
Four Exercises in Programming Dynamic
Reconfigurable Systems: Methodology

and Solution in DR-BIP

Rim El Ballouli(B), Saddek Bensalem, Marius Bozga(B), and Joseph Sifakis

Univ. Grenoble Alpes, CNRS, Grenoble INP,
38000 Grenoble, France

{rim.el-ballouli,marius.bozga}@univ-grenoble-alpes.fr

Abstract. DR-BIP is an extension of the BIP component framework
intended for programming reconfigurable systems encompassing various
aspects of dynamism. A system is built from instances of types of com-
ponents characterized by their interfaces. The latter consist of sets of
ports through which data can be exchanged when interactions take place.
DR-BIP allows the description of parametric exogenous interactions
and reconfiguration operations. To naturally model self-organization and
mobility of components, a system is composed of several architecture
motifs, each motif consisting of a set of component instances and coor-
dination rules. The use of motifs allows a disciplined management of
dynamically changing coordination rules. The paper illustrates the basic
concepts of DR-BIP through a collection of four non-trivial exercises
from different application areas: fault-tolerant systems, mobile systems
and autonomous systems. The presented solutions show that DR-BIP is
both minimal and expressive allowing concise and natural description of
non-trivial systems.
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1 Introduction

Modern computing systems exhibit dynamic and reconfigurable behavior. They
evolve in uncertain environments and have to continuously adapt to changing
internal or external conditions. This is essential to efficiently use system resources
e.g. reconfiguring the way resources are accessed and released in order to adapt
the system behavior in case of faults or threats, and to provide the adequate
functionality when the external environment changes dynamically. In particular,
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mobile systems are becoming important in many application areas including
transport, telecommunications and robotics.

There exist two complementary approaches for the expression of dynamic
coordination rules. One respects a strict separation between component behav-
ior and its coordination. Coordination is exogenous in the form of an archi-
tecture that describes global coordination rules between the coordinated com-
ponents. This approach is adopted by numerous Architecture Description
Languages (ADL) (see [8] for a survey). The other approach is based on endoge-
nous coordination by explicitly using primitives in the code describing the behav-
ior of components. Most programming models use internalized coordination
mechanisms. Components usually have interfaces that specify their capabilities
to coordinate with other components. Composing components boils down to
composing interfaces. This approach is usually adopted with formalisms based
on process calculi, such as [1,10–12].

The obvious advantage of endogenous coordination is that programmers do
not have to explicitly build a global coordination model. Consequently, the
absence of such a model makes the validation of coordination mechanisms and
the study of their underlying properties much harder. Exogenous coordination
is advocated for enabling the study of the coordination mechanisms and their
properties. It motivated the development of 100+ ADLs [16].

There exists a huge literature on architecture modeling reviewed in detailed
surveys classifying the various approaches and outlining new trends and needs
[8,9,15–17,19,22]. However, there is currently no clear understanding about how
different aspects of architecture dynamism can be captured. We consider that
the degree of dynamism of a system can be characterized as the interplay of
dynamic change in three independent aspects.

– The first aspect requires the ability to describe parametric system coordi-
nation for arbitrary number of instances of component types. For example,
systems with m Producers and n Consumers or Rings formed from n identical
components.

– The second aspect requires the ability to add/delete components and manage
their interaction rules depending on dynamically changing conditions. This is
needed for a reconfigurable ring of n components e.g. removing a component
which self-detects a failure and adding the removed component after recovery.
So adding/deleting components implies the dynamic application of specific
interaction rules.

– The third aspect is currently the most challenging. It meets in particular, the
vision of “fluid architectures” or “fluid software” [22] which entails a virtual
computing experience allowing services to seamlessly roam and continue their
activities on any available device or computer. Applications and objects live
in an environment which is conceptually an architecture motif. They can be
dynamically transported from one motif to another.

Supporting migration of components allows a disciplined management of dynam-
ically changing coordination rules. For instance, self-organizing systems may
adopt different motifs to adapt their behavior to meet a global property.
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The paper proposes the Dynamic Reconfigurable BIP (DR-BIP) framework,
which encompasses all these three aspects of dynamism. DR-BIP is an exten-
sion of BIP [3,4]—a framework encompassing rigorous design captured as the
interplay of behavior, interaction and priorities for static systems—and Dy-
BIP [7]—a former extension for handling dynamic interactions. DR-BIP follows
an exogenous approach respecting the strict separation between behavior and
architecture. It directly embraces multiparty interaction [6]. It characterizes a
dynamic architecture as a set of interaction rules implemented by connectors
and a set of configuration rules. Although it does not allow ad hoc dynamism,
it directly covers all kinds of dynamism at runtime [8]: programmed dynamism,
adaptive dynamism, and self-organizing dynamism. It provides support for com-
ponent/motif creation and removal at runtime. In addition, it directly supports
component migration from one motif to another. It supports both programmed
and triggered reconfiguration as defined in [9]. The big advantage of using motifs
is that when a component joins a motif, its interactions with other components
are dictated by both its behavior and the interaction rules in its new motif. So,
a motif is a “world” where components live and from which they can migrate
to join other “worlds” [22]. DR-BIP shares the same conceptual framework with
DReAM [13], which uses an extension of interaction logic with data transfer and
reconfiguration. The main difference with DR-BIP is the possibility to express
coordination as a conjunction of constraints.

The paper is organized as follows. Section 2 provides a brief overview of the
key DR-BIP concepts, namely architectural motifs and motifs-based systems.
Section 3 presents DR-BIP models and execution results for use case systems
exhibiting different degrees of dynamism. Finally, Sect. 4 presents conclusions
and future work directions.

2 DR-BIP Overview

The DR-BIP framework is designed to cover the practical needs for the design
of dynamic systems, and therefore, fulfill specific requirements for rigorous mod-
eling and analysis. It allows to:

– specify architectural constraints/styles, i.e. define architectures as parametric
operators on components guaranteeing by design specific properties,

– describe systems with evolving architectures, i.e. define system architecture
that can be updated at runtime using dedicated primitives,

– support separation of concerns, i.e. keeping separate the component behavior
(functionality) from the system architecture to avoid blurring the behaviors
with information about their execution context and/or reconfiguration needs,

– provide sound foundation for analysis and implementation, i.e. rely on a
well-defined operational semantics, leveraging on existing models for rigor-
ous component-based design.
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2.1 Motifs for Dynamic Architectures

In DR-BIP, a motif is the elementary unit used to describe dynamic architec-
tures. A motif encapsulates (i) behavior, as a set of components, (ii) interaction
rules dictating multiparty interaction between components and (iii) reconfigu-
ration rules dictating the allowed modifications to the configuration of a motif
including the creation/deletion/migration of components.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Fig. 1. Motif Concept

Reconfiguration rules

Map H

when |B| ≤ 10
do x := B.create(C,idle),

n:=H.extend(), D(x) := n

Deployment D

b2b1

Behavior B

Interaction rules

when D(x1) D(x2)
sync x1.out x2.in

b3

Fig. 2. Motif Example

Motifs are structurally organized as the deployment of component instances
on a logical map as illustrated in Fig. 1. Maps are arbitrary graph-like structures
consisting of interconnected positions. Deployments relate components to posi-
tions on the map. The definition of the motif is completed by two sets of rules,
defining interactions and reconfiguration actions of the following generic forms:

interaction-rule ::= reconfiguration-rule ::=
sync-rule-name(formal-args) ≡ do-rule-name(formal-args) ≡

[ when rule-constraint ] [ when rule-constraint ]
sync interaction-ports do reconfiguration-action+

[ interaction-guard →
interaction-action+ ]

Both sets of rules are interpreted on the current motif configuration. Formal-
args denotes (sets of) component instances and defines the scope of the rule.
Rule-constraint defines the conditions under which the rule is applicable. Con-
straints are essentially boolean combinations on deployment and map constraints
built from formal-args. An interaction rule also defines the set of interacting ports
(interaction-ports), the interaction guard (interaction-guard) and the associated
interaction actions (interaction-action). The guard and the action define respec-
tively a triggering condition and an update of the data of components partici-
pating in the interaction. Finally, a reconfiguration rule defines reconfiguration
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actions (reconfiguration-action) to update the content of the motif. Such actions
include creation/deletion of component instances, and change of their deploy-
ment on the map as well as change of the map itself, i.e. adding/removing map
positions and their interconnection.

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

...

Deployment

Map

Interaction rules

Reconfiguration rules

Behavior

Reconfiguration rules

Fig. 3. Motif-based System Concept

Figure 2 illustrates the proposed motif concept for describing a dynamic ring
architecture. Three components b1, b2, b3 are deployed into a three-position
circular map. Given the deployment function D, the interaction rule reads as
follows: for components x1, x2 deployed on adjacent nodes D(x1) �→ D(x2) con-
nect their ports x1.out and x2.in

1. This rule defines three interactions between
the components namely {b1.out b3.in}, {b3.out b2.in}, and {b2.out b1.in}. The
reconfiguration rule allows to extend the ring by adding one more component.
The rule is applicable as long as the number of component instances |B| is
less than 10. When executed, a new component x is created with initial state
idle (x := create(C, idle)), a new node n is added to the circular map H
(n := H.extend()) and the component x is deployed on the node n (D(x) := n).

The reason for choosing maps and deployments as a mean for structuring
motifs is their simplicity. On one hand, maps and deployments are common
concepts, easy to understand, manipulate and formalize. On the other hand,
they adequately support the definition of arbitrarily complex sets of interactions
over components by relating them to connectivity properties (neighborhood,
reachability, etc.). Moreover, maps and deployments are orthogonal to behav-
ior. Therefore they can be manipulated/updated independently and they also
provide a very convenient way to express various forms of reconfiguration. Both
maps and deployments are implemented as dynamic collections of objects, with
specific interfaces, in a similar way to standard collection libraries available for
standard programming languages.
1 The dot operator is used interchangeably to access a component’s port/data, and

to access a motif’s components/deployment/map, and to apply primitives over a
motif’s deployment/map.
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2.2 Motif-Based Systems

Several types of motifs may be defined separately by specifying the types of
hosted components, parametric interactions and reconfiguration rules. Then,
systems are described by superposing a number of motif instances of certain
motif types. In this manner, the overall system architecture captures specific
architectural/functional properties by design.

Systems are defined as collections of motifs sharing a set of components as
depicted in Fig. 3. Each motif can evolve independently of the others, depending
only on its internal structure and associated rules. Furthermore, several motifs
can synchronize all together to jointly perform a reconfiguration of the system.
Coordination between motifs is therefore possible either implicitly by means of
shared components or explicitly by means of inter-motif reconfiguration rules.

The inter-motif reconfiguration rules allow joint reconfiguration of several
motif instances. They also allow two additional types of actions, respectively
creation and deletion of motif instances, and exchanging component instances
between motifs.

b1

b2

c1 c2

c4 c3

b1

b2

c1 c2 c3

c4

b1

b2

c1 c2

c4 c3

b3

c5

Fig. 4. An example: system reconfigurations

Figure 4 provides an overall
view on the structure and evo-
lution of a motif-based system.
The initial configuration (left)
consists of six interacting com-
ponents organized using three
motifs (indicated with dashed
lines). The central motif con-
tains components b1 and b2 con-
nected in a ring. The upper
motif contains components b1,
c1, c2, c3, with b1 being con-
nected to all others. The lower motif contains connected components b2, c4.
The second system configuration (in the middle) shows the evolution following a
reconfiguration step. Component c3 migrated from the upper motif to the lower
motif, by disconnecting from b1 and connecting to b2. The central motif is not
impacted by the move. The third system configuration (right) shows one more
reconfiguration step. Two new components have been created b3 and c5. The
central motif now contains one additional component b3, interconnected along
b1 and b2 forming a larger ring. Furthermore, a new motif is created containing
b3 and c5.
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2.3 Execution Model

b b

m
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Interaction

Reconfiguration ρ

Behavior

Configuration

Fig. 5. Reconfiguration vs Interaction Steps

The behavior of motif-based
systems in DR-BIP is defined
in a compositional manner.
Every motif defines its own set
of interactions based on its local
structure. This set of interac-
tions and the involved compo-
nents remain unchanged as long
as the motif does not execute a
reconfiguration action. Hence in
the absence of reconfigurations, the system keeps a fixed static architecture and
behaves like an ordinary BIP system. The execution of interactions has no effect
on the architecture. In contrast to interactions, system and/or motif reconfigura-
tions rules are used to define explicit changes in the architecture. However, these
changes have no impact on components, i.e. all running components preserve
their state although components may be created/deleted. This independence
between execution steps is illustrated in Fig. 5.

Our prototype implementation of DR-BIP includes a concrete language to
describe motif-based systems and an interpreter (implemented in JAVA) for the
operational semantics. The language provides syntactic constructs for describing
component and motif types, with some restrictions on the maps and deployments
allowed2. The interpreter allows the computation of enabled interactions and
(inter-motif) reconfiguration rules on system configurations, and their execution
according to predefined scheduling policies (interactive, random, etc.).

3 Four Exercises

We present hereafter four exercises for programming dynamic reconfigurable sys-
tems. We provide tentative solutions using the DR-BIP formalism and evaluate
their performance at executing dynamically changing configurations.

3.1 Dynamic Token Ring System

b2

b4

b5

outin
b1

b3

b6in out

out out

out

outout

out

in
in

in
in

in

in

busy

idle

D

H

B

C

Fig. 6. Dynamic Token Ring

A token ring consists of two or more
identical components interconnected
using uni-directional communication
links according to a ring topology.
A number of tokens are circulating
within the ring. A component is busy
when it holds a token and idle oth-
erwise. A component can do spe-
cific internal actions depending on
2 Maps are restricted to simple graphs

e.g., chain, cyclic, star.
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its state, busy or idle. It can receive a token from the incoming link only its
idle and send its token on the outgoing link only when its busy. A token ring is
dynamic if idle components are allowed to leave the ring at any time leaving at
least two components in the ring. and new idle components are allowed to enter
the ring at any time (as long as the maximal allowed ring size is not reached).
A token ring system consists of one or more, pairwise disjoint, token rings. A
token ring system is dynamic if every ring is dynamic, and moreover, two rings
are allowed to merge into a single one provided their overall size is not exceeding
the maximal allowed ring size.

The behavior of component instances and the structure of the ring motif are
graphically illustrated in Fig. 6. The map H is a ring of locations, i.e. an instance
of a circular linked list type. The deployment D assigns components to locations
in a bijective manner.

Interactions are defined by the rule sync-ring-inout(x1, x2 : C), which con-
nects the out port of a component x1 to the in port of the component x2 deployed
next to it on the map. The motif reconfiguration is defined by two rules. The rule
do-ring-insert creates a new component in the ring. The rule do-ring-remove(x :
C) removes an idle component x from the ring, provided it contains more than 2
components. Finally, the inter-motif reconfiguration rule do-ring-merge merges
two ring instances y1, y2 into a single ring, whenever their sets of component
instances are disjoint and together do not exceed 10.

sync-ring-inout(x1, x2 : C) ≡ when D(x1) �→ D(x2)
sync x1.out x2.in

do-ring-insert() ≡ do x := B.create(C, idle), n := H.extend(), D(x) := n
do-ring-remove(x : C) ≡ when |B| ≥ 3 ∧ x.idle

do n := D(x), B.delete(x), H.remove(n)
do-ring-merge(y1, y2 : Ring) ≡ when y1.B ∩ y2.B = ∅ and |y1.B| + |y2.B| ≤ 10

do B = y1.B ∪ y2.B, D = y1.D ∪ y2.D, H = merge-cycle(y1.H, y2.H),
create(Ring, (B, H, D)), delete(y1), delete(y2)

Note that we use specific map primitives init, extend, remove, merge-cycle
to respectively initialize, extend by one new location, remove one location and
merge two cyclic maps. The map predicate · �→ · denotes the connection relation
between locations.

Figure 7 illustrates the execution of a dynamic ring system initialized with
10 ring motifs, each having 2 component instances. At each step, either an inter-
action or a reconfiguration (either within a motif or an inter-motif reconfigura-
tion) is randomly executed. We remark that the number of ring motif instances
decreases along the execution as idle components are removed and rings are
enabled to merge into a single ring. The number of component instances varies
across the execution between 6 and 20 as the do-ring-insert and do-ring-remove
reconfiguration rules are executed.

Figure 8 summarizes the execution of the dynamic ring system for different
initial configurations. We evaluate the performance and track the system evolu-
tion while varying the number of initial rings from 10 to 100. Each configuration
is simulated for 1000 random steps. As the system grows in size and the com-
putation of enabled interactions and reconfigurations gets more complex, the
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Fig. 7. Dynamic ring system evolution across 1,000 steps

50 100

5

10

15

Exec Time (sec)

50 100
0

0.2

0.4

0.6

0.8

1

I/R ratio

50 100
0

50

100

# Motifs

50 100
0

100

200

# Components

Fig. 8. Dynamic token ring system measurements - the x-axis indicates the number of
rings in the initial configuration. The meaning of y-axis is indicated at the top

execution time increases reaching a maximum of 14 s (first plot). The average
ratio of the number of executed interactions vs reconfigurations along the run is
around 0.45 (second plot). Finally, the minimum and maximum number of motif
and component instances are depicted in the third and fourth plots.

3.2 Dynamic Multicore Task System
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Fig. 9. Multicore Task System

A multicore task system consists of
a fixed n × n grid of interconnected
homogeneous cores, each executing
a finite number of tasks. Every task
is either running or completed; run-
ning tasks may execute on the asso-
ciated cores and get eventually com-
pleted. The load of a core is defined
as the number of its associated tasks,
both running and completed. A mul-
ticore task system is dynamic if the
overall number of tasks and their
allocation to cores may change over
time. More specifically, new running tasks may enter the system at the core c11
and completed tasks may be withdrawn from the system at the core cnn. More-
over, any task is allowed to migrate from its core to any of the neighboring cores
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(left, right, top or bottom) in the grid, provided the load of the receiving core is
smaller than the load of the departing core minus some constant (K).

Figure 9 presents the overall structure of the motif-based system for four
cores. We distinguish two types of atomic components, namely Task and Core.
Multiple cores are interconnected together in a motif of type Processor. The
interconnecting topology reflects the platform architecture (e.g., a 2 × 2 grid in
the figure) and is enforced using a similar grid-like map and deployment. An
additional CoreTask motif type is used to represent every core with its assigned
tasks.

The interactions in the system are defined within the CoreTask motif. The
execution of a task by the core and the task completion are represented by the
rules:

sync-coretask-exec(x1 : Core, x2 : Task) ≡ sync x1.work x2.exec
sync-coretask-fin(x : Task) ≡ sync x.fin

The migration of a task from one core to another is modeled using an inter-motif
reconfiguration rule which involves three distinct motifs. A task x3 migrates from
motif y1 (of type CoreTask) to motif y2 (of type CoreTask) if the core x1 of y1 is
connected to the core x2 of y2 (according to the processor motif Processor) and
if the number of tasks in y1 exceeds the number of tasks in y2 by constant K:

do-migrate(y1, y2 : CoreTask, y3 : Processor, x1, x2 : Core, x3 : Task) ≡
when 〈 y1 : x1 ∈ B 〉 ∧ 〈 y2 : x2 ∈ B 〉 ∧ 〈 y3 : D(x1) �→ D(x2) 〉 ∧

|y1.B| > |y2.B| + K ∧ x3 ∈ y1.B
do y2.migrate(x3), y1.delete(x3)

To simplify notations in reconfiguration rules, we rely hence forth on sandwiching
constraint/guard/action with angle brackets to specify the scope. For example
〈y1 : x1 ∈ B〉 is a constraint stating that x1 is a component instance in motif y1.

0 1,000 2,000 3,000
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10
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20
c11

c33

c12c21

c13
c22c31
c23c32

c11 c12 c13
c21 c22 c23
c31 c32 c33

Fig. 10. Task load across 3000 steps

Figure 10 illustrates the execu-
tion of the dynamic multicore task
system with 3 × 3 cores for 3000
steps. Each core is initialized with a
random load between 1 and 20. The
constant K is set to 3, hence tasks
are allowed to migrate to neighbor-
ing cores (left, right, top or bot-
tom) that differ in task load by at
least 3 tasks. The cores c11, and
c33 are used to respectively create
new tasks and withdraw completed
tasks. These two cores retain the
maximum and minimum load. As
tasks migrate, the task load of cores
converges and balances along the
execution having at most a differ-
ence of 3 tasks between neighbor-
ing cores. For example, in core c21
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the task load increased from 6 to 14. As expected the cores (c21, and c12) clos-
est to c11 maintain a high load and as we move away from c11 the core’s load
gradually decreases. This highlights the task migration process cascading from
the top left core to the bottom right core.

Figure 11 illustrates the evolution of the dynamic multicore task system for
different initial configurations. We vary the number of cores in the processor
from 4 to 36 cores. Each core is initialized with a random load as discussed
above. The system initial size varies between 46 and 482 component instances
as depicted in the figure. Each configuration is simulated for 1000 random steps.
As the number of cores increases in size the execution time increases reaching
a maximum of 7.3 s. The motif instance count remains constant across each
configuration, however the component instance count varies as tasks are being
created and deleted once completed. Also note that the average ratio of executed
interactions vs reconfigurations is 0.7, since the task load converges to a similar
value across cores and less task migrations (i.e. reconfigurations) are required.

10 20 30 40
0

2

4

6

8

Exec. Time (sec)

10 20 30 40
0

0.2

0.4

0.6

0.8

1

I/R Ratio

10 20 30 40

10

20

30

40

# Motifs

10 20 30 40
0

200

400

# Components

Fig. 11. Dynamic multicore task system measurements - the x-axis indicates the num-
ber of motifs in the initial configuration (i.e. n2 + 1 for n = 2, 3, 4, 5, 6). The meaning
of y-axis is indicated at the top

3.3 Autonomous Highway Traffic System

This exercise is inspired from autonomous traffic systems for automated high-
ways [5]. The system consists of a single-lane one-way road where an arbitrary
number of autonomous homogeneous self-driving cars are moving in the same
direction, at different cruising speeds. Cars are organized into platoons, i.e.
groups of cars cruising at the same speed and closely following a leader car.
Platoons may dynamically merge or split. A merge takes place if two platoons
are close enough, i.e. the distance between the tail car of the first platoon and
the leader car of the second is smaller than some constant K. After the merge,
the speed of the new platoon is set to the speed of the first platoon. A platoon
may split when an arbitrary car requests to leave the platoon e.g., in order to
perform some specific maneuver. After the split, the leading platoon will increase
its speed by 2% whereas the tail platoon will reduce its speed by 2%.
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Fig. 12. Automated Highway Traffic System

Figure 12 illustrates the
motif-based system in DR-
BIP. We use a compo-
nent type Car to model the
behavior of a car. Each car
maintains its position pos
and speed v. The position
pos is updated on the move
transition. Transitions set-
Speed and ack split are used
by leader cars only to
respectively define the pla-
toon speed and acknowl-
edge a platoon split. Sim-
ilarly, transitions getSpeed
and split are used by fol-
lower cars only to respectively synchronize on the leader speed and initiate a
platoon split.

The Road motif type contains all cars without additional structuring. The
Platoon motif type is structured as a chain of cars. The map of the platoon motif
is a (dynamic) linear graph of locations and the deployment assigns a single car
to every position of the map. The Road motif defines a single interaction by the
rule sync-road-move, which synchronizes the move ports of all cars and therefore
performing a joint update of their positions. The Platoon motif defines several
interactions by the rules sync-platoon-speed and sync-platoon-split. The first rule
synchronizes the speed of the leading car with the speed of all follower cars. The
second rule allows any follower car to initiate a split maneuver and become a
leader in a newly created platoon.

sync-road-move(X : Car) ≡ when X=B sync X.move
sync-platoon-speed(x : Car, X : Car) ≡ when X=B \ x ∧ D(x) = H.head

sync x.setSpeed X.getSpeed do X.v = x.v

sync-platoon-split(x1, x2 : Car) ≡ when D(x1) = H.head ∧ x1 �= x2

sync x1.ack split x2.split

Two reconfiguration rules do-platoon-merge and do-platoon-split handle the
merging and the splitting of platoons respectively:

do-platoon-merge(y1, y2 : Platoon, x1, x2 : Car) ≡
when 〈y1 : D(x1) = H.tail〉 ∧ 〈y2 : D(x2) = H.head〉 ∧ |x1.pos −x2.pos| < K
do B := y1.B ∪ y2.B, H := append(y2.H, y1.H), D := y1.D ∪ y2.D,

create(P, (B, H, D)), delete(y1), delete(y2)
do-platoon-split(y : Platoon, x : Car) ≡

do 〈y : H1 := H.sublist(0, D(x)), B1 := D−1(H1), D1 := D.restrict(H1),
H2 := H.sublist(D(x), H.length), B2 := D−1(H2), D2 := D.restrict(H2) 〉,
create(P , (B1, H1, D1)), create(P , (B2, H2, D2)), delete(y)

Note that we use specific map primitives head, and tail which point to the position
of the leader and tail of a platoon, namely the beginning and the end of the list.



316 R. El Ballouli et al.

Furthermore, we use the primitive append which appends and links two maps
of type linked list together. Finally, the primitive sublist and length creates a
sublist from a linked list and returns the length of the list respectively. The
primitive restrict restricts a deployment keeping only the deployment mappings
of components in a given map and removes the rest.

Figure 13 illustrates the evolution of the system involving 200 cars along
2000 sampled steps. Each line describes a configuration of the system. We show
13 sampled nonconsecutive configurations. A thin black rectangle represents a
platoon. Its length is proportional to the number of cars contained. Its position
in the line corresponds to its position on the road. For reference, we show the
evolution of a particular car by highlighting it in yellow. Initially, all the cars
belong to the same platoon. As the system evolves the initial platoon splits into
several platoons, which then keep splitting/merging back, etc.

Fig. 13. Automated highway traffic evolution along few steps

Figure 14 summarizes the execution of several initial configurations. We eval-
uate the performance and track the system evolution while varying the number
of cars in the initial platoon from 200 to 600 cars. Each configuration is simu-
lated for 3000 random steps. Notice that the component instance count remains
constant across each configuration as cars only rearrange within different pla-
toons. However the motif instance count varies as platoons merge/split. Finally,
execution time increases reaching a maximum of 5 min and the average ratio of
executed interactions vs reconfigurations is 0.77.
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Fig. 14. Measurements on automated highway traffic systems
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3.4 Self-Organizing Robot Colonies

This exercise is inspired by swarm robotics [18]. A number of identical robots are
randomly deployed on a field and have a mission to locate an object (the prey)
and to bring it near another object (the nest). The robots know neither the posi-
tion of the nest nor the position of the prey. They have limited communication
and sensing capabilities, i.e. they can display a status (by turning on/off some
colored leds) and can observe each other as long as they are physically close in
the field. We consider hereafter the swarm algorithm proposed in [18]. In a first
phase, the robots self-organize into an exploration path starting at the nest. The
first robot detecting the nest initiates the path, i.e. stops moving and displays
a specific (on-path) status. Any robot that detects (robots on) the path, begins
moving along the path towards its tail, explores a bit further its neighborhood
and gets connected as well (i.e. becomes the new tail, stops moving and displays
the on-path status). Two cases may occur, either no new robot gets connected
to the path within some delay, hence the tail robot disconnects and moves ran-
domly (away from the path), or the tail robot detects the prey and the second
phase starts. The path stays in place while additional robots converge near the
prey. When enough robots have converged, they start pushing the prey along
the path towards the nest. The path gets consumed, and the system will stop
when the prey gets close enough to the nest.

We model the first phase of the algorithm above using three different types
of components and three different types of motifs as illustrated in Fig. 15. The
Arena motif contains all the robots, the nest and the prey component instances.
No map and deployment are used as no specific architecture is enforced by this
motif. This motif defines a global tick interaction used to model the synchronous
passage of time within the system. Whenever the tick interaction is triggered
the robots update their positions, i.e. they move on the field.

Chain

Neighborhood

Arena

Neighborhood

r1

r2

r3

r4

r5

r6

r7

r8

r9

p : Prey

n : Nest

ri : Robot

Fig. 15. Self-organizing robot colonies

For every robot,
its Neighborhood
motif is used to
represent its visi-
bility range, i.e. the
set of robots phys-
ically close to it
in the field. This
motif uses a star-
like location map.
The inner robot
is deployed at the
center and the vis-
ible neighbors on
the leaves. The motif defines a set of binary observe status interactions which are
used by the inner robot to collect all the available information from its neigh-
bors. Finally, the Chain motif represents the exploration chain linking robots to
the nest. It uses a linear map to deploy the robots belonging to the chain. This
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motif defines a set of binary next prev interactions which are used to communicate
along the chain.

For this example, reconfiguration is used to redefine the content of the Neig-
borhood and Chain motifs. For the former, as robots are moving in the field,
they continuously enter or leave the visibility range of other robots. We use two
inter-motif reconfiguration rules to update the neighborhood information:

do-neighborhood-enter(y1 : Neighborhood, y2 : Arena, x1, x2: Robot) ≡
when 〈y1 : D(x1) = H.center ∧ x2 �∈ B〉 ∧ 〈y2 : x2 ∈ B 〉 ∧ dist(x1, x2) ≤ Rmin

do y1.migrate(x2), 〈y1 : n := H.extend(), D(x2) := n 〉
do-neighborhood-leave(y1 : Neighborhood, x1, x2: Robot) ≡

when 〈y1 : D(x1) = H.center ∧ x2 ∈ B〉 ∧ x1 �= x2 ∧ dist(x1, x2) ≥ Rmax

do 〈y1 : n := D(x2), B.delete(x2), H.remove(n) 〉
The rules above describe the reconfiguration allowing any robot x2 to enter
(resp. leave) the neighborhood y1 of any different robot x1 whenever the dis-
tance between x1 and x2 is smaller than Rmin (resp. greater than Rmax). The
evolution of the chain is also described by reconfiguration. At any time, the tail
can disconnect or a robot can connect if its close enough to the tail.

do-chain-connect(y1 : Chain, y2 : Neighborhood, x1, x2 : Robot) ≡
when 〈y1 : D(x1) = H.tail ∧ x2 �∈ B 〉 ∧ 〈y2 : D(x1) = H.center ∧ x2 ∈ B〉

do y1.migrate(x2), 〈y1 : n = H.extend(), D(x2) := n 〉
do-chain-disconnect(y1 : Chain, x1 : Robot) ≡

when 〈y1 : D(x1) = H.tail 〉 ∧ 〈y1 : x1.timeout = true 〉
do 〈y1 : n := D(x1), B.delete(x1), H.remove(n) 〉

4 Discussion

The paper presents the DR-BIP framework as well as its basic structuring con-
structs and their application to programming real-life systems. We show that the
proposed framework is minimal and expressive allowing concise modeling. This
is achieved by a methodology supporting incremental description through strict
separation of concerns. Describing a system as a superposition of motifs allows
enhanced flexibility and abstraction. Each motif is a specific dynamic architec-
ture with its own coordination rules. So membership in a motif determines the
way a component interacts with other components and the reconfiguration rules
it is subject to. This is achieved in particular through maps which are refer-
ence structures used to naturally express mobility and dynamically changing
environments.

DR-BIP has been designed with autonomy in mind. The examples on
Autonomous highway traffic system and Self-organizing robot colonies demon-
strate the power of its structuring concepts. Designing systems as a superposition
of motifs (architectures) with their own coordination rules tremendously simpli-
fies the description of autonomous behavior. At the conceptual level, motifs
correspond to “modes” whose behavioral content may change through compo-
nent migration and can also be transformed by using higher level coordination
rules.
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To the best of our knowledge, there is no exogenous coordination language
such as an ADL addressing all these modeling issues in such a methodologi-
cally rigorous manner. DR-BIP has some similarities with simulation and pro-
gramming frameworks for autonomous mobile systems which nonetheless adopt
significant domain-specific restrictions such as Buzz [20,21].

Future work aims at showing that DR-BIP is expressive enough to directly
encompass various coordination mechanisms, in particular unifying the model-
ing of distributed actor-based systems and thread-based shared memory systems.
This can be achieved by considering threads as a special type of mobile compo-
nents using maps as a shared memory structure. In addition, we aim to study
parametric verification techniques for specific types of architectures (motifs) and
combine them with correct-by-construction techniques based on the composition
of architectures [2]. A formal definition of the DR-BIP is provided in report [14].
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