in this paper brings the
benefits of both, i.e. the resistance of a data diode with the selectivity and pro-
grammability of an applicative firewall.

A second attack is the so-called Heartbleed attack which is one of the many attacks
and vulnerabilities that were found on SSL/TLS overtime [11]. This latter attack is very
representative of attacks that exploit the complexity of the software itself. Such bugs
are very similar to the bugs that can be found in error-prone software components such
as OS kernels or communication stacks.

Errors are not only found in software. They can also happen at the hardware level
and lead to logical and remote attacks such as the recently announced Meltdown [5] and
Spectre [6] attacks. Other cache attacks had been demonstrated in the past [7, 8] and new
ones will probably be found in the future. We believe that hardware design should also
be formally proven eventually, at least for their TCB part (MMU, ARM TrustZone
mechanism, etc.). This will not prevent non-logical attacks such as the Rowhammer
attack presented in [3], but it would prevent at least a large majority of logical attacks.
However, errors in hardware that can be exploited for large scale remote attacks are very
rare (one or two are found every year as of now) and they can usually be addressed by
proper software countermeasures. Prove & Run has developed ProvenCore [15], a
formally proven OS kernel that rely only on a few simple hardware mechanisms and to
implement a very secure firmware update mechanism so that not only the risks from
such hardware attacks are minimized but also that when they happen such problems can
be easily fixed by a very robust over the air firmware update mechanism.

2.4 Addressing the New Challenge

The proposed approach to design an extremely secure filter builds on the approach we
presented in [1]. We recall here briefly this approach before presenting new ideas that
can be used to develop this filter. Some of these ideas are patent pending.

First it is important to use state-of-the-art security methodologies such as the one
proposed by the Common Criteria framework. In particular we assume that for each
architecture and use case a proper risk analysis and threat model are made available,
and that a proper security target has been defined and is used to guide the security
architect, the developers, the testers and the security evaluator. It is worth noticing that
such documents can be reused from one evaluation to another so as to further reduce
costs.

2 See the list of existing certified firewalls https://www.commoncriteriaportal.org/pps/.
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We also recommend as described in [1] to explicitly describe a clear “security
rationale” that fully explains the hypotheses, conditions and reasons why the security
architecture meets the desired security level. The security rationale should not only
describe the countermeasures used to address each threat but also provide a detailed
rationale as detailed and convincing as an informal mathematical proof.

The last step of the approach is to define an architecture that is based on a TCB that
contains only formally proven kernels and protocol stacks. So, in the end the security
rationale for the most complex parts of the TCB must rely on formally proven software
(and using a tool is necessary to check that the proof is itself free of errors) whereas the
other, simpler parts of the security rationale are presented as an informal proof which
can be easily audited by experts. Now instead of formally verifying large OSs and
kernels such as Linux or Android where new features and drivers are added on an
ongoing basis so as to address new requirements, we propose to use a separate formally
proven secure OS kernel, i.e. in our case ProvenCore, to address peripherals that need
be secured and to run secure applications, in a way that allows us to:

• Retain the normal OS (for example Linux, Android or any other proprietary OS or
RTOS) and thus benefit from all its features,

• Push the normal OS outside of the TCB, so that any error in the normal OS cannot
be used to compromise the TCB,

• Use a proven OS to perform security functions.

Our formally proven kernel, ProvenCore, was designed in a way that makes it
generic enough to be used as COTS (Commercial Off-the-Shelf) in virtually any IoT
architecture.

We describe here how this can be done on ARM architectures that account for the
vast majority of the IoT market, but the same approach can be transposed to other CPU
architectures.

On ARM architectures and in particular on the Cortex-A and Cortex-M families of
ARM microprocessors and microcontrollers, a security mechanism called TrustZone
provides a low-cost alternative to adding a dedicated security core or co-processor, by
splitting the existing processor into two virtual processors backed by hardware-based
access control mechanisms. This lets the processor switch between two states, i.e. two
worlds, typically the “Normal World” on one side and the “Secure World” on the other
side. Therefore, TrustZone can be used as an extremely small and security-oriented
asymmetric hypervisor that allows:

• The so-called Normal World to run on its own, potentially oblivious of the exis-
tence of the Secure World and,

• The Secure World to have extra privileges such as the ability to have some part of
the memory, as well as some hardware peripherals, exclusively visible and acces-
sible to itself.

In the proposed architecture the proven secure OS kernel, i.e. ProvenCore in our case,
runs in the Secure World, and the rich but error-prone OS (Linux, Android, etc.) runs in
the Normal World.
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3 Proposed Approach and Solution

Here the key assumption (or in other words the requirement that is to be met for the
proposed solution to be applicable) is that the list of commands and arguments that we
want to allow in each direction can be made explicit and fully characterized. In other
words, the security architect or administrator must be able to express a precise filtering
security policy on the commands and arguments that must go across the filter from one
security domain to the other. This may be difficult to do so within a standard infor-
mation system: when security is not considered a high priority, the administrator is
often not in a position to fully characterize all the commands and arguments in use nor
even to identify all information flows. However, defining such a filtering security
policy is a must as soon as a high level of security is needed e.g. for connected SCADA
and critical systems. If a filtering security policy goes beyond a few trivial commands
taking no arguments, then the implementation of this policy as a filter must be formally
proven. In the next part we will explore how formally proven filters can address the
challenge of critical IoT systems.

Connected Critical Systems and SCADAs
In the case of critical or SCADA systems it is usually necessary to accept incoming
commands sent through a VPN by authorized remote agents either to perform routine
maintenance and configuration or to exert manual control, at least in the case of an
emergency situation where some remote administrators or decision makers need to take
action quickly. In this case it is quite easy to identify and characterize the list of
allowed incoming commands and outgoing responses3. The filtering security policy
may be stateless or state-based. For example, an authorized user might be required to
authenticate itself before issuing a command that modifies the configuration of the
system. In this case the corresponding filtering security policy will obviously be state-
based (i.e. identification and authentication are required before accepting a given
command).

In the case of the Ukrainian critical infrastructure we would have proposed to clearly
identify the list of remote commands that where acceptable for each authorized (and
authenticated) user. This list could have been used as the base of a filtering security
policy.

Embedded Devices and the IoT
In the case of embedded automotive, aeronautic, or railway connected equipment, or
more generally any equipment part of the IoT, such filters will for example be placed in
the gateways that exist for most of these systems, but may also be placed elsewhere
(e.g. within the Telematic Control Unit of a car).

In the automotive industry, this approach could be used to filter incoming V2X4

alerts coming from the car gateway. Today these alerts are delivered to the driver only
through the dashboard, but in the very near future these alerts might be forwarded

3 The control of outgoing responses is less sensitive but still makes attacks more difficult and is also
useful in case confidentially is at stake.

4 V2X: Vehicle-to-everything communication.
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directly to the brake-control system, forcing the car to slow down. Filtering security
policies may for example apply to data exchanged between the OEM and the car,
and/or commands between various domains inside the car (such as chassis, engine or
infotainment domains).

Because of the new business models available to enterprising hackers, high level
security policies need to be expressed and enforced by the gateways. It is not easy (i.e.
at the very best error prone and in some cases impossible with the right level of
precision) to express such policies on the low-level objects (such as IP packets) that
firewalls normally use. The administrator in charge of configuring such firewalls or the
security architect defining the gateway has to use low level concepts such as ports
whereas they would like to implement a high-level security policy where they could
precisely specify and restrict the type of high level commands or responses that gets in
or out.

As we have seen in Sect. 2.2, the resistance of such implementations is not high
enough to cope with the remote attacks at stake. Thus, even if the firewalls are properly
configured, hackers will still have many ways to attack such entry points. They will
typically bypass information-flow policies by exploiting bugs and errors commonly
found in protocol stacks and OSs used to implement such firewalls. In fact, the security
level reached by the most secure firewalls is usually very limited. In addition, the most
secure ones have an expensive bill of material, which does not fit well with embedded
systems requirements.

3.1 Proposed Architecture

Instead of filtering low-level packets we propose to filter high-level commands and
arguments directly. We also propose to use a protocol break and to implement the filter
as a formally proven (or at least highly secure) application (stateful or stateless,
depending on the requirements of the task) that only operates on high-level commands
and arguments, running on a formally proven and secure OS. This OS will have to
guarantee a number of security properties (such as separation, integrity, …) and which
in addition will have to enforce configurable information-flow policies between its
components. This information-flow policy will make sure that communication flows
coming from the outside (e.g. incoming commands) go through the filtering application
which is the one applying the filtering security policy.

In Fig. 1 we present an example of such an architecture in which we use Pro-
venCore to guarantee the security properties required to host the filtering application
such as isolation, confidentiality and integrity [1]. ProvenCore also enforces a (pro-
grammable) information-flow policy between the various security applications and
between the hardware peripherals and the corresponding drivers and other security
applications. This policy ensures that there is no possibility for an incoming command
or outgoing response to somehow bypass the filtering application. In the figure, it is
materialized by the black arrows that represent the only authorized communication
channels.

Since ProvenCore is a micro-kernel that guarantees the integrity and separation of
the processes/applications it executes, even a severe problem within the hardware

Security Filters for IoT Domain Isolation 201



drivers or in the protocols stack themselves will not lead to any security problem
besides a lack of availability5.

In the example above the filtering application implements two filtering security
policies: one on incoming commands, one on outgoing responses. More than one
filtering applications can be used with more complex topologies in which ingoing
(resp. outgoing) messages are routed to different filters according to their nature, but the
overall principles remain unmodified.

Such an architecture allows us to design a filter that can be formally proven or more
generally brought to the highest level of certification. We have summarized our
architecture in Fig. 2.

The TCB is composed of (1) a formally proven kernel, here ProvenCore which is
the very first formally proven kernel on the market with the proper security features to
support this filtering architecture, and (2) a formally proven filtering application (see
Sect. 4), which is by itself a very simple application, even if it includes the filtering per
se but also the command and data lexical and syntactic analysis. This architecture thus
allows us to obtain a filter (i.e. a particular applicative firewall) whose TCB is entirely
formally proven to satisfy the given filtering policy expressed in a simple and high
level formal language.

The fact that we use a protocol break on such a secure micro-kernel allows us to put
all the protocol stack outside of the TCB. The separation properties of the OS, coupled
with the access control mechanism between applications forces the information flow to
go through the filtering applications(s). In this architecture the twin protocol stacks
used to support the protocol break execute as distinct processes on the same instance of
ProvenCore, but in two separate security domains on each side of the filtering appli-
cation(s) as displayed in Fig. 2.

With traditional firewalls we had to cope with a very error prone TCB with a large
attack surface, not surprisingly inadequate to meet the highest level of security. With

Fig. 1. Proposed architecture

5 The lack of availability that would result from a successful attack on the protocol stacks can be
mitigated by adding complementary security applications running in parallel to detect such attacks
(such as a specialized IDS, i.e. Intrusion Detection System) and providing a security application in
charge of reloading a new update over the air (or even inspect and repair the other software
components). This is not featured here as it is out of scope of the current paper.
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this new kind of filter, we are relying on a bullet proof formally proven TCB, which in
addition can be proved to exactly implement the intended filtering function. Non-
surprisingly such a formally proven TCB can be brought to the very highest levels of
security.

But there is more to it. Even with a bullet proof filter there is still the problem that
we might be forced to authorize potentially damaging commands (i.e. it is very likely
that we have to accept as part of the filtering security policy some commands that are
dangerous but necessary). So the remaining problem is not about tampering with the
filter (or the security policy) but with the fact that some valid commands may be used
to attack the receiving side. Going back to our artificially simple “set on”/“set off”
example of a filtering security policy illustrates in an obvious way the fact that the
attackers have almost no degree of freedom left to perform an attack on the receiving
side. The only commands that can be sent are “set on” and “set off” as planned and the
filtering application will leave absolutely no degree of freedom in the way any of them
can be expressed. The situation would be exactly the same for more complex and
realistic filtering security policies: the only degree of freedom left is indeed the one
allowed by the filtering policy itself. But the commands that are defined as being
acceptable by the filtering security policy could be dangerous by themselves. For
example, most embedded devices will need a “firmware_update” command to manage
the firmware update process for the whole platform. For this reason, it is usually also
important to make sure that incoming commands have not been tampered with and
have been issued by authorized and trusted persons. In other words, it is necessary to
add proper authentication, and also guarantee the integrity and potentially the confi-
dentiality of the commands. Guaranteeing these security properties is typically the role
of a proper VPN. Here we propose to integrate a VPN application that can be brought
to the same level of security as the filtering application(s). This will give the simplified
architecture presented in Fig. 3.

Using a proper highly secure VPN thus further reduces the attack surface and
shows the benefit that can be obtained by the use of these new generation of filters. Our
artificially simple filtering security policy makes it easy to see that an attacker would
have only one degree of freedom left: the possibility of (either) slowing down (or
theoretically accelerating although this would be much harder) the reception of ingoing
commands. Attackers would have no other degree of freedom and thus the attack

Fig. 2. Proposed architecture, simplified view
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surface for performing any attack would be almost nil. Here the fact that TCB is
formally proven and can be brought to the highest levels of security is key. It allows the
filtering application itself to be brought to the highest level of security and we believe
that such a possibility is a real breakthrough in the firewalling/filtering world.

3.2 A Practical Implementation

In practice, the architecture presented above can be easily implemented on an ARM
processor using the architecture presented in Fig. 4.

Now the same benefits can be achieved for any kind of (stateful or stateless)
filtering security policy. Another significant advantage is that this can be achieved
without any impact on the bill of materials and therefore at very little cost. Therefore,
such filters are not only much more secure than existing ones, but this architecture is
applicable to cost-sensitive devices sold in large volumes. The only costly investment
was the design, implementation and formal proof of the security of ProvenCore, an
investment which has been done once and for all and can benefit to the huge volumes
of compatible devices from various market segments. Depending on the situations
these filters can be used to replace existing filters or to complement them (to be put in
sequence with another firewall or an IPS6).

4 Focus on the Filtering Application

The filtering application (named FilteringApp in figures) is specific to each application
domain and security policy, but it can also be implemented and formally proven at little
cost, using Prove & Run’s formal language and dedicated environment, respectively
named Smart and ProvenTools (and described in [15], Sect. 3).

Fig. 3. Proposed architecture, with authentication

6 IPS : Intrusion Prevention System.
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Classically, we decompose the filtering application in two main components:

1. a parser, that checks that commands are syntactically correct w.r.t the list of allowed
commands, awaited arguments and options. This parser also translates the input
string into a structured version, the Abstract Syntax Tree (AST),

2. a validator, that receives this AST and analyses it to check that semantic constraints
of the security policy are met (e.g. some command options that cannot be used
together).

These two components are described in more details respectively in Sects. 4.1 and
4.2. They can be combined following two distinct architectures, depending on the
needs.

The first one, depicted in Fig. 5A, is the less intrusive. When both filtering com-
ponents accept the data, the filtering application outputs to the server the exact value of
the input. This guarantees that, when the security policy is satisfied, the presence of the
filtering application doesn’t change at all the behavior of the overall system: it may
only block some data, but never alters it.

The second architecture, depicted in Fig. 5B, provides maximal security. It prints
back the AST on its output. Thus, the data received by the server is as close as possible
to the abstract version of the data on which the semantic checks have been performed.
It can differ from the input in aspects which have no semantic impact, as the formatting
(e.g. the number of spaces between a command and its argument). As these aspects are
a degree of freedom, transmitting a normalized version is a plus.

4.1 Proven Parser Generation

The parser, the printer and the AST shape definition are automatically generated from
the commands’ syntax definition. Associated specifications are also automatically
generated and proven, giving an extremely high confidence in these components. In
addition of being extremely reliable, these components are inexpensive to develop and
to maintain: the only piece of work is to settle and maintain the high-level specification

Fig. 4. Practical implementation
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of the syntax, which is used by ProventTools to generate the executable code, its
specifications and proofs.

Let us consider a very simple example of security policy to provide a complete
picture of the parser design and generation process. The filter application should accept
only the following set of commands (named shell_micro):

• ls [-ltS] [filename], where [-ltS] is an optional options block introduced
by a dash followed by one or more options (among l, t and S); and [filename]
is an optional argument indicating about which direct folder the information is
requested

• exit with no option and no argument

The security policy additionally contains semantic constraints on ls options block,
that are described in Sect. 4.2.

The grammar of accepted commands is defined using a subset the Parsing
Expressions Grammars (PEG) formalism [14], that we’ll name PEG−. A PEG−

grammar is a set of rules, each rule consisting of a name, followed by a ←, then a
definition body (where a special syntax # marks the presence of mandatory spacing):

This formalism looks similar to context-free grammars (CFGs), but has a different
interpretation: in PEG, the choice operator (/) selects the first match and the option (?)
and repetition (+) operators are greedy (whereas all these operators are ambiguous in
CFG). This interpretation guarantees grammar unambiguity by construction, makes
suitable the expression of both lexical and syntactical rules in a unified way, and allows
to generate a top-down parser which closely mimics the structure of the grammar.

Executable Code Generation
From a grammar G, we generate the following executable Smart code:

1. one type AST_r per rule r of the grammar, defining the shape of the produced AST.
These types definitions are inferred as follows:

– non-constant characters and strings are stored in standard library character and
string types. For instance, the type generated to store the filename of Fig. 6 is
an alias to the string type: type filename = string.

Fig. 5. Focus on the FilteringApp
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– a sequence is stored in a structure, with one field per non-constant sequence
element, where repetitions and options are stored in standard library list and
option types. For instance, the type generated to store an ls_cmd is type
ls_cmd = {ls_options_opt: option < ls_options > , filename_opt: option < file-
name > }, where “ls_options_opt” and “filename_opt” are the fields names,
followed by a “:” introducing the associated field types.

– a choice is stored in a variant7, with one constructor per branch of the choice,
allowing to store the non-constant content associated to the branch. For instance,
the type inferred to store a command is: type command = Ls_cmd(ls_cmd) |
Exit_cmd, where Ls_cmd and Exit_cmd are the variant constructors names8,
ls_cmd is the type of the content of values belonging to the Ls_cmd case, and
values belonging to the Exit_cmd case have no content.

2. one parse function parse_r per grammar rule r:

parse r : string ! ½True string;AST rð Þ j False�

It takes a string as input, and either successes (True case) and returns the uncon-
sumed suffix of the input along with the AST node of type AST_r (built with the
consumed prefix of the input); or fails (False case). Smart is very well suited to
express, manipulate and specify such functions having named exit statuses (de-
scribing the internal execution case) associated to distinct sets of return values: here
the unconsumed suffix and the built AST node are returned in the successful case,
and no return value is available in the failure case.
These parse functions are unsurprisingly defined as follows:

– parsing a character, or a string (as a keyword or a pattern) is done calling library
parsers defined once and for all;

Fig. 6. Definition of shell_micro in PEG−

7 That is, a disjoint union of types, each one being introduced by a constructor.
8 Constructor names are in particular used to define some operations depending on which constructor
case a variant value belongs to.
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– parsing a reference to another rule is done calling this rule’s parse function;
– parsing a sequence consists in parsing each element in order and returning in a

structure the aggregation of called parse functions results (which must all be
successful);

– parsing a choice consists in trying in order each choice branch and returning a
variant wrapping with the appropriate constructor the first successful parse
result.

3. the entry point parser (parse_G: string ! [True(AST_r0) | False]) which simply
calls the parser of the first rule r0 and checks that the remaining suffix is empty.

4. one printer function per grammar rule r (print_r: AST_r ! string) which prints into
a string the content of the AST node, conforming to the syntax defined by the
associated rule (including the constant content, as keywords and delimiters, which
is not stored in the AST).

5. the entry point printer (print_G: AST_ r0 ! string) which simply calls the printer
associated to the grammar’s first rule r0.

Specification and Proofs Generation
More interestingly, three theorems are also generated along with their proof: the parser
correctness and completeness, and a characterization of the AST content.

The formalization generated for the parser correctness and completeness relies on a
shallow embedding of PEG− into a Smart library, written once for all, providing:

– a type grammar allowing to define a PEG− grammar in Smart (relying on a type
rule which allows to define a PEG− rule’s definition body);

– a relation recognizes(grammar, string) which is true if an input string is conform to
a given grammar (and thus defines the meaning of each PEG grammar’s construct:
sequences, ordered choices/, greedy repetition +, etc.). This relation’s definition
relies on a more basic relation, denote(rule, string, Success(string)|Reject), which
tells if a grammar rule succeeds in recognizing an input string (Success case, which
takes in parameter the unconsumed suffix string) or if it rejects this input (Reject
case).

Using the above described library, from a grammar G, we generate a Smart definition,
named grammar_G and of type grammar, which embeds G in Smart (and consists of
a set of objects rule_r of type rule embedding each rule). The correctness and com-
pleteness of the parser are expressed with respect to grammar_G.

Theorem (Parser Correctness)

8 input; parse G inputð Þ ) recognizes grammar G; inputð Þ

This theorem states that the parser is correct with respect to the grammar: all inputs
accepted by the parser are conform to the grammar.

Proof. The generated proof uses lemmas generated (along with their proof) for each
rule r:
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8 input; 8 suffix;
parse r inputð Þ ¼ True suffix;ð Þ ) denoteðrule r; input; Success suffixð ÞÞ

Leafs of the proof tree use library lemmas stating the correctness of library parsers.

Theorem (Parser Completeness)

8 input; :parse G inputð Þ ) :recognizes grammar G; inputð Þ

This theorem states that the parser is complete with respect to the grammar: none of the
inputs rejected by the parser is conform to the grammar.

Proof. Similarly to the correctness proof, this proof relies on lemmas stating the
property on unit parsers (and on library lemmas lifting the property on library parsers):

8 input;:parse r inputð Þ ) denote rule r; input;Rejectð Þ

Parser Correctness and Completeness theorems provide the guarantee that the parser
component of the filtering application does the awaited syntactic filtering. As the parser
is also responsible of building the AST processed by the semantic validator component,
it is worth specifying the content of the produced AST. This is done thanks to the
print_G function, which is thus useful for the sake of the specification, even if the
chosen architecture doesn’t use it (like in Fig. 5A).

Theorem (AST Content)

8 input; 8 ast; parse G inputð Þ ¼ True astð Þ ) print G astð Þ � input

This theorem shows that the ast produced by the parser doesn’t lose meaningful
information contained in the input string, by stating that printing the ast produces a
string which is equivalent modulo spacing (�) to the parsed one. This can be better
understood thanks to the following diagram:

Proof. Same pattern as preceding proofs, using the following expression of the
property on all kind of AST nodes:
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8 prefix; suffix; ast r;

parse r append prefix; suffixð Þð Þ ¼ True suffix; ast rð Þ
) print r ast rð Þ � prefix

4.2 Semantic Validator

The semantic validator is implemented as a regular Smart program, allowing to
handle arbitrarily complex security policies. In our shell_micro security policy, we
could imagine the following semantic constraints on ls command options: absence of
duplicates, and mutual exclusion between options t and S.

If the security policy is complex, we encourage the use of ProvenTools to also
specify the awaited behavior and prove the correspondence with the validator imple-
mentation. For instance, in our toy example, the formal specification of what “absence
of duplicates” means is simpler (thus less error prone) than the implementation of the
associated validator, hence proving that the validator implementation is conform to the
specification of the constraint is a plus.

Finally note that, as for syntactic constraints, a specific language could be designed
to declare some kind of semantic constraints (as here constraints on lists: absence of
duplicates, mutual exclusion, elements enabling other ones, etc.), allowing to auto-
matically generate a proven validator.

5 Conclusion

In this paper we have shown why it is very difficult (or even impossible) to bring
traditional firewalls and filters to the required level of security. We have proposed an
approach that allows us to build new filters based on protocol breaks where the soft-
ware TCB is made very simple and is just composed of a formally proven kernel,
namely ProvenCore here (which is currently seeking a Common Criteria EAL7 cer-
tification), and a few security applications that can also be easily formally proven. The
other parts of the software stack which normally compose a firewall, such as the
drivers, the protocol stack, and the normal OS are here kept outside of the TCB. This is
why such filters can be brought to levels of security that only simple physical data
diodes could previously meet.

Acknowledgments. The authors would like to thank Érika Baëna and Horace Blanc for their
valuable contribution to the work presented in Sect. 4.1.
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Abstract. In this paper we review how the Uppaal Tool Suite served in
industrial projects and was both driven and improved by them through-
out the last 20 years. We show how the need of industry for model-
based validation, performance evaluation and synthesis shaped the tool
suite and how the tool suite aided the use cases it was applied in. The
paper highlights a number of selected cases, including success stories and
pitfalls, and we discuss the important roles of both basic research and
industrial projects.

1 Introduction

Within the last 20 years, the tool Uppaal, originally purely a model-checker
for timed automata, has come a long way. It has expanded into a full-grown
tool suite that covers a number of different areas, including verification, test-
ing, scheduling and controller synthesis. From the very beginning in the year
1995 [32], the development of Uppaal was driven by industrial cases. Some of
these were founded by research projects, others in direct collaboration with vari-
ous companies. In this paper we will present an overview of these cases, and focus
on how the industrial need for new features drove our research and tool devel-
opment to all these different ares and on how the different Uppaal tools could
satisfy those needs. This paper is strongly related to another recent overview
paper [27], however, in the current paper we put strong emphasis on the impact
of research projects on our research and tool development.

An overview of the most important case studies and the correlating projects
which will be discussed within this paper can be found in Fig. 1.

The Uppaal Tool Family. In this paragraph we will give a short overview over
UPPAAL and its branches, as they developed over time. The core functionality
of Uppaal [4], which was released in 1995, is model-checking of hard real-time
properties on timed automata models, supported by a simulation tool which
enables manual and random tracing through the model. The first branch of
Uppaal was Uppaal CORA, which adds support for priced timed automata to
the Uppaal tool family, to address the need for (optimal) usage of resources [28].
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Fig. 1. Uppaal used in industrial and research projects.
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Shortly after that, the branch Uppaal TRON was introduced, which offers the
possibility of performing on-line conformance testing of real real-time systems
with respect to timed input-output automata [30,34]. In 2005, Uppaal TIGA
was added to the tool family, allowing for control strategies to be synthesized
from timed games, i.e. two-player games played on a timed automaton [3,8]. The
tool was developed within the project QUASIMODO and implements an efficient
symbolic on-the-fly algorithm for synthesizing winning strategies for reachability,
safety as well as Büchi objectives and taking possible partial observability into
account [9]. In 2007 Uppaal Yggdrasil, an off-line test case generator, was
developed. Later, in the project MBAT, it was re-factored and integrated into the
main Uppaal component. It aims at creating a test suite for edge coverage and
enables the user to associate test code with transitions and locations, which is
integrated into the test case whenever a trace traverses them. In 2010 the branch
Ecdar was introduced supporting a scalable methodology for compositional
development and stepwise refinement of real-time systems [17–19]. One of the
most recent branches of the Uppaal tool suite is Uppaal SMC, which was
introduced in 2011. It allows for performance evaluation of the much richer
formalisms of stochastic hybrid automata and games [15,16]. For a full account
of Uppaal SMC we refer the reader to the recent tutorial [14]. The latest branch
is Uppaal Stratego. The idea behind Uppaal Stratego [11,12] came up
in the CASSTING project in 2014. The branch allows to generate, optimize,
compare and explore consequences and performance of strategies synthesized for
stochastic priced timed games (SPTG) in a user-friendly manner. In particular,
Uppaal Stratego comes with an extended query language, where strategies
are first class objects that may be constructed, compared, optimized and used
when performing (statistical) model checking of a game under the constraints of
a given synthesized strategy.

2 Verification

The early development of Uppaal was highly driven by colleagues in the Nether-
lands using the tool for automatic verification of industrial protocols. The basic
research done in those early years received funds by the research projects BRICS
and VHS and resulted in a huge performance improvement reducing both time-
and space-consumption by over 99%. In this section we will present some of the
cases where Uppaal was used for verification.

Philips Audio Control Protocol (PACP). Before the release of Uppaal, Bosscher,
Polak and Vaandrager had in 1994 modelled and verified a protocol developed
by Philips for the physical layer of an interface bus that connects the various
devices of some stereo equipment (tuner, CD player,...). Essentially – after a
suitable translation – the model of the protocol is a timed automata. Whereas
the first proof in [7] was manual, the first automated verification of the pro-
tocol was done using the tool HyTech. Later, automated – and much faster –
verifications were obtained using Uppaal and Kronos. However, all these proofs
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were based on a simplification on the protocol, introduced by Bosscher et.al. in
1994, that only one sender is transmitting on the bus so that no bus collisions
can occur. In many applications the bus will have more than one sender, and the
full version of the protocol by Philips therefore handles bus collisions. Already
in the autumn of 1995 an automatic analysis of a version of the Philips Audio
Control Protocol with two senders and bus collision handling was achieved using
Uppaal 0.96. To make the analysis feasible a notion of committed location was
introduced (to remove unnecessary interleavings) and the analysis was carried
out on a super computer, a SGI ONYX machine [5]. The total verification time
was 8.82 h using more 527.4 MB. It is interesting to note that using Uppaal 3.2
the same verification was reduced to only 0.5 s using 2.5 MB of memory. In any
case, the success in 1996 was a true milestone in the development of Uppaal
as this version of the protocol was orders of magnitude larger than the previ-
ously considered version with only one sender, e.g. the discrete state-spaces was
103 times larger and the number of clocks and channels in the model was also
increased considerably.

Bounded Retransmission Protocol (BRP). In parallel with the collaboration
with the group of Vaandrager, D’Argenio, Katoen, Reus and Tretmans from
Twente University were also applying – and seriously testing – the first versions
of Uppaal. In particular, they successfully modelled and verified the Bounded
Retransmission Protocol, a variant of the alternating bit protocol introduced by
Philips. In [10] it is investigated to what extent real-time aspects are important
to guarantee the protocol’s correctness and using Uppaal and the Spin model
checker.

B&O Protocol (BOP). In 1996, we were ourselves approached by Bang & Olufsen
with a request of “analysing their proprietary IR Link protocol”. The proto-
col, about 2800 lines of assembler code, had been used in products from the
audio/video company Bang & Olufsen throughout more than a decade, and its
purpose was to control the transmission of messages between audio/video com-
ponents over a single bus. Such communications may collide, and one essential
purpose of the protocol is to detect such collisions. The functioning is highly
dependent on real-time considerations. Though the protocol was known to be
faulty in that messages were lost occasionally, the protocol was too complicated
in order for the company to locate the bug using normal testing. However – after
4-5 inaccurate models of the protocol – an error trace was automatically gener-
ated using Uppaal and confirmed in the actual implementation of the protocol.
Moreover, the error was corrected and the correction was automatically proven
correct, again using Uppaal [24].

B&O Powerdown Control (BOPC). [23] Our first collaboration with Bang &
Olufsen were very much characterized as a reverse engineering exercise of an
existing protocol: the only documentation of the protocol was the 2800 lines of
assembler code together with 3 flow-charts and a (very) knowledgeable B&O
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engineer. In our second collaboration with the company, modelling and verifica-
tion in Uppaal was carried out in parallel with the actual implementation of a
new real-time system for power-down control in audio/video components. Dur-
ing modeling, 3 design errors were identified and corrected, and the following
verification confirmed the validity of the design and additionally revealed the
necessity for an upper limit of the interrupt frequency. The resulting design was
later (seamlessly) implemented and incorporated as part of a new product line.

Whereas the above collaborative projects with B&O were very successful,
neither Uppaal nor model-driven development were taken-up in the company.
An obvious reason could be the immaturity (and lack of GUI) of the tool back
then. However, in retrospect, an other equally likely reason is the fact that we
were spending (all) our effort in collaborating with technicians in the company
and not on marketing our tool and “disruptive” methodology to decision-makers
in the company.

Flexray (FR). As part of the German DFG project AVACS1 the FlexRay pro-
tocol was modeled and verified using Uppaal. Flexray is a standard, developed
by a cooperation of leading companies in the automotive industry, as a robust
communication protocol for distributed components in modern vehicles. Devel-
oped by the FlexRay Consortium, a cooperation of leading companies including
BMW, Bosch, Daimler, Freescale, General Motors, NXP Semiconductors, and
Volkswagen, FlexRay was first employed in 2006 in the pneumatic damping sys-
tem of BMW’s X5, and fully utilized in 2008 in the BMW 7 Series. The FlexRay
specification was completed in 2009 and is widely expected to become the future
standard for the automotive industry. In [22] a timed automata model of its
physical layer protocol is presented, and Uppaal is used to automatically prove
fault tolerance under several error models and hardware assumptions. In partic-
ular, it is shown that the communication system meets, and in fact exceeds, the
fault-tolerance guarantees claimed in the FlexRay specification.

Firewire (FW). The IEEE 1394-1995 serial bus standard defines an architec-
ture that allows several components to communicate at very high speed. Orig-
inally, the architecture was designed by Apple (FireWire), with more than 70
companies having been involved in the standardisation effort. In [39] a timed
automata model of the leader election protocol is presented and its correctness
is established using Uppaal. In particular, it is shown that under certain timing
restrictions the protocol behaves correctly. The timing parameters in the IEEE
1394 standard documentation obey the restrictions found in this proof.

MECEL Gear Controller (GC). In [33] an application of Uppaal to the mod-
elling and verification of a prototype gear controller was developed in a joint
project between industry and academia. In particular, the project was carried
out in collaboration between Mecel AB and Uppsala University. In particular,
the (timely) correctness of the controller was formalized (and verified) in 47
logical formulas according to the informal requirements delivered by industry.
1 http://www.avacs.org.

http://www.avacs.org
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Herchel and Planck Schedulatilibity (HPS). In the danish project DaNES, we
collaborated with the company Terma on using timed automata model checking
as a more exact method for establishing schedulability of a number of periodic
tasks executing on a single CPU under a given scheduling policy. In particular a
fixed priority preemptive scheduler was used in a combination with two resource
sharing protocols and in addition voluntary task suspension was considered.
In [35] schedulability was established under the assumption of exact computation
times of the tasks. In [13] non-deterministic computations times was considered;
depending on the size of the computation time interval schedulability was either
verified (using Uppaal) or refuted (using the concrete search engine of Uppaal
SMC).

3 Testing

Our research on model-based test generation for timed (event recording)
automata started with the thesis work around 1996–2000 in [36]. The approach
aimed at covering timed equivalence classes defined through the clock guards
of the timed automata. It assumed strictly deterministic systems, and its scal-
ability was limited by the analysis techniques of the time. It thus had limited
industrial applicability [37,38].

Later (2002–2004), inspired by [20,41], we developed the on-line testing tool
Uppaal TRON [1]. This approach could effectively handle non-determinism in
both the specification (due to abstraction) and system under test (due to uncer-
tainties in scheduling, execution times, timing, etc.), scaled to large models, and
provided response times low enough for many practical cases [2,31,40]. On-line
testing generate effective randomized long tests, but coverage must be evalu-
ated post-mortem and cannot be guaranteed a priori. Moreover, it is difficult to
repeat the precise same test and inspect the set of test cases (might be required
by certification bodies).

Our first work on offline test-case generation (with Uppsala University)
appeared [25] in 2003. Here we showed how to interpret witness traces generated
by the Uppaal model-checker as test cases for the sub-class deterministic output
urgent timed automata. Specifically, we showed how to generate the test cases
with the minimum duration that satisfied a given test purpose formulated as
a reachability property by exploiting Uppaal’s fastest witness trace generation
feature. We furthermore formulated coverage as a reachability question, giving
the ability to generate (time optimal) tests that guarantee meeting common cov-
erage criteria. This work led to the Uppaal Cover tool (no longer developed)
and Uppaal Yggdrasil.

In the time between 2006 and 2014 our work on testing heavily was driven
by the projects MoDES, DaNES and MBAT where we evaluated and enhanced
our tools.

The Danfoss Case (D). We applied and evaluated Uppaal TRON on embed-
ded controller supplied by the company Danfoss’ Refrigeration Controls Division
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around year 2003–2004 [31]. The target device was a stable product for refriger-
ator controller for industrial and large supermarket installations. As computer
scientist we did not have domain expertise, and it soon became clear that the sup-
plied documentation (high-level requirements and user manuals) was insufficient
for us to build accurate models. Hence, we ended op formulating a hypothesis
model, running the test, and refining the model when the test failed. The final
model consisted of 18 concurrent components (timed automata), 14 clock vari-
ables, and 14 discrete integer variables, and is thus quite large for the time. When
confronting the refined model with Danfoss engineers, they too were surprised
about certain aspects of its behavior, and needed to have that confirmed by
other developers. Although we found no confirmed defects, the case showed that
our technique were practically applicable, and effective in finding discrepancies
between specified and observed behavior. Encouraged by these results, both par-
ties continued the collaboration on automated testing. At the end, our testing
approach was not included in their new test setup that emphasized a new test
harness for automated executing of manually defined scripts. Retrospectively,
the gap between our method and their established development processes and
tools was too big.

The Novo Nordic Case (NN). The first version of Uppaal Yggdrasil was
developed in 2007–2009 specifically to support an collaboration with Novo Nordic
for model-based GUI testing for medical devices. This version used Uppaal
CORA as back-end, and operate in a 3 step process inspired by the company’s
needs: (1) A separate test sequence is generated for each user defined (supposedly
critical) test purposes, (2) using Uppaal’s search heuristics for optimizing model
(edge) coverage considering constraints on the maximum lengths of the test
cases, and (3) generating targeted test cases for each of the remaining uncovered
transitions. The actual test case code was generated from model-annotations
that the test engineers added to the model issuing appropriate GUI commands
and assertions. Initially, the models were made using UML state-charts (and then
translated into the Uppaal syntax) due to the engineers familiarity with this
notation. It is important to remark that the engineers had no prior experience
with formal modelling, and models were made for illustrative purposes using
Microsoft Visio. Even then, making models that now had a tangible and formal
meaning required a substantial training period. First the models were jointly
developed assisted by the tool developer, and later only by company engineers
with ordinary support.

This approach reduced the time used on test construction from upwards of 30
days to 3 days spent modelling and then a few minutes on actual test generation.
At the same time, coverage was easier to establish that in the manual approach,
and script maintenance greatly reduced. Later again, the company started using
the Uppaal-editor directly, circumventing a heavy (and costly) UML tool. The
approach was thus successfully embedded within the company. Unfortunately,
that development team was dissolved as part of a company restructuring a year
later, and the competence was no longer used.
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MBAT (M). Since the original Uppaal Yggdrasil was tailormade for this
collaboration, and since it used a the Uppaal CORA engine that is also no
longer being developed, it ended up in a non-usable state. Recently, as part of
the EU Artemis MBAT (Combined Model-based Testing and Analysis) project,
we re-architected the tool, and integrated it into—and shipped with—the main
branch of Uppaal, such that it now (1) uses the normal search engine, and (2)
uses the graphical editor to create the needed annotations, and (3) provides a
GUI widget for creating the test case configurations.

Uppaal Yggdrasil was applied to a case-study [26], and evaluated posi-
tively by a few consortium member companies. However, the collaboration did
not result in commercial exploitation, partly because the project came to an
end, and partly because we did not have an established company that could sell
the licenses, and required maintenance, training, and consultancy.

MBAT also facilitated further developments for tool interoperability that is
seen as crucial for large companies owning hundreds of various software devel-
opment tools. That included prototyping of Open Services for Lifecycle Collab-
oration (OSLC)2 adaptors for Uppaal, and prototyping of Functional Mock-up
Interfaces (FMI)3 co-simulation interfaces. So it is regretful that this source of
funding for Artemis/ECSEL industrial collaboration at a European scale ceased,
as the Danish government halted national co-funding.

Grundfos (G). Grundfos is a major Danish company and world renowned for its
pump products. In a recent meeting in the context of the DiCyPS project4, we
discussed different possible topics for further evaluation, including model-based
testing. Based on our positive experiences with Danfoss (whose refrigerator con-
trollers at an abstract level is similar to Grundfos pump controllers) we pre-
sented all the benefits/strengths of online model-based tested. However, it was
when we presented off-line testing that their interest was really triggered. They
in particular liked our idea of modelling each of their requirements, using this
(combined) model to automatically generate test scripts, and executing these on
their existing test harness. Hence, there is a strong fit with their existing testing
process and equipment. Also they believed that the (formalized) requirement
models could be a valuable documentation complementing the existing design
documentation. Hence, we decided to focus the collaboration on this approach,
and postpone on-line testing.

In the first phase, we (university/tool provider/academic) perform the mod-
elling and test case generation in order to prepare the tool and evaluate the
method, for this particular case. We have identified an interesting, non-trivial
subsystem of a newly developed pump controller exhibiting core functionality. If
this stage is successful we plan to train selected Grundfos engineers and evaluate
their experiences.

Since the collaboration is ongoing, we cannot report on the outcome here.
2 https://open-services.net/.
3 http://fmi-standard.org/.
4 National Innovation Found Supported project on Data-Intensive Cyber-Physical Sys-

tems.

https://open-services.net/
http://fmi-standard.org/
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4 Planning, Scheduling and Synthesis

Within its newer branches, the Uppaal tool suite allows for the usage of prices
and stochastic elements, in order to enable various features, such as cost-optimal
reachability, optimal scheduling or synthesis of strategies. The first practical step
in this direction was made in 2002, with the initial release of Uppaal CORA.
Uppaal CORA was developed as part of the VHS and AMETIST projects, and
uses linear priced timed auomata (LPTA) for reachability problems, searching for
paths with the lowest accumulated costs. The idea behind Uppaal Stratego
came up in the CASSTING project. It was released in 2014, and facilitates the
generation, optimization, comparison as well as consequence and performance
exploration of strategies for /em stochastic priced timed games (SPTGs) in a
user-friendly manner. The tools were since applied in several case studies, such
as optimal planning of missions for battery-powered nano-satellites [6], efficient
heating in home automation [29] or traffic light scheduling [21]. Below we will
give an overview of the three mentioned case studies.

Battery-Powered Nano-Satellites (BPNS). This case study focused on the bat-
tery consumption of a GOMX-3 satellite built by the company GomSpace. It
contains several antennas, solar panels and a battery. Depending on the schedul-
ing of the different tasks of the satellite, the deterioration of the battery may
vary significantly, depending on, for instance, the depth the battery is discharged
to before reloading it. Uppaal Stratego was used to analyze different battery
usage profiles, to optimize the lifetime of the satellite. This was done via a wear
score function, which ranked the profiles according to their impact on the bat-
tery life. Additionally, the satellite was modelled as an SPTG in an abstract
way. It could choose between the four different experiment types with different
strains on the battery. Using the reinforcement learning approach implemented
in Uppaal Stratego we could near-optimize the scheduling of the experiments
with respect to both the battery life and the number of experiments performed.

Home Automation (HA). In [29] we collaborated with the Danish company
Seluxit within the European project CASSTING. Our focus was on using timed
games to synthesize a controller for a floor heating system of a single family
house. Each room of the house has its own hot-water pipe circuit, which is
controlled based on the room temperature. The original system used a simple
“Bang-Bang”-like strategy. Our goal was to use weather forecast information to
synthesize an improved control strategy. Due to the state-space explosion caused
by the number of control modes, we could not apply Uppaal Stratego directly.
To cope with this, we proposed a novel on-line synthesis methodology, which is
periodically called and learns an optimal controller for a limited timeframe. We
further improved this approach by applying compositional synthesis, making it
scalable enough for the study. The controller could access the weather forecast
for the next 45 min, and used that information to shut down or start the valves
much earlier than other controllers, resulting in substantial energy savings and
increased comfort.
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Intelligent Control of Trafic Light (ICTL). Within the Innovation Center
DiCyPS we used Uppaal Stratego for the synthesis of an efficient traffic con-
trol strategy. The controller gains information about the traffic via radar detec-
tors and aims at optimizing the total traffic flow in a given traffic light junction.
The strategy optimizes the total delay, the queue length and the number of times
the vehicles have to stop. Again the synthesis is done on-line, this time in 5 s
intervals, during which the next operation of the traffic light is calculated. We
investigated an existing intersection in the municipality of Køge, Denmark, and
simulated it with the open source tool SUMO and the commercial tool VISSIM.
The strategy computed by Uppaal Stratego could be integrated into these
tools, to analyze the behaviour based on randomly generated traffic szenarios.
We evaluated the strategies in comparison to a static controller and a so called
Loop controller, under three types of traffic szenarios with low, medium and
maximal traffic. For low traffic, all controllers performed very similar, with the
Loop controller showing the best results and for medium traffic, all performed
equally. However, for high traffic, Uppaal Stratego outperformed both other
controllers significantly, essentially halving the expected waiting time [21].

5 Projects

In this section we will give an overview of the different projects we were involved
in, which financed, drove and benefited from the development of the different
tool components. An overview of the projects and the developed tool components
and their entangled time lines can be seen in Fig. 2.

Fig. 2. Time lines of the starting dates of different projects, and the developed tool
extensions.
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BRICS

– Type: Basic research funded by Danish National Research Foundation
– Period: 1994–1998
– Goal: Establishing important areas of basic research in the mathematical

foundations of Computer Science, notably Algorithmics and Mathematical
Logic.

– Partners: Aarhus University
– Development of Uppaal: BRICS supported the development of the first
Uppaal version and the improvement of algorithms for model-checking timed
automata.

VHS

– Type: ESPRIT-LTR Project
– Period: 1998–2000
– Goal: Verification of hybrid systems
– Partners: Sidmar, Nystral, Krup Uhde, Verimag, Dortmund, Nijmegen
– Development of Uppaal: In VHS we focused on the application of Uppaal

to scheduling problems, which (together with the work done in AMETIST)
led to the development of Uppaal CORA. The basic research done here
also resulted in a huge performance improvement of the runtime and space
consumption of Uppaal’s model checking algorithms.

AMETIST

– Type: IST project
– Period: 2002–2005
– Goal: Modelling and analysis of complex, distributed real-time systems with

resource allocation.
– Partners: AXXOM, Bosch, Cybernetix, Terma
– Development of Uppaal: In AMETIST we first introduced priced timed

automata to Uppaal via Uppaal CORA, allowing us to perform verification
of resource dependent systems.

MoDES

– Type: Basic research funded by Danish National Research Foundation
– Period: 2006–2009
– Goal: Developing, evaluating and disseminating concepts, methods and tools

that can be used to design dependable embedded systems that meet their
requirements in a controlled and resource-efficient way using model-driven
approaches.

– Partners: DTU, SDU, Hardi International, Danfoss, Skov, Reactive Systems,
CSI Center for Software Innovation, PAJ

– Outcome: Methods and tools for embedded systems were aligned among
many leading Danish companies. The evaluations showed that model-driven
development leads to better performing products in less time and that stan-
dardization of methods, models and tools will increase industrial take-up.
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QUASIOMODO

– Type: IST FP7 project
– Period: 2008–2010
– Goal: Theory, techniques and tool components for handling quantitative (e.g.

real-time, hybrid and stochastic) constraints in model-driven development.
– Partners: Terma, Chess, Hydac
– Development of Uppaal: In QUASIMODO we introduced and developed
Uppaal TIGA, which we then used to improve controller synthesis for
Hydac.

DANES

– Type: Danish Advanced Technology Foundation
– Period: 2008–2011
– Goal: Establishing, developing and testing a model-driven and component-

based development process for the implementation of the intelligent embedded
systems of the future.

– Partners: DTU, SDU, ICEpower, Novo Nordisk, PAJ Systemteknik, Prevas,
Skov, Terma

– Outcome: The company Terma used UPPAAL to achieve an improved
schedulability analysis and NOVO Nordic vastly improved their testing
methodology using Uppaal Yggdrasil. However, we had to learn that orga-
nizational changes makes sustainable impact difficult, as in NOVO Nordic the
particular software group we were working with was laid down, and replaced
by outsourcing.

ARTIST

– Type: FP7
– Period: 2008–2012
– Goal: Integrate topics, teams, and competencies, through an ambitious and

coherent research program of research activities which are grouped into 4 The-
matic Clusters: “Modelling and Validation”, “Software Synthesis, Code Gen-
eration, and Timing Analysis”, “Operating Systems and Networks”, “Plat-
forms and MPSoC”.

– Partners: 31 partners
– Outcome: Methods and tools for embedded systems were aligned at a Euro-

pean level. As in the previous MoDES project we saw the willingness of indus-
trial take-up increase with standardization of methods, models and tools.

MT-LAB

– Type: Basic research: basic research funded by Danish National Research
Foundation

– Period: 2008–2013
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– Goal: Development of research results and knowledge that will eventually
be utilized in application-oriented research and projects in business through
front research in IT Modeling.

– Partners: Danmarks Tekniske Universitet
– Development of Uppaal: Improved algorithms for model-checking timed

automata.

MBAT

– Type: ARTEMIS project
– Period: 2011–2014
– Goal: Combining Model-based Analysis and Testing of Embedded Systems
– Partners: 39 partners
– Development of Uppaal: Refactoring of Uppaal Yggdrasil and inte-

grating it into the main Uppaal tool.

SENSATION

– Type: IST FP7
– Period: 2012–2015
– Goal: Increase the scale of systems that are self-supporting by balancing

energy harvesting and consumption up to the level of complete products.
– Partners: RWTH Aachen University, INRIA, University of Saarland, Uni-

versity of Twente, GOMSpace, Recore Systems
– Outcome: We learned that the model-based approach to planning scales to

industrial usage, and could actually be applied to satellites. However, constant
interaction with companies is needed to ensure sustainability, especially in a
fast-growing company as GOMSPACE.

CASSTING

– Type: FP7
– Period: 2013–2016
– Goal: Developing a novel approach for analysing and designing collective

adaptive systems in their totality, by setting up a game theoretic framework.
– Partners: CNRS, Université de Mons, Université Libre de Bruxelles, RWTH

Aachen, Seluxit, Energi Nord
– Outcome: We showed that the model-based approach to optimal synthe-

sis scales to industrial usage. An interesting observation was that small
companies are more agile in adapting new methodologies (e.g. model-based
approaches). In fact Seluxit is now taking up the methodology in the CASSEK
project.

ITOS

– Type: Danish industry foundation
– Period: 2014–2016
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– Goal: Creating knowledge and enhancing skills and techniques used to
develop embedded technologies.

– Partners: 15 partners
– Outcome: Four involved companies applied model-based development for

a substantial time. We saw first hand, that the model-based approach to
formal methods fits very well the methodologies of several companies within
embedded systems. Various types of models (e.g. MATLAB/Simulink) were
already in heavy use.

LASSO

– Type: ERC Grant
– Period: 2015–2020
– Goal: Developing a new generation of scalable tools for cyber-physical sys-

tems through combining advanced model-checking techniques with machine
learning.

– Partners: -
– Outcome: Lasso is a basic research project, were we improve and expand our

algorithms and implementations. We hope the advancement in basic research
may lead to disruptive industrial solutions.

DiCyPS

– Type: Danish Innovation Fund
– Period: 2015–2021
– Goal: Utilize software and data from IT management of complex physical

systems to create smarter and more user-friendly solutions to society and
individuals.

– Partners: Balsgard Norgard, Blip Systems, Danfoss, Energi Styrelsen, Flex-
Danmark, Huge Lawn, Lærerstandens Brandforsikring, Neogrid Technolo-
gies, Nyfors, Ramboll, Region Nordjylland, Rejsekort, Scada, Seluxit, Aalborg
Kommune, ScaDS, Estasys, UCL

– Development of Uppaal: Improvement to algorithms and implementations
of various branches of Uppaal, to demonstrate their capability in the pre-
sented industrial cases.

CASSEK

– Type: Eurostars Project
– Period: 2017–2018
– Goal: Accelerate developments in IoT through a sustainable marketplace

model and an IoT app store.
– Partners: Seluxit
– Outcome: We will demonstrate how Uppaal can be integrated and used to

improve IoT scheduling.
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Reachi

– Type: Eurostars Project
– Period: 2017–2019
– Goal: Development of disaster-proof communication devices that send data

from device to device until it reaches its destination, thereby connecting first
responders and relief coordinators.

– Partners: Attensys.io Gmbh, Neocortec, Linkaiders Aps
– Outcome: We will improve algorithms in Uppaal SMC to enable massive

simulations of mesh networks and model and verify the developed device.

6 Discussion and Conclusions

We learned countless lessons throughout the presented projects. We would like
to summarize the most important ones below:

– Formal method tools need to adapt to industrial needs! This holds
true in multiple directions. They need to be user friendly in order for engineers
to apply them (for instance, we got great feedback on the fact that UPPAAL
provides simulation to manually step through the system and check whether
it behaves as intended), they have to fit into the development methodology
and connect to the tools in use, and they need to comply to safety certification
standards to not be perceived as additional overhead. While the learnability
and scalability in terms of size and features of our methodologies and tools
have improved hugely over the years, they remain challenges that we will
continually address.

– Model-based verification requires models! And thus, new industrial
collaboration projects usually require a two step phase, where first we produce
models to demonstrate the capabilities of model-based verification, and then
we train the engineers at creating meaningful and efficient models. Embedding
this modelling (implicitly or explicitly) in the industrial development process
such that it is not an extra overhead is still a topic for research.

– One project is rarely enough! Within the first project, the involved com-
panies get to know the tool and its advantages, but will not incorporate it into
their day to day use. But after knowing the tool they can think of suitable
applications and apply the tool within designated follow-up projects.

– The trend goes towards automation! While our early projects were
mainly about verification of models, this changed into many projects on auto-
mated test-case generation, and finally into projects on the automatic syn-
thesis of optimized and correct-by-construction controllers. This trend reflects
the need of industry, to integrate formal methods into their automated pro-
duction processes.

Our experiences throughout the projects showed that basic research is abso-
lutely necessary in order to achieve mathematically sound, effective and efficient
formal methods tools, while applied research led us towards industrially interest-
ing and challenging new areas. Altogether, the variety of different projects was
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what enables us to develop Uppaal, sustain it over the years, expand it to differ-
ent areas, and, ultimately, integrate it into industrial use. To maintain Uppaal
for the coming 20 years, we plan on following this path further by constantly
getting in touch with new companies, assessing the current needs of industry
and applying for joint industrial projects.
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Abstract. Most widely used, general-purpose operating systems are
built on top of monolithic kernels to achieve maximum performance.
These monolithic kernels are written in the C/C++ programming lan-
guage primarily and they may exceed one million lines of code in size
even without optional extensions or loadable kernel modules such as
device drivers and file systems. In addition, they evolve rapidly for sup-
porting new functionality and due to continuous optimizations and elim-
ination of defects. Since operating systems and, in turn, applications
strongly depend on monolithic kernels, requirements for their function-
ality, security, reliability and performance are ones of the highest. Cur-
rently used approaches to software quality assurance help to reveal quite
many defects in monolithic kernels, but none of them aims at detecting
all violations of checked requirements and alongside providing guaran-
tees that target programs always operate correctly. This paper presents
a new method that is based on the software verification technique and
that enables thorough checking and finding hard-to-detect faults in var-
ious versions of monolithic kernels. One of its key features is the possi-
bility to avoid considerable efforts for configuring tools and developing
specifications to obtain valuable verification results while one still can
steadily improve their quality. We implemented the suggested method
within software verification framework Klever and evaluated it on sub-
systems of the Linux monolithic kernel.

Keywords: Formal verification · Software verification
Deductive verification · Formal specification · Program decomposition
Environment model · Operating system · Monolithic kernel

1 Introduction

An architecture of most widely used, general-purpose operating system kernels
is either completely or mostly monolithic [1]. Like tiny microkernels, monolithic
kernels usually implement such main facilities as scheduling, memory manage-
ment and interprocess communication. Besides, unless specially configured, they
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also have a built-in support for low-level network protocols, security modules,
servers or monitors, the cryptography API, underlying abstraction layers for
different device classes and so on. One can further extend a set of monolithic
kernel facilities by enabling various optional extensions or loadable kernel mod-
ules such as device drivers and file systems. There may be available thousands
of such extensions but as a rule each monolithic kernel of a particular operating
system instance has several dozens of them at a time. It is possible to add new
extensions and remove existing ones either by recompiling monolithic kernels or
loading and unloading them dynamically.

The paper focuses on verification of monolithic kernels without extensions,
since many other works already address the latter [2–7]. Below for brevity we
refer to monolithic kernels without extensions as monolithic kernels.

Sizes of typical monolithic kernels may exceed one million lines of code in the
C/C++ programming language primarily. In addition, they evolve rapidly for
supporting new functionality, e.g. to support new device classes or a new security
model, and due to continuous improvements like optimizations and elimination
of defects. For instance, from 2009 to 2016 the size of the Linux monolithic kernel
grew in more than 2 times and now it exceeds 1.4 million lines of code [8].

During the boot process a monolithic kernel is loaded into memory and then
it operates completely in the same address space having a full direct access to
all its internal data structures as well as to all hardware. This is the main reason
why the given architecture allows reaching maximum performance. As a huge
drawback, even minor faults in monolithic kernels can lead to an incorrect oper-
ation, data corruption and considerable performance degradation of operating
system components including monolithic kernel extensions, and, in turn, appli-
cations. Critical faults can lead to privilege escalations and confidential data
breaches.

Challenge. Operating systems based on monolithic kernels operate on billions
of devices1. That makes monolithic kernels one of the most critical software in
computer systems, thus, requirements for their functionality, security, reliability
and performance are ones of the highest.

To identify defects in monolithic kernels developers and quality assurance
engineers from different organizations use various methods and tools like code
review, testing and static analysis [9]. However, none of these approaches aims
at detecting all violations of checked requirements and providing some guar-
antees that target programs always operate correctly. Considering a very high
importance of monolithic kernels, industry is eager for additional software qual-
ity assurance methods and tools. In some cases, e.g. for checking safety-critical
computer systems based on monolithic kernels, certification authorities can spec-
ify quite rigorous requirements for such the tools [10]. However, there is a lack
of available tools and evaluations of their applicability to fulfill such the require-
ments.
1 https://www.computerworld.com/article/3050931/microsoft-windows/windows-

comes-up-third-in-os-clash-two-years-early.html.

https://www.computerworld.com/article/3050931/microsoft-windows/windows-comes-up-third-in-os-clash-two-years-early.html
https://www.computerworld.com/article/3050931/microsoft-windows/windows-comes-up-third-in-os-clash-two-years-early.html
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Below we present various formal verification methods and tools that meet
the challenge.

Related Work. Deductive verification tends to prove the complete formal cor-
rectness of target programs. There are several quite successful projects devoted
to deductive verification of microkernels [11–13]. Few works address deductive
verification of small parts of special purpose and monolithic kernels [14–16]. In
both cases authors show that it is necessary to do an enormous amount of man-
ual work to develop models and specifications. Therefore, it is extremely hard to
use existing specification languages, methods and tools of deductive verification
for large-scale verification of target monolithic kernels since their typical sizes
exceed ones of microkernels and special purpose kernels by 2–3 orders. More-
over, monolithic kernels constantly evolve that hinders deductive verification
especially if yielded proofs are complex and rely on many factors.

Many researchers suggest using special programming languages and even
special hardware for designing more safe and secure software, in particular oper-
ating system kernels [17–20]. This substantially simplifies formal verification but
these approaches can not help for formal verification of existing general-purpose
monolithic kernels.

Promising and outstanding results in formal verification of software have
been achieved using software model checking [21] which today is often called
software verification [22]. This technique provides a higher level of automa-
tion relatively to deductive verification. Software verification already has many
successful applications regarding operating system monolithic kernels and their
extensions including:

– Verification of operating system device drivers [2–7].
– Verification of network protocols [23].
– Verification of file systems [24,25].
– Verification of a Linux kernel memory management subsystem [26].

Contribution. Thus far researchers focus on verification of specific subsystems
of monolithic kernels providing appropriate specifications and tools that do not
suit for other subsystems. Moreover, nobody takes care of reusing and updating
tool configurations and specifications for different versions of monolithic kernels.

This paper presents a new method that is based on the software verification
technique and that enables thorough checking and finding hard-to-detect faults
for various versions of monolithic kernels. The method allows avoiding consid-
erable efforts for configuring tools and for developing specifications to obtain
valuable verification results by means of:

– Verification of monolithic kernel subsystems together with extensions that
use their interfaces.

– Reusing specifications developed for verification of monolithic kernel exten-
sions.
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– A high level of automatization of routine operations at various steps of the
software verification workflow.

Besides, the suggested method remains room for improving verification
results quality, i.e. for reducing the number of false alarms and the number
of missed faults of various kinds. Primarily one can achieve that by means of
developing specifications. Sometimes it may be necessary to adjust tool config-
urations.

Paper Outline. Before proceeding to the suggested method we give more
details on monolithic kernel internals and on capabilities of software verification
methods and tools (Sect. 2). In Sect. 3 we present a new method for verification
of monolithic kernels. Section 4 describes the implementation of the suggested
method. Its evaluation on subsystems of the Linux monolithic kernel is given in
Sect. 5. Section 6 presents conclusions and future works.

2 Background

Both operating system monolithic kernels and software verification methods and
tools are extremely wide areas of research and development. In this section we
consider only those aspects that are vital for verification of operating system
monolithic kernels.

2.1 Operating System Monolithic Kernels

Traditionally one considers monolithic kernels as several abstraction layers which
often are referred to as subsystems. An actual implementation of these layers
often does not fit well their abstract representations. Monolithic kernel subsys-
tems can be tangled in an intricate way since this may be more efficient from
the practical point of view and easier for development.

In this study we rely on the fact that target monolithic kernels are developed
over decades and their current code bases are already mature and well organized.
In particular, most likely developers already put closely related functionalities,
that form subsystems, into corresponding groups of source files and perhaps
directories. For instance, some group of source files constitutes a memory man-
agement subsystem, other source files are responsible for a particular network
protocol, all source files from some directory form a subsystem for supporting
some class of devices, and so on.

Each monolithic kernel subsystem has an API decorating implementation
details. For instance, top-level subsystems define system calls that applications
invoke for using facilities of monolithic kernels and underlying hardware. As
a rule, at the bottom there is a hardware abstraction layer that introduces a
uniform API for various devices for the rest monolithic kernel subsystems and
extensions.
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Middle-level subsystems implement either a number of interfaces, such as
helper functions used in other subsystems and extensions, or event-driven APIs
by registering event handling callbacks. Such events include software and hard-
ware interrupts. Also, callbacks can be invoked in more implicit ways, e.g. on
expiration of timers or during execution of queued works. It is worth noting that
monolithic kernel extensions are similar to middle-level subsystems, but their
APIs and interrelations are usually simpler than subsystem ones. In particular,
mechanisms for defining, registering and unregistering callbacks in subsystems
are the same as in extensions [27].

In order to allocate required resources and to subscribe for handling events,
monolithic kernels initialize all subsystems in an appropriate order on loading
into memory. This process is not so straightforward due to the necessity to ensure
that event handlers are registered in advance to invocation:

– There are subsystems or some parts of subsystems to be initialized first of
all. This is the case for, say, memory management and scheduling. Usually
monolithic kernels perform such initialization in startup functions such as
start kernel in the Linux kernel and init386 in the FreeBSD kernel.

– Most subsystems and subsystem parts are initialized in accordance with their
levels. For instance, the Linux monolithic kernel of version 3.14 has 19 such
the levels2. Initialization of its subsystem for supporting PCI devices leverages
6 of them starting from registering a PCI bus and finishing by registering file
attributes for PCI devices. Monolithic kernels provide different mechanisms to
set initialization levels for particular subsystem interfaces There are dedicated
macros often, e.g.:
• in the Linux kernel macros postcore initcall, arch initcall, subsys initcall,

etc. take corresponding initialization function names, e.g.:
postcore_initcall(pci_driver_init);

arch_initcall(acpi_pci_init);

subsys_initcall(pci_slot_init);

fs_initcall_sync(pci_apply_final_quirks);

device_initcall(pci_proc_init);

late_initcall(pci_resource_alignment_sysfs_init);

• in the BSD based kernels such as FreeBSD, NetBSD and Darwin there is
macro SYSINIT that takes corresponding initialization function names,
their levels and orders within levels, e.g.:

2 One can see files include/linux/init.h and init/main.c for details.
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enum sysinit_sub_id {

...

SI_SUB_VNET_PRELINK = 0x1E00000, /* vnet init before modules */
...

SI_SUB_VNET = 0x21E0000, /* vnet 0 */
...

SI_SUB_VNET_DONE = 0xdc00000, /* vnet registration complete */
...

}

enum sysinit_elem_order {

SI_ORDER_FIRST = 0x0000000, /* first*/
SI_ORDER_SECOND = 0x0000001, /* second*/
...

SI_ORDER_ANY = 0xfffffff /* last*/
};

SYSINIT(vnet_init_prelink, SI_SUB_VNET_PRELINK, SI_ORDER_FIRST, ...);

SYSINIT(vnet0_init, SI_SUB_VNET, SI_ORDER_FIRST, ...);

SYSINIT(vnet_init_done, SI_SUB_VNET_DONE, SI_ORDER_ANY, ...);

– Some subsystems trigger initialization of parts of other subsystems or even
their complete initialization. Usually this is the case when subsystems depend
on each other.

Monolithic kernels invoke callbacks when corresponding events happen after
completing initialization and even during it. In turn, callbacks can refer to inter-
faces provided by other subsystems, e.g. for allocating and freeing resources or
for acquiring and releasing locks. Each event handling execution path can pass
through many subsystems and even several extensions.

Monolithic kernel subsystems operate until either normal or abnormal oper-
ating system reboot unlike extensions that can be loaded and unloaded dynami-
cally. In particular, subsystems do not need a final clean-up, e.g. to free resources
and release locks, at the end of their work.

There are many diverse requirements for monolithic kernel subsystems. In
this paper, we do not consider functional requirements since one has to spend too
much efforts on developing models and specifications to check them. As for non-
functional requirements, monolithic kernel subsystems should invoke used inter-
faces properly and obey generic rules of safe programming such as an absence of
null pointer dereferences or buffer overflows.

2.2 Software Verification Methods and Tools

The method suggested in the following section is based upon methods for soft-
ware verification [21,22]. In the previous work [28] we already described an
interface, features and requirements of modern software verification tools like
SLAM [5] and CPAchecker [29]. The fundamental limitation of these tools is the
possibility to check programs of thousands or dozens of thousands of lines of
code in size at most depending on the number of conditions. Thus, one needs
to decompose monolithic kernels into moderate-sized subsystems to verify them
independently.
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An experience of leveraging software verification tools demonstrated the
necessity of modeling a target program environment in a rather accurate way [2–
7,27,30]. Software verification tools may produce false alarms at checking spuri-
ous scenarios of interactions between the program and its environment and miss
faults if some paths possible during the program execution are forbidden by the
environment model. Regarding monolithic kernel subsystems, their environment
mainly consists of other subsystems, various extensions, hardware and appli-
cations. The environment model should initialize subsystems, invoke registered
subsystem callbacks and provide models of used interfaces which implementa-
tions are out of verification scope but which significantly influence verification
results.

Software verification tools are capable to check satisfiability of safety and
liveness properties. Sometimes these properties explicitly match requirements,
e.g. this is the case for memory safety. Otherwise, it is necessary to formulate
specific requirements as a property supported by tools. For instance, one repre-
sents rules of correct usage of a particular API as a reachability problem usually.
Software verification tool can both miss faults and obtain false alarms in case of
imprecise formalization of requirements.

In contrast to methods and tools for deductive verification [11–16], the soft-
ware verification technique does not require developing complete models and for-
mal specifications covering all functional and high-level requirements. It is possi-
ble to detect faults of particular kinds as well as to prove correctness under cer-
tain assumptions even having inaccurate models and specifications. This stems
from the following factors:

– One does not prove the complete formal correctness of target programs but
searches for violations of quite widespread non-functional requirements using
software verification methods and tools. We gave examples of such require-
ments for operating system monolithic kernels at the end of the previous
subsection.

– Software verification tools automatically build models for all functions from
target programs. These models are accurate enough for checking specified
requirements.

– Software verification tools make certain assumptions either by default or being
configured appropriately. For instance, tools can ignore the inline assembler.
One should not expect many related problems since in monolithic kernels
there are not many such statements and they are concentrated in architecture
dependent subsystems [8]. Otherwise, one can develop corresponding models
in the C/C++ programming language.

– Researches suggest new software verification methods and optimize the imple-
mentation of existing ones. Thanks to that today tools can automatically
build accurate models and check satisfiability of specified properties for
medium-sized programs using reasonable computational resources.
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2.3 Klever Software Verification Framework

It is hardly possible to use software verification tools out of the box for industrial
programs [28]. Fortunately, there are higher-level methods and frameworks that
considerably automate the entire software verification workflow [2–7,28]. Most
existing software verification frameworks target specific software like operating
system device drivers [2–7]. In contrast, Klever is an extensible framework for
checking various GNU C programs by design [28].

At the moment Klever is capable to thoroughly check Linux device drivers. It
includes a set of specifications allowing both to generate rather accurate environ-
ment models for invoking most popular device driver APIs and to check various
requirements. These specifications are also applicable at verification of the Linux
monolithic kernel after slight customizations.

3 Verification of Monolithic Kernels

Following subsections consider adaptations of the common method for verifi-
cation of GNU C programs [28] that we suggest for verification of monolithic
kernels. Because of the limited space, we do not provide details like formats and
samples of tool configurations and specifications.

3.1 Decomposing Monolithic Kernels into Subsystems

We suggest treating all source files from specified directories built into a mono-
lithic kernel for a specified architecture and configuration as subsystems. This
simplifies updates of tool configurations for new versions of monolithic kernels
since developers rarely modify directories. Provided source files of different sub-
systems belong to the same directory, one should divide them between these
subsystems explicitly.

The approach allows obtaining quite compact subsystems. If some subsystem
is too complex for software verification tools at checking particular requirements,
we suggest doing an additional decomposition using the same approach. One
can expect several hundreds of subsystems for each monolithic kernel assuming
a mean size of a subsystem to be about several thousands of lines of code.

However, our assumption that developers strictly follow separation of con-
cerns is wrong sometimes. For instance, the same source file can contain func-
tionalities of several subsystems. It is possible to extend a decomposition level
further, e.g. by enabling enumeration of particular subsystem functions. But one
has to provide and maintain different function name lists for various versions of
monolithic kernels because developers change function names rather frequently.
To avoid such difficulties we suggest considering source files shared by different
subsystems indivisibly.
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3.2 Verifying Monolithic Kernel Subsystems with Extensions

We suggest verifying monolithic kernel subsystems together with extensions that
use their interfaces to avoid development of specifications considering corre-
sponding interaction scenarios. There are several related assumptions:

– There should be environment model specifications for selected extensions to
cover execution paths invoking target subsystem interfaces.

– Extensions should use subsystem interfaces correctly. Correctness of exten-
sions is within the scope of other works [2–7].

One can select extensions using subsystem interfaces in different ways. If
there is enough time and computational resources, we suggest taking all relevant
extensions since this helps to cover all possible interaction scenarios. Otherwise,
we propose to follow the algorithm:

– Obtain function coverage when verifying target monolithic kernel subsystems
without extensions.

– Determine what subsystem functions are not covered and which of them are
invoked by extensions.

– Obtain a minimal number of extensions invoking all uncovered subsystem
functions or gather extensions in a greedy way.

3.3 Generating Environment Models for Monolithic Kernel
Subsystems

We base the approach for generating environment models for monolithic kernel
subsystems on the method we developed for modeling environment for Linux
device drivers [27]. The method suggests specifying callbacks using a special
domain specific language (DSL). Also, it has a hardcoded algorithm for initial-
izing and exiting extensions occurring after loading and before unloading them
respectively. Using environment model specifications and target extensions an
environment model generator produces an extra C code to be verified together
with a source code of these extensions.

To cope with monolithic kernel subsystems that have more complex APIs
we suggest extending the existing method to support a number of DSLs for
developing specifications and a corresponding number of environment model
generators. These generators should prepare a final environment model as a
parallel composition of its fragments generated independently for each DSL and
the target program. Below we consider 3 such DSLs and environment model
generators for monolithic kernel subsystems.

Modeling Initialization of Monolithic Kernel Subsystems and
Extensions. It is vital to perform accurate initialization since during it
resources are allocated and callbacks are registered. We suggest supporting a
corresponding environment generator for specifying initialization of monolithic
kernel subsystems and extensions as well as exit of extensions. It allows setting:
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– Initialization levels and sublevels together with mechanisms to relate them
with concrete initialization functions without referencing names of the latter.

– Initialization levels and sublevels for concrete initialization functions using
their names (this is necessary for invoking those initialization functions for
which initialization levels and sublevels are not set within target subsystems).

– Mechanisms to obtain exit functions for extensions without referencing names
of the latter.

An environment model generator responsible for initializing subsystem and
extensions and for exiting extensions:

– Obtains all initialization and exit functions defined by target subsystems and
extensions with help of specified mechanisms.

– Properly orders obtained functions together with ones specified explicitly in
accordance with respective levels and sublevels.

– Generates C code invoking initialization and exit functions in the calculated
order taking into account failures of initialization functions if necessary3.

Modeling Invocations of Monolithic Kernel Subsystem Callbacks.
Regarding callbacks we propose to use the same approach to environment model
generation for monolithic kernel subsystems as applied for verification of their
extensions [27]. Often subsystems implement the same event-driven APIs as
extensions, so, one can reuse existing environment model specifications.

Modeling Remaining Environment of Monolithic Kernel Subsystems.
Sometimes nothing suggested above helps to cover subsystem interfaces, e.g.
when they are invoked just by other subsystems or not invoked anywhere in a
target monolithic kernel or considered extensions. To cover them we suggest to
manually extend an intermediate environment model which is prepared at the
previous stage since it is hard to suggest appropriate top-level specifications.

It may be necessary to develop models of interfaces invoked by target sub-
systems but which implementations are out of verification scope unless existing
environment model specifications contain them. For these models we suggest
using the C programming language with special expressions. The most impor-
tant such expressions are functions which return non-determined values of their
return value types. By using them one can force software verification tools to
consider various paths, e.g. when functions both succeed and fail.

3.4 Checking Requirements for Monolithic Kernel Subsystems

We suggest checking those requirements for monolithic kernel subsystems that
are vital but do not require much time for developing corresponding specifica-
tions. These requirements include memory safety and relevant for subsystems
3 For instance, for the Linux kernel initialization functions can fail and return error

codes. In this case, the environment model generator should not invoke exit functions
if so, but can try to invoke failed initialization functions again.
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rules of correct usage of monolithic kernel subsystem interfaces that are tra-
ditionally checked at verification of monolithic kernel extensions [2–7]. Unlike
extensions one should not check that subsystems perform a final clean up since
they can not be unloaded on demand.

3.5 Improving Verification Results

Generated environment models and requirement specifications may be impre-
cise. As we discussed in the previous section it can lead to missed faults, which
is extremely undesirable, and false alarms substantially complicating verification
results analysis. In addition, considering subsystems with or without extensions
may be too hard for software verification tools at checking particular require-
ments. To improve verification results we suggest:

– To adjust tool configurations describing target subsystems and extensions
verified together with them.

– To refine environment model and requirement specifications step by step until
one obtains a reasonable coverage and an acceptable number of false alarms.

This process can be hardly formalized. There are strict deadlines usually, so one
has to balance time spent on setting tool configurations, developing specifica-
tions, verification results analysis and preparing final accounts.

4 Implementation

We implemented the suggested method within the Klever software verification
framework [28]. The implementation employs all existing Klever components and
specifications intended for verification of Linux device drivers. At the moment
it aims at thorough checking subsystems of the Linux monolithic kernel but it
can be extended for other monolithic kernels as well.

For decomposing the Linux monolithic kernel into subsystems we allowed
specifying directories and particular source files belonging to subsystems. Also,
we extended a Klever component responsible for program decomposition so that
it automatically triggers required build actions and filters out all required sub-
system source files. Moreover, this component started to generate program frag-
ments incorporating both subsystems and device drivers together.

We considerably extended the corresponding Klever component to generate
environment models for monolithic kernels. The new version supports additional
kinds of specification DSLs and generates corresponding environment model
parts on their basis. In addition, we implemented a common environment model
specification taking care of multilevel initialization for Linux monolithic kernel
subsystems. We allowed disabling checking a final state since monolithic kernel
subsystems do not need that.
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5 Evaluation

For evaluating the suggested method we considered 3 subsystems of the Linux
monolithic kernel that was built for architecture x86 64 and configuration
allmodconfig (Table 1). We limited the number of target subsystems as we did a
thorough analysis of results to investigate various aspects of verification quality
while analyzing only found violations does not take much time.

All experiments were conducted on OpenStack virtual machines each with
8 virtual cores of the Intel Xeon E312xx (Sandy Bridge) CPU, 64 GB of mem-
ory and Debian 9 (Stretch) on board4. We used Klever Git branch kernel-
verification [28], CPAchecker Subversion revision trunk:27583 [29] and, unless
particularly pointed, those specifications and tool configurations that are used
in Klever by default. In particular, CPAchecker could spend 15 min of CPU
time and 10 GB of memory for checking each subsystem against any require-
ments specification. Earlier in Subsect. 2.2 we discussed major limitations of
CPAchecker and other software verification tools as well as how these tools oper-
ate.

Table 1. Target Linux monolithic kernel subsystems (numbers of source files and lines
of code are given for Linux 3.14)

Subsystem name Directory Source files Lines of code

Character devices support (CHAR) drivers/char 5 4194

General-Purpose I/O (GPIO) drivers/gpio 6 4472

Terminal devices support (TTY ) drivers/tty 11 12129

5.1 Verification of Linux Monolithic Kernel Subsystems

To confirm that the suggested method meets one of its major expectations we
verified target subsystems for all major versions of the Linux kernel issued from
2013, April 28 (version 3.9) to 2015, February 8 (version 3.19). This period
covers almost 2 years of development and includes 11 major versions. Table 2
provides generic information on changes made in target Linux monolithic kernel
subsystems.

To launch Klever we used the same tool configuration and specifications for
all treated versions of the Linux kernel. To get better function coverage and to
get rid of annoying false alarms we made following improvements in environment
model specifications that are specific for Linux monolithic kernel subsystems:

– Explicitly specify initialization levels for two initialization functions from the
CHAR and TTY subsystems.

4 http://www.bigdataopenlab.ru/about.html.

http://www.bigdataopenlab.ru/about.html
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Table 2. Changes of target Linux monolithic kernel subsystems (percentages were
calculated relatively Linux 3.14)

Subsystem name Source files added/removed Lines of code added/removed

CHAR +0/−1 (+0%/−20%) +950/−712 (+23%/−17%)

GPIO +2/−3 (+33%/−50%) +5074/−3079 (+113%/−69%)

TTY +1/−0 (+9%/−0%) +4012/−3221 (+33%/−27%)

– Develop a model for function panic that abnormally terminates kernel oper-
ation.

– Place memory allocated in environment models into global lists to avoid detec-
tion of memory leaks after termination of subsystems.
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Fig. 1. Function coverage for target subsystems of the Linux monolithic kernel

Function Coverage. Figure 1 demonstrates function coverage for target sub-
systems of the Linux monolithic kernel. One can see that for CHAR and TTY
subsystems function coverage changes rather slightly except for Linux 3.11. In
this version developers added to the TTY subsystem a new source file defining
specific semaphores but there were no users of an introduced API at that time
yet.

Function coverage for the GPIO subsystem changes more often and more
significantly because this subsystem is relatively new. It was introduced in 20085

5 https://lkml.org/lkml/2008/1/5/137.

https://lkml.org/lkml/2008/1/5/137
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while other target subsystems have been developing from the nineties of the
previous century. One can see that this correlates with numbers of added and
removed source files and lines of code from Table 2.
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Fig. 2. Reasons of an absence of function coverage for target subsystems of the Linux
monolithic kernel (for Linux 3.14)

Figure 2 demonstrates reasons why remaining functions of target subsystems
of the Linux monolithic kernel are not covered. In the most cases it is necessary to
develop additional environment model specifications to invoke specific callbacks.

Verification Results. We verified all target subsystems of the men-
tioned versions of the Linux kernel against the most relevant requirement
specifications, namely, generic:memory, linux:{alloc:{irq, spinlock}, arch:io,
drivers:base:{class, dma-mapping}, fs:sysfs, kernel:locking:{mutex, rwlock, spin-
lock}, kernel:{module, rcu:update:lock}} (12 specifications in total).

Figure 3 shows a dependency of obtained verdicts for each Linux kernel ver-
sion. The Safe verdict means that the software verification tool was able to
prove the absence of violations of checked requirements. The Unsafe verdict
corresponds to a violation. The Unknown verdict means that the software verifi-
cation tool was not able to issue either Safe or Unsafe, e.g. because of it needed
more CPU time than it had. All subsystems were verified with different numbers
of extensions depending on a Linux kernel version. To place plots for all subsys-
tems in one figure, we provide average numbers of verdicts by dividing absolute
ones on corresponding numbers of extensions.

One can see that CHAR and TTY subsystems are quite stable while there
are several jumps on plots for the GPIO subsystem. Here there are additional
reasons of these deviations than for function coverage at Fig. 1. For instance,
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in Linux 3.17 and Linux 3.18 developers violated requirements specification
linux:kernel:locking:spinlock that was detected by Klever.

We could not find any faults for CHAR and TTY subsystems that confirms
their maturity. For the TTY subsystem about 62% of false alarms are relevant to
the subsystem itself and 38% ones are relevant to device drivers verified together
with it. All false alarms issued for the subsystem are due to inaccurate specifi-
cations. For the GPIO subsystem about 51% of Unsafes correspond to faults.
One fault is in the subsystem. We already mentioned it, it was introduced in
Linux 3.17 and fixed in Linux 3.19. Other 2 faults were detected at error paths
in device drivers and they still exist in the newest versions of the Linux kernel.
Regarding GPIO 59% of false alarms are for the subsystem and 41% are for
device drivers. To get rid of about 86% of false alarms in the subsystem it is
necessary to fix existing specifications and to develop new ones. Remaining 14%
ones were reported due to inaccuracies of CPAchecker.

There are several directions of development to improve verification results.
The first direction is an improvement of specifications to mitigate false alarms.
The second one is to simplify target subsystems by replacing complex functions
with models or by splitting them into several subsystems for independent veri-
fication. This can help obtaining more Safes and Unsafes instead of Unknowns
(timeouts).

5.2 Finding Known Faults in Linux Monolithic Kernel Subsystems

We tried to find already fixed faults in target Linux monolithic kernel subsystems
for estimating the suggested method ability to perform thorough checking. We
analyzed manually all commits except merging ones made to the mainline Git
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repository6 between tags v3.9 and v3.19 to source files of target subsystems. In
total 488 commits matched these conditions. Among them we chose commits that
fix violations of requirements for which there are corresponding specifications in
Klever. There were fixes of 8 such faults (Table 3).

Table 3. Faults fixed in target Linux monolithic kernel subsystems

Subsystem name Commit hash Requirements specification Detection status

CHAR 08d2d00b291e generic:memory ✗ (another architecture)

b5325a02aa84 generic:memory ✓ (extra source files)

61c6375d5523 generic:memory ✗ (another configuration)

GPIO e9595f84a627 generic:memory ✓ (extra source files)

00acc3dc2480 linux:kernel:locking:spinlock ✓

TTY b216df538481 generic:memory ✗ (needs specification)

07584d4a356e linux:kernel:module ✓ (dead code)

1d9e689c934b generic:memory ✗ (too complex)

A fault fixed in commit 00acc3dc2480 was already considered in the pre-
vious subsection. Klever could find it without additional efforts. We analyzed
target subsystems together with those parts of other subsystems that define
several helper functions to detect faults fixed in commits b5325a02aa84 and
e9595f84a627. Klever could not find a fault fixed in commit 07584d4a356e since
it proved that corresponding code is dead.

To reveal a fault fixed in commit 08d2d00b291e it is necessary to verify
the CHAR subsystem for architecture x86 32. For a fault fixed in commit
61c6375d5523 a corresponding source file is built for another configuration rather
than for allmodconfig. For detecting a fault fixed in commit b216df538481 one
should develop an environment model specification for work queues. We could
not find out a fault fixed in commit 1d9e689c934b because of it turned out to
be too complex for the software verification tool.

6 Conclusion

Researchers and proof engineers verify formally either special purpose operating
system kernels or relatively small parts of large monolithic kernels that form a
basis of most widely used, general-purpose operating systems. Therefore, there is
still a huge gap between one of the most critical software used by billions of people
and formal verification methods and tools. As a step towards closing this gap,
this paper introduces a new method that enables rather thorough checking and
finding hard-to-detect faults for various versions of monolithic kernels without
requiring considerable efforts for configuring tools and developing specifications.
Also, the method allows improving verification results step by step.
6 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
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Evaluation of the suggested method on subsystems of the Linux monolithic
kernel showed that the same tool configurations and specifications are suitable
for verifying subsystems of a large range of Linux kernel versions. We could
detect one fault in one of target subsystems, but there is room for improvement
primarily by means of developing specifications. Also, we found 2 unknown faults
in device drivers analyzed together with target subsystems. Regarding known
faults, we were able to reveal 4 of 8 of them after slight adjustments. For finding
the remaining faults it is necessary to perform verification for other architecture
and configuration and to develop an additional environment model specification.

We encourage researchers to adapt the suggested method and its implementa-
tion for verification of other operating system monolithic kernels. But one should
clearly realize that it will be necessary to spend quite a long time for developing
models and specifications unless some of them were developed in advance like
for operating system device drivers [2–7].
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1 Introduction

There is a perception in the formal method (FM) community that, with all the
possible gains of FM use, their adoption in industry is quite low. This is not a
new thing, it accompanies the development of FM for quite some time and has
lead to several studies trying to clarify what is holding FM back, e.g. [11,16,50].
It is hard to establish concrete market numbers about the adoption of FMs,
but the low number and size of companies selling tooling for FM alone gives a
clear hint that it cannot be high. On the academic side, FM courses are rarely
mandatory for computer science students and only a small share of students
attends them, limiting transfer of the know-how to industry.

Another indicator that FM did not arrive at the masses is that the European
Shift2Rail funding scheme1 has started a work package Formal Methods and
Standard Interfaces for Smart Signalling in September 2017 to compare and
select FMs for application in the rail signalling domain. This is a very welcome
initiative. But it is also revealing. After all, the railway and particularly the
signalling domain is one of the driving and most cited applications of FM. So
if even for that know-how seems to be missing which methods, formalisms and
tools are there and how they can be used best, how would someone from a less
(safety) critical domain know how to choose and use a FM?

In our opinion, to a substantial degree, the low pickup of FM can be
attributed to low awareness of the potential and properties of and missing com-
parability between the methods. This includes information about positive effects,
side effects, needed effort for adoption and use, ease of application, and under-
standability of both process and results. Consequently, in this paper we propose
to make this information more accessible by establishing a repository of exam-
ples and experiments, documenting the opportunities and strengths of FM and
making methods and tools better comparable.

The remainder of the paper starts with an overview of pre-requisites to adop-
tion (Sect. 2) and of obstacles hampering adoption (Sect. 3) of FM. It is followed
by a presentation of similar approaches for benchmarks, competitions and repos-
itories in Sect. 4. Section 5 details the vision of the examples and experiments
repository and how we expect it to take effect and Sect. 6 gives more detail how
we want to approach this and what needs to be done. Finally, a conclusion is
drawn and the next steps to bring the proposed repository to life are sketched
in Sect. 7.

2 Formal Methods Adoption

The term formal methods is not strictly defined and common understanding
includes a large variety of approaches and methods. They are considered the
’mathematics of software engineering’ [12] as they rely upon the usage of formal
languages, i.e. rigorous mathematical notations having a formal syntax and a
formal semantics. What we propose in this paper focuses on methods that build
1 https://shift2rail.org/.

https://shift2rail.org/
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on the use of some form of formal model, expressed in a formal language, in
contrast to e.g. software verification tools that work directly on code.

For tools working on code, comparison of approaches and tools is much more
straight-forward. If you already have the code to work on, an interested user
only needs to figure out the best parametrization/configuration and can run the
tools applicable to the language used for development. If the problem at hand
needs to be expressed in some formalism first, for adopting a formal method,
not only methods and tools, but also formalisms need to be compared.

There is a grey area around this differentiation between formal model based
and code based, because even e.g. for code based model checkers, there is a need
to express verification properties by e.g. LTL, which is again a formalism where
multiple options are available.

Formal models can be used for specification purposes only, or to perform sev-
eral kinds of proofs and analysis: from proving consistency and integrity through
model checking or theorem proving to the assessment of functional and non-
functional properties. Formal models are also used to automatically generate
test cases in model-based testing approaches, or to build simulators [32,49].
They can also be used in broader contexts which are out of the scope of this
work, for example to cope with planning or synthesis problems [50].

2.1 Availability and Maturity of Tools

An initial analysis on the current state of tools is represented by the work shown
in [3]. The authors discuss on the availability and the maturity of verification
tools, in the perspective of their integration in software development lifecycles.
Mainly, they identified two significant barriers in the development of robust
tools and environments from academics: (1) it is difficult to obtain research
funding for tool development, and (2) the priorities of publication venues are a
disincentive to building robust tools. These two points open a discussion on the
responsibilities of academics about the development of robust tools. In fact, as
shared by researchers, it is not in the interests and responsibilities of researchers
to develop industrial-strength tools, but it is important to highlight that minimal
prototypes and/or small case studies playing the role of proof-of-concept are not
enough for the industrial adoption of formal methods and techniques.

An important measurement system recently adopted also by several funded
Research Programmes is the Technology Readiness Level (TRL) [34]. TRL is
a scale system introduced by NASA for assessing the maturity level of a tech-
nology and consisting of nine growing levels from the beginning of a scientific
research (TRL1) to a technology used at least in one successful mission (TRL9).
A mature technology or tool should have TRL greater than six, this guaran-
tees that it is more than a fully functional prototype. Several well-known tools
supporting formal modeling and analysis can be considered mature according
to this scale. Nonetheless, the low adoption of FMs in industrial settings with
respect to their potential suggests that FMs need to be supported by a technol-
ogy whose maturity is over TRL9 for industrial pickup. The difference seems to
be the capability of achieving a seamless integration of a formal approach into
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the development process, in fact FMs are successfully used when they are embed-
ded in frameworks or platforms supporting the software development process in
whole or in part. A non-exhaustive list of such frameworks includes SCADE,
Simulink design verifier and Polyspace, Atelier-B and B-toolkit, Spark ADA,
and Escher Verification Studio.

2.2 Industrial Pickup

In a recent paper Newcombe et al. describe the successful experience at Ama-
zon Web Services in using formal specification and model checking to verify
the design of complex distributed systems [41]. In a previous paper Newcombe
reports the evaluation and comparison of FMs performed at Amazon, also pre-
senting a list of requirements for FMs to be successfully adopted in an industrial
setting [40]. These works point out several industry needs that we have also
experienced in other domains [5]. The needs can be summarized as follows: (a)
being able to handle the problem at all; (b) minimizing the effort; and (c) return
on investment.

In fact, a common perception is that FMs work on ad-hoc built examples
under simplifying assumptions, so that evidence is needed that they are able
to work on real-world systems. Hence, on the one hand formal languages need
to be expressive enough to cope with the complexity of systems; on the other
hand, a FM should be easy to learn and apply, so that the software engineers are
not burdened by a further weight. In addition, the introduction of FMs should
be worth the effort in terms of time-to-market, quality and correctness of the
system, while limiting the impact on the industrial processes.

A relevant industry sector for FMs adoption is the sector of safety-critical
systems. FMs are particularly desirable in safety-critical applications in different
domains such as aerospace, railway, health-care and automotive. They are rec-
ommended in specific activities of the development lifecycle by the international
norms and standards (regulating the system certification). FMs are sometimes
addressed as mandatory in safety-related evaluations and suggested to specify or
to prove what has been clearly stated in requirements at sub-system level. The
practice is to determine the critical parts of the system and apply FMs during
their design and validation.

As an example, CENELEC EN 50128 specifies the process and technical
requirements for the software development of programmable electronic systems
to use in European railway control and protection applications. Modeling is a
major technique mentioned by this standard and the adoption of FMs is explic-
itly addressed. In particular, the usage of FMs is highly recommended for safety-
critical sub-systems. In this context, a presentation has been published by Esterel
Technologies (aquired by ANSYS) [39] in which guidelines to apply the SCADE
solution in the railway domain are provided for CENELEC EN 50128. SCADE
provides a formal verifier able to prove properties on models written using its
synchronous formalism. By applying certified compilers from SCADE to pro-
gramming languages these properties are preserved on the concrete system. The
presentation explains which techniques and steps are covered by the SCADE
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Suite, concluding that its model-based design approach helps save up to 45% of
the total design costs. Similarly, in [10] the authors present the usage of the Ada-
Core’s technology based on Ada and SPARK. The SPARK tool-set uses theorem
proving to verify properties that can be expressed as program pre-conditions,
post-conditions, type invariants and sub-type predicates, so enabling the usage
of FMs to check architectural properties.

These cases seem to confirm that the effective usage of FMs in industry
requires to go beyond the simple availability of tools supporting modelling and
analysis and that TRL is a useful mean to evaluate them if the level of integration
of tools and methods into the existing industrial processes is also considered.

Another necessity for increased adoption of a modelling language is to be
as simple as possible and as rich as needed [24]. In other words, an adequate
system specification language should provide a sufficiently rich set of primitive
constructs to allow for a natural modelling of the system of interest, and to
capture and describe specific features of the system in a natural way, without
introducing unnecessary difficulties in learning or modelling. Proper guidelines
are also necessary to cope with a problem that cannot be easily overcome by
other means: models of systems are not the systems themselves. Thus, to be
useful, models must capture the significant aspects of the real system, but the
capability of abstracting is a special skill, that requires experience.

3 Adoption Obstacles

Besides the pick-up of FMs in some particular niches, different obstacles hamper
industry to adopt FMs in many cases. In this section, we want to discuss some
of these obstacles and their causes resp. consequences.

3.1 Change in Industry

Successful introduction of a FM in a company does not only depend on the
FM itself but on the involved necessary changes regarding established processes
or knowledge. Even with semi-formal methods like model-based engineering, it
needs special care to change the course of action [45].

Unless the company is very progressive and tries to be on the leading edge
as a principle, changes are usually driven by lost money or contracts. If a lack
of efficiency is not causing pressing problems, change is mostly delayed in favour
of daily business. Though, if a company considers to have a closer look at new
methods, the following questions are typically asked: (a) Does it work at all? (b)
Does it fit my problem? and (c) are the benefits worth the efforts and costs?

The answers are not obvious and very difficult to find. And there is a long
list of different FMs to choose from. Currently, there is no trusted source for
these answers for any method. This makes it necessary for the company to do
some investment in evaluating different methods. Evaluating a single, highly
promising method is usually doable. But if there are several methods and tools,
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the evaluation effort quickly becomes prohibitive and the investment for one
method cannot be reused across the evaluations of different methods.

Similar to an evaluation of a programming language or a framework, a trust-
worthy evaluation has to be done by an expert who is able to understand the
underlying concepts, who might not be available within the company. Even if the
evaluation includes only minimal pilot projects, they require people sufficiently
trained in applying the methods.

Since they are competing with productive work, evaluation projects quite
often fail with causes not related to the nature and properties of the evaluated
method or tool, but due to business priorities favouring paid projects.

3.2 Comparability, Reproducibility and Evaluation of Applicability

On the academia side there are also some reasons for the absent adoption of
FMs in industry. First of all, there are plenty of different FMs with diverse syn-
taxes and semantics. Each of these is mainly invented by researchers with only
little focus on the usability in practice. Instead, formal techniques are evalu-
ated typically by their inventors and developers (i.e., expert researchers) using a
small set of examples which are rarely used by others. These academic examples
often focus on the understanding of the approach’s concepts or emphasize the
advantages of the applied FM. This makes it even harder for industrial experts
to decide if the problem they have falls into the class of problems where the
method performs well. Conclusions drawn from these selected models might not
be generalizable to real-world examples from industry.

Besides this “method bias” researching the scalability of a new approach is
sometimes just omitted and if it is done, the artificial blow-up used to increase
the examples complexity does not necessarily allow to decide if a real application
would also benefit from the approach.

As mentioned by Newcombe from Amazon [40] “[they] preferred candidate
methods that had already been shown to work on problems in industry [...]”.
That means, academic researchers should use industrial examples to evaluate
their methods. Unfortunately, industrial examples are very often not shared since
they contain trade secrets of the industrial partner (intellectual property (IP)).

Sometimes industry provides e.g. in the context of funded projects a share-
able “almost-real” example, where IP sensitive information is removed. But even
those models are very often not published in detail, mainly because they are
much too large to fit in a conference article; in general, papers about real-world
applications tend to get penalized – either the examples are not sufficiently
described or they take too much room away from the scientific content. Also
failed attempts are rarely published. Thus, an interested party gets no infor-
mation that something they want to do has already been tried and failed for
possibly even well-known reasons.

Similar to the model-driven software engineering approaches, FM research
focuses on developing the concepts and not necessarily the tools. There have been
a lot of improvements regarding performance and supporting complex systems
in the last years, but usability and integration into an existing tool landscape
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are usually either not considered at all or only secondary goals for research
implementations of methods and concepts.

4 Benchmarks, Model Repositories and Competitions

In this section we present notable examples of benchmarks, model repositories,
and tool competition related problem suites (without any claim of completeness).
These examples help us identifying those key properties that have to be fulfilled
by our proposed FM repository for a successful adoption. These properties must
be taken into account from the beginning of the design of the repository and
drive its maintenance after the initial period of its operation.

4.1 Success Stories and Lessons Learnt from Other Domains

The concept of a benchmark traditionally means a widely accepted (standard)
procedure aiming at evaluating and comparing different systems or solutions with
regard to specific measures. Accordingly, benchmarks shall contain definitions of
the measures for evaluation (what to measure) as well as the procedures how to
determine these measures in a valid and comparable way (how to measure). The
procedures typically need predefined inputs (e.g., a workload to apply in case of
benchmarking performance) that form part of the benchmark; when the context
(measures and procedures) are clear these are called the benchmark suite.

Performance benchmarking is the most successful area as it has contributed
to improve successive generations of computer systems and led to benchmark-
ing organizations such as SPEC (Standard Performance Evaluation Corporation)
[43] and TPC (Transaction Processing Performance Council) [48]. Dependability
benchmarking (to compare different systems or components from a dependabil-
ity point of view) was also subject of research, having led to the proposal of
several dependability benchmarks [29]. In case of security, a well-known exam-
ple is the benchmark suite provided by the CIS (Center for Internet Security)
[14], although not explicitly designed for systems’ comparison.

In general computer science, comparability via benchmarks has fostered com-
petition and progress in several domains. Just to name a few, e.g. for computer
vision, [51] lists 24 data sets for stereo computer vision, the first going back until
2002. The robust vision challenge2 includes 6 of those data sets with publicly
maintained result lists. The development of SMT-solvers has greatly benefited
from the SMT-COMP3 competition and the common input language and bench-
marks defined in SMT-LIB4.

Several publications analysed the success criteria of benchmarks. In [28],
it is stated that good benchmarks are relevant, repeatable, fair, verifiable,
and economical. The authors of [7] focused on repeatability and reliability (to
ensure high accuracy and sufficient precision). Benchmarks in [29] were designed
2 http://www.robustvision.net.
3 http://www.smtcomp.org.
4 http://smtlib.cs.uiowa.edu.

http://www.robustvision.net
http://www.smtcomp.org
http://smtlib.cs.uiowa.edu


256 R. Schlick et al.

for representativeness, portability, repeatability, scalability, simplicity and non-
intrusiveness (this latter was important in case of fault injection experiments).
On the basis of these studies, we can conclude that to achieve acceptance by
its user community a good benchmark should fulfill the following set of key
properties:

– Representativeness: The benchmarks should resemble relevant (and prefer-
ably realistic) problems of its user community – typically based on known
examples and case studies from industry or academia.

– Diversity : To avoid bias, the benchmark shall include a balanced set of exam-
ples covering many different classes of problems that are relevant to evalua-
tion.

– Portability : The benchmark suite and the measures should be defined in a
format that is widely understood and supported.

– Repeatability (reproducibility): Enough public information shall be provided
to enable benchmarking several times with the same result.

– Scalability : The benchmark suite and the related procedures shall support a
wide range of measurement result values.

– Simplicity of use: The benchmarks shall be understandable.

In software engineering methods research, the need for sharing data and esti-
mation models has recently become more urgent and researchers have started
to investigate and address it systematically [38]. It has especially been pointed
out that transferability of estimation models between companies or different
domains, is a critical issue. In general, openly sharing research data is only
common in few areas of research. It is increasingly asked for by research fund-
ing agencies, in the interest of good scientific practice, to enable reproducibility
of results. Zenodo5 is a platform to share research data and software from all
research fields aiming at supporting open data and open science. But repro-
ducibility of results does not necessarily produce or support comparability of
approaches.

The tera-PROMISE Repository [37] is a research dataset repository special-
izing in software engineering research datasets. Its goal is to provide a long term
storage facility for software engineering data. Amongst others, it contains defect,
effort, performance, requirements and maintenance data including for instance
data from NASA projects. Finally, it also contains models, which are in that
case mainly prediction models, for instance for defect and effort prediction [6].
While it contains meta-data and links for several data sets, they are mixed across
software related methods. There were many submissions in 2015 and 2016, but
input seems to have dried up beginning of 2017. Since several data sets simply
link to an entry at zenodo, it could be that the added value of the classification
of data sets was not enough to motivate people to submit their data.

In general, curated data sets are common in several domains and they are
very helpful for research working with data analysis. For methods research and
method comparison, also the reproducibility of experiments and the reuse of
5 https://zenodo.org/.

https://zenodo.org/
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inputs is important. The Qualitas Corpus [47] is a “Curated Collection of Java
Code for Empirical Studies” and provides code examples for empirical software
engineering research. It is actively used since 2010, although several of the cur-
rently 261 citations according to GoogleScholar and 171 citations according to
semanticscholar.org are not using the data set, but refer to it because they
introduce a data set for another language or another purpose, or extended with
additional data.

4.2 FM Related Problem and Model Repositories

In the area of model based design and FMs, there were several proposals for
benchmark models and model repositories.

The Embedded Systems Testing Benchmarks Site6 was initiated on the basis
of [42] that presented benchmark goals and described an UML model with the
purpose of offering a real-world benchmark for model based testing in the auto-
motive domain. To support portability, the model was made available in several
file formats. As a reference for comparing alternative solutions, the test proce-
dures and an initial test suite were described, but unfortunately it was rarely
used by competing solutions. An additional example from the railway domain
and two examples for controlled natural language requirements have been added,
but otherwise the suite did not grow.

Another related family of benchmarks is the challenge of Rigorous Exam-
ination of Reactive Systems (RERS) [23]. It provides generated and tailored
benchmarks suited for comparing the effectiveness of automatic software veri-
fiers. RERS is the only software verification challenge that features problems
with linear temporal logic (LTL) properties in larger sizes that are available in
different programming languages. In 2016, the competition comprised 18 sequen-
tial and 20 parallel benchmarks. The 20 benchmarks from the new parallel track
feature LTL properties and a compact representation as labeled transition sys-
tems and Promela code.

The Repository for Model Driven Development (ReMoDD)7 aims to support
the sharing of example models, case studies, descriptions of methodologies and
experiences. It is mostly used as a source of models for the research community,
but not as a shared basis for comparing and evaluating methods and solutions.

Tool developers often collect models to demonstrate the capabilities of their
tools. For example, the UPPAAL Benchmarks page8 lists 9 timed automata
based models and presents run-time data of their formal verification with the
UPPAAL tool; this suite is often re-used by researchers developing related algo-
rithms. A typical drawback of the tool-related collections is the lack of infor-
mation characterizing the models (e.g., with metadata) and descriptions that
could support understanding and mapping the models to other formalisms. In
[19] the characteristics of the model collections of 9 model checker tools were

6 http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/.
7 http://www.cs.colostate.edu/remodd/.
8 https://www.it.uu.se/research/group/darts/uppaal/benchmarks/.

https://www.semanticscholar.org/
http://www.informatik.uni-bremen.de/agbs/testingbenchmarks/
http://www.cs.colostate.edu/remodd/
https://www.it.uu.se/research/group/darts/uppaal/benchmarks/
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analysed and it turned out that only a portion of the models can be considered
as scalable; in several cases properties to check are not provided; and sufficient
documentation (e.g., references to publications) are missing. Representativeness
and diversity are typically not among the goals of these model collections.

The Archive of Formal Proofs9 is a very active repository of examples and
proof libraries for the theorem prover Isabelle. The organisation as a scientific
journal makes contributions easily citable and ensures the quality of contribu-
tions through refereeing. Other than the title and abstract, there is no manda-
tory, explanatory text or other natural language documentation of the entries in
the archive.

The VerifyThis database10 (emerging from COST Action IC070111) has
unfortunately become unavailable. It seems that, after the end of the COST
action, when some of the used hosting infrastructure reached its end of life,
nobody felt responsible to keep the service alive or migrate it to another host.

4.3 Competitions Related to FMs

The competitions organized typically in the frame of FM related conferences are
successful in collecting and regularly maintaining a relevant and widely accepted
suite of problems, this way fostering the development of better algorithms and
tools. Examples in the area of model checking are the Hardware Model Checking
Competition (HWMCC)12 for hardware models, the Competition on Software
Verification (SV-COMP)13, and the Model Checking Contest for Petri net mod-
els (MCC)14. The verification problems are well-defined and the examples are
available to download and re-use by the competitors. Organizers devoted efforts
to have (as far as possible in the context of the competition) diverse and scal-
able problems, and enforce repeatability. Unfortunately, the problems are only
stated in a form that can be used by the model checkers. If they are not purely
academic in the first place, they have lost their connection back to the origi-
nal industrial problem description. They are not very representative for actual
needs from systems and software engineering industry. The MCC does have a
separation of models into academic and industrial, but there are also no natural
language descriptions available that would allow reproducing the examples in a
different formalism without influence from concessions made to the formalism of
Petri-Nets.

The VerifyThis competition15 has challenges given in pseudo-code and nat-
ural language. The formalism and tool to actually verify the properties of the
algorithms can be chosen freely. Since the challenges are to be solved within

9 https://www.isa-afp.org/.
10 http://verifythis.cost-ic0701.org/.
11 http://www.cost-ic0701.org/.
12 http://fmv.jku.at/hwmcc17/.
13 https://sv-comp.sosy-lab.org/.
14 https://mcc.lip6.fr/.
15 http://www.pm.inf.ethz.ch/research/verifythis/Archive.html.

https://www.isa-afp.org/
http://verifythis.cost-ic0701.org/
http://www.cost-ic0701.org/
http://fmv.jku.at/hwmcc17/
https://sv-comp.sosy-lab.org/
https://mcc.lip6.fr/
http://www.pm.inf.ethz.ch/research/verifythis/Archive.html
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90 min during the competition, they are quite small in relation to full blown
industrial software systems.

The following group of competitions is closer related to problems from indus-
try. In 1995, the Dagstuhl Seminar “Methods for Semantics and Specification” [1]
was conducted in form of a “competition”. Several experts of a particular FM
presented their solutions regarding the Steam Boiler Control Specification [2]
which was published almost one year in advance.

In 2005, a Verified Software Grand Challenge was proposed [27], and in its
context a Verified Software Repository (VSR) [8]. Although a workshop produced
several new publications related to the Mondex case study [44] and the site
proposed the POSIX file store and a pacemaker as additional examples, there
was not a lot of follow-up activity after that. Meanwhile the VSR web page16

suffers from severe link rot and the example solutions seem not to be accessible
anymore.

The idea of a “competition” among FMs was revived on the occasion of the
ABZ conference 2014 by introducing a case study track. Starting with a landing
gear system [9], in 2016 a Hemodialysis Machine case study [35], and in 2018
a part of the European Train Control System (ETCS) [26] were presented. For
each of these case studies several solutions exist modeled in FMs like ASMs, B,
or Event-B. Currently, there is a discussion in the ABZ community to extend
the case study track towards larger systems and a longer period of time for
processing.

Although these (real world) case studies modeled with different methods
allow for an overview of the different approaches, a structured repository with
easy access to all available data (executable models, proofs, etc.) and valuable
meta information is still missing.

A first step into this direction is given in [20]. In this book, 18 FMs are
presented by each answering 24 questions related to a given case study. This book
distinguishes between state-based, event-based, and other formal approaches.
The editors give a brief summary and comparison of the presented approaches,
but again, also with that book it is still not easy for a software engineer in the
industry to choose the right method that will help solving the current problem.

4.4 Desirable Repository Properties

Without going into a detailed analysis of the success or failure of the mentioned
repositories and benchmarks, we can still draw the following conclusions:

– A collection of examples or benchmarks should not depend on a single person
or a small group - neither for maintenance nor for making decisions.

– To enable good benchmarking, a collection of inputs should be representative,
diverse, portable, repeatable, scalable, and simple. In order to foster industrial
adoption of methods, representativeness is the most important. For formal
methods using different formalisms, portability is very hard to achieve.

16 http://vsr.sourceforge.net/.

http://vsr.sourceforge.net/
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– “Drop off only” repositories, where the contributor has no effort with prepar-
ing the contribution, tend to suffer from the attic effect - lots of stuff, hard to
find it once you need something, lots of garbage there, some things become
valuable to the second-next generation, if they can find it.

– If there is any additional preparative work needed to contribute, there needs to
be some incentive for the contributor. If the benefit is only on the repository’s
user’s side, the repository will stay empty. Participating in a competition or
otherwise producing citable artefacts, works for academic research, but not
necessarily for people from industry.

– Curated collections provide quality control and tend to be more useful. But
spending the effort for quality assurance needs to be compensated somehow.

5 Vision of a FM Experiment Repository

During researching and writing a publication on formal models based techniques,
methods and tools, among others the following work results are typically pro-
duced: (1) descriptions of (the requirements of) the examples used for expla-
nation and evaluation, (2) formal models, (3) experimental results, and (4) the
published article itself.

We believe that items (1) and (2) are prime candidates for re-use between
researchers, methods/tools and of course publications. Therefore, we propose to
establish a web-based repository for these two groups of items, the data of the
related experiments and the links between them and links to the used tools and
to the resulting publications.

Below, we sketch the benefits we would expect from such a repository. There
are three groups of stakeholders that would benefit from the repository: (1)
researchers (2) industry in the role of tool vendors and (3) industry in the role
of method users.

5.1 Benefits for Research and Researchers

Focus on Solutions. For researchers, the open availability of a representative set
of industrial sized problems provides a touchstone for newly developed methods
and approaches. Well developed requirements for the example applications let
the researcher focus on the core competence of finding a good solution instead
of finding out if the problem actually fits the current direction of work.

Recognition and Honouring of Contributions. Sufficiently working out the
requirements of an industrial sized problem is a lot of effort in itself. In a pub-
lication about working on the problem, this effort is often not honoured by the
review process. Review rightfully focuses on the scientific contribution and page
limits force the authors to limit the description of the problem and also the
formal model in favour of the description of their new or improved solution.

Work can be split up and submitted to the repository (and publication) in
separate steps: (a) describing the example application itself, (b) describing the
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problem to solve, e.g. demonstrating consistency of requirements, (c) modelling
the example in a certain formalism, and (d) when preparing the related publi-
cation itself, formalizing and solving the problem and running experiments for
validation. This way, all parts of the work can be sufficiently honoured and con-
tribute to the reputation of the authors. Even more important, it eases reuse of
the results of the first three steps in this process for different publications.

Open Data. Publishing the formal models as well as the result data in the
repository helps both researchers and publishers to fulfil open data requirements.
Funding authorities are increasingly making open data a recommendation or
even a precondition for funding.

Open data in itself is a good thing, because experimental parts of com-
puter science, especially related to software engineering, are particularly bad
with respect to reproducibility of results. Openly available input and output
data allow other researchers to verify, discuss and extend the results of others.
This could even lead to a more comparative style of publications, where research
reports on which approaches (own ones or from other researchers) work better
or worse on certain groups of example applications. By that, also the effect of
publication bias, i.e. favoring positive over negative results in the publication
process, could be reduced.

Easier Review. By using established sets of examples and refering to them,
publication reviewers depend less on the problem description from the authors
and can also focus on evaluating the solution proposed, instead of the quality
and understandability of the description of the example.

Visibility and Traceability of Work. The relation between papers using certain
examples and models can be tracked both in the repository and via having
examples and models documented as citable work, thereby leveraging on infras-
tructure for handling citations that is already in place in publication databases.
Not only can researchers find related work using the same examples they use, it
also adds visibility to their own work to other researchers.

5.2 Benefits for Tool Vendors

Focus on Solutions. With the development of more example models over time,
academic tool developers can focus on the improvement of tools instead of
putting effort into finding good and representative examples.

Selection of Features to Develop. For commercial tool vendors and commer-
cialised academic tools, ongoing research becomes much easier to compare.
Thereby, picking new techniques from research to integrate into a tool becomes
much more straight forward.
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Advertising. Through the comparability of tools, both academic and commercial,
both sides can win. Academic tools can demonstrate how a certain new technique
solves a certain problem superior to others. Commercial tools can demonstrate
how well their tool does for several different types of problems and how well
their implementation of a technique scales on industry sized examples. Whoever
accesses the repository, will see which tools were used on different examples and
with which results. If sufficient visibility of the repository can be reached, this
visibility transfers also to the tools.

5.3 Benefits for Tool and Method Users

The main benefit for tool and method users is to enable them to find the best
candidates for closer evaluation. Thereby, they can avoid sinking costs into an
evaluation project of a method or tool that was selected because there was not
sufficient accessible data to make the right choice. This is made possible by:

Realistic Examples. The separation of example development, model develop-
ment and research, as well as the re-use of the former two, makes it easier for
researchers to work on larger, more realistic examples. Interested users from
industry can even propose their own examples (cleaned up regarding company
secrets and other intellectual properties) for inclusion in the repository. From
the larger, more realistic examples industry can draw conclusions that predict
the usability of an approach much better.

Documented Applicability. Openly available, sufficiently large examples allow
potential tool and method users to compare their problems to examples in the
repository. It allows them to recognize example properties they have in the sys-
tems they work on and select methods that perform well on these types of
systems.

Evaluated Scalability. The examples in the repository will have different levels
of size and complexity. If evaluations in publications use a sufficiently large set
of examples, potential users will get a much better impression of the scalability
of a certain tool or approach for a certain type of system.

Visible Versatility. With examples classified according to certain properties, a
potential user can find out, how diverse the set of examples is that were used to
evaluate a method or tool. It becomes visible if something works perfectly, but
only on a small group of examples or if it does work reasonably well on many
diverse examples.

Traceable Activity. Given that the repository provides search features for that,
potential users can find out how actively a certain tool is extended with new
features and analysed by the community.
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5.4 Outlook, Long Term Vision

The combination of the effects on all three groups will foster both the improve-
ment of methods and their transfer into industrial application. Mid to long term,
we imagine the following things could develop:

Established Use. If the community accepts and embraces the use of the reposi-
tory, it could become common practice to use examples from the repository for
method and tool evaluation papers. Some conferences might even make the use of
examples from the repository compulsory for a certain submission type or track.
Once there are enough experiments in the repository, this can be used as basis
for meta-studies and new research, utilizing data mining and automated analy-
sis of requirements and models. Furthermore, publishing the examples and cases
developed within funded projects to the repository might earn project proposals
additional points in the evaluation or also become common practice.

Benchmarks. Leveraging on the increased comparability of methods and tools,
selected groups of examples or models in the repository could be used in newly
defined benchmarks. This could lead to positive effects in the development of
tools as they were observed e.g. for SMT solvers with the establishment of
SMTlib.

Platform for Competition and Case Study Reviews. The repository needs infras-
tructure for submitting, classifying and reviewing artefacts (example descrip-
tions, models and experimental results). External tools like EasyChair provide
support for this on the level of articles, but are not necessarily well-suited to
do it for models, data and tools. Since the repository needs it anyway, not only
the examples but also the submission and review infrastructure could be made
available for tool competitions and case study tracks of conferences.

The repository could thereby collect even more example descriptions, formal
models and experiment data sets.

Automation. The repository could offer options to also enter tool snapshots, to
allow others to repeat the experiments. If this is done with a fitting virtuali-
sation or container approach, even more possibilities open up: certain experi-
ments can be automatically repeated with newer versions of formalizations and
tools; the repository could volume-buy and re-sell (cloud) computation power
to researchers, at the same time ensuring documented, comparable and repro-
ducible hardware configurations.

Generalisation Towards Software Engineering Research in General. Use of the
repository examples will probably start with core techniques and methods from
FMs, like formal modeling itself, model checking, refinement checking and prov-
ing. But we imagine this to quickly extend to things like model based test-
ing, interface compatibility checking, model well-formedness checking and model
transformation like discussed eg. in [46]. In addition, (empirical) software engi-
neering research shares a need addressed by the repository: to have comparable



264 R. Schlick et al.

examples and cases that can be applied in different application areas and con-
texts [13]. Examples that can be replicated in different contexts form a basis for
meta analysis and could allow the vision of evidence-based software engineer-
ing [31] coming to life even in the very context of FMs.

Business Data. In the long run, the repository could even include complexity
metrics for examples and models and effort numbers for certain tasks, like build-
ing the model in the first place. These data sets could be extracted from publi-
cations from empirical software engineering research. Sufficiently prepared, they
would allow users from industry to use them in their return-of-investment estima-
tions. In addition, the repository can also help to unify the terminology used and
the problems considered relevant in industry and academia, which often differs
significantly [21,22]. Return on investment investigations can play an important
role for communication between industry and academia and increase awareness
about the relevance and applicability of specific methods both in both worlds.

6 Needed Ingredients and Open Questions

In order to make this vision come to live and stay alive over an extended time,
we believe that a couple of topics need to be taken care of. They are sketched
and discussed in this section and take the conclusions drawn at the end of Sect. 4
into account.

6.1 Structure of the Repository

The structure of the Repository should support the benchmarking goals, i.e.,
documenting, evaluating and comparing the usage of FM (formal languages and
related techniques) according to different characteristics (e.g., performance, scal-
ability, resource needs) in case of various software engineering problems. It needs
to be oriented on what can be considered different, reusable work results as
sketched in Sect. 5.1.

The proposed repository structure is inspired by the so-called star schema
used in data warehousing [15] and already applied in similar repositories, like the
one designed for dependability evaluation experiments [33]. Here the star schema
consists of (1) a central fact table that stores factual data about experiments
and links to the dimensions of the experiment, and (2) separate dimension tables
that characterize the re-usable context of the benchmarking.

In our case, the central element stores experiment results (of using a FM),
while dimensions are formed by the target application (case study), the related
problem (to be solved by a FM), their formalization, the applied FM usage pat-
tern, and the applied tool. The structure of the repository is presented as a class
diagram in Fig. 1. Instances of classes are the entities stored in the repository.
The attributes of classes represent the related fields and metadata (we present
only the most important attributes in the figure). Note that each class has com-
mon attributes as a unique ID, name, author (with contact), version, and date;
these common attributes are omitted from the figure.
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Fig. 1. The structure of the repository.

In more detail, the repository consists of the following parts:

– The central class of the structure is the Experiment. It stores the results of
applying a FM in a given context (identified by links to context elements
described in the sequel). The first group of its attributes includes the diag-
nostic trace (e.g., model checking result, generated test cases), the qualita-
tive assessment results (legibility of the application description , model qual-
ity, method applicability, flexibility, tool usability, experience needed, etc.
with ratings and comments), the quantitative measurement results (resources,
CPU time, memory needed, manual effort needed . . .), and general restrictions
(e.g., marking incomplete results). The second group of attributes describes
the experiment platform and characterizes the experiment by the concrete val-
ues for application parameters, problem parameters, and tool settings. The
third group includes related publications and external repository that may
also be referenced. Note that the first group of attributes forms typically the
basis of method/tool evaluation and comparison.

– A FM is applied in case of an Application. The related entity contains a
mandatory informal (natural language) description of an industrial case study
(e.g., the design of a communication protocol, an algorithm to solve certain
tasks etc.), or an academic study created directly for evaluation purposes.
An optional part is a set of semi-formal representations (models). Related
attributes are the application type (industrial or academic, widely used bench-
mark or only a candidate), application area (communication networks, factory
automation, railway control etc.), parameters (like the number of partici-
pants in a protocol), complexity, scalability, issues, (optional) link to imple-
mentation, and related test suite. Further context parameters that take, for
instance, the applied development process and the required knowledge level
of the involved stakeholders into account, can be added on demand.

– An application is associated with several Problems that are to be solved by
FMs. Problems may include the checking of generic characteristics (like unam-
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biguity, consistency of a design) as well as application-specific properties (e.g.,
absence, existence, deadline of specific behaviour), or comprise process-related
tasks (e.g., to generate test cases for a design). Here an informal (natural lan-
guage) description is included with an optional semi-formal representation.
Related attributes are problem type (e.g., formalizing a specification, verifica-
tion of state reachability properties, concurrency, or timeliness), parameters
(e.g., potential restrictions), and complexity (estimated when the problem is
described). Note that problems are separated from the applications as differ-
ent problems related to the same application may need different FMs.

– Applications and problems are formalized using formal languages, resulting
in Formalizations where each formalization captures an application and a
related problem. Attributes of a formalization are the formal language(s)
used, the modelling tool(s), and the applied abstractions.

– Solving a problem is based on a Usage Pattern. Each pattern is a generic
description of the procedure of applying a FM to solve a problem type. The
natural language description may be extended with semi-formal representa-
tion (e.g., using activity diagrams). Patterns can be considered as an adap-
tation and refinement of the idea of process patterns, known in the field of
software development [4]. Attributes of a pattern are its type (essentially
based on the purpose of the pattern), preconditions, consequences (benefits,
trade-offs, drawbacks, outcome), and collaboration needs. Note that referring
to a pattern documents a way of performing the experiment, thus providing
an important aspect of the repeatability of experiments.

– The usage of a FM according to a pattern may be supported by a Tool. Note
that for simplicity reasons tool-chains formed by a sequence of tools are con-
sidered as composite tools. Attributes of tools include its description, tool
type (e.g., model checker, test case generator, SMT solver), vendor, prereq-
uisites, configuration options (for potential settings), and TRL.

Some attributes are mandatory (e.g., description of an application) while oth-
ers are optional (e.g., link to an implementation). The values of non-numerical
attributes may originate from a predefined taxonomy, but also open to uncon-
strained entry (to form input for the extension of the corresponding taxonomy
during regular maintenance of the repository). Especially the types (problem
type, tool type, pattern type) may be selected from a related taxonomy. The
initial taxonomies can be constructed on the basis of existing categorization of
patterns (developed in research projects like MBAT [36] and ENABLE-S3 [18]),
problems (e.g., using classification of behavioural properties [17]), and tools.

According to this structure, an example of an Experiment entity is the fol-
lowing. The linked context includes as Application instance the “Bang & Olufsen
Collision Detection Protocol” [25], the related Problem is “Checking undiscovered
collisions”, the Formalization is a timed automaton model “bopdp.xml” includ-
ing the temporal logic formalization of the checked problem, the applied Pattern
is “Model checking timed automata models”, and the related tool is “UPPAAL
verifyta v4.1.3”. The concrete tool setting is the verifyta option “-C -y”, result
attributes are the CPU time and the memory needed for model checking.
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Although already very detailed, this structure proposal is considered to be
more a starting point for discussion than a finished specification. A balance needs
to be found to have the structure applicable to many different methods, while
still ensuring that the purpose of easy re-use of information and artefacts can be
made. By providing a set of attributes we tried to highlight the need of proper
metadata and description that support understanding and comparison of results.

6.2 Community Buy-In and Incentives

To ensure take-up of the repository by the scientific community, a broad basis
of researchers shall be invited to contribute to and comment on the planned
repository. Organisers of competitions and challenges will be approached and
invited to contribute their new target examples to the repository.

By making the different artefacts in the repository citable, researchers shall
be encouraged to sufficiently package work results (example descriptions, for-
malisations) they need anyway to do their research, but often cannot publish as
a self-contained work item.

By promoting the repository at various conferences, researchers developing
new methods shall be encouraged to use examples from the repository. Instead
of studying example requirements and building formalisations, the effort reduces
to selecting already formalised examples. The saved effort can be used to try out
the new method on a larger set of examples.

On occasion, companies define shareable example problems. They take par-
ticular care to get the examples free of any protected or protectable IP, trade
secrets or other confidential information. These examples strive to represent the
real-world problems the company encounters in their daily business. We will
invite the companies to contribute their example into the repository. Hopefully,
once the repository is sufficiently known, companies will contribute such models
on their own.

6.3 Rules and Processes

Quality of the content of the repository is important to be of value to its users.
Therefore, defined rules that a contribution should comply to and a form of
quality assurance process are needed. The latter should define how an artefact
becomes part of the repository and who is checking that all rules are followed
(mandatory parts are given, level of quality of verbal descriptions as well as
formalizations, etc.). It also needs to take care of maintenance, i.e. correction
and extension of already included artefacts.

One option would be to use peer review as it is done for the papers about
the respective experiments anyway. But if it is not possible to directly connect
a contribution of artefacts to a publication and join the review processes into
one, this might not succeed due to a lack of reviewers. Alternatives are paid
editors or a community rating. An interesting approach for an improved peer
review approach, sketched by Kaplan in [30], involves making the reviewer’s
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names public, providing both recognition for the reviewer on a good paper and
an incentive to do good and constructive reviews.

The repository part for Applications could be split into a recommended core,
core candidates, additional submissions, and sections related to events like con-
ferences, challenges or competitions. There would be different inclusion process
variants for these parts. The recommended core would provide a reference set,
grouped by applicable methods; comparative research would be encouraged to
use a representative subset of the applicable groups from the core. For the sec-
tions related to events, the review would be in part delegated to the event orga-
nizers.

6.4 Repository Maintenance and Governance

The discussed rules and processes need to be defined and maintained over time
by somebody. In the beginning, this could be done informally, similar to the
steering committee of a conference series.

Mid-term, we envision the set-up of a non-profit association taking care of
this. The governing body for the repository would be a steering committee that
is selected by the general assembly of the association. In order to involve all
the stakeholders and respect their interests, the association should be open to
research, tool industry and industrial end-users of the tools and methods. In case
that there is an imbalance in the number of members of the groups, votes could
be weighted to give the three groups an equal level of influence.

6.5 Financial Support

The cost of hosting the repository itself are negligible and could probably be
taken over by an arbitrary institution. But establishing it needs effort, including
the initial structure definitions and specifications, developing a sufficient software
solution and setting it up for operation. Said software needs to be maintained
and extended. On top of that, as incentive to get the repository filled faster, it
might make sense to offer rewards for submissions and reviews in some form.

Distributing costs among as many stakeholders as possible would keep costs
low for the individual institution. At the same time, this would help keeping
the repository independent and impartial. One option to achieve this would be
membership fees in the association. Part of the fees could be paid by in-kind
contributions, e.g. universities could contribute to the software development for
the portal.

Accepting sponsoring money from industry (if offered at all) is tempting. It
needs to be done in a way that avoids suspicion of the repository being controlled
by the sponsors exceeding their influence as members of the association.

7 Conclusion and Outlook

We have described some of the problems for industrial adoption of FMs and
sketched how knowledge transfer from research to industry could be supported
by an example and experiments repository for FMs.
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We have discussed existing repositories, benchmarks and archieves and
described how a repository matching the goal of having comparisons based on
realistic examples could look like.

In order to go forward and actually build the repository, we will seek support
and buy in from FM researchers, FM tool developers and existing and future FM
users. This can utilize working sessions at related conferences, a survey collecting
input from said stakeholders and dedicated follow-up events. Also starting a new
COST action17 focusing on FM comparability, usability and training would be
an option.

Once a core team has been built out of these groups of stakeholders, devel-
opment of the repository rules, processes and web portal can start. Growing
the governing body out of the core team can be started in parallel, including
clarification of legal aspects, like licensing and IPR rules.

It would be great if a prototype could already be used in connection with
events like the next ABZ conference’s case study track 2020 or in connection
with a dedicated track within ISoLA’s next doctoral symposium.

Acknowledgments. The authors thank Wolfgang Herzner for his valuable feedback
on the content of this paper.

The work of Istvan Majzik was supported by the BME - Artificial Intelligence
FIKP grant of EMMI (BME FIKP-MI/SC). The work of Roberto Nardone and Vale-
ria Vittorini has been partially supported by MIUR within the GAUSS project (CUP
E52F16002700001) of the PRIN 2015 program. And by DIETI within the project
MODAL (MOdel-Driven AnaLysis of Critical Industrial Systems). The work of Rupert
Schlick has received funding from the EU (program H2020) and national Austrian fund-
ing from BMVIT (program ICT of the future) in ECSEL project AutoDrive (Grant
No. 737469).

References

1. Abrial, J.R., Börger, E., Langmaack, H.: Methods for Semantics and Specification,
vol. 117. Dagstuhl Seminar No. 9523, Schloss Dagstuhl, International Conference
and Research Center for Computer Science (1995)

2. Abrial, J.R., Börger, E., Langmaack, H.: Formal Methods for Industrial Appli-
cations: Specifying and Programming the Steam Boiler Control. LNCS, vol. 9.
Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0027227

3. Alglave, J., Donaldson, A.F., Kroening, D., Tautschnig, M.: Making software veri-
fication tools really work. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS,
vol. 6996, pp. 28–42. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24372-1 3

4. Ambler, S.W.: Process Patterns. Cambridge University Press, Cambridge (1998)
5. Benerecetti, M., et al.: Dynamic state machines for modelling railway control sys-

tems. Sci. Comput. Programm. 133, 116–153 (2017)
6. Bettenburg, N., Nagappan, M., Hassan, A.E.: Think locally, act globally: improving

defect and effort prediction models. In: Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, pp. 60–69 (2012)

17 http://www.cost.eu.

https://doi.org/10.1007/BFb0027227
https://doi.org/10.1007/978-3-642-24372-1_3
https://doi.org/10.1007/978-3-642-24372-1_3
http://www.cost.eu


270 R. Schlick et al.
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Abstract. The popularization of blockchain technologies have brought
a sudden interest in software that executes on top of blockchain, the so
called smart contracts, with many potential applications, from financial
contracts to unforgeable elections. Smart contracts are pieces of soft-
ware that manipulate the shared data stored in the blockchain, with
the promise that no central authority can forge or manipulate the exe-
cution or its results. This promise also involves an important risk, as
well-intentioned users cannot easily roll-back undesired effects due to
errors, or prevent other users from finding and exploiting loop-holes in
deployed smart contracts. In this ISoLA track we seek to attract a variety
of experts in the different aspects of smart contract reliability, discuss
the state of the art and explore avenues for future research.

1 Blockchains and Smart-Contracts

Blockchain is a global distributed ledger, or database, running on millions of
devices where not just information but anything of value (money, music, art,
intellectual property, votes, etc.) can be moved and stored with a certain level
of security and privacy. The blockchain trust is established through mass (dis-
tributed) collaboration. Blockchain has the potential to change in a fundamental
way how we deal, not only with financial services, but also with more gen-
eral applications, improving transparency and regulation. Many applications of
blockchain have been proposed, starting with cryptocurrencies like Bitcoin [5],
and more sophisticated programmable behaviors based on smart contracts, as
introduced in Ethereum [1].

Smart contracts are software programs that, once deployed, execute
autonomously on a blockchain. Smart contracts are openly stored in the
blockchain (they can be read and used by anyone), and—as everything else
in blockchains—they are permanent and cannot be altered, not even by their
creator. The execution of smart contract is performed in the blockchain network
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by “workers” (commonly known as miners) that earn some crypto money in
return for the execution of a smart contract. A smart contract typically offers
several functions which can be invoked by anyone via the Internet’s API of the
blockchain. As part of this functionality, users can transfer (crypto) value and
any other kind of information, to other users via the contract. The contract
will manage these invocations and execute the corresponding instructions that
manipulate the local book-keeping of data (including the cryptocurrency) and
can transfer data or value to the corresponding users. Underlying to the smart
contract’s idea is the description, and prescription, of an agreement between
different parties in order to automate the regulated exchange of value and infor-
mation over the internet. Given their implementation over a blockchain, these
smart contracts are immutable and openly checkable.

The promise of smart contract technology is to diminish the costs of contract-
ing, enforcing contractual agreements, and making payments, while at the same
time ensuring trust and compliance, all in the absence of a central authority.
It is not clear, however, whether this promise can be delivered given the cur-
rent state-of-the-art and state-of-practice of smart contracts. In particular, some
recent multi-million Ethereum bugs [3,4,6] just witness some the risks involved
in any kind of software and that the community were afraid of. It is not clear
what contracts mean and how to ensure that they are reliable and error free,
which are incarnations in the smart contract world of classical issues in software
reliability. This calls for better programming languages specifically for smart
contracts with stronger security and privacy guarantees, or to develop mecha-
nisms for the verification of smart contracts to guarantee reliability, security and
privacy concerns.

In the track we have collected new results and discussions related to:

– Research on different languages for smart contracts (e.g., Solidity [2]), includ-
ing their expressivity and reasoning methods.

– Research on the use of formal methods for specifying, validating and verifying
smart contracts (both statically and at runtime).

– Surveys and state-of-knowledge about security and privacy issues related to
smart contract technologies.

– New applications based on smart contracts.
– Description of challenges and research directions to future development for

better smart contracts.

2 Summary of Selected Articles

In this section, we briefly summarize the articles invited to the track “Reliable
Smart Contracts: State-of-the-art, Applications, Challenges and Future Direc-
tions”.

– Smart Contracts and Opportunities for Formal Methods, by Andrew
Miller, Zchicheng Cai and Somesh Jha, provides a background on smart con-
tracts and surveys existing smart contract languages and verification tools.
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The paper also present some verification challenges for the formal methods
community.

– Contracts over Smart Contracts: Recovering from Violations
Dynamically, by Gordon Pace, Christian Colombo and Joshua Ellul, dis-
cuss the problem of checking and ensuring correctness of smart contracts,
which is a challenging problem as smart contracts cannot easily be changed
once in the blockchain. A variety of runtime monitoring, verification, recovery,
enforcing as well as design patterns are discussed to achieve correct behaviour.

– Security Analysis of Smart Contracts in Datalog, by Petar Tsankov,
briefly introduces Securify, a fully automated security analyzer for Ethereum
smart contracts. Securify symbolically encodes relevant control- and data-flow
dependencies in stratified Datalog and uses scalable Datalog solvers to derive
relevant semantic facts about the smart contract. It allows the possibility to
check compliance and violation patterns to capture sufficient conditions for
proving if a given security property holds or not.

– Temporal Properties of Smart Contracts, by Ilya Sergey, Amrit Kumar
and Aquinas Hobor attacks the static verification of smart contracts using the-
orem proving. The approach consists on using an intermediate representation
language, called Scilla, specifically designed for verification. Scilla borrows
well-known abstractions from static verification like communicating automata
state-transition systems and temporal property templates, and separate the
functional computation from the effects on the state of the contract and the
underlying blockchain. Verification activities are ultimately carried out as
proofs written in the Coq proof system.

– Temporal Aspects of Smart Contracts for Financial Derivatives, by
Christopher Clack and Gabriel Vanca, presents the problem of modeling over-
the-counter financial derivative contracts. The paper first introduces termi-
nology to differentiate the different uses of the term “contract” (smart legal
contract vs smart contract code), and then argue that a formal language
that handles over-the-counter financial derivatives must include temporal,
deontic and operational aspects and sketches a potential direction for such a
formalism.

– Marlowe: Financial Contracts on Blockchain, by Simon Thompson and
Pablo Lamela Seijas, explores the design of a DSL, called Marlowe, targeted
at the execution of financial contracts on blockchains. Domain Specific Lan-
guages, compared to general languages, have the potential of being simpler for
humans to comprehend programs, and to prevent ambiguities and incompre-
hensible behaviors. The paper presents an executable semantics of Marlowe
implemented in Haskell, examples of Marlowe, and describe a tool that allows
users to interact in-browser with simulations of Marlowe contracts.

– SMT-Based Verification of Solidity Smart Contracts, by Leonardo
Alt and Christian Reitwiessner presents a method to perform static analysis
checks for Ethereum smart contracts written in Solidity. Since Solidity con-
tracts are compiled into bytecode for the Ethereum Virtual Machine (EVM),
the static analysis that the authors propose is integrated in the compiler.
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This technique is automatic and readily usable by developers, requiring no
additional knowledge of an intermediate representation or language.

– A Language-Independent Approach to Smart Contracts Verifica-
tion, by Xiaohong Chen, Daejun Park and Grigore Rosu, present an approach
of using the so-called language independent formal methods for the verification
of smart contracts. Language independent methods consists of using a sophis-
ticated engine to formally encode operational semantics that can be used to
formally derive interpreters, debuggers, symbolic executors, model checkers,
etc. In this particular case, the system proposed uses the K-framework to
encode the formal semantics of the Ethereum Virtual Machine.

– Towards Adding Variety to Simplicity, by Nachiappan Valliappan,
Solène Mirliaz, Elisabet Lobo Vesga and Alejandro Russo, considers the smart
contract language Spimplicity for the Etherum platform which allows fast
analysis of resource consumption. It is argued that by using a categorical
semantics, new combinators can easily be added to Simplicity enhancing the
structure of corresponding contracts. Moreover, it is argued that the concept
of functions should be added to Simplicity.

– Fun with Bitcoin Smart Contracts, by Massimo Bartoletti, Tiziana
Cimoli and Roberto Zunino gives an introduction to BitML, a Domain Spe-
cific Language (DSL) for smart contracts based on process algebra, that
compiles into Bitcoin. The computational soundness of the BitML compiler
guarantees that the execution of the compiled contract is coherent with the
semantics of the source specification, even in the presence of adversaries.

– Computing Exact Worst-Case Gas Consumption for Smart Con-
tracts, by Matteo Marescotti, Martin Blicha, Antti Hyvarinen, Sepideh
Asadi and Natasha Sharygina, study the problem of calculating the resources
needed to execute Ethereum smart contracts. In the context of Ethereum, the
resource is called gas, to be paid to the miners that maintain the block-chain,
which depends on the execution trace of the contract. This study presents
two methods for determining the exact worst-case gas consumption of an
Ethereum execution using methods borrowed by symbolic model checking.
Additionally, they identify the challenges and sketch potential solutions.

– Blockchains as Kripke Models: An Analysis of Atomic Cross-Chain
Swap, by Yoichi Hirai, considers the problem of proving the correctness of
blockchain artefacts. To this end, the atomic cross-chain swap protocol is
studied, a form of epistemic logic is introduced as proof vehicle, the protocol
is analyzed and too weak and sufficient assumptions for the protocol to be
correct are discussed.
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Abstract. Smart contracts are programs that run atop of a blockchain
infrastructure. They have emerged as an important new programming
model in cryptocurrencies like Ethereum, where they regulate flow of
money and other digital assets according to user-defined rules. However,
the most popular smart contract languages favor expressiveness rather
than safety, and bugs in smart contracts have already lead to significant
financial losses from accidents. Smart contracts are also appealing tar-
gets for hackers since they can be monetized. For these reasons, smart
contracts are an appealing opportunity for systematic auditing and val-
idation, and formal methods in particular. In this paper, we survey the
existing smart-contract ecosystem and the existing tools for analyzing
smart contracts. We then pose research challenges for formal-methods
and program analysis applied to smart contracts.

1 Introduction

Smart contracts are programs that run atop of a financial infrastructure, and
command the flow of money according to user-defined rules. Today, smart con-
tracts have already been brought to reality on top of publicly deployed cryp-
tocurrencies, most notably Ethereum, which is currently the #2 cryptocurrency,
second to Bitcoin [63], and already hosts tens of millions of smart contract pro-
grams deployed by users.

On Ethereum today, there have been auction mechanisms to raise capital
investment, totalling $1B in the month of 2017 alone. Ethereum contracts have
also been used to implement decentralized order books and public auctions.
A smart-contract based token exchange, IDEX, is the most widely active used
smart contract today, processing $7.5M USD of exchange volume each day1.

Smart contracts are appealing for many reasons, and seem to show great
potential. They essentially provide users with “programmable money” that can
be used to automatically enforce agreements between potentially distrusting par-
ties. They can operate on data provided by authenticated sources (such as stock
prices, account balances, press releases, etc.). They may even be used to imple-
ment decentralized, virtual corporations defined only by the smart contracts
1 https://cryptocoincharts.info/markets/show/etherdelta.
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programatically governing their behavior. There has been significant demand
from within the financial industry, including investments in blockchain technol-
ogy projects [43]. Though integration with smart contracts with existing financial
infrastructure may take years [58].

In cryptocurrencies like Ethereum, smart contracts give end users the full
power and expressivity of a Turing-complete language. With such great power
can come equally devastating bugs with direct financial consequences. Further-
more, since smart contracts are tied directly to anonymous payment instruments,
they are an attractive target for hackers. Recent high-profile disasters involving
the TheDAO [59] and the Parity Wallet [36] have highlighted these risks. Attack-
ers have exploited programming bugs to steal approximately $60M USD.

Smart contracts seem to be a compelling motivation for systematic
approaches to system validation, and to formal methods and program analysis
in particular. Writing a correct smart contract is no easier than writing bug-
free code in any other programming language. In fact, smart contract bugs are
often harder to fix. For one reason, most blockchain systems are designed for
immutability, meaning they do not provide any built-in means to change smart
contract code once it is running. It is perhaps no surprise that the recent disas-
ters have led to public interest from the cryptocurrency community in improve
verification tools.

In this paper, we provide a background on smart contracts, and in particular
the experience over the past few years as Ethereum has brought smart contracts
to a wider audience. We argue that not only do smart contracts provide an
impetus to improve tooling around formal methods, they also highlight new
areas and opportunities for fundamental research in formal methods.

2 Background

Blockchains and Cryptocurrencies. In a nutshell, blockchains are distributed
ledgers maintaining a globally consistent log of user-submitted transactions.
Blockchains come in many forms, permissioned and permissionless. These are
often implemented as open peer-to-peer networks, based on proof-of-work min-
ing. Starting with Bitcoin [63], public blockchains are often used to create a
virtual currency. The main idea of a virtual currency is that user accounts are
associated with public keys. Where users transfer currency between one another
using public key digital signatures.

Smart Contracts in Ethereum. Besides just storing account values, many
blockchains, most notably Ethereum, also feature a full-fledged “smart contract”
programming languages. In Ethereum, contracts are implemented as a new type
of account: ordinary user accounts are associated with public keys, while con-
tract accounts are associated with a fragment of executable code. Users can
create a new contract account by publishing a special transaction containing the
bytecode for the new contract along with an initial endowment of Ether.

Just like user accounts, smart contract accounts can store and wield a balance
of Ether currency. Unlike user accounts, whoever owns the private key determines
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how the money is spent, the Ether belonging to a smart contract account can
only be spent by executing the instructions of the smart contract code. Hence
smart contracts can be thought of as programmable money.

The Ethereum blockchain currently stores more than one million con-
tracts. Developers write in a high level language, the most popular of which
is Solidity. As a programming model, Solidity smart contracts mostly resem-
ble object-oriented programming. Contracts are defined as a class, includ-
ing methods and member variables. Users can create an instance object of
the class through a contract creation transaction. Once created, contracts are
assigned a unique identifier, called its address, which is a 32-byte string such
as 0x06012c8cf97BEaD5deAe237070F9587f8E7A266d. Roughly, the address is a
hash of the contract’s code, and the state of the blockchain prior to its creation.
An example of a smart contract written in Solidity is shown in Fig. 1.

3 Smart Contract Disasters in Ethereum

Most Ethereum contracts are used for some financial purpose, such as collecting
investment funding [29]. Perhaps their most notable use is for Initial Coin Offer-
ings (ICOs), which have been a successful mechanism for generating investment
revenue (more than $1B USD invested in 2017), though these have also drawn
the attention of regulators since many have been fraudulent.

ICOs so far have typically made use of a “token” contract, which has emerged
as a standard convention. The simple Solidity program in Fig. 1 captures the
basic functionality. Tokens have a finite supply, but can be owned by a user,
and can be transferred to another user at the owner’s discretion. Many ICOs
build additional smart contract functionality in addition to the token interface,
such as an auction mechanism or a crowd-voting mechanism. Implementation
flaws of such smart contracts have already caused several significant disasters in
practice. We now tell the stories behind a few of them, and later discuss how
they motivated new research questions for formal methods.

3.1 The DAO

The DAO was originally developed as a fundraising platform by a company called
slock.it. The idea behind slock.it is the vision of “smart property” as defined by
Nick Szabo in his influential 1997 essay on smart contracts [74]. The initial
product was a “smart lock,” a physical lock that could be applied to bicycles
or rental apartments. The lock could be remotely operated by a nearby base
station, which also connected to the internet and the Ethereum peer-to-peer
network. The opening of the lock could be triggered by a message sent to an
Ethereum smart contract. The price for renting a particular bicycle could thus
be set by dynamic market.

As ambitious engineers with prior Ethereum experience, slock.it also set out
to solve the meta-problem of fundraising. Rather than seeking traditional ven-
ture capital funding, and rather than using an existing centralized crowdfunding

https://slock.it/
https://slock.it/
https://slock.it/
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Fig. 1. Solidity smart contract example.—This excerpt is from an ERC20-compliant
“token” contract, which defines a virtual currency that can be transferred between
users and traded on exchanges like Etherdelta.

platform like Kickstarter, slock.it developed a multi-purpose Ethereum-based
crowdfunding platform, called the Decentralized Anonymous Organization (or
The DAO).

The phrase Decentralized Autonomous Corporation (DAC), was first coined
by Larimer [51] and expounded on by Buterin [33] as a central motivation for
building a flexible programming language on top of Ethereum.

“Think of a crypto-currency as shares in a Decentralized Autonomous
Corporation (DAC) where the source code defines the bylaws” – Daniel
Larimer

Token holders would purchase DAO tokens by investing Ether. Token hold-
ers would be able to vote on the activities funded by the DAO. Would-be
entrepreneurs would submit funding proposals for consideration by The DAO,
who would then vote on whether or not to fund the proposal. If accepted, the
entrepreneur would pay profits to the DAO, which would be disbursed back to
the token holders in proportion to their investment.

The source code for the DAO defined a fairly complex deliberation and
decision making structure. For example, in order to mitigate potential hostile
takeovers by an investor, the DAO provided a way for a dissenting token holder
to exit, or “split” from the DAO, withdrawing their remaining share of the assets.
All of this is to say that the DAO’s design was ambitious, and experts antici-
pated that it would have failed for subtle game-theoretic reasons [53]. Instead,
the experiment was cut short by a more mundane flaw. The technical cause is
interesting, and illustrates some of the challenges in designing smart contracts.

The DAO’s Flaw: Re-entrancy Hazards. The technical flaw behind the DAO’s
failure is essentially due to a unintuitive behavior of method invocation involv-
ing untrusted code. The events surrounding the DAO flaw and its exploit are
explained in detail by a blogpost by Phil Daian [35]. We illustrate the idea here
with a simple example in Fig. 2. When the ReentrantToken.withdraw method

https://slock.it/
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is invoked, it uses msg.sender.call to invoke the fallback function() method
of the caller, transferring the requested Ether. If the caller is AttackContract,
then this recursively invokes withdraw again, repeating until gas runs out or
the call stack limit 1024 is reached. The Ether is transferred with each call, but
the balances field is only updated after the recursive call completes, leading to
multiple withdrawals.

As it turns out, the attacker was only able to withdraw a portion of the
funds from the contract before a team of developers with Ethereum Foundation
raced the attacker to withdraw the rest and return them to the original own-
ers [41]. Furthermore, by a stroke of luck (one that defies explanation, involving
a subtle design issue with the “split” functionality mentioned above [35]), the
attacker’s withdrawn funds entered a month-long purgatory, which enabled the
Ethereum community to develop a “hardfork” remedy that reverted the theft
at last minute [75]. What rules of engagement drive interventions in smart con-
tracts?

Fig. 2. A toy example of a vulnerable reentrant smart contract (similar to the DAO).
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3.2 Parity Wallet Failures

The Parity wallet is an Ethereum smart contract that is provided along with
the Parity node, the second most popular Ethereum node software. Although
the Parity software supports ordinary user accounts, it also gives the user the
option to create a “wallet” account, which creates an instance of the Ethereum
smart contract for the benefit of customizability and extra features:

“The most common use-case are multi-signature wallets, that allow
for transaction logging, withdrawal limits, and rule-sets for signatures
required.”

In Ethereum, each transaction must pay a transaction fee that depends on
the amount of resources consumed, including each byte of data, and each opcode
executed. Creating a contract means paying for each byte of bytecode. To reduce
the costs of creating instances of the same transaction, the Parity wallet makes
use of a form of smart contract inheritance.

The idea is that the main portion of the Parity wallet code is uploaded to
a single instance, at address 0xbec591de75b8699a3ba52f073428822d0bfc0d7e,
which can be linked to by the individual per-user instances of the wallet. The
wallet library defines most of the methods relevant to the wallet, such as
“withdraw”, while the per-user wallets dispatch to the code contained in the
library. This kind of inheritance is achieved in Ethereum through the use of the
delegatecall opcode, which was added fairly recently to the Ethereum Virtual
Machine (EVM). An example illustrating inheritance can be found in Fig. 3.

The delegatecall takes in another contract’s address as a parameter. The
semantics of this opcode instruction runs the code from the target contract,
in the context of the calling contract. This essentially achieves the prototype
inheritance pattern; the library is not a superclass, but rather an actual object
instance. As an object instance, methods can be invoked directly on the contract.
This fact was overlooked, leading to a disaster totaling in tens of millions of
dollars. In particular, while the subclass wallets featured an access control policy
whereby only the contract creator can command the contract, the library object
itself was uninitialized and had an open access policy. As a result, a random user,
who later claimed to be a newcomer to Ethereum, was able to claim ownership
of the library and destroy it. At the current time, all instances of this version of
the Parity wallet, numbering at least 150 and controlling around $150M USD,
are inoperable.

Other Common Bugs in Ethereum Smart Contracts. While the re-
entrancy and delegatecall bugs are well known and quite severe, there are
other classes of bugs that are also relevant to smart contracts (e.g. reliance on
poor quality sources of randomness). Atzei et al. [28] provide a taxonomy of
common classes of bugs in Ethereum smart contracts.
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Fig. 3. Prototype inheritance as found in the Parity wallet

4 Research Trends

4.1 Safer Smart Contract Languages

A wide variety of approaches to language design have now been proposed and
in some cases tried in practice, as surveyed by Seijas et al. [69]. In Table 1 we
provide a summary of such proposals. The simplest path to a better scripting
language, taken by Vyper, is to modify the existing Solidity language through
syntactic restriction. That is, Vyper is a safer subset of Solidity. Many other
smart contract languages use a different programming model, such as functional
programming languages, formal logics and automata.

Typed functional programming languages are promising for smart contracts
because they are known to be amenable to formal analysis. For example, the
Tezos alternative to EVM is called Michelson, and is designed as a typed abstract
machine for (mostly) pure functional programs [12], while Liquidity is an Ocaml-
inspired functional alternative to Solidity for high level contract programming.
At the opposing end of the restrictive-expressive spectrum, the Bitcoin devel-
oper community has preferred smart contracts compatible with the existing
UTXO model underlying Bitcoin Script [1], and that guarantee a property “reorg
safety”. Simplicity is a typed functional language for this regime. Phil Wadler
has written a comparison of both Michelson and Simplicity, ultimately arguing
for Plutus, another alternative typed functional language [76].

Other various programming models have also been proposed, which can
be alternatives to EVM. Rholang is build on a core calculus called ρ-calculus
(inspired by π-calculus) which provides asynchronous message-passing. Similarly,
Scilla is based on communicating automata, while FSolidM is a formally finite-
state machine based model for Ethereum. Owlchain, combines timed-automata-
language (TAL) and web ontology language (OWL). The formal definitions
underlying these models are also expected to simplify formal analysis, though
the benefits of these have yet to be seen.

Many blockchain or cryptocurrency projects often differentiate themselves in
their smart contract programming language, however several other factors seem
to determine how their project evolves. They may differ also by their underlying
consensus algorithms, or by the target applications that guide their choices of
engineering tradeoffs.
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Several proposals have been made for “sharded” blockchains, which achieve
better scalability but pose an additional challenges for smart contracts. Instead
of a single linearized chain replicated by every node in the blockchain network,
the ledger is instead logically divided into separate namespaces, each of which is
replicated by only a portion of the nodes. This model underlies Omniledger [48],
RScoin [37], Aspen [38], and Scilla [71].

4.2 Program Analysis

As far as we know, there are 11 tools or frameworks attempting to detect var-
ious types of vulnerabilities, or give an assistance for programming. The table
below (see Table 2) shows their detailed capabilities respectively. Here, we give
a summary for them.

From the scale of checking abilities, SmartCheck provides the most types
of checking and recommendations, and more serves as a dynamic suggestion-
generated system for Solidity source code. Currently, most of its Solidity-related
checking is already provided by Solidity IDE [18].

From the view of vulnerabilities, these tools almost cover all possible vul-
nerabilities mentioned in [4,24,28], including safer programming design pattern
suggestion. The reentry vulnerability became the most popular one to tackle,
and the reason is obvious because this vulnerability resulted in the infamous
DAO attack [35].

However, apart from traditional bugs like integer overflow or usage of unini-
tialized variables, those vulnerabilities shown in contract programming do not
have unified definition respectively, or their detection results highly depend on
tools’ own implementations.

From the view of programming analysis techniques, most of the tools choose
static analysis and a majority of them support EVM bytecodes analysis. Securify
and Mythril declare supporting on-chain contracts analysis. Porosity does some
reverse engineering and provides a prototype for decompilation. Solgraph and
Mythril can generate control flow graphs, and Manticore and Maian will generate
transactions with inputs for later validation on each vulnerable path. Oyente also
has a validation process after symbolic execution analysis. Oyente, Maian and
ZEUS provide false-positive analysis, and all of them use manually-tagged data
sets, selected from contracts with verified2 Solidity source code.

In order to better describe contracts logic model and specifications, CertiK
has its own verification labeling languages, and ZEUS uses an intermediate-level
abstract language. Oyente develops their own EVM semantics, EtherLite, and
Maian modifies it in their implementation.

Most of those tools are developed in Python, or other languages like Java
(SmartCheck), OCaml (Dr.Y), JavaScript (Solgraph) and C++ (porosity). Man-
ticore provides a Python API for analysis of EVM bytecode.

Besides, there are some other efforts in language (Sect. 4.2) or semantics
design, which could help with formal verification of smart contracts (see Table 3).

2 Here “verified” means the Solidity source code corresponds to the EVM bytecodes.
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Table 1. Languages

Languages Descriptions (motivation, expressivity, type system,

analysis-friendly features, etc.)

Reference

Scilla

(intermediate-level)

(Zilliqa)

- motivated by achieving expressivity and tractability Paper [71], code [70]

- based on communicating automata [50]

- provide limited translation from higher-level

languages (i.e., Solidity)

- provide translation into Coq for verification, along

with contract protocols, semantics, safety/liveness

properties and proof machinery

FSolidM (Ethereum,

framework,

higher-level)

- aims to develop more secure smart contracts Paper [55], code [54]

- a formal, finite-state machine based model

- provide several plugins (i.e., design patterns) to

enhance security and functionality, targeting at

vulnerabilities as reentry bugs and transaction

ordering, or design patterns as time constraint and

authorization

- primarily for Ethereum, but it may applied on other

platforms

- provide translation into Solidity

Rholang

(higher-level,

RChain)

- primitively for RChain, but could be used in other

settings

Code [19]

- focus on message-passing and formally modeled by

the ρ-calculus, a reflective, higher-order extension of

the π-calculus, which is good for concurrent settings

[57]

Vyper (Ethereum,

higher-level)

- mainly target at security and auditability Code [5], doc [27]

- provide the following features: bounds and overflow

checking, support for signed integers and decimal fixed

point numbers, decidability, strong typing, small and

understandable compiler code, and limited support for

pure functions

- does not support the following features: modifiers,

class inheritance, inline assembly, operator

overloading, recursive calling, infinite-length loops and

binary fixed point

- statically typed language

Type-coin (Bitcoin) - a logical commitment mechanism Paper [34]

- the logic is linear and not rich to handle complex

situations

Simplicity (Bitcoin) - type-safety, no unbounded loops, no named variables Paper [66], blog [31]

- no function types and thus no higher-order functions

Michelson

(Tezos)(lower-

level)(functional)

- a strongly-typed, stack-based language Paper [12], web [26]

- It doesn’t include many features like polymorphism,

closures, or named functions

- more as a way to implement pieces of business logic

than as a generic “world computer”

- Programs written in Michelson can be reasonably

analyzed by SMT solvers and formalized in Coq

without the need for more complicated techniques like

separation logic

- To provide a straightforward platform for business

logic, to provide a readable bytecode, and to be

introspectable

(continued)
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Table 1. (continued)

Languages Descriptions (motivation, expressivity, type system,

analysis-friendly features, etc.)

Reference

- Entirely original implementation in OCaml

- Isolated economical rules, self-amendable via voting

- purely PoS

- Blockchain state in a git-like persistent store

- Highly functional, defensive coding style for the

critical parts

- designed with formal certification in mind

Liquidity (Tezos)

(higher-

level)(functional)

- It uses the syntax of OCaml, and strictly complies to

Michelson security restrictions

code [7], web [65]

Plutus (higher-level)

and Plutus Core

(lower-level)

(IOHK)

- compiled to Plutus Core (lower level), Lisp-like

syntax

Code [17], paper [56]

- a pure functional strictly typed programming

language, with user-defined data types and

polymorphism

- several issues: unbounded integers supporting,

non-supporting abstract data types and data

constructors

Owlchain

(BOSCoin)

- a decidable programming framework, which consists

of the Web Ontology Language and the Timed

Automata Language. - OWL is defined as W3C

standard, a declarative language that provides

decidability

Article [32]

- separate declaration from processing

- TAL, Timed Automata Language, is a new language

that is used to create operators. It is a finite state

programming environment with two constraints: time

limit and pure functions. Timed automata modeling

can detect undefined areas (reachability problem) in

the code that developers missed. Pure function can

eliminate side effects that can occur during

development

Most of proposals relate to functional languages, perhaps due to the advantages
to perform static analysis.

For semantics, usually a tool has its own semantics (like Oyente has Ether-
Lite). A representative work is [39], because they provide the first complete
small-step semantics of EVM bytecodes and formalize it in F*. Also, this paper
points out that, though smart contracts are written in a Turing complete lan-
guage, their computations are bounded by gasLimit, thus it becoming a “quasi”
Turing-complete language.

4.3 Off-chain Protocols and Cryptography

Off-chain payment channels have emerged as an important topic in smart con-
tracts, in both industry and academia. Once a payment channel is established
between two parties, they can send rapid micropayments to each other without
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Table 2. Tools and frameworks for analyzing smart contracts

Tool/Framework Capabilities Reference

CertiK (Demo) - target at fully trustworthy blockchain ecosystems

in the future

White paper [2]

- specifications for each function can be expressed

using CertiK labels, indicating pre-condition,

post-condition and invariants respectively, as

comments in Solidity programs

Dr.Y’s Ethereum

Contract Analyzer

- a symbolic execution tool, reflecting contract

behavior to some point

Code [44]

Maian - check locked money Paper [64], code [8]

- detect unchecked suicide or Ether sending

- generate inputs to validate through private

blockchain

Manticore - detect potential overflow and underflow

conditions on “ADD”, “MUL” and “SUB”

instructions

Article [11], code [9],

doc [10]

- detect potential uses of uninitialized memory or

storage

- calculate code coverage

- generate inputs which could trigger unique code

paths (Solidity source code needed)

- Other: offer a Python API for analysis of EVM

bytecodes

Mythril - detect reentry bugs and external calls to

untrusted contracts

Article [60,61], doc

[13], code [62],

- detect unchecked suicide or Ether sending

- check mishandled exceptions (i.e., detect

unchecked CALL return value)

- check integer underflows

- detect usage of “tx.origin” [21]

- check dependence on predictable variables (e.g.,

coinbase, gaslimit, timestamp, number, etc.)

- Other: generate control flow graph, blockchain

exploration and some utilities

- support on-chain contracts analysis

Oyente - detect reentry bugs Paper [52], web access

[16], code [15]- check mishandled exceptions (i.e., detect

unchecked CALL return value)

- check transaction-order-dependency (a.k.a.

money concurrency, or front running)

- check timestamp dependency

- check possible assertion failure (Solidity source

code required)

- calculate code coverage

Porosity - find potential reentrancy vulnerability Code [3], white paper

[73], article [72]- support decompilation and disassembly

SmartCheck (target at

Solidity)

- detect reentry bugs Code [23], web access

[22]- check locked money

- detect possibly infinite or impractical loops

- detect unchecked low-level call

(continued)
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Table 2. (continued)

Tool/Framework Capabilities Reference

- check integer overflow and underflow, and

recommend to use the SafeMath library [14]

- check timestamp dependence

- Other: more better programming design pattern

recommendation

- Other: recommendations for standard ERC-20

function usages, and check style guide violation

- Other: some checking for recommended Solidity

programming style

Securify - check reentry bugs Web access [20]

- check mishandled exception

- check transaction-order-dependency

- check insecure coding patterns, e.g., unchecked

transaction data length, use of ORIGIN instruction

and missing input validation

- check unexpected Ether flows, such as locked

Ether [68]

- check use of untrusted inputs in security

operations, i.e., checking whether the inputs to the

SHA3 depend on block information (timestamp,

number, coinbase)

Solgraph - highlight potential unchecked money receiver Code [67]

- generate function control flow of a Solidity

contract

ZEUS - support self-defined policy verification, e.g.,

reentry bugs, unchecked “send”, possibly

vulnerable failed “send”, integer overflow,

transaction state dependency (i.e., usage of

“tx.origin”), block state dependency (including all

“block” parameters) and transaction order

dependency

Paper [47]

- specification limited to quantifier-free logic with

integer linear arithmetic

any transaction fees. The idea is that the parties send messages to each other
in the typical case, off-chain, and only use the smart contract to close. Payment
channels are also the building blocks for payment channel networks, which are
a highly anticipated scalability proposal for cryptocurrencies.

Payment channels and state channels are multi-faceted protocols, relying not
just on the smart contract, but also on a cryptographic scheme involving digital
signatures and hash functions, as well as the reconciliation of state stored at
different parties. Reasoning about these applications relies on more than just
analyzing the smart contract directly.

Off-chain Payment Channels. A smart contract payment channel protocol
should provide the following (informal) properties:
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Table 3. Language design and model translation

Languages or
semantics

Descriptions (motivation, expressivity, type system,
analysis-friendly features, etc.)

Reference

SMAC (modular
reasoning)

- introduce ECF (Effectively callback free) property
for modular object-level analysis

Paper
[40]

- develop online detection algorithm which can apply
to Ethereum full node, and monitor non-ECF
executions, including the infamous DAO bug

eth-isabelle
(semantics)

- define the complete instruction set of EVM in Lem, a
language that can be compiled into Coq, Isabelle/HOL
and HOL4

Paper
[46], code
[45]

- can prove invariants and safety properties

TU Wien F*
(2018) (Ethereum)

- present the complete small-step semantics of EVM
bytecode in the F* proof assistant

Paper
[39], code
[25]- define a number of central security properties, such

as call integrity, atomicity, and independence from
miner controlled parameters

F* (2016)
(Ethereum)

- motivated by formal verification Paper
[30]- partial semantics for converting Solidity to F*, EVM

to F*

- show the correspondence between Solidity and EVM
to some point

KEVM (semantics,
high-level,
Ethereum)

- a complete K Semantics of the Ethereum Virtual
Machine (EVM)

Code [6],
paper
[42]

– (Timing properties.) Payments are processed very quickly (no blockchain
transactions), and closure is guaranteed within a predictable time (small num-
ber of blockchain transactions).

– (Integrity properties.) If Bob thinks he has received $X, then he is guaran-
teed to get at least $X when the channel closes. And Alice should get back
everything except what she has paid.

A payment channel protocol is given in Algorithm1, comprising a local pro-
gram for the sender (Alice), a local program for the recipient, and a smart
contract program. Alice initially deposits $X by making an on-chain transac-
tion, into a smart contract running the given pseudocode. Alice can then make
numerous micropayments to Bob, by sending signed messages that indicate Bob’s
latest credit. Each payment can be very fast and efficient, since it requires only
point-to-point interactions between Alice and Bob; it does not require any on-
chain transaction. At any time, either party can request to “close” the channel,
in which case Alice submits her most recent signed message. The smart contract
is only activated when the channel closes.

The generalization of a payment channel, a “state channel”, allows two or
more parties to maintain an off-chain replicated state machine that can be syn-
chronized on demand (or in case of a dispute) with the blockchain.



Smart Contracts and Opportunities for Formal Methods 293

Algorithm 1. A Smart Contract protocol for Off-chain Payments
Alice and Bob are represented by hardcoded public keys
Local code for Alice (the sender):

1: [Initially]:

2: credit := $X0 // initial deposit

3: [on input (“pay”, $X)]:

4: assert $X ≤ credit
5: credit := credit − $X
6: σ ← Sign($X0 − credit) as Alice
7: send (σ,$X0 − credit) to Bob

8: [on input (“close”)]: send (“close”) to the Contract

Local code for Bob (the recipient):

1: [Initially]:

2: credit := 0
3: [on receiving (σ, credit′) from Alice)]:

4: assert σ is a valid signature on credit′ from Alice
5: assert credit′ ≤ $X0

6: if credit′ > credit

7: credit := credit′

8: σ := σ′

9: [on input (“close”)]: send “close” to the Contract
10: [on contract event (“close”):

11: send (“evidence”, σ, credit) to the Contract

Smart Contract Code:

1: [Initially]:

2: lastKnownCredit := 0
3: [on contract input (“close”) from Alice or Bob (only once)]:

4: within delay O(Δ):

5: send ($X0 − lastKnownCredit) to Alice
6: send (lastKnownCredit) to Bob

7: [on contract input (“evidence”, σ, credit)] from Alice or Bob:

8: assert σ is a valid signature on credit from Alice
9: assert credit′ ≤ $X0

10: if credit > lastKnownCredit

11: lastKnownCredit := credit

Functionality Model for the Payment Channel. The payment channel protocol
above was given an informal specification. To give a precise security definition,
an appealing approach is to use the simulation based security framework used by
cryptographers. The main idea behind the simulation-based security framework
is that instead of expressing properties as indistinguishability games, we provide
an explicit program, called an ideal functionality, that exhibits all the properties
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Algorithm 2. An Ideal Functionality for Off-chain Payments
1: [Initially]

2: Alice and Bob are represented by hardcoded public keys
3: credit@A := $X0 // initial deposit
4: credit@B := $0

5: [on input (“pay”, $X) from Alice]:

6: assert $X ≤ credit@A
7: credit@A := credit@A − $X
8: within O(1) delay:

9: credit@B := credit@B + $X

10: [on input (“close”) from Alice or Bob]:

11: within O(Δ) delay:

12: send at least credit@A to Alice
13: send at least credit@B to Bob and halt

at once. This has the advantage that all the salient security properties of a
protocol can be defined in effectively one place.

An ideal functionality for the payment channel protocol is given in Algo-
rithm2. Note that the functionality is structurally simpler than the protocol (it
executes in one location rather than three), and does not contain any cryptog-
raphy.

It is also easy to see that the functionality exhibits the desired properties. The
phrases “O(1) delay” and “O(Δ) delay” denote the desired time bounds, which
would be automatically inferred or written as annotations by the programmer.
Here Δ refers to a worst-case bound on the time it takes to submit and confirm
a blockchain transaction. Hence the fact that the “pay” command completes in
O(1) time reflects the fact that the protocol uses only off-chain messages. The
credit@A and credit@B expressions denote the respective local views of Alice
and Bob; the functionality explicitly sends a final payment to each consistent
with their local views. Note that it is possible for a payment to interleave with
channel closure; in this case, Bob may receive more than he expected.

Several Instances of Cryptographic Protocols Where the Smart Contract Acts as
a Verifier. OpenVote uses Ethereum as the tallier for a cryptographic, sealed
ballot election. Users submit encrypted ballots to the Ethereum blockchain to
be tallied, along with a zero-knowledge proof (ZKP) that their vote is correctly
formatted (i.e., contains an encryption of just one vote for just one candidate).
The use of the Ethereum blockchain in place of an election authority avoids the
need to trust any privileged party to carry out the election.

Ethereum has recently included support for the ALT BN128 elliptic curve,
which is used in particular for a generic proof system called zkSNARKs. An
example contract is provided where in order to claim a prize, a prover must
demonstrate knowledge of a solution to a Sudoku puzzle, but without revealing
the solution itself. Further cryptographic applications include privacy-preserving
auctions and insurance contracts [49].
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In general, it seems likely that many future applications will involve the
use of increasingly sophisticated cryptographic primitives within smart contract
programs.

5 Challenges and Opportunities for Formal Methods

Smart contracts present three non-traditional challenges to developers, making
smart contracts more difficult to implement than code in other contexts.

1. Composition with untrusted and adversarial code. Smart contracts
are implemented on a distributed system, and are freely accessible by the
public. Composition within smart contracts tends to involve untrusted code.
The DAO involved transferring control flow to an attacker’s smart contract,
which carried out the attack. For this reason we would likely want the capa-
bility to combine runtime certification with static analysis. We would use
static analysis, but may need to write defensive code that provides runtime
enforcement of guarantees against untrusted code. Compositional verification
technologies are useful here, but the challenge is to write a model E of the
environment for the smart contract. Note that E will have to account for
other code fragments that the smart contract might interact with and also a
model of the underlying infrastructure (e.g. blockchain) that the contract is
executing on.

2. Distributed and asynchronous setting. Smart contracts are often just
one component of a more complicated distributed protocol. Smart contracts
often play the role of a “verifier” in a cryptographic protocols. The Ethereum
platform enables application developers to make use of built-in primitives,
such as hash functions, digital signatures, and now more recently, pairing-
friendly elliptic curves, the ingredients for zkSNARK proofs.
In general, a smart contract protocol may involve local code and custom cryp-
tography, which are just as important to the correct functionality and design
of the application of the smart contract itself. However, one challenge here is
that the guarantees that the smart contract requires from the cryptographic
function will heavily depend on the functionality of the smart contract. Future
smart contract programming languages and analysis techniques will need to
take this into account.

3. Economic incentives. Unlike in traditional software, in the smart-contract
setting, many of the desired properties one wishes to establish are economic.
For example, participants might want to verify that their expected payoff for
participating in a contract is non-negative, since otherwise they have little
reason to participate. Analyzing a smart contract often involves reasoning
about game-theoretic properties like incentive compatibility. Effective tools
may need to take this reasoning into account. Formalisms, such as mean-
payoff games, might be useful in this context, but verifying properties of
these expressive formalisms remains a challenge.
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6 Conclusion

This paper surveys the ecosystem of smart contracts, such as various platforms,
high-profile bugs, and existing analysis tools. Of course, one can use existing
analysis techniques and tools to analyze smart contracts, and one should do so.
However, we believe that uniqueness of the smart contracts also brings some
unique challenges for the formal-methods community, which will require new
techniques and novel research ideas.
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Abstract. Smart contracts which enforce behaviour between parties
have been hailed as a new way of regulating business, particularly on
public distributed ledger technologies which ensure the immutability of
smart contracts, and can do away with points of trust. Many such plat-
forms, including Ethereum, come with a virtual machine on which smart
contracts are executed, described in an imperative manner. Given the
critical nature of typical smart contract applications, their bugs and vul-
nerabilities have proved to be particularly costly. In this paper we argue
how dynamic analysis can be used not only to identify errors in the
contracts, but also to support recovery from such errors. Furthermore,
contract immutability means that code cannot be easily fixed upon dis-
covering a problem. To address this issue, we also present a specification-
driven approach, allowing developers to promise behavioural properties
via smart contracts, but still allowing them to update the code which
implements the specification in a safe manner.

1 Introduction

Smart contracts built on top of blockchain and other distributed ledger tech-
nologies (DLTs) have been hailed as a game changer in providing a formal inter-
face through which to regulate interaction between real-world parties. Originally,
Szabo [26] conceived the notion of smart contracts as means of automated agree-
ment and regulatory enforcement to the extent that they “make breach of con-
tract expensive (if desired, sometimes prohibitively so) for the breacher”—thus
allowing for breaches of contract, and yet at a cost. This corresponds closely
to the notion of legal contracts which include the possibility of breaches to the
extent that they frequently include clauses to regulate what happens in case of
violation of other clauses. In contrast, Lessig’s [20] dictum of “code is law” saw
computer code regulating behaviour in an incontrovertible way, and thus, e.g.
if the code automatically reroutes 25% of your income to pay taxes, there is no
way in which you may breach this ‘law’ and not pay your taxes.

The term contract has been used in different contexts with different mean-
ings, ranging from legal contracts which talk about ideal behaviour agreed upon
between the participating parties, to programming language contracts to allow
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for the specification to be part of the system implementation (e.g. pre- post-
conditions in Eiffel [22] and behavioural interfaces [16]). In their current incar-
nation as adopted on distributed ledger systems such as Ethereum, smart con-
tracts are closer to Lessig’s view of code as law, with smart contracts providing
executable transactions enforced implicitly by the underlying distributed ledger
system and possibly changing its state. They provide an opportunity to execute
code affecting global state in a safe manner which would otherwise be impossible
without the participation of trusted central authorities or resource managers.

Whether specifications should be executable [13] or not [17] is an old debate
in computer science, but what is clear is that a non-executable specification may
limit itself to describe what the resulting state should look like (or satisfy), while
an executable one must also include a description of how to achieve such a state.
The additional information required for the latter leaves more room for incorrect
or mistaken specifications.

This is a crucial issue with the current incarnation of smart contracts: smart
contracts do exactly what they say they do, but that might not be what the
agreeing parties thought it would do—or for that matter what the developer
of the contract thought it would do. This is particularly important since once
deployed on the underlying blockchain, smart contracts are immutable and can-
not be changed. The only way to support updates to a smart contract is to
include the possibility to update the code in its own logic, which goes back to
the question of trust. Whether a smart contract is written by one of the par-
ties participating in a transaction, or by an outsider, participating parties may
rightfully fear that there might be obscure ways in which others can exploit the
contract to their benefit. There have been well-known instances of bugs in smart
contracts, for instance, on Ethereum [1].

Although due to the immutable nature of smart contracts one would prefer
to use static analysis techniques to ensure correctness at compile-time, such work
is still sparse, with most of it aimed at addressing common vulnerabilities rather
than business-logic specifications. For instance, Fröwis et al. [12] try to iden-
tify control-flow mutability, Oyente [21] performs reentrancy detection, while
Bhargavan et al. [2] transform Solidity into F* on which they perform analy-
sis to identify general vulnerable patterns. Much of this work is performed at
the EVM level, partly due to the fact that the semantics of Solidity being only
informally described in the language documentation, and effectively pragmati-
cally decided based on what the compiler does. In contrast, there are published
formal semantics for EVM bytecode either through direct formalisation or via
translation in [15,18]. However, what these approaches do not address are appli-
cation specific, business-logic properties; perhaps mainly due to issues of scala-
bility, especially because of the data intensive aspects of many smart contracts.
In such cases, one may have to resort to runtime analysis of smart contracts.

Runtime monitoring, already a special case of dynamic analysis, admits to
a whole family of activities. At the most basic level, one can merely monitor or
observe a system and log information about its runtime behaviour. The next level
up is that of runtime verification, in which not only is the behaviour observed,
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but particular behavioural patterns are identified to be undesirable and algo-
rithmically classified to be so. This notion can be taken further by adding on
logic to support runtime recovery or reparation, triggering in the case of unde-
sirable behaviour being observed to make up for it. One can also go another step
further, using runtime enforcement to ensure that the undesirable behaviour is
avoided in the first place, modifying the system’s behaviour to ensure it works
as expected1. In the rest of the paper, we primarily focus on runtime verification
and recovery.

The very architecture of blockchain (and similar distributed ledger technolo-
gies) in itself provides the monitoring process for free. Each transaction and
invocation to a smart contract is immutably recorded on the underlying ledger.
The violation detection process itself can be addressed using techniques not too
different from those already in use for other software systems. It is worth not-
ing that the ledger architecture does provide an opportunity in injecting online
runtime verification into the underlying design—one can design a monitoring-
aware DLT in which verification code can be added to the architecture (the DLT
implementation itself), ensuring no smart contracts are executed or data written
unless verified to be correct. In the rest of this paper, however, we will simply
assume that runtime verification is being performed, thus allowing for viola-
tions to be identified and captured. Whether this verification is performed in
the traditional manner (e.g. injecting code in the smart contract to perform the
monitoring and verification), or performed by modifying the underlying archi-
tecture is irrelevant.

Even just identifying such violations can be useful in practice—consider a
(physical-world) legal contract which stipulates that the parties agree on legal
liability whenever the runtime monitor identifies a violation. However, in this
paper we concern ourselves primarily with going beyond the monitoring and
verification process—looking at the choices and challenges in reacting upon the
identification of points of violation, primarily in the form of reparation, but also,
enforcement in a limited manner. When runtime verification detects a violation
of the specification at runtime, the system is typically instructed on how to react
to (i) make up for the violation from the point of view of the system logic (e.g.
block an account for safety); and (ii) restore the system state to a sane one
(e.g. revert a financial transaction to leave no pending transactions or locked
resources). We discuss how one can support such reparations in the context of
smart contracts, and show how these notions can be used to extend the existing
Solidity runtime verification tool ContractLarva [10].

However, on normal systems, the detection of a violation also triggers offline
behaviour outside of the system—when the system developers try to identify
the origin of the bug which led to the violation, fix it and redeploy the updated
system. With the immutability of smart contracts, this phase is severely crippled.

1 Needless to say, this terminology has been used in a wide variety of contexts, and
not all usages correspond to the neatly compartmentalised descriptions we give. In
case of disagreement with our use of terminology, kindly read the rest of the paper
replacing the terms with your preferred ones.
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One of the contributions of this paper is the proposal of a model-based approach
incorporating runtime verification, to support updatable smart contracts in order
to address violations discovered post deployment.

In order to be able to illustrate our ideas, in Sect. 2 we give a brief overview of
the Ethereum platform2 and the Solidity smart contract scripting language. In
this section, we also show how ContractLarva specifications can be written,
enabling us to propose concrete extensions supporting richer means of handling
violation in smart contracts in the following sections. In Sect. 3, we then discuss
the challenges of recovery from specification violations both to recover the inter-
nal state of the smart contract, but also to make up for the violation from the
affected users’ perspective. The issue of dynamically addressing bugs discovered
post-deployment in the context of smart contract immutability is discussed in
Sect. 4. Finally, in Sect. 5, we discuss related work and draw some conclusions.

2 Smart Contracts on Ethereum

Smart contracts and the programming thereof, due to the inherent immutability
of blockchains and the critical nature of applications they are used for, requires
a different programming mindset [9]. Once deployed a smart contract is there
forever. The internal code cannot be changed, and with this in mind, developers
tend to use defensive programming techniques to ensure that users cannot exploit
bugs or unintended functionality. Ethereum provides for the execution of a ‘one
world computer’, the Ethereum Virtual Machine (EVM) [27], which can be seen
as a single computational core which executes function code atomically. What
is really happening though, is that every node is computing and storing the
same values within the blockchain, and must therefore require computation to
be deterministic (since the same result must be computed on every node). Calls
to smart contracts are treated as atomic transactions, which often instills a
sense of security in programmers since race conditions no longer appear to be
an issue. It has been argued that smart contract programming still shares much
with concurrent object programming [25] and issues such as reentrancy remain—
occurring when calls are made to third party smart contracts that in turn call
back the caller smart contract.

The Ethereum platform allows executable smart contracts to be written using
the EVM’s assembly instruction set, but also provides high-level languages, with
the predominant one being Solidity. Once deployed on Ethereum, a smart con-
tract has an associated unique identifier, corresponding to its address and can
intrinsically own ether (Ethereum’s internal currency) and transfer ether to other
addresses (which could be contracts or user accounts). The EVM instruction set
is Turing complete, and in order to deal with smart contract functionality which
may not terminate or take inordinately long, uses the notion of gas—effectively

2 Since DLTs vary in design and in their take on smart contracts, we particularly
focus on the Ethereum blockchain platform [27], even if many of the ideas presented
herewith can be extended for other takes on smart contracts and other DLTs.



304 C. Colombo et al.

payment (in ether) for the execution of each instruction step. When the gas allo-
cated to a particular transaction is exhausted, execution stops and the altered
state is reverted to the original one upon initiation of the transaction, thus effec-
tively ensuring that (i) all functionality is terminating; and (ii) computationally
more expensive functionality is also financially more expensive, thus avoiding
possible attempts to overload the Ethereum platform with complex computa-
tion.

1. The casino owner may deposit or withdraw money from the casino’s bank, with the bank’s
balance never falling below zero.

2. As long as no game is in progress, the owner of the casino may make available a new game
by tossing a coin and hiding its outcome. The owner must also set a participation cost of
choice for the game.

3. Clauses 1 and 2 are constrained in that as long as a game is in progress, the bank balance
may never be less than the sum of the participation cost of the game and its win-out.

4. The win-out for a game is set to be 80% of the participating cost.
5. If a game is available, any user may choose to pay the participation fee and guess the outcome

of a coin toss to join the game. After that, the game will no longer be available to other users.
6. The owner of the casino is obliged to reveal the coin tossed upon creating the game within

half an hour of a player participating. If the coin matches the guess, the player’s participation
fee and the game win-out is to be paid to the player from the casino’s bank. Either way, the
game then terminates.

7. If the casino owner does not adhere to clause 6, the player has the right to declare a default
win and be paid the participation fee and the game win-out from the casino’s bank. At this
stage, the game also terminates.

Fig. 1. A legal contract regulating a coin-tossing casino

In the rest of the paper, we will use a running example of a smart contract
to implement a casino which provides a single game that allows for guessing the
outcome of a coin toss. The legal contract which we will be using as a running
example is shown in Fig. 1. This can be implemented as a smart contract on a
platform like Ethereum (with part of the code in Solidity shown in Listing 1),
where each party’s possible actions are encoded as functions which the respective
parties may invoke. The shown closeBet function is used by the casino owner to
reveal the coin tossed after a player has made a guess, corresponding to clause 6.
It is worth remarking on some aspects used in the code which will be used in
the rest of the paper.

The require function provides a mechanism to ensure that a predicate holds
before proceeding with the code. If the predicate does not hold, the whole trans-
action and execution of the code is abandoned, and the variables are reverted to
their original values. This mechanism can also be triggered directly through the
Solidity revert instruction (which Solidity’s require uses internally). Reverts
are bubbled up to functions calling the failing one, and the only way to stop
such a revert chain is through contract communication. Contracts on Ethereum
may invoke functions in other contracts through the call and delegatecall
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functions which stop the bubbling up of a revert. In addition, delegate calls run
the called code from within the caller (i.e. giving access to variables defined in
the caller function).

A function call is viewed as a message passed to the contract, acces-
sible through the msg variable, and allowing access to information such as
the message sender’s address: msg.sender. A smart contract can transfer
any ether owned by the smart contract to an Ethereum address through the
address.transfer(amount) instruction.

Finally, it is worth noting that private variables and functions in Solidity
(as opposed to public ones), only prevents other contracts from accessing the
data directly. However, the data is still visible to anyone outside since it is
publicly written on the Ethereum blockchain, so the hiddenCoin would have to
be encrypted and not simply written to a private variable. One commonly used
way is to encode the hidden coin toss by submitting and storing the hash of an
odd number if it was heads, and even if it was tails. Upon revealing the actual
number, it is easy to confirm that the coin was not changed and whether it was
heads or tails (achieved using the function sameAs, the implementation of which
is not shown).

It is worth noting that contracts may not only call and execute functions
in the same contract, but may also have calls to other smart contracts. Solidity
provides call and delegatecall functions as means to execute named functions
at a given contract address, with the main difference (of interest to this paper)
being that delegatecall gives the called contract access to the state of the
contract from where the call is made. This allows for delegation of control of
state to external contracts.

When an exception is raised within the callee, the call function will return
a false value (and if it was successful, a true value). A similar function
delegatecall allows for calls to external contract functions which execute the
external contract function code within the context of the caller’s contract and
caller’s transaction, which will maintain the same values for the msg.sender,
msg.value, and other contract context including the storage used. This can be
seen to be the same as though the contract was calling another internal function,
although in actual fact the code is stored in an external function.

The code in Listing 1, thus ensures that (i) it is being invoked by the casino
owner; (ii) the revealed coin matches the originally given (encrypted) hidden one;
and (iii) a player has participated in the game. If all three conditions hold, then
the player is given a reward in case of a guess (clause 6). The game terminates
after that.

Consider a property which states that the casino owner may not withdraw
from the casino’s bank leaving less than the required player payout as long
as there is an active bet. This property can be expressed as a dynamic event
automaton (DEA), the specification language used by ContractLarva [10] (a
runtime verification tool for Solidity contracts), as shown in Fig. 2. DEAs are
effectively automata whose transitions are tagged by a triple e | c �→ a, where
e is an event, c is a Solidity condition (which has to be satisfied to take the
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contract Casino {

.

.

.
address private hiddenCoin;

.

.

.
function closeBet(uint _shownCoin) public {

require(msg.sender == casinoOwner );
require(sameAs(_shownCoin , hiddenCoin ));
require(gameStatus == PLAYER_PARTICIPATED );

if (matches(_shownCoin , guessedCoin )) {
player.transfer(participationCost + winout);

}
gameStatus = GAME_OVER;

}

.

.

.
}

Listing 1. Part of the smart contract implementing the casino table

transition) and a is a Solidity action (essentially code which is executed upon
taking the transition). Both the condition and the action can be left out if not
required. The events are of the form: o ::m : f , where f is a Solidity function
name and parameters, m is the modality which will trigger it, and o is the agent
who must call the function for the event to trigger. In turn, the modality can
be start which triggers as soon as the function is called, or end which triggers
when the function terminates successfully i.e. without a revert. DEAs also allow
a fails modality (which will be used later in the paper) which triggers if the
function is called but is reverted for any reason other than lack of gas. DEAs
are deterministic automata and include identified bad states (marked in black
in the figure) which flag a violation if reached at runtime.

casinoOwner:: end: openBet(_amount,*)
↦ amount = _amount;

player:: end: timeout()

casinoOwner:: end: closeBet(*) end: placeBet(*)

casinoOwner:: end: withdraw(*) |
bankBalance < winout;

casinoOwner:: end: withdraw(*) |
bankBalance < amount+winout;

Fig. 2. Property specifying that enough funds must remain in the bank throughout
the bet’s lifetime.
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3 Smart Contract Recovery

Detecting situations where a contract has violated applicable correctness prop-
erties is desirable, but dealing with the aftermath of such a discovery might not
be straightforward. In the context of software which is not blockchain-based, one
approach may simply block the execution of the whole system or of part thereof
(e.g. block the users or functionality affected by the issue) until the problem
is resolved. In the case of smart contracts though, näıvely blocking the con-
tract from proceeding further would mean locking funds held within it forever,
implying the need for more sophisticated recovery code.

Using a custom recovery action to manage such violations allows for compre-
hensive and customisable handling. For instance, in the casino property example,
one might consider an escrow arrangement, in which the casino owner initially
pays into the contract an amount which is paid off to the player in case of a vio-
lation to make up for the malfunctioning contract. At the most coarse grained
level, recovery actions may be generic (any violation fires this recovery), but can
be made more specific for particular properties or particular parts of code which
trigger the violation (effectively acting similar to typical exception handling).
This approach has been adopted by several runtime verification tools e.g. Larva
[8] and Java-MOP [4].

While such custom recovery arrangements are convenient in that they provide
a specific case-by-case solution to violations, they have the downside of being
hard to automate, i.e. procedures have to be customised and coded manually,
increasing the complexity of the smart contract. Taking once more the escrow
arrangement example, if a contract involves a number of different stakeholders,
who has to pay the escrow and how to divide it for each violation becomes sub-
stantially more complicated. We now look at a number of alternative approaches
to specifying recovery in more compositional ways.

3.1 Checkpointing

One standard way of automating recovery from failure is through the use of
checkpointing [24], i.e. to save the state of the contract at important points of exe-
cution in order to allow reverting back to them when the monitor detects a devi-
ation from the expected behaviour. In the casino example, this would mean that
money placed on a bet would automatically be returned to the player. Through
the revert mechanism, the EVM already provides an underlying notion of check-
pointing for its atomic transactions: if a transaction fails half way through, its
effects are discarded by returning to the state of the blockchain before the start
of the transaction, and this can be used to ensure that calls to a smart contract
which cause a property to fail are completely undone, thus guaranteeing that
the state is returned to its previous (assumed to be sane) state.

In using reverts to undo execution of a failed transaction on Ethereum, par-
ticular care has to be taken due to calls and delegate calls which stop a revert
from being bubbled up to the caller.
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However, using EVM reverts to handle system state recovery comes with a
number of caveats:

Normal vs. exceptional reverts: Since reverts are typically used in the nor-
mal logic of the smart contracts (e.g. the assertions in the code shown in
Listing 1 may trigger reverts), reverts now play two roles—that of normal
exits from the system logic, and that of exceptions due to behaviour which
was not expected from the smart contract. Care has to be taken to avoid
these from interacting together, particularly since smart contracts may use
calls to capture normal (expected) reverts to follow up its behaviour.

Finer grained checkpointing: The basic checkpointing mechanism provided
on the EVM does not provide the possibility of fine-grained checkpointing;
the checkpoint can only be (implicitly) placed at the start of the transaction.
Ideally, one should be able to allow for marking checkpoints and allow for
reverting to particular ones. For instance, consider if the casino smart con-
tract were developed by someone other than the casino owner who would
benefit from a transaction fee with every attempted withdrawal from the
casino bank. In such a case, one may want to ensure that violation of the
smart contract property from Fig. 2 should revert the withdrawal from the
bank, but still keep the transaction fee. One way of achieving this would be to
use named checkpoints (see Listing 2) and reverting to the named checkpoint
BEFORE WITHDRAWAL when that violation occurs. Such a mechanism can be
easily implemented using code transformation on the smart contract with the
help of explicit calls. The downside of such an approach is that there is even
more complex interwinding between the forward and the recovery logic, with
checkpoint tags which may have been created purely for recovery appearing in
the main code thus violating the often held principle of separation-of-concerns
(keeping the normal logic and the verification specification separate). In [6],
we had proposed an alternative to this approach in that checkpoints rele-
vant only to recovery are also identified as part of the dynamic analysis. By
adding appropriate tagging (e.g. adding a checkpoint tag after the transfer to
the developer is specified on the DEA using an action or a checkpoint tagging
state), one can still keep checkpoint tags relevant to reparation separate in
the specification.

Forward recovery: Whilst reverting to a previous state provides a straight-
forward way of restoring the state of the smart contract, sometimes one still
needs to perform a recovery action after recovering the state. For instance, in
the casino smart contract, one may want to not only disallow the withdrawal,
but also allow the player a default win. Such forward recovery logic can be
placed in the smart contract itself, but as argued before, makes more sense
in the specification (for instance by tagging the bad state with the code).
Figure 3 shows how the specification can be extended with this information,
adding another DEA to keep track of the relevant checkpoint upon matching
a particular sequence of events.
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function withdraw(uint _amount) public {
require(msg.sender == owner);
. . .
// Pay transaction fee
developer.transfer(transactionFee );
// Withdraw specified amount
checkpoint(BEFORE_WITHDRAWAL);
casinoOwner.transfer(_amount );

}

Listing 2. Named checkpointing for partial reverts

casinoOwner:: end: openBet(_amount)
↦ amount = _amount;

player:: end: timeout()

casinoOwner:: end: closeBet(*) end: placeBet(*)

casinoOwner:: end: withdraw(*) |
bankBalance < winout;

casinoOwner:: end: withdraw(*) |
bankBalance < amount+winout;

casinoOwner:: begin: withdraw(*) developer.transfer(*)

casinoOwner:: end: withdraw(*)

BEFORE_WITHDRAWAL

restore(BEFORE_WITHDRAWAL)
playerWins();

restore(BEFORE_WITHDRAWAL)

Fig. 3. Extending the property to allow for tagged checkpointing followed by forward
recovery—checkpoints being saved upon entering the red state.

3.2 Compensations

The notion of forward recovery after restoring to a checkpoint, as discussed in the
previous section, is typically used to make up for earlier behaviour e.g. allowing
the player to win is done to compensate for the fact that the player has already
(in a previous transaction) committed him or herself to betting in the casino.
Although each function call to the EVM is seen as a full transaction, from a
higher level of abstraction, sequences of function calls can be seen as long-lived
transactions [5,14,24]. Just as in long-lived transactions, previous function calls
to the EVM may not always be fully reversible3, in which case compensation for
such functions cannot be feasibly done via checkpointing.

When a global compensation is applied (as in the case of giving a default
win to the player), compensations can be easily handled, but when in more
complex situations, one usually has compensations gathering as the long-lived
transaction advances. The appealing aspect of a compositional compensation
mechanism is that each individual action can be assigned a default compensation,
i.e. an action which manages the effects of the action being compensated for, and
3 Atomic transactions rely on locking to isolate themselves from external observation—

which is impractical with transactions which have a long lifespan. If the environment
reacts to intermediate results after which the transaction fails, then the transaction
cannot simply be wiped out. Rather, the effects it had on the environment in its
lifetime need to be managed. This is done through compensations.
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unless specifically changed, the compensation of a sequence of actions results in
the execution of the individual actions’ compensations in reverse order. Such a
mechanism is frequently used on, for instance, payment transaction systems to
ensure that the participating entities are compensated for the failing transaction,
also in the context of runtime verification [6,7].

For instance, consider a casino scenario in which a player may join either a
roulette or a coin-tossing table, where they may place multiple bets. A monitor
can be used to ensure that if a player performs an illicit action (e.g. placing
more bets than legally permitted), they will be refunded any bets they have
placed (less charges, which may depend on the game they are betting on) and
their account will be disabled. Figure 4 shows how this can be handled using
simplified compensation automata [6]—extending the notation used earlier for
transitions to add a compensation u: e | c �→ a/u, where u can either be an
action which will be added to the compensation stack or an instruction to clear
the compensation stack. When a violation is identified (by a separate monitor),
actions are individually removed from the compensation stack and executed.

player:: end: chooseRoulette()

player:: end: chooseCoinToss()

player:: end: register()

player:: end: placeBet(_amount)
/player.transfer(0.75*_amount);

player:: end: placeBet(_amount)
/ player.transfer(0.85*_amount);

player:: end: closeGame() / ClearCompensations

Fig. 4. Monitor-based compensation synthesis.

Since compensations depend on the history of execution, and can very easily
lead to substantial increase in space and time execution resources required, this
comes with an additional problem when used on platforms such as Ethereum,
due to substantial gas consumption increase. A standing challenge is how to
constrain the notion of compensations in order to avoid or mitigate this issue.

4 Updating Code

In most software systems, when a violation to a specification is discovered, one
important action is to report the problem back to the development team to assess
its severity and accordingly report the issue to be eventually addressed in a patch
or future release. In hardware verification circles, it has always been recognised
that bugs are more serious and costly, as the 1994 Intel FDIV bug [23] had shown,
since one cannot cheaply update a chip post-production. In a manner, despite
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the software nature of smart contracts, their intrinsic immutability shares much
with hardware systems. Once deployed, there is no simple manner in which one
may update the code.

In order to deal with problems identified post-deployment, the industry has
developed a family of design patterns in order to support code updates through
having the code of the smart contract refer to updatable references to secondary
smart contracts or through means of migrating users from a smart contract to an
updated one. Listing 3 shows a code snippet of how this is typically done using
the proxy or hub-spoke pattern. The approach involves the use of an interface
contract (with no internal implementation but) with a reference to the current
version of the actual contract implementation. Any function calls to the con-
tract are simply passed on as calls or delegate calls (if the data is also stored
in the interface contract) to the actual implementation contract. The primary
issue with this approach is that each such contract must choose what policy to
adopt in order to decide how a version update can be accepted. For instance, in
the example shown in Listing 3, the casino owner would be able to unilaterally
update the code, but one may adopt more sophisticated approaches, e.g. requir-
ing updates to be decided by a majority vote amongst the current users of the
contract.

contract Casino {
address currentVersionOfContract;
address owner;

function updateVersion(address _newVersionOfContract) public {
require(msg.sender==owner);
currentVersionOfContract = _newVersionOfContract;

}

function openTable () public {
currentVersionOfContract.call(bytes4(sha3(" openTable ()")));

}
...

}

Listing 3. Enabling versioning of smart contracts

In this section we identify a solution to this challenge of enabling smart
contract updates in a safe manner, building on ideas from behavioural interfaces
[16], monitoring-oriented programming [3] and using dynamic analysis to ensure
safety.

The major challenge faced is that unless somehow limited, code updates
can be arbitrary and users of the contract have no guarantees that the new
contract code will continue to implement the same logic (except for new features
or fixed bugs) as the original one they signed up to. We propose a specification-
oriented approach, in which users initially agree on a specification of how the
smart contract is to behave, and set up a smart contract which (i) implements
the interface of the contract; (ii) passes on any calls to the public interface
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to the current version of the implementation available as an external contract;
(iii) enables the developer to update the version of the code arbitrarily; but
(iv) instruments a monitor to ensure that the specification is adhered to by
the current version of the contract. The first three are identical to the design
pattern shown in Listing 3, but the fourth is what ensures user confidence in the
implementation. No matter how the developer updates their code, the users are
guaranteed that any violations to the specification will be captured and acted
upon.

Consider, for example, a specification which a user may want to be sure holds
in order to trust a casino implementation as shown in Fig. 5 in terms of a DEA.
The specification identifies three forms of casino implementation misbehaviour—
once a bet is opened by the casino owner and a bet is placed by the user, the
three violations identified are if (i) the casino reveals the number which matches
the user’s guess but insufficient funds are transferred on to the user; (ii) the user
calls the timeout after an appropriate amount of time without the number being
revealed but not enough funds are transferred to the user; and (iii) the user tries
to call a timeout but is stopped from doing so by a revert.

The choice as to whether the proxy should use calls or delegate calls depends
on a number of issues, including ones related to monitoring. For instance, if some
properties depend on the data stored in the smart contract (e.g. the openBet
function cannot be called when the balance stored in the state of the smart
contract is negative), keeping these parts of the state on the proxy and using
delegate calls may be required.

user:: end: timeout()

end: closeBet()

end: openBet(_amount, _hidden)↦
amount = _amount
secret = _hidden;

user:: end: timeout()

user:: end: placeBet(_guess)↦
guess = _guess;
time = now;

begin: closeBet(_shown) |
sameAs(_shown, secret)&&
matches(_shown, guess)

end: closeBet()

end: _user.transfer(_amount) |
_user == user &&
_amount≥ 1.8*amount

end: _user.transfer(_amount) |
_user == user &&
_amount≥ 1.8*amount

user:: fails: timeout() |
now− time ≥ 30 minutes

user:: begin: timeout() |
now− time ≥ 30 minutes

begin: closeBet(_shown) |
sameAs(_shown, secret) &&
!matches(_shown, guess)

Fig. 5. User-centric casino specification

In order to instrument the specification monitor, we can use Contract-
Larva on the interface contract and the specification to obtain a safely encap-
sulated behavioural interface as shown in Fig. 6. This will be able to identify
any violation at runtime, ensuring we can react accordingly as discussed in the
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previous sections. In this manner, trust—despite versioning—can be addressed
through an immutable behavioural interface, although it remains a major chal-
lenge to have a sufficiently detailed behavioural interface which disallows all
undesirable behaviour.

CONTRACT-LARVA
Runtime verification 
instrumentation tool 

Behavioural 
specification

Safe 
smart contract 

interface supporting 
safe versioning 

Smart contract 
interface supporting 

versioning 

Current version of 
executable version 

of the contract 

Fig. 6. Building safe behavioural interfaces for smart contracts

This approach borrows much from behavioural interfaces, in that we auto-
matically create a safe, trusted and immutable interface which accesses an
untrusted backend and mutable implementation. In a way, the approach also
borrows from monitoring-oriented programming [3] in that we are programming
the safe interface using monitoring techniques.

5 Conclusions

In this paper we have examined a spectrum of dynamic analysis techniques for
making smart contracts safer and more dependable. Although at the surface
level smart contracts appear to be normal software, however, there are a num-
ber of issues which result in standard runtime techniques to have to be adapted
in order to be useful in this context. Clearly, the domain makes static, compile-
time analysis even more attractive (or desirable) than for standard systems.
However, the sparse literature applying such techniques for smart contracts e.g.
[2,21], particularly for business-logic specifications indicates that, at least for
the time being, we have to depend on the lower hanging fruit dynamic analy-
sis provides. This brings its own challenges—perhaps most pertinent is that of
recovery from violations discovered at runtime. In the domain of runtime ver-
ification of general systems, the notion of healing has recently been explored
in [11], in which the authors classify the solutions into three similar classes as
found in our proposal: rollback, preventing further failures and compensation.
How these can be adapted for smart contracts is, however, the challenge we have
addressed in this paper.

By enriching smart contract programming languages with notions such as
checkpointing and compensations, we believe that one could alleviate handling
of such violations. Another major challenge is that of the immutability of smart
contracts, and the solution we are proposing in order to ensure that the system
works correctly but still allow the implementation to be modified follows the con-
clusions of other work [19], which argued for declarative as opposed to imperative
and operational approaches currently used on DLTs such as Ethereum.
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We are currently looking at identifying means of deploying many of the ideas
presented in this paper on real-world systems. Our tool ContractLarva has
already been applied on a number of smart contracts in order to deploy run-
time verification and recovery, but there are still various challenges left to be
addressed. It can be argued that our solution to resolve the immutability of
smart contracts by making them mutable while ensuring immutability of speci-
fications is nothing but pushing the problem one level up. However, we believe
that moving one level of abstraction up, ignoring most implementation details
results in lower risk of error. Furthermore, one can consider other solutions cur-
rently at the implementation level to support versioning of specifications (e.g.
allowing for a specification to be updated by consensus or a majority vote). It
will be interesting to see how such an approach would fare on large real-world
smart contracts.
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Abstract. Smart contracts enable mutually untrusted entities to inter-
act without relying on trusted third parties. Despite their potential,
repeated security concerns have shaken the trust in handling billions
of USD by smart contracts. To address this issue, we have developed
Securify, a scalable and fully automated security analyzer for Ethereum
smart contracts. A key technical insight behind the design of Securify
is that whenever a smart contract violates a security property, it often
also violates a simpler property that can be expressed on the contract’s
data-flow graph. To leverage this insight, Securify symbolically encodes
relevant control- and data-flow dependencies in stratified Datalog and
uses scalable Datalog solvers to derive key semantic facts about the con-
tract. Then, it inspects the inferred semantic facts to checks a set of
compliance and violation patterns, which capture sufficient conditions
for proving if a given security property holds or not.

Keywords: Smart contracts · Security analysis · Datalog

1 Introduction

Smart contracts are programs, typically written in Turing-complete languages,
which are deployed and executed on top of blockchains (such as Ethereum [9]).
As such, they enable mutually untrusted parties to engage in interactions that
go beyond basic trading of cryptocurrencies. A nontrivial challenge that must
be addressed before the wide-adoption of smart contracts is security: developers
often miss critical security bugs [1–5,10] in their smart contracts which, in turn,
lead to substantial financial losses. For example, in 2017, two security bugs in
a popular multi-signature wallet [5] allowed attackers to steal 30 million USD
and, resp., to freeze 280 million USD. To prevent such incidents in the future, it
is apparent that effective security checkers for smart contracts are needed.

Challenge. The main challenge in creating an effective security checker for
smart contracts is the Turing-completeness of the programming language,
which renders automated verification of arbitrary properties undecidable. Most
approaches for discovering issues in smart contracts today rely on generic testing
and symbolic execution methods. While useful in some settings, these approaches
c© Springer Nature Switzerland AG 2018
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can miss critical violations due to under-approximation. Yet, existing symbolic
solutions, such as Mythril [6] and Oyente [13], also produce false positives due
to the imprecise modeling of domain-specific elements [12].

Securify. To address the challenges of existing automated symbolic solutions,
Securify1 [14] relies on a novel domain-specific insight. Namely, it is often
possible to devise patterns expressed on the contract’s data-flow graph in a way
where a match of the pattern implies either a violation or satisfaction of the
original security property. For example, 91.9% of all calls in smart contracts
deployed on Ethereum can be proved free of the infamous DAO bug [3] by
matching a pattern stating that calls are not followed by writes to storage. The
reason why it is possible to establish this correspondence is that violations of the
original property in real-world contracts tend to often violate a simpler property
(captured by the pattern).

To leverage this insight, Securify uses two kinds of patterns that mirror a
given security property: (i) compliance patterns, which imply the property’s sat-
isfaction, and (ii) violation patterns, which imply its negation. To evaluate these
patterns on a specific contract, Securify symbolically encodes the dependence
graph of the contract in stratified Datalog [15] and leverages off-the-shelf scalable
Datalog solvers to efficiently (typically within seconds) analyze the code.

In the remained of this paper, we illustrate how Securify performs its anal-
ysis on a representative example. To read the full technical details of Securify,
we refer the reader to [14].

2 Example

contract Wallet {
address owner;
function init(address _owner) {

owner = _owner;
}
function withdraw(uint _amount) {

if (msg.sender == owner) {
owner.transfer(_amount);

}
}

}

Fig. 1. A wallet smart contract

In Fig. 1 we show the implementa-
tion of a wallet. The code is writ-
ten in Solidity [7], a popular high-level
language for writing Ethereum smart
contracts. We remark that this wal-
let is a simplified version of Parity’s
multi-signature wallet, which allowed
an attacker to steal 30 million worth
of USD in July 2017. The wallet has
a field owner, which stores the address
of the wallet’s owner. Further, the con-
tract has a function init, which takes
as argument an address _owner and ini-
tializes the field owner with it. This function is called by the constructor (not
shown in Fig. 1). Finally, the contract has a function withdraw, which takes as
argument an unsigned integer _amount. The function checks if the transaction
sender’s address (returned by msg.sender) equals that of the contract’s owner
(stored in the field owner). If this check succeeds, the function withdraw transfers

1 Securify is publicly available at https://securify.ch.

https://securify.ch
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_amount ether to the owner with the statement owner.transfer(_amount); other-
wise, no ether is transferred. The function withdraw ensures that only the owner
can withdraw ether from the wallet.

Vulnerability. The wallet shown in Fig. 1 has a critical security flaw: any
Ethereum user can call the function init and store an arbitrary address in the
field owner. We recall that a function call in Ethereum is made by sending a
transaction with the identifier of the function (e.g., init) along with the func-
tion’s arguments (e.g., an address _owner). An attacker can, therefore, steal all
ether stored in the wallet in two steps. First, the attacker calls the function init,
passing her own address as an argument. Second, the attacker calls the function
withdraw, passing as argument the amount of ether stored in the wallet.

Challenge. The underlying security problem that allows the attacker to steal
ether is that the sensitive field owner is universally writable by any Ethereum
user. This security issue mirrors a more general property [11] stipulating that
not all users may write to the field owner. This property cannot be checked by
observing a single trace (i.e., an execution of a single transaction). To show that
the owner field is universally writable, we need to prove that all users can send
a transaction that modifies the owner field, which is impractical due to the
enormous space of possible users (concretely, 2256 choices).

3 Security Analysis Using Stratified Datalog

In this section, we describe how Securify uses stratified Datalog to discover
the security vulnerability in the wallet example shown in Fig. 1. Given a smart
contract, Securify first extracts input facts from the contract’s code and uses
these as an input to a stratified Datalog program, which symbolically captures
important data- and control-flow dependencies of the contract, to derive relevant
semantic facts about the contract. Then, Securify uses the derived semantic
facts to check compliance and violation patterns that imply the satisfaction and,
respectively, the violation of a given security property.

3.1 Inferring Semantic Facts

We now describe the main steps performed by Securify to infer semantic facts.
In Fig. 2 we depict these steps for our wallet example.

Step 1: Decompile EVM Bytecode. The input to Securify is the Ethereum
Virtual Machine bytecode (EVM) of a smart contract. As a first step, Securify
decompiles the contract’s EVM bytecode into a stackless representation in static-
single assignment form (SSA). For example, for the stack expression push 0x04,
Securify introduces a local variable a and an assignment statement a = 0x04.
In addition to removing the stack, Securify identifies methods. For example,
the method ABI_00 shown in Fig. 2 corresponds to the method init of the wallet
contract shown in Fig. 1.
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push 0x04
dataload
push 0x08
jump
jumpdest
stop
jumpdest
push 0x00

...

EVM

1: a = 0x04
2: b = load(a)
3: ABI_00(b)
4: stop()

ABI_00(b)
5: c = 0x00
// write owner
6: sstore(c,b);

...

Decompiled code

assign(1,a,0x04)
follow(2,1)
varDep(b,a)
load(2,b,a)
follow(3,2)
follow(5,3)
assign(5,c,0x00)
varTag(a,const)
follow(6,5)
sstore(6,c,b)

...

Input facts

mayFollow(2,1)
mayFollow(3,1)

...
mayDepOn(a,const)
mayDepOn(b,const)
mayDepOn(b,load)

...

Derived facts

Fig. 2. Deriving semantic facts using stratified datalog

Step 2: Extract Input Facts. Next, Securify extracts input facts from the
decompile code. The input facts are of the form Instr(lab, res, args), where
Instr is an instruction name, lab is an instruction’s label, res is a variable stor-
ing the instruction result (if any), and args are variables given to the instruc-
tion as arguments (if any). For example, the assignment a = 0x04 at label 1 is
encoded to assign(1,a,0x04), and the sstore instruction at label 6 is encoded
to sstore(6,c,b). Also, for every two labels i and j whose instructions are con-
secutive in the CFG (either in the same basic block or in linked basic blocks),
Securify derives the input fact follow(i,j). For example, Securify derives
the input fact follow(2,1) for our wallet contract (shown in Fig. 2).

Step 3: Infer Semantic Facts Using Datalog. Using the input facts
described above, Securify derives two kinds of semantic facts: (i) flow-
dependency facts, which capture instruction dependencies according to the con-
tract’s control-flow graph (CFG), and (ii) data-dependency facts. The deriva-
tion of these facts is specified declaratively using stratified Datalog; we refer the
reader to [8] for an overview of Datalog. For example, Securify infers mayFollow

facts which capture whether there may exist an execution where two instructions
follow each other. These facts are derived with the following two Datalog rules:

mayFollow(X, Y) :- follow(X, Y)

mayFollow(X, Y) :- follow(X, Z), mayFollow(Z, Y)

Similarly, Securify infers mustFollow facts which capture that for all executions
of the contract two instructions must follow each other. Additionally, Securify
derives facts of the form mayDepOn(X,T), which capture that the value of a vari-
able X may depend on tag T (where T is either an instruction or a variable), and
facts of the form detBy(X,T), which captures that for different values of T the
value of X is different. For our example, Securify derives the fact mayDepOn(b,

load) because the value of the variable b depends on the load instruction (which
returns transaction data).
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Category Security property

Insecure coding Unrestricted write to storage
Unhandled exception
Missing input validation
Unrestricted contract self-destruction
Rounding due to division before multiplication
Unnecessary write to storage

Unsafe transfers Locked funds
Rounding affects the amount of transferred funds
Unrestricted transfer of funds

Unsafe inputs Unsafe dependence on gas information
Unsafe dependence on user input
Delegatecall dependent on user input
Unsafe call to untrusted contract

Transaction reordering Transactions affect the amount of transferred funds
Transactions affect the receiver of funds
Transactions affect the execution of fund transfer

Reentrancy issues Write to storage after constant-gas call
Write to storage after call with unrestricted gas

Fig. 3. Security properties supported by Securify. For details on the properties and
code examples, visit https://securify.ch.

3.2 Matching Security Patterns

To check a contract for a specific security property, Securify evaluates a set
of compliance and violation patterns defined over the inferred facts described
above. In Fig. 3, we list 18 security properties supported by Securify. Based
on the outcome of evaluating the patterns, Securify reports: (i) a violation,
if a violation pattern is matched; (ii) a compliance, if a compliance pattern
is matched; (iii) a warning, if not pattern is matched. Consider the write to
the field owner. This write is unrestricted as it allows any user to execute the
corresponding sstore instruction and write to field owner. To identify such viola-
tions, Securify checks a more general property, which stipulates that an sstore

instruction is restricted if for some offset Offset there is a user that cannot write
to it. Securify detects violations of this property by checking if the execution
of an sstore as well as the value of Offset do not depend on the user’s address
(returned by the instruction Caller). This entails that if a user can write to a
particular storage offset (e.g., a field) then any other user can also write to it,
thereby violating the property. To discover all sstore instructions that violate
this property, Securify uses the following Datalog rule:

unrestrictedWrite(Lab) :- sstore(Lab, Offset, _),

!mayDepOn(Lab, Caller),

!mayDepOn(Offset, Caller)

https://securify.ch
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For our example in Fig. 2, Securify infers the fact unrestrictedWrite(6), which
indicates that the sstore instruction at label 6 violates the property.

4 Concluding Remarks

We presented the key technical insights behind the design of Securify, a security
checker for Ethereum smart contracts. In contrast to other tools, Securify
leverages the domain-specific insight that violations of many real-world security
properties of smart contracts also violate simpler properties. To check the simpler
properties, Securify extracts semantic facts about the contract using existing
scalable solvers for stratified Datalog.

Impact. Since its public release, Securify has been extensively used by security
experts to perform audits of Ethereum smart contracts. Based on their feedback,
we have iteratively extended Securify to support other relevant security prop-
erties and to refine the security patterns (to reduce the number of warnings
issued by Securify). Our finding was that Securify was particularly helpful
in auditing larger contracts, where existing symbolic solutions tend to achieve
poor coverage. Overall, we believe Securify is a pragmatic and valuable point
in the space of analyzing smart contracts due to its careful balance of scalability,
guarantees, and precision.
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Abstract. Smart contracts—shared stateful reactive objects stored on
a blockchain—are widely employed nowadays for mediating exchanges
of crypto-currency between multiple untrusted parties. Despite a lot of
attention given by the formal methods community to the notion of smart
contract correctness, only a few efforts targeted their lifetime properties.
In this paper, we focus on reasoning about execution traces of smart
contracts. We report on our preliminary results of mechanically verifying
some of such properties by embedding a smart contract language into
the Coq proof assistant. We also discuss several common scenarios, all
of which require multi-step blockchain-based arbitration and thus must
be implemented via stateful contracts, and discuss possible temporal
specifications of the corresponding smart contract implementations.

1 Introduction

Smart contracts are stateful reactive objects that are stored on a blockchain and
serve as mediators for multi-party fund-transferring computations. The last three
years have seen a proliferation of smart contracts implementing various decen-
tralised applications (Dapps) on top of the Ethereum blockchain [27]. During
this period of ongoing early adoption, the smart contract technology provided
by Ethereum has witnessed a number of serious hurdles, manifested by various
safety and security vulnerabilities in the deployed implementations and result-
ing in the losses of USD millions’ worth of cryptocurrency [2,9]. Since, once
deployed to the blockchain, a contract’s implementation cannot be amended,
the challenge of identifying the contracts’ “good” and “bad” behaviours at the
stage of development becomes particularly acute.

In order to ensure the absence of unwelcome outcomes, it is important to be
able to reason about safety and liveness of contract executions across multiple
transactions and about its possible interactions with other contracts or users.
One representative high-level safety issue, manifested in multi-transactional con-
tract executions with oracles, is a presence of race conditions, that might leave a
contract in an inconsistent state due to unaccounted multiple parties interacting
with it in different moments of time, commonly happening while communicating
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 323–338, 2018.
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with external oracles [23]. Improperly incentivizing the parties taking different
roles in a contract’s execution might lead to denial-of-service leaving funds per-
manently blocked—a violation of an implicitly assumed liveness property (mean-
ing, informally, that eventually the funds can be retrieved by a well-behaved
party) [3,18]. Detecting such contract instances for the sake of informing the
developers, before they are deployed, requires techniques for specifying what is
considered to be correct contract behaviours, and whether a given implementa-
tion always adheres to this specification.

In this paper, we make an observation that many behavioural properties of
smart contracts that are considered “natural” can be only captured in reference
to their multi-step executions, by defining relations on a contract’s state in dif-
ferent moments of time, thus, corresponding to well-studied temporal properties
of programs and state-transition systems [14,21]. We substantiate this claim and
demonstrate the utility of temporal reasoning in application to smart contracts
by using Scilla, a recently proposed principled programming model for rep-
resenting stateful contracts as communicating state-transition systems [24], to
express simplified implementations of several classes of popular Dapps. We then
sketch the execution semantics of Scilla smart contracts and use it to define
the notion of contract execution traces. Using this trace-based semantics, we
then state a number of temporal properties, capturing the notion of particular
classes of “well-behaved” smart contracts. Finally, we report on some prelimi-
nary results of mechanising the temporal reasoning by encoding Scilla and its
semantics into Coq proof assistant [7].

In this manuscript, we do not attempt to design a new set of temporal logic
connectives for specifying contract properties. Instead, we demonstrate how the
natural properties of execution traces can be encoded and proved by means of
shallow embedding into Coq’s higher-order logic [8], leaving the formal descrip-
tion of the standalone temporal logic for smart contracts as our future work.

2 Overview and Motivation

Let us consider a fragment of the infamous BlockKing contract [1], taken directly
from the Ethereum mainnet.1 Its code in Solidity [26] is presented in Fig. 1.
This contract has been a popular testbed for several analyses for smart contracts
recently, due to its flawed implementations, prone to concurrency errors [23],
commutativity violations [5], and dynamically-determined resource consump-
tion [6]. The defining feature of this contract is interaction with an off-chain ora-
cle service Oraclize by means of calling the oraclize_query() function in line 303,
so that an oracle can return an expected result by calling the __callback() func-
tion in line 306. The crux of the problematic behaviour is in the three mutable
fields of the BlockKing contract: warrior, warriorGold, and warriorBlock, all of
which, after having been set by call to enter() in a transaction tx1, can be later
overriden by a transaction tx2 of a competing client of the same contract when
executed concurrently.
1 At the moment of this writing, the contract still holds approximately 0.043 ETH.
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In this scenario, an oracle’s response via __callback() might return the value
for the value “meant” for the values of the fields set by tx1 that are no longer
present (since they are overriden by tx2), whereas the sender of tx2 will enjoy
the double reward, “cashing out” both the results of its own game and also when
doing so “on behalf” of tx1 sender’s.

293 function enter() {
294 // 100 finney = .05 ether minimum payment otherwise refund payment and stop contract
295 if (msg.value < 50 finney) {
296 msg.sender.send(msg.value);
297 return;
298 }
299 warrior = msg.sender;
300 warriorGold = msg.value;
301 warriorBlock = block.number;
302 bytes32 myid =
303 oraclize_query(0,"WolframAlpha","random number between 1 and 9");
304 }
305
306 function __callback(bytes32 myid, string result) {
307 if (msg.sender != oraclize_cbAddress()) throw;
308 randomNumber = uint(bytes(result)[0]) - 48;
309 process_payment();
310 }
311
312 function process_payment() {

...

339 if (singleDigitBlock == randomNumber) {
340 rewardPercent = 50;
341 // If the payment was more than .999 ether then increase reward percentage
342 if (warriorGold > 999 finney) {
343 rewardPercent = 75;
344 }
345 king = warrior;
346 kingBlock = warriorBlock;
347 }

Fig. 1. Fragments of the smart contract implementing the BlockKing game.

While multiple ways to identify this problem exist, by employing either con-
currency [23], resource [6] or commutativity reasoning [5], we consider this exam-
ple as an opportunity to provide a “morally correct” specification to the func-
tionality of this game-implementing contract that has to do with identifying the
reward by means of taking a random input from an oracle, and transferring this
reward to the corresponding player. One way to state the desired property semi-
formally in the style of Lamport [15] is by means of demanding certain causality
between the two events in the contract’s execution history: entering a game and
executing a callback. This can be done as follows:

Property 1 (Correctness of BlockKing payment processing). Any call to enter()

from a sender account a sets the value of the field warrior to a, so when the
next call to __callback() by an oracle takes place, the value of warrior is still a.

Obviously, for the given implementation in Fig. 1 does not hold, as they can
be violated in the presence of the concurrent transactions. In order to ensure this
property, the contract can be fixed by, for instance, enhancing it with a locking
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discipline, prohibiting other players to enter the game before the callback is
executed, with the obvious drawback of such a solution that would make the
contract prone to DoS attacks. A more clever approach would require one to
engineer a register of the players who currently have entered the game but have
not got their payments processed.

While fixing the BlockKing contract is not the topic of this paper, this exam-
ple should make apparent the importance of temporal properties of smart con-
tract implementations, relating the effects of events (such as receiving requests
and sending funds) taking place at certain moments of time, as well as the
contract’s state at those moments. However, even writing such temporal spec-
ification formally for Solidity or EVM contracts is far from trivial, due to (a)
intricate control-flow patterns, (b) dependence of one contract’s logic on another
contract’s state and (c) the presence of the implicit execution stack.

To address this specification challenge, we designed of a programming frame-
work for smart contracts and an accompanying semantic formalism that separate
and streamline the computation/communication aspects of contracts and allow
for natural specifications and verification of safety and liveness properties.

3 The Language and Semantic Model

In order to enable formal reasoning about complex behaviour of stateful smart
contracts, we designed Scilla: a novel intermediate-level programming language
for smart contracts [24]. By “intermediate” we mean that we do not expect most
programmers to write in Scilla directly, any more than most programmers
write in x86 assembly directly. Instead, the typical path will be to compile a
higher-level language to Scilla and then further to an executable bytecode,
very much in a tradition of optimising [20] and verified compilers [16]. Scilla
aims to achieve both expressivity and tractability, while enabling rigorous formal
reasoning about contract behavior, by adopting the following fundamental design
principles, based on separation of programming concerns:

Separation Between Computation and Communication. Contracts in Scilla are
structured as communicating automata: every in-contract computation (e.g.,
changing its balance or computing a value of a function) is implemented as
a standalone, atomic transition, i.e., without involving any other parties. When-
ever such involvement is required (e.g., for transferring control to another party),
a transition would end, with an explicit communication, by means of sending and
receiving messages. The automata-based structure makes it possible to disentan-
gle the contract-specific effects (i.e., transitions) from blockchain-wide interac-
tions (i.e., sending/receiving funds and messages), thus providing a clean rea-
soning mechanism about contract composition and invariants.

Separation Between Effectful and Pure Computations. Any in-contract compu-
tation happening within a transition has to terminate, and have a predictable
effect on the state of the contract and the execution. In order to achieve this, we
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draw inspiration from functional programming with effects, drawing a distinction
between pure expressions (e.g., expressions with primitive data types and maps),
impure local state manipulations (i.e., reading/writing into contract fields) and
blockchain reflection (e.g., reading current block number). By carefully designing
semantics of interaction between pure and impure language aspects, we ensure a
number of foundational properties about contract transitions, such as progress
and type preservation, while also making them amenable to interactive and/or
automatic verification with standalone tools.

Structuring contracts as communicating automata provides a computational
model, known as continuation-passing style (CPS), in which every call to an
external function (i.e., another contract) can be done as the absolutely last
instruction. That is, programming in Scilla naturally forces the programmer to
express the computations with the contract as standalone transitions, performed
atomically, i.e., without the intermediate interaction with other contracts and
relying only on the received messages.

1 contract Crowdfunding
2 (owner : Address,
3 max_block : Uint32,
4 goal : Uint32)
5
6 (* Mutable state description *)
7 field backers : Map Address Uint32 =
8 Emp {Address Uint32}
9 field funded : Bool = False

10
11 (* Transition 1: Donating money *)
12 transition Donate
13 (sender : Address, value : Uint32,
14 tag : String)
15 (* Identifying this transition *)
16 bs ← backers;
17 blk ← & BLOCKNUMBER;
18 nxt_block = blk + 1;
19 if max_block ≤ nxt_block
20 then send {to : sender, amount : 0,
21 tag : "main",
22 msg : "deadline_passed"}
23 else
24 if not (contains(bs, sender))
25 then
26 bs1 = put(bs, sender, value);
27 backers := bs1;
28 send {to : sender, amount : 0,
29 tag : "main", msg : "ok"}
30 else
31 send {to : sender, amount : 0,
32 tag : "main",
33 msg : "already_donated"}

34 (* Transition 2: Sending the funds to the owner *)
35 transition GetFunds
36 (sender : Address, value : Uint32, tag : String)
37 blk ← & BLOCKNUMBER;
38 bal ← balance;
39 if (max_block < blk) && (sender == owner)
40 then if goal ≤ bal
41 then
42 funded := True;
43 send {to : owner, amount : bal,
44 tag : "main", msg : "funded"}
45 else send {to : owner, amount : 0,
46 tag : "main", msg : "failed"}
47 else send {to : owner, amount : 0, tag : "main",
48 msg : "too_early_to_claim_funds"}
49
50 (* Transition 3: Reclaim funds by a backer *)
51 transition Claim
52 (sender : Address, value : Uint32, tag : String)
53 blk ← & BLOCKNUMBER;
54 if blk ≤ max_block
55 then send {to : sender, amount : 0, tag : "main",
56 msg : "too_early_to_reclaim"}
57 else bs ← backers;
58 bal ← balance;
59 if (not (contains(bs, sender))) || funded ||
60 goal ≤ bal
61 then send {to : sender, amount : 0,
62 tag : "main",
63 msg : "cannot_refund"}
64 else
65 v = get(bs, sender);
66 backers := remove(bs, sender);
67 send {to : sender, amount : v, tag : "main",
68 msg : "here_is_your_money"}

Fig. 2. Crowdfunding contract in idealised Scilla: state and transitions.
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3.1 Syntax of Idealised Scilla

We present our examples in idealised Scilla that has a richer syntax than
the original one. For instance, “vanilla” Scilla does not feature if-then-else

statement, and allows for expressions only in A-Normal Form [22].2

Figure 2 shows a Scilla implementation of a crowdfunding campaign à
la Kickstarter. In a crowdfunding campaign, a project owner wishes to raise
funds through donations from the community. In the specific example modelled
here, we assume that the owner wishes to run the campaign for a certain pre-
determined period of time. The owner also wishes to raise a minimum amount
of funds without which the project can not be started. The campaign is deemed
successful if the owner can raise the minimum goal. In case the campaign is
unsuccessful, the donations are returned to the project backers who contributed
during the campaign. The design of the Crowdfunding contract is intentionally
simplistic (for example, it does not allow the backers to change the amount of
their donation), yet it shows the important features of Scilla, which we elabo-
rate upon.

The contract is parameterised with three values that will remain immutable
during its lifetime (lines 2–4): an owner account address owner of type Address, a
maximal block number max_block (of type Uint32, isomorphic to natural numbers
bound by 32-bit depth), indicating a deadline, after which no more donations
will be accepted from backers, and a goal (also of type Uint32) indicating the
amount of funds the owner plans to raise. The goal is not a hard cap but rather
the minimum amount that the owner wishes to raise. What follows is the block
of mutable field declarations (lines 7–9). The mutable fields of the contract are
the mapping backers (of type Map Address Uint32), which will be used to keep
track of the incoming donations and is initialised with an explicitly typed empty
map literal Emp {Address Uint32}, and a mutable boolean flag funded that indi-
cates whether the owner has already transferred the funds after the end of the
campaign (initialised with False). In addition to these fields, any contract in
Scilla has an implicitly declared mutable field balance (initialised upon the
contract’s creation), which keeps the amount of funds held by the contract.

The logic of the contract is implemented by three transitions: Donate,
GetFunds, and Claim. The first one serves for donating funds to a campaign
by external backers; the second allows the owner to transfer the funds to its
account once the campaign is ended and the goal is reached; the final one makes
it possible for the backers to reclaim their funds in the case the campaign was
not successful.

One can think of transitions as methods or functions in Solidity contracts.
What makes them different from functions, though, is the atomicity of the com-
putation enforced at the language level. Specifically, each transition manipulates
only with the state of the contract itself, without involving any other contracts
or parties. All interaction with the external world, with respect to the contract,

2 For the full specification of Scilla syntax and runnable contract examples, please,
refer to http://scilla-lang.org.

http://scilla-lang.org
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happens either at the very start of a transition, when it is initiated by an external
message, or at the end, when a message (or messages), possibly carrying some
amount of funds, can be emitted and sent to other parties.

Each transition can be invoked by a suitable message, which should provide
a corresponding tag as its component to identify which transition is triggered.
It is enforced at the compile time that tags define transitions unambiguously.
All other components of the message, relevant for the transition to be executed,
are declared as the transition’s parameters. For instance, the transition Donate

expects the incoming message to have at least the fields sender, value, and tag.
Each transition will only fire if an incoming message contains an explicit tag—a
string with the contract transition’s name, e.g., code “Donate”, which uniquely
identifies the code to run upon receiving it.

Every transition’s last command, in each of the execution branches, is either
sending a set of messages, or simply returning. Messages are encoded as records
{...} of name : value entries, including at least the destination address (to),
an amount of funds transferred (amount) and a default tag of the function to
be invoked (tag). All transitions of the Crowdfunding end by sending a message
to either the sender of the initial request or the contract’s owner. For example,
depending on the state of the contract and the blockchain, the transition GetFund

might end up in either sending a message with its balance to the contract’s owner,
if the campaign has succeeded and the deadline has passed, or zero funds with
a corresponding text otherwise.

The state of the contract, represented by its fields, is mutable: it can be
changed by the contract’s transitions. A body of a transition can read from the
fields, assigning the result to immutable stack variables using the specialised syn-
tax x ←f;, where f is a field name and x is a fresh name of a local variable (e.g.,
lines 16 and 57). In a similar vein, a body of transition can store a result of a
pure expression e into a contract field f using the syntax f := e; (as in lines 28
and 66). The dichotomy between pure expressions (coming with correspond-
ing binding form x = e; to an immutable variable x) and impure (“effectful”)
commands manipulating the field values, is introduced on purpose to facilitate
logic-based verification of contracts, reasoning about the effect of a transition to
the contract’s state, while abstracting away from evaluation of pure expressions.

In addition to reading/writing contract state, each transition implementation
can use read-only introspection on the current state of the blockchain using the
“deep read” operation x ←& BF;, where BF is a name of the corresponding aspect
of the underlying blockchain state, e.g., BLOCKNUMBER—a number of the block to
which the transiation is included. For example, the Crowdfunding contract reads
the number of a current block in lines 17 and 37.

3.2 Semantics

We are developing Scilla hand-in-hand with the formalisation of its semantics
and its embedding into the Coq proof assistant [7].3 We now briefly outline the
3 The mechanised embedding of a subset of Scilla into Coq is publicly available for

downloads and experiments: https://github.com/ilyasergey/scilla-coq.

https://github.com/ilyasergey/scilla-coq
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key components of our formalisation of the trace semantics of Scilla contracts.
We will not explain the entire syntax of our Coq encoding, for which we refer
the reader to the accompanying technical report [24].

(* In the following definition, a contract automata C is implicit and fixed. *)
Definition step_prot (pre : cstate S) (bc : bstate) (m : message) : step :=
let CState id bal s := pre in
let (s’, out) := apply_transition C id bal s m bc in
let bal’ := if out is Some m’

then (bal + val m) - val m’ else bal in
let post := CState id bal’ s’ in
Step pre post out.

(* Map a schedule into a trace *)
Fixpoint execute (pre : cstate S) (sc: schedule) : trace :=
if sc is (bc, m) :: sc’
then let stp := step_prot pre bc m in stp :: execute (post stp) sc’
else [::].

Definition state0 := CState (acc C) (init_bal C) (init_state C).
Definition execute0 sc := if sc is _ :: _ then execute state0 sc else [:: Step state0 state0 None].

Fig. 3. Contract traces and semantics.

Figure 3 provides Coq definitions of a small-step operational semantics
step_prot of a contract C by means of executing, for the contract pre-state pre,
in the blockchain state bc, an applicable transition, which is uniquely determined
by an incoming message m, via apply_transition, and changing the contract’s
state and balance accordingly. The sequence of such changes contributes for a
particular schedule sc of incoming messages contributes an execution traces, as
defined by the function execute.

3.3 Higher-Order Trace Predicates

With the operational semantics and the definition of traces at hand, we can now
proceed to defining trace predicates for specifying relevant contract properties.

We first define a predicate I on a contract state (denoted, in Coq terms, by a
“function type” cstate S → Prop from the type of states cstate S to propositions
Prop) to be a safety property if it holds at any state of a contract, that can be
obtained as a result of interaction between the contract and its environment,
starting from the initial state. The following Coq definition states this formally:

Definition safe (I : cstate S → Prop) : Prop :=

(* For any schedule sc, pre/post states and out... *)
∀ sc pre post out,

(* s.t. triple Step (pre, post, out) is in the sc-induced trace *)
Step pre post out ∈ execute0 sc →
(* both pre and post satisfy I *)
I pre ∧ I post.

A safety property means some universally true correctness condition holds
at any contract’s state, which is reachable from its initial configuration via any
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schedule sc. Typical examples of safety properties of interest include: “a con-
tract’s balance is always positive”, “a contract’s balance equals the sum of bal-
ances of its contributors”, or “at any moment no money is blocked on the con-
tract”. The definition above thus defines safety by universally quantifying over
all schedules sc, as well as step-triples Step pre post out that occur in a trace,
obtained by following sc.

As the next example, let us consider a temporal connective since_as_

long p q r, which means the following: once the contract is in a state st, in
which (i) the property p is satisfied, each state st’ reachable from st (ii) satis-
fies a binary property q st st’ (with respect to st), as long as (iii) every element
of the schedule sc, “leading” from st to st’ satisfies a predicate r.

The corresponding Coq encoding of the since_as_long connective is given
below. We first specify reachability between states st and st’ via a schedule sc

as the state st’ being the last post-state in a trace obtained by executing the
contract from st via sc:

Definition reachable (st st’ : cstate S) sc :=

st’ = post (last (Step st st None) (execute st sc)).

We next employ the definition of reachability to define the since connective,
which is parameterised by predicates p, q and r. The premises (i)–(iii) are out-
lined in the corresponding comments in the following Coq code:

(* q holds since p, as long as schedule bits satisfy r. *)
Definition since_as_long (p : cstate S → Prop)

(q : cstate S → cstate S → Prop)

(r : bstate * message → Prop) := ∀ sc st st’,

(* (i) st satisfies p *)
p st →
(* (ii) st’ is reachable from st via sc *)
reachable st st’ sc →
(* (iii) any element b of sc satisfies r *)
(∀ b, b ∈ sc → r b) →
(* (conclusion) q holds over st and st’ *)
q st st’.

Why this logical connective is useful for reasoning about contract correctness?
As we will show further, it makes it possible to concisely express “preservation”
properties relating contract balance and state, so that they hold as long as certain
actions do not get triggered by some of the contract’s users.

4 Specifying and Verifying Trace Properties

We now show how the combination of notions of safety and temporal properties
presented in Sect. 3.3 allows us to verify a contract, proving that all its behaviours
satisfy a certain complex interaction scenario.4 Specifically, for our Crowdfunding
example, let us prove that, once a donation d has been made by a backer with an
4 All definitions, theorems and proofs are in the accompanying Coq development.
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account address b, given that the campaign eventually fails, the backer b will be
always able to get their donation d back. This can be obtained as the conjunction
of the following three properties embodying both safety and temporal reasoning.

Property 1 (No leaking funds). The contract’s accounted funds do not decrease
unless the campaign has been funded or the deadline has expired.

In our Coq formalisation, this property can be captured via the following
definition balance_backed and the accompanying safety theorem, stating that is
always holds:

Definition balance_backed st : Prop :=

(* If the campaign has not been funded... *)
¬ funded (state st) →
(* the contract has enough funds to reimburse all. *)
sumn (map snd (backers (state st))) <= balance st.

For an arbitrary contract state st, it asserts that if the funded flag is still false
in st (i.e., ¬funded (state st)), then the balance of the contract (balance st)
is at least as large as the sum of all donations made by the recorded backers
(sumn (map snd (backers (state st)))).

Theorem no_leaking_funds : safe balance_backed.

The second property, which is temporal and it relates several states during
the contract’s lifetime is informally stated as follows:

Property 2 (Donation record preservation). The contract preserves records of
individual donations by backers, unless they interact with it.

To specify this property and state the corresponding theorem we rely on the
temporal connective since_as_long defined above and state that, once a backer
made a donation, the record of it is not going to be lost by the contract, as long
as the backer makes no attempt to withdraw its donation.

(* Contribution d of a backer b is recorded in the field ’backers’. *)
Definition donated b (d : value) st := get (backers (state st)), b) == d.

(* b doesn’t claim its funding back *)
Definition no_claims_from b (q : bstate * message) := sender q.2 != b.

Theorem donation_record_preservation (b : address) (d : value):

since_as_long c (donated b d)

(fun _ s’ ⇒ donated b d s’)

(no_claims_from b).

By now we know that the contract does not lose the donated funds and keeps
the backer records intact. Now we need the last piece: the proof that if a contract
is not funded, and the campaign has failed (deadline has passed and the goal has
not been reached), then any backer with the corresponding record can eventually
get the donation back, hence the following property:
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Theorem can_get_refund id b d st bc:

(* (a) The backer b has donated d, so the contract holds
that record in its state *)

donated b d st →
(* (b) The campaign has not been funded. *)
¬ funded (state st) →
(* (c) Balance is small: not reached the goal. *)
balance st < (get_goal (state st)) →
(* (d) Block number exceeds the deadline. *)
get_max_block (state st) < block_num bc →
(* (conclusion) Backer b can get their donation back. *)
∃ (m : message),

sender m == b ∧
out (step_prot c st bc m) = Some (Msg d id b 0 ok_msg).

Fig. 4. A backer can claim back her funds if the campaign fails.

Property 3 (The backer can get refunded). If the campaign fails, the backers can
eventually get their refund.

We state the property of interest as theorem can_get_refund in Fig. 4. As
its premises (a)–(d), the theorem lists all the assumptions about the state of
the contract that are necessary for getting the reimbursement. The conclusion
is somewhat peculiar: it expresses the possibility to claim back the funds by
postulating the existence of a message m, such that it can be sent by a backer
b, and the response will be a message with precisely d funds in it, sent back to
b. The theorem, whose proof is only 10 lines of Coq, formulates the property as
one single-step, yet its statement can be easily shown to be a safety property, as
it is, indeed, preserved by the transitions, and, after the funds are successfully
claimed for the first time, the premise (a) of the statement is going to be false,
hence the property will trivially hold.

Properties 1–3 deliver the desired correctness condition of a contract: once
donated money can be claimed back in the case of a failed campaign. It is indeed
not the only notion of correctness that intuitively should hold over this particular
contract, and by proving it we did not ensure that the contract is “bug-free”. For
instance, in our study we focused on backers only, while another legit concern
would be to formally verify that the contract’s owner will be able transfer the
cumulative donation to their account in the case if the campaign is successful.

5 More Temporal Properties of Common Contracts

We now show two more stateful smart contracts, which commonly occur on
Ethereum blockchain, but implemented in Scilla, informally outlining temporal
properties of interest one should aim to prove over their implementations.
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1 contract SimpleAuction(
2 auctionStart: Uint32,
3 biddingTime: Uint32,
4 beneficiary: Address
5 )
6
7 field ended: Bool = False
8 field highestBidder: Address = 0
9 field highestBid: Uint32 = 0

10 field pendingReturns : Map Address Uint32 =
11 Emp {Address Uint32}
12
13 (* Transition 1: bidding *)
14 transition Bid (sender : Address,
15 value : Uint32, tag : String)
16 blk ← & BLOCKNUMBER;
17 end = auctionStart + biddingTime;
18 after_end = end + 1;
19 e ← ended;
20 if after_end ≤ blk || e
21 then
22 send {to : sender, amount : 0,
23 tag : "main", msg : "late_to_bid"}
24 else
25 hb ← highestBid;
26 if value ≤ hb
27 then
28 send {to : sender, amount : 0,
29 tag : "main", msg : "bid_too_low"}
30 else
31 hbPrev ← highestBidder;
32 prs ← pendingReturns;
33 b = contains(prs, hbPrev);
34 prs1 = b ?
35 let pr = get(prs, hbPrev) in
36 let hs1 = pr + highestBid in
37 put(prs, hbPrev, hs1) :
38 put(prs, hbPrev, highestBid);
39 pendingReturns := prs1;
40 highestBidder := sender;
41 highestBid := value;
42 send {to : sender, amount : 0,
43 tag : "main", msg : "bid_accepted"}

44 (* Transition 2: claiming money back *)
45 transition Withdraw
46 (sender : Address,
47 value : Uint32,
48 tag : String)
49 prs ← pendingReturns;
50 b = contains(prs, hbsender);
51 if b
52 then
53 let pr = get(prs, sender) in
54 let prs1 = remove(prs, sender) in
55 pendingReturns := prs1;
56 send {to : sender, amount : pr,
57 tag : "main", msg : "take_your_money"}
58 else
59 send {to : sender, amount : 0, tag : "main",
60 msg : "nothing_to_withdraw"}
61
62 (* Transition 3: auction ends *)
63 transition AuctionEnd
64 (sender : Address,
65 value : Uint32, tag : String)
66 blk ← & BLOCKNUMBER;
67 e ← ended;
68 t1 = auctionStart + biddingTime;
69 t2 = blk ≤ t1;
70 t3 = not e;
71 t4 = t2 || t3;
72 if t4
73 then
74 send {to : sender, amount : 0,
75 tag : "main", msg : "auction_not_over"}
76 else
77 ended := True;
78 hb ← highestBid;
79 send {to : beneficiary, amount : hb,
80 tag : "main", msg : "highest_bid"}

Fig. 5. An Auction contract in idealised Scilla.

5.1 Properties of Auctions

Figure 5 shows an implementation of a simple auction in Scilla. Its parameters
include the starting block auctionStart, a number of blocks biddingTime for
which it is open for bidding, as well as the address of the beneficiary, to which
the funds are going to be transferred once the bidding is closed. The mutable
fields record the fact whether the auction has ended, the latest highestBidder,
their highestBid as well as a mapping of the pending returns, to be reclaimed by
bidders who no longer offer the highest bid, but have not yet been reimbursed.

The contract features three transitions. The first one, Bid allows anyone
to bid for winning in the auction. In case of a higher new bid, the previous
highestBidder is replaced, simultaneously getting a record in pendingReturns, so
they could claim their overall bid amount later. The second transition Withdraw

makes it possible for any previous bidder (who is no longer the highest one) to
reclaim the amount of all their previous bids in one transfer. Finally, the transi-
tion AuctionEnd allows the beneficiary to receive the amount of the highest bid,
once the auction has finished.

Even though we encoded this contract in Scilla, we have not formalised and
verified any of its properties as we did for Crowdfunding in the previous section.5

5 That is, there might be bugs in the code, and we invite the reader to find them!
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The goal of this smart contract programming exercise is, thus, to formulate the
desired properties and assess their adequacy. We suggest the following temporal
properties for the simple auction contract:

P1. The balance of SimpleAuction should be greater or equal than the sum of
the highestBid and values of all entries in pendingReturns.

P2. For any account a, the value of the corresponding entry in pendingReturns

(if present) should be equal to the sum of values of all transfers a has made
during its interaction with the contract.

P3. An account a, which is not the higher bidder, should be able to retrieve the
full amount of their bids from the contract, and do it exactly once.

Together, a combination of these properties ensure that the contract is not
“prodigal”, i.e., does not dispense its funds frivolously to the parties who have
no right to claim them, neither that it is “greedy”, i.e., it does not lock funds
forever, so they can be always retrieved [18] (Fig. 6).

1 contract RockPaperScissors (
2 player1: Address,
3 player2: Address,
4 owner: Address
5 )
6
7 field p1Choice : String = ""
8 field p2Choice : String = ""
9 field payoffMatrix :

10 Map String (Map String Uint32) =
11 ... (* Omitted for brevity *)
12
13 transition choicePlayer1 (
14 sender: Address,
15 value: Uint32,
16 tag: String,
17 choice: String)
18 if let b1 = tag == "pp1" in
19 let b2 = sender == player1 in
20 b1 && b2
21 then
22 pc ← p1Choice;
23 pm ← payoffMatrix;
24 if (pc == "") && contains(pm, pc)
25 then
26 p1Choice := choice;
27 send {to : sender, amount : 0,
28 tag : "main", msg : "true"}
29 else
30 send {to : sender, amount : 0,
31 tag : "main", msg : "false"}
32 else
33 send {to : sender, amount : 0,
34 tag : "main", msg : "false"}

39 (* choicePlayer2 is similar *)
40
41 transition determineWinner (
42 sender: Address,
43 value: Uint32,
44 tag: String)
45 pm ← payoffMatrix;
46 pc1 ← p1Choice;
47 pc2 ← p2Choice;
48 if not ((pc1 == "") || (pc2 == ""))
49 then
50 let p1cm = get(pm, pc1) in
51 let winner = get(p1cm, pc2) in
52 bal ← balance;
53 if winner == 1
54 then
55 send {to : player1, amount : bal,
56 tag : "main", msg : "Congrats, P1"}
57 else
58 if winner == 2
59 then
60 send {to : player2, amount : bal,
61 tag : "main", msg : "Congrats, P2"}
62 else
63 send {to : owner, amount : bal,
64 tag : "main", msg : "Congrats, Owner"}
65 else
66 send {to : sender, amount : 0,
67 tag : "main", msg : "Not determined"}

Fig. 6. A simplistic Rock-Paper-Scissors contract in idealised Scilla.

5.2 Properties of Multi-party Games

The last contract we consider implements a version of the Rock-Paper-Scissors
game and is adapted from the experience report by Delmolino et al. [10]. To keep
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things simple, in this implementation, we do not address a known vulnerability
allowing one of the parties to cheat, once they see a result submitted by the
competition. The contract implementation is parameterised with identities of
player1 and player2, as well as the contract’s owner. The payoffMatrix encodes
the outcome of the game depending on the results submitted by both player1

and player2, allowing to unambiguously determine the winner. The transition
choicePlayer1 allows Player 1 to submit their value; choicePlayer2 is similar and
is, therefore, omitted. The transition determineWinner can be invoked by anyone
and determines a winner based on the payoff matrix with a twist: if the players
submitted equal values, the award goes to the contract’s owner.

What can we specify about this game? We suggest the following properties:

P1. No other party besides player1, player2, or owner can be awarded the prize,
which is equal to the contract’s balance remaining constant before then.

P2. Each player can only submit their non-trivial choice once, and this choice
will have to be a key from payoffMatrix in order to be recorded in the
corresponding contract field.

As noticed before, we cannot express a property that would prevent either player
from cheating, given that the values of the fields are public, since this property
would not hold for this implementation. However, we envision that in a fixed
version of the contract [10], one can state it using a knowledge argument over
the prefix of an execution history observed so far [12].

6 Related Work

Temporal reasoning about smart contracts has not received much attention to
date, but we expect it some to become a popular research direction in the formal
methods community. Our proposal on Scilla [24] was amongst the first one to
emphasize the state transition system-like nature of smart contract in order
to facilitate reasoning about their behaviours, safety and temporal properties.
Other programming language proposals along the same lines of thinking are
Bamboo [4] and Obsidian [19]. That said, none of those languages has been
used to provide a framework for formal reasoning about contract executions.

The recently presented tool FSolidM [17] proposes a high-level modelling
framework for smart contracts based on state automata, targeting verification
of automata properties at the level of a model, rather than executable code.

The importance of being able to detect smart vulnerabilities, arising in from
violating safety and trace properties, has been realised in the blockchain com-
munity, and several automated tools have been recently released to tackle this
challenge. Amongst the most related to the ideas we discussed here, the tool
by Grossman et al. [11] implements a dynamic analysis of execution traces of
smart contracts with the goal to detect DAO-like vulnerabilities [9], manifested
by ill-formed reentrancy patterns [25]. Zeus by Kalra et al. [13] checks contract
source for user-defined safety properties; it does not address temporal properties,
though. The closest to our proposal is Maian by Nikolic et al. [18]. The tool
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provides a static analysis for detecting bugs, violating certain trace properties,
which are expressed as instance of our predicate since_as_long (cf. Sect. 3.3) for
specific precondition p, side-condition r, and a postcondition q.

7 Conclusion

In this position paper we outlined some new avenues for applications of formal
methods for reasoning about temporal properties of smart contracts. We pre-
sented a verification framework, based on the Scilla smart contract program-
ming language, and sketched a number of critical properties for commonly used
smart contracts. We believe that our observations will stimulate research, and
allow effective reuse of existing results, tools, and insights for formally specifying
and verifying applications built on top of a distributed ledger.
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Abstract. Implementing smart contracts to automate the performance
of high-value over-the-counter (OTC) financial derivatives is a formidable
challenge. Due to the regulatory framework and the scale of financial
risk if a contract were to go wrong, the performance of these contracts
must be enforceable in law and there is an absolute requirement that
the smart contract will be faithful to the intentions of the parties as
expressed in the original legal documentation. Formal methods provide
an attractive route for validation and assurance, and here we present
early results from an investigation of the semantics of industry-standard
legal documentation for OTC derivatives. We explain the need for a
formal representation that combines temporal, deontic and operational
aspects, and focus on the requirements for the temporal aspects as derived
from the legal text. The relevance of this work extends beyond OTC
derivatives and is applicable to understanding the temporal semantics of
a wide range of legal documentation.

Keywords: Smart contract · Distributed ledger · Finance
Semantics · Temporal

1 Introduction

Current research on smart contracts includes a range of use cases, from straight-
forward automation of relatively simple and relatively low-value business pro-
cesses to the automation of large and complex legal agreements that have
extremely high value and may last for decades. The automation of OTC deriva-
tives contracts lies at the latter end of that range, and substantial research and
development in this area have been occurring within universities, investment
banks, law firms and financial services trade associations for several years.

Here we use the term smart legal contract to refer to a legal contract whose
performance is automated on distributed ledger technology, and the term smart
contract code to refer to the code that automates the legal contract [14]. In
some related research the term smart contract refers only to the code, yet that
definition is problematic in this context since the code itself may not be a legal
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contract. There are many examples of problems with terminology when computer
scientists, lawyers and banking technologists work together [4] and we therefore
use a portmanteau definition of the term smart contract as follows [3]:

A smart contract is an automatable and enforceable agreement. Automat-
able by computer, although some parts may require human input and con-
trol. Enforceable either by legal enforcement of rights and obligations or
via tamper-proof execution of computer code.

The above definition contains key elements for automating OTC derivatives:
first, the enforcement of rights and obligations by recourse to a court of law
is essential because of the regulatory framework (and the scale of financial risk
involved); second, the smart contract code may require human input and control,
for example where the code encounters a state that requires human discretion
to decide how to proceed or where it is necessary to pause and modify or cancel
the code due to changes in the law.

There is an absolute requirement that the smart contract will be faithful to
the intentions of the parties as expressed in the original legal documentation;
hence our interest in the use of formal methods to validate the smart contract
code. There is also a requirement that the processes involved in automating OTC
derivatives (including the production of smart contract code and the validation
of that code) align with current standardised workflow in terms of how the legal
documentation is structured and negotiated. The context of our work is therefore
the Smart Contract Templates project [2,3,6] which focuses on alignment with
standard practice, including greater standardisation of smart contract code.

Our aim is to derive a formal semantic representation of the set of docu-
ments that comprise the legal agreement underlying each individual OTC deriva-
tives transaction. Each transaction will be automated by a separate process (an
instance of the smart contract code). Our initial examination of the documen-
tation [4,5] has demonstrated the need for a combined semantic specification,
including at least the temporal, deontic and operational aspects of the legal
agreement. Once this has been achieved, there are two possible routes for valida-
tion: either (i) validation scenarios could be generated from the formal specifica-
tion and used during verification and validation of the smart contract code;1 or
(ii) a semantic specification of the smart contract code could be checked against
the semantics of the legal documentation (perhaps achievable automatically, at
least in part).

Here we present early results from our investigation of the temporal semantics
of the legal documentation for OTC derivatives.

This paper aims to be accessible not only to academics but also to practition-
ers such as banking techologists, lawyers, and regulators. Although we present
early results from a study of the semantics of legal documentation for OTC

1 For example, “what if?” scenarios might posit a sequence of actions by the parties,
or possible changes in the law during the running of the code, together with the
required outcome.



Temporal Aspects of Smart Contracts for Financial Derivatives 341

derivatives, our observations have much broader implications for the use of for-
mal methods in representing the semantics of many types of legal documentation.

1.1 Standardisation of OTC Derivatives Contracts

OTC derivatives are often purchased as a mechanism for risk management so that
the precise form of the purchased derivative will match the purchaser’s financial
exposures. These derivatives contracts can have substantial value, complexity
and longevity,2 and a firm that purchases a bespoke derivative will need legal
clarity and protection relating to the terms of the agreement.

Negotiating the terms and conditions of bespoke derivatives contracts can
itself be a lengthy and costly process. This complexity and cost can be improved
by increasing standardisation of that process. The International Swaps and
Derivatives Association (ISDA) provides a set of legal templates that are com-
monly used as a known basis for negotiation between counterparties. The pri-
mary template is the ISDA Master Agreement, which covers a range of deriva-
tives from “vanilla” interest rate swaps to complex options contracts and which
can be used for multicurrency and cross-border transactions.3

The Master Agreement contains standard clauses that are generally non-
contentious. However, there is a need for customised clauses to be added, and
this is achieved using a Schedule template which sets out those areas that are
typically customised (and additional clauses may be added). A Credit Support
Annex might also be added if the bank requires the firm to provide collateral to
reduce its credit risk to the bank.

After these documents have been agreed and signed by the counterparties,4

they constitute a single agreement and the counterparties may enter into one or
more derivatives transactions based on that agreement. Each such transaction
is specified using a written or electronic Confirmation document setting out the
economic terms for that individual transaction, and that Confirmation document
is considered to be part of the overall agreement.5

1.2 Smart Contract Templates

The Smart Contract Templates project [2,3,6] addresses the process of writing,
testing and debugging the smart contract code [3] that will perform a complex
OTC derivatives contract in an automated fashion on a suitable technology plat-
form, and how to align that process with the process of using the ISDA document
set. In this paper such legal agreements are called “smart OTC derivatives”.

Smart Contract Templates provide standardised smart contract code “tem-
plates” for the ISDA document set (the Master Agreement, Schedule, Credit
2 Derivatives contracts often last 5 years and can last as long as 30 years.
3 There are two versions in common use: the 1992 ISDA Master Agreement and the

2002 ISDA Master Agreement.
4 Derivatives contracts may involve more than two parties.
5 It may also be possible to attach additional terms and conditions, including addi-

tional credit support, to individual transactions.
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Suport Annex). The name “template” indicates that the code will leave some
terms as yet undefined (example values may be inserted for the purposes of test-
ing and debugging). These templates may be developed and comprehensively
verified and validated in advance, and this might include different versions of
the code designed to run on different technology platforms.

The workflow for Smart Contract Templates matches that for the institu-
tional workflow as follows:

– A Smart Contract Template will have been developed, tested and debugged
in advance for the standard ISDA Master Agreement and Schedule.6

– When two or more counterparties establish an agreement, they may negoti-
ate modifications to the Schedule. When the negotiation is complete, a copy
will be made of the existing Smart Contract Template and the smart con-
tract code in this copy will be modified—many of the undefined terms in the
template will be bound to appropriate values (e.g. the counterparty details),
and depending on the extent of the modifications to the legal text, this may
require a more or less substantial rewriting of the smart contract code. The
overall structure of the code should remain the same, but the code is likely to
require further verification and validation. This process should benefit from
the fact that the previous template had already been verified and validated.
The resulting modified smart contract code should accurately reflect the
intentions of the parties under the agreement, but it is not yet ready to run
since the parameters for individual transactions are not yet known. Hence,
this is still a “template”—here we call it the “agreement template”.

– For each new transaction under this agreement there will be a written or
electronic Confirmation document. In the simplest case this will do no more
than provide value bindings for variables (the “transaction parameters”) that
are currently undefined in the agreement template.

– A copy of the agreement template is made for each new transaction, and the
transaction parameters for a transaction are passed as arguments to the code.
Additional parameters might also be passed, for example a unique identifier
that can be used to retrieve the original signed legal documents in the case
of dispute. The final version of the smart contract code is then instantiated
to run on a distributed ledger platform.

2 Validating Smart Contract Code for Smart OTC
Derivatives

Many observers have pointed to the need for verification and validation of smart
contract code [1,7,9,11]. In particular, [11] highlights five categories of verifi-
cation and validation for smart contracts. Here we focus on just one of those
categories, which we find to be especially problematic—Category 2 “Does the
computer program correctly encode the written natural language contract?”

6 For the rest of this paper we assume the 2002 ISDA document set.
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Validation may be substantially more difficult than verification. Whereas
verification of smart contract code may aim to eliminate error states when the
code is run, validation of smart contract code aims to align the semantics of
the legal documentation with the semantics of the code (e.g. does it correctly
track the rights and obligations of parties, the discharging of obligations, the
enforcement of prohibitions, the adherence to temporal aspects, and so on).
Understanding the semantics of the legal documentation is non-trivial, since it
requires specialist knowledge in the two fields of banking and law; understanding
the semantics of the code is similarly non-trivial, since it requires specialist
knowledge in computer science. The use of specialist terminology (including cases
where common words may have specialist meanings) and implied (unspoken)
knowledge has already led to misunderstandings between experts and effective
validation may require investment into the training of new staff as hybrid experts
in the three areas of banking, law and computer science [4,5].

We have previously stated that a formal semantic specification of the legal
documentation must include at least the temporal, deontic and operational
aspects of that documentation. Yet that formal specification must itself be vali-
dated to determine whether it correctly captures the meaning of the agreement.
This will require an expert in law (for example to disambiguate between tem-
poral and non-temporal uses of phrases such as “will”, “pursuant to”, “after
giving effect to” and “after taking into account”, or to distinguish between dis-
crete and continuous periods of time as explained below), and also an expert in
formal logic. This validation of the specification will be facilitated if the formal
specification is similar in structure to the legal text. Three key issues arise:

1. The separability problem—the temporal, deontic and operational logics are
closely intertwined and very difficult to separate, as explained in [4] and
demonstrated further in Sect. 2.2.

2. The isomorphism problem—the structure of the semantic specification may
be substantially different to the structure of the legal documentation, making
it difficult for a specialist in law to understand and verify the semantics.7

3. The canonical form problem—there may be many different ways to structure
the semantic specification for a given legal agreement; specifically there may
be no unique normal form (“canonical form”), and this makes it difficult to
compare two specifications to see if they are the same.8

To achieve the aim of using formal methods to validate smart contract code
for a Smart OTC Derivative transaction it will be necessary to create a for-
mal represention of the whole agreement, including the Master Agreement, the
7 For example, a single legal clause may be represented by more than one expression in

the formal semantics (perhaps distant from each other), and vice versa two or more
legal clauses might be represented by a single expression in the formal semantics.

8 The existence of a unique canonical form (computable in reasonable time) will
depend on the logic employed, and the properties of its operators. Where many
logics are combined the existence of a unique canonical form may become problem-
atic.
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Schedule and the Confirmation. The Schedule and Confirmation may include
freshly drafted provisions; thus, it will be necessary not only to represent the
legal phrases that exist in the ISDA document set but also to anticipate provi-
sions and constuctions that might appear in freshly drafted legal text.

As a first step, we focus on the 2002 ISDA Master Agreement. To simplify
further, we start by exploring just the temporal aspects of the ISDA Master
Agreement (though, due to the separability problem, we also expect to touch on
deontic and operational aspects), resulting in the following structured observa-
tions. These are then summarised in Sect. 3.2 as a set of requirements to guide
the selection or design of a suitable temporal logic.

2.1 Continuous and Discrete Time

In the 2002 ISDA Master Agreement time is sometimes a continuous quantity,
and sometimes discrete.

Continuous Time is a time interval typically used for prohibitions (e.g. a
party is prohibited from doing something “at any time”), normally expressed as
a range with a start and an end date, and where such a range is not expressed it
may be possible to infer a range from the textual context—e.g. the term of the
Agreement. Typical relevent phrases in the legal text are:

– “with effect from” may specify the start date of a continuous time range.
– “at all times until X” specifies a continuous range with end date X.
– “so long as” specifies a continuous range that persists for the duration of some

other defined time span.9

– “to maintain in full force and effect all X” refers to a continuous-time obliga-
tion (which might alternatively be modelled as a continuous-time prohibition
against doing anything that would negate any X).

– “in the future” generally refers to a time period encompassing all times after
the current (according to context, the end date might be the end of the
agreement or transaction, or there may be no end date).

– “will survive” generally indicates a continuous time period that continues
after the end of the agreement or transaction (according to context).

Discrete Time is by contrast typically measured in days and can be expressed
as a single value, an ordered set of values, or a bag of alternative values:

A Single Discrete Time Value is a date representing a day (which might be before
the effective date of the agreement, during the term of the agreement, or after
the termination of the agreement). Dates may be named, may be referenced via
name or context (e.g. “on that date”, “on such date”, “the date so designated”,
“the date specified”, “the time specified”, “the date determined under Clause
X”), may be compared for time ordering (e.g. “prior to”, “the same day”, “after”
and “following”), may be counted (e.g. “X days”), that count may be given a

9 Which might be the duration of an obligation.
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lower or upper bound (e.g. “at least X days”, “no more than Y days”), a date
may be defined in relation to another date (e.g. “at least 5 days after X”), a date
may be subtracted from another date to give a number of days, and a number
of days may be added to or subtracted from a date to give another date.

A named date may have a value that is provided dynamically during per-
formance of the agreement. For example, the Early Termination Date may be
“designated” during performance, and a date that is “otherwise agreed” permits
a date to be specifed by the parties in some other unspecified way which may
be at the start of or during performance of a transaction. A date value can be
tested to determine whether or not it was set in the legal text (e.g. using the
phrases “is specified in” and “is not specified in”), and whether it has been set
during performance of the contract (“has been designated”). Where a designated
value replaces a previous value, it is necessary to retain previous values and the
reason(s) for the designation(s) in order to support contractual phrases such
as “where an earlier Early Termination Date has been designated”, “Upon the
occurrence or effective designation of”, and “in the event of an Early Termination
Date which is designated as the result of a Termination Event”.

A discrete time value may have a number of associated properties. For exam-
ple, the property “General Business Day” refers to any day on which commercial
banks are open for business. The phrase “the first General Business Day after X”
therefore refers to the earliest date Y such that Y occurs after X and where Y has
the associated property “General Business Day”.10 Another example property
could be “Designated Date” or “Designated Date Due to a Termination Event”
(since the text may state that a provision holds if a date has such a property).
The author is not aware of any specific discipline relating to the setting and
testing of properties of time values within legal text, yet within a formal specifi-
cation this would be an obvious area for checking correctness (e.g. to ensure that
if a property is checked it should be set at some other point in the agreement).

In the legal text, a specified date “has occurred” if the current date (during
performance of the agreement) is the same day as or after the specified date. By
contrast, the legal phrase “there is” must be interpreted in context; sometimes
it refers to the existence of a thing (which is not a temporal property) and at
other times it may refer to the current time and may for example establish a
reference date for a condition.

A Set of Discrete Time Values is a time-ordered set of discrete dates with a
start date and an end date, without duplicates:

– A set may be named and may be specified with certain days missing from the
set (e.g. because they lack a given associated property).

– A set may be defined in relation to a date (e.g. “all days within 5 days after
X”).

10 The property “General Business Day” is described in a generic way so that it
could potentially apply to an infinite number of dates, but a property could also
be described in a way that it could apply to only a finite number of dates.
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– A set of date values may be specified using a constrained universal quantifier
(e.g. “all days after event X and before event Y”).

– A set of specific date values may be specified using a formula representing
repeated dates (e.g. “every first Monday of every month”).

– A set of date values may start at the end date of an event (see Sect. 2.2) and
continue until Y days later (e.g. “following event X, party A may terminate
the agreement with no more than Y days notice”).

– “with effect from” may (according to context) specify the start date of a
discrete time period (i.e. of a set of discrete time values).

In the legal text, many phrases are used to introduce a set of discrete time
values. For example:

– “notice requirement”, “applicable grace period” and “applicable waiting
period” generally refer to a span of days (a set of discrete time values) where
the start and end dates are normally expressly stated.

– “on any day” may indicate a set of discrete dates (especially where it is
followed by a qualification of the start or end dates, or both), following which
each such day may be referred to using the phrase “on that day” and certain
days may be excluded from consideration using a phrase such as “(in each
case, other than . . .)”.

– “next succeeding Scheduled Settlement Date” refers to a set of possible dates
(Scheduled Settlement Dates), and selects that date which immediately fol-
lows the current date.

– “the time or times specified” is a reference either to an individual date (which
could be drawn from a representative bag of date values—see below) or more
commonly to a set of relevant specified dates.

A Bag of Alternative Discrete Time Values is a collection of alternative dates,
which may contain duplicates, and which arises from phrases that permit a
thing to occur on more than one date where two or more of those dates (perhaps
specified relative to different events) may be the same. For example, consider the
phrase “on or as soon as reasonably practicable following X”, which permits an
action to occur on date “X” or on another date soon after “X” (see also Sect. 2.2
below for a discussion of reasonableness).

A bag of alternative discrete time values represents a single date, but the
value of that date is generally only determined dynamically when the contract
is performed. This introduces some complexity, since (i) prior to (or after) this
date actually means prior to (or after) the date actually chosen rather than prior
to (or after) the earliest (or latest) of the alternative dates, and (ii) it is not yet
clear whether it might be possible to constuct nested phrases ((prior to (X or
Y)) OR (following (P or Q))) and so on. This needs further attention.

2.2 Temporal Aspects of Events, Obligations and Rights

Events (an operational aspect of the agreement), obligations (a deontic aspect
of the agreement) and rights, powers or privileges (also deontic aspects) all have
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associated temporal properties. Thus, it is extremely difficult to separate tem-
poral aspects from deontic and operational aspects (this is the aforementioned
separability problem).

Events each have a start date and an end date (to support phrases such as “has
occurred”, “is continuing”, and “has ceased”, which can also appear in logical
conjunction such as “has occurred and is continuing”). The concept of an event
can be used quite generally and may include for example (i) actions, such as
the giving of notices; (ii) external events, such as the obtaining of judgement
on an aspect of the agreement; and (iii) contract states, such as a party being
in default, or a failure (e.g. to pay or to deliver). Thus, events may be specified
within the agreement, or may be created during the modelling process in order
to construct the formal specification.

Any action that has an associated time could be an event, including passive
actions such as becoming aware of a fact. For example the phrases “upon becom-
ing aware of” and “when the obligation is ascertained” indicate that becoming
aware and ascertaining are events with an associated time. The phrase “the date
of the information” may according to context refer to the date of sending or
receiving information, both of which are actions.11

Defined events may or may not occur during the performance of the agree-
ment. Events also have other associated properties—e.g. “an event of default”—
and there may be a total or partial ordering relationship applicable to events
(though this is outside the scope of this paper).

In the legal text, a large number of phrases are used to link temporal prop-
erties with events. For example:

– “as of the time immediately preceding” or “immediately before” an event X
normally means the day before the start date of event X.

– “immediately” normally means either the same day as, or the next day fol-
lowing, the occurrence of an event.

– If an event X “occurs prior to” event Y this is generally taken to mean that
the end date of X is prior to the start date of Y.

– “in such event” generally refers to the immediately preceding named event.
– “the occurrence of”, “the date as of” and “at such time of being” each refers

to an event and may according to context refer to the start date of an event
or end date of an event or to the existence of a start date or end date for an
event, and must be determined precisely from context.

– “at such time of being” is the time at which an event occurs.
– “upon reasonable demand” specifies the time of an event (a demand) with

the proviso that the demand must be reasonable (which may have a temporal
aspect such as occurring within or at a reasonable time).

– A “potential event of X” is an event which might become an event with
property X (e.g. default) due to further events or the lapse of time.

11 Conceivably this phrase might be used to refer to a date associated with a document,
which raises the further issue of associating objects with temporal values.
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– An event “would occur” as a result of some action if the action (e.g. per-
forming an obligation, or entering into an agreement) would necessarily lead
to the occurrence of the event. This may be difficult to model, e.g. where
the action or event is external to the agreement and in one possible future.12

Similar problems occur with phrases such as “would have been” or “would
have been . . . if it were not for . . .”.

– “has taken action X” could be represented by modelling that action as an
event (thus it would have a start date and an end date, which are set dynam-
ically during performance of the contract, and which may be the same). If
the end date of that event is before the current date (or other reference time
according to context) then “has taken action X” would be true.

– “for so long as that is the case” and “for so long as the relevant event or
circumstance continues to exist” may both refer to an event, especially where
a circumstance or the duration of a conditional can be modelled as an event
(for example, given a phrase such as “for so long as the party is unable to
receive delivery” would imply that being unable to receive deliery should be
modelled as an event with start and end dates).

Applicable law and applicable corporate policies might also be modelled as
events in order to support phrases such as “any applicable law . . . then in effect”,
“party’s policies in effect at that time”—however, since there might be a very
large number of such laws and policies, it might be better to replace such a
provision with a call for human input to establish whether the stated condition
(relating to law or policy) holds.

It is also important to note that sometimes the word “event” is not intended
to refer to a thing that happens during performance of the contract, but rather to
the specification of the contract itself and refers instead to the over-riding of one
provision by another. For example, the phrase “in the event of any inconsistency”
is generally used to refer to an inconsistency between provisions of the agreement
rather than a date during the performance of that agreement, and is followed by
an indication of which provision should prevail over the other.

Less straightforward references to the temporal aspects of actions and events
include the adverbs “timely” and “promptly”. These phrases rely on a court of
law to apply a post-hoc test of reasonableness. Similar phrases include “as soon
as is reasonably practicable” and “as soon as practicable”. For the purposes of
validation, these adverbial phrases could be set to a global value such as “within
1 day” or “within 2 Local Business Days” (i.e. a set of discrete time values)
during simulation of contract performance, to determine the extent to which the
agreement might be sensitive to variations in such ambiguous time periods.

Obligations have a start date when the obligation is incurred, a due date, and
a discharged date (if the discharged date is after the due date a sanction may be
applied). They also have (i) an optional end date at which point the obligation is

12 In the context of the ISDA Master Agreement it might sometimes be preferable
to phrase this as a continuous prohibition to engage in an event that generates a
Potential Event of Default or Potential Termination Event.
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automatically discharged if not previously discharged, and (ii) an ordered set of
zero or more “revised due date(s)” (used when an obligation has been deferred
or accelerated). It is noted that the triggering of an obligation might also itself
constitute an event.

The specification of repeated obligations may require an action to occur “at
least X times”, “no more than Y times” or “at least X times but no more
than Y times” within a certain time interval. Whilst the time interval itself can
be expressed as a set, the specification of repeated occurrences is not really a
temporal matter. It is an example of how an obligation (deontic aspect) can be
linked to repeated actions (operational aspect) within a defined time interval
(temporal aspect).

In the legal text, example phrases that link temporal properties with obliga-
tions include:

– “the due date” and “when due” both refer to the due date of an obligation.
– “the last payment date” or “the last exchange date” may according to context

refer to either (i) the most recent such discharged date (e.g. the date of
the most recently made payment), or (ii) from a set of due dates of such
obligations to pay or exchange, the date that is latest.

– “satisfying a liability” is generally a synonym for “discharging an obligation”.
A party “has satisfied” some obligation (e.g. either to another party or to
pay tax to an external body) if the current time is after the time that such
obligation was discharged. Note that obligations to external bodies may not
be precisley expressed in the legal text and may need to be inferred from a
provision that refers to the discharge of such an obligation.

– “will be deferred to, and will not be due until” means the dynamic update of
an obligation so that its revised due date is set to the stated value.

Rights, Powers and Privileges may apply throughout continuous time, or
might become activated by the occurrence of a date or an event. On the occur-
rence of such a date or event it will be necessary to record that the associated
right, power or privilege has been activated, and then also to record the date
at which such right, power or privilege was exercised in relation to that date or
event. This supports phrases that refer to a delay in exercising a right, power or
privilege. Since a triggering event might occur many times, the activation time
and exercise time should be recorded in each case.

3 Temporal Representation

Hvitved [8] provides a review of semantic techniques to support formal repre-
sentation of legal agreements. Our aim is to utilize a formal representation that
can combine at least the deontic, temporal and operational aspects of standard-
ised OTC derivatives contracts, and of those technques surveyed by Hvitved the
most attractive candidate is the technique developed by Lee [10]. However Lee’s
representation of temporal aspects needs to be expanded to cover the complexity
demonstrated above. Here we briefly discuss Lee’s temporal framework and then
set out an initial set of requirements for extending the framework.
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3.1 Temporal Logic in Lee’s Framework

The Rescher and Urquhart temporal logic system [13] is the basis for represent-
ing temporal aspects in Lee’s framework. Lee calls this the “RU calculus” and
explores and extends the use of this system. Pithadia [12] provides an initial
critical assessment of Lee’s framework.

The Rescher and Urquhart System is based on the temporal operator RtΦ
that denotes Φ (a formula in conventional first order logic with identity) being
realized at time t. Lee rehearses the axioms for R, the total ordering relational
operator U , a function f :: Time → IR, and temporal addition ⊕, as follows:

Rt(¬Φ) ↔ ¬RtΦ

Rt(Φ&Ψ) ↔ RtΦ&RtΨ

Rt′(∀tΦ) ↔ ∀tRt′Φ

Utt′ indicates that time t precedes time t′

f(t ⊕ t′) = f(t) + f(t′)

Lee modifies the RU calculus by introducing the day as the basic unit of time
and by introducing the concept of time intervals where SPAN(d, d′) defines a
time span from the beginning of date d to the end of date d′, BEG(d) gives
the beginning date of a time interval, and END(d) gives the end date of a time
interval. Two operations are introduced on time intervals (using Lee’s notation,
where d is a time interval):

RDdΦ ↔ ∃t(t ∈ d)&RtΦ

RTdΦ ↔ ∀t(t ∈ d) =⇒ RtΦ

Thus RDdΦ indicates that Φ is realized at least once during the time interval
d and RTdΦ indicates that Φ is realized throughout time interval d. A further
operator RBDΦ indicates that Φ is realized before day D and is defined in terms
of the RD operator using an arbitrary undefined day in the past, which Lee
denotes as “ ” and we interpret as a “bottom” element “⊥”:

RBDΦ = RDSPAN(⊥,D)Φ

Lee further observes that a calendar of dates is an interval scale with no
obvious value of “zero” and therefore addition is more complex than represented
in the RU calculus; he redefines the operator ⊕ to take a date d and a number
of days n and return the date that is n days later than d, as follows (where D is
the unit “days”):

d ⊕ nD

Lee’s Temporal Framework has a number of limitations in the context of
smart OTC derivatives, In overview, the most obvious shortcomings are (i) the
inability to specify or reason about continuous time; (ii) the inability to specify
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dates with different properties (such as “Business Day”); and (iii) the inability to
specify concisely a set of times with subtle membership rules (such as “the first
Friday of every month”). Lee’s time intervals provide an implementation of sets
(and possibly bags, depending on context) but it is very difficult to specify a time
interval with specific dates missing. Whilst it is possible to use a combination of
RU calculus operators and Lee’s operators to represent phrases such as “action
X occurs Y days after event Z” (which could for example be represented as
RtZ&(Rt⊕Y X)), it is difficult to express a provision such as “payments made at
a weekend will be processed on the first Business Day of the following week”.

Lee’s temporal framework could be modified and extended, or could be
replaced. However, it is not sufficient to make such a decision based only on
an analysis of the temporal aspects. The great advantage of Lee’s framework is
the way that it combines deontic, operational and temporal aspects. We there-
fore eschew construction of a formal temporal logic until analysis of the deontic
and operational aspects of the ISDA Master Agreement has been conducted.
Instead, we provide an initial outline of requirements in the following section.

3.2 Initial Requirements for the Temporal Aspects of a Semantic
Framework

Given the separability problem relating to the very close coupling between tem-
poral, deontic and operational aspects of legal documents, it is unlikely that
a separate temporal logic would be appropriate for formal modelling of smart
OTC derivatives. In most cases time is a property of deontic and operational
aspects (the current time is a notable exception to this observation). However,
we can summarise our investigation of the ISDA Master Agreement by setting
out some guideline requirements for the expressibility of the temporal parts of
the combined logic, as follows:

Requirements for Continuous Time Intervals. It must be possible to
express intervals of continuous time with a start and end point denoted by a
discrete time value. In general, we would wish to support the following opera-
tions:

– create a new continuous time interval with discrete time values for the start
and end points (if the end-points are defined to be outside the interval, this
would give a straightforward representation of an “empty” interval as being
one where the start and end points are the same, and it would not be an error
to request the start or end point of an empty interval);

– bind a name to an interval;
– create an aggregate collection of intervals (this is one way to implement a

union of non-overlapping intervals, since we cannot have an interval result
containing gaps);

– get the start or end point of an interval;
– get the intersection of two intervals (perhaps returning an “empty” interval);
– test whether a discrete time value is before the start of such an interval; and
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– test whether a discrete time value is after the end of such an interval.

Although in some legal prose a period of continuous time might have a start
point that is infinitely in the past (which we denote T−∞), or an end point that
is infinitely in the future (which we denote T∞), it is not yet clear whether this
is essential or merely lazy drafting. It is an open question as to whether the
temporal logic should support such “extreme” values for start and end points of
continuous time intervals (nor whether they might be useful for other purposes).

Requirements for Single Discrete Time Values. It must be possible to
express single discrete time values, to associate properties with a single discrete
time value, to keep a history of updates to the time value that is bound to
a name, to calculate differences between two dates as a number of days, and
to create and use date expressions (including the use of days as relative offset
values).

In general, we would wish to support the following operations:

– create a new single discrete time value;
– provide the special single discrete time value that is the current time;
– bind a name to a historical list of single discrete time values (and with each

such value record when it was bound, who by, why, whether it was bound in
the text or during performance, and perhaps some further properties);

– perhaps provide the extreme values T−∞ and T∞ mentioned above and to
test whether a single discrete time value is one of these two extreme values;

– increment a discrete time value by one day;
– decrement a discrete time value by one day;
– get the difference in days between two discrete time values (though this

deserves more attention, since we may need to calculate the number of days
with a specified property - e.g. Business Days);

– associate a set of properties with a discrete time value and test a discrete
time value to see if it has a stated property;

– apply a predicate to a discrete time value to see if it passes or fails a test;
– provide equality and relational operators to use on two dates;
– create and use date expressions combining any of the above operations.

Requirements for Sets or Bags of Discrete Time Values. It must be
possible to express a set or bag of discrete time values where a set or bag has
a start and end date and a (possibly discontinuous) collection of valid dates
between the start and end dates. It must also be possible to define the members
of the set or bag using a generator expression. As with continuous time intervals,
if the start and end dates are defined to be outside the set or bag this would give
a straightforward representation of an “empty” set or bag as being one where
the start and end points are the same, and it would not be an error to request
the start or end point of an empty set or bag.

In general, we would wish to support the following operations:
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– create a new set or bag of discrete time values;
– get the start date or end date of a set or bag;
– test whether a given date is a member of the set or bag;
– get the intersection of two sets or bags, returning a set or bag respectively

(which might be empty);
– get the union of two sets or bags, returning a set or bag respectively;
– test whether two sets or two bags are equal;
– bind a name to a set or bag;
– apply a filter to a set or bag, to produce a set or bag (respectively) that may

be smaller or equal in size;

3.3 Temporal Requirements Relating to Deontic and Operational
Aspects

Each event must have a start date and an end date. In the legal text, it is
possible that these dates might be specified in relation to some other dates or as
a set or bag of possible dates. However, once the event has started any previous
“possible” start time must be updated with the actual start time (and similarly
for the end time). Thus when using a temporal logic operator such as RtE (where
E is an event) it is necessary to disambiguate between the “realisation” of the
possible and actual start of the event E and the “realisation” of the possible and
actual end of that event.

As explained in Sect. 2.2, each obligation has a start date, an optional end
date, a due date, and a discharged date. Thus when using a temporal logic
operator such as RtΦ (where Φ is an obligation) it is necessary to disambiguate
between the realisation of the incurring of the obligation, the passing of the end
date, the passing of the due date without discharge, or the realisation of the dis-
charge of the obligation. Similarly, rights, powers and privileges have activation
times and (perhaps multiple) exercise times and these must be disambiguated.

Where deontic or operational aspects may be repeated a set, minimum, or
maximum number of times, there must be a mechanism to express these repeti-
tions.

4 Summary and Conclusion

The legal language used to draft standardised contracts for OTC derivatives is
rich and complex. Yet it is essential to have a full and formal understanding
of the semantics of the legal documentation in order to validate the associated
smart contract code. Here we have presented initial results from an analysis
of the temporal language used in the 2002 ISDA Master Agreement for OTC
derivatives.

When a formal semantic description of the legal documentation is con-
structed, it must specify not only the temporal semantics but also the semantics
of (at least) the deontic and operational aspects. The separability problem—the
fact that the temporal, deontic and operational logics are closely interwined—
requires a combined logical framework. The results of an analysis of the temporal
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language used in legal documentation are therefore presented as a set of initial
requirements. More work is required to analyse the deontic and operational lan-
guage, each of which will lead to its own set of requirements. Our final aim is
to combine these into a single semantic framework. This is a formidable chal-
lenge, yet we envisage that such a framework will be applicable not only to the
automation of OTC derivatives but also to the formal understanding of a wide
range of legal contracts and statutes.

Acknowledgements. The authors are grateful to UCL students Justin Jude and
Mengyang Wu who assisted this work by reviewing logic frameworks and providing
supporting tools.
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Abstract. Blockchains allow the specification of contracts in the form
of programs that guarantee their fulfilment. Nevertheless, errors in those
programs can cause important, and often irretrievable, monetary loss.
General-purpose languages provide a platform on which contracts can
be built, but by their very generality they have the potential to exhibit
behaviours of an unpredictable kind, and are also not easy to read or
comprehend for general users.

An alternative solution is provided by domain-specific languages
(DSLs), which are designed to express programs in a particular field.
This paper explores the design of one DSL, Marlowe, targeted at the
execution of financial contracts in the style of Peyton Jones et al. on
blockchains. We present an executable semantics of Marlowe in Haskell,
an example of Marlowe in practice, and describe the Meadow tool
that allows users to interact in-browser with simulations of Marlowe
contracts.

1 Introduction

This paper explores the design of a domain specific language, Marlowe,1,2 tar-
geted at the execution of financial contracts in the style of Peyton Jones, Eber
and Seward [16] on blockchains. In doing this, we are required to refine the model
of contracts in a number of ways in order to fit with a radically different context.

Consider the following example of an “escrow” contract so that we can explain
the motivation more concretely. The aim of this contract, written in functional
pseudocode in the style of [16] involves three participants: alice , bob and carol .
alice is to pay an amount of money to bob on receipt of goods from her. alice
pays the money into escrow controlled by carol .

There are two options for the money: if two out of the three participants agree
to pay it to bob, that goes ahead; if, on the other hand, two of the participants
opt to refund the money to alice , that is done instead.

This work is part of the Cardano project and is supported by IOHK, https://iohk.io.
1 Named after Christopher Marlowe, the Elizabethan poet, dramatist and spy, who
was born and educated in Canterbury, en.wikipedia.org/wiki/Christopher Marlowe.

2 Marlowe is available from https://github.com/input-output-hk/scdsl.
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The outer primitive When waits until the condition – its first argument –
becomes true; in this case, the condition is that either two participants choose
refund or two participants choose pay. The second argument of the When is
itself another Contract, which is performed after the condition of the When has
been met, and it makes the payment if two participants chose pay, otherwise it
redeems previous money commitments.

(When (Or (two_chose alice bob carol refund)
(two_chose alice bob carol pay))

(Choice (two_chose alice bob carol pay)
(Pay alice bob AvailableMoney)
redeem_original))

We discuss this particular example in more detail in Marlowe in Sect. 3 below;
but it already gives us an example of how traditional contracts are fundamentally
different from contracts that are meant to be run on top of the blockchain. In
the traditional model, enforcement of the contract is the responsibility of the
legal system. If alice does not pay the money into escrow, or carol chooses to
keep it for herself, then they can be sued for the money (and probably damages),
thus providing both legal and financial incentives for compliance. On the other
hand, in the decentralised blockchain model, where there is no central authority,
the contract needs to be enforced by design.

This means that we must require participants to commit money to cover
all possible expenditure in advance of the contract executing. In order to make
sure that participants continue to engage with a contract, we ensure urgency by
imposing timeouts: money is committed for a finite period only. We also impose a
timeout when waiting for a participant to make a commitment to ensure that the
contract does not become stuck even if one of the participants stops interacting
with it.

We make the following contributions in this paper.

– Designing a DSL for financial contracts on blockchains: Marlowe.
– Defining an executable, small-step semantics of Marlowe in Haskell.
– Making Marlowe an embedded DSL in Haskell. This extends the expressibility

of the language, as we can use all the facilities of Haskell in defining Marlowe
contracts; we achieve this by defining Marlowe as a Haskell data type.

– Developing the Meadow tool that allows users to interact with and simulate
the operation of Marlowe contracts and embedded Marlowe contracts.

Having established this model and its semantics we are able to do a number
of other things, which we discuss in the paper. We can explore how the language
will be implemented on an existing blockchain, such as Cardano, and our model
has shown us that we will need to consider how the evolution of a contract
interacts with the blockchain, with miners in the case of a ‘proof of work’-based
chain, and with users participating in contract execution. We can also perform
analyses of Marlowe contracts, based on its formal semantics.

In designing a language like Marlowe we are constrained by the blockchain
domain, but within that we do have a range of choices. For example, should we
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Fig. 1. The context for a contract

base the language on a system with accounts, like Ethereum, or a UTxO-based
model as used by bitcoin? We examine this and other choices after introducing
the language and examples of its use.

The paper begins in Sect. 2 by introducing the Marlowe model, including
the assumptions made in designing it, the types of the principal functions and a
description of the DSL as an algebraic type, constructor by constructor. Section 3
revisits the escrow example, and shows how it is described using a combination
of Marlowe and Haskell constructs: that is, we use Marlowe as an embedded
DSL. Section 4 introduces Meadow, our tool for visualising and interacting with
Marlowe contracts. Section 5.1 reflects on the design rationale for Marlowe, show-
ing how it can be supported on a variety of blockchains, and Sect. 5.2 explores
how Marlowe can be implemented. Section 6 surveys related work and Sect. 7
enumerates the next steps for the project after drawing some conclusions.

2 The Marlowe Model

The Marlowe domain-specific language (DSL) is modelled as an algebraic type in
Haskell, together with an executable small-step semantics. We start by looking
at the different types used by the model, and the assumptions about the infras-
tructure in which contracts will be run. We then we look at the Contract DSL
itself, and finally we give its semantics in Haskell. Section 3 revisits the “escrow”
example using the embedding of Marlowe as a DSL in Haskell.

2.1 The Model Types

A running contract interacts with its environment in two ways, as in Fig. 1.

Observables. First, it will need to observe different kinds of varying quantities
including, for example, the current time, the current block number and, ran-
dom numbers, as well as “real world” quantities like “the price of oil” or “the
exchange rate between currencies A and B”. As the examples illustrate, observ-
ables come both from aspects of the blockchain (e.g. the current block number)
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and externally. In the latter case, it will be necessary to agree a trusted oracle
or beacon giving the value.

Each instance of such an observable will be observed at a particular time
and in a particular context. We assume that the system infrastructure ensures
that these values are recorded on the blockchain to allow the computation to be
repeated for verification purposes.

It is assumed that at each step of the execution of the contract, the values
of observables will be available if needed, and these values are (together) given
by a value of type OS (for “observable set”), where individual observations are
described in a “little language” for that purpose: Observation. Note that these
values are not determined by the participants in the contract, but rather by the
external environment in which the contract is run.

Inputs and Commitments. On the other hand, at each step there are – poten-
tially, at least – a variety of inputs available from the participants themselves.
These include commitments of currency (or “cash”), redemption of commit-
ments, and claims of payments by a participant. Moreover, it is also possible
for a participant to input an arbitrary value (which we term a “choice”). The
particular inputs at a given step are described by a value of type Input .

While informally we might see a commitment to something as being indefi-
nite, it is important to realise that, on blockchain, a commitment needs to have
a timeout so that progress can be forced in a contract. After the timeout period
the cash can be refunded through the user creating a transaction to reclaim the
cash. Information about the commitments currently in force forms the State ,
which can be modified at each execution step.

Actions. Payments can be granted by using committed money, but they must
be manually redeemed by the recipient, in the same way that cash commitments
are redeemed when they expire. The effects of the contract in the blockchain are
represented by a list AS of Actions that is derived from the execution of each
step of the semantics.

Infrastructure. The model makes a number of assumptions about the blockchain
infrastructure in which it is run.

– It is assumed that cryptographic functions and operations are provided by a
layer external to the system, and so they need not be modelled explicitly.

– We assume that time is “coarse grained” and measured by block number, so
that, in particular, timeouts are delimited using block numbers.

– Making a commitment is not something that a contract can perform; rather,
it can request that a commitment is made, but that then has to be established
externally: hence the input of (a set of) commitments at each step.

– The model manages the release of funds back to the committer when a cash
commitment expires (see discussion of the stepBlock function below).
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Fig. 2. The step function

Computation. Computation is modelled at two different levels.
The step function represents a single computation step and has this type:

step :: Input -> State -> Contract -> OS -> (State,Contract,AS)

which is also illustrated in Fig. 2. The step function is total, so that for every
contract a result of stepping is defined. However, for some kinds of contracts –
commits, redeems or time-shifted contracts – it is possible that performing a step
produces the same contract as the result; we call these quiescent steps whereas
all others make progress. We use this distinction in the explanation that follows.

Execution of a contract will involve multiple blocks, with multiple steps in
each block. The computation at a single block is given by the stepBlock func-
tion: this will call the stepAll function that calls step repeatedly until it is
quiescent.

In addition to calling stepAll, stepBlock will first enable expired cash
commitments to be refunded and record, in the state, any choices made at that
step. The functions stepAll and stepBlock have the same type as step itself.

2.2 The Type

The type of contracts is given by the following Haskell data type:
data Contract =

Null |
CommitCash IdentCC Person Money Timeout Timeout Contract Contract |
RedeemCC IdentCC Contract |
Pay IdentPay Person Person Money Timeout Contract |
Both Contract Contract |
Choice Observation Contract Contract |
When Observation Timeout Contract Contract
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Informally, this type provides a Null contract, which does nothing. The next
three constructs form contracts that do something, and then continue according
to another contract (which is one of the components of the original contract).
CommitCash will wait for a participant to make a commitment, RedeemCC allows
for a commitment to be redeemed, and Pay for a payment between participants
to be claimed by the recipient.

The remaining constructors form composite contracts from simpler compo-
nents: Both has the behaviour of both its components, Choice chooses between
two contracts on the basis of an observation, and When is quiescent until a con-
dition – i.e. an Observation – becomes true.

Additionally, many of the contracts have timeouts that also determine their
behaviour.

2.3 The Function

In this section, we explain the detailed behaviour of contracts by describing how
the step function operates on each of the constructors of the Contract type.

– Null is the null contract; it will always be quiescent:
step _ st Null _ = (st, Null, [])

– CommitCash ident person val start_timeout end_timeout con1 con2
For this contract to make progress,
• either, before the timeout start_timeout, the user person makes a cash

commitment of value val and timeout end_timeout with the identifier
ident ,

• or the timeout start_timeout is exceed:
step

commits
st
c@(CommitCash ident person val start_timeout end_timeout con1 con2)
os
| cexe || cexs = (st {sc = ust}, con2, [])
| Set.member (CC ident person cval end_timeout) (cc commits)

= (st {sc = ust}, con1, [SuccessfulCommit ident person cval])
| otherwise = (st, c, [])
where ccs = sc st

cexs = expired (blockNumber os) start_timeout
cexe = expired (blockNumber os) end_timeout
cns = (person, if cexe || cexs

then ManuallyRedeemed
else NotRedeemed cval end_timeout)

ust = Map.insert ident cns ccs
cval = evalMoney st val
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In the first case, a SuccessfulCommit action is generated and the contract
continues as con1; in the second case no action is generated and the contract
continues as con2. While neither case holds, the contract is quiescent, waiting
for the cash to be committed.
If the cash is committed successfully and the timeout end_timeout is reached,
then it is impossible to further spend the committed cash, and any unspent
funds can be reclaimed by person. This is enforced by the stepBlock func-
tion, as noted above.

– RedeemCC ident con (CC stands for cash commitment.) For this contract to
make progress, the creator of the cash commitment with identifier ident is
allowed to redeem the unspent funds in that commitment; the contract then
continues as con, and the action CommitRedeemed is produced.

step commits st c@(RedeemCC ident con) _ =
case Map.lookup ident ccs of

Just (person, NotRedeemed val _) ->
let newstate =

st {sc = Map.insert ident (person, ManuallyRedeemed) ccs} in
if Set.member (RC ident person val) (rc commits)
then (newstate, con, [CommitRedeemed ident person val])

else (st, c, [])
Just (person, ManuallyRedeemed) ->

(st, con, [DuplicateRedeem ident person])
Nothing -> (st,c,[])

where
ccs = sc st

Committed cash can only be redeemed once, and an attempt to redeem it a
second time will produce a DuplicateRedeem action, continuing as con.
If the cash commitment with identifier ident has expired, it becomes pos-
sible for the remaining funds to be redeemed by the committer; this can be
done by the stepBlock function processing the appropriate Input , and an
ExpiredCommitRedeemed action will be produced.
Once the commitment ident has expired and is redeemed, a RedeemCC con-
tract will immediately evolve to con.

– Pay idpay from to val expi con makes it possible, assuming that suffi-
cient funds are available, for to to claim a payment with id idpay of val
from from before the timeout expi. The contract continues as con.



Marlowe: Financial Contracts on Blockchain 363

step inp st c@(Pay idpay from to val expi con) os
| expired (blockNumber os) expi = (st, con, [ExpiredPay idpay from to cval])
| right_claim =

if ((committed st from bn >= cval) && (cval >= 0))
then (newstate, con, [SuccessfulPay idpay from to cval])
else (st, con, [FailedPay idpay from to cval])

| otherwise = (st, c, [])
where

cval = evalMoney st val
newstate = stateUpdate st from to bn cval
bn = blockNumber os
right_claim =

case Map.lookup (idpay, to) (rp inp) of
Just claimed_val -> claimed_val == cval
Nothing -> False

By ‘available’ we mean that sufficient commitments have been made and not
yet expired to cover the payment; in this case, the payment uses the currency
allocated by the cash commitments made by from that expire the earliest.
This contract will result in a FailedPay action if the funds are not available;
otherwise a SuccessfulPay action is generated.

– Both con1 con2 enforces the behaviour of both contracts con1 and con2.

step comms st (Both con1 con2) os =
(st2, result, ac1 ++ ac2)
where

result | res1 == Null = res2
| res2 == Null = res1
| otherwise = Both res1 res2

(st1,res1,ac1) = step comms st con1 os
(st2,res2,ac2) = step comms st1 con2 os

Because the model is stateful and produces output actions, to make a step, it
is necessary to execute a single step of each of the contracts con1 and con2
in sequence: first con1 then con2.

– Choice obs conT conF behaves as either conT or conF depending on the
(Boolean) result of obs at the time that the observation is made, conT if it
is True and conF if False .

step _ st (Choice obs conT conF) os =
if interpretObs st obs os

then (st,conT,[])
else (st,conF,[])

– When obs expi con con2 This contract will not progress until obs is True or
until the current block number is greater than or equal to the one specified by
timeout expi. In case the timeout applies, the contract will continue as con2,
if the timeout does not apply and obs is True, then the contract continues
as con. Otherwise the contract is quiescent.
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step _ st (When obs expi con con2) os
| expired (blockNumber os) expi = (st,con2,[])
| interpretObs st obs os = (st,con,[])
| otherwise = (st, When obs expi con con2, [])

We look next at an example of Marlowe in action.

3 Marlowe as an Embedded DSL

In this section, we revisit the escrow example that we discussed briefly in the
introduction, and show how we can make Marlowe contracts that are easier
to write, read, and understand, by embedding them into Haskell code, that is,
taking advantage of the fact that Marlowe contracts are implemented as Haskell
terms to write Haskell programs that generate Marlowe code, instead of writing
Marlowe directly.

We used Haskell because it is the language in which Marlowe is implemented,
but it would be easy to embed Marlowe in any other language. It would only
be necessary to translate its primitives into a data type in that language. In
Meadow we use Fay [5], a subset of Haskell that we discuss in more detail in
Sect. 4).

The example we use through this section implements an escrow contract, as
first introduced in Sect. 1. The escrow mechanism allows alice to deposit the
money into a contract, in a way that the money will only be released when two
out of three participants agree on whether bob has indeed given alice the item.

The escrow participant (carol) is supposed to be a neutral third party that
will decide in case of dispute. This way, if participants alice and bob are honest,
they will just agree on the result of the transaction and carol will not need to
do anything. If alice and bob disagree, carol will be able to choose whether
the money must go to alice or to bob.

In our implementation we make things more specific: the money paid for the
item is 450 ADA, and it must be committed by alice before block 10; it will
be refunded to alice if there is no consensus before block 90.

We start by defining some Haskell functions. We can encapsulate identifiers
in functions to make the contract more readable. That way we can generate an
identifier for the cash commitment:

iCC1 :: IdentCC
iCC1 = IdentCC 1

An identifier for the payment:
iP1 :: IdentPay
iP1 = IdentPay 1

And we can create identifiers for all the participants:
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alice, bob, carol :: Person
alice = 1
bob = 2
carol = 3

We can also create a sub-contract that allows the money from the commit-
ment with identifier IdentCC 1 to be redeemed:

redeem_original :: Contract
redeem_original = RedeemCC iCC1 Null

Once redeemed, the contract continues as Null since we expect this to be the
last thing that is done. Each participant has a say on who deserves the money:
either alice deserves a refund, which we represent with the number 0; or bob
deserves a payment, which we represent with the number 1. Because there is
only one choice to make per participant, we use the same IdentChoice as their
participant id. We can define a function that returns an observation that is true
if and only if per has chosen the number c for the choice IdentChoice as follows:

chose :: Int -> ConcreteChoice -> Observation
chose per c = PersonChoseThis (IdentChoice per) per c

Then, we can easily write a function that returns an observation that is True
if and only if at least one of the participants per and per' has chosen the number
val as follows:

one_chose :: Person -> Person -> ConcreteChoice -> Observation
one_chose per per' val = (OrObs (chose per val) (chose per' val))

Building on that, we can now write a function that returns an observation
that is True if and only if at least two out of the three participants p1, p2, and
p3 have agreed in choosing the number c as follows:

two_chose :: Person -> Person -> Person -> ConcreteChoice -> Observation
two_chose p1 p2 p3 c = OrObs (AndObs (chose p1 c) (one_chose p2 p3 c))

(AndObs (chose p2 c) (chose p3 c))

Finally, we can write the escrow contract, thus:

escrow :: Contract
escrow = CommitCash iCC1 1 (ConstMoney 450) 10 100

(When (OrObs (two_chose alice bob carol 0)
(two_chose alice bob carol 1))

90
(Choice (two_chose alice bob carol 1)

(Pay iP1 alice bob (AvailableMoney iCC1) 100
redeem_original)

redeem_original)
redeem_original)

Null
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The outermost primitive CommitCash allows the alice to commit 450 ADA
before block 10, with the promise that money will be released on block 100 if
they are not claimed before that.

The next primitive, When, waits for one of three things to happen:

1. The observation became True because two out of three have chosen 0.
2. The observation became True because two out of three have chosen 1.
3. The observation remained False until 90 was published in the blockchain.

If the third option happens, the money is refunded. Otherwise, there is a
Choice that will immediately refund the money to alice unless two out of
three chose option 1; in the later case, Pay will give bob the opportunity to
claim the funds available in the commitment with identifier iCC1 before block
100 (by using the identifier iP1 for the claim). If the funds are not claimed
before block 100 they will also be refunded to alice .

Reflecting on the example, we can see that using Haskell definitions has made
the contract substantially more comprehensible. While our current implementa-
tion does not do this, it is possible to modify the embedding to support more
efficient operation, by preserving sharing in the host language. For example, if
we were to replace the repeated expression two_chose alice bob carol 1 by
a where clause,

escrow = ... (When (OrObs (two_chose alice bob carol 0)
chose_refund)

90
(Choice chose_refund ...
...

where chose_refund = two_chose alice bob carol 1

then the repeated computation of the expression could be avoided.

4 Visualising and Interacting with Marlowe Contracts

For Marlowe to be usable in practice, users need to be able to understand how
contracts will behave once deployed to the blockchain, but without doing the
deployment. We can do that by simulating their behaviour off-chain, interactively
stepping through the evaluation of a contract in a browser. We do this in two
stages, first transforming an embedded contract (using features of Haskell) to a
pure Marlowe contract, and then interactively stepping through that contract.

To achieve this, and to aid Marlowe’s take-up usage by people that does not
know or are not familiar with its syntax, we have developed Meadow, a web tool
that supports the interactive construction, revision, and simulation of smart-
contracts written in Marlowe. The tool is publicly available in the url: https://
input-output-hk.github.io/scdsl/. In Fig. 3, we provide a screenshot of Meadow
in the middle of simulating the execution of the “deposit incentive” contract
available in the GitHub repository (in the file: src/DepositIncentive.hs) and
in the examples section of Meadow (on the bottom right part).

https://input-output-hk.github.io/scdsl/
https://input-output-hk.github.io/scdsl/
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Meadow has been mainly written in Haskell and compiled to JavaScript par-
tially by the Haste compiler [6] and partially by GHCJS [13]; Meadow also relies
on the Blockly library [8] for providing a visual editor for smart contracts written
in Marlowe. Embedding support in Meadow is provided through a pruned and
bundled version of the Fay compiler [5], compiled to JavaScript using GHCJS.
All text fields that edit and present Meadow and Fay code are instances of
CodeMirror text editor [9].

Blockly’s editor allows the user to visualise and edit smart-contracts as inter-
locking blocks that can be dragged and dropped like pieces of a jigsaw puzzle.
Meadow also provides functionality to generate syntactically correct and format-
ted code (that is displayed in the upper right corner of the application), and to
convert the code back to its Blockly representation.

Additionally, Meadow allows the user to use Meadow’s Fay embedding from
within the browser.

The reason that we chose Fay instead of Haskell for Meadow is a technical
one: we wanted Meadow to be run completely inside the browser, because that
makes it easy to deploy, since the server is only required to send the page and not
to run any Marlowe-related computation. There exist compilers from Haskell to
JavaScript but most of them are not easy to bootstrap into JavaScript. Among
other reasons, they often rely on the API of the host OS to read and write files.

The Fay compiler, on the other hand, is mostly written in pure Haskell, and
it is not hard to compile to JavaScript by using GHCJS. Nevertheless, it does not
include a type checker, it relies in GHC’s type-checker; and it also tries to read
its Prelude from disk. We have worked around these issues by disabling type-
checking within Meadow embedded editor, and by embedding all the required
modules as constant strings in a modified version of the Fay compiler.

In particular, Meadow includes a pruned copy of the Fay compiler, bundled
with its Prelude module, its foreign interface, and a module with the definitions
of the Marlowe primitives and a function to pretty-print Marlowe contracts. This
allows the user to compile and execute, inside Meadow, Fay code that generates
and prints a Marlowe contract. When the user opens the embedded editor, the
current Marlowe contract is embedded into a template of a Fay program that
prints it. The user is able to modify this code in the left panel of the editor and
use the advanced functionalities provided by Fay like, for example, bindings,
list-comprehensions, turing-complete functions definitions, etc.

When the user clicks the execute button, the Fay code is compiled to
JavaScript and evaluated; this causes the Marlowe contract generated by the
execution of the code to be written to the panel on the right. Generated con-
tracts can then be sent back to the main screen of Meadow, translated to Blockly,
and their execution can be simulated. The embedded editor also allows users to
save the Fay code to a file in their computers, to load code from a file in their
computers, and to temporarily hide the editor while keeping its contents in mem-
ory, even while the compilation and execution process is being carried out in the
background.
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Fig. 3. The Meadow tool simulating the “deposit incentive” contract.

The execution of complete contracts can be simulated block by block by using
the panel on the right (see Fig. 4), which includes text fields to view and edit
the current block number, the state of the contract, the current inputs, and the
outputs from last block.

Additionally, to facilitate the introduction of inputs, Meadow provides two
different interfaces:

– The manual interface, provides a template for each of the four possible types
of input: commits, redeems, payment claims, and choices.

– The smart interface (shown in Fig. 4), calculates the possible operations that
would make sense given the current inputs, state of the contract, block num-
ber, and remaining contract; and it provides them in a table with most of the
parameters already filled in.

The smart interface is usually more convenient to use than the manual inter-
face since the later provides between 3 and 4 fields for each operation whereas
the former “guesses” the possible intentions of the user and usually can input
new operations with a single click (except for choices, which still may require
the user to input a number).
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Fig. 4. Detail of the interface for contract execution simulation.

In the next section, we re-examine the model and the Marlowe language,
looking at possible extensions, alternative design decisions and ways in which
we can formally analyse Marlowe contracts.

5 Design and Implementation

Marlowe is defined by its executable semantics, but to be deployed on blockchain
it will have to be implemented on an existing distributed infrastructure. We
intend to deploy it on IOHK’s Cardano infrastructure, but it can be implemented
in other systems too, as we explain now.

5.1 Design Rationale

Marlowe abstracts away from a number of concrete details of how blockchains
operate. In particular, it is agnostic between UTxO-based systems, such as Bit-
coin and Cardano SL, and account-based models such as Ethereum; it can be
implemented on “push” or “pull”-based systems, and can be executed on or
off-chain.
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UTxO and Accounts. Transactions on Bitcoin are made by spending the (as
yet) unspent outputs of previous transactions (‘unspent transaction outputs’
or UTxOs). The chain need not maintain any state, such as the current value
owned by any particular participant: such account information is implicit and
external to the Bitcoin blockchain. On the other hand, the Ethereum model
explicitly keeps track of account values, and this information needs to be kept
on chain. Of the two, the UTxO model is simpler and requires less support from
the implementation of the chain itself.

Interaction Modality. Contracts can be conceived of as acting in two ways. In a
push model, contracts are seen to make things happen. In the case of blockchain,
this would include making payments or transactions take place. Alternatively,
in a pull model, contracts enable certain things, such as transactions, to happen
but the transactions need to be effected by an external actor. The pull model
makes fewer demands on the blockchain implementation than the push model.

Layered Design and Sidechains. Some chains have a layered design, in particular
Cardano [11]. The Cardano Settlement Layer (SL) is to support settlement of
transactions but nothing more complicated, whereas the Computation Layer (or
CL) supports more powerful general computations over the chain. Moreover, the
Cardano roadmap [3] envisages the possibility of computation taking place, in
part at least, on a sidechain rather than on the main chain itself, which may
support only the SL. Other off-chain approaches include the Lightning network,
overlaid on blockchains (usually Bitcoin) and the channels of æternity [1].

5.2 Compilation

We have designed Marlowe assuming that each contract would be compiled into

– one or more on-chain programs and
– a client side program or interface that has a limited number of choices to be

made at each point in time (including an interface for the observables).

The contracts implemented in the Marlowe language have an implicit interface
defined for what would correspond to the client side of a distributed application,
as shown by the interactive interface. Of course, we probably do not want to give
a user a programmatic interface but an actual application with user interface.

A contract written in Marlowe could also be potentially compiled to a smart-
contract written in Ethereum. This could be done in two ways: it could be
compiled so that a smart contract represents a single instance of the Marlowe
contract with a fixed set of participants; alternatively it would be possible to
create a generic contract with an extra “instantiate” operation that sets up a
new Marlowe contract instance with a given set of participants (set of public
keys).
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Transactions. In principle, we can directly translate each operation in the model
(i.e.: cash commitment, payment claim, choice, or redemption) into a separate
transaction in the blockchain. In the Ethereum model this would work in the
same way that is simulated by Meadow: several operations can be issued in
parallel and the blockchain subsystem will automatically apply them in some
order and integrate them into the next block.

Another approach would be to use a UTxO model with continuations in which
a UTxO represents a contract. In this model, an operation would correspond to
a transaction that spends a UTxO and creates (at least) a new UTxO that
represents the contract after the operation.

Usually, in the UTxO model, it is necessary that a UTxO is in the blockchain
in order for another transaction to be able to spend it. This could potentially
limit the number of operations that can be applied in a single block to one, which
would make infeasible the approach of using the same UTxO to represent several
instances of the same contract (since it would not scale). On the other hand, it
would prevent non-determinism and, with it, it would remove the possibility of
race-conditions. A change to the state of a contract before a transaction (and
its corresponding operation) is accepted in the blockchain would invalidate the
transaction and require the user to issue it again.

Even if we only allow one transaction per block, it would still be possible to
combine several transactions off-chain and to issue a transaction that contains
several operations. However, that would require an offline protocol independent
from the blockchain and it would require participants to collaborate.

Nevertheless, there already exists in Bitcoin a mechanism that allows the
combination of several chained transactions within a single block while using
the UTxO model, even though it is used to solve a different problem and it is
not widely spread yet. This is the case of “child pays for parent”, which allows
the recipient of an unpublished transaction to issue another transaction that
spends the former, with the aim of including enough fees for both transactions
to have enough incentive to be included by a miner in a block (in which case
both transactions would be included in the same block).

The same mechanism could be used for allowing miners to aggregate several
transactions that act as a chain in the same block. The clients would only need
to monitor the transaction pool in order to send transactions that can be chained
with the existing ones.

Cost. The Cardano platform has a notion of cost, and Marlowe contracts will
potentially incur costs of two kinds: The cost of a single transaction execution
(e.g. a single Plutus validator), and the cost of the whole contract, which may
consist of many transactions.

Even in Ethereum this distinction is important because single contract exe-
cution is limited by gas (and is thus finite), whereas the life of the whole contract
may be unbounded and consist of an indefinite number of transactions. So far
we are assuming contracts defined in Marlowe to be finite in both aspects.
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Recording Information on Chain. Inputs and values of observables need to be
recorded somehow, and this raises the potential issue about bloating the chain
with data. In general, it will only be necessary to store a signed hash value of
the observable, and this will keep data usage bounded; but the full information
may still need to be posted in case of dispute.

General Computations. If we have contracts that involve, for example, the oil
price then we may need to convert a published price in USD into ADA, using a
value for the prevailing USD/ADA exchange rate. This will require a computa-
tion: in this case, a multiplication. If Marlowe is to be stand-alone then we need
to extend it with arithmetic and other operations, but we expect Marlowe to be
embedded in a suitable language that provides these facilities.

6 Related Work

Blockchains are executed in a replicated form by parties who cannot be guar-
anteed not to be hostile, either by directly trying to change the contents of the
chain, or through trying to affect other properties of the chain by indirect means
(such as swamping honest parties with work). Programming on the blockchain
therefore needs to be constrained in some ways, since it has to be amenable to
replication or verification within a reasonable time if the security and integrity of
the chain are to be preserved. We look at representatives of the main approaches
now; we discuss some of these in more detail in an earlier paper [12].

Split Contracts. An early work on smart contracts raises the issue that practical
contractual situations may well not be amenable to complete formalisation, hence
giving rise to a split [14] between an automated part and a non-automated part
that mediates, for example, real assets. We can foresee that this approach will
be needed for Marlowe too, if it achieves read-world adoption.

Bitcoin Script. One approach to this is to choose mechanisms such as bitcoin
script [17] which are manifestly non-Turing complete. A bitcoin script, written
in a Forth-like language, is essentially linear: it can branch, but the language
contains neither looping constructs nor recursion. It is therefore straightforward
not only to see that scripts will terminate, but also to give an accurate estimate
of the time taken to execute a script.

Ethereum. On the other hand, the Ethereum system [19] provides a Turing-
complete language for the EVM virtual machine, and a higher-level programming
language, Solidity, that compiles into EVM code. However, EVM and Solidity
programs are constrained post hoc by two mechanisms: program execution must
be paid for using ‘gas’ proportional to the effort expended, and a set of ad hoc
limits on program execution, e.g. on stack size.
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Nxt. In Nxt [15], programmability of the system is provided through a “fat”
high-level API, which is accessible from Nxt clients through a REST interface.
The API provides functionality supporting various kinds of transactions. The
core software itself does not support any form of scripting language; rather,
users are expected to work with the built in transaction types and transactions
that support some 250 primitive operations; these can be “scripted” in a client
(only) using a binding to the API, which is available, for instance, in JavaScript.

Multiple Languages. A common feature of many blockchain platforms is that
they provide multiple scripting languages. As we noted earlier, Ethereum can
be programmed at the EVM level as well as by using the high-level Solidity
language. Tezos [7] supports the stack-based, strongly-typed, functional language
Michelson, but also provides a high-level language, Liquidity, that compiles into
Michelson. Liquidity is also functional and strongly typed, but provides more
constructs in a more familiar syntax, namely that of a subset of OCaml.

The æternity system [1] provides multiple languages and VMs [18]: the func-
tional language Sophia (akin to Reason) and the Functional Typed Warded
Virtual Machine (FTWVM) for safe “system level programming”, the language
Varna and the HLM for simple contracts, and a (port of) Solidity and the EVM
for compatibility with Ethereum. In a similar way, Cardano provides support for
IELE [10], a rational reconstruction of the EVM, and thus for Solidity too.

Domain-Specific Languages. A domain-specific language or DSL is a high-level
language designed to work in a specific field or domain. The intention is that
because the users will know about the field, the constructs of the language can
be designed to be meaningful to them, and also that, because of its nature, the
DSL need not include all the features of a general purpose language. Removing
this clutter and having the remaining operations directly reflect the application
area is intended to make the language more accessible to domain experts who
do not necessarily see themselves as programmers.

Stand-alone DSLs have the advantage of providing appropriate, domain-level
error messages when things go wrong, but suffer the disadvantage of having to be
implemented from scratch. An alternative to this are embedded DSLs (EDSLs),
which provide a “little language” for the particular domain embedded within a
general-purpose host language. This means that parts of the host – such as arith-
metical expressions, or list idioms – can be used to extend the expressibility of
the DSL. A notable example of this is the financial contracts language described
by Peyton Jones and his collaborators [16], which is embedded in Haskell. Mar-
lowe is similar to the DSL in [16] in the use of Haskell embedding, in that the
functionality provided is similar, in the use of composable combinators, and in
the declarative style that allows users to describe what needs to be enforced
and not how. However the two approaches differ in other aspects like the lack of
Marlowe’s reliance on the legal system for enforcement, its support for multiple
party contracts, its explicitness of choices, and its use of a pull model.
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Findel. The Findel project [2] examines financial contracts on the Ethereum
platform, based on the seminal [16], and the authors note that payments need to
be bounded; this is made concrete in our account by our notion of commitments.
They take no account of commitments or timeouts as our approach does, but it
should be noted that the Ethereum platform is more powerful than the one that
we target in this paper.

7 Conclusions and Future Work

In this paper, we have presented Marlowe, a DSL for financial contracts on
blockchains, based on earlier work on contracts [16], together with examples of
its use. We have seen that to make this operational on blockchain we need to add
commitments and timeouts, and to design a semantics that reflects these. As we
saw in Sect. 5.1, Marlowe has been designed to make as few demands as possible
on the underlying blockchain: it can be implemented on UTxO or account-based
blockchains, for example.

We have also presented Meadow, that allows users to interact with and sim-
ulate the operation of Marlowe contracts, contributing to the potential adopt-
ability of the system. We have also described the design rationale for Marlowe,
and sketched ways in which it can be implemented.

We plan to continue the work with Marlowe in a number of directions. We will
continue to develop the core language, for example considering the automation
of generation of identifiers for commitments and others. We will then implement
this version of Marlowe in Cardano, compiling from Marlowe contracts to on
chain contracts and users’ wallets, and deploy it in a test network to observe
and measure its behaviour in practice.

Building on the operational semantics given here, we will develop analy-
ses of Marlowe contracts – such as to show that contracts cannot generate
FailedPay actions in certain circumstances. We will also develop QuickCheck-
style property-based testing [4], and properties developed here can become candi-
dates for fully fledged verification in a formalisation of the semantics of Marlowe.

We would like to thank IOHK for supporting us: not only has this led us
to work on Marlowe, but we have benefited hugely from collaboration with col-
leagues including Manuel Chakravarty, Duncan Coutts, Bernardo David, Charles
Hoskinson, Aggelos Kiayias, Bruno Woltzenlogel Paleo, Rebecca Valentine and
Phil Wadler. We are very grateful to Thomas Arts and colleagues from æternity
for their convivial discussions on blockchain and contracts in Göteborg, and to
colleagues from the Universities of Kent and Leicester for their comments too.
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Abstract. Ethereum smart contracts are programs that run inside a
public distributed database called a blockchain. These smart contracts
are used to handle tokens of value, can be accessed and analyzed by
everyone and are immutable once deployed. Those characteristics make
it imperative that smart contracts are bug-free at deployment time, hence
the need to verify them formally. In this paper we describe our current
efforts in building an SMT-based formal verification module within the
compiler of Solidity, a popular language for writing smart contracts. The
tool is seamlessly integrated into the compiler, where during compilation,
the user is automatically warned of and given counterexamples for poten-
tial arithmetic overflow/underflow, unreachable code, trivial conditions,
and assertion fails. We present how the component currently translates
a subset of Solidity into SMT statements using different theories, and
discuss future challenges such as multi-transaction and state invariants.

1 Introduction

The Ethereum [6] platform is a system that appears as a singleton networked
computer usable by anyone, but is actually built as a distributed database that
utilizes blockchain technology to achieve consensus. One of the features that sets
Ethereum apart from other blockchain systems is the ability to store and execute
code inside this database, via the Ethereum Virtual Machine (EVM ). In contrast
to traditional server systems, anyone can inspect this stored code and execute
functions that can have stateful effects. Since blockchains are typically used
to store ownership relations of valuable goods (for example cryptocurrencies),
malicious actors have a monetary incentive to analyze the inner workings of such
code. Because of that, testing (i.e. dynamic analysis of some typical inputs) does
not suffice and analyzing all possible inputs by utilizing static analysis or formal
verification is recommended.

SAT/SMT-based techniques have been used extensively for program verifica-
tion [1,3,5,8,11,12]. This paper shows how the Solidity compiler, which generates
EVM bytecode, utilizes an SMT solver and a Bounded Model Checking [5] app-
roach to verify safety properties that can be specified as part of the source code,
as well as fixed targets such as arithmetic underflow/overflow, division by zero
and detection of unreachable code and trivial conditions. For the user, the main

c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 376–388, 2018.
https://doi.org/10.1007/978-3-030-03427-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_28&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_28


SMT-Based Verification of Solidity Smart Contracts 377

advantage of this system over others is that they do not need to learn a second
verification language or how to use any new tools, since verification is part of
the compilation process. The Solidity language has requirement and assertion
constructs that allow to filter and check conditions at run-time. The verification
component builds on top of this and tries to verify at compile-time that the
asserted conditions hold for any input, assuming the given requirements.

This paper is organized as follows: Sect. 2 introduces the EVM and smart
contracts. Sect. 3 gives a very brief overview of Solidity. Sect. 4 discusses the
translation from Solidity to SMT statements and next challenges. Finally, Sect. 5
contains our concluding remarks.

Related Work. Oyente [13], Mythril [7] and MAIAN [15] are SMT-based symbolic
execution tools for EVM bytecode that check for specific known vulnerabilities,
where Oyente also checks for assertion fails. They simulate the virtual machine
and execute all possible paths, which takes a performance toll even though the
approach works well for simple programs.

Subsets of Solidity have been translated to Why3 [18], F* [4] and LLVM [10],
but the first requires learning a new annotation specification language and the
latter two only verify fixed vulnerability patterns and do not verify custom user-
provided assertions.

2 Smart Contracts

Programs in Ethereum are called smart contracts. They can be used to enforce
agreements between mutually distrusting parties as long as all conditions can
be fully formalized and do not depend on external factors. Typical use-cases are
decentralized tokens which can have a currency-like aspect, any mechanisms that
build on top of these tokens like exchanges and auctions or also decentralized
tamper-proof registry systems like a domain name system.

Each smart contract has an address under which, among other things, its
code, and a key-value store of data (storage) are stored. The code is fixed after
the creation phase and only the smart contract itself can modify the data stored
at its address.

Users can interact with a smart contract by sending a transaction to its
address. This causes the smart contract’s code to execute inside the so-called
Ethereum Virtual Machine (EVM), which is a stack-based 256-bit machine with
a minimalistic instruction set. Each execution environment has a freshly initial-
ized memory area (not to be confused with the persisting storage). During its
execution, a smart contract can also call other smart contracts synchronously,
which causes their code to be run in a new execution environment. Data can be
passed and received in calls. Furthermore, smart contracts can also create new
smart contracts with arbitrary code.

Since it would otherwise be easy to stall the network by asking it to execute
a complex task, the resources consumed are metered during execution in a unit
called gas. Each transaction only provides a certain amount of gas, which acts
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as a gas limit. If execution is terminated via the stop instruction, any remaining
gas is refunded and the transaction is successful. However, if an exceptional
condition or this gas limit is reached without prior termination, any effect of
the transaction is reverted and it is marked as a failure. In every case, the user
who requested the execution pays for it with Ethereum’s native token, Ether,
proportionally to the amount of gas consumed.

A reverting termination can also happen prior to all gas being consumed. This
is a special feature of the Ethereum Virtual Machine, which makes the control-
flow analysis different from other languages. Whenever the EVM encounters
an invalid situation (invalid opcode, invalid stack access, etc.), execution will
not only stop, but all effects on the state will be reverted. This reversion takes
effect in the current execution environment, and the environment will also flag
a failure to the calling environment, if present. Typically, when a call fails, high
level languages will in turn cause an invalid situation in the caller and thus the
reversion affects the whole transaction.

There is also an explicit opcode that causes the current call to fail, which is
essentially the same as described above, but as an intended effect. Very briefly,
the SMT encoding we will discuss later assumes that no intended failure hap-
pens and tries to deduct that no unintended failure can occur. This allows the
programmer to state preconditions using intended failures and postconditions
using unintended failures.

3 Solidity

Solidity is a programming language specifically developed to write smart con-
tracts which run on the Ethereum Virtual Machine. It is a statically-typed curly-
braces language with a syntax similar to Java. The main source code elements
are called contracts and are similar to classes in other languages. Contract-level
variables in Solidity are persisted in storage while local variables and function
parameters only have a temporary lifetime. Among others, Solidity has integer
data types of various sizes (up to 256 bits, the word size of the EVM), address
types and an associative array type called mapping which can only be used for
contract-level variables.

The source code in Fig. 1 shows a minimal example of a token contract.
Users are identified by their addresses and initially, all tokens are owned by the
creator of the contract, but anyone who owns tokens can transfer an arbitrary
amount to other addresses. Authentication is implicit in the fact that the address
from which a function is called can be accessed through the global variable
msg.sender. In practice, this is enforced by checking a cryptographic signature
on the transaction that is sent through the network.

The require statement inside the function transfer is used to check a pre-
condition at run-time: If its argument evaluates to false, the execution terminates
and any previous change to the state is reverted. Here, it prevents tokens being
transferred that are not actually available.

In general, invalid input should be caught via a failing require. The related
assert statement can be used to check postconditions. The idea behind is that
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contract Token {

/// The main balances / accounting mapping.

mapping(address => uint256) balances;

uint256 totalSupply;

/// Create the token contract crediting ‘msg.sender‘ with

/// 10000 tokens.

constructor() public {

totalSupply = 10000;

balances[msg.sender] = totalSupply;

}

/// Transfer ‘_value‘ tokens from ‘msg.sender‘ to ‘_to‘.

function transfer(address _to, uint256 _value) public {

require(balances[msg.sender] >= _value);

balances[msg.sender] -= _value;

balances[_to] += _value;

}

}

Fig. 1. Example of a token contract.

it should never be possible to reach a failing assert. assert essentially1 has the
same effect as require, but is encoded differently in the bytecode. Verification
tools on bytecode level (as opposed to the high-level approach described in this
article) typically check whether it is possible to reach an assert in any way.

We now show how an assert can be introduced into the transfer function
to perform a simple invariant check.

function transfer(address _to, uint256 _value) public {
require(balances[msg.sender] >= _value);
uint256 sumBefore = balances[msg.sender] + balances[_to];
balances[msg.sender] -= _value;
balances[_to] += _value;
uint256 sumAfter = balances[msg.sender] + balances[_to];
assert(sumBefore == sumAfter);

}

The assert checks that the sum of the balances in the two accounts involved
did not change due to the transfer. Currently, the assert statement is not
removed by the compiler, even if the formal analysis module can prove that
it never fails.

Note that in the general case, balances[_to] can overflow and thus an
analysis tool might flag this assert as potentially failing. In this specific example,
though, the amount of available tokens is too small for this to happen.

1 As opposed to require, assert will result in all remaining gas to be consumed.
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Another important feature that we refer to later in this paper are function
modifiers. These are Solidity constructs that are used as patterns to change
the behavior of functions, and in many cases, to restrict them. Commonly used
modifiers are, for example, allowing only the owner of the contract to execute
the function, or executing a function if and only if the amount of Ether sent is
greater than a certain value. Figure 2 shows a contract using the former, where
the execution of function f continues if and only if the original deployer of the
contract is the caller. We discuss later how to use modifiers to represent function
pre- and postconditions.

contract C

{

address owner;

// A function using this modifier will be executed only

// if the require condition holds.

modifier onlyOwner {

require(msg.sender == owner);

_;

}

// Create the contract setting the deployer as owner.

constructor() public {

owner = msg.sender;

}

function f() onlyOwner {

...

}

}

Fig. 2. Example of modifiers.

4 SMT-Based Solidity Verification

SMT solvers are powerful tools to prove satisfiability of formulas in different log-
ics which often have the necessary expressiveness to model software in a straight-
forward manner [1,3,8,11].

We translate Solidity contracts and their functions into SMT formulas using
a combination of different quantifier-free theories. We shall name the translated
formulas the SMT encoding of the Solidity program. The goal of the translation
from Solidity to SMT formulas is to verify safety properties from the Solidity
program by performing queries to the SMT solver.
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4.1 SMT Encoding

The SMT encoding is computed during a depth-first traversal of the abstract
syntax tree (AST) of the Solidity program and thus roughly follows the execu-
tion order. For now, each function is analyzed in isolation and thus the context
regarding the SMT solver (contract storage, local variables, etc.) is cleared before
each function of a contract is visited. There are five types of formulas that are
encoded from Solidity inside each function. Three of them, Control-flow, Type
constraint and Variable assignment are simply translated as SMT constraints.
The Branch conditions are the conditions of the current branch of execution and
thus grow and shrink as we traverse the AST. The last, Verification Target, cre-
ates a formula consisting of the verification goal conjoined with the previously
mentioned constraints, including the current branch conditions, and queries the
SMT solver for satisfiability. The different types of encoding are described below.

Branch Conditions. For an if-statement if (c) T else F , we add c to the
branch conditions during the visit of T . After that, we replace c by ¬c for the
visit of F and also remove that when we are finished with the if-statement.

Control-Flow. These constraints model conditional termination of execution. A
require(r) statement (and similar for assert(r)) terminates execution if r
evaluates to false, but of course only if it is executed. Thus, we add a constraint
b → r, where b is the conjunction of the current branch conditions. Note that due
to the implication, we can keep this constraint even when we leave the current
branch.

Type Constraint. A variable declaration leads to a correspondent SMT variable
that is assigned the default value of the declared type. For example, Boolean vari-
ables are assigned false, and integer variables are assigned 0. Function parameters
are initialized with a range of valid values for the given type, since their value is
unknown. For instance, a parameter uint32 x is initialized as 0 ≤ x < 232 (32
bits), a parameter int256 y is initialized as −2255 ≤ y < 2255, and a param-
eter address a is assigned the range 0 ≤ a < 2(8∗20) (20 bytes). The encoder
currently supports Boolean and the various sizes of Integer variables.

Variable Assignment. The encoding of a variable assignment follows the Single
Static Assignment (SSA) where each assignment to a program variable intro-
duces a new SMT variable that is assigned to only once. When a program vari-
able is modified inside different branches of execution, a new variable is created
after the branch to re-combine the different values after the branches. We use the
if-then-else-function ite to assign the value ite(c, x1, x2) (if-then-else), where
c is the branch condition and x1 and x2 are the two SSA variables corresponding
to x at the ends of the branches (cf. the φ function in SSA).

Verification Target. Every arithmetic operation is checked against underflow
and overflow according to the type of the values, and an example is given if
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there is an underflow or overflow. We also check whether branch conditions are
constant, warning the user about unreachable blocks or trivial conditions. The
conditions in calls to assert represent target postconditions that the Solidity
programmer wants to ensure at runtime and are verified statically. If it is possible
to disprove the assertion provided that the control flow can reach it (i.e. the
current branch conditions are satisfiable), the user is given a counterexample.
In contrast, require conditions are meant to be used as filters for unwanted
input values when they are unknown, for example, in public functions, acting
like preconditions for the rest of the scope. Therefore, failing calls to require
are not treated as errors and are just checked for triviality and reachability.

Figure 3 shows on the left a Solidity sample that requires all five types of
encoding, shown on the right, in order to verify the intended properties. Since the
variables uint256 a and uint256 b are function parameters, they are initialized
(lines 1 and 2) with the valid range of values for their type (uint256). If a =
0, the require condition about b is used as a precondition when verifying the
assertion in the end of the function (line 3). The next two assignments to b
create the new SSA variables b1 and b2 (line 4). Variable b3 encodes the second
and third conditions, and b4 encodes the first condition (lines 5 and 6). Finally,
b4 is used in the assertion check (line 7). Note that the nested control-flow is
implicitly encoded in the ite variables b3 and b4. We can see that the target
assertion is safe within its function.

contract C

{

function f(uint256 a, uint256 b)

{

if (a == 0)

require(b <= 100);

else if (a == 1)

b = 1000;

else

b = 10000;

assert(b <= 100000);

}

}

1. a0 ≥ 0 ∧ a0 < 2256 ∧
2. b0 ≥ 0 ∧ b0 < 2256 ∧
3. (a0 = 0) → (b0 ≤ 100)∧
4. b1 = 1000 ∧ b2 = 10000
5. b3 = ite(a == 1, b1, b2) ∧
6. b4 = ite(a == 0, b0, b3) ∧
7. ¬b4 ≤ 100000

Fig. 3. SMT encoding of an assertion check.

As described above, the component performs several local checks during a
single run, therefore it is critical that the used SMT solver supports incremental
checking. Moreover, we do not abstract difficult operations such as multiplica-
tion between variables, and rather try to give precise answers when possible.
Therefore we combine various quantifier-free theories, such as Linear Arith-
metics, Uninterpreted Functions and Nonlinear Arithmetics. Solidity has inte-
grated Z3 [14] and CVC4 [2] via their C++ APIs. The two SMT solvers are
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used together to increase solving power. This has been important especially for
the programs that require Nonlinear reasoning, since often one solver is able to
prove a property that the other cannot. The component is also able to generate
smtlib2 [17] formulas in order to interface with additional solvers.

4.2 Specific Examples

Even though the current implementation of the SMT module supports a small
subset of Solidity, it can already be used to detect flaws that might be overlooked
by the user. We present now a few examples of buggy code that the compiler is
able to detect regarding constant conditions, overflow, and assertion checking.

The following loop is infinite because the author of the code forgot to incre-
ment the loop variable i. In that case, the user receives a message about the
loop’s condition being always true for the case where owners.length is not zero.

for (uint i = 0; i < owners.length;)
{

// ...
}

Another type of problem that the compiler finds automatically is unreach-
able code. In the following control-flow expressions, it warns the user that the
condition in the else if is unreachable.

if (a >= 7) { ... }
else if (a >= 10) { ... }

Arithmetic operations should be checked against overflow, especially when
parameters of public functions are used. The code below may easily lead to an
overflow, which the tool reports with a counterexample. The overflow can be
prevented with a require statement.

function addFunds(uint256 _amount) {
// require((_amount + funds) >= funds);
funds += _amount;

}

One of the most important features is the ability to check safety properties
statically, by using Solidity’s assert. The following example code uses an assert
to check the equivalence of two computations, once written using control-flow
statements, once as a direct Boolean formula.

function f(bool a, bool b) public pure {
bool c;
if (a) {

if (b) c = false;
else c = true;

}
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else {
if (b) c = true;
else c = false;

}
assert(c != ((a && !b) || (!a && b)));

}

Note that the assertion will be reported to fail with the valuation a = false,
b = false, c = false. The safe condition would be assert(c == ((a && !b)
|| (!a && b)));.

4.3 Future Plans

We introduce now the features that we intend to implement in the SMT module,
as well as discuss arising research problems where we present simple examples
that highlight how the new features will work.

Our current implementation plans for the component involve supporting a
larger subset of the language, including more complex data structures such as
mapping. This is especially important for cases such as token contracts, where
properties such as funds leakage and wrong balance could be used as targets.
The component is meant to be built as a Bounded Model Checker, unrolling
loops up to a constant bound and automatically detecting bounds when possible.
We also intend to introduce a loop pre and postconditions syntax to help the
unbounded case.

Range Restriction of Real Life Values. Some Solidity environment variables have
a 256 bit unsigned integer type, although the range of their values is much more
restricted in practice. For instance, the UNIX timestamp of the current block in
seconds, block.timestamp will not exceed 64 bits for the next 500 billion years.
To reduce the false positives rate for overflows, it makes sense to restrict the
value range for these variables in the SMT encoding. It is an open question how
to do this properly, since a straightforward hard cap at some point could create
undesired artefacts around that point. Another environment variable that could
have a similar behavior is block.number.

Revert After Error. Errors are irrelevant if they result in a state change reversion
(Sect. 2). The user should be warned about failing checks such as overflow only if
they do not result in a state reversion. One popular example is the SafeMath [16]
contract which is commonly used to turn wrapping arithmetics into overflow-
checked arithmetics:

function add(uint256 a, uint256 b) internal pure
returns (uint256) {

uint256 c = a + b;
require(c >= a);
return c;

}
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Although the tool detects an overflow in the computation of a + b, the
overflow will result in a truncation of c in two’s complement and thus any
execution that contains the overflow will revert at the require. In this case
the user should not be warned of the error, since no erroneous cases exist in
accepted executions.

Aliasing. In many languages, complex data structures are only assigned by ref-
erence, creating two names for the same object and thus changes performed via
one name also affect references via the second name. This is of course a big chal-
lenge for formal verification and is known as the aliasing problem. This is also
the case for some aspects of Solidity, but data stored in storage does not have
this problem: The structure of storage is determined at compile-time, and all
objects are statically allocated; while arrays can grow, their position in storage
is fixed at compile-time. Because of that, the aliasing problem is not an issue,
as long as we can assume that there are no hash collisions in keccak256 and
dynamic arrays are small enough.

contract C

{

uint a;

constructor () public {}

function a1() public { a = 1; }

function a2() public { a = 2; }

function a3() public { a = 3; }

function a4() public { a = 4; }

function plusA(uint x) public view returns (uint) {

require(x < 1000);

return a + x;

}

}

Fig. 4. Contract with a storage variable invariant.

Multi-transaction Invariants. One of the most interesting aspects we intend
to research and support is multi-transaction invariants. The ultimate goal is
to compute invariants for state variables (resident in the contract’s storage)
considering any arbitrary number of calls to the contract. This would enable
these invariants to be used as preconditions whenever they are accessed. Figure 4
presents an example contract with a state variable a which can be assigned
differently depending on which public function is called. We can see that if we
consider all possible paths, a is never greater than 4, so the invariant a ≤ 4 holds.
Currently, without the discovery of the invariant, the SMT module reports an
overflow case in the return statement of function plusA. If the invariant is used
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as a pre-condition of the function, by adding require(a <= 4), for example,
no overflow is reported. The SMT component should in the future be able to
automatically infer these invariants.

Post-constructor Invariants. A special and restricted case of multi-transaction
invariants usage are contracts where a state variable is assigned in the construc-
tor and never modified again. A common example is contract Token from Sect. 3.
We can see from the constructor that the totalSupply of tokens is 10000, which
is also the initial amount of tokens given to the deployer of the contract. The
only way to move tokens is via the function transfer, which decreases a cer-
tain amount of tokens from one account, if it owns enough, and increases the
same amount in another account. We can modify function transfer to use the
invariant about state variable totalSupply:

function transfer(address _to, uint256 _value) public {
require(balances[msg.sender] >= _value);
uint256 sumBefore = balances[msg.sender] + balances[_to];
totalSupply -= sumBefore;
balances[msg.sender] -= _value;
balances[_to] += _value;
uint256 sumAfter = balances[msg.sender] + balances[_to];
totalSupply += sumAfter;
assert(sumBefore == sumAfter);
assert(totalSupply == 10000);

}

As we can see, the number of total tokens never changes and the invariant
totalSupply = 10000 holds in the beginning of any function of the contract.
Similarly to the previous example, it is not possible to prove the last assertion
without the knowledge about the invariant.

Modifiers as pre and Postconditions. An orthogonal approach to automatically
inferred invariants is to provide a good syntax so that Solidity programmers
can explicitly state pre and postconditions of functions. Modifiers (Sect. 3) are
a natural candidate for that, given their ability to behave as patterns that wrap
functions. In the following code, the modifier safeBalance states pre and post-
conditions for the transfer function in the Token contract (Sect. 3), ensuring
that the concrete value of totalSupply does not change after a token transfer.

modifier safeBalance {
require(totalSupply == 10000);
_;
assert(totalSupply == 10000);

}

function transfer(address _to, uint256 _value) safeBalance {
...

}
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Function Abstraction. If modifiers are used as pre and postconditions as
described above, it could be possible to abstract functions based on these
modifiers. Let zeroAccount be a function from contract Token that transfers
all the tokens that an account holds to another one of their choice. Function
zeroAccount should also be sure that the totalSupply did not change.

function zeroAccount(address _to) {
transfer(_to, balance[msg.sender]);
assert(totalSupply == 10000);

}

One approach to analyze zeroAccount is to abstract function transfer by
encoding only its modifiers and ignoring its body when trying to prove the
assertion. This query is much cheaper for the SMT solver, and in many cases (as
it is in this one) it might be enough to prove the assertion.

Effective Callback Freeness. The idea of Effective Callback Freeness was recently
introduced by [9]. A smart contract C is effectively callback free, if any state
change caused by a callback in C can also be caused by an execution that does
not have this callback. Straightforward examples include a contract that uses a
mutex mechanism to disallow state changes if the function is called as a callback,
and the general pattern where all functions perform state changes before they
call other contracts. The authors show that most of the contracts deployed on
Ethereum have this property. This is a powerful property, since it means that any
invariant computed for a contract’s state variables still holds even after calling
external contracts with unknown behavior. We intend to study how to integrate
this approach to our static analysis.

5 Conclusion

We have presented our current work and future plans building an SMT-based
formal verification module inside the Solidity compiler. The module creates SMT
constraints from the Solidity code and queries SMT solvers to statically check
for underflow/overflow, division by zero, unreachable/trivial code, and asser-
tion fails, where require statements are used as assumptions. The programmer
receives, in compile-time, feedback with counterexamples in case any of the tar-
get properties fail, without any extra effort. The SMT constraints and queries
are created using theories that model the Solidity program precisely, therefore
the given counterexamples are correct.

The features that are currently under implementation aim at extending the
subset of Solidity that is supported, as well as improving error reporting. Future
work on the SMT module includes interesting broader research questions, such
as computing multi-transaction invariants for state variables, detecting post-
constructor invariants, and using modifier-based abstraction for functions.
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Abstract. There is a protocol called “atomic cross-chain swap” that
spans across multiple blockchains, but is it really atomic? We analyze
the protocol using a modal logic for asynchronous communication. The
modal logic allows us to identify some assumptions required for the
“atomic” property as logical formulas. We first demonstrate that the
atomicity fails without some temporal-epistemic assumptions. We further
construct a proof that the atomicity holds with strong enough temporal-
epistemic assumptions. In both analyses, we use Kripke models of the
modal logic. This is the first analysis of multiple blockchains’ interaction
using a modal logic.

Keywords: Modal logic · Epistemic logic
Asynchronous computation · Blockchains

1 Introduction

This paper analyzes a concurrent, asynchronous protocol involving multiple
blockchains using a modal logic called intuitionistic epistemic logic for asyn-
chronous communication [14].

A blockchain is a singly linked list of data-blobs called blocks. A block con-
tains a cryptographic hash value of the previous block’s contents. The hash
value serves as the link of the list. A single blockchain is useful for ensuring the
integrity of a sequence of blocks because the latest block uniquely identifies the
preceding sequence of blocks (assuming no hash collisions).

Today, some proof-of-work protocols (Bitcoin [19] and similar protocols) are
spinning concurrent, asynchronous activities into fully sequential histories. These
protocols have no fixed number of participants, so the protocols fall out of the
traditional distributed protocols (e.g. Paxos [15] and Chandra-Toueg [3]). These
blockchain protocols have no termination; they never yield final definite con-
sensus but at most an ever-increasing confidence on one result. This is why
these blockchain protocols fall out of scope of some impossibility theorems (e.g.
FLP-theorem [9]) regarding distributed consensus. It turns out many people are
willing to use such protocols without termination.

Once we start using multiple blockchains for performance reasons (as in
Polkadot [25], Plasma [22], or “sharding” aproaches [10,18]), the asynchronous,
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concurrent reasoning is again required. As an example, this paper analyzes a pro-
tocol called “atomic cross-chain swap” [16,21]. Figure 1 is a concise description
of the protocol. In this protocol, two blockchains interact in an asynchronous
manner, and they are claimed to establish an atomic swap together. The atomic
swap is claimed to either succeed in both blockchains or fail in both.

Such atomicity between asynchronically communicating agents sound dubi-
ous to a student of modal epistemic logic, who learns that asynchronous commu-
nication never creates a new piece of common knowledge [4]. An atomic swap, if
it is atomic as the name suggests, should result in common knowledge. This is
because, if the swap atomically succeeds or fails, the result should be known to
both parties, and there is no possibility that two parties see different situations,
including their epistemic states. As a result, there should be an unlimited nesting
of mutual knowledge of the form “X knows Y knows X knows Y knows · · · that
the swap failed.” However, in the asynchronous setting, deep nesting of knowl-
edge can be attained only after as many round-trip communication. Since the
cross-chain atomic swap does not involve synchronous communication between
the two blockchains, there must be some kind of assumptions supporting the
“atomic” property. This paper clarifies those assumptions.

Our contributions are:

– defining the syntax (Subsect. 2.1) and the semantics (Subsect. 2.2) of logical
formulas for reasoning about the cross-chain atomic swap,

– specifying hashlocks with logical formulas (Sect. 3),
– specifying desired atomicity of cross-chain atomic swaps as logical formulas

(Binary-Outcome) and (Weak-Binary-Outcome) in Sect. 4,
– identifying two sets of assumptions that are not enough for the desired atom-

icity (Propositions 3 and 4), and
– identifying one set of assumptions that is enough for a form of atomicity

(Proposition 5).

2 The Logic Used in this Paper

Our task is an instance of the general task of ensuring a desired property (in
our case, atomicity) in all possible situations (in our case, protocol executions).
If some situations refute the property, we can continue asking if we can restrict
the possible situations to regain the desired property. We need a mathematical
formalism to express the possible situations, our desired properties, and our
assumptions on the possible situations.

We use the approach of mathematical logic [5]. The possible situations are
represented as models. Each model contains states that are related temporally
or epistemically. Logical formulas express properties of states of models. The
syntax of the logic defines what sequence of symbols counts as logical formulas.
The semantics of the logic defines which states of models satisfy a logical formula.

We use an extension of intuitionistic propositional logic. Intuitionistic logic
originally modeled a mathematician who happens to be an intuitionist. When
a proposition ϕ is known to hold, it holds forever. When the negation ¬ϕ is
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The canonical bitcoin atomic swap works as follows: Alice prepares a random
secret k with a 20-byte hash H=HASH160(k) and then funds the following contract,
in Bitcoin script [2]:

IF

<BKey> CHECKSIGVERIFY

HASH160 <H> EQUAL

ELSE

<AKey> CHECKSIGVERIFY

<ATime> CHECKLOCKTIMEVERIFY

ENDIF

Meaning of this contract: A signature from Bob’s public key BKey in combination
with secret k can spend the money. However as a fallback in case of cancellation, a
signature from Alice’s public key AKey lets her get a refund, but only after ATime.
Bob does not know k, yet. He funds a similar contract on his blockchain using
Alice’s H value, but with a BTime expiring significantly sooner than ATime:

IF

<AKey> CHECKSIGVERIFY

HASH160 <H> EQUAL

ELSE

<BKey> CHECKSIGVERIFY

<BTime> CHECKLOCKTIMEVERIFY

ENDIF

Now, Alice may redeem Bob’s contract but in doing so, she must reveal k. Bob
can now see k which allows him to redeem Alice’s contract. If the deal is called off
then Bob is allowed to get a refund at BTime, and then Alice can get her refund
after ATime. The above setup is generally perceived as perfectly secure and is being
proposed for safe on-chain cryptocurrency exchanges that do not involve a third
party.

Fig. 1. A description of a cross-chain atomic swap, cited from [16] with cosmetic mod-
ifications.

known, that would also be remembered forever. When neither ϕ or ¬ϕ is known,
according to the intuitionistic interpretation of disjunction ∨, the disjunction ϕ∨
¬ϕ is not known. In other words, whenever ϕ ∨ ψ is known, either ϕ is known,
or ψ is known.

This intuitionistic reading of disjunction seems particularly useful for settle-
ment of funds when ϕ means “Alice obtains the fund” and ψ means “Bob obtains
the fund.” The settlement should be final, and the finality is already captured
by the persistent nature of intuitionistic logic.

Intuitionistic Epistemic Logic for Asynchronous Communication. Modal logic
can express the fundamental assumptions about knowledge and time. For
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instance, the formula KAϕ ⊃ KA(KAϕ) says “if A knows ϕ, A knows that
A knows ϕ”. This formula is named “positive introspection.” At first logical for-
mulas look like merely a shorthand for sentences, but the symbolic treatments
scale better than English sentences, especially when the modalities are nested.

Intuitionistic epistemic logic [14] was designed to reason about asynchronous
communication. The logic can reason about temporal epistemic systems, but it
has no explicit temporal modality. The Kripke model [5] of intuitionistic propo-
sitional logic is reused as the temporal frame. Originally Hirai [14] used the logic
for waitfree communication on shared memory. In this paper we use the logic
for asynchronous communication between multiple blockchains.

2.1 Language

Mathematical logic distinguishes syntax and semantics. Logical formulas them-
selves are just shapes without meaning. A separate criterion dictates when a
model satisfies a formula. Of course, certain formulas are never satisfied, and
these formulas represent falsehood. However, such interpretations come only
after the definition (Definition 2) of semantics.

We first define which sequents of symbols count as logical formulas. The
logical formulas contain names of agents and atomic propositions, so we define
those first.

An agent is one of the four distinct symbols:

a ::= Alice,Bob,X,Y. (1)

They are just distinct symbols, but informally, Alice and Bob are participants
of the protocol in Fig. 1, and X and Y are blockchains.

We choose the following set of atomic propositions:

P ::= D1,D2, k,AY,BX. (2)

Informally, D1 holds whenever the wall clock shows more than one day ahead
since the beginning of the protocol execution, and D2 holds whenever more than
two days. Also informally, k holds when Alice’s secret is publicly visible. AY

holds when the fund on blockchain Y is available to Alice. BX when the fund on
blockchain X is available to Bob. By introducing the last three atomic formulas,
we are effectively assuming that the swaps on blockchains X and Y cannot be
reversed. In practice, agents are supposed to ignore contents of too fresh blocks
that might be orphaned1.

Following Hirai [14], a formula is syntactically defined as

ϕ,ψ ::= ⊥ | P | (Kaϕ) | (ϕ ∨ ψ) | (ϕ ∧ ψ) | (ϕ ⊃ ψ). (3)

where symbols a and P are non-terminal symbols from (1) and (2). The symbol
⊃ stands for implication; a formula of the form (ϕ ⊃ ψ) says ϕ implies ψ.
Negation (¬ϕ) is a shorthand for (ϕ ⊃ ⊥). We omit parentheses when there is
no ambiguity.
1 A block is orphaned when it belongs to a blockchain that is not considered canonical
anymore. This sometimes happens after branching blockchains are formed.
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Informal Readings of the Language. BHK-interpretation2 [24, Chap. 1] is a proof-
centric way of reading logical connectives (∧, ∨, ⊃, ⊥ and Ka). If one knows what
counts as a proof of ϕ and what counts as a proof of ψ, BHK-interpretation tells
what counts as a proof of more complicated formulas: ϕ ∧ ψ, ϕ ∨ ψ and ϕ ⊃ ψ.

H1. A proof of ϕ ∧ ψ is given by presenting a proof of ϕ and a proof of ψ.
H2. A proof of ϕ ∨ ψ is given by presenting either a proof of ϕ or a proof of ψ

(plus the stipulation that we want to regard the proof presented as evidence
for ϕ ∨ ψ).

H3. A proof of ϕ ⊃ ψ is a construction which permits us to transform any proof
of ϕ into a proof of ψ.

H4. Absurdity ⊥ (contradiction) has no proof; a proof of ¬ϕ is a construction
which transforms any hypothetical proof of ϕ into a proof of a contradiction.

Hirai [13] extends the list with one clause about the epistemic modality:

HK. A proof of Kaϕ is a construction that witnesses agent a’s acknowledgment
of a proof of ϕ and also contains the acknowledged proof.

In other words, a proof of Kaϕ is a proof of ϕ with a’s signature. From a signed
proof of ϕ, one can obtain an unsigned proof of ϕ, so, the formula (Kaϕ) ⊃ ϕ is
always satisfied, as we see later in Proposition 7.

The BHK-interpretation explains the logical connectives. We have to inter-
pret the atomic formulas so that we know what count as proofs of the atomic
formulas. A proof of k is the secret generated by Alice shown in public. A proof
of D1 and D2 could be some real-world information only available one day or
two days after a certain point in time. A proof of AY is an onchain proof that
Alice can spend the fund on blockchain Y. A proof of BX is an onchain proof
that Bob can spend the fund on blockchain X. If the cross-chain atomic swap is
really atomic, AY and BX both should hold or neither (Sect. 4).

2.2 Models

A model (Definition 1) is a set of states equipped with some relations and func-
tions. We will be using small, finite models to refute the desired atomicity of
the protocol (Propositions 3 and 4). We will also be reasoning about arbitrary
models to establish the atomicity (Proposition 5).

Definition 1 (Definition 2.3, [14]). Let A denote the set of agents. A model
〈W,≺, (fa)a∈A, ρ〉 is a tuple with following properties:

1. 〈W,	〉 is a partially ordered set whose elements are called states,
2. for each agent a ∈ A, a function fa : W → W satisfies

(a) fa(w) 	 w,
(b) fa(fa(w)) = fa(w), and
(c) w 	 v implies fa(w) 	 fa(v)

2 BHK stands for Brouwer-Heyting-Kolmogorov.
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3. Let Atom be the set of atomic propositions and P(W ) is the powerset of W .
ρ : Atom → P(W ) is a function such that each ρ(P ) is upward-closed with
respect to 	. In other words, w′ � w ∈ ρ(P ) implies w′ ∈ ρ(P ).

Definition 2. We define a relation M,w |= ϕ (pronounced “the model M at
state w satisfies ϕ”) of a model M = 〈W,	, (fa)a∈A, ρ〉, a state w ∈ W and a
formula ϕ. The definition is inductive on the structure of ϕ.

(Case ϕ = ⊥) M,w |= ⊥ never holds.
(Case ϕ = P ) for an atomic formula P , M,w |= P if and only if w ∈ ρ(P ).
(Case ϕ = Kaψ) M,w |= Kaψ if and only if M,fa(w) |= ψ.
(Case ϕ = ψ0 ∧ ψ1) M,w |= ψ0 ∧ ψ1 if and only if both M,w |= ψ0 and

M,w |= ψ1 hold.
(Case ϕ = ψ0 ∨ ψ1) M,w |= ψ0 ∨ ψ1 if and only if M,w |= ψ0 or M,w |= ψ1

holds.
(Case ϕ = ψ0 ⊃ ψ1) M,w |= ψ0 ⊃ ψ1 if and only if for any w′ ∈ W with

w′ � w, the relation M,w′ |= ψ0 implies the relation M,w′ |= ψ1.

Since ¬ϕ is an abbreviation of ϕ ⊃ ⊥, the relation M,w |= ¬ϕ holds if and only
if no v � w satisfies M,v |= ϕ.

Informal Interpretation of the Model. When a state w satisfies a proposition ϕ,
a proof of ϕ is available in the state. When two states are ordered v 	 w, they
are temporarily related. Every proof available in the past state v is also avail-
able in the future state w. So, any formula satisfied in v is also satisfied in w
(Proposition 6). Such monotonicity is not found in the real world, where people
can forget and proofs can be lost. When we analyze cryptographic protocols, it is
prudent to assume that attackers do not forget a once-learned secret. The treat-
ment also has shortcomings. Most importantly, our analysis assumes the finality
of transactions on blockchains. Nonetheless we will find that more assumptions
are necessary.

The state fa(w) is agent a’s latest state seen from w. Every proof in fa(w)
are available in w. Moreover, the proofs available in fa(w) are all signed by a
and made available in w, so, if fa(w) contains a proof of ϕ, w contains a proof of
Kaϕ. Such situation typically occurs when a sends a message from state fa(w)
and the message arrives in state w. We assume such messages contain all current
knowledge of a at fa(w).

We consider any fa(w) as a local state of a and thus fa(fa(w)) is always equal
to fa(w). As a result, Kaϕ and KaKaϕ are always equivalent (so the property
“positive introspection” holds).

Our models can distinguish (a) asynchronous round-trip between Alice and
Bob from (b) synchronous communication between them (Fig. 2). In the asyn-
chronous case, if fAlicefBobfAlice(v) satisfies ϕ, v satisfies KAliceKBobKAliceϕ but
not necessarily KAliceKBobKAliceKBobϕ. In the synchronous case, if w satisfies
ϕ, w also satisfies KAliceKBob · · · KBobϕ with any repetition of KAlice and KBob.
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Fig. 2. Kripke models showing (a) asynchronous round-trip and (b) synchronous com-
munication between Alice and Bob. Circles represent the states of models. In (a), the
state v contains Bob’s message from fBob(v), which in turn contains Alice’s message
from fAlicefBob(v).

3 Common Assumptions

3.1 For the Hashlock on Blockchain X

The cross-chain atomic swap (Fig. 1) is a protocol based on a primitive called “a
hashlock.” We need to specify the hashlocks using logical formulas.

The most relevant property is a hashlock’s ability to settle payments. After
a finite amount of time, a hashlock is able to dictate whether the locked fund
already belongs to Bob or never. Concretely on blockchain X, after two days,
either Bob has obtained the fund and the secret has been revealed (BX ∧ k) or
Bob will never get the fund (¬BX).

KX(D2 ⊃ ((BX ∧ k) ∨ ¬BX)). (X-live1)

A hashlock can be unlocked using a secret. On blockchain X, if two days have
not passed yet, if Bob provides the secret (KBobk), Bob obtains the fund (BX).

KX(D2 ∨ (KBobk ⊃ BX)). (X-live2)

Here, we could not say (¬D2) ⊃ · · · because that formula is of any relevance
only at a state with no future satisfying D2. The formula ¬D2 is satisfied only
when the world ends before two days pass.

The above two properties are about what a hashlock is supposed to do. There
is one important thing that a hashlock is not supposed to do. The hashlock grants
the fund to Bob only when Bob authenticates himself with the secret k:

BX ⊃ KXKBobk. (X-safe)

3.2 For the Hashlock on Blockchain Y

We can formulate the same properties of the hashlock on the other blockchain.
After one day, on blockchain Y, either the fund is given or not given:

KY(D1 ⊃ ((AY ∧ k) ∨ ¬AY)). (Y-live1)
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Before one day, on blockchain Y, if the hash is known, the fund is given:

KY(D1 ∨ (KAlicek ⊃ AY)). (Y-live2)

Alice cannot obtain the fund on the blockchain Y unless she reveals the hash:

AY ⊃ KYk. (Y-safe)

3.3 For the Temporal Ordering of Day One and Day Two

If two days have passed, one day has already passed, too:

D2 ⊃ D1. (Days)

4 Reasoning About Atomicity

4.1 A Failure on Binary Outcome

In general, atomicity states that the protocol cleanly succeeds or fails, with-
out leaving an incomplete success. In our case, the two unlocking events on
blockchains X and Y need to succeed both or fail both. One way to express this
as a logical formula goes like this; after two days, at least one of the two allowed
cases happens:

D2 ⊃ ((AY ∧ BX) ∨ ((¬AY) ∧ (¬BX))). (Binary-Outcome)

However, the already introduced axioms do not guarantee (Binary-Outcome).

Proposition 3. There is a model that satisfies all of (Y-live1), (Y-live2), (Y-
safe), (X-live1), (X-live2), (X-safe) and (Days) at every state, but does not sat-
isfy (Binary-Outcome) at a state.

Proof. By constructing a model M and a state w (Fig. 3) so that M satisfies all
assumptions at every state but w does not satisfy (Binary-Outcome). The state
w in Fig. 3 does not satisfy ¬AY because there is a future state satisfying AY. On
the other hand, w does not satisfy AY either. So, without looking at BX or ¬BX,
we can conclude that w does not satisfy (AY ∧BX)∨ ((¬AY)∧ (¬BX)). However,
w does satisfy D2. So w does not satisfy the implication (Binary-Outcome). 
�
Informally speaking, on state w in Fig. 3, two days have passed but neither
blockchain has produced visible blocks since the beginning of the protocol.
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Fig. 3. A model M and a state w for the proof of Proposition 3. Three circles represent
the three states of M . Each function fa is identity whenever not explicitly shown. The
� relation holds whenever two states are connected through dashed lines and arrows
in a bottom-to-top way.

4.2 A Failure on a Weaker Binary Outcome

We can require that both blockchains contain blocks produced after two days
have passed:

KXD2 ⊃ (KYD2 ⊃ ((AY ∧ BX) ∨ ((¬AY) ∧ ¬BX))). (Weak-Binary-Outcome)

This new proposition is strictly weaker than the old one. All states satisfy-
ing (Binary-Outcome) also satisfy (Weak-Binary-Outcome), but the inverse is
not always the case. For instance, state w in Fig. 3 does not satisfy (Binary-
Outcome), but it satisfies (Weak-Binary-Outcome).

Proposition 4. There is a model that satisfies (Y-live1), (Y-live2), (Y-safe),
(X-live1), (X-live2), (X-safe) and (Days) at all states, but does not satisfy
(Weak-Binary-Outcome) at some states.

Proof. By constructing a model M and a state w in it (Fig. 4). 
�
Figure 4 demonstrates a lack of communication between the two chains. More
specifically, although the hashlock on blockchain Y is unlocked, Bob fails to use
the secret revealed on blockchain Y to unlock the hashlock on blockchain X.

4.3 Enough Assumptions for Atomicity

To remedy the situation, we need to assume certain communication between the
two chains. Especially, contents on blockchain Y should be read by Bob and
transmitted over to blockchain X in a timely manner.
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Fig. 4. A model M and a state w for proving Proposition 4. Five circles represent the
five states of M . Each function fa is identity whenever not explicitly shown. The �
relation holds whenever two states are reachable following dashed lines and arrows in
a bottom-to-top way.

In order to talk about the timing restrictions, we add two more agents in
the language: 11

4 and 11
2 that represent “1 1

4 (resp. 11
2 ) days from the beginning

of protocol execution.” In the models, f1 1
2
(w) is equal to w when the wall-

clock time at w is less than one-and-half days from the beginning of protocol
execution. Otherwise, f1 1

2
(w) is a previous state where the wall-clock time is less

than one-and-half days from the beginning.
Now we can spell out assumptions; whenever blockchain Y has a record

at one-and-quarter days, Bob should have read and submitted the record to
blockchain X by one-and-half days:

(KYK1 1
4
ϕ) ⊃ KXK1 1

2
KBobKYK1 1

4
ϕ. (Bob-has-chance)

We have defined a set of infinitely many logical formulas where ϕ is replaced
with arbitrary logical formulas.

When blockchain Y contains records at the two-day moment, it also contains
witnesses from the one-and-quarter-day moment, saying that the hashlock had
already been settled; either Alice had used the secret to unlock the hashock, or
Alice would never unlock it:

KY(D2 ⊃ K1 1
4
((AY ∧ k) ∨ (¬AY))). (Y-timed1)

Finally, if Bob ever gets to know the secret, Alice should have opened the
hashlock. In other words, Alice does not leak the secret without getting the fund
in blockchain Y:
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KBobk ⊃ AY. (Alice-opsec)

Blockchain X at one-and-half days should allow Bob to unlock the hashlock:

KXK1 1
2
((KBobk) ⊃ BX). (X-live1

1
2
)

When we impose those formulas at every state, the desired weak binary
outcome property holds.

Proposition 5. If a model M satisfies (X-live2), (Y-timed1), (Alice-opsec),
(Bob-has-chance), (X-live1 1

2) at every state, M also satisfies (Weak-Binary-
Outcome) at every state.

Before proving this proposition, we need some preparations.

Proposition 6 (Kripke monotinicity [14]). M,w |= ϕ and w 	 w′ imply
M,w′ |= ϕ.

Proof. By structural induciton on ϕ. 
�
Proposition 7. Any model M at any state w satisfies any (Kaϕ) ⊃ ϕ.

Proof. For any w′ with w′ � w, we assume M,w′ |= Kaϕ and claim M,w′ |= ϕ.
By the semantics of Ka, fa(w′) satisfies ϕ. By the definition of a model, fa(w′) 	
w′ holds. By Proposition 6, w′ satisfies ϕ. 
�

With these two auxiliary propositions, we are ready to continue.

Proof. (of Proposition 5) We take an arbitrary state v in such a model M .
And we take an arbitrary state w with w � v. We assume M,w |= KXD2 and
M,w |= KYD2. It is enough to show that w satisfies (AY∧BX)∨((¬AY)∧(¬BX)).

Since w satisfies KYD2, fY(w) satisfies D2. Since w satisfies (Y-timed1),
fY(w) satisfies D2 ⊃ K1 1

4
((AY ∧ k) ∨ (¬AY)). So fY(w) satisfies K1 1

4
((AY ∧

k) ∨ (¬AY)). That is to say w satisfies KYK1 1
4
((AY ∧ k) ∨ (¬AY)). By (Bob-

has-chance), w also satisfies KXK1 1
2
KBobKYK1 1

4
((AY ∧ k) ∨ (¬AY)). In other

words, f1 1
4
fYfBobf1 1

2
fX(w) satisfies AY ∧ k (the positive case) or ¬AY (the

negative case).

(The positive case) By (X-live11
2 ), w satisfies KXK1 1

2
((KBobk) ⊃ BX). In

other words, f1 1
2
fX(w) satisfies (KBobk) ⊃ BX. Since fBobf1 1

2
fX(w) is a

future of f1 1
4
fYfBobf1 1

2
fX(w), by Kripke monotonicity, fBobf1 1

2
fX(w) sat-

isfies AY ∧ k. So, f1 1
2
fX(w) satisfies KBobk. The same state also satisfies

(KBobk) ⊃ BX. As a result, f1 1
2
fX(w) satisfies BX. By Kripke monotonicity,

w satisfies BX. Also by Kripke monotonicity, w satisfies AY.
(The negative case) Since f1 1

2
fX(w) � f1 1

4
fYfBobf1 1

2
fX(w), by Kripke mono-

tonicity, f1 1
2
fX(w) also satisfies ¬AY. Since f1 1

2
fX(w) satisfies (Alice-opsec),

by the semantics of ⊃, f1 1
2
fX(w) satisfies ¬KBobk. Since fX(w) � f1 1

2
fX(w),
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by Kripke monotonicity, fX(w) also satisfies ¬KBobk. We claim that w satis-
fies ¬BX. For that, seeking contradiction, We assume some x � w satisfies BX.
State x satisfies (X-safe), so by the semantics of ⊃, x also satisfies KXKBobk.
In other words, fX(x) satisfies KBobk. However, since fX(x) � fX(w), this
contradicts fX(w) satisfying ¬KBobk. 
�

Informal Reading of the Result. We have identified a set of sufficient assumptions
that supports the atomicity. We should now reflect on the meaning of these logi-
cal formulas, but before that we have to evaluate our choice of the logic. When we
modeled the cross-chain atomic swap using intuitionistic epistemic logic, before
introducing any axioms, we effectively assumed that all propositions are stable.
That is, once they become true, they remain true forever. This stability seems
appropriate for the revealed secret k, but questionable for heads of blockchains.
For Bitcoin, the head of the chain sometimes jumps to other branches. We discuss
approaches to circumvent this problem in Sect. 6.

(Bob-has-chance) is about Bob’s ability to read from the blockchain Y and
submit the obtained knowledge to the blockchain X, which in turn requires
availability of both blockchains. (Alice-opsec) is about Alice’s ability to keep the
secret when she chooses not to unlock the hashlock. This also requires pre-image
resistance of the hash function. The assumptions (Y-timed1) and (X-live2) are
about the behavior of the onchain scripts. These two assumptions need to be
backed by program analysis. A formal notation of onchain programs like SoK [1]
might ease such program analysis.

5 Related Work

Emerson and Clarke [7] already regarded Kripke models as states of communi-
cating processes. They proposed a method for automatically generating finite
state machines that represent states of communicating processes. They describe
a procedure to decide whether such finite state machines exist for a specification.

Smart Contract Verification. Luu et al. [17] define a lightweight semantics of
Ethereum. Nikolic et al. [20] use the same semantics to capture bugs spanning
multiple Ethereum transactions. Sergey and Aquinas [23] gave an insight that
concurrent reasoning applies to Ethereum contracts’ interactions. None of these
works treats the interaction of multiple blockchains.

Halpern and Pass’s Knowledge-Based Analysis on the Epistemic Property of a
Blockchain. Halpern and Pass [12] also analyze the communication ability of a
blockchain using a modal epistemic logic. The reasoning framework of Halpern
and Pass is based on the tradition of model epistemic logic, admittedly more
faithfully than our work is, because their “runs and systems” [8] model has been
very popular among computer scientists.

Their focus of attention is different from ours. Halpern and Pass [12] look
at a blockchain as a communication medium between agents, and propose a
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weak form of common knowledge that the blockchain provides. To seek a form
of common knowledge, their analysis needs to consider entering and leaving
agents. Our analysis never required a global view of all agents.

The difference seems to come from different roles of blockchains. Halpern
and Pass seem to regard a blockchain as a mechanism for public attestation of
valid contracts between agents. In our analysis, Alice is never interested in Bob’s
knowledge, or vice versa. The formulas in our analysis do not involve nesting of
epistemic modalities like KAliceKBob · · · . The participants are interested to see
value transfers recorded on the finalized blocks, but not interested in whether
other agents have seen those blocks.

We analyze a situation where multiple blockchains are involved, and, we have
identified some synchrony conditions for specific agents (Bob-has-chance), (Y-
timed1), (X-live1 1

2 ) that are useful for a specific protocol, while Halpern and
Pass assume a global parameter to limit delays of all messages.

Hirai’s Intuitionistic Epistemic Logic. Hirai [14] characterized waitfree commu-
nication over sequentially consistent shared memory using intuitionistic epis-
temic logic. That work targetted shared memory multi-thread computation.
There, a well-known property called sequential consistency was represented as an
axiom type3. In this paper, we are figuring out desired properties out of Kripke
models that reveal missing assumptions (Propositions 3 and 4). Modal logics are
useful not only for explaining known properties but for identifying unspecified
requirements.

Gleissenthall and Rybalchenko [11] use a more expressive logic with separate
temporal modalities and epistemic modalities for characterizing sequential con-
sistency, linearizability and eventual consistency. Their logic is more suitable to
express liveness properties (e.g., “if Alice tries to do something infinitely often,
she eventually succeeds”).

6 Discussion

The biggest remaining problem is the lurking unsoundness with respect to
the reality. In our modeling, any satisfied formula remains true in the future.
Blockchain developers call our assumption finality. Bitcoin does not provide
finality. Sometimes blockchains fork and all branches except one are orphaned.
In those cases, a history becomes abandoned. There are three ways to deal with
this problem:

1. assume finality and hold agents responsible if they trust blocks too early,
2. model the probability that blocks are final, and
3. model all forking branches.

3 An axiom type is a logical formula with free variables like ϕ and ψ that can be
substituted by any formulas.
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Our current treatment is 1. Agents are required to ignore too fresh blocks and
only take the contents of older blocks into their knowledge base, and our analysis
breaks down when the agents are unluckily not patient enough. Our treatment
is in line with the cryptocurrency exchanges’ treatment of blockchains. Halpern
and Pass [12] talk about probabilistic treatments, which supposedly would sup-
port the approach 2. The approach 3 seems not yet explored, but should be an
interesting topic for modal logicians.

Another discrepancy is the requirement that agents remember all knowledge.
This discrepancy does not matter when a protocol is shown not to work because
incomplete memory doesn’t work better than complete memory. On the other
hand, once a protocol is shown to work, the concrete implementation of the
protocol can optimize away irrelevant knowledge.

For more convenience, an automatic decision procedure is desirable that can
judge whether a desired property is valid given some assumptions. Is there always
a finite model that refutes an invalid property? Moreover, when one develops an
on-chain program, their possible behavior should be spelled out automatically
as logical formulas.

Our biggest diversion from the traditional treatment of knowledge is the
treatment of blockchains as agents. Usually network participants or processes are
treated as agents, but not a data structure maintained on the network. Since the
semantics of intuitionistic epistemic logic never relies on a global state, we never
had to identify a blockchain from a global view point. Given a local w, fX(w) is
blockchain X’s state just according to w. If we used the traditional S5 epistemic
logic [6], we would define which two states blockchain X can distinguish, but
that criterion would assume an undisputed global identification of blockchain X.

The take away for blockchain protocol designers is that, for the atomic cross-
chain swap to be atomic, availability and safety assumptions are necessary. For
better certainly, merged blocks (e.g. Aspen’s checkpoints [10]) will be effective.
A merged block belongs to multiple blockchains all at once or none at all. With
a merged block, two blockchains can share common knowledge in the same way
Alice and Bob share common knowledge in Fig. 2(b).

7 Conclusion

We used Kripke models of intuitionistic epistemic logic to see what kind of
assumptions are necessary for “atomic” property of the atomic cross-chain swaps
(Propositions 3 and 4). We also showed a set of assumptions is enough for the
“atomic” property to hold (Proposition 5). For cross-chain atomic swaps to be
atomic, external agents’ abilities to read and write blocks within a limited time-
frame is crucial. To our knowledge, this is the first analysis of inter-blockchain
communication using a modal logic.
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Abstract. This invited paper reports the current progress on smart
contract verification with the K framework in a language-independent
style.

1 Introduction and Motivation

Flaws of blockchain programming languages or virtual machines have led and
continue to lead to cryptocurrency software bugs that directly translate into sig-
nificant money loss [1,3,4,6,14]. Formal analysis and verification of blockchain
languages and virtual machines is thus very much in need. Traditionally, this
is done by giving a formal model of the program-to-verify, either by a manual
construction in theorem provers such as Coq [10] or Isabelle [15], or by a trans-
lation to some intermediate verification languages (IVL) such as Boogie [2] or
Why [7]. Developing program models in theorem provers can be expensive and
is only done to mission critical systems, while a translation to IVL may loose
program behavior. In either case, a trusted formal semantics of the target lan-
guage together with a proof of correctness of either the program models built in
Coq or Isabelle, or the translation to IVL, are required. Such correctness proofs
are often done manually on paper and can be expensive. They are also sensitive
to the target languages and programs, so small changes on the verification tar-
gets require to redo the proofs. Due to the fact that blockchain programming
languages are often moving targets and have a rather rapid development cycle,
with new versions being released and deployed in a weekly pace, the traditionally
program verification approaches are often too expensive to use in practice.

The K framework [13] adopts a language-independent approach to program
verification; it was derived from our firm belief that every programming lan-
guage must have a formal semantics, and that all formal or informal analysis
tools for that language should be automatically generated from that seman-
tics in a correct-by-construction manner. Figure 1 illustrates the K approach.
In terms of verification, the language-independent verifier is parametric on the
semantics of the language, and it takes as input a program and a specifica-
tion of the program and solves the verification problem (see Fig. 2). Extensive
experiments and case studies confirm that this language-independent approach
to verification is feasible. For example, [5,11] show that when instantiated with
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 405–413, 2018.
https://doi.org/10.1007/978-3-030-03427-6_30
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Fig. 1. The K framework approach to
language design and formal verifica-
tion.

Fig. 2. A language-independent pro-
gram verifier takes a program and
its specification, and verifies it with
respect to its formal semantics.

formal semantics of real languages such as C, Java, and JavaScript, the generic
K program verifier is able to check well-known challenging functional correct-
ness properties of heap manipulation programs with mutable data structures,
such as AVL trees, read-black trees, and even the Schorr-Waite graph mark-
ing algorithm, all implemented in each of C, Java, and JavaScript. Nothing was
needed in the generic verifier specific to any of these languages, except for their
formal semantics. When it comes to blockchain languages, the advantage of the
K approach is even more significant, as languages and virtual machines in this
field change at an unusually high rate and thus there is no need to redo the
correctness proofs for either the high-level program models or the translation to
IVL. All verification tools are correct-by-construction, and thus are suitable to
the rapid development cycle of blockchain languages.

In the rest of the paper, we briefly introduce the K framework in Sect. 2 and
summarize the current progress on blockchain languages and smart contracts
verification in Sect. 3. Then we discuss the general workflow of smart contract
verification with K framework in Sect. 4, and conclude with future work in Sect. 5.

2 An Overview of the K Framework

The K framework is a rewrite-based executable semantics framework for pro-
gramming language design and development. It can be regarded as a meta-
programming language that defines programming languages. As an example, con-
sider the simple imperative language IMP whose syntax is given in Fig. 3. IMP
has arithmetic expressions and the usual assignment, sequential, if-, and while-
statements. Arithmetic expressions are used as conditions where zero means false
and nonzero values mean true. The complete K definition of IMP is given in
Fig. 4. The definition consists of two modules IMP-SYNTAX and IMP. The module
IMP-SYNTAX defines the concrete syntax using the conventional BNF grammar
where terminals are in quotes. Production rules are separated by the “|” and
“>”, where “|” means the two productions (before and after “|”) have the same
precedence while “>” means the production before has higher precedence (binds
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Fig. 3. The syntax of the language IMP.

tighter) than the ones after. In other words, all the other language constructs
bind tighter than the sequential operator in IMP. Categories Int and Id are built-
in categories for integers and identifiers (program variables), respectively. Exp is
the category for expressions, which subsumes Int and Id and has two produc-
tions for plus and minus. Pgm is the category for programs, which is a declaration
of a list of program variables (the category Ids) followed by a statement. Ids
is defined using K’s built-in list template List, whose second argument is the
separating character. In other words, Ids is the category of comma-separated
lists of Id’s.

Attributes are wrapped with braces “[” and “]”. Some attributes are only
for parsing purpose while others may carry additional semantic meaning and
affect how K executes programs. The attribute left means left-associative. The
attribute strict defines evaluation contexts, so when K sees the expression
e1 + e2 (and similarly e1 - e2), it first evaluates e1 to an integer i1 and e2 to
an integers i2 in a fully nondeterministic way, and then evaluates i1 + i2. The
attribute strict(1) means if K sees the if-statement if(B) P Q it should only
evaluates the first argument B to a value v while keeping the other arguments
P and Q untouched. Therefore, the two branches of if-statement are frozen and
will not be evaluated if the condition is not a value. The attribute bracket
tells K that certain productions are only used for grouping, and K will not
generate nodes in its internal abstract syntax trees for those productions. Here,
parentheses are used to group arithmetic expressions while curly brackets are
used to group program statements. The empty curly bracket “{}” represents the
empty statement.

The module IMP defines the operational semantics of IMP in terms of a set
of human readable rewrite rules. The category KResult tells K which categories
contain non-reducible values. It helps K perform efficiently with evaluation con-
texts. The only category of values here is Int. Configuration is a core concept
in the K framework. A configuration of a language holds all information that is
needed to execute programs, gathered in cells. Simple languages such as IMP
have only a few cells, while complex real languages such as C usually have more
than one hundred. In K, configurations are defined using a syntax borrowed from
the XML format. The configuration of IMP contains two cells: the k cell and the
state cell. For clarity, we put all cells in configuration in a top cell: the T cell, but
it is not mandatory. The k cell holds the remaining computation (program) that
needs to execute and the state cell holds a mapping from program variables to
their values in the memory. Initially, the state cell holds the empty map, denoted
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Fig. 4. The complete K definition of the language IMP, consisting of two modules.

as .Map. In K, we use dot “.” to denote “nothing”, and .Map means the nothing
has type Map. The k cell initially contains a program $PGM:Pgm, where $PGM is a
special K variable name. To execute an IMP program, say sum.imp, the name of
the source file is passed to K, and K will parse the source file using the concrete
syntax and associate the result (of category Pgm) to the variable $PGM:Pgm in
the k cell.

K defines the language semantics in terms of a set of rewrite rules. These
rewrite rules specify a transition system on configurations. We point out two
important characteristics of rewrites rules in K. The first important characteristic
of rewrites rules of K is that K supports local rewrites. In other words, the rewrite
symbol “=>” does not need to appear in the top level, but can appear locally in
which the rewrite happens. Take the lookup rule as an example. Instead of

rule <k> X:Id ...</k> <state>... X |-> I ...</state>

=> <k> I ...</k> <state>... X |-> I ...</state>

one writes
rule <k> X:Id => I ...</k> <state>... X |-> I ...</state>
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to reduce space and avoid duplicates. The “...” in K is a shortcut for things
that “exist and do not matter and change.” The rule says that if the top of the
computation in the k cell is a program variable X:Id, and at the same time X
binds to the integer I somewhere in the state cell, then rewrite X:Id to I.

The second characteristic of rewrite rules in K is that K also supports con-
figuration inference and configuration completion. The rewrite rules may not
explicitly mention all cells in configuration, but just related ones. K will infer
the implicit cells and complete the configuration automatically. For example,
instead of

rule <T> <k> I1 + I2 => I1 +Int I2 ... </k> <state> M </state> </T>

one writes
rule I1 + I2 => I1 +Int I2

which is not only a lot simpler, but also extensible. If we add a new cell to the
configuration, we will not need to modify any of the existing rules.

The rest of the semantics is self-explanatory. The rule for assignment state-
ments X = I:Int; updates the value bound to X in the state cell, as specified
in the local rewrite X |-> (_ => I). Here the underscore “_” is an anonymous
K variable; it matches whatever integer that is currently bound to X. After the
update, the assignment statement is removed from the k cell, as specified by
the local rewrite X = I:Int; =>.. Recall that the dot “.” means nothing, and
rewriting something to a dot means removing it. Attribute structural means
the associated rewrite rule is not counted as an explicit step by K, but an implicit
(quite) one. It should not affect how K executes the programs. The empty state-
ment {} simply reduces to nothing. The last two rules process the declaration
list of program variables and initialize their values to zero.

3 Semantics of Blockchain Virtual Machines in K

KEVM. The Ethereum Virtual Machine (EVM) [16] is a low-level bytecode
language running on a general-purpose “world computer” built by the blockchain
cryptocurrency Ethereum. Small programs called smart contracts are allowed to
execute on it, often written in high-level languages such as Solidity (https://
github.com/ethereum/solidity) or Vyper (https://github.com/ethereum/vyper)
and then compiled to EVM. To verify smart contracts, a formal semantics of
the low-level EVM language was developed [9] using the K framework, which
we refer to as KEVM. As far as we know, KEVM is the first fully executable
formal semantics of the EVM language. It is tested against the official 40,683-
test stress test suite for EVM implementations that comes with the official C++
implementation of the EVM.

Based on KEVM, the startup Runtime Verification formally verified several
smart contracts (https://runtimeverification.com/smartcontract), and the result
is available for public access in the spirit of open-source (https://github.com/
runtimeverification/verified-smart-contracts). Since December 2017, a number

https://github.com/ethereum/solidity
https://github.com/ethereum/solidity
https://github.com/ethereum/vyper
https://runtimeverification.com/smartcontract
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/runtimeverification/verified-smart-contracts
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of smart contracts have been verified with the K framework; the following is a
list of them in chronological order (older to newer):

– Vyper ERC20 Token Contact (https://github.com/ethereum/vyper);
– HackerGold (HKG) ERC20 Token Contract (https://github.com/ether-

camp/virtual-accelerator);
– OpenZeppelin’s ERC20 Token Contract (https://github.com/OpenZeppelin/

openzeppelin-solidity);
– Bihu Smart Contract

(https://github.com/runtimeverification/verified-smart-contracts/tree/
master/bihu);

– DSToken ERC20 Token Contract (https://github.com/dapphub/ds-token);
– Ethereum Casper Contract

(https://github.com/runtimeverification/verified-smart-contracts/tree/
master/casper).

A surprising and pleasant observation in the process of the development of
KEVM and the verification of smart contracts is that the EVM interpreter auto-
matically generated by K based on EVM formal semantics is only one order of
magnitude slower on average than the official C++ implementation [8]. Since
smart contracts are often small programs, the above suggests that KEVM can
serve not only as a reference model of the EVM but also as an actual implemen-
tation.

IELE. Like EVM, IELE (https://github.com/runtimeverification/iele-semant
ics) is another virtual machines bytecode language. Unlike EVM, IELE was
designed in the spirit of easier formal verification, and thus it is significantly
different from EVM in various aspects. For example, IELE is a register-based
machine, and it supports unbounded integers (as unbounded arithmetics is often
easier than bounded arithmetics in verification). IELE was designed purely in a
semantic-based style using K, and an automatically-generated virtual machine is
derived from its formal semantics, which makes it the first virtual machine whose
development and implementation was completely powered by formal methods.

4 Smart Contract Verification

In this section, we briefly discuss the workflow of smart contract verification,
taking the open resource of the work of ERC20 verification (https://github.
com/runtimeverification/verified-smart-contracts/tree/master/erc20) as a case
study example. See [12] for more details.

The ERC20 token contract (abbrev. as ERC20 below) is one of the most pop-
ular and valuable smart contracts. An informal standard for ERC20 can be found
at (https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md), which
we refer to as the ERC20 standard. The ERC20 standard essentially defines
an API with an informal specification. Figure 5 shows an example of a piece of
informal specification of the function transfer in the ERC20 standard.

https://github.com/ethereum/vyper
https://github.com/ether-camp/virtual-accelerator
https://github.com/ether-camp/virtual-accelerator
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/OpenZeppelin/openzeppelin-solidity
https://github.com/runtimeverification/verified-smart-contracts/tree/master/bihu
https://github.com/runtimeverification/verified-smart-contracts/tree/master/bihu
https://github.com/dapphub/ds-token
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper
https://github.com/runtimeverification/verified-smart-contracts/tree/master/casper
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/iele-semantics
https://github.com/runtimeverification/verified-smart-contracts/tree/master/erc20
https://github.com/runtimeverification/verified-smart-contracts/tree/master/erc20
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
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Fig. 5. The informal specification of the function transfer in the ERC20 standard.

Fig. 6. The formal specification of the function transfer in ERC20-K. The rule on
the left shows the case when the transfer succeeds and the caller is different from the
receiver. The rule on the right shows the case when the transfer fails and the caller is
the same as the receiver.

The first step of the verification is to take the informal ERC20 standard and
refine it to a formal specification. The outcome of the refinement, which we refer
to as ERC20-K, is a K definition that captures the complete functionality of
the ERC20 API (https://github.com/runtimeverification/erc20-semantics). For
example, the above informal specification is divided into four cases in ERC20-
K, namely all four combinations of whether the transfer succeeds or fails, and
whether the caller is the same as or different from the receiver. Figure 6 gives
the formal specification for two of the fours cases. ERC20-K therefore formally
specifies the entire ERC20 API and its intended behavior. It is worth mentioning
how fast it is to develop such a complete executable formal specification in K:
the fully documented ERC20-K took a developer about two weeks to finish, with
one week writing the rules and another week revising it, fixing bugs, and writing
documentation.

Since smart contracts are compiled to lower-level EVM bytecode, we need
to refine the high-level ERC20-K specification further, to an EVM-level for-
mal specification, referred to as ERC20-EVM, which is based on KEVM and
takes all EVM-specific details into account. Finally, various smart contracts
have been verified with the ERC20-EVM specification and the built-in pro-
gram verification infrastructure in K. We refer interested readers to [12] as well
as our open source project (https://github.com/runtimeverification/verified-
smart-contracts) for more experiment details and technical discussion.

https://github.com/runtimeverification/erc20-semantics
https://github.com/runtimeverification/verified-smart-contracts
https://github.com/runtimeverification/verified-smart-contracts
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5 Conclusion and Future Work

We hope this paper demonstrates that language-independent verification is pos-
sible and feasible, and is especially preferable for blockchain languages and smart
contracts verification. With only one executable semantics, it suffices to generate
all the tools in a correct-by-construction manner, and thus eliminate the need
for redundant and error-prone proofs of correctness. In particular, for emerging
fields like the blockchain and smart contracts where new languages and programs
are released on a weekly or even daily basis, the language-independent approach
seems to be the only viable solution. We hope that this wave of blockchain lan-
guages and smart contracts verification will raise interest from the community
in language-independent semantics frameworks like K and drives application of
the techniques to all languages. As of future work, two sides of research are
needed. On the foundation side, a language-independent (program) logic is in
need, which allows us to state and reason about any properties of any programs
written in any programming languages. On the implementation side, automation
of tools is needed.

Acknowledgments. We thank the K team (http://www.kframework.org/index.php/
People) for their sustained dedication and help, as well as to numerous other contrib-
utors to the K framework.
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Abstract. Simplicity is a Turing-incomplete typed combinator language
for smart contracts with a formal semantics. The design of Simplic-
ity makes it possible to statically estimate the resources (e.g., mem-
ory) required to execute contracts. Such a feature is highly relevant
in blockchain applications to efficiently determine fees to run smart
contracts. Despite being Turing incomplete, the language is capable of
expressing non-trivial contracts. Often, Simplicity programs contain lots
of code repetition that could otherwise be avoided if it had common pro-
gramming languages features, such as local definitions, functions, and
bounded loops. In this work, we provide the foundations to make Simplic-
ity a richer language. To achieve that, we connect Simplicity’s primitives
with a categorical model. By doing so, we lift the language to a more
abstract representation that will allow us to extend it by leveraging cat-
egory theory models for computations. This methodology facilitates the
addition of local definitions, functions, and bounded loops. We provide
an implementation of Simplicity and its virtual machine in the functional
programming language Haskell.

Keywords: Simplicity · Category theory · Haskell
Functional programming · Blockchain · Smart contracts

1 Introduction

Blockchain technology has emerged as a revolutionary approach for decentral-
ized peer-to-peer networks. The most known deployment of this technology is
Bitcoin [5]. Since its launch in 2009, Bitcoin has spawned a number of alterna-
tive crypto-currencies using different optimizations and tweaks (e.g., Litecoin,
Ripple, EOS [9,10]). Among these, Ethereum [12] stands out for its implemen-
tation of programmable transactions in the form of smart contracts. Given that
smart contracts are programs, they need to be executed in order to get a result
but without compromising the availability of the whole network. To achieve
that, Ethereum assigns a consumable resource, called gas, to the execution of
contracts which is paid by users to the block miners in ether—Ethereum’s cur-
rency [12]. Ethereum uses a Turing-complete computational model, which makes
it challenging to predict the gas required to run contracts.
c© Springer Nature Switzerland AG 2018
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Simplicity [6,7] is a language for smart contracts with a formal semantics
that enables “fast” (linear time) static analysis of resource consumption. The
operational semantics of Simplicity instructions is given in an abstract machine
named the Simplicity Bit Machine (SBM). Despite that the language is capable
of expressing non-trivial contracts, it can be very cumbersome to actually write
one using its minimal constructs. Moreover, the lack of common programming
languages features such as local definitions, functions, and loops forces programs
to contain lots of code repetition that could otherwise be avoided.

In this work, we show how to interpret Simplicity as a mathematical model
from category theory. Once in the territory of category theory, we borrow its
results on modeling different computational aspects to extend Simplicity and
its virtual machine with functions. By adding functions, Simplicity contracts
can account for local definitions as well as bounded loops. We also provide an
implementation of Simplicity, the SBM, as well as our extensions in the functional
programming language Haskell1.

Fig. 1. Simplicity’s basic functions and combinators

2 Background

Simplicity can be considered a typed functional programming language, where
the expressions are essentially built from applying the functions in the language.
It therefore consists of base functions and function combinators (or combinators
for short). Combinators are dedicated to build more complex functions from
1 Our implementation and accompanying material are available at https://bitbucket.

org/russo/isola-additional-material/overview.

https://bitbucket.org/russo/isola-additional-material/overview
https://bitbucket.org/russo/isola-additional-material/overview
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simpler ones in a compositional manner. Simplicity has three types: the unit type,
written 1, the product type, written A × B, and the coproduct type, written
A + B. The entire Simplicity’s interface is shown in Fig. 1, where f : i � o
denotes that the input and output type of function f are i and o, respectively.
Simplicity’s functions are self-explanatory and therefore we omit discussing them
further.

One of the design goals for Simplicity is to enable the estimation of run-
time resources statically when executed in a virtual machine. The analysis of
runtime resources requires a formal model of the runtime as well as an opera-
tional semantics of Simplicity’s basic functions and combinators. Observe that
the computational power of the language is Turing incomplete (e.g., it lacks
loops), which facilitates the estimation of resource consumption—we refer the
interested reader to [7] for details.

2.1 The Bit Machine

The Simplicity Bit Machine (SBM) is used to execute Simplicity programs and
it consists on an state composed of two stacks of data frames: the read stack
and the write stack. A frame is a list of cells, where each cell contains either 0, 1
or an undefined value noted as ?. Each frame has also a cursor, which indicates
which cell is to be written or read. The read stack is used to provide the input
of the Simplicity function and the write stack is used to write its output. The
topmost frame—also called the active frame—contains the input (output) of the
current primitive in execution. For instance, in order to execute a Simplicity
function f : A � B, the active read frame must have a value of type A. After
execution, the output value of type B can be found on the active write frame.

Simplicity’s types have “finite size”, that is, well-typed values have a finite
representation in terms of cells. In other words, it is always possible to compute
the number of cells required by the input and output of well-typed functions.
That is, in terms of number of bits, sizeOf(1) = 0 (as there is only one value),
sizeOf(A + B) = 1 + max(sizeOf(A) + sizeOf(B)) (where the extra bit is used
as a flag to indicate whether the value is of type A or B), and sizeOf(A × B) =
sizeOf(A)+ sizeOf(B) bits. The ability to compute the size from the types plays
a crucial role in the operational semantics of Simplicity. From now on, when
referring to the size of a type, the reader should keep in mind that we are referring
to the representation of values of such a type.

The size of the input type is needed to read the exact number of cells which
contain the input. Moreover, the size of the output type is required to allocate
the amount of needed cells for writing the output of a Simplicity function. The
following outlines show how values of a specific type are read or written in the
SBM. Note that all the reading (writing) always happens on the active read
(write) frame. Below, we briefly describe how SBM behaves when operating with
values of different types. The complete operational semantics of the SBM can be
found in [7].
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� To write a value of type 1 on the write frame, the SBM writes nothing (as
only one value exists). Similarly, to read a value of type 1, the SBM reads
nothing.
� To write a value of type A×B, the SBM writes the value of type A followed
by the value of type B on the write frame. Instead, to read a value of A × B,
the SBM first computes the size of A and reads that many cells in order to
get A. Then, it computes the size of B and reads that many cells in order to
get B.
� To write a value of type A + B, the SBM writes a (cell) flag bit indicating
whether the value is A (0) or B (1). After that, it skips any excess cells which
may have been allocated (keeping in mind that the value could be A or B),
and then writes the available value. This mechanism of skipping ahead is also
called padding.

Since the resource allocation in the read and write stack is made using the
type information (as shown above), and given that the language is Turing incom-
plete, it becomes possible to do static analysis to compute an upper bound on
the runtime resources used by an smart contract. For example, it is possible to
estimate the number of cells used by a Simplicity program on both stacks. We
refer the reader to [7] for a detailed discussion on static analysis in Simplicity
programs.

3 Categorical Semantics for Simplicity

Fig. 2. Identity and composition in
a category

In this section, we establish an unforeseen
connection between Simplicity and a branch
of mathematics called category theory. Such
connection will open the door to apply
known results from category theory [3] in
order to systematically extend Simplicity
and the SBM with new features. We start
by briefly describing a specific kind of cate-
gory: the Bi-Cartesian Categories, or BCCs
for short. Then, we show how categories can
be used to model Simplicity computations.

A category is composed of objects and
morphisms between these objects. A simple
way to think about it is to consider it as a graph with certain operations and
satisfying certain properties, where the vertices are the objects and the (oriented)
edges the morphisms. Category theory will often characterize the features of the
categories, based on the relations between objects and morphisms.

The basic features that a category must have are identity and composition.

� Identity. For every object A in the category (i.e., every vertex in the graph),
there exists an identity morphism (edge) from A to A, noted id : A → A. Since
there are many identity morphisms, it is common to identify them by their
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associated objects, e.g., id : A → A is denoted by idA. For simplicity, while
presenting the construction of some categorical features as graphs, we often
omit the identity morphisms but recall that they do exist for every object
(vertex).
� Composition. For every two morphisms (edges) f : A → B and g : B → C,
there exists a morphism (edge) g ◦ f :: A → C. Furthermore, the composition
must be associative, and the morphism id must be the identity for composi-
tion, which gives the following equalities: f ◦ (g ◦ h) = (f ◦ g) ◦ h and that
f ◦ idA = idB ◦ f = f .

To give an example of a category, let us consider three objects, namely A,
B, and C, and two morphisms f : A → B and g : B → C. If we want to place
them into a category, we must add an identity morphism for each object and a
morphism for the composition of f and g. Figure 2 shows the structure of such
a category.

The rest of the section proceeds to describe the remaining features found in
BCCs.

Fig. 3. Terminal and products in BCCs

� Terminal Object. There is an object, we noted it as T , such that for any
other object A in the category, there exists precisely one morphism final :
A → T (also know as terminal morphism). Figure 3(a) shows objects A and
B and their corresponding morphisms to the terminal object.

� Products. For all objects A and B in the category, there exists the product
object A × B. Every product object comes equipped with two morphisms
fst : A × B → A and snd : A × B → B which project out its components.
Importantly, for every two morphisms f : C → A and g : C → B, there exists
an unique morphism (represented by a dashed arrow) called factor, written
〈f, g〉 : C → A×B, which should fulfill the following equations: f = fst◦〈f, g〉
and that g = snd ◦ 〈f, g〉. These equations capture the behavior of factor, i.e.,
a product element obtained from C is constructed by building an element
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A with f and an element B with g. Figure 3(b) introduces objects A, B, C,
morphisms f : C → A and g : C → B, and describes their relation via the
product object A × B and the factor morphism.

� Coproducts. For all objects A and B in the category, there exists a coproduct
object A+B. Every coproduct object comes with two morphims, the injections
inj1 : A → A + B and inj2 : B → A + B. If we have two morphisms f :
(E × A) → C and g : (E × B) → C, then there exists a unique morphism
called copair, written [f, g] : (E × (A + B)) → C2. This morphism fulfills the
equations: f = [f, g] ◦ 〈idE , inj1〉 and g = [f, g] ◦ 〈idE , inj2〉. In other words,
the copair builds an element of C by using either f or g, depending on either
it receives an element of A or B. Figure 4 introduces objects A, B, C and E,
morphisms f : E × A → C and g : E × B → C, and describes their relation
via the coproduct object A + B and the copair morphism.

Fig. 4. Coproducts in BCCs

3.1 Simplicity and BCCs

The type signature of BCCs’ morphisms and Simplicity’s basic and combinator
functions look pretty similar. In this section, we describe how to model Simplicity
functions using BCCs. Intuitively, the idea is that a function f : A � B will be
modeled by a morphism m : A → B. In other words, Simplicity types become
objects in BCCs and functions morphisms. For instance, the function iden : A �
A can be modeled by the morphism id : A → A. The complete translation of
Simplicity to BCCs is given on Fig. 5, where we denote f � m as the relation
“the morphism m models the Simplicity function f”.

The most interesting case is the translation of case s t. While case has type
(A + B) × C � D, its closest morphism—copair—has type (C × (A + B)) → D,
2 In category theory, copair is commonly used without the product with E: if f ′ :
A → C and g′ : B → C, then [f ′, g′] : A + B → C. However, using the morphism
containing E will ease the equivalence between morphisms and Simplicity terms.
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Fig. 5. Translation from simplicity terms to BCCs morphims

hence we cannot use it directly since the type signatures do not align. From
category theory, however, we know about the symmetry of products, i.e., A × B
and B × A are provably isomorphic and therefore there must exist an isomor-
phism between them. We use one direction of that isomorphism—called flip in
Fig. 5—to build the corresponding morphism of case.

By mapping Simplicity functions into BCCs, the attentive reader could be
afraid that we might be introducing or restricting the behavior of Simplicity
programs. For example, on one hand, products need to fulfill certain equations
in BCCs (recall previous Section). On the other hand, there is no relation stated
for Simplicity operators like pair, take, and drop. It is easy to show that Simplicity
operators already fulfill all the equations required by BCCs. We refer readers to
the accompanying material for the details of the proof.

We have now established the connection between Simplicity functions and
BCCs morphisms and we can start adding more features to Simplicity (Sect. 5).
Category theory will guide us toward the implementation of user-defined func-
tions. This would be a significant improvement to Simplicity, as it would allow
to write simpler and shorter programs.
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4 Implementation

Fig. 6. Simplicity types

In this section, we present another of our con-
tributions: an implementation of Simplicity, its
categorical model, and the SBM as embedded
domain-specific languages (eDSL) in Haskell [4].
To implement BCCs in Haskell, we need to
determine what the objects and morphisms are
going to be in Haskell. By doing so, we restrict
ourselves to a particular class of BCCs that we
call BCCsHask, where categorical objects are
represented with Haskell types.

We model both types in Simplicity and objects in BCCsHask with the empty
types given in Fig. 6. Type T is the unit/terminal, type a :*: b is the product,
and type a :+: b is the coproduct. In what follows, we will model the term
language of Simplicity and morphisms in BCCsHask using Generalized Algebraic
Data Types (GADTs) [8]. The use of GADTs allows us to directly encode the
typing judgements of Simplicity and BCCsHask in the constructors. In that man-
ner, the Haskell’s type checker ensures that Simplicity functions and BCCsHask

morphisms are well-typed by construction.

4.1 An eDSL for Simplicity

We model Simplicity programs as values of the following GADT parameterized
over an input type i and an output type o:

data Simpl i o where
Iden :: SType a ⇒ Simpl a a
Unit :: SType a ⇒ Simpl a T
Take :: (SType a,SType b,SType c) ⇒ Simpl a c → Simpl (a :∗ : b) c
Drop :: (SType a,SType b,SType c) ⇒ Simpl b c → Simpl (a :∗ : b) c
Injl :: (SType a,SType b,SType c) ⇒ Simpl a b → Simpl a (b :+: c)
Injr :: (SType a,SType b,SType c) ⇒ Simpl a c → Simpl a (b :+: c)
Comp :: (SType a,SType b,SType c) ⇒

Simpl a b → Simpl b c → Simpl a c
Pair :: (SType a,SType b,SType c) ⇒

Simpl a b → Simpl a c → Simpl a (b :∗ : c)
Case :: (SType a,SType b,SType c,SType d) ⇒ Simpl (a :∗ : c) d →

Simpl (b :∗ : c) d → Simpl ((a :+: b) :∗ : c) d
The type constraint SType a restricts the domain of the type variable a. In

our case, a type variable a satisfies the constraint SType a only if it is instantiated
with T , a :*: b or a :+: b, where a and b are simplicity types themselves. The
reason for adding this constraint is two fold: first, to ensure that a Simplicity
expression cannot be created for some arbitrary Haskell type such as [Int] (as this
might break the property that the size of the type can be determined statically),



422 N. Valliappan et al.

and second, to implement a function sizeOf to calculate the size (in bits) of a
Simplicity type—which is used later to run programs on the SBM.

In Haskell, type constraint SType is implemented as a type class, and the
Simplicity types which satisfy it are implemented as instances of such a class:

class SType a where
sizeOf :: a → Int

instance SType T where
...

instance (SType a,SType b) ⇒ SType (a :+: b) where
...

instance (SType a,SType b) ⇒ SType (a :∗ : b) where
...

(Ellipsis are used to denote Haskell code that is not relevant for the point being
made.) Each Simplicity type instance must provide a definition for the sizeOf
function. Recall that the SBM works by allocating cells in the stack frames based
on the type information (Sect. 2.1). For brevity, we skip the implementation of
sizeOf but it can be found in the accompanying material. Later in Sect. 4.4, we
show how to leverage sizeOf to implement the SBM.

4.2 An eDSL for BCCsHask

In BCCsHask, we model objects as Haskell types and morphisms as values of the
GADT Mph:

data Mph obj a b where
Id :: obj a ⇒ Mph obj a a
Terminal :: obj a ⇒ Mph obj a T
Fst :: (obj a, obj b) ⇒ Mph obj (a :∗ : b) a
Snd :: (obj b, obj b) ⇒ Mph obj (a :∗ : b) b
Inj 1 :: (obj a, obj b) ⇒ Mph obj a (a :+: b)
Inj 2 :: (obj a, obj b) ⇒ Mph obj b (a :+: b)

:: (obj a, obj b, obj c) ⇒
Mph obj b c → Mph obj a b → Mph obj a c

Factor :: (obj a, obj b1, obj b2) ⇒
Mph obj a b1 → Mph obj a b2 → Mph obj a (b1 :∗ : b2)

CoFactor :: (obj a, obj b, obj c, obj e) ⇒ Mph obj (e :∗ : a) c →
Mph obj (e :∗ : b) c → Mph obj (e :∗ : (a :+: b)) c

This data type is parameterized over a type constraint obj and objects a and b.
Each constructor of this data type constructs a morphism in a given BCCHask.
A type constraint obj a ensures the type a is indeed an object of the considered
BCCHask, and not some arbitrary Haskell type.

The main difference between SType in Simpl and obj in Mph is that SType
is a specific type constraint, while obj is parameterized over. Observe that differ-
ent instantiations of obj might encode different BCCsHask. For instance, if obj
gets instantiated with SType, we obtain a BCCHask which models Simplicity in
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Haskell (as shown in the next Section)3. From now on, we refer to this category
as simply BCCHask.

4.3 A Translation from Simplicity to BCCHask

The translation from Simplicity to BCCHask is a Haskell function (named
simpl2mph) between the eDSLs presented above. In other words, we show how
to translate a program prog ::Simpl i o to a morphism m :: MphSType i o. The
constraint obj is now instantiated with SType, and hence the objects in the
BCCHask are Simplicity types. The translation is essentially a syntactic transla-
tion of the rules in Fig. 5—a nice aspect of our approach.

simpl2mph :: Simpl i o → Mph SType i o
simpl2mph Iden = Id
simpl2mph Unit = Terminal
simpl2mph (Take f ) = simpl2mph f Fst
simpl2mph (Drop f ) = simpl2mph f Snd
simpl2mph (Injl f ) = Inj 1 (simpl2mph f )
simpl2mph (Injr f ) = Inj 2 (simpl2mph f )
simpl2mph (Pair p q) = Factor (simpl2mph p) (simpl2mph q)
simpl2mph (Comp f g) = simpl2mph g simpl2mph f
simpl2mph (Case p q) = (CoFactor (simpl2mph p flip)

(simpl2mph q flip)) flip
where
flip = Factor Snd Fst

As explained in Sect. 3, constructor Case p q needs an auxiliary morphism
flip to use CoFactor.

4.4 The SBM

Given the close correspondence between Simplicity’s primitives and BCCs’ mor-
phisms, the execution of morphisms on the SBM is very similar to the execution
of Simplicity functions. A given morphism is translated to instructions of the
SBM, which are then executed on the SBM to yield the output.

We start by looking at the SBM interface. The instructions of the SBM are
implemented as a Haskell data type (see Fig. 7a). For brevity, we only show some
of the instructions here. Type Bit is an alias for Bool representing a single bit
value on the SBM.

3 The encoding of a category using the eDSL for BCCsHask does not ensure that
the category is indeed a BCC. It is the programmers responsibility to ensure this
by verifying the existence of constructed morphisms and proving the corresponding
laws. The eDSL is simply the “language of BCCs where objects are Haskell types.”
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Fig. 7. SBM data types

A list of these instructions are run on the SBM using the function:

run :: [Inst ] → SBM (Maybe Bit)

where output type SBM is a monadic type [11] which encapsulates the stateful
behavior of the SBM. This design choice arise from noticing that the evaluation
of each instruction may change the state of the SBM, and hence affect the exe-
cution of subsequent instructions. More specifically, the SBM type is defined as
shown in Fig. 7b line 6, where a value of type Machine (lines 3–5) represents
a configuration of the virtual machine at a given moment. The configuration is
composed of read (readStack) and write (writeStack) stacks, which are them-
selves composed of frames. A frame is a list of cells paired with a cursor. The
cursor points to the current cell in the frame and is implemented as an Int rep-
resenting the index of the current cell. A cell is encoded as a MaybeBit, as it
can host an undefined value (recall Sect. 2.1). A cell with an undefined value is
represented by Nothing, otherwise it is a Just value with a Bit.

A given BCCHask morphism is translated into a list of SBM instructions using
the function

mph2sbm ::Mph Types a b → [Inst ]

We will look at a few cases of the mph2sbm implementation to illustrate how it
works. To understand how to map a morphism m : A → B into the SBM, we need
to think of it as a Simplicity function f : A � B (recall that we proved that such
models are equivalent in Sect. 3.1). In this light, the instructions corresponding
to m must assume (before their execution) that the machine is initialized with a
configuration where a value of type A is on the active read frame. Post execution
of m, the active write frame must contain a value of type B. For example, to
execute the morphism id : A → A, the value of A must be available on the
read stack. The expected end configuration is the same value of A on the write
stack. That is, we need to copy as many bits as the size of A from the read stack
to the write stack. This operation is achieved by using the Copy instruction.
To determine the size of A, we use the sizeOf function—where the constraint
SType (introduced earlier) on type A comes into action. The implementation of
this case is as follows:
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mph2sbm (Id ::Mph SType a a) = [Copy (sizeOf (⊥ :: a))]

(Observe that this definition works for any identity morphism since it is poly-
morphic in a). To give sizeOf an argument of type a, we must construct a value
of that type. For this, we use the value ⊥ which constructs (or inhabits) every
Haskell (and hence Simplicity) type. Notice that Simplicity types are empty data
types, and the inhabitant of the type has no significance. We are only interested
in the type a as it gives us the corresponding definition of sizeOf .

mph2sbm ((g ::Mph SType b c)
(f ::Mph SType a b)) =
[NewFrame (sizeOf (⊥ :: b))]
++mph2sbm f
++ [MoveFrame ]
++mph2sbm g
++ [DropFrame ]

Fig. 8. Implementation of �

We implement composition as
show in Fig. 8. We first allo-
cate memory for the intermedi-
ate result of type b, run f (which
writes the intermediate result on
the active write frame), move the
active write frame to the read
stack (using MoveFrame), and
finally run g, which writes the
result of type c on the active
write frame; having at the end
the expected configuration after
executing (�). Since the intermediate result of type b is no longer needed, we
drop the active read frame (using DropFrame). Implementing the compilation
of the other morphisms is analogous and can be found in the accompanying
material.

5 Adding Functions to Simplicity

In this section, we extend the Simplicity core language with user-defined func-
tions, provide categorical semantics for the extension, and also extend the evalua-
tion model (SBM) to support the extended semantics. To achieve this, we lever-
age the exposed connection between Simplicity and categorical models (recall
Sect. 3). From the latter, we use the concept of exponential objects as a guide-
line to model functions. We briefly introduce what it means for a category to
have exponentials and discuss their relation to functions in Simplicity.

� Exponentials. For objects B and C in a category, an exponential object
is a special object (denoted as B ⇒ C), for which there exists a morphism
eval : (B ⇒ C) × B → C. Additionally, for every morphism f : A × B → C,
there must exist a unique morphism curry(f) : A → B ⇒ C such that
f = eval ◦ 〈curry(f) ◦ fst, snd〉. That is, in a category with exponentials,
for every morphism f : A × B → C, there exists a curried version of it,
i.e., curry(f). Figure 9 shows f and the morphisms involving exponentials—
namely curry(f) and eval.
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Fig. 9. Exponentials in BCCCs

An exponential object is
the categorical generalization
of the function type (→). Oper-
ation curry generalizes the con-
struction of a lambda abstrac-
tion—also known as currying
in lambda calculus [1]. The eval
morphism generalizes the appli-
cation of a function of type
B → C to an argument of type
B to return a value of type C.

Exponential objects are implemented by the following data type:

data a :⇒: b

which represents the exponential object a ⇒ b for some objects a and b. To add
the new morphisms, we extend Mph with the new constructors Curry and Eval
(see Fig. 10b) as described in Fig. 9. When we include exponentials in a BCC, it
becomes a Bi-Cartesian Closed Category or a BCCC.

In Simplicity, a :⇒: b is a function type which expects an argument of type
a and returns a value of type b (where a and b are Simplicity types). We add
new primitives to Simplicity’s eDSL as shown in Fig. 10a. The constructor Lam
accepts a Simplicity term whose input and output types are (a : ∗ : b) and c
respectively, and constructs a new term Simpl a (b :⇒: c)—where the input is a
value of type a and the output is a function of type b :⇒: c. The App constructor,
on the other hand, accepts a Simplicity term which returns a function of type
b :⇒: c and another term which returns a value of type b, and constructs a term
which returns a value of type c.

The translation of the newly added Simplicity terms to BCCCHask (i.e.,
BCCCs where objects are Simplicity types) is defined as follows:

simpl2mph (Lam f ) = Curry (simpl2mph f )
simpl2mph (App f x ) = Eval (Factor (simpl2mph f ) (simpl2mph x))

This translation provides the categorical semantics for functions in Simplicity,
and hence forms the basis for implementing them.

5.1 Using Functions in Simplicity

Note that the language extension in the previous section does not just enable for
functions to be defined, but also treats functions as values. This allows for pro-
gramming with higher order functions and facilitates some powerful abstractions.
For example, functions can be used to introduce let-bindings into the language.
Let-bindings greatly reduce the duplication of sub-expressions in the language. In
the presence of functions, they can be easily encoded using function application
as letx = e in e′ ≡ (λx → e′)e.

Another example of the usefulness of functions is the ability to define a loop
combinator. The loop combinator (defined below) can be used to repetitively
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data Simpl i o where
...

Lam :: (SType a,SType b,SType c) ⇒
Simpl (a :∗ : b) c → Simpl a (b :⇒: c)

App :: (SType a,SType b,SType c) ⇒
Simpl a (b :⇒: c) → Simpl a b → Simpl a c

(a) Functions in Simplicity

data Mph obj a b where
...

Curry :: (obj a, obj b, obj c) ⇒
Mph obj (a :∗ : b) c → Mph obj a (b :⇒: c)

Eval :: (obj b, obj c) ⇒ Mph obj ((b :⇒: c) :∗ : b) c

(b) Exponentials in BCC

Fig. 10. Implementation of functions and exponentials

apply a Simplicity term to an input value. Term loop f n applies f on the input
n times. This is possible only when f has the same input and output type, and is
hence expected to have the type Simpl a a. Symbol n is a Simplicity term of type
SNat (defined below) which encodes a natural number using using just function
abstraction and application—known as Church numerals in lambda calculus.
type SNat = ∀a. Types a ⇒ Simpl (a :⇒: a) (a :⇒: a)
loop :: Types a ⇒ Simpl a a → SNat → Simpl a a
loop f n = App (App (toLam n) (toLam f )) Iden
where
toLam :: (Types a,Types b,Types r) ⇒ Simpl a b → Simpl r (a :⇒: b)
toLam s = Lam (Drop s)

zero :: SNat
zero = Lam (Drop Iden)
one :: SNat
one = Lam (App (Take Iden)

(Drop Iden))

Fig. 11. Church numerals

For the Haskell aware reader,
note that we use higher-ranked types
to define SNat—a feature of the
Haskell type system which is not
available in Simplicity. While this
might appear disconcerting, note
that this is not a strict require-
ment to define a loop combinator.
We could instead encode SNat as
SNat a, removing the explicit quan-
tification (∀) and hence the need for higher-ranked types.

Since the programmer must provide a construction of a Simplicity term of
type SNat (which always represents a finite number), the loop can only be used
for a finite number of iterations. Figure 11 illustrates the construction of some
of such natural numbers.
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5.2 Implementing Functions on SBM

In this section, we extend the SBM—the primary evaluation model of the Simplic-
ity language—to support higher order functions. To do this, we must implement
the translation of Curry and Eval morphisms to SBM instructions. We start
by requiring that an exponential object a :⇒: b must also be a valid Simplicity
type that satisfies the SType constraint. Consequently, we must implement an
instance of the type class SType for the type a :⇒: b, i.e., we need to provide a
definition for sizeOf(a :⇒: b). For that, we need to identify a way to store and
retrieve exponential objects in the SBM.

Notice that the serialization of a morphism captured in the exponential a :⇒:
b can be arbitrary long, as the morphisms can be arbitrary complex. As a result,
it is not possible to know the number of bits needed to serialize such morphisms
only by looking at the type a :⇒: b. This is problematic since the SBM is not
meant to manipulate types with arbitrary sizes.

To address this issue, we extend the SBM with a new field responsible to
store a list of exponentials. We then represent exponentials in the stack frames
as merely pointers (indexes) into such list. We have not yet defined the size of
pointers, but we assume them to occupy the amount of bits given by a param-
eter sizeP tr—we will see later how to statically compute it. Additionally, we
must devise new SBM instructions responsible to execute the Curry and Eval
morphisms, i.e., instructions responsible to create and apply exponentials.

If we follow the philosophy of Simplicity that the input (output) type should
indicate the values to be read (write) into the stack, a morphism of the form
Curry f ::MphSType a (b :⇒: c) must be compiled to an instruction that reads
a value of type a from the read stack and places the exponential (of type b :⇒:
c) in the write frame. In this light, we introduce the instruction PutClosure
responsible to allocate exponentials:

mph2sbm ::Mph SType a b → Int → [Inst ]
mph2sbm (Curry (f ::Mph Types (a :∗ :b) c)) sizePtr =
let aSize = sizeOf (⊥ :: a) sizePtr
in [PutClosure (mph2sbm f sizePtr) aSize sizePtr ]

Observe that mph2sbm takes the size of pointers as an extra argument as
well as sizeOf—note that sizeOf could be called on a pointer and thus it
needs to know its size (sizeOf (a :⇒: b) sizeP tr = sizeP tr). The instruction
PutClosure takes three arguments: the compilation of the curried morphism
f ::MphTypes (a : ∗ : b) c (mph2sbmf sizeP tr), the amount of bits to be read
from the read stack (aSize), and the size of pointers (sizeP tr). When the SBM
executes this instruction, it allocates an exponential as the pair composed of f ’s
instructions, paired with the value of type a read from the stack—this seman-
tics is inspired by how Cousineau et al. handle exponentials in the Categorical
Abstract Machine [2] as closures. The output in the write stack of PutClosure
is the pointer to the recently allocated exponential. For instance, Fig. 12 illus-
trates the effect of running an instruction PutClosure [Read; ...] 2 4 under a
given configuration of the machine.



Towards Adding Variety to Simplicity 429

Read Stack Write Stack List of exponentials
[. . .1

↑
1 . . . ] [. . .?

↑
???? . . .] 0000 ([NewFrame,Write 1, . . . ] , [0010])

[. . . ] [. . .]

run (PutClosure [Read , . . . ] 2 4)

Read Stack Write Stack Closures list
[. . .1

↑
1 . . . ] [. . . 0001?

↑
. . .] 0000 ([NewFrame,Write 1, . . . ] , [0010])

[. . . ] [. . .] 0001 ([Read , . . . ] , [11])

Fig. 12. Executing PutClosure in the SBM

In the same line of reasoning, morphism Eval::MphSType ((b :⇒: c) : ∗ : b) c
should be compiled to an instruction which reads an exponential (i.e., a pointer)
together with a value of type b from the read stack and produces a c in the write
stack. To achieve that, we introduce the instruction EvalClosure in charge of
using the exponentials:

mph2sbm (Eval ::Mph SType ((b :⇒: c) :∗ :b) c) sizePtr =
[EvalClosure sizePtr (sizeOf (⊥ :: b) sizePtr)]

This instruction takes the size of a pointer (sizeP tr) together with the size of
the value of type b (sizeOf (⊥::b) sizeP tr). When executed, EvalClosure fetches
the exponential via the pointer, and places the value of type b obtained from
the read stack as an input to the instructions that constitute the exponential.
(There are actually many intermediate steps to reach that configuration and we
refer the interested reader to the accompanying material for details.) After the
instructions of the exponential get executed, the machine will have a value of
type c in the active write frame.

We still need to define sizeOf for the pointers manipulated in the stacks. To
know the maximal size (in bits) to encode a pointer, we must know the maximal
number of closures existing in a Simplicity program. This number is actually
the amount of Curry occurrences in the morphism denoting our program. The
reader can convince herself that computing this number is a linear traversal in
the size of the morphism. Let cc be the number of Curry in the morphism,
then the maximal size (in bits) of the pointers is sizeP tr = log2 (cc) + 1. Once
sizeP tr is determined, we can do our translation to SBM instructions by calling
mph2sbm with a morphism and sizeP tr as a parameter.

5.3 Static Analysis

A notable property of Simplicity is the ability to statically estimate computa-
tional resources needed by a program. This is achieved using the underlying
evaluation model, i.e., the SBM. In this section, we discuss this property in light
of the extensions made to Simplicity and the SBM.
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In our model, a given Simplicity program is translated to a BCCHask mor-
phism using simpl2mph, which is then translated to SBM instructions using
mph2sbm. Consider the problem of estimating the number of instructions exe-
cuted by the SBM for a given program. In the absence of exponentials, to count
the number of instructions, we simply count the number of instructions returned
by mph2sbm. However, this straightforward approach fails to hold in the pres-
ence of exponentials. This is because the instruction EvalClosure (introduced
for the evaluation of exponentials), cannot be treated as a single instruction.
EvalClosure contains a pointer to a list of instructions executed by the SBM,
which means that it causes several other instructions (including itself) to be
executed.

To mitigate this problem, we must also count the number of instructions
that are referred to by a pointer of EvalClosure. This can be easily calculated
in linear time by maintaining an environment which contains the pointers and
their corresponding list of instructions as introduced by PutClosure.

The static analysis of cell usage described in [7] extends naturally to expo-
nentials since all exponential objects are of a fixed sized sizeP tr (discussed in
the previous section). However, since our storage model has been extended with
a list of closures, we must also estimate the maximum size of the closure list. It
should be possible to compute an upper bound on the size of the closure list in
linear time by maintaining an external environment (as suggested above). Note
that since our extensions do not provide a mechanism to define recursion, such
as a fix-point combinator, an attempt to perform static analysis in such a fashion
must always terminate. However, we have not implemented this static analysis,
and leave it as a suggestion for future work.

6 Final Remarks

This work provides a new semantics for Simplicity based on category theory, and
extends Simplicity with user defined and higher order functions. Using functions,
we have established the foundational and practical basis to enrich the language
towards other interesting features such as bounded loops. As long as we stay
under a computational model similar to the simply typed lambda calculus, we
argue that it is possible to carry out “quick” static analysis to predict resource
usage in Simplicity programs. We evaluate our theory by providing an implemen-
tation of our results and approach in Haskell. Our hope is to make the language
even more useful to develop smart contracts with formal guarantees.

Acknowledgments. This work was funded by the Swedish Foundation for Strategic
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agency Vetenskapsr̊adet.
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Abstract. Besides simple transfers of currency, Bitcoin also enables var-
ious forms of smart contracts, i.e. protocols where users interact within
pre-agreed rules, which determine (possibly depending on the actual
interaction) how currency is eventually distributed. This paper provides
a gentle introduction to Bitcoin smart contracts, which we specify by
abstracting from the underlying Bitcoin machinery. To this purpose we
exploit BitML, a recent DSL for smart contracts executable on Bitcoin.

1 Introduction

Bitcoin and other cryptocurrencies [12,20] allow mutually distrusting parties to
securely interact over a peer-to-peer network. Abstractly, Bitcoin can be seen
as a decentralized state machine: the blockchain publicly records all the state
transitions, and from the sequence of these transitions anyone can infer the
state of the machine. The Bitcoin consensus mechanism guarantees that only
the transitions which are consistent with the current state can be appended to
the blockchain, and that previous transitions cannot be altered or removed.

The main use of Bitcoin so far is that of a cryptocurrency: state transitions
record transfers of currency from one user to another one, and the state of the
machine associates users to the amount of currency under their control. More
in general, Bitcoin also enables various forms of smart contracts, i.e. protocols
to distribute currency among users according to pre-agreed conditions [4,7,24].
A variety of protocols for lotteries [1,8,10,18], gambling games [17], contingent
payments [6], payment channels [14,19,22], and other kinds of fair computa-
tions [2,16] witness the capabilities of Bitcoin as a machine for smart contracts.

In practice, the development of Bitcoin smart contracts has been hampered
by the absence of convenient abstractions: indeed, existing descriptions of smart
contracts require a thorough understanding of low-level features of Bitcoin, like
e.g. transactions signatures and scripts.

In this paper we provide a gentle introduction to Bitcoin smart contracts
by leveraging BitML [9], a recent high-level, process-algebraic language that
compiles into Bitcoin transactions. The computational soundness of its compiler
guarantees that the execution of the compiled contract is coherent with the
semantics of the source BitML specification, even in the presence of adversaries.
We start by specifying in BitML several smart contracts of growing complexity,
intuitively describing their behaviour. Then, we show how to execute them on
Bitcoin, by exploiting the BitML compiler.
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11247, pp. 432–449, 2018.
https://doi.org/10.1007/978-3-030-03427-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03427-6_32&domain=pdf
https://doi.org/10.1007/978-3-030-03427-6_32


Fun with Bitcoin Smart Contracts 433

2 Contracts

We illustrate Bitcoin smart contracts through a series of examples, without rely-
ing on any previous knowledge about Bitcoin. To this purpose we use BitML [9],
a formalism which allows to express contracts in a process-algebraic fashion.
In Sect. 3 we will show how to effectively execute these contracts on Bitcoin.

Contracts allow two or more participants (denoted as A,B, . . .) to exchange
their bitcoins (B) according to the following workflow:

1. First, a participant broadcasts a contract advertisement {G}C . The compo-
nent C is the actual contract, specifying the rules according to which the
bitcoins can be transferred among participants. The component G is a set of
preconditions to the execution of C . For instance, G can require participants
to deposit some bitcoins, and to commit to some secrets.

2. If all the involved participants accept {G}C , satisfying its preconditions, the
contract C becomes stipulated. Then, participants can interact, following the
rules specified by C . According to the actual interaction, the final distribution
of bitcoins among participants may vary.

2.1 Direct Payment

Assume that A wants to give 1B to B through a contract. To this purpose, A
must first declare that she owns 1B, and that she agrees to transfer it under the
control of the contract. This is represented by the following precondition:

G = A:! 1B (1)

while the actual contract is the following:

Pay = withdraw B (2)

We show below a possible computation of {G}Pay , using the semantics in [9]
(which here we slightly simplify to ease the presentation). The configurations of
the semantics are the parallel composition (denoted by |) of terms of the form:

– {G}C , a contract advertisement;
– 〈C , vB〉, a stipulated contract with a balance of vB;
– 〈A, vB〉x , a deposit of vB owned by A, and with unique name x;
– A[· · ·], the authorization of A to perform some operation.

For instance, we denote with A[x � {G}C ] the authorization of A to spend the
deposit x for stipulating the advertised contract. Other terms needed for more
advanced examples will be introduced later.

The initial configuration of our direct payment contract is the parallel compo-
sition of {G}Pay and a deposit 〈A, 1B〉x . The computation proceeds as follows:

〈A, 1B〉x | {G}Pay −→ 〈A, 1B〉x | {G}Pay | A[x � {G}Pay ]
−→ 〈withdraw B , 1B〉
−→ 〈B, 1B〉y
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At the first step, A authorizes to spend the deposit x to stipulate the con-
tract. This move adds to the configuration the authorization A[x � {G}Pay ]. At
the second step, Pay becomes stipulated, since the precondition G is satisfied:
indeed, the required 1B deposit exists, and its spending is authorized by A. After
stipulation, the 1B deposit is assimilated by the contract; both the deposit and
the authorization are removed from the configuration. At this point, the contract
allows B to withdraw all its balance. When this happens, the contract becomes
terminated (disappearing from the configuration), and a new deposit for B is
added to the configuration; the deposit name y is fresh.

2.2 Payment from Multiple Senders

In the previous contract, the initial deposit has been provided by a single par-
ticipant, but more in general, a contract can gather money from multiple par-
ticipants. For instance, assume A1 and A2 want to pay 1B each to B. We can
perform this transfer atomically by using the following precondition:

G2 = A1:! 1B | A2:! 1B (3)

and the same contract Pay as in (2). Now, to stipulate the contract, both A1

and A2 must authorize to transfer their deposits to the contract:

〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay
−→ 〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay | A1[x � {G2}Pay ]
−→ 〈A1, 1B〉x | 〈A2, 1B〉y | {G2}Pay | A1[x � {G2}Pay ] | A2[y � {G2}Pay ]
−→ 〈Pay , 1B〉 −→ 〈B, 1B〉z
The contract is stipulated in the third step, which atomically removes the

two authorizations and the two deposits from the configuration. Note that, once
stipulated, (3) guarantees that B will receive 2B.

A seemingly similar behaviour could be obtained through the parallel com-
position of two advertisements, where A1 and A2 independently send 1B to B:

{A1:! 1B} withdraw B | {A2:! 1B} withdraw B (4)

A remarkable difference between (3) and (4) is that in (4) it may happen
that A1 authorizes the stipulation, while A2 does not. In this case, B will only
get 1B. By comparison, with A1’s authorization alone, the contract using (3) can
not be stipulated.

2.3 Procrastinating Payments

Assume now that A wants to stipulate a contract where she commits herself to
give 1B to B after a certain date d. For instance, this contract could represent a
birthday present to be withdrawn only after the birthday date; or the paying of
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a rent to the landlord, to be withdrawn only after the 1st of the month. Using
the same precondition in (1), A can use the following contract:

PayAfter = after 2018-04-08 : withdraw B (5)

This contract locks the deposit until 2018-04-08. After then, B can perform
action withdraw B to redeem 1B from the contract, with no further time limi-
tations. The computations must now record the passing of time: we do this by
adding to the configuration a term t = d0, meaning that the current global time
is d0. For instance, a possible computation of {G}PayAfter is the following:

〈A, 1B〉x | {G}PayAfter | t = 2018-04-01
−→ · · · −→ 〈PayAfter , 1B〉 | t = 2018-04-01

7 days−−−−→ 〈PayAfter , 1B〉 | t = 2018-04-08
−→ 〈B, 1B〉y | t = 2018-04-08

In the contract PayAfter , if B forgets to withdraw, the money remains within
the contract. The following contract, instead, allows A to recover her money if
B has not withdrawn within a given deadline:

PayOrRecover = after d : withdraw B + after d′ : withdraw A (6)

where the precondition is the same as in (1), and d, d′ are constants such that
d′ > d. The symbol + denotes a choice between two mutually exclusive branches:
either B withdraws 1B after time d, or A withdraws 1B after time d′. Note that
the contract does not choose internally which of the branches is taken: the actual
choice is left to the participants. Technically, + models an external choice, taken
by the first participant who fires a move on one of the branches. In our specific
example (6), before the deadline d no one can withdraw; after d (but before d′)
only B can withdraw, while after d′ both withdraw actions are enabled, so the
first one who performs their withdraw will get the money. This contract also
models a “limited-time offer”, which becomes unavailable after d′.

2.4 Authorizing Payments

Assume that A is willing to pay 1B to B, but only if another participant O gives
his authorization. With the precondition (1), we can use the following contract:

PayAuth = O : withdraw B (7)

A computation where O gives his authorization will then proceed as follows:

〈A, 1B〉x | {G}PayAuth −→ 〈A, 1B〉x | {G}PayAuth | A[x � {G}PayAuth]
−→ 〈O : withdraw B , 1B〉
−→ 〈O : withdraw B , 1B〉 | O[O : withdraw B ]
−→ 〈B, 1B〉y
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The semantics of contracts ensures that withdraw B can be performed only
if the configuration contains a suitable authorization. In the computation above,
this authorization is rendered by O[O : withdraw B ], added by the participant
O at the third step1. Of course, there are also computations where O chooses
not to provide the authorization.

We can play with authorizations and summations to construct more complex
contracts. For instance, assume we want to design an escrow contract, which
allows A to buy an item from B, authorizing the payment only after she gets the
item. Further, B can authorize a full refund to A, in case there is some problem
with the item. A näıve attempt to model this contract is the following:

NaiveEscrow = A : withdraw B + B : withdraw A

If both participants are honest, everything goes smoothly: when A receives
the item, she authorizes the payment to B, otherwise B authorizes the refund.
The problem with this contract is that, if neither A nor B give the authorization,
the money in the contract is frozen. To cope with this issue, we can refine the
escrow contract, by introducing a trusted arbiter O which resolves the dispute:

OracleEscrow = NaiveEscrow + O : withdraw A + O : withdraw B

The last two branches are used if neither A nor B give their authorizations: in
this case, the arbiter chooses whether to authorize A or B to redeem the deposit.
A variant of the escrow contract where O can issue a partial refund is in [9].

Another use case for authorizations is a bet, for instance on a football match.
Two players A and B deposit 1B each, with precondition A:! 1B | B:! 1B. The
winner—determined by a trusted oracle O—can redeem the whole pot:

O : withdraw A + O : withdraw B

Note that a trusted oracle will only authorize the action corresponding the
winner of the football match.

2.5 Splitting Deposits

In all the previous examples, the deposit within the contract is transferred to
a single participant. More in general, deposits can be split in many parts, to
be transferred to different participants. For instance, assume that A wants her
1B deposit to be transferred in equal parts to B1 and to B2. Using the same
precondition in (1), we can model this behaviour as follows:

PaySplit = split
(
0.5B → withdraw B1 | 0.5B → withdraw B2

)
(8)

The split construct splits the contract in two or more parallel subcontracts,
each with its own balance. Of course, the sum of their balances must be less
than or equal to the deposit of the whole contract.
1 To avoid ambiguities, the BitML semantics decorates contract terms with unique

identifiers, referred to in authorization terms. Here we omit them for conciseness.
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A possible computation of {G}PaySplit is the following:

〈A, 1B〉x | {G}PaySplit −→ · · · −→ 〈PaySplit , 1B〉
−→ 〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉
−→ 〈B1, 0.5B〉y | 〈withdraw B2 , 0.5B〉
−→ 〈B1, 0.5B〉y | 〈B2, 0.5B〉z

We can use split together with the other primitives presented so far to
craft more complex contracts. For instance, assume that A wants pay 0.9B to
B, routing the payment through an intermediary I who can choose whether to
authorize it (in this case retaining a 0.1B fee), or not. Since A does not trust I,
she wants to use a contract to guarantee that: (i) if I authorizes the payment,
then 0.9B are transferred to B; (ii) otherwise, A does not lose money.

Using the same precondition in (1), we can model this behaviour as follows:

I : split
(
0.1B → withdraw I | 0.9B → withdraw B

)
+ after d : withdraw A

The leftmost branch can only be taken if I authorizes the payment: in this case,
I gets his fee, and B gets his payment. Instead, if I denies his authorization, then
A can redeem her deposit after time d.

2.6 Volatile Deposits

So far, we have seen participants using persistent deposits, that are assimilated
by the contract upon stipulation. Besides these, participants can also use volatile
deposits, which are not assimilated upon stipulation. For instance:

G? = A:? 0.5B @x | A:! 0.5B

gives A the possibility of contributing 0.5B during the contract execution. How-
ever, A can choose instead to spend her volatile deposit outside the contract.
The variable x is a handle to the volatile deposit, which can be used as follows:

Pay? = putx. withdraw B

After stipulation, any participant can execute putx to transfer the deposit x
to the contract, provided that 〈A, 0.5B〉x occurs in the configuration. Unlike the
computation in Sect. 2.1, a computation of 〈A, 0.5B〉x | 〈A, 0.5B〉y | {G?}Pay?
(even after stipulation) is not guaranteed to reach a configuration containing
〈B, 1B〉. Indeed, since x is not paid upfront, there is no guarantee that x will be
available when the contract demands it, as A can spend it for other purposes.

Volatile deposits can be exploited within more complex contracts, to handle
situations where a participant wants to add some funds to the contract. For
instance, assume a scenario where A1 and A2 want to give B 2B as a present,
paying 1B each. However, A2 is not sure a priori she will be able to pay, because
she may need her 1B for more urgent purposes: in this case, A1 is willing to
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pay an extra bitcoin. We can model this scenario as follows: A1 puts 2B as a
persistent deposit, while A2 makes available a volatile deposit x of 1B:

A1:! 2B | A2:? 1B @x

The contract is a choice between two branches:
(
putx. split (2B → withdraw B | 1B → withdraw A1)

)
+ after d : withdraw B

In the leftmost branch, A2 puts 1B in the contract, and the balance is split
between B (who takes 2B, as expected), and A1 (who takes her extra deposit
back). The rightmost branch is enabled after d, and it deals with the case where
A2 has not put her deposit by such deadline. In this case, B can redeem 2B,
while A2 loses the extra deposit. Note that, in both cases, B will receive 2B.

2.7 Revealing Secrets

A useful feature of Bitcoin smart contracts is the possibility for a participant
to choose a secret, and unblock some action only when the secret is revealed.
Further, different actions can be enabled according to the length of the secret.
Secrets must be declared in the contract precondition, as follows:

A:secret a

We give the secret a name, here a, but we never denote the value of the secret
itself. A basic contract which exploits this feature is the following:

PaySecret = reveal a if |a| > 1. withdraw A (9)

This contract asks A to commit to a secret of length greater than one2, and allows
A to redeem 1B upon revealing the secret. Until then, the deposit is frozen.

In order to describe computations where participants commit to and reveal
secrets, we extend configurations with two new kinds of terms:

– {A : a#N}, representing the fact that A has committed to a secret a. The
length of a, which is secret as well, is determined by the integer N ;

– A : a#N , representing the fact that A has revealed her secret a (hence, she
has also revealed its length N).

Running {G | A:secret a}PaySecret with a secret of length 2 yields:

〈A, 1B〉x | {A : a#2} | {G | A:secret a}PaySecret −→ · · ·
−→ {A : a#2} | 〈PaySecret , 1B〉
−→ A : a#2 | 〈PaySecret , 1B〉 −→ 〈withdraw A , 1B〉 −→ 〈A, 1B〉y

2 After compiling to Bitcoin, the actual length of the secret will be increased by η,
where η is a security parameter, large enough to avoid brute-force preimage attacks.
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The reveal primitive can be used to design more useful contracts than the
one in (9). For instance, we show in (10) how to express a timed commitment
contract [2,11,15,23], using the same precondition as above. In this contract, A
wants to choose a secret a, and reveal it before the deadline d; if A does not
reveal the secret within d, B can redeem the 1B deposit as a compensation:

TC =
(
reveal a. withdraw A

)
+

(
after d : withdraw B

)
(10)

Only A can choose the first branch, by revealing a. After that, anyone can further
reduce the contract, and transfer 1B to A. Only after time d, if the reveal has
not been performed, any participant can perform the withdraw in the second
branch, which transfers 1B to B. Therefore, before the deadline A has the option
to reveal a (avoiding the penalty), or to keep it secret (paying the penalty). If
no branch is taken by time d, a race condition occurs: in such case, the first one
who fires the withdraw gets the money.

Using the precondition A:! 1B | A:secret a | B:! 1B | B:secret b , we can
also model a mutual timed commitment as follows:

TC2 = reveal a.C ′ + after d : withdraw B

C ′ = reveal b.C ′′ + after d′ : withdraw A (d′ > d)

C ′′ = split
(
1B → withdraw A | 1B → withdraw B

)

The contract TC2 can reduce to C ′ if A reveals a; otherwise (after d) B can
redeem 2B. If A reveals, then B can choose not to reveal. Doing so, however,
B will lose his deposit, since, after d′, A can withdraw the 2B deposited in
the contract. Instead, if B reveals, the 2B are split between A and B. Any
participant (either A or B) who behaves honestly is guaranteed to learn the
other participant’s secret, or to gain 1B as compensation—in this sense the
protocol is fair. Note that d′ must be sufficiently greater than d, to avoid the
attack where A waits until the very last moment to reveal her secret, so making
it difficult for B to respect the deadline.

2.8 Lotteries and Other Games

Now that we have introduced all the primitives of BitML, we can combine them
to construct more advanced contracts. For instance, consider a multiparty lottery
where n players put their bets in a pot, and a winner—fairly chosen among the
players—redeems the whole pot.

We model a lottery similar to the one in [2,3], for two players A and B who
bet 1B each. The contract preconditions are the following:

A:! 3B | A:secret a | B:! 3B | B:secret b (11)

where the deposit of each player includes the 1B bet, plus a 2B collateral used
as compensation in case of dishonest behaviour. The contract is the following:

split
(

2B → reveal b if 0 ≤ |b| ≤ 1. withdraw B + after d : withdraw A
| 2B → reveal a. withdraw A + after d : withdraw B
| 2B → reveal ab if |a| = |b|. withdraw A

+ reveal ab if |a| �= |b|. withdraw B
)
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The balance is split in three parts. Player B must reveal b by the deadline d;
otherwise, A can redeem B’s collateral (note that this is a timed commitment,
similar to the one in (10)). Similarly, A must reveal a. To determine the winner
we compare the lengths of the secrets, in the third part of the split. The
winner is A if the secrets have the same length, otherwise it is B. Checking that
b’s length is either 0 or 1 is needed to achieve fairness: indeed, B can increase
his probability to redeem 2B in the third part of the split by choosing a secret
with length N > 1. However, doing so will make B lose his 2B deposit, so overall
B’s average payoff would be negative. A rational B would then choose a secret
of length 0 or 1. Similarly, a rational A must choose a secret of length 0 or 1,
otherwise she decreases her probability to be the winner. When both lengths are
chosen in {0, 1}, both A and B can collect their collateral back, and they have
a 1/2 probability to win the lottery, provided that at least one of them chooses
the length of the secret uniformly.

We also show a variant of the two-players lottery which requires no collateral,
similarly to [8,18]. The preconditions just require the 1B bets and the secrets,
while the contract is the following, where d′ > d:

reveal b if 0 ≤ |b| ≤ 1.
(
reveal a if |a| = |b|. withdraw A

+ reveal a if |a| �= |b|. withdraw B
+ after d′ : withdraw B

)

+ after d : withdraw A

Here, B must reveal first. If B does not reveal his secret by the deadline d,
or the secret has not the expected length, then A can redeem 2B. Otherwise,
A in turn must reveal by the deadline d′, or let B redeem 2B. If both A and B
reveal, then the winner is determined by comparing the lengths of their secrets.
As before, the rational strategy for each player is to choose a secret length 0 or
1, and reveal it. This makes the lottery fair, even in the absence of a collateral.

Using similar insights, we can craft contracts for other games. For instance,
consider Rock-Paper-Scissors, a two players hand game where both players
choose simultaneously a hand-shape, and the winner is decided along with the
following rules: rock beats scissors, scissors beats paper, and paper beats rock.

We model the game for two players A and B who bet 1B each, and represent
their moves as secrets of length 0 (rock), 1 (paper), and 2 (scissors). We define
the following boolean predicate to determine the winner:

w(N,M) = (N = 0 ∧ M = 2) ∨ (N = 2 ∧ M = 1) ∨ (N = 1 ∧ M = 0)

The contract preconditions are as in (11), while the contract is the following:

split
(

2B → reveal b if 0 ≤ |b| ≤ 2. withdraw B + after d : withdraw A
| 2B → reveal a if 0 ≤ |a| ≤ 2. withdraw A + after d : withdraw B
| 2B → reveal ab ifw(|a|, |b|). withdraw A

+ reveal ab ifw(|b|, |a|). withdraw B
+ reveal ab if |a| = |b|. split (1B → withdraw A | 1B → withdraw B)

)
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The contract is split in three parts, each with a balance of 2B: the first two
parts allow the players to redeem the collaterals by revealing their secrets in
time (similarly to the first version of the lottery), while the third one computes
the winner. The winner is A if w(|a|, |b|), and B if w(|b|, |a|). If a and b have
the same length (i.e. , they represent the same move), then there is a tie, so the
bets are given back to the two players. Notice that if a player chooses a secret
of unexpected length, then it may happen that the 2B in the third part of the
split remain frozen. However, in such case the dishonest player will pay a 2B
penalty to the other one. A zero-collateral version of Rock-Paper-Scissors can
be obtained similarly to the second version of the lottery.

3 From Contracts to Bitcoin Transactions

In this section we show how to execute on Bitcoin the contracts in Sect. 2. We
start by providing some minimal background on Bitcoin. A transaction repre-
sents a transfer of bitcoins, and the sequence of all transactions is stored in a
public, append-only data structure called blockchain. When a new transaction
T is appended to the blockchain, it redeems bitcoins from one or more transac-
tions already on the blockchain. For the aims of this paper we abstract from the
fact that, in Bitcoin, there exist some transactions (so-called coinbase) which
generate bitcoins from nothing, and that transactions are grouped into blocks.

The simplest Bitcoin transaction, which transfers 1B to participant A, can
be represented as follows, using the notation in [5]:

TA

in : T
wit : w
out : (λx.versigA(x), 1B)

The transaction TA is a record with three fields. The field in points to another
transaction T, which must occur before TA on the blockchain. The field out is a
pair, whose first element is a boolean predicate (called script in the Bitcoin jar-
gon), and the second element is the amount (1B) deposited in TA . To append TA

to the blockchain, T must contain at least 1B. The script specifies the condition
under which a subsequent transaction T′ can redeem the 1B in TA , transferring
it to T′. In our case, the script requires a signature x of A on T′. To evaluate
the script, the formal parameter x will be instantiated to the value of the wit
field (called witness) of T′. In the previous figure, the witness w in TA is the
actual parameter used to evaluate the script in T, the transaction referred by
TA .in. If such evaluation yields true, then TA can be appended to the blockchain,
redeeming 1B from T. That sum is now under the control of A, since she is the
only participant who can provide the needed witness in T′.

To execute a BitML contract, the involved users first translate it into a
set of Bitcoin transactions, using the compiler in [9]. Then, they append one
or more of these transactions to the Bitcoin blockchain. Intuitively, appending
a transaction corresponds to a step of the contract execution, and so it may
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require users to perform the corresponding actions, like e.g. revealing a secret
or providing an authorization. To compile contracts we will often exploit more
advanced features of Bitcoin transactions than the above-mentioned ones, like
e.g. that of collecting bitcoins from many inputs, and splitting them between
many outputs. Further, we will often use more complex output scripts, and we
will specify time constraints on when a transaction can be appended to the
blockchain3. We will illustrate these features along with the examples where
they are needed (see [5] for details).

3.1 Direct Payment

Recall the contract advertisement {A:! 1B} withdraw B from Sect. 2.1. By
exploiting the BitML compiler, A and B construct the following transactions:

Tinit

in : TA

wit : sigA
out : (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in : Tinit

wit : sigA sigB
out : (λς. versigB(ς), 1B)

where versigAB(ς0ς1) is a shorthand for versigA(ς0) ∧ versigB(ς1), and sigA rep-
resents A’s signature on the enclosing transaction (similarly for sigB).

In BitML, the stipulation of the contract starts with the following step:

〈A, 1B〉x | {G}Pay −→ 〈A, 1B〉x | {G}Pay | A[x � {G}Pay ]

In Bitcoin, to perform this step the participants generate Tinit and T′
B (which

initially have an empty wit field), sign them, and exchange the signatures. After
that, they insert the signatures in the wit fields as shown in the figure above.
Crucially, the signature on Tinit is broadcast by A only after B’s signature has
been received and verified. In this way, when Tinit is put on the blockchain, start-
ing the execution of the contract, A knows all the needed signatures to redeem
it with T′

B later on. This guarantees that, after the contract starts executing, it
can be run until completion. In BitML, A’s signature on Tinit is rendered as the
authorization term A[x � {G}Pay ].

The second computation step in BitML is the following:

〈A, 1B〉x | {G}Pay | A[x � {G}Pay ] −→ 〈withdraw B , 1B〉
In Bitcoin, this corresponds to appending Tinit to the blockchain. This trans-

action redeems 1B from TA (displayed before at page 10)—the concrete coun-
terpart of the BitML deposit 〈A, 1B〉x. Note that, since both A and B know the
witness of Tinit , any of them can append such transaction.

The last computation step in BitML is the following:

〈withdraw B , 1B〉 −→ 〈B, 1B〉y
3 The BitML compiler always produces standard Bitcoin transactions, by exploiting

the BALZaC tool (https://github.com/balzac-lang/balzac). This is crucial, since the
Bitcoin network currently discards non-standard transactions.

https://github.com/balzac-lang/balzac
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where y is a fresh name. In Bitcoin, this corresponds to appending to the
blockchain the transaction T′

B , which redeems 1B from Tinit . After that, 1B
is under B’s control, since the script of T′

B only requires B’s signature. The
unspent transaction T′

B corresponds to the BitML deposit 〈B, 1B〉y.

3.2 Payment from Multiple Senders

Recall {G2}Pay = {A1:! 1B | A2:! 1B} withdraw B from Sect. 2.2. Assume
that the deposits of A1 and A2 are provided by two transactions TA1 and TA2

similar to the transaction TA at page 10 (but for the script). Although the initial
deposits are more than one, we still use a single transaction Tinit to gather them,
by exploiting the fact that Bitcoin transactions can have multiple inputs. The
compiler produces the following two transactions:

Tinit

in : 0 	→ TA1 , 1 	→ TA2

wit : 0 	→ sigA1
, 1 	→ sigA2

out : (λς1ς2ς. versigA1A2B(ς1ς2ς), 2B)

T′
B

in : Tinit

wit : sigA1
sigA2

sigB
out : (λς. versigB(ς), 2B)

Transaction Tinit has two inputs: the one at index 0 points to TA1 , while
the other points to TA2 . Consequently, it is possible to append Tinit to the
blockchain only if both TA1 and TA2 are still unredeemed on the blockchain.
To this purpose, Tinit needs to provide two witnesses, one for each input. In
BitML, TA1 and TA2 are represented as deposits, say 〈A1, 1B〉x and 〈A2, 1B〉y,
and communicating the two signatures on Tinit corresponds to providing the
authorizations A1[x � {G2}Pay ] and A2[y � {G2}Pay ]. As before, these signa-
tures are exchanged only after all the other signatures have been exchanged and
verified. Once the contract is stipulated, its execution proceeds as in Sect. 3.1.

3.3 Procrastinating Payments

To deal with time constraints, we exploit the absLock field of the Bitcoin trans-
action: namely, setting T.absLock = d prevents T from being appended to the
blockchain before time d. For instance, recall PayAfter from (5). The BitML
compiler produces the following two transactions:

Tinit

in : TA

wit : sigA
out : (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in : Tinit

wit : sigAsigB
out : (λς. versigB(ς), 1B)
absLock : d

In this way, even if after stipulation all the participants know all the witnesses,
T′
B cannot be appended to the blockchain until time d, and as a consequence, B

cannot use the 1B in T′
B before such date.
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Recall now PayOrRecover from (6). The transactions obtained by compiling
it are similar to the previous ones:

Tinit

in : TA

wit : sigA
out : (λς0ς1. versigAB(ς0ς1), 1B)

T′
B

in : Tinit

wit : sigAsigB
out : (λς. versigB(ς), 1B)
absLock : d

T′
A

in : Tinit

wit : sigAsigB
out : (λς. versigA(ς), 1B)
absLock : d′

The main difference with (5) is that now there are two transactions, T′
B and

T′
A , that can redeem Tinit . However, since Tinit cannot be redeemed twice, only

one of them can be appended to the blockchain: appending T′
B corresponds to

executing the left branch of the choice, i.e. after d : withdraw B , while T′
A

corresponds to the right branch, i.e. after d′ : withdraw A .

3.4 Authorizing Payments

As seen in the previous examples, to implement contract stipulation participants
must exchange and verify their signatures on the Bitcoin transactions generated
by the compiler. However, in case of contracts with authorizations, some signa-
tures can be provided only during the execution of the contract, after stipulation.

For instance, compiling PayAuth in (7) results in the following transactions:

Tinit

in : TA

wit : sigA
out : (λς0ς1ς2. versigABO(ς0ς1ς2), 1B)

T′
B

in : Tinit

wit : sigAsigB [sigO ]
out : (λς. versigB(ς), 1B)

where the square brackets around sigO in T′
B indicate that such signature does

not need to be exchanged at stipulation time. Providing such signature at run
time corresponds to the following computation step in BitML:

〈O : withdraw B , 1B〉 −→ 〈O : withdraw B , 1B〉 | O[O : withdraw B ]

Only after O’s signature on T′
B is made public, it is possible to append such

transaction to the blockchain, transferring 1B to B.

3.5 Splitting Deposits

Bitcoin transactions can have multiple outputs: in this case, whoever redeems the
transaction must specify which output it is redeeming. This feature is exploited
to compile the split construct of BitML. For instance, compiling PaySplit
from (8) produces the following transactions:
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Tinit

in : TA

wit : sigA
out :
(λς0ς1ς2.
versigAB1B2

(ς0ς1ς2),
1B)

Tsplit

in : Tinit

wit : sigAsigB1
sigB2

out :
0 	→ (λς0ς1ς2.

versigAB1B2
(ς0ς1ς2), 0.5B)

1 	→ (λς0ς1ς2.
versigAB1B2

(ς0ς1ς2), 0.5B)

T′
B1

in : (Tsplit , 0)
wit : sigAsigB1

sigB2

out : (λς. versigB1
(ς), 0.5B)

T′
B2

in : (Tsplit , 1)
wit : sigAsigB1

sigB2

out : (λς. versigB2
(ς), 0.5B)

As usual, Tinit gathers A’s deposit and starts the contract. Then, appending
Tsplit to the blockchain splits the contract balance between two different outputs,
indexed with 0 and 1. In BitML, this would correspond to the computation step:

〈PaySplit , 1B〉 −→ 〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉

where the two contracts in the parallel composition can be executed indepen-
dently (as usual in process calculi). Similarly, the two outputs of Tsplit can be
independently redeemed by T′

B1
and T′

B2
. The in field of these transactions spec-

ifies, besides the input transaction Tsplit , also the index of the output they want
to redeem. Appending T′

B1
corresponds, in BitML, to the step:

〈withdraw B1 , 0.5B〉 | 〈withdraw B2 , 0.5B〉 −→ 〈B1, 0.5B〉y | 〈withdraw B2 , 0.5B〉

3.6 Volatile Deposits

Recall Pay? from Sect. 2.6, where A uses a volatile deposit x and a persistent
one. Assume that the Bitcoin counterpart of x is a transaction Tx , from which A
can redeem 0.5B by providing her own signature. The BitML compiler outputs:

Tinit

in : TA

wit : sigA
out : (λς0ς1.versigAB(ς0ς1), 0.5B)

Tput

in : 0 �→ Tinit , 1 �→ Tx

wit : 0 �→ sigAsigB , 1 �→ sigA
out : (λς0ς1. versigAB(ς0ς1), 1B)

T′
A

in : Tput

wit : sigA sigB
out : (λς. versigA(ς), 1B)

The transaction Tinit gathers the persistent deposit, stored in TA . The trans-
action Tput has two inputs: Tinit , which can be redeemed with the signatures of
both A and B, and Tx , which can be redeemed with A’s signature only. Since all
these signatures are exchanged before stipulation, any participant can append
Tput to the blockchain—provided that Tx is still unspent. Instead, if Tx has been
spent, the contract gets stuck, and the deposit within Tinit is frozen.

3.7 Revealing Secrets

Recall PaySecret from Sect. 2.7. In the stipulation phase, A commits to a secret
(named a) and to its length N , by publishing the term {A : a#N}. In Bitcoin,
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this corresponds to choosing an actual bitstring sa for the secret, and broad-
casting its hash ha = H(sa). To ensure that sa cannot be recovered by brute
force, even when N is small4, we let the actual length of sa be η + N , where η
is a public security parameter, large enough (e.g. , η = 128). In this way, the
other participants cannot infer sa (assuming H to be preimage resistant), nor its
length. Further, A cannot later on reveal a different secret or a different length
(assuming collision resistance). The BitML compiler generates the transactions:

Tinit

in : TA

wit : sigA
out : (λςx.versigA(ς) ∧

H(x) = ha ∧ |x| > η + 1, 1B)

Treveal

in : Tinit

wit : sigA [sa]

out : (λς. versigA(ς), 1B)

T′
A

in : Treveal

wit : sigA
out : (λς. versigA(ς), 1B)

Transaction Tinit collects A’s deposit, and its output script requires two
witnesses: a signature ς of A on the redeeming transaction, and a bitstring x
whose hash H(x) is equal to ha ; further, x must be longer than η + 1 bits, to
satisfy the condition |a| > 1 in the reveal · · · if. These witnesses are provided
by Treveal , where the square brackets around sa indicate that the secret can be
provided after stipulation. Broadcasting the secret and appending Treveal to the
blockchain correspond to the following two BitML steps (which assume N > 1):

{A : a#N} | 〈PaySecret , 1B〉 −→ A : a#N | 〈PaySecret , 1B〉 −→ 〈withdraw A , 1B〉

Note that, once the transaction Treveal is on the blockchain, everyone can
read the secret in its wit field. After that, appending T′

A corresponds to the
step:

〈withdraw A , 1B〉 −→ 〈A, 1B〉y
Recall now TC = (reveal a. withdraw A) + (after d : withdraw B), the

timed commitment contract in (10). As before, we assume that A commits to a
secret sa by broadcasting its hash ha . Further, we assume that A and B generate
other two key pairs, (ksA , kpA) and (ksB , kpB), and share their public parts. The
transactions obtained by the compiler are the following:

Tinit

in : TA

wit : sigA
out :

(
λς0ς1x.versigAB(ς0ς1)
∨(versigkpAkpB

(ς0ς1)

∧ H(x) = ha

∧ |x| ≥ η),
1B

)

T′

in : Tinit

wit : sigksA
sigksB

[sa]

out : (λς0ς1.versigAB(ς0ς1), 1B)

T′
A

in : T′

wit : sigAsigB
out : (λς. versigA(ς), 1B)

T′
B

in : Tinit

wit : sigAsigB
out : (λς. versigB(ς), 1B)

absLock : d

4 The reason why BitML allows secrets to have small lengths is to make it easier to
write some contracts, like e.g. those in Sect. 2.8.
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The transaction Tinit can be redeemed in two ways, according to the two
clauses in the disjunction of its output script: either with the signatures sigA
and sigB , or with the signatures sigksA

and sigksB
and the secret value sa.

In the first case one can use the transaction T′
B , which however can be

appended only after time d, because of the time constraint specified in its absLock
field. Appending T′

B corresponds to the following step in BitML (where d′ ≥ d):

〈TC , 1B〉 | t = d′ −→ 〈B, 1B〉y | t = d′

In the second case, one can use the transaction T′, by filling its wit field with
the secret sa revealed by A. Doing this corresponds to the following computation
steps in BitML (which can be performed at any time):

{A : a#N} | 〈TC , 1B〉 −→ A : a#N | 〈TC , 1B〉 −→ 〈withdraw A , 1B〉
After that, anyone can append the transaction T′

A to the blockchain to transfer
1B under A’s control. Once T′ is on the blockchain, it will be no longer possible
to append T′

B , since both transactions want to redeem Tinit .

4 Related Work and Conclusions

We have illustrated Bitcoin smart contracts from a programming languages per-
spective, by exploiting the BitML calculus [9]. Although BitML can express
many of the smart contracts appeared in the literature [4], there exist some con-
tracts which can be executed on Bitcoin but are not expressible in BitML. This
is the case e.g. of contingent payment contracts, where a participant A promises
to pay B for a value x satisfying a predicate chosen by A (e.g. , x is a prime
factor of a given large number). Contingent payments can be implemented in
Bitcoin similarly to timed commitment contracts: A pays a deposit, which is
taken by B after revealing a preimage of H(x) which satisfies the predicate. An
off-chain protocol [6] (which exploits zero-knowledge proofs) is used to guarantee
that H(x) is indeed the hash of a value x satisfying the predicate (note that,
in the Bitcoin scripting language, one can only check trivial predicates, like e.g.
equality). Another kind of contracts which are not expressible in BitML are
those for which one cannot pre-determine a finite set of transactions, or of sig-
natures, before executing the contract. This is the case, e.g. , of crowdfunding
contracts [4], where participants invest some money until a given threshold is
reached. Here, we do not statically know neither the number of participants,
nor their identities, so it is not possible to statically produce (and pre-sign) a
set of transactions, as required by BitML. To the best of our knowledge, the
existence of negative results on the expressiveness of Bitcoin contracts is still an
open question

Only a few other languages for Bitcoin contracts have been proposed so far.
TypeCoin [13] is an high-level language which allows to model the updates of
a state machine as affine logic propositions. Users can “run” this machine by
putting transactions on the blockchain, with the guarantee that only the legit
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updates can be performed. A downside of [13] is that liveness is guaranteed only
by assuming cooperative participants, i.e. , a dishonest participant can make
the others unable to complete an execution. Note instead that in BitML, honest
participants can always make a contract progress, regardless of the behaviour of
the environment. Cooperation is incentivized by punishing misbehaviour with
penalties, like e.g. in the lottery of Sect. 2.8. The other works we are aware of,
IVY5, BALZaC6 and Simplicity [21], replace the Bitcoin scripting language with
more high-level languages, through which they simplify writing the transactions
needed in a smart contract (e.g. , by providing static checks to determine if
a transaction can redeem another one, etc.). Compared to these approaches,
BitML completely abstracts from Bitcoin transactions, in this way allowing for
more elegant specifications of contracts (compare e.g. the lotteries in Sect. 2.8
with those in [3,8,18]), and paving the way towards automatic verification.

Acknowledgments. This work is partially supported by Aut. Reg. of Sardinia
projects “Sardcoin” and “Smart collaborative engineering”.

References

1. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party
computations via Bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
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1 Università della Svizzera italiana (USI), Lugano, Switzerland
{matteo.marescotti,martin.blicha,antti.hyvarinen,

sepideh.asadi,natasha.sharygina}@usi.ch
2 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Abstract. The Ethereum platform is a public, distributed, blockchain-
based database that is maintained by independent parties. A user inter-
acts with Ethereum by writing programs and having miners execute
them for a fee charged on-the-fly based on the complexity of the exe-
cution. The exact fee, measured in gas consumption, in general depends
on the unknown Ethereum state, and predicting even its worst case is
in principle undecidable. Uncertainty in gas consumption may result in
inefficiency, loss of money, and, in extreme cases, in funds being locked
for an indeterminate duration. This feasibility study presents two meth-
ods for determining the exact worst-case gas consumption of a bounded
Ethereum execution using methods influenced by symbolic model check-
ing. We give several concrete cases where gas consumption estimation is
needed, and provide two approaches for determining gas consumption,
one based on symbolically enumerating execution paths, and the other
based on computing paths modularly based on the program structure.

1 Introduction

Algorithms for reaching consensus in a distributed environment have recently
found applications in financial transactions based on distributed, public
databases. One of the most famous applications of such systems is the Bitcoin
platform. The idea is generalized to executing programs in [17] and has then
been applied to other blockchains [12,13], most notably to the Ethereum plat-
form that provides a Turing-complete execution environment where participants
run programs in the form of smart contracts [4].

Smart contracts resemble classes in programming languages such as Java,
C++, or Python, in that they contain data fields, called storage, and program
code, called functions, which in turn have variables with a scope local to the
functions. They differ from traditional programs in that, once deployed, a smart
contract cannot be changed and will be publicly available. The contracts are
commonly associated with monetary value, and therefore programming errors
in contracts might have financial implications to the contract participants. As a
result, the correct behaviour of contracts is of high interest to the participants.
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The execution of the Ethereum platform is carried out by miners that mine
the transactions between a contract participant and a contract for a fee. The fee
is based on the cost of the transaction as specified by the execution environment,
in an abstract quantity called gas. A participant specifies the price he or she is
willing to pay for a unit of gas, and provides an amount of money for the trans-
action. The miner then keeps the price of the actual gas used in the transaction
from the amount as a compensation for mining the transaction, and returns the
rest. In the whole Ethereum platform the daily gas costs sum up to roughly
500’000 USD at the moment of writing, and therefore even small changes in gas
consumption can have a big cumulative effect.

In general the cost of a transaction depends on the unknown state of the
platform, and therefore it is useful to talk about transaction’s worst-case gas
consumption. Ethereum provides a Turing-complete execution environment, and
therefore computing the worst-case consumption is undecidable.1 We address the
central challenge of computing the exact worst-case gas consumption of a trans-
action through highly efficient methods adapted from symbolic bounded model
checking [3] and using efficient SMT solvers [2,7,10,16]. The gas consumption
of a transaction is of interest to contract participants for several reasons. In the
following, we identify three cases in which computing gas consumption can help
in making Ethereum more efficient.

– The Ethereum protocol imposes an upper limit for the amount of gas that
a transaction may consume. As a result, if the execution cost of a function
increases over time, it may happen that at a certain point a transaction of
a program can no longer be carried out [1]. Computing the gas consumption
helps identifying such programming errors.

– A reliable gas estimation helps a participant to place a price on the unit of
gas in line with the utility of the transaction. An amount that turns out to
be insufficient to carry out the transaction results in the participant losing
the money without executing the transaction, while an overestimated gas
consumption makes the transaction less appealing to a miner and therefore
less likely to be executed.

– An approach for computing the exact worst-case gas consumption can be
used as an aide to the developer for comparing semantically equivalent smart
contracts with respect to their gas consumption. If the tool can show that
one implementation has a lower gas consumption than others, the developer
can choose to deploy the implementation with the lower gas consumption.

We define the gas consumption paths (GCPs) for Ethereum, and exhaustively
examine all GCPs of a function using symbolic methods. The paths are identified
in the high-level language Solidity, and projected to the low-level assembly code
EVM currently used in Ethereum. This approach has several advantages: Due to
the combination of high and low-level representations we are able to be precise
on the execution paths while maintaining exactness of the gas consumption. The

1 The protocol imposes, however, a maximum gas consumption for a block, making
the computation in principle decidable.
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approach is independent of the low-level representation, where gas consumed by
the instructions might depend on protocol version, different compilers might
produce different code, and even the assembly language is subject to change.

We suggest two algorithms for studying the GCPs. Both use techniques influ-
enced by symbolic model checking [3] to enumerate all paths that can have dif-
ferent gas consumption. The first, Gas Consumption Path Enumeration, col-
lects all constraints that affect the gas consumption, evaluates all combina-
tions of them one-by-one, and simulates those that are satisfiable. The second,
Function-Oriented Gas Consumption Path Enumeration constructs GCPs for
each function as explicit cost-equivalence classes, which are reused through vari-
able renaming to recursively construct more cost-equivalence classes for calling
functions. We outline in addition how both algorithms can be parallelized. Both
algorithms are capable of computing the exact worst-case behaviour assuming
that the underlying bounded model checking formula exactly describes the con-
tract behaviour and that the EVM and Solidity gas consumption paths have
one-to-one correspondence.

Related Work. The solc compiler for the Solidity language provides a gas con-
sumption estimate as part of the compilation. However, the estimator assumes
concrete values for transaction parameters and the Ethereum state, therefore
merely providing a lower bound for the worst-case gas consumption.

The tool GASPER [5] analyses Ethereum smart contracts compiled into the
low-level EVM bytecode and is capable of identifying certain constructs that
are costly and can be simplified to equivalent, less costly programs. While some
technologies used in GASPER, such as SMT solvers and symbolic computation,
are similar to ours, we identify two important differences: We propose to work
on the higher-level Solidity language, and our goal is to estimate the worst-case
gas consumption instead of identifying code that can be optimized.

Incorrect gas consumption values for EVM instructions enable DoS attacks
on Ethereum based on frequently executing under-evaluated instructions. In [6],
the authors propose an emulation-based framework to automatically adjust the
gas prices of EVM instructions based on measuring their resource consumptions.
As part of the emulation the approach measures the gas consumption of functions
based on control and data flow, but the emulation is based on random sampling
and therefore is bound to be incomplete for all but the simplest contracts. Our
approach instead guarantees the completeness of the gas consumption measure-
ment through symbolic computation and could therefore be used for improving
the precision of the approach.

Correctness aspects of smart contracts other than gas consumption have been
studied using symbolic methods. For instance Oyente [14] extracts the control
flow graph from the EVM bytecode of a contract, and symbolically executes it
in order to detect some vulnerability patterns, although it is neither sound nor
complete. Zeus [11] is a framework for verification of Solidity smart contracts
using abstract interpretation and symbolic model checking. The tool works by
converting Solidity to LLVM bit code, and verifying reachability properties using
the SeaHorn model checker [9].
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2 Preliminaries

The Ethereum Virtual Machine (EVM) is a distributed-consensus-based com-
puter running in the Ethereum blockchain [4]. EVM executes smart contracts,
programs written in a stack-based byte-code providing a small set of low-level
instructions. Smart contracts can be seen as entities that contain scoped program
functions which operate on contract-wide storage that is persistent over func-
tion calls, and local variables that are only visible inside a function. We define
a function in Ethereum, both in EVM byte-code and in solidity, as f(v) where
f is the name of the function, and v is the set of function’s formal parameters.
When clear from the context, we omit v . The storage, denoted by an array S,
is the set of storage variables that the function may access. Accesses to storage
are denoted by S[i] where i is an integer.

Table 1. Some EVM instruction costs [18]. The second half of the table lists examples
of instructions whose cost depends on the context in which they are executed and the
arguments provided.

Instruction Gas Description

JUMPDEST 1 Indicates a valid jump destination

POP 2 Pop from the stack

PUSHn 3 Push an n-bit item to stack

ADD/SUB 3 Arithmetic Operation

LT/GT/SLT/SGT/EQ 3 Arithmetic comparisons

MLOAD/MSTORE 3 Memory operations

MUL/DIV/MOD 5 Arithmetic Operations

JUMP 8 Unconditional jump to a location at the top of the
stack

JUMPI 10 Conditional jump to a location at the top of the
stack

SLOAD 200 Load from storage

CALL 700 Call a contract transaction with zero-valued
arguments

CALLVAL 9, 000 Call a contract transaction with non-zero valued
arguments

SSTORE 5, 000 Store a zero, or non-zero when previous value is
non-zero

SSTORE 20, 000 Store a non-zero when previous value is zero

SSTORE 15, 000 Added to refund counter when storing a zero and
previous value is non-zero.

While smart contracts correspond to concepts such as instances of Java
classes, they differ in an interesting way in some respects. For instance, once
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deployed in Ethereum, smart contracts become publicly visible and the contract
code cannot be changed. Anybody can interact with EVM through transactions,
i.e., creating smart contracts or calling their functions, by paying a miner that
will carry out the transaction.

The complexity of a transaction is measured in its gas consumption. Each
EVM instruction has an associated gas consumption, a measure that relates
the instruction to its storage or execution cost. See Table 1 for examples of
some costs. In addition to instruction-specific costs, certain instructions and
declarations affect the size of the memory local to a function, called the active
memory [18]. Let a and b be the sizes of the active memory in bytes, respectively,
before and after executing an instruction. The possible change incurs a cost or
a refund defined as

ΔCmem(a, b) = 3 · (a − b) +
⌊

a2

512

⌋
−

⌊
b2

512

⌋
.

To execute a transaction through a miner, a user provides a price he or she is
willing to pay for a unit of gas in a currency called Ether, and the total amount
of Ether that the transaction may consume. Assuming no errors are encountered
while running the transaction and the amount paid for the actual gas consump-
tion is sufficient, the transaction is carried out successfully. If carrying out the
transaction requires more gas than what is provided, the execution is terminated
without a refund.

Due to the memory model of EVM, in some cases the cost of an instruc-
tion depends on arguments of the instruction or the state of the contract when
executing the instruction. For example:

– The instruction SSTORE writes into contract storage. The operation is costly
in particular if a non-zero value is written to a storage location that previ-
ously contained a zero value. The EVM execution model contains a refund
counter which is used for rewarding the user for executing instructions that
make EVM less expensive. This is reflected in the case where SSTORE instruc-
tion writes a zero value to a location that previously held a non-zero value,
resulting in a refund.

– The instruction cost of the instruction pair CALL and CALLVAL depend on
their arguments. The instructions are used to call a transaction in another
contract. While technically two different instructions, they can be interpreted
as a single instruction from the perspective of a higher-level language. In this
case the cost of a transaction depends on whether the values of the arguments
passed in the call are zero.

The cost of a complete transaction in EVM is in part defined by the flow
of control dictated by the EVM state, arguments, and the function code. Due
to argument and environment dependence of instruction costs, the control flow
graph is not sufficient for determining the transaction cost. We generalize the
control flow graph to a gas consumption graph by adding new edges and nodes
based on the instruction argument and environment dependence in a natural
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way, and call paths in the gas consumption graph gas consumption paths (GCP).
All executions of a function that follow the same gas consumption path con-
sume therefore equal amount of gas. Our approach aims at identifying a GCP
that maximizes the gas consumption over all GCPs. Instead of working directly
on EVM bytecode, we base the analysis on the higher-level Solidity language,
arguably the most popular language for writing smart contracts at the time.
Therefore we generalize the concept of GCPs to Solidity GCPs. These are not in
general the same for instance due to low-level optimizations available for EVM.
As a result we do not attempt to compute the gas consumption on the Solidity
code, but instead compute exact EVM gas consumption using concrete execu-
tions that are guaranteed to cover all Solidity GCPs.

We assume that the Solidity GCPs cover also all EVM GCPs. We want to
emphasise this methodological choice as a potential threat to the validity of the
results, and will reflect it in the theorems on correctness in the next sections.

To identify potentially different GCPs we employ bounded-model-checking
techniques [3] together with SMT solvers [2,7,10,16], by operating on the static
single assignment (SSA) level of Solidity where loops have been unwound up to
a given limit. The approach can be made complete by increasing the unwinding
limit since the Ethereum protocol imposes a maximum gas consumption for a
transaction.

3 Gas Consumption Path Enumeration

We present an algorithm for enumerating symbolically Solidity GCPs based on
the unwound SSA representation of smart contracts. While the number of GCPs
is in general exponential in the size of the unwound SSA representation, due to
the symbolic representation the algorithm runs in polynomial space.

We first give the translation of a Solidity contract to an unwound SSA
(USSA) form in Fig. 1 for an example program adapted from [8]. For brevity,
Fig. 1(a) uses a pseudo-code resembling the Solidity language instead of the
actual Solidity language.2 The contract consists of functions f and g, where
g calls f. Function g writes to the storage variable z and uses the solidity
msg.sender.transfer function here abstracted simply as transfer(z). Func-
tion f does operations on its arguments inside a loop, stores the result into a
local variable, and returns the result after the computation.

The search for GCPs is done on the USSA form, given in Fig. 1(b). The form
consists of a sequence of guarded assignments having the form c → b = e(x) or
c → b =s e(x), where c is a conjunction of Boolean-valued expressions, and e(x)
is an operation over variables x. We distinguish between assignments where the
left side of the equality is a variable in memory (=) and a storage location (=s)
since depending on the values these have different costs (see Table 1). Similarly
the costs of some instructions depend on their arguments. For this purpose we
define the function ArgCond that maps an instruction to its cost condition. For

2 For a compilable Solidity contract see Fig. 2.
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int z;

func g(x, y):

if (x >= y)

if (y >= 0)

z = x + y

transfer(z)

z = f(x, y)

func f(a, b):

int i = 0

while (i < a + b):

if (i < a):

i = i + a

else:

i = i + b

return i

x1 ≥ y1 ∧ y1 ≥ 0 → z1 =s x1 + y1; (1)

x1 ≥ y1 → transfer(z1); (2)

true → fa1 = x2; (3)

true → fb1 = y2; (4)

true → fi1 = 0; (5)

(fi1 < fa1 + fb1) ∧ (fi1 < fa1) → fi2 = fi1 + fa1 ; (6)

(fi1 < fa1 + fb1) ∧ (fi1 ≥ fa1) → fi3 = fi1 + fb1 ; (7)

(fi1 < fa1 + fb1) → fi4 = ite((fi1 < fa1), fi2 , fi3); (8)

(fi1 ≥ fa1 + fb1) → fi5 = fi1 ; (9)

true → fi6 = ite((fi1 < fa1 + fb1), fi4 , fi5); (10)

(fi6 < fa1 + fb1) ∧ (fi6 < fa1) → fi7 = fi6 + fa1 ; (11)

(fi6 < fa1 + fb1) ∧ (fi6 ≥ fa1) → fi8 = fi6 + fb1 ; (12)

(fi6 < fa1 + fb1) → fi9 = ite((fi6 < fa1), fi7 , fi8); (13)

(fi6 ≥ fa1 + fb1) → fi10 = fi6 ; (14)

true → fi11 = ite((fi6 ≤ fa1 + fb1), fi9 , fi10); (15)

true → fret1 = fi11 ; (16)

true → z2 =s
fret1 ; (17)

(a) Pseudo-
solidity

(b) USSA approximation (bound = 2)

Fig. 1. Converting a contract into a USSA

instance, ArgCond(a + b) = ∅, and ArgCond(transfer(x)) = {x = 0}. The cost
implied by ΔCmem only depends on the control flow path and therefore requires
no special treatment.

The pseudo-code of the enumeration-based algorithm is given in Algorithm1.
The algorithm takes as input an entry point function f(v) and constructs the
USSA starting from f , in-lining recursively all functions called from f (line 1).
The USSA is then traversed to construct a set of Boolean expressions C by adding
each conjunct from each guard c of the USSA assignment in lines 4–9. Additional
Boolean expressions are added to C for each storage assignment =s (line 7), and
for each instruction whose cost depends on its arguments (line 9). The function
pre(xi) = xi−1 maps a USSA variable xi to its previous instantiation. In case xi

is the first instantiation (i.e., i = 1), pre(xi) is a “fresh” variable not appearing
in the USSA.

In the second phase the algorithm exhaustively queries the SMT encoding of
the USSA form for each Boolean combination of expressions from C and obtains
values for v and S that cover these cases in case of satisfiability. The cost of each
value combination for v and S is then queried by simulating the transaction, and
the highest gas estimate is returned as the exact worst-case bound.
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Input : Entry function f ; unwind limit n
Output: A set of Boolean expressions C

1 Let U = the USSA form starting from f unwound up to n
2 Let C = ∅
3 foreach guarded assignment a ∈ U do
4 Let c1 ∧ . . . ∧ ck be the guard of a

5 C = C ∪ ⋃k
i=1{ci}

6 if a is of form c1 ∧ . . . ∧ ck → y =s e(x) then
7 C = C ∪ {(e(x) = 0) ∧ (pre(y) = 0), (e(x) �= 0) ∧ (pre(y) = 0)}
8 end
9 C = C ∪ ArgCond(e(x))

10 end
11 foreach truth value combination for the elements of C do
12 if C ∧ U is satisfiable then
13 Measure the gas consumption of f on environment corresponding to the

satisfying truth assignment
14 Update the maximum if necessary

15 end

16 end
Algorithm 1. Enumeration-based algorithm to compute GCPs of a function f .

Example 1. Running Algorithm1 on the USSA form on Fig. 1(b) gives

C = {x1 ≥ y1, y1 ≥ 0, (x1 + y1 = 0) ∧ (z0 = 0), (x1 + y1 = 0) ∧ (z0 �= 0), z1 = 0,
fi1 < fa1 + fb1 , fi1 < fa1 , fi6 < fa1 + fb1 , fi6 < fa1 ,
(fret1 = 0) ∧ z1 = 0), (fret1 = 0) ∧ z1 �= 0)},

where the first two constraints x1 ≥ y1 and y1 ≥ 0 and the whole of the second
row constraining the local variables of the functions fij , faj

, fbj come from the
if-conditions; the conjunctive constraints (x1 + y1 = 0) ∧ (z0 = 0), (x1 + y1 =
0) ∧ (z0 �= 0) come from the argument and environment dependency of SSTORE
(see Table 1), and the constraint z1 = 0 comes from the argument dependency
of CALL and CALLVAL, that is, ArgCond(transfer(z1)); and the third row comes
similarly from the argument and environment dependency of SSTORE.

The constraint set C is then provided to an SMT solver together with an
SMT representation of the USSA form. Each combination of truth values for
the constraints in C is queried from the USSA form, resulting in the worst case
211 = 2048 SMT queries. Note that due to the incremental implementation of
SMT solvers in practice the number of queries might be (exponentially) smaller,
depending on the order of the queries. In certain scenarios also the input v of
the function might be known, reducing the number of queries to a fraction of
the worst case.

From the results of the satisfiable queries the algorithm will extract concrete
values for v and S, which are then used for computing exact gas consumptions
for the corresponding gas consumption paths.

The USSA form presented in Fig. 1 does not acknowledge the invariant z ≥
0, and is therefore more permissive than the original contract. Obtaining such
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contract invariants is non-trivial and out of the scope of this paper. To obtain
exact worst-case gas consumption, contract invariants need to be conjoined to
the USSA.

By construction of Algorithm 1 and the definition of GCPs, we immediately
have the following theorem:

Theorem 1. Given a function f , assuming a USSA for f that exactly describes
the contract behaviour, and that there is a one-to-one mapping between the Solid-
ity and the EVM code, Algorithm1 return the worst-case gas consumption of f .

4 Function-Oriented GCP Enumeration

In this section we present an algorithm for Function-Oriented GCP Enumeration
(FGCP), an approach to computing GCPs that prunes locally the immediately
unsatisfiable gas consumption paths. The basic GCP Enumeration presented in
Sect. 3 in-lines every function call and computes GCPs from the encoding of the
whole program. The function-oriented approach computes the paths gradually,
starting from the low-level instructions and refining the set of GCPs discovered
so far in a recursive manner. We expect local pruning of GCPs to be particularly
efficient for contracts that call a given function multiple times, since the approach
is able to reuse previously computed, function-specific GCPs.

To present the function-oriented approach, we change slightly the notation
used in Sect. 3. We introduce cost equivalence classes that extend the notion
of cost condition from a single instruction to a block of instructions and user-
defined functions. The cost equivalence classes capture the conditions under with
a function behaves differently with respect to gas consumption. They correspond
exactly to the GCPs of the function. We use the term function to refer to both
low level instructions, such as arithmetic operations, and user-defined functions,
since cost-equivalence classes do not distinguish between the two. We do not dis-
tinguish between = and =s, but instead introduce a separate function SSTORE
that is used for updating the storage S. Finally, we introduce a separate function-
oriented version of the static single assignment form, called FSSA, that is based
on guarded function calls instead of guarded assignments.

Definition 1 (Environment). Given a function f(v) and storage S, the envi-
ronment of an execution of f is an evaluation υ for v and σ for S.

Given a function f and its environment, the execution of f is deterministic
and results in a new storage state.

Definition 2 (Cost-equivalence class). Given a function f(v) and storage
S, a cost-equivalence class is a formula representing environments ϕ(S, v), such
that the cost of executing f on any environment satisfying ϕ is the same.

Algorithm 2 computes a set of cost-equivalence classes for the input function
f(v). Note that the set of classes computed by the algorithm is not guaranteed
to be the minimal, namely there may be different classes representing executions
with equal costs.
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We define with C the map from function to a set of its cost-equivalence
classes, such that every environment satisfies exactly one formula. Thus, given
a function f(v), the cost equivalence classes of f is the finite set

C[f(v)] = {ϕ1(S, v), . . . , ϕn(S, v)}
such that

∨n
i=1 ϕi is a tautology and for all i �= j, ϕi ∧ ϕj is unsatisfiable.

Initially, all the basic functions are defined in C having their classes inserted
manually following their cost specification. For instance, in Ethereum storing
a value in the storage is performed by the operation SSTORE, which cost
depends on both the value and the storage location [18]. In particular, set-
ting a storage location from zero to a non-zero value costs more than all
the other cases. Thus, according to the EVM gas consumption specifications,
C[SSTORE(l, v)] = {(S[l] = 0 ∧ v �= 0), (S[l] �= 0 ∨ v = 0)}.

Algorithm 2 assumes that C contains all the functions in the input function’s
call tree. Such functions are both basic functions and user defined functions
for each of which a previous execution of the algorithm created its classes. We
assume there is no recursion.

Definition 3 (FSSA: Function-oriented SSA). Given a function f(v) and
its USSA representation, the FSSA representation is a list of guarded function
calls, one for each function call in f and having the form c → g(l �→ vg) where
l ⊇ v are the local USSA variables representing the inlining of the call mapped

Input : A FSSA f(v), the cost-equivalence classes C.
Assume: Every function in f is in C.
Initially: C[f ] ← {	}.

1 Let Trf (S, v) the USSA of f , having local SSA variables l.
2 foreach c → g(l 
→ vg ) in f do
3 with Trf compute
4 π(S, v) := path constraint of the call g(vg ).
5 M(S, v, vg ) := the mapping from v to vg of the call g(vg ).

6 end
7 Let s = ∅
8 foreach ϕ(S, v) in C[f ] do
9 if ¬π ∧ ϕ is SAT then s ← s ∪ {¬π ∧ ϕ};

10 foreach ψ(S, vg ) in C[g] do
11 Let ϕ′(S, v) = π ∧ ϕ ∧ M ∧ ψ
12 if ϕ′ is SAT then
13 s ← s ∪ {ϕ′}
14 end

15 end

16 end
17 C[f ] ← s

18 end

Algorithm 2. The FGCP algorithm to compute the set C[f ] of cost equiva-
lence classes of f .
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to the arguments vg needed for executing g, and c ∈ l is the USSA guard of the
call.

The FSSA provides the necessary information for building the call specific
mapping M on line 5 of Algorithm 2. In particular, M maps the current call
site to the previously computed cost-equivalence classes of the callee. Therefore
M enables building the cost-equivalence classes of a callee function g (from
Definition 2 defined over its variables vg ), in terms of v . A new cost-equivalence
class in terms of the caller variables is built by conjoining M and ψ in line 11,
resulting in a formula defined over S and v . Such operation is always possible
because the USSA provides a formula for computing USSA local variables l
in terms of v . Then, a simple rewriting following each FSSA call l �→ vg will
therefore build the new class in terms of v . An example of FSSA is given in
Fig. 2.

Theorem 2. Given a function f , assuming that the USSA formula Trf used
in Algorithm2 exactly describes the contract behaviours and that the EVM and
Solidity gas consumption paths have one-to-one correspondence, Algorithm3
returns the maximum gas consumption of f .

Theorem 2 ensures that the size of each classes set in C is finite, and that every
possible behaviour is considered. This proves termination and completeness of
the algorithm.

Proof Sketch. The property that every environment satisfies exactly one class in
C is an invariant during the execution of Algorithm2. The property is maintained
inductively. In line 11 the algorithm creates the new classes ϕ′ for f from the
classes ψ of the callee g. Each ϕ′ is mutually exclusive provided that all ψ in C[g]
are mutually exclusive, because every ψ appears in the conjunction. Furthermore,
the disjunction of s is a tautology meaning it is complete, if the disjunction of all
ψ in C[g] is also complete. The models excluded by π being in the conjunction
in line 11, are considered by the class ¬π added to s in line 9. �

Input : A function f(v), the cost-equivalence classes C.
Output : The maximum cost c.

1 Let c = 0
2 foreach ϕ(S, v) in C[f ] do
3 Let σ(S), υ(v) = an environment in ϕ
4 Let c′ the cost of executing f(υ) with storage σ
5 if c′ > c then c ← c′;
6 end
7 return c
Algorithm 3. The algorithm to compute the maximum gas consumption.

Algorithm 3 computes the costs of every cost-equivalence class and returns
the maximum. Definition 2 ensures that every environment satisfied by the same
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equivalence class has the same cost. Thus, on line 3 the SMT solver is queried
for a model of each class ϕ, which is guaranteed to be satisfiable by line 13 of
Algorithm 2. We split the environment in two parts: σ assigning storage loca-
tions’ values, and υ assigning values to the input argument v . Then on line 4 the
function f is executed on the specific environment and the cost of such execution
is returned. If the cost is higher than the current maximum, on line 5 the current
maximum is updated to the new value.

4.1 Parallelization Opportunities

Often the complexity and intrinsic sequentiality of model checking algorithms
prevent parallelization. This results in missing the opportunity to exploit the
modern hardware infrastructures, increasingly directed toward higher degrees of
parallelism. Algorithms 1, 2 and 3 are immediately suitable for parallelization.

Due to the worst-case exponential number of SMT queries that Algorithm1
needs to perform we believe that the part most profiting from parallelization is
the evaluation of truth assignments and simulating the execution on the block
starting at line 11. Since the USSA form U remains the same over the queries,
the parallelization may be enhanced with a clause-sharing scheme similar to [15].

Algorithm 2 can be parallelized by asynchronously executing the building of
all formulas and SMT queries inside the foreach at line 8. Each independent
process can safely execute line 13 because inserting a new formula in the set s
affects neither the future nor running executions. Executing line 16 and proceed-
ing to the next function call can be done as soon as all independent executions
are terminated. Algorithm 3 can be easily parallelized with using the MapReduce
paradigm by defining proper map and reduce procedures. In this particular case
the procedure map maps classes to their costs, while reduce compares the costs
in order to compute the maximum.

5 Example

In this section we provide the example contract C, and we simulate the execution
of Algorithms 2 and 1 on C.

5.1 Function-Oriented GCP Enumeration

The contract in Fig. 2 uses two basic functions, namely ADD and STORE. Following
the Ethereum gas specification we define

C[ADD(x, y, r)] = {�}, and
C[SSTORE(l, v)] = {(S[l] = 0 ∧ v �= 0), (S[l] �= 0 ∨ v = 0)}.

The execution of Algorithm 2 on g(u) and C will result in the classes

C[g(u)] = {M7 ∧ (S[l] = 0 ∧ v �= 0),M7 ∧ (S[l] �= 0 ∨ v = 0)}.
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1 contract C {

2 int a;

3 function f(bool c, int z)

4 {

5 if (c)

6 {

7 g(z);

8 z = z + 1;

9 g(z);

10 }

11 }

12

13 function g(int u)

14 {

15 a = u;

16 }

17 }

1 f(bool c, int z):
2 c → g(z u)
3 c → ADD(z x, 1 y, z1 r)
4 c → g(z1 u)
5

6 g(int u):
7 SSTORE(id(a) l, u v)
8

9 ADD(int x, int y, int r):
10 r = x+ y
11

12 SSTORE(int l, int v):
13 S[l] = v

Fig. 2. Left: an example contract with two functions. Right: the encoding to FSSA.
Lines not representing an implication are only intended to show which function the
following implications refer to. The macro id() returns the storage id of the variable.

where M7(S, u, l, v) := (l = id(a)∧ v = u). Note that M7 describes the mapping
of the specific function call in line 7 of the FSSA in Fig. 2, which is the only
function call in g, having path constraint π := �. The transition relation Trg of
g is

Trg(S, u) := S[id(a)] = u.

After simplifying, the classes of g are

C[g(u)] = {(S[id(a)] = 0 ∧ u �= 0), (S[id(a)] �= 0 ∨ u = 0)}.

We now consider an execution of Algorithm 2 on f(c, z), a function with 3
FSSA guarded calls at lines 2, 3 and 4 of Fig. 2 right, all having π := c. The
USSA transition relation of f is

Trf(S, c, z) := c → (S[id(a)]1 = z ∧ z1 = z + 1 ∧ S[id(a)]2 = z1),

and the mappings for each function call in f are

M2(S, c, z, u) := (u = z),
M3(S, c, z, x, y, r) := (x = z ∧ y = 1 ∧ r = z + 1), and

M4(S, c, z, u) := (u = z + 1).

The resulting classes for f are

C[f(c, z)] = { ¬c,
c ∧ S[id(a)] = 0 ∧ z �= 0 ∧ z �= −1,
c ∧ S[id(a)] = 0 ∧ z = 0,
c ∧ S[id(a)] = 0 ∧ z = −1,
c ∧ S[id(a)] �= 0}.
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Algorithm 2 computes a total of 5 classes. This set is not the minimal because
both classes C[f]3 and C[f]4 cause exactly one write from zero to non-zero,
resulting in the same cost. The minimal set would then be of size 4. However,
by trivially combining all the cases, the total number of combinations is 16. The
proposed algorithm is therefore able to reduce the number of possible classes
consistently with respect to trivial enumeration, keeping the size of C reasonable.

5.2 Symbolical GCP Enumeration

The USSA form for contract C in Fig. 2 is

c1 → gu1
= z1;

c1 → a1 =s gu1
;

c1 → gu2
= z1 + 1;

c1 → a2 =s gu2
;

a3 = ite(c1, a2, a0);

Running Algorithm1 on the USSA gives the set

C = {c1, (a0 = 0) ∧ (gu1
= 0), (a0 �= 0) ∧ (gu1

= 0),
(a1 = 0) ∧ (gu2

= 0), (a1 �= 0) ∧ (gu2
= 0)}.

The size of the set is five, resulting in the worst case 25 = 32 SMT queries.

6 Summary and Future Work

In this paper we have presented a solution to the problem of estimating the
gas consumption for Ethereum smart contracts based on techniques inspired by
bounded model-checking techniques.

We have defined a gas consumption path which extends a program path in a
natural way taking into account the fact that the same operation consumes dif-
ferent amount of gas depending on the values of its arguments and the current
environment. We have presented two different algorithms to identify gas con-
sumption paths of a given function. For each gas consumption path we are able
to obtain, using SMT solver, the state of the environment that forces the exe-
cution to take the given path. Finally, we can use the functionality provided by
EVM to compute the exact gas consumption of the function under the obtained
state of the environment.

The main application is in computing the worst-case gas consumption that
provides useful insights for the developers and may lead to uncovering a flaw
in the design of the smart contract or may provide useful information when
choosing between two alternative implementations. Worst-case gas consumption
is of interest also for a user who wants to call a method of a contract with certain
arguments, but the state of the environment is not known.
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As a next step we plan to implement the presented algorithms on top of
the EVM framework APIs. The implementation will serve us to compare and
evaluate our proposed approach on real-world smart contracts.
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1 Topic and Goal

The industrial track at ISoLA 2018 provided a platform for presenting indus-
trial perspectives on digitalization and for discussing trends and challenges in the
ongoing digital transformation. The track continued two special tracks at ISoLA
conferences focused on the application of learning techniques in software engi-
neering and software products [3], and industrial applications of formal methods
in the context of Industry 4.0 [5]. Topics of interest included but were not limited
to Industry 4.0, industrial applications of formal methods, and applications of
machine-learning in industrial contexts.

Industry 4.0. Since the “Umsetzungsempfehlung für das Zukunftsprojekt
Industrie 4.0” was published in 2012, industries and enterprises are trying
to define and implement their Industry 4.0 and digitalization strategy [4].
The past years are embossed by papers, conferences, speeches, tracks and all
kinds of information. But what is Industry 4.0 and what does that mean for
businesses of tomorrow? The early history teaches us that a lot of money is
spent and a lot is said but the real change is missing! Who will make the race
towards Industry 4.0 and the digitalization? How will companies with long
mechanical background look like in 5–10 years from now?

Formal Methods. The adoption of formal methods in industrial contexts has
a huge potential for reducing the effort that is necessary for developing sys-
tems and for making systems more save and more secure (e.g., model-based
approaches or automated verification techniques). However, the transfer of
results of academic research in many instances is not straightforward: Devel-
oped methods are abstract and generic and have to be concretized and tai-
lored to concrete problems. Is it possible to identify best practices and struc-
tured methods for applying formal methods in practice?

Machine Learning. We are entering the age of learning systems! On the one
hand, we are surrounded by devices that learn from our behavior [1]: house-
hold appliances, smart phones, wearables, cars, etc. On the other hand, man-
made systems are becoming ever more complex, requiring us to learn the
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behavior of these systems: Learning-based testing [2,6,7], e.g., has been pro-
posed as a method for testing the behavior of systems systematically without
models and at a high level of abstraction. Advances in both areas raise the
same questions cornering properties of inferred models: How accurate are the
descriptions that can be obtained of some behavior? and: How can we reason
about and assure the safety of such systems?

The industrial track aimed at bringing together practitioners and researchers
to explore the practical impact and challenges associated with the trends
sketched above.

2 Contributions

The track featured three contributions with accompanying papers and two
invited talks. Contributions focused on Industry 4.0, automated synthesis of
workflows and factory layouts. The invited talks reported on applications of
machine-learning techniques in automotive systems.

The first contribution “GOLD: Global Organization aLignment and Decision
- Towards the Hierarchical Integration of Heterogeneous Business Models” by
Barbara Steffen and Steve Bosselmann [9] (in this volume) presents a multi-
perspective framework for supporting organizations in analyzing their business
strategy in the context of Industry 4.0 at multiple levels and discusses technolog-
ical requirements as well as challenges for the development of modeling tools that
support hierarchical integration of analyses and models, allowing to converge on
an organization-wide aligned business strategy.

The second contribution “Automatic composition of rough solution possibili-
ties in the target planning of factory planning projects by means of combinatory
logic” by Jan Winkels, Julian Graefenstein, Tristan Schäfer, David Scholz, Jakob
Rehof, and Michael Henke [10] (in this volume) presents an automated approach
for generating meaningful alternative factory floor plans at an early stage of the
planning process. The method enables an efficient planning process in terms of
time and cost: With the help of a constraint-based variant compilation on the
basis of previously defined target and frame parameters as well as information
on the factory system, various possible solution variants for target planning are
generated through combinatory synthesis. A specific use case scenario is used to
evaluate the presented methodology.

The third contribution “A Methodology for Combinatory Process Synthesis:
Process Variability in Clinical Pathways” by Tristan Schäfer, Frederik Möller,
Anja Burmann, Yevgen Pikus, Norbert Weißenberg, Marcus Hintze, and Jakob
Rehof [8] (in this volume) develops a structured method for the industrial appli-
cation of combinatory process synthesis for the automated generation of work-
flows. The presented approach is based on the Design Science Research princi-
ples. The approach is evaluated in an industrial case study, in which combinatory
process synthesis was used for generating workflows in a hospital.
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Abstract. Combinatory Process Synthesis (CPS) is a special case of software
synthesis that can be used to manage variability by synthetizing target-specific
processes from a repository of components. While conducted CPS research
mainly addresses formal aspects of algorithm engineering, no structured
methodology is available that enables the broader industrial application. This
study addresses this gap and proposes a procedural model for CPS. The presented
research bases on the Design Science Research principles. A case study in the
healthcare sector shows the successful applicability of the elaborated procedure.

Keywords: Combinatory Process Synthesis � Clinical pathways
Business process modeling � Design Science Research � Variability modeling

1 Introduction

Combinatory Process Synthesis (CPS) as introduced by Bessai et al. proved to be able
to synthesize variable processes based on a domain-specific repository of components
[1]. It uses a type theoretical foundation to determine valid compositions of compo-
nents and generates business processes according to a target type expression.

Its transfer to unexploited domains requires an intelligent repository design and is
hitherto not accessible for a general application initiated by a specific need arising from
potential users. Domain-independent and beneficial utilization of CPS thus requires a
structured conceptual framework to guide potential users through the domain transfer.
Within this work, the authors suggest such an artifact. The Design Science Research
Methodology (DSRM) offers a procedural model for deriving such a conceptual
method [2] and is thus followed in this work. We furthermore identify the specific need
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for a powerful process-modeling tool within a variability inherent application domain,
the healthcare sector. In order to evaluate the proposed framework, we exemplarily
apply it to the identified field.

The introduction of Diagnosis Related Groups (DRGs) as the medium for reim-
bursement in the US healthcare sector in the 1980s marked a paradigm shift. Previously
hierarchically structured organizations transformed towards operational and process-
oriented caretaking. Different challenges emerged in this transformation, such as the
need for reducing incurred costs per case, increasing efficiency, and at the same time
sustaining, standardizing and increasing the quality of their care delivery [3]. This
favored the adaptation of industrial process modeling methods by the healthcare sector
to actively steer all activities orchestrated around the recovery of the patient eco-
nomically, but also to ensure the best possible treatment according to current scientific
evidence (evidence-based medicine EBM) [4].

One inherent characteristic and the major challenge in modeling clinical processes,
while taking into account medical decisions, is process variability. The treatment
process must be adjusted according to patient-specific conditions, needs, and compli-
cations. These variations are either known at admission to hospital, e.g., a pregnant
patient cannot go through radiological diagnostic imaging like a non-pregnant patient.
Variations like complications during surgery or infection with multi-resistant germs in
the clinic may also arise while the process is running. The capability of a process-
modeling notation to respect and illustrate these variations is crucial when aiming for a
high penetration rate in real operation in the hospital. In fact, as also pointed out in [5]
the effective handling of process variability is an essential requirement to further
advance the digitalization in the healthcare sector.

Research in the field of variability modeling involves techniques to express and
resolve variability [6]. The application of CPS in outlining patient-specific process
steps throughout a hospital may improve process transparency, planning capability of
individual therapy and resource utilization and thus the quality of care delivery. In this
paper, we propose a structured methodology for transferring the capabilities of CPS to
a new application domain and conduct CPS in synthesizing treatment paths in hospital
processes. The authors see the focus on a domain-specific use case as a starting point
for further use cases [7]. The results can achieve higher potential for generalizability by
broadening the base of application domains [8]. In the following, the authors present
the usage of Combinatory Process Synthesis (CPS) to generate process variants
according to a configuration in the form of a semantic type. Section 2 introduces
related work necessary for the understanding of clinical processes, current modeling
approaches, Combinatory Process Synthesis and its applicability in the mentioned field.
Following, Sect. 3 outlines the research design. Section 4 develops the procedural
model. Section 5 presents the use case. Lastly, Sect. 6 discusses the results.

2 Related Work

2.1 Business Process Modeling with BPMN 2.0

A business process is a particular instance of a business transaction consisting of a
linked set of activities [9] and represents the transformation of input factors to output
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factors [10]. Transferred to the application domain of hospital processes, business
processes are referred to as clinical pathways. Hospitals derive clinical pathways from
medical guidelines and enrich these with organization-specific information and
requirements, e.g., equipment, documentation, responsibility, time or costs. This
channels latest medical evidence into local structures [11]. Clinical pathways (also
known as critical pathways, care maps or collaborative care pathways) are set up in
multidisciplinary teams and thus sequence all necessary actions, goals and essential
elements surrounding the treatment of a specific pathological condition. The effects of
the implementation of clinical pathways are varying across different studies. For
instance, the meta-analysis by Rotter et al. primarily identified relevant reductions of
in-hospital complications, improved documentation, a reduction of the length of stay as
well as of the hospital costs [12].

The BPMN 2.0 is a declared ISO standard [13] and has been established to be the
leading industry standard for business process modeling [14–16]. It provides an XML
schema and is supported by various execution engines. There is a clear modeling toolkit
for professionals of all areas involved in the development of clinical pathways [17].

Still, BPMN 2.0 poses weaknesses in its applicability towards clinical pathways.
Various additions and extensions, such as adding color schemes for representing the
role of the information [17] or the inclusion of evidence-based medical decision
activities [18], address these issues. However, the modeling process of clinical path-
ways still remains time-consuming and resource-intensive [19].

Due to the significance of the standard, the research in this paper will focus on
business process modeling of clinical pathways with BPMN 2.0. Bessai et al.
demonstrated that the corresponding XML scheme is well suited for use in Combi-
natory Process Synthesis [1].

2.2 Process Synthesis

Several aspects can differentiate approaches in the field of synthesis of process
descriptions and workflow code. A synthesis method is characterized by specification
of the underlying domain, the synthesis strategy and the definition of search space.
Various forms of process synthesis can be found that attend special challenges or tasks.
Planware [20, 21] is a project that uses synthesis to produce domain-specific scheduling
algorithms. The synthesis strategy is a graph-based compositional approach, which
relies on concepts taken from category theory. The specification of the synthesis goal is
formulated using higher-order logic, and the corresponding compositional result
specification can be translated into runnable code. The approach in [22] addresses the
particular problem that specifications usually require a formal expression which is not
comprehensible to end-users. Instead, graphical notation is introduced which describes
the data flow of the process. This initial workflow specification is enriched with further
domain knowledge and translated into temporal logic. The synthesis algorithm even-
tually uses a path search technique to generate process models that comply with the
specification. A technique involving the iterative refinement of the user intent is pro-
posed in [21]. The specification and process model are expressed in temporal logic. The
results of a path search algorithm are transformed into a BPMN-like graph by using
process mining techniques. In [23], temporal business rules are transformed into finite
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state automata that enable for the synthesis of a BPEL service composition by using
ontology-based substitution of service variability points. Ontologies are also used in
[24] to achieve runtime flexibility for software engineering processes in combination
with ADEPT [25, 26]. The specification of the problem space can also be achieved by
definition of a Domain-Specific Model [27].

2.3 Combinatory Process Synthesis CPS

Combinatory Process Synthesis (CPS, [1]) is a synthesis framework for BPMN 2.0
processes. It makes use of the Combinatory Logic Synthesizer (CL)S [28] to perform
the component-based software synthesis by solving the inhabitation problem. A pro-
gram is constructed by identifying an applicative composition of software components
that conform to a target specification. These components (combinators) represent
programs, data or process fragments that are organized in a repository. This repository
(denoted as C) also contains a type assumption for each combinator and is an essential
input for the synthesis algorithm. The synthesis uses a combinator’s type to determine
which elements can be applied to each other and how variability points can be resolved.

The basic idea of the type-based synthesis is following the propositions-as-types
correspondence [29, 30]. Combinators and their type assumptions can be considered as
axioms of a system. In this particular case, the aim of inhabitation is finding applicative
compositions of software components that match the target type specification.

Informally speaking, the inhabitation algorithm is a top-down search strategy. It
analyzes combinators that produce the result when applied to a corresponding argument
list where the required arguments can also be the result of inhabitation. The formal
foundation of (CL)S is the combinatory logic with intersection types, which are
denoted r, s and defined as follows:

r; s ::¼ a aj jx r ! sj jr\ s

The type constants, ranged over by a; b; c; . . .; can be native types (i.e., types of the
underlying programming language) or textual semantic descriptions. x is a unique type
constant that is linked to subtyping. The type variables ða; b; c; . . .Þ are placeholders
that will be replaced with type constants according to a substitution map. Type
expressions further involve functions (!) or intersections (\ ). A combinator with the
function type Integer ! String can be applied to an argument of type Integer and
yields a String. Intersection types, on the other hand, can be used to express feature
vectors. A combinator described by the semantic type ReadValue \ SensorA is
affiliated with a read result from Sensor A.

Figure 1(a) contains a simplified, informal representation of a combinator with two
variability points that are affiliated with the semantic types TypeA and TypeB. Any
suitable combinators with types or subtypes of TypeA resp. TypeB can be inserted by
the inhabitation algorithm. Valid process instances will be constructed as illustrated in
Fig. 1(b). The use of type taxonomies and type variables further supports the com-
prehensive specification of complex combinators. In addition to the type signature,
implementation details can be provided for combinators.
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3 Research Design

This paper presents a procedural model and a related set of deliverables for Combi-
natory Process Synthesis. As the proposed artifact is a typical result of design-oriented
research efforts, i.e., a model, the authors follow the Design Science Research paradigm
[31]. DSR is an increasingly essential and accepted research paradigm in information
systems research. One stream of research focuses on the design and development of
novel IT-artifacts [32]. Peffers et al. propose the Design Science Research Methodol-
ogy (DSRM) outlining a procedural model consisting of six activities (Identify Problem
& Motivation, Define Objectives of a Solution, Design and Development, Demon-
stration, Evaluation, and Communication), which the authors use as a guide [2] (see
Fig. 2).

As of now, there is a lack of structured and well-designed methodology to assist the
execution of CPS. Especially scientists who have no educational background in the-
oretical computer science and mathematical logic need a structured methodology to use
the advantages of combinatorial process synthesis. The scope of this paper covers the
design of a procedural model, i.e., a sequence of activities and corresponding deliv-
erables necessary to conduct CPS. The development of the methodology follows the
principles of Method Engineering, which provides a concept of methods consisting of

Fig. 1. Process combinator, process variants

Fig. 2. The Design Science Research process as proposed by Peffers et al. [2]
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five core-elements, namely Activities, Deliverables, Roles, Techniques, and Meta-
Model [33]. Subsequently, the authors demonstrate the procedural model using a
concrete use case from the domain of clinical pathways. Lastly, the authors evaluate the
procedural model by the performance in the use case [31].

Focusing on one specific case allows for intensive analysis of the artifacts per-
formance in the application domain [34] and assists with the generation of complex
solutions [35]. A generalization of the results requires additional use cases in different
domains [36]. Through their complex nature, clinical pathways provide ample
opportunity for leveraging and demonstrating the benefits of Combinatory Process
Synthesis.

4 A Methodology for Combinatory Process Synthesis

The procedural model for Combinatory Process Synthesis describes the synthesis-
based development lifecycle of process variants and is a result of the Design Science
Research paradigm. It consists of seven development activities that are illustrated in
Fig. 3.

The first step is a thorough analysis of the underlying process. The result of this
task is accurate process documentation that may consist of process requirements,
restrictions, but also textual or model descriptions.

The activities summarized in the specification phase aim to establish a domain
representation that is suitable for the synthesis framework. The definition of semantic
types captures type-based semantic descriptions of process fragments and primarily
refers to type constants. Detailed knowledge of the domain is a requirement for a
precise characterization of process fragments that can also be expressed by forming
comprehensive intersection types.

With the semantic types at hand, the subtyping relation between the types is
established in the form of a type taxonomy. The inhabitation algorithm will consider
subtyping according to the type rule (� ):

C ‘ e : s s� s0

C ‘ e : s0
�ð Þ

The type judgment C ‘ e: s0 (i.e., the term e has the type s0 under the type
assumptions in C) is valid under the premisses C ‘ e : s0 and s� s0. In this case, any
inhabitant of C ‘ ?: s will also be a result of the question C ‘ ?: s0. As a consequence,
the use of a taxonomy allows for generalization and specialization of the semantic
process descriptions.

The definition of the combinators involves the type signature and the imple-
mentation. The algebraic signature determines the result type of the combinator and its
input arguments that will be resolved by the inhabitation algorithm. Only if inhabitants
could be determined for these arguments, the combinator can yield the result type when
used in an applicative composition. The semantic alignment of workflows can be
expressed by the combinator’s implementation, e.g., by using template code for BPMN
2.0 processes. The contained variability points can be substituted with process
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fragments that are determined by inhabitation. While other approaches to express
process variability [37, 38] incorporate the adaption of base processes by deleting,
inserting or modifying process segments, the (CL)S inherently uses substitution in
accordance with combinatory logic.

The execution phase starts with the formulation of the synthesis request. The
main aspect of this task is the definition of the target type. As the process variant is
constructed from this type, it can be considered as the configuration step in the lifecycle
of process variants [39]. Context-awareness can be established by using auxiliary
functions that compute the target type by analyzing the process context. For instance,
the patient record can be analyzed to derive mandatory process features in the form of a
type expression. A selection of relevant repositories should also be considered at this
point in the development process. Some requests only involve certain combinators that
can be summarized in repositories according to their features. For instance, different
repositories could be established for separate departments or families of clinical
pathways. That way, it is possible to effectively limit the number of combinators (i.e.,
the search space) and thus reduce the run-time of the algorithm. For that reason, it is
advised to set up smaller repositories that need to be explicitly involved in the
inhabitation request. It is possible to form the union of repositories which is defined as
follows:

C1 [C2 ¼ fx : rjx : r 2 C1 _ x : r 2 C2g

The execution of the inhabitation algorithm is eventually performed to synthe-
size new process descriptions. The final step of the CPS approach is the evaluation of
the results. In case of a BPMN 2.0 definition, a resulting XML markup can be validated

Fig. 3. Procedural model and corresponding deliverables for CPS
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against the BPMN 2.0 scheme and executed in a BPM system to discover specification
errors. A detailed evaluation should be performed in cooperation with expert users.
This addresses potential misunderstandings between the developer and the expert user
during the analysis task.

5 Process Variability in Clinical Pathways

A general clinical pathway starts with the admission to hospital. After hospitalization,
the patient undergoes inpatient diagnostic, therapy, and stationary aftercare. Outpatient
care and therapy supplied before hospitalization or after discharge from the hospital are
not part of the clinical path itself. Every step on this path contains several sub-
processes, which are required to adapt accordingly to the individual pathology and pre-
existing conditions of the patient. It also includes capabilities and capacity of the care-
supplying hospital. Following, Fig. 4 exemplifies the execution of the methodology
presented in Sect. 4 through the excerpt ‘surgery’ of the clinical pathway ‘spinal
surgery’ provided by Reuter [40]. Next, the predefined phases of the introduced pro-
cedural model in Sect. 4 will be successively executed, and the corresponding phase’s
outcomes will be presented.

The path-excerpt is the result of the domain analysis and displays the clinically
relevant variability points as XOR-gateways. Namely, these are the kind of anesthesia,
surgery and the optional diabetes treatment. The semantic type definition and tax-
onomy development produced the semantic layer outlined in Fig. 5. Minimal invasive
surgical procedures are summarized under the type sp_minimal_invasive. They can be
performed under local anesthesia whereas an open discectomy requires general anes-
thesia. Additionally, the type constants diabetes_proc and nodiabetes_proc were
introduced.

Due to the taxonomy, a synthesis request like C ‘ ?: sp_minimal_invasive \
diabetes_proc is possible and will yield four process variants. A more general synthesis

Fig. 4. Process mapping of the use case (BPMN 2.0)
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request C ‘ ?: diabetes_proc returns a list of any processes that are suitable for diabetes
patients, without selecting a particular surgery method.

Listing 1 shows the Scala implementation of the SpinalSurgeryProc combinator.
The inhabitation algorithm determines valid substitutions for the arguments anesthe-
sia_task and surgery_task. The process fragments are implemented as XML literals and
have the native type scala.xml.Elem. The semantic type value is contained in the trait
SpinalSurgerySemanticType.

@combinator object SpinalSurgeryProc  
 extends SpinalSurgerySemanticType {

def apply(anesthesia_task:Elem, surgery_task:Elem):Elem ={ 
    <process id="spinal_sugery_process "  
     name="Spinal Surgery Process"> 
      <startEvent id="startevent_ssp" name="Start" /> 
      <endEvent id="endevent_ssp" name="End" /> 
      {anesthesia_task} 
      {surgery_task} 
      <sequenceFlow id="flow_start_anesthesiaTask" 
    sourceRef="startevent_ssp"  
    targetRef="anesthesia_task" /> 
      <sequenceFlow id="flow_anesthesiaTask_surgeryTask" 
    sourceRef="anesthesia_task"  
    targetRef="surgery_task" /> 
      <sequenceFlow id="flow_surgeryTask_end" 
    sourceRef="surgery_task" 
    targetRef="endevent_ssp" /> 
    </process> 
  } 
} 

Listing 1. Scala Implementation of the SpinalSurgeryProc Combinator

Figure 6 partly illustrates the definition of combinators. The combinator
SurgeryDiabetes shown in Fig. 6(a) will add a diabetes activity to the surgery sub-
process. The dashed rectangle represents an input parameter named surgery_subpro-
cess. It will be substituted by a term of type a \ nodiabetes_proc which is resolved by
the inhabitation algorithm. The type variable a represents the different surgical kinds.
A representation of the repository structure is shown in Fig. 7.

Every surgical procedure is affiliated with a certain type of anesthesia, which can be
roughly distinguished to be general or local anesthesia. A corresponding type

Fig. 5. Type taxonomy of spinal surgeries
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expression can specify valid compositions of surgery and anesthesia kinds. The
combinator SpinalSurgeryProcess is illustrated in Fig. 6(b) and creates task sequences
according to the following semantic type expression:

ðlocal anesthesia ! sp laser discectomy \ task !
sp laser discectomy\ nodiabetes procÞ \

ðlocal anesthesia ! sp chemonucleolysis\ task !
sp chemonucleolysis\ nodiabetes procÞ \

ðlocal anesthesia ! sp microendoscopic discectomy\ task !
sp microendoscopic discectomy\ nodiabetes procÞ \

ðlocal anesthesia ! sp percutaneous discectomy\ task !
sp percutaneous discectomy\ nodiabetes procÞ \
ðgeneral anesthesia ! sp open discectomy\ task !

sp open discectomy\ nodiabetes procÞ

The expression states that a task described by sp_open_discectomy can only be
composed with a task corresponding to general_anesthesia (note that only the last two
lines concern general_anesthesia). The type expression can be simplified by intro-
ducing a new variable b. It describes the four minimally invasive surgery tasks that can
be aligned with a local_anesthesia task. With the new variable at hand, the following
semantic type can be used instead:

ðlocal anesthesia ! b\ task ! b\ nodiabetes procÞ \
ðgeneral anesthesia ! sp open discectomy\ task !

sp open discectomy\ nodiabetes procÞ

Figure 8 shows two process variants that can be retrieved by the solving the
inhabitation for the questions C ‘ ?: sp_open_discectomy \ diabetes_proc and
C ‘ ? : sp_laser_discectomy \ nodiabetes_proc. Eventually, domain experts posi-
tively validated several produced clinical pathways regarding workflow integrity.
Following our procedural model for CPS, all synthesis results were accepted without
the need for additional iterations of the specification phase.

Fig. 6. Combinators (a) surgery_diabetes and (b) spinal_surgery_process
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6 Discussion Limitations and Conclusion

The conducted procedural model addresses a gap of the practical application of
Combinatory Process Synthesis for enabling process variability. To the best of our
knowledge, the available research focusses on theoretical formalization, algorithmic
implementation and complexity of Combinatory Process Synthesis, but not at the
explicit procedural model for the application in the field. The elaborated procedural
model is a result of the systematic application of the Design Science Research

Fig. 7. Repository structure for spinal surgeries

Fig. 8. Process variants (a) open discectomy with diabetes and (b) laser discectomy

482 T. Schäfer et al.



principles. The model specifies seven steps required for the application of the process
synthesis in a new domain. A case study evaluation in the healthcare sector has pro-
duced the expected clinical pathways. Concretely, successively execution of the pro-
cedural steps yields the case-specific semantic types, taxonomies, and combinators.

The gap between theory and practice could be bridged by a close collaboration of
the research areas type theory, digital business engineering, and healthcare. The
combinators were implemented according to this specification and the synthesis yields
the desired specialized process variants. Thus, the use case can be considered to be
successful.

However, there is still a need for extended tool support to enable the technique to
be applied in an industrial context. The specification task could benefit from diagram
editors for combinators and type definitions. Moreover, the approach should be used
incorporated with a suitable BPM system that allows for dynamic deployment of
synthesis results.

The research presented in this paper requires the consideration of limiting factors.
Using BPMN 2.0 guarantees the utilization of a well-established and domain-
independent standard for process modeling. However, the single-case study deals
explicitly with clinical pathways, which are an object of interest from the healthcare
sector and thus are subject to domain-specific constraints. In future research endeavors,
the presented research might act as a starting point for subsequent case studies in
various application domains. That would enable the construction of a larger scale
multiple case study enabling the empirical analysis of application domain
transferability.

It is worth noting that the synthesis approach offers several advantages regarding
process model quality [41]. Generally, in real-world settings process models tend to
become increasingly large and complex. As a result, it raises maintenance and
development to a new challenging level. However, the process synthesis approach
reduces the required effort for achieving a desired degree of flexibility. Concretely, the
substitutable process variability points enhance the reuse of process fragments and
substitution variables on several granularity levels. The synthesis request constraints
the scope of constructed processes. It reduces the size and complexity of process
models and increases the degree of transparency. For example, a clinical pathway
contains diabetes treatment activity only if a patient has diabetes. The configuration of
process variants can be accomplished by formulating adequate target types. The syn-
thesis approach supports process model evolution because modifications are limited to
the corresponding domain specification. The changes can be propagated to all affected
process variants by reinitiating the synthesis.

Future research will address techniques that enable an automated end-to-end
process synthesis. That involves automated decomposition of business processes,
detection of process variants and workflow synthesis with particular regard to
soundness.

The integration of electronic case records is of particular interest for subsequent
studies. The patient’s data can be used to determine the result type that will be part of
the synthesis request. A user interaction model can help to translate the medical
expert’s intent to type expressions.
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As pointed out in [5], process flexibility is particularly necessary for the healthcare
sector. Thus, the synthesis-based runtime adaption of business processes will be
investigated. The BPMN 2.0 and the corresponding BPM systems do not offer the
features to support the dynamic instantiation of synthesized process fragments fully.
However, the workflow management systems YAWL [42] and ADEPT2 [43] offer
process flexibility support that might be suitable for a late binding approach based on
combinatory process synthesis. The use case discussed in this paper could be extended
to show the applicability of this approach. It should be possible to generate valid
process instances according to the process context (e.g. patient records) and thus allow
for synthesis-based process adaptions at runtime.

Another major research aspect could be the enhancement of CPS with planning
capabilities. As an initial approach, time-dependent repositories could serve as an
indicator for contemporary ressource availability. For instance, the contained combi-
nators can represent medical staff or equipment. These ressources are not taken into
account in the process synthesis when the corresponding combinators are removed
from the repository. Purging and allocating of ressource combinators could be auto-
matically performed by the synthesis framework in cooperation with the corresponding
BPM system upon instantiation or termination of tasks or process instances.

Acknowledgment. The research project presented in this paper stems from the Center of
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Abstract. Increasing competition, stronger customer focus, shorter product
lifecycles and accelerated technological developments imply that companies are
faced with the challenge of adapting their own production to the circumstances
at ever shorter intervals. The factory planning project is becoming increasingly
complex, but there is less and less time available for adaptation. Particularly in
the initial planning phase, targets are defined without reliable planning infor-
mation for the further course, which have far-reaching consequences for the
outcome of a successful planning. This paper shows a possibility to generate
meaningful solution alternatives at an early stage of the target planning in order
to enable an efficient planning process in terms of time and costs. With the help
of a constraint-based variant compilation on the basis of previously defined
target and frame parameters as well as existing information on the current
factory system, various possible solution variants for target planning are to be
created. A specific use case scenario was used to develop and test the presented
methodology. By comparing combinations of the most diverse possible solu-
tions, the use of a combinatory logic approach enables the first rough and
plausible solution variants to be generated automatically, on the basis of which
the detailed planning process for achieving the determined solution variant can
be created. This way, planning bottlenecks due to the wrong choice of variants
as well as large time expenditure for the creation of solution variants can be
avoided.

Keywords: Automatic composition � Combinatory logic � Factory planning
Target planning

1 Introduction

When initiating a new factory planning project, it is assumed that the status quo of the
factory system is not suitable for future requirements. Due to changing framework
conditions and influencing factors which directly affect companies, the factory system
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has to be adapted in order to remain competitive. In a first step, it is necessary to
determine which target state has to be achieved. Correspondent with the company’s
goals, project objectives are developed to provide a specific framework under certain
conditions for the future planning project [1].

However, the strategically oriented goals from the management level cannot be
transferred directly to an operative project planning. Figure 1 shows the different levels
of influences and responsibilities which are involved in a factory planning project. Each
level has different topics to deal with which cumulates in specific information relevant
for the following level. For example, a legal guideline might be the restriction to use
different materials because of ecological concerns. These materials were used before by
the company and now have to be replaced with other materials that follow these new
legal guidelines and laws. An example for an objective of the corporate management
might be to address a wider range of wealthier range of customers which accepts a
much higher price for a product that fulfills certain ecological requirements. In order to
follow these objectives of the strategic management in combination with the legal
guidelines that have to be followed, the operational management, the level of “Solution
variants”, uses these cumulated information formulated by every preceding level to
consider different solution variants. The last level is responsible for generating a
planning process workflow based on the solution variants worked out before which
transfers the chosen variant in specific tasks.

An intermediate stage is required in which the management compares the corre-
sponding goals with the strategic corporate goals and defines specific objectives for the
planning project in cooperation with the project management [2].

The target planning phase is intended for this purpose in the context of several
factory planning procedures [3–5]. Within this first planning phase, individual planning
scenarios are worked out which can fulfill the respective objectives and other frame-
work conditions. However, the task of target planning is not responsible for developing
implementation measures for the solution variants. These implementation measures are
considered by the factory planning procedures to be developed in the following, rather
operationally shaped planning phases [2, 5].

It is a requirement of the target planning to consider possible developments and
future scenarios in order to develop suitable solution variants [6]. However, such
solution variants are initially developed on a very rough basis. They are elaborated with
the help of creative methods such as brainstorming or scenario techniques and are
based on fuzzy information and knowledge [5, 6]. On the one hand, this is necessary in
order to start the development of implementation measures and the general planning
process as soon as possible in order to be able to begin with the implementation of the
adaptation as quickly as possible. On the other hand, at this early stage a detailed
elaboration of the problem definition is not possible due to missing or insufficient and,
as already mentioned, fuzzy information [7]. This fast and less detailed and therefore
very vague procedure brings along the danger of ending up in a planning dead-end and
thus inefficiently working on the whole planning project [8].

If the percentages of cost responsibility of the respective planning phases are
considered in a classical factory planning procedure (see Fig. 2), it becomes apparent
that the target planning phase occupies half of the total financial volume. This means
that decisions made in the target planning phase have a strong influence on the financial
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dimension of the whole planning project. As mentioned before there are several factory
planning procedures which consider the target or goal planning as a very first step of
the whole planning procedure. In this early phase, however, decisions can be adjusted
to avoid possible financial damage, which could occur later in the planning process.
The decisions of the target planning thus have a significant influence on the successful
completion of the project, as it lays the foundation for further procedures.

The objective of the target planning is to develop suitable rough solution variants
based on different framework conditions and performance targets for the factory sys-
tem. These variants are to serve as a guideline and orientation for successful planning.
They specify a planning direction with corresponding tasks, which are further detailed
in the following planning steps and phases. This first planning phase lays the foun-
dation for the ongoing planning project and is a necessary basis for further decisions
made in the following planning phases. Classical planning procedures in factory
planning follow the principle of rough approximations to fixed specifications and also
make it clear that the results of target planning are on a low level of detail [3, 5, 11].
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In order to achieve the objectives of the target planning, specific topics are
addressed and worked out. First, a definition of the problem for the present planning
project must be elaborated, on which the subsequent planning tasks can refer to. In
addition, the framework conditions for the project must be clarified. These include not
only legal requirements, but also requirements that are in line with corporate man-
agement requirements, such as the planning period, the budget for planning or available
human resources. The persons involved in the planning team are decisive, as they
provide a certain solution space for the development of alternative solution variants
based on their individual knowledge and background. This can result in a restricted
number of variants because of their individual creativity and knowledge.

Based on the objectives set by the company’s management and the identified
framework conditions, options of action for formulating solution variants can now be
developed. Options for action represent individual aspects of a solution variant, which
result as a combination in a possible scenario for achieving the defined targets. The
solution variant created by the project team and then agreed on by the management is
the aforementioned intermediate stage between the strategic and operative level and the
basis for the more detailed planning in the following planning phases (see Fig. 3). An
example of a solution variant could be to increase the output of the production system
by changing the existing layout. Therefore the layout has to be changed in a way that
several segments have to be rearranged because of additional machines and the shift
schedule might be necessary to reconsider etc. The details concerning in which way the
goals and tasks will be achieved and processed and how to develop the necessary
information will be part of the following phases.

Figure 3 shows on the left side the classic approach of formulating and considering
several solution variants which then results in evaluating and choosing a specific
variant which seems to be the best possible option for the planning project. As men-
tioned before several information and framework conditions are considered to derive

Fig. 2. Cost responsibility in factory planning projects [3, 9–11]
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options of actions. These options of action will then be combined to form individual
solution variants based on the creativity and knowledge of the participating project
members. There is a vast number of possible variants that can be formed out of the
options for action, which cannot be handled in its entirety by some participants on their
own. Because of the huge variety of possible combination of options, it might be too
complex to formulate every existing solution for the specific project by hand. The
process of combining several options for action to a specific solution variant is very
hands-on and therefore the variants have a high risk of creating mistakes and future
problems in the ongoing planning process.

To optimize this process of formulating solution variants and in combination with
that to reduce the risk of failure and possible, high costly problems for the whole
planning project the planning phase of target planning needs to be reconsidered in the
way this phase is handled. Therefore, the method of combinatory logic will be used to
accelerate the generation of high quality and reliably working solution variants, which
is illustrated on the right side of Fig. 3. This paper will show the benefits of a fast,
reliable and automated generation of solution variants with the help of combinatory
logic based on a specific use case. With the help of combinatory logic, it will be
possible to reduce influences of individual creativity and knowledge of all participants
in order to reduce the possible problems that come with these factors. This will also
improve the following planning process as it points out specific intermediate planning
tasks, which can be used to generate an optimized planning process workflow for the
whole project. Section 2 summarizes related work for the research fields factory
planning and software synthesis. The synthesis is performed by making use of the
Combinatory Logic Synthesizer (CL)S that is outlined in Sect. 3. These preliminaries

Fig. 3. Classic and new approach for generating solution variants [10]
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are followed by a description of the use case, selected implementation details and a
discussion of the results.

2 Related Work

Little attention has been paid so far to the research field of target planning as part of the
wider field of factory planning [6, 12]. There are only few approaches to optimize the
phase of target planning and therefore the development of rough solution variants.
Approaches that are more specific can be found in the field of general corporate and
strategic planning. Some recent works describe the problems of target planning within
the context of factory planning and present approaches for a suitable solution space
management along the factory planning process, as well as the scenario analysis in the
target planning and the maturity level management of factory planning itself [6, 8, 13].
However, only a few other approaches were developed which specifically address the
target planning as part of the factory planning and therefore try to improve and opti-
mize this planning phase.

The phase of goal definition and variant formation represents a small part of the
whole factory planning process and does not receive the necessary attention as the
percentage of cost responsibility suggests (see Fig. 2). Within the scope of corporate
and strategic planning there are more specific approaches which clarify the classifi-
cation of the target planning of a factory planning project as a link between strategic
corporate planning and the operative implementation of the planning project [4, 14,
15]. In addition, it becomes clear that creativity techniques such as the already men-
tioned scenario technique, SWOT analysis, brainstorming and cognitive methods are
being used to an increasing extent for the development of solution variants [16–19]. It
also emerges from the strategic planning that the focus of academic research is on the
interaction of the responsible planners with adjacent disciplines and not on the opti-
mization of developing solution variants as a main aspect [19, 20]. New approaches for
the automatically supported development of solution variants are not in focus.
Approaches for the automated compilation of planning tasks within the scope of factory
planning have already been shown, but not yet specifically transferred to the field of
target planning [21]. In the area of software engineering, however, there are quite a
number of approaches that also use the combinatory logic approach like it is shown in
this paper, but not with a specific application reference to the field of factory planning.

There are various approaches to the problem of software synthesis that can be
distinguished by Search Space, User Intent and Search Technique. These aspects form
the dimensions in program synthesis [22, 23].

The program to be synthesized contains domain relevant code. Thus, the dimension
of search space is strongly connected to the research field of domain modeling.
Accordingly, the specification of the search space can be achieved by using a Domain-
Specific Model [24]. The development of these models is usually supported by domain
specific modeling tools. The additional design effort for these tools can be compensated
by the CINCO meta modeling framework [25–27]. Its applicability has been shown by
the development of DIME [28]. The user intent is a formulation of the desired program.
Common formalisms to express its properties are temporal logic [29–31], first-order
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logic [32] or higher-order logic [33]. Moreover, synthesis can be performed according
to a set of input/output examples [34, 35]. The search technique determines how the
synthesis algorithm is looking for the target program within the search space. There are
several approaches that incorporate constraint solving [36], the use of semantic rea-
soners (i.e. a graph-based search technique) [37] or neural networks [38].

Synthesis can be a powerful technique to support planning tasks, yet only a few
studies deal with automated code generation in this domain. The work in [39]
demonstrates the synthesis of domain-specific hierarchical task network (HTN) plan-
ning software. Planware [40, 41] is a system to synthesize algorithms that produce
optimal domain-specific schedules. The synthesis of workflows can also be considered
as a part of planning synthesis. The concept proposed in [29] enables for the iterative
refinement of the domain specification until a suitable process can be generated. In
[37], automated runtime flexibility for software engineering processes is provided by
incorporating a semantic reasoner and ad-hoc changes of process instances featured by
AristaFlow [42]. As opposed to these studies, the approach for target planning pre-
sented in this paper is formally sound and complete. It is particularly well suited to
handle synthesis tasks with an emphasis on features and it produces a list of possible
solutions that can be further analyzed by experts.

The component-based software synthesis is a powerful technique which can for-
malize variability in product lines by making use of feature models. Feature modeling
and Software Product Lines (SPL) [43–45] are closely related topics that represent
individualization and standardization of software. They both contribute to shortening
development life cycles of software products by facilitating the reuse of software while
comprehending a systematic management of software product families. Research
resulted in the programming paradigm feature oriented software development which is
supported by comprehensive development environment [46].

Variability modeling is a well developed research topic in the context of business
process modeling and still receives continued attention. In 2017, an overview to
existing approaches in this field was given in a comprehensive survey by La Rosa, van
der Aalst et al. [47].

3 Combinatory Logic Synthesizer

The Combinatory Logic Synthesizer ((CL)S, [48]) is a framework to compose software
components or data structures according to their type signature. In this paper, (CL)S is
used to form rough solution possibilities for target planning. Thus, its formal foun-
dation will be outlined in this section to provide the reader with an elementary
understanding of the theoretical background.

The framework determines a result term in the form of an applicative composition
in compliance with combinatory logic. Applicative terms are defined as e ::¼ xj e e0ð Þ,
where x ranges over a denumerable set of variables. The type system of (CL)S is based
on intersection types [49].
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Type expressions are denoted r, s and defined as follows:

r; s ::¼ a xjaj jr ! sjr\ s

Type constants are ranged over by a, b, c, … and they can be programming
language types (native types) or textual descriptions (semantic types). The special type
constant x is the root element of the subtyping relation. Type variables are ranged over
by a, b, c, … and they are substituted with type constants according to a substitution
map. This map is part of the domain specification (i.e. not part of type expressions) and
will be used to resolve type variables prior to the computation of an inhabitant.
Additionally, type expressions can contain function types (!) and intersections (\ ).

(CL)S performs the software synthesis by solving the type theoretic problem of
inhabitation. It is often abbreviated as C ‘ ? : s and asks if a term with type s exists
under the type assumptions stated in C. The propositions-as-types correspondence [50,
51] connects the type theory with programs. According to the propositions-as-types
correspondence, a proof term M for the type judgement C ‘ M : s must be a program or
data structure that conforms to the target type s. Thus, solving the inhabitation problem
can be interpreted as type-directed software synthesis.

The synthesis is not building code from scratch but making use of software com-
ponents held in a repository C. The components are also referred to as combinators as
they will be composed in a combinatory way. The repository is a finite set that contains
a type assumption for each combinator: C ¼ x1 : s1ð Þ; . . .; xn : snð Þf gwith xi 6¼ xj for i 6
¼ j where x1; . . .; xn represent combinator names and s1; . . .; sn are the corresponding
type assumptions. During inhabitation, the combinator’s type is used to determine
which elements can be applied to each other in order to satisfy the target type. The
current inhabitation algorithm is proven to be complete and enumerates all inhabitants.

In addition to the type signature, implementation details can be provided for
combinators. They can contain programs, data, data fragments or functions. Moreover,
variability points can be inserted and described with the type expression. The use of
type taxonomies and type variables further supports the comprehensive specification of
complex combinators. An algorithm to decide the inhabitation problem for intersection
types is described in detail in [52].

The component-based synthesis with intersection types can be classified according
to the dimensions in program synthesis [22]. Domain knowledge can be expressed by
the semantic layer and corresponding combinator implementation. The search space is
defined by well-formed applicative compositions of available combinators. The
inhabitation algorithm represents the search strategy and the user intent must be sup-
plied as a target type expression.

(CL)S has been used to synthesize BPMN 2.0 business process descriptions in
interaction with the Combinatory Process Synthesis framework (CPS, [53]), showing
that the synthesis approach is suitable to generate structured data. Recent research puts
the emphasis on language independent code generation using meta code generation
[54]. For this study, the Scala based version of the (CL)S was used1. The underlying

1 The source code of the (CL)S framework is available at https://github.com/combinators/cls-scala.
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formalism extends the Bounded Combinatory Logic (BCL, [52]) by introducing n-ary
type constructors and demanding the use of substitution maps for type variables.
Compared to BCL, this results in higher expressiveness while type variable mappings
require a more precise specification.

4 Specific Industrial Use Case for Testing the Approach

To build a test model and to review the developed code, a real planning scenario of a
company in the manufacturing industry was used as a basis.

The planning impulse was triggered by the company management. Due to a
changing customer structure with correspondingly different products and sales figures,
the production system had to be changed. First, framework conditions and targets were
formulated at the level of corporate management in order to set a direction for the final
design of the planning. The main points were:

– No changes to existing production lines.
– Employees will not be laid off or hired.
– The property or the existing built-up area will not be changed.
– The factory hall is not extended.
– A certain sales figure must be produced with the existing manufacturing equipment.

Further information on these framework conditions and targets were provided in
order to be able to develop rough solution variants according to these specifications.
First, a sales volume could be determined that differed from the previous one. The
demands by the customer of each individual product are to be more volatile than
before, which requires increased flexibility for the new system. Likewise, the changed
product variants result in increased storage requirements in order to be able to cover the
correspondingly greater variety of products.

The goals and general conditions set by the corporate management led to the
decision that the biggest variable that would fulfill the requirements and goals was the
planning of a new logistics concept. The number of employees as well as the existing
structure of the building and production lines should remain unchanged. It was checked
whether the production lines and the respective equipment were technically capable of
manufacturing the new products. As this could be guaranteed, the focus was on
logistics as a variable to be changed. Storage types as well as the conveying means
including the corresponding connections to the respective operating means of the
production lines had to be redesigned. After it was decided that a new rough logistics
concept should be developed, all relevant parameters were identified in order to be able
to meet the targets with the new concept (see Fig. 4). The main parameters were the
capacity of the storage types, the needed space in the layout and the costs of each
logistic element. Based on these parameters three rough solution variants could be
generated, which differed in the financial expenditure along other specifics.

For the algorithm, individual parameters, such as type of storage like Kanban racks
or high rack store, as well as conveying equipment such as classic forklifts or auto-
mated guided vehicles were identified and analyzed. These parameters were subdivided
into small groups with their individual attributes such as cost rates, area requirements or
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capacities, so that these values could be transferred into a form that can be processed by
the algorithm (see Fig. 4). With this breakdown of individual solution elements,
individual options for action could be broken down into many smaller elements. This
should allow a more diverse generation of solution variants without being limited by
the planner and the solution space of his participating personal. In addition, the
respective attributes of each element should allow a more detailed compilation
according to specific criteria such as costs or used space in the factory.

5 Implementation and Experimental Results

In this section, we will use the previously presented use case as a practical framework
for evaluating our approach to automated composition of factory configurations. The
scenario is well suited to illustrate process synthesis because it is well-structured and
contains inherent variability. The inputs for the CL(S) are available as an accompa-
nying download2. It is the aim to use the synthesis algorithm described in Sect. 3 to
automatically show which configuration options can be used for the use case and under
which conditions they can be implemented. In order to be able to map the variability
and the numerous different configuration possibilities in the present scenario, the
scenario was converted into a feature model. Feature models are originally a repre-
sentation of all occurrences of a software product line (SPL). An SPL is a collection (or
family) of related programs that are based on a common software kernel but differ in
features. A “feature” is defined as a “salient or distinguishable user-visible aspect,
quality or characteristic of a software system” [55]. Feature models are visualized
through feature diagrams and used throughout the product line development process.
The model defines the features, their characteristics, as well as their dependencies,
which are reflected in the diagram.

In addition, the models can have other constraints, which can be represented in
additional documentation (tables, etc.). A concrete incarnation of a member of an SPL
is called a feature configuration. A configuration is only allowed if it does not violate
any constraints described in the model. The concept of the software product lines has
been adapted to the present work and its underlying scenario. It will be introduced and
used as a production product line (PPL) at this point. In our scenario, different variants
of individual components of the material flow are considered as features. Different
transport systems for example represent different factory features. Configuration is
allowed if at least one feature is selected from all the required components and global
constraints such as the budget limit are not violated. The scenario model is shown in
Fig. 4.

The model shows the existing variation possibilities. For example, it is possible to
combine different transport systems. Each system has individual characteristics, such as
specific costs, throughput or floor space requirements.

In the next step, the feature model was transformed into combinators for synthesis.
The individual combinators are shown in Fig. 5. The name of the combinator follows

2 https://james.cs.tu-dortmund.de/smjawink/CLS-FactoryConfig.
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the “prefix” + “name of the feature to be selected” structure. Possible prefixes are
“storage-Selector” and “transportSelector” to indicate the corresponding branch of the
Feature Model Tree. The combiner for selecting an AutoStorage system is therefore
called “storage SelectorAutoStore”. In principle, there is a combiner for each entry in
the feature tree whose signature can be filled in by various forms of its child nodes. As
a result the existing combinator “configuration” needs an expression of the transport
and storage selector to be able to be executed. This is equivalent to the entry BA-
Configuration in the Feature Model.

Note the two combinators addTransport and AddStorage, which are intended to
increase the number of transport or storage systems used. For instance, if you want to
use 2 Forklift trucks, the combinator selectTransport (ForkLift) would be executed
twice and then combined with the addStorage combinator to form a transport system.
With this construction, however, there is a problem: Since the constraints are not
checked until after the synthesis algorithm has been completed, it can theoretically
happen that the addStorage combinator could be back-interchanged infinitely, resulting
in an infinite number of solutions. To prevent this, the maximum depth of the resulting
tree grammar in the implementation has been limited.

The inhabitation is executed with a call of the form:

lazy val resultsFromRequests: Results =
Results.add(Gamma.inhabit[Form](‘FactoryConfig
(‘AutoStore)).

This means that the algorithm is asked if it is possible to generate a solution that
meets the required specifications from the given repository C. In the example above,
the use of an AutoStore system is explicitly specified. For the experiment in the present
scenario, no restrictions of this kind were specified in order to enable as many possible
solutions as possible. All other constraints were taken directly from the given scenario
in order to make the solutions applicable to it.

The solution set is then displayed in a web interface where the user can view and
evaluate the solutions. The web interface displaying the solutions of the experimental
run can be seen below.

Fig. 4. Feature model
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In the use case scenario, the following configuration was chosen as the solution: As
a transportation system, an AGV System was selected, the storage system was an
AutoStore rack. As Fig. 6 shows, this solution also appears in the solution set of the
algorithm (solution number 5 of 24 in total). In addition, further alternative configu-
rations can be seen.

These generated solutions differ in terms of various measures, such as the capacity
or the number of employees required per shift. For instance, the usage of a forklift truck
as a transportation appears to be much cheaper, but also offers a smaller amount of
transportation capacity per hour. Which configuration is selected at the end also
depends on how the responsible persons weight the individual parameters and which
personal preferences they have and fits best to given case.

This shows that our approach does not only provide all possible solutions, but also
evaluates them directly with regard to important key figures. This way, the responsible
persons not only directly see which options are available, but can also directly see their
pros and cons and thus make a quick and well-founded decision.

Fig. 5. Combinator repository overview
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6 Conclusion and Outlook

It has been shown that plausible and useful solutions for target planning can be
obtained with our approach. By offering a large number of different solutions and a
large variability of different aspects of the solution, planners can make quick and
reliable decisions based on the generated proposals and thus advance the planning
process. Further, it is possible to support the following more detailed planning process
by giving specific directions based on the chosen solution variant. Therefore the
possible solution space for the whole detailed planning process can also be reduced so
that a more precise planning process can be generated afterwards.

In order to further improve the technology and its benefits, various points of
dependences are conceivable. Of course, the first starting point to consider is to support
more complex decisions and other aspects of the planning process such as the ressource
planning or the layout planning through the procedure. In addition to that, other areas
where planning workflows are needed to manage complex planning projects could be
addressed with the approach shown in this paper. An example would be the man-
agement of the construction of a new hospital building where a great amount of
different information and dependences are interconnected with each other. It is nec-
essary to be able to handle this complex kind of project and our approach would be
beneficial in automatically generating sufficient planning workflows based on our
produced solution variants.

The currently still hard-coded combinator repositories are also to be dynamized in
the future. The development of a parser that automatically generates the combinators
from a domain model is conceivable. In combination with modern domain modeling

Fig. 6. Inhabitants of the experimental run
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tools such as DyWA [25], it would be possible for users without programming
knowledge to design repositories and execute inhabitation requests.

Another starting point is to improve the quality of the solutions offered. By adding
feedback loops and using machine learning methods, the tool aims to gain knowledge of
generated solutionswhichwere considered good andpracticable. In the best case scenario,
it should be able to learn which possible configurations are the best for certain requests.
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Abstract. The so-called fourth industrial revolution (Industry 4.0) is
changing the landscape in the manufacturing industry. Although recog-
nized as an essential factor to preserve competitiveness, organizations are
still figuring out drivers, enablers and barriers as well as suitable business
models to pave the way for innovations in fields such as highly customized
products or exponential technologies. The central challenge for a suc-
cessful adoption of Industry 4.0 is not primarily the required technology,
but the emergence and aggregation of a common view and sound mod-
els focusing on paramount aspects like quality, customer perception and
margins. We argue that available solutions for modeling business strate-
gies fail at providing sufficient guidance for organizations in analyzing
opportunities and driving innovations due to their narrow nature as well
as missing combination and aggregation possibilities. In contrast, we out-
line a multi-perspective framework to support organizations in analyzing
their context at multiple levels and discuss technological requirements as
well as challenges for the development of modeling tools that support
hierarchical integration of analyses and models as well as different per-
spectives to converge on an organization-wide aligned business strategy.

Keywords: Global organization alignment & decision framework
Global organization alignment & decision tool
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1 Introduction

Today SMEs in the manufacturing industry serving the global B-2-B market
while producing in western countries (in the following addressed as SMEs)
are trapped. First, “increased competition due to globalization and therefore
increased commoditization of products” [20] necessitates that SMEs fully satisfy
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the customers’ needs and differentiate themselves from their price-driven compe-
tition. As superior quality and increased productivity measures are not enough
they are forced to find novel ways to the balancing problem of economies of scale
and scope [2]. Second, they cannot handle the steadily increasing complexity of
their products and supply chains due to their customers’ rising demands [9].
Especially, the integral quality constraint i.e., the requirement that the newly
bought equipment must adhere to the existing infrastructure, processes, and
products already in place [21] characterizes most deals in the B-2-B market and
asks for invasive product or machine modifications.

To survive in this complex setting SMEs have to offer single unit customiza-
tions or solutions as standardized or mass customized offers fail to adequately
meet the individual customer expectations [11]. Evanschitzky et al. [8] defined
solutions as “individualized offers for complex customer problems (. . .) whose
components offer an integrative added value by combining products and/or ser-
vices so that the value is more than the sum of its components”. Solutions make
it possible to offer a ‘worry-free’ customizable mix of products and services that
fully satisfy the customer’s specific needs. In this context the supplier is highly
dependent on the customer and enters specific investments prior to the trans-
action. This supplier-side burden due to the exploding diversity of the effective
product portfolio leaves only low profit margins in comparison to the incurred
additional effort [13]. For the suppliers this means handling more product and
machine variations in smaller lot sizes, which significantly decreases the stan-
dardization potential and positive scalability effects. Thus, it is not surprising
that these invasive single piece customizations/solutions typically only benefit
the customer directly, while the supplier faces major cost and effort investments
which can be hardly compensated with the indirectly gained advantages [12].

To stay competitive in the manufacturing industries, e.g., automotive, prod-
uct and plant industry, Industry 4.0 acts as essential enabler to make this diversi-
fication economically worthwhile [2]. This is further confirmed by the observation
that Industry 4.0 is currently moving from a ‘Schrittmacherkonzept’ (pace maker
concept) to a ‘Schlüsselkonzept’ (key concept) [10]. In other words, it advances
from a movement one can invest in to gain competitive advantage to a movement
one has to invest in to prevent suffering e.g. severe competitive disadvantages.

Typical definitions of Industry 4.0 are rather vague, like the following two:
Industry 4.0 is “the comprehensive transformation of the whole sphere of indus-
trial production through the merging of digital technology and the internet with
conventional industry” by Angela Merkel, the German Chancellor [4], and Indus-
try 4.0 is “the introduction of Internet technologies into industry” by Drath and
Horch [6]. Common to both definitions is the underlying implication that the
novel aspect of Industry 4.0 is not so much the technology itself, but rather that
it combines existing technologies in a new way.

Currently, there is no common understanding of the final impact Industry
4.0 will have nor in which directions the organizations must transform. It is pre-
dicted that the Industry 4.0 wave creates “disruptive technologies [. . .] [which]
will enable productivity gains and new business models, and fundamentally alter
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the competitive landscape” [5]. SMEs are confronted with many opportunities
accompanied by challenges and risks, e.g. extensive investments and invasive
changes. However, the biggest risk is to ignore the need for change as it will
eventually wipe them out of the market [3]. Thus, the overwhelmed SMEs have
to find their strategy in the uncertain context surrounding Industry 4.0. Today,
this often leads SMEs to pursue rather incremental adaptations with appar-
ently limited risk, which is itself rather risky: the SMEs may miss out on major
business opportunities that could provide competitors with unfair advantages
and thereby endanger their own market position. Thus, it is business critical for
SMEs to take informed decisions and to establish a winning path that exploits
the Industry 4.0 hype. The difficulty of this task lies in the required alignment
of the mindsets of the disparate stakeholders involved, in particular experts in
manufacturing, business, and IT, to deliver competitive Industry 4.0 business
models.

In addition, especially SMEs as compared to OEMs struggle considerably
with successfully adapting the applications and technologies offered by Industry
4.0 as they miss the resources and manpower to experiment with ideas and
opportunities that go beyond their existing products and processes. This lack
disqualifies them from becoming early adopters, as they cannot risk investing
into potentially failing emerging technologies [9]. Thus, the concrete pressing
question is how to reap the benefits without incurring too large risks.

The successful adoption of Industry 4.0 asks organizations to rethink their
strategy and requires a comprehensive top-down driven corporate transforma-
tion. The top-management will have to set a new direction, translate it into a
vision of the future organization, and guide a consistent and aligned organization-
wide implementation. Here, organizations are missing clear strategic directions,
and a vision for a value-driven business model which has the potential to estab-
lish a competitive advantage. This underlines the demand-pull for a strategic
framework that guides the organizations’ decision-making process to make the
right decisions regarding which Industry 4.0 topic to address and how to stepwise
implement it.

Several frameworks and tools already support business analysis and business
modeling from various individual perspectives. However, to our knowledge none
of such frameworks and tools try to establish a coherent multi-perspective deci-
sion making support, and the corresponding available tools, like the Business
Model Canvas (BMC) [19], hardly provide any sophisticated guidance.

This paper aims at introducing the concept of a multi-perspective, inter-
active framework which shall support organizations in analyzing their context
and provide them with an initial prototypical navigation tool that directs them
through the nontransparent Industry 4.0 landscape along their path to develop-
ing a context specific and fitting organizational strategy. This framework, called
the GOLD Framework for Global Organization aLignment and Decision, aims
at the analysis of an organization’s situation in a top-down fashion, uncovering
several opportunities and strategic directions while ensuring that no relevant
business or technical aspects are neglected or analyzed in a wrong way. The
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motivation for GOLD arose in a case study for which the first prototype was
developed. In this case study we concretized the requirements and tested the
GOLD Framework’s usability and functionality.

2 Case Study

The case organization is a SME with an international footprint offering prod-
ucts/solutions in different markets and industries. The analysis focused on a
niche in the infrastructure monitoring market. This newly addressed market was
chosen as pilot project for the SME’s Industry 4.0 adoption. Throughout our
interviews we heard statements like “the cloud has a major potential, but enter-
ing the market is challenging due to the wind park market’s conservative nature.
No one dares to be the first adopter” as was stated by an Engineering Services
Sales Manager. A member of direction of a scientific association for management
and consulting added “organizations are paralyzed in the decision-making pro-
cess. They identified the need to act, but are afraid of the barriers, potentially
adopting the wrong technology and failing at a successful implementation, doing
more harm than good”. This hesitation is not unsubstantiated as a Software
developer and PhD Student confirmed that “Industry 4.0 offers many possibil-
ities not yet adopted in the industry. But the possibilities come with risks like
increased security challenges”.

Thus, this cautious attitude stands for a widespread general ‘trap’ between
risk and opportunity costs in the generally conservative manufacturing industry.
Here, the organizations prefer the traditional cost-driven approach over a value-
driven approach which inevitably would lead to more radical business model
adaptations. The cost-driven approach aims at ensuring a profit contribution
with the aim to at least cover all incurred costs. It is customary for business
models to get incrementally adapted instead of radically revolutionized. The
cost-driven approach promotes technology-pushes as organizations do not need
to orientate themselves at the environment and customer needs. Thus, this app-
roach feels safe and familiar, explaining why many competitors went for it. How-
ever, this form of Industry 4.0 adoption only buys limited time and does not cover
and satisfy the successful adoption of Industry 4.0 in the long run. To stay sus-
tainably competitive organizations must dare taking the risky step of disruptive
and radical changes to both the business model and internal processes to fully
exploit the potential of the Industry 4.0 transformation.

Unfortunately, the strategic frameworks and models available to managers,
as guidance for their thinking and approach, are merely described concepts. So,
it is not surprising that SMEs feel left alone without proper guidance explain-
ing the SMEs’ traditional approach and stagnation. For example, Porter’s Five
Forces [7] model shows several dependencies and interdependencies explaining
the power relations present in the market. It states that organizations need to be
aware of all the different parties involved to make educated decisions regarding
their bargaining power, to actually understand their role and possibilities, and
eventually to be able to make the right decisions when forming their strategy and
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entering business deals. However, Porter’s model does not provide any guidance
regarding where to get the necessary information from, how to interpret it and
how to adapt the organization’s strategy accordingly. Further, Porter does not
provide any clear guidance regarding how to connect his own different models
(e.g. Porter’s Five Forces, Porter’s Diamond Model and Porter’s Value System)
to a coherent framework ensuring that the organization considers all important
aspects simultaneously. Instead, all these models are rather meant to be thought
stimulators. Sadly, this phenomenon of just hinting at ‘important’ business con-
cepts and aspects without practical guidance applies to most frameworks and
models.

However, a systematic strategy analysis is needed for companies and organi-
zations to survive in today’s fast developing environments.

2.1 Vision of the GOLD Framework

This paper aims at conceptualizing a comprehensive strategy modelling that
comprises the corporate, the business, and the project level together with their
inherent interdependencies, and complemented by an ontology-based tool sup-
port that actively guides its users through the modelling process. Such active
support is particularly important for the proposed multi-level modelling, which
by its own nature requires the cooperation of experts of the different levels and in
order to globally enforce (dynamically introduced) constraints for guaranteeing
overall consistency. The envisioned result is a living multi-level strategy mod-
elling scheme, the GOLD Framework. It incorporates the most important frame-
works and models (e.g. Porter’s Five Forces, the BMC, and the Value Proposition
Canvas) and connects them in a consistent fashion throughout the organization’s
vertical and horizontal levels. It also aggregates all the requirements and con-
straints in a comprehensive ontology to provide just-in time modelling support
and feedback. It will support both the line of command and the direction of
feedback by including cooperative business analyses, aggregating diverse inputs,
and guiding the subsequent decision and realization process. As this integrated
framework is no longer restricted to the modelling level, it can also support the
implementation and operation phases through automatic evaluation and control,
e.g. for just in time target-performance comparisons. Of course, these benefits
require major organizational changes, and a (meta-) modelling effort that com-
prises all the involved levels and that imposes some inter-level standardization.
The subsequent concrete modelling and implementation for new business scenar-
ios should, however, become much easier and much less error prone. Moreover,
if set up adequately, the imposed standardization should not lead to prohibitive
constraints. The goal is to derive from a given holistic and consistent strategy
a system of level-specific, connected strategy modelling schemes which together
cover the intended strategy in a consistent fashion, and therefore form a sound
basis for the subsequent strategy implementation.
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2.2 The GOLD Tool’s Envisioned Functionalities

A first step in the direction of integration and support was made by the Business
Model Developer (BMD), a tool inspired by the BMC that offered several advan-
tageous abilities compared to the plain templates [1]. First, it is active, meaning
that it can suggest specific modelling entities, restricts the occurrence of possible
mistakes and actively supports the process of developing a strategy with recom-
mendations throughout all aspects and levels of the company. Thus, the tool is
able to control the user on basis of rule-based regulation. Second, several kinds
of links between the fields can be programmed with different meanings, this way
drastically increasing its abilities to express dependencies and traceability com-
pared to the original templates. Third, it can be customized to different forms
of templates including the original BMC, adapted versions, a mix of them, or
completely different models.

The goal is to turn strategy modelling from a business-level activity into
a comprehensive process that adequately aligns the required corporate-level,
business-level, and project-level activities throughout the entire process of inno-
vation, from the modelling of the ideas to the eventual operation phase. This
should be additionally guided by consistency rules and just in time target-
performance comparisons.

The envisioned GOLD Tool’s main goal is to be holistic, enforce organization-
wide alignment and automatically share and provide information/knowledge to
allow for educated decisions. It allows the managers in charge to clearly define
different kinds of strategy modelling schemes as well as interdependencies both
between the fields of a given strategy model as well as between fields of different
strategy models. This potential will be further exploited to model the required
(multi-level) relationships for expressing consistency rules, target-performance
comparisons, and other causal relations useful to provide snapshots for continu-
ous auditing.

The envisaged GOLD Tool with its established transparent global perspec-
tive can significantly reduce the risk of misconceptions, communication errors,
and failing assumptions by functioning as an early warning system. It also pro-
vides the required communication infrastructure to solve revealed problems and
support a holistic strategy development.

3 Preliminary Results

In the following, the structure and the use of the GOLD Tool will be explained
along the steps managers would take when using it. The pre-suggested structure
offers guidance of how to start and how to look at the organization and its
environment. It can be adapted if wished, but it ensures that the organization
does not necessarily have to start from scratch.

Figure 1 shows the overview of the initial structure of the GOLD models,
which embodies a rough vertical abstraction hierarchy of six different levels. The
levels depicted from top to bottom describe in diagrams the organization (level
1), the market situation (level 2), an overview of the different industries (level
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3), each separate industry (level 4), the industries’ target segments (level 5), and
their individual target customers (level 6). This hierarchical view is compact yet
precise: it summarizes visually the corporate-, business-, and project level of the
organization and the business line(s) under discussion. It helps managers orien-
tate themselves by providing a general overview of the organization’s different
fields of operation while depicting how the different parts are connected.

Fig. 1. GOLD tool overview with its 6 levels

3.1 GOLD Tool Application to the Case Study

The general structure of the tool and its diagrams will be described in paral-
lel with its application to the case study, which shows (partially) instantiated
diagrams, illustrating its concrete use.

Figure 2 in fact shows the full 6 level model hierarchy for a selection of the
diagrams of the case study. Here we see that at each level the diagrams can
include one or more purely descriptive fields (like in Level 1, Organization),
depicted as light blue components, or also model diagrams, like e.g. the Market
description (Level 2), that includes the Organization’s main Market diagram,
which is the Porter Five Forces diagram of Fig. 3.
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Fig. 2. Case study’s 6 levels of the overview hierarchy in the GOLD tool (Color figure
online)

Level 3 and 4 are in this case kept completely descriptive: they consist of
the Industries of Interest diagram and of a description of each division of this
company, matching their Industry categories (here kept anonymously). These
are the branches for which this company produces its technologies, components,
and systems. Each industry is subdivided in segments as depicted by the Sub-
industry depiction.

Level 5 is instantiated in the case study only for the Monitoring Target Sys-
tems technology, which concerns Sub-industry C of Industry 2 and Sub-industry
A of Industry 3. Both markets are subject to Infrastructure Monitoring, there-
fore there are specific diagrams for the Infrastructure Monitoring A market and
the Infrastructure Monitoring B market.

For each of these markets, there are level 6 refinements concerning the specific
target segments to that market. While Fig. 2 only depicts the Structure Owner
segment for the Infrastructure Monitoring B market, addressing single owners,
it shows three different target customers for the Infrastructure Monitoring A
market: again the Structure Owners, but also Engineering Offices and Prime
Contractor/Subcontractors, for which individual sub-diagrams exist.
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Already this overview level shows how such a hierarchy provides a robust
structure, while simultaneously allowing customization in the choice of what to
refine and how, e.g. by descriptions or with diagrams, and that it encourages
the creation of an ontology capturing the terminology and the relations of the
“things” (divisions, markets, technologies, segments, et cetera) that play a sig-
nificant role in the organization’s business and operations structure.

Levels 1 and 2 concern the corporate-level considerations of the organization,
levels 3 and 4 describe the business-level of interest in the specific analysis, and
levels 5 and 6 detail the project level specifics of the business model under
discussion and the units involved in its realization.

Level 1: Organization
In Level 1, the description of the organization contains information on the

organization’s structure, including e.g. the number and location of its sites, the
sites’ tasks, the employees in charge of the different operations, its product port-
folio and its competitive advantage.

Level 2: Market
On the Market level managers describe the market the organization is oper-

ating in. Initially they may limit themselves to those markets relevant to the cur-
rent analysis (incremental modelling). The high-level market situation is appro-
priately described in its strategic context by means of Porters’ Five Forces dia-
gram. In fact, the Organization’s main market(s) tile connects to such a diagram:
in the GOLD Tool the navigation to sub-models happens by clicking on the blue
tiles that refer to a new connected ‘page’, in this case Fig. 3.

At modelling time, the manager can simply select the Porter Five Forces
tile, drag and drop it onto the canvas at the appropriate level (Level 2 in this
case), and rename it to the specific market analysis of concern. By clicking on
it, the overview of Porter’s Five Forces model appears, showing the empty but
structurally correct and complete model. The organization can use this pre-
defined framework and fill it out at need, as shown in Fig. 3. E.g. for the case
study the model was instantiated by the experts to reflect the situation of the
market it is operating in.

Business-Level: Levels 3 (Industries of Interest) and 4 (Specific Industry
Description).

These levels define the industries the organization is doing business with,
before describing specific target segments and target customers in Levels 5 and
6. The same Porter Five Forces diagram template can be used at the single
industry level to get a more detailed overview of the organization’s different
fields of operation.

Obviously, managers may not be interested in filling out all different tiles by
themselves and therefore it is envisioned to connect the tool with other tools, like
e.g. proper modules of SAP, acting as extensive and important source of organi-
zational and operational information. Further, if the organization has defined
information at one ‘place’, this ‘place’ can be connected via edges to other
‘places’ on different ‘pages’ e.g. depicting different models and frameworks. Thus,
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Fig. 3. Porter’s five forces - market overview and power division (Color figure online)

among the connected ‘places’ alignment and up-to-datedness of information can
be ensured.

In this case study, the company has simply described the areas in which it is
active, basically providing a taxonomy of its broad and detailed areas of activity.
For the specific question under consideration the analysis was concentrated on
Levels 5 and 6, where we find again a wealth of diagrams.

Level 5: Target Segments
At Level 5, the target segments can be described in several different ways,

depending on the kind of analysis and the degree of detail it requires. Here
we see the power of the flexibility of the GOLD Framework coupled with the
rigour of the GOLD Tool: while the framework provides a harness of top-down
hierarchy and a methodology linked to a collection of models and diagrams, the
tool manages the freedom to pick and choose the case-appropriate model for the
specific analysis at hand. In case of need, it is also possible to design new models,
as shown in the case study at this level.

Level 5 is instantiated in the case study only for the Monitoring Target
Systems technology, which concerns Sub-industry C of Industry 2 and Sub-
industry A of Industry 3. Both markets are subject to Infrastructure Monitoring,
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therefore there are specific diagrams for the Infrastructure Monitoring A market
and for the Infrastructure B market.

Fig. 4. Case study’s infrastructure market overview (custom model type)

The Infrastructure Monitoring market description diagram is shown in Fig. 4.
It is a new diagram custom-designed for the case study team. The organization
was interested in a situational depiction of the characteristics of this specific
market together with the potential opportunities for the company, with the aim
of identifying untapped opportunities that may ideally be low hanging fruits or
solvable with the use of more advanced IT. Working in a mind-set and layout
similar to the various canvas models, the structure of this model arose from
the needs discussed with the company experts: its ‘What layer’ (top) depicts
the characteristics of this specific market (fields Situation, Problem and Chal-
lenge), and its ‘How layer’ (bottom) hints at the potential opportunities for the
company (fields Problem Owner and Solution Owner). This new canvas model
proved very effective in summarizing the necessary information, and useful as a
communication basis for discussions with top-management and the engineering
groups. The descriptions also contribute to the ontology of the case study.
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Level 6: Individual Target Customers
For each of the Level 5 markets there are one or more level 6 refinements

concerning the target segments specific to that market. The Infrastructure Mon-
itoring B market consists in this example only of the Structure Owner segment,
and it is not further refined. The Infrastructure Monitoring A market is the
actual market under detailed analysis, and has multiple segments of target cus-
tomers: again the Structure Owners, but also Engineering Offices and Prime
Contractor/Subcontractors, for which there are individual sub-diagrams. Note
that these target customers already appeared as “Solution Owners” in Fig. 4.
The segment Infrastructure Monitoring Companies is not further considered as
it comprises the company itself and its competitors, none of which is a target.

Fig. 5. Overview target customer - infrastructure monitoring a (custom model type)
(Color figure online)

When clicking at the blue tile Structure Owner in Fig. 2, the model depicted
in Fig. 5 pops up. Figure 5 is another self-created diagram. It provides an
overview of the different information the organization possesses on a specific tar-
get customer segment, in this case the Infrastructure owners (Structure Owner).
It connects information from the Value Proposition Canvas [18] with the Lean
Canvas [16] and the BMC, all three materialized in corresponding models.

Figure 6 depicts the Value Proposition Canvas, Fig. 7 shows the correspond-
ing Lean Canvas and Fig. 8 the related BMC. It is suggested to use these three
models in this specific order as the Value Proposition Canvas allows for an in-
depth understanding of the customers, their problems the organization has to
find a fitting solution for, by exploiting its unfair advantage and the specific
jobs-to-be-done and the pains and gains customers are experiencing. This infor-
mation is particularly interesting and crucial for hypothesizing the customers’
main problems, which are the starting point for the Lean Canvas. In the Lean
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Fig. 6. Value proposition canvas - infrastructure monitoring a - market owners (Color
figure online)

Canvas, based on the hypothesized customer problems the organization has to
find a fitting solution, by exploiting its unfair advantage and developing a unique
value proposition leading to a competitive advantage. Once the Lean Canvas is
coherent, it is advised to develop several BMCs.

Fig. 7. Lean canvas - infrastructure monitoring a - market owners (Color figure online)

Most fields of the Lean Canvas and BMC are identical, as Maurya used the
BMC as foundation for the Lean Canvas. Those fields of the BMCs will be in
a future release automatically filled in by the GOLD Tool to ensure that all
models of the framework are consistent. All changes made to ‘things’ that are
identical (by copy or links) will be automatically kept aligned tool-wide. Further,
the GOLD Tool will guide the user in filling out those frameworks correctly by
making concrete suggestions of what to enter, using the ontology harvested in
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previous models of the same organization or division. For example, if managers
already defined the organization’s key partnerships somewhere else, then such
entries are re-proposed everywhere where key partnerships need to be defined.
This reuse automatically prevents inconsistencies, avoids managing duplicates
and ensures by design a higher coherence of the information in the organization’s
ontology.

Fig. 8. Business model canvas - infrastructure monitoring a - market owners

3.2 GOLD Tool Outlook

Further, in future it is envisaged that some models will be connected with exter-
nal tools, e.g. the Lean Canvas and BMC to be connected to cost models in
Excel. This integration may allow changes throughout the business model devel-
oping process in the cost structure and revenue stream to trigger automatic
updates and changes to the financial forecasts of the models. Later, if the orga-
nization starts to implement those models the actual data can be entered, this
way enabling continuous target-performance comparisons.

The blue tiles represent a special way to ensure consistency: they refer directly
to new models and, instantiated or not, they are ‘standards’ which can be used
and re-used on any other page (no reuse is permitted in their own page: there is
no self-inclusion of elements).

For example, we see the blue Cloud tile occur in both Figs. 6 and 7: they
both open the Product Composition diagram in Fig. 9.

This diagram summarizes the product offerings envisioned by the company’s
team as a consequence of their analysis. Based on different cloud platforms,
on different levels of processor power, storage dimensions, versions of a visual-
ization app, and the possible add-on of an analytics engine, different packaged
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products were defined, whereby only the offer on Project-Report-Basis includes
the Analytics Software service.

Fig. 9. Case study’s cloud idea/service overview (Color figure online)

Over time the GOLD Tool will become a quite extensive analysis suite com-
prising all of the organization’s main information and knowledge. A role-based
view will be implemented to prevent overwhelming employees with too much
information and/or them getting access to information they do not possess
the clearance for. This role-based view approach will provide every employee
with access to exactly the information and knowledge needed to perform their
tasks. Additionally, it will be possible to show the information at different levels
of abstraction, with different levels of aggregation in the reporting. The top-
management is mostly just interested in overviews of all the key data of their
different branches. They can explore ‘the deeper level’ of information and knowl-
edge by data drill down, as all data is linked, however they are not distracted
by it in first instance. The middle managers will have as default view a constant
overview of the business units and projects they are responsible for, while the
employees will have direct access to all the ‘raw data’ with which they work
daily.

4 Technical Perspective

The development of a software product to support something as tangible as
business modeling touches many aspects. Modeling guidance by means of prede-
fined components and applicable rules are one thing. Being able to apply model
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analysis and comparison is another crucial factor, particularly in supporting
business model innovation. In this section we focus on the requirements mainly
from a technological perspective towards a simplicity-driven, structured app-
roach to domain-specific business modeling that has been conceived to overcome
the drawbacks of the mere generic solutions currently available.

The current version of the GOLD tool, i.e. the implementation of a soft-
ware product supporting the GOLD framework, is developed with the CINCO
SCCE Meta Tooling Framework [17] that facilitates the development of domain-
specific graphical modeling tools in a rigorous model-driven fashion. Following
the XMDD paradigm (Extreme Model-Driven Design) [15] the development pro-
cess puts the domain expert (typically a non-programmer) in the center of the
development process. Though the GOLD tool is significantly more sophisticated,
its development benefits from the achievements made so far with the develop-
ment of the Business Model Developer [1]. The focus during development lies
on simplicity for the user, as the notion of simplicity has been identified as a
driving paradigm in information system development [14].

In the following, both the already implemented as well as the envisioned
features of the GOLD tool are broken down into specific aspects of tool devel-
opment.

4.1 Domain-Specific Modeling

Models in general consist of components that represent entities from the respec-
tive area of application. In terms of business models these are business-related
entities that make up the terminology of the “things” that play a significant
role in the organization’s business and operations structure. In the following,
these “things” will be referred to as “business items”. The type of these busi-
ness items heavily depends on the actual application domain. As an example,
business models related to hospitals address very different business items com-
pared to models related to car manufacturing. Although both domains might be
served by means of generic components, a domain-specific modeling environment
significantly improves the modeling efficiency by serving the respective modeler
with well-known concepts, i.e. the terminology they are used to. This typically
results in effective support in the creation of meaningful models.

Structure via Taxonomies. Currently, there are virtually no domain-specific
solutions that guide the creation of business models for specific business fields
or application domains. Instead, available tools pursue a mere generic approach
based on unspecific model components. As an example, the actual components
to fill the Business Model Canvas are generic notepads that hold textual labels
manually created by the modeler. We argue that this is not to be excused by
arguments regarding design freedom or boosting creativity. Even the most simple
drawing programs provide shapes and powerful editing tools instead of leaving
the user with only a freehand tool, a blank canvas and some good advice on
how to succeed. We argue that useful components and editing tools rather push
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effectiveness instead of limiting creativity and domain-specific solutions in the
context of business modeling would cause the same positive effect.

In contrast to a generic approach, we facilitate a domain-specific setup of the
modeling environment by means of building a taxonomy of modeling compo-
nents. This taxonomy is achieved by collecting and characterizing the business
items derived from the concepts in the organization’s terminology. It can be
created and maintained in different ways.

– In a distinct customization step typically preceding the actual model design
phase. Different stakeholders with different disciplinary backgrounds might be
involved, spanning domain experts, application experts, business strategists,
etc.

– Manually in the modeling environment by means of extending and maintain-
ing the taxonomy on demand.

– Automatically, by means of collecting items that are used throughout the
different models and presenting them to the modeler in a live-updated view.

The latter option might additionally make use of knowledge discovery tech-
niques and this way may become a very powerful tool, especially if the GOLD
framework grows, e.g. towards a multi-user, multi-organization platform. In such
an environment the automatic discovery of modeling components can enable
reasonable recommendations tailored towards the specific domain to enhance
the overall modeling experience. But even a manually maintained taxonomy of
business items would mean a huge achievement in enhancing organization-wide
knowledge management.

The taxonomy of modeling components, i.e. the outcome of the domain-
specific setup, is going to be referred to as the library of “building blocks”. That
they are well-structured by means of characterization paves the way for many
of the envisaged features of the GOLD framework, as this characterization can
be interpreted as static types from a programming perspective.

Modeling Guidance. Available solutions in the field of business modeling,
both pen-and-paper-based approaches as well as software-based model editors,
lack support for the model design process itself. These tools provide a blank can-
vas to start with but do not convey the required knowledge on how to actually fill
it. Step-by-step guides that put design steps in a meaningful order are outsourced
to theoretical training courses or not to be found at all. This means an initial
hurdle in terms of investment upfront before creating the first model, although
many modeling tools have been conceived with brainstorming and innovation in
mind. However, attending courses might extend the mindset of the participants
but does not add guidance to the modeling tool of choice.

The GOLD tool comes with canvas-specific guidance by means of a wiz-
ard that guides through useful, ordered steps to fill the respective canvas in a
meaningful manner. We have already introduced this feature with the Business
Model Developer on a per-canvas basis. We now envisage to integrate and extend
it by means of supporting hierarchical models, thereby relying on the per-canvas
solution on each respective hierarchy level.
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4.2 Canvas Customization

Besides the tailoring of the modeling environment towards a specific domain by
the creation of building blocks the layout of the canvas is another aspect that
might be domain-specific. Applying our modeling tool in practice and evaluating
the feedback we experienced that business professionals are really interested in
re-designing the canvas they work with. Hence, the further development of the
GOLD tool introduces custom canvases. This not only allows the user to rename
or move specific tiles but also to delete them or invent completely new ones
from scratch. As various communities have created custom canvases for specific
purposes, already, we provide them with explicit tool support for integrating
their ideas to build a comprehensive modeling environment.

Fig. 10. Tile arrangement for a custom canvas (from [1])

Tile Arrangement. The crafting skills that are needed to build a custom
layout are rather little sophisticated as it all comes down to arranging tiles and
giving them a name. Therefore, the model editor supports the creation of various
shapes, reaching from rectangles over circles or ellipses to complex polygonal
shapes (cf. Fig. 12). Figure 10 shows a screenshot of a simple arrangement of
tiles in the creation process of a custom canvas layout.

Building a custom layout is an activity that is not typically part of the
actual business design process but rather takes place in a preceding customiza-
tion phase, along with the initial definition of building blocks to create a domain-
specific setup. It is more like creating the meta model of a specific canvas to be
added to the modeling environment. We might even consider a dedicated role in
the overall design process to lead the customization process. However, as there
is no specific reason for not adding a custom canvas on demand, the GOLD tool
is envisaged to support both possible approaches.
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Fig. 11. Definition of containment rules (from [1])

Templating. Having created and properly arranged the tiles to form a custom
layout, it will be available for the business modelers to utilize it. However, its
creator might be particularly interested in defining what is allowed to be inside
each respective tile of the canvas. To do so, they can make use of the structure
that arises from the library of building blocks that are part of the domain-
specific setup. In order to allow or forbid the usage of specific building blocks,
their type (i.e. the classification within the respective taxonomy) can be linked
to the specific tiles of the canvas that should be constrained. The editor of
the GOLD tool makes this a specifically simple task as the type of building
blocks can be dragged to the canvas and dropped on the respective tile. This
triggers the creation of a node in the tile that represents this exact type. Figure 11
shows a screenshot with an example, in which a collection of building blocks (in
this case companies) is linked to a tile labeled “producer”. The created node is
interpreted as a containment rule, which specifies that all building blocks inside
the referenced collection can be used to fill the respective tile at model design
time.

The creation of custom canvases along with the specification of containment
rules results in the definition of so-called “templates”. This action is typically
not part of the actual business model design, but rather takes place in a pre-
ceding customization phase. At runtime, the model editor of the GOLD tool
is capable of providing a modeling environment based on the template defini-
tion. With this, users are able to create business models based on the respective
template (generally referred to as “instantiation”) and fill the provisioned tiles
with building blocks according to the specified containment rules. These rules
either become part of the general canvas validation, i.e. error and warning mes-
sages are generated in case of rule violation, or they can even be enforced by
means of suppressing the creation of forbidden nodes completely. This supports
the modeler in two ways, through the enforcement of structural correctness of
the models as well as through additional guidance for the modeler by means of
validating the model semantics. The latter helps at avoiding models that, even
though structurally correct, lack soundness or are just not meaningful.
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Fig. 12. Example of a custom canvas (from [1])

Scenario Validation. With the overall templating approach, sophisticated can-
vas layouts can be defined already. Figure 12 shows a layout based on polygonal
shapes. However, in terms of constraining the use of the template in terms of
how it is to be filled, we have just scratched the surface. We recently established
a scenario-based approach with extended containment constraints by means of,
for example, cardinalities as well as attribute value checks. Users can link tem-
plates with so-called “scenarios” that represent a specific instantiation of the
template that is intended to either be enforced or avoided. Scenarios are created
using the items as well as their types from available taxonomies, i.e. the library
of building blocks.

Fig. 13. Scenarios to be enforced or avoided
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Figure 13 shows how easy scenarios are linked with a specific template. The
graphical model of a template contains a dedicated validation area. This is where
those files from the workspace that contain the scenario descriptions are dragged
to in order to link it with the current template. Both types of scenarios, those
to be enforced as well as those to be avoided, are interpreted as rules to be
validated at the runtime of the canvas editor. This means warnings and errors
are generated during the design of models based on the respective template in
case of rule violation.

4.3 Aggregated Views

As the complexity of the GOLD Tool grows, the integration of the support for
different views on the models becomes mandatory. The multi-level approach
of the GOLD Framework naturally involves various stakeholders in the design
process, each of them having different skills, knowledge, roles and responsibilities
within the organization. Some information might only be relevant for a few users,
or even for a single user. We strive to integrate the concept of personalized,
aggregated views to the GOLD Tool, in multiple variations. On the one hand, the
visibility of information and data held by a specific model might be customized
towards specific user roles. On the other hand, information from submodels can
be collected and displayed in the parent model in an aggregated fashion. Parts
of one model might even be filled with information from submodels. However,
the data is to be updated in a live fashion as the models evolve. That way,
information and data is kept accurate and visualized for those users that really
want or need to see it.

The definition of views is facilitated by the rigorously structured approach
of the GOLD Tool, based on determined model layouts filled with well-defined
building blocks. Additionally, the realization of a model interface concept can
help to define exactly which information is provided by a specific type of model
to be read externally and used from, for example, parent models. The final step
is to integrate a role concept in order to leverage role-based views, up to real
personalization.

5 Summary and Outlook

SMEs adopting Industry 4.0 must develop a global organizational strategy
paving the way for successful business models. They are struggling to cou-
ple their ‘manufacturing’ core competences with the enabling IT technology
to a compelling and incontestable unfair advantage that allows for unique value
propositions that successfully address the customer segments they are serving
(illustrated on the left-hand side of Fig. 14). This silo-driven approach must be
bridged internally allowing for a more in-depth customer understanding. The
GOLD Framework and Tool are envisioned to guide and support the organiza-
tion in bridging the gap between the silos of manufacturing, IT and business
(see the GOLD Effect shown at the right-hand side of Fig. 14). GOLD’s global
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approach of analyzing the external and internal world of the organization in
a controlled and ordered manner allows for finding and defining coherent and
consistent strategies, processes and business models. It aims at guiding all the
involved stakeholders via hierarchical collections of analyses from different per-
spectives to converge on an organization-wide aligned business strategy. Only
with this internally and externally driven orientation and alignment will SMEs
be able to master the Industry 4.0 adoption and translate it into a competitive
advantage.

Fig. 14. Envisioned GOLD effect

The impact of the proposed GOLD Framework and Tool has the potential
to go far beyond the mere design phase for competitive business models. In fact,
once the strategic direction is set, the envisaged GOLD Tool with its established
transparent global perspective can significantly reduce the risk of misconcep-
tions, communication errors, and failing assumptions by functioning as an early
warning system e.g. based on systematic target-performance comparisons.

To our knowledge the GOLD approach is the first systematic attempt to go
beyond the known perspective-specific frameworks and tools to establish a coher-
ent, tool-supported multi-perspective decision support system. In a sense, this is
achieved at the meta level, as the GOLD Framework and Tool can be regarded as
orchestrators of already existing frameworks as colorfully illustrated in Chap. 3
Preliminary Results. In fact, adequately linking well-known frameworks allowed
to aggregate global knowledge for the top-management to take informed deci-
sions regarding the organization’s short-term and long-term strategic direction.

The results found in this work clearly show limitations in size, scope and
depth, especially regarding the validation of the GOLD Framework and GOLD
Tool. This paper explored a global flavor of the current situation in the manu-
facturing industry in the context of Industry 4.0. This context could be success-
fully established as a source of knowledge to deduce requirements for the GOLD
Framework and GOLD Tool. This broad perspective inevitably leaves room for
further investigation in three main dimensions:
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– to validate the general need and usability of the framework and tool in small
scale proof-of-concepts (Technology and Industry),

– to elaborate on the technological potential via a running prototype implemen-
tation and user feedback at several organizations (Technology and Scale).

A careful analysis of this potential requires a fully established setup at some
organization and has therefore to wait until an installation at some adequate
early adaptor has reached the required state.
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