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Abstract. In the engineering of heterogeneous systems, there have
always been challenges related to ensuring a common understanding of
the interfaces between the constituent systems.

In these systems, the systematic analysis of the relevant artefacts is
governed by different kinds of models based on different kinds of for-
malisms (e.g., state machine models for software-based controllers, and
differential equations for physical sub-systems). In such a hybrid set-
ting, it makes sense to examine how to combine different kinds of models
in ways that enable a well-founded analysis of the interaction between
these.

Co-simulation has been proposed as a way forward by different stake-
holders in different disciplines. It is a technique to couple multiple simu-
lation tools, so that the interactions with, and within, a coupled system
can be simulated through the cooperation of these tools.

In this paper, we: provide an historical overview of the different facets
of co-simulation; describe examples of industrial applications; identify
the emerging trend and the challenges (both theoretical and practical)
for the future use of this technology.
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1 Introduction

Integration—the interconnection of the components that comprise a system—
is identified as a major source of problems in the concurrent development of
complex engineered systems [62]. This is because each component is developed
with assumptions and/or incomplete knowledge about other components of the
system, which later turn out to be wrong [63].

To tackle these challenges, there is a need for improved development cycles,
with better tools, techniques, and methodologies [65]. While modeling and sim-
ulation has been successfully applied to reduce development costs, it falls short
in fostering more integrated development processes [7]. To see why, note that
a model of the complete system is required for simulation, and consider the
following obstacles:

– Accurately simulating a complete system model might be difficult. For exam-
ple, the transient simulation of digital circuits is difficult because there are
sub-circuits whose dynamics change significantly faster than others [49], forc-
ing the simulation to be run at a prohibitively high level of detail.

– Heterogeneous systems are best modelled with a mix of formalisms [66] or
example, consider a power window system [56], present in the majority of the
vehicles produced today. It includes both software elements (best modelled
with a Statechart like formalism), and physical elements (best modelled with
differential equations based formalism).

– Subsystem models might be costly. In systems that encompass subsystems
produced by external suppliers, the licensing costs required to get access to
models might be too high, due to the Intellectual Property. For example,
consider the exhaust gas recirculation water handling system, reported in
[55], where the dirty water is pumped to a water treatment center (externally
developed) to be purified and reused. As claimed by the authors, having
higher fidelity models of each of the subsystems would allow the engineers to
design better control strategies.

– Models of subsystems might be black boxes. At later stages in the devel-
opment process, prototypes for subsystems may be coupled to models of the
remaining subsystems, to enable global validation of the system. For example,
the validation of the power window controller might be done by simulating
the controller in a computer, and connecting it to a real motorized window
[18], which is considered a black box from the point of view of the controller.
Other black boxes include inductive models of subsystems, produced from
extensive physical experimentation. For example, an anti-lock braking sys-
tem controller might be validated against black box wear and tear models of
the braking pads, to evaluate its performance when the effectiveness of these
subsystems decreases [21].

A prospective concept to address the above challenges, and unleash the full
potential of simulation, is collaborative simulation, also known as co-simulation
[40]. This concept concerns coupling of models created in different formalisms
and makes it possible to simulate the entire system by simulating its constituents
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and exchanging data between them. Thus, the behavior of a coupled system is
computed by the communication of multiple simulation tools, each responsible
for computing the behavior of a constituent subsystem [30,44,51]. Each simula-
tor is broadly defined as a black box capable of exhibiting behaviour, consum-
ing inputs and producing outputs. Examples of simulators include dynamical
systems being integrated by numerical solvers [12], software and its execution
platform [16], dedicated real-time hardware simulators (e.g., [34]), physical test
stands (e.g., [69, Fig. 3]), or human operators (e.g., [13, Fig. 24], [53, Fig. 6]).

Co-simulation foments a more integrated development process by allowing
different teams to observe how their subsystem behaves when coupled to the rest
of the system (full system analysis), while reusing the work made by the other
teams. Furthermore, it improves the relationship between external suppliers and
system integrators, where the system integrators can use virtual surrogates of
the subsystems produced by the suppliers, to test their adequacy. With the
appropriate Intellectual Property protections, these virtual surrogates can even
be provided by the supplier, for increased validity.

In order to run a co-simulation, all that is required is that the participating
simulation tools expose the outputs and consume the inputs, of the allocated
subsystem over simulated time. The same loose requirements that make co-
simulation great to integrate many different simulation tools, also raise difficult
challenges.

In the following sections, we explore those challenges by first providing an
historical overview of co-simulation, then examples of industrial case studies,
and finally the emerging trend.

2 The Facets of Co-simulation: Historical Overview

Co-simulation is not a new concept. Instead, it is the aggregation of multiple
research trends that were sparked by the advances in computer simulation tech-
niques, and the increased demands on this field. In the following paragraphs, we
summarize some of the main milestones that lead to the facets of co-simulation.
Figure 1 situates these in time.

1 2 3 5 6 7 8 9 10 11 10 1312 144

1980s 1990s 2000s 2010s

Fig. 1. Timeline of co-simulation milestones. From 1970s up to 2015.
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2.1 Late 70s and 80s

1 To the best of our knowledge, the first discrete event synchronization algo-
rithms were published in the late seventies [39], around the same time that
Lamport [42] published his seminal paper regarding the ordering of events in
distributed process networks. Discrete event simulators compute the behavior
of a system by isolating the most important events and computing the state
evolution of the system from one event to the next [23]. The state evolution
evolves discontinuously, with each discontinuity being caused by an event. In this
paradigm, a coupled system can be broken down into subsystems that exchange
events, which then are simulated in parallel, each in a separate process. Since
processes run in parallel, and react to incoming events by updating their state,
and potentially sending events, it is important to ensure the correct synchro-
nization of the subsystems, so that no event happening at time ti is processed
by a subsystem which is at time t > ti.

Around the same time, in the continuous simulation domain, new challenges
were being uncovered. The main difference between the continuous and discrete
event simulation domain lies in the fact that the state of a continuous system
evolves continuously over time. Simulators of continuous systems that run in
digital computers cannot compute every point of its state. Instead, they rely in
the smoothness of these systems (coming from physical laws), to approximate
the state evolution at countable points in time [12]. The fundamental tradeoff is:
the closer one wants the time points to be, the more accurate the approximation
is, but the higher the performance cost.

2 In the late seventies and early eighties, as electrical circuits increased
in size, their simulation algorithms were becoming a bottleneck in the develop-
ment process because of the long simulation times. Practitioners noticed that, for
sufficiently large circuits, only a small fraction of the subsystems had actively
changing voltage levels, at any point in time. This led to the development of
simulation techniques that, in a similar way to their discrete event based coun-
terparts, only computed a new state of each subsystem when its outputs had
changed significantly [49]. Additionally, to exploit parallelism and reduce numer-
ical instabilities, the waveform relaxation techniques were introduced. In these,
during a computation interval t → t + H, each subsystem was assigned to a
simulator which approximated its solution in that interval, using whatever sim-
ulation step size was required to keep the approximation error of that subsystem
within tolerance. Then the simulators exchanged the solution trajectories, and
were asked to re-compute the same interval, using the updated input trajectories.

These techniques made possible the simulation of large scale circuits because
they exploited parallel computers, and naturally supported subsystems with dif-
ferent dynamics: systems which changed slowly where more quickly driven to
convergence, and with larger simulation step sizes. Additionally, these techniques
were subject to extensive numerical analysis [47], highlighting their interesting
theoretical properties.
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3 In the late eighties, the release of the Time Warp Operating System repre-
sented the optimistic facet in parallel discrete event simulation. It acknowledged
that the performance of a parallel discrete event simulation could be increased
by allowing the different processes to simulate as fast as they could, and correct-
ing causality violations. The corrections are made by rolling back the processes
to a state that is consistent with the time of the event that caused the violation.

4 The performance of optimistic discrete event synchronization algorithms
was such that it sparked the research into large scale simulations with humans
interacting in realistic environments created by collaborating simulators. Devel-
oped during the 80s, SIMNET was dedicated to military trainings involving
thousands of simulators representing, for instances tanks or helicopters [48]. It
encompasses an architecture and protocol to implement the optimistic synchro-
nization of simulators in a distributed environment, with real-time constraints.
In order to keep a reasonable level of accuracy and realism, one of the inno-
vations is the concept of dead-reckoning models. A dead-reckoning model is a
computationally lightweight version of some other model, whose purpose is to
be used by interested simulators when there is a failure of communication, or
when the synchronization times are far apart.

2.2 90s

5 In the early nineties, coordination languages emerged (e.g., Linda [6], Man-
ifold [4]). These focused on the specification of the interaction between different
parts of the system. According to [25], “Coordination is the process of build-
ing programs by gluing together active pieces”. A system designer defines one or
more coordination model(s) to specify how the system models interact with each
other.

During the same period, the software architecture research field proposed lan-
guages to abstract, structure, and reason about complex systems. One example is
the Architecture Description Languages (ADL) [24]. An ADL description usually
specifies a system in terms of components and interactions among those compo-
nents. Such languages helped (1) to clarify structural and semantics difference
between components and interactions, (2) to reuse and compose architectural
elements, (3) to identify/enforce commonly used patterns (e.g., architectural
styles).

Coordination languages and ADLs have common objectives [52]. They
build/understand/analyse a system based on “components” possibly written in
different languages and connectors (which include the specification of the inter-
action/coordination).

In 1990, United Airlines ordered 34 Boeing 777s, the first aircraft to be devel-
oped with concurrent engineering [37,38]. The design was communicated fully in
digital form, later aptly named a DMU (Digital Mockup Unit [3]), using CAD
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tools to showcase the different views of the system. This central repository of
information served many purposes: (i) every team could consult the specifica-
tions of the subsystems made by any other team; (ii) simulations could be carried
out periodically, to detect problems in the design; (iii) both the assembly and
maintenance phases of the system could affect the design phase, by running
simulations of repairs and assembly.

This milestone represented an increase in the information that is taken into
account for the design of the product. It now did not come only from require-
ments, but also from other stages of the life-cycle of the system: manufacturing,
assembly and maintenance. The milestone also highlights the many different
purposes for which models of systems have to be available, and new kinds of
simulations.

6 As digital circuits became more complex, they comprised microproces-
sors running software. This field spawned the need for hardware/software co-
simulation [57], highlighting the heterogeneity facet. Before using co-simulation,
software developers had to develope their code with little information about the
underlying hardware, leading to painful integration efforts later on. Thanks to
the coupling of circuit emulators and the software execution, they were able to
quickly identify miscommunication errors before building hardware prototypes.

In the field of physical system simulation, researchers realized that there
should be a standardized way of representing physical system models, so that
there could be easily coupled to form complex systems [50]. This was called the
DSBlock (Dynamical System Block) standard [50]. This proposal later inspired
a widely adopted standard for co-simulation: the Functional Mockup Interface
standard. 7 While the composition of DSBlocks still needed a solver, and is
therefore not strictly considered co-simulation, this was a milestone in high-
lighting the need for standardization for continuous system co-simulation, which
was also identified as a research priority [67]. 8 SIMNET evolved into the
DIS (Distributed Interactive Simulation) standard [35], for discrete event based
co-simulations.

As embedded systems were enhanced with communication capabilities,
researchers noticed that the simulation of these distributed systems should not
always be run at the same level of detail. Instead, the designers should be able
to choose the level of detail they wanted for each embedded system: from the
highest level of detail (circuit simulation), to the lowest (software simulation).
This highlights the facet of multi-abstraction co-simulation, and identified the
main issues in coupling simulators that were in different levels of abstraction.
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2.3 2000s

9 The early 2000s was marked by multiple reported applications of co-
simulation being used in industrial case studies [5,43]. These had in common one
facet: two simulators were coupled, each specialized in one domain, in a feedback
loop. 10 For example, in [5] the authors reports on the study of the interaction
between the pantograph (a mechanical structure on top of a train, connecting it
to the electric grid), and a catenary (over hanging cable that transmits electricity
to the train). A flexible body simulator was used to compute the behavior of the

catenary, and a multi-body simulator was used for the pantograph. 12 In the
meantime, the DIS standard, and its protocols, were generalized to non-real time
applications, in what became the HLA (High Level Architecture) standard [1].

11 In order to ensure the correctness of coordinated heterogeneous model
simulations, the Ptolemy and the Modhel’x projects proposed to expose some
information about the behavioral semantics of languages (named Model of
Computation) [9,20]. Then, they defined adaptations so that they could be
co-simulated.

13 In 2008, the MODELISAR project published the FMI (Functional
Mockup Interface) standard [7], whose essential contribution to co-simulation
was the concept of Intellectual Property protection. It was an evolution of the
DSBlock proposal, but recognizing that each subsystem might need its own sim-
ulator. This standard is widely adopted in industry1 [58], where the simulation
of externally supplied components can be costly due to high licensing costs.

Although there was some research about the coordination of black-box phys-
ical system simulators before the FMI Standard was published (e.g., [5,31,41],
and other references in [29]), it does not standardize the synchronization protocol
between simulators. The main reason is that, as in continuous system simulation,
there is no one-fits-all simulation algorithm. This is in contrast to discrete event
simulation, where the implementations of the DIS and HLA standards provide
everything to run the co-simulation.

2.4 2010s

The current decade is marked by several applications of co-simulation across
many domains (see, e.g., [29,59]), the Digital Twin [26] concept, and an effort
to systematically study co-simulation, with the publication of surveys [30,32].

14 The Digital Twin extends the DMU concept not just to the design and
assembly phases of the system, but also to the maintenance. The essential idea
is to use high fidelity models of the system, calibrated from sensory information
collected during its operation, to affect how the system should operate, predict
failures, schedule maintenance, etc.

1 http://fmi-standard.org/.

http://fmi-standard.org/
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3 Applications

3.1 Exhaust Gas Recirculation (MAN Diesel and Turbo)

MAN Diesel & Turbo (MDT) is one of the largest producers of two-stroke com-
bustion engines with distributed embedded control system. Due to new emis-
sions legislation on NOx, the systems that reduce the emission of this gas need
to be improved. Since the development is split between different departments,
using different tools, with limited sharing of models, co-simulation was applied
to maximize reuse of models [55].

The work in [55] describes an exhaust gas recirculation system, and a water
handling system. The purpose is to clean and recirculate exhaust gas to a ship
engine intake manifold. The exhaust gas is cleaned by spraying water into it,
and allowing the mixture to cool down and flow into a receiving tank. Then, the
(dirty) water is pumped to a water treatment center (externally developed) to
be purified and reused.

The initial approach consisted of developing the control system in an in-
house application framework, that simulated both the control system and the
physical models of the ship engine. While the traditional setup allows for simu-
lation, the physical models are often implemented at a lower level of detail than
e.g. Matlab/SimulinkR© models. The co-simulation approach, based on the FMI
standard, coupled the in-house application to MATLAB, so that higher fidelity
physical models could be used. They believe that, had this approach been used
from the start, then a water tank overflow problem could have been discovered
before running the software on an expensive engine test bench.

3.2 Driverless Lawn Mower (Agro Intelligence)

Another application of co-simulation is the development of a steering controller of
an industrial size driverless lawn mower [22]. Besides aiding in the development of
the control and navigation system of the lawn mover, co-simulation was applied
to investigate alternative designs that would otherwise be both costly and time-
consuming to test with physical prototypes.

The co-simulation scenario consisted of three parts: a simulator representing
the vehicle dynamics, a simulator representing the control algorithm and a sim-
ulator to convert values between the two. Additionally, each alternative design
was projected in a 3D animation based on the game engine Unity, that it could
be visually inspected by designers and clients.
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To make sure the co-simulation results were valid and accurate, an initial
prototype was conceived and tested. Afterwards, multiple designs were evaluated
with co-simulation, to find the optimal look-ahead distance and velocity. The
simulation results for multiple look-ahead distances, and fixed velocity, are shown
in Fig. 2.

Fig. 2. Simulated trajectories for look-ahead distance with velocity 1 m/s [54]

4 Emerging Trend and Challenges

4.1 Towards Full Virtualization

Throughout the history of co-simulation, a common trend emerges: a gradual
shift towards the virtualization of not just the design of the system, but also
assembly, operation, and maintenance.

The virtualization of the design of the system has been one of the primary
uses of co-simulation, backup by concurrent engineering processes.

The virtualization of the assembly reflects an increased demand in the infor-
mation that should be taken into account at the design phase, with concepts like
the Digital Mockup Unit.

Complex systems that need interaction with human operators require train-
ing interfaces. Marked by military training simulators, the virtualization of oper-
ation refers to the creation of complex training environments at almost no cost
by leveraging the same co-simulation scenarios used in the design phase. As an
example towards this future, we highlight the design of a motion compensated
crane [14], by ControlLab, where the crane operators are trained using a virtual
reality environment (see Fig. 3).
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Fig. 3. 3D real-time simulation of a motion compensated crane. Taken from [14].

Finally, extending the lifespan of systems, and reducing their downtime
through the virtualization of their maintenance, is becoming a priority. This
means that co-simulation can be combined with advanced sensors to create smart
monitors (Digital Twins) that predict failures.

4.2 Challenges

The historical overview, and main trend identified, can be used to highlight
some of the challenges that researchers and industry will need to overcome in
the upcoming years.

We divide these challenges into four categories: Design Space Exploration
(DSE), X-in-the-Loop Co-simulation, Incremental Testing/Certification (IT/C),
and Education.

Design Space Exploration consists of the systematic analysis and evaluation
of different designs over a parameter space. When the evaluation involves running
a co-simulation, then ensuring that co-simulations can be run quickly, accurately,
and respecting the physical constraints of the system.

Since the results of these simulations are typically not inspected by experts, it
is crucial that these can be trusted. To this end, we highlight the need to ensure
that each configuration of the system is valid, and the need for the co-simulation
to preserve any properties that the configuration of the system satisfies.

Validity refers to whether the composition of subsystem models (induced
by the co-simulation scenario) reflects a physically meaningful coupled system
[17,70]. This property is important because physical system models have many
implicit assumptions, and their combination may violate those assumptions,
purging their predictive value. For example, in [60] the authors ran a ques-
tionnaire through several experts in various domains of physics, asking them to
identify the implicit assumptions in a simple model of a particle moving in a vis-
cous medium. No expert was able to identify all the 29 assumptions, identified
by their combined expertise.
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The evolution of many engineered systems can be summarized by their evo-
lution from one equilibrium to another [19], and it is important that their cor-
responding co-simulations reflect this property. While analyses have been devel-
oped that enable the automated verification of this property for continuous co-
simulations (see [30, Sect. 4.3] and references thereof), there are many open chal-
lenges with the co-simulation of hybrid systems [27], and adaptive co-simulations
[28].

X-in-The-Loop refers to co-simulations that are restricted in time and comput-
ing resources, due to the presence of human operators, animation requirements,
or physical subsystems. In this context, there is a need for simulators which can
provide contracts with timing guarantees on their computation time, based on
the inputs and parameterization.

IT/C consists of the co-simulation activities that are applied as part of con-
current engineering activities, where the models of each subsystem are refined
over time and integrated frequently. We highlight the need for co-simulations
that provide formal guarantees on the accuracy of the behavior that is com-
puted. Since the definition of correct co-simulation is elusive and depends on
the domain of application, each simulator should provide some form of contract.
It should be possible to obtain an abstraction of each simulation units that is
appropriate to the kind of contracts defined. Existing research could be used as
a starting point [8,11,36,46].

Once each simulator provides formal guarantees, then the orchestration algo-
rithm should ensure that the composition of those contracts, and other formal
properties, can be satisfied. As highlighted by works on heterogeneous simula-
tions and more recently in [45], the way to orchestrate the different simulators
can lead to incorrect results. This is especially true when discrete models (with
frequent and natural discontinuities) are in the loop since a minor change in
timings can result in different behavior (let consider for instance a double click
versus two consecutive clicks).

To illustrate, consider a simulator that guarantees that there are no more
than one discontinuity every 10 s. Then, depending on similar contracts satisfied
by other simulators, a similar kind of contract could be satisfied by the co-
simulation.

Education refers to those challenges that are of non-technical nature, but are
nonetheless crucial to attain the full virtualization vision.
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In order for companies to adopt co-simulation there are several concerns that
hinder the theoretical possibilities from being employed in practical setting. One
of these is the protection of intellectual property, which limits the information
that is available for a given simulation unit. It is not an issue in itself, but it is
an issue when considering other desirable properties of co-simulation, e.g. per-
formance. For example, [61] describes two master algorithms, one that allows
parallel computation but is limited in its applicability, and another that is less
limited in applicability but requires a sequential execution. However, the infor-
mation required to choose the optimal master algorithm in this case is not avail-
able. Similarly, [64] concerns precompiling a master algorithm optimised for a
given scenario, but this also requires information, that is not available in a black
box implementation.

Another challenge is related to the current co-simulation standards. This is
described in [10], which puts forth several requirements for hybrid co-simulation,
such as superdense time, and relates them to the FMI standard. In general, time
representation is a very important aspect of co-simulation, and [15] presents
several extensions to FMI. One of these is that in theory several theorems uses
real numbers, which has infinite precision. However, these are often represented
as numbers with finite precision.

Finally, proper integration with existing development processes. Co-
simulations are initiated by different users with different backgrounds. This is
not just about pushing a button and getting results: there is a need to integrate
robust co-simulation frameworks into existing tools, such that each different
kind of user can use the most comfortable tool as a front end to run the co-
simulations, and that user understand what he is doing. To this end, education
and technology transfer are crucial steps.

5 Conclusion

Co-Simulation holds the promise to unleash the full potential of simulation.
However, it is not a new concept. In this paper we present the historical events
that resulted in what is today known as co-simulation. These highlight a trend
towards the virtualization of every interaction with complex systems. Based on
this trend, we identify several exciting challenges that lie ahead.
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