
Towards Automated Testing
of the Internet of Things: Results
Obtained with the TESTAR Tool

Mirella Mart́ınez2, Anna I. Esparcia-Alcázar2, Tanja E. J. Vos1,2(B),
Pekka Aho1, and Joan Fons i Cors2

1 Open University, Heerlen, The Netherlands
{tanja.vos,pekka.aho}@ou.nl

2 Universidad Politecnica de Valencia, Valencia, Spain
{mmartinez,aesparcia,tvos,jjfons}@pros.upv.es

http://www.testar.org

Abstract. As the Internet of Things (IoT) becomes a reality, the need of
ensuring the security and reliability of massively interconnected devices
becomes a pressing necessity. A means of satisfying this need would be
automated testing of IoT devices; however, this presents many difficul-
ties, such as the lack of standards, multitude of manufacturers, restricted
capabilities (such as power), etc.

In this work we present the first results on using TESTAR tool for
automating IoT testing of smart home devices. TESTAR is a tool for
automated testing at the Graphical User Interface (GUI) level of an
application. The tool uses the Accessibility API the obtain information
about the GUI and derive actions that can be executed in test sequences.
Many IoT systems use the REST API to access the resources that com-
pose the system. Consequently, this paper looks into IoT system testing
as a natural field for extending the TESTAR philosophy from GUI (Acce-
sibility) to IoT (REST) APIs.

The results show the potential of TESTAR in this new environment.

Keywords: Automated testing · Internet of Things · IoT

1 Introduction

The number of devices connected to the Internet has experienced a tremendous
growth in the recent past and it is expected to keep growing. Gartner [15] fore-
casts that this number will reach 26 thousand million by 2020. We are already
being witnesses of this, as connected vehicles, homes, cities and health monitors
have made their appearance in the past few years [6].

The popularity of the Internet of Things (IoT) stems from the fact that it
has the potential to change the way we work and live. However, its uptake may
be hindered by the cost of devices, as consumers see them as a non-essential
expense [4]. At the same time, it is necessary to ensure the reliability of the
c© Springer Nature Switzerland AG 2018
T. Margaria and B. Steffen (Eds.): ISoLA 2018, LNCS 11246, pp. 375–385, 2018.
https://doi.org/10.1007/978-3-030-03424-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03424-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-03424-5_25


376 M. Mart́ınez et al.

devices connected as a malfunction could have a very negative impact, even
endangering lives.

Automated testing is already an important part of the software development
cycle, but it becomes crucial in ensuring security and reliability of IoT devices, as
well as reducing development costs. However, testing the IoT presents many chal-
lenges [8] stemming from the distributed functionalities and services, resource
restrictions (such as limitations in memory, processing power, bandwidth and
battery life), and the performance of the network communications.

Control layer

Physical layer

Arduino

Actuators
Button
Light
Ventilator
Alarm
Gradual light
Blinds
Door lock

Sensors
Light
Temperature
Sound
Humidity
Proximity
Vibration
Contact
Movement
Closed Door
Open Door

Raspberry Pi

RESTful
Services

Fig. 1. Smart home architecture

In this paper we present the first results obtained when applying the
TESTAR1 tool [16] for automated testing of various IoT devices, in the context
of a smart home. TESTAR has already been applied successfully to automate

1 www.testar.org.

www.testar.org


TESTAR for Testing the IoT 377

software testing at the graphical user interface (GUI) level in various organisa-
tions [1,3,10,12,16]. This paper will present the results of its application to an
IoT system as a natural field for extending the TESTAR philosophy from GUI
(Accesibility) to IoT (REST) APIs.

The rest of the paper is structured as follows. Section 2 summarises the chal-
lenges and existing work carried out in IoT testing. In Sect. 4 we describe the
TESTAR tool and the modifications that were necessary in order to adapt it to
support IoT testing. Section 6 describes the smart home case study, the proce-
dure carried out for experimentation and the results obtained. Finally, in Sect. 7
we provide conclusions and outline areas for future work.

2 IoT Systems and Testing

Although different definitions for the term IoT can be found, they all have in
common the fact that IoT tries to integrate the physical world with the virtual
world of the Internet. The physical objects that you can interact with are the so-
called “Things” of the IoT, or as defined in [9], the entities of interest. In order to
interact with these physical objects, we need devices that can be either attached
or embedded into the entities (constituting the so-called intelligent things), or
installed into the environment to be monitored. Among these devices we find,
for example, RFID readers, sensors, actuators, embedded computers and even
mobile devices. These devices usually host resources that provide a link to the
entities of interest and, for example, provide information about things (including
performance capabilities).

Embedded systems have been around for a long time. However, tradition-
ally these systems were self-contained and could work in isolation. As the IoT
becomes popular, the need for connected objects “conversing” with each other
to properly function is changing the considerations that need to be taken into
account. As stated in [14], developers must consider ways to streamline device-to-
device (D2D) and device-to-server (D2S) communication, and take into account
the human interaction resulting of our everyday objects being connected to the
Internet.

Therefore, testing IoT devices shares the problems encountered when testing
both embedded and distributed systems. Moreover, the heterogeneity and the
large scale of objects [17] increase the number of challenges when trying to ensure
their security and reliability.

According to OWASP IoT Top Ten (www.owasp.org), insecure cloud inter-
faces need to be considered in order to greatly improve the security of any IoT
product. This involves the assessment of API and cloud-based web interfaces.
Testing an API requires the use of software to send calls and process the response
given by the system. An overview of API testing can be found in [7,13]. In this
work, we present a different approach based on automated scriptless testing.
Through our approach, given a valid specification of the System Under Test
(SUT), the calls made to interact with it will be automatically derived. Thereby
unattended testing will be enabled.

www.owasp.org


378 M. Mart́ınez et al.

3 The Smart Home

The smart home we test in this paper has a series of physical devices (things)
offered on an IoT [5] platform through a set of RESTful [11] services. An overview
of the architecture is illustrated in Fig. 1. The IoT platform has a microcontroller
(from Arduino) to which the different electronic devices that offer capacities to
perceive external situations and to act on the physical world are connected. The
microcontroller is also connected to a reduced low-cost computer (Raspberry
Pi) that functions as a connection gateway for the physical devices and hosts
the IoT accessibility platform based on RESTful services. These services can
be consumed by various customers, including laptops and smartphones, and
anything else that is part of the IoT and wants to communicate with the resources
available in the smart home.

The smart home tested in this paper, being a system for academic purposes
[5], has a basic security mechanism through which only users with valid creden-
tials can modify the status of resources. There are 17 available resources (10
sensors and 7 actuators), and each one of them has its own identifier (ID) and
specific functionalities that determine the ways it can be interacted with. The
resources and their corresponding functionalities available in the smart home
and the interactions that they accept are showed in Table 1.

Table 1. Resources of the smart home with their interactions and functionalities

Resources Functionality Interactions

Light sensor, Temperature sensor
Sound sensor, Humidity sensor
Proximity sensor

Numeric set, read

Vibration sensor, Contact sensor
Movement sensor, Closed door sensor
Door lock, Push button
Fan, Light, Alarm

Bistate on, off
toggle, read
pulseOn, pulseOff

Blinds Movement open, close
stop, stepOpen
stepClose, movePosition
moveNamePosition, up
down, stepUp
stepDown, read

Gradual light Dimmer set%, set0x
setAng, read

The REST API [11] that allows us to access the resources of the Smart
Home, explicitly and consistently use HTTP methods. The following associa-
tion is established between create, read, update and delete (CRUD) and the
corresponding HTTP methods:

– POST is used to create a resource on the server
– GET allows you to obtain an available resource



TESTAR for Testing the IoT 379

– PUT is used to carry out updates of a resource
– DELETE allows you to delete an available resource

RESTful resources perform stateless communications. An application or
client of a REST web service includes, between the header and the body of
the HTTP request, all the necessary data to generate a response, so that each
request works in isolation. This allows to improve the performance of the service
and, since there is no need to synchronize session data with external applications,
the design and implementation of server-side components is simpler. RESTful
services are resource oriented and each has a uniform resource identifier (URI).
The different URIs serve both as the name and address of a resource. In addition,
they must be simple, predictable and easy to understand in a way that favors the
fact that developers can predict what is being targeted and even derive related
resources. The coding format of the data exchanged between an application and
the service must be standard such as the extensible markup language (XML) or
JavaScript Object Notation (JSON).

Since the transfer protocol is HTTP, the error codes and exceptions of HTTP
must be used, we have listed them below in Table 2.

Table 2. HTTP response codes

CODE Description

1xx Informative response

2xx Correct request

3xx Redirections

4xx Client errors

5xx Server errors

4 The TESTAR tool

TESTAR is a tool for automated testing at the Graphical User Interface (GUI)
level [2]. We will first show the philosophy of this tool to make clear how it
has been adapted to test the RESTful implementation of the Smart Home. To
explain the high level logical flow of TESTAR tool, it performs the following steps
(also shown in Fig. 2) to test a given System Under Test (SUT) at the GUI level:

1. Start the SUT;
2. Obtain the current State (when testing GUIs the State is represented by a

widget tree that is obtained through the Operating System’s Accessibility
API, which has the capability to detect and expose a GUI’s widgets, and
their corresponding properties, such as: display position, widget size, ancestor
widgets, etc.);

3. Derive a set of available actions that a user could execute in a specific state
of the SUT (for example: clicks, text inputs, mouse gestures);



380 M. Mart́ınez et al.

4. Select one of the available actions (randomly or using some search-based or
other type of optimization criteria);

5. Execute the selected action;
6. Apply the available online state oracles to check (in)validness of the new GUI

state. If a fault is found, stop the SUT (7) and save a re-playable sequence
of the test that found the fault. If not, keep on testing if more actions are
desired within the test sequence.

Fig. 2. TESTAR testing flow

The default behaviour of TESTAR includes random selection of actions and
implicit oracles for the detection of the violation of general-purpose system
requirements:

– the SUT should not crash,
– the SUT should not find itself in an unresponsive state (freeze), and
– the UI state should not contain any widget with suspicious titles like error,
problem, exception, etc. The suspicious titles can be configured in TESTAR
through its settings Dialog and the Suspicious titles functionality.

During testing, TESTAR stores all the information about the visited states
in a Graph database. Consequently, after testing the tester can define offline
oracles that query the database foe failure patterns.

TESTAR adopts the hypothesis that the majority of GUIs are conceptually
very similar. The only thing that varies is the underlying technology and the
look and feel. But if sufficient State information is available, such as: the types,



TESTAR for Testing the IoT 381

positions and properties of all widgets on the screen, then testing an iPhone App
is not much different from testing a Windows desktop application or a website.

TESTAR’s abstraction layer and the extensible plugin architecture (see Fig. 3)
makes it highly technology agnostic. The plugins deal with the process of fetching
the state information and executing actions for different platforms. The abstrac-
tion layer has a uniform interface that allows to access the UI state information
in a standardised way. It allows to simulate end user input in the form of clicks,
drag and drop operations, swipes, pinches, audio input, etc, in order to oper-
ate the UI. The abstraction layer abstracts from different technologies, shields
other components from technological details and allows testers to concentrate
on strategic parts of sequence and test suite generation.

Abstraction Layer Test Execution Control
Test Oracle

Interaction Model

Plugin1 Plugin2

APIs

Test Execution Environments

Accesibility 
API

REST
 API

Windows

Apple

Android

etc

Smart 
Home

Fig. 3. Abstraction layer and the extensible plugin architecture of TESTAR

To implement the necessary plugins and obtain the State information, TES-
TAR needs to know which resources are available in order to interact with them.
For testing at the GUI level, the Accessibility API of the Operating System pro-
vides enough information. However, when switching to IoT systems, the Acces-
sibility API is no longer useful. In this case, we were able to use the REST
API that accesses the resources in the Smart Home. Consequently, we had to
develop the plugins that contained the specification how to test the interaction



382 M. Mart́ınez et al.

with the resources of a smart home to give TESTAR the information it needs for
action selection, text execution and test oracles. To illustrate the plugin archi-
tecture and the work done in this paper, the new components we implemented
for TESTAR are highlighted with the dotted square in Fig. 3.

5 TESTAR for IoT

5.1 Actions

TESTAR for IoT is able to execute the four HTTP methods, discussed in Sect. 1,
that are associated with CRUD operations. This means, plugin1 (from Fig. 3)
consist of an Action interface for TESTAR that is implemented by Java classes
GET, PUT, POST and DELETE.

5.2 Derive Actions for Test Execution and Oracle Verdicts

With the aim to improve the user experience and the range of possibilities of this
new approach, for plugin2 we have implemented three different modes of execu-
tion together with their respective oracles (in the form of regular expressions)
for each one of them. These modes have been designed taking into account the
intrinsic behaviour of web services.

Positive Tests. For positive tests (or happy path tests), all feasible actions
will be derived. An authentication token will be provided when this is required
for correct execution. The default oracle for these tests are based on TESTAR
Suspicious Titles functionality, that checks if the received response has a HTTP
response code that corresponds to an error (4xx and 5xx, as explained in Sect. 3).
If there is a match, TESTAR will consider that the current sequence found is a
failure.

Negative Tests. For negative tests, we will derive actions that try to update
resources (PUT’s from the REST API) in an invalid way. By doing so, we are able
to check whether invalid actions will cause any danger or incorrect behaviour.
For example, in a Smart House you are not supposed to open the window when
the air-conditioning is on. There is a field in the Dialog of TESTAR to indicate
the expected response when those kind of actions occurred. If the server response
does not matches the expected expression (expected HTTP error code), TESTAR
will consider that the current sequence found a failure.

Unauthorized Tests. Unauthorized Tests contain actions that need authenti-
cation parameters to be correctly executed. However, they will be executed with-
out passing the required authentication token. This allows us to check whether
at some point it is possible to interact with the API without the required identi-
fication. As in the Negative Tests mode, there is a field in the Dialog of TESTAR



TESTAR for Testing the IoT 383

to specify the expected response when those kind of actions are executed. If
the server response does not match the given expression (expected HTTP error
code), TESTAR will consider that the current sequence found a failure.

6 Experiments and Results

6.1 Procedure

After having the plugins for the smart home developed, TESTAR had to be
configured according to the needs of the System Under Test (SUT). First of
all, we indicated which actions require authentication parameters. For the smart
home, only the PUT method needs authentication so we indicated a valid token
in order to give TESTAR the required credentials to execute those PUT actions.

After that, we filled the simple oracles that came with TESTAR taking into
account the following information provided by domain experts:

– When executing actions without the required token, the appropriate response
of the server must be 401 Unauthorized.

– For those actions derived in the Negative Tests mode we can expect either
400 Bad Request or 405 Method Not Allowed.

– For all other cases, we used the oracle that comes by default for the Positive
Tests mode.

Since the Smart Home does not allow Delete nor Options actions, we needed
to modify the protocol of TESTAR in order to let it know that we expect a 405
Method not Allowed as the response for those kind of actions. Another approach
will be to tell the tool that it should not derive those actions, but we decided
to test them in order to know if something unexpected happens when trying to
execute them.

After all the configuration parameters were established, we proceeded to run
TESTAR using the three different testing modes.

6.2 Results

After our firsts runs we already discovered a fault in which when trying to
interact with the Gradual Light with a feasible action, the server response was
Method Not Allowed instead of indicating that the resource had been success-
fully updated. This error appeared each time a run was executed and the selected
action implied the Gradual Light Resource. After communicating this to the
team in charge of implementing the smart home, they discovered that an error
was made when declaring the supposed functionality for that resource. After-
wards, that fault was correctly solved.

Once more test were executed, we discovered a different kind of fault in which
some resources were no longer available and a 404 Not Found was received when
trying to interact with them.



384 M. Mart́ınez et al.

Moreover, we noticed that after executing several actions and receiving a 404
error when trying to access a resource that was not available, the server stopped
responding and a time out fault was found by TESTAR. However, the server
seemed to establish itself when some time passed.

On the other hand, we noticed that in the Negative Tests mode, when trying
to update the Gradual Light (which is a dimmer) with a toggle (an interac-
tion characteristic of bistate resources), the given response was not as expected.
Instead of a Method Not Allowed or a Bad Request Message we received an
Internal Server Error.

Finally, we tried the Unauthorized Tests mode with two different setups: 5
sequences of 100 actions and 5 sequences of 300 actions. Therefore, a total of
2000 actions without the required authorization parameters were executed and
the smart home behaved as expected through all of them.

7 Conclusions and Further Work

Testing IoT is an important an challenging task. In this work, we have presented
the first approach of TESTAR for testing IoT devices. The tool has proved to
be successful testing the communication with the resources provided by a smart
home through a REST API. Once the plugin that specifies what kind of actions
can be executed for a determine SUT was implemented, TESTAR offered an
automated way of generating and executing tests.

To summarize the results, we have found a total of 4 reproducible faults
among the firsts executions of the tool. One of them (The Gradual Light not
accepting feasible actions) has already been successfully corrected after being
communicated to the team in charge of the smart home. Meanwhile the other
three will need further investigation.

Future work will involve different IoT devices accessed through a REST API
in order to ensure that the same procedure can be applied. Moreover, we will try
to extend TESTAR in order to support other communication protocols beyond
REST API.

Acknowledgement. The authors would like to thank Vicente Pelechano, Urko Rueda
and Francisco Almenar for their invaluable help that has made this work possible. This
work was partly funded by the ITEA3 TESTOMAT project (16032).

References

1. Bauersfeld, S., de Rojas, A., Vos, T.E.J.: Evaluating rogue user testing in indus-
try: an experience report. In: IEEE Eighth International Conference on Research
Challenges in Information Science (RCIS), pp. 1–10, May 2014

2. Bauersfeld, S., Vos, T.: A reinforcement learning approach to automated GUI
robustness testing. In: Fast Abstracts of the 4th Symposium on Search-Based Soft-
ware Engineering (SSBSE 2012), pp. 7–12. IEEE (2012)



TESTAR for Testing the IoT 385

3. Bauersfeld, S., Vos, T.E.J., Condori-Fernández, N., Bagnato, A., Brosse, E.: Eval-
uating the TESTAR tool in an industrial case study. In: ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM 2014,
Torino, Italy, 18–19 September 2014, p. 4 (2014)

4. Business. The Internet of Things: where the smart is. Economist 419(8993), 52–53
(2016)

5. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Using feature models for developing
self-configuring smart homes. In: Fifth International Conference on Autonomic and
Autonomous Systems, pp. 179–188 (2009)

6. Frizell, S.: The smarter home. Special report. Time Mag. 184(1) (2014)
7. Grnbk, I.: Architecture for the internet of things (IoT): API and interconnect. In:

Second International Conference on Sensor Technologies and Applications (SEN-
SORCOMM 2008), pp. 802–807, August 2008

8. Hagar, J.: Experience report: a guide through the challenges and risks of testing
the IoT. LogiGEAR Mag. VII(3) (2014)

9. Haller, S., Karnouskos, S., Schroth, C.: The Internet of Things in an enterprise
context. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol.
5468, pp. 14–28. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
00985-3 2

10. Almenar, F., Esparcia-Alcázar, A.I., Mart́ınez, M., Rueda, U.: Automated testing
of web applications with TESTAR. In: Sarro, F., Deb, K. (eds.) SSBSE 2016.
LNCS, vol. 9962, pp. 218–223. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47106-8 15

11. Richardson, L., Ruby, S.: RESTful Web Services (2008)
12. Rueda, U., Vos, T.E.J., Almenar, F., Mart́ınez, M.O., Esparcia-Alcázar, A.I.: TES-

TAR: from academic prototype towards an industry-ready tool for automated test-
ing at the user interface level. In: Canos, J.H., Gonzalez Harbour, M. (eds.) Actas
de las XX Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD 2015),
pp. 236–245 (2015)

13. Tnjes, R., Reetz, E.S., Moessner, K., Barnaghi, P.M.: A test-driven approach for
life cycle management of internet of things enabled services. In: Future Network
Mobile Summit (FutureNetw 2012), pp. 1–8 (2012)

14. van der Mersch, V.: Automated testing for the Internet of Things. Nordic APIs
Blog, May 2016

15. van der Meulen, R.: Gartner says 6.4 billion connected “things” will be in use in
2016, up 30 percent from 2015. Press release, November 2015

16. Vos, T.E.J., Kruse, P.M., Condori-Fernández, N., Bauersfeld, S., Wegener, J.: TES-
TAR: tool support for test automation at the user interface level. IJISMD 6(3),
46–83 (2015)

17. Zhang, Z.K., Cho, M.C.Y., Wang, C.W., Hsu, C.W., Chen, C.K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In: IEEE 7th Interna-
tional Conference on Service-Oriented Computing and Applications, pp. 230–234,
November 2014

https://doi.org/10.1007/978-3-642-00985-3_2
https://doi.org/10.1007/978-3-642-00985-3_2
https://doi.org/10.1007/978-3-319-47106-8_15
https://doi.org/10.1007/978-3-319-47106-8_15

	Towards Automated Testing of the Internet of Things: Results Obtained with the TESTAR Tool
	1 Introduction
	2 IoT Systems and Testing
	3 The Smart Home
	4 The TESTAR tool
	5 TESTAR for IoT
	5.1 Actions
	5.2 Derive Actions for Test Execution and Oracle Verdicts

	6 Experiments and Results
	6.1 Procedure
	6.2 Results

	7 Conclusions and Further Work
	References




