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Abstract. Context-aware and pervasive systems are growing in the
market segments. This is due to the expansion of Internet of things (IoT)
devices. Current solutions rely on centralized services provided by servers
gathering all requests and performing pre-defined computations involv-
ing pre-defined devices. Large-scale IoT scenarios, involving adaptation
and unanticipated devices, call for alternative solutions. We propose here
a new type of services, built and composed on-demand, arising from the
interaction of multiple sensors and devices working together as a decen-
tralized collective adaptive system. Our solution relies on a bio-inspired
coordination model providing a communication platform among multi-
agent systems working on behalf of these devices. Each device provides
few simple services and data regarding its environment. On-demand ser-
vices derive from the collective interactions among multiple sensors and
devices. In this article, we investigate the design and implementation
of such services and define a new approach that combines coordination
model and reinforcement learning, in order to ensure reliable services
and expected quality of services (QoS), namely convergence of composi-
tion, of coherent result and convergence of learning. We present an IoT
scenario showing the feasibility of the approach and preliminary results.
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Collective adaptive system · Bio-inspired systems
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1 Introduction

The next generation of advanced infrastructures will be characterized by the
presence of complex networks of pervasive systems, composed of thousands of
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heterogeneous devices, sensors and actuators consuming and producing high-
volumes of interdependent data. Sensors are becoming smarter, cheaper and
smaller. They are equipped with increased memory and processing capabilities.
In this context, services span wide pervasive systems, involving a very large
number of multiple devices. The limited computing resources in sensor networks
demand a light service implementation.

Fog and edge-computing solutions [27] already challenge centralized solutions
by pushing some of the computation away from central servers and closer to the
devices themselves. There is still a need to accommodate large-scale scenarios,
to adapt to arriving or departing devices, and to ensure reliability and expected
quality of services.

Our vision to meet these requirements consists in moving to a fully decentral-
ized system, working as a collective adaptive system, with the three following
characteristics: (1) dynamic services composed and provided on-demand; (2)
such services result from the multiple interactions of the devices involved in the
production of the services and working as a decentralized collective adaptive
system; (3) use of reinforcement learning for ensuring reliability.

Coordination models [33] provide a natural solution for scaling up such sce-
narios. They are appealing for developing collective adaptive systems work-
ing in a decentralized manner, interacting with their local environment, since
the shared tuple space on which they are based is a powerful paradigm to
implement bio-inspired mechanisms (e.g. stigmergy) for collective interactions.
Coordination infrastructures provide the basic mechanisms and the necessary
middleware to implement and deploy collective adaptive systems. Therefore, our
proposal is based on a bio-inspired coordination model that ensures communica-
tion and tasks’ coordination among heterogeneous, accommodating adaptation
to continuously changing devices. It implements some rules that autonomous
entities (devices) employ to coordinate their behavior, usually following infor-
mation gathered from their local environment.

Our previous work on self-composition of services [12,13,26], also based on a
bio-inspired coordination model, exploits syntactic means only (i.e. shared key-
words for input, output types) as a basis for building on-the-fly chains of services,
out of web services, sensors’ data geographically dispersed over a city. We didn’t
consider reliability of provided services in terms of results or convergence. In this
paper, to tackle reliability, we extended the coordination model with reinforce-
ment learning, specifically tackled IoT scenarios and addressed reliability and
QoS. Section 2 discusses related works. Section 3 presents background informa-
tion on the coordination model and reinforcement learning from which our work
derives from. Section 4 presents our coordination model and its extension with
reinforcement learning (RL). Section 5 then presents our approach to compose
reliable services on-demand followed by a scenario with a practical use case in
Sect. 6. Section 7 discusses implementation and deployment, as well as current
results. Finally, we come to a conclusion and future work in Sect. 8.
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2 Related Works

Orchestration [24] is an automated arrangement, coordination, and management
of services. It relies on an orchestrator who sequentially invokes services by using
the “invoke” and “reply” function in order to provide a combined response. It
depends totally on the composition schema which means a low level of robustness
and no-fault tolerance. Choreography [25] is an interaction between multiple
services without passing by a central control. Every service executes its part of
work according to other services. They use the “send” and “receive” function to
communicate and to provide a composite service.

The static character of these traditional composition approaches has been
recently challenged by so-called dynamic service composition approaches involv-
ing semantic relations [29], and/or Artificial Intelligence planning techniques
[31]. Early works on dynamic building or composing services at run-time include
spontaneous self-composition of services [21]. One of the main challenges of these
approaches is their limited scalability and the strong requirements that they
pose on the details of service description. Evolutionary approaches such as those
based on Genetic Algorithms (GA) have also been proposed for service com-
position [7], motivated by the need of determining the services participating in
a composition that satisfies certain Quality of Service (QoS) constraints [3]. In
relation with non-functional properties, Cruz Torres et al. [10] propose to con-
trol composition of services aiming at maintaining a specified Quality of Service
of the composition (end-to-end) despite any perturbances arising in the system.
This approach uses ant colony optimization to disseminate and retrieve QoS in
an overlay network of available services, which then serve as a basis for select-
ing services in a composition. McKinley [19] proposes parameters’ adaptation
by dynamic re-composition of software during its execution, such as switching
behaviors and algorithms or adding new on-the-fly behavior. Supporting tech-
nologies include aspect-orientation, computational reflection (introspection), and
component-based design.

Coordination models have proven useful for designing and implementing dis-
tributed systems. They are particularly appealing for developing self-organizing
systems, since the shared tuple space on which they are based is a powerful
paradigm to implement self-organizing mechanisms, particularly those requir-
ing indirect communication (e.g. stigmergy). Previous coordination model are
deployed on one node (device), such as Linda [14], an early coordination model
initially designed for only one node, or distributed across several nodes such as
TuCSoN [22] based on Linda, TOTA [17] and Proto [4]. These coordination are
often inspired from nature. As said above, our previous work on self-composition
of services [12,13] relies on a bio-inspired coordination model, but exploits syn-
tactic means only to perform self-composition.

Multi-agent learning solutions are appealing since they help adapting to com-
plex and dynamically changing environments. This is particularly true for con-
current multi-agent learning where a given problem or search space is subdivided
into smaller problems and affected to different agents. Issues with concurrent
learning relate to appropriate ways to dividing feedback among the agents, and
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the risk of agents invalidating each other’s adaptation [23]. Recent work on
constructivist learning approaches, inspired from cognitive sciences, attempt at
removing pre-defined goals, avoiding objective functions [18]. Other approaches,
such as the Self-Adaptive Context-Learning (SACL) Pattern [15] involve, or each
entity (e.g. device), a set of dedicated agents collaborating to learning contexts
and mapping the current state of agents perceptions to actions and effects.

To the best of our knowledge, no approach currently combines learning, coor-
dination model, and self-composing (built on-demand) services.

3 Background Knowledge

3.1 Coordination Model

The concept of a coordination model [8] depicts the way a set of entities interact
by means of a set of interactions. A coordination model consists of : the enti-
ties being coordinated, the coordination rules, to which entities are subjected
during communication processes and the coordination media, that identifies con-
veyed data and its treatment. Our work derives from the SAPERE model [32],
a coordination model for multi-agent pervasive systems inspired by chemical
reactions [11]. It is based on the following concepts:

1. Software Agents : active software entities representing the interface between
the tuple space and the external world including any sort of device (e.g.
sensors), service and application.

2. Live Semantic Annotations (LSA): Tuples of data and properties whose value
can change with time (e.g. temperature value injected by a sensor is updated
regularly).

3. Tuple space: shared space (i.e. coordination media) containing all the tuples
in a node. There is one shared space for each node (node could be a raspberry
pi, Waspmote, etc).

4. Eco-laws: chemical-based coordination rules, namely: Bonding (for linking an
agent with a data that he referred to, was waiting for, concerns it, etc.); Aggre-
gation (for combining two or more LSAs value, such as keeping maximum,
minimum values, averaging values, filtering values, etc.); Decay or Evapo-
ration (regularly decreasing the pertinence of data and ultimately removing
outdated data); Spreading (for propagating LSAs to neighboring nodes).

3.2 Reinforcement Learning

Reinforcement Learning algorithms are machine learning algorithms for deci-
sion making under uncertainty in sequential decision problems. The problems
solved by RL are modeled among others through a Markov Decision Process
(MDP) [28]. MDP is defined as a 4-tuple

〈
S,A,R, T

〉
. It defines a set of states

S, a set of actions A, a reward function R, and a state-transition function T .
In RL, an agent is immersed in an unknown environment. The agent is then

asked to learn how to behave optimally (taking optimal actions) via a trial-and-
error process. The learning process is as follows: (i) The agent is asked to select
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an action in a given environment state; (ii) The selected action is executed
and the environment rewards the agent for taking this action using a scalar
value obtained via the reward function; (iii) The environment performs a state
transition using the state-transition function leading to a new environment state
and a new learning step. The goal of the agent is to maximize the reward it gets
from the environment by learning which action leads to the optimal reward. The
policy followed by the RL agent that drives the selection of the next action is
nothing more than a function that selects an action in a given environment state.
Mathematically, such a policy is written π(state) → action. An important aspect
of the RL learning process is called exploration vs. exploitation. Operating with
the current best choice (i.e., exploit) can capitalize on the current optimal action,
while “exploring” can discover new actions that can outperform the best choice
so far [28]. The ε-greedy and the Boltzmann exploration are popular exploration
algorithms that consider those two aspects. For a more detailed survey of RL
techniques and exploration algorithms, the reader can refer to [16].

Multi-Agent Reinforcement Learning (MARL) is an extension of the RL
framework where multiple (in contrast with the standard RL framework) agents
work in either in fully-cooperative, fully-competitive, or mixed manner [6]. In
the service composition problem, agents have to cooperate (i.e., coordinate) to
yield the most suitable results. The proposed approach is a simple mixed MARL
algorithm as the reward is not the same for all the agent for a single query [6].
Indeed, in a non-stationary problem, such as the one tackled herein, convergence
is not guaranteed as an agent’s reward depends also on the action of other agents.
However, we expect more sophisticated MARL algorithm (such as Win-or-Learn
Fast Policy Hill Climbing [6] and its variants [9]) to increase performance of our
approach. The study of such algorithms is left for future work.

3.3 QLearning

Herein, we decided to employ QLearning [30] as a RL algorithm. QLearning is
one of the most popular model-free RL algorithm. This decision has been driven
by the good performance reached by QLearning in many different fields [2,5,20]
and the wide availability of libraries that propose a QLearning implementation.
To learn the optimal policy, QLearning agents iteratively approximate Q(s, a)
(the expected reward for taking an action a in state s). Agents update the current
approximation of Q(s, a) after each learning step [28] using the expected reward
of the next greedy action. QLearning uses two parameters: α ∈

[
0, 1

]
(learning

rate) and γ ∈
[
0, 1

]
(discount factor). The approximation of Q(s, a) is used by

the agent’s exploration algorithm to drive the selection of their next actions.

4 Coordination Model with Reinforcement Learning

Our coordination model derives from the original SAPERE coordination model.
We equipped the software agents entities of the model with a Reinforcement
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Fig. 1. SAPERE Coordination Model enhanced with RL

Learning (RL) module to trigger reactions with the Live semantic annotations.
The coordination model with reinforcement learning is shown on Fig. 1.

Software agents are sensitive to LSAs being injected in the tuple space. Their
values trigger some agent’s behavior, which then starts some computation. The
result of this computation can be diverse and multiple: the agent instructs some
actuator to provide some effect in the environment (e.g. closing windows); the
agent may inject a new tuple of data in the tuple space (e.g. the average value of
temperatures); or update an LSA value (e.g. providing an updated value for noise
levels). Coordination of the different agents occurs through this indirect retrieval
and injection of property in the shared tuple space (some agents waiting for
some properties provided by other agents to start, continue or finish their work).
Such kinds of models are efficient in a dynamic open system (such as pervasive
scenario), where agents can communicate asynchronously without having global
knowledge about the system and its participants. Agents can join or leave the
system at any moment.

In our model, everything is assimilated to services: a sensor feeding data is
a service, an actuator opening/closing blinds is a service. Software agents act as
wrappers, actually providing the service on behalf of these entities. They also
serve to provide, at run-time, reliable self-composed services using reinforcement
learning. This helps to refine the returning results and ensure a given quality of
services.

As said above, agents are enhanced with a reinforcement learning module.
Spontaneous service composition, as envisaged in this paper, involves many
agents and is the result of their collective interactions. Thus, the learning mod-
ule in each agent serves to steer the collective adaptive system towards the most
meaningful or towards the correct composition of services provided by the diverse
agents (among all possible combinations) and so to avoid multiple answers, some
of which not pertinent for the requester.

In this paper, we decided to employ the ε-greedy reinforcement learning algo-
rithm [16]. This algorithm has a probability ε to select a random action and a
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probability 1− ε to select the action that maximizes the value of the approxima-
tion of Q(s, a). ε-greedy ensures a permanent exploration which is necessary in
case of erratic environment. However, a high ε value will lower the QoS, whereas
a small ε value will lower the capability of the system to adapt to changes in the
spatial services. Therefore, choosing a suitable value of ε is critical. Agents will
learn through feedback and adapt their behavior via QLearning. Each agent has
two actions to take {react, not react}. After each composition, the requester will
receive some responses and is asked to choose the right one. As it is a sequential
composition, a backward is attributed to the set of agents : {Ai},∀i ∈ {1, .., n}
where n, being the number of agents that participated to that particular service
composition. The agents will then take the action that maximize their reward.
Our model is formed by:

– States : set of properties of agent i;
– Actions : {react, not react};
– Exploration algorithm : ε-greedy;
– Q function : Q : S × a → R, where:

Qi
t+1(st, at) = Qi

t(st, at) + α × (Ri
t+1 + γ × maxa(Qi

t(st+1, a)) − Qi
t(st, at)))

∀i ∈ {1, .., n}, where n is the number of agents that have participated on the
service composition, t is the current time, st is the state at time t in which
the agent took action at, and st+1 is the next state reached by the agent after
taking action at.

Each software agent has to solve a sequential decision-making problem as each
agent has to decide whether a reaction is required regarding the partial compo-
sition schema (sequence of properties to reach the requested output type). This
is formalized as an MDP as follows:
S: The set of states is composed of all the possible combinations of composition
schemas. Herein, states are modeled as sequence of interactions (see partial com-
position schema in Fig. 4). A state is said terminal when it contains a property
that matches the output type indicated in the query.
A: The set of actions is composed of two actions: {react, not react}. For an agent,
reacting (resp. not reacting) to a partial composition schema means adding (resp.
not adding) its basic service information to the schema. Reacting consists in both
updating its LSA and completing the schema.
R: After completion of a query, the agent that submitted the original query
is in charge of selecting among all the final schemas produced by the system
the ones he wants to keep as results. The agents that have participated in at
least one selected schema are rewarded with +1, while those that have reacted
and contributed to only non selected schemas are rewarded with −1. A gradient
reward might help to avoid long schema solutions as further partial composition
schemas are less rewarded. However, sparse rewards are known to slow down
learning. Thus, a continuous reward function could be an alternative. Finally, in
RL, reward function are tricky to choose and depends on the problem.
T : The state-transition function. In the present approach, the environment starts
with the agent query. Whenever an agent reacts to a composition schema, it
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adds its basic service information to the state leading to the creation of a new
state, i.e. in addition to updating its LSA with one or more values, it updates
the composition schema. Reacting to composition schemas triggers reactions
with LSAs. The goal of each RL agent is to participate efficiently in the right
compositions in order to build the correct schemas, thus providing a reliable
service with a coherent result.

5 Service Composition

Each agent, acting as a wrapper for a device, is represented by one LSA. An LSA
specifies two sets: a set of properties that the agent provides (i.e. they correspond
to the service provided by this agent) which we note P, and a set of other services
(i.e. properties provided by other agents as services) to which the agent wants
to be alerted to (i.e. to bond), which we note S.

Both properties P and services S are provided as a set of < key : value >
pairs. An LSA has the following structure:

LSA:: == {P = [< key1 : v1 >, . . . , < keyn : vn >],
S = [< svc1 : v1 >, . . . , < svcm : vm >]}

It is important to note that: keyi are property names the agent can provide to
the system, while svcj are property names to which the agent wants to bond to,
i.e. wants to be alerted to as soon as corresponding values are injected in the
LSA space. Values vi can be of different nature:

– ∅: a value can be temporarily empty, due for instance to the Evaporation
eco-law that removes the value. This can be the case for temperature sensor
whose value is no longer valid after a certain time.

– {v}: a single value presenting the value that the agent inserts in the coor-
dination space as the service it provides. For instance, an agent working on
behalf of a temperature sensor provides the value of the temperature;

– {vi,1, . . . , vi,n}: a vector that contains a list of value such as GPS coordinates.
– a matrix that contains many lists of values such as multi-dimensional coordi-

nates.
– ∗: a special character that represents the request from the agent to bond with

the corresponding property.

Depending on how the LSA is composed and when the agent injects or updates
the LSA, we distinguish the following cases:

– LSA = {[< key1 : v1 >, . . . , < keyn : vn >]}: the LSA contains properties
only. In this case, the agent provides only an atomic service and does not
require further interaction or information with/from other agents. The agent
regularly updates the values;

– LSA = {[< svc1 : ∗ >, . . . , < svcm : ∗ >]}: the LSA contains bonding with
specified services only. In this case, the agents wish to be alerted as soon
as one or more of the properties corresponding to the specified services is
injected in the LSA space;
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– LSA = {[< key1 : v1 >, . . . , < keyn : vn >], [< svc1 : ∗ >, . . . , < svcm :
∗ >]}: an LSA injected under this form corresponds to a request for one
or more services or a self-composition of services, able to provide outputs
corresponding to property names: < svc1 : ∗ >, . . . , < svcm : ∗ >, and
provided as the result of having injected an input corresponding to property
names: < key1 : v1 >, . . . , < keyn : vn >. We consider this type of LSA, a
query LSA. It corresponds to a request for a service to be provided on-demand
through self-composition.

In this paper, we are concerned by the query case, once an agent injects a
query for a given property, how the different other agents collectively interact
by providing part of the requested service, how the whole service self-composes
and the output result is finally provided to the agent that originally injected
the query. Once an LSA is updated (e.g. with a new value), or a new LSA is
injected in the tuple space, other LSAs present in the same tuple space will
react to it, if their respective LSA specify they have to be sensitive (i.e. to bond)
to the provided properties. Figure 2 shows five agents: Agent0 to Agent4. This
example starts with Agent0 injecting a query LSA, providing an input value a
for property A, and expecting an output of type D. Each LSA in the tuple space
may then react to one or many properties. Second, LSA of Agent1 provides no
value for property of type B at the moment, but wants to be alerted to any value
injected in the system of type A (S = [< A : ∗ >]). Therefore, this LSA bonds
with the one of Agent0 (diamond arrow). Agent1 is then informed of the value
a. Upon receiving this value, Agent1 after an internal computation, provides a
value for B, say b. Figure 3 shows the unfolding of the different LSAs of this
example. The process then continues with Agent2 and Agent4 both sensitive
to property B. In turn they each update their LSAs, Agent2 with a value for
property C, let’s say c, and Agent4 for property D, let’s say d. At this point,
Agent0 is informed through bonding of the value d provided by Agent4. The
process continues with Agent3, sensitive to property C, and upon the value c,
provides the value d′ for property D. Agent0 is also informed of that value since it
bonds with any value for property D. Following this logic, services self-compose
via indirect communication between LSAs, on-demand following LSAs updates.
As shown by both Figs. 3 and 4, different compositions and results can arise
from the collective interactions of the agents. In addition to providing several
different values, some of these values may not be in relation to the original input,
even though they correspond to the output property. In Fig. 5, we have generated
random services and varied the number of agents. Each agent provides one service
in this case. The average composition schema significantly increase in number
when we increase the agents’ number. This is the reason why we enhanced agents’
capabilities with a RL module. Thus, they understand (semantically) when they
should intervene or react to an incoming LSA (or not) even when services in LSAs
matches their expected input. Indeed, collective interactions among agents do
not consider the semantics of users’ queries, thus leading to multiple responses.
Then, we add a RL module in each agent to prune non-suitable results and to
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Fig. 2. On-demand service composition

Fig. 3. Agents behavior

Fig. 4. Composition services graph
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provide reliable responses. Now, our problem can be modeled as a graph of states
providing different paths between graph nodes (see Fig. 4).

A composition schema is a concatenation of properties type, corresponding
to the unfolding of the services composition. We say that a composition schema
is partial when the input property is present but the output property is not yet
reached. We say that a composition schema is final when it starts with the input
property and ends with the output property.

Fig. 5. Possible composition schemas

Fig. 6. Compose on-demand service
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6 Scenarios

An on-demand service results from the collective interactions of a series of agents,
each providing a portion of the final requested service. It arises from the self-
composition of the diverse services provided by the agents at run-time. The
query is first analyzed by agents which are sensitive to the input properties. One
or many QLearning agents will check their approximated Q(s, a) and decide
to react (or not) based on their exploration algorithm. If they decide to react,
they provide the corresponding LSA and update the partial composition schema.
The process continues until the production of a terminal state which is a final
composition schema that ends with the requested property name.

A user is a human being or another system, for which an agent works
on behalf to, and that is able to provide a feedback on the provided result.
Agents learn through user’s feedback and adapt their behavior consequently.
Once a composition is completed, the user receives one or more final compo-
sition schemas and is asked to choose the right ones. A backward reward is
attributed to all agents that have participated in the service composition. To
do so, the system uses the composition schemas. Figure 6 shows a basic sce-
nario of service composition located inside a given computational node: (i) the
user starts by injecting a query asking “How much is the intensity of light on
the 4th floor?”; (ii) the user’s query is transformed into the correct format,
with a Natural Language Understanding (NLU) system, then injected into the
tuple space (see Section for more details on NLU). As a result Agent0 injects
LSA= {[< Floor : 4 >], [< Light : ∗ >]}; (iii) agents collectively interact, finally
providing two final composition schemas, one going through Agent1 and Agent2
providing the information about sensor giving the level of light in the corridor
at the fourth floor, and the sensor itself providing the value for light intensity
(Floor, Sensor, Light); a second composition schema going through a service
providing the information about a light bulb at the fourth floor, and the light
bulb itself answering it is switched off (Floor,Bulb, Light); (iv) the user then
evaluates the system’s responses by rewarding positively the schema provided
by the sensor giving the level of light, and negatively the one provided by the
light bulbs; (v) the two rewards (positive and negative) propagate back to the
agents following the two composition schemas.

Agents that have participated in a composition schema, update their LSA
with two information. First, the partial composition schema and second a
specific request for bonding with the future reward. Regarding the partial
composition, Agent0 injects a request to bond with the composition schema
< CompositionSchema : ∗ >, Agent1 injects < CompositionSchema :
Floor, Sensor >, Agent2 updates it and injects < CompositionSchema :
Floor, Sensor, Light >, while Agent3 injects < CompositionSchema :
Floor,Bulb > and Agent4 < CompositionSchema : Floor,Bulb, Light >.
Agent0 then bonds with both the results and the final composition schemas.

Regarding the rewards, agents injects a request for bonding. Agent1 injects
< FloorSensor : ∗ >, Agent2 injects < FloorSensorLight : ∗ >, while Agent3
injects < FloorBulb : ∗ > and Agent4 < FloorBulbLight : ∗ >. Once the
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user provides its rewards, it updates its LSA with as many partial schema as
the length of the schema. In this case, it will inject the following information:
< FloorSensor : +1 >, < FloorSensorLight : +1 >, and < FloorBulb : −1 >,
< FloorBulbLight : −1 >. Through bonding, the respective agents will then
collect their own reward and update their Q and R matrix. The right and left
side of Fig. 6 show the respective agents updating their Qi and Ri function based
on the received reward.

7 Implementation, Deployment and Results

We designed and deployed a smart node equipped with the coordination platform
enriched with reinforcement learning.

7.1 Implementation and Deployment

We attached to the node a set of basic services, as shown in Fig. 7. Our system
is composed of:

– Raspberry pi 3: we used Raspberry pi to host all sensors and devices.
– SAPERE middleware enriched with reinforcement learning: we deployed our

coordination model, presented above, with five agents each equipped with a
RL module as discussed in the previous sections. Each agent is ready to learn
when it should react or not.

– Z-wave controller Gen 5: we use the Z-wave protocol to ensure communication
with sensors. It uses low-energy radio waves and has a wide communication
range.

– Z-wave smart led light bulb: the bulb is used as an actuator where the light
intensity can be adjusted by the bulb.

– Multi-sensor Gen 6: This provides a continuous sensing of motion, light, tem-
perature, humidity, vibration and UV level.

– Natural Language Understanding (NLU) system: the NLU is able to extract
the correct entities and intent from different questions and provides a more
natural communication experience for a human user. An NLU system was
implemented to transform users’ questions into right query format under the
form of an LSA. We used “Rasa nlu” for intent classification and entity extrac-
tion. We wrote some questions examples and then trained the system to be
able to extract the same entities and intent from different questions. The
entities will be considered as the input property and the intent as the output
property. For instance, “How much is the intensity of light on the 4th floor?”
and “What is the light’s level on the floor number four?” will both lead to a
query LSA of the form: {[< Floor : 4 >], [< Light : ∗ >]}.

We implemented the scenario presented in Fig. 6 with four agents providing each
a set of services. In our example, Agent1 provides the corresponding sensor for a
given floor. Agent2 provides the light intensity of a given sensor. Agent3 provides
the corresponding bulb name for a given floor. Finally, Agent4 provides the light
intensity of a given bulb.
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Fig. 7. IoT node implementing our scenario

7.2 Results

Composition convergence: Our system needs to provide reliable responses.
Defining the output property’s type helps agents returning an answer for the
expected property. The collective interaction among the agents produces all the
possible composition schemas, including the right solution, when the system is
such that such a solution exists. Learning is then needed to select the right
answer among all possible answers (see Fig. 5).

Fig. 8. Learning rate

Convergence towards a correct result: Through learning, the agents pro-
gressively update their behavior by following what they have learned based on
users’ feedback. The collective adaptive system will then converge towards the
correct composition, i.e. the one actually expected by the user.

Learning convergence: It is provided through the analysis of the learning
parameters. As presented above, each agent learns the right partial schema that
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should be returned to the user. The system should converge after few users’
feedback. As shown in Fig. 8, when the learning rate α is close to 1, our system
learns faster than when α is smaller. Therefore, in our implementations we chose
a value of 0.9 for α.

These preliminary results need to be confirmed and extended in large-scale
scenarios under a vast variety of cases.

8 Conclusion

On-demand services present a new generation of services providing innovation for
the software industry. Coordination models have an impact on the forthcoming
IoT and Smart cities scenarios. In this paper, we show how agents collaborate to
compose on-demand services using RL and a bio-inspired coordination model.
This increases the quality of services in various practical applications [26]. In
the future, we will investigate large-scale scenarios, first inside a single node,
then on multiple nodes. This will permit to confirm or revisit our preliminary
results on convergence of learning and convergence towards correct results. This
will also provide a higher-level of complexity, involving other services such as
Spreading, Gradient or Chemotaxis [11]. We will focus, during service composi-
tion, on guaranteeing and maintaining non-functional properties in a distributed
network such as availability, reliability or performance. These aspects should
be calibrated dynamically. For example, the Spreading service can adapt the
distance of spreading, while the Evaporation service can adapt its evaporation
frequency. Due to the stochastic aspect of our environment, parameters need
to be adapted at run-time. Learning will adjust parameters related to service
composition depending on the requested QoS [1], such as privacy, availability or
performance.
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